

AN EMPIRICAL STUDY OF PROCESS DISCIPLINE AND SOFTWARE QUALITY

by

Mark Christopher Paulk

BS, University of Alabama in Huntsville, 1978

MS, Vanderbilt University, 1980

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2005

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Mark Christopher Paulk

It was defended on

July 13, 2004

and approved by

Dr. Kim LaScola Needy, Associate Professor, Department of Industrial Engineering

Dr. Jayant Rajgopal, Associate Professor, Department of Industrial Engineering

Dr. Chris Kemerer, Professor, Joseph M. Katz Graduate School of Business

Dr. Marc Kellner, Senior Member of the Technical Staff, Software Engineering Institute

Dissertation Director: Dr. Mainak Mazumdar, Professor, Department of Industrial Engineering

 iii

Copyright by Mark Christopher Paulk
2005

 iv

AN EMPIRICAL STUDY OF PROCESS DISCIPLINE AND SOFTWARE QUALITY

Mark Christopher Paulk, PhD

University of Pittsburgh, 2005

There is a widespread, but not universal, belief in the software community that software

organizations and projects can systematically improve their ability to meet commitments and

build high-quality products using principles of software quality management. Quality affects

cost and schedule, therefore the engineering practices that affect quality are also a management

concern. Understanding the factors that influence software quality is crucial to the continuing

maturation of the software industry; an improved understanding of software quality drivers will

help software engineers and managers make more informed decisions in controlling and

improving the software process.

My research is motivated by a desire to understand the effect of disciplined processes and

effective teams on improving performance and lessening variability with respect to software

quality. Classroom data provides insight into interpersonal differences between competent

professionals as increasingly disciplined processes are adopted. Project data using similar

processes enables an exploration of the impact of effective teams on software quality.

My results show that:

• Program size, programmer ability, and disciplined processes significantly affect software

quality.

• Factors frequently used as surrogates for programmer ability, e.g., years of experience,

and technology, e.g., programming language, do not significantly impact software

quality.

 v

• Recommended practices are not necessarily followed even when processes are

consistently performed, e.g., peer reviews may be consistently performed, but the review

rates may exceed recommended practice for effective reviews.

• When moving from ad hoc processes to disciplined processes, top-quartile performers

improve more than 2X; bottom-quartile performers improve more than 4X.

• Rigorous statistical techniques that allow for individual differences confirm the

importance of process discipline and following recommended practice for improving

software quality.

 vi

TABLE OF CONTENTS

PREFACE... xxv

1.0 INTRODUCTION .. 1

1.1 MOTIVATION FOR THIS RESEARCH ..1

1.2 STATEMENT OF THE SOFTWARE QUALITY PROBLEM.......................................4

1.3 PURPOSE AND SIGNIFICANCE OF THIS STUDY ..8

2.0 LITERATURE REVIEW ... 12

2.1 THE SOFTWARE PROCESS..12

2.1.1 The Capability Maturity Model for Software ... 13

2.1.2 The Personal Software Process... 14

2.1.3 The Team Software Process.. 18

2.1.4 Relevance of PSP, TSP, and CMM to My Research .. 19

2.2 PEER REVIEWS..19

2.2.1 Inspections .. 20

2.2.2 Relevance of Peer Reviews to My Research .. 22

2.3 SOFTWARE QUALITY AND MEASUREMENT ...22

2.3.1 Characterizing Software Quality... 24

2.3.2 Statistical Distribution of Defects... 26

2.3.3 Defect Prediction and Estimation Models .. 27

2.3.4 Relevance of Defect Prediction Models to My Research 32

2.4 DIFFERENCES IN INDIVIDUAL PERFORMANCE ...33

2.4.1 Order of Magnitude Differences... 33

 vii

2.4.2 Relevance of Individual Differences to My Research .. 34

2.5 TEAM PERFORMANCE...35

2.5.1 Inspection Teams .. 35

2.5.2 Relevance of Team Performance to My Research.. 36

2.6 STATISTICAL THINKING...37

2.6.1 Operational Definitions... 39

2.6.2 Process Behavior and Control Charts ... 39

2.6.3 Applying Statistical Control to Software Processes ... 43

2.6.4 Relevance of Statistical Thinking to My Research... 46

2.7 SUMMARIZING THE RELEVANCE OF PRIOR RESEARCH..................................46

3.0 RESEARCH METHODOLOGY.. 48

3.1 THE RESEARCH QUESTIONS..48

3.2 RETROSPECTIVE DATA SETS ..49

3.3 OVERVIEW OF THE ANALYSIS PROCESS ...52

3.4 CONCERNS WITH GENERALIZING PSP-BASED ANALYSES55

3.5 REMOVING INVALID PSP DATA..57

4.0 EXPLORING THE FACTORS AFFECTING SOFTWARE QUALITY........................ 61

4.1 THE RESEARCH QUESTION: EXPLORING QUALITY DRIVERS61

4.2 POTENTIAL EXPLANATORY VARIABLES...62

4.3 DEFINING SOFTWARE QUALITY FOR PSP..66

4.4 AN OVERVIEW OF SOME BASIC STATISTICS ..68

4.5 CONFIRMING PSP QUALITY TRENDS ..70

4.6 EXPLORING THE POTENTIALLY CONFOUNDING VARIABLES.......................75

4.6.1 Assignment (9A Versus 10A)... 78

4.6.2 Finishing All Ten Assignments Versus Not Finishing ... 82

 viii

4.6.3 PSP Classes... 86

4.6.4 Highest Degree Attained... 92

4.6.5 Years of Programming Experience... 97

4.6.6 Number of Languages Known.. 101

4.6.7 Percent of Time Programming.. 104

4.6.8 Programming Language.. 107

4.6.9 Discussion of the Potentially Confounding Variables .. 113

4.7 EXPLORING SOLUTION COMPLEXITY (PROGRAM SIZE)114

4.7.1 Program Size and Defect Density in Testing.. 114

4.7.2 Program Size and the Number of Defects Removed in Testing 117

4.7.3 Discussion of Program Size .. 121

4.8 EXPLORING THE PROCESS VARIABLES ...122

4.8.1 Design Time.. 125

4.8.2 Design Review Rate.. 130

4.8.3 Defect Density in Design Review... 138

4.8.4 Coding Time ... 141

4.8.5 Code Review Rate... 145

4.8.6 Defect Density in Code Review.. 152

4.8.7 Defect Density in Compile.. 155

4.8.8 Discussion of the Process Variables ... 159

4.9 EXPLORING PROGRAMMER ABILITY ...160

4.9.1 Comparing Improvement of Top and Bottom Quartiles..................................... 161

4.9.2 Comparing Top and Bottom Performers at the End of PSP 165

4.9.3 Using a Continuous Measure of Programmer Ability .. 169

4.9.4 Discussion of Programmer Ability ... 172

 ix

4.10 CONCLUSIONS FOR EXPLANATORY VARIABLES FOR SOFTWARE
QUALITY...173

5.0 IDENTIFYING OUTLIERS IN THE SOFTWARE PROCESS.................................... 178

5.1 THE RESEARCH QUESTION: IDENTIFYING OUTLIERS....................................178

5.2 IDENTIFYING THE COMMON CAUSE SYSTEM..180

5.3 SPECIFICATION LIMITS FOR SOFTWARE PROCESSES181

5.4 MEASURES FOR PROCESS CONTROL ..182

5.5 tECHNIQUES FOR IDENTIFYING OUTLIERS ...182

5.6 IDENTIFYING SIZE OUTLIERS ...185

5.7 IDENTIFYING DESIGN OUTLIERS...188

5.7.1 Design Effort... 188

5.7.2 Design Review Rate.. 189

5.7.3 Defect Density in Design Review... 190

5.8 IDENTIFYING CODING OUTLIERS ..191

5.8.1 Coding Effort .. 191

5.8.2 Code Review Rate... 192

5.8.3 Defect Density in Code Review.. 194

5.9 IDENTIFYING COMPILATION OUTLIERS ..194

5.10 IDENTIFYING TESTING OUTLIERS...196

5.11 DISCUSSION OF OUTLIER IDENTIFICATION..197

5.12 CONCLUSIONS FOR OUTLIER IDENTIFICATION...200

6.0 STATISTICAL DISTRIBUTIONS OF SOFTWARE DEFECT DATA 203

6.1 THE RESEARCH QUESTION: TESTING STATISTICAL DISTRIBUTIONS203

6.2 STATISTICS RELEVANT TO DISTRIBUTIONS...204

6.3 DISTRIBUTION OF DESIGN DEFECTS ..205

6.4 DISTRIBUTION OF CODING DEFECTS..208

 x

6.5 DISTRIBUTION OF COMPILE DEFECTS..211

6.6 DISTRIBUTION OF TESTING DEFECTS ..213

6.7 CONCLUSIONS FOR STATISTICAL DISTRIBUTIONS ..216

7.0 MODELING SOFTWARE QUALITY IN PSP... 218

7.1 THE RESEARCH QUESTION: pREDICTING DEFECTS..218

7.2 DECISION POINTS IN THE PSP PROCESSES ..219

7.3 MULTIPLE REGRESSION MODELS FOR PSP QUALITY220

7.3.1 An Overview of Regression Theory ... 222

7.3.2 The Baseline Multiple Regression Models ... 222

7.3.3 Multiple Regression Models in Design... 228

7.3.4 Multiple Regression Models in Coding .. 234

7.3.5 Multiple Regression Models in Compile .. 241

7.3.6 Multicollinearity and Variance Inflation Factors.. 247

7.3.7 Influential Outliers .. 247

7.3.8 Box-Cox Transformations .. 250

7.3.9 Multiplicative Models... 251

7.3.10 Stratifying by Programmer Quartile ... 254

7.3.11 Stratifying by Conformant Processes.. 256

7.3.12 Discussion of the Multiple Regression Models .. 259

7.4 MIXED MODELS FOR PSP QUALITY...261

7.4.1 An Overview of Mixed Model Theory ... 262

7.4.2 Mixed Models in Design... 266

7.4.3 Mixed Models in Coding .. 270

7.4.4 Mixed Models in Compile .. 279

7.4.5 Random Effects in the Mixed Models for PSP... 285

 xi

7.4.6 Random Coefficient Mixed Models for Student-Specific Effects...................... 287

7.4.7 Discussion of the Mixed Models .. 290

7.5 CONCLUSIONS FOR DEFECT PREDICTION MODELS291

8.0 DEFECT REMOVAL EFFECTIVENESS OF REVIEWS AND INSPECTIONS........ 294

8.1 THE RESEARCH QUESTION: DEFECT REMOVAL EFFECTIVENESS..............294

8.2 EFFECTIVENESS OF PSP REVIEWS ...295

8.2.1 Considering Transformations for Defect Removal Effectiveness 296

8.2.2 Design Reviews in PSP... 298

8.2.3 Code Reviews in PSP.. 304

8.3 EFFECTIVENESS OF TSPS REVIEWS AND INSPECTIONS310

8.3.1 Impact of Program Size .. 311

8.3.2 Impact of the Programmer .. 313

8.3.3 Impact of Review and Inspection Rates.. 316

8.4 EFFECTIVENESS OF HIGH-MATURITY CODE INSPECTIONS..........................317

8.4.1 Investigating Code Inspection Rate Further ... 320

8.4.2 Investigating Team Size Further... 323

8.5 CONCLUSIONS FOR FACTORS AFFECTING REVIEW EFFECTIVENESS326

9.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH.......... 329

9.1 CONCLUDING REMARKS..329

9.2 LIMITATIONS...336

9.3 FUTURE RESEARCH DIRECTIONS ..337

APPENDIX A... 339

Descriptions of Variables in Data Sets ..339

A.1 VARIABLES IN THE PSP DATA ...339

A.2 VARIABLES IN THE TSP PROJECT DATA ...342

 xii

A.3 VARIABLES IN THE HIGH-MATURITY PROJECT DATA......................................342

APPENDIX B ... 344

SAS Code...344

B.1 GENERAL LINEAR MODELS FOR PSP..344

B.2 INFLUENTIAL OUTLIERS FOR PSP...347

B.3 MIXED MODELS (DESIGN, CODE, COMPILE) FOR PSP ..348

B.4 MIXED MODELS WITH A RANDOM EFFECT FOR PSP ...350

B.5 DEFECT REMOVAL EFFECTIVENESS FOR PSP..351

B.6 TSP PROJECT MODELS..352

B.7 HIGH-MATURITY PROJECT MODELS ..355

APPENDIX C ... 357

SAS Output ..357

C.1 COMPILE REGRESSION MODEL FOR (PSPB, C) ...357

C.2 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C)358

C.3 COMPILE REGRESSION MODEL FOR (PSPB, C++, OUTLIERS)360

C.4 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++,
OUTLIERS)..361

C.5 COMPILE REGRESSION MODEL FOR (PSPB, C, NOOUTLIERS)..........................363

C.6 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS) ..364

C.7 COMPILE REGRESSION MODEL FOR (PSPB, C++, NOOUTLIERS)366

C.8 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++,
NOOUTLIERS) ..367

C.9 COMPILE MIXED MODELS FOR (PSPB, C, OUTLIERS) ...369

C.10 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
OUTLIERS)..372

 xiii

C.11 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS) ..375

C.12 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS) ..378

C.13 COMPILE MIXED MODELS FOR (PSPB, C++, OUTLIERS)381

C.14 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
OUTLIERS)..385

C.15 COMPILE MIXED MODELS FOR (PSPB, C++, NOOUTLIERS).............................389

C.16 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
NOUTLIERS) ...392

C.17 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB, C,
ALLTEN)..395

C.18 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB,
C++, ALLTEN) ..399

C.19 DATA FOR TSP1 ..401

BIBLIOGRAPHY... 403

 xiv

LIST OF TABLES

Table 1 Software Quality at Different Software CMM Maturity Levels..................................14

Table 2 COCOMO II and COQUALMO Drivers ..31

Table 3 Statistical Distributions Used to Describe Software Defects.......................................38

Table 4 Sample Sizes for PSP Data Sets...60

Table 5 ANOVA for PSP Major Process ...72

Table 6 Estimates for PSP Major Process Levels ..74

Table 7 ANOVA for Assignment (9A vs 10)..79

Table 8 Estimates for Assignment Levels ...80

Table 9 ANOVA for Assignment (9A vs 10A) Excluding Outliers..80

Table 10 Estimates for Assignment Levels Excluding Outliers..81

Table 11 ANOVA for Finishing All Ten Assignments ...83

Table 12 Estimates for Levels of Finishing All Ten Assignments..84

Table 13 ANOVA for Finishing All Ten Assignments Excluding Outliers................................85

Table 14 Estimates for Levels of Finishing All Ten Assignments Excluding Outliers...............86

Table 15 Regression Models for PSP Class ...88

Table 16 Estimates for PSP Class...89

Table 17 Regression Models for PSP Class Excluding Outliers ..91

Table 18 Estimates for PSP Class Excluding Outliers ...91

Table 19 ANOVA for Highest Degree Attained...94

Table 20 Estimates for Highest Degree Attained Levels..95

Table 21 ANOVA for Highest Degree Attained Excluding Outliers ...96

 xv

Table 22 Estimates for Highest Degree Attained Levels Excluding Outliers.............................97

Table 23 Regression Models for Years of Experience ..98

Table 24 Estimates for Years of Experience ...99

Table 25 Regression Models for Years of Experience Excluding Outliers.................................99

Table 26 Estimates for Years of Experience Excluding Outliers..100

Table 27 Regression Models for Number of Languages Known ..102

Table 28 Estimates for Number of Languages Known ...103

Table 29 Regression Models for Number of Languages Known Excluding Outliers...............103

Table 30 Estimates for Number of Languages Known Excluding Outliers104

Table 31 Regression Models for Percent of Time Programming ...105

Table 32 Estimates for Percent of Time Programming ..106

Table 33 Regression Models for Percent of Time Programming Excluding Outliers..............106

Table 34 Estimates for Percent of Time Programming Excluding Outliers107

Table 35 ANOVA for Programming Language ...109

Table 36 Estimates for Programming Language Levels ..110

Table 37 ANOVA for Programming Language Excluding Outliers..111

Table 38 Estimates for Programming Language Levels Excluding Outliers...........................112

Table 39 Statistically Significant Results for Potentially Confounding Variables...................113

Table 40 Regression Models for Program Size ..114

Table 41 Estimates for Program Size ...115

Table 42 Regression Models for Program Size Excluding Outliers...116

Table 43 Estimates for Program Size Excluding Outliers ..117

Table 44 Regressing Defects Removed in Testing on Program Size ..119

Table 45 Estimates for Regressing Defects Removed in Testing on Program Size120

Table 46 Regressing Defects Removed in Testing on Program Size Excluding Outliers120

 xvi

Table 47 Estimates for Regressing Defects Removed in Testing on Program Size
Excluding Outliers ...121

Table 48 Regressing Design Defect Density on Design Time ..127

Table 49 Estimates for Regressing Design Defect Density on Design Time128

Table 50 Regressing Design Defect Density on Design Time Excluding Outliers128

Table 51 Estimates for Regressing Design Defect Density on Design Time Excluding
Outliers...129

Table 52 Regressing Defect Removal Effectiveness on Design Review Rate131

Table 53 Estimates for Regressing Defect Removal Effectiveness on Design Review
Rate ..132

Table 54 Regressing Defect Removal Effectiveness on Design Review Rate Excluding
Outliers...133

Table 55 Estimates for Regressing Defect Removal Effectiveness on Design Review
Rate Excluding Outliers...134

Table 56 ANOVA for Regressing Defect Removal Effectiveness on Design Review
Class...136

Table 57 Estimates for Regressing Defect Removal Effectiveness on Design Review
Class...137

Table 58 ANOVA for Regressing Defect Removal Effectiveness on Design Review
Class Excluding Outliers ...137

Table 59 Estimates for Regressing Defect Removal Effectiveness on Design Review
Class Excluding Outliers ...138

Table 60 Regression Models for Defect Density in Design Review ...139

Table 61 Estimates for Defect Density in Design Review...140

Table 62 Regression Models for Defect Density in Design Review Excluding Outliers140

Table 63 Estimates for Defect Density in Design Review Excluding Outliers141

Table 64 Regressing Code Defect Density on Coding Time ...143

Table 65 Estimates for Regressing Code Defect Density on Coding Time...............................144

Table 66 Regressing Code Defect Density on Coding Time Excluding Outliers......................144

 xvii

Table 67 Estimates for Regressing Code Defect Density on Coding Time Excluding
Outliers...145

Table 68 Regressing Defect Removal Effectiveness on Code Review Rate146

Table 69 Estimates for Regressing Defect Removal Effectiveness on Code Review Rate147

Table 70 Regressing Defect Removal Effectiveness on Code Review Rate Excluding
Outliers...147

Table 71 Estimates for Regressing Defect Removal Effectiveness on Code Review Rate
Excluding Outliers ...148

Table 72 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class149

Table 73 Estimates for Regressing Defect Removal Effectiveness on Code Review Class150

Table 74 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class
Excluding Outliers ...151

Table 75 Estimates for Regressing Defect Removal Effectiveness on Code Review Class
Excluding Outliers ...152

Table 76 Regression Models for Defect Density in Code Review ..153

Table 77 Estimates for Defect Density in Code Review..154

Table 78 Regression Models for Defect Density in Code Review Excluding Outliers154

Table 79 Estimates for Defect Density in Code Review Excluding Outliers155

Table 80 Regression Models for Defect Density in Compile..156

Table 81 Estimates for Defect Density in Compile ...157

Table 82 ANOVA for Defect Density in Compile Excluding Outliers.....................................157

Table 83 Estimates for Defect Density in Compile Excluding Outliers....................................158

Table 84 Statistically Significant Results for the Process Variables ..159

Table 85 Comparing Top and Bottom Quartile Average Performance163

Table 86 Comparing Top and Bottom Performers Excluding Outliers164

Table 87 ANOVA for Programmer Quartile ...166

Table 88 Estimates for Programmer Quartile Levels ..167

 xviii

Table 89 ANOVA for Programmer Quartile Excluding Outliers..168

Table 90 Estimates for Programmer Quartile Excluding Outliers...169

Table 91 Regression Models for Programmer Ability..170

Table 92 Estimates for Programmer Ability ...171

Table 93 ANOVA for Programmer Ability Excluding Outliers...171

Table 94 Estimates for Programmer Ability Excluding Outliers..172

Table 95 Outlier Statistics for Program Size (LOC)...187

Table 96 Outlier Statistics for Design Time..188

Table 97 Outlier Statistics for Design Review Rate ..189

Table 98 Outlier Statistics for Defect Density in Design Review ...191

Table 99 Outlier Statistics for Coding Time ...192

Table 100 Outlier Statistics for Code Review Rate...193

Table 101 Outlier Statistics for Defect Density in Code Review ..194

Table 102 Outlier Statistics for Defect Density in Compilation ...195

Table 103 Outlier Statistics for Defect Density in Testing..196

Table 104 Outlier Differences Between XmR Charts and Interquartile Limits199

Table 105 Statistics for the Number of Defects Removed in Design Review206

Table 106 Number of Defects Removed in Design Review Against the Negative Binomial
Excluding Outliers ...207

Table 107 Statistics for Defect Density in Design Review..208

Table 108 Statistics for the Number of Defects Removed in Code Review209

Table 109 Number of Defects in Code Review Against the Negative Binomial Excluding
Outliers...209

Table 110 Statistics for Defect Density in Code Review...210

Table 111 Statistics for Number of Defects Removed in Compile..211

 xix

Table 112 Number of Defects Removed in Compile Against the Negative Binomial
Excluding Outliers ...212

Table 113 Statistics for Defect Density in Compile ..213

Table 114 Statistics for Number of Defects Removed in Testing ...214

Table 115 Number of Defects Removed in Testing Against the Negative Binomial
Excluding Outliers ...214

Table 116 Statistics for Defect Density in Testing ..215

Table 117 Variable Names and Definitions for Multiple Regression Models............................221

Table 118 Multiple Regression Models for the Baseline Case...224

Table 119 Main Effects for the Baseline Models ...225

Table 120 Interaction Effects for the PSP Major Process in the Baseline Models226

Table 121 Interaction Effects for Programmer Ability in the Baseline Models227

Table 122 Multiple Regression Models in Design..229

Table 123 Main Effects for the Design Models..230

Table 124 Two-Factor Interaction-Effect Estimates in the Design Models232

Table 125 Other Interaction-Effect Estimates in the Design Models ...233

Table 126 Multiple Regression Models in Code ..235

Table 127 Main Effects for the Code Models...236

Table 128 Two-Factor Interaction-Effect Estimates in the Code Models238

Table 129 Other Interaction-Effect Estimates in the Code Models ..240

Table 130 Multiple Regression Models in Compile ...242

Table 131 Main Effects for the Compile Models ...243

Table 132 Two-Factor Interaction-Effect Estimates in the Compile Models.............................245

Table 133 Other Interaction-Effect Estimates in the Compile Models.......................................246

Table 134 Multicollinearity Diagnostics Using VIF...247

Table 135 Comparing Compile Models Including and Excluding Influential Outliers..............249

 xx

Table 136 Comparing Additive and Multiplicative Compile Models ..253

Table 137 Comparing Compile Models for Top-Quartile Students ...255

Table 138 Comparing Compile Models for Conformant Processes ...257

Table 139 Comparing Compile Models for Conformant Processes Without Considering
Programming Language...258

Table 140 Mixed Models for Design ..267

Table 141 Fixed-Effect Estimates for the Design Mixed Models ..268

Table 142 Mixed Models for Design Excluding Outliers...269

Table 143 Fixed-Effect Estimates for the Design Mixed Models Excluding Outliers270

Table 144 Mixed Models for Code ...272

Table 145 Fixed-Effect Estimates for the Code Mixed Models ...273

Table 146 Interaction-Effect Estimates in the Code Mixed Models...275

Table 147 Mixed Models for Code Excluding Outliers..276

Table 148 Fixed-Effect Estimates for the Code Mixed Models Excluding Outliers277

Table 149 Interaction-Effect Estimates in the Code Mixed Models...278

Table 150 Mixed Models for Compile..280

Table 151 Fixed-Effect Estimates for the Compile Mixed Models ..281

Table 152 Interaction-Effect Estimates in the Compile Mixed Models282

Table 153 Mixed Models for Compile Excluding Outliers ..283

Table 154 Fixed-Effect Estimates for the Compile Mixed Models Excluding Outliers.............284

Table 155 Interaction-Effect Estimates in the Compile Mixed Models285

Table 156 Comparing Top and Bottom Quartile Average Performance Based on
Regression Estimates ...290

Table 157 Multiple Regression Models for PSP Design Reviews..299

Table 158 Estimates for PSP Design Review Models ..300

 xxi

Table 159 ANOVA for Regressing Defect Removal Effectiveness on Design Review
Class...303

Table 160 Estimates for Regressing Defect Removal Effectiveness on Design Review
Class...304

Table 161 Multiple Regression Models for PSP Code Reviews ..305

Table 162 Estimates for PSP Code Review Models ...306

Table 163 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class309

Table 164 Estimates for Regressing Defect Removal Effectiveness on Code Review Class310

Table 165 Regressing Defect Removal Effectiveness on Program Size in TSP..........................312

Table 166 Estimates for Regressing Defect Removal Effectiveness on Program Size in
TSP...313

Table 167 Regressing Defect Removal Effectiveness on Programmer in TSP...........................314

Table 168 Estimates for Regressing Defect Removal Effectiveness on Programmer in
TSP...315

Table 169 Regressing Defect Removal Effectiveness on Review / Inspection Rate in TSP316

Table 170 Estimates for Regressing Defect Removal Effectiveness on Review /
Inspection Rate in TSP...317

Table 171 Multiple Regression Models for a High-Maturity Project ...319

Table 172 Estimates for High-Maturity Project Models...320

Table 173 ANOVA for Regressing Defect Removal Effectiveness on Code Inspection
Class...322

Table 174 Estimates for Regressing Defect Removal Effectiveness on Code Inspection
Class...323

Table 175 ANOVA for Regressing Defect Removal Effectiveness on Number of
Inspectors ...325

Table 176 Estimates for Regressing Defect Removal Effectiveness on Number of
Inspectors ...326

 xxii

LIST OF FIGURES

Figure 1 Trends in Defect Density in Testing Across PSP Assignments..................................... 17

Figure 2 Program Size Across (PSPb, C) .. 67

Figure 3 Trends in Software Quality ... 71

Figure 4 Differences Between Assignment 9 and Assignment 10 .. 78

Figure 5 Differences Between All Ten Assignments Versus Less Than Ten............................... 82

Figure 6 PSP Classes Over Time... 89

Figure 7 Differences for Highest Degree Attained .. 93

Figure 8 Differences Between Programming Language Levels ... 108

Figure 9 Regressing Defect Density in Testing on Program Size .. 118

Figure 10 Dependencies Between Software Engineering Activities and Quality 124

Figure 11 Differences in Design Review Classes .. 135

Figure 12 Trends for Programmer Quartiles... 162

Figure 13 Differences in Performance Across Quartiles for (PSPb, C, 9A).............................. 165

Figure 14 Initial X Chart for Program Size in (PSPb, C, 9A) ... 186

Figure 15 Robust X Chart for Program Size in (PSPb, C, 9A) ... 186

Figure 16 Trends in Software Quality from a Student-Specific Mixed Model 289

Figure 17 Distribution of Defect Removal Effectiveness ... 297

Figure 18 Distribution of Logit Transformation of Defect Removal Effectiveness 298

Figure 19 Scatter Diagram for Design Review Rate vs Defect Removal Effectiveness 301

Figure 20 Differences in Design Review Classes Reprised ... 302

Figure 21 Scatter Diagram for Code Review Class vs Defect Removal Effectiveness............... 307

 xxiii

Figure 22 Differences in Code Review Class Reprised ... 308

Figure 23 Differences Between Code Inspection Classes for a High Maturity Project 321

Figure 24 Differences Between Number of Inspectors for a High Maturity Project 324

 xxiv

To my wife Kathy
Without your encouragement and support, this would never have happened.

 xxv

PREFACE

I am grateful to many people who have supported me throughout my doctoral study.

First, I would like to thank Dr. Mainak Mazumdar for reviewing my work and guiding the course

of my research. His focus was always on the quality of the research.

I am indebted to the members of my dissertation committee: Dr. Kim Needy, Dr. Jayant

Rajgopal, Dr. Chris Kemerer, and Dr. Marc Kellner. Their feedback improved this dissertation

greatly. I am also grateful to Dr. John Manley, my initial advisor, who sent me down this road.

I am thankful to Bill Peterson, Watts Humphrey, and Jim Over of the Software

Engineering Institute, who provided access to the Personal Software Process data, as well as all

of the PSP students. The data was crucial to my research, and I hope my results support their

ongoing work in transforming the software industry.

Many thanks to the organizations and projects that provided me with data. The substance

of research is ultimately realized in how industry incorporates the results into the way business is

done. The heart of software process improvement is in its transformation of how software is

built and the resulting improvements in productivity and quality.

Last, but not least, I am indebted to my wife, Kathy, and my son, David, for their

patience and encouragement. Their support provided my foundation.

1

1.0 INTRODUCTION

1.1 MOTIVATION FOR THIS RESEARCH

During the last four decades, there have been recurring complaints by customers and

executives about software projects that are chronically late and over-budget and about software

products that are of unsatisfactory quality – to the extent that customers speak of the “software

crisis” [Gibbs 1994]. A recent study by the National Institute of Standards and Technology

suggests that costs associated with software quality problems annually range between $22.2 and

$59.5 billion [National Institute of Standards and Technology 2002]. During the last two

decades, there have been systematic attempts to address the software crisis by applying the

concepts of Total Quality Management (TQM) and industrial engineering to software projects.

Quality affects cost and schedule; the engineering practices that affect quality are

therefore a management concern. The number of defects in a software product is a quantitative

measure for software quality. Although “quality” includes other attributes, such as availability,

features, and cost, the number of defects in the software provides insight into potential customer

satisfaction, when the software will be ready to release, how effective and efficient the quality

control processes are, how much rework needs to be done, and what processes need to be

improved.

The broad-scale use of the concepts of TQM, including rigorous statistics and statistical

process control (SPC), in design-intensive, human-centric processes such as those for building

software is a relatively recent phenomenon. There is now a widespread, but not universal, belief

2

in the software community that software organizations and projects can systematically improve

their ability to meet commitments and build high-quality products by following fundamental

principles of software quality:

• Competent Professionals. Competent professionals, who are trained and experienced in

software engineering methodologies and relevant application domains, are essential for

high-quality work [DeMarco and Lister 2003].

• Project Management. Effective project management enables the consistent performance

of effective engineering practices [Humphrey 1989].

• Techniques and Tools. Software professionals need effective and appropriate techniques

and tools to do high-quality work [Humphrey 1989].

• Disciplined Processes. Disciplined processes, which are consistently performed by

competent professionals, lead to high-quality work [Paulk et al. 1995; Sawyer and

Guinan 1998].

• Quantitative Management. Quantitative management of disciplined processes, which

includes the use of rigorous statistical techniques, enables informed decision making by

both managers and engineers, i.e., management by fact [Florac and Carleton 1999].

• Effective Teams. Effective teams, which are so strongly knit together that the whole is

greater than the sum of the parts, do superior work with less variation than individuals or

“ad hoc” teams [DeMarco and Lister 1999, 123].

Most software professionals would agree with the tenor of these principles, although

there are many barriers to effectively implementing them. Organizational politics, cynicism by

the staff, resistance to change, and dysfunctional customer-supplier relationships are among the

challenges software organizations must deal with in building high-quality products [Goldenson

3

and Herbsleb 1995; Beer, Eisenstat, and Spector 1990; Besselman, Arora, and Larkey 1995].

Software organizations are only beginning to apply quality management concepts that have been

well-known in manufacturing for decades, and the preferred quantitative techniques remain

sharply debated.

Three schools of thought can be observed in the software community with respect to

statistics and quantitative management. Adherents of the first school consider rigorous statistical

analysis inappropriate for software processes and products. They consider the software process

to be a design activity, an intellectual and social activity subject to many influences, that

manufacturing-style statistical process control (SPC) cannot be applied to [Ould 1996]. They

recommend simple graphical tools and engineering judgment.

The second school includes some of the most respected names in software engineering.

After years of attempting to characterize software projects using classical statistical techniques,

such as regression analysis, they have concluded the classical techniques are inappropriate

because of the scarcity of data, the large variation in individual performance, and a lack of

consistently applied operational definitions. They recommend alternative statistical techniques

such as non-parametric analyses [Curtis 1981], Bayesian Belief Networks that incorporate expert

judgment [Fenton and Neil 1999], and a “relaxed” use of statistics, e.g., pseudo-control charts

[Kan 2003, 145].

The third school, which I belong to, acknowledges the challenges identified by the

members of the second school but argues that classical statistical techniques can be useful if

certain prerequisites are satisfied: software process data for statistical analysis must come from

competent professionals using disciplined and conformant processes in effective teams. A

disciplined process can be defined as a set of activities that is consistently performed to achieve

4

some given purpose. If the disciplined process is consistently performed in accordance with a set

of identified requirements, it can also be characterized as a conformant process. (A mature

process is both measured and measurably improving; the term is typically used for organizational

standard processes since the baseline against which improvement is measured is typically

established by organizations engaged in process improvement.) Rigorous studies of the effective

use of statistical techniques for controlling the software process are needed to help overcome the

resistance to applying sophisticated quality management principles to the software process.

1.2 STATEMENT OF THE SOFTWARE QUALITY PROBLEM

In the last two decades, the focus of software process improvement has been on

addressing the principle of disciplined processes by implementing fundamental project

management and organizational learning practices. Unrealistic plans and over-commitments

lead to abandoning good engineering practice in the resultant schedule crunch, which in turn

leads to inconsistent execution and poor software quality. A number of “best practices” are

known in software engineering, but self-discipline is difficult, and imposing discipline on

software professionals externally without their buy-in and commitment is impractical.

For example, the most powerful defect identification technique known for software

engineering is a review of a work product by the peers of its producer called an inspection

[Fagan 1976; Fagan 1986]. Recommended preparation rates, inspection rates, team size, etc.,

specify the preferred inspection process, although there are variants [Glass 1999]. Undisciplined

processes are intrinsically unstable; for example, inspections that do not follow the pertinent

rules are inconsistent and ineffective. Peer reviews that are consistently performed can be

considered disciplined, but they must satisfy the specified inspection rules to be conformant to

5

the inspection process. The defect removal effectiveness (the percentage of defects ultimately

found) of testing and walkthroughs is on the order of 30% [Jones 1996]; the defect removal

effectiveness of inspections typically ranges from 60-90% [Fagan 1986, 750]. If the defect

removal effectiveness of an inspection process improves over time for an organization, the

measurable improvement is an objective indicator that the inspection process is mature.

In recent years, a growing number of software organizations has begun to focus on

quantitative management, which implies an understanding of variation. The state-of-the-practice

in software engineering is not yet sufficiently advanced to assume that rigorous statistical

techniques are being consistently and correctly applied, even when a process is reputed to be

“quantitatively managed” [Paulk and Chrissis 2000]. Disciplined and conformant processes are

generally considered a prerequisite for quantitative management, along with competent

professionals performing the work and effective teamwork.

Competent professionals are necessary for high-quality work, but the range of

performance between individuals can span an order of magnitude [DeMarco and Lister 1999,

45]. Frequently a manager or supervisor has little control over who is assigned to his or her

team. Effective teams perform better and with less variation than individuals [Hare et al. 1995],

therefore appropriately-formed teams and disciplined processes are considered prerequisites for

quantitative management. Effective teams are considered a prerequisite for quantitative

management to occur in any rigorous statistical sense, yet the optimum size of an inspection

team, for example, remains a controversial topic in spite of over 25 years of research [Radice

2002, 314].

6

Without competent professionals and disciplined processes, variability is so great that

quantitative management provides little useful insight. Without appropriate techniques and tools

or in the absence of effective teams, data simply highlights the ineffectiveness of the process.

It is specifically the use of “rigorous statistics” that arouses controversy, however.

Rigorous is difficult to define precisely, but in the context of my research it implies an explicit

understanding of variation. Averages and trend lines are quantitative; averages with confidence

intervals and trend lines with prediction intervals are rigorous. Intervals, control limits, and

other techniques for bounding variability sharpen the decision making process by setting

expectations for what is usual and what is atypical.

Design-intensive work inherently has high variability; processes are potentially

repeatable, even if they are not repetitive in the assembly line sense. Although the application of

rigorous statistical techniques to software development is skeptically viewed by some, a number

of organizations has demonstrated that statistical process control (SPC) can be applied to

software processes [Florac and Carleton 1999; Paulk, Goldenson, and White 2000; Paulk and

Chrissis 2000; Florac, Carleton, and Barnard 2000; Weller 2000]. The software profession

cannot be considered an engineering discipline without a firm foundation in the use of

quantitative data [Shaw 1990, 15].

In addition to the high variability intrinsic to software processes, many of the statistical

tools that support decision-making incorporate assumptions about the statistical distributions

followed by the data. For example, u-charts assume that (software) defect data follow a Poisson

distribution. Relatively few papers have been published in the software field with

experimentally validated results [Tichy et al. 1995], and assumptions have been used that are

plausible but not empirically validated. Inconsistent, contradictory, and counter-intuitive

7

research results compounded by poor theory and methodology are widespread problems in

software experimentation [Fenton, Pfleeger, and Glass 1994]. Published results are inadequate

for supporting or denying the various statistical assumptions that have been made, especially

when exacerbated by high variability. As a result, software organizations striving to apply

rigorous statistical techniques have inconsistent and contradictory advice on which statistical

assumptions it is reasonably safe to make.

Statistical control surfaces a number of issues that impact the quality of the product, such

as complexity of the application domain, competence and experience of the people doing the

work, power of the tools and support environment, etc. Covariates that affect product quality

may confound a statistical analysis unless those variables are appropriately factored in.

My research is therefore motivated by a desire to understand the effect of using

disciplined processes and effective teams on lessening the intrinsic variability of individual

performance in the software process, specifically with respect to the statistical characteristics of

software defects. While I agree on the importance of competent professionals for software

quality, separating the effect of individual differences from that of disciplined processes should

refute those who argue against a process focus [Bach 1994] and demonstrate the feasibility of

using rigorous and sophisticated statistical techniques on software process data.

The use of classroom data, obtained when teaching about disciplined personal processes,

provides insight into interpersonal differences between competent professionals when using

appropriate techniques and tools and disciplined processes. Demographic data for the students

permits an exploration of the factors affecting individual performance, and increasingly

sophisticated processes permit an exploration of the effect of disciplined processes. Data from

8

industry projects allows analysis of mature software processes, thereby exploring the impact of

inspection teams.

1.3 PURPOSE AND SIGNIFICANCE OF THIS STUDY

The purpose of this study is to verify and quantify the common wisdom that process

discipline and effective teams improve performance and decrease variability for software quality.

The definition of quality is limited to “conformance to requirements,” thereby excluding issues

associated with requirements elicitation and volatility.

Although the specific parameters that characterize organizational environments or

application domains may differ, when reasonable statistical characterizations of software

processes are determined for disciplined processes, engineers will be better able to identify

appropriate statistical control and process modeling techniques to support making day-to-day

decisions. In the presence of skewed distributions, the preferred statistical technique is likely to

be one that takes appropriate advantage of the underlying distribution of the data [Porter 2001;

Das 2003; Mullen 1998].

My research uses relatively large process data sets from disciplined software processes to

empirically characterize software defects in rigorous statistical terms that incorporate measures

of dispersion as well as central tendency. The use of large data sets is unusual for the software

industry; many published studies rely on fewer than 30 data points. The classroom data that I

use for the majority of my analyses has about 10,000 observations, which allows me to use

multiple data sets split by factors such as programming language. The richness of the data

allows the use of statistical techniques that are not feasible with small data sets, such as

sophisticated regression models and mixed models. Each observation has over 30 different

9

attributes, which are described in Appendix A along with the derived measures used in my

analyses.

Real-time control of the software process, in the sense of making efficient day-to-day

engineering and management decisions, depends on a realistic understanding of the defects

injected and removed from the work product. Understanding the statistical nature of software

defects is therefore crucial to the continuing maturation of the software industry because of the

insight it provides into rework issues, which take as much as 50% of the effort in many projects

[Krasner 1997]. An improved understanding of software defect patterns will help software

engineers and managers make more informed and efficient decisions in controlling and

improving the software process.

The number of defects injected into work products should intuitively be a function of the

competence of the workers, the process used, the size and complexity of the work product, and

previously injected defects in antecedent work products. Data from disciplined processes are

analyzed to identify explanatory variables, as suggested by previous empirical research and by

the drivers in widely used models for software projects.

Chapter 2 summarizes the published research relevant to analyzing the impact of process

variables, programmer ability, and teamwork on software quality.

Chapter 3 describes the research methodology used to explore the software quality factors

in a broad sense. It also discusses issues affecting the generalizability of my results and how the

classroom data was cleaned up for these analyses.

Chapter 4 explores the factors that significantly affect software quality in the classroom.

These factors can be broadly characterized as programmer ability, problem/solution complexity,

technology issues, and process variables. Although some of these factors may be beyond the

10

control of a software manager, many – especially those related to process – can be influenced by

engineering and managerial decisions. Potential confounding factors are investigated to

determine which ones should be actively considered when analyzing the programmer and

process variables that are of primary interest.

Chapter 5 considers how atypical data, which is not part of the common cause system for

software development, can be effectively identified and excluded from analyses. Atypical data is

frequently excluded from software research in an ad hoc manner. Systematically identifying

data that may unduly influence results is preferred. It also enables a distinction between

consistently performed processes (stable processes) and processes that conform to recommended

best practices (capable processes). Additional techniques for identifying outliers based on

regression models are considered in Chapter 7.

Chapter 6 investigates the statistical distributions that best describe software defects.

Many of the statistical tools used in the software industry make distributional assumptions that

are rarely verified. For example, u-charts are frequently used by organizations beginning to

apply statistical process control to their software processes. The u-chart assumes a Poisson

distribution that may not be empirically supported, suggesting that other techniques might be

superior.

Chapter 7 contains multiple regression models and mixed models that predict software

quality based on the process, people, technology, and product factors investigated in Chapters 4

to 6. Sophisticated statistical models capture quality factors and their interactions and focus

attention on critical leverage points for process and people.

Chapter 8 expands the analysis of software quality factors beyond classroom data into

project data from industry. Two projects are analyzed; one using processes directly derived from

11

those used in the classroom and one using processes that have systematically matured over many

years. These two analyses provide an initial investigation into some of the team effects on

software quality in the context of software inspections.

Chapter 9 summarizes the contributions of my research and identifies opportunities for

future research based on my results.

The purpose of my research is not to build a defect prediction model. It is to characterize

the contributions of process discipline to software quality for individuals and for team-based

inspections. Defect prediction models need to be designed for, and calibrated to, the application

domain, development environment, processes, and organizational culture of a software project.

The importance of my research lies in two conclusions. First, sophisticated statistical

models using detailed process data are feasible and potentially useful, if appropriate techniques

are used. This conclusion refutes those who argue that software processes are intrinsically too

chaotic to benefit from statistical analysis and control. Second, even though performance

depends on the capability of the people building the software, disciplined processes can

significantly improve the performance of even the best workers. This conclusion refutes those

who resist disciplined processes and prefer the “flexibility” of an ad hoc environment. A third

conclusion is implied by my research and partially explored in Chapter 8: effective teams also

significantly improve performance, specifically in the context of software inspections.

12

2.0 LITERATURE REVIEW

2.1 THE SOFTWARE PROCESS

A process is a sequence of steps performed for a given purpose [IEEE-610 1991]. The

software process can be defined as a set of activities, methods, practices, and transformations

that people use to develop and maintain software and the associated products (e.g., project plans,

design documents, code, test cases, and user manuals) [Paulk et al. 1995, 8]. Any use of

“software process” should emphasize the actions performed to achieve a given purpose rather

than the description of the process, which may or may not be realized in practice.

The basic software life cycle can be described in terms of requirements analysis, design,

coding, testing, operations, maintenance, and retirement of the software product. These

processes may be part of a larger systems life cycle, subdivided, or composed into multiple

iterations. For example, requirements analysis may be divided into requirements elicitation,

feasibility studies, operational concept studies, and software requirements analysis; design may

be divided into top-level design (architecture) and detailed design; and testing may be divided

into unit, integration, system, and acceptance testing. Processes may be composed according to a

variety of life cycle models, from the classic waterfall life cycle to an incremental or

evolutionary life cycle [Davis 1997].

There are a number of models and standards for software process definition and

improvement [Paulk 2001]. Among the best known and most widely used are the Capability

13

Maturity Model® for Software (Software CMM®), for improving organizational capability [Paulk

et al. 1995]; the Personal Software ProcessSM (PSPSM), for improving the capability of

individuals [Humphrey 1995]; and the Team Software ProcessSM (TSPSM), for improving the

capability of teams [Humphrey 1999].

2.1.1 The Capability Maturity Model for Software

The Capability Maturity Model for Software is a five-level staged model for building

organizational capability, which emphasizes quantitative management for controlling and

improving the software process at Levels 4 and 5. A mature organization consistently

implements mature processes in its software projects to achieve repeatable performance.

On the five-level CMM scale, Level 1 organizations follow an ad hoc process. They do

whatever it takes to get the job done, relying on the competence and heroics of their staff for

success. Their primary problems stem from poor management practices. Level 2 organizations

have an effective project management system in place. They may not always make the right

decision, but they have a framework for process consistency. Level 3 organizations have

installed the infrastructure needed to support organizational learning across projects. They have

common processes, training, and measures that support systematic process improvement.

Levels 4 and 5 in the CMM are based on applying quantitative techniques, particularly

statistical techniques, to controlling and improving the software process. In SPC terms, Level 4

focuses on eliminating assignable causes of variation, and Level 5 addresses common causes of

® Capability Maturity Model and CMM are registered with the U.S. Patent and Trademark Office
by Carnegie Mellon University.

SM Personal Software Process, PSP, Team Software Process, and TSP are service marks of
Carnegie Mellon University.

14

variation, although the Software CMM does not explicitly require the use of SPC or control

charts. Levels 4 and 5 were originally described in terms of operational definitions and

comparability in the presence of variation [Humphrey 1988]. Most high maturity organizations

as assessed against the Software CMM use control charts and other rigorous statistical

techniques [Paulk, Goldenson, and White 2000; Paulk and Chrissis 2000]. The effect of CMM-

based process improvement on software quality as reported in several studies is summarized in

Table 1.

Table 1 Software Quality at Different Software CMM Maturity Levels

Maturity
Level

Delivered Defects /
FP [Jones 1995]

Shipped Defects
/ KSLOC
[Krasner 1990]

Relative Defect
Density
[Williams 1997]

Shipped Defects
[Rifkin 1993]

5 0.05 0.5 0.05 1

4 0.14 2.5 0.1 5

3 0.27 3.5 0.2 7

2 0.44 6 0.4 12

1 0.75 30 1.0 61

2.1.2 The Personal Software Process

The Personal Software Process (PSP) applies the Software CMM concepts of process

discipline and quantitative management to the work of the individual software professional in a

classroom setting. PSP is taught as a one-semester university course at several universities or as

a multi-week industry training course. It typically involves the development of ten programs,

using increasingly sophisticated processes [Humphrey 1995]. The life cycle processes for PSP

are planning, design, coding, compiling, testing, and a post-mortem activity for learning. The

15

primary development processes are design and coding, since there is no requirements analysis

step.

There are four PSP major processes (PSP0, PSP1, PSP2, and PSP3), with minor variants

for the first three (PSP0.1, PSP1.1, and PSP2.1; PSP3 can also be considered a minor variant of

PSP2).

• PSP0. The “current” process of the student at the beginning of the course is PSP0.

Basic measures of historical size, time, and defect data are collected to establish an

initial baseline for assignment 1A (using a linked list, write a program to calculate the

mean and standard deviation of a set of data). PSP0.1 adds a coding standard, process

improvement proposals, and size measurement. It is used for assignments 2A (write a

program to count program lines of code) and 3A (enhance 2A to count total program

and object LOC.).

• PSP1. PSP1 adds size estimating and test reports. It is used for assignment 4A

(using a linked list, write a program to calculate linear regression parameters).

PSP1.1 adds task planning and schedule planning. It is used for assignments 5A

(write a program to perform a numerical integration) and 6A (enhance 4A to calculate

linear regression parameters and the prediction interval).

• PSP2. PSP2 introduces design reviews and code reviews. It is used for assignments

7A (using a linked list, write a program to calculate the correlation of two sets of

data) and 8A (write a program to sort a linked list). PSP2.1 adds design templates. It

is used for assignment 9A (using a linked list, write a program to do a χ2 test for a

normal distribution).

16

• PSP3. PSP3 introduces the concept of cyclic development – incrementally building a

program in multiple cycles. It is used for assignment 10A (using a linked list, write a

program to calculate the 3-parameter multiple regression parameters and the

prediction interval).

Each level builds on the prior level by adding a few engineering or management

activities. This minimizes the impact of process change on the engineer, who needs only to adapt

the new techniques into an existing baseline of practices.

PSP students are asked to measure and record three basic types of data: time (effort),

defects, and size. All other PSP measures are derived from these three basic measures. The

information recorded for each defect includes the defect type, phase in which the defect was

injected, phase in which it was removed, fix time, and a description of the problem and fix.

Lines of code (LOC) were chosen as the size measure for PSP because they can be

automatically counted, precisely defined, and are well correlated with development effort. Size

is also used to normalize other data, such as productivity (LOC per hour) and defect density

(defects per KLOC, where K stands for “thousand”) [Gill and Kemerer 1991; Withrow 1990].

Each PSP program involves some amount of new development, enhancement, and/or reuse.

Developing new or modified code represents most of the programming effort in the PSP course;

consequently, new and changed LOC is the basis for most size measurement in PSP.

Design and code reviews are introduced in assignment 7. Design and code reviews are

personal reviews conducted by an engineer on his or her own design or code. They are designed

to help engineers achieve 100% yield: all defects removed before compiling the program.

Design templates are introduced in assignment 9. The design templates are for functional

specifications, state specifications, logic specifications, and operational scenarios.

17

Over the course of the PSP assignments, studies have shown a decrease in defect density

(and in its dispersion), which is replicated in PSP data collected for my research as is shown in

Figure 1 [Hayes and Over 1997; Wesslen 2000]. Some outliers are trimmed in the box-and-

whisker charts in the figures in this dissertation. Outliers can skew a statistical analysis, but they

can also provide insight when appropriately investigated. In a retrospective study such as this,

causal analysis of why outliers are atypical is not feasible. Discarding outliers without root cause

analysis, however, can adversely affect the validity of conclusions. Interquartile limits, as

illustrated by the “whiskers” in Figure 1, can be used to identify outliers (the limits are set at 1.5

times the interquartile range beyond the 25% and 75% quantiles [SAS Institute 2000, 36]).

Consistent results of statistical analyses of the data both with and without the outliers suggest

that the conclusions are robust.

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

Assignment

Figure 1 Trends in Defect Density in Testing Across PSP Assignments

Most PSP studies deal with improvement during the PSP course, showing percent

decreases in defect density in testing between 63% and 82% [Humphrey 1996; Hayes and Over

18

1997; Wohlin and Wesslen 1998; Wesslen 2000], although one study addresses the impact across

several companies before and after adopting PSP [Ferguson et al. 1997]. Some studies have

observed that talented students do well regardless of how they structure their work time, but less-

talented students benefit from a more disciplined approach [Hou and Tomayko 1998; Prechelt

and Unger 2000].

It should be noted that quality improvement continues after the PSP class, as the PSP

ideas are further internalized in an industry setting, and that software products developed by

PSP-trained teams reportedly have very few to zero defects found in the field [Hayes 1998;

Ferguson et al. 1997; Holmes 2003; Hirmanpour and Schofield 2003]. In spite of the positive

impact of PSP, its continued use after the class depends on a working environment that actively

supports its discipline [Prechelt and Unger 2000, 471].

2.1.3 The Team Software Process

The Team Software Process (TSP) brings PSP-trained students together as a team in an

industry project setting. TSP is designed for use with teams of two to 20 members; a multi-team

variant can be used for projects with up to 150 members. Companies that have adopted TSP

have reported significant improvements in quality.

• Teradyne reported a 100X improvement over the company’s typical projects

[McAndrews 2000].

• The Taskview project at Hill Air Force Base reported an unprecedented performance,

with only one high-priority defect found in candidate evaluation and system test, and

reduction in test time from 22% of the project duration to 2.7% [Webb and Humphrey

1999; Webb 2000; McAndrews 2000].

19

• Boeing reported a 90% decrease in post-release defects and a decrease in test time of

94% [McAndrews 2000, 17].

2.1.4 Relevance of PSP, TSP, and CMM to My Research

These process improvement frameworks are relevant to my research because individuals

and projects using these frameworks are performing disciplined, mature processes and are the

sources of my data. They provide the context for exploring the impact of disciplined processes

on software quality.

The bulk of my analyses use PSP data, although data from TSP and CMM high maturity

projects are used in Chapter 8. Data from PSP, TSP, and high maturity CMM processes can be

characterized as coming from consistently performed, disciplined processes that use appropriate

techniques and tools. PSP and TSP are measurement-driven approaches, where the

programmer’s own data drives the learning process as incrementally more powerful processes

are adopted. PSP in particular allows exploration of the impact of increasingly disciplined

processes on quality, and the improvement in quality as the process matures can be empirically

observed in PSP. Data from the three categories of disciplined processes give multiple

perspectives on the effect of programmer ability and disciplined processes on software quality.

2.2 PEER REVIEWS

The most powerful defect detection technique for the work products of a software process

is the peer review – reviews of work products by the peers of the producer to evaluate whether

the conditions imposed on the work product at the start of the phase have been satisfied.

Identification of defects in peer reviews is the primary mechanism for in-process control using

20

defect data. Reliance on identifying and repairing defects in testing is analogous to mass

inspection in the manufacturing environment; “testing in quality” is notoriously ineffective and

inefficient.

2.2.1 Inspections

A number of peer review methods have been defined, from informal walkthroughs to

formal inspections [IEEE-1028 1988; Freedman and Weinberg 1990; Fagan 1976; Fagan 1986].

Peer reviews are reviews of a work product by the peers of its producer, which may be

performed at any point during development, while testing occurs when an executable software

module can be created, which is usually near the end of a development effort. It is generally

accepted that inspections are the most effective peer review technique, with about five hours

saved in testing for every hour spent in inspections [Ackerman, Buchwald, and Lewski 1989].

A typical set of rules for effective inspections includes the following:

• The optimum number of inspectors is four.

• The preparation rate for inspecting design documents should be about 100 lines of

text/hour (no more than 200 lines of text/hour).

• The meeting review rate for design inspections should be about 140 lines of text/hour

(no more than 280 lines of text/hour).

• The preparation rate for inspecting code should be about 100 LOC/hour (no more

than 200 LOC/hour).

• The meeting review rate for code inspections should be about 125 LOC/hour (no

more than 250 LOC/hour) for code.

• Inspection meetings should not last more than two hours.

21

The crucial point in understanding the power of peer reviews is that defects escaping

from one phase of the life cycle to another can cost an order of magnitude more to repair in the

next phase. A requirements defect that escapes to the customer can cost 100-200 times as much

to repair as it would have cost if it had been detected during the requirements analysis phase

[Boehm 1981]. Thus, in-process verification techniques such as inspections can have a

significant impact on the cost, quality, and development time of the software since they can be

applied early in the development cycle. It has also been observed, however, that no matter how

well inspections are executed, they cannot overcome a seriously flawed development process

[Weller 1993, 45].

Empirical research on the factors that lead to effective inspections has been contradictory,

however, and it is unclear which factors are significant. Weller found that familiarity with the

software product and preparation rate were the most important factors affecting inspection

effectiveness, although for design inspections, controlling the amount of material inspected in a

single meeting was also significant [Weller 1993]. Parnas and Weiss argue that a face-to-face

meeting is ineffective and unnecessary [Parnas and Weiss 1987], even though in Fagan’s

inspection process, the meeting is where defect detection occurs (preparation time is for

understanding the software product, not identifying defects). Supporting the argument against

meetings, Eick and colleagues found that 90% of the defects could be found in preparation [Eick

et al. 1998, 64]. The findings of other researchers also indicate that face-to-face meetings are of

negligible value in finding defects [Porter and Johnson 1997; Perry et al. 2002; Land 2002].

Porter, Votta, and their colleagues conclude that, based on the competing views and conflicting

arguments, we have yet to identify the fundamental drivers of inspection costs and benefits

[Porter and Votta 1997; Perry et al. 2002].

22

Some software professionals disagree with this conclusion [Michael Fagan, personal

communication, 13 April 2001], arguing that in many cases the studies were based on

inspections that did not follow rules such as those listed earlier in this section. Fagan stated that

two of the three essential requirements for implementing inspections were a proper description of

the inspection process and its correct execution [Fagan 1986]. Identifying the drivers for

effective inspections remains an active area of research, since the benefits of inspections are

indisputable, even if alternative methods that might improve the inspection process remain

shrouded in controversy.

2.2.2 Relevance of Peer Reviews to My Research

Peer reviews are relevant to my research because they are the source of the process data

used to investigate the impact of disciplined processes on software quality. They instrument the

software process; the data for meaningful analyses of quality would simply not be available

without some form of peer review.

PSP reviews are a variant of peer review that invoke the formality of software inspections

without actually involving peers in the review. This allows an investigation into the impact on

software quality of a disciplined process on individual performance. These results can be

contrasted to team effects in comparison to the TSP and high maturity peer reviews within the

scope of what can be investigated in a retrospective analysis.

2.3 SOFTWARE QUALITY AND MEASUREMENT

The four general classes of measurement commonly used in the software industry are

cost, schedule, functionality, and quality. Although cost is easily measured directly, effort in

23

terms of person-hours is a common surrogate for cost since it dominates the cost equation for

software projects [Goethert, Bailey, and Busby 1992]. Schedules are usually measured in terms

of calendar time and are predominantly determined by the effort needed to implement a given

functionality and by resource allocation and conflict.

Size measures are typically used as surrogates for measuring functionality, e.g., the

number of requirements [Abbot 1999], module count [Lehman et al. 1999], function points

[Albrecht and Gaffney 1983; Kemerer 1993; Jones 1997], or lines of code (LOC) [Park 1992].

Size is also a useful leading indicator in management control, since mistakes in the size estimate

can have dramatic ripple effects on planning parameters such as effort and schedule. Complexity

metrics are closely correlated to size metrics like LOC [Fenton and Neil 1999; Graves et al.

2000].

When discussing “quality” in the software industry, “defects” is the common indicator

[Florac 1992], although software quality characteristics include functionality, reliability,

usability, efficiency, maintainability, and portability [ISO 9126]. When considering multiple

dimensions of performance, whether explicitly labeled as “quality” or not, different practices are

likely to affect different dimensions of performance [MacCormack et al. 2003]. Defect density is

a common quality surrogate in the software industry [Gill and Kemerer 1991; Withrow 1990].

The total number of defects injected in a software product can never be identified with

certainty. Even in high-reliability software, the possibility always exists that another defect lurks

undiscovered. In operational terms, a cut-off point is identified for counting and comparing the

total number of defects in a product. Common cut-off points for counting defects include at the

end of acceptance testing, after six months of operational use in the field, and after one year of

operational use. The choice of when to cut off data collection is constrained by the ability of the

24

organization to gather valid feedback from users and guided by the operational profiles of the

users as the product is deployed. Defects are still identified and addressed as appropriate after

the cut-off point, but the cut-off determines the data profile for purposes of comparison.

2.3.1 Characterizing Software Quality

The focus of my research is on software quality. A defect is a flaw in a system or system

component that causes the system or component to fail to perform its required function. A

defect, if encountered during execution, may cause a failure of the system. Defects may be

categorized according to their expected severity, e.g., major/minor, or type, e.g., function,

interface, or data [Chillarege and Bhandari 1992]. For in-process control during development,

the defect data from peer reviews is a practical reliability surrogate.

The software process is a design-intensive, human-centric process. People naturally

make mistakes as they design and build software. Reported defect injection rates range from 30

per KLOC [Boehm 1981] to 110 per KLOC [Hayes and Over 1997], depending on when defects

are recorded and the operational definitions of “defect” and “line of code.” Defect removal

effectiveness for peer reviews ranges from 30% [Jones 1996] to over 90% [Fagan 1986; McCann

2001].

Defects have a significant impact on cost, effort, and schedule because of rework. It is

not uncommon for software projects to run at 40-50% rework, although some high maturity

organizations report rework under 5%, which implies shorter cycle times and higher customer

satisfaction [Krasner 1997]. Research consistently finds that the Pareto principle (or 80-20 rule)

applies to software: a small number of modules contain most of the defects discovered during

pre-release testing, and a small number of modules contain most of the operational defects, e.g.,

25

87% of the defects found to lie in 26% of the modules [Cook and Roesch 1994; Schaefer 1985;

Fenton and Ohlsson 2000; Khoshgoftaar et al. 1998].

In a survey of project managers, Schneberger identifies eight factors affecting software

failures: 1) requirements change, addition, and definition; 2) programmer / team member

experience and turnover; 3) design changes, scope, and complexity; 4) coding and testing phase

problems; 5) new technology, languages, and tools; 6) ongoing experience; 7) upper

management influence, bidding and time constraints; and 8) lack of data available to use in

metrics and models [Schneberger 1997]. Evanco and Lacovava identified three factors affecting

software failures: development complexity, percent of reusable code, and the experience and

educational levels of the software development staff [Evanco and Lacovava 1994]. From a

survey of 32 environmental factors affecting software reliability, Zhang found the top four

factors to be program complexity, programmer skills, testing coverage, and testing effort [Zhang

1999]. MacCormack, Kemerer, Cusumano, and Crandall identified four factors affecting

customer-reported defects: systems software projects, early prototypes, design reviews, and

regression testing [MacCormack et al. 2003]. Neufelder identified ten process parameters whose

presence affected fielded defect density; the most significant was “consistent and documented

formal and informal reviews of the software and system requirements prior to design and code.”

[Neufelder 2000]

In these studies, programmer experience and skills are frequently identified as important

factors affecting software quality. Wohlin and Wesslen, however, found that previous

experience and background have no statistically significant impact on defect density for PSP

assignments [Wohlin and Wesslen 1998].

26

Many researchers have found a positive relationship between size and defects [Putnam

and Myers 1997, 32; Criscione, Ferree, and Porter 2001]. Fenton and Neil found that LOC and

complexity metrics are reasonable predictors of the absolute number of defects but very poor

predictors of defect density; they concluded that complexity and/or size measures alone cannot

provide accurate predictions of software defects [Fenton and Neil 1999]. Fenton and Ohlsson

found that size metrics (such as LOC) are not good predictors of post-release defects in a

module, a module’s pre-release defect density, or a module’s post-release defect density [Fenton

and Ohlsson 2000].

Putnam and Myers found a log-log relationship between program size and the number of

defects in testing. It is apparent from their results that programs must span more than four orders

of magnitude in size before the relationship between size and quality becomes easily visible

[Putnam and Myers 1997, 32].

Some researchers have found that defect density decreases as size increases [Basili and

Perricone 1984; Shen et al. 1985], perhaps because the number of interface defects for smaller

modules grows as the system becomes larger and more complex. Hatton approached this issue

from a cognitive science perspective, arguing that those components that fit comfortably into

short-term memory cache are the ones with the lowest defect densities and that components

should be neither too small nor too large – the most reliable systems are those with component

sizes grouped around 200-400 lines of code [Hatton 1997]. Gaffney also observed an optimum

module size, although it was about 877 lines of code [Gaffney 1984].

2.3.2 Statistical Distribution of Defects

The distribution of defects may be viewed over the modules comprising a system or over

time as they are discovered. Across modules, software defects are sometimes assumed to follow

27

a normal distribution [Raffo 1996]. They are sometimes assumed to follow a lognormal

distribution, based on the fact that the product of random variables approaches a lognormal

distribution and the observation that software data tend to be skewed [Raffo 1996; Mullen 1998;

Hayes and Over 1997; Devnani-Chulani 1999, 86-87].

Over time, the discovery of software defects is frequently assumed to follow a (non-

homogenous) Poisson process [Musa, Iannino, and Okumoto 1987, 255-259; Keiller 1995].

Non-homogenous implies that the parameters of the Poisson distribution change over time, i.e.,

defect injection and discovery are not uniform across life cycle phases. The times between

detecting software defects are sometimes assumed to follow an exponential distribution (based

on their being discovered according to an assumed Poisson distribution [Porter 2001; Wohlin and

Runeson 1998, 402; Biffl 2000, 38]), a Rayleigh distribution (based on the logic that errors are

proportional to work done, work done is proportional to effort, and effort follows a Rayleigh

curve according to the SLIM cost model [Putnam and Myers 1997, 168]), or a gamma

distribution [Graves et al. 2000, 657].

These statistical assumptions may be plausible in a particular context, but they are

inconsistent and rarely verified empirically. It is sometimes even unclear whether the assumed

distribution is over modules or over time. For my research, the distributions of interest are over

modules.

2.3.3 Defect Prediction and Estimation Models

In reliability engineering, prediction models use parameters associated with the software

product and its development environment, and estimation models apply statistical techniques to

observed failures during testing and operation [AIAA R-013, 6]. Defect prediction models are

useful earlier in the life cycle, which is beneficial from a management perspective. It is

28

commonly assumed that the software failure rate is related to the number of defects remaining in

the software product [AIAA R-013, 18]. A number of defect prediction models have been built

based on lines of code, number of decisions, number of subroutine calls, Halstead volume,

McCabe cyclomatic complexity, and other measures [Lyu 1996; Fenton and Neil 1999].

Akiyama’s model is based on program size [Akiyama 1972]:

D = 4.086 + 0.018 L

where D is the expected number of defects found and L is lines of code. The data set consists of

seven modules written in assembly language. For this size model, the correlation coefficient

ρ=0.83. Akiyama also built a model based on the complexity of a program:

D = -0.084 + 0.12 C

where C is the sum of the number of decision symbols and subroutine call symbols in the

program’s flow chart. For this complexity model, ρ=0.92.

Halstead’s model is based on another size measure [Halstead 1977, 87-91]:

D = V / 3000

where the volume V is a size measure, which is the product of the total number of operators and

operands times the log2 of the unique number of operators and operands. Using Akiyama’s data,

Halstead characterized this model as representing the data with considerable fidelity but does not

report a statistical measure of goodness.

Compton and Withrow’s model uses another of Halstead’s size measures [Compton and

Withrow 1990]:

D = 0.069 + 0.00156 N̂ + 0.00000047 N̂ 2

29

where N̂ is Halstead’s estimated program length, the sum of the unique operators and operands

times their respective logs. When modeling all software packages, they found R2=0.0064; but

when modeling only those packages where defects were found, R2=0.9801.

Jones’ model uses a functionality-based size measure [Jones 1996]:

D = F1.25

where F is the number of function points (a size measure). No measure of goodness was

reported for this model, and Jones characterizes it as a useful rule of thumb rather than a rigorous

model.

Lipow’s model incorporates a technology factor for programming language along with

program size [Lipow 1982]:

D / L = A0 + A1 (ln L) + A2 (ln2 L)

where the Ai coefficients are language-dependent factors. No measure of goodness was reported

for this model.

Gaffney’s model removes the technology factor [Gaffney 1984]:

D = 4.2 + 0.0015 L4/3

It is a variant of Lipow’s that assumes programming language is not a significant factor. The

measure of goodness reported is relative error=8.4%.

Criscione, Ferree, and Porter’s model is a process-based model that incorporates solution

complexity and process effectiveness [Criscione, Ferree, and Porter 2001]:

D = (0.1) (0.2) (0.3) [0.4 SR] + (0.1) (0.2) [0.3 SD] + (0.1) [0.015 SC]

Data from previous phases in the product’s life cycle is used to estimate test defects: summing

the results from multiplying sizes of various work product times, empirical defect density (SR,

SD, and SC for requirements, design, and code), and the percentage of defects escaping a phase.

30

Their model depends on a stable development and testing environment [Fenton and Neil 1999,

677]. For four releases, the reported number of defects was 0.46, 0.47, 0.99, and 2.30 standard

deviations from the predicted number using their model.

Takahashi and Kamayachi’s model is a process-based model that incorporates problem

complexity, programmer ability, and solution complexity [Takahashi and Kamayachi 1985]:

D = 67.98 + 0.4579 SCHG – 9.687 ISKL – 0.083 DOCC

where SCHG is the frequency of program specification change, ISKL is the average number of

years of programming experience for the team, and DOCC is the volume of program design

documents. For this model, R2=0.6012.

Defect prediction models based on simple measures of size and complexity do not

consider the difficulty of the problem, the complexity of the proposed solution, the skill of the

programmer, or the software engineering techniques used [Fenton and Neil 1999, 683].

Multivariate analyses, such as factor analysis, generate synthetic measures that combine a

number of different measures, such as lines of code and complexity, to avoid multicollinearity,

but the practical application of the synthetic metric may be obscure.

One of the more detailed defect prediction models is the COnstructive QUALity MOdel

(COQUALMO), which has defect injection and removal submodels that incorporate 21 of the

COCOMO II cost drivers, with the exception of development flexibility [Boehm et al. 2000, 254-

268; Devnani-Chulani 1999]. COCOMO II has 17 multiplicative cost drivers (or effort

multipliers), which are grouped into four categories, and five scaling cost drivers, as listed in

Table 2. Each cost driver can accept one of six possible qualitative ratings, ranging from very

low to extra high.

31

Table 2 COCOMO II and COQUALMO Drivers

COCOMO II Categories COCOMO II and COQUALMO Drivers

Product factors Required software reliability

Data base size

Product complexity

Required reusability

Documentation match to life cycle needs

Platform factors Execution time constraint

Main storage constraint

Platform volatility

Personnel factors Analyst capability

Programmer capability

Applications experience

Platform experience

Language and tool experience

Personnel continuity

Project factors Use of software tools

Multi-site development

Required development schedule

Scaling cost drivers Precedentedness

Development flexibility (not in COQUALMO)

Architecture and risk resolution

Team cohesion

Process maturity

The Software Error Estimation Reporter (STEER), which is based on SLIM,

characterizes defect patterns over time by a Rayleigh curve [Kan 1995, 191-192]. Capture

recapture models, originally developed for estimating wildlife populations, are based on

extrapolating from defects found by multiple inspectors [Briand et al. 2000; El Emam and

32

Laitenberger 2001; Humphrey 1999, 245-250]. Comparisons of different defect prediction

models suggest that different models are best for different environments; it is not possible to find

a single superior model [Brocklehurst and Littlewood 1996, 126-127; Wohlin and Runeson 1998,

407-408].

Inconsistent or undocumented decisions about when in a product’s life cycle to stop

counting defects, e.g., at acceptance test, six months after delivery, one year after delivery, etc.,

make it difficult to determine whether a model is predicting discovered or residual defects.

Fenton and Neil have observed that current approaches to defect prediction must deal

with several as yet unresolved issues. Some issues are based on poor operational definitions or

problems in statistical methodology, some depend on the unknown relationship between defects

and failures, and some are intrinsic problems with using size and complexity metrics as the (sole)

predictors of defects. They conclude that traditional statistical (regression-based) methods are

inappropriate for defect prediction, preferring Bayesian techniques, and that more complete

models should include other explanatory factors, such as testing effort and operational usage

[Fenton and Neil 1999, 153].

2.3.4 Relevance of Defect Prediction Models to My Research

Defect prediction models are relevant to my research because the simple regression

models in Chapter 4 and the multiple regression models and mixed models in Chapter 7 are

defect prediction models. The PSP data provides an abundance of process and contextual

information that can be investigated for their impact on software quality; this addresses the desire

for “more complete models” expressed by Fenton and Neil [Fenton and Neil 1999, 153].

Although the PSP environment is too limited for general use (other factors may also be important

in a team context), the objective of building the PSP models is to identify the factors that are

33

important determinants of software quality and to quantify their relative contributions. Managers

and engineers can then make informed decisions about software processes with an understanding

of the relative impact of those decisions on software quality.

Some of the questions posed by researchers such as Fenton and Neil are addressed by my

models, e.g., the feasibility of more comprehensive process-based models than have been built

by previous researchers. The previous models contributed to identifying factors that were

considered, where feasible, in building my defect prediction models.

2.4 DIFFERENCES IN INDIVIDUAL PERFORMANCE

Differences in performance between individuals, which may span an order of magnitude,

are generally acknowledged to be the greatest source of variability in software engineering

research [Hayes and Over 1997, 22; Wohlin 2004, 212]. Weinberg observed, “Individual

variation is… the bane of project predictability. The social nature of team programming can be

used to average out this variation – but such averaging prevents us from getting experimental

information on individual programmers. The devastating cost of individual variation on real

projects has supported the validity of my prediction that the individual working alone is neither a

fruitful unit of study, nor a productive component of programming project work” [Weinberg

1998, 3.iii].

2.4.1 Order of Magnitude Differences

Curtis observes that many software technology advances will be masked by the impact of

individual differences [Curtis 1988, 279]. The earliest known study of differences in

performance between professional programmers by Sackman and colleagues found a 28:1

34

difference [Sackman, Erikson, and Grant 1968, 6]. McGarry found a performance difference of

22:1 on small projects (less than 20 KSLOC) and of 8:1 on larger projects [McGarry 1982, 226].

Perhaps the best known example of the variation in individual performance is a study by

DeMarco and Lister of productivity in programming, which showed the best people

outperforming the worst by about 10:1, the best outperforming the median performer by about

2.5:1, and the half that were better than the median outperforming the half that were worse than

the median by more than 2:1 [DeMarco and Lister 1999, 45]. Even in controlled experiments,

the variation related to individual differences accounted for one-third to one-half of the variation

in performance [Curtis 1988, 286].

2.4.2 Relevance of Individual Differences to My Research

Individual differences are important to my research because much of the resistance to

disciplined processes lies in the fear that discipline will cripple creativity and agility [Highsmith

2000, 11-13; Boehm and Turner 2004, 1-24]. Process discipline and powerful statistical

techniques enable us to address Weinberg’s concerns over the devastating impact of individual

variation. The importance of balancing discipline and creativity, however, is well stated by

Glass: “If we appreciate science, we understand that the discipline imposed by the scientific

mind forms a frame for the opportunistic, even serendipitous, and certainly creative discoveries

that constitute an amazing portion of what science has given us” [Glass 1995, 41]. Statistical

evidence that even top professionals can significantly improve both their performance and their

consistency by appropriately implementing disciplined processes can help sway resisters to

consider more disciplined approaches.

35

2.5 TEAM PERFORMANCE

Statisticians have observed that “group thinking is usually better, less variable, and more

precise than individual thinking” [Hare et al. 1995, 54] There is empirical support for team

performance typically surpassing that of individuals in a wide range of problem solving tasks

[Brodbeck and Greitemeyer 2000, 621; Morgan and Tindale 2002, 46; Land 2000, 181-182].

DeMarco and Lister have observed that the range of team performance, rather than being an

order of magnitude, tends to be between 85% and 115% of the norm, after removing other risk

factors [DeMarco and Lister 2003]. A meta-analysis of 27 independent studies indicates that

81% of the increase of performance of groups over individuals is due to statistical pooling of the

participants and 19% of the improvement is due to interaction effects within the group [Kramer

1998, 23]. It is also worth noting that high academic performers tend to collaborate more than

low performers [Land 2000, 82].

Software researchers have focused on the qualitative aspects of team building [Scholtes

1996] and workgroup development [Curtis, Hefley, and Miller 2001, 285-308] rather than

quantifying the differences in performance between individuals and teams in various contexts,

although Curtis notes that the productivity differences between high-performance and low-

performance teams are typically about 3:1 [Curtis 1988, 288]. Research has focused on how to

structure and build high performance teams, e.g., chief programmer teams [Baker 1972; Baker

and Mills 1973] and structured open teams [Constantine 1995, 83-86].

2.5.1 Inspection Teams

One of the few quantitative analyses of software team effectiveness deals with the size of

an inspection team. The recommended size is four participants [Fagan 1976, 191], although

36

three to five is usually considered acceptable [Briand et al. 2000, 519; Bourgeois 1996]. Some

researchers identify four as the most effective team size, followed by team sizes of three and then

five [Mah 2001, 12; Hall and Nixon 2000, 17]. Others simply recommend “more than two”

[Glass 1999, 19]. In contrast, some researchers argue that there is no significant difference in

effectiveness between teams of size two and teams of size four [Perry et al. 2002, 697]. Related

research on pair programming suggests that pairs of programmers working together have more

consistent and superior results than individuals working alone [Williams et al. 2000, 23;

Williams 2000, 40]. Recommended inspection team sizes therefore range from two to five, with

the caveat that relevant expertise be represented on the team.

In general, team size and composition is known to affect performance: teams composed

exclusively of low-ability individuals show process loss, and large teams can result in social

loafing and diffusion of responsibility [Bowers, Pharmer, and Salas 2000, 310-314]. There may

be an optimal inspection team size, but factors such as the inspection process structure,

techniques, inputs, context, and technology are also critical and likely to affect the best team size

[Porter and Votta 1997].

2.5.2 Relevance of Team Performance to My Research

Team performance is relevant to my research because effective teams are considered a

prerequisite for applying statistical control to software processes. While the bulk of my research

focuses on individual performance in PSP, the statistical models built highlight the fact that there

are order-of-magnitude differences between individuals. Disciplined processes improve

performance and lessen variation, but much more is necessary before statistical control is truly

feasible. Effective teams improve performance and lessen variation over and above the

contribution of disciplined processes, as explored in Chapter 8.

37

2.6 STATISTICAL THINKING

Statistics deals with the collection and analysis of data to solve real-world problems in

the presence of variability [Hogg and Ledolter 1992, 1]. The fundamental axioms of statistical

thinking are that all work is a series of interconnected processes, all processes are variable, and

understanding the impact of variation leads to better decisions and systematic improvement

[Britz et al. 1997; Hare et al. 1995]. These axioms embody a way of thinking, a way of acting,

and a way of understanding the data generated by processes that collectively result in improved

quality, increased productivity and competitive products.

Statistical thinking is fundamental to TQM [Deming 1986; Hogg and Ledolter 1992, 7-8].

Controlled processes are stable, and stable processes are predictable. If a controlled process is

not capable of meeting customer requirements or other business objectives, the process must be

improved or retargeted.

The statistical thinking characteristic of a high maturity organization depends on two

fundamental principles. First, process data is collected at the “process step” level for real-time

process control. Engineers use data to drive technical decision making in real-time, thereby

maximizing efficiency. Second, and a direct consequence of statistical thinking, is that decision

making incorporates an understanding of variation.

The statistical distributions described in Table 3 have all been suggested as appropriate

for describing software defect patterns, either over time or over modules. The normal

distribution is frequently assumed simply because it is common [Hogg and Ledolter 1992, 19-

24]. The lognormal distribution is frequently assumed because the product of random variables

tends towards the lognormal [Hogg and Ledolter 1992, 131-133]. Putnam and colleagues have

38

found that many software processes follow a Rayleigh distribution over time [Putnam and Myers

1992, 45-46; Montgomery 1996, 67; Leemis 1995, 88-89]. Defect data is frequently assumed to

follow the Poisson distribution [Hogg and Ledolter 1992, 102-104], although the negative

binomial distribution has been found more appropriate by Das [Das 2003; Montgomery and

Runger 1999, 124-126; Williamson and Bretherton 1963, 7-10]. The normal, lognormal, and

Rayleigh distributions are continuous. The Poisson and negative binomial distributions are

discrete.

Table 3 Statistical Distributions Used to Describe Software Defects

Distribution Probability Density
Function f(x)

Mean Variance

Normal,

N(µ,σ2) σπ2
1 2

2

2
)(

σ
µ−− x

e
µ σ2

Lognormal,

Λ(µ,σ2)
1

2 xπσ

2

2
(ln)

2
x

e
µ

σ
−

−
 0 ≤ x < +∞

)(2σµ +e
22 σµ +e)1(

2

−σe

Rayleigh 2)(22 tte λλ − 0 ≤ t < +∞)
2
1(1

Γ
λ

])}
2
1(

2
1{)2([1 2

2 Γ−Γ
λ

Poisson
!

xe
x

λλ −

 x integer, 0 ≤ x < +∞
λ λ

Negative binomial 1
(1)

1
n k kn

p p
k

−−⎛ ⎞
−⎜ ⎟−⎝ ⎠

(1)k p

p
− 2

(1)k p
p
−

The mean of a distribution is typically denoted with the Greek letter µ, and the variance is

denoted with σ2. If a random variable Y is lognormal, then X=ln(Y) is N(µ,σ2). For the Rayleigh

distribution, λ is a shape parameter and t is time. For the Poisson distribution, the mean is equal

to the variance, and λ is the single parameter expressing both. For the negative binomial

39

distribution, given a constant probability p of a success (or failure), the random variable indicates

the number of trials until k successes (or failures) occur.

2.6.1 Operational Definitions

The first step in establishing a statistical understanding of a process is understanding how

it is measured so that process consistency and data validity provide a basis for rigorous analysis.

When looking at their process data, software organizations typically discover that measures are

not as consistently defined and data are not as consistently collected as desired. Software

organizations also typically discover that the defined processes used by the projects are not as

consistently implemented as desired.

Well-defined processes are a prerequisite for statistical process control since consistent

process performance is necessary for quantitative or statistical management. Wheeler expresses

this point from an SPC perspective as “improvement begins with establishing operational

definitions and standardizing procedures” [Wheeler and Poling 1998, 270]. Much of the work in

software measurement has been aimed at building frameworks for establishing good operational

definitions for such fundamental measures as effort [Goethert, Bailey, and Busby 1992], lines of

code [Park 1992], and defects [Florac 1992].

2.6.2 Process Behavior and Control Charts

The questions of process consistency, effectiveness, and efficiency require measurement

of process behavior as it is being executed over some reasonable time period. Other disciplines

have addressed this issue by using statistical process control methods.

Statistical process control (SPC) can be defined as the use of statistical techniques and

tools to analyze a process or its outputs to control, manage, and improve the quality of the output

40

or the capability of the process. Operationally, statistical process control implies the use of

seven basic tools: flow charts, scatter diagrams, histograms, Pareto analysis, cause-and-effect

(fishbone) diagrams, run (trend) charts, and control charts [Ishikawa 1986]. It is generally

accepted, however, that SPC implies the use of control charts. Control charts provide a sound

foundation for making process decisions and predicting process behavior [Wheeler and

Chambers 1992].

A control chart is a run chart with upper (UCL) and lower control limits (LCL) added that

indicate the normal execution of the process. The control limits are normally based on ±3σ

boundaries for the underlying common cause system that the process represents. Control charts

provide a statistical method for distinguishing between variation caused by normal process

operation and variation caused by anomalies in the process.

Common cause variation is variation in process performance due to normal or inherent

interaction among the system components (people, processes, machines, material, and

environment). It is characterized by a stable and consistent pattern over time. This variation is

random and will vary within predictable bounds. The 3σ limits identify the amount of intrinsic

variation that is natural to the process. This is the “voice of the process” telling what it is

capable of doing. If this performance is satisfactory, the process is “capable.” If the predictable

performance is not satisfactory, then the process must be changed if the requirements for the

process are to be satisfied since the variation is intrinsic to the common cause system underlying

the process data.

Assignable cause variation, or special cause variation, is caused by anomalies that have

marked impact on product characteristics and other measures of process performance.

Assignable cause variations arise from events that are not part of the normal process. They

41

represent sudden or persistent abnormal changes to one or more of the process components.

These changes can be in things such as inputs to the process, the environment, the process steps

themselves, or the way in which the process steps are executed. When all assignable causes have

been removed and prevented from recurring in the future so that only a single, constant system of

chance causes remains, the process is stable (predictable), and unexpected results are rare.

Stability of a process with respect to any given attribute is determined by measuring the

attribute and tracking the results over time. If one or more measurements fall outside the range

of chance variation, or if systematic patterns are apparent, the process may not be stable, and a

causal analysis should be performed. When all assignable causes have been removed and

prevented from recurring in the future so that only a single, constant system of chance causes

remains, the process is stable and predictable.

The simplest rule for detecting a signal (a possible assignable cause) is when a point falls

outside the 3σ control limits. Many other sets of detection rules have been proposed [Wheeler

and Chambers 1992, 96], which both make the control chart more sensitive to signals and also

lead to a greater number of false alarms. The decision on which detection rules to use should be

based on the economic trade-off between sensitivity and unnecessary work.

When process performance falls outside of the 3σ limits, the variation is very likely

caused by an anomaly in the process. Shewhart used Tchebycheff’s theorem to put a bound of

11% of the data being outside 3σ limits for any data set, thus identifying the worst-case

boundary for false alarms when using 3σ limits [Shewhart 1939, 91]. Wheeler’s Empirical Rule

characterizes the typical behavior of a homogenous data set as having approximately 99-100% of

the data within 3σ of the average [Wheeler and Chambers 1992, 61].

42

There are many different kinds of control chart. The XbarR chart was the first developed

[Shewhart 1931]. It plots the averages of a homogeneous subgroup of data, e.g., for a sample

taken from an assembly line at a particular point in time, on an Xbar chart (the “bar” indicates an

average of the attribute of interest for the subgroup). The variation within the subgroup is

captured on an R (or range) chart.

For many software processes, it is more desirable to plot individual data points than the

averages of subgroups. The most commonly used chart for individual data is the XmR chart

[Wheeler and Poling 1998], also known as the individuals and moving range chart, although

other charts that take advantage of knowledge about the statistical distribution of the data can

also be used when appropriate. Two graphs are generated in an XmR chart: an X chart for the

individual values and an mR chart for the moving ranges, i.e., 1−−= iii XXmR . The upper and

lower control limits for the X chart (UCLX and LCLX), and the upper control limit for the mR

chart (UCLR), are calculated by

)(66.2 mRXUCLx +=

)(66.2 mRXLCLx −=

)(268.3 mRUCLR =

where the X’s are the individual values and the mR’s are the moving ranges between adjacent

values. The lower control limit for the moving range chart is always zero. X is the average of

the individual values, and mR is the average of the moving ranges.

Control charts and other statistical tools can be ineffective if operational definitions are

poorly formulated or aggregated data is used. Aggregated data has elements that are

combinations (mixtures) of values from non-homogeneous sources. When initially looking at

their process data, software organizations typically discover that the defined processes used by

43

the projects are not as consistently implemented or measured as believed. This initial

investigation, sometimes called “informally stabilizing the process,” involves understanding and

refining the operational definitions of processes and measures and categorizing the

processes/data into reasonably homogenous sets.

The control charts making the minimal assumptions about the underlying process are

XbarR and XmR charts [Wheeler 2000]. Other control charts, such as the u-chart, make

distributional assumptions about the data, e.g., the u-chart assumes the data follow a Poisson

distribution. The most commonly used control charts by high maturity software organizations

are XmR charts and u-charts [Paulk, Goldenson, and White 2000, 58-59]. It is important to

verify that distributional assumptions are appropriate. As Wheeler expresses this issue, “If the

theory is right, then the theoretical value is right, and the empirical value will mimic the

theoretical value. But if the theory is wrong, then the theoretical value will be wrong, yet the

empirical value will still be correct” [Wheeler and Poling 1998, 184].

2.6.3 Applying Statistical Control to Software Processes

From an industrial engineering perspective, SPC procedures are by default part of the

minimum essential information needed to fully describe a process [Manley 1998, 221-230]. This

is not a normal assumption in the software industry. Some doubt that SPC can be applied to

software processes [Ould 1996; Kan 1995, 143-144]. Some of the objections are based on

misunderstandings, e.g. the argument that data has to be normally distributed to apply SPC [Ould

1996]. Valid concerns center on the intrinsic high variability of software work, the validity of

considering the combined output of multiple individuals on a single control chart, and the

potential for causing dysfunctional behavior by the motivational use of data.

44

One of the first concerns about process performance is compliance: is the process being

executed properly, are the personnel trained, are appropriate tools available, etc. If the process is

not in compliance, there is little chance of performing consistently or satisfactorily. Even if the

process is consistently performed, the intrinsic variation may be so great that no value can be

obtained from statistical analysis; individual differences in performance can span an order of

magnitude [DeMarco and Lister 1999, 45; Curtis 1981].

One source of variation is that items expected to be on the same control chart, e.g.,

different code modules, may be produced by different members of the team [Mayer and Sykes

1992, 212]. The result is software process data that is aggregated across individuals. In a

manufacturing environment, placing data from different machines on the same control chart is

not recommended.

Collecting software data on an individual basis would address this, but could have severe

consequences if there were any chance of motivational use of the data, e.g., during performance

appraisals. Deming was a strong advocate of statistical techniques and strongly averse to

performance evaluations, declaring performance measurement “the most powerful inhibitor to

quality and productivity in the Western world” [Deming 1986]. Austin has shown that the

potential for dysfunction arises when any critical dimension of effort expenditure is not

measured, and unless the latitude to subvert measures can be eliminated, i.e, measures can be

made perfect, or a means established for preventing the motivational use of data, dysfunction is

destined to accompany organizational measurement [Austin 1996].

Analyzing data at the individual level would also significantly decrease the amount of the

data available for any specific statistical analysis at the team, project, or organizational level.

Disaggregating process data by individual, by defect type, or by other categories may be critical

45

to obtaining insight into separate common cause systems, but this may imply severe practical

limits to the value of SPC for software processes [Florac and Carleton 1999; Florac, Carleton,

and Barnard 2000; Wheeler and Poling 1998, 270].

On the other hand, processes and systems are subject to hundreds of cause-and-effect

relationships [Wheeler and Poling 1998, 85]. When every process is subject to many different

cause-and-effect relationships, predictable processes are those where the net effect of the

multiple causes is in a sort of equilibrium, which can be characterized as the common cause

system [Wheeler and Poling 1998, 87]. Pyzdek comments that even companies producing one-

of-a-kind products usually do so with the same equipment, employees, and facilities, and the key

to controlling the quality of single parts is to concentrate on process elements rather than on

product features [Pyzdek 1993, 53]. Each software product is unique, but is generated using a

potentially repeatable process.

It is generally acknowledged that there are three conditions expected before design-

intensive processes can be seriously considered for statistical control: best practices, discipline,

and teamwork. Software engineering that uses “best practices” supports repeatable performance

[Fagan 1986]. Less effective practices generally increase variation; for example, the only form

of peer review successfully used for SPC is inspections, the most formal variant. A disciplined

process with consistent performance will have less variability than an ad hoc process [Hayes and

Over 1997, 34; Wesslen 2000, 113]. Inconsistently performed processes are by definition

unstable. An effective team will demonstrate less variability than that shown by individuals

[Hare et al. 1995, 54].

Applying SPC even to the work of effective teams applying disciplined processes may

result in significant work to “informally stabilize the process” as process consistency and

46

disaggregation issues are identified and addressed. This investment has been deemed

worthwhile by a number of CMM high maturity organizations that are obtaining business value

by applying SPC to their software processes [Paulk, Goldenson, and White 2000; Paulk and

Chrissis 2000; Florac, Carleton, and Barnard 2000; Weller 2000]. This suggests a useful degree

of predictability is possible, even if significant variation remains in the common cause system.

2.6.4 Relevance of Statistical Thinking to My Research

Statistical thinking is relevant to my research because my research is an exemplar of

applying statistical thinking to software processes. Basic statistical concepts such as good

operational definitions and well-instrumented processes such as PSP are prerequisites for

empirical research.

The amount of variation due to individual differences makes management by fact

difficult, but identifying the common cause systems in PSP enables me to determine whether

disciplined processes result in better performance and less variation than ad hoc processes. More

importantly, analysis of PSP data allows a quantitative answer as to how much better disciplined

processes are than ad hoc processes, and how much less variation they have.

2.7 SUMMARIZING THE RELEVANCE OF PRIOR RESEARCH

My research primarily relies on analyzing PSP data, which supports statistical research

into factors that affect software quality. The PSP data set is both comprehensive and well-

defined. It supports investigation of people, technology, and process factors, and the granularity

of its process measurement allows a much more exhaustive study of process variables than is

typically possible for software projects. Because the PSP data is for individual professionals, an

47

investigation of the effect of programmer ability is possible in concert with many attributes that

characterize the individual programmers, e.g., years of experience. The large size of the PSP

data sets allows the use of sophisticated and powerful statistical techniques, e.g., mixed models.

The focus of my analysis of PSP are the review processes, similar to inspection, for

design and code. Other factors identified in research on defect prediction are considered where

relevant. Because PSP data is for individuals rather than teams, the high variability in individual

performance is a concern, but it is alleviated by the richness of the PSP data and the use of

statistical techniques, such as outlier identification for removing extreme observations and mixed

models for addressing individual differences.

Analyses of TSP and high maturity projects provide some additional insight into factors

affecting the defect removal effectiveness of inspections. Although the data sets are relatively

small and not as comprehensive as the PSP data sets, they are adequate for an initial exploration

of team/project issues.

My research therefore applies statistical techniques, including regression models, analysis

of variance, and mixed models, to understanding the relationship of process measures and other

factors to software quality. It examines data from disciplined software processes as defined by

PSP, TSP, and the Software CMM, allowing an exploration of both individual and team factors.

Control charts, interquartile limits, and regression diagnostics are used to identify atypical

programs. The appropriateness of various assumptions about statistical distributions is tested. In

the end, the importance of both competent professionals and disciplined processes in building

high-quality software is confirmed and quantified, which should aid software professionals and

managers in implementing good software engineering practices in a turbulent world.

48

3.0 RESEARCH METHODOLOGY

3.1 THE RESEARCH QUESTIONS

Given a disciplined software process performed by an effective team, the question to

explore is whether useful insights can be provided to software managers and engineers on the

quality of the work products, expressed in defects, using statistical techniques. In this

dissertation, I address the following questions; the answers will help managers and engineers

plan their work, choose appropriate statistical tools, and efficiently control their processes.

• What are the factors associated with process discipline and programmer ability that

impact software quality?

• Are the control limits for disciplined processes within the specification limits for

good software engineering practice, specifically with respect to peer reviews?

• Can defect data for software design, coding, and testing be reasonably described by

statistical distributions such as Poisson and lognormal?

• Can a useful defect prediction model be built, using the factors identified earlier?

• What factors, such as team size, affect the defect removal effectiveness of

inspections?

The first two analyses deal with the impact of a disciplined process on software quality.

In the first analysis, the impact of programmer ability is a crucial factor that must be identified

and separated from that of a disciplined process. While project managers may not be able to

exercise the control they might like on the ability of their staff, they have direct control over the

49

engineering discipline applied. If control charts do not add insight beyond what good

engineering practice would suggest, i.e., the control limits are outside the bounds set by

recommended practice, then their value is negligible in this context.

The third and fourth analyses deal with a statistical understanding of software defects,

given a disciplined process. Such an understanding is useful for process modeling and training

tools.

The fifth analysis focuses on the impact of effective teams on software quality in the

specific context of peer reviews. It may provide useful recommendations for performing peer

reviews, specifically for decisions on how they should be performed.

3.2 RETROSPECTIVE DATA SETS

My research uses retrospective data from PSP, TSP, and CMM high maturity projects.

These data are used for exploratory, observational studies. Sufficient data has been collected,

particularly for the PSP data, that the rule of thumb that there should be six to ten cases for every

potential explanatory variable is easily satisfied in most instances [Neter et al. 1996, 330].

The primary data set used in investigating these issues is PSP class data. There are

several advantages to using PSP data. First, disciplined processes are followed in the ending

assignments, 7A to 10A. Second, many potential explanatory variables, such as those associated

with teams or requirements volatility, that might confound the analysis can be eliminated from

consideration. Third, a reasonably comprehensive, detailed, and large data set is available from

PSP classes since 1993.

One set of PSP data, covering PSP classes from 1993 to 1996, was previously used in

analyzing the results of PSP, and the results of my research can be compared to that report

50

[Hayes and Over 1997], although with the caveat that the objectives of the two studies are

different. Hayes and Over were interested in the impact of PSP on estimation accuracy,

productivity, and quality; my research focuses on the underlying process drivers that affect

quality, such as review rates, which are independent of whether the PSP processes are the

encompassing framework. This first data set, labeled PSPa for the 1997 report, contains data for

2,365 assignments and 298 students. The second PSP data set covers PSP classes from 1994 to

2001. This PSPb data set contains data for 10,347 assignments and 1,345 students.

Using the PSP data for understanding the effect of disciplined processes allows an

inference of causality by meeting three methodological conditions: 1) the presumed cause and

effect are related, 2) the presumed cause precedes the effect in time, and 3) other competing

explanations for the observed effect can be ruled out [Duncan et al. 1999, 1]. The focus of the

PSP class is on instilling disciplined processes, not learning programming languages or other

techniques, therefore the predominant cause of any effects observed in the PSP data should be

driven by increased discipline. The observed effects follow the process changes instilled by PSP.

The PSP environment is sufficiently controlled that competing explanations should not have a

significant impact, although they will be considered in my research so they can be ruled out

explicitly.

Outliers can skew a statistical analysis, but they can also provide insight when

appropriately investigated. In a retrospective study such as this, causal analysis of why outliers

are atypical is not feasible. Discarding outliers without root cause analysis, however, can

adversely affect the validity of conclusions. Interquartile limits can be used to identify outliers

(the limits are set at 1.5 times the interquartile range beyond the 25% and 75% quantiles).

51

Consistent results of statistical analyses of the data both with and without the outliers suggest

that the conclusions are robust.

Software measures, such as the number of defects, are usually normalized by the size of

the program in lines of code to provide a defect density. During development, however, the

number of lines of code may not be known, so other measures may be used such as function

points, number of requirements, or number of pages of design [Abbott 1999]. Since this is a

retrospective analysis, the actual software size can be used as the “area of opportunity” for

normalizing the data, although only an estimate of LOC would be available during the early life

cycle phase when requirements and design work products are built and inspected. In the case of

the PSP data, residual defects after testing remain undiscovered; the cut-off point is when the

assignment is turned in.

The primary advantage in using TSP data is that team members follow the PSP processes

and collect PSP data, plus TSP data, therefore differences in operational definitions are

minimized. TSP data can be easily compared to PSP data, and team performance can be

compared to individual performance (including variation) with minimal issues with respect to

differing operational definitions. Concerns in using TSP data center around explanatory

variables that are introduced, such as requirements volatility, which need not be considered in the

PSP environment.

In general, data from CMM high maturity projects may be well-defined within an

organization, but operational definitions may differ significantly between the projects. While

comparisons between PSP and TSP data are not unreasonable, comparing results from different

organizations directly is inadvisable, although analysis of the factors affecting those results,

where comparable data is available, is feasible.

52

3.3 OVERVIEW OF THE ANALYSIS PROCESS

My research is based on a series of observational studies rather than a controlled

experiment. These are confirmatory studies in the sense that most of the factors considered for

affecting quality have been previously studied. The inconsistencies in the results of previous

studies may have been due to deficiencies in the data collected, small data sets, inconsistencies in

process fidelity, or problems in generalizing and comparing results.

The use of data from high maturity environments implies that a reasonably

comprehensive set of measures has been identified and that a defined process has been

consistently implemented. This data should have relatively few confounding factors for

investigating plausible explanatory variables, such as years of experience, that may affect

software quality.

The first step is to collect the data, which should include the size of each module, the

number of inspectors per module, inspection preparation time, inspection meeting time, and the

number of defects injected and detected by life cycle phase. For PSP data, individuals review

their own work, so there is no inspection team, and preparation and review times are

synonymous.

The second step is to remove invalid data. An example of invalid data is where the

number of defects removed in an inspection is greater than the number injected at that point in

time. For PSP data, the students perform a causal analysis of every defect found and where it

was injected as well as where it was found. This allows verification of internal data reliability.

This is described in Section 3.5.

53

The third step is to identify explanatory variables that affect software quality. PSP data

on potential explanatory variables, such as programming language used and years of experience,

are available for many of the students, although a full set of demographic data was not

consistently collected for all classes. Although data on non-process variables were not

consistently captured, process variables, such as time spent in different activities and the number

of defects found in reviews, were consistently recorded. This is described in Chapter 4.

If a variable does not affect software quality in a statistically significant way, then it can

be ignored. If a variable is statistically significant, but its contribution is minimal in practical

terms, then it can be ignored. If it is statistically and practically significant, it must be addressed

in the further steps of the analysis. One way of addressing such a variable is to simplify it out of

the analysis, e.g., if programming language is a significant explanatory variable, disaggregate

the data by language and analyze modules written in a single language. Some variables may

need to be transformed, since non-linear relationships are common in software data.

The fourth step is to identify data from atypical processes. These outliers are not

representative of the normal operation of the process and should be removed before conclusions

can be drawn about the attributes of a consistently performed process. Identification of atypical

values is usually done using control charts, such as the XmR chart, although simpler outlier

identification techniques can also be used, and techniques for identifying outliers specifically in

the context of regression models are also available. Interquartile limits are used to identify

outliers in Chapters 4 and 6. XmR charts are explored as a potentially superior alternative to

interquartile limits for identifying outliers in Chapter 5. A variety of regression-based techniques

for identifying influential outliers are used in Chapters 7 and 8.

54

Atypical production processes can be identified using design and coding times. Atypical

modules can be identified using module size and defect density from reviews. Atypical reviews

can be identified by using preparation rate and meeting review rate. (For PSP data, preparation

rate is not applicable.)

The fifth step is to remove data from out-of-specification processes. The inspection rules

can be considered equivalent to setting specification limits on the review (or inspection) process.

Note that if the control limits are outside the specification limits, the process is not capable, and a

distinction can be made between stable and conformant processes. For the PSP data, some

inspection rules, such as the team size recommendations, are not pertinent.

The sixth step is to investigate the distributional assumptions for the defect data.

Statistical techniques frequently make assumptions about the distribution of the data, with the

normal distribution being the most common assumption. When averages are being tested, this is

a reasonable assumption since the Central Limit Theorem indicates that averages approach a

normal distribution as more observations are averaged. For software processes, however,

individual observations must frequently be analyzed. Statistical distributions to be considered

include the lognormal and Poisson; other distributions will be considered as appropriate. This is

described in Chapter 6.

The seventh step is to model software quality in terms of the appropriate explanatory

factors. Atypical data, outliers, and influential cases should be appropriately addressed. This

may be by removing the atypical data or by considering the data sets with, and without, the

atypical data as alternatives for the model. This is described in Chapter 7.

The eighth step is to extend the research beyond the context of the PSP classroom data,

repeating the steps in the PSP analysis as appropriate. This analysis uses TSP and CMM high

55

maturity project data. Using project data allows the investigation of team effects. This is

described in Chapter 8.

The final step is to summarize the results of each analysis with respect to each of the

research questions. This is described in Chapter 9.

3.4 CONCERNS WITH GENERALIZING PSP-BASED ANALYSES

The primary source of data for most of these analyses is PSP. PSP is thoroughly

instrumented, and there is a great deal of available data for analysis. Split data sets may be

created across a number of different variables, such as programming language or assignment, as

well as the PSPa data set, to verify results.

There are several concerns in using the PSP data, which can be summarized as limitations

on the generalizability of analyses based on classroom data. Classroom data cannot be assumed

to extrapolate to industrial settings. Subsequent analyses of TSP and CMM high maturity project

data should mitigate these concerns but do not remove them since the project data available does

not permit the same depth of analysis as the PSP data. Specific concerns include:

• Classroom measures. Potential explanatory variables that are eliminated from

consideration by virtue of the data being classroom data may be significant in an

industrial environment. Examples include variables associated with teamwork or

larger systems. This concern is mitigated by analyzing TSP and high maturity project

data, as described in Chapter 8, although further research in an industry setting is

desirable.

• Disciplined professionals. The people who take the PSP course, or who choose to

work in high maturity organizations, may not be typical of most software

56

professionals. A corollary is that people who finish the PSP course may differ from

those who begin the class but do not finish. Students have generally been shown to

provide an adequate model of software professionals within the scope of classroom-

sized programs [Biffl and Gutjahr 2002, 269; Porter and Votta 1998]. This concern is

mitigated by the analyses in Section 4.6.2, which suggest that professionals finishing

the PSP course do not differ significantly from those who do not finish.

• Small programs. The systems built in real-world software projects are much larger

than PSP assignments. For industrial projects, a design module may correspond to

several code modules, since design is a higher level of abstraction than code.

Similarly, a code module may consist of several procedures or subroutines, which

may be independently reviewed. For PSP, however, data collection is at the level of

the assignment rather than the module.

• Programmer differences. The surrogates, e.g., years of programming experience,

available for testing the competence of programmers, while frequently used, are

known to be inadequate [Curtis 1981]. This concern is mitigated by empirically

measuring programmer ability using the data from the early PSP assignments, but

using process and defect data to characterize the ability of programmers in an

industry setting can lead to dysfunctional behavior, such as data falsification or

inappropriate emphases, e.g., maximizing “productivity” at the expense of defects

[Austin 1996].

• Missing data. Some contextual information, such as programming language and

years of programming experience, was not consistently recorded in the PSP

repository, therefore fewer data points are available for analyzing potential

57

explanatory variables. The richness of the PSP data mitigates this concern since in

most cases the data sets remain relatively large even without the missing data.

• Instructor differences. There could be differences between classes due to the ability

of the instructors [Johnson and Disney 1999, 331]. This should not be significant

since the classes were taught by SEI-authorized instructors who have been through

the PSP instructor training, and classes are typically co-taught by two to three

instructors. This concern is mitigated by the analyses in Section 4.6.3, which suggest

that there are no significant differences between the PSP classes.

• No requirements phase. PSP data captures time spent, defects injected, and defects

removed in each PSP phase (or activity): planning, design, design reviews, coding,

code reviews, compiling, testing, and postmortem. In PSP there is no requirements

elicitation or analysis phase since the assignments are relatively straightforward;

misunderstandings of the requirements are captured in the design, code, and test

activities.

3.5 REMOVING INVALID PSP DATA

Johnson and Disney identified a number of concerns for PSP data validity centered

around the manual reporting of personal data by the students [Johnson and Disney 1998; Johnson

and Disney 1999]. In spite of reviews by the instructor and exhortations to approach the course

professionally, they found about 5% of the data to be defective. Some of the classes of data

errors they identified, such as errors of calculation, are irrelevant to this study because none of

the analyses performed by the PSP students are used in my research – only the basic measures

reported. Entry errors are a concern since they occur in the data collection stage and are difficult

58

to identify and correct, but less than 10% of the errors identified by Johnson and Disney were

entry errors.

For the PSPb data set, internal data consistency errors were identified for 2.8% of the

reported data. The steps where known defects were injected and where they were found are

reported by the students; while there may be unknown defects latent in a program, acceptance of

the assignment by the instructors sets a reasonable context for the defect data. Data is available

for 112 classes with 1,345 students providing data from 10,223 assignments where a program

was successfully completed. Inconsistencies between the total number of defects injected and

removed resulted in the removal of 264 observations. For 21 observations, more defects were

found in the design review than had been injected by that point in the process. For four

observations, more defects were found in the code review than had been injected by that point in

the process. Data errors were identified in 289 of the 10,223 observations, leaving 9,934 for

analysis in the PSPb data set.

For the PSPa data set, errors were identified for 4.4% of the reported data. Data is

available for 23 classes with 298 students providing data from 2,360 assignments where a

program was successfully completed. In addition to internal consistency errors, two of the

classes did not follow the standard ten programming assignments, therefore 299 observations

were removed, leaving 21 classes. Inconsistencies between the total number of defects injected

and removed resulted in the removal of 86 observations. For four observations, more defects

were found in the design review than had been injected by that point in the process. No

observations were removed because of more defects being found in the code review than had

been injected by that point in the process. Data errors were identified in 390 of the 2,360

observations, leaving 1,970 for analysis in the PSPa data set.

59

A similar data cleanup was performed for the Hayes and Over study, but since repeated

measures ANOVA was the primary analytic tool, an additional requirement was added that data

be reported for all of the first nine assignments (assignment 10 was not analyzed) [Hayes 1996],

with the result that data from 181 of the 298 students was usable [Hayes and Over 1997, 51].

The PSP data provides a wealth of data that provide natural data splits for replication of

analyses. The PSPb and PSPa data sets are an obvious partition since they allow comparison of

results to the Hayes and Over report [Hayes and Over 1997] insofar as the objectives of the

different analyses are comparable. Splitting the data by programming language used is another

natural partition since that technology factor affects productivity [Jones 1995] even though the

impact of language on quality is one of the issues I am investigating.

Table 4 lists the number of observations for each assignment in the PSPa and PSPb data

sets, including splits for the programming languages C and C++. The most frequently used

languages for PSP are C and C++. Since programming language affects effort [Jones 1995],

even if the impact on quality as measured by defect density is minimal, separating the data sets

by programming language is a conservative decision.

60

Table 4 Sample Sizes for PSP Data Sets

Assignment 2001 2001
C

2001
C++

1997 1997
C

1997
C++

1A 1086 185 97 221 68 13

2A 1117 184 102 234 73 16

3A 1115 190 99 226 71 15

4A 1091 192 99 227 77 16

5A 1059 189 97 201 72 15

6A 1032 192 97 201 72 15

7A 966 178 90 176 63 12

8A 901 163 91 176 66 15

9A 830 152 82 163 61 13

10A 737 133 66 145 57 11

Totals 9934 1758 920 1970 677 140

Although the (PSPa, C++) data sets are small for useful statistical results, they are

comparable to those found in many software studies, where data sets frequently have fewer than

30 data points, and the other data sets have ample data for useful analyses. For analyses focusing

on performance with a disciplined process, the later assignments are preferred; in the first three

assignments, a visible learning curve effect is noticeable as students become accustomed to

following a defined personal process [Wesslen 1999, 177].

The statistical packages used in these analyses are JMP Version 4 and SAS Version 8.2,

both of which are built by the SAS Institute in Cary, North Carolina. JMP was used for the

analyses in Chapters 4 and 5, SAS was used for the analyses in Chapters 6 and 7, and both JMP

and SAS were used for the analyses in Chapter 8.

61

4.0 EXPLORING THE FACTORS AFFECTING SOFTWARE QUALITY

4.1 THE RESEARCH QUESTION: EXPLORING QUALITY DRIVERS

The research in this chapter focuses on an initial exploration of the factors that

significantly affect software quality and specifically on the effect of process discipline on

software quality. The context of this analysis is software quality for individual professionals.

Process-based factors are the variables of direct concern since the emphasis of my research is on

the impact of disciplined processes, but hundreds of factors can affect the performance of a

process. The majority of these factors contribute random noise to performance, but some are

likely to systematically drive performance.

Many different factors have been suggested as affecting software quality, ranging from

surrogates for ability, such as years of experience, to surrogates for technology and tools, such as

the programming language used. The term surrogate is used because direct measurement of

complex constructs such as “ability” and “technology” is difficult, and relatively easy-to-collect

measures may suffice. Data for many of these surrogates is available for the Personal Software

Process (PSP) course, and data from the ten PSP assignments enables exploring the effect of

process discipline, and variables characterizing competent professionals and techniques and tools

set the context.

The abilities of the PSP students and the effectiveness of their tools underlie the

production and quality control processes for software work products such as design and code.

While the emphasis of the exploratory data analysis is on the process variables that affect

62

software quality, confounding variables that could confound the results need to be appropriately

addressed.

4.2 POTENTIAL EXPLANATORY VARIABLES

Potential explanatory variables identified in prior research can be divided into categories

related to the application domain, the technologies used, the software engineering processes

followed, and the ability of the individuals doing the work. These correspond to categories

commonly used in causal analysis with cause-and-effect diagrams: people, equipment, methods,

materials, measurement, and environment [Brassard and Ritter 1994, 25]. The results of my

research deal with quantitative management, directly addressing the measurement category.

Quality issues related to incoming material, i.e., the customer requirements, are outside the scope

of my research. Although requirements volatility is a significant quality concern in software

projects, requirements volatility is not an issue for PSP.

Although the focus of my research is on consistently following good practices, process

discipline is only one of the factors that affect productivity and quality. Process and non-process

contributors to software quality can be separated, but relationships between variables can be

expected, e.g., capable programmers tend to consistently use effective techniques and tools.

The potential explanatory variables for software quality are identified based on the

drivers in COQUALMO and empirical observations about software defects, as discussed in

Section 2.3, and the available data from the PSP course. Some factors change systematically

across PSP assignments as part of the teaching process, but many of the possible explanatory

variables can be assumed to be constant within a PSP class (or within a project or team) and can

therefore be ignored in this analysis.

63

The following factors from COQUALMO [Boehm et al. 2000, 254-268; Devnani-

Chulani 1999] are not expected to change significantly within any of the data sets used in my

research: applications experience, architecture and risk resolution, application domain

complexity, customer information, data base size, documentation match to life cycle needs,

execution time constraint, language and tool experience, main storage constraint, multi-site

development, personnel continuity, platform experience, platform volatility, precedentedness,

product complexity, required development schedule, required reusability, and required software

reliability. Significant shifts in any of these factors should be proactively managed by a software

project but are outside the scope of this analysis. Factors related to experience could affect the

PSP learning curve, but should not be significant for the application and tools factors beyond the

first few assignments; experience in using techniques such as reviews and design templates may

be an issue as the PSP processes evolve.

The out-of-scope factors for PSP highlight the challenges in generalizing PSP results to

software work in general. While it is reasonable to expect that significant factors in PSP will

remain significant in an industrial context, other factors may need to be considered in building a

comprehensive defect prediction model for industry projects. The factors that will be considered

in this analysis address technology, process, and people issues. Team composition is not a

consideration when analyzing the PSP data, but the increase in performance and decrease in

variation associated with effective teams will be analyzed in the context of TSP and CMM high

maturity project data in Chapter 8.

For the application domain factors, problem and solution complexity are indicated by

lines of code (LOC) [Akiyama 1972; Lipow 1982; Gaffney 1984; Criscione, Ferree, and Porter

2001], which are available for all PSP assignments for new and changed code. The amount of

64

reused code is not available, therefore the size measure does not fully cover the functionality of

the assignments.

Problem complexity would not appear to be a significant factor in PSP, given the relative

simplicity of the assignments. Programs smaller than 10 KLOC are usually considered simple

programs, between 10 and 100 KLOC are considered of medium complexity, and programs

larger than 100 KLOC are considered relatively complex. Models frequently shift, even to

different formulations, around these boundaries [Akiyama et al. 2002; Yang and Paradi 2004].

Solution complexity, or product complexity, is not constrained, and can be a significant

source of variation [Weinberg 1998, 126-132; Criscione, Ferree, and Porter 2001; Takahashi and

Kamayachi 1985]. A student’s preferred style in optimizing memory space, speed, reliability

(e.g., exception handlers), generality, reuse, etc., can lead to radically different solution

complexities. Since PSP does not impose performance requirements, students have significant

latitude in how they solve the problems – a latitude available in many industry contexts as well.

Solution complexity can be indirectly measured by program size. The use of defect density

should normalize out differences in solution complexity since program size can be used as a

surrogate for solution complexity.

For technology factors, programming language captures an important technology

consideration [Jones 1986; Lipow 1982]. For the small programs assigned to PSP students, tools

should not be a differentiator, but the programming language could be a significant factor

affecting productivity or quality.

For process factors, the two components are the production and review processes.

Design templates for functional specifications, state specifications, logic specifications, and

operational scenarios are introduced in PSP assignment 9. The use of more powerful design

65

techniques could result in an increase in design time. Design and code reviews are introduced in

PSP assignment 7. Time spent in reviews and the number of defects removed in each review are

captured. Defect removal effectiveness can be calculated based on the phase defects are injected

in. More time in review should lead to higher defect removal effectiveness.

Process maturity is a generic concept that can be considered “low” for PSP0 and “high”

for PSP3 [Boehm et al. 2000, 36]. One of the objectives of my research is to independently

measure those aspects of the software process, e.g., review rates, that objectively define what

“process maturity” is, i.e., the consistent execution of good engineering practices. It is

interesting to note that in COQUALMO, process maturity has the highest impact of all factors on

defect injection [Boehm et al. 2000, 260].

Because of the learning curve effects intrinsic to the PSP course, many of these analyses

will focus on assignments 9 and 10. These two assignments incorporate design techniques and

reviews that are considered good software engineering. In principle, these assignments represent

a disciplined process employing recommended software techniques and tools. Assignments 9

and 10 can be separately analyzed to provide a split data set; to the degree significant learning

curve effects remain in PSP between these two assignments, this may be desirable anyway.

Programmer/analyst capability is difficult to objectively determine. Factors such as

highest degree attained and number of years of programming experience have been used as

surrogates for programmer capability. Breadth of experience is usually considered a superior

indicator of competence, and the number of languages known by the programmer is a plausible

surrogate [Curtis, Krasner, and Iscoe 1988]. Percent of time programming in the previous year

may indicate the steepness of the learning curve for students for the early assignments, and

correlate with applications experience and language and tool experience. Software developer

66

experience with techniques may be an issue as the PSP design techniques are introduced since

there may be learning curve effects even in the later assignments.

Ability, however, may be independent of any credentials an individual may possess.

Programmer ability can be empirically identified for PSP assignments if comparative

performance remains stable over assignments, i.e., top performers remain top performers as

process discipline and techniques and tools are added. For industrial projects, programmer

ability can be directly measured via the personnel review system [Banker, Datar, and Kemerer

1987; Banker, Datar, and Kemerer 1991], but the availability of such data may be constrained by

privacy and confidentiality requirements. Untangling the effect of experience in general and

experience with specific techniques and tools can be challenging, but the PSP data provides a

direct and objective measure of programmer capability, which does not suffer from being either a

surrogate or subjective.

4.3 DEFINING SOFTWARE QUALITY FOR PSP

Quality is a complex topic, with many different aspects [Garvin 1987]. Many definitions

focus on customer perceptions, but for my research, the focus is on meeting stated customer

requirements: the PSP assignments. In analyzing software quality for PSP, defect density in

testing will be the surrogate measure for quality. Quality as perceived in terms of reliability (or

other quality attributes) by the customer may differ from that observed in testing in terms of

defects against the stated requirements. Conformance to requirements is a minimal definition of

quality, but when PSP or TSP are applied to industry projects, very few to no defects, or the

associated failures, are typically reported in the field [Ferguson et al. 1997; Webb and Humphrey

1999, 8], indicating that few defects escape the PSP and TSP processes.

67

The number of defects removed in testing is a plausible alternative. Defect density is the

number of defects divided by size. Even for the relatively simple PSP assignments, program size

ranges from 25 to over 300 LOC as shown in Figure 2.
LO

C

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

Assignment

Figure 2 Program Size Across (PSPb, C)

The area of opportunity for injecting defects as measured by program size may vary an

order of magnitude. Comparing the results for defect density and number of defects in the

following analyses led to no additional insights or significant differences in the results (see

Section 4.7.2). Defect density is a commonly used quality surrogate in the software industry

[Gill and Kemerer 1991; Withrow 1990], and defect density in testing is the primary dependent

variable and quality surrogate in these analyses. Unless otherwise noted, defect density in testing

is the response variable in the tables and figures in this dissertation.

Defects removed in compile could be grouped with those removed in testing since the

compiler is being used to detect syntactic defects that escaped from coding. The average effort

per defect removed in testing is more than five times greater than that per defect removed in

68

compile (23.3 minutes/defect in testing versus 4.3 minutes/defect in compile for the PSPb data

set). Focusing on defect density in testing therefore appears appropriate since it is relatively

inexpensive to repair compile-time defects.

Direct measures of the effectiveness of some specific processes, and the quality of their

work products, are available. An example for the design process is the defect density at the end

of the production effort, e.g., the number of defects known to be present at the end of design per

KLOC. For reviews, an appropriate quality surrogate is defect removal effectiveness, i.e., the

percentage of defects detected of those known to be present at the beginning of the review.

These are direct measures of the quality resulting from an interim process that contribute to the

general quality surrogate, defect density in testing.

4.4 AN OVERVIEW OF SOME BASIC STATISTICS

In statistical tests, a null hypothesis H0, such as the means of different treatments are

equal or a regression coefficient is zero, is tested [Montgomery and Runger 1999, 296-304]. The

objective of the researcher is usually to reject the null hypothesis, since the conclusion of interest

is that the alternative hypothesis Ha is true. For example, Ha is that the mean for treatment A is

greater than the mean for treatment B when the null hypothesis H0, states they are equal (the

treatment has no effect).

There is a possibility in any statistical test that the null hypothesis will be rejected when it

is true, which is called a Type I error. The acceptable probability of a Type I error, P(reject H0

when H0 is true), is the significance level of the test and is denoted α, and α=0.05 for these

analyses. The p-value of a test is the estimated probability of a Type I error for a given data set

under the relevant assumptions, typically normality and independence of the data. When p-

69

value<α, the null hypothesis, e.g., the means for two different treatments are equal, can be

rejected. When the p-value>α, the proper conclusion is that the null hypothesis cannot be

rejected.

There is also a possibility that the null hypothesis will be accepted when it is false, which

is a Type II error. The probability of a Type II error, P(failing to reject H0 when H0 is false), is β.

The power of a statistical test is (1-β). The sample size necessary to achieve a desired β may be

calculated, but the power of a test is usually estimated rather than being specified in advance

because of the practical difficulties frequently present in obtaining a large enough sample size to

attain a desired power.

Nominal (or categorical) variables, such as programming language, can be analyzed

using analysis of variance (ANOVA) techniques [Neter et al. 1996, 663-709]. Different

treatments for an explanatory variable, e.g., different programming languages, are likely to have

different variances, in which case the normal ANOVA assumption of equal variances for

different treatments is not satisfied. The Welch test for means, which allows the variances to be

unequal, is used rather than the standard ANOVA F test in such cases [Milliken and Johnson

1992, 27-28; SAS Institute 2000, 110]. For the Welch test, the means are weighted by the

reciprocal of the sample variances of the treatment means. The Levene test is used to test the

constancy of error variance. It is robust to departures from normality, and sample sizes need not

be equal [Neter et al. 1996, 763].

For multiple comparisons, the Each Pair, Student’s t and the All Pairs, Tukey-Kramer

honest significant difference tests provide liberal and conservative comparison tests respectively

[Milliken and Johnson 1992, 36-37; SAS Institute 2000, 100]. The Each Pair test is sized for

individual comparisons and computes individual pair-wise comparisons, but there is no

70

protection across inferences, and the Type I error rate across the hypothesis tests is higher than

that for individual differences. The All Pairs test is sized for all differences among the means

and is a conservative alpha-level test if the sample sizes are different. Comparison circles

graphically show the results of these comparison tests: the greater the overlap, the less likely

there is a significant difference.

Regression models relate a dependent variable to one or more predictor variables. The

coefficient of determination, R2, can be used to judge the adequacy of the regression models

[Montgomer and Runger 1999, 464-465]. Loosely speaking, R2 describes the amount of

variation in the data accounted for by the model. This coefficient may be adjusted when

comparing models with differing numbers of predictor variables using the formula:

2 211 ()(1)a
nR R
n p
−

= − −
−

where there are n data points and p-1 predictor variables [Neter et al. 1996, 230-231].

A statistical correlation between two variables does not necessarily indicate a cause-and-

effect relationship. Although we may say that there are statistically significant results due to

variable X for variable Y, the causal relationship should be based on a conceptual model of how

X drives Y that the data supports. Even when the analysis supports the theory, it is always

possible that unidentified factors are confounding the analysis or that correlations between

variables are masking the effects of each variable considered individually.

4.5 CONFIRMING PSP QUALITY TRENDS

As can be observed in Figure 3, the software quality trend across the PSP major processes is

apparent, confirming prior analyses [Hayes and Over 1997; Wesslen 2000]. Performance

71

improves and variation decreases as the PSP processes become more sophisticated: PSP0 is the

baseline process, PSP1 adds size estimating and test reports, PSP2 inserts reviews and design

templates, and PSP3 introduces cyclic development. The figure shows the differences in defect

density in testing for each PSP major process for the PSPb data set.

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

50

100

150

200

0 1 2 3

PSP Major Process

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 3 Trends in Software Quality

The Each Pair and All Pairs tests indicate that the means for each of the PSP major

processes are significantly different, as illustrated by the comparison circles in the figure.

The ANOVA results for the effect of the PSP major process on defect density in testing

are shown in Table 5. The null hypothesis is 0 0 1 2 3: PSP PSP PSP PSPH µ µ µ µ= = = with alternative

hypothesis Ha: not all of the means are equal. The table includes the ANOVA information for

the two data sets used to analyze the PSP major process, including the information for the

treatment levels (the four processes), the error term, and the total model. The information

includes degrees of freedom (DF), sum of squares (SS), mean square (MS), the F Ratio and p-

value for the F test, and the adjusted coefficient of determination (R2
a) for the model.

72

Table 5 ANOVA for PSP Major Process

Source PSPa PSPb

DF 3 3

SS 330630 2122446

Model

MS 110210 707482

DF 1966 9930

SS 3317337 16072027

Error

MS 1687 1619

DF 1969 9933 Total

SS 3647966 18194474

F Ratio 102.8W 532.7W

Prob > F <.0001W <.0001W

R2
a 0.0892 0.1164

The effect of the PSP major process on defect density in testing was shown to be

statistically significant for both of the data sets. This indicates that PSP major process is a useful

predictor variable for defect density in testing, at least within the context of the PSP class. As

might be expected, and as demonstrated by the Levene test for equal variances, variation

decreases as more sophisticated processes are used. The Welch test is therefore preferred over

the F test, which assumes equal variances, for testing the differences in mean performance and is

noted with the symbol W next to the F ratio.

73

The estimates of the means for defect density in testing at the four levels of PSP major

process, and the associated standard errors for the means, are listed in Table 6 for the data sets.

A model can be built using indicator variables for estimating the defect density associated with

each level of the PSP major process. The formula could be written as:

(Defect density in testing) = (PSP0 Estimate) (PSP0 Indicator)

+ (PSP1 Estimate) (PSP1 Indicator)

+ (PSP2 Estimate) (PSP2 Indicator)

+ (PSP3 Estimate) (PSP3 Indicator)

where the indicator variable is either 0 or 1 depending on which level of the PSP major process

is applicable. A more concise notation is:

(Defect density in testing) = β PSP Major Process X PSP Major Process

where βj is an estimate of the mean for the jth level of the categorical variable (PSP major

process in this instance) and Xj is the corresponding indicator variable. For models with multiple

categorical variables, the ith categorical variable with j levels is described by βi,j Xi,j.

For the null hypothesis 0 0 1 2 3: PSP PSP PSP PSPH µ µ µ µ= = = in the following tables of level

estimates, the p-values are captured in the column header for the model. A p-value<0.05 is

indicated with *, a p-value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and

a p-value<0.0001 is indicated with ****.

74

Table 6 Estimates for PSP Major Process Levels

Level PSPa****

 (std err)

PSPb****

(std err)

PSP0 45.6

(2.2)

51.6

(1.0)

PSP1 28.5

(1.4)

30.3

(0.6)

PSP2 16.2

(0.9)

18.0

(0.5)

PSP3 8.7

(0.9)

11.4

(0.5)

The differences between the PSP major processes are both statistically and practically

significant. The differences of 5.2 to 1 for PSPa and 4.5 to 1 for PSPb show a decrease in defect

density in testing from 78-81%. This is a quality improvement that would be of interest and

value to most software professionals.

Some statistical assumptions are violated in this analysis. First, the number of data points

for each PSP major process is different since some students drop out of the PSP course before

finishing, leading to unbalanced data sets with missing data. Second, because each data set

contains multiple data points per student, the usual assumption of independence is violated.

Third, it cannot be assumed that any software data set is normally distributed; software data is

usually skewed. These concerns are systematically addressed in the multiple regression models

and mixed models in Chapter 7, but they are ignored in the exploratory data analysis in this

chapter since the techniques used are robust.

This analysis also ignores the possible influence of outliers. Excluding outliers without

causal analysis, as well as including them when they are atypical, can skew results. Statisticians

75

debate whether it is preferable to remove outliers before doing statistical analysis [Orr, Sackett,

and Dubois 1991; Judd and McClelland 1989, 207-237]. The remaining analyses in this chapter

are performed both with and without outliers, using the interquartile limits (IQL) technique to

identify outliers. Chapter 5 compares the IQL technique to XmR charts as an outlier

identification technique.

4.6 EXPLORING THE POTENTIALLY CONFOUNDING VARIABLES

Before exploring the primary variables for process discipline and individual differences,

it is desirable to investigate a number of confounding variables that could confound the analyses

if not appropriately addressed. The hypotheses for confounding variables will be considered

statistically significant for α=0.05.

Confounding variables related to people include those associated with learning curve

effects, programmer differences, instructor differences, credentials, experience, recent

experience, and breadth of experience. In some cases these potentially confounding variables are

specific to the classroom environment, e.g., instructor differences. In other cases, such as years

of experience, some studies have found the variable significantly related to software quality, as

described in Chapter 2, although the results of other studies may have differed.

Hypothesis C1 is that there is a difference in defect density in testing between

assignments 9 and 10. Since the process, tools, and application domain are essentially the same,

a significant difference indicates a learning curve effect is occurring.

76

Hypothesis C2 is that there is a difference in defect density in testing between the

students who finish all ten PSP assignments and those who do not. A significant difference

would suggest a selection effect that would affect the generalizability of the results.

Hypothesis C3 is that there is a difference in defect density in testing between the PSP

classes (the different offerings of the PSP course). A significant difference would suggest that

classes are not similar learning environments, perhaps due to different instructors, changes in the

teaching materials, or changes in the student population.

Hypothesis C4 is that the highest degree attained is related to defect density in testing. A

significant difference would indicate that educational credentials affect programming

performance and could indicate that credentials are a reasonable surrogate for programmer

ability.

Hypothesis C5 is that years of experience is related to defect density in testing. A

significant difference would indicate that experience affects programming performance and

could indicate that experience is a reasonable surrogate for programmer ability.

Hypothesis C6 is that percent of time programming in the previous year is related to

defect density in testing. A significant difference would indicate that recent experience affects

programming performance and could indicate that recent experience is a reasonable surrogate for

programmer ability. This should not be a factor by the end of the class but could affect

performance on early assignments.

Hypothesis C7 is that the number of programming languages known is related to defect

density in testing. A significant difference would indicate that that the number of programming

languages known, which presumably corresponds to a diversity of programming experiences, is a

reasonable surrogate for breadth of experience, which is an aspect of programmer ability.

77

Hypothesis C8 is that the programming language used is related to defect density in

testing. A significant difference would indicate that that technology used is affecting software

quality. If no significant difference is found, technology may still affect other concerns, such as

productivity.

Since differences between individuals can contribute over half of the variance in

performance [Curtis 1981], the values of the (adjusted) coefficient of determination, R2
a, are

likely to be small for any specific explanatory variable, and a statistically significant explanatory

variable with R2
a>0.05 may be a useful addition to a defect prediction model. Programming is a

creative process and a social activity [Cockburn 2004, 7-10]. In the social sciences, R2
a=0.30

might be considered acceptable [SAS Institute 1989, 15], and the multiple regression models

described in Chapter 7 should exceed that value (and larger values of R2
a are desirable). The

focus of this analysis is identifying which explanatory variables are worthy of further

consideration and exploration. Later analyses will consider data transformations and correlations

that may affect the relationships.

In this section, the data sets used are primarily the PSPa and PSPb data sets since the

analysis of potential confounding variables, such as the programming language used, is intended

to help identify useful criteria for splitting the data in later analyses. A secondary criterion is

assignment since that removes process and problem complexity differences that might confound

the analyses. Where it is appropriate to focus on data from relatively mature processes, the data

sets are split by assignments 9 and 10. For the comparison of programmers who finished all ten

assignments versus those who did not, in Section 4.6.2, the appropriate data split is by

assignments 1 and 2.

78

4.6.1 Assignment (9A Versus 10A)

As reported in various studies of PSP, there are consistent, statistically significant

changes in defect density in testing across assignments. Even when the focus of these analyses is

on assignments 9 and 10 to minimize the effects of process changes and learning, if learning

curve effects between these two assignments are significant, then the data may need to be split

by assignment. Figure 4 illustrates the differences in defect density in testing between

assignments 9 and 10 for the PSPb data set, including outliers.

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

20

40

60

80

100

9 10

Assignment

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 4 Differences Between Assignment 9 and Assignment 10

The Each Pair and All Pairs tests indicate that the means for assignments 9 and 10 are

significantly different, as illustrated by the comparison circles in the figure.

The ANOVA results for the effect of the assignment on defect density in testing are

shown in Table 7. The null hypothesis is 0 9 10: A AH µ µ= with alternative hypothesis

9 10:a A AH µ µ≠ .

79

Table 7 ANOVA for Assignment (9A vs 10)

Source PSPa PSPb

DF 1 1

SS 1851.8 12062.4

Model

MS 1851.8 12062.4

DF 306 1565

SS 63791.1 480130.0

Error

MS 208.5 306.8

DF 307 1566 Total

SS 65642.9 492192.4

F Ratio 9.3W 40.9W

Prob > F 0.0025W <.0001W

R2
a 0.0250 0.0239

The effect of assignment on defect density in testing was shown to be statistically

significant for both of the data sets. This indicates that assignment is a useful predictor variable

for defect density in testing, at least within the context of the PSP class.

The estimates of the means for defect density in testing at the different levels of

assignment, and the associated standard errors for the means, are listed in Table 8 for the data

sets including outliers. The model can be expressed as:

(Defect density in testing) = β Assignment X Assignment

where β Assignment is the level for the assignment (9A or 10A) and X Assignment is an indicator

variable for whether that assignment is the correct one for the observation.

80

Table 8 Estimates for Assignment Levels

Levels

PSPa**

(std err)

PSPb****

(std err)

9A 13.65

(1.31)

16.95

(0.69)

10A 8.74

(0.94)

11.39

(0.53)

The ANOVA results for the data sets excluding outliers are provided in Table 9. Outliers

were identified with respect to defect density in testing.

Table 9 ANOVA for Assignment (9A vs 10A) Excluding Outliers

Source PSPa PSPb

DF 1 1

SS 1169.2 5971.8

Model

MS 1169.2 5971.8

DF 298 1486

SS 28319.1 140680.2

Error

MS 95.0 94.7

DF 299 1487 Total

SS 29488.3 146652.0

F Ratio 12.6W 64.7W

Prob > F 0.0005W <.0001W

R2
a 0.0364 0.0401

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers. This indicates that assignment is a useful predictor variable for defect density

in testing.

81

The estimates of the means for defect density in testing at the different levels of

assignment, and the associated standard errors for the means, are listed in Table 10 for the data

sets excluding outliers.

Table 10 Estimates for Assignment Levels Excluding Outliers

Levels

PSPa***

(std err)

PSPb****

(std err)

9A 11.66

(0.84)

13.40

(0.38)

10A 7.70

(0.73)

9.39

(0.32)

The ANOVA results indicate there is a consistent, statistically significant difference

between assignments 9 and 10 for defect density in testing. The data sets will be split by

assignment where appropriate in subsequent analyses.

The difference between assignments 9 and 10 could be due to the process changes

between PSP2.1 and PSP3 involved in adopting cyclic development. Conceptually, this

difference seems minor, but the size of the programs in assignment 10 is noticeably greater than

those in the earlier assignments (see Figure 2). There may be learning curve effects due to new

software engineering techniques, since PSP2.1 introduces design techniques for assignment 9.

This may be a significant process change for those who have not used these design techniques

before, even if they have used other design techniques on earlier PSP assignments. It seems

unlikely that there are significant learning curve effects due to the application domain.

It is unclear whether the difference between assignments should be attributed to process

differences or learning curve effects (and the two are related since there are learning curve

effects associated with adopting new processes). As observed in previous PSP studies [Ferguson

82

et al. 1997], performance continues to improve after the PSP class, so the presence of on-going

learning curve effects would not be surprising.

4.6.2 Finishing All Ten Assignments Versus Not Finishing

The data for each of the PSP0 assignments can be examined to determine whether those

who finish all ten assignments differ from those who begin the course but drop out for some

reason. For the PSPa data set, 103 students finished all ten assignments; for PSPb, 573 students

finished all ten. Figure 5 illustrates the differences in defect density in testing for the students

finishing all ten assignments versus those not finishing the course for (PSPb, 1A, Outliers).

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

100

200

All Ten Less Than Ten

AllTen

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 5 Differences Between All Ten Assignments Versus Less Than Ten

The Each Pair and All Pairs tests indicate that the means for the students finishing all ten

assignments are not significantly different from those not finishing the course, as illustrated by

the comparison circles in the figure.

83

The ANOVA results for the effect of finishing all ten assignments on defect density in

testing are shown in Table 11. The null hypothesis is 0 : AllTen LessThanTenH µ µ= with alternative

hypothesis :a AllTen LessThanTenH µ µ≠ .

Table 11 ANOVA for Finishing All Ten Assignments

Source PSPa 1A PSPa 2A PSPb 1A PSPb 2A

DF 1 1 1 1

SS 7729.5 3332.1 3826.3 3822.2

Model

MS 7729.5 3332.1 3826.3 3822.2

DF 219 232 1084 1115

SS 435605.5 939809.9 2017638.5 4011508.5

Error

MS 1989.1 4050.9 1861.3 3597.8

DF 220 233 1085 1116 Total

SS 443335.0 943142.0 2021464.8 4015330.7

F Ratio 4.2W 0.8 2.0W 1.1W

Prob > F 0.0423W 0.3654 0.1574W 0.3053W

R2
a 0.0129 -0.0008 0.0010 0.0001

The effect of finishing all ten assignments on defect density in testing was shown to be

statistically significant for only one of the four data sets: (PSPa, 1A, Outliers). This indicates

that finishing all ten assignments is unlikely to be a useful predictor variable for defect density in

testing.

The estimates of the means for defect density in testing for those finishing all ten

assignments versus those finishing less than ten, and the associated standard errors for the

means, are listed in Table 12 for the data sets including outliers. The model can be expressed as:

84

(Defect density in testing) = β All Ten X All Ten

where β All Ten is the level for (not) finishing all ten assignments and X All Ten is an indicator

variable for whether all ten or less than ten is the correct one for the observation.

Table 12 Estimates for Levels of Finishing All Ten Assignments

Levels

PSPa 1A*
(std err)

PSPa 2A

 (std err)

PSPb 1A

(std err)

PSPb 2A

(std err)

All Ten 32.3

(3.0)

51.9

(5.2)

39.0

(1.6)

51.6

(2.3)

Less Than Ten 44.1

(5.0)

44.3

(6.2)

42.8

(2.1)

55.3

(2.8)

The ANOVA results for the data sets excluding outliers are provided in Table 13.

Outliers were identified with respect to defect density in testing.

85

Table 13 ANOVA for Finishing All Ten Assignments Excluding Outliers

Source PSPa 1A PSPa 2A PSPb 1A PSPb 2A

DF 1 1 1 1

SS 1208.0 2382.9 21.6 15.8

Model

MS 1208.0 2382.9 21.6 15.8

DF 202 215 1021 1039

SS 109112.2 139693.0 737581.9 1085639.0

Error

MS 540.2 649.7 722.4 1044.9

DF 203 216 1022 1040 Total

SS 110320.2 142075.9 737603.5 1085654.7

F Ratio 2.2 3.7 0.03 0.02

Prob > F 0.1364 0.0568 0.8627 0.9023

R2
a 0.0061 0.0122 -0.0010 -0.0010

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers, differing only for the one case that was shown to be statistically significant

when outliers were included. The preponderance of the evidence therefore indicates that

finishing all ten assignments is unlikely to be a useful predictor variable for defect density in

testing.

The estimates of the means for defect density in testing for those finishing all ten

assignments versus those finishing less than ten, and the associated standard errors for the

means, are listed in Table 14 for the data sets excluding outliers.

86

Table 14 Estimates for Levels of Finishing All Ten Assignments Excluding Outliers

Levels

PSPa 1A

(std err)

PSPa 2A

(std err)

PSPb 1A

(std err)

PSPb 2A

(std err)

All Ten 27.1

(2.2)

37.7

(2.8)

33.2

(1.1)

41.5

(1.4)

Less Than Ten 31.9

(2.4)

31.0

(2.2)

32.9

(1.2)

41.2

(1.5)

The preponderance of the evidence in the ANOVA results indicates that finishing the

course should not be considered a significant explanatory variable. Although a statistically

significant difference was shown for defect density in testing in (PSPa, 1A, Outliers), the

statistical significance is marginal and disappears when outliers are excluded. This suggests that

people finishing the PSP course are reasonably typical of programmers who choose to take the

PSP course.

Excluding observations with missing data, i.e., excluding observations for students who

did not finish all ten assignments, is advantageous for some statistical analyses, such as repeated

measures ANOVA. For example, the Hayes and Over analysis of the PSPa data only used the

data for those students finishing assignments 1-9 (assignment 10 was not considered in their

analysis) [Hayes and Over 1997, 51]. This result supports the generalizability of such analyses

of PSP data.

4.6.3 PSP Classes

There are two situations that could cause systemic differences across PSP classes: 1)

changes in the teaching materials used in the PSP class, or 2) differences between instructors.

The possibility of a trend due to systemic changes in the student population does not appear

likely, since there are no known reasons for a systemic change in the student population for PSP,

87

although sporadic cases where exceptionally poorly-prepared or well-prepared classes could

occur. The PSP class has been based on the text A Discipline for Software Engineering since its

publication in 1995 [Humphrey 1995]; prior classes used drafts of the manuscript. PSP

instructors are all qualified and authorized by the Software Engineering Institute, and instruction

is typically done by teams of instructors. There would not appear to be any reason for changes in

PSP class performance over time, although there might be cases where particular classes might

have significantly different results because of special causes of variation.

Viewing the PSP classes as a sequential variable over time allows an exploration of time-

based shifts in quality. The regression results for the effect of PSP class on defect density in

testing are shown in Table 15, where the PSP class is a sequence number rather than a nominal

variable, which allows an exploration of systemic trends over time. For the regression model:

(Defect density in testing) = β0 + β1 (PSP class)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

88

Table 15 Regression Models for PSP Class

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 188.9 5.6 1685.6 395.2

Model

MS 188.9 5.6 1685.6 395.2

DF 161 143 828 735

SS 45302.2 18294.4 328541.2 149508.1

Error

MS 281.4 127.9 396.8 203.4

DF 162 144 829 736 Total

SS 45491.1 18300.0 330226.8 149903.2

F Ratio 0.7 0.04 4.2 1.9

Prob > F 0.4138 0.8339 0.0396 0.1638

R2
a -0.0020 -0.0067 0.0039 0.0013

The effect of PSP class on defect density in testing was shown to be statistically

significant for only one of the four data sets: (PSPb, 9A, Outliers). This indicates that design

review class is unlikely to be a useful predictor variable for defect density in testing.

The parameter estimates for the regression models for PSP class trends, and the

associated standard errors, are listed in Table 16 for the data sets including outliers. For the null

hypothesis 0iβ = in the following tables of parameter estimates, a p-value<0.05 is indicated

with *, a p-value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and a p-

value<0.0001 is indicated with ****.

89

Table 16 Estimates for PSP Class

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 11.97****

(2.43)

9.05****

(1.78)

20.49****

(1.85)

13.23****

(1.42)

β1 0.13

(0.15)

-0.02

(0.11)

-0.04*

(0.02)

-0.02

(0.02)

Some classes may be atypical; the PSP class is naturally a nominal variable. The Each

Pair and All Pairs tests for a nominal representation of the class data indicate that some PSP

classes are atypical, as illustrated by the comparison circles in Figure 6 for (PSPb, 9A, Outliers).

D
ef

ec
ts

 R
em

ov
ed

 in
 T

es
t

0

10

20

Class
Each Pair
Student's t
0.05

All Pairs
Tukey-Kramer
0.05

D
ef

ec
ts

 R
em

ov
ed

 in
 T

es
t

0

10

20

D
ef

ec
ts

 R
em

ov
ed

 in
 T

es
t

0

10

20

Class
Each Pair
Student's t
0.05

All Pairs
Tukey-Kramer
0.05

Figure 6 PSP Classes Over Time

The class with the largest average defect density in testing (44.0 defects/KLOC) appears

clearly different from the rest of the classes, which range from 1.6 to 30.2 defects/KLOC. Upon

further examination of this, and four other classes where defect density in testing was abnormally

high at the end of the course, the anomalies appear related to a limited number of students having

trouble with one or more assignments.

90

In the case of the class with an average defect density of 44.0 defects/KLOC, two

students discovered more than ten defects in testing in assignment 10 (14 defects in 238 LOC

and 12 defects in 163 LOC). Since only five students finished all ten programs in this class, the

average and standard deviation for defect density in testing are high. Similarly for the other four

atypical classes, there are one or two students with an unusually high number of defects. In one

case, a student had 8 defects in a 35 LOC program on assignment 10, for a defect density of 229

defects/KLOC. Similarly for PSPa, one class was atypical because of one student with 11

defects in a 72 LOC program for a defect density of 153 defects/KLOC.

Combining a small number of finishing students with one or two students struggling to

finish assignment 9 and/or 10 leads to the occasional atypical class, which is not unexpected

given the large number (112) of classes being analyzed. Since there does not appear to be a

statistically or practically significant trend over time, it seems reasonable to conclude that, in

general, PSP classes are relatively stable learning environments, although a small number of

students may have trouble on some assignments. Atypical student data will be removed as

appropriate for later analyses rather than excluding class data.

To support this conclusion, additional analyses were run for the trends with outliers

excluded. Outliers were identified with respect to defect density in testing for students rather

than classes. The ANOVA results for the data sets excluding outliers are provided in Table 17.

91

Table 17 Regression Models for PSP Class Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 1.6 88.9 209.2 10.0

Model

MS 1.6 88.9 209.2 10.0

DF 156 136 788 702

SS 17551.9 7130.2 98369.6 50231.6

Error

MS 112.5 52.4 124.8 71.6

DF 157 137 789 703 Total

SS 17553.5 7219.1 98578.9 50241.6

F Ratio 0.01 1.7 1.7 0.1

Prob > F 0.9053 0.1950 0.1958 0.7083

R2
a -0.0063 0.0051 0.0009 -0.0012

None of the regression models shows a statistically significant regression for PSP classes

for defect density in testing for the data sets excluding outliers.

The parameter estimates for the regression models for PSP class, and the associated

standard errors, are listed in Table 18 for the data sets excluding outliers.

Table 18 Estimates for PSP Class Excluding Outliers

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 11.50****

(1.55)

8.12****

(1.15)

14.97****

(1.07)

9.69****

(0.87)

β1 0.01

(0.09)

-0.09

(0.07)

-0.02

(0.01)

-0.004

(0.01)

92

The preponderance of the evidence in the ANOVA tables indicates that PSP class is

unlikely to be a useful predictor variable. Although a statistically significant difference was

shown for defect density in testing in (PSPb, 9A, Outliers), the statistical significance is marginal

and disappears when outliers are excluded. This suggests that the PSP class is a reasonably

stable learning environment and that excluding outliers adequately addresses any concerns

related to differences between classes or instructors.

4.6.4 Highest Degree Attained

In analyzing the highest degree attained, a full representation of undergraduate and graduate

degrees is available for PSPb: BE (Bachelor of Engineering), BS (Bachelor of Science), MS

(Master of Science), and PhD (Philosophy Doctorate). For PSPa, there are only two people with

BE or PhD degrees, therefore only the BS and MS are considered in those models. The Each

Pair and All Pairs tests indicate that the means for students with different academic credentials

(degrees) are not significantly different, as illustrated by the comparison circles in Figure 7 for

(PSPb, 9A, Outliers).

93

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

10

20

30

40

50

60

BE BS MS PhD

HighestDegree

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 7 Differences for Highest Degree Attained

The ANOVA results for the effect of highest degree attained on defect density in testing

are shown in Table 19. The null hypothesis is 0 : BE BS MS PhDH µ µ µ µ= = = with alternative

hypothesis Ha: not all of the means are equal.

94

Table 19 ANOVA for Highest Degree Attained

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 3 3

SS 40.7 470.4 437.8 327.2

Model

MS 40.7 470.4 145.9 109.1

DF 85 78 321 269

SS 14242.3 4976.4 107895.9 35963.3

Error

MS 167.6 63.8 336.1 133.7

DF 86 79 324 272 Total

SS 14282.9 5446.8 108333.7 36290.6

F Ratio 0.2 4.3W 0.4 0.8

Prob > F 0.6236 0.0500W 0.7287 0.4861

R2
a -0.0089 0.0746 -0.0053 -0.0020

The effect of the highest degree attained on defect density in testing was shown not to be

statistically significant for all of the data sets. This indicates that the highest degree attained is

not a useful predictor variable for defect density in testing.

The estimates of the means for defect density in testing at the different levels of highest

degree attained, and the associated standard errors for the means, are listed in Table 20 for the

data sets including outliers. The model can be expressed as:

(Defect density in testing) = β Highest Degree X Highest Degree

where β Highest Degree is the level for the highest degree attained and X Highest Degree is an indicator

variable for whether that highest degree attained is the correct one for the observation.

95

Table 20 Estimates for Highest Degree Attained Levels

Levels

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

BE --- --- 13.49

(1.28)

10.90

(1.21)

BS 12.20

(1.67)

6.40

(0.83)

15.71

(2.07)

11.43

(1.31)

MS 13.78

(2.44)

12.00

(2.58)

15.13

(1.54)

9.95

(1.14)

PhD --- --- 18.69

(4.36)

6.00

(2.69)

The ANOVA results for the data sets excluding outliers are provided in Table 21.

Outliers were identified with respect to defect density in testing.

96

Table 21 ANOVA for Highest Degree Attained Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 3 3

SS 165.5 153.2 166.7 174.2

Model

MS 165.5 153.2 55.6 58.1

DF 83 75 299 261

SS 8909.1 3128.0 26467.4 19871.9

Error

MS 107.3 41.7 88.5 76.1

DF 84 76 302 264 Total

SS 9074.6 3281.2 26634.0 20046.1

F Ratio 1.5 2.4W 0.6 0.8

Prob > F 0.2179 0.1347W 0.5976 0.5159

R2
a 0.0064 0.0340 -0.0037 -0.0027

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, indicate that the highest

degree attained is not a useful predictor variable for defect density in testing.

The estimates of the means for defect density in testing at the different levels of the

highest degree attained, and the associated standard errors for the means, are listed in Table 22

for the data sets excluding outliers.

97

Table 22 Estimates for Highest Degree Attained Levels Excluding Outliers

Levels

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

BE --- --- 12.94

(1.18)

10.08

(1.10)

BS 10.59

(1.26)

6.00

(0.74)

11.11

(0.91)

9.60

(0.96)

MS 13.77

(2.44)

9.33

(2.01)

11.28

(0.86)

8.87

(0.82)

PhD --- --- 11.38

(2.30)

6.00

(2.69)

Although degree credentials are not a significant factor for PSP assignments, educational

credentials may contribute to improved performance for more complex programs, where deeper,

more extensive domain or engineering knowledge may be crucial to understanding both the

problem and potential solutions.

4.6.5 Years of Programming Experience

Programmer skill is frequently identified as a major contributor to quality, and years of

experience is frequently used as a surrogate for skill. The regression results for the effect of

years of experience on defect density in testing are shown in Table 23. For the regression model:

(Defect density in testing) = β0 + β1 (Years of programming experience)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

98

Table 23 Regression Models for Years of Experience

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 100.1 177.1 846.3 185.2

Model

MS 100.1 177.1 846.3 185.2

DF 70 65 364 306

SS 12289.7 5895.4 119685.5 42010.9

Error

MS 175.6 90.7 328.8 137.3

DF 71 66 365 307 Total

SS 12389.9 6072.4 120531.8 42196.1

F Ratio 0.6 2.0 2.6 1.3

Prob > F 0.4527 0.1671 0.1095 0.2464

R2
a -0.0061 0.0142 0.0043 0.0011

The effect of years of experience on defect density in testing was shown not to be

statistically significant for all of the data sets. This indicates that years of experience is not a

useful predictor variable for defect density in testing.

The parameter estimates of the regression model for years of experience, and the

associated standard errors, are listed in Table 24 for the data sets including outliers.

99

Table 24 Estimates for Years of Experience

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 10.96***

(2.98)

5.99**

(2.25)

13.59****

(1.49)

9.79****

(1.03)

β1 0.17

(0.22)

0.23

(0.17)

0.19

(0.12)

0.10

(0.09)

The regression models for the data sets excluding outliers are provided in Table 25.

Outliers were identified with respect to defect density in testing; no outliers were identified for

years of experience.

Table 25 Regression Models for Years of Experience Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 282.5 14.9 5.1 1.2

Model

MS 282.5 14.9 5.1 1.2

DF 68 62 346 295

SS 6930.8 3411.3 36388.3 21607.6

Error

MS 101.9 55.0 105.2 73.2

DF 69 63 347 296 Total

SS 7213.3 3426.1 36393.3 21608.8

F Ratio 2.8 0.3 0.05 0.02

Prob > F 0.1006 0.6052 0.8265 0.8994

R2
a 0.0250 -0.0117 -0.0028 -0.0033

100

The regression results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, therefore indicate that

years of experience is not a useful predictor variable for defect density in testing.

The parameter estimates of the regression model for years of experience, and the

associated standard errors, are listed in Table 26 for the data sets excluding outliers.

Table 26 Estimates for Years of Experience Excluding Outliers

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 8.17***

(2.31)

6.50***

(1.84)

12.58****

(0.86)

9.29****

(0.77)

β1 0.28

(0.17)

0.07

(0.14)

-0.02

(0.07)

-0.01

(0.07)

While some researchers have empirically found that years of experience are related to

quality [Zhang 1999, 153; Takahasi and Kamayachi 1985], that was not the case in this analysis,

although the results are similar to those of Wohlin and Wesslen for PSP [Wohlin and Wesslen

1998, 57; Wohlin 2004, 223]. When the studies finding experience a useful factor for less-

experienced programmers were performed in the 1970s and 1980s, entry-level programmers

were relatively unfamiliar with computers. The familiarity of the general population with

computers has grown markedly over the last few decades. Students and entry-level programmers

in the 1990s are likely to be well-acquainted with computers before beginning their professional

careers. The consequence is that the operational definition of years of experience for

programmers is likely to have shifted in the last three decades. The results of the earlier studies

may have been valid and yet be irrelevant to today’s population of “inexperienced”

programmers.

101

This does not imply that experience does not affect ability. Holmes found that for his

PSP data, collected over a seven year period, developer experience was a significant factor

[Holmes 2003]. His results, however, apply to a single individual engaged in applying PSP as

part of a systematic improvement program. They indicate that individual professionals can

substantially improve their performance over time, but they cannot be generalized to years of

experience across different individuals, which is the point of this analysis.

Industry studies of the effect of years of experience on quality typically use the average

number of years for the team [Zhang 1999, 153]. In averaging experience across the team,

related factors in assigning professionals to the team with diverse backgrounds may impact the

operational meaning of “experience.” The relevant factors may be related to a well-qualified

team, with a variety of skills and capabilities, and years of experience may be confounded with

other factors related to the skills of the team. Years of experience may therefore be a useful

surrogate for team ability, even though it provides little insight with respect to the ability of the

individual professionals comprising the team.

4.6.6 Number of Languages Known

While length of experience is usually considered a poor surrogate for ability, breadth of

experience is considered a more realistic indicator [Curtis, Krasner, and Iscoe 1988; Curtis 1988,

289], particularly for programmers with three or fewer years of experience [Sheppard et al. 1979,

47]. The number of languages that a programmer has a working knowledge of may be

considered a reasonable surrogate for breadth of experience.

The regression results for the effect of the number of languages known on defect density

in testing are shown in Table 27. For the regression model:

102

(Defect density in testing) = β0 + β1 (Number of languages known)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 27 Regression Models for Number of Languages Known

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 19.0 17.6 313.8 1127.2

Model

MS 19.0 17.6 313.8 1127.2

DF 93 88 366 308

SS 16804.3 9225.3 121034.5 40864.9

Error

MS 180.7 104.8 330.7 131.7

DF 94 89 367 309 Total

SS 16823.2 9242.9 121348.3 41992.2

F Ratio 0.1 0.2 0.9 8.5

Prob > F 0.7468 0.6827 0.3306 0.0038

R2
a -0.0096 -0.0094 -0.0001 0.0237

The effect of the number of languages known on defect density in testing was shown to be

statistically significant for only one of the four data sets: (PSPb, 10A, Outliers). This indicates

that the number of languages known is unlikely to be a useful predictor variable for defect

density in testing.

The parameter estimates of the regression model for the number of languages known, and

the associated standard errors, are listed in Table 28 for the data sets including outliers.

103

Table 28 Estimates for Number of Languages Known

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 14.17****

(2.93)

8.16***

(2.24)

16.90****

(1.89)

7.48****

(1.31)

β1 -0.17

(0.52)

0.16

(0.40)

-0.41

(0.43)

0.86**

(0.29)

The regression models for the data sets excluding outliers are provided in Table 29.

Outliers were identified with respect to defect density in testing; no outliers were identified with

respect to the number of languages known.

Table 29 Regression Models for Number of Languages Known Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 6.3 92.2 154.9 0.8

Model

MS 6.3 92.2 154.9 0.8

DF 89 82 344 298

SS 8670.0 3674.2 33154.8 22312.3

Error

MS 97.4 44.8 96.4 74.9

DF 90 83 345 299 Total

SS 8676.3 3766.4 33309.7 22313.1

F Ratio 0.07 2.1 1.6 0.01

Prob > F 0.7993 0.1552 0.2057 0.9194

R2
a -0.0105 0.0126 0.0018 -0.0033

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers, differing only for the one case that was shown to be statistically significant

104

when outliers were included. The preponderance of the evidence therefore indicates that the

number of languages known is unlikely to be a useful predictor variable for defect density in

testing.

The parameter estimates of the regression model for number of languages known, and the

associated standard errors, are listed in Table 30 for the data sets excluding outliers.

Table 30 Estimates for Number of Languages Known Excluding Outliers

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 11.93****

(2.22)

5.04**

(1.50)

13.20****

(1.10)

9.32****

(0.03)

β1 -0.10

(0.40)

0.38

(0.26)

-0.32

(0.24)

0.03

(0.25)

While breadth of experience may be superior to length of experience in determining

ability, the number of languages known does not appear to be useful surrogate for ability.

4.6.7 Percent of Time Programming

The PSP student background questionnaire was revised in 1998. The question on percent

of time programming in the previous year was revised to be more detailed, asking about software

requirements, design, code, and test percentages (among other topics) separately. The

instructions state that the total percentage need not sum to 100%. One consequence is that 116

of the students in the PSP repository have percentages of programming experience that sum to

more than 100%. This was operationally resolved by using 100% for totals greater than 100%,

but this measure may be systematically flawed for this analysis, and no firm conclusions should

be reached.

105

The regression results for the effect of the percent of time programming in the previous

year on defect density in testing are shown in Table 31. For the regression model:

(Defect density in testing) = β0 + β1 (Percent of time programming)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 31 Regression Models for Percent of Time Programming

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 0.005 34.4 67.6 155.7

Model

MS 0.005 34.4 67.6 155.7

DF 32 31 330 274

SS 3653.4 2041.1 108002.2 35672.1

Error

MS 114.2 65.8 327.3 130.2

DF 33 32 331 275 Total

SS 3653.4 1075.5 108069.8 35827.7

F Ratio 0.0000 0.5 0.2 1.2

Prob > F 0.9947 0.4749 0.6498 0.2751

R2
a -0.0313 -0.0151 -0.0024 0.0007

The effect of the percent of time programming in the previous year on defect density in

testing was shown not to be statistically significant for all of the data sets. This indicates that the

percent of time programming in the previous year is not a useful predictor variable for defect

density in testing.

The parameter estimates of the regression model for the percent of time programming in

the previous year, and the associated standard errors, are listed in Table 32 for the data sets

including outliers.

106

Table 32 Estimates for Percent of Time Programming

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 11.64*

(5.29)

9.86*

(4.05)

16.25****

(2.48)

12.23****

(1.63)

β1 0.0005

(0.08)

-0.04

(0.06)

-0.01

(0.03)

-0.02

(0.02)

The regression models for the data sets excluding outliers are provided in Table 33.

Outliers were identified with respect to defect density in testing; no outliers were identified with

respect to the percent of time programming in the previous year.

Table 33 Regression Models for Percent of Time Programming Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 80.4 0.3 23.2 99.5

Model

MS 80.4 0.3 23.2 99.5

DF 30 29 315 264

SS 2003.6 910.8 32411.4 18567.2

Error

MS 66.8 31.4 102.9 70.3

DF 31 30 316 265 Total

SS 2084.0 911.1 32434.6 18666.7

F Ratio 1.2 0.01 0.2 1.4

Prob > F 0.2812 0.9172 0.6356 0.2354

R2
a 0.0065 -0.0341 -0.0025 0.0016

The regression results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, indicate that the percent

107

of time programming in the previous year is not a useful predictor variable for defect density in

testing.

The parameter estimates of the regression models for the percent of time programming in

the previous year, and the associated standard errors, are listed in Table 34 for the data sets

excluding outliers.

Table 34 Estimates for Percent of Time Programming Excluding Outliers

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 14.22**

(4.11)

5.36

(2.91)

11.75****

(1.44)

10.48****

(1.22)

β1 -0.07

(0.06)

0.004

(0.04)

0.009

(0.02)

-0.02

(0.02)

Recent experience in programming is primarily a concern for learning curve effects

associated with programming skills in general. Given the small size of the PSP assignments, it

seems likely that the bulk of any learning curve effects associated with basic programming skills

are concentrated in the first few assignments.

4.6.8 Programming Language

Although some researchers have noted that the programming language used does not

appear to be significantly correlated with productivity or quality except at a gross level

[DeMarco and Lister 1999, 32-33; Yang and Paradi 2004], others have found that programming

language can have a significant impact on both. For example, in defining the backfiring

technique for estimating function points based on lines of code, Jones found noticeable

differences between different languages: it takes 128 lines of code in C to implement one

108

function point, but only 53 in C++ [Jones 1995]. Similarly, defect injection rates have been

found to differ by two to three times between different programming languages [Phipps 1991,

351], although this may be driven by productivity differences between languages.

The most frequently used languages for PSPb are C, C++, Java, and Visual Basic. For

PSPa, only two students used Visual Basic, and none used Java, so the only languages

considered for the PSPa data set are C and C++. The Each Pair and All Pairs tests indicate that

the means for the programming language are not significantly different, as illustrated by the

comparison circles in Figure 8 for (PSPb, 9A, Outliers).

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

50

100

C C++ Java VisualBasic

Programming Language

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 8 Differences Between Programming Language Levels

The ANOVA results for the effect of the programming language used on defect density

in testing are shown in Table 35. The null hypothesis is 0 : C C Java VisualBasicH µ µ µ µ++= = = for

PSPb, and 0 : C CH µ µ ++= for PSPa, with alternative hypothesis Ha: not all of the means are

equal.

109

Table 35 ANOVA for Programming Language

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 3 3

SS 26.5 45.8 342.2 14.8

Model

MS 26.5 45.8 114.1 4.9

DF 72 66 285 238

SS 14727.9 7447.0 109524.0 34141.9

Error

MS 204.6 112.8 384.3 143.5

DF 73 67 288 241 Total

SS 14754.4 7492.9 109866.1 34156.7

F Ratio 0.1 0.4 0.3 0.03

Prob > F 0.7200 0.5261 0.8277 0.9915

R2
a -0.0121 -0.0089 -0.0074 -0.0122

The effect of the programming language used on defect density in testing was shown not

to be statistically significant for all of the data sets. This indicates that the programming

language used is not a useful predictor variable for defect density in testing.

The estimates of the means for defect density in testing at the different levels of the

programming language used, and the associated standard errors for the means, are listed in Table

36 for the data sets including outliers. The model can be expressed as:

(Defect density in testing) = β Programming Language X Programming Language

where β Programming Langue is the level for the programming language used and X Programming Language is

an indicator variable for whether that programming language is the correct one for the

observation.

110

Table 36 Estimates for Programming Language Levels

Levels

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

C 13.80

(1.93)

9.68

(1.45)

15.69

(1.31)

10.85

(0.96)

C++ 12.23

(2.67)

7.45

(2.53)

16.11

(2.49)

11.05

(1.63)

Java --- --- 19.13

(3.88)

11.63

(2.98)

Visual Basic --- --- 17.60

(5.12)

10.63

(2.19)

The ANOVA results for the data sets excluding outliers are provided in Table 37.

Outliers were identified with respect to defect density in testing.

111

Table 37 ANOVA for Programming Language Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 3 3

SS 22.0 0.03 5.7 143.3

Model

MS 22.0 0.03 1.9 47.8

DF 68 62 268 228

SS 6555.8 3395.4 28534.4 15781.1

Error

MS 96.4 54.8 106.5 69.2

DF 69 63 271 231 Total

SS 6577.8 3395.4 28540.1 15924.3

F Ratio 0.2 0.0006 0.02 0.7

Prob > F 0.6345 0.9811 0.9968 0.5590

R2
a -0.0113 -0.0161 -0.0110 -0.0040

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, indicate that the

programming language used is not a useful predictor variable for defect density in testing.

The estimates of the means for defect density in testing at the different levels of the

programming language used, and the associated standard errors for the means, are listed in Table

38 for the data sets excluding outliers.

112

Table 38 Estimates for Programming Language Levels Excluding Outliers

Levels

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

C 10.79

(1.31)

7.40

(0.99)

12.66

(0.87)

9.66

(0.73)

C++ 12.23

(2.67)

7.45

(2.53)

12.59

(1.26)

8.07

(0.99)

Java --- --- 13.11

(1.73)

9.22

(1.84)

Visual Basic --- --- 12.71

(1.59)

10.63

(2.19)

Language does not seem to affect quality when measured in terms of defect density. If

defect density is fairly stable across languages, it seems reasonable to view lines of code as an

appropriate measure of the opportunities for defects in a program.

Although language may not significantly affect defect density, the productivity difference

between languages implies that the number of defects will vary significantly, depending on the

language(s) used [Wesslen 1999, 225; Wohlin 2004, 223]. In other words, if it takes twice as

many LOC to implement a program in language A as in language B, then there will be twice as

many opportunities for defects in the language A program as for the language B program, even if

the defect density is the same. Because of the impact of programming language on productivity,

and the related effects on process variables such as review rates, the programming language used

should not be ignored in analyzing software quality, although it may not be a statistically

significant variable for quality (as measured by defect density in testing) when considered in

isolation.

113

4.6.9 Discussion of the Potentially Confounding Variables

The results of the analyses of the potentially confounding variables indicate, with the

exception of the PSP-specific factor of the assignment, that none of the variables is a potentially

useful predictor variable. These results are summarized in Table 39.

Table 39 Statistically Significant Results for Potentially Confounding Variables

Variable Including
Outliers

Excluding
Outliers

C1) assignment (9A vs 10A) 2 of 2 2 of 2

C2) all ten vs less than ten assignments finished 1 of 4 0 of 4

C3) PSP class 1 of 4 0 of 4

C4) highest degree attained 0 of 4 0 of 4

C5) years of programming experience 0 of 4 0 of 4

C6) percent of time programming in the previous year 0 of 4 0 of 4

C7) number of languages known 1 of 4 0 of 4

C8) programming language used 0 of 4 0 of 4

These results are consistent for data sets including and excluding outliers, but the

potentially confounding variables will be explored further in more sophisticated statistical

models in Chapter 7.

114

4.7 EXPLORING SOLUTION COMPLEXITY (PROGRAM SIZE)

4.7.1 Program Size and Defect Density in Testing

Hypothesis S1 is that program size is related to defect density in testing. Since all defect

prediction models use program size as a predictor variable (and many use it as the only predictor

variable), this variable is expected to be significant.

The regression results for the effect of program size on defect density in testing are

shown in Table 40. For the regression model:

(Defect density in testing) = β0 + β1 (Program size)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 40 Regression Models for Program Size

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 1367.0 602.3 16893.0 5988.0

Model

MS 1367.0 602.3 16893.0 5988.0

DF 161 143 828 735

SS 44124.1 17697.7 313333.8 143915.2

Error

MS 274.1 123.8 378.4 195.8

DF 162 144 829 736 Total

SS 45491.1 18300.0 330226.8 149903.2

F Ratio 5.0 4.9 44.6 30.6

Prob > F 0.0269 0.0290 <0.0001 <0.0001

R2
a 0.0240 0.0261 0.0500 0.0386

115

The effect of program size on defect density in testing was shown to be statistically

significant for all of the data sets. This indicates that program size is a useful predictor variable

for defect density in testing as expected.

The parameter estimates of the regression models for program size, and the associated

standard errors, are listed in Table 41 for the data sets including outliers.

Table 41 Estimates for Program Size

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 18.22****

(2.42)

12.53****

(1.95)

24.92****

(1.37)

16.90****

(1.12)

β1 -0.03*

(0.01)

-0.02*

(0.007)

-0.05****

(0.007)

-0.02****

(0.004)

The regression models for the data sets excluding outliers are provided in Table 42.

Outliers were identified with respect to both defect density in testing and program size.

116

Table 42 Regression Models for Program Size Excluding Outliers

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A

DF 1 1 1 1

SS 334.5 21.1 2098.7 1576.0

Model

MS 334.5 21.1 2098.7 1576.0

DF 149 136 748 659

SS 16661.4 7198.0 86154.3 46445.1

Error

MS 111.9 52.9 115.2 70.5

DF 150 137 749 660 Total

SS 16995.9 7219.1 88253.0 48021.1

F Ratio 3.0 0.4 18.2 22.4

Prob > F 0.0858 0.5293 <0.0001 <0.0001

R2
a 0.0131 -0.0044 0.0225 0.0314

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in two cases: (PSPa, 9A, NoOutliers) and (PSPa, 10A, NoOutliers) were no

longer shown to be statistically significant. The preponderance of the evidence indicates that

program size is a useful predictor variable for defect density in testing, but the PSPa results

reinforce the observation that there is a great deal of individual variation between programmers

and suggest that further study of the effect of program size, which is contained in Chapter 7, is

appropriate.

The parameter estimates of the regression model for program size, and the associated

standard errors, are listed in Table 43 for the data sets excluding outliers.

117

Table 43 Estimates for Program Size Excluding Outliers

Parameter

PSPa 9A

(std err)

PSPa 10A

(std err)

PSPb 9A

(std err)

PSPb 10A

(std err)

β0 (Intercept) 14.73****

(1.94)

7.60****

(1.33)

17.30****

(0.95)

13.64****

(0.92)

β1 -0.02

(0.01)

-0.003

(0.005)

-0.02****

(0.006)

-0.02****

(0.004)

Defect density in testing decreases as program size increases within the PSP context.

With respect to hypothesis S1, it appears that program size is related to defect density in testing,

but the relationship is weaker than might have been expected.

4.7.2 Program Size and the Number of Defects Removed in Testing

As illustrated in Figure 9 for (PSPb, 9A, NoOutliers), there are several n
x

 patterns in the

size versus defect density chart. This pattern arises because the number of defects removed in

testing, which corresponds to “n,” has a fairly small number of integer values – typically zero to

six defects are found in testing. Program size, which corresponds to “x,” can vary significantly.

118

0

10

20

30

40

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

50 100 150 200 250 300 350
LOC

Figure 9 Regressing Defect Density in Testing on Program Size

Program size is already included in defect density as a normalizing factor. Regressing

the number of defects removed in testing on the program size is a plausible alternative. The

programming language used may affect the number of defects removed in testing since there are

productivity differences between programming languages [Jones 1995], and it therefore becomes

a useful criterion for splitting the data. This should not have been a concern in the analyses in

Section 4.7.1 because of the use of defect density as the respondent variable. Because of the

relatively small sizes of the resulting PSPa data sets, however, the analyses use only the PSPb

data sets.

The regression results for the effect of program size on the number of defects removed in

testing are shown in Table 44. For the regression model:

(Defects removed in testing) = β0 + β1 (Program size)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

119

Table 44 Regressing Defects Removed in Testing on Program Size

Source PSPb 9A

C

PSPb 9A

C++

PSPb 10A

C

PSPb 10A

C++

DF 1 1 1 1

SS 120.6 23.3 15.4 107.5

Model

MS 120.6 23.3 15.4 107.5

DF 150 80 131 64

SS 681.6 431.6 431.9 889.7

Error

MS 4.5 5.4 3.3 13.9

DF 151 81 132 65 Total

SS 802.2 454.9 447.3 997.3

F Ratio 26.5 4.3 4.7 7.7

Prob > F <0.0001 0.0409 0.0323 0.0071

R2
a 0.1447 0.0393 0.0271 0.0939

The effect of program size on the number of defects removed in testing was shown to be

statistically significant for all of the data sets. This indicates that program size is a useful

predictor variable for the number of defects removed in testing.

The parameter estimates of the regression models for program size, and the associated

standard errors, are listed in Table 45 for the data sets including outliers.

120

Table 45 Estimates for Regressing Defects Removed in Testing on Program Size

Parameter

PSPb 9A

C

(std err)

PSPb 9A

C++

(std err)

PSPb 10A

C

(std err)

PSPb 10A

C++

(std err)

β0 (Intercept) 0.44

(0.36)

1.34**

(0.49)

1.30****

(0.31)

0.26

(0.97)

β1 0.01****

(0.002)

0.005*

(0.002)

0.003*

(0.001)

0.009**

(0.003)

The regression models for the data sets excluding outliers are provided in Table 46.

Outliers were identified with respect to both the number of defects removed in testing and

program size.

Table 46 Regressing Defects Removed in Testing on Program Size Excluding Outliers

Source PSPb 9A

C

PSPb 9A

C++

PSPb 10A

C

PSPb 10A

C++

DF 1 1 1 1

SS 8.8 0.3 0.7 0.1

Model

MS 8.8 0.3 0.7 0.1

DF 136 73 122 58

SS 221.4 150.3 251.2 117.1

Error

MS 1.6 2.1 2.1 2.0

DF 137 74 123 59 Total

SS 230.2 150.7 252.0 117.3

F Ratio 5.4 0.2 0.4 0.05

Prob > F 0.0219 0.6935 0.5551 0.8219

R2
a 0.0310 -0.0115 -0.0053 -0.0163

121

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in three of the four cases: (PSPb, 9A, C++, NoOutliers), (PSPb, 10A, C,

NoOutliers), and (PSP, 10A, C++, NoOutliers) were no longer shown to be statistically

significant. These results suggest that, while program size should be considered a potential

predictor variable for the number of defects removed in testing (or defect density in testing), the

conclusion for individual performance is not the straightforward one that might be assumed

based on prior research using project data.

The parameter estimates of the regression models for program size, and the associated

standard errors, are listed in Table 47 for the data sets excluding outliers.

Table 47 Estimates for Regressing Defects Removed in Testing on Program Size Excluding
Outliers

Parameter

PSPb 9A

C

(std err)

PSPb 9A

C++

(std err)

PSPb 10A

C

(std err)

PSPb 10A

C++

(std err)

β0 (Intercept) 1.04***

(0.28)

1.53***

(0.39)

1.47***

(0.41)

1.85***

(0.49)

β1 0.004*

(0.002)

0.0009

(0.002)

0.001

(0.002)

-0.0004

(0.002)

The number of defects removed in testing increases as program size increases within the

PSP context. This is as expected.

4.7.3 Discussion of Program Size

The preponderance of the evidence indicates that program size is related to software

quality, although both defect density in testing and the number of defects removed in testing

appear only weakly related to program size for the PSP data. For the reasons mentioned in

122

Section 4.3 and the loss of significance when outliers are excluded, the quality surrogate used in

these analyses for overall quality is defect density in testing, although other quality surrogates are

used in Section 4.8 and Chapter 8 as direct measures of the effectiveness of specific processes.

The poorness of the fit (R2
a<0.05) is also somewhat surprising since many defect

prediction models have been built based on program size with far better fits than this.

These observations reinforce the conclusion that the impact of individual differences on

software quality overwhelms most other factors, although individual differences may be

“smoothed out” by team performance in a project. The use of data from individual

programmers, with significantly greater variation than that of project teams, is likely to have

affected the goodness of the fit. Weinberg observed that the problem of ambiguous

programming objectives allows the individual programmer to choose whether to emphasize

program size, execution speed, clarity, development time, or other objectives, all of which leads

to increased variability in program size [Weinberg 1998, 128-132].

4.8 EXPLORING THE PROCESS VARIABLES

The focus of my research is not specifically on the quality trend over PSP assignments.

My research focuses on the fundamental process drivers for quality that the PSP assignments

(and processes) are a surrogate for. Potential confounding variables were explored to ensure that

they were appropriately addressed if necessary, and they will be revisited in Chapter 7. The

specific hypotheses regarding primary variables for disciplined processes to be investigated

involve the design, coding, and compilation processes. These hypotheses will be considered

statistically significant for α=0.05.

123

Hypothesis P1 is that time per LOC in design is related to defect density in testing.

Insufficient time in design is a frequent complaint and can result in design work being performed

less efficiently in later phases of the life cycle.

Hypothesis P2 is that design review rate is related to defect density in testing. A fast

review rate leads to ineffective reviews.

Hypothesis P3 is that defect density in design review is related to defect density in testing.

Hypothesis P4 is that time per LOC in coding is related to defect density in testing.

Hypothesis P5 is that code review rate is related to defect density in testing.

Hypothesis P6 is that defect density in code review is related to defect density in testing.

Hypothesis P7 is that defect density in compile is related to defect density in testing.

Data sets are split by the programming language used. Since programming language

affects process factors such as effort and is the primary technology factor available for

consideration, using it as a splitting criterion is a conservative decision that should not adversely

affect the statistical analyses given the wealth of data available, especially for PSPb. Since the

process variables are being investigated, splitting by assignment would be inappropriate, given

that the process systematically shifts by assignment.

Defect injection depends primarily on the competence of the programmer, on the quality

of the inputs, and the production process. For example, the number of code defects depends on

the coding skills of the programmer, the quality of the design, and the power of the design

methods (as applied).

Reviews have an indirect impact, since the objective is to remove defects before they

become visible in testing (and release). Defects can be removed from the software more

efficiently early in the life cycle; at the end of development, the compiler acts as a verification

124

tool for the code identifying syntactical defects. A simple graphic of the cause-and-effect

relationships is shown in Figure 10.

Figure 10 Dependencies Between Software Engineering Activities and Quality

As shown in the figure, the verification and validation activities in the diamond-shaped

boxes are steps in the software process where defects may be identified and corrected. The

number of defects removed in testing is a surrogate for quality, but even in a disciplined test

process, defects may escape to the customer and cause failures in use. Testing can demonstrate

the presence of defects; it cannot demonstrate their absence [Dijkstra 1979, 44]. The number of

defects that can be found in testing will depend on the number of defects escaping from

requirements analysis, design, coding, and compilation. Factors such as the confounding

variables already considered may affect the number of defects injected in each phase of the life

cycle. Process factors, such as review rates, will affect the defect removal effectiveness of

125

verification and validation activities such as reviews. Compiling the code can also be considered

a verification step in the sense that syntactic defects will be identified by the compiler.

For the process variables analyzed in this section, outliers for the specific process

variable are identified and excluded, along with the outliers for defect density in testing, in those

analyses where outliers are excluded.

4.8.1 Design Time

The number of design defects that may impact defect density in testing will depend on the

number that escape from design, which in turn depends on the quality of the requirements (the

assignment statement), the number of design defects injected, and the defect removal

effectiveness of the design reviews. There may also be interactions between factors: a large

number of defects injected may be alleviated by skill in removing defects during design reviews

or by the effectiveness of later steps in the process, such as the code reviews. Competing factors

to consider in investigating design time include:

• Investing more time in the design process may correspond to increasing “reflective

thought,” which has been shown to be correlated with improved quality [Campbell

1999, 97]. In this context, more time in design presumably corresponds to more care

in design decisions, leading to better quality by lowering the defect injection rate.

• A significant amount of reuse could result in less design time. It would also

presumably be associated with a smaller program, and no defects would be added

since otherwise the code would be modified rather than reused. This should not,

however, affect defect density measures since the size of reused code is not recorded

in the PSP repository.

126

• Longer design times may correspond to difficulties in design, which may in turn

result from the student being an ineffective designer, perhaps due to unfamiliarity

with the application domain or the design methods used in PSP. Short design times

may indicate very efficient designers.

• Although the number of defects in design may be comparatively large if little time is

spent in design, the student may remove defects in the coding (or code review)

process effectively, if perhaps not as efficiently as could have been done in design.

• A small number of design defects could indicate an inadequate design with major

problems to address. In this case, short design times may be associated with a large

number of defects in coding, compile, or testing.

Design time per LOC is a leading indicator of quality, which could be used to control the

design process since it can be measured in the design phase, if there is a dominant cause-and-

effect relationship. An appropriate quality surrogate in this context is design defect density, i.e.,

the number of defects known to be present at the end of design (and beginning of design review,

regardless of whether a design review was actually held) per KLOC. This enables a focus on the

design process, regardless of defect removal activities that may occur later in the life cycle.

The regression results for the effect of design time on design defect density are shown in

Table 48. For the regression model:

(Design defect density) = β0 + β1 (Design time per LOC)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

127

Table 48 Regressing Design Defect Density on Design Time

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 48468.3 172847.2 61374.6 60835.5

Model

MS 48468.3 172847.2 61374.6 60835.5

DF 675 138 1756 918

SS 194000.1 151390.0 827849.6 584533.5

Error

MS 287.4 1097.0 471.4 636.7

DF 676 139 1757 919 Total

SS 242468.3 324237.2 889224.2 645369.1

F Ratio 168.6 157.6 130.2 95.5

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.1987 0.5297 0.0685 0.0933

The effect of design time on design defect density was shown to be statistically significant

for all of the data sets. This indicates that design time is a useful predictor variable for design

defect density.

The parameter estimates of the regression model for design time, and the associated

standard errors, are listed in Table 49 for the data sets including outliers.

128

Table 49 Estimates for Regressing Design Defect Density on Design Time

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 6.10****

(0.84)

1.38

(3.34)

7.57****

(0.69)

9.57****

(1.03)

β1 11.36****

(0.87)

38.84****

(2.85)

10.72****

(0.94)

13.59****

(1.39)

The regression models for the data sets excluding outliers are provided in Table 50.

Outliers were identified with respect to design defect density and design time.

Table 50 Regressing Design Defect Density on Design Time Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 11670.7 1026.7 16737.8 14610.5

Model

MS 11670.7 1026.7 16737.8 14610.5

DF 609 120 1559 809

SS 82332.3 25426.2 191966.6 116236.2

Error

MS 135.2 211.9 123.1 143.7

DF 610 121 1560 810 Total

SS 94003.0 26452.9 208704.4 130846.7

F Ratio 86.3 4.8 135.9 101.7

Prob > F <0.0001 0.0296 <0.0001 <0.0001

R2
a 0.1227 0.0308 0.0796 0.1106

The regression results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, indicate that design time

is a useful predictor variable for design defect density.

129

The parameter estimates of the regression models for design time, and the associated

standard errors, are listed in Table 51 for the data sets excluding outliers.

Table 51 Estimates for Regressing Design Defect Density on Design Time Excluding
Outliers

Parameters

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 4.47****

(0.75)

7.58***

(2.17)

3.18****

(0.47)

4.51****

(0.65)

β1 12.60****

(1.36)

9.54*

(4.33)

11.42****

(0.98)

15.92****

(1.58)

Design defect density increases as design time increases within the PSP context. There

are two plausible explanations for this result. First, learning curve effects associated with the

design techniques introduced in assignment 9 may be confounding the results. The PSP design

techniques, although effective, are older than the object-oriented and pattern design methods

used by today’s programmers. The students may be struggling with applying these unfamiliar

techniques and, as a consequence, be making more mistakes during design as they endeavor to

use them. As a corollary, the problems in the PSP assignments are relatively simple, and the

design process may have less effect on software quality than the coding process, which may

compound the learning curve effects associated with unfamiliar design techniques. Second, it is

possible that significant reuse, with defects already removed and whose size is not included in

the program size measure, leads to smaller programs and less design time.

In the first case, the root cause is ineffective design; in the second, it is superior design.

Interactions between design time and other variables are considered in Chapter 7 and may

suggest which driver is predominant.

130

4.8.2 Design Review Rate

The effect of design and code reviews on software quality is indirect, although removing

design and code defects early in the life cycle will decrease the number of defects available in

testing. The effectiveness of the reviews cannot be directly measured until the end of the project,

however, and the process control measures available are those associated with performing an

effective review, e.g., the preparation and meeting review rates and the defects found by the

reviews.

The review rate is the amount of time spent by a reviewer inspecting the design (or other

work product) normalized by the size of the design (expressed in LOC for PSP). For PSP, since

the review is for individuals, there is no meeting as would occur in an inspection, therefore the

“review” rate is analogous to the preparation rate for inspections. A design review rate faster

than 200 LOC/hour is considered unacceptable [Fagan 1976; Fagan 1986].

An appropriate quality surrogate in this context is defect removal effectiveness, i.e., the

percentage of defects detected of those known to be present at the beginning of the design

review. This is a direct measure of software quality resulting from the review.

If there are no known defects in the design at the time of the review (as determined at the

end of the assignment), the effectiveness of the review is irrelevant. Assignments where no

defects are available to be identified in a review are therefore excluded. Assignments where no

design review was held are also excluded from this analysis.

For this analysis, the design review rate is measured in minutes/LOC rather than

LOC/hour. Time normalized by size is similar to the other normalized measures and is used in

later multiple regression models where there is a natural progression from “no reviews held” (0

131

minutes/LOC) to “fast review rates” (< 0.3 minutes/LOC, which corresponds to 200 LOC/hour)

to “recommended review rates” (> 0.3 minutes/LOC).

The regression results for the effect of design review rate on defect removal effectiveness

are shown in Table 52. For the regression model:

(Defect removal effectiveness) = β0 + β1 (Design review rate)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 52 Regressing Defect Removal Effectiveness on Design Review Rate

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 4896.0 6.8 5259.2 6788.5

Model

MS 4896.0 6.8 5259.2 6788.5

DF 145 32 372 247

SS 225183.1 37897.3 533311.0 356060.7

Error

MS 1553.0 1184.3 1433.6 1401.1

DF 146 33 373 248 Total

SS 230079.0 37904.1 538570.2 352849.2

F Ratio 3.2 0.006 3.7 4.8

Prob > F 0.0779 0.9402 0.0582 0.0286

R2
a 0.0145 -0.0311 0.0071 0.0153

The effect of design review rate on defect removal effectiveness was shown to be

statistically significant for one of the four data sets: (PSPb, C++, Outliers). This indicates that

design review rate may be a useful predictor variable for defect removal effectiveness.

The parameter estimates of the regression models for design review rate, and the

associated standard errors, are listed in Table 53 for the data sets including outliers.

132

Table 53 Estimates for Regressing Defect Removal Effectiveness on Design Review Rate

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 36.59****

(4.41)

50.49****

(6.80)

49.03****

(2.94)

46.73****

(3.38)

β1 25.48

(14.35)

-0.67

(8.88)

16.52

(8.62)

22.36*

(10.30)

The regression models for the data sets excluding outliers are provided in Table 54.

Outliers were identified with respect to design review rate. Note that unusually large values of

design review rate correspond to unusually meticulous design reviews in this particular instance

(the interquartile limit for unusually “fast” design review rates is less than zero, therefore there

can be no outliers for fast review rates).

133

Table 54 Regressing Defect Removal Effectiveness on Design Review Rate Excluding
Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 13602.4 10366.7 31626.8 7322.8

Model

MS 13602.4 10366.7 32626.8 7322.8

DF 133 28 337 238

SS 205697.5 25214.0 489333.0 334738.4

Error

MS 1546.6 900.5 1452.0 1406.5

DF 134 29 338 239 Total

SS 219299.9 35580.7 520959.8 342061.2

F Ratio 8.8 11.5 21.8 5.2

Prob > F 0.0036 0.0021 <0.0001 0.0234

R2
a 0.0550 0.2661 0.0579 0.0173

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in three cases since all of the results for data sets excluding outliers were shown

to be statistically significant. The preponderance of the evidence therefore indicates that design

review rate is a useful predictor variable for defect removal effectiveness.

The parameter estimates of the regression model for design review rate, and the

associated standard errors, are listed in Table 55 for the data sets excluding outliers.

134

Table 55 Estimates for Regressing Defect Removal Effectiveness on Design Review Rate
Excluding Outliers

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 27.02****

(5.81)

18.56

(10.79)

36.50****

(4.11)

43.61****

(4.15)

β1 91.84**

(30.97)

154.57**

(45.56)

82.00****

(17.57)

37.84*

(16.58)

For all of the statistically significant data sets, including and excluding outliers, the

greater the design review rate, as measured by minutes/LOC, the greater the defect removal

effectiveness of the design reviews. Using the normal definition in software engineering of

design review rate as LOC/hour, this is equivalent to saying the slower the design review, the

greater the defect removal effectiveness.

It is worth investigating whether following recommended practice for the design review

rate is effective. The recommended design review rate is less than 200 LOC/hour (or greater

than 0.3 minutes/LOC). A faster rate is considered ineffective, and re-inspection should be

scheduled. This provides two classes of design review based on review rate: those where the

design review rate is faster than the recommended (specification) limit of 200 LOC/hour; and

design reviews according to recommended practice. As illustrated in Figure 11 for (PSPb, C,

Outliers), the classes of design review rate appear significantly different. Note that a “fast design

review rate” corresponds to less than 0.3 minutes/LOC; the term “fast” is used here to connect

with the normal software engineering usage.

135

D
R

 E
ffe

ct
iv

en
es

s
(p

er
ce

nt
)

0

20

40

60

80

100

Fast DR Rate Rec DR Rate

DR Class

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 11 Differences in Design Review Classes

The ANOVA results for the effect of design review class on defect removal effectiveness

are shown in Table 56. The null hypothesis is 0 Re: FastDRRate cDRRateH µ µ= with alternative

hypothesis Ha: not all of the means are equal.

136

Table 56 ANOVA for Regressing Defect Removal Effectiveness on Design Review Class

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 7326.6 2790.1 23420.8 2430.1

Model

MS 7326.6 2790.1 23420.8 2430.1

DF 145 32 372 247

SS 222752.4 35114.0 515149.4 350419.1

Error

MS 1536.2 1097.3 1384.8 1418.7

DF 146 33 373 248 Total

SS 230079.0 37904.1 538570.2 352849.2

F Ratio 6.1W 2.5 19.2W 2.2W

Prob > F 0.0173W 0.1206 <0.0001W 0.1442W

R2
a 0.0252 0.0447 0.0409 0.0029

The effect of design review class on defect removal effectiveness was shown to be

statistically significant for two of the four data sets: (PSPa, C, Outliers) and (PSPb, C, Outliers).

This indicates that design review class may be a useful predictor variable for defect removal

effectiveness.

The estimates of the means for defect removal effectiveness at the different levels of

design review class, and the associated standard errors for the means, are listed in Table 57 for

the data sets including outliers. The model can be expressed as:

(Defect removal effectiveness) = β DR Class X DR Class

where β DR Class is the level for the design review class and X DR Class is an indicator variable for

whether that design review class is the correct one for the observation.

137

Table 57 Estimates for Regressing Defect Removal Effectiveness on Design Review Class

Levels

PSPa C*

(std err)

PSPa C++

(std err)

PSPb C****

(std err)

PSPb C++

(std err)

Fast DR Rate 38.69

(3.65)

44.80

(6.99)

48.15

(2.38)

49.77

(2.91)

Recommended

DR Rate

57.48

(6.63)

65.33

(8.97)

66.57

(3.18)

56.92

(3.90)

The ANOVA results for the data sets excluding outliers are provided in Table 58.

Outliers were identified with respect to design review rate.

Table 58 ANOVA for Regressing Defect Removal Effectiveness on Design Review Class
Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 6943.7 4213.5 27829.5 1080.6

Model

MS 6943.7 4213.5 27829.5 1080.6

DF 133 28 337 238

SS 212356.2 31367.2 493130.3 340980.6

Error

MS 1596.7 1120.3 1463.3 1432.7

DF 134 29 338 239 Total

SS 219299.9 35580.7 520959.8 342061.2

F Ratio 4.3 3.8 19.0 1.0W

Prob > F 0.0389 0.0626 <0.0001 0.3287W

R2
a 0.0244 0.0869 0.0506 -0.0010

The ANOVA results for the data sets excluding outliers are similar to those for the data

sets with outliers; the same data sets were shown to have statistically significant results, and

138

(PSPa, C++, NoOutliers) is close to statistical significance. These results indicate that design

review class may be a useful predictor variable for defect removal effectiveness.

The estimates of the means for defect removal effectiveness at the different levels of

design review class, and the associated standard errors for the means, are listed in Table 59 for

the data sets excluding outliers.

Table 59 Estimates for Regressing Defect Removal Effectiveness on Design Review Class
Excluding Outliers

Levels

PSPa C*

(std err)

PSPa C++

(std err)

PSPb C****

(std err)

PSPb C++

(std err)

Fast DR Rate 38.69

(3.65)

44.80

(6.99)

48.31

(2.38)

50.15

(2.91)

Recommended

DR Rate

63.00

(10.13)

76.60

(10.12)

70.24

(4.24)

55.20

(4.25)

These results indicate that design review rate is related to defect removal effectiveness,

but the results are mixed for whether a review rate less than 200 LOC/hour provides significantly

better performance than a faster review rate.

4.8.3 Defect Density in Design Review

It is unclear how defect density in testing should relate to defect density as found in

design reviews. A high defect density in the review could suggest a defect-prone module with

many more defects to be found. It could also suggest a superior review, and that the majority of

the defects were found, thus leading to a high-quality program.

If the review process is properly and consistently performed, then a reasonably

predictable percentage of defects should be found by the review. To ensure that the reviews are

properly performed, those that were outside the specification limits of 200 LOC/hour for design

139

reviews were excluded in the analyses below. Assignments where no design review was held

were also excluded.

The regression results for the effect of defect density in design review on defect density in

testing are shown in Table 60. For the regression model:

(Defect density in testing) = β0 + β1 (Defect density in design review)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 60 Regression Models for Defect Density in Design Review

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 609.1 972.4 3550.8 28293.9

Model

MS 609.1 972.4 3550.8 28293.9

DF 180 36 618 333

SS 66290.4 6330.6 215459.6 143957.2

Error

MS 368.3 175.9 348.6 432.3

DF 181 37 619 334 Total

SS 66899.5 7303.1 219010.4 172251.1

F Ratio 1.7 5.5 10.2 65.4

Prob > F 0.2001 0.0243 0.0015 <0.0001

R2
a 0.0036 0.1091 0.0146 0.1618

The effect of defect density in design review on defect density in testing was shown to be

statistically significant for three of the four data sets. This indicates that defect density in design

review should be a useful predictor variable for defect density in testing.

The parameter estimates of the regression models for defect density in design review, and

the associated standard errors, are listed in Table 61 for the data sets including outliers.

140

Table 61 Estimates for Defect Density in Design Review

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 14.27****

(1.72)

8.27**

(2.63)

13.85****

(0.88)

10.55****

(1.28)

β1 0.15

(0.12)

0.14*

(0.06)

0.14**

(0.04)

0.38****

(0.05)

The regression models for the data sets excluding outliers are provided in Table 62.

Outliers were identified with respect to defect density in testing and defect density in design

review.

Table 62 Regression Models for Defect Density in Design Review Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 63.6 85.0 401.6 599.2

Model

MS 63.6 85.0 401.6 599.2

DF 173 34 563 298

SS 28297.8 3872.9 89214.3 41250.6

Error

MS 163.6 113.9 158.5 138.4

DF 174 35 564 299 Total

SS 28361.3 3957.9 89616.0 41849.8

F Ratio 0.4 0.7 2.5 4.3

Prob > F 0.5339 0.3938 0.1120 0.0383

R2
a -0.0035 -0.0073 0.0027 0.0110

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in two cases: (PSPa, C++, NoOutliers) and (PSPb, C, NoOutliers) were no

141

longer shown to be statistically significant. The results indicate that defect density in design

review may be a useful predictor variable for defect density in testing.

The parameter estimates of the regression models for defect density in design review, and

the associated standard errors, are listed in Table 63 for the data sets excluding outliers.

Table 63 Estimates for Defect Density in Design Review Excluding Outliers

Parameter

PSPa C

Estimate

(std err)

PSPa C++

Estimate

(std err)

PSPb C

Estimate

(std err)

PSPb C++

Estimate

(std err)

β0 (Intercept) 12.47****

(1.19)

8.48**

(2.46)

12.37****

(0.65)

10.15****

(0.87)

β1 0.06

(0.09)

0.08

(0.08)

0.08

(0.05)

0.14*

(0.07)

Defect density in testing increases as defect density in design review increases within the

PSP context. This may imply that low-quality designs correspond to low-quality software,

although the interaction between the review rate and defect density should also be considered.

4.8.4 Coding Time

Coding time per LOC is a leading indicator of quality, which could be used to control the

coding process since it can be measured in the code phase. The number of code defects that may

impact defect density in testing will depend on the number that escape from coding, which in

turn depends on the quality of the design, the number of code defects injected, and the defect

removal effectiveness of the code reviews. There may be interactions between factors: a large

number of defects injected may be alleviated by skill in removing defects during code reviews or

by the effectiveness of later steps in the process, such as the compiler. Competing factors to

consider in investigating coding time include:

142

• Longer coding times may correspond to doing design work in the coding step due to a

poor design.

• A significant amount of reuse could result in less coding time. It would also

presumably be associated with a smaller program, and no defects would be added

since otherwise the code would be modified rather than reused. This should not,

however, affect defect density measures since the size of reused code is not recorded

in the PSP repository.

• Longer coding times may correspond to difficulties in coding, which may in turn

result from the student being a poor coder. Short coding times may indicate very

efficient coders.

• Short code (and code review) times may result in a small number of code defects, but

they may indicate an inadequate program with major problems to address.

An appropriate quality surrogate in this context is code defect density, i.e., the number of

defects known to be present at the end of coding (and beginning of code review, regardless of

whether a code review was actually held) per KLOC.

The regression results for the effect of coding time on code defect density are shown in

Table 64. For the regression model:

(Code defect density) = β0 + β1 (Coding time per LOC)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

143

Table 64 Regressing Code Defect Density on Coding Time

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 2153740.4 21974.1 1436046.2 741084.8

Model

MS 2153740.4 21974.1 1436046.2 741084.8

DF 675 138 1756 918

SS 2093891.1 349998.7 7239537.5 360.1490.1

Error

MS 3102.0 2536.2 4123.0 3923.0

DF 676 139 1757 919 Total

SS 4247631.4 371972.8 8675583.7 4342574.9

F Ratio 694.3 8.7 348.3 188.9

Prob > F <0.0001 0.0038 <0.0001 <0.0001

R2
a 0.5063 0.0523 0.1651 0.1698

The effect of coding time on code defect density was shown to be statistically significant

for all of the data sets. This indicates that coding time is a useful predictor variable for code

defect density.

The parameter estimates of the regression models for coding time, and the associated

standard errors, are listed in Table 65 for the data sets including outliers.

144

Table 65 Estimates for Regressing Code Defect Density on Coding Time

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 23.71****

(2.81)

57.43****

(7.34)

49.71****

(2.23)

44.51****

(3.32)

β1 52.03****

(1.97)

21.02**

(7.14)

36.92****

(1.98)

49.24****

(3.58)

The regression models for the data sets excluding outliers are provided in Table 66.

Outliers were identified with respect to code defect density and coding time.

Table 66 Regressing Code Defect Density on Coding Time Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 73407.7 4329.9 345119.2 142331.2

Model

MS 73407.7 4329.9 345119.2 142331.2

DF 603 123 1580 831

SS 778914.1 160894.0 2351483.3 1455403.1

Error

MS 1291.7 1308.1 1488.0 1751.0

DF 604 124 1581 832 Total

SS 852321.8 165223.9 2696602.5 1597734.2

F Ratio 56.8 3.3 231.9 81.3

Prob > F <0.0001 0.0713 <0.0001 <0.0001

R2
a 0.0846 0.0183 0.1274 0.0880

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in only one case: (PSPa, C++, NoOutliers) was no longer shown to be

145

statistically significant. The preponderance of the evidence therefore indicates that coding time

is a useful predictor variable for code defect density.

The parameter estimates of the regression models for coding time, and the associated

standard errors, are listed in Table 67 for the data sets excluding outliers.

Table 67 Estimates for Regressing Code Defect Density on Coding Time Excluding Outliers

Parameters

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 38.63****

(2.96)

55.40****

(6.68)

37.23****

(2.09)

42.83****

(3.08)

β1 27.52****

(3.65)

15.12

(8.31)

42.21****

(2.77)

40.43****

(4.48)

Code defect density increases as coding time increases within the PSP context. A lack of

effort in design can be expected to result in an increase in coding time, as design work is

performed in a coding context, with implications for software quality. For the multiple

regression models in Chapter 7, this shift may be observed in a statistically significant interaction

between design time and coding time.

4.8.5 Code Review Rate

For this analysis, the code review rate is measured in minutes/LOC. Assignments where

no defects are available to be identified in a code review were excluded. Assignments where no

code review was held were also excluded from this analysis.

The regression results for the effect of code review rate on defect removal effectiveness

are shown in Table 68. For the regression model:

146

(Defect removal effectiveness) = β0 + β1 (Code review rate)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 68 Regressing Defect Removal Effectiveness on Code Review Rate

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 6272.2 875.0 28375.4 9914.4

Model

MS 6272.2 875.0 28375.4 9914.4

DF 239 55 611 328

SS 176949.4 38294.6 523083.5 254640.6

Error

MS 740.4 696.3 856.1 776.3

DF 240 56 612 329 Total

SS 183221.5 39169.5 551459.0 264554.9

F Ratio 8.5 1.3 33.1 12.8

Prob > F 0.0039 0.2672 <0.0001 0.0004

R2
a 0.0302 0.0046 0.0491 0.0345

The effect of code review rate on defect removal effectiveness was shown to be

statistically significant for three of the four data sets: (PSPa, C, Outliers), (PSPb, C, Outliers),

and (PSPb, C++, Outliers). This indicates that code review rate should be a useful predictor

variable for defect removal effectiveness.

The parameter estimates of the regression models for code review rate, and the associated

standard errors, are listed in Table 69 for the data sets including outliers.

147

Table 69 Estimates for Regressing Defect Removal Effectiveness on Code Review Rate

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 46.06****

(2.41)

51.29****

(4.65)

35.59****

(2.04)

39.97****

(2.28)

β1 17.71**

(6.08)

10.28

(9.17)

37.07****

(6.44)

23.06***

(6.45)

The regression models for the data sets excluding outliers are provided in Table 70.

Outliers were identified with respect to code review rate.

Table 70 Regressing Defect Removal Effectiveness on Code Review Rate Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 4991.7 3620.2 25900.3 8267.7

Model

MS 4991.7 3620.2 25900.3 8267.7

DF 222 52 583 304

SS 160486.7 35467.1 501211.4 230898.4

Error

MS 722.9 682.1 859.7 759.5

DF 223 53 584 305 Total

SS 165478.5 39087.3 527111.8 239166.1

F Ratio 6.9 5.3 30.1 10.9

Prob > F 0.0092 0.0253 <0.0001 0.0011

R2
a 0.0258 0.0752 0.0475 0.0314

The regression results for the data sets excluding outliers differ from those for the data

sets with outliers in only one case: (PSPa, C++, NoOutliers) was shown to be statistically

significant. All of the data sets were shown to be statistically significant for the data sets without

148

outliers. The preponderance of the evidence therefore indicates that code review rate is a useful

predictor variable for defect removal effectiveness.

The parameter estimates of the regression models for code review rate, and the associated

standard errors, are listed in Table 71 for the data sets excluding outliers.

Table 71 Estimates for Regressing Defect Removal Effectiveness on Code Review Rate
Excluding Outliers

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 43.36****

(3.17)

39.94****

(1.23)

33.18****

(2.42)

36.18****

(3.09)

β1 32.35**

(12.31)

57.61*

(25.01)

49.77****

(9.07)

41.30**

(12.52)

Defect removal effectiveness increases as code review rate increases within the PSP

context. Using the normal definition in software engineering of code review rate as LOC/hour,

this is equivalent to saying the slower the code review, the greater the defect removal

effectiveness.

It is worth investigating whether following recommended practice for the code review

rate is effective. The recommended code review rate is less than 200 LOC/hour (or greater than

0.3 minutes/LOC). A faster rate is considered ineffective, and re-inspection should be

scheduled. This provides two classes of code review based on review rate: those where the code

review rate is faster than the recommended (specification) limit of 200 LOC/hour; and code

reviews according to recommended practice.

149

The regression results for the effect of code review class on defect removal effectiveness

are shown in Table 72. The null hypothesis against defect removal effectiveness is

0 Re: FastCRRate cCRRateH µ µ= with alternative hypothesis Ha: not all of the means are equal.

Table 72 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 5692.5 3745.87 14509.4 5949.0

Model

MS 5692.5 3745.87 14509.4 5949.0

DF 239 55 611 328

SS 177529.1 35423.6 536949.6 258606.0

Error

MS 742.8 644.1 878.8 788.4

DF 240 56 612 329 Total

SS 183221.5 39169.5 551459.0 264554.9

F Ratio 7.7 5.8 16.5 7.5

Prob > F 0.0061 0.0192 <0.0001 0.0063

R2
a 0.0270 0.0792 0.0247 0.0195

The effect of code review class on defect removal effectiveness was shown to be

statistically significant for all of the data sets including outliers. This indicates that code review

class is a useful predictor variable for defect removal effectiveness.

The estimates of the means for defect removal effectiveness at the different levels for the

two classes of code review rate, and the associated standard errors for the means, are listed in

Table 73 for the data sets including outliers. The model can be expressed as:

(Defect removal effectiveness) = β CR Class X CR Class

150

where β CR Class is the level for the class of code review rate and X CR Class is an indicator variable

for whether that code review class is the correct one for the observation.

Table 73 Estimates for Regressing Defect Removal Effectiveness on Code Review Class

Levels

PSPa C**

(std err)

PSPa C++*

(std err)

PSPb C****

(std err)

PSPb C++**

(std err)

Fast CR Rate 47.93

(1.98)

48.53

(4.71)

41.90

(1.44)

43.51

(1.84)

Recommended

CR Rate

58.88

(3.70)

65.33

(4.21)

52.42

(2.14)

53.22

(2.82)

The ANOVA results for the data sets excluding outliers are provided in Table 74.

Outliers were identified with respect to code review rate.

151

Table 74 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class
Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 4384.5 3780.8 10740.8 2442.5

Model

MS 4384.5 3780.8 10740.8 2442.5

DF 222 52 583 304

SS 161094.0 35306.6 516371.0 236723.5

Error

MS 725.7 679.0 885.7 778.7

DF 223 53 584 305 Total

SS 165478.5 39087.3 527111.8 239166.1

F Ratio 6.0 5.6 12.1 3.1

Prob > F 0.0147 0.0221 0.0005 0.0775

R2
a 0.0221 0.0794 0.0187 0.0070

The ANOVA results for the data sets excluding outliers differ from those for the data sets

with outliers in only one case: (PSPb, C++, NoOutliers) was not shown to be statistically

significant, although it is close. The preponderance of the evidence therefore indicates that code

review class is a useful predictor variable for defect removal effectiveness.

The estimates of the means for defect removal effectiveness at the different levels for the

two classes of code review rate, and the associated standard errors for the means, are listed in

Table 75 for the data sets excluding outliers.

152

Table 75 Estimates for Regressing Defect Removal Effectiveness on Code Review Class
Excluding Outliers

Levels

PSPa C*

(std err)

PSPa C++*

(std err)

PSPb C***

(std err)

PSPb C++

(std err)

Fast CR Rate 47.93

(1.98)

48.53

(4.71)

42.04

(1.45)

43.53

(1.84)

Recommended

CR Rate

58.71

(4.23)

66.28

(4.90)

51.61

(2.32)

50.61

(3.09)

These analyses indicate that code review rate is related to defect removal effectiveness.

4.8.6 Defect Density in Code Review

It is unclear how defect density in testing should relate to defect density as found in code

review. A high defect density in the review could suggest a defect-prone module with many

more defects to be found. It could also suggest a superior review, and that the majority of the

defects were found, thus leading to a high-quality program.

If the review process is properly and consistently performed, then a reasonably

predictable percentage of defects should be found by the review. To ensure that the reviews

were properly performed, those that were outside the specification limits of 200 LOC/hour for

code reviews were excluded in the analyses below. Assignments where no code review was held

were also excluded.

The regression results for the effect of defect density in code review on defect density in

testing are shown in Table 76. For the regression model:

(Defect density in testing) = β0 + β1 (Defect density in code review)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

153

Table 76 Regression Models for Defect Density in Code Review

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 8829.5 850.4 5503.8 46129.8

Model

MS 8829.5 850.4 5503.8 46129.8

DF 249 55 634 336

SS 82175.8 13184.4 217656.1 126177.7

Error

MS 330.0 239.7 343.3 375.5

DF 250 56 635 337 Total

SS 91005.3 14034.8 223160.0 172307.5

F Ratio 26.8 3.5 16.0 122.8

Prob > F <0.0001 0.0649 <0.0001 <0.0001

R2
a 0.0934 0.0435 0.0231 0.2655

The effect of defect density in code review on defect density in testing was shown to be

statistically significant for three of the four data sets: (PSPa, C, Outliers), (PSPb, C, Outliers),

and (PSPb, C++, Outliers). (PSPa, C++, Outliers) is close. This indicates that defect density in

code review should be a useful predictor variable for defect density in testing.

The parameter estimates of the regression models for defect density in code review, and

the associated standard errors, are listed in Table 77 for the data sets including outliers.

154

Table 77 Estimates for Defect Density in Code Review

Parameter

PSPa C

Estimate

(std err)

PSPa C++

Estimate

(std err)

PSPb C

Estimate

(std err)

PSPb C++

Estimate

(std err)

β0 (Intercept) 10.00****

(1.59)

9.87**

(3.02)

12.53****

(1.03)

5.93****

(1.36)

β1 0.20****

(0.04)

0.10

(0.05)

0.11****

(0.03)

0.32****

(0.03)

The regression models for the data sets excluding outliers are provided in Table 78.

Outliers were identified with respect to defect density in testing and defect density in code

review.

Table 78 Regression Models for Defect Density in Code Review Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 1213.6 2.7 854.8 1778.2

Model

MS 1213.6 2.7 854.8 1778.2

DF 226 52 588 305

SS 31419.1 6746.1 95785.5 39436.5

Error

MS 139.0 129.7 162.9 129.3

DF 227 53 589 306 Total

SS 32632.8 6748.8 96640.2 41214.7

F Ratio 8.7 0.02 5.2 13.8

Prob > F 0.0035 0.8859 0.0223 0.0002

R2
a 0.0329 -0.0188 0.0072 0.0400

155

The regression results for the data sets excluding outliers are similar to those for the data

sets including outliers. The preponderance of the evidence therefore indicates that defect density

in code review is a useful predictor variable for defect density in testing.

The parameter estimates of the regression models for defect density in code review, and

the associated standard errors, are listed in Table 79 for the data sets excluding outliers.

Table 79 Estimates for Defect Density in Code Review Excluding Outliers

Parameter

PSPa C

Estimate

(std err)

PSPa C++

Estimate

(std err)

PSPb C

Estimate

(std err)

PSPb C++

Estimate

(std err)

β0 (Intercept) 9.56****

(1.26)

12.45****

(2.59)

11.78****

(0.81)

8.28****

(1.03)

β1 0.13**

(0.04)

-0.009

(0.06)

0.06*

(0.03)

0.14***

(0.04)

Defect density in testing increases as defect density in code review increases within the

PSP context. Code reviews may be identifying a high percentage of syntactical defects, such as

the compiler might find, rather than more serious logical defects, which surface in testing.

Wesslen found that PSP reviews identified a higher percentage of compile defects than design

defects, suggesting that further improvement in the review process is needed for the code

reviews to be as effective as they could be [Wesslen 1999, 32].

4.8.7 Defect Density in Compile

The compiler can act as a debugging tool in detecting syntactic defects, therefore the

number of defects removed during compilation seems likely to be correlated to the number that

will be removed during testing. The defects found by the compiler are relatively minor

compared to those found during testing since more than five times the effort is required to repair

156

testing defects than compilation defects, but studies have shown that clusters of minor defects are

highly correlated with major defects [Endres and Rombach 2003, 131-133; Glass 2004, 135-

137].

The regression results for the effect of defect density in compile on defect density in

testing are shown in Table 80. For the regression model:

(Defect density in testing) = β0 + β1 (Defect density in compile)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 80 Regression Models for Defect Density in Compile

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 483963.5 35048.0 499387.9 234907.9

Model

MS 483963.5 35048.0 499387.9 234907.9

DF 675 138 1756 918

SS 1096141.7 76167.0 2211308.0 961010.7

Error

MS 1624.0 551.9 1259.0 1047.2

DF 676 139 1757 919 Total

SS 1580105.2 111215.0 2710695.9 1195918.6

F Ratio 298.0 63.5 3.4 224.4

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.3053 0.3102 0.1838 0.1955

The effect of defect density in compile on defect density in testing was shown to be

statistically significant for all of the data sets. This indicates that defect density in compile is a

useful predictor variable for defect density in testing.

157

The parameter estimates of the regression model for defect density in compile, and the

associated standard errors, are listed in Table 81 for the data sets including outliers.

Table 81 Estimates for Defect Density in Compile

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 13.66****

(1.83)

8.92**

(3.02)

18.61****

(1.07)

13.48****

(0.31)

β1 0.44****

(0.03)

0.44****

(0.06)

0.30****

(0.01)

0.31****

(0.02)

The ANOVA statistics for the data sets excluding outliers are provided in Table 82.

Outliers were defined with respect to defect density in compile and defect density in testing.

Table 82 ANOVA for Defect Density in Compile Excluding Outliers

Source PSPa C PSPa C++ PSPb C PSPb C++

DF 1 1 1 1

SS 24635.6 6462.7 72009.1 30370.8

Model

MS 24635.6 6462.7 72009.1 30370.8

DF 608 123 1576 855

SS 205182.5 28147.4 567025.4 278028.9

Error

MS 337.5 228.8 359.8 325.2

DF 609 124 1577 856 Total

SS 229818.1 34610.1 639034.4 308399.6

F Ratio 73.0 28.2 200.1 93.4

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.1057 0.1801 0.1121 0.0974

158

The regression results for the data sets excluding outliers are similar to those for the data

sets with outliers. All of the analyses, including and excluding outliers, indicate that defect

density in compile is a useful predictor variable for defect density in testing.

The parameter estimates of the regression model for defect density in compile, and the

associated standard errors, are listed in Table 83 for the data sets excluding outliers.

Table 83 Estimates for Defect Density in Compile Excluding Outliers

Parameter

PSPa C

(std err)

PSPa C++

(std err)

PSPb C

(std err)

PSPb C++

(std err)

β0 (Intercept) 14.81****

(1.11)

10.76****

(2.18)

15.89****

(0.71)

15.15****

(0.85)

β1 0.25****

(0.03)

0.26****

(0.05)

0.23****

(0.02)

0.13****

(0.01)

Defect density in testing increases as defect density in compile increases within the PSP

context.

Although defect density in compile is a leading indicator for defect density in testing, it is

of limited value in controlling the development process since it is measured so near testing. The

earlier in the life cycle that a factor can be measured and used for decision making, the more

useful it is. For example, design measures, if sufficiently correlated to defect density in testing,

will be of more value than code measures, which in turn are more useful than compilation

measures.

Adding later measures to a multiple regression model that spans the life cycle should,

however, add value to models that are refined as a project continues. A model that includes

compile-time data may be used to set expectations for the number of defects removed in testing.

Defect estimation models are based on defects found in testing (which is later in the life cycle

159

than compile) and are used in planning testing and making product release decisions [AIAA R-

013]. Defect prediction models are process-based, and useful for controlling the development

process as well as making release decisions. Both kinds of models can be useful for process

control, but the added insight possible with process-based models must be balanced with the

additional difficulty and expense necessary to collect detailed process data.

4.8.8 Discussion of the Process Variables

The results for the process variables are summarized in Table 84, identifying which

process variables should be considered in further analyses of the explanatory variables for

software quality. As expected, the process variables are consistently related to software quality –

more so than program size, which is the most common predictor variable in defect prediction

models. Following “best practices,” such as recommended review rates, is supported.

Table 84 Statistically Significant Results for the Process Variables

Process Variable (Quality Surrogate) Including
Outliers

Excluding
Outliers

P1) design time (design defect density) 4 of 4 4 of 4

P2) design review rate (defect removal effectiveness) 1 of 4 4 of 4

P3) defect density in design review (defect density in
testing)

3 of 4 1 of 4

P4) coding time (code defect density) 4 of 4 3 of 4

P5) code review rate (defect removal effectiveness) 3 of 4 4 of 4

P6) defect density in code review (defect density in
testing)

3 of 4 3 of 4

P7) defect density in compile (defect density in testing) 4 of 4 4 of 4

160

These results indicate that the process variables are potentially useful predictor variables

for software quality – and that a disciplined software process that consistently follows

recommended practice is important for building high-quality software products. The process

variables, and their interactions, will be explored further in more sophisticated statistical models

in Chapter 7.

The R2
a values are too low for the simple regression models to be of practical value in

predicting defects. This does not imply that programmers could not build simple regression

models useful for predicting their individual performance. This observation applies to simple

regression models based on individual data for many different individuals, where the individual

differences dominate other factors.

My analyses differ from those of previous studies of software projects in two crucial and

related ways. First, the analyses are based on individual performance rather than project or team

performance. Second, the amount of the variability in individual performance that is explained

by simple regression models is far less than that reported for projects and teams. These results

dramatically reinforce the observation that team performance is typically both better and less

variable than individual performance since the R2
a values for these models are notably less than

those reported for team/project performance in the published literature.

4.9 EXPLORING PROGRAMMER ABILITY

Programmer ability can be inferred if there is a consistent pattern in the PSP assignments

indicating that the programmers with superior performance on one assignment tend to be

superior performers on other assignments. Possible explanations that rely on characterizations

such as “the best designers may,” such as the discussion in Section 4.8.1, can be addressed, at

161

least in part, by a variable that empirically captures programmer ability. Hypothesis A1 is that

relative programmer ability is consistent across PSP assignments as measured by average defect

density in testing for assignments 1-3.

4.9.1 Comparing Improvement of Top and Bottom Quartiles

A statistically rigorous analysis of the impact of programmer ability would be based on

natural growth curves or repeated measures ANOVA. That analysis is deferred to Chapter 7; for

this simple analysis, defect density in testing was averaged for the first three assignments and

used to identify the top, middle two, and bottom quartiles for student performance. Figure 12

illustrates the differences in performance for these three categories for the (PSPb, C) data set

across the ten PSP assignments.

162

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Assignm ent

D
ef

ec
t D

en
si

ty
 in

 T
es

tin
g

Top Quartile

Middle Quartiles

Bottom Quartile

Figure 12 Trends for Programmer Quartiles

The students who are the top-quartile performers on the first three assignments tend to

remain top performers (with the smallest defect density in testing) in the later assignments; the

middle performers tend to remain in the middle; and the bottom-quartile performers (with the

largest defect density in testing) tend to remain at the bottom. (A spike in the data for

assignment 3 is consistently observed for all measures, suggesting that assignment 3 is somewhat

more complex than the norm for the PSP assignments.)

The average performance and the standard deviation for the students in the top and

bottom quartiles is contrasted for assignments 1 and 10 in Table 85 using the PSPa and PSPb

data sets. Only students finishing all ten assignments are used in these calculations to ensure

comparability between the two assignments.

163

Table 85 Comparing Top and Bottom Quartile Average Performance

PSPa

TQ : BQ

PSPb

TQ : BQ

PSPa

TQ : BQ

PSPb

TQ : BQ

Average Standard Deviation

1A 9.0 : 59.3 13.8 : 78.5 9.5 : 37.8 11.9 : 51.1

10A 3.5 : 17.1 6.6 : 15.6 3.5 : 17.9 8.5 : 12.9

N 20 : 26 144 : 134 20 : 26 144 : 134

Percent Change 61% : 71% 52% : 80% 63% : 53% 29% : 75%

The average performance of the top-quartile students improved 52-61%, and the bottom-

quartile students improved 71-80%. The variability in the performance of the top-quartile

students decreased 29-63%, and the variability of the bottom-quartile students decreased 53-

75%.

To express this another way, top-quartile students improved by a factor between 2.1 and

2.6, and their variability decreased by a factor between 1.4 and 2.7. Bottom-quartile students

improved by a factor between 3.5 and 5.0, and their variability decreased by a factor between 2.1

and 4.0. The performance of top-quartile students is better than that of bottom-quartile students

by a factor of 5.7 to 6.6 initially, and changes to 2.4 to 4.9 by the end of PSP.

The comparisons between top and bottom performers for the data sets excluding outliers

are provided in Table 86. Outliers were defined with respect to defect density in testing within

the top and bottom quartiles for assignments 1 and 10. Note that N now differs for the top and

bottom quartiles, even though only students finishing all ten assignments were considered.

164

Table 86 Comparing Top and Bottom Performers Excluding Outliers

PSPa

TQ : BQ

PSPb

TQ : BQ

PSPa

TQ : BQ

PSPb

TQ : BQ

Average Standard Deviation

1A 9.0 : 59.3 13.0 : 73.7 9.5 : 37.8 10.7 : 43.5

10A 3.5 : 13.3 6.1 : 15.2 3.5 : 12.3 6.8 : 11.9

N for 1A 20 : 26 141 : 130 20 : 26 141 : 130

N for 10A 20 : 24 143 : 133 20 : 24 143 : 133

Percent Change 61% : 78% 53% : 79% 63% : 67% 36% : 73%

When outliers are excluded, the top-quartile students improved 53-61%; bottom-quartile

students improved 78-79%. The variability in the performance of the top-quartile students

decreased 36-63%; the variability of the bottom-quartile students decreased 57-73%.

Top-quartile students improved by a factor between 2.1 and 2.6, and their variability

decreased by a factor between 1.6 and 2.7. Bottom-quartile students improved by a factor

between 4.6 and 4.8, and their variability decreased by a factor between 3.1 and 3.7. These

values are similar to those when outliers were included: by adopting disciplined processes, top-

quartile students improve their software quality by a factor more than two, and bottom-quartile

students improve theirs by a factor more than four.

When outliers are excluded, the performance of top-quartile students is better than that of

bottom-quartile students by a factor of 5.7 to 6.6 initially, and changes to 2.5 to 3.8 by the end of

PSP. While top-quartile students continue to perform better than those in the bottom quartile, a

disciplined process leads to superior performance for the bottom-quartile students, and even the

top-quartile students improved markedly.

165

4.9.2 Comparing Top and Bottom Performers at the End of PSP

The differences between the top and bottom performers appear to persist across the

course of the PSP class. This can be confirmed by comparing performance in the later

assignments in the class. This also removes the need to restrict the data sets to those students

who finished all ten assignments. As illustrated in Figure 13 for (PSPb, C, 9A), differences in

performance for the first three assignments tend to persist in the later assignments.

D
D

 in
 T

es
tin

g
(d

ef
ec

ts
/K

LO
C

)

0

10

20

30

40

50

BQ M2 TQ

Quartiles

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 13 Differences in Performance Across Quartiles for (PSPb, C, 9A)

The Each Pair and All Pairs tests indicate that the means for the top and bottom quartiles

of programmer ability are significantly different from each other, although there is overlap with

the middle two quartiles.

The ANOVA results for the effect of programmer quartile on defect density in testing are

shown in Table 87. The null hypothesis against defect density in testing is

0 2: TQ M BQH µ µ µ= = with alternative hypothesis Ha: not all of the means are equal.

166

Table 87 ANOVA for Programmer Quartile

Source PSPa 9A
C

PSPa 9A
C++

PSPb 10A
C

PSPb 10A
C++

DF 2 2 2 2

SS 3196.8 2021.1 349.3 810.6

Model

MS 1598.4 1010.6 174.7 405.3

DF 149 79 130 63

SS 36219.7 39228.9 15853.7 10572.2

Error

MS 243.1 496.6 122.0 167.8

DF 151 81 132 65 Total

SS 39416.5 41250.0 16203.0 11382.9

F Ratio 10.1W 2.0 1.4 4.2W

Prob > F 0.0001W 0.1375 0.2425 0.0302W

R2
a 0.0688 0.0249 0.0065 0.0417

The effect of programmer quartile on defect density in testing was shown to be

statistically significant for only two of the four data sets. This indicates that programmer

quartile may be a useful predictor variable for defect density in testing.

The estimates of the means for defect density in testing at the different levels of

programmer quartile, and the associated standard errors for the means, are listed in Table 88 for

the data sets including outliers. The model can be expressed as:

(Defect density in testing) = β Programmer Quartile X Programmer Quartile

where β Programmer Quartile is the level for programmer quartile and X Programmer Quartile is an indicator

variable for whether that programmer quartile is the correct one for the observation.

167

Table 88 Estimates for Programmer Quartile Levels

Levels

PSPb 9a
C****

(std err)

PSPb 9A
C++

(std err)

PSPb 10A
C

(std err)

PSPb 10A
C++*

(std err)

TQ 21.68

(2.76)

23.09

(5.62)

13.39

(1.62)

10.33

(4.14)

M2 16.35

(2.09)

18.10

(3.85)

10.72

(1.53)

13.82

(2.50)

BQ 9.14

(1.36)

8.61

(2.13)

8.73

(1.51)

5.84

(1.24)

The ANOVA results for the data sets excluding outliers are provided in Table 89.

Outliers were identified with respect to defect density in testing for the top and bottom quartiles

for assignments 1 and 10.

168

Table 89 ANOVA for Programmer Quartile Excluding Outliers

Source PSPa 9A
C

PSPa 9A
C++

PSPb 10A
C

PSPb 10A
C++

DF 2 2 2 2

SS 1213.5 573.9 330.6 101.6

Model

MS 606.8 287.0 165.3 50.8

DF 140 75 127 57

SS 14240.4 9014.9 8524.4 2730.6

Error

MS 101.7 120.2 67.7 47.9

DF 142 77 128 59 Total

SS 15453.9 9588.9 8855.0 2832.2

F Ratio 6.0 2.4 2.4 1.1

Prob > F 0.0033 0.0988 0.0910 0.3530

R2
a 0.0654 0.0348 0.0221 0.0020

The ANOVA results for the data sets excluding differ from those for the data sets with

outliers in one case: (PSPb, 10A, C++) is no longer shown to be significant. While the evidence

continues to indicate that programmer quartile may be a useful predictor variable for defect

density in testing, it does not appear to be a good distinguisher when disciplined processes are

used.

The estimates of the means for defect density in testing at the different levels of

programmer quartile, and the associated standard errors for the means, are listed in Table 90 for

the data sets excluding outliers.

169

Table 90 Estimates for Programmer Quartile Excluding Outliers

Levels

PSPb 9a
C**

(std err)

PSPb 9A
C++

(std err)

PSPb 10A
C

(std err)

PSPb 10A
C++

(std err)

TQ 17.18

(1.71)

16.56

(4.35)

12.57

(1.44)

7.25

(3.13)

M2 12.58

(1.32)

13.80

(1.61)

8.80

(1.00)

8.73

(1.25)

BQ 9.14

(1.36)

8.61

(2.13)

8.73

(1.51)

5.84

(1.24)

It is intuitively clear that programmer ability is a fundamental driver for software quality,

but a simple measure such as the quartiles for the initial PSP assignments may not be an

adequate choice to characterize that ability.

4.9.3 Using a Continuous Measure of Programmer Ability

A better surrogate for programmer ability than the programmer quartile may be the

direct use of the average defect density in testing for the first three assignments. Note that large

values for this surrogate correspond to relatively low ability (PSP students may be above average

for software professionals in general).

The regression results for the effect of programmer ability, as measured by the average

defect density in testing on the first three assignments, on defect density in testing in assignments

9 and 10 are shown in Table 91. For the regression model:

(Defect density in testing) = β0 + β1 (Programmer ability)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

170

Table 91 Regression Models for Programmer Ability

Source PSPa 9A
C

PSPa 9A
C++

PSPb 10A
C

PSPb 10A
C++

DF 1 1 1 1

SS 3584.0 3369.5 573.1 160.7

Model

MS 3584.0 3369.5 573.1 160.7

DF 150 80 131 64

SS 35832.5 37880.5 15629.9 11222.1

Error

MS 238.9 473.5 119.3 175.3

DF 151 81 132 65 Total

SS 39416.5 41250.0 16203.0 11382.9

F Ratio 15.0 7.1 4.8 0.9

Prob > F 0.0002 0.0092 0.0302 0.3419

R2
a 0.0849 0.0702 0.0280 -0.0013

The effect of programmer ability on defect density in testing was shown to be statistically

significant for three of the data sets. This indicates that programmer ability should be a useful

predictor variable for defect density in testing.

The parameter estimates of the regression model for programmer ability, and the

associated standard errors, are listed in Table 92 for the data sets including outliers.

171

Table 92 Estimates for Programmer Ability

Parameter

PSPa 9A
C

(std err)

PSPa 9A
C++

(std err)

PSPb 10A
C

(std err)

PSPb 10A
C++

(std err)

β0 (Intercept) 9.65****

(2.00)

7.63

(3.99)

8.22****

 (1.53)

8.82**

(2.84)

β1 0.12***

(0.03)

0.19**

(0.07)

0.05*

(0.02)

0.05

(0.05)

The ANOVA statistics for the data sets excluding outliers are provided in Table 93.

Outliers were defined with respect to defect density in testing.

Table 93 ANOVA for Programmer Ability Excluding Outliers

Source PSPa 9A
C

PSPa 9A
C++

PSPb 10A
C

PSPb 10A
C++

DF 1 1 1 1

SS 1207.3 896.7 534.1 0.5

Model

MS 1207.3 896.7 534.1 0.5

DF 141 76 127 58

SS 14246.6 8692.2 8320.9 2831.6

Error

MS 101.0 114.4 65.5 48.8

DF 142 77 128 59 Total

SS 15453.9 9588.9 8855.0 2832.2

F Ratio 11.9 7.8 8.2 0.01

Prob > F 0.0007 0.0065 0.0050 0.9165

R2
a 0.0716 0.0816 0.0529 -0.0171

The regression results for the data sets excluding outliers are similar to those for the data

sets with outliers. The preponderance of the evidence therefore indicates that programmer

172

ability should be a useful predictor variable for defect density in testing, and that a continuous

variable such as the average defect density in testing is preferable over a categorical variable, at

least from a statistical perspective.

The parameter estimates of the regression model for programmer ability, and the

associated standard errors, are listed in Table 94 for the data sets excluding outliers.

Table 94 Estimates for Programmer Ability Excluding Outliers

Parameter

PSPa 9A
C

(std err)

PSPa 9A
C++

(std err)

PSPb 10A
C

(std err)

PSPb 10A
C++

(std err)

β0 (Intercept) 9.09****

(1.33)

7.53***

(2.18)

7.11****

(1.14)

7.48****

(1.57)

β1 0.07***

(0.02)

0.12**

(0.04)

0.05**

(0.02)

0.003

(0.03)

Defect density in testing increases as programmer ability, as measured by average defect

density in testing on the first three assignments, increases within the PSP context. To say this in

a more intuitive manner, as ability improves, so does software quality.

4.9.4 Discussion of Programmer Ability

My research finds that programmer ability, as empirically measured by the average

defect density in testing for the first three PSP assignments, should be a predictor variable for

software quality. This holds true even for a simple regression model that does not address

program size or any of the process variables that were also shown to be useful predictor

variables.

A continuous measure is preferable to a categorical measure within the PSP context.

There is a caveat in generalizing this observation, however. The use of measures such as defect

173

density for promotions and raises will drive dysfunctional behavior unless used in the context of

a balanced set of project and organizational measures [Austin 1996]. Collecting this data for

strictly informational purposes in building defect prediction models should not cause

dysfunctional behavior, but there is a risk that collecting this kind of data will be perceived as

being used for motivational purposes, which could in turn lead to dysfunctional behavior that

might comprise the validity of the data. Categories such as programmer quartile may be less

amenable to abuse and other factors could be incorporated that may be important in a project or

organizational context – some of which may not be easily quantifiable, such as good teamwork

skills.

While top-quartile students performed better than those in the bottom quartile on average,

a disciplined process leads to significantly better performance for the bottom-quartile students,

and even the top-quartile students improved markedly. Over the course of PSP, top-quartile

students improved their software quality by a factor more than two, and bottom-quartile students

improved theirs by a factor more than four. Variation in performance within each quartile also

decreased markedly.

4.10 CONCLUSIONS FOR EXPLANATORY VARIABLES FOR SOFTWARE
QUALITY

In this exploratory data analysis I found that 1) process-based variables are important

factors for software quality; 2) program size, which is an indicator of solution complexity, is an

important quality factor; and 3) programmer ability is an important quality factor when

empirically measured. Other variables that may appear to be plausible surrogates for important

areas such as ability and technology were not shown to be significant.

174

Building on earlier research into defect prediction models [Boehm et al. 2000, 254-268;

Devnani-Chulani 1999; Evanco and Lacovava 1994; Neufelder 2000; Schneberger 1997; Wohlin

and Wesslen 1998; Zhang 1999], the relevant explanatory variables for individual performance

that are good candidates for use in defect prediction are program size, programmer ability,

design time, design review rate, defect density in design review, coding time, code review rate,

defect density in code review, and defect density in compile. The PSP major process and PSP

assignment may capture additional variation due to application domain or learning curve effects,

but they are of no practical value outside the PSP context. While the variables found to be

important factors for software quality in my research are likely to also be important for software

projects in general, other variables outside the scope of this analysis, such as those related to

problem complexity or team effects, are likely to be important for projects in industry.

My research differs from previous PSP analyses in several respects. Hayes and Over

focused on the impact of PSP at the PSP major process or assignment level [Hayes and Over

1997]. Their results have been replicated [Wohlin and Wesslen 1998; Wesslen 2000; Wohlin

2004], and PSP is widely considered an effective method for building high-quality software. My

research replicates their results with respect to software quality, then explores the impact on

software quality of more detailed process measures, such as design time, review rate, and defect

density in reviews.

I was able to extend the research into the impact of potential confounding variables, such

as academic degrees and experience, and rule out those factors. I was able to empirically

consider the issue of programmer ability and verify its importance and influence on the various

process variables. The issue of relative ability of programmers is particularly important, since

the finding that even top-quartile performers improve over 2X refutes those who resist the need

175

for discipline, while acknowledging that their performance is superior and their opportunities for

improvement are less than many of their colleagues.

My research supports the premise of PSP and similar process improvement strategies:

disciplined software processes, such as PSP2 and PSP3, result in superior performance compared

to ad hoc processes, such as PSP0. This improvement can be seen in both improved

performance and decreased variation. It can be inferred that this is the minimum level of

improvement that can be expected for a set of programmers since other researchers have

observed that improvement continues after the PSP class [Hayes 1998; Ferguson et al. 1997;

Holmes 2003; Hirmanpour and Schofield 2003].

My contribution in this analysis therefore consists of the following results:

• Disciplined processes were shown to improve individual performance in software

quality by a factor of about five, similar to the results of previous researchers

analyzing PSP data [Hayes and Over 1997, 22; Wesslen 2000; Wohlin 2004].

• Individual differences of more than an order-of-magnitude were shown to remain

even when disciplined processes were used [Ferguson et al. 1997; Hayes and Over

1997, 22; Hayes 1998; Hirmanpour and Schofield 2003; Holmes 2003; Wohlin 2004,

212].

• Programmer ability was shown to significantly affect software quality when

empirically measured; surrogates such as years of experience were not found to be

useful, although some earlier researchers have found team-based experience

significant [Takahashi and Kamayachi 1985; Zhang 1999].

• Top-quartile performers were shown to improve by a factor of two or more; bottom-

quartile performers were shown to improve by a factor of four or more.

176

• Although technology factors, i.e., programming language used, may affect

productivity, they were not shown to affect software quality as measured by defect

density in testing, unlike some earlier researchers in a project/team environment

[Gaffney 1984; Lipow 1982].

• Program size was shown to be a weak predictor of quality in the presence of

individual differences, unlike the findings of most previous researchers in a

project/team environment [Akiyama 1972; Compton and Withrow 1990; Criscione,

Ferree, and Porter 2001; Halstead 1977, 87-91; Jones 1996; Lipow 1982; Lyu 1996;

Fenton and Neil 1999; Fenton and Ohlsson 2000; Putnam and Myers 1997, 32].

• Detailed process measures provide more insight into performance than broad

categories such as PSP major process or CMM maturity level, partially addressing

Fenton and Neil’s desire for more complete models [Fenton and Neil 1999, 153], at

least within the context of individual programmers.

The practical implications of my research for software managers and professionals are

relatively simple, although they may be challenging to address. First, although programmer

ability is a crucial factor affecting software quality, surrogates such as seniority and academic

credentials are inadequate for ranking programmers, and empirical measures that are more

effective may cause dysfunctional behavior when used for determining raises and promotions

[Austin 1996]. Second, consistent performance of recommended engineering practices improves

software quality, even for top performers, who may resist discipline and measurement-based

decisions because they already are superior performers. Third, organizations, teams, and

individuals can use frameworks such as the Software CMM, TSP, and PSP to help

177

institutionalize disciplined, measurement-driven processes that are more effective than intuitively

managed processes.

178

5.0 IDENTIFYING OUTLIERS IN THE SOFTWARE PROCESS

5.1 THE RESEARCH QUESTION: IDENTIFYING OUTLIERS

The research in this chapter focuses on identifying atypical programs. The common

cause system for PSP software development can be characterized with respect to a number of

factors, especially process variables, as has been shown in Chapter 4. While the PSP process is

rigorously defined, it may not be consistently implemented (or implemented according to

recommended practice). The primary emphasis in this chapter is on identifying atypical

performance (outliers) and characterizing the stable process, i.e., the consistent and predictable

process.

From an analytic perspective, atypical data should be discarded. To understand the

impact of process discipline on individual performance, the common cause system must be

characterized so that analyses focus on expected performance and is not skewed by a handful of

atypical results. Identifying atypical performance in the software process or atypical entities in

software work products is important for statistically analyzing process and product data and for

statistical process control of the software process. Outliers may skew the results of a statistical

analysis, but outliers that are not clearly erroneous should neither be completely discarded nor

blindly included in a statistical analysis [Judd and McClelland 1989, 210; Neter et al. 1996, 103-

104].

Outliers may result from three general sources [Judd and McClelland 1989, 207-237].

First are errors in data entry, which clearly should be corrected or discarded (if they can be

179

accurately identified). Invalid PSP data was identified and removed in Section 3.5 Second are

outliers when the data sets are heterogeneous – they contain two or more separate types of entity.

For process control, the traditional technique for identifying outliers is the control chart (or

process behavior chart), which can be used to identify signals of assignable (or special) causes of

variation in the common cause system used to build software. In the case of the control chart,

the two different types of entity are the assignable causes and the common cause system. Causal

analysis of the signals allows software professionals to take corrective and preventive actions as

appropriate. Third are distributions with thick tails, in which “atypical” events may be relatively

common.

In previous studies of individual performance, a few individuals were unable to solve the

problems posed. These cases were considered atypical, although as many as one in six

programmers might be involved, and their data was discarded in identifying order of magnitude

differences in performance [Curtis 1988, 290]. This is similar to removing data for students not

finishing all ten PSP assignments, but the removal of outliers allows an arguably more refined

insight into normal performance.

The normal tool used for identifying special (or assignable) causes of variation in a

process is the control chart. There are other techniques for identifying outliers; a corollary to this

analysis is comparing a simple outlier identification technique (interquartile limits) with the

XmR control chart.

180

5.2 IDENTIFYING THE COMMON CAUSE SYSTEM

The common cause system to be analyzed in depth is that for the final PSP processes, as

captured in C and C++ programs for assignments 9 and 10 in the PSPb data set. The processes

used are the epitome of the disciplined PSP, including reviews and design templates.

Process control techniques, such as control charts, enable in-process control, once the

factors affecting software quality are known. In a retrospective analysis such as this one, the

objective is to identify outliers that are atypical of normal performance and that can be excluded

from further analysis. The X and Xbar charts are robust in the presence of non-normal data,

therefore they are appropriate control charts to consider for identifying outliers given the skewed

nature of software data [Schilling and Nelson 1976; Wheeler 2000].

For some measures, specification limits for factors such as review rates, in conjunction

with the control limits, determine whether a process can be considered “capable.” If the control

limits that identify outliers are outside the specifications, then the process is not capable in the

SPC sense, and the points outside the specification limits should be viewed as nonconformant to

good practice.

Control charts may not be useful in the context of software processes. If the control

limits are too wide to be useful, they do not add value. “Useful” suggests that some points are

identified as signals, therefore causal analysis and corrective action can be taken. “Useful” may

be a subjective judgment to some degree, but if the control limits for preparation rate or meeting

rate are outside the specification limits for the rate, the direct conclusion is that the control chart

does not add value.

A stable process, i.e., one from which assignable causes of variation have been removed,

is predictable, and process performance is consistent over time. Predictable performance,

181

however, could be predictably bad. This is one of the concerns expressed by skeptics regarding

process discipline and SPC. If the process is not capable, then the value added by SPC for

control is negligible, but the need for improvement has been identified and quantified – a notable

benefit in itself.

5.3 SPECIFICATION LIMITS FOR SOFTWARE PROCESSES

Published recommendations for design and code effort are not relevant to the PSP

context. While cost models allow the estimation of design and code effort, small programs such

as the PSP assignments do not address issues such as productizing and integration, which can

each impose a three-fold increase in effort [Brooks 1995, 230]. The consequence is that there is

no established “best practice” for design and coding effort in a PSP-like context. Similarly for

defect density in design inspections, code inspections, and testing, the relevant studies are for

software systems.

The recommended rates for inspections, however, appear relevant, although inspections

are a team effort, and teams with four members are recommended [Fagan 1976, 191]. The

preparation rate for code should be about 100 LOC/hour (no more than 200 LOC/hour). Rates

greater than 200 LOC/hour are grounds for re-inspection.

The recommended review rate for high-level design is twice that of code, based on the

estimated lines of code. The recommended review rate for detailed design is the same as that of

code [Fagan 1986, 749]. Based on PSP design being analogous to detailed design and PSP

review time being analogous to inspection preparation time, the unacceptable review rates are

those above 200 LOC/hour for both design reviews and code reviews.

182

5.4 MEASURES FOR PROCESS CONTROL

The development processes to control in PSP are the design and coding processes, since

there is no requirements analysis step. Defect data from the design and code reviews can be used

to control design and coding. Causal analysis of signals in the defect data can point to anomalies

in either the production (design or code) or review processes. Production effort and review rates

are also useful measures to consider and may provide added insight into whether good

engineering practice is being followed. A signal in either of these measures may correspond to a

signal in the corresponding defect measures.

The measures analyzed to identify the common cause PSP system are therefore:

• program size, LOC

• design time, minutes/LOC

• design review rate, LOC/hour

• defect density in design review, defects removed in design review / KLOC

• coding time, minutes/LOC

• code review rate, LOC/hour

• defect density in code review, defects removed in code review / KLOC

• defect density in compile, defects removed in compile / KLOC

• defect density in testing, defects removed in testing / KLOC

5.5 TECHNIQUES FOR IDENTIFYING OUTLIERS

The natural technique for identifying atypical performance is the control chart,

specifically the XmR chart for individual values and moving ranges. Although it can be argued

183

that control charts should not be used for PSP data since the PSP assignments do not capture a

process “over time” in the sense traditionally used for process control, for a mature production

process over an extended period of time, which PSP appears to be as shown in the exploration of

the PSP class data in Section 4.6.3, the sequence of production is not relevant [Hahn and Meeker

1993, 6].

In recent years, SPC has been successfully applied to services as well as manufacturing

[Wheeler and Poling 1998; Wheeler 2003]. The same observations that characterize the service

environment – high variability in data combined from multiple individuals – also apply to using

SPC on software processes. The empirical observation is that SPC is being used in both

environments with success; the extension to individual data is a natural, although challenging,

extension. Normally, machines operate with less variation than human teams, and human teams

function with less variation than individuals. High variability does not invalidate the use of

control charts.

No changes in the common cause system are expected since the PSP text and SEI-

authorized instructors provide a stable instructional context. This conclusion is supported by the

analysis of PSP classes in Section 4.5.3. Signals of possible assignable causes could be used by

the instructors to identify individuals needing additional help, although care would be needed

that a motivational use of the data did not cause dysfunctional behavior, e.g., falsified data. This

suggests the view that the process being controlled is one for building PSP-trained students

rather than software programs.

Assignable causes of variation should be removed when calculating control limits, but

causal analysis cannot be performed when doing a retrospective analysis [Liberatore 1995, 6],

therefore robust control limits are calculated using a two-stage procedure [Rocke 1988; Roes

184

1993]. Points outside the initial 3σ limits are removed, and robust control limits calculated. In

normal SPC, points are only removed when they are confirmed by causal analysis as assignable

causes of variation, but that is not feasible for a retrospective analysis. One iteration, the two-

stage procedure, is a reasonable compromise for identifying the “voice of the process.” The

robust limits should be closer to the “true” process capability than the initial limits. Another

robust technique, “robust regression,” drops data points more than two standard deviations from

the mean response variable, but it is only appropriate when dealing with a small number of

predictor variables [Devnani-Chulani 1999, 36].

Other commonly used detection rules are run tests. These would be problematic for PSP,

since the PSP as an educational process is arguably a mature, constant process. Each set of

assignments comes from a different source (individual), therefore any run test would be

conceptually inappropriate. The use of control charts with the PSP data is essentially an exercise

in rigorously identifying outliers from a stable population.

All of the lower limits for the PSP data are less than zero, which means that the effective

lower control limit is zero for the measures chosen. In some instances a data transformation

might allow the potential for a lower control limit. A “low” signal for effort might indicate poor

design or coding practices, which might in turn indicate a high defect injection in the design or

coding phases. A “low” signal for review rate might indicate a meticulous review, perhaps

suggesting concern on the part of the programmer about the quality of the design or code. A

“low” signal for defect density might indicate an inadequate review, which could suggest a high

escape rate. The XmR charts used in this section are unable to identify such cases.

A simple alternative to control charts for identifying outliers is to set limits at 1.5 times

the interquartile range below the 25% and above the 75% quantiles [SAS Institute 2000, 36].

185

This interquartile limit (IQL) provides an independent check on the plausibility of the robust

limits as truly representing the voice of the process.

A variety of techniques can be used for identifying outliers, including those based on the

influence of data points on regression models, such as Cook’s D and DFFITS [Rawlings,

Pantula, and Dickey 1998, 361-364]. Care in discarding outliers is recommended, however;

direct evidence of recording errors or miscalculations is desirable to justify discarding data

[Neter et al. 1996, 103-104]. For a retrospective analysis, that is not practical, therefore

relatively simple approaches to identifying outliers, such as XmR charts and interquartile limits,

are appropriate.

5.6 IDENTIFYING SIZE OUTLIERS

The graph in Figure 14 is an X chart. In principle, the mR chart should not add insight

since each data point can be considered a random pull from the PSP statistical universe, which is

a variant of the argument against using run tests. Some statisticians recommend not plotting the

mR chart in any case, arguing that the X chart contains all of the information available [Nelson

1982; Roes 1993].

186

0

100

200

300

400

500

600

LO
C

0 20 40 60 80 100 120 140 160

Avg=145.13

UCL=324.00

Figure 14 Initial X Chart for Program Size in (PSPb, C, 9A)

Size is the most commonly used factor in defect prediction models and is a critical

software product measure. Atypically large programs are also atypical solutions to the PSP

assignments. The above figure contains the initial control limits for program size for (PSPb, C,

9A). Figure 15 below contains the robust control limits, with the initial set of “outliers”

removed.

0

100

200

300

400

500

600

LO
C

20 40 60 80 100 120 140 160

Avg=137.18

UCL=284.28

Figure 15 Robust X Chart for Program Size in (PSPb, C, 9A)

187

Table 95 contains the outlier statistics for program size. It shows the initial XmR, robust

XmR, and interquartile limits, as well as the number of points identified as outliers for each set

of limits.

Table 95 Outlier Statistics for Program Size (LOC)

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 145.1 167.2 204.2 255.4

Initial XUCL 324.0 424.7 430.8 613.9

Number of points
outside the initial limits

4 1 4 1

Robust X 137.2 159.2 187.9 245.3

Robust XUCL 284.3 380.9 360.4 552.6

Number of points
outside the robust limits

7 2 7 2

Interquartile limit 284.0 399.0 359.0 552.0

Number of points
outside the IQL

7 1 7 2

An atypical size, i.e., a point be above the upper limit for program size, could indicate an

inappropriate solution was chosen for the problem. Differing emphases on aspects of a program

such as flexibility and speed can have a dramatic impact on size, which has been characterized as

the “problem of ambiguous programming objectives” [Weinberg 1998, 126-132].

188

5.7 IDENTIFYING DESIGN OUTLIERS

5.7.1 Design Effort

Table 96 contains the outlier statistics for design time. It is widely believed that time

spent in design has a high benefit, although the learning curve effects for the PSP design

templates may counteract that effect here.

Table 96 Outlier Statistics for Design Time

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 0.6 0.6 0.5 0.5

Initial XUCL 1.6 1.8 1.4 1.6

Number of points
outside the initial limits

2 1 4 2

Robust X 0.6 0.6 0.5 0.5

Robust XUCL 1.5 1.6 1.2 1.3

Number of points
outside the robust limits

4 1 9 2

Interquartile limit 1.6 1.9 1.3 1.4

Number of points
outside the IQL

2 1 9 2

Points above the upper limit for design effort could result from problem complexity,

solution complexity, or the learning curve. Problem complexity should not be an issue since

each assignment is the same for all students. Solution complexity can be a factor, especially if

some students are more successful at reusing software from earlier assignments. Unfamiliarity

with the application domain should not be a factor since assignments 9 and 10 are

189

straightforward elaborations of earlier assignments. The most likely cause for a signal in design

effort is difficulty in learning to use the design templates.

5.7.2 Design Review Rate

Table 97 contains the outlier statistics for design review rate.

Table 97 Outlier Statistics for Design Review Rate

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 525.6 746.5 588.5 537.9

Initial XUCL 1712.9 2868.5 1907.0 1840.3

Number of points
outside the initial limits

7 5 7 3

Robust X 450.6 502.0 474.6 457.8

Robust XUCL 1336.5 1637.3 1353.9 1557.1

Number of points
outside the robust limits

13 10 10 5

Interquartile limit 1278.6 1473.6 1443.1 1325.0

Number of points
outside the IQL

14 10 9 7

The natural process limits are well above the maximum rate of 200 LOC/hour for

effective design reviews. Since the upper limit for design review rate is not within the

specification limits, the design review process is not capable (in statistical terms), although even

poor reviews are better than none at all. Since the design review process is not capable, the

process improvement focus should be on ensuring that the design review rate conforms to

recommended practice rather than analyzing signals that are outside the limits for the process.

190

Points above the upper limit for design review rate clearly indicate, in this case, that the

student is not following a rigorous design review process. The comparatively large number of

points outside the limits indicates that, even with an incapable process, a number of students are

failing to follow the “normal design review” process as learned by most PSP students by this

time in the course. Points inside the limits, but significantly higher than 200 LOC/hour, suggest

that the student’s behavior is normal, even if less than effective. For the 38 cases where there are

signals for design review rate, based on the robust limits, the average defect removal

effectiveness is 23%. Comparing this to the average defect removal effectiveness of 62% for

design reviews with a rate less than the maximum 200 LOC/hour confirms that high review rates

indicate ineffective design reviews.

5.7.3 Defect Density in Design Review

Table 98 contains the outlier statistics for defect density in design review.

191

Table 98 Outlier Statistics for Defect Density in Design Review

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 13.5 13.5 7.3 9.7

Initial XUCL 53.7 60.8 32.3 43.5

Number of points
outside the initial limits

8 2 4 2

Robust X 10.5 12.0 6.1 8.3

Robust XUCL 45.1 53.0 26.6 37.1

Number of points
outside the robust limits

15 6 7 3

Interquartile limit 50.6 46.3 29.7 31.8

Number of points
outside the IQLt

10 7 7 5

Points above the upper limit for defect density in design review could indicate that the

design review was unusually effective in identifying defects or that the student was having

difficulty with the application domain.

5.8 IDENTIFYING CODING OUTLIERS

5.8.1 Coding Effort

Table 99 contains the outlier statistics for coding time. While high values for design time

may indicate a deliberate approach to design, high values of coding time may suggest that design

work is being (inappropriately) performed in coding.

192

Table 99 Outlier Statistics for Coding Time

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 0.6 0.6 0.5 0.5

Initial XUCL 1.7 1.7 1.1 1.2

Number of points
outside the initial limits

4 3 6 3

Robust X 0.6 0.5 0.5 0.5

Robust XUCL 1.4 1.4 1.0 1.1

Number of points
outside the robust limits

6 6 11 4

Interquartile limit 1.4 1.4 1.1 1.3

Number of points
outside the IQL

6 6 10 2

Points above the upper limit for coding effort may suggest an inadequate design. There

should be few learning curve effects associated with the coding process; by this point in PSP,

any unfamiliarity with the programming language should have been largely overcome. A “low”

signal for coding effort may indicate inadequate programming, which might in turn indicate a

high defect density in the coding or testing phases, but this XmR chart is unable to identify such

problems.

5.8.2 Code Review Rate

Table 100 contains the outlier statistics for code review rate.

193

Table 100 Outlier Statistics for Code Review Rate

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 403.6 403.6 580.5 451.7

Initial XUCL 1191.6 1239.0 1954.5 1381.8

Number of points
outside the initial limits

5 2 4 1

Robust X 365.7 355.9 438.7 429.4

Robust XUCL 999.9 1024.6 1090.6 1253.1

Number of points
outside the robust limits

12 4 10 2

Interquartile limit 981.7 962.3 1172.5 1031.8

Number of points
outside the IQL

12 6 8 3

Similar to the case for design reviews, the average code review rate exceeds the

maximum code inspection rate of 200 LOC/hour, and the code review process cannot be

considered “capable.”

Points above the upper limit for code review rate suggest that the student is not following

a rigorous code review process, similar to the case for design review rate. Points inside the

limits, but significantly higher than 200 LOC/hour, suggest that the student’s behavior is normal,

even if less than effective. For the 28 cases where there are signals for code review rate, based

on the robust limits, the defect removal effectiveness is 19%. Comparing this to the average

defect removal effectiveness of 50% for code reviews with a rate less than 200 LOC/hour

confirms that high review rates indicate ineffective code reviews.

194

5.8.3 Defect Density in Code Review

Table 101 contains the outlier statistics for defect density in code review.

Table 101 Outlier Statistics for Defect Density in Code Review

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 24.5 27.7 16.9 19.4

Initial XUCL 90.3 97.8 58.7 66.8

Number of points
outside the initial limits

6 4 2 3

Robust X 21.2 22.6 15.7 16.0

Robust XUCL 73.9 77.0 53.3 52.8

Number of points
outside the robust limits

9 6 2 3

Interquartile limit 69.0 74.8 61.5 55.8

Number of points
outside the IQL

12 6 2 3

Points above the upper limit for defect density in code review could indicate that the code

review was unusually effective in identifying defects, that the design inputs were defect prone, or

that the student was having difficulty with the application domain or programming language.

5.9 IDENTIFYING COMPILATION OUTLIERS

A compiler can be used as a debugging tool. One of the ongoing discussions about code

inspections is whether the inspected code should come from a clean compile, i.e., the compiler

195

should be used to remove “obvious” syntactic defects. Table 102 contains the outlier statistics

for defect density in compilation.

Table 102 Outlier Statistics for Defect Density in Compilation

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 16.1 22.2 12.7 16.8

Initial XUCL 65.8 91.1 46.5 63.2

Number of points
outside the initial limits

4 3 1 1

Robust X 14.0 18.8 12.4 15.9

Robust XUCL 54.1 75.6 44.8 58.7

Number of points
outside the robust limits

7 5 2 2

Interquartile limit 60.0 66.0 47.0 52.5

Number of points
outside the IQL

5 6 1 4

Points above the upper limit for defect density in compilation could indicate that a large

number of syntactic mistakes were made in coding, which might suggest a lack of expertise in

the programming language. Wesslen found that PSP reviews identified a higher percentage of

compile defects than design defects, suggesting that one possible improvement for PSP reviews

would be a greater focus on logical errors [Wesslen 1999, 32]. It may also indicate a large

number of defects escaping from earlier phases of the life cycle.

196

5.10 IDENTIFYING TESTING OUTLIERS

Table 103 contains the outlier statistics for defect density in testing, which, while of

limited value as a process control measure, provides insight into the effectiveness of the other

measures and indicates the stability of the overall PSP process.

Table 103 Outlier Statistics for Defect Density in Testing

Statistic PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Initial X 15.7 16.1 10.9 11.1

Initial XUCL 56.8 60.6 39.0 43.8

Number of points
outside the initial limits

6 1 2 3

Robust X 13.4 14.1 10.1 9.0

Robust XUCL 43.6 49.7 34.2 33.7

Number of points
outside the robust limits

9 4 4 6

Interquartile limit 41.0 47.1 35.5 30.5

Number of points
outside the IQL

9 4 4 6

Defect density in testing is not used for process control, since it is the surrogate for

software quality, but high values indicate poor quality programs. A point above the upper limit

for defect density in testing suggests that an unusual number of defects in design or coding

escaped those life cycle activities and were captured in testing. Association of signals in testing

with in-process signals indicates opportunities for taking corrective action earlier in

development. For the 23 signals in defect density in testing, there is an associated in-process

197

signal in 15 cases. The most commonly associated signals are for defect density in code review

and defect density in compile (6 and 7 instances respectively).

Unfortunately, a high percentage (33%) of the assignments have signals for one or more

of the eight explanatory variables. There are 143 assignments with one or more signals for the

433 assignments. This suggests that learning occurs at the end of an assignment rather than

during it, which is reasonable given the small size of the PSP assignments.

5.11 DISCUSSION OF OUTLIER IDENTIFICATION

The control charts demonstrate that signals of assignable causes may occur in the PSP

data, more than would be expected by chance. One or two points outside the limits can be

expected for these data sets using Wheeler’s Empirical Rule that a homogenous data set will

have approximately 99-100% of the data within the 3σ limits [Wheeler and Chambers 1992, 61].

Numbers greater than three or four for these PSP data sets suggest instability, i.e., some students

are not consistently following the PSP process. It may also be that some students have had a bad

day independent of their use of PSP… or are simply poor programmers.

The latter suggestion highlights the concern that the results of statistical analysis should

not be used for motivational purposes; “grades” in PSP should depend on learning how to

program better, not on performing well relative to the other students. A consistent conclusion in

analyzing individual differences in programmers, however, is that investments in eliminating the

lower tail of the individual differences distribution, whether via training or reassignment, provide

the greatest potential benefit in improving performance [Curtis 1988, 290; Boehm 1981, 666-

667]. As shown in Section 4, disciplined processes can contribute significantly to addressing

198

these issues, but effective performance, which can be supported by SPC, is needed as well as

consistency.

The process instability index provides a heuristic for determining whether a process is

reasonably stable [Pierce 2005]. The formula for calculating this index is:

#()*100
#t

signalsS
observations

=

and St > 3% is considered statistically unstable. For the individual process variables, the

processes are predominantly unstable. In three cases, one data set has St < 3, and in two other

cases, two data sets have St < 3. For the other 29 data sets, St > 3.

The identification of signals by the XmR charts do not necessarily add value to the PSP

process. The determination of value can be approximated by the association of in-process

signals with poor software quality, if the processes are capable (the control limits are within the

specification limits). As already shown, 65% of the signals in defect density in testing could

have been identified early in the life cycle. If the full set of eight variables is used for process

control, however, 33% of the assignments would undergo causal analysis at one or more points

in the process – an unacceptably high rate for practical use. If only the defect data are used, one

or more signals in 53 assignments are identified in development that correspond to 12 of the 23

signals in testing. Causal analysis of 12% of the assignments is more realistic, although the

benefits remain limited compared to the potential.

For design and code review rates, the control limits failed to fall within recommended

best practice, therefore those charts do not add value for control, and the charts simply confirm

that high review rates are associated with ineffective reviews. Charts for effort provided

minimal insight. Charts for defect density in reviews provided benefit, although there were a

large number of false alarms.

199

Table 104 compares the number of outliers identified using interquartile limits to the

number identified using XmR charts. A positive number indicates the number of additional

signals identified by the XmR chart over the interquartile limit; a negative number indicates

more signals were identified by the interquartile limits.

Table 104 Outlier Differences Between XmR Charts and Interquartile Limits

Confounding Variable PSPb C
9A

PSPb C++
9A

PSPb C
10A

PSPb C++
10A

Program Size 0 1 0 0

Design Time / LOC 2 0 0 0

Design Review Rate -1 0 1 -2

Defect Density in Design Review 5 -1 0 -2

Coding Time / LOC 0 0 1 2

Code Review Rate 0 -2 2 -1

Defect Density in Code Review -3 0 0 0

Defect Density in Compile 2 -1 1 -2

Defect Density in Testing 0 0 0 0

Totals 5 -3 5 -5

The interquartile limits are about as effective as XmR charts in identifying outliers.

Although the XmR chart identifies slightly more points than the interquartile limits, the

comparison suggests that detection rules such as run tests are needed to maximize the benefits of

XmR charts. Use of more sophisticated control charting techniques, such as u-charts, depends

on an analysis of the distributional assumptions made by those techniques.

This analysis confirms the high variability of individual performance, even when

following a disciplined process at the end of the PSP course, where the variation has decreased

200

relative to the ad hoc process at the beginning of the course. In a sense, this analysis identifies

worst-case bounds for performance when following a disciplined software process. It is difficult

to conceive of an industrial setting that could match the potential for individual variation found

in the PSP environment, since the preferred unit of study in an industry setting is the team or

project.

Even when SPC is successfully applied, there is a tension between having stable

processes and continual process improvement. The process data for the previous process may

not be valid for the new process, and new control limits may need to be recalculated on an

ongoing basis. These process shifts are illustrated in a small way by the statistically significant

differences between assignments 9 and 10 identified in Section 4.5.1, as well as the shifts

between the PSP major processes.

5.12 CONCLUSIONS FOR OUTLIER IDENTIFICATION

One may conclude from this analysis that, although disciplined processes improve

performance and decrease variation – sufficiently that the learning objectives for the PSP

students are attained – the disciplined process at the end of the course remains unsatisfactory

compared to the potential of conformant processes that follow generally-accepted best practice.

In spite of the growing adoption of SPC (and specifically control charts) in industry, it is clear

from this analysis that to get the best value from statistical techniques, a consistently-

implemented process is necessary but not sufficient for statistical control. The effective

implementation of recommended practices is also needed before the adjectives “disciplined” or

“mature” can be used.

201

Many of the PSP students have not arrived at “industry best practice” with respect to

review rates. The objective of PSP to induce learning based on personal data is an on-going

process that is not completed within the confines of the course, as has been observed in previous

studies [Hayes 1998, 65; Ferguson et al. 1997, 28-30].

As this analysis shows, if outliers are identified for an assignment for each of the eight

variables that might be used for process control retrospectively, about one third of the

assignments would be excluded for analysis based on one or more outliers – an excessive

number to exclude without causal analysis of why the data was atypical. This does not

necessarily mean that in-process control using all eight variables with causal analysis performed

in real-time would not be cost effective. It does mean that a retrospective analysis of a complex

process, the PSP process in this case, cannot effectively identify outliers on a per-variable basis

effectively, although outlier identification per variable was useful in the simple regression

models in Chapter 4. Multiple regression models, as described in Chapter 7, use regression

outlier techniques to identify influential outliers more effectively.

My contributions in this analysis are therefore the following results:

• PSP processes are not statistically capable or stable by the end of the ten assignments

in the PSP class.

• For a retrospective analysis, XmR control charts using only out-of-bounds signals are

roughly equivalent to interquartile limits in identifying outliers. This suggests that

run-based signaling techniques should also be used to identify assignable causes of

variation.

• When the natural process limits for a PSP process are identified, the measured

process performance may not meet recommended practice, reinforcing the need for

202

continual improvement to continue after the course. The Team Software Process is

the recommended mechanism for continuing professional development and deploying

the PSP ideas in a team context [Humphrey 1999].

For software professionals, the implications of my research are two-fold. First, factors

known to affect the review process, such as review rates, should be measured, and recommended

practices should be quantified and followed. Second, data collection without analysis is not

helpful for controlling performance. Measurement must be followed by analysis and action if

the benefits of measurement are to be achieved. As demonstrated in the PSP data, measurement

does not necessarily lead to control. Although this is intrinsic to the PSP context, which focuses

on learning from measured performance rather than meeting a specific technique’s requirements,

i.e., the inspection rules established by Fagan [Fagan 1986], controlling and improving

performance based on measurement is the ultimate objective of PSP and the related TSP and

CMM work.

203

6.0 STATISTICAL DISTRIBUTIONS OF SOFTWARE DEFECT DATA

6.1 THE RESEARCH QUESTION: TESTING STATISTICAL DISTRIBUTIONS

The research in this chapter focuses on the statistical distributions that best describe

defects in the software process. Since the choice of an appropriate statistical analysis frequently

depends on assumptions about the distribution followed by the data, empirical results will help

make informed decisions.

This is particularly an issue in choosing u-charts as a tool for process control since they

assume a Poisson distribution. While a common choice, the empirical research on its

appropriateness is mixed, and it is frequently used without checking whether the Poisson

assumption is valid.

The goal of this analysis is not to argue that software defect data follow a particular

distribution; the goal is to reject invalid hypotheses that the defect data follow distributions that

cannot be empirically supported. Data drawn from a complex world cannot be expected to

follow a mathematical formalism such as a statistical distribution exactly. The question is

whether the formalism is a sufficiently accurate approximation of the real world to provide

useful insight.

204

6.2 STATISTICS RELEVANT TO DISTRIBUTIONS

In these analyses, the distributions of concern are over modules rather than time, although

much of the research previously performed, specifically for reliability models, has looked at

defect detection over time. The number of defects is frequently assumed to follow a Poisson

distribution; defect density is frequently assumed to follow a lognormal distribution.

The empirical distribution of a data set can be compared to a theoretical distribution such

as the lognormal or Poisson distributions. For continuous distributions, such as defect density,

the Shapiro-Wilk test is used to measure goodness of fit [SAS Institute 1989, 126]. For discrete

distributions, such as the number of defects, the 2χ (chi-squared) test is used to measure

goodness of fit [Hogg and Ledolter 1992, 254-255]. In testing goodness-of-fit, the null

hypothesis is that the empirical distribution follows a theoretical distribution; unlike other

statistical analyses, it is desirable not to reject the null hypothesis. These hypotheses will be

considered statistically significant at α=0.05.

Several informal checks of distributional assumptions can be made. For the normal

distribution, the mean is equal to the median, the skewness is zero, and the kurtosis is three

[Wheeler 2000, 84; Leemis 1995, 60; Wheeler and Chambers 1992, 325]. Skewness measures

the symmetry of a distribution (or the relative sizes of the tails); a positive skewness indicates the

right-hand tail is more massive. Kurtosis measures peakedness (or the combined weight of the

tails); a kurtosis value less than three is considered light-tailed. For the lognormal distribution,

the informal checks are not so simple, although the log transformation of the variable follows a

normal distribution; for example, the median of a lognormal distribution is at x=eµ [Aitchison

and Brown 1957, 8-9].

205

For the Poisson distribution, the mean is equal to the variance [Hogg and Ledolter 1992,

102-104]. Distributions related to the Poisson distribution include the binomial, where the

variance is less than the mean, and the negative binomial, where the variance is greater than the

mean [Johnson and Kotz 1969, 138]. For the exponential distribution, the mean is equal to the

standard deviation, the skewness is two, and the kurtosis is nine [Leemis 1995, 85; Wheeler

2000, 84].

The data sets used in these analyses were for assignments 9 and 10 in C and C++ for

PSPb. Outliers were identified using interquartile limits for the variable whose distribution is

being analyzed.

6.3 DISTRIBUTION OF DESIGN DEFECTS

Table 105 summarizes statistics for the number of defects removed in design review both

including and excluding outliers as identified by interquartile limits. The column labeled “w”

includes all data points for the assignment. The column labeled “w/o” summarizes the data with

the outliers for the variable removed, and the values are in bold italics to ease comparison.

206

Table 105 Statistics for the Number of Defects Removed in Design Review

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 1 1 1 1 1 1 1 1

Mean 2.0 1.5 1.7 1.1 1.8 1.4 2.3 1.6

Interquartile Range 3 2 2 2 3 2 3 2

Standard Deviation 3.1 1.9 3.0 1.6 2.4 1.8 4.2 2.0

Variance 9.8 3.7 9.3 2.5 5.6 3.1 17.6 4.1

Skewness 3.1 1.5 3.8 1.5 2.1 1.9 4.8 2.1

Kurtosis 14.5 1.9 18.0 1.6 5.3 4.1 29.5 6.0

The variance is consistently and significantly greater than the mean for the number of

defects removed in design review, suggesting that the Poisson distribution is a poor fit for the

data (and that the negative binomial distribution might be a better fit).

Table 106 contains the results of 2χ tests of the number of defects removed in design

review against the negative binomial distribution. Two parameters, p and k, characterize this

distribution; they are estimated using the method of moments [Williamson and Bretherton 1963,

12]. The differences between the observed frequencies and the theoretical frequencies are used

to calculate qk-3, which is compared to a critical value of 2χ derived from the number of cells in

the table and the specified significance level (α=0.05). If qk-3< 2 (,)hχ α , the fit against the

theoretical distribution is not rejected. None of the variables tested against the negative binomial

distribution fit with outliers included, therefore all of the reported results are for data sets with

outliers excluded. Statistically significant results at α=0.05 for qk-3 are in bold.

207

Table 106 Number of Defects Removed in Design Review Against the Negative Binomial
Excluding Outliers

Data Set p k qk-3 Critical Value

PSPb, C, 9A 0.405 1.021 12.844 2 (5,0.05)χ =11.070

PSPb, C, 10A 0.440 0.864 8.080 2 (4,0.05)χ =9.488

PSPb, C++, 9A 0.452 1.155 3.007 2 (3,0.05)χ =7.815

PSPb, C++, 10A 0.390 1.023 4.231 2 (4,0.05)χ =9.488

In three of four instances, the negative binomial distribution is not rejected as a

reasonable fit to the data. In the remaining instance, a slightly more liberal choice for α would

not reject the negative binomial. The negative binomial distribution therefore seems a

reasonable choice for describing the number of defects removed in design review. Das observes

that the negative binomial distribution should be considered whenever the assumption of pure

randomness cannot be met in count data because of clustering [Das 2003].

Table 107 summarizes statistics for the defect density in design review both including and

excluding outliers.

208

Table 107 Statistics for Defect Density in Design Review

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 6.2 5.1 3.3 2.2 6.4 5.6 6.0 5.0

Mean 13.5 9.9 7.3 5.5 13.5 9.1 9.7 6.9

Interquartile Range 19.7 16.1 11.8 9.9 18.1 12.7 12.7 10.0

Standard Deviation 18.8 12.9 11.3 7.0 18.1 11.4 12.7 7.5

Variance 354.5 166.2 126.7 49.5 327.8 129.5 161.1 56.3

Skewness 1.9 1.4 3.0 1.2 1.7 1.4 2.2 1.1

Kurtosis 4.2 1.2 14.9 0.3 2.1 1.1 5.8 0.7

The hypothesis that defect density in design review follows either the normal or

lognormal distributions is uniformly rejected by the Shapiro-Wilk test at p-value<0.0001 for all

data sets.

6.4 DISTRIBUTION OF CODING DEFECTS

Table 108 summarizes statistics for the number of defects removed in code review both

including and excluding outliers.

209

Table 108 Statistics for the Number of Defects Removed in Code Review

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 2 2 3 3 3 3 3 3

Mean 3.5 2.6 3.4 3.1 4.0 3.4 4.7 4.0

Interquartile Range 3 3 4 4 5 4 5 4

Standard Deviation 4.3 2.5 3.8 3.1 3.8 3.1 5.7 4.1

Variance 18.7 6.3 14.4 9.5 14.8 9.3 32.2 17.1

Skewness 3.1 1.8 2.2 1.3 1.8 1.2 2.8 2.3

Kurtosis 13.8 5.3 7.1 1.8 4.3 1.4 10.0 6.4

The variance is consistently and significantly greater than the mean for the number of

defects removed in code review, suggesting that the Poisson distribution is a poor fit for the data

(and that the negative binomial distribution might be a better fit). Table 109 contains the results

of 2χ tests of the number of defects removed in code review against the negative binomial

distribution.

Table 109 Number of Defects in Code Review Against the Negative Binomial Excluding
Outliers

Data Set p k qk-3 Critical Value

PSPb, C, 9A 0.413 1.829 12.648 2 (7,0.05)χ =14.067

PSPb, C, 10A 0.326 1.499 19.969 2 (13,0.05)χ =22.362

PSPb, C++, 9A 0.366 1.963 13.431 2 (8,0.05)χ =15.507

PSPb, C++, 10A 0.234 1.222 14.474 2 (15,0.05)χ =28.869

210

In all four instances, the negative binomial distribution is not rejected as a reasonable fit

to the data. The negative binomial distribution therefore seems a reasonable choice for

describing the number of defects removed in code review.

Table 110 summarizes statistics for defect density in code review both including and

excluding outliers.

Table 110 Statistics for Defect Density in Code Review

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 19.0 18.1 13.8 12.8 19.7 18.5 12.6 12.4

Mean 24.5 18.8 16.9 15.7 27.7 20.8 19.4 16.0

Interquartile Range 24.3 20.4 22.5 22.2 25.6 19.5 19.3 16.7

Standard Deviation 25.0 15.2 16.5 13.7 30.4 16.6 19.9 12.4

Variance 623.6 232.0 273.8 187.1 924.3 274.1 396.4 153.0

Skewness 1.8 0.7 1.6 0.5 2.4 0.9 2.4 0.8

Kurtosis 3.3 0 5.2 -0.9 7.0 0.9 7.4 0

The hypothesis that defect density in code review follows either the normal or lognormal

distributions is rejected by the Shapiro-Wilk test at p-value<0.01 (and at p-value<0.0001 for

most cases). The normal distribution is rejected at p-value=0.0004 for (PSPb, C++, 9A,

NoOutliers) and at p-value=0.0010 for (PSPb, C++, 10A, NoOutliers). The lognormal

distribution is rejected at p-value=0.0040 for (PSPb, C++, 10A, Outliers).

211

6.5 DISTRIBUTION OF COMPILE DEFECTS

Table 111 summarizes statistics for the number of defects removed in compile both

including and excluding outliers.

Table 111 Statistics for Number of Defects Removed in Compile

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 2 1 2 2 2 2 3 2.5

Mean 2.1 1.8 2.6 2.5 3.2 2.4 3.9 3.4

Interquartile Range 3 3 2 2.5 3 3 5 4

Standard Deviation 2.6 2.1 3.3 3.1 3.8 2.2 4.4 3.7

Variance 6.9 4.2 10.6 9.9 14.5 5.0 19.7 13.9

Skewness 2.9 2.4 4.1 4.4 2.5 1.0 2.0 1.9

Kurtosis 11.2 9.2 27.7 32.4 7.9 0.7 5.2 5.4

The variance is consistently and significantly greater than the mean for the number of

defects removed in compile, suggesting that the Poisson distribution is a poor fit for the data (and

that the negative binomial distribution might be a better fit). Table 112 contains the results of

2χ tests of the number of defects removed in compile against the negative binomial distribution.

212

Table 112 Number of Defects Removed in Compile Against the Negative Binomial
Excluding Outliers

Data Set p k qk-3 Critical Value

PSPb, C, 9A 0.857 10.787 54.497 2 (6,0.05)χ =12.592

PSPb, C, 10A 0.245 0.844 25.562 2 (11,0.05)χ =19.675

PSPb, C++, 9A 0.480 2.215 17.083 2 (8,0.05)χ =15.507

PSPb, C++, 10A 0.245 1.103 9.150 2 (9,0.05)χ =16.919

In one instance, the negative binomial distribution is not rejected as a reasonable fit to the

data. In one other instance, a slightly more liberal choice for α would not reject the negative

binomial. The negative binomial distribution therefore seems worth considering for describing

the number of defects removed in compile, but care should be taken if it is used.

Table 113 summarizes statistics for defect density in compile both including and

excluding outliers.

213

Table 113 Statistics for Defect Density in Compile

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 11.0 10.6 10.8 10.2 12.5 11.8 9.5 8.7

Mean 16.2 13.7 12.7 12.4 22.1 15.6 16.8 13.8

Interquartile Range 23.8 22.7 17.8 18.9 24.1 19.4 19.1 17.7

Standard Deviation 18.6 12.8 11.8 11.3 26.5 14.9 17.8 13.7

Variance 346.9 162.8 140.3 128.2 701.0 223.5 317.4 186.3

Skewness 2.4 0.9 0.9 0.7 2.0 1.2 1.4 1.1

Kurtosis 8.1 0.6 0.3 -0.3 3.8 1.0 1.4 0.5

The hypothesis that defect density in compile follows either the normal or lognormal

distributions is uniformly rejected by the Shapiro-Wilk test at p-value<0.0001 for all data sets.

6.6 DISTRIBUTION OF TESTING DEFECTS

Table 114 summarizes statistics for the number of defects removed in testing both

including and excluding outliers.

214

Table 114 Statistics for Number of Defects Removed in Testing

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 2 1 2 2 1 1 2 1

Mean 2.1 1.8 1.9 1.7 2.2 2.0 2.6 2.1

Interquartile Range 2 1 2 2 2 2 2 2

Standard Deviation 2.3 2.0 1.8 1.5 2.4 2.2 3.9 2.6

Variance 5.3 3.9 3.4 2.4 5.6 4.8 15.3 6.8

Skewness 2.9 3.7 2.0 1.3 2.0 2.3 4.0 3.1

Kurtosis 11.7 21.2 6.3 3.3 4.6 6.5 20.4 11.6

The variance is consistently and significantly greater than the mean for the number of

defects removed in testing, suggesting that the Poisson distribution is a poor fit for the data (and

that the negative binomial distribution might be a better fit). Table 115 contains the results of

2χ tests of the number of defects removed in testing against the negative binomial distribution.

Table 115 Number of Defects Removed in Testing Against the Negative Binomial Excluding
Outliers

Data Set p k qk-3 Critical Value

PSPb, C, 9A 0.462 1.546 17.863 2 (4,0.05)χ =9.488

PSPb, C, 10A 0.500 1.700 12.700 2 (6,0.05)χ =12.592

PSPb, C++, 9A 0.417 0.431 14.216 2 (5,0.05)χ =11.070

PSPb, C++, 10A 0.309 0.939 12.576 2 (3,0.05)χ =12.592

215

In one instance, the negative binomial distribution is not rejected as a reasonable fit to the

data. In two other instances, a slightly more liberal choice for α would not reject the negative

binomial. The negative binomial distribution therefore seems worth considering for describing

the number of defects removed in testing, but care should be taken if it is used.

Table 116 summarizes statistics for defect density in testing both including and excluding

outliers.

Table 116 Statistics for Defect Density in Testing

PSPb, C PSPb, C++

9A 10A 9A 10A

Statistic

with w/o with w/o with w/o with w/o

Median 12.1 11.8 8.1 7.6 10.2 9.8 7.0 6.2

Mean 15.7 12.7 10.8 9.6 16.1 12.6 11.1 7.6

Interquartile
Range

13.8 12.7 13.1 12.3 17.0 14.5 11.1 8.4

Standard
Deviation

16.1 10.4 11.0 8.3 22.5 11.1 13.2 6.9

Variance 260.7 108.2 122.0 68.6 506.7 124.2 174.9 47.5

Skewness 2.0 0.8 2.3 0.6 4.9 0.9 2.2 1.1

Kurtosis 5.0 0.3 10.6 -0.6 33.4 0 5.8 1.2

The hypothesis that defect density in testing follows either the normal or lognormal

distributions is rejected by the Shapiro-Wilk test at p-value<0.0001 for all data sets, except

(PSPb, C++, 10A, Outliers), where it is rejected at p-value=0.0017 for the lognormal

distribution.

216

6.7 CONCLUSIONS FOR STATISTICAL DISTRIBUTIONS

For the PSP data, my research indicates that the number of defects found in a review

cannot be accurately characterized by the Poisson distribution. To the degree this conclusion can

be generalized to industry projects, this is a concern since u-charts are commonly used when

applying SPC to software defect data. The XmR chart, which is a robust technique in the

presence of non-normal data, is a safer choice [Wheeler 2000].

If techniques using distributional assumptions are used, my results suggest that the

negative binomial distribution should be considered for counts of defects. Although the results

are fairly consistent for the PSP data, such assumptions should be tested against the data being

analyzed in any specific case.

No good theoretical distribution was found for characterizing defect density data.

Although the lognormal distribution is a plausible choice to consider, the empirical results for the

PSP data indicate that distributional assumptions such as this should always be tested.

In general, when analyzing software data, the statistical techniques used should be

rigorous when distributional assumptions are violated, and whatever assumptions are made

should be tested against the data. The normal distribution is frequently assumed but is

inappropriate for most software data. Using averages that approach a normal distribution is not

feasible if there is no appropriate grouping in which averages can be calculated, whether for

conceptual or pragmatic reasons.

If defect data follow a Poisson distribution, the u-chart is an appropriate technique, but if

the negative binomial distribution is a better choice, control charts specifically designed for that

distribution should be used [Das 2003].

217

Examples of robust techniques in the presence of non-normal data include the X and

Xbar control charts [Schilling and Nelson 1976 ; Wheeler 2000], two-sided hypothesis tests

concerning the coefficients in a linear regression, and analysis of variance for equal means [Hahn

1971, 21].

My contributions in this analysis are therefore the following results:

• Statistical assumptions, such as the distribution that data follow, should be tested

where they are important for achieving correct conclusions, i.e., the statistical

techniques making the assumption cannot be characterized as robust when the

assumptions are violated.

• The frequently made assumption that defect data follow a Poisson distribution is not

valid for the PSP defect data; a negative binomial distribution is preferable.

• Although u-charts may be commonly used in the software industry for defect data

[Paulk, Goldenson, and White 2000, 58-59], their use is questionable unless the

statistical assumption of a Poisson distribution has been tested.

218

7.0 MODELING SOFTWARE QUALITY IN PSP

7.1 THE RESEARCH QUESTION: PREDICTING DEFECTS

The research in this chapter focuses on the predictor variables for predicting software

quality early in the life cycle based on process and product information. More pertinently from a

management perspective, given a set of product characteristics such as program size, this

research attempts to identify the software process factors that affect the quality of the software

product.

The fundamental assumption in software process improvement, as explicitly stated in

models such as the Software CMM [Paulk et al. 1995, 8], is that the software process largely

determines software quality. It is, in turn, a specific instance of a fundamental assumption in

TQM: good engineering and management practices (good processes) drive quality as part of a

chain reaction that ultimately impacts business drivers such as cost, schedule, customer

satisfaction, profitability, and market share [Deming 1986, 3]. There is an implicit assumption

that competent people are doing the work. As already noted, there are dramatic differences in

programmer performance even when disciplined processes are followed, and programmer ability

is a crucial contributor to quality.

If software process factors, such as review rates, determine the quality of the software

product as observed in testing, then it seems reasonable from a management perspective to

encourage the good practices that result in superior quality. Even for organizations focusing on

cycle time or cost, the chain reaction of quality can be expected to lessen cycle time and decrease

219

cost. Although the specific coefficients are likely to change in moving from the classroom to an

industry environment, the factors affecting quality can be expected to remain significant.

Some factors that are not applicable in the classroom are likely to become important in

industry projects, e.g., personnel continuity, as are other factors that are not significant for

classroom-sized problems, e.g., problem complexity. Both kinds of factor are outside the scope

of the analysis in this chapter.

7.2 DECISION POINTS IN THE PSP PROCESSES

The data for these analyses span the ten assignments in the PSP course. Processes range

from ad hoc at the beginning to relatively disciplined in the final four assignments. Even when

good practices are followed in principle, however, the implementations may not follow

recommendations for best practice, e.g., reviews may not be performed at an acceptable review

rate. From a research perspective, PSP provides large amounts of high-quality, detailed data that

enable exploring software processes in a non-trivial way for individual professionals.

While it is clear from the analyses in Chapter 4 that the PSP process has a significant

impact on software quality, the focus of these analyses is on the interactions of the underlying

drivers. The primary process drivers are the design and code reviews introduced in assignment

7. There is a learning curve associated with adopting these techniques that continues after the

PSP class, as demonstrated by the relatively few assignments where the recommended review

rate of less than 200 LOC/hour is followed in the class and by the reports of improved

performance in projects after the class [Ferguson et al. 1997; Hilburn and Humphrey 2002, 75].

These results should be considered as indicating a trend rather than the ultimate performance

possible using these techniques.

220

Decisions made early in the life cycle tend to be more cost effective, e.g., identifying a

defect-prone module in the design stage and taking corrective action versus addressing it in the

testing stage. These models therefore consider the insights possible in design, in coding, and in

compile as three distinct decision points in the software process.

Factors that are significant early in the life cycle may be superseded by later factors. The

earlier factors are likely to drive, and be correlated with, the later factors. For example, skimping

on design time may lead to increased coding and testing times as design issues are resolved later

in the life cycle. These issues are explored in the analyses below.

7.3 MULTIPLE REGRESSION MODELS FOR PSP QUALITY

The multiple regression models described in this section use the general linear model.

The focus in these analyses is on identifying the factors that affect software quality rather than

building a specific regression model that would primarily be relevant in the PSP context.

The process variables of primary interest in predicting defects are the times spent in

design and code, the review rates, and the defect densities found in the reviews. Defect density

in compile provides data for a third decision point in addition to design and code. Program size

and programmer ability address the product and people issues; they are common variables

considered for all models. Note that programmer ability in these regression models is

empirically determined by average performance on the first three assignments; with only three

possible values, it is a simple surrogate for ability.

Program size is expressed in thousands-of-lines-of-code (KLOC), and times are

expressed in hours. This makes measures across variables consistent. When review rates are

measured in hrs/KLOC, there is a natural progression from zero (no review held) to fast reviews

221

to reviews that comply with the recommended review rates. The recommended review rate of

less than 200 LOC/hour therefore becomes a value greater than 5 hours/KLOC.

As a rule of thumb, it is desirable to have six to ten cases in the data set per variable

being analyzed [Neter et al. 1996, 330]. As a result, the data sets primarily used in these

analyses are the C and C++ data sets for PSPb, which have 1758 and 920 observations

respectively. This is reasonable for a rigorous analysis of models that may have as many as nine

main effects and as many as 17 statistically significant interaction effects.

The variable names for the factors used in the multiple regression models in this chapter,

and their definitions, are listed in Table 117.

Table 117 Variable Names and Definitions for Multiple Regression Models

Variable Name Definition

PgmrAb Programmer Ability (Average Defect Density in Testing 1A-3A)

KLOC Program Size (Thousands of Lines of Code)

MajPrcs PSP Major Process (PSP0, PSP1, PSP2, PSP3)

DDsTim Design Time (hrs/KLOC)

EDRR Design Review Rate (hrs/KLOC)

FDDDR Defect Density in Design Review (defects/KLOC)

GCoTim Coding Time (hrs/KLOC)

HCCR Code Review Rate (hrs/KLOC)

IDDCR Defect Density in Code Review (defects/KLOC)

JDDCm Defect Density in Compile (defects/KLOC)

TDDTs Defect Density in Testing (defects/KLOC)

222

7.3.1 An Overview of Regression Theory

The equation for the standard linear regression model in matrix form is Y=Xβ+ξ, where Y

is the vector of observations (the dependent variable), X is the treatment design matrix for the

predictor variables, β is the vector of treatment fixed-effect parameters, and ξ is the vector of

experimental errors [Littell et al. 1996, 16; Neter et al. 1996, 226-230]. The β parameters are

partial regression coefficients since they express the partial effect of one prediction variable

when the others are held constant.

There are n observations and p-1 predictor variables. The errors ξ are assumed to be

independent, normal variables with the expected value, E(ξ)=0 and σ2(ξ)=σ2I. The least squares

estimates for β are b=(X’X)-1(X’Y). The estimates for Y are Ŷ Xb= . The residual errors are

ˆe Y Y= − .

The adjusted coefficient of multiple determination, R2
a, may be used for comparing

models. It measures the proportionate reduction of total variation in Y associated with the set of

X variables. The error mean square (MSE) is an estimate of σ2 and can be compared to the

regression mean square (MSR) to test whether parameters β=0 in analysis of variance.

7.3.2 The Baseline Multiple Regression Models

The exploratory data analysis indicated that the useful variables, excluding the primary

process variables, are the PSP major process, program size, and programmer ability. The PSP

major process aggregates process information that will be further explored at a finer level of

detail for design, coding, and compilation.

The multiple regression results for the baseline models on defect density in testing are

shown in Table 118. The baseline regression model without interaction effects is:

223

(Defect density in testing) = β0 + βMajPrcs (XMajPrcs) + βPgmrAb (PgmrAb)

+ βKLOC (KLOC)

where β MajPrcs is the level for the PSP major process and X MajPrcs is an indicator variable for

whether that PSP major process is the correct one for the observation. The baseline regression

model with interaction effects, noted with “-IE” attached to the model name in the table headers,

is:

(Defect density in testing) = β0 + βMajPrcs (XMajPrcs) + βPgmrAb (PgmrAb)

+ βKLOC (KLOC)

+ βMajPrcs* PgmrAb (XMajPrcs*PgmrAb) + βMajPrcs* KLOC (XMajPrcs*KLOC)

+ βPgmrAb* KLOC (PgmrAb*KLOC) + βMajPrcs*PgmrAb* KLOC (XMajPrcs*PgmrAb*KLOC)

224

Table 118 Multiple Regression Models for the Baseline Case

Source Baseline
Model

PSPb C

Baseline
Model

PSPb C++

Baseline
Model - IE

PSPb C

Baseline
Model - IE
PSPb C++

DF 5 5 15 15

SS 943691.3 391640.5 1430081.7 564995.4

Model

MS 188738.3 78328.1 95338.8 37666.4

DF 1752 914 1742 904

SS 1768047.5 804368.0 1281657.0 631013.1

Error

MS 1009.2 880.1 735.7 698.0

DF 1757 919 1757 919 Total

SS 2711738.7 1196008.5 2711738.7 1196008.5

F Ratio 187.0 89.0 129.6 54.0

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.3469 0.3253 0.5255 0.4684

The baseline models were shown to be statistically significant for both of the data sets,

including and excluding interaction effects. The baseline models provide a benchmark for

comparing the process-based models. Any model built in design, coding, or compile that

accounts for less of the variation in the software quality than the equivalent baseline model

provides less insight than the relatively simple baseline model that can be used prior to beginning

the software effort.

The parameter estimates of the baseline regression models, and the associated standard

errors (in parentheses under the estimate), are listed in Table 119 for the main effects. Estimates

where the p-values for the null hypothesis 0iβ = are less than 0.05 are denoted with *, less than

0.01 with **, less than 0.001 with ***, and less than 0.0001 with ****.

225

Table 119 Main Effects for the Baseline Models

Parameter

Baseline
Model

PSPb C

Baseline
Model

PSPb C++

Baseline
Model - IE

PSPb C

Baseline
Model - IE
PSPb C++

β0 (Intercept) 2.44

(3.71)

4.71

(4.81)

11.69

(7.37)

10.53

(19.02)

PSP0 31.52****

(3.36)

24.36****

(4.27)

-16.57*

(8.06)

-14.28

(19.39)

PSP1 13.59****

(3.25)

9.82*

(4.26)

9.08

(8.11)

5.63

(19.59)

PSP2 -1.06

(3.30)

-2.58

(4.31)

-2.07

(8.02)

-0.10

(19.72)

MajPrcs

PSP3 0.0

(.)

0.0

(.)

0.0

(.)

0.0

(.)

PgmrAb 0.42****

(0.02)

0.49****

(.03)

0.08

(0.14)

0.07

(0.39)

KLOC -62.16****

(10.86)

-58.70****

(10.32)

-16.59

(30.09)

-6.41

(75.82)

All three variables were shown to be statistically significant in the baseline models

without interaction effects. When interaction effects were considered (in the last two columns of

the table), they dominated the models, suggesting the complexity of the interdependencies

between the ability of the programmer, the processes used by the programmer, and the size of the

program being built. Note that terms including categorical variables such as the PSP major

process are not uniquely estimable and are estimated relative to one of the categories, e.g., PSP3,

which has an estimate of 0 and no standard error.

The interaction effects for the PSP major process are separately listed in Table 120.

226

Table 120 Interaction Effects for the PSP Major Process in the Baseline Models

Parameter

Baseline
Model

PSPb C

Baseline
Model

PSPb C++

Baseline
Model - IE

PSPb C

Baseline
Model - IE
PSPb C++

PSP0 -- -- 1.25****

(0.15)

1.40***

(0.40)

PSP1 -- -- 0.27

(0.15)

0.39

(0.40)

PSP2 -- -- 0.11

(0.15)

0.23

(0.40)

MajPrcs
*

PgmrAb

PSP3 -- -- 0.0

(.)

0.0

(.)

PSP0 -- -- 147.89**

(46.59)

121.43

(79.34)

PSP1 -- -- 9.98

(41.51)

-27.11

(81.58)

PSP2 -- -- 14.50

(38.72)

-18.72

(83.74)

MajPrcs
*

KLOC

PSP3 -- -- 0.0

(.)

0.0

(.)

PSP0 -- -- -6.34****

(0.98)

-6.73***

(1.77)

PSP1 -- -- -1.26

(0.81)

-0.62

(1.76)

PSP2 -- -- -0.42

(0.74)

-0.73

(1.77)

MajPrcs
*

PgmrAb
*

KLOC

PSP3 -- -- 0.0

(.)

0.0

(.)

227

The difference between PSP0 and the other PSP processes is clearly dominant, indicating

that any disciplined process is superior to an ad hoc process.

The interaction effects for programmer ability are separately listed in Table 121.

Table 121 Interaction Effects for Programmer Ability in the Baseline Models

Parameter

Baseline
Model

PSPb C

Baseline
Model

PSPb C++

Baseline
Model - IE

PSPb C

Baseline
Model - IE
PSPb C++

PSP0 -- -- 1.25****

(0.15)

1.40***

(0.40)

PSP1 -- -- 0.27

(0.15)

0.39

(0.40)

PSP2 -- -- 0.11

(0.15)

0.23

(0.40)

MajPrcs
*

PgmrAb

PSP3 -- -- 0.0

(.)

0.0

(.)

PgmrAb * KLOC -- -- -0.16

(0.61)

-0.07

(1.62)

PSP0 -- -- -6.34****

(0.98)

-6.73***

(1.77)

PSP1 -- -- -1.26

(0.81)

-0.62

(1.76)

PSP2 -- -- -0.42

(0.74)

-0.73

(1.77)

MajPrcs
*

PgmrAb
*

KLOC

PSP3 -- -- 0.0

(.)

0.0

(.)

228

Programmer ability appears to be most important as a factor when an ad hoc process is

followed. This is consistent with the findings in Chapter 4 that a disciplined process decreases

the differences between the top-quartile and bottom-quartile performers in PSP.

The interaction effects for program size are included in the separate tables for interaction

effects of the other two variables. Program size appears to only be statistically significant in

conjunction with PSP0 when interaction effects are considered.

All three variables in the baseline models can be considered useful predictor variables for

software quality.

7.3.3 Multiple Regression Models in Design

In the process-based models, the PSP major process variable is superseded by the

variables characterizing the process in greater depth. For the design process, those variables are

the design time, design review rate, and defect density in design review. The multiple regression

results for the design models are shown in Table 122. The design regression model without

interaction effects (named Design or Design Additive hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

The design regression model with interaction effects (named Design –IE or Design Additive –IE

hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*DDsTim (PgmrAb*DDsTim)

+ βPgmrAb*EDRR (PgmrAb*EDRR) + βPgmrAb*FDDDR (PgmrAb*FDDDR)

229

+ βDDsTim*FDDDR (DDsTim*FDDDR) + βEDRR*FDDDR (EDRR*FDDDR)

+ βPgmrAb*KLOC*EDRR (PgmrAb*KLOC*EDRR)

+ βPgmrAb*KLOC*FDDDR (PgmrAb*KLOC*FDDDR)

+ βPgmrAb*DDsTim*EDRR (PgmrAb*DDsTim*EDRR)

+ βPgmrAb*EDRR*FDDDR (PgmrAb*EDRR*FDDDR)

+ βKLOC*DDsTim*EDRR (KLOC*DDsTim*EDRR)

+ βDDsTim*EDRR*FDDDR (DDsTim*EDRR*FDDDR)

+ βPgmrAb*DDsTim*EDRR*FDDDR (PgmrAb*DDsTim*EDRR*FDDDR)

+ βPgmrAb*KLOC*DDsTim*EDRR*FDDDR (PgmrAb*KLOC*DDsTim*EDRR*FDDDR)

Table 122 Multiple Regression Models in Design

Source Design
Model

PSPb C

Design
Model

PSPb C++

Design
Model - IE

PSPb C

Design
Model - IE
PSPb C++

DF 5 5 19 19

SS 735278.5 328348.6 1022548.6 496651.9

Model

MS 147055.7 65669.7 53818.3 26139.6

DF 1752 914 1738 900

SS 1976460.2 867659.9 1689190.2 699356.5

Error

MS 1128.1 949.3 971.9 777.1

DF 1757 919 1757 919 Total

SS 2711738.7 1196008.5 2711738.7 1196008.5

F Ratio 130.4 69.2 55.37 33.64

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.2691 0.2706 0.3703 0.4029

230

The design models were shown to be statistically significant for both of the data sets,

including and excluding interaction effects. Perhaps the most important observation about the

design models, however, is that they not account for as much of the variation in the data as the

baseline models. Since the primary difference between the two sets of models is the replacement

of the PSP major process variable with the three design process variables, it seems reasonable to

infer that other aspects of the process, which are holistically captured by the simple PSP major

process, are necessary to understand the relationship of process and software quality, at least

within the PSP context.

The parameter estimates of the design models, and the associated standard errors (in

parentheses under the estimate), are listed in Table 123 for the main effects.

Table 123 Main Effects for the Design Models

Parameter

Design
Model

PSPb C

Design
Model

PSPb C++

Design
Model - IE

PSPb C

Design
Model - IE
PSPb C++

β0 (Intercept) 21.21****

(1.86)

15.37****

(2.45)

5.72*

(2.48)

-0.20

(3.34)

PgmrAb 0.42****

(0.02)

0.47****

(0.03)

0.83****

(0.04)

0.95****

(0.06)

KLOC -95.43****

(10.62)

-62.82****

(10.27)

63.99****

(16.70)

57.31***

(17.07)

DDsTim 0.31***

(0.09)

0.49****

(0.11)

0.27

(0.17)

0.17

(0.19)

EDRR -2.48****

(0.35)

-3.28****

(0.52)

0.39

(0.81)

1.54

(1.14)

FDDDR -0.06

(0.09)

0.33***

(0.09)

-0.52

(0.33)

-0.44

(0.47)

231

All three design variables, along with programmer ability and program size, were shown

to be statistically significant in at least one of the design models without interaction effects.

When interaction effects were considered, the design variables were no longer shown to be

statistically significant, suggesting the complexity of the interdependencies between the ability of

the programmer, the design processes used by the programmer, and the size of the program being

built. All three design variables in the design models can be considered useful predictor

variables for software quality.

All interactions were investigated, but only the 14 interaction effects that were shown to

be statistically significant for at least one of the data sets were retained. The focus of this

analysis is on understanding the importance of the predictor variables, rather than building a

parsimonious defect prediction model. This approach was also used for the coding and

compilation models. The two-factor interaction effects are separately listed in Table 124.

232

Table 124 Two-Factor Interaction-Effect Estimates in the Design Models

Parameter

Design
Model

PSPb C

Design
Model

PSPb C++

Design
Model - IE

PSPb C

Design
Model - IE
PSPb C++

PgmrAb*KLOC -- -- -4.01****

(0.34)

-3.40****

(0.42)

PgmrAb*DDsTim -- -- -0.002

(0.002)

0.003

(0.002)

PgmrAb*EDRR -- -- -0.18****

(0.02)

-0.15****

(0.03)

PgmrAb*FDDDR -- -- -0.02****

(0.004)

-0.01*

(0.007)

DDsTim*FDDDR -- -- 0.05**

(0.02)

0.04

(0.02)

EDRR*FDDDR -- -- -0.004

(0.07)

0.04

(0.09)

Programmer ability is involved in interaction effects with every other variable in the

design models, although the interaction with design time was not shown to be statistically

significant when all statistically significant interaction effects for either data set were joined.

The possibility of an interaction between design review rate and defect density in design

review was raised in Section 4.8.3, but the interaction effect was not shown to be statistically

significant when all statistically significant interaction effects for either data set were joined (and

the signs of the coefficient differ). Although design review rate was shown to be correlated with

defect removal effectiveness, it seems likely that defect density in design review is also

significantly affected by the number of defects in the design, and this relationship supersedes that

with design review rate.

233

The interaction effects involving more than two factors are separately listed in Table 125.

Interaction effects involving more than two factors are usually of little practical impact but are

included in the models for completeness.

Table 125 Other Interaction-Effect Estimates in the Design Models

Parameter

Design
Model

PSPb C

Design
Model

PSPb C++

Design
Model -IE

PSPb C

Design
Model -IE
PSPb C++

PgmrAb*KLOC
*EDRR

-- -- 0.57****

(0.10)

0.27

(0.14)

PgmrAb*KLOC
*FDDDR

-- -- 0.06*

(0.03)

0.04

(0.03)

PgmrAb
*DDsTim*EDRR

-- -- 0.006****

(0.0006)

0.004****

(0.0007)

PgmrAb*EDRR
*FDDDR

-- -- 0.006****

(0.001)

0.002

(0.001)

KLOC*DDsTim
*EDRR

-- -- -2.02****

(0.43)

-1.19*

(0.55)

DDsTim*EDRR
*FDDDR

-- -- -0.002

(0.003)

-0.0007

(0.004)

PgmrAb*DDsTim
*EDRR*FDDDR

-- -- -0.0002****

(0.00005)

-0.00009

(0.00008)

PgmrAb*KLOC
*DDsTim*EDRR

*FDDDR

-- -- -0.0001

(0.0002)

0.0002

(0.0003)

The interaction effect for programmer ability with design time, and with design review

rate, was shown to be statistically significant for both data sets. Programmer ability was shown

to be a statistically significant factor as a main effect and as an interaction effect with every other

234

variable in the design models; it is arguably the most important factor in understanding software

quality during design.

As a defect prediction model, the design models are inadequate in comparison with the

baseline models. From a management perspective, the design models reinforce the importance

of programmer ability in building high quality programs.

7.3.4 Multiple Regression Models in Coding

The variables added to the code models are the coding time, code review rate, and defect

density in code review. The multiple regression results for the code models are shown in Table

126. The code model without interaction effects (named Code or Code Additive hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR)

The code model with interaction effects, (named Code –IE or Code Additive –IE hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR)

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*EDRR (PgmrAb*EDRR)

+ βPgmrAb*FDDDR (PgmrAb*FDDDR) + βPgmrAb*GCoTim (PgmrAb*GCoTim)

+ βPgmrAb*HCRR (PgmrAb*HCRR) + βPgmrAb*IDDCR (PgmrAb*IDDCR)

+ βKLOC*HCRR (KLOC*HCRR) + βEDRR*GCoTim (EDRR*GCoTim)

+ βEDRR*HCRR (EDRR*HCRR) + βHCRR*IDDCR (HCRR*IDDCR)

+ βPgmrAb*KLOC*GCoTim (PgmrAb*KLOC*GCoTim)

235

+ βPgmrAb*KLOC*HCRR (PgmrAb*KLOC*HCRR)

+ βPgmrAb*DDsTim*EDRR (PgmrAb*DDsTim*EDRR)

+ βPgmrAb*EDRR*HCRR (PgmrAb*EDRR*HCRR)

+ βPgmrAb*FDDDR*IDDCR (PgmrAb*FDDDR*IDDCR)

+ βPgmrAb*KLOC*GCoTim*HCRR*IDDCR

(PgmrAb*KLOC*GCoTim*HCRR*IDDCR)

Table 126 Multiple Regression Models in Code

Source Code
Model

PSPb C

Code
Model

PSPb C++

Code
Model -IE

PSPb C

Code
Model -IE
PSPb C++

DF 8 8 25 25

SS 893503.7 419377.4 1221840.6 598696.3

Model

MS 111688.0 52422.2 48873.6 23947.9

DF 1749 911 1732 894

SS 1818235.0 776631.1 1489898.2 597312.1

Error

MS 1039.6 852.5 860.2 668.1

DF 1757 919 1757 919 Total

SS 2711738.7 1196008.5 2711738.7 1196008.5

F Ratio 107.4 61.5 56.8 35.8

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.3264 0.3449 0.4426 0.4866

The code models were shown to be statistically significant for both of the data sets,

including and excluding interaction effects. The code models account for more of the variation

in the data than the baseline models only for the C++ data sets. Detailed process data for the

236

design and code processes provides, at best, marginally superior models to the models based on

the PSP major process.

The parameter estimates of the code models, and the associated standard errors (in

parentheses under the estimate), are listed in Table 127 for the main effects.

Table 127 Main Effects for the Code Models

Parameter

Code
Model

PSPb C

Code
Model

PSPb C++

Code
Model -IE

PSPb C

Code
Model -IE
PSPb C++

β0 (Intercept) 13.81****

(2.03)

2.35

(2.65)

5.04

(2.94)

5.05

(4.14)

PgmrAb 0.41****

(0.02)

0.41****

(0.03)

0.76****

(0.04)

0.55****

(0.08)

KLOC -73.14****

(10.47)

-36.75***

(10.06)

72.36****

(18.27)

24.59

(17.69)

DDsTim 0.15

(0.09)

0.05

(0.11)

0.09

(0.09)

-0.14

(0.11)

EDRR -0.45

(0.42)

-2.40***

(0.70)

1.01

(1.33)

-2.32

(1.81)

FDDDR 0.14

(0.08)

0.33***

(0.09)

-0.03

(0.14)

0.44*

(0.21)

GCoTim 0.59****

(0.06)

1.21****

(0.12)

0.06

(0.12)

0.28

(0.18)

HCRR -2.06****

(0.48)

-0.34

(0.67)

1.33

(1.11)

2.90

(1.50)

IDDCR -0.16**

(0.05)

0.02

(0.07)

-0.40***

(0.11)

-0.13

(0.15)

237

All three code variables were shown to be statistically significant in at least one of the

code models. Design time dropped out of all the code models as a statistically significant main

effect, suggesting that, at least within the PSP context, design time is superseded by code time,

which is reasonable since the PSP assignments are primarily programming problems.

All interactions were investigated, but only the 17 interaction effects that were shown to

be statistically significant for at least one of the data sets were retained. The two-factor

interaction effects are separately listed in Table 128.

238

Table 128 Two-Factor Interaction-Effect Estimates in the Code Models

Parameter

Code
Model

PSPb C

Code
Model

PSPb C++

Code
Model -IE

PSPb C

Code
Model -IE
PSPb C++

PgmrAb*KLOC -- -- -3.65****

(0.44)

-0.91

(0.49)

PgmrAb*EDRR -- -- -0.05**

(0.02)

-0.08*

(0.03)

PgmrAb*FDDDR -- -- -0.0003

(0.003)

-0.007

(0.004)

PgmrAb*GCoTim -- -- 0.006****

(0.001)

0.02****

(0.002)

PgmrAb*HCRR -- -- -0.13****

(0.02)

-0.06*

(0.03)

PgmrAb*IDDCR -- -- 0.002

(0.001)

-0.001

(0.003)

KLOC*HCRR -- -- -21.28**

(7.07)

-8.80

(7.72)

EDRR*GCoTim -- -- 0.06

(0.03)

0.10*

(0.05)

EDRR*HCRR -- -- -0.26

(0.15)

-0.42*

(0.18)

HCRR*IDDCR -- -- 0.06****

(0.01)

0.02

(0.01)

Although the possibility of an interaction between design time and code time was raised

in Sections 4.8.1 and 4.8.3, no statistically significant interaction was shown. The original

concern was that an increase in design time corresponded to an increase in design defect density,

possibly as a result of design activities occurring in coding; the loss of statistical significance for

239

design time weighs against this potential explanation. No interaction was shown to be

statistically significant for design time with defect density in design review or defect density in

code review, which lessens the likelihood that bad design decisions are being addressed in

reviews as defects are identified.

The possibility that reuse of defect-free components is lessening design time can be

tentatively ruled out since the interaction effect between design time and program size was not

shown to be statistically significant. This suggests that reuse is not a major factor in decreasing

design effort.

This leaves the possibility that the relatively simple PSP assignments do not require

powerful design techniques, with the implication that learning curve effects associated with the

PSP design techniques are driving the positive relation of design time to defect density in testing.

This suggests that students taking more time to understand the PSP design techniques are also

more prone to defects. It remains possible that design activities are occurring in coding, but they

are relatively minor. There is, however, no direct way of testing whether this explanation has

empirical support given the PSP data available.

The interaction effects involving more than two factors are separately listed in Table 129.

240

Table 129 Other Interaction-Effect Estimates in the Code Models

Parameter

Code
Model

PSPb C

Code
Model

PSPb C++

Code
Model -IE

PSPb C

Code
Model -IE
PSPb C++

PgmrAb*KLOC
*GCoTim

-- -- -0.03

(0.02)

-0.15****

(0.03)

PgmrAb*KLOC
*HCRR

-- -- 0.80****

(0.12)

0.24

(0.16)

PgmrAb
*DDsTim*EDRR

-- -- -0.0002

(0.0005)

0.002****

(0.0006)

PgmrAb*EDRR
*HCRR

-- -- 0.009****

(0.002)

0.008**

(0.003)

PgmrAb*FDDDR
*IDDCR

-- -- 0.00007

(0.00004)

-0.000005

(0.00002)

PgmrAb*KLOC
*DDsTim*EDRR

*FDDDR

-- -- 0.00001

(0.0001)

0.0003

(0.0002)

PgmrAb*KLOC
*GCoTim*HCRR

*IDDCR

-- -- -0.0002*

(0.00007)

-0.00006

(0.00008)

While it is interesting to note that programmer ability and program size interact with the

three design variables and with the three code variables as five-factor interaction effects, the lack

of statistical significance and the small size of the coefficients suggest that these two effects are

of little practical import.

As a defect prediction model, the code models are on the cusp of becoming preferable to

the baseline models. From a management perspective, the code models again reinforce the

importance of programmer ability.

241

7.3.5 Multiple Regression Models in Compile

The variable added to the compile models is defect density in compile. The multiple

regression results for the compile models are shown in Table 130. The compile model without

interaction effects (named Compile or Compile Additive hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR)

+ βJDDCm (JDDCm)

The compile model with interaction effects (named Compile –IE or Compile Additive –IE

hereafter) is:

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR)

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR)

+ βJDDCm (JDDCm)

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*GCoTim (PgmrAb*GCoTim)

+ βPgmrAb*HCRR (PgmrAb*HCRR) + βPgmrAb*IDDCR (PgmrAb*IDDCR)

+ βPgmrAb*JDDCm (PgmrAb*JDDCm) + βKLOC*GCoTim (KLOC*GCoTim)

+ βKLOC*HCRR (KLOC*HCRR) + βKLOC*JDDCm (KLOC*JDDCm)

+ βGCoTim*JDDCm (GCoTim*JDDCm) + βHCRR*IDDCR (HCRR*IDDCR)

+ βPgmrAb*KLOC*GCoTim (PgmrAb*KLOC*GCoTim)

+ βPgmrAb*KLOC*IDDCR (PgmrAb*KLOC*IDDCR)

+ βPgmrAb*KLOC*JDDCm (PgmrAb*KLOC*JDDCm)

242

+ βPgmrAb*FDDDR*IDDCR (PgmrAb*FDDDR*IDDCR)

+ βFDDDR*IDDCR*JDDCm (FDDDR*IDDCR*JDDCm)

+ βPgmrAb*KLOC*GCoTim*JDDCm(PgmrAb*KLOC*GCoTim*JDDCm)

+ βPgmrAb*FDDDR*IDDCR*JDDCm(PgmrAb*FDDDR*IDDCR*JDDCm)

Table 130 Multiple Regression Models in Compile

Source Compile
Model

PSPb C

Compile
Model

PSPb C++

Compile
Model -IE

PSPb C

Compile
Model -IE
PSPb C++

DF 9 9 26 26

SS 1002755.9 471233.4 1270016.2 682000.2

Model

MS 111417.3 52359.3 48846.8 26230.8

DF 1748 910 1731 893

SS 1708982.9 724775.1 1441722.6 514008.3

Error

MS 977.7 796.5 832.9 575.6

DF 1757 919 1757 919 Total

SS 2711738.7 1196008.5 2711738.7 1196008.5

F Ratio 114.0 65.7 58.7 45.6

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.3665 0.3880 0.4604 0.5577

The compile models were shown to be statistically significant for both of the data sets,

including and excluding interaction effects. The compile models account for more of the

variation in the data than the baseline models for three of the four data sets. The compile

models are somewhat superior to the baseline models and provide the basis for further

exploration of the detailed process data.

243

The parameter estimates of the compile models, and the associated standard errors (in

parentheses under the estimate), are listed in Table 131 for the main effects.

Table 131 Main Effects for the Compile Models

Parameter

Compile
Model

PSPb C

Compile
Model

PSPb C++

Compile
Model -IE

PSPb C

Compile
Model -IE
PSPb C++

β0 (Intercept) 9.01****

(2.02)

-3.53

(2.66)

7.97*

(3.16)

20.98****

(4.52)

PgmrAb 0.37****

(0.02)

0.36****

(0.03)

0.48****

(0.05)

0.006

(0.09)

KLOC -56.27****

(10.28)

-22.36*

(9.89)

-1.39

(25.38)

-53.16*

(25.58)

DDsTim 0.10

(0.09)

0.04

(0.11)

-0.008

(0.08)

0.10

(0.10)

EDRR -0.14

(0.41)

-1.90**

(0.68)

0.23

(0.40)

-1.20*

(0.59)

FDDDR 0.12

(0.08)

0.29**

(0.09)

-0.03

(0.12)

0.06

(0.10)

GCoTim 0.37****

(0.07)

0.97****

(0.12)

-0.18

(0.16)

0.48

(0.27)

HCRR -1.55***

(0.47)

0.16

(0.65)

-1.51

(0.85)

-0.65

(1.05)

IDDCR -0.14**

(0.05)

0.005

(0.07)

-0.17

(0.09)

-0.10

(0.13)

JDDCm 0.16****

(0.02)

0.17****

(0.02)

0.13**

(0.04)

-0.34****

(0.06)

244

Defect density in compile was shown to be statistically significant in all four of the

compile models. It is interesting to note that, in general, all of the other process variables were

shown not to be statistically significant when interaction effects were included in the compile

models. This reinforces the importance of the interactions between programmer ability,

program size, and the process in determining software quality.

From a management perspective, the message appears clear that the competence of the

staff and the processes they follow are synergistic in achieving high-quality software products.

While this message is hardly surprising, in the sometimes passionate discussions of process

discipline and professional heroics [Bach 1994], one side of the equation may be emphasized to

the detriment of the other.

All interactions were investigated, but only the 17 interaction effects that were shown to

be statistically significant for either or both of the data sets were retained. The two-factor

interaction effects are separately listed in Table 132.

245

Table 132 Two-Factor Interaction-Effect Estimates in the Compile Models

Parameter

Compile
Model

PSPb C

Compile
Model

PSPb C++

Compile
Model -IE

PSPb C

Compile
Model -IE
PSPb C++

PgmrAb*KLOC -- -- -1.15*

(0.50)

0.65

(0.55)

PgmrAb*GCoTim -- -- 0.01****

(0.002)

0.003

(0.004)

PgmrAb*HCRR -- -- -0.03***

(0.009)

0.01

(0.02)

PgmrAb*IDDCR -- -- -0.005****

(0.001)

-0.001

(0.003)

PgmrAb*JDDCm -- -- 0.0007

(0.0005)

0.009****

(0.0009)

KLOC*GCoTim -- -- 3.17

(2.12)

-2.08

(2.65)

KLOC*HCRR -- -- 0.63

(4.54)

-3.40

(5.86)

KLOC*JDDCm -- -- 0.64

(0.58)

2.37****

(0.47)

GCoTim*JDDCm -- -- -0.003****

(0.0007)

0.002

(0.001)

HCRR*IDDCR -- -- 0.05****

(0.009)

0.02**

(0.007)

The interaction effects involving more than two factors are separately listed in Table 133.

246

Table 133 Other Interaction-Effect Estimates in the Compile Models

Parameter

Compile
Model

PSPb C

Compile
Model

PSPb C++

Compile
Model -IE

PSPb C

Compile
Model -IE
PSPb C++

PgmrAb*KLOC
*GCoTim

-- -- -0.13****

(0.03)

0.02

(0.05)

PgmrAb*KLOC
*IDDCR

-- -- 0.02***

(0.007)

-0.003

(0.01)

PgmrAb*KLOC
*JDDCm

-- -- -0.02

(0.009)

-0.04****

(0.007)

PgmrAb*FDDDR
*IDDCR

-- -- 0.00003

(0.00003)

-0.00009**

(0.00003)

FDDDR*IDDCR
*JDDCm

-- -- -0.00001

(0.00008)

0.00006

(0.00004)

PgmrAb*KLOC
*GCoTim
*JDDCm

-- -- 0.0004

(0.0004)

-0.0006

(0.0003)

PgmrAb*FDDDR
*IDDCR*JDDCm

-- -- 0.000001

(0.0000009)

0.0000005

(0.0000008)

As a defect prediction model, the compile models are preferable to the baseline models.

The compile models are the focus of the remaining analyses in this chapter, and the emphasis

will be on regression diagnostics and on increasing the amount of variation explained by the

compile models from the 37-56% measured by the adjusted coefficient of determination.

From a management perspective, all of the process-based models emphasize the

importance of programmer ability. This is not a surprising result. Neither is the fact that, with

the possible exception of design time, the process variables are useful predictor variables for

software quality. The lack of significance for design time may be driven by the simple nature of

247

the PSP assignments compared to the complex design needs in a real-world software project;

evidence for alternate explanations is lacking in the statistical results.

7.3.6 Multicollinearity and Variance Inflation Factors

Multicollinearity occurs when the predictor variables in the regression equation are

correlated. When there is significant multicollinearity, the regression coefficients cannot be

interpreted as reflecting the effects of the different predictor variables; the regression coefficients

depend on which other predictor variables are included in the model and which ones are left out

[Neter et al. 1996, 285-295].

The variance inflation factors (VIF) for the predictor variables can be used to detect the

presence of multcollinearity. If the maximum VIF value is greater than ten, multicollinearity is

likely to be a problem, and if the mean VIF values are considerably larger than one, it indicates

serious multicollinearity issues [Neter et al. 1996, 386-387]. Table 134 lists the maximum and

average VIF values for the compile models.

Table 134 Multicollinearity Diagnostics Using VIF

Multicollinearity
Diagnostics

Compile Model
PSPb C

Compile Model
PSPb C++

Maximum VIF 3.0 5.0

Average VIF 1.7 2.3

Multicollinearity is a concern for these data sets, but arguably not a serious problem.

7.3.7 Influential Outliers

A number of standard diagnostics are available for identifying outliers that may be

influential in the context of a regression model: leverage, the studentized deleted residual,

248

Cook’s distance, and DFFITS. Leverage addresses the question of whether the predictor variable

Xij (or the set of Xij values) is atypical. The studentized deleted residual addresses the question

of whether the dependent variable Yi is atypical. Cook’s distance and DFFITS address the

question of whether omission of the observation would produce a dramatic change in the

parameter estimates for the regression model.

Leverage, hii, which measures the distance from the ith case to the center of all X

observations, can be used to identify potential outliers in the predictor variables. If 2ii
ph
n

> ,

where p is the number of variables in the regression equation, and n is the number of

observations, then the observation is a potential outlier. In this case, the number of observations

is quite large for each of the data sets: (PSPb, C) has 1758 observations, and (PSPb, C++) has

920 observations. As a result, this rule is not practical for these data sets. An alternative rule is

to identify an observation as a potential outlier if hii > 0.5, which was the rule used here [Neter et

al. 1996, 375-378].

The studentized deleted residual, ti, can be used to identify outliers for the predictor

variable. The Bonferroni test, (1 ; 1)
2it t n p

n
α

> − − − , is used to identify outliers [Neter et al.

1996, 373-375]. For these data sets, t(0.9995,∞)=3.291, was used.

Cook’s distance, Di, measures the effect of an observation on Β̂ [Neter et al. 1996, 380-

382]. If Di > F(0.50,p,n-p), then the fitted values obtained with and without the ith observation

can be considered to differ substantially. For these data sets, Di > F(0.50,27,∞) =1.03 was used

to identify influential observations.

249

DFFITSi measures the effect of an observation on îY . If 2i
pDFFITS
n

> , then the ith

observation is influential [Neter et al. 1996, 378-380]. For (PSPb, C), the test is for DFFITSi >

0.151 for the main-effects compile model and for DFFITSi > 0.248 for the compile model with

interactions; for (PSPb, C++), the test is for DFFITSi > 0.209 for the main-effects compile model

and for DFFITSi > 0.343 for the compile model with interactions.

Table 135 summarizes the results for the compile models, including and excluding

influential outliers. Any observation that violated one or more of the heuristics was considered

an influential outlier.

Table 135 Comparing Compile Models Including and Excluding Influential Outliers

Model and Data Set Outliers N Outliers R2
a MSE SSE

with 47 0.3665 977.7 1708982.9 Compile model

PSPb, C w/o -- 0.3380 513.1 872722.4

with 28 0.3880 796.5 724775.1 Compile model

PSPb, C++ w/o -- 0.2929 461.6 388579.1

with 53 0.4604 832.9 1441722.6 Compile model –IE

PSPb, C w/o -- 0.4038 440.6 774573.0

with 36 0.5577 575.6 514008.3 Compile model –IE

PSPb, C++ w/o -- 0.4475 393.1 336902.0

The influential outliers were subsets of the outliers identified by both the XmR charts and

the interquartile limits in Chapter 5. The R2
a values for the models without influential outliers

were not as good as those for the original models. The mean sum of squares of the errors (MSE)

for the models, which is an estimate of σ2, decreased by 32-48%, however, and decreasing

variability is desirable. Minimizing the sum of squares of the errors (SSE) is also desirable.

250

As described in Section 5.11, the analysis of outliers for the eight process variables using

XmR charts and interquartile limits led to 33% of the assignments being identified as potential

outliers. Although in-process control would be preferred for identifying potential assignable

causes (and is the proper use of XmR charts), causal analysis is not feasible for a retrospective

analysis, and excluding 33% of the data is impractical. Shewhart chose 3σ limits for control

charts in part because of the theoretical maximum of 11% of the data being outside the 3σ limits;

the 3σ limits were considered economically reasonable [Shewhart 1939, 91]. Wheeler’s

Empirical Rule suggests that it is most common for 99-100% of the data to be within 3σ of the

average [Wheeler and Chambers 1992, 61]. Identifying 2-4% of the data as atypical, as the

regression diagnostics do, provides a more practical set of outliers in this context than identifying

outliers for each process variable independently.

7.3.8 Box-Cox Transformations

As already shown in Chapter 6, the PSP data is not described well by theoretical

distributions such as lognormal or exponential. Box-Cox power transformations of the

dependent variable attempt to provide a simple, normal linear model that simultaneously satisfies

constant variance, normality, and ˆ()E Y X β= [Rawlings, Pantula, and Dickey 1998, 409-412].

A power transformation of λ=0.3 was found to be the best value for both (PSPb, C) and (PSPb,

C++). None of the models using the Box Cox transformation were superior to those using non-

transformed values in terms of R2
a, and the sum of squares of the error (SSE), which is

minimized as the criterion for choosing the best transformation, is better for the models with

non-transformed variables.

251

7.3.9 Multiplicative Models

A multiplicative model, with log transformations of the continuous variables, would

appear to be a natural model of the software process since a chain reaction of interactions from

injecting defects in production to detecting and removing defects in reviews can be expected

across the life cycle. We expect defect density in design reviews and code reviews to correspond

to defect density in testing, as was demonstrated in Sections 4.8.3 and 4.8.6. We expect review

rates to affect defect removal effectiveness, as was demonstrated in Sections 4.8.2 and 4.8.5. We

expect design time to affect design defect density, and coding time to affect code defect density,

and that defects early in the life cycle will result in an increase in defects at the end of the

development. This was demonstrated in Sections 4.8.1 and 4.8.4, even though an increase in

time corresponded to an increase in defect density in both cases. A variety of statistically

significant interaction effects in the multiple regression models in this chapter suggest complex

relationships between these factors.

Table 136 contains a comparison of the additive compile models already investigated

with their multiplicative counterparts. All of the models were shown to be statistically

significant at α=0.01. The multiplicative compile model without interaction effects (named

Compile Multiplicative hereafter) is:

Ln(Defect density in testing) = β0 + βPgmrAb [Ln(PgmrAb)] + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

+ βJDDCm [Ln(JDDCm)]

The multiplicative compile model with interaction effects (named Compile Multiplicative –IE

hereafter) is:

252

Ln(Defect density in testing) = β0 + βPgmrAb [Ln(PgmrAb)] + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

+ βJDDCm [Ln(JDDCm)]

+ βPgmrAb*KLOC [Ln(PgmrAb)*Ln(KLOC)]

+ βPgmrAb)*Ln(GCoTim [Ln(PgmrAb)*Ln(GCoTim)]

+ βPgmrAb*HCRR [Ln(PgmrAb)*Ln(HCRR)]

+ βPgmrAb*IDDCR [Ln(PgmrAb)*Ln(IDDCR)]

+ βPgmrAb*JDDCm [Ln(PgmrAb)*Ln(JDDCm)]

+ βKLOC*GCoTim [Ln(KLOC)*Ln(GCoTim)]

+ βKLOC*HCRR [Ln(KLOC)*Ln(HCRR)]

+ βKLOC*JDDCm [Ln(KLOC)*Ln(JDDCm)]

+ βGCoTim*JDDCm [Ln(GCoTim)*Ln(JDDCm)]

+ βHCRR*IDDCR [Ln(HCRR)*Ln(IDDCR)]

+ βPgmrAb*KLOC*GCoTim [Ln(PgmrAb)*Ln(KLOC)*Ln(GCoTim)]

+ βPgmrAb*KLOC*IDDCR [Ln(PgmrAb)*Ln(KLOC)*Ln(IDDCR)]

+ βPgmrAb*KLOC*JDDCm [Ln(PgmrAb)*Ln(KLOC)*Ln(JDDCm)]

+ βPgmrAb*FDDDR*IDDCR [Ln(PgmrAb)*Ln(FDDDR)*Ln(IDDCR)]

+ βFDDDR*IDDCR*JDDCm [Ln(FDDDR)*Ln(IDDCR)*Ln(JDDCm)]

+ βPgmrAb*KLOC*GCoTim*JDDCm[Ln(PgmrAb)*Ln(KLOC)*Ln(GCoTim)*Ln(JDDCm)]

+ βPgmrAb*FDDDR*IDDCR*JDDCm[Ln(PgmrAb)*Ln(FDDDR)*Ln(IDDCR)*Ln(JDDCm)]

253

Table 136 Comparing Additive and Multiplicative Compile Models

Data Set Compile Model Outliers R2
a MSE SSE

with 0.3665 977.7 1708982.9 Additive

w/o 0.3380 513.1 872722.4

with 0.3266 1039.3 1816675.9

PSPb C

Multiplicative

w/o 0.3589 496.9 845196.2

with 0.3880 796.5 724775.1 Additive

w/o 0.2929 461.6 388579.1

with 0.3156 890.7 810506.1

PSPb C++

Multiplicative

w/o 0.3041 433.5 382386.2

with 0.4604 832.9 1441722.6 Additive -IE

w/o 0.4038 440.6 774573.0

with 0.4224 891.4 1543008.0

PSPb C

Multiplicative -IE

w/o 0.4296 441.7 741111.6

with 0.5577 575.6 514008.3 Additive -IE

w/o 0.4475 393.1 336902.0

with 0.5144 631.9 564309.3

PSPb C++

Multiplicative -IE

w/o 0.4463 394.0 337625.6

In general, the comparison between additive and multiplicative models suggests:

• the additive models including influential outliers account for more of the variation

than the other models

• the multiplicative models excluding influential outliers account for more of the

variation than the additive models excluding influential outliers

• MSE and SSE decrease markedly for all models when influential outliers are excluded

254

The multiplicative compile models are not noticeably superior to the additive models for

the PSP data sets. This is not an expected result, but some researchers have found linear models

preferred over non-linear models for defect prediction models that are functions of program

structural characteristics and elapsed implementation time [Nikora 1998, 138].

7.3.10 Stratifying by Programmer Quartile

Programmer ability is related to all aspects of the software process, even when

characterized by the simple three-category programmer quartiles. Since top-quartile performers

have less variability, as well as better performance, models using data from only the top

performers may be superior to the inclusive models already analyzed.

Table 137 compares the multiple regression models for the top-quartile performers in

additive and multiplicative forms, including and excluding outliers, to the additive models for all

the PSP students including outliers. All of the models were shown to be statistically significant

at α=0.01. The additive compile models are the same as those described in Section 7.3.5; the

multiplicative compile models are the same as those described in Section 7.3.9. Only the data

sets differ.

255

Table 137 Comparing Compile Models for Top-Quartile Students

Data Set Compile Model Outliers R2
a MSE SSE

PSPb C Additive with 0.3665 977.7 1708982.9

with 0.1227 195.5 91316.8 Additive

w/o 0.2068 96.3 40151.3

with 0.1695 1.7 798.7

PSPb C
TQ

Multiplicative

w/o 0.2725 1.4 590.4

PSPb C++ Additive with 0.3880 796.5 724775.1

with 0.0830 220.2 59016.9 Additive

w/o 0.1847 90.5 22163.9

with 0.1038 1.7 447.3

PSPb C++
TQ

Multiplicative

w/o 0.1933 1.4 336.2

PSPb C Additive -IE with 0.4604 832.9 1441722.6

with 0.1520 189.0 85051.9 Additive -IE

w/o 0.2633 113.1 45451.9

with 0.1959 1.7 745.1

PSPb C
TQ

Multiplicative -IE

w/o 0.2815 1.5 584.9

PSPb C++ Additive -IE with 0.5577 575.6 514008.3

with 0.2110 189.5 47556.2 Additive -IE

w/o 0.2404 91.3 20443.6

with 0.2393 1.4 355.6

PSPb C++
TQ

Multiplicative -IE

w/o 0.2321 1.3 295.6

256

In general, the comparison between the additive and multiplicative models for the top-

quartile students suggests:

• the additive models for all of the PSP students, including influential outliers, account

for more of the variation than the models for just the top-quartile students

• MSE and SSE decrease markedly for the models for the top-quartile students,

especially when influential outliers are excluded

• the multiplicative models for the top-quartile students account for more of the

variation than the additive models for the top-quartile students

The shift from additive to multiplicative models when the data are restricted to the top-

quartile students fits the mental model of the process interactions better, but the stratification also

leads to a less useful model in terms of accounting for variation. The decrease in MSE, the

estimator for σ2, is also desirable, even if perhaps not as desirable as an increase in R2
a.

7.3.11 Stratifying by Conformant Processes

The common wisdom is that programmers who conform to recommended practice will

have better results than those who do not. The performance of programmers following

recommended practice, i.e., review rates less than 200 LOC/hour, should therefore be better and

more predictable than that of the population as a whole. Table 138 summarizes the results of

analyzing processes that conform to recommended practice for review rates. All of the models

were shown to be statistically significant at α=0.01. The additive compile models are the same

as those described in Section 7.3.5; the multiplicative compile models are the same as those

described in Section 7.3.9. Only the data sets differ.

257

Table 138 Comparing Compile Models for Conformant Processes

Data Set Compile Model Outliers R2
a MSE SSE

PSPb C Additive with 0.3665 977.7 1708982.9

with 0.5337 461.3 39670.3 Additive

w/o 0.2503 167.1 13032.4

with 0.1664 1.8 157.4

PSPb C
Conformant

Multiplicative

w/o -0.0784 1.7 132.8

The first thing to note is that there were insufficient observations with reviews that satisfy

recommended practice to generate a useful multiple regression model for the C++ data sets and

for the models that have interaction effects. The rule of thumb is that there should be six to ten

cases for every potential predictor variable [Neter et al. 1996, 330], which means there should be

at least 54 observations for the main-effects compile models and 156 for the compile models

with interaction effects.

This is a consequence of the PSP being a learning environment. While students are

aware of the rules for inspections, the purpose of the personal software process is to identify the

most effective review process for the individual programmer. While it is expected that most

students should conform to recommended practice, part of the learning experience is to

experientially and quantitatively go through that learning process, therefore most students do not

meet the review rate initially (and many may continue to converge to “their best personal review

rate” after the PSP class is over if they continue to use the PSP’s measurement-driven

improvement approach for personal learning).

The additive model for the conformant process, including influential outliers, accounts

for more of the variation than any other model. When influential outliers are excluded, the value

of R2
a decreases, which is not desired, but the value of MSE also decreases, which is desirable.

258

One way of addressing the inadequate number of observations is to not split the data sets

by programming language used. Table 139 summarizes the results of analyzing processes that

conform to recommended practice for review rates for PSPa and PSPb. All of the models were

shown to be statistically significant at α=0.01.

Table 139 Comparing Compile Models for Conformant Processes Without Considering
Programming Language

Data Set Compile Model Outliers R2
a MSE SSE

with 0.1777 505.2 43948.4 Additive

w/o 0.2131 347.6 29198.3

with 0.0683 2.3 202.6

PSPa
Conformant

Multiplicative

w/o 0.0449 2.3 194.9

PSPb C
Conformant

Additive with 0.5337 461.3 39670.3

with 0.3239 1418.2 707674.2 Additive

w/o 0.2858 501.4 245191.7

with 0.1631 2.1 1061.9

PSPb
Conformant

Multiplicative

w/o 0.1511 2.0 992.9

with 0.4372 1180.4 568966.7 Additive –IE

w/o 0.2736 451.5 212209.9

with 0.1630 2.1 1025.9

PSPb
Conformant

Multiplicative –IE

w/o 0.1365 2.0 961.9

There were insufficient observations with reviews that satisfy recommended practice to

generate a useful multiple regression model for the PSPa data set with interaction effects. The

additive model for the conformant process, including influential outliers, continues to account for

more of the variation than any other model.

259

In general, the comparison between the additive and multiplicative models for the

conformant processes suggests:

• MSE and SSE decrease markedly for the conformant processes, especially when

influential outliers are excluded

• the additive models for the conformant processes account for more of the variation

than the multiplicative ones

The lack of observations with conformant reviews is a concern since PSP is intended to

instill good engineering behaviors in its students. As has already been discussed, however, PSP

is also intended to be a learning experience where measured performance drives improvement

actions. The lack of conformant reviews reinforces the conclusion that following recommended

practice is not easy, and quantified benefits are helpful in reinforcing preferred behaviors.

7.3.12 Discussion of the Multiple Regression Models

Processes that conform to recommended practice for reviews appear to be superior to

those that do not, but the scarcity of observations for the conformant processes within the various

data splits make that conclusion less compelling than it could be. From a management

perspective, however, the importance of quality control and quality assurance are reinforced in

achieving high-quality products.

Removing influential outliers reduces the variance markedly, although it also reduces the

amount of variation explained by the models. The majority of the outliers are associated with

nonconformant design or code reviews. From a management perspective, this implies that

identifying atypical instances of the process, for example, by applying statistical process control

techniques, would improve the predictability of performance.

260

The additive models are, in general, superior to their multiplicative variants with the

exception of data sets restricted to the data from the top-quartile performers. The additive

models are therefore preferred, at least within the context of general linear models (multiplicative

models are preferred for the more sophisticated mixed models in Section 7.4).

Models with interaction effects are, not surprisingly, superior to those that do not include

interaction effects.

The preferred multiple regression model is the additive compile model with interactions

and applied to software processes that conform to recommended practice. Influential outliers

may be included to maximize R2
a or excluded to minimize MSE. The normality of the residuals

for the additive compile regression model with interactions for conformant processes and

excluding influential outliers was checked using the Shapiro-Wilk test. The null hypothesis that

residuals follow a normal distribution could not be rejected for (PSPb, C) with p-value=0.1282

or for (PSPb, C++) with p-value=0.3739.

The variability explained by the multiple regression models may be more than the

baseline models by compile time, but the simple baseline model with interactions is close enough

in performance early enough in the life cycle that it would be preferred over the design and code

models.

Published software defect prediction models accounting for 60-70% of the variability in

the data with only a small number of predictor variables, perhaps only program size, are

common. In some cases this may be because of the small data sets used; several researchers used

the Akiyama data set, which has only seven data points [Akiyama 1972; Halstead 1977, 88-91;

Gaffney 1984], and studies based on classroom data with fewer than 30 data points are common

261

[Wohlin and Petersson 2001, 343; Takahasi and Kamayach 1985, 330]. In other cases, it seems

likely that team effects reduced the variation.

It is clear that programmer ability is a crucial variable. It is statistically significant as a

main effect and in interaction with multiple other variables, even though the surrogate used is not

a sophisticated one. It is also clear that a disciplined process, specifically one that conforms to

good programming practices, materially improves the quality of the software product.

Interaction effects between the process variables, programmer ability, and program size

are significant factors. A more sophisticated statistical analysis that addresses the significant

differences between individuals is called for. The assumption of independence has been

deliberately ignored in these regression models since multiple observations from each student are

included in the data sets. This issue is addressed in the context of repeated measures in the

mixed models in Section 7.4.

From a management perspective, emphasis on both the competence of the staff and the

processes they follow is crucial for achieving high-quality software products. Overly

emphasizing either process or people factors, to the detriment of the other, is counterproductive.

7.4 MIXED MODELS FOR PSP QUALITY

In analyzing the PSP data, natural growth curves can be used to model the relationships

between various explanatory variables and software quality since an increase in performance is

expected for students across the course. The repeated measures ANOVA used in earlier analyses

of the PSP data [Hayes and Over 1997; Wesslen 2000] is a special case of growth curve models

that focuses only on the factor means (the means of the treatments) [Duncan et al. 1999, 13].

Growth curve models preserve the concept that individual differences are both meaningful and

262

important, even when everyone develops the same way [Duncan et al. 1999, 3]. Mixed models

can be used for analyzing growth curves using repeated data.

7.4.1 An Overview of Mixed Model Theory

In statistical analysis, blocks are formed that are as nearly homogeneous as possible, and

treatments (or explanatory factors) are randomly assigned to blocks. Many commonly used

statistical tools, such as the general linear model focus on fixed effects, i.e., those where the

treatments in the analysis are the only ones for which inferences are to be made.

Random effects are those where the blocks in the analysis are a subset of a larger set of

blocks in the population for which the researcher wishes to make inferences. Mixed models

address both fixed and random effects, and the general linear mixed model equation is:

Y = X β + Z u + e

where

 Y is the vector of observations

X is the matrix of values of the predictor variables (treatment design matrix)

β is the vector of regression parameters (treatment fixed effect parameters)

Z is the block design matrix

u is the vector of random block effects, assumed to be multivariate normal, MVN(0, G)

e is the vector of errors, assumed to be MVN(0,R)

263

G and R are covariance matrices that are required to be positive definite [Littell et al.

1996, 491-493]. These assumptions – that positive definite covariance matrices G and R can be

constructed from the random and repeated measures variables – are satisfied in all of the models

described in this chapter, although workarounds were necessary in some instances and are

described at the appropriate points. The covariance matrix for Y is:

V = Z G Z’ + R

where Y is assumed to be MVN(Xβ,ZGZ’+R). Xβ is defined by the fixed effects specified in the

the mixed model.

For the PSP data, the repeated measures are for the students across the ten assignments.

The Y vector contains the defect density in testing observations. Rather than being a separate

variable, the ability of the programmers is incorporated into the mixed models as repeated

measures that capture improving quality across the PSP assignments. Repeated measures

analysis addresses the independence issue noted earlier, i.e., that data from the same student may

be analyzed for multiple assignments. Program size and the process variables are the fixed

effects contained in X. The confounding variables, such as academic degrees and experience,

which were explored in Section 4.6, can be more rigorously explored as random effects captured

in the Z matrix.

The mixed model is an appropriate tool for analyzing models containing both fixed and

random effects and is theoretically superior to tools that focus on fixed effects. The general

linear model, for example, essentially treats random effects as fixed effects. In the case of PSP,

student data is being used to make inferences about the larger population of programmers,

therefore random effects need to be appropriately addressed.

264

There are several reasons why a mixed model is preferred over a fixed effects model

[Littell et al. 1996]:

• The inference space for a statistical analysis can be characterized as narrow,

intermediate, or broad, depending on how it deals with random effects. In the

majority of practical applications, the broad inference space is of primary interest.

The mixed model calculates broad inference space estimates and standard errors. The

general linear model works with the narrow inference space. In the case of the PSP

data, the broad inference space is appropriate since generalizing to the general

population of programmers is desirable.

• Estimates in the general linear model are ordinary least squares. Estimates in the

mixed model are estimated generalized least squares, which are theoretically superior.

• In the presence of random effects, the mixed model calculates correct standard errors

by default, incorporating the variance components of random effects. The general

linear model does not.

• In linear model theory, a linear function of (fixed) model effects is estimable if it can

be written as a linear combination of expected values of the observations. Estimable

functions do not depend on random effects. Linear combinations of fixed and random

effects are called predictable functions. If all model effects are considered fixed,

correct estimable functions in mixed models where the coefficients for all random

effects are zero are falsely declared nonestimable.

• Specific random effects, or linear functions of random effects, can be estimated using

best linear unbiased predictors (BLUP), which are unique to mixed model theory.

Fixed effect models use best linear unbiased estimates (BLUE). To the degree that

265

random effects such as years of experience or programming language are significant

in the mixed models, estimates incorporating all effects, whether fixed or random,

correctly are appropriate.

• Observations with missing data for any repeated measures variable are discarded for

the general linear model, where the mixed model can use all data present for a

subject, so long as the missing data are random. Since any missing data for a subject

causes all of the subject’s data to be discarded in the general linear model, the power

of statistical tests is likely to be low. Unfortunately the PSP data for the random

effects to be explored was not consistently captured, so missing data are an issue that

needs to be appropriately addressed.

The mixed model deals with repeated measures, where multiple measurements of a

response variable on the same subject are taken [Littell et al. 1996, 87-134; Khattree and Naik

1999, 247-301]. For PSP, the repeated measures are taken on the students over the course of the

class, and the treatments (or between-subject) factors are the process changes that occur across

PSP assignments. The objective of the analysis is to compare treatment means or treatment

regression curves over time. Without considering repeated measures, the implicit assumption is

that the covariances between observations on the same subject are the same, which is unrealistic

since observations close in time are likely to be more highly correlated than those far apart in

time.

The covariance structure for the repeated measures is specified by the analyst, and a

number of options are available [Littell et al. 1996, 269-274]. In the unstructured (UN) case, no

mathematical pattern is imposed on the covariance structure. This is the most general structure.

In the compound symmetry (CS) structure, variances are homogenous, and correlation is

266

constant. For AR(1), the autoregressive order 1 structure, variances are homogeneous, and

correlations decline exponentially with distance. The UN, CS, and AR(1) covariance structures

are the most commonly used; these three and five others were explored for the PSP data.

Typically a model fit criterion, such as Akaike’s Information Criterion (AIC), is used to select

the most appropriate covariance structure and model (smaller values of AIC are better) [Littell et

al. 1996, 101-102; Khattree and Naik 1999, 264], although a likelihood ratio test is preferred for

rigorous conclusions [Khattree and Naik 1999, 255-265].

For the mixed models reported below, the unstructured covariance structure is used. It

has the smallest AIC value of all the covariance structures investigated. A likelihood ratio test

was performed for each covariance structure [Khattree and Naik 1999, 255-265], and the

unstructured covariance structure was consistently better than the other structures at α=0.005.

When investigating the mixed models, a multiplicative model was found to reduce the

AIC by 2-3 times compared to the additive model in all cases. As a result, the models studied for

the mixed models are all multiplicative models. This result suggests that multiplicative effect of

the process variables, which is conceptually correct but not visible in the multiple regression

models, is better addressed in the mixed models.

7.4.2 Mixed Models in Design

The dimensions and fit statistics for the design mixed models for defect density in testing

are shown in Table 140, where the X matrix of fixed effects contains the program size and the

design process variables, the repeated measures are for the students across assignments, and

there are no random effects. Influential outliers are included.

267

There are no random effects in this model. The repeated measures across assignments

are captured in the R matrix for the error terms, which is a 10x10 matrix. The design mixed

model without interaction effects (named Design Mixed hereafter) for the fixed effects is:

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

No statistically significant interaction effects were found for the design mixed models, so there is

no design mixed model with interaction effects.

Table 140 Mixed Models for Design

 Design Mixed
PSPb C

Design Mixed
PSPb C++

Covariance Parameters 55 55

Columns in X 5 5

Columns in Z 0 0

Subjects 197 108

Observations Used 1758 920

Prob > ChiSq <0.0001 <0.0001

AIC 5888.3 3103.0

The parameter estimates of the fixed main effects for the design mixed models, and the

associated standard errors, are listed in Table 141 for the data sets including influential outliers.

In the following tables, for the null hypotheses H0: βi=0, a p-value<0.05 is indicated with *, a p-

value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and a p-value<0.0001 is

indicated with ****.

268

Table 141 Fixed-Effect Estimates for the Design Mixed Models

Parameter Design Mixed
PSPb C

(std err)

Design Mixed
PSPb C++

(std err)

Intercept 1.51****

(0.15)

1.45****

(0.17)

KLnKLOC -0.17***

(0.05)

-0.30****

(0.06)

DLnDsTim 0.22****

(0.04)

0.08

(0.06)

ELnDRR -0.36****

(0.03)

-0.30****

(0.04)

FLnDDDR 0.13***

(0.04)

0.09

(0.05)

As program size increases, defect density in testing decreases, which is consistent with

the findings of some other researchers [Basili and Perricone 1984; Shen et al. 1985]. There is

some evidence that as design time increases, defect density in testing increases, which is

consistent with the findings in Section 4.8.1. As the design review rate increases in terms of

hours/KLOC, defect density in testing decreases. Given this formulation of review rate, the

result is consistent with the belief that following recommended practice will result in higher

quality software. There is some evidence that as defect density in design review increases, defect

density in testing also increases, which is also as expected.

The dimensions and fit statistics for the design mixed models for defect density in testing

are shown in Table 142 for the mixed models excluding influential outliers.

269

Table 142 Mixed Models for Design Excluding Outliers

 Design Mixed
PSPb C

Design Mixed
PSPb C++

Covariance
Parameters

55 55

Columns in X 5 5

Columns in Z 0 0

Subjects 197 108

Observations Used 1711 892

Prob > ChiSq <0.0001 <0.0001

AIC 5687.2 2981.7

The results for the design mixed models excluding outliers are consistent with those for

the design mixed models including outliers. The design mixed models excluding outliers had a

consistently lower AIC than the models including outliers.

The parameter estimates of the fixed main effects for the design mixed models, and the

associated standard errors, are listed in Table 143 for the data sets excluding outliers.

270

Table 143 Fixed-Effect Estimates for the Design Mixed Models Excluding Outliers

Parameter Design Mixed
PSPb C

(std err)

Design Mixed
PSPb C++

(std err)

Intercept 1.80****

(0.15)

1.65****

(0.17)

KLnKLOC -0.07

(0.05)

-0.17*

(0.07)

DLnDsTim 0.20****

(0.05)

0.09

(0.07)

ELnDRR -0.36****

(0.03)

-0.33****

(0.04)

FLnDDDR 0.12**

(0.04)

0.10

(0.05)

The parameter estimates of the fixed main effects for the design mixed models excluding

outliers are consistent with those of the design mixed models including outliers.

7.4.3 Mixed Models in Coding

The dimensions and fit statistics for the code mixed models for defect density in testing

are shown in Table 144, where the X matrix of fixed effects contains the program size and the

design and code process variables, the repeated measures are for the students across assignments,

and there are no random effects. Influential outliers are included.

There are no random effects in this model. The repeated measures across assignments

are captured in the R matrix for the error terms, which is contained in the SAS output in

Appendix C, along with the values for the unstructured covariance matrix. The code mixed

model without interaction effects (named Code Mixed hereafter) for the fixed effects is:

271

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

The code mixed model with interaction effects (named Code Mixed –IE hereafter) is:

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

+ βKLOC*DDsTim [Ln(KLOC)*Ln(DDsTim)]

+ βKLOC*EDRR [Ln(KLOC)*Ln(EDRR)]

+ βKLOC*FDDDR [Ln(KLOC)*Ln(FDDDR)]

+ βKLOC*IDDCR [Ln(KLOC)*Ln(IDDCR)]

+ βEDRR*FDDDR [Ln(EDRR)*Ln(FDDDR)]

+ β*KLOC*DDsTim*EDRR*FDDDR[Ln(KLOC)*Ln(DDsTim)*Ln(EDRR)*Ln(FDDDR)]

+ β*KLOC*GCoTim*HCRR*IDDCR[Ln(KLOC)*Ln(GCoTim)*Ln(HCRR)*Ln(IDDCR)]

272

Table 144 Mixed Models for Code

 Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

Covariance
Parameters

55 55 55 55

Columns in X 8 15 8 15

Columns in Z 0 0 0 0

Subjects 197 197 108 108

Observations
Used

1758 1758 920 920

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001

AIC 5861.4 5854.6 3084.9 3096.5

The parameter estimates of the fixed main effects for the code mixed models, and the

associated standard errors, are listed in Table 145 for the data sets including influential outliers.

273

Table 145 Fixed-Effect Estimates for the Code Mixed Models

Parameter Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

Intercept 1.08****

(0.18)

0.88*

(0.39)

0.60*

(0.23)

0.18

(0.47)

KLnKLOC -0.06

(0.05)

-0.17

(0.14)

-0.15*

(0.07)

-0.46*

(0.19)

DLnDsTim 0.17****

(0.05)

-0.09

(0.14)

0.04

(0.06)

0.30

(0.17)

ELnDRR -0.12

(0.06)

-0.48***

(0.13)

-0.12

(0.09)

-0.16

(0.16)

FLnDDDR 0.12**

(0.04)

-0.46**

(0.16)

0.08

(0.05)

0.29

(0.20)

GLnCoTim 0.33****

(0.06)

0.27****

(0.06)

0.46****

(0.09)

0.37****

(0.09)

HLnCRR -0.21***

(0.06)

-0.26***

(0.07)

-0.22*

(0.09)

-0.28

(0.10)

ILnDDCR -0.001

(0.04)

-0.60****

(0.12)

0.12

(0.06)

0.21

(0.18)

The parameter estimates of the fixed main effects for the code mixed models are

consistent with those of the design mixed models, with the exception that defect density in testing

decreases as defect density in design review increases for the code model with interactions,

possibly as a result of interaction effects.

As code time increases, defect density in testing increases, which is consistent with the

findings in Section 4.8.4. As the code review rate increases in terms of hours/KLOC, defect

density in testing decreases. Given this formulation of review rate, the result is consistent with

274

the belief that following recommended practice will result in higher quality software. As defect

density in code review increases, defect density in testing decreases, which is inconsistent with

the results of Section 4.8.6, but the only statistically significant instance is for one of the models

with interaction effects, and interactions may be affecting the result for the main effect.

All interactions were investigated, but only the seven interaction effects that were shown

to be statistically significant for either or both of the data sets were retained. The fixed

interaction effects are listed in Table 146.

275

Table 146 Interaction-Effect Estimates in the Code Mixed Models

Parameter

Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

KLnKLOC
*DLnDDsTim

-- -0.11*

(0.05)

-- 0.11

(0.06)

KLnKLOC
*ELnDRR

-- -0.15***

(0.04)

-- -0.04

(0.06)

KLnKLOC
*FLnDDDR

-- -0.25***

(0.07)

-- 0.12

(0.09)

KLnKLOC
*ILnDDCR

-- 0.27****

(0.05)

-- 0.11

(0.08)

ELnDRR
*FLnDDDR

-- 0.22**

(0.07)

-- -0.04

(0.09)

KLnKLOC
*DLnDsTim
*ELnDRR

*FLnDDDR

-- 0.03***

(0.009)

-- -0.008

(0.01)

KLnKLOC
*GLnCoTim
*HLnCRR
*ILnDDCR

-- -0.01**

(0.004)

-- -0.02***

(0.005)

Program size interacts with all of the design variables individually and as a whole, as

well as with all of the code variables as a whole.

The dimensions and fit statistics for the code mixed models for defect density in testing

are shown in Table 147 for the mixed models excluding influential outliers.

276

Table 147 Mixed Models for Code Excluding Outliers

 Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

Covariance
Parameters

55 55 55 55

Columns in X 8 15 8 15

Columns in Z 0 0 0 0

Subjects 197 197 108 108

Observations
Used

1711 1705 892 884

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001

AIC 5663.5 5645.7 2968.1 2955.2

The results for the code mixed models excluding outliers are consistent with those of the

code mixed models including outliers. The code mixed models excluding outliers have a

consistently lower AIC than the models including outliers.

The parameter estimates of the fixed main effects for the code mixed models, and the

associated standard errors, are listed in Table 148 for the data sets excluding outliers.

277

Table 148 Fixed-Effect Estimates for the Code Mixed Models Excluding Outliers

Parameter Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

Intercept 1.45****

(0.18)

0.92*

(0.41)

0.87***

(0.23)

0.37

(0.50)

KLnKLOC 0.01

(0.05)

-0.18

(0.15)

-0.03

(0.07)

-0.36

(0.21)

DLnDsTim 0.15***

(0.05)

-0.02

(0.14)

0.05

(0.06)

0.50**

(0.17)

ELnDRR -0.09

(0.07)

-0.47***

(0.14)

-0.14

(0.09)

-0.03

(0.17)

FLnDDDR 0.11**

(0.04)

-0.46**

(0.16)

0.10

(0.05)

0.04

(0.21)

GLnCoTim 0.28****

(0.06)

0.26****

(0.07)

0.42****

(0.09)

0.32***

(0.09)

HLnCRR -0.23***

(0.06)

-0.25***

(0.07)

-0.23*

(0.09)

-0.29**

(0.10)

ILnDDCR -0.02

(0.04)

0.56****

(0.13)

0.11

(0.06)

0.16

(0.19)

The parameter estimates of the fixed main effects for the code mixed models excluding

outliers are consistent with those of the code mixed models including outliers with the exception

of defect density in code review, where the parameter estimate is now positive and consistent

with the results of Section 4.8.6.

The fixed interaction effects are listed in Table 149.

278

Table 149 Interaction-Effect Estimates in the Code Mixed Models

Ln(Parameter)

Code
Mixed

PSPb C

Code
Mixed –IE

PSPb C

Code
Mixed

PSPb C++

Code
Mixed –IE
PSPb C++

KLnKLOC
*DLnDsTim

-- -0.08

(0.05)

-- 0.20**

(0.07)

KLnKLOC
*ELnDRR

-- -0.15***

(0.05)

-- 0.03

(0.07)

KLnKLOC
*FLnDDDR

-- -0.24***

(0.07)

-- 0.009

(0.09)

KLnKLOC
*ILnDDCR

-- 0.25****

(0.05)

-- 0.07

(0.09)

ELnDRR
*FLnDDDR

-- 0.21**

(0.08)

-- -0.03

(0.09)

KLnKLOC
*DLnDsTim
*ELnDRR

*FLnDDDR

-- 0.03***

(0.01)

-- -0.008

(0.01)

KLnKLOC
*GLnCoTim
*HLnCRR
*ILnDDCR

-- -0.009*

(0.004)

-- -0.01**

(0.005)

The parameter estimates of the fixed interaction effects for the code mixed models

excluding outliers are consistent with those of the code mixed models including outliers with the

exception of (program size * design time), where the sign of the interaction term has become

positive.

279

7.4.4 Mixed Models in Compile

The dimensions and fit statistics for the compile mixed models for defect density in

testing are shown in Table 150, where the X matrix of fixed effects contains the program size

and the design, code, and compile process variables; the repeated measures are for the students

across assignments; and there are no random effects. Influential outliers are included.

There are no random effects in this model. The repeated measures across assignments

are captured in the R matrix for the error terms, which is contained in the SAS output in

Appendix C, along with the values for the unstructured covariance matrix. The compile mixed

model without interaction effects (named Compile Mixed hereafter) for the fixed effects is:

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

+ βJDDCm [Ln(JDDCm)]

280

The compile mixed model with interaction effects (named Compile Mixed –IE hereafter) is:

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)]

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)]

+ βKLOC*DDsTim [Ln(KLOC)*Ln(DDsTim)]

+ βKLOC*EDRR [Ln(KLOC)*Ln(EDRR)]

+ βKLOC*FDDDR [Ln(KLOC)*Ln(FDDDR)]

+ βKLOC*IDDCR [Ln(KLOC)*Ln(IDDCR)]

+ βGCoTim*JDDCm [Ln(GCoTim)*Ln(JDDCm)]

+ β*KLOC*GCoTim*HCRR*IDDCR[Ln(KLOC)*Ln(GCoTim)*Ln(HCRR)*Ln(IDDCR)]

Table 150 Mixed Models for Compile

 Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

Covariance
Parameters

55 55 55 55

Columns in X 9 15 9 15

Columns in Z 0 0 0 0

Subjects 197 197 108 108

Observations
Used

1758 1758 920 920

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001

AIC 5847.3 5840.3 3077.1 3084.6

The parameter estimates of the fixed main effects for the compile mixed models, and the

associated standard errors, are listed in Table 151 for the data sets including influential outliers.

281

Table 151 Fixed-Effect Estimates for the Compile Mixed Models

Parameter Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

Intercept 1.01****

(0.18)

1.44***

(0.44)

0.49*

(0.23)

-0.26

(0.53)

KLnKLOC -0.06

(0.05)

-0.22

(0.15)

-0.10

(0.07)

-0.31

(0.19)

DLnDsTim 0.16***

(0.05)

-0.03

(0.14)

0.04

(0.06)

0.28

(0.17)

ELnDRR -0.10

(0.06)

-0.39**

(0.13)

-0.09

(0.09)

-0.08

(0.16)

FLnDDDR 0.12**

(0.04)

-0.18

(0.13)

0.06

(0.05)

0.16

(0.17)

GLnCoTim 0.28****

(0.06)

-0.05

(0.12)

0.41****

(0.08)

0.56***

(0.17)

HLnCRR -0.19**

(0.06)

-0.24***

(0.06)

-0.19*

(0.09)

-0.25**

(0.09)

ILnDDCR -0.003

(0.04)

0.53****

(0.12)

0.11

(0.06)

0.16

(0.17)

JLnDDCm 0.11****

(0.02)

-0.12

(0.08)

0.13****

(0.03)

0.27*

(0.11)

The parameter estimates of the fixed main effects for the compile mixed models are

consistent with those of the design and code mixed models. Defect density in testing increases as

defect density in code review increases, which is expected and consistent with the design mixed

model.

282

As defect density in compile increases, defect density in testing increases, which is

consistent with the results of Section 4.8.7. Program size was not shown to be statistically

significant for any of the compile mixed models as a main effect but is well represented as an

interaction effect.

All interactions were investigated, but only six interaction effects that were shown to be

statistically significant for either or both of the data sets were retained. The interaction effects

are listed in Table 152.

Table 152 Interaction-Effect Estimates in the Compile Mixed Models

Parameter

Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

KLnKLOC
*DLnDDsTim

-- -0.07

(0.05)

-- 0.10

(0.06)

KLnKLOC
*ELnDRR

-- -0.13**

(0.04)

-- -0.01

(0.06)

KLnKLOC
*FLnDDDR

-- -0.13*

(0.05)

-- 0.06

(0.07)

KLnKLOC
*ILnDDCR

-- 0.25****

(0.05)

-- 0.08

(0.08)

GLnCoTim
*JLnDDCm

-- 0.09**

(0.03)

-- -0.07

(0.04)

KLnKLOC
*GLnCoTim
*HLnCRR
*ILnDDCR

-- -0.01**

(0.004)

-- -0.02****

(0.004)

Program size interacts with all of the design variables individually, as well as with all of

the compile variables as a whole.

283

The dimensions and fit statistics for the compile mixed models for defect density in

testing are shown in Table 153 for the mixed models excluding influential outliers.

Table 153 Mixed Models for Compile Excluding Outliers

 Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

Covariance
Parameters

55 55 55 55

Columns in X 9 15 9 15

Columns in Z 0 0 0 0

Subjects 197 197 108 108

Observations
Used

1711 1705 892 884

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001

AIC 5645.2 5629.7 2960.3 2936.5

The results for the compile mixed models excluding outliers are consistent with those of

the compile mixed models including outliers. The compile mixed models excluding outliers

have a consistently lower AIC than the models including outliers.

The parameter estimates of the fixed main effects for the compile mixed models, and the

associated standard errors, are listed in Table 154 for the data sets excluding outliers.

284

Table 154 Fixed-Effect Estimates for the Compile Mixed Models Excluding Outliers

Parameter Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

Intercept 1.37****

(0.18)

1.37**

(0.45)

0.74**

(0.23)

-0.42

(0.55)

KLnKLOC 0.03

(0.05)

-0.21

(0.15)

0.006

(0.07)

-0.18

(0.21)

DLnDsTim 0.13**

(0.05)

0.04

(0.14)

0.05

(0.06)

0.48**

(0.17)

ELnDRR -0.06

(0.07)

-0.39**

(0.13)

-0.12

(0.09)

0.09

(0.17)

FLnDDDR 0.11**

(0.04)

-0.19

(0.13)

0.08

(0.05)

-0.07

(0.18)

GLnCoTim 0.23***

(0.06)

-0.02

(0.13)

0.36****

(0.09)

0.67****

(0.17)

HLnCRR -0.21***

(0.06)

-0.23***

(0.07)

-0.19*

(0.09)

-0.25**

(0.09)

ILnDDCR -0.02

(0.04)

0.48***

(0.13)

0.11

(0.06)

0.08

(0.18)

JLnDDCm 0.12****

(0.02)

-0.07

(0.09)

0.13****

(0.03)

0.41***

(0.12)

The parameter estimates of the fixed main effects for the compile mixed models

excluding outliers are consistent with those of the compile mixed models including outliers.

The fixed interaction effects are listed in Table 155.

285

Table 155 Interaction-Effect Estimates in the Compile Mixed Models

Parameter

Compile
Mixed

PSPb C

Compile
Mixed –IE

PSPb C

Compile
Mixed

PSPb C++

Compile
Mixed –IE
PSPb C++

KLnKLOC
*DLnDsTim

-- -0.04

(0.05)

-- 0.17*

(0.07)

KLnKLOC
*ELnDRR

-- -0.13**

(0.05)

-- 0.08

(0.07)

KLnKLOC
*FLnDDDR

-- -0.13*

(0.05)

-- -0.04

(0.08)

KLnKLOC
*ILnDDCR

-- 0.22****

(0.05)

-- 0.01

(0.08)

GLnCoTim
*JLnDDCm

-- 0.07*

(0.03)

-- -0.12*

(0.05)

KLnKLOC
*GLnCoTim
*HLnCRR
*ILnDDCR

-- -0.008*

(0.004)

-- -0.01*

(0.005)

The parameter estimates of the fixed interaction effects for the compile mixed models

excluding outliers are consistent with those of the compile mixed models including outliers.

7.4.5 Random Effects in the Mixed Models for PSP

The analyses described in Section 4.6 did not find the potentially confounding variables,

such as years of experience or highest degree attained, statistically significant. In mixed models,

such variables can be analyzed as random effects. A separate set of random effects models was

built for each random effect investigated, using the compile mixed models to provide fixed

effects. The models were run with and without interaction effects, , for data sets PSPa and PSPb,

including and excluding influential outliers.

286

The PSP major process was not found to be a statistically significant random effect for

any of the mixed models. This is inconsistent with the results of Section 4.5, but it is the

expected result for a repeated measures mixed model across assignments, since the repeated

measure incorporates a more detailed measure of change over time than the PSP major process.

The number of programs finished was not found to be a statistically significant random

effect for any of the mixed models. This is consistent with the results of Section 4.6.2, which

focused on the difference between those finishing all ten assignments versus those finishing less

than ten.

The PSP class was found to be a statistically significant random effect for the mixed

models that included outliers. For the data sets excluding outliers, PSP class was not found to be

a statistically significant random effect. This is consistent with the results of Section 4.6.3: a

few individuals in a small class who are struggling with an assignment can skew the performance

of the class as a whole, but when those atypical cases were excluded, there were no statistically

significant differences between the different offerings of the PSP course.

The highest degree attained was not found to be a statistically significant random effect

for any of the mixed models. This is consistent with the results of Section 4.6.4.

Years of experience was not found to be a statistically significant random effect for any

of the mixed models. This is consistent with the results of Section 4.6.5.

The number of languages known was not found to be a statistically significant random

effect for any of the mixed models. This is consistent with the results of Section 4.6.6.

The percent of time programming in the previous year was not found to be a statistically

significant random effect for any of the mixed models. This is consistent with the results of

Section 4.6.7.

287

The programming language used was not found to be a statistically significant random

effect for any of the mixed models. This is consistent with the results of Section 4.6.8.

Programmer ability, as measured by average defect density in testing for the first three

assignments, was shown to be a statistically significant random effect for all of the mixed

models. This is consistent with the results of Section 4.9, and is to be expected since it is a

subject-specific measure, and the repeated measures across assignments in the compile mixed

models capture the change in performance across PSP for the entire population. Subject-specific

repeated measures are analyzed in Section 7.4.6 and provide a more sophisticated insight based

on individual regression curves than the surrogate for ability used here.

7.4.6 Random Coefficient Mixed Models for Student-Specific Effects

In conventional regression theory, subject-specific terms do not occur in the model

[Khattree and Naik 1999, 288-293; Littell et al. 1996, 231-232]. Estimates of the intercept and

the slope are averages over the entire population, which is why the programmer ability variable

was shown to be a statistically significant random effect.

Mixed models can support subject-specific parameters, where the model equations

include random variables for the intercept and the slope. This model can be described by:

0 1()ij i i ij ijy s d X eβ β= + + + +

where β0 is the fixed intercept, β1 is the fixed slope, si is the random deviation of the ith subject’s

intercept from β0, and di is the random deviation of the ith subject’s slope from β1. Subject-

specific estimates are a form of BLUP. When the PSP assignment is viewed as a random

coefficient, a unique regression formula can be assigned to the ith student’s performance for each

of the ten assignments:

288

Ln[(Defect density in testing)i,Assignment] = β0 + (Student Intercept)i

+ [β1 + (Student Slope)i] Assignment

In Figure 16, the 110 students finishing all ten assignments in (PSPb, C) are grouped into

quartiles based on their individual intercepts, and the average performance of each quartile is

plotted – the top quartile (TQ), middle top quartile (T M2), middle bottom quartile (B M2), and

bottom quartile (BQ) provide a distinctive view on performance across the PSP class for

programmers of differing abilities. This graph is similar to Figure 12, however it is based on

using regression estimates to assign a quartile for each student and averaging estimated

performance for each assignment within each quartile, rather than empirically assigning a

programmer quartile based on performance on the first three assignments and averaging actual

performance for each assignment within each quartile. This is a more holistic view of

performance across the PSP course, but it is also estimated rather than empirical performance.

289

0

10

20

30

40

50

60

70

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A

PSP Assignment

D
ef

ec
t D

en
si

ty
 in

 T
es

tin
g

BQ
B M2
T M2
TQ

Figure 16 Trends in Software Quality from a Student-Specific Mixed Model

The slopes for all of the students are negative, ranging from -0.215 to -0.105 for

(PSPb,C) and from -0.223 to -0.110 for (PSPb,C++). Note that these values are for the log

transforms of defect density in testing. Defect density in testing decreased for every student

finishing the course. The student-specific intercepts and slopes for the data sets (PSPb, C) and

(PSPb, C++) are contained in Appendix C.

The average performance of students in the top quartile for assignments 1 and 10 is

compared to that of students in the bottom quartile in Table 156.

290

Table 156 Comparing Top and Bottom Quartile Average Performance Based on
Regression Estimates

 PSPb C

TQ : BQ

PSPb C++

TQ : BQ

1A 16.4 : 66.8 14.4 : 39.8

10A 4.0 : 12.4 3.1 : 11.1

N 27 27

Percent Change 76% : 82% 78% : 72%

The top-quartile students improved 76-78%, and the bottom-quartile students improved

72-82%. Based on the regressions for the individual students, the top-quartile students improved

roughly the same as the bottom-quartile students: about 4.1X to 4.6X for the top quartile and

3.6X to 5.4X for the bottom quartile. The distinction in the empirical results in Section 4.9.1

between the improvement rates for the top and bottom quartiles essentially disappeared when the

random coefficients mixed model was used to generate the average performance for each

quartile. This arguably makes an even stronger case for the importance of disciplined processes

than the empirical comparison.

7.4.7 Discussion of the Mixed Models

The mixed models appear to be conceptually superior to the regression models. The

multiplicative models perform better than the additive models, which fits the mental picture of

how the process factors as described in Figure 10 earlier. The potentially confounding variables

were not statistically significant as random effects, which is both desirable and consistent with

the results in Chapter 4. The random coefficient model indicates that subject-specific differences

are significant, which supports the intuitive understanding of “ability” as well as the exploratory

data analysis and multiple regression results for the programmer ability surrogate.

291

While confirmation of the results from regression and ANOVA analyses from the more

statistically sophisticated mixed models is useful, the practical value may lie in using the

programmer as a random effect in building statistical models. In this context, the important

result is the consistent improvement of performance across students by employing increasingly

sophisticated processes. While the Hawthorne effect, that people change their behavior as a

result of being observed [Parsons 1974], cannot be ruled out as a factor, systematic and sustained

improvement is the management objective. Explicitly factoring in the human element into our

statistical models is a possibility to be actively considered, if sufficient data can be collected, and

if the potential for driving dysfunctional behavior as a result of the motivational use of

measurement can be avoided.

7.5 CONCLUSIONS FOR DEFECT PREDICTION MODELS

My research demonstrates that sophisticated process-based models for defect prediction

are feasible, even when using data from individual professionals where order-of-magnitude

differences are to be expected. Mixed models demonstrate that individual differences are both

practically and statistically significant and that factors frequently used as surrogates for ability

and technology are not useful, at least for individual data. Although the amount of variation

explained by the PSP models is less than might be preferred, it is still sufficient to be useful.

Models using detailed process data from teams and individuals over a period of time should not

suffer from the same degree of variability, although high amounts of variation are intrinsic to

human-centric, design-intensive processes such as software engineering.

The unique contribution of the mixed models, in comparison to the repeated measures

ANOVA performed by earlier researchers, is the ability to probe into both random effects and

292

the individual performance of each student. These results for the impact of PSP on software

quality are consistent with those of repeated measures ANOVA in the Hayes and Over study

[Hayes and Over 1997], but Hayes and Over focused on the trends at the level of the PSP major

process, where my analyses investigated programmer ability and the underlying process factors

that affected software quality.

Multiple regression models using detailed process data have the potential for being

generalized, at least conceptually, for use in industry. The flexibility and power of the mixed

models in dealing with random effects make them a tool worth exploring further in a team or

project context.

Some researchers prefer Bayesian models that integrate expert judgment, arguing that

curve fitting models are inappropriate for software because current curve fitting models are too

simplistic, not addressing process-based issues. My research indicates that sophisticated

process-based regression models are feasible, although they do require significant amounts of

data, and there is a non-trivial cost in both money and effort in collecting the data.

A related challenge is instantiating disciplined and measured processes without driving

dysfunctional behavior in those performing the work [Austin 1996]. Even in the PSP context,

relatively few students arrive at a disciplined process that follows recommended practice in the

class, although the measurement-based learning process continues afterwards. A motivational

use of the PSP (or TSP) data, e.g. for promotions or raises, could adversely affect the validity of

the data reported or the behavior of the programmers with respect to important project or

organizational concerns that are not addressed by the measurement program.

293

My contribution in this analysis therefore consists of the following results:

• Programmer ability, when empirically measured, is an important factor affecting

software quality that interacts with program size and the process variables in multiple

interaction effects with two or more factors.

• Process variables, such as effort and review rate, affect software quality both as main

effects and as interaction effects, allowing the development of sophisticated models

when sufficient data is available, as was the case with the PSP data.

• More complete statistical models, as Fenton and Neil desired [Fenton and Neil 1999,

153], need large amounts of data and sophisticated techniques, e.g., mixed models to

address random effects and individual differences effectively, as intuitively

demonstrated by the contrasting results for multiplicative and additive models when

building mixed models versus multiple regression models.

• When increasing process discipline is applied across the PSP assignments, individual

performance with respect to software quality is consistently improved for all students

as shown by the mixed models.

For managers, these results may be intuitively obvious, but my research quantifies these

conclusions, at least within the context of PSP. Some programmers performed consistently

better than others. Top-quartile programmers performed better than bottom-quartile

programmers by a factor ranging from 2.8X to 4.1X. In all cases, disciplined processes

significantly improved the quality of the work – by a conservative factor of 2X or better for top-

quartile professionals; by a factor of 4X or better for bottom-quartile professionals. For

individual professionals, the message is also clear: disciplined processes can improve

performance.

294

8.0 DEFECT REMOVAL EFFECTIVENESS OF REVIEWS AND INSPECTIONS

8.1 THE RESEARCH QUESTION: DEFECT REMOVAL EFFECTIVENESS

The research in this chapter focuses on identifying factors that significantly affect the

defect removal effectiveness of the peer review (or inspection) process. Defect removal

effectiveness is defined as the percentage of defects eventually known to be present in a work

product that are identified by a specific verification step, such as an inspection. It therefore

ranges from 0% to 100%. When there are no defects in a work product at the time of the

verification step, defect removal effectiveness is not well defined.

A number of peer review methods have been defined, from informal walkthroughs to

formal inspections. Rules for effective inspections [Fagan 1976; Fagan 1986] include:

• The optimum number of inspectors is four.

• The preparation rate for inspecting code should be about 100 LOC/hour (no more

than 200 LOC/hour).

• The meeting review rate for code inspections should be about 125 LOC/hour (no

more than 250 LOC/hour) for code.

• Inspection meetings should not last more than two hours.

The crucial point in understanding the power of peer reviews is that defects escaping

from one phase of the life cycle to another can cost an order of magnitude more to repair in the

next phase. Peer reviews can have a significant impact on the cost, quality, and development

time of the software since they can be applied early in the development cycle.

295

In addition to the PSP data already analyzed, data from one TSP project and one high

maturity project were available for this analysis, although not all of the data that might be desired

was available. One of the challenges for empirical research in software engineering is obtaining

valid data, and the data available for this research is limited. It is, however, sufficient for an

initial analysis.

Since the focus of this analysis is on the effectiveness of the inspection process, the

surrogate for software (process) quality is defect removal effectiveness. Analysis of defect

removal effectiveness implies that reviews or inspections where no defects were initially present

should be excluded since the effectiveness of the inspection process is a moot point in such a

case.

8.2 EFFECTIVENESS OF PSP REVIEWS

The Personal Software Process (PSP) applies the concepts of process discipline and

quantitative management to the work of the individual software professional in a classroom

setting. PSP typically involves the development of ten programs, using increasingly

sophisticated processes [Humphrey 1995]. Design and code reviews, which are personal reviews

conducted by an engineer on his or her own design or code, are introduced in the 7th of the ten

PSP assignments. They are designed to help engineers achieve 100% yield: all defects removed

before compiling the program.

PSP reviews are a variant of inspections. Although inspections are a form of peer review,

and the PSP reviews are performed by the student on his or her own code, some of the rules for

effectively doing the review are likely to be applicable. The premier example is that the review

296

rate should be about 100 LOC/hour and no more than 200 LOC/hour. As already shown, most

PSP students do not perform the reviews at this recommended rate.

This is a consequence of the PSP being a learning environment. Although students are

aware of the rules for inspections, the purpose of the personal software process is to identify the

most effective review process for the individual programmer. While it is likely that most

students should conform to recommended practice, part of the learning experience is to

experientially and quantitatively go through that learning process, therefore most students do not

meet the review rate initially (and many may continue to converge to “their best personal review

rate” after the PSP class is over if they continue to use the PSP’s measurement-driven

improvement approach for personal learning).

Both design and code reviews were analyzed. The variables of interest are programmer

ability, as measured by average software quality on the first three PSP assignments, program size

(in KLOC), design time and coding time (in hours/KLOC), and review rate (in hours/KLOC,

which is the inverse of the more frequently used LOC/hour).

8.2.1 Considering Transformations for Defect Removal Effectiveness

Transformations of the defect removal effectiveness variable were considered, including

the arcsine root and logit transformations. The arcsine root transformation is commonly used for

proportions, i.e., arcsin()i iT X= [Osborne 2002]. A logit transformation of percentage

variables may also be used to approximate a normal distribution., i.e., log()i
i

i

X LowerLimitT
UpperLimit X

−
=

−

[Breyfogle 1999, 380].

Figure 17 illustrates the frequency distribution for defect removal effectiveness of PSP

code reviews for (PSPb, C, NoOutliers). Data transformations can be useful in approximating a

297

normal distribution, which is assumed by many statistical analyses, but they work best on data

skewed on one side. Data transformations alter the distance between observations in the data set,

but order is maintained [Osborne 2002]. As can be observed in the figure, the histogram has

peaks at 0% and 100% defect removal effectiveness.

50

100

150

200

C
ou

nt
 A

xi
s

0 10 20 30 40 50 60 70 80 90 100

Figure 17 Distribution of Defect Removal Effectiveness

Figure 18 illustrates the frequency distribution for the logit transformation of defect

removal effectiveness of PSP code reviews for (PSPb, C).

298

50

100

150

200

C
ou

nt
 A

xi
s

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Figure 18 Distribution of Logit Transformation of Defect Removal Effectiveness

As can be observed for the logit transformation, the central portion of the data

approximates a normal distribution more closely, but the tails at 0% and 100% prevent the

transformed variable from being a good approximation of the normal distribution. The

transformations did not materially improve the multiple regression models. This pattern was

consistently observed for the defect removal effectiveness of the reviews.

The defect removal effectiveness variable is therefore used as the dependent variable

without any transformation in the multiple regression models used to initially explore the factors

affecting the reviews. Scatter diagrams and ANOVA are used to focus on specific factors.

8.2.2 Design Reviews in PSP

The multiple regression model used in the initial analysis of defect removal effectiveness

for PSP design reviews was:

299

(Defect removal effectiveness) = β0 + βPgmrAb (Programmer ability)

+ βKLOC (Program size) + βDsTim (Design time) + βDRR (Design review rate)

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0. The

regression results for this model are contained in Table 157. The data sets analyzed include

those with and without influential outliers, as identified using leverage, studentized deleted

residuals, Cook’s distance, and DFFITS (see Section 7.3.7). Note that the outliers excluded in

this analysis are different from those excluded in Section 4.8.2; in that section, the outliers were

identified relative to design review rate using the interquartile limits technique.

Table 157 Multiple Regression Models for PSP Design Reviews

Source PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

DF 4 4 4 4

SS 1.8 2.1 1.8 2.0

Model

MS 0.4 0.5 0.5 0.5

DF 371 356 242 233

SS 52.7 50.8 33.0 31.2

Error

MS 0.1 0.1 0.1 0.1

DF 375 360 246 237 Total

SS 54.4 52.9 34.8 33.2

F Ratio 3.1 3.6 3.3 3.8

Prob > F 0.0154 0.0065 0.0115 0.0050

R2
a 0.0220 0.0283 0.0363 0.0454

300

The small values for R2
a in these models reinforce the impact of individual differences in

PSP. Larger values of R2
a would be expected for projects if team effects decrease variability and

increase predictability. This will be considered in the analysis of the TSP and high maturity

projects.

The parameter estimates of the regression model for defect removal effectiveness, and the

associated standard errors, are listed in Table 158. In the following tables, for the null

hypothesis H0: βi=0, a p-value<0.05 is indicated with *, a p-value<0.01 is indicated with **, a p-

value<0.001 is indicated with ***, and a p-value<0.0001 is indicated with ****.

Table 158 Estimates for PSP Design Review Models

Parameter PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

β0 (Intercept) 0.51****

(0.05)

0.48****

(0.06)

0.59****

(0.06)

0.58****

(0.07)

Programmer Ability -0.001*

(0.0005)

-0.001*

(0.0005)

-0.0005

(0.0007)

-0.0005

(0.0008)

Program Size 0.23

(0.19)

0.44

(0.25)

-0.31

(0.21)

-0.37

(0.21)

Design Time -0.001

(0.003)

-0.001

(0.003)

-0.008*

(0.003)

-0.008*

(0.004)

Design Review Rate 0.02**

(0.006)

0.02**

(0.006)

0.02**

(0.007)

0.03**

(0.009)

Defect removal effectiveness consistently increases as design review rate increases, which

is as expected since the review rate is measured in hours/KLOC. There is some evidence that

programmer ability and design time also affect defect removal effectiveness. As programmer

ability increases (or more accurately, as the ability of the programmer lessens), defect removal

301

effectiveness decreases, which is as expected. As design time increases, defect removal

effectiveness decreases, which may indicate that difficulties in developing the design correspond

to more defects in the design or a less capable programmer, as was discussed in Section 4.8.1.

It is clear from this model that design review rate is related to effective design reviews.

This suggests that, from a statistical process control perspective, design review rate is a useful

variable to control. This is consistent with the practices of many high maturity organizations

[Florac 2000; Weller 2000].

The scatter diagram in Figure 19 illustrates the relationship between design review rate

and defect removal effectiveness for (PSPb, C, NoOutliers). It is unclear from this diagram what

the best rate is; the recommended design review rate is less than 200 LOC/hour, which is more

than 5 hours/KLOC in the units used for design review rate in this analysis.

-10
0

10
20
30
40
50
60
70
80
90

100
110

D
R

 E
ffe

ct
iv

en
es

s
(p

er
ce

nt
)

0 5 10 15 20 25 30 35
DR Rate (hrs/KLOC)

Figure 19 Scatter Diagram for Design Review Rate vs Defect Removal Effectiveness

The analysis in Section 4.8.2 is repeated with the new definition of outliers to confirm

whether following recommended practice for the design review rate is effective. The

302

recommended design review rate is less than 200 LOC/hour. A faster rate is considered

ineffective, and re-inspection should be scheduled. This provides two classes of design review

based on review rate: those where the design review rate is faster than the recommended

(specification) limit of 200 LOC/hour; and design reviews according to recommended practice.

As illustrated in Figure 20 for (PSPb, C, NoOutliers), the classes of design review rate appear

significantly different.

D
R

 E
ffe

ct
iv

en
es

s
(p

er
ce

nt
)

0

20

40

60

80

100

Fast DR Rate Rec DR Rate

DR Class

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 20 Differences in Design Review Classes Reprised

The ANOVA results for the effect of design review class on defect removal effectiveness

are shown in Table 159. The null hypothesis is 0 Re: FastDRRate cDRRateH µ µ= with alternative

hypothesis Re:a FastDRRate cDRRateH µ µ≠ .

303

Table 159 ANOVA for Regressing Defect Removal Effectiveness on Design Review Class

Source PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

DF 1 1 1 1

SS 23420.8 26005.4 2430.1 3722.0

Model

MS 23420.8 26005.4 2430.1 3722.0

DF 372 357 247 238

SS 515149.4 497166.3 350419.1 333258.3

Error

MS 1384.8 1392.6 1418.7 1400.2

DF 373 358 248 239 Total

SS 538570.2 523171.7 352849.2 336980.3

F Ratio 19.2W 21.8W 2.2W 3.6W

Prob > F <0.0001W <0.0001W 0.1442W 0.0609W

R2
a 0.0409 0.0470 0.0029 0.0069

The effect of design review class on defect removal effectiveness was shown to be

statistically significant for two of the four data sets, although it is also close to being significant

for (PSPb, C++, NoOutliers). This indicates that design review class may be a useful predictor

variable for defect removal effectiveness.

The estimates of the means for defect removal effectiveness at the different levels of

design review class, and the associated standard errors for the means, are listed in Table 160.

The model can be expressed as:

(Defect removal effectiveness) = β DR Class X DR Class

where β DR Class is the level for the design review class and X DR Class is an indicator variable for

whether that design review class is the correct one for the observation.

304

Table 160 Estimates for Regressing Defect Removal Effectiveness on Design Review Class

Levels

PSPb C
including

outliers****

(std err)

PSPb C
excluding
outliers****

(std err)

PSPb C++
including
outliers

(std err)

PSPb C++
excluding
outliers

(std err)

Fast DR Rate 48.15

(2.38)

48.15

(2.44)

49.77

(2.91)

50.46

(2.93)

Recommended

DR Rate

66.57

(3.18)

67.02

(3.22)

56.92

(3.90)

59.66

(3.88)

All of the analyses, in Section 4.8.2 and here, of the effect of design review class on

defect removal effectiveness provided mixed results. In the PSP context for individual

programmers, it is unclear whether “following recommended practice” is “best practice.” The

evidence does indicate that a slower review rate leads to a more effective design review, but

there is no clear-cut point for individual professionals where performance is significantly

improved. This reinforces, to some degree, the PSP strategy that suggests that each student find

his or her best process based on measurement and systematic improvement.

8.2.3 Code Reviews in PSP

The multiple regression model used in the initial analysis of defect removal effectiveness

for PSP code reviews is:

(Defect removal effectiveness) = β0 + βPgmrAb (Programmer ability)

+ βKLOC (Program size) + βCoTim (Code time) + βCRR (Code review rate)

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0. The

regression results for this model are contained in Table 161. The data sets analyzed include

those with and without influential outliers. Note that the outliers excluded in this analysis are

305

different from those excluded in Section 4.8.5; in that section, the outliers were identified

relative to code review rate using the interquartile limits technique.

Table 161 Multiple Regression Models for PSP Code Reviews

Source PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

DF 4 4 4 4

SS 5.5 5.3 2.4 3.0

Model

MS 1.4 1.3 0.6 0.7

DF 611 593 325 315

SS 50.4 49.8 24.0 23.0

Error

MS 0.08 0.08 0.07 0.07

DF 615 597 329 319 Total

SS 55.9 55.1 26.4 26.0

F Ratio 16.8 15.7 8.1 10.2

Prob > F <0.0001 <0.0001 <0.0001 <0.0001

R2
a 0.0929 0.0897 0.0790 0.1033

The parameter estimates of the regression model for defect removal effectiveness, and the

associated standard errors, are listed in Table 162.

306

Table 162 Estimates for PSP Code Review Models

Parameter PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

β0 (Intercept) 0.42****

(0.03)

0.40****

(0.04)

0.49****

(0.04)

0.45****

(0.04)

Programmer Ability -0.000002

(0.0003)

-0.00002

(0.0003)

-0.0007

(0.0005)

-0.0008

(0.0004)

Program Size -0.07

(0.13)

0.03

(0.16)

-0.06

(0.14)

-0.02

(0.14)

Code Time -0.01****

(0.002)

-0.01****

(0.002)

-0.01****

(0.003)

-0.01***

(0.003)

Code Review Rate 0.03****

(0.004)

0.04****

(0.005)

0.02****

(0.005)

0.04****

(0.006)

Defect removal effectiveness consistently increases as code review rate increases, which

is as expected since the review rate is measured in hours/KLOC. Defect removal effectiveness

consistently decreases as code time increases.

It is clear from this model that code review rate is related to effective code reviews. This

suggests that, from a statistical process control perspective, code review rate is a useful variable

to control. Code time is also a significant factor, but it is unclear what actions should be taken to

control the process, since there may be design activities occurring in coding, as discussed in

Sections 4.8.4 and 7.3.4.

The scatter diagram in Figure 21 illustrates the relationship between code review rate and

defect removal effectiveness for (PSPb, C, NoOutliers). It is unclear from this diagram what the

best rate is; the recommended code review rate is less than 200 LOC/hour, which is more than 5

hours/KLOC in the units used for code review rate in this analysis.

307

0
10
20
30
40
50
60
70
80
90

100

C
R

 E
ffe

ct
iv

en
es

s
(p

er
ce

nt
)

0 10 20
CR Rate (hrs/KLOC)

Figure 21 Scatter Diagram for Code Review Class vs Defect Removal Effectiveness

The analysis in Section 4.8.5 is repeated with the new definition of outliers to confirm

whether following recommended practice for the code review rate is effective. The

recommended code review rate is less than 200 LOC/hour. As illustrated in Figure 22 for (PSPb,

C, NoOutliers), the classes of code review rate appear significantly different.

308

C
R

 E
ffe

ct
iv

en
es

s
(p

er
ce

nt
)

0

20

40

60

80

100

Fast CR Rate Rec CR Rate

CR Class

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 22 Differences in Code Review Class Reprised

The ANOVA results for the effect of code review class on defect removal effectiveness

are shown in Table 163. The null hypothesis is 0 Re: FastCRRate cCRRateH µ µ= with alternative

hypothesis Re:a FastCRRate cCRRateH µ µ≠ .

309

Table 163 ANOVA for Regressing Defect Removal Effectiveness on Code Review Class

Source PSPb C
including
outliers

PSPb C
excluding
outliers

PSPb C++
including
outliers

PSPb C++
excluding
outliers

DF 1 1 1 1

SS 14509.4 13981.6 5949.0 7505.0

Model

MS 14509.4 13981.6 5949.0 7505.0

DF 611 593 328 318

SS 536949.6 529115.4 258606.0 252385.0

Error

MS 878.8 892.3 788.4 793.7

DF 612 594 329 319 Total

SS 551459.0 543096.9 264554.9 259890.0

F Ratio 16.5 15.7 7.5 9.5

Prob > F <0.0001 <0.0001 0.0063 0.0023

R2
a 0.0247 0.0241 0.0195 0.0258

The effect of code review class on defect removal effectiveness was shown to be

statistically significant for all of the data sets. This indicates that code review class is a useful

predictor variable for defect removal effectiveness.

The estimates of the means for defect removal effectiveness at the different levels of code

review class, and the associated standard errors for the means, are listed in Table 164. The

model can be expressed as:

(Defect removal effectiveness) = β CR Class X CR Class

310

where β CR Class is the level for the code review class and X CR Class is an indicator variable for

whether that code review class is the correct one for the observation.

Table 164 Estimates for Regressing Defect Removal Effectiveness on Code Review Class

Levels

PSPb C
including

outliers****

(std err)

PSPb C
excluding
outliers****

(std err)

PSPb C++
including
outliers**

(std err)

PSPb C++
excluding
outliers**

(std err)

Fast CR Rate 41.90

(1.44)

42.07

(1.46)

43.51

(1.84)

43.51

(1.84)

Recommended

CR Rate

52.42

(2.14)

52.68

(2.25)

53.22

(2.82)

54.95

(3.02)

For code reviews, it is clearer that “following recommended practice” is desirable than it

was for design reviews, even if it is unclear what the best rate is. The evidence indicates that a

slower review rate leads to a more effective code review, but there is no clear-cut point for

individual professionals where performance is significantly improved.

8.3 EFFECTIVENESS OF TSPS REVIEWS AND INSPECTIONS

Data from a project using the Team Software Process (TSP) was obtained. TSP is a

follow-on to the PSP that incorporates the PSP concepts of measured process control and

improvement and adds team-building and coordination in an industry context. TSP includes both

individual reviews and inspections by the team.

The TSP project was a pilot project. The project was staffed by five programmers

building 15 modules. There was a significant amount of requirements volatility (requirements

311

were added and deleted throughout the project) and some resource issues during the course of the

pilot. As a result of the volatility in the project, there were some instances where the process was

not followed, e.g., design inspections were not held on four of the 15 modules. Because there are

only 15 observations for this project, only simple regression models for defect removal

effectiveness are reported.

The variables of interest are programmer, encoded as A, B, C, D, and E; program size (in

KLOC), review rate (in hours/KLOC for the individual), and inspection rate (in hours/KLOC for

the team). The inspection rates are for meetings; the number of inspectors participating in the

meeting was not reported, although it seems likely that all project members participated when

available. Preparation time was not reported. Observations were excluded for modules where

there were no defects present at the time of the review or inspection.

8.3.1 Impact of Program Size

The regression results for the effect of program size on defect removal effectiveness for

design reviews, design inspection, code reviews, and code inspections are shown in Table 165.

For the regression model:

(Defect removal effectiveness) = β0 + β1 (Program size)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

312

Table 165 Regressing Defect Removal Effectiveness on Program Size in TSP

Source TSP Design
Reviews

TSP Design
Inspections

TSP Code
Reviews

TSP Code
Inspections

DF 1 1 1 1

SS 0.04 0.008 0.0004 0.13

Model

MS 0.04 0.008 0.0004 0.13

DF 9 9 12 11

SS 0.19 0.80 1.25 2.11

Error

MS 0.02 0.09 0.10 0.19

DF 10 10 13 12 Total

SS 0.23 0.80 1.25 2.24

F Ratio 1.7 0.09 0.0 0.7

Prob > F 0.2314 0.7717 0.9501 0.4366

R2
a 0.1547 0.0098 0.0003 0.0559

The effect of program size on defect removal effectiveness was consistently shown not to

be statistically significant for TSP. This indicates that program size is not a useful predictor

variable for defect removal effectiveness.

The parameter estimates of the regression model for program size, and the associated

standard errors, are listed in Table 166.

313

Table 166 Estimates for Regressing Defect Removal Effectiveness on Program Size in TSP

Parameter

TSP Design
Reviews

(std err)

TSP Design
Inspections

(std err)

TSP Code
Reviews

(std err)

TSP Code
Inspections

(std err)

β0 (Intercept) 0.16*

(0.06)

0.77****

(0.12)

0.29*

(0.11)

0.65**

(0.16)

β1 -0.17

(0.13)

-0.08

(0.27)

-0.02

(0.27)

-0.30

(0.38)

It is not surprising that program size is not a significant factor for defect removal

effectiveness. One of the inspection rules for effective inspections is to limit the size of the work

product being inspected so that fatigue will not affect the effectiveness of the review. Only two

of the modules were large enough for this to be a concern (817 and 1154 LOC), and the related

meetings did not exceed the two-hour limit.

8.3.2 Impact of the Programmer

The regression results for the effect of programmer on defect removal effectiveness for

design reviews, design inspections, code reviews, and code inspections are shown in Table 167.

For the programmer, the regression model is:

(Defect removal effectiveness) = β Programmer X Programmer

where β Programmer is the level for a specific programmer and X Programmer is an indicator variable

for whether that programmer is the correct one for the observation. The null hypothesis against

defect removal effectiveness is 0 : A B C D EH µ µ µ µ µ= = = = with alternative hypothesis Ha: not

all of the means are equal.

314

Table 167 Regressing Defect Removal Effectiveness on Programmer in TSP

Source TSP Design
Reviews

TSP Design
Inspections

TSP Code
Reviews

TSP Code
Inspections

DF 4 4 4 4

SS 0.05 0.09 0.77 2.13

Model

MS 0.01 0.02 0.19 0.53

DF 6 6 9 8

SS 0.18 0.72 0.47 0.11

Error

MS 0.03 0.12 0.05 0.01

DF 10 10 13 12 Total

SS 0.23 0.81 1.25 2.24

F Ratio 0.4 0.2 3.7 37.5

Prob > F 0.7738 0.9424 0.0486 <0.0001

R2
a -0.2856 -0.4911 0.4513 0.9420

The effect of programmer on defect removal effectiveness was shown to be statistically

significant for code but not for design. This may indicate a systemic problem with the design

process, which is perhaps also indicated by the lack of design reviews and inspections for four

modules. The effect of programmer on defect removal effectiveness for code indicates that

programmer is a useful predictor variable, but it is difficult to draw any firm conclusions given

the small number of observations.

The parameter estimates of the regression model for programmer, and the associated

standard errors, are listed in Table 168.

315

Table 168 Estimates for Regressing Defect Removal Effectiveness on Programmer in TSP

Parameter

TSP Design
Reviews

(std err)

TSP Design
Inspections

(std err)

TSP Code
Reviews*

(std err)

TSP Code
Inspections****

(std err)

A 0.0

(.)

0.60

(.)

0.35

(.)

0.0

(.)

B 0.21

(0.15)

0.67

(0.33)

0.22

(0.09)

0.74

(0.12)

C 0.08

(0.06)

0.76

(0.08)

0.61

(0.19)

0.0

(0.0)

D 0.06

(0.06)

0.86

(0.05)

0.28

(0.03)

0.61

(0.11)

E 0.08

(0.08)

0.84

(0.06)

0.0

(0.0)

1.00

(0.0)

It is not surprising that programmer is a significant factor for defect removal

effectiveness, but it seems more likely that there would be an observable effect for reviews than

inspections since inspections are team processes and reviews are individual processes. The

underlying drivers for the code review and inspection results may be not be visible in the data

available, e.g., if one of the team was a superior inspector but did not participate in all

inspections.

316

8.3.3 Impact of Review and Inspection Rates

The regression results for the effect of review / inspection rate on defect removal

effectiveness for design reviews, design inspections, code reviews, and code inspections are

shown in Table 169. For the regression model:

(Defect removal effectiveness) = β0 + β1 (Design|code review|inspection rate)

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.

Table 169 Regressing Defect Removal Effectiveness on Review / Inspection Rate in TSP

Source TSP Design
Reviews

TSP Design
Inspections

TSP Code
Reviews

TSP Code
Inspections

DF 1 1 1 1

SS 0.39 0.14 0.37 0.22

Model

MS 0.39 0.14 0.37 0.22

DF 9 9 12 11

SS 0.41 0.09 0.88 2.02

Error

MS 0.05 0.01 0.07 0.18

DF 10 10 13 12 Total

SS 0.81 0.23 1.25 2.24

F Ratio 8.6 14.4 5.0 1.2

Prob > F 0.0169 0.0042 0.0453 0.2971

R2
a 0.4872 0.6161 0.2937 0.0982

The effect of review / inspection rate on defect removal effectiveness was shown to be

statistically significant in three of the four cases. This indicates that review / inspection rate is a

useful predictor variable for defect removal effectiveness. It is also interesting to note that the

R2
a values for the statistically significant TSP models are noticeably larger than those for the PSP

317

models, suggesting that there is a substantive difference between the PSP and TSP processes. In

part this difference may be due to the small size of the TSP data set, but the TSP models are

simple regression models with only one predictor variable.

The parameter estimates of the regression model for review / inspection rate, and the

associated standard errors, are listed in Table 170.

Table 170 Estimates for Regressing Defect Removal Effectiveness on Review / Inspection
Rate in TSP

Parameter

TSP Design
Reviews

(std err)

TSP Design
Inspections

(std err)

TSP Code
Reviews

(std err)

TSP Code
Inspections

(std err)

β0 (Intercept) 0.45**

(0.12)

0.02

(0.04)

0.09

(0.11)

0.34

(0.24)

β1 0.003*

(0.001)

0.005**

(0.001)

0.009*

(0.004)

0.02

(0.02)

No design or code inspection performed by the team met the recommended rate of 200

LOC/hour or less, but almost all of the design and code reviews performed by individuals did.

Comparison of conformant to nonconformant reviews or inspections is therefore not feasible.

Since this was a pilot project, it seems likely that the team has the potential for continuing to

learn from its data and improving performance in its inspections.

8.4 EFFECTIVENESS OF HIGH-MATURITY CODE INSPECTIONS

Data was obtained from a high maturity project that has been engaged in maintaining a

high-reliability system for a number of years. The organization has been assessed at maturity

318

level 5 against the Software CMM. The process has changed over time, but the focus of these

analyses is on code inspection data, which should be a relatively stable process.

The code inspections followed by this project are expected to follow a rigorous Fagan-

style inspection [Fagan 1976; Fagan 1986]. The data reported is for modules written in a

domain-specific high-order language. After removing observations with no defects present at the

time of the inspection, there were 162 observations.

The variables of interest are program size (in KLOC), preparation rate (in hours/KLOC

for the inspection team as a whole), inspection rate (in hours/KLOC), and the number of

inspectors.

The multiple regression model used in the initial analysis of defect removal effectiveness

for the high-maturity code reviews is:

(Defect removal effectiveness) = β0 + βKLOC (Program size)

+ βPrepRate (Preparation rate) + βCIR (Code inspection rate)

+ βNInsp (Number of inspectors)

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0. The

regression results for this model are contained in Table 171. Influential outliers, as identified

using leverage, studentized deleted residuals, Cook’s distance, and DFFITS (see Section 7.3.7)

were identified, and models were built including and excluding outliers.

319

Table 171 Multiple Regression Models for a High-Maturity Project

Source High-Maturity Project
including outliers

High-Maturity Project
excluding outliers

DF 4 4

SS 0.42 0.93

Model

MS 0.10 0.23

DF 157 152

SS 27.16 25.78

Error

MS 0.17 0.17

DF 161 156 Total

SS 27.58 26.71

F Ratio 0.6 1.4

Prob > F 0.6591 0.2461

R2
a -0.0099 0.0095

Somewhat surprisingly, neither of the models was shown to be statistically significant.

This is not an expected result, especially since 31 of the 162 code inspections did not conform to

the recommended code inspection rate.

This high maturity project is a maintenance project that has been involved in process

improvement for a number of years in a domain where high reliability is crucial. Its quality

control mechanisms are rich and diverse – problems reported after release are essentially

unknown. One plausible explanation for these results is that there are so many process and

quality control mechanisms in place that a minor deficiency in any one mechanism is addressed

by other mechanisms, such as statistical process control. Further investigation of the code

320

inspection rate and the number of inspectors comprising an inspection team is appropriate,

however.

The parameter estimates of the regression model for defect removal effectiveness, and the

associated standard errors, are listed in Table 172.

Table 172 Estimates for High-Maturity Project Models

Parameter High Maturity Project
including outliers

High Maturity Project
excluding outliers

β0 (Intercept) 0.65****

(0.11)

0.67****

(0.12)

Program Size 0.03

(0.07)

-0.04

(0.14)

Preparation Rate -0.0002

(0.0002)

0.0009

(0.0008)

Code Inspection Rate 0.0003

(0.0008)

-0.004

(0.002)

Number of Inspectors -0.002

(0.02)

-0.001

(0.02)

None of the effects investigated were shown to be statistically significant. Code

inspection rate and the size of the inspection team, i.e., the number of inspectors, are usually

considered important variables, so these two factors are explored further.

8.4.1 Investigating Code Inspection Rate Further

The recommended code inspection rate is less than 250 LOC/hour. As illustrated in

Figure 23 for the data set including influential outliers, the classes of code inspection rate were

not shown to be statistically significant.

321

D
ef

ec
t R

em
ov

al
 E

ffe
ct

iv
en

es
s

0

20

40

60

80

100

Fast CI Rate Rec CI Rate

CIR Class

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 23 Differences Between Code Inspection Classes for a High Maturity Project

Perhaps the most interesting point about this figure is that the fast code inspections

appear more effective than those following the recommended rate. The difference was not

shown to be statistically significant, however. The ANOVA results for the effect of code

inspection class on defect removal effectiveness are shown in Table 173. The null hypothesis is

0 Re: FastCIR cCIRH µ µ= with alternative hypothesis Re:a FastCIR cCIRH µ µ≠ .

322

Table 173 ANOVA for Regressing Defect Removal Effectiveness on Code Inspection Class

Source High Maturity Project
including outliers

High Maturity Project
excluding outliers

DF 1 1

SS 2953.5 2817.2

Model

MS 2953.5 2817.2

DF 160 155

SS 272812.1 264283.7

Error

MS 1705.1 1705.1

DF 161 156 Total

SS 275765.6 267100.9

F Ratio 2.8W 2.6W

Prob > F 0.0979W 0.1086W

R2
a 0.0045 0.0042

The estimates of the means for defect removal effectiveness at the different levels of code

inspection class, and the associated standard errors for the means, are listed in Table 174. The

model can be expressed as:

(Defect removal effectiveness) = β CI Class X CI Class

where β CI Class is the level for the code inspection class and X CI Class is an indicator variable for

whether that code inspection class is the correct one for the observation.

323

Table 174 Estimates for Regressing Defect Removal Effectiveness on Code Inspection Class

Levels

High Maturity Project
including outliers

(std err)

High Maturity Project
excluding outliers

(std err)

Fast CI Rate 72.08

(5.22)

71.57

(5.37)

Recommended

CI Rate

61.23

(3.81)

60.79

(3.87)

8.4.2 Investigating Team Size Further

One of the topics of particular interest is the effect of the number of inspectors on defect

removal effectiveness, but the number of inspectors was not shown to be statistically significant.

Further exploration of this point shows that most inspection teams have between four and eight

inspectors; higher values have only single data points. Only the inspections with 4-8 inspectors

are considered. As illustrated in Figure 24 for the data set including influential outliers, the

classes of number of inspectors were not shown to be statistically significant.

324

D
ef

ec
t R

em
ov

al
 E

ffe
ct

iv
en

es
s

0

20

40

60

80

100

4 5 6 7 8

NumInsp

Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Figure 24 Differences Between Number of Inspectors for a High Maturity Project

Perhaps the most interesting point about this figure is that the larger teams appear to be

more effective up until a size of about seven or eight team members. The difference was not

shown to be statistically significant, however. The ANOVA results for the effect of number of

inspectors on defect removal effectiveness are shown in Table 175. The null hypothesis is

0 4 5 6 7 8: TeamSize TeamSize TeamSize TeamSize TeamSizeH µ µ µ µ µ= = = = with alternative hypothesis Ha: not all of

the means are equal.

325

Table 175 ANOVA for Regressing Defect Removal Effectiveness on Number of Inspectors

Source High Maturity Project
including outliers

High Maturity Project
excluding outliers

DF 4 4

SS 9287.7 7785.2

Model

MS 2321.9 1946.3

DF 153 148

SS 256872.1 249802.6

Error

MS 1678.9 1687.9

DF 157 152 Total

SS 266159.8 257587.8

F Ratio 1.5W 1.2

Prob > F 0.2307W 0.3340

R2
a 0.0097 0.0040

The estimates of the means for defect removal effectiveness at the different numbers of

inspectors, and the associated standard errors for the means, are listed in Table 176. The model

can be expressed as:

(Defect removal effectiveness) = β Team Size X Team Size

where β Team Size is the level for the number of inspectors and X Team Size is an indicator variable for

whether that number of inspectors is the correct one for the observation.

326

Table 176 Estimates for Regressing Defect Removal Effectiveness on Number of Inspectors

Levels

High Maturity Project
including outliers

(std err)

High Maturity Project
excluding outliers

(std err)

Number of Inspectors
= 4

57.38

(5.30)

57.60

(6.36)

Number of Inspectors
= 5

63.53

(5.83)

62.71

(5.90)

Number of Inspectors
= 6

78.33

(7.18)

76.92

(7.77)

Number of Inspectors
= 7

74.54

(11.12)

74.54

(11.12)

Number of Inspectors
= 8

64.06

(15.17)

64.06

(15.17)

8.5 CONCLUSIONS FOR FACTORS AFFECTING REVIEW EFFECTIVENESS

The contribution of this analysis is to reinforce the message, which is consistent across

the PSP, TSP and high maturity data, that process discipline is a major driver in software quality.

Review rates are critical contributors to effective inspections. Programmer ability is also a

crucial factor, but process performance builds beyond the foundation of competent people.

Following disciplined processes is a non-trivial achievement. As was observed in the

PSP class and for the TSP project, even trained professionals can easily fall short of

recommended best practices. Mature organizations that have infrastructure and culture that

327

support discipline provide an environment where disciplined processes can be successfully

deployed – and the results demonstrate their effectiveness. As may be the case for the high

maturity project investigated here, a variety of powerful quality control mechanisms reinforce

and complement one another in mature processes.

This highlights the need for a continuum of approaches to process improvement. The

Software Engineering Institute has addressed three tiers that need attention: the individual

(PSP), the team or project (TSP), and the organization (Software CMM). Organization-focused

improvement may not affect the behavior of the individual effectively. Individual-focused

improvement may fail when the software professional returns to the high-pressure industry

environment after participating in the PSP class.

Individual professionals need to be aware of the need for – and the benefits of – applying

disciplined processes to their day-to-day work. The PSP data shows the impact of such

discipline, but without reinforcement at the team and organizational level, it is easy for such

discipline to slip away.

My contribution in this analysis therefore consists of the following results:

• Data transformations are of limited applicability for percentage data where there are

peaks at both 0% and 100%, as is the case for defect removal effectiveness of many

inspections, which implies that robust statistical techniques should be used.

• An optimal review/inspection rate is not readily apparent, although defect removal

effectiveness generally improved as the rate slowed. This suggests that the

recommended rate should be determined either on a per-individual basis or as part of

a cost-benefit analysis that factors in issues such as the time to repair a defect at

different points in the life cycle.

328

• An optimal team size is not readily apparent. Although defect removal effectiveness

generally improved with increasing team size, the difference was not shown to be

statistically significant.

For software managers, the consequences are simple to state, although they may be

difficult to implement. First is the importance of competent professionals in doing high-quality

work. Second, those professionals should be actively supported in following recommended

practice, especially for inspections. Third, measurement-driven management is needed for the

effective support of those recommended practices.

329

9.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

9.1 CONCLUDING REMARKS

In recent years process discipline has moved to the forefront of software engineering

concerns, largely because of concerns about software quality, and driven by the wide-spread

adoption of the Software CMM. In many developing countries, credentials such as being

assessed at high levels against the Software CMM are considered a requirement for being

competitive [Cusumano, MacCormack, Kemerer, and Crandall 2003].

The results of my research clarify a number of outstanding empirical issues. Because the

results are based on data from disciplined processes for both individuals and teams, some of the

confounding factors in analyzing defect data can be separately addressed. Since the results of

PSP, TSP, and CMM high maturity analyses are consistent with one another, there is reason to

believe that the conclusions of my research are general with respect to the impact of using

disciplined processes.

The PSP data provides a wealth of information about programmers and processes, which

allows a much more comprehensive set of analyses than is typical. Although PSP data has been

extensively analyzed by many different researchers, my research is unique in that it has a large

enough data set to support more sophisticated models and techniques than is the norm. The

richness of the data, plus the large data sets, is unusual for empirical analysis in software

engineering.

330

In the exploratory data analysis, I demonstrated that process-based variables, program

size, and programmer ability are related to software quality. Confounding variables that may

appear to be plausible surrogates for areas such as ability and technology were shown not to be

statistically significant within the PSP context.

I observed a notable improvement in performance and variation for software quality as

students moved from ad hoc to disciplined processes across the PSP data sets. This supports the

premise of PSP and similar process improvement strategies: disciplined software processes

result in superior performance compared to ad hoc processes. More importantly, although

empirically the top-quartile students did not improve as much as the bottom-quartile students, the

2X improvement for top-quartile performers was dramatic, demonstrating the importance of

disciplined processes in addition to competent professionals as drivers of software quality.

In the outlier analysis, I demonstrated that XmR control charts using only out-of-bounds

signals are roughly as effective as interquartile limits in identifying assignable causes of

variation (and implying that run-based signaling techniques should be used for process control).

When the stable process is identified, it may not be capable in terms of recommended practice in

the PSP class, reinforcing the need for continual improvement to continue after the course. The

Team Software Process (TSP) is the recommended mechanism for continuing professional

development and deploying the PSP ideas in a team context.

To get the best value from statistical techniques, a consistently-implemented process is

necessary but not sufficient for statistical control. The effective implementation of

recommended practices is also needed before the adjective “mature” can be used. Many of the

PSP students have not arrived at “industry best practice” with respect to review rates. The

331

objective of PSP to induce learning based on personal data, which is an on-going process that is

not completed within the confines of the course.

For the statistical distributions of the PSP data, I found that the number of defects

discovered in a review cannot be accurately characterized by the Poisson distribution. This is a

concern since u-charts are commonly used when applying SPC to software defect data. The

XmR chart, which is a robust technique in the presence of non-normal data, is a safer choice.

If techniques using distributional assumptions are used, I observed that the negative

binomial distribution is one that should be considered for counts of defects. Although the results

are fairly consistent for the PSP data, such assumptions should be tested against the data being

analyzed in a specific case. In general, when analyzing software data, the statistical techniques

used should be rigorous when distributional assumptions are violated, and whatever assumptions

are made should be tested against the data.

I demonstrated that sophisticated process-based models for defect prediction are feasible

even for individual software professionals. The results of the mixed models demonstrated that

individual differences are both practically and statistically significant and that factors frequently

used as surrogates for ability and technology are not useful, at least for individual data. The

flexibility and power and power of the mixed models in dealing with random effects make them

a tool worth exploring further in a team or project context.

Some analysis of project data was possible, allowing an exploration of review rates and

team sizes, along with programmer differences and program size. The two factors of particular

interest are the review rate and the team size since both can be controlled by the software project.

Review rates that follow recommended best practice usually have superior performance,

although whether the boundary for establishing the recommendation is optimal is not clear from

332

these empirical results. Similarly, although defect removal effectiveness increases as inspection

team size grows from four to six inspectors, the difference is not statistically significant. For

PSP, TSP, and the high maturity contexts, while classical statistical analyses provide useful

insights, the variability is sufficiently high, even in the presence of disciplined processes, that the

concerns of those who prefer non-parametric approaches, Bayesian Belief Networks, and a

“relaxed” use of statistics are understandable.

My contributions in this research are summarized in the following results:

• Disciplined processes were shown to improve individual performance in software

quality by a factor of about five, similar to the results of previous researchers

analyzing PSP data [Hayes and Over 1997, 22; Wesslen 2000; Wohlin 2004].

• Individual differences of more than an order-of-magnitude were shown to remain

even when disciplined processes were used [Ferguson et al. 1997; Hayes and Over

1997, 22; Hayes 1998; Hirmanpour and Schofield 2003; Holmes 2003; Wohlin 2004,

212].

• Programmer ability was shown to significantly affect software quality when

empirically measured; surrogates such as years of experience were not found to be

useful, although some earlier researchers have found team-based experience

significant [Takahashi and Kamayachi 1985; Zhang 1999].

• Top-quartile performers were shown to improve by a factor of two or more; bottom-

quartile performers were shown to improve by a factor of four or more.

• Although technology factors, i.e., programming language used, may affect

productivity, they were not shown to affect software quality as measured by defect

333

density in testing, unlike some earlier researchers in a project/team environment

[Gaffney 1984; Lipow 1982].

• Program size was shown to be a weak predictor of quality in the presence of

individual differences, unlike the findings of most previous researchers in a

project/team environment [Akiyama 1972; Compton and Withrow 1990; Criscione,

Ferree, and Porter 2001; Halstead 1977, 87-91; Jones 1996; Lipow 1982; Lyu 1996;

Fenton and Neil 1999; Fenton and Ohlsson 2000; Putnam and Myers 1997, 32].

• Detailed process measures provide more insight into performance than broad

categories such as PSP major process or CMM maturity level, partially addressing

Fenton and Neil’s desire for more complete models [Fenton and Neil 1999, 153], at

least within the context of individual programmers.

• PSP processes are not statistically capable or stable by the end of the ten assignments

in the PSP class.

• For a retrospective analysis, XmR control charts using only out-of-bounds signals are

roughly equivalent to interquartile limits in identifying outliers. This suggests that

run-based signaling techniques should also be used to identify assignable causes of

variation.

• When the natural process limits for a PSP process are identified, the measured

process performance may not meet recommended practice, reinforcing the need for

continual improvement to continue after the course. The Team Software Process is

the recommended mechanism for continuing professional development and deploying

the PSP ideas in a team context [Humphrey 1999].

334

• Statistical assumptions, such as the distribution that data follow, should be tested

where they are important for achieving correct conclusions, i.e., the statistical

techniques making the assumption cannot be characterized as robust when the

assumptions are violated.

• The frequently made assumption that defect data follow a Poisson distribution is not

valid for the PSP defect data; a negative binomial distribution is preferable.

• Although u-charts may be commonly used in the software industry for defect data

[Paulk, Goldenson, and White 2000, 58-59], their use is questionable unless the

statistical assumption of a Poisson distribution has been tested.

• Programmer ability, when empirically measured, is an important factor affecting

software quality that interacts with program size and the process variables in multiple

interaction effects with two or more factors.

• Process variables, such as effort and review rate, affect software quality both as main

effects and as interaction effects, allowing the development of sophisticated models

when sufficient data is available, as was the case with the PSP data.

• More complete statistical models, as Fenton and Neil desired [Fenton and Neil 1999,

153], need large amounts of data and sophisticated techniques, e.g., mixed models to

address random effects and individual differences effectively, as intuitively

demonstrated by the contrasting results for multiplicative and additive models when

building mixed models versus multiple regression models.

• When increasing process discipline is applied across the PSP assignments, individual

performance with respect to software quality is consistently improved for all students

as shown by the mixed models.

335

• Data transformations are of limited applicability for percentage data where there are

peaks at both 0% and 100%, as is the case for defect removal effectiveness of many

inspections, which implies that robust statistical techniques should be used.

• An optimal review/inspection rate is not readily apparent, although defect removal

effectiveness generally improved as the rate slowed. This suggests that the

recommended rate should be determined either on a per-individual basis or as part of

a cost-benefit analysis that factors in issues such as the time to repair a defect at

different points in the life cycle.

• An optimal team size is not readily apparent. Although defect removal effectiveness

generally improved with increasing team size, the difference was not shown to be

statistically significant.

In conclusion, the major contribution of my research is that process discipline is a major

driver in software quality that managers can proactively address. Programmer ability is also a

crucial factor, but process performance builds beyond the foundation of competent people.

Following disciplined processes is a non-trivial achievement. Even trained professionals can

easily fall short of recommended best practices.

Mature organizations that have infrastructure and culture that support discipline provide

an environment where disciplined processes can be successfully deployed – and the results

demonstrate their effectiveness. My research repeatedly identifies the need for software

managers and professionals who are interested in building high-quality products to focus on:

• hiring competent professionals, because there are order-of-magnitude differences in

performance between people;

336

• supporting those professionals in consistently implementing good software

engineering practices such as inspections because it is difficult to follow

recommended practice;

• using measurement to control the disciplined process, because the measurement

feedback is necessary for implementing recommend practice;

• ensuring that all workers exercise discipline, because even top performers improve

their performance significantly by consistently implementing recommended practices

(with the caveat that better practices may be identified for both the software

engineering discipline and the individual as time goes by);

• using statistics to control and improve the process after the proper foundation of

discipline and measurement has been put in place, because the statistical techniques

will primarily identify conformance problems without the foundation.

The actions necessary to build high-quality software products may be simple, but they are

not easy to implement. Quantifying the impact, as my research does, supports those managers

and professionals who wish to follow disciplined processes but must address the challenges and

resistance endemic to the demanding field we work in.

9.2 LIMITATIONS

The bulk of my research used classroom data. Although empirical research in software

engineering frequently uses classroom data, the challenges for generalizing the results to industry

projects are notable. TSP and high maturity projects offer opportunities for exploring software

engineering with relatively reliable data, but gaining access to useful and reliable industry data is

difficult. The project data analyzed here can be considered indicative but not definitive.

337

9.3 FUTURE RESEARCH DIRECTIONS

Replicating these analyses with industry data is desirable. TSP projects in particular have

the potential to provide data of similar richness as the PSP data. Inspections provide, in

principle, an even richer set of data than the reviews in PSP, although as has been observed here,

obtaining data from conformant inspections may be a greater challenge than obtaining industry

data.

Further exploration of the interactions between programmer ability and process discipline

in the arena of agile methods [Boehm and Turner 2004] would illuminate a number of

controversial issues, as well as reinforcing the applicability of discipline in the agile approach.

Objectively defining “ability” would be a prerequisite to such a series of studies. Given the

emphasis of the agile methods on people over process, an empirical investigation of the issues

raised in my results for agile methods would provide a useful complement to the PSP analyses.

Similar analyses to these for software quality could be performed for productivity. The

PSP data highlights an issue with how productivity is frequently defined: measures such as

LOC/hour are clearly inadequate measures of productivity given the program size ranges for

each PSP assignment. Proposed alternative size measures, such as function points, also appear

inadequate. This definitional issue would need to be adequately addressed as a prerequisite to

productivity analyses on the PSP data.

The distributional analysis could be explored more comprehensively. While the primary

point – that the Poisson distribution of software defect data is questionable, and use of the u-

chart may be not justified – was made, other distributions could be considered that might be

superior to the negative binomial. The possibility could be explored that software defect data is

338

zero-inflated, i.e., there is a large number of zeroes in the data that are generated by a different

process than the positive counts [Khoshgoftaar and Szabo 2001].

The use of control charts remains a controversial topic in software engineering, but the

use of statistical process control is growing, as encouraged by the Software CMM and similar

process improvement frameworks. A resolution of what signaling rules are appropriate for

software processes depends on causal analysis, which was not feasible in the retrospective

studies of the PSP data. Initiating statistical process control with the basic “point outside the

control limits” is a reasonable start, but, as my research suggests, further exploration of which

signal rules add value – and of which control chart techniques are appropriate – would benefit

the software community.

339

APPENDIX A

Descriptions of Variables in Data Sets

A.1 VARIABLES IN THE PSP DATA

Note that SAS variable names for process variables have a unique first letter to prevent

confusion when multiple variables interact in an effect.

Assignment PSP Assignment (1, 2, 3, … 10)

AvgDDT Average Defect Density in Testing for 1A-3A

ClassID PSP Class

DDsTim Design Time (hrs/KLOC)

Degree Highest Degree Attained

DfInCm Defects Injected in Compile

DfInCo Defects Injected in Coding

DfInCR Defects Injected in CR

DfInDR Defects Injected in DR

DfInDs Defects Injected in Design

DfInPl Defects Injected in Planning

DfInTs Defects Injected in Testing

DfRmCm Defects Removed in Compile

DfRmCo Defects Removed in Coding

DfRmCR Defects Removed in Code Review

340

DfRmDR Defects Removed in Design Review

DfRmDs Defects Removed in Design

DfRmPl Defects Removed in Planning

DfRmTs Defects Removed in Test

DLnDsTim Log Transform of Design Time

dreCR Defect Removal Effectiveness of Code Review (0-1)

dreDR Defect Removal Effectiveness of Design Review (0-1)

EDRR Design Review Rate (hrs/KLOC)

ELnDRR Log Transform of Design Review Rate

FDDDR Defect Density in Design Review (defects/KLOC)

FLnDDDR Log Transform of Defect Density in Design Review

GCoTim Coding Time (hrs/KLOC)

GLnCoTim Log Transform of Coding Time

HCRR Code Review Rate (hrs/KLOC)

HLnCRR Log Transform of Code Review Rate

IDDCR Defect Density in Code Review (defects/KLOC)

ILnDDCR Log Transform of Defect Density in Code Review

JDDCm Defect Density in Compile (defects/KLOC)

JLnDDCm Log Transform of Defect Density in Compile

KLnKLOC Log Transform of KLOC

KLOC Program Size (Thousands of Lines of Code)

Lang Programming Language (C, C++, Java, VisualBasic)

LOC Program Size (Lines of Code)

MajPrcs PSP Major Process (PSP0, PSP1, PSP2, PSP3)

NDfCR Number of Defects at Code Review

341

NDfDR Number of Defects at Design Review

NLang Number of Languages Known

PercSWTi Percent of Software Time in Previous Year (0-1)

PgmCnt Count of Assignments Finished (1, 2, 3, … 10)

PmgrAb Programmer Ability (Average Defect Density in Testing for 1A-3A)

Program PSP Assignment (1A, 2A, 3A, … 10A)

PSPa PSPa Data Set Indicator (y/n)

Quartiles Programmer Quartiles (TQ, M2, BQ)

Student Student

StuNum Student Number

TDDTs Defect Density in Testing (defects/KLOC)

TimCm Time Compile (min)

TimCo Time Coding (min)

TimCR Time CR (min)

TimDR Time DR (min)

TimDs Time Design (min)

TimPl Time Planning (min)

TimPM Time Postmortem (min)

TimTs Time Testing (min)

TLnDDTs Log Transform of Defect Density in Testing

YrsExp Years of Experience

342

A.2 VARIABLES IN THE TSP PROJECT DATA

CIR Code Inspection Rate (team) (hrs/KLOC)

CRR Code Review Rate (individual) (hrs/KLOC)

ddCI Code Inspection Defect Density
(defects/KLOC)

ddCR Code Review Defect Density (defects/KLOC)

ddDLDI Design Inspection Defect Density
(defects/KLOC)

ddDLDR Design Review Defect Density
(defects/KLOC)

DLDIR Design Inspection Rate (team) (hrs/KLOC)

DLDRR Design Review Rate (individual) (hrs/KLOC)

dreCI Code Inspection Defect Removal
Effectiveness (0-1)

dreCR Code Review Defect Removal Effectiveness
(0-1)

dreDLDI Design Inspection Defect Removal
Effectiveness (0-1)

dreDLDR Design Review Defect Removal Effectiveness
(0-1)

KLOC Program Size (Thousands of Lines of Code)

Pgmr Programmer

A.3 VARIABLES IN THE HIGH-MATURITY PROJECT DATA

CIR Code Inspection Rate (hrs/KLOC)

ddCI Defect Density in Code Inspections

343

(defects/KLOC)

dreCI Defect Removal Effectiveness of Code
Inspections (0-1)

InspDefects Number of Defects Found in Inspection

InspNum Inspection ID Number

KLOC Program Size (Thousands of Lines of Code)

LOC Lines of Code

MtgTime Meeting Time (hrs)

NDefects Number of Defects Present

NumReqdIn Number of Required Inspectors

PrepRate Preparation Rate (hrs/KLOC)

PrepTime Preparation Time (hrs)

344

APPENDIX B

SAS Code

B.1 GENERAL LINEAR MODELS FOR PSP

TITLE1 'Mark Paulk -- PSP Data Analysis';

DATA pspData;
INFILE 'c:\SASData\RawPSP.txt' LRECL=512;

INPUT
ClassID $ StuNum Student $ YrsExp PercSWTi Degree $ NLang Lang $
Assignment Program $ LOC
TimPl TimDs TimDR TimCo TimCR TimCm TimTs TimPM
DfInPl DfInDs DfInDR DfInCo DfInCR DfInCm DfInTs
DfRmPl DfRmDs DfRmDR DfRmCo DfRmCR DfRmCm DfRmTs
PgmCnt QPgmr Quartiles $ PSP1997 $;

/* Set the right data split - PSP1997 vs PSP2001 and C vs C++ usually. */

TITLE2 'GLM REGRESSION MODELS -- PSP Data Analysis for PSPb C';
IF PSP1997 ^= 'n' THEN DELETE;
IF Lang ^= 'C' THEN DELETE;

LABEL
ClassID = 'PSP Class'
StuNum = 'Student Number'
Student = 'Student'
YrsExp = 'Years of Experience'
PercSWTi = 'Percent of Software Time in Previous Year'
Degree = 'Highest Degree Achieved'
NLang = 'Number of Languages Known'
Lang = 'Programming Language'
Assignment = 'PSP Assignment'
Program = 'PSP Assignment'

TimPl = 'Time Planning (min)'
TimDs = 'Time Design (min)'
TimDR = 'Time DR (min)'
TimCo = 'Time Coding (min)'
TimCR = 'Time CR (min)'
TimCm = 'Time Compile (min)'
TimTs = 'Time Testing (min)'
TimPM = 'Time Postmortem (min)'

DfInPl = 'Defects Injected in Planning'
DfInDs = 'Defects Injected in Design'
DfInDR = 'Defects Injected in DR'
DfInCo = 'Defects Injected in Coding'

345

DfInCR = 'Defects Injected in CR'
DfInCm = 'Defects Injected in Compile'
DfInTs = 'Defects Injected in Testing'

DfRmPl = 'Defects Removed in Planning'
DfRmDs = 'Defects Removed in Design'
DfRmDR = 'Defects Removed in Design Reviews'
DfRmCo = 'Defects Removed in Coding'
DfRmCR = 'Defects Removed in Code Reviews'
DfRmCm = 'Defects Removed in Compile'
DfRmTs = 'Defects Removed in Test'

PgmCnt = 'Count of Assignments Finished'
QPgmr = 'Average DD in Testing 1A-3A'
Quartiles = 'Programmer Ability Quartiles'
PSP1997 = 'PSP1997 Data Set';

/* Missing values for YearsExp, PercSWTi, and NLang are encoded as -1.
 Missing (and too rare) values for Degree and Language are encoded as "Unknown".
 In some instances, students reported spending zero time for an activity such as design; the missing values for
Prodvty, DsPerc, and CoPerc are encoded as -1.
 Note that for review effectiveness, -1 is a code for "no review" and -2 is a code for "no defects to be found." */

IF YrsExp = -1 THEN YrsExp = .;
IF PercSWTi = -1 THEN PercSWTi = .;
IF NLang = -1 THEN NLang = .;
IF Degree = 'Unknown' THEN Degree =.;
IF Lang = 'Unknown' THEN Lang =.;

/* Calculate assignment variables. */

KLOC = LOC / 1000;

IF Assignment = 1 THEN MajPrcs = 0;
ELSE IF Assignment = 2 THEN MajPrcs = 0;
ELSE IF Assignment = 3 THEN MajPrcs = 0;
ELSE IF Assignment = 4 THEN MajPrcs = 1;
ELSE IF Assignment = 5 THEN MajPrcs = 1;
ELSE IF Assignment = 6 THEN MajPrcs = 1;
ELSE IF Assignment = 7 THEN MajPrcs = 2;
ELSE IF Assignment = 8 THEN MajPrcs = 2;
ELSE IF Assignment = 9 THEN MajPrcs = 2;
ELSE MajPrcs = 3;

/* Calculate design variables. */

DDsTim = (TimDs / 60) / KLOC;
EDRR = (TimDR / 60) / KLOC;
FDDDR = DfRmDR / KLOC;

LABEL
DDsTim = 'Design Time (hrs) / KLOC'
EDRR = 'DR Rate (hrs/KLOC)'
FDDDR = 'DD in DR (defects/KLOC)';

/* Calculate coding variables. */

346

GCoTim = (TimCo / 60) / KLOC;
HCCR = (TimCR / 60) / KLOC;
IDDCR = DfRmCR / KLOC;

LABEL
GCoTim = 'Coding Time (hrs) / KLOC'
HCCR = 'CR Rate (hrs/KLOC)'
IDDCR = 'DD in CR (defects/KLOC)';

/* Calculate compile variables. */

JDDCm = DfRmCm / KLOC;

LABEL
JDDCm = 'DD in Compile (defects/KLOC)';

/* Calculate testing variables. */

TDDTs = DfRmTs / KLOC;

LABEL
TDDTs = 'DD in Testing (defects/KLOC)';
RUN;

/* GLM regression models with interactions. */

TITLE3 'GLM design models using STEPWISE variables';
PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR
/solution;
RUN;

PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR
QPgmr*KLOC QPgmr*DDsTim QPgmr*EDRR QPgmr*FDDDR
DDsTim*FDDDR EDRR*FDDDR
QPgmr*KLOC*EDRR QPgmr*DDsTim*EDRR QPgmr*EDRR*FDDDR
QPgmr*KLOC*FDDDR KLOC*DDsTim*EDRR DDsTim*EDRR*FDDDR
QPgmr*DDsTim*EDRR*FDDDR QPgmr*KLOC*DDsTim*EDRR*FDDDR
/solution;
RUN;

TITLE3 'GLM code models using STEPWISE variables';
PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR
/solution;
RUN;

PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR
QPgmr*KLOC QPgmr*EDRR QPgmr*FDDDR QPgmr*GCoTim
QPgmr*HCCR QPgmr*IDDCR KLOC*HCCR
EDRR*GCoTim EDRR*HCCR HCCR*IDDCR
QPgmr*KLOC*GCoTim QPgmr*KLOC*HCCR QPgmr*DDsTim*EDRR
QPgmr*EDRR*HCCR QPgmr*FDDDR*IDDCR

347

QPgmr*KLOC*DDsTim*EDRR*FDDDR QPgmr*KLOC*GCoTim*HCCR*IDDCR
/solution;
RUN;

TITLE3 'GLM compile models using STEPWISE variables';
PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm
/solution;
RUN;

PROC GLM DATA= pspData;
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm
QPgmr*KLOC QPgmr*GCoTim QPgmr*HCCR QPgmr*IDDCR QPgmr*JDDCm
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR
QPgmr*KLOC*GCoTim QPgmr*KLOC*IDDCR QPgmr*KLOC*JDDCm
QPgmr*FDDDR*IDDCR FDDDR*IDDCR*JDDCm
QPgmr*KLOC*GCoTim*JDDCm QPgmr*FDDDR*IDDCR*JDDCm
/solution;
RUN;

B.2 INFLUENTIAL OUTLIERS FOR PSP

/* Calculating leverage and other influential outlier stats. */

TITLE3 'GLM compile models using STEPWISE variables';
PROC GLM DATA= pspData;
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm;
OUTPUT out=OutCm p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd;
RUN;

PROC GLM DATA= pspData;
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm
PgmrAb*KLOC PgmrAb*GCoTim PgmrAb*HCCR PgmrAb*IDDCR PgmrAb*JDDCm
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR
PgmrAb*KLOC*GCoTim PgmrAb*KLOC*IDDCR PgmrAb*KLOC*JDDCm
PgmrAb*FDDDR*IDDCR FDDDR*IDDCR*JDDCm
PgmrAb*KLOC*GCoTim*JDDCm PgmrAb*FDDDR*IDDCR*JDDCm;
OUTPUT out=OutCmIE p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd;
RUN;

/* Identify influential outliers */

TITLE3 'Identify influential outliers for compile';
DATA IDCm;
SET OutCm;
IF Lang = 'C' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.151 AND cook < 1.03 THEN DELETE;
IF Lang = 'C++' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.209 AND cook < 1.03 THEN DELETE;
RUN;
PROC PRINT DATA=IDCm;
VAR Student Program yhat lever cook dff prs rstd;
RUN;

348

TITLE3 'Identify influential outliers for compile IE';
DATA IDCmIE;
SET OutCmIE;
IF Lang = 'C' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.248 AND cook < 1.03 THEN DELETE;
IF Lang = 'C++' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.343 AND cook < 1.03 THEN DELETE;
RUN;
PROC PRINT DATA=IDCmIE;
VAR Student Program yhat lever cook dff prs rstd;
RUN;

/* Remove influential outliers */

TITLE3 'GLM compile models without influential outliers';

DATA XCm;
SET OutCm;
IF lever > 0.5 THEN DELETE;
IF rstd > 3.291 THEN DELETE;
IF cook > 1.03 THEN DELETE;
IF Lang = 'C' AND (dff > 0.151) THEN DELETE;
IF Lang = 'C++' AND (dff > 0.209) THEN DELETE;
RUN;

PROC GLM DATA= XCm;
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm
/solution;
RUN;

TITLE3 'GLM compile models IE without influential outliers';
DATA XCmIE;
SET OutCmIE;
IF lever > 0.5 THEN DELETE;
IF rstd > 3.291 THEN DELETE;
IF cook > 1.03 THEN DELETE;
IF Lang = 'C' AND (dff > 0.248) THEN DELETE;
IF Lang = 'C++' AND (dff > 0.343) THEN DELETE;
RUN;

PROC GLM DATA= XCmIE;
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm
PgmrAb*KLOC PgmrAb*GCoTim PgmrAb*HCCR PgmrAb*IDDCR PgmrAb*JDDCm
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR
PgmrAb*KLOC*GCoTim PgmrAb*KLOC*IDDCR PgmrAb*KLOC*JDDCm
PgmrAb*FDDDR*IDDCR FDDDR*IDDCR*JDDCm
PgmrAb*KLOC*GCoTim*JDDCm PgmrAb*FDDDR*IDDCR*JDDCm
/solution;
RUN;

B.3 MIXED MODELS (DESIGN, CODE, COMPILE) FOR PSP

TITLE3 'Multiplicative mixed models for design including outliers';
PROC MIXED data=pspData mmeq;

349

CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 'Multiplicative mixed models for design excluding outliers';
PROC MIXED data=XCm mmeq;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 ' Multiplicative mixed models for code including outliers';
PROC MIXED data=pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 ' Multiplicative mixed models for code with interactions including outliers';
PROC MIXED data=pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR
ELnDRR*FLnDDDR
KLnKLOC*DLnDsTim*ELnDRR*FLnDDDR KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 ' Multiplicative mixed models for code excluding outliers';
PROC MIXED data=XCm;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 ' Multiplicative mixed models for code with interactions excluding outliers';
PROC MIXED data=XCmIE;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR
ELnDRR*FLnDDDR
KLnKLOC*DLnDsTim*ELnDRR*FLnDDDR KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 'Multiplicative mixed models for compile including outliers';
PROC MIXED data= pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm

350

/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 'Multiplicative mixed models for compile with interactions including outliers';
PROC MIXED data= pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR
GLnCoTim*JLnDDCm
KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 'Multiplicative mixed models for compile excluding outliers';
PROC MIXED data= XCm;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

TITLE3 'Multiplicative mixed models for compile with interactions excluding outliers';
PROC MIXED data= XCmIE;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR
GLnCoTim*JLnDDCm
KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RUN;

B.4 MIXED MODELS WITH A RANDOM EFFECT FOR PSP

/* Multiplicative mixed models */

TITLE3 'Testing random variable with compile mixed model including outliers';
PROC MIXED data= pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RANDOM PgmrAb /solution;
RUN;

TITLE3 'Testing random variable with compile mixed model -IE including outliers';
PROC MIXED data= pspData;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR

351

GLnCoTim*JLnDDCm KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RANDOM PgmrAb /solution;
RUN;

TITLE3 'Testing random variable with compile mixed model excluding outliers';
PROC MIXED data= XCm;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RANDOM PgmrAb /solution;
RUN;

TITLE3 'Testing random variable with compile mixed model -IE excluding outliers';
PROC MIXED data= XCmIE;
CLASS Student Assignment;
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR
GLnCoTim*JLnDDCm KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR
/ ddfm=satterth solution;
REPEATED Assignment / type=un sub=Student r rcorr;
RANDOM PgmrAb /solution;
RUN;

B.5 DEFECT REMOVAL EFFECTIVENESS FOR PSP

DATA DRData;
SET pspData;
IF NDfDR = 0 THEN DELETE; /* Delete any reviews where there were no defects */
IF TimDR = 0 THEN DELETE; /* Delete assignments where there were no reviews */
RUN;

DATA DRNoOut;
SET XCm; /* Start without outliers */
IF NDfDR = 0 THEN DELETE; /* Delete any reviews where there were no defects */
IF TimDR = 0 THEN DELETE; /* Delete assignments where there were no reviews */
RUN;

TITLE3 'Defect Removal Effectiveness - Design Regression Models';
TITLE4 'Design DRE including outliers';
PROC GLM DATA= DRData;
MODEL dreDR = PgmrAb KLOC DDsTim EDRR
/solution;
OUTPUT out=ErrDs residual=err;
RUN;

TITLE4 'Design DRE without outliers';
PROC GLM DATA= DRNoOut;
MODEL dreDR = PgmrAb KLOC DDsTim EDRR
/solution;

352

OUTPUT out=ErrDsNo residual=err;
RUN;

DATA CRData;
SET pspData;
IF NDfCR = 0 THEN DELETE; /* Delete any reviews where there were no defects */
IF TimCR = 0 THEN DELETE; /* Delete assignments where there were no reviews */
RUN;

DATA CRNoOut;
SET XCm; /* Start without outliers */
IF NDfCR = 0 THEN DELETE; /* Delete any reviews where there were no defects */
IF TimCR = 0 THEN DELETE; /* Delete assignments where there were no reviews */
RUN;

TITLE3 'Defect Removal Effectiveness - Code Regression Models';
TITLE4 'Code DRE including outliers';
PROC GLM DATA= CRData;
MODEL dreCR = PgmrAb KLOC GCoTim HCRR
/solution;
OUTPUT out=ErrCod residual=err;
RUN;

TITLE4 'Code DRE without outliers';
PROC GLM DATA= CRNoOut;
MODEL dreCR = PgmrAb KLOC GCoTim HCRR
/solution;
OUTPUT out=ErrCodNo residual=err;
RUN;

B.6 TSP PROJECT MODELS

TITLE1 'Mark Paulk -- TSP Data Analysis';

DATA tspData;
INFILE 'c:\SASData\TSP1.txt' LRECL=512;

INPUT
Module $ Pgmr $
DfInRq DfInRI DfInHLD DfInHLDI DfInDLD DfInDLDR
DfInDLDI DfInCode DfInCR DfInCm DfInCI DfInUT DfInBnI DfInST
DfRmRq DfRmRI DfRmHLD DfRmHLDI DfRmDLD DfRmDLDR
DfRmDLDI DfRmCode DfRmCR DfRmCM DfRmCI DfRmUT DfRmBnI DfRmST
DLDLines LOC
TimDLD TimDLDR TimDLDI TimCode TimCR TimCm TimCI TimUT;

Injected = DfInRq + DfInRI + DfInHLD + DfInHLDI +
DfInDLD + DfInDLDR + DfInDLDI +
DfInCode + DfInCR + DfInCm + DfInCI +
DfInUT + DfInBnI + DfInST;

Removed = DfRmRq + DfRmRI + DfRmHLD + DfRmHLDI +

353

DfRmDLD + DfRmDLDR + DfRmDLDI +
DfRmCode + DfRmCR + DfRmCM + DfRmCI +
DfRmUT + DfRmBnI + DfRmST;

IF LOC = 0 THEN DELETE;
KLOC = LOC / 1000;

/* Calculate design variables. */

DLDRR = TimDLDR / KLOC; /* Detailed design reviews (individual) */
ddDLDR = DfRmDLDR / KLOC;
NDfDLDR = DfInRq + DfInRI + DfInHLD + DfInHLDI + DfInDLD + DfInDLDR -
 DfRmRq - DfRmRI - DfRmHLD - DfRmHLDI - DfRmDLD;
IF NDfDLDR > 0 THEN dreDLDR = DfRmDLDR / NDfDLDR; ELSE dreDLDR = .;

LABEL
DLDRR = 'Design Review Rate (individual) (hrs/KLOC)'
ddDLDR = 'DLDR Defect Density (defects/KLOC)'
dreDLDR = 'DLDR Defect Removal Effectiveness (0-1)';

DLDIR = TimDLDI / KLOC; /* Detailed design inspections (team) */
AvgDLDIR = DLDIR / 5;
ddDLDI = DfRmDLDI / KLOC;
NDfDLDI = NDfDLDR + DfInDLDI - DfRmDLDR;
IF NDfDLDI > 0 THEN dreDLDI = DfRmDLDI / NDfDLDI; ELSE dreDLDI = .;

LABEL
DLDIR = 'Design Inspection Rate (team) (hrs/KLOC)'
ddDLDI = 'DI Defect Density (defects/KLOC)'
dreDLDI = 'DI Defect Removal Effectiveness (0-1)';

/* Calculate coding and compile variables. */

CRR = TimCR / KLOC; /* Code reviews (individual) */
ddCR = DfRmCR / KLOC;
NDfCR = NDfDLDI + DfInCode + DfInCR - DfRmDLDI - DfRmCode;
IF NDfCR > 0 THEN dreCR = DfRmCR / NDfCR; ELSE dreCR = .;

LABEL
CRR = 'Code Review Rate (individual) (hrs/KLOC)'
ddCR = 'CR Defect Density (defects/KLOC)'
dreCR = 'CR Defect Removal Effectiveness (0-1)';

ddCm = DfRmCm / KLOC; /* Compile */
NDfCm = NDfCR + DfInCm - DfRmCR;
IF NDfCm > 0 THEN dreCm = DfRmCm / NDfCm; ELSE dreCm = .;

CIR = TimCI / KLOC; /* Code inspections (team) */
AvgCIR = CIR / 5;
ddCI = DfRmCI / KLOC;
NDfCI = NDfCm + DfInCI - DfRmCm ;
IF NDfCI > 0 THEN dreCI = DfRmCI / NDfCI; ELSE dreCI = .;

LABEL
CIR = 'Code Inspection Rate (team) (hrs/KLOC)'
ddCI = 'CI Defect Density (defects/KLOC)'

354

dreCI = 'CI Defect Removal Effectiveness (0-1)';

/* Calculate testing variables. */

ddTs = (DfRmUT + DfRmBnI + DfRmST) / KLOC;
NDfTs = NDfCI + DfInUT + DfInBnI + DfInST - DfRmCI ;

RUN;

TITLE3 'TSP1 Design Reviews (individual)';
PROC GLM DATA= tspData;
MODEL dreDLDR = KLOC /solution;
RUN;

PROC GLM DATA= tspData;
CLASS Pgmr;
MODEL dreDLDR = Pgmr /solution;
RUN;

PROC GLM DATA= tspData;
MODEL dreDLDR = DLDRR /solution;
RUN;

TITLE3 'TSP1 Design Inspections (team)';
PROC GLM DATA= tspData;
MODEL dreDLDI = KLOC /solution;
RUN;

PROC GLM DATA= tspData;
CLASS Pgmr;
MODEL dreDLDI = Pgmr /solution;
RUN;

PROC GLM DATA= tspData;
MODEL dreDLDI = DLDIR /solution;
RUN;

TITLE3 'TSP1 Code Reviews (individual)';
PROC GLM DATA= tspData;
MODEL dreCR = KLOC /solution;
RUN;

PROC GLM DATA= tspData;
CLASS Pgmr;
MODEL dreCR = Pgmr /solution;
RUN;

PROC GLM DATA= tspData;
MODEL dreCR = CRR /solution;
RUN;

TITLE3 'TSP1 Code Inspections (team)';
PROC GLM DATA= tspData;
MODEL dreCI = KLOC /solution;
RUN;

355

PROC GLM DATA= tspData;
CLASS Pgmr;
MODEL dreCI = Pgmr/solution;
RUN;

PROC GLM DATA= tspData;
MODEL dreCI = CIR/solution;
RUN;

B.7 HIGH-MATURITY PROJECT MODELS

TITLE1 'Mark Paulk -- High Maturity Project Data Analysis';

DATA HMData;
INFILE 'c:\SASData\HM1.txt' LRECL=512;

INPUT
InspNum MtgTime NumCh PrepTime LOC NDefects InspDefects NumInsp NumOptIn;

LABEL
InspNum = 'Inspection ID Number'
MtgTime = 'Meeting Time (hrs)'
NumInsp = 'Number of Checklists'
PrepTime = 'Preparation Time (hrs)'
LOC = 'Lines of Code'
NDefects = 'Number of Defects Present'
InspDefects = 'Number of Defects Found in Inspection'
NumInsp = 'Number of Inspectors'
NumOptIn = 'Number of Optional Inspectors';

IF LOC = 0 THEN DELETE;
KLOC = LOC / 1000;
IF NDefects = 0 THEN DELETE;
IF PrepTime = 0 THEN DELETE;
IF MtgTime = 0 THEN DELETE;

PrepRate = (PrepTime / NumInsp) / KLOC;
StdPrep = LOC / (PrepTime / NumInsp);
CIR = MtgTime / KLOC;
StdCIR = LOC / MtgTime;
ddCI = InspDefects / KLOC;
dreCI = InspDefects / NDefects;

LABEL
PrepRate = 'Preparation Rate (hrs/KLOC)'
StdPrep = 'Preparation Rate (LOC/hr)'
CIR = 'Code Inspection Rate (hrs/KLOC)'
StdCIR = 'Code Inspection Rate (LOC/hr)'
ddCI = 'Defect Density in CI (defects/KLOC)'
dreCI = 'Defect Removal Effectiveness (0-1)';
RUN;

356

TITLE3 'HM1 Code Inspections';
PROC GLM DATA= HMData;
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution;
OUTPUT out=RegStats p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd;
RUN;

DATA Conform;
SET HMData;
IF StdPrep > 200 THEN DELETE;
IF StdCIR > 250 THEN DELETE;
RUN;

TITLE3 'HM1 Conformant Code Inspections';
PROC GLM DATA= Conform;
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution;
RUN;

TITLE3 'Identify Influential Outliers';
DATA IDOut;
SET RegStats;
IF lever < 0.5 AND rstd < 3.291 AND dff < 0.3514 AND cook < 1.15 THEN DELETE;
RUN;
PROC PRINT DATA=IDOut;
VAR InspNum dreCI KLOC PrepRate CIR NumInsp;
RUN;
DATA NoOut;
SET RegStats;
IF lever > 0.5 THEN DELETE;
IF rstd > 3.291 THEN DELETE;
IF cook > 1.15 THEN DELETE;
IF dff > 0.3514 THEN DELETE;
RUN;

TITLE3 'HM1 Code Inspections without Influential Outliers';
PROC GLM DATA= NoOut;
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution;
RUN;

TITLE3 'HM1 Code Inspections with Interactions';
PROC GLM DATA= HMData;
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution;
OUTPUT out=RegStats p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd;
RUN;

TITLE3 'HM1 Code Inspections with Interactions without Influential Outliers';
PROC GLM DATA= NoOut;
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution;
RUN;

357

APPENDIX C

SAS Output

C.1 COMPILE REGRESSION MODEL FOR (PSPB, C)

 The GLM Procedure

 Number of observations 1758

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 9 1002755.877 111417.320 113.96 <.0001

 Error 1748 1708982.871 977.679

 Corrected Total 1757 2711738.748

 R-Square Coeff Var Root MSE TDDTs Mean

 0.369783 98.96412 31.26786 31.59515

 Source DF Type I SS Mean Square F Value Pr > F

 QPgmr 1 542630.3977 542630.3977 555.02 <.0001
 KLOC 1 108539.3555 108539.3555 111.02 <.0001
 DDsTim 1 1031.1429 1031.1429 1.05 0.3046
 EDRR 1 82529.5492 82529.5492 84.41 <.0001
 FDDDR 1 548.0905 548.0905 0.56 0.4541
 GCoTim 1 96301.1321 96301.1321 98.50 <.0001
 HCRR 1 52765.3203 52765.3203 53.97 <.0001
 IDDCR 1 9158.7602 9158.7602 9.37 0.0022
 JDDCm 1 109252.1285 109252.1285 111.75 <.0001

 Source DF Type III SS Mean Square F Value Pr > F

 QPgmr 1 371531.4448 371531.4448 380.01 <.0001
 KLOC 1 29284.4003 29284.4003 29.95 <.0001
 DDsTim 1 1308.1471 1308.1471 1.34 0.2475
 EDRR 1 108.9308 108.9308 0.11 0.7386
 FDDDR 1 2175.6647 2175.6647 2.23 0.1359
 GCoTim 1 32080.7130 32080.7130 32.81 <.0001
 HCRR 1 10649.6419 10649.6419 10.89 0.0010
 IDDCR 1 7126.4152 7126.4152 7.29 0.0070
 JDDCm 1 109252.1285 109252.1285 111.75 <.0001

358

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 9.01033915 2.01697875 4.47 <.0001
 QPgmr 0.37233356 0.01909996 19.49 <.0001
 KLOC -56.27032737 10.28156949 -5.47 <.0001
 DDsTim 0.10205399 0.08822666 1.16 0.2475
 EDRR -0.13582316 0.40690838 -0.33 0.7386
 FDDDR 0.12238609 0.08204162 1.49 0.1359
 GCoTim 0.37236571 0.06500486 5.73 <.0001
 HCRR -1.54679942 0.46866729 -3.30 0.0010
 IDDCR -0.14386592 0.05328691 -2.70 0.0070
 JDDCm 0.16029801 0.01516391 10.57 <.0001

C.2 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C)

 The GLM Procedure

 Number of observations 1758

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 26 1270016.183 48846.776 58.65 <.0001

 Error 1731 1441722.565 832.884

 Corrected Total 1757 2711738.748

 R-Square Coeff Var Root MSE TDDTs Mean

 0.468340 91.34230 28.85973 31.59515

 Source DF Type I SS Mean Square F Value Pr > F

 QPgmr 1 542630.3977 542630.3977 651.51 <.0001
 KLOC 1 108539.3555 108539.3555 130.32 <.0001
 DDsTim 1 1031.1429 1031.1429 1.24 0.2660
 EDRR 1 82529.5492 82529.5492 99.09 <.0001
 FDDDR 1 548.0905 548.0905 0.66 0.4174
 GCoTim 1 96301.1321 96301.1321 115.62 <.0001
 HCRR 1 52765.3203 52765.3203 63.35 <.0001
 IDDCR 1 9158.7602 9158.7602 11.00 0.0009
 JDDCm 1 109252.1285 109252.1285 131.17 <.0001
 QPgmr*KLOC 1 101843.6726 101843.6726 122.28 <.0001
 QPgmr*GCoTim 1 29479.7567 29479.7567 35.39 <.0001
 QPgmr*HCRR 1 33262.0662 33262.0662 39.94 <.0001
 QPgmr*IDDCR 1 6453.6212 6453.6212 7.75 0.0054
 QPgmr*JDDCm 1 4805.6870 4805.6870 5.77 0.0164
 KLOC*GCoTim 1 0.1321 0.1321 0.00 0.9900
 KLOC*HCRR 1 1294.9884 1294.9884 1.55 0.2126

359

 KLOC*JDDCm 1 3020.8334 3020.8334 3.63 0.0570
 GCoTim*JDDCm 1 13232.1198 13232.1198 15.89 <.0001
 HCRR*IDDCR 1 24272.5344 24272.5344 29.14 <.0001
 QPgmr*KLOC*GCoTim 1 20927.8369 20927.8369 25.13 <.0001
 QPgmr*KLOC*IDDCR 1 18531.3765 18531.3765 22.25 <.0001
 QPgmr*KLOC*JDDCm 1 662.0601 662.0601 0.79 0.3727
 QPgmr*FDDDR*IDDCR 1 5254.1937 5254.1937 6.31 0.0121
 FDDDR*IDDCR*JDDCm 1 1669.7826 1669.7826 2.00 0.1570
 QPgm*KLOC*JCoT*JDDCm 1 967.5751 967.5751 1.16 0.2813
 QPgm*FDDD*MDDC*JDDCm 1 1582.0693 1582.0693 1.90 0.1683

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Source DF Type III SS Mean Square F Value Pr > F

 QPgmr 1 78200.77163 78200.77163 93.89 <.0001
 KLOC 1 2.48667 2.48667 0.00 0.9564
 DDsTim 1 8.38981 8.38981 0.01 0.9201
 EDRR 1 273.59240 273.59240 0.33 0.5666
 FDDDR 1 75.25084 75.25084 0.09 0.7638
 GCoTim 1 1052.37319 1052.37319 1.26 0.2611
 HCRR 1 2633.65478 2633.65478 3.16 0.0755
 IDDCR 1 3089.47517 3089.47517 3.71 0.0543
 JDDCm 1 7195.91308 7195.91308 8.64 0.0033
 QPgmr*KLOC 1 4503.17033 4503.17033 5.41 0.0202
 QPgmr*GCoTim 1 34385.20851 34385.20851 41.28 <.0001
 QPgmr*HCRR 1 9019.30676 9019.30676 10.83 0.0010
 QPgmr*IDDCR 1 16245.52724 16245.52724 19.51 <.0001
 QPgmr*JDDCm 1 1706.91635 1706.91635 2.05 0.1524
 KLOC*GCoTim 1 1864.82457 1864.82457 2.24 0.1348
 KLOC*HCRR 1 15.79952 15.79952 0.02 0.8905
 KLOC*JDDCm 1 1005.14511 1005.14511 1.21 0.2721
 GCoTim*JDDCm 1 14715.96285 14715.96285 17.67 <.0001
 HCRR*IDDCR 1 23823.34169 23823.34169 28.60 <.0001
 QPgmr*KLOC*GCoTim 1 12207.59706 12207.59706 14.66 0.0001
 QPgmr*KLOC*IDDCR 1 10601.52352 10601.52352 12.73 0.0004
 QPgmr*KLOC*JDDCm 1 2256.87788 2256.87788 2.71 0.0999
 QPgmr*FDDDR*IDDCR 1 643.23098 643.23098 0.77 0.3796
 FDDDR*IDDCR*JDDCm 1 27.59118 27.59118 0.03 0.8556
 QPgm*KLOC*JCoT*JDDCm 1 1068.69462 1068.69462 1.28 0.2575
 QPgm*FDDD*MDDC*JDDCm 1 1582.06926 1582.06926 1.90 0.1683

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 7.973375875 3.15757595 2.53 0.0117
 QPgmr 0.479810943 0.04951730 9.69 <.0001
 KLOC -1.386723274 25.37891977 -0.05 0.9564
 DDsTim -0.008317739 0.08287461 -0.10 0.9201
 EDRR 0.226689473 0.39552292 0.57 0.5666
 FDDDR -0.034871453 0.11601301 -0.30 0.7638
 GCoTim -0.182261586 0.16214463 -1.12 0.2611
 HCRR -1.513544439 0.85115385 -1.78 0.0755
 IDDCR -0.170372151 0.08846033 -1.93 0.0543
 JDDCm 0.131947725 0.04489017 2.94 0.0033
 QPgmr*KLOC -1.151139924 0.49506388 -2.33 0.0202
 QPgmr*GCoTim 0.014093616 0.00219346 6.43 <.0001

360

 QPgmr*HCRR -0.030034076 0.00912683 -3.29 0.0010
 QPgmr*IDDCR -0.004512944 0.00102185 -4.42 <.0001
 QPgmr*JDDCm 0.000688872 0.00048120 1.43 0.1524
 KLOC*GCoTim 3.171703120 2.11965828 1.50 0.1348
 KLOC*HCRR 0.625553189 4.54186925 0.14 0.8905
 KLOC*JDDCm 0.636513461 0.57940938 1.10 0.2721
 GCoTim*JDDCm -0.003043093 0.00072396 -4.20 <.0001
 HCRR*IDDCR 0.046247340 0.00864724 5.35 <.0001
 QPgmr*KLOC*GCoTim -0.133896891 0.03497419 -3.83 0.0001
 QPgmr*KLOC*IDDCR 0.023838214 0.00668162 3.57 0.0004
 QPgmr*KLOC*JDDCm -0.015629781 0.00949492 -1.65 0.0999
 QPgmr*FDDDR*IDDCR 0.000029568 0.00003365 0.88 0.3796
 FDDDR*IDDCR*JDDCm -0.000014421 0.00007923 -0.18 0.8556
 QPgm*KLOC*JCoT*JDDCm 0.000441760 0.00038999 1.13 0.2575
 QPgm*FDDD*MDDC*JDDCm 0.000001175 0.00000085 1.38 0.1683

C.3 COMPILE REGRESSION MODEL FOR (PSPB, C++, OUTLIERS)

 The GLM Procedure

 Number of observations 920

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 9 471233.364 52359.263 65.74 <.0001

 Error 910 724775.121 796.456

 Corrected Total 919 1196008.485

 R-Square Coeff Var Root MSE TDDTs Mean

 0.394005 100.3984 28.22156 28.10957

 Source DF Type I SS Mean Square F Value Pr > F

 QPgmr 1 238533.8340 238533.8340 299.49 <.0001
 KLOC 1 44555.5687 44555.5687 55.94 <.0001
 DDsTim 1 7682.2529 7682.2529 9.65 0.0020
 EDRR 1 24024.9210 24024.9210 30.16 <.0001
 FDDDR 1 13552.0192 13552.0192 17.02 <.0001
 GCoTim 1 90794.5485 90794.5485 114.00 <.0001
 HCRR 1 190.3839 190.3839 0.24 0.6250
 IDDCR 1 43.8565 43.8565 0.06 0.8145
 JDDCm 1 51855.9793 51855.9793 65.11 <.0001

 Source DF Type III SS Mean Square F Value Pr > F

 QPgmr 1 107367.6841 107367.6841 134.81 <.0001
 KLOC 1 4073.5762 4073.5762 5.11 0.0240

361

 DDsTim 1 121.9735 121.9735 0.15 0.6956
 EDRR 1 6291.8791 6291.8791 7.90 0.0051
 FDDDR 1 8402.7255 8402.7255 10.55 0.0012
 GCoTim 1 54793.2298 54793.2298 68.80 <.0001
 HCRR 1 47.6208 47.6208 0.06 0.8069
 IDDCR 1 5.6243 5.6243 0.01 0.9330
 JDDCm 1 51855.9793 51855.9793 65.11 <.0001

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept -3.53317911 2.66397493 -1.33 0.1851
 QPgmr 0.36097262 0.03108983 11.61 <.0001
 KLOC -22.36150120 9.88767023 -2.26 0.0240
 DDsTim 0.04269482 0.10909968 0.39 0.6956
 EDRR -1.89818773 0.67535158 -2.81 0.0051
 FDDDR 0.28872659 0.08889097 3.25 0.0012
 GCoTim 0.97060218 0.11701964 8.29 <.0001
 HCRR 0.15921811 0.65114121 0.24 0.8069
 IDDCR 0.00547345 0.06513400 0.08 0.9330
 JDDCm 0.16593590 0.02056468 8.07 <.0001

C.4 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++,
OUTLIERS)

 The GLM Procedure

 Number of observations 920

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 26 682000.223 26230.778 45.57 <.0001

 Error 893 514008.262 575.597

 Corrected Total 919 1196008.485

 R-Square Coeff Var Root MSE TDDTs Mean

 0.570230 85.35032 23.99161 28.10957

 Source DF Type I SS Mean Square F Value Pr > F

 QPgmr 1 238533.8340 238533.8340 414.41 <.0001
 KLOC 1 44555.5687 44555.5687 77.41 <.0001
 DDsTim 1 7682.2529 7682.2529 13.35 0.0003
 EDRR 1 24024.9210 24024.9210 41.74 <.0001
 FDDDR 1 13552.0192 13552.0192 23.54 <.0001
 GCoTim 1 90794.5485 90794.5485 157.74 <.0001

362

 HCRR 1 190.3839 190.3839 0.33 0.5654
 IDDCR 1 43.8565 43.8565 0.08 0.7826
 JDDCm 1 51855.9793 51855.9793 90.09 <.0001
 QPgmr*KLOC 1 51322.5655 51322.5655 89.16 <.0001
 QPgmr*GCoTim 1 24191.3326 24191.3326 42.03 <.0001
 QPgmr*HCRR 1 14897.8947 14897.8947 25.88 <.0001
 QPgmr*IDDCR 1 2.0072 2.0072 0.00 0.9529
 QPgmr*JDDCm 1 41360.5445 41360.5445 71.86 <.0001
 KLOC*GCoTim 1 6761.5254 6761.5254 11.75 0.0006
 KLOC*HCRR 1 8995.3028 8995.3028 15.63 <.0001
 KLOC*JDDCm 1 475.7257 475.7257 0.83 0.3635
 GCoTim*JDDCm 1 37.1526 37.1526 0.06 0.7995
 HCRR*IDDCR 1 17943.5591 17943.5591 31.17 <.0001
 QPgmr*KLOC*GCoTim 1 12450.4681 12450.4681 21.63 <.0001
 QPgmr*KLOC*IDDCR 1 1528.4804 1528.4804 2.66 0.1035
 QPgmr*KLOC*JDDCm 1 22181.9771 22181.9771 38.54 <.0001
 QPgmr*FDDDR*IDDCR 1 887.7710 887.7710 1.54 0.2146
 FDDDR*IDDCR*JDDCm 1 5430.3733 5430.3733 9.43 0.0022
 QPgm*KLOC*JCoT*JDDCm 1 2051.6648 2051.6648 3.56 0.0594
 QPgm*FDDD*MDDC*JDDCm 1 248.5146 248.5146 0.43 0.5113

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Source DF Type III SS Mean Square F Value Pr > F

 QPgmr 1 2.34570 2.34570 0.00 0.9491
 KLOC 1 2485.60709 2485.60709 4.32 0.0380
 DDsTim 1 559.02517 559.02517 0.97 0.3246
 EDRR 1 2397.78772 2397.78772 4.17 0.0415
 FDDDR 1 174.11590 174.11590 0.30 0.5825
 GCoTim 1 1728.13338 1728.13338 3.00 0.0835
 HCRR 1 217.22489 217.22489 0.38 0.5392
 IDDCR 1 383.79451 383.79451 0.67 0.4144
 JDDCm 1 18262.74520 18262.74520 31.73 <.0001
 QPgmr*KLOC 1 798.51238 798.51238 1.39 0.2392
 QPgmr*GCoTim 1 475.77621 475.77621 0.83 0.3635
 QPgmr*HCRR 1 183.71623 183.71623 0.32 0.5722
 QPgmr*IDDCR 1 107.98822 107.98822 0.19 0.6650
 QPgmr*JDDCm 1 57317.88688 57317.88688 99.58 <.0001
 KLOC*GCoTim 1 354.14953 354.14953 0.62 0.4330
 KLOC*HCRR 1 193.74390 193.74390 0.34 0.5619
 KLOC*JDDCm 1 14494.73587 14494.73587 25.18 <.0001
 GCoTim*JDDCm 1 951.51233 951.51233 1.65 0.1989
 HCRR*IDDCR 1 4435.95996 4435.95996 7.71 0.0056
 QPgmr*KLOC*GCoTim 1 98.68005 98.68005 0.17 0.6789
 QPgmr*KLOC*IDDCR 1 27.96249 27.96249 0.05 0.8256
 QPgmr*KLOC*JDDCm 1 18259.85940 18259.85940 31.72 <.0001
 QPgmr*FDDDR*IDDCR 1 6218.99232 6218.99232 10.80 0.0011
 FDDDR*IDDCR*JDDCm 1 1256.57645 1256.57645 2.18 0.1399
 QPgm*KLOC*JCoT*JDDCm 1 2144.73506 2144.73506 3.73 0.0539
 QPgm*FDDD*MDDC*JDDCm 1 248.51456 248.51456 0.43 0.5113

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 20.98140979 4.51893343 4.64 <.0001
 QPgmr 0.00565435 0.08857398 0.06 0.9491

363

 KLOC -53.16460241 25.58383536 -2.08 0.0380
 DDsTim 0.09573212 0.09714072 0.99 0.3246
 EDRR -1.20173555 0.58879331 -2.04 0.0415
 FDDDR 0.05746353 0.10447982 0.55 0.5825
 GCoTim 0.47640336 0.27494480 1.73 0.0835
 HCRR -0.64644791 1.05229635 -0.61 0.5392
 IDDCR -0.10499646 0.12858331 -0.82 0.4144
 JDDCm -0.33948120 0.06026873 -5.63 <.0001
 QPgmr*KLOC 0.64567584 0.54819243 1.18 0.2392
 QPgmr*GCoTim 0.00324878 0.00357338 0.91 0.3635
 QPgmr*HCRR 0.01024159 0.01812812 0.56 0.5722
 QPgmr*IDDCR -0.00136498 0.00315136 -0.43 0.6650
 QPgmr*JDDCm 0.00870856 0.00087269 9.98 <.0001
 KLOC*GCoTim -2.07961061 2.65123370 -0.78 0.4330
 KLOC*HCRR -3.39898255 5.85860518 -0.58 0.5619
 KLOC*JDDCm 2.36778475 0.47184177 5.02 <.0001
 GCoTim*JDDCm 0.00179134 0.00139325 1.29 0.1989
 HCRR*IDDCR 0.02072646 0.00746605 2.78 0.0056
 QPgmr*KLOC*GCoTim 0.02114498 0.05106837 0.41 0.6789
 QPgmr*KLOC*IDDCR -0.00274769 0.01246632 -0.22 0.8256
 QPgmr*KLOC*JDDCm -0.04197092 0.00745176 -5.63 <.0001
 QPgmr*FDDDR*IDDCR -0.00008755 0.00002664 -3.29 0.0011
 FDDDR*IDDCR*JDDCm 0.00005846 0.00003957 1.48 0.1399
 QPgm*KLOC*JCoT*JDDCm -0.00055831 0.00028923 -1.93 0.0539
 QPgm*FDDD*MDDC*JDDCm 0.00000053 0.00000080 0.66 0.5113

C.5 COMPILE REGRESSION MODEL FOR (PSPB, C, NOOUTLIERS)

 The GLM Procedure

 Number of observations 1711

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 9 452568.423 50285.380 98.01 <.0001

 Error 1701 872722.394 513.064

 Corrected Total 1710 1325290.817

 R-Square Coeff Var Root MSE TDDTs Mean

 0.341486 80.88062 22.65092 28.00538

 Source DF Type I SS Mean Square F Value Pr > F

 PgmrAb 1 176181.3310 176181.3310 343.39 <.0001
 KLOC 1 74495.9772 74495.9772 145.20 <.0001
 DDsTim 1 6.9931 6.9931 0.01 0.9071
 EDRR 1 69821.8671 69821.8671 136.09 <.0001

364

 FDDDR 1 166.7246 166.7246 0.32 0.5687
 GCoTim 1 29555.7466 29555.7466 57.61 <.0001
 HCCR 1 49062.0844 49062.0844 95.63 <.0001
 IDDCR 1 4691.2356 4691.2356 9.14 0.0025
 JDDCm 1 48586.4638 48586.4638 94.70 <.0001

 Source DF Type III SS Mean Square F Value Pr > F

 PgmrAb 1 133071.1807 133071.1807 259.37 <.0001
 KLOC 1 23978.0737 23978.0737 46.74 <.0001
 DDsTim 1 1421.1501 1421.1501 2.77 0.0962
 EDRR 1 179.4885 179.4885 0.35 0.5543
 FDDDR 1 1256.3482 1256.3482 2.45 0.1178
 GCoTim 1 8388.2222 8388.2222 16.35 <.0001
 HCCR 1 16368.1461 16368.1461 31.90 <.0001
 IDDCR 1 3490.9815 3490.9815 6.80 0.0092
 JDDCm 1 48586.4638 48586.4638 94.70 <.0001

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 17.82635277 1.56887991 11.36 <.0001
 PgmrAb 0.23530681 0.01461095 16.10 <.0001
 KLOC -58.38809583 8.54088886 -6.84 <.0001
 DDsTim 0.10919400 0.06560920 1.66 0.0962
 EDRR -0.18248740 0.30853214 -0.59 0.5543
 FDDDR 0.09533294 0.06092196 1.56 0.1178
 GCoTim 0.20144163 0.04981959 4.04 <.0001
 HCCR -2.03515964 0.36031691 -5.65 <.0001
 IDDCR -0.10433942 0.04000005 -2.61 0.0092
 JDDCm 0.11376523 0.01169063 9.73 <.0001

C.6 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS)

 The GLM Procedure

 Number of observations 1705

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 26 544743.862 20951.687 45.39 <.0001

 Error 1678 774573.004 461.605

 Corrected Total 1704 1319316.866

 R-Square Coeff Var Root MSE TDDTs Mean

 0.412898 77.20018 21.48499 27.83024

365

 Source DF Type I SS Mean Square F Value Pr > F

 PgmrAb 1 185425.4955 185425.4955 401.70 <.0001
 KLOC 1 61462.2165 61462.2165 133.15 <.0001
 DDsTim 1 161.4403 161.4403 0.35 0.5543
 EDRR 1 80757.9448 80757.9448 174.95 <.0001
 FDDDR 1 31.8665 31.8665 0.07 0.7928
 GCoTim 1 36930.8677 36930.8677 80.01 <.0001
 HCCR 1 33302.2912 33302.2912 72.14 <.0001
 IDDCR 1 1958.1438 1958.1438 4.24 0.0396
 JDDCm 1 47694.7709 47694.7709 103.32 <.0001
 PgmrAb*KLOC 1 29181.4638 29181.4638 63.22 <.0001
 PgmrAb*GCoTim 1 14667.0393 14667.0393 31.77 <.0001
 PgmrAb*HCCR 1 13804.2840 13804.2840 29.90 <.0001
 PgmrAb*IDDCR 1 827.4200 827.4200 1.79 0.1808
 PgmrAb*JDDCm 1 528.7466 528.7466 1.15 0.2847
 KLOC*GCoTim 1 3.1720 3.1720 0.01 0.9339
 KLOC*HCCR 1 111.7268 111.7268 0.24 0.6228
 KLOC*JDDCm 1 4266.1335 4266.1335 9.24 0.0024
 GCoTim*JDDCm 1 3671.6585 3671.6585 7.95 0.0049
 HCCR*IDDCR 1 16684.6168 16684.6168 36.14 <.0001
 PgmrAb*KLOC*GCoTim 1 8020.8651 8020.8651 17.38 <.0001
 PgmrAb*KLOC*IDDCR 1 4052.7452 4052.7452 8.78 0.0031
 PgmrAb*KLOC*JDDCm 1 14.3783 14.3783 0.03 0.8599
 PgmrAb*FDDDR*IDDCR 1 349.3723 349.3723 0.76 0.3844
 FDDDR*IDDCR*JDDCm 1 276.3257 276.3257 0.60 0.4392
 Pgmr*KLOC*GCoT*JDDCm 1 55.0625 55.0625 0.12 0.7299
 Pgmr*FDDD*IDDC*JDDCm 1 503.8143 503.8143 1.09 0.2963

 Source DF Type III SS Mean Square F Value Pr > F

 PgmrAb 1 14847.13966 14847.13966 32.16 <.0001
 KLOC 1 1155.56996 1155.56996 2.50 0.1138
 DDsTim 1 3.05958 3.05958 0.01 0.9351
 EDRR 1 5.52283 5.52283 0.01 0.9129
 FDDDR 1 276.27145 276.27145 0.60 0.4393
 GCoTim 1 910.88752 910.88752 1.97 0.1603
 HCCR 1 1866.36628 1866.36628 4.04 0.0445
 IDDCR 1 2194.31261 2194.31261 4.75 0.0294
 JDDCm 1 1989.47511 1989.47511 4.31 0.0380
 PgmrAb*KLOC 1 662.59961 662.59961 1.44 0.2311
 PgmrAb*GCoTim 1 14606.61658 14606.61658 31.64 <.0001
 PgmrAb*HCCR 1 4698.93910 4698.93910 10.18 0.0014
 PgmrAb*IDDCR 1 3368.61510 3368.61510 7.30 0.0070
 PgmrAb*JDDCm 1 159.34576 159.34576 0.35 0.5569
 KLOC*GCoTim 1 1785.99491 1785.99491 3.87 0.0493
 KLOC*HCCR 1 1.57097 1.57097 0.00 0.9535
 KLOC*JDDCm 1 714.90053 714.90053 1.55 0.2135
 GCoTim*JDDCm 1 1261.81913 1261.81913 2.73 0.0984
 HCCR*IDDCR 1 16403.77219 16403.77219 35.54 <.0001
 PgmrAb*KLOC*GCoTim 1 4665.06107 4665.06107 10.11 0.0015
 PgmrAb*KLOC*IDDCR 1 3080.17002 3080.17002 6.67 0.0099
 PgmrAb*KLOC*JDDCm 1 11.96236 11.96236 0.03 0.8721
 PgmrAb*FDDDR*IDDCR 1 132.32336 132.32336 0.29 0.5924
 FDDDR*IDDCR*JDDCm 1 786.41823 786.41823 1.70 0.1920
 Pgmr*KLOC*GCoT*JDDCm 1 43.13441 43.13441 0.09 0.7599

366

 Pgmr*FDDD*IDDC*JDDCm 1 503.81430 503.81430 1.09 0.2963

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 15.83744334 2.78945475 5.68 <.0001
 PgmrAb 0.27624909 0.04870961 5.67 <.0001
 KLOC -33.84707782 21.39233836 -1.58 0.1138
 DDsTim 0.00522418 0.06416854 0.08 0.9351
 EDRR -0.03722814 0.34035006 -0.11 0.9129
 FDDDR 0.07273790 0.09402167 0.77 0.4393
 GCoTim -0.20389290 0.14514595 -1.40 0.1603
 HCCR -1.44779065 0.72001663 -2.01 0.0445
 IDDCR -0.16878653 0.07741475 -2.18 0.0294
 JDDCm 0.09298733 0.04479089 2.08 0.0380
 PgmrAb*KLOC -0.57525338 0.48014100 -1.20 0.2311
 PgmrAb*GCoTim 0.01382192 0.00245713 5.63 <.0001
 PgmrAb*HCCR -0.02929011 0.00918029 -3.19 0.0014
 PgmrAb*IDDCR -0.00306803 0.00113571 -2.70 0.0070
 PgmrAb*JDDCm 0.00025176 0.00042850 0.59 0.5569
 KLOC*GCoTim 3.62618867 1.84350996 1.97 0.0493
 KLOC*HCCR 0.22938806 3.93207331 0.06 0.9535
 KLOC*JDDCm 0.60646029 0.48732059 1.24 0.2135
 GCoTim*JDDCm -0.00181884 0.00110009 -1.65 0.0984
 HCCR*IDDCR 0.04042283 0.00678094 5.96 <.0001
 PgmrAb*KLOC*GCoTim -0.12188286 0.03833974 -3.18 0.0015
 PgmrAb*KLOC*IDDCR 0.02240647 0.00867404 2.58 0.0099
 PgmrAb*KLOC*JDDCm -0.00146798 0.00911897 -0.16 0.8721
 PgmrAb*FDDDR*IDDCR 0.00001472 0.00002749 0.54 0.5924
 FDDDR*IDDCR*JDDCm -0.00013476 0.00010325 -1.31 0.1920
 Pgmr*KLOC*GCoT*JDDCm -0.00012705 0.00041562 -0.31 0.7599
 Pgmr*FDDD*IDDC*JDDCm 0.00000166 0.00000158 1.04 0.2963

C.7 COMPILE REGRESSION MODEL FOR (PSPB, C++, NOOUTLIERS)

 The GLM Procedure

 Number of observations 892

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 9 166539.5510 18504.3946 42.00 <.0001

 Error 882 388579.1474 440.5659

 Corrected Total 891 555118.6984

 R-Square Coeff Var Root MSE TDDTs Mean

 0.300007 86.48124 20.98966 24.27077

367

 Source DF Type I SS Mean Square F Value Pr > F

 PgmrAb 1 59813.03423 59813.03423 135.76 <.0001
 KLOC 1 22833.39692 22833.39692 51.83 <.0001
 DDsTim 1 669.41692 669.41692 1.52 0.2180
 EDRR 1 43236.50622 43236.50622 98.14 <.0001
 FDDDR 1 30.36474 30.36474 0.07 0.7930
 GCoTim 1 26002.84200 26002.84200 59.02 <.0001
 HCCR 1 3557.68114 3557.68114 8.08 0.0046
 IDDCR 1 185.92645 185.92645 0.42 0.5161
 JDDCm 1 10210.38237 10210.38237 23.18 <.0001

 Source DF Type III SS Mean Square F Value Pr > F

 PgmrAb 1 38822.38725 38822.38725 88.12 <.0001
 KLOC 1 4970.27357 4970.27357 11.28 0.0008
 DDsTim 1 364.96204 364.96204 0.83 0.3630
 EDRR 1 3153.10340 3153.10340 7.16 0.0076
 FDDDR 1 309.97469 309.97469 0.70 0.4018
 GCoTim 1 18738.77161 18738.77161 42.53 <.0001
 HCCR 1 778.22104 778.22104 1.77 0.1842
 IDDCR 1 222.10555 222.10555 0.50 0.4779
 JDDCm 1 10210.38237 10210.38237 23.18 <.0001

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 9.82921216 2.11768433 4.64 <.0001
 PgmrAb 0.23336474 0.02485991 9.39 <.0001
 KLOC -25.71253595 7.65526480 -3.36 0.0008
 DDsTim 0.08094949 0.08893971 0.91 0.3630
 EDRR -1.58618880 0.59291334 -2.68 0.0076
 FDDDR 0.07282847 0.08682475 0.84 0.4018
 GCoTim 0.60775135 0.09318818 6.52 <.0001
 HCCR -0.72865909 0.54824964 -1.33 0.1842
 IDDCR -0.03861900 0.05439096 -0.71 0.4779
 JDDCm 0.08032920 0.01668622 4.81 <.0001

C.8 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++,
NOOUTLIERS)

 The GLM Procedure

 Number of observations 884

Dependent Variable: TDDTs DD in Testing (defects/KLOC)

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 26 291356.2288 11206.0088 28.51 <.0001

368

 Error 857 336902.0468 393.1179

 Corrected Total 883 628258.2756

 R-Square Coeff Var Root MSE TDDTs Mean

 0.463752 81.33140 19.82720 24.37829

 Source DF Type I SS Mean Square F Value Pr > F

 PgmrAb 1 104113.3820 104113.3820 264.84 <.0001
 KLOC 1 23194.4445 23194.4445 59.00 <.0001
 DDsTim 1 48.0820 48.0820 0.12 0.7266
 EDRR 1 35159.7892 35159.7892 89.44 <.0001
 FDDDR 1 579.4338 579.4338 1.47 0.2251
 GCoTim 1 28544.7235 28544.7235 72.61 <.0001
 HCCR 1 3539.5178 3539.5178 9.00 0.0028
 IDDCR 1 45.3275 45.3275 0.12 0.7343
 JDDCm 1 16371.5002 16371.5002 41.65 <.0001
 PgmrAb*KLOC 1 11464.4237 11464.4237 29.16 <.0001
 PgmrAb*GCoTim 1 23023.9475 23023.9475 58.57 <.0001
 PgmrAb*HCCR 1 3665.4414 3665.4414 9.32 0.0023
 PgmrAb*IDDCR 1 292.3120 292.3120 0.74 0.3888
 PgmrAb*JDDCm 1 11335.6172 11335.6172 28.84 <.0001
 KLOC*GCoTim 1 20.4778 20.4778 0.05 0.8195
 KLOC*HCCR 1 1409.1021 1409.1021 3.58 0.0587
 KLOC*JDDCm 1 630.0462 630.0462 1.60 0.2059
 GCoTim*JDDCm 1 3393.8182 3393.8182 8.63 0.0034
 HCCR*IDDCR 1 5137.2858 5137.2858 13.07 0.0003
 PgmrAb*KLOC*GCoTim 1 14556.7058 14556.7058 37.03 <.0001
 PgmrAb*KLOC*IDDCR 1 276.8374 276.8374 0.70 0.4016
 PgmrAb*KLOC*JDDCm 1 1425.5066 1425.5066 3.63 0.0572
 PgmrAb*FDDDR*IDDCR 1 17.3264 17.3264 0.04 0.8338
 FDDDR*IDDCR*JDDCm 1 1162.2406 1162.2406 2.96 0.0859
 Pgmr*KLOC*GCoT*JDDCm 1 17.0194 17.0194 0.04 0.8352
 Pgmr*FDDD*IDDC*JDDCm 1 1931.9201 1931.9201 4.91 0.0269

 Source DF Type III SS Mean Square F Value Pr > F

 PgmrAb 1 66.83404 66.83404 0.17 0.6802
 KLOC 1 8367.92833 8367.92833 21.29 <.0001
 DDsTim 1 306.58851 306.58851 0.78 0.3774
 EDRR 1 982.62619 982.62619 2.50 0.1142
 FDDDR 1 0.26383 0.26383 0.00 0.9793
 GCoTim 1 393.04726 393.04726 1.00 0.3176
 HCCR 1 1155.18863 1155.18863 2.94 0.0869
 IDDCR 1 872.49526 872.49526 2.22 0.1367
 JDDCm 1 79.19711 79.19711 0.20 0.6537
 PgmrAb*KLOC 1 5723.17336 5723.17336 14.56 0.0001
 PgmrAb*GCoTim 1 13277.28025 13277.28025 33.77 <.0001
 PgmrAb*HCCR 1 290.58441 290.58441 0.74 0.3902
 PgmrAb*IDDCR 1 105.87516 105.87516 0.27 0.6039
 PgmrAb*JDDCm 1 5924.65508 5924.65508 15.07 0.0001
 KLOC*GCoTim 1 3797.69892 3797.69892 9.66 0.0019
 KLOC*HCCR 1 605.02487 605.02487 1.54 0.2151
 KLOC*JDDCm 1 1734.51733 1734.51733 4.41 0.0360
 GCoTim*JDDCm 1 3327.95105 3327.95105 8.47 0.0037

369

 HCCR*IDDCR 1 3918.57360 3918.57360 9.97 0.0016
 PgmrAb*KLOC*GCoTim 1 8390.17752 8390.17752 21.34 <.0001
 PgmrAb*KLOC*IDDCR 1 178.56869 178.56869 0.45 0.5005
 PgmrAb*KLOC*JDDCm 1 1273.15584 1273.15584 3.24 0.0723
 PgmrAb*FDDDR*IDDCR 1 39.01813 39.01813 0.10 0.7528
 FDDDR*IDDCR*JDDCm 1 2745.96740 2745.96740 6.99 0.0084
 Pgmr*KLOC*GCoT*JDDCm 1 11.41940 11.41940 0.03 0.8647
 Pgmr*FDDD*IDDC*JDDCm 1 1931.92013 1931.92013 4.91 0.0269

 Standard
 Parameter Estimate Error t Value Pr > |t|

 Intercept 22.3530181 4.21267417 5.31 <.0001
 PgmrAb -0.0342946 0.08317424 -0.41 0.6802
 KLOC -111.5722083 24.18290483 -4.61 <.0001
 DDsTim 0.0794410 0.08995561 0.88 0.3774
 EDRR -0.8336760 0.52730820 -1.58 0.1142
 FDDDR -0.0028817 0.11123687 -0.03 0.9793
 GCoTim -0.2815211 0.28154644 -1.00 0.3176
 HCCR -1.7026238 0.99323876 -1.71 0.0869
 IDDCR -0.1791328 0.12024167 -1.49 0.1367
 JDDCm -0.0294056 0.06551438 -0.45 0.6537
 PgmrAb*KLOC 1.9631478 0.51451253 3.82 0.0001
 PgmrAb*GCoTim 0.0241036 0.00414753 5.81 <.0001
 PgmrAb*HCCR -0.0146178 0.01700232 -0.86 0.3902
 PgmrAb*IDDCR 0.0015358 0.00295939 0.52 0.6039
 PgmrAb*JDDCm 0.0038903 0.00100211 3.88 0.0001
 KLOC*GCoTim 8.1514228 2.62261517 3.11 0.0019
 KLOC*HCCR 7.0997841 5.72294990 1.24 0.2151
 KLOC*JDDCm 1.2185559 0.58011962 2.10 0.0360
 GCoTim*JDDCm -0.0061636 0.00211841 -2.91 0.0037
 HCCR*IDDCR 0.0212104 0.00671810 3.16 0.0016
 PgmrAb*KLOC*GCoTim -0.2424967 0.05249061 -4.62 <.0001
 PgmrAb*KLOC*IDDCR -0.0112783 0.01673406 -0.67 0.5005
 PgmrAb*KLOC*JDDCm -0.0238445 0.01324976 -1.80 0.0723
 PgmrAb*FDDDR*IDDCR 0.0000178 0.00005653 0.32 0.7528
 FDDDR*IDDCR*JDDCm 0.0002259 0.00008548 2.64 0.0084
 Pgmr*KLOC*GCoT*JDDCm 0.0000893 0.00052420 0.17 0.8647
 Pgmr*FDDD*IDDC*JDDCm -0.0000047 0.00000210 -2.22 0.0269

C.9 COMPILE MIXED MODELS FOR (PSPB, C, OUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 9
 Columns in Z 0
 Subjects 197
 Max Obs Per Subject 10
 Observations Used 1758

370

 Observations Not Used 0
 Total Observations 1758

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 6054.96563064
 1 2 5738.13230271 0.00060339
 2 1 5737.30657788 0.00001357
 3 1 5737.28912193 0.00000001
 4 1 5737.28910593 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 2.1682 0.5629 0.4006 0.3713 0.4196 0.3628 0.3058
 2 0.5629 2.0100 0.5104 0.7049 0.5652 0.3164 0.3287
 3 0.4006 0.5104 1.3926 0.4115 0.2034 0.2168 0.1530
 4 0.3713 0.7049 0.4115 2.4451 0.5020 0.3014 0.2416
 5 0.4196 0.5652 0.2034 0.5020 1.6398 0.1888 0.3959
 6 0.3628 0.3164 0.2168 0.3014 0.1888 0.8740 0.3197
 7 0.3058 0.3287 0.1530 0.2416 0.3959 0.3197 2.2193

 Estimated R Correlation Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 1.0000 0.2696 0.2305 0.1613 0.2225 0.2636 0.1394
 2 0.2696 1.0000 0.3051 0.3180 0.3113 0.2387 0.1556
 3 0.2305 0.3051 1.0000 0.2230 0.1346 0.1965 0.08703
 4 0.1613 0.3180 0.2230 1.0000 0.2507 0.2062 0.1037
 5 0.2225 0.3113 0.1346 0.2507 1.0000 0.1577 0.2076
 6 0.2636 0.2387 0.1965 0.2062 0.1577 1.0000 0.2295
 7 0.1394 0.1556 0.08703 0.1037 0.2076 0.2295 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 2.1682
 UN(2,1) Student 0.5629
 UN(2,2) Student 2.0100
 UN(3,1) Student 0.4006
 UN(3,2) Student 0.5104
 UN(3,3) Student 1.3926
 UN(4,1) Student 0.3713
 UN(4,2) Student 0.7049
 UN(4,3) Student 0.4115
 UN(4,4) Student 2.4451
 UN(5,1) Student 0.4196
 UN(5,2) Student 0.5652
 UN(5,3) Student 0.2034
 UN(5,4) Student 0.5020

371

 UN(5,5) Student 1.6398
 UN(6,1) Student 0.3628
 UN(6,2) Student 0.3164
 UN(6,3) Student 0.2168
 UN(6,4) Student 0.3014
 UN(6,5) Student 0.1888
 UN(6,6) Student 0.8740
 UN(7,1) Student 0.3058
 UN(7,2) Student 0.3287
 UN(7,3) Student 0.1530
 UN(7,4) Student 0.2416
 UN(7,5) Student 0.3959
 UN(7,6) Student 0.3197
 UN(7,7) Student 2.2193
 UN(8,1) Student 0.1732
 UN(8,2) Student 0.06235
 UN(8,3) Student 0.1473
 UN(8,4) Student 0.4334
 UN(8,5) Student 0.09947
 UN(8,6) Student 0.1502
 UN(8,7) Student 0.5163
 UN(8,8) Student 2.3354
 UN(9,1) Student 0.4035
 UN(9,2) Student 0.05281
 UN(9,3) Student 0.3657
 UN(9,4) Student 0.09652
 UN(9,5) Student 0.2284
 UN(9,6) Student 0.5841
 UN(9,7) Student 0.5218
 UN(9,8) Student 0.5944
 UN(9,9) Student 1.6218
 UN(10,1) Student 0.4895
 UN(10,2) Student 0.08354
 UN(10,3) Student 0.1559
 UN(10,4) Student 0.3676
 UN(10,5) Student 0.2044
 UN(10,6) Student 0.4573
 UN(10,7) Student 0.4787
 UN(10,8) Student 0.3149
 UN(10,9) Student 0.5715
 UN(10,10) Student 1.3903

 Fit Statistics

 -2 Res Log Likelihood 5737.3
 AIC (smaller is better) 5847.3
 AICC (smaller is better) 5850.9
 BIC (smaller is better) 6027.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 317.68 <.0001

372

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 1.0056 0.1789 880 5.62 <.0001
 KLnKLOC -0.05516 0.05128 731 -1.08 0.2824
 DLnDsTim 0.1556 0.04503 947 3.46 0.0006
 ELnDRR -0.09745 0.06437 798 -1.51 0.1305
 FLnDDDR 0.1226 0.03751 584 3.27 0.0011
 GLnCoTim 0.2766 0.06317 1002 4.38 <.0001
 HLnCRR -0.1935 0.06307 796 -3.07 0.0022
 ILnDDCR -0.00297 0.03888 613 -0.08 0.9391
 JLnDDCm 0.1063 0.02273 1494 4.68 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 731 1.16 0.2824
 DLnDsTim 1 947 11.94 0.0006
 ELnDRR 1 798 2.29 0.1305
 FLnDDDR 1 584 10.68 0.0011
 GLnCoTim 1 1002 19.17 <.0001
 HLnCRR 1 796 9.41 0.0022
 ILnDDCR 1 613 0.01 0.9391
 JLnDDCm 1 1494 21.87 <.0001

C.10 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
OUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 15
 Columns in Z 0
 Subjects 197
 Max Obs Per Subject 10
 Observations Used 1758
 Observations Not Used 0
 Total Observations 1758

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 6054.83902591
 1 2 5731.82809085 0.00101888
 2 1 5730.39527631 0.00004449

373

 3 1 5730.33699984 0.00000015
 4 1 5730.33680973 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 2.1373 0.5550 0.4163 0.3732 0.4358 0.3602 0.3421
 2 0.5550 2.0284 0.4974 0.7213 0.5793 0.3225 0.3320
 3 0.4163 0.4974 1.3148 0.3689 0.2319 0.2284 0.1491
 4 0.3732 0.7213 0.3689 2.4432 0.5253 0.3254 0.2952
 5 0.4358 0.5793 0.2319 0.5253 1.6055 0.1945 0.4022
 6 0.3602 0.3225 0.2284 0.3254 0.1945 0.8514 0.2894
 7 0.3421 0.3320 0.1491 0.2952 0.4022 0.2894 2.2507

 Estimated R Correlation Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 1.0000 0.2665 0.2483 0.1633 0.2353 0.2670 0.1560
 2 0.2665 1.0000 0.3046 0.3240 0.3210 0.2454 0.1554
 3 0.2483 0.3046 1.0000 0.2058 0.1596 0.2159 0.08669
 4 0.1633 0.3240 0.2058 1.0000 0.2652 0.2256 0.1259
 5 0.2353 0.3210 0.1596 0.2652 1.0000 0.1663 0.2116
 6 0.2670 0.2454 0.2159 0.2256 0.1663 1.0000 0.2090
 7 0.1560 0.1554 0.08669 0.1259 0.2116 0.2090 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 2.1373
 UN(2,1) Student 0.5550
 UN(2,2) Student 2.0284
 UN(3,1) Student 0.4163
 UN(3,2) Student 0.4974
 UN(3,3) Student 1.3148
 UN(4,1) Student 0.3732
 UN(4,2) Student 0.7213
 UN(4,3) Student 0.3689
 UN(4,4) Student 2.4432
 UN(5,1) Student 0.4358
 UN(5,2) Student 0.5793
 UN(5,3) Student 0.2319
 UN(5,4) Student 0.5253
 UN(5,5) Student 1.6055
 UN(6,1) Student 0.3602
 UN(6,2) Student 0.3225
 UN(6,3) Student 0.2284
 UN(6,4) Student 0.3254
 UN(6,5) Student 0.1945
 UN(6,6) Student 0.8514
 UN(7,1) Student 0.3421
 UN(7,2) Student 0.3320
 UN(7,3) Student 0.1491

374

 UN(7,4) Student 0.2952
 UN(7,5) Student 0.4022
 UN(7,6) Student 0.2894
 UN(7,7) Student 2.2507
 UN(8,1) Student 0.2295
 UN(8,2) Student 0.04714
 UN(8,3) Student 0.1716
 UN(8,4) Student 0.4935
 UN(8,5) Student 0.1099
 UN(8,6) Student 0.1350
 UN(8,7) Student 0.4639
 UN(8,8) Student 2.3588
 UN(9,1) Student 0.3710
 UN(9,2) Student 0.03693
 UN(9,3) Student 0.3859
 UN(9,4) Student 0.06697
 UN(9,5) Student 0.2244
 UN(9,6) Student 0.5248
 UN(9,7) Student 0.4552
 UN(9,8) Student 0.5941
 UN(9,9) Student 1.5354
 UN(10,1) Student 0.4509
 UN(10,2) Student 0.09155
 UN(10,3) Student 0.1330
 UN(10,4) Student 0.3165
 UN(10,5) Student 0.1958
 UN(10,6) Student 0.4833
 UN(10,7) Student 0.5097
 UN(10,8) Student 0.3219
 UN(10,9) Student 0.5596
 UN(10,10) Student 1.3669

 Fit Statistics

 -2 Res Log Likelihood 5730.3
 AIC (smaller is better) 5840.3
 AICC (smaller is better) 5844.0
 BIC (smaller is better) 6020.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 324.50 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 1.4351 0.4364 933 3.29 0.0010
 KLnKLOC -0.2160 0.1462 996 -1.48 0.1398
 DLnDsTim -0.02944 0.1396 813 -0.21 0.8331
 ELnDRR -0.3930 0.1268 575 -3.10 0.0020
 FLnDDDR -0.1812 0.1280 451 -1.42 0.1576
 GLnCoTim -0.05378 0.1221 1097 -0.44 0.6596
 HLnCRR -0.2407 0.06493 788 -3.71 0.0002

375

 ILnDDCR 0.5272 0.1230 531 4.29 <.0001
 JLnDDCm -0.1168 0.08290 1229 -1.41 0.1589
 KLnKLOC*DLnDsTim -0.06684 0.05204 945 -1.28 0.1993
 KLnKLOC*ELnDRR -0.1322 0.04389 623 -3.01 0.0027
 KLnKLOC*FLnDDDR -0.1323 0.05269 527 -2.51 0.0123
 KLnKLOC*ILnDDCR 0.2475 0.05050 721 4.90 <.0001
 GLnCoTim*JLnDDCm 0.08671 0.03190 1128 2.72 0.0067
 KLnK*GLnC*HLnC*ILnDD -0.01066 0.003645 664 -2.93 0.0036

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 996 2.18 0.1398
 DLnDsTim 1 813 0.04 0.8331
 ELnDRR 1 575 9.60 0.0020
 FLnDDDR 1 451 2.00 0.1576
 GLnCoTim 1 1097 0.19 0.6596
 HLnCRR 1 788 13.74 0.0002
 ILnDDCR 1 531 18.37 <.0001
 JLnDDCm 1 1229 1.99 0.1589
 KLnKLOC*DLnDsTim 1 945 1.65 0.1993
 KLnKLOC*ELnDRR 1 623 9.07 0.0027
 KLnKLOC*FLnDDDR 1 527 6.30 0.0123
 KLnKLOC*ILnDDCR 1 721 24.02 <.0001
 GLnCoTim*JLnDDCm 1 1128 7.39 0.0067
 KLnK*GLnC*HLnC*ILnDD 1 664 8.56 0.0036

C.11 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 9
 Columns in Z 0
 Subjects 197
 Max Obs Per Subject 10
 Observations Used 1711
 Observations Not Used 0
 Total Observations 1711

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 5839.53298935
 1 2 5536.64757938 0.00102614
 2 1 5535.28486200 0.00003602

376

 3 1 5535.24020277 0.00000008
 4 1 5535.24010328 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 2.1033 0.5066 0.3211 0.3134 0.3842 0.3729 0.3071
 2 0.5066 1.9528 0.3270 0.7759 0.5939 0.3554 0.3479
 3 0.3211 0.3270 1.1972 0.2729 0.2339 0.1394 0.02399
 4 0.3134 0.7759 0.2729 2.4203 0.5248 0.3515 0.1612
 5 0.3842 0.5939 0.2339 0.5248 1.6156 0.1965 0.3254
 6 0.3729 0.3554 0.1394 0.3515 0.1965 0.8853 0.3075
 7 0.3071 0.3479 0.02399 0.1612 0.3254 0.3075 2.1271

 Estimated R Correlation Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 1.0000 0.2500 0.2023 0.1389 0.2084 0.2733 0.1452
 2 0.2500 1.0000 0.2139 0.3569 0.3344 0.2703 0.1707
 3 0.2023 0.2139 1.0000 0.1603 0.1682 0.1354 0.01504
 4 0.1389 0.3569 0.1603 1.0000 0.2654 0.2401 0.07106
 5 0.2084 0.3344 0.1682 0.2654 1.0000 0.1643 0.1755
 6 0.2733 0.2703 0.1354 0.2401 0.1643 1.0000 0.2241
 7 0.1452 0.1707 0.01504 0.07106 0.1755 0.2241 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 2.1033
 UN(2,1) Student 0.5066
 UN(2,2) Student 1.9528
 UN(3,1) Student 0.3211
 UN(3,2) Student 0.3270
 UN(3,3) Student 1.1972
 UN(4,1) Student 0.3134
 UN(4,2) Student 0.7759
 UN(4,3) Student 0.2729
 UN(4,4) Student 2.4203
 UN(5,1) Student 0.3842
 UN(5,2) Student 0.5939
 UN(5,3) Student 0.2339
 UN(5,4) Student 0.5248
 UN(5,5) Student 1.6156
 UN(6,1) Student 0.3729
 UN(6,2) Student 0.3554
 UN(6,3) Student 0.1394
 UN(6,4) Student 0.3515
 UN(6,5) Student 0.1965
 UN(6,6) Student 0.8853
 UN(7,1) Student 0.3071
 UN(7,2) Student 0.3479
 UN(7,3) Student 0.02399

377

 UN(7,4) Student 0.1612
 UN(7,5) Student 0.3254
 UN(7,6) Student 0.3075
 UN(7,7) Student 2.1271
 UN(8,1) Student 0.1918
 UN(8,2) Student 0.08647
 UN(8,3) Student 0.1226
 UN(8,4) Student 0.3873
 UN(8,5) Student 0.09661
 UN(8,6) Student 0.1069
 UN(8,7) Student 0.5222
 UN(8,8) Student 2.2734
 UN(9,1) Student 0.3945
 UN(9,2) Student 0.1547
 UN(9,3) Student 0.2853
 UN(9,4) Student 0.1376
 UN(9,5) Student 0.1896
 UN(9,6) Student 0.5897
 UN(9,7) Student 0.5051
 UN(9,8) Student 0.5793
 UN(9,9) Student 1.5748
 UN(10,1) Student 0.5176
 UN(10,2) Student 0.1200
 UN(10,3) Student 0.08563
 UN(10,4) Student 0.3700
 UN(10,5) Student 0.2303
 UN(10,6) Student 0.4920
 UN(10,7) Student 0.5105
 UN(10,8) Student 0.2990
 UN(10,9) Student 0.5998
 UN(10,10) Student 1.4386

 Fit Statistics

 -2 Res Log Likelihood 5535.2
 AIC (smaller is better) 5645.2
 AICC (smaller is better) 5649.0
 BIC (smaller is better) 5825.8

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 304.29 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 1.3671 0.1824 888 7.50 <.0001
 KLnKLOC 0.02557 0.05130 732 0.50 0.6184
 DLnDsTim 0.1319 0.04511 932 2.92 0.0036
 ELnDRR -0.06354 0.06572 798 -0.97 0.3339
 FLnDDDR 0.1114 0.03790 587 2.94 0.0034
 GLnCoTim 0.2263 0.06315 929 3.58 0.0004
 HLnCRR -0.2120 0.06377 791 -3.33 0.0009

378

 ILnDDCR -0.02155 0.03887 603 -0.55 0.5795
 JLnDDCm 0.1183 0.02285 1426 5.18 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 732 0.25 0.6184
 DLnDsTim 1 932 8.54 0.0036
 ELnDRR 1 798 0.93 0.3339
 FLnDDDR 1 587 8.64 0.0034
 GLnCoTim 1 929 12.84 0.0004
 HLnCRR 1 791 11.06 0.0009
 ILnDDCR 1 603 0.31 0.5795
 JLnDDCm 1 1426 26.79 <.0001

C.12 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C,
NOOUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 15
 Columns in Z 0
 Subjects 197
 Max Obs Per Subject 10
 Observations Used 1705
 Observations Not Used 0
 Total Observations 1705

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 5824.64410745
 1 2 5520.98269895 0.00090660
 2 1 5519.78039793 0.00002943
 3 1 5519.74387433 0.00000006
 4 1 5519.74380373 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 2.0908 0.5079 0.3893 0.3106 0.3989 0.3625 0.3263
 2 0.5079 1.9523 0.3283 0.7708 0.5939 0.3544 0.3942
 3 0.3893 0.3283 1.1398 0.2381 0.2313 0.1799 0.04148

379

 4 0.3106 0.7708 0.2381 2.3948 0.5222 0.3485 0.2583
 5 0.3989 0.5939 0.2313 0.5222 1.5854 0.1814 0.4180
 6 0.3625 0.3544 0.1799 0.3485 0.1814 0.8546 0.2515
 7 0.3263 0.3942 0.04148 0.2583 0.4180 0.2515 2.1897

 Estimated R Correlation Matrix for Student 1995m10

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

 1 1.0000 0.2514 0.2522 0.1388 0.2191 0.2712 0.1525
 2 0.2514 1.0000 0.2201 0.3565 0.3376 0.2744 0.1907
 3 0.2522 0.2201 1.0000 0.1441 0.1721 0.1822 0.02626
 4 0.1388 0.3565 0.1441 1.0000 0.2680 0.2436 0.1128
 5 0.2191 0.3376 0.1721 0.2680 1.0000 0.1558 0.2244
 6 0.2712 0.2744 0.1822 0.2436 0.1558 1.0000 0.1838
 7 0.1525 0.1907 0.02626 0.1128 0.2244 0.1838 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 2.0908
 UN(2,1) Student 0.5079
 UN(2,2) Student 1.9523
 UN(3,1) Student 0.3893
 UN(3,2) Student 0.3283
 UN(3,3) Student 1.1398
 UN(4,1) Student 0.3106
 UN(4,2) Student 0.7708
 UN(4,3) Student 0.2381
 UN(4,4) Student 2.3948
 UN(5,1) Student 0.3989
 UN(5,2) Student 0.5939
 UN(5,3) Student 0.2313
 UN(5,4) Student 0.5222
 UN(5,5) Student 1.5854
 UN(6,1) Student 0.3625
 UN(6,2) Student 0.3544
 UN(6,3) Student 0.1799
 UN(6,4) Student 0.3485
 UN(6,5) Student 0.1814
 UN(6,6) Student 0.8546
 UN(7,1) Student 0.3263
 UN(7,2) Student 0.3942
 UN(7,3) Student 0.04148
 UN(7,4) Student 0.2583
 UN(7,5) Student 0.4180
 UN(7,6) Student 0.2515
 UN(7,7) Student 2.1897
 UN(8,1) Student 0.2523
 UN(8,2) Student 0.07714
 UN(8,3) Student 0.09264
 UN(8,4) Student 0.4446
 UN(8,5) Student 0.1111
 UN(8,6) Student 0.1031
 UN(8,7) Student 0.3983
 UN(8,8) Student 2.2943

380

 UN(9,1) Student 0.3639
 UN(9,2) Student 0.1036
 UN(9,3) Student 0.3271
 UN(9,4) Student 0.07943
 UN(9,5) Student 0.2018
 UN(9,6) Student 0.5197
 UN(9,7) Student 0.4038
 UN(9,8) Student 0.5611
 UN(9,9) Student 1.5201
 UN(10,1) Student 0.4778
 UN(10,2) Student 0.1056
 UN(10,3) Student 0.07142
 UN(10,4) Student 0.3319
 UN(10,5) Student 0.2101
 UN(10,6) Student 0.4858
 UN(10,7) Student 0.4821
 UN(10,8) Student 0.2997
 UN(10,9) Student 0.5543
 UN(10,10) Student 1.3860

 Fit Statistics

 -2 Res Log Likelihood 5519.7
 AIC (smaller is better) 5629.7
 AICC (smaller is better) 5633.5
 BIC (smaller is better) 5810.3

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 304.90 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 1.3656 0.4502 922 3.03 0.0025
 KLnKLOC -0.2079 0.1521 952 -1.37 0.1720
 DLnDsTim 0.03645 0.1429 821 0.26 0.7987
 ELnDRR -0.3908 0.1327 575 -2.94 0.0034
 FLnDDDR -0.1881 0.1315 440 -1.43 0.1535
 GLnCoTim -0.01706 0.1251 1070 -0.14 0.8916
 HLnCRR -0.2283 0.06562 766 -3.48 0.0005
 ILnDDCR 0.4750 0.1275 530 3.72 0.0002
 JLnDDCm -0.07373 0.08686 1231 -0.85 0.3961
 KLnKLOC*DLnDsTim -0.03506 0.05324 928 -0.66 0.5104
 KLnKLOC*ELnDRR -0.1337 0.04638 612 -2.88 0.0041
 KLnKLOC*FLnDDDR -0.1318 0.05425 513 -2.43 0.0155
 KLnKLOC*ILnDDCR 0.2199 0.05230 712 4.20 <.0001
 GLnCoTim*JLnDDCm 0.07396 0.03358 1167 2.20 0.0278
 KLnK*GLnC*HLnC*ILnDD -0.00818 0.003855 657 -2.12 0.0342

 Type 3 Tests of Fixed Effects

 Num Den

381

 Effect DF DF F Value Pr > F

 KLnKLOC 1 952 1.87 0.1720
 DLnDsTim 1 821 0.07 0.7987
 ELnDRR 1 575 8.67 0.0034
 FLnDDDR 1 440 2.04 0.1535
 GLnCoTim 1 1070 0.02 0.8916
 HLnCRR 1 766 12.10 0.0005
 ILnDDCR 1 530 13.88 0.0002
 JLnDDCm 1 1231 0.72 0.3961
 KLnKLOC*DLnDsTim 1 928 0.43 0.5104
 KLnKLOC*ELnDRR 1 612 8.31 0.0041
 KLnKLOC*FLnDDDR 1 513 5.90 0.0155
 KLnKLOC*ILnDDCR 1 712 17.68 <.0001
 GLnCoTim*JLnDDCm 1 1167 4.85 0.0278
 KLnK*GLnC*HLnC*ILnDD 1 657 4.50 0.0342

C.13 COMPILE MIXED MODELS FOR (PSPB, C++, OUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 9
 Columns in Z 0
 Subjects 108
 Max Obs Per Subject 10
 Observations Used 920
 Observations Not Used 0
 Total Observations 920

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 3088.72979503
 1 2 2967.24021713 0.00017340
 2 1 2967.12359823 0.00000080
 3 1 2967.12308002 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.5747 0.07598 0.3105 0.2739 0.08546 0.1535 0.3859 0.2643 0.1871
 2 0.07598 1.7492 0.6261 0.2981 0.4030 0.5539 0.2012 0.1561 0.3617
 3 0.3105 0.6261 1.5053 -0.06126 0.4040 0.3995 0.04650 0.2590 0.2753
 4 0.2739 0.2981 -0.06126 2.0031 -0.09393 0.1597 0.3243 0.002969 0.1348

382

 5 0.08546 0.4030 0.4040 -0.09393 1.7179 0.4640 0.3274 0.2291 0.1158

 Estimated R
 Matrix for
 Student 1995p6

 Row Col10

 1 0.04361
 2 0.08112
 3 0.1510
 4 -0.1360
 5 0.4102

 Estimated R Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 6 0.1535 0.5539 0.3995 0.1597 0.4640 1.0476 0.02608 0.3152 0.2119
 7 0.3859 0.2012 0.04650 0.3243 0.3274 0.02608 2.1947 0.1963 0.4105
 8 0.2643 0.1561 0.2590 0.002969 0.2291 0.3152 0.1963 2.0493 0.09875
 9 0.1871 0.3617 0.2753 0.1348 0.1158 0.2119 0.4105 0.09875 1.2246
 10 0.04361 0.08112 0.1510 -0.1360 0.4102 0.1668 0.2386 0.1423 0.07995

 Estimated R
 Matrix for
 Student 1995p6

 Row Col10

 6 0.1668
 7 0.2386
 8 0.1423
 9 0.07995
 10 1.0990

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.0000 0.04578 0.2017 0.1542 0.05196 0.1195 0.2076 0.1471 0.1347
 2 0.04578 1.0000 0.3859 0.1592 0.2325 0.4092 0.1027 0.08243 0.2471
 3 0.2017 0.3859 1.0000 -0.03528 0.2512 0.3181 0.02559 0.1475 0.2028
 4 0.1542 0.1592 -0.03528 1.0000 -0.05064 0.1103 0.1547 0.001465 0.08606

 Estimated R
 Correlation
 Matrix for
 Student 1995p6

 Row Col10

 1 0.03315
 2 0.05851
 3 0.1174
 4 -0.09164

383

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 5 0.05196 0.2325 0.2512 -0.05064 1.0000 0.3459 0.1686 0.1221 0.07982
 6 0.1195 0.4092 0.3181 0.1103 0.3459 1.0000 0.01720 0.2151 0.1871
 7 0.2076 0.1027 0.02559 0.1547 0.1686 0.01720 1.0000 0.09254 0.2504
 8 0.1471 0.08243 0.1475 0.001465 0.1221 0.2151 0.09254 1.0000 0.06234
 9 0.1347 0.2471 0.2028 0.08606 0.07982 0.1871 0.2504 0.06234 1.0000
 10 0.03315 0.05851 0.1174 -0.09164 0.2985 0.1554 0.1536 0.09485 0.06892

 Estimated R
 Correlation
 Matrix for
 Student 1995p6

 Row Col10

 5 0.2985
 6 0.1554
 7 0.1536
 8 0.09485
 9 0.06892
 10 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 1.5747
 UN(2,1) Student 0.07598
 UN(2,2) Student 1.7492
 UN(3,1) Student 0.3105
 UN(3,2) Student 0.6261
 UN(3,3) Student 1.5053
 UN(4,1) Student 0.2739
 UN(4,2) Student 0.2981
 UN(4,3) Student -0.06126
 UN(4,4) Student 2.0031
 UN(5,1) Student 0.08546
 UN(5,2) Student 0.4030
 UN(5,3) Student 0.4040
 UN(5,4) Student -0.09393
 UN(5,5) Student 1.7179
 UN(6,1) Student 0.1535
 UN(6,2) Student 0.5539
 UN(6,3) Student 0.3995
 UN(6,4) Student 0.1597
 UN(6,5) Student 0.4640
 UN(6,6) Student 1.0476
 UN(7,1) Student 0.3859
 UN(7,2) Student 0.2012
 UN(7,3) Student 0.04650
 UN(7,4) Student 0.3243
 UN(7,5) Student 0.3274
 UN(7,6) Student 0.02608
 UN(7,7) Student 2.1947

384

 UN(8,1) Student 0.2643
 UN(8,2) Student 0.1561
 UN(8,3) Student 0.2590
 UN(8,4) Student 0.002969
 UN(8,5) Student 0.2291
 UN(8,6) Student 0.3152
 UN(8,7) Student 0.1963
 UN(8,8) Student 2.0493
 UN(9,1) Student 0.1871
 UN(9,2) Student 0.3617
 UN(9,3) Student 0.2753
 UN(9,4) Student 0.1348
 UN(9,5) Student 0.1158
 UN(9,6) Student 0.2119
 UN(9,7) Student 0.4105
 UN(9,8) Student 0.09875
 UN(9,9) Student 1.2246
 UN(10,1) Student 0.04361
 UN(10,2) Student 0.08112
 UN(10,3) Student 0.1510
 UN(10,4) Student -0.1360
 UN(10,5) Student 0.4102
 UN(10,6) Student 0.1668
 UN(10,7) Student 0.2386
 UN(10,8) Student 0.1423
 UN(10,9) Student 0.07995
 UN(10,10) Student 1.0990

 Fit Statistics

 -2 Res Log Likelihood 2967.1
 AIC (smaller is better) 3077.1
 AICC (smaller is better) 3084.3
 BIC (smaller is better) 3224.6

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 121.61 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 0.4853 0.2296 403 2.11 0.0352
 KLnKLOC -0.09935 0.06654 314 -1.49 0.1364
 DLnDsTim 0.04044 0.06038 580 0.67 0.5032
 ELnDRR -0.08726 0.09045 332 -0.96 0.3353
 FLnDDDR 0.06032 0.05264 285 1.15 0.2528
 GLnCoTim 0.4140 0.08495 605 4.87 <.0001
 HLnCRR -0.1913 0.09277 345 -2.06 0.0400
 ILnDDCR 0.1080 0.05886 313 1.84 0.0674
 JLnDDCm 0.1319 0.03264 625 4.04 <.0001

385

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 314 2.23 0.1364
 DLnDsTim 1 580 0.45 0.5032
 ELnDRR 1 332 0.93 0.3353
 FLnDDDR 1 285 1.31 0.2528
 GLnCoTim 1 605 23.75 <.0001
 HLnCRR 1 345 4.25 0.0400
 ILnDDCR 1 313 3.37 0.0674
 JLnDDCm 1 625 16.33 <.0001

C.14 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
OUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 15
 Columns in Z 0
 Subjects 108
 Max Obs Per Subject 10
 Observations Used 920
 Observations Not Used 0
 Total Observations 920

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 3094.57558895
 1 2 2974.89205832 0.00037643
 2 1 2974.63052572 0.00000397
 3 1 2974.62789751 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.5770 0.06633 0.2795 0.3032 0.1208 0.1758 0.2972 0.2673 0.1548
 2 0.06633 1.6828 0.6151 0.2837 0.4051 0.5476 0.2175 0.2546 0.3747
 3 0.2795 0.6151 1.4848 -0.1078 0.3818 0.3759 0.06945 0.3235 0.2712
 4 0.3032 0.2837 -0.1078 2.0254 -0.06966 0.1705 0.3905 0.06101 0.1377
 5 0.1208 0.4051 0.3818 -0.06966 1.7821 0.5010 0.4324 0.2301 0.1385

386

 Estimated R
 Matrix for
 Student 1995p6

 Row Col10

 1 0.01377
 2 0.1294
 3 0.1351
 4 -0.07869
 5 0.4109

 Estimated R Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 6 0.1758 0.5476 0.3759 0.1705 0.5010 1.0486 0.01167 0.3560 0.1600
 7 0.2972 0.2175 0.06945 0.3905 0.4324 0.01167 1.9675 0.08781 0.4342
 8 0.2673 0.2546 0.3235 0.06101 0.2301 0.3560 0.08781 2.0629 0.2146
 9 0.1548 0.3747 0.2712 0.1377 0.1385 0.1600 0.4342 0.2146 1.2343
 10 0.01377 0.1294 0.1351 -0.07869 0.4109 0.1554 0.2309 0.1153 0.1434

 Estimated R
 Matrix for
 Student 1995p6

 Row Col10

 6 0.1554
 7 0.2309
 8 0.1153
 9 0.1434
 10 1.0853

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.0000 0.04072 0.1826 0.1696 0.07206 0.1367 0.1687 0.1482 0.1109
 2 0.04072 1.0000 0.3891 0.1537 0.2340 0.4122 0.1195 0.1366 0.2600
 3 0.1826 0.3891 1.0000 -0.06219 0.2347 0.3012 0.04064 0.1848 0.2003
 4 0.1696 0.1537 -0.06219 1.0000 -0.03667 0.1170 0.1956 0.02985 0.08712

 Estimated R
 Correlation
 Matrix for
 Student 1995p6

 Row Col10

 1 0.01053
 2 0.09573
 3 0.1065
 4 -0.05307

 Estimated R Correlation Matrix for Student 1995p6

387

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 5 0.07206 0.2340 0.2347 -0.03667 1.0000 0.3665 0.2309 0.1200 0.09340
 6 0.1367 0.4122 0.3012 0.1170 0.3665 1.0000 0.008124 0.2421 0.1406
 7 0.1687 0.1195 0.04064 0.1956 0.2309 0.008124 1.0000 0.04359 0.2786
 8 0.1482 0.1366 0.1848 0.02985 0.1200 0.2421 0.04359 1.0000 0.1345
 9 0.1109 0.2600 0.2003 0.08712 0.09340 0.1406 0.2786 0.1345 1.0000
 10 0.01053 0.09573 0.1065 -0.05307 0.2955 0.1457 0.1580 0.07708 0.1239

 Estimated R
 Correlation
 Matrix for
 Student 1995p6

 Row Col10

 5 0.2955
 6 0.1457
 7 0.1580
 8 0.07708
 9 0.1239
 10 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 1.5770
 UN(2,1) Student 0.06633
 UN(2,2) Student 1.6828
 UN(3,1) Student 0.2795
 UN(3,2) Student 0.6151
 UN(3,3) Student 1.4848
 UN(4,1) Student 0.3032
 UN(4,2) Student 0.2837
 UN(4,3) Student -0.1078
 UN(4,4) Student 2.0254
 UN(5,1) Student 0.1208
 UN(5,2) Student 0.4051
 UN(5,3) Student 0.3818
 UN(5,4) Student -0.06966
 UN(5,5) Student 1.7821
 UN(6,1) Student 0.1758
 UN(6,2) Student 0.5476
 UN(6,3) Student 0.3759
 UN(6,4) Student 0.1705
 UN(6,5) Student 0.5010
 UN(6,6) Student 1.0486
 UN(7,1) Student 0.2972
 UN(7,2) Student 0.2175
 UN(7,3) Student 0.06945
 UN(7,4) Student 0.3905
 UN(7,5) Student 0.4324
 UN(7,6) Student 0.01167
 UN(7,7) Student 1.9675
 UN(8,1) Student 0.2673

388

 UN(8,2) Student 0.2546
 UN(8,3) Student 0.3235
 UN(8,4) Student 0.06101
 UN(8,5) Student 0.2301
 UN(8,6) Student 0.3560
 UN(8,7) Student 0.08781
 UN(8,8) Student 2.0629
 UN(9,1) Student 0.1548
 UN(9,2) Student 0.3747
 UN(9,3) Student 0.2712
 UN(9,4) Student 0.1377
 UN(9,5) Student 0.1385
 UN(9,6) Student 0.1600
 UN(9,7) Student 0.4342
 UN(9,8) Student 0.2146
 UN(9,9) Student 1.2343
 UN(10,1) Student 0.01377
 UN(10,2) Student 0.1294
 UN(10,3) Student 0.1351
 UN(10,4) Student -0.07869
 UN(10,5) Student 0.4109
 UN(10,6) Student 0.1554
 UN(10,7) Student 0.2309
 UN(10,8) Student 0.1153
 UN(10,9) Student 0.1434
 UN(10,10) Student 1.0853

 Fit Statistics

 -2 Res Log Likelihood 2974.6
 AIC (smaller is better) 3084.6
 AICC (smaller is better) 3091.9
 BIC (smaller is better) 3232.1

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 119.95 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept -0.2592 0.5276 420 -0.49 0.6234
 KLnKLOC -0.3089 0.1946 526 -1.59 0.1130
 DLnDsTim 0.2792 0.1656 601 1.69 0.0924
 ELnDRR -0.07527 0.1605 272 -0.47 0.6395
 FLnDDDR 0.1593 0.1656 246 0.96 0.3369
 GLnCoTim 0.5575 0.1679 429 3.32 0.0010
 HLnCRR -0.2529 0.09494 371 -2.66 0.0081
 ILnDDCR 0.1633 0.1703 288 0.96 0.3383
 JLnDDCm 0.2708 0.1130 495 2.40 0.0170
 KLnKLOC*DLnDsTim 0.09675 0.06331 624 1.53 0.1269
 KLnKLOC*ELnDRR -0.00980 0.06428 310 -0.15 0.8789
 KLnKLOC*FLnDDDR 0.06365 0.07008 300 0.91 0.3644

389

 KLnKLOC*ILnDDCR 0.08133 0.07547 320 1.08 0.2820
 GLnCoTim*JLnDDCm -0.06841 0.04483 546 -1.53 0.1276
 KLnK*GLnC*HLnC*ILnDD -0.01646 0.003980 335 -4.13 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 526 2.52 0.1130
 DLnDsTim 1 601 2.84 0.0924
 ELnDRR 1 272 0.22 0.6395
 FLnDDDR 1 246 0.93 0.3369
 GLnCoTim 1 429 11.03 0.0010
 HLnCRR 1 371 7.10 0.0081
 ILnDDCR 1 288 0.92 0.3383
 JLnDDCm 1 495 5.74 0.0170
 KLnKLOC*DLnDsTim 1 624 2.34 0.1269
 KLnKLOC*ELnDRR 1 310 0.02 0.8789
 KLnKLOC*FLnDDDR 1 300 0.83 0.3644
 KLnKLOC*ILnDDCR 1 320 1.16 0.2820
 GLnCoTim*JLnDDCm 1 546 2.33 0.1276
 KLnK*GLnC*HLnC*ILnDD 1 335 17.09 <.0001

C.15 COMPILE MIXED MODELS FOR (PSPB, C++, NOOUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 9
 Columns in Z 0
 Subjects 108
 Max Obs Per Subject 10
 Observations Used 892
 Observations Not Used 0
 Total Observations 892

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 2957.10078571
 1 2 2850.62169063 0.00042974
 2 1 2850.34384472 0.00000340
 3 1 2850.34174635 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995p6

390

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.5403 0.06337 0.2276 0.2917 0.09685 0.1518 0.2307 0.1566 0.01517
 2 0.06337 1.6605 0.5676 0.2597 0.3472 0.4645 0.08267 0.3040 0.1366
 3 0.2276 0.5676 1.4513 -0.1147 0.4336 0.3466 0.2081 0.1918 0.1494
 4 0.2917 0.2597 -0.1147 1.9647 -0.07842 0.2344 -0.02442 0.1089 -0.1125
 5 0.09685 0.3472 0.4336 -0.07842 1.6416 0.4282 0.1400 0.03356 0.2984
 6 0.1518 0.4645 0.3466 0.2344 0.4282 1.0390 0.2820 0.1838 0.1637
 7 0.2307 0.08267 0.2081 -0.02442 0.1400 0.2820 1.9705 0.05804 0.1256
 8 0.1566 0.3040 0.1918 0.1089 0.03356 0.1838 0.05804 1.2002 0.08885
 9 0.01517 0.1366 0.1494 -0.1125 0.2984 0.1637 0.1256 0.08885 1.1200

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 1 1.0000 0.03962 0.1522 0.1677 0.06091 0.1200 0.1324 0.1152 0.01155
 2 0.03962 1.0000 0.3657 0.1438 0.2103 0.3536 0.04570 0.2153 0.1002
 3 0.1522 0.3657 1.0000 -0.06794 0.2809 0.2823 0.1231 0.1454 0.1172
 4 0.1677 0.1438 -0.06794 1.0000 -0.04367 0.1641 -0.01241 0.07092 -0.07584
 5 0.06091 0.2103 0.2809 -0.04367 1.0000 0.3279 0.07786 0.02391 0.2200

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

 6 0.1200 0.3536 0.2823 0.1641 0.3279 1.0000 0.1971 0.1646 0.1517
 7 0.1324 0.04570 0.1231 -0.01241 0.07786 0.1971 1.0000 0.03774 0.08453
 8 0.1152 0.2153 0.1454 0.07092 0.02391 0.1646 0.03774 1.0000 0.07663
 9 0.01155 0.1002 0.1172 -0.07584 0.2200 0.1517 0.08453 0.07663 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 1.5403
 UN(2,1) Student 0.06337
 UN(2,2) Student 1.6605
 UN(3,1) Student 0.2276
 UN(3,2) Student 0.5676
 UN(3,3) Student 1.4513
 UN(4,1) Student 0.2917
 UN(4,2) Student 0.2597
 UN(4,3) Student -0.1147
 UN(4,4) Student 1.9647
 UN(5,1) Student 0.09685
 UN(5,2) Student 0.3472
 UN(5,3) Student 0.4336
 UN(5,4) Student -0.07842
 UN(5,5) Student 1.6416
 UN(6,1) Student 0.1518
 UN(6,2) Student 0.4645
 UN(6,3) Student 0.3466
 UN(6,4) Student 0.2344
 UN(6,5) Student 0.4282
 UN(6,6) Student 1.0390
 UN(7,1) Student 0.3080

391

 UN(7,2) Student 0.1098
 UN(7,3) Student -0.03507
 UN(7,4) Student 0.4120
 UN(7,5) Student 0.5200
 UN(7,6) Student -0.03202
 UN(7,7) Student 1.9672
 UN(8,1) Student 0.2307
 UN(8,2) Student 0.08267
 UN(8,3) Student 0.2081
 UN(8,4) Student -0.02442
 UN(8,5) Student 0.1400
 UN(8,6) Student 0.2820
 UN(8,7) Student 0.02473
 UN(8,8) Student 1.9705
 UN(9,1) Student 0.1566
 UN(9,2) Student 0.3040
 UN(9,3) Student 0.1918
 UN(9,4) Student 0.1089
 UN(9,5) Student 0.03356
 UN(9,6) Student 0.1838
 UN(9,7) Student 0.3398
 UN(9,8) Student 0.05804
 UN(9,9) Student 1.2002
 UN(10,1) Student 0.01517
 UN(10,2) Student 0.1366
 UN(10,3) Student 0.1494
 UN(10,4) Student -0.1125
 UN(10,5) Student 0.2984
 UN(10,6) Student 0.1637
 UN(10,7) Student 0.2443
 UN(10,8) Student 0.1256
 UN(10,9) Student 0.08885
 UN(10,10) Student 1.1200

 Fit Statistics

 -2 Res Log Likelihood 2850.3
 AIC (smaller is better) 2960.3
 AICC (smaller is better) 2967.8
 BIC (smaller is better) 3107.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 106.76 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 0.7437 0.2335 395 3.18 0.0016
 KLnKLOC 0.006278 0.06841 315 0.09 0.9269
 DLnDsTim 0.04883 0.06202 588 0.79 0.4314
 ELnDRR -0.1195 0.09017 330 -1.32 0.1862
 FLnDDDR 0.08317 0.05242 283 1.59 0.1137

392

 GLnCoTim 0.3614 0.08588 577 4.21 <.0001
 HLnCRR -0.1916 0.09210 348 -2.08 0.0383
 ILnDDCR 0.1057 0.05840 309 1.81 0.0713
 JLnDDCm 0.1336 0.03310 610 4.04 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 315 0.01 0.9269
 DLnDsTim 1 588 0.62 0.4314
 ELnDRR 1 330 1.76 0.1862
 FLnDDDR 1 283 2.52 0.1137
 GLnCoTim 1 577 17.71 <.0001
 HLnCRR 1 348 4.33 0.0383
 ILnDDCR 1 309 3.28 0.0713
 JLnDDCm 1 610 16.29 <.0001

C.16 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
NOUTLIERS)

 The Mixed Procedure

 Dimensions

 Covariance Parameters 55
 Columns in X 15
 Columns in Z 0
 Subjects 108
 Max Obs Per Subject 10
 Observations Used 884
 Observations Not Used 0
 Total Observations 884

 Iteration History

 Iteration Evaluations -2 Res Log Like Criterion

 0 1 2940.84127538
 1 2 2827.01976447 0.00082158
 2 1 2826.47960430 0.00001167
 3 1 2826.47233962 0.00000000

 Convergence criteria met.

 Estimated R Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8

 1 1.5646 0.1025 0.2871 0.1027 0.1633 0.2217 0.1248 0.006519
 2 0.1025 1.6125 0.2463 0.3276 0.4565 0.1948 0.2913 0.2308

393

 3 0.2871 0.2463 1.9349 -0.07419 0.2174 -0.06249 0.06371 0.07906
 4 0.1027 0.3276 -0.07419 1.7292 0.4215 0.1177 0.01137 0.3638
 5 0.1633 0.4565 0.2174 0.4215 0.9927 0.3383 0.1209 0.1191
 6 0.2217 0.1948 -0.06249 0.1177 0.3383 1.9334 0.1725 0.08857
 7 0.1248 0.2913 0.06371 0.01137 0.1209 0.1725 1.2023 0.1139
 8 0.006519 0.2308 0.07906 0.3638 0.1191 0.08857 0.1139 0.9706

 Estimated R Correlation Matrix for Student 1995p6

 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8

 1 1.0000 0.06450 0.1650 0.06244 0.1311 0.1275 0.09097 0.005290
 2 0.06450 1.0000 0.1394 0.1962 0.3608 0.1103 0.2092 0.1845
 3 0.1650 0.1394 1.0000 -0.04056 0.1569 -0.03231 0.04177 0.05769
 4 0.06244 0.1962 -0.04056 1.0000 0.3217 0.06438 0.007886 0.2808
 5 0.1311 0.3608 0.1569 0.3217 1.0000 0.2442 0.1106 0.1213
 6 0.1275 0.1103 -0.03231 0.06438 0.2442 1.0000 0.1131 0.06466
 7 0.09097 0.2092 0.04177 0.007886 0.1106 0.1131 1.0000 0.1055
 8 0.005290 0.1845 0.05769 0.2808 0.1213 0.06466 0.1055 1.0000

 Covariance Parameter Estimates

 Cov Parm Subject Estimate

 UN(1,1) Student 1.5646
 UN(2,1) Student 0.1025
 UN(2,2) Student 1.6125
 UN(3,1) Student 0.3550
 UN(3,2) Student 0.7686
 UN(3,3) Student 1.5318
 UN(4,1) Student 0.2871
 UN(4,2) Student 0.2463
 UN(4,3) Student -0.04275
 UN(4,4) Student 1.9349
 UN(5,1) Student 0.1027
 UN(5,2) Student 0.3276
 UN(5,3) Student 0.4282
 UN(5,4) Student -0.07419
 UN(5,5) Student 1.7292
 UN(6,1) Student 0.1633
 UN(6,2) Student 0.4565
 UN(6,3) Student 0.4171
 UN(6,4) Student 0.2174
 UN(6,5) Student 0.4215
 UN(6,6) Student 0.9927
 UN(7,1) Student 0.2577
 UN(7,2) Student 0.1078
 UN(7,3) Student 0.04398
 UN(7,4) Student 0.3607
 UN(7,5) Student 0.4866
 UN(7,6) Student -0.04656
 UN(7,7) Student 1.9244
 UN(8,1) Student 0.2217
 UN(8,2) Student 0.1948
 UN(8,3) Student 0.3189
 UN(8,4) Student -0.06249
 UN(8,5) Student 0.1177

394

 UN(8,6) Student 0.3383
 UN(8,7) Student -0.07570
 UN(8,8) Student 1.9334
 UN(9,1) Student 0.1248
 UN(9,2) Student 0.2913
 UN(9,3) Student 0.3054
 UN(9,4) Student 0.06371
 UN(9,5) Student 0.01137
 UN(9,6) Student 0.1209
 UN(9,7) Student 0.2926
 UN(9,8) Student 0.1725
 UN(9,9) Student 1.2023
 UN(10,1) Student 0.006519
 UN(10,2) Student 0.2308
 UN(10,3) Student 0.2763
 UN(10,4) Student 0.07906
 UN(10,5) Student 0.3638
 UN(10,6) Student 0.1191
 UN(10,7) Student 0.2268
 UN(10,8) Student 0.08857
 UN(10,9) Student 0.1139
 UN(10,10) Student 0.9706

 Fit Statistics

 -2 Res Log Likelihood 2826.5
 AIC (smaller is better) 2936.5
 AICC (smaller is better) 2944.0
 BIC (smaller is better) 3084.0

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq

 54 114.37 <.0001

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept -0.4214 0.5504 377 -0.77 0.4444
 KLnKLOC -0.1755 0.2082 461 -0.84 0.3997
 DLnDsTim 0.4791 0.1735 543 2.76 0.0059
 ELnDRR 0.08923 0.1654 239 0.54 0.5901
 FLnDDDR -0.06682 0.1813 220 -0.37 0.7128
 GLnCoTim 0.6692 0.1707 365 3.92 0.0001
 HLnCRR -0.2486 0.09435 354 -2.63 0.0088
 ILnDDCR 0.07726 0.1790 257 0.43 0.6664
 JLnDDCm 0.4127 0.1163 438 3.55 0.0004
 KLnKLOC*DLnDsTim 0.1741 0.06804 549 2.56 0.0108
 KLnKLOC*ELnDRR 0.07545 0.06942 282 1.09 0.2780
 KLnKLOC*FLnDDDR -0.04014 0.07889 279 -0.51 0.6113
 KLnKLOC*ILnDDCR 0.01309 0.08237 313 0.16 0.8738
 GLnCoTim*JLnDDCm -0.1208 0.04697 487 -2.57 0.0104
 KLnK*GLnC*HLnC*ILnDD -0.01073 0.004948 282 -2.17 0.0310

395

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 KLnKLOC 1 461 0.71 0.3997
 DLnDsTim 1 543 7.63 0.0059
 ELnDRR 1 239 0.29 0.5901
 FLnDDDR 1 220 0.14 0.7128
 GLnCoTim 1 365 15.37 0.0001
 HLnCRR 1 354 6.94 0.0088
 ILnDDCR 1 257 0.19 0.6664
 JLnDDCm 1 438 12.60 0.0004
 KLnKLOC*DLnDsTim 1 549 6.54 0.0108
 KLnKLOC*ELnDRR 1 282 1.18 0.2780
 KLnKLOC*FLnDDDR 1 279 0.26 0.6113
 KLnKLOC*ILnDDCR 1 313 0.03 0.8738
 GLnCoTim*JLnDDCm 1 487 6.62 0.0104
 KLnK*GLnC*HLnC*ILnDD 1 282 4.70 0.0310

C.17 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB, C,
ALLTEN)

 The Mixed Procedure

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 3.6587 0.1060 109 34.51 <.0001
 Assignment -0.1749 0.01373 109 -12.74 <.0001

 Solution for Random Effects

 Std Err
 Effect Student Estimate Pred DF t Value Pr > |t|

 Intercept 1996h12 -0.3048 0.4466 16.8 -0.68 0.5042
 Assignment 1996h12 0.007978 0.04891 2.36 0.16 0.8833
 Intercept 1996h3 -0.3748 0.4466 16.8 -0.84 0.4131
 Assignment 1996h3 -0.00108 0.04891 2.36 -0.02 0.9842
 Intercept 1996i3 0.1211 0.4466 16.8 0.27 0.7895
 Assignment 1996i3 -0.01903 0.04891 2.36 -0.39 0.7295
 Intercept 1996i4 -0.05369 0.4466 16.8 -0.12 0.9057
 Assignment 1996i4 -0.01511 0.04891 2.36 -0.31 0.7825
 Intercept 1997c10 -0.8873 0.4466 16.8 -1.99 0.0636
 Assignment 1997c10 0.02629 0.04891 2.36 0.54 0.6373
 Intercept 1997d1 0.1048 0.4466 16.8 0.23 0.8172
 Assignment 1997d1 0.003319 0.04891 2.36 0.07 0.9512
 Intercept 1997e1 -0.4253 0.4466 16.8 -0.95 0.3545
 Assignment 1997e1 0.005557 0.04891 2.36 0.11 0.9185
 Intercept 1997e12 0.2007 0.4466 16.8 0.45 0.6588

396

 Assignment 1997e12 0.005833 0.04891 2.36 0.12 0.9145
 Intercept 1997e13 1.0741 0.4466 16.8 2.41 0.0280
 Assignment 1997e13 -0.03342 0.04891 2.36 -0.68 0.5553
 Intercept 1997g14 -0.5965 0.4466 16.8 -1.34 0.1995
 Assignment 1997g14 0.02908 0.04891 2.36 0.59 0.6041
 Intercept 1997i17 0.2230 0.4466 16.8 0.50 0.6241
 Assignment 1997i17 -0.00437 0.04891 2.36 -0.09 0.9359
 Intercept 1997i19 -0.1334 0.4466 16.8 -0.30 0.7688
 Assignment 1997i19 -0.03205 0.04891 2.36 -0.66 0.5704
 Intercept 1997i2 0.5943 0.4466 16.8 1.33 0.2011
 Assignment 1997i2 0.001104 0.04891 2.36 0.02 0.9838
 Intercept 1997i5 1.2558 0.4466 16.8 2.81 0.0121
 Assignment 1997i5 -0.02423 0.04891 2.36 -0.50 0.6626
 Intercept 1997i8 0.05956 0.4466 16.8 0.13 0.8955
 Assignment 1997i8 0.006022 0.04891 2.36 0.12 0.9117
 Intercept 1998f2 0.05922 0.4466 16.8 0.13 0.8961
 Assignment 1998f2 -0.00478 0.04891 2.36 -0.10 0.9299
 Intercept 1998m12 -0.2962 0.4466 16.8 -0.66 0.5161
 Assignment 1998m12 -0.00882 0.04891 2.36 -0.18 0.8713
 Intercept 1998m14 0.6531 0.4466 16.8 1.46 0.1621
 Assignment 1998m14 -0.01162 0.04891 2.36 -0.24 0.8312
 Intercept 1998m20 -0.5544 0.4466 16.8 -1.24 0.2316
 Assignment 1998m20 -0.01602 0.04891 2.36 -0.33 0.7701
 Intercept 1998m4 0.6423 0.4466 16.8 1.44 0.1688
 Assignment 1998m4 -0.00457 0.04891 2.36 -0.09 0.9328
 Intercept 1998m6 0.08284 0.4466 16.8 0.19 0.8551
 Assignment 1998m6 -0.00278 0.04891 2.36 -0.06 0.9591
 Intercept 1998w2 -0.5866 0.4466 16.8 -1.31 0.2067
 Assignment 1998w2 -0.01397 0.04891 2.36 -0.29 0.7983
 Intercept 1998w8 -0.2172 0.4466 16.8 -0.49 0.6330
 Assignment 1998w8 0.009547 0.04891 2.36 0.20 0.8608
 Intercept 1998x3 0.4032 0.4466 16.8 0.90 0.3794
 Assignment 1998x3 -0.00787 0.04891 2.36 -0.16 0.8850
 Intercept 1998x4 0.3560 0.4466 16.8 0.80 0.4365
 Assignment 1998x4 -0.01458 0.04891 2.36 -0.30 0.7899
 Intercept 1998x6 -0.3372 0.4466 16.8 -0.76 0.4607
 Assignment 1998x6 -0.00973 0.04891 2.36 -0.20 0.8582
 Intercept 1999g1 0.4789 0.4466 16.8 1.07 0.2988
 Assignment 1999g1 -0.01296 0.04891 2.36 -0.27 0.8124
 Intercept 1999g2 -0.3442 0.4466 16.8 -0.77 0.4515
 Assignment 1999g2 0.01567 0.04891 2.36 0.32 0.7748
 Intercept 1999g3 -0.2380 0.4466 16.8 -0.53 0.6011
 Assignment 1999g3 0.008959 0.04891 2.36 0.18 0.8692
 Intercept 1999h15 0.7776 0.4466 16.8 1.74 0.1000
 Assignment 1999h15 -0.00208 0.04891 2.36 -0.04 0.9693
 Intercept 1999j13 0.2514 0.4466 16.8 0.56 0.5809
 Assignment 1999j13 -0.00095 0.04891 2.36 -0.02 0.9860
 Intercept 1999j4 -0.5495 0.4466 16.8 -1.23 0.2356
 Assignment 1999j4 0.003079 0.04891 2.36 0.06 0.9547
 Intercept 1999j6 0.2416 0.4466 16.8 0.54 0.5956
 Assignment 1999j6 -0.00567 0.04891 2.36 -0.12 0.9168
 Intercept 1999p3 -0.2750 0.4466 16.8 -0.62 0.5463
 Assignment 1999p3 -0.00385 0.04891 2.36 -0.08 0.9434
 Intercept 1999p5 0.5162 0.4466 16.8 1.16 0.2640
 Assignment 1999p5 0.009001 0.04891 2.36 0.18 0.8686
 Intercept 1999p6 -0.4868 0.4466 16.8 -1.09 0.2911
 Assignment 1999p6 0.02572 0.04891 2.36 0.53 0.6442

397

 Intercept 1999p8 0.1140 0.4466 16.8 0.26 0.8015
 Assignment 1999p8 0.01017 0.04891 2.36 0.21 0.8519
 Intercept 1999t2 0.01897 0.4466 16.8 0.04 0.9666
 Assignment 1999t2 -0.01675 0.04891 2.36 -0.34 0.7602
 Intercept 1999u1 -0.3288 0.4466 16.8 -0.74 0.4718
 Assignment 1999u1 0.01017 0.04891 2.36 0.21 0.8519
 Intercept 1999u2 0.2825 0.4466 16.8 0.63 0.5356
 Assignment 1999u2 0.005729 0.04891 2.36 0.12 0.9160
 Intercept 1999u3 -0.08606 0.4466 16.8 -0.19 0.8495
 Assignment 1999u3 0.01953 0.04891 2.36 0.40 0.7229
 Intercept 1999u4 -0.4468 0.4466 16.8 -1.00 0.3313
 Assignment 1999u4 0.002407 0.04891 2.36 0.05 0.9646
 Intercept 1999w1 -0.6129 0.4466 16.8 -1.37 0.1881
 Assignment 1999w1 0.01424 0.04891 2.36 0.29 0.7945
 Intercept 1999w3 0.1550 0.4466 16.8 0.35 0.7328
 Assignment 1999w3 -0.01321 0.04891 2.36 -0.27 0.8090
 Intercept 1999w5 0.6402 0.4466 16.8 1.43 0.1701
 Assignment 1999w5 -0.01211 0.04891 2.36 -0.25 0.8243
 Intercept 1999w6 -0.7726 0.4466 16.8 -1.73 0.1020
 Assignment 1999w6 0.05116 0.04891 2.36 1.05 0.3906
 Intercept 2000b3 0.03865 0.4466 16.8 0.09 0.9321
 Assignment 2000b3 0.02451 0.04891 2.36 0.50 0.6592
 Intercept 2000b6 0.3488 0.4466 16.8 0.78 0.4457
 Assignment 2000b6 -0.03065 0.04891 2.36 -0.63 0.5861
 Intercept 2000b7 0.8056 0.4466 16.8 1.80 0.0893
 Assignment 2000b7 -0.02748 0.04891 2.36 -0.56 0.6230
 Intercept 2000b8 0.6679 0.4466 16.8 1.50 0.1534
 Assignment 2000b8 0.01685 0.04891 2.36 0.34 0.7588
 Intercept 2000b9 -0.2752 0.4466 16.8 -0.62 0.5461
 Assignment 2000b9 -0.00349 0.04891 2.36 -0.07 0.9487
 Intercept 2000c12 0.2533 0.4466 16.8 0.57 0.5782
 Assignment 2000c12 -0.01280 0.04891 2.36 -0.26 0.8146
 Intercept 2000c13 0.4540 0.4466 16.8 1.02 0.3238
 Assignment 2000c13 -0.00099 0.04891 2.36 -0.02 0.9854
 Intercept 2000c5 -1.2123 0.4466 16.8 -2.71 0.0149
 Assignment 2000c5 0.008343 0.04891 2.36 0.17 0.8781
 Intercept 2000e8 0.8047 0.4466 16.8 1.80 0.0896
 Assignment 2000e8 -0.02159 0.04891 2.36 -0.44 0.6961
 Intercept 2000f7 -0.1123 0.4466 16.8 -0.25 0.8045
 Assignment 2000f7 -0.00074 0.04891 2.36 -0.02 0.9891
 Intercept 2000j16 -0.1775 0.4466 16.8 -0.40 0.6960
 Assignment 2000j16 0.008327 0.04891 2.36 0.17 0.8783
 Intercept 2000j2 -0.1696 0.4466 16.8 -0.38 0.7090
 Assignment 2000j2 -0.01475 0.04891 2.36 -0.30 0.7875
 Intercept 2000j4 0.5086 0.4466 16.8 1.14 0.2708
 Assignment 2000j4 -0.00441 0.04891 2.36 -0.09 0.9352
 Intercept 2000j5 0.3223 0.4466 16.8 0.72 0.4804
 Assignment 2000j5 -0.00593 0.04891 2.36 -0.12 0.9131
 Intercept 2000k16 -0.2080 0.4466 16.8 -0.47 0.6474
 Assignment 2000k16 0.02809 0.04891 2.36 0.57 0.6157
 Intercept 2000k5 -0.5470 0.4466 16.8 -1.22 0.2376
 Assignment 2000k5 -0.02131 0.04891 2.36 -0.44 0.6997
 Intercept 2000k8 0.5752 0.4466 16.8 1.29 0.2152
 Assignment 2000k8 -0.00236 0.04891 2.36 -0.05 0.9654
 Intercept 2000m13 0.4368 0.4466 16.8 0.98 0.3420
 Assignment 2000m13 -0.00243 0.04891 2.36 -0.05 0.9643
 Intercept 2001c1 -0.7506 0.4466 16.8 -1.68 0.1114

398

 Assignment 2001c1 0.02730 0.04891 2.36 0.56 0.6251
 Intercept 2001c11 0.2915 0.4466 16.8 0.65 0.5228
 Assignment 2001c11 0.01063 0.04891 2.36 0.22 0.8453
 Intercept 2001c12 0.3296 0.4466 16.8 0.74 0.4707
 Assignment 2001c12 -0.01506 0.04891 2.36 -0.31 0.7832
 Intercept 2001c15 -1.0710 0.4466 16.8 -2.40 0.0284
 Assignment 2001c15 -0.00003 0.04891 2.36 -0.00 0.9996
 Intercept 2001c17 0.3558 0.4466 16.8 0.80 0.4367
 Assignment 2001c17 -0.03524 0.04891 2.36 -0.72 0.5358
 Intercept 2001c18 -0.8884 0.4466 16.8 -1.99 0.0632
 Assignment 2001c18 0.01270 0.04891 2.36 0.26 0.8161
 Intercept 2001c19 -0.1360 0.4466 16.8 -0.30 0.7645
 Assignment 2001c19 -0.01342 0.04891 2.36 -0.27 0.8060
 Intercept 2001c2 -0.5913 0.4466 16.8 -1.32 0.2032
 Assignment 2001c2 0.02920 0.04891 2.36 0.60 0.6028
 Intercept 2001c20 -0.5904 0.4466 16.8 -1.32 0.2039
 Assignment 2001c20 0.05505 0.04891 2.36 1.13 0.3616
 Intercept 2001c3 -1.3193 0.4466 16.8 -2.95 0.0090
 Assignment 2001c3 0.03981 0.04891 2.36 0.81 0.4896
 Intercept 2001f15 -0.4551 0.4466 16.8 -1.02 0.3227
 Assignment 2001f15 0.01699 0.04891 2.36 0.35 0.7568
 Intercept 2001h6 1.1690 0.4466 16.8 2.62 0.0182
 Assignment 2001h6 -0.02395 0.04891 2.36 -0.49 0.6661
 Intercept 2001i1 0.07415 0.4466 16.8 0.17 0.8701
 Assignment 2001i1 -0.02184 0.04891 2.36 -0.45 0.6929
 Intercept 2001i11 0.05225 0.4466 16.8 0.12 0.9083
 Assignment 2001i11 -0.03754 0.04891 2.36 -0.77 0.5121
 Intercept 2001i12 0.5468 0.4466 16.8 1.22 0.2377
 Assignment 2001i12 -0.02628 0.04891 2.36 -0.54 0.6375
 Intercept 2001i13 0.01078 0.4466 16.8 0.02 0.9810
 Assignment 2001i13 0.04322 0.04891 2.36 0.88 0.4575
 Intercept 2001i16 0.9648 0.4466 16.8 2.16 0.0455
 Assignment 2001i16 -0.03592 0.04891 2.36 -0.73 0.5287
 Intercept 2001i2 -0.01497 0.4466 16.8 -0.03 0.9737
 Assignment 2001i2 0.000569 0.04891 2.36 0.01 0.9916
 Intercept 2001i3 0.1973 0.4466 16.8 0.44 0.6643
 Assignment 2001i3 -0.00983 0.04891 2.36 -0.20 0.8567
 Intercept 2001i6 -2.2508 0.4466 16.8 -5.04 0.0001
 Assignment 2001i6 0.05161 0.04891 2.36 1.06 0.3871
 Intercept 2001i7 0.2889 0.4466 16.8 0.65 0.5265
 Assignment 2001i7 0.02780 0.04891 2.36 0.57 0.6192
 Intercept 2001i8 0.2046 0.4466 16.8 0.46 0.6528
 Assignment 2001i8 -0.01433 0.04891 2.36 -0.29 0.7933
 Intercept 2001i9 -0.3631 0.4466 16.8 -0.81 0.4277
 Assignment 2001i9 0.01721 0.04891 2.36 0.35 0.7539
 Intercept 2001m11 0.5245 0.4466 16.8 1.17 0.2567
 Assignment 2001m11 -0.02173 0.04891 2.36 -0.44 0.6942
 Intercept 2001m12 1.1613 0.4466 16.8 2.60 0.0188
 Assignment 2001m12 -0.02447 0.04891 2.36 -0.50 0.6596
 Intercept 2001m14 0.5189 0.4466 16.8 1.16 0.2616
 Assignment 2001m14 -0.00437 0.04891 2.36 -0.09 0.9358
 Intercept 2001m3 0.3950 0.4466 16.8 0.88 0.3890
 Assignment 2001m3 0.002615 0.04891 2.36 0.05 0.9615
 Intercept 2001m4 0.6047 0.4466 16.8 1.35 0.1937
 Assignment 2001m4 -0.00954 0.04891 2.36 -0.19 0.8609
 Intercept 2001m5 0.2304 0.4466 16.8 0.52 0.6127
 Assignment 2001m5 -0.00783 0.04891 2.36 -0.16 0.8855

399

 Intercept 2001m7 0.7501 0.4466 16.8 1.68 0.1116
 Assignment 2001m7 -0.02660 0.04891 2.36 -0.54 0.6336
 Intercept 2001q10 0.3245 0.4466 16.8 0.73 0.4775
 Assignment 2001q10 -0.02628 0.04891 2.36 -0.54 0.6374
 Intercept 2001r8 0.2736 0.4466 16.8 0.61 0.5484
 Assignment 2001r8 -0.01673 0.04891 2.36 -0.34 0.7604
 Intercept 2001s1 -0.5242 0.4466 16.8 -1.17 0.2569
 Assignment 2001s1 0.000334 0.04891 2.36 0.01 0.9951
 Intercept 2001s11 -0.2904 0.4466 16.8 -0.65 0.5243
 Assignment 2001s11 -0.04058 0.04891 2.36 -0.83 0.4821
 Intercept 2001s12 -0.4596 0.4466 16.8 -1.03 0.3180
 Assignment 2001s12 -0.00114 0.04891 2.36 -0.02 0.9832
 Intercept 2001s13 0.1187 0.4466 16.8 0.27 0.7936
 Assignment 2001s13 -0.02920 0.04891 2.36 -0.60 0.6028
 Intercept 2001s14 0.8471 0.4466 16.8 1.90 0.0752
 Assignment 2001s14 -0.01228 0.04891 2.36 -0.25 0.8220
 Intercept 2001s15 0.009684 0.4466 16.8 0.02 0.9830
 Assignment 2001s15 0.02472 0.04891 2.36 0.51 0.6566
 Intercept 2001s2 -0.5830 0.4466 16.8 -1.31 0.2094
 Assignment 2001s2 0.01796 0.04891 2.36 0.37 0.7438
 Intercept 2001s3 0.08654 0.4466 16.8 0.19 0.8487
 Assignment 2001s3 0.007631 0.04891 2.36 0.16 0.8884
 Intercept 2001s4 -0.9935 0.4466 16.8 -2.22 0.0402
 Assignment 2001s4 0.03062 0.04891 2.36 0.63 0.5865
 Intercept 2001s5 -0.3049 0.4466 16.8 -0.68 0.5042
 Assignment 2001s5 0.01420 0.04891 2.36 0.29 0.7951
 Intercept 2001s6 -1.5104 0.4466 16.8 -3.38 0.0036
 Assignment 2001s6 0.02455 0.04891 2.36 0.50 0.6587
 Intercept 2001s7 0.5843 0.4466 16.8 1.31 0.2084
 Assignment 2001s7 0.01144 0.04891 2.36 0.23 0.8339
 Intercept 2001s8 -0.7383 0.4466 16.8 -1.65 0.1169
 Assignment 2001s8 0.07039 0.04891 2.36 1.44 0.2683
 Intercept 2001s9 0.008021 0.4466 16.8 0.02 0.9859
 Assignment 2001s9 0.001507 0.04891 2.36 0.03 0.9778

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 Assignment 1 109 162.28 <.0001

C.18 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB,
C++, ALLTEN)

 Solution for Fixed Effects

 Standard
 Effect Estimate Error DF t Value Pr > |t|

 Intercept 3.3630 0.1480 44 22.72 <.0001
 Assignment -0.1640 0.02135 44 -7.68 <.0001

 Solution for Random Effects

400

 Std Err
 Effect Student Estimate Pred DF t Value Pr > |t|

 Intercept 1995p6 0.5800 0.3781 2.84 1.53 0.2277
 Assignment 1995p6 0.03588 0.04814 1 0.75 0.5923
 Intercept 1998i18 0.3479 0.3781 2.84 0.92 0.4289
 Assignment 1998i18 0.05378 0.04814 1 1.12 0.4648
 Intercept 1998x12 0.5846 0.3781 2.84 1.55 0.2249
 Assignment 1998x12 0.02549 0.04814 1 0.53 0.6900
 Intercept 1999h11 -0.7682 0.3781 2.84 -2.03 0.1404
 Assignment 1999h11 -0.01702 0.04814 1 -0.35 0.7837
 Intercept 1999h13 -0.2564 0.3781 2.84 -0.68 0.5489
 Assignment 1999h13 0.01641 0.04814 1 0.34 0.7909
 Intercept 1999j5 -0.2180 0.3781 2.84 -0.58 0.6069
 Assignment 1999j5 -0.01303 0.04814 1 -0.27 0.8318
 Intercept 1999t4 0.3500 0.3781 2.84 0.93 0.4265
 Assignment 1999t4 -0.01213 0.04814 1 -0.25 0.8428
 Intercept 1999v1 -0.09071 0.3781 2.84 -0.24 0.8267
 Assignment 1999v1 -0.00098 0.04814 1 -0.02 0.9871
 Intercept 1999v5 0.1384 0.3781 2.84 0.37 0.7399
 Assignment 1999v5 -0.00616 0.04814 1 -0.13 0.9189
 Intercept 2000b10 -0.1856 0.3781 2.84 -0.49 0.6589
 Assignment 2000b10 0.03562 0.04814 1 0.74 0.5945
 Intercept 2000c10 -0.7509 0.3781 2.84 -1.99 0.1465
 Assignment 2000c10 -0.05869 0.04814 1 -1.22 0.4374
 Intercept 2000c14 -0.5670 0.3781 2.84 -1.50 0.2358
 Assignment 2000c14 -0.00413 0.04814 1 -0.09 0.9455
 Intercept 2000c2 -0.01920 0.3781 2.84 -0.05 0.9629
 Assignment 2000c2 0.01193 0.04814 1 0.25 0.8454
 Intercept 2000c3 0.02136 0.3781 2.84 0.06 0.9587
 Assignment 2000c3 -0.02114 0.04814 1 -0.44 0.7366
 Intercept 2000c7 -0.1556 0.3781 2.84 -0.41 0.7098
 Assignment 2000c7 -0.04114 0.04814 1 -0.85 0.5498
 Intercept 2000c9 0.3712 0.3781 2.84 0.98 0.4024
 Assignment 2000c9 0.02466 0.04814 1 0.51 0.6987
 Intercept 2000e13 0.1953 0.3781 2.84 0.52 0.6430
 Assignment 2000e13 0.004683 0.04814 1 0.10 0.9383
 Intercept 2000e2 0.3081 0.3781 2.84 0.81 0.4779
 Assignment 2000e2 0.007018 0.04814 1 0.15 0.9079
 Intercept 2000e4 -0.08446 0.3781 2.84 -0.22 0.8384
 Assignment 2000e4 -0.00564 0.04814 1 -0.12 0.9258
 Intercept 2000e9 -0.08929 0.3781 2.84 -0.24 0.8293
 Assignment 2000e9 0.01385 0.04814 1 0.29 0.8217
 Intercept 2000f14 0.1516 0.3781 2.84 0.40 0.7168
 Assignment 2000f14 -0.01205 0.04814 1 -0.25 0.8438
 Intercept 2000g11 0.2069 0.3781 2.84 0.55 0.6244
 Assignment 2000g11 -0.00288 0.04814 1 -0.06 0.9619
 Intercept 2000g3 0.2055 0.3781 2.84 0.54 0.6265
 Assignment 2000g3 -0.01967 0.04814 1 -0.41 0.7531
 Intercept 2000g8 1.0320 0.3781 2.84 2.73 0.0766
 Assignment 2000g8 0.03943 0.04814 1 0.82 0.5631
 Intercept 2000j10 0.1985 0.3781 2.84 0.52 0.6379
 Assignment 2000j10 0.009477 0.04814 1 0.20 0.8763
 Intercept 2000j11 -0.2961 0.3781 2.84 -0.78 0.4937
 Assignment 2000j11 0.01290 0.04814 1 0.27 0.8333
 Intercept 2000j12 -0.7348 0.3781 2.84 -1.94 0.1525
 Assignment 2000j12 -0.03263 0.04814 1 -0.68 0.6208

401

 Intercept 2000j13 -0.1356 0.3781 2.84 -0.36 0.7450
 Assignment 2000j13 0.01998 0.04814 1 0.41 0.7496
 Intercept 2000j14 -0.3197 0.3781 2.84 -0.85 0.4632
 Assignment 2000j14 0.01214 0.04814 1 0.25 0.8428
 Intercept 2000j15 -0.5879 0.3781 2.84 -1.55 0.2230
 Assignment 2000j15 0.01312 0.04814 1 0.27 0.8306
 Intercept 2000j18 0.04799 0.3781 2.84 0.13 0.9075
 Assignment 2000j18 -0.00923 0.04814 1 -0.19 0.8794
 Intercept 2000j7 0.07687 0.3781 2.84 0.20 0.8526
 Assignment 2000j7 0.01244 0.04814 1 0.26 0.8390
 Intercept 2000j8 0.3068 0.3781 2.84 0.81 0.4796
 Assignment 2000j8 -0.02673 0.04814 1 -0.56 0.6773
 Intercept 2001k11 0.2850 0.3781 2.84 0.75 0.5086
 Assignment 2001k11 0.03531 0.04814 1 0.73 0.5972
 Intercept 2001m1 -1.1960 0.3781 2.84 -3.16 0.0548
 Assignment 2001m1 -0.03697 0.04814 1 -0.77 0.5831
 Intercept 2001m13 0.3766 0.3781 2.84 1.00 0.3964
 Assignment 2001m13 0.02745 0.04814 1 0.57 0.6701
 Intercept 2001q3 0.1724 0.3781 2.84 0.46 0.6810
 Assignment 2001q3 -0.00817 0.04814 1 -0.17 0.8930
 Intercept 2001q4 0.1031 0.3781 2.84 0.27 0.8038
 Assignment 2001q4 -0.02163 0.04814 1 -0.45 0.7312
 Intercept 2001q5 -0.3091 0.3781 2.84 -0.82 0.4767
 Assignment 2001q5 -0.04197 0.04814 1 -0.87 0.5436
 Intercept 2001q6 0.2436 0.3781 2.84 0.64 0.5678
 Assignment 2001q6 -0.00915 0.04814 1 -0.19 0.8804
 Intercept 2001q7 -0.3390 0.3781 2.84 -0.90 0.4395
 Assignment 2001q7 -0.00619 0.04814 1 -0.13 0.9186
 Intercept 2001r3 0.2718 0.3781 2.84 0.72 0.5269
 Assignment 2001r3 0.02445 0.04814 1 0.51 0.7008
 Intercept 2001r4 0.06026 0.3781 2.84 0.16 0.8840
 Assignment 2001r4 0.000912 0.04814 1 0.02 0.9879
 Intercept 2001t10 0.1789 0.3781 2.84 0.47 0.6702
 Assignment 2001t10 0.01040 0.04814 1 0.22 0.8645
 Intercept 2001t7 0.2885 0.3781 2.84 0.76 0.5039
 Assignment 2001t7 -0.03999 0.04814 1 -0.83 0.5587

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F

 Assignment 1 44 59.00 <.0001

C.19 DATA FOR TSP1

 NDf NDf
 Obs Module Pgmr DLDRR ddDLDR DLDR dreDLDR DLDIR ddDLDI DLDI dreDLDI

 1 M1 D 11.0092 27.523 25 0.12000 168.807 183.486 22 0.90909
 2 M2 D 1.5598 0.000 69 0.00000 37.262 48.527 69 0.81159
 3 M3 C 17.1359 2.448 60 0.03333 49.327 41.616 58 0.58621
 4 M4 C 7.3260 0.000 52 0.00000 83.150 161.172 52 0.84615
 5 M5 B 87.5000 100.000 8 0.50000 175.000 100.000 4 1.00000
 6 M6 B 34.4086 32.258 22 0.13636 191.398 204.301 19 1.00000

402

 7 M7 C 0.0000 19.608 15 0.20000 51.634 65.359 12 0.83333
 8 M8 A 6.7708 0.000 42 0.00000 108.333 130.208 42 0.59524
 9 M10 E 7.1429 10.204 12 0.16667 95.408 45.918 10 0.90000
 10 M11 E 27.8846 0.000 9 0.00000 63.462 67.308 9 0.77778
 11 M12 B 0.0000 0.000 1 0.00000 0.000 0.000 1 0.00000
 12 M13 E 0.0000 0.000 0 . 0.000 0.000 0 .
 13 M14 E 0.0000 0.000 0 . 96.923 0.000 0 .
 14 M15 C 0.0000 0.000 0 . 0.000 0.000 0 .
 15 M16 C 0.0000 0.000 0 . 0.000 0.000 0 .

 NDf NDf
 Obs Module Pgmr CRR ddCR CR dreCR CIR ddCI CI dreCI

 1 M1 D 14.6789 36.697 16 0.25000 16.5138 18.349 4 0.50000
 2 M2 D 12.7383 25.997 99 0.30303 2.4263 28.596 46 0.71739
 3 M3 C 4.0392 8.568 33 0.21212 3.7944 0.000 26 0.00000
 4 M4 C 18.3150 18.315 13 0.38462 3.2967 0.000 8 0.00000
 5 M5 B 62.5000 100.000 10 0.40000 22.5000 50.000 4 0.50000
 6 M6 B 26.8817 21.505 13 0.15385 17.2043 86.022 10 0.80000
 7 M7 C 13.0719 39.216 7 0.85714 3.2680 0.000 1 0.00000
 8 M8 A 33.3333 36.458 20 0.35000 13.5417 0.000 6 0.00000
 9 M10 E 5.1020 0.000 4 0.00000 11.2245 20.408 4 1.00000
 10 M11 E 20.1923 0.000 12 0.00000 11.5385 115.385 12 1.00000
 11 M12 B 14.8810 17.857 29 0.10345 9.5238 119.048 22 0.90909
 12 M13 E 15.7895 0.000 2 0.00000 10.5263 52.632 2 1.00000
 13 M14 E 1.5385 0.000 3 0.00000 10.7692 46.154 3 1.00000
 14 M15 C 81.6327 0.000 0 . 4.0816 0.000 0 .
 15 M16 C 57.1429 42.857 3 1.00000 4.2857 0.000 0 .

403

BIBLIOGRAPHY

Abbott, J.J. “Requirements Size Units: A Simple Software Size Measure.” In Proceedings of the

Ninth International Conference on Software Quality in Cambridge, Massachusetts,
October 4-6, 1999, 13-26.

Ackerman, A.F. “Software Inspections and the Cost Effective Production of Reliable Software.”
In Software Engineering, ed. M. Dorfman and R.H. Thayer, 235-255. Los Alamitos,
California: IEEE Computer Society Press, 1997.

Ackerman, A.F, L.S. Buchwald, and F.H. Lewski. “Software Inspections: An Effective
Verification Process.” IEEE Software 6, no. 3 (May/June 1989): 31-36.

Aitchison, J., and J.A.C. Brown. The Lognormal Distribution. London: Cambridge University
Press, 1957.

Akiyama, F. “An Example of Software System Debugging.” In Proceedings of IFIP Congress 71
in Ljubljana, Yugoslavia, August 23-28, 1971, 353-359.

Akiyama, Y., H. Fujita, T. Ohkubo, and A. Tominaga. “Another Secret of the Mythical Man-
Month for Successful Project Planning.” In Proceedings of ProMAC2002: An
International Conference on Project Management in Singapore, July 31 - August 2, 2002,
1-8.

Albrecht, A. J., and J. Gaffney. “Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation.” IEEE Transactions on Software
Engineering 9, no. 6 (June 1983): 639-648.

American Institute of Aeronautics and Astronautics. Recommended Practice for Software
Reliability (ANSI/AIAA R-013), 1992.

Austin, R.D. Measuring and Managing Performance in Organizations. New York: Dorset House
Publishing, 1996.

Bach, J. “The Immaturity of the CMM.” American Programmer 7, no. 9 (September 1994): 13-
18.

Baker, F.T. “Chief Programmer Team Management of Production Programming.” IBM Systems
Journal 11, no. 1 (1972): 56-73.

404

Baker, F.T., and H.D. Mills. “Chief Programmer Teams.” Datamation 19, no. 12 (December
1973): 58-61.

Banker, R. D., S. M. Datar, and C. F. Kemerer. “Factors Affecting Software Maintenance
Productivity: An Exploratory Study.” In Proceedings of the 8th International Conference
on Information Systems (ICIS) in Pittsburgh, Pennsylvania, December 1987, 160-175.

________. “A Model to Evaluate Variables Impacting Productivity on Software Maintenance
Projects.” Management Science, 37, 1 (January 1991): 1-18.

Basili, V.R., and B.T. Perricone. “Software Errors and Complexity: An Empirical Investigation.”
Communications of the ACM 27, no. 1 (January 1984): 42-52.

Beer, M., R.A. Eisenstat, and B. Spector. “Why Change Programs Don’t Produce Change.”
Harvard Business Review 68, no. 6 (November/December 1990): 158-166.

Besselman, J., A. Arora, and P. Larkey. “A Feasible Reform of Software Procurement Using
Software Process Improvement.” In Proceedings of the 1995 Acquisition Research
Symposium in Washington, DC, 79-93.

Biffl, S. “Using Inspection Data for Defect Estimation.” IEEE Software 17, no. 6
(November/December 2000): 36-43.

Biffl, S., and W.J. Gutjahr. “Using a Reliability Growth Model to Control Software Inspection.”
Empirical Software Engineering 7, no. 3 (September 2002): 257-284.

Boehm, B. Software Engineering Economics. Englewood Cliffs, New Jersey: Prentice-Hall,
1981.

Boehm, B., C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R. Madachy, D. Reifer,
and B. Steece. Software Cost Estimation With COCOMO II. Upper Saddle River, New
Jersey: Prentice Hall, 2000.

Boehm, B., and R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed. Boston:
Addison-Wesley, 2004.

Bourgeois, K.V. “Process Insights from a Large-Scale Software Inspection Data Analysis.”
Crosstalk: the Journal of Defense Software Engineering 9, no. 10 (October 1996): 17-22.

Bowers, C.A., J.A. Pharmer, and E. Salas. “When Member Homogeneity is Needed in Work
Teams.” Small Group Research 31, no. 3 (June 2000): 305-326.

Brassard, M., and D. Ritter. The Memory Jogger II. Methuen, Massachusetts: GOAL/QPC, 1994.

Breyfogle, F.W., III. Implementing Six Sigma: Smarter Solutions Using Statistical Methods. New
York: John Wiley & Sons, 1999.

405

Briand, L.C., K. El Emam, B.G. Freimut, O. Laitenberger. “A Comprehensive Evaluation of
Capture-Recapture Models for Estimating Software Defect Content.” IEEE Transactions
on Software Engineering 26, no. 6 (June 2000), p. 518-540.

Britz, G., D. Emerling, L. Hare, R. Hoerl, and J. Shade. “How to Teach Others to Apply
Statistical Thinking.” ASQ Quality Progress 30, no. 6 (June 1997): 67-79.

Brocklehurst, S., and B. Littlewood. “Techniques for Prediction Analysis and Recalibration.” In
Handbook of Software Reliability Engineering, ed. M.R. Lyu, 119-166. Los Alamitos,
California: IEEE Computer Society Press, 1996.

Brodbeck, F.C., and T. Greitemeyer. “Effects of Individual versus Mixed Individual and Group
Experience in Rule Induction on Group Member Learning and Group Performance.”
Journal of Experimental Social Psychology 36, no. 6 (November 2000): 621-648.

Brooks, F.P., Jr. The Mythical Man-Month: Essays on Software Engineering Anniversary
Edition. Boston: Addison-Wesley Publishing, 1995.

Campbell, M.D. “Methods, Tools, and Metrics for Performing the Empirical Analysis of
Selected Traits of Individual Software Developers.” Ph.D. diss., University of South
Carolina, 1999.

Carleton, A.D., M.C. Paulk, J. Barnard, A. Burr, D. Card, B. Curtis, A. Heijstek, B. Hirsh, T.
Keller, S. Meade, and G. Wigle. “Panel Discussion: Can Statistical Process Control Be
Usefully Applied to Software?” In Proceedings of the 11th Software Engineering Process
Group (SEPG) Conference in Atlanta, March 8-11, 1999.

Chillarege, R., and I. Bhandari. “Orthogonal Defect Classification - A Concept for In-Process
Measurements.” IEEE Software 18, no. 11 (November 1992): 943-955.

Compton, B.T., and C. Withrow. “Prediction and Control of Ada Software Defects.” The Journal
of Systems and Software 12, no. 3 (July 1990): 199-207.

Constantine, L.L. Constantine on Peopleware. Englewood Cliffs, New Jersey: Yourdon Press
Computing Series, 1995.

Cockburn, A. Crystal Clear: A Human-Powered Methodology for Small Teams. Boston:
Addison-Wesley Publishing, 2004.

Cook, C. R., and A. Roesch. “Real-time Software Metrics.” Journal of Systems and Software 24,
no. 3 (March 1994): 223-237.

Criscione, M., J. Ferree, and D. Porter. “Predicting Software Errors and Defects.” In Proceedings
of the 2001 Applications of Software Measurement in San Diego, February 12-16, 2001,
269-280.

Curtis, B. “Substantiating Programmer Variability.” Proceedings of the IEEE 69, no. 7 (July
1981): 846.

406

________. “The Impact of Individual Differences in Programmers.” In Working With
Computers: Theory Versus Outcome, ed. G.C. van der Veer, 279-294. London: Academic
Press, 1988.

Curtis, B., H. Krasner, and N. Iscoe. “A Field Study of the Software Design Process for Large
Systems.” Communications of the ACM 31, no. 11 (November 1988): 1268-1287.

Curtis, B., W.E. Hefley, and S.A. Miller. People Capability Maturity Model. Reading,
Massachusetts: Addison-Wesley, 2001.

Cusumano, M, A. MacCormack, C. Kemerer, and B. Crandall. “Software Development
Worldwide: The State of the Practice.” IEEE Software 20, no. 6 (November/December
2003): 28-34.

Das, N. “Study on Implementing Control Chart Assuming Negative Binomial Distribution with
Varying Sample Size in a Software Industry.” ASQ Software Quality Professional 6, no.
1 (December 2003): 38-39.

Davis, A.M. “Software Life Cycle Models.” In Software Engineering Project Management,
Second Edition, ed. R.H. Thayer, 105-114. Los Alamitos, California: IEEE Computer
Society Press, 1997.

DeMarco, T., and T. Lister. Peopleware, Second Edition. New York: Dorset House, 1999.

________. Waltzing with Bears: Managing Risks on Software Projects. New York: Dorset
House, 2003.

Deming, W.E. Out of the Crisis (Cambridge: MIT Center for Advanced Engineering Study,
1986.

Devnani-Chulani, S. “Bayesian Analysis of Software Cost and Quality Models.” Ph.D. diss.,
University of Southern California, 1999.

Dijkstra, E. “Structured Programming.” Classics in Software Engineering, E.N. Yourdon (ed),
(New York: Yourdon Press, 1979.

Duncan, T.E., S.C. Duncan, L.A. Strycker, F. Li, and A. Alpert. An Introduction to Latent
Variable Growth Curve Modeling. Mahwah, New Jersey: Lawrence Erlbaum Associates,
1999.

Eick, S.G., C.R. Loader, M.D. Long, S.A.V. Wiel, and L.G. Votta. “Estimating Software Fault
Content Before Coding.” In Proceedings of the 14th International Conference on
Software Engineering in Melbourne, Australia, May 1992.

El Emam, K., and O. Laitenberger. “Evaluating Capture-Recapture Models With Two
Inspectors.” IEEE Transactions on Software Engineering 27, no. 9 (September 2001):
851-864.

407

Endres, A., and D. Rombach. A Handbook of Software and Systems Engineering: Empirical
Observations, Laws, and Theories. Boston: Addison Wesley, 2003.

Evanco, W.M., and R. Lacovava. “A Model-Based Framework for the Integration of Software
Metrics.” The Journal of Systems and Software 26, 1994, pp. 77-86.

Fagan, M.E. “Design and Code Inspections to Reduce Errors in Program Development.” IBM
Systems Journal 15, no. 3 (1976): 182-211.

 ________. “Advances in Software Inspections.” IEEE Transactions on Software Engineering
12, no. 7 (July 1986): 744-751.

Fenton, N., P. Krause, and M. Neil. “Software Measurement: Uncertainty and Causal Modeling.”
IEEE Software 19, no. 5 (July/August 2002): 116-122.

Fenton, N., and M. Neil. “A Critique of Software Defect Prediction Models.” IEEE Transactions
on Software Engineering 25, no. 5 (September/October 1999): 675-689.

________. “Software Metrics: Successes, Failures, and New Directions.” The Journal of Systems
and Software 47, no. 2-3 (July 1999): 149-157.

Fenton, N., and N. Ohlsson. “Quantitative Analysis of Faults and Failures in a Complex
Software System.” IEEE Transactions on Software Engineering 26, no. 8 (August 2000):
797-814.

Fenton, N., S.L. Pfleeger, and R. Glass. “Science and Substance: A Challenge to Software
Engineers.” IEEE Software 11, no. 4 (July 1994): 86-95.

Ferdinand, A.E. “A Theory of System Complexity.” International Journal of General Systems 1
(1974): 19-33.

Ferguson, P., W.S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya. “Results of Applying
the Personal Software Process.” IEEE Computer 30, no. 5 (May 1997): 24-31.

Florac, W.A. “Software Quality Measurement: A Framework for Counting Problems and
Defects.” Pittsburgh: Software Engineering Institute, Carnegie Mellon University, 1992.
CMU/SEI-92-TR-22.

Florac, W.A., and A.D. Carleton. Measuring the Software Process: Statistical Process Control
for Software Process Improvement. Reading, Massachusetts: Addison-Wesley, 1999.

Florac, W.A., A.D. Carleton, and J. Barnard. “Statistically Managing the Software Process.”
IEEE Software 17, no. 4 (July/August 2000): 97-106.

Freedman, D., and G.M. Weinberg. Handbook of Walkthroughs, Inspections, and Technical
Reviews, Third Edition. New York: Dorset House, 1990.

408

Gaffney, J.R. “Estimating the Number of Faults in Code.” IEEE Transactions on Software
Engineering 10, no. 4 (July 1984): 459-465.

Garvin, D.A. “Competing on the Eight Dimensions of Quality.” Harvard Business Review 65,
no. 6 (November/December 1987): 101-109.

Gibbs, W.W. “Software’s Chronic Crisis.” Scientific American, (September 1994): 86-95.

Gill, G. K., and C. F. Kemerer. “Cyclomatic Complexity Density and Software Maintenance
Productivity.” IEEE Transactions on Software Engineering, 17, no. 12, (December
1991): 1284-1288.

Glass, R.L. Software Creativity. Englewood Cliffs, NJ: Prentice Hall, 1995.

________. “Inspections - Some Surprising Findings.” Communications of the ACM 42, no. 4
(April 1999): 17-19.

________. Facts and Fallacies of Software Engineering. Boston: Addison Wesley, 2004.

Goethert, W.B., E.K. Bailey, and M.B. Busby. “Software Effort and Schedule Measurement: A
Framework for Counting Staff-Hours and Reporting Schedule Information.” Pittsburgh:
Software Engineering Institute, Carnegie Mellon University, 1992. CMU/SEI-92-TR-21.

Goldenson, D.R., and J.D.Herbsleb. “After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success.” Pittsburgh: Software
Engineering Institute, Carnegie Mellon University, 1995. CMU/SEI-95-TR-009.

Grady, R. B., and T. van Slack. “Key Lessons in Achieving Widespread Inspection Use.” IEEE
Software 11, no. 4 (July/August 1994): 46-57.

Graves, T.L., A.F. Karr, J.S. Marron, and H. Siy. “Predicting Fault Incidence Using Software
Change History.” IEEE Transactions on Software Engineering 26, no. 7 (July 2000):
653-661.

Hahn, G.J. “How Abnormal Is Normality?” Journal of Quality Technology 3, no. 1 (January
1971): 18-22.

Hahn, G.J., and W.Q. Meeker. “Assumptions for Statistical Inference.” The American
Statistician 47, no. 1 (February 1993): 1-11.

Hall, P., and A. Nixon. “Fagan Inspection Data Analysis: A Practical Approach.” In Proceedings
of SPIRE 2000 (Software Process Improvement Realisation and Evaluation Conference)
in Hinckley, England, October 2-4 2000.

Halstead, M.H. Elements of Software Science (New York: Elsevier Computer Science Library,
1977.

409

Hare, L.B., R.W. Hoerl, J.D. Hromi, and R.D. Snee. “The Role of Statistical Thinking in
Management.” ASQ Quality Progress 28, no. 2 (February 1995): 53-60.

Hatton, L. “Reexamining the Fault Density – Component Size Connection.” IEEE Software 14,
no. 2 (March/April 1997): 89-97.

Hayes, W. “The Status of the PSP Data Set.” Pittsburgh: Software Engineering Institute,
Carnegie Mellon University, 1996.

________. “Using a Personal Software Process to Improve.” In Proceedings of the Fifth
International Software Metrics Symposium in Bethesda, Maryland, 1998, 61-71.

Hayes, W. and J.W. Over. “The Personal Software Process (PSP): An Empirical Study of the
Impact of PSP on Individual Engineers.” Pittsburgh: Software Engineering Institute,
Carnegie Mellon University, 1997. CMU/SEI-97-TR-001.

Hemdal, J.E., and R.L. Galen. “The Personal Software Process -- A Few Unexpected Lessons.”
In Proceedings of Applications of Software Measurement in San Jose, Californai, March
6-10, 2000, 1-22.

Highsmith, J.A. Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. New York: Dorset House Publishing, 2000.

Hilburn, T.B., and W.S. Humphrey. “Teaching Teamwork.” IEEE Software 19, no. 5,
(September/October 2002): 72-77.

Hirmanpour, I., and J. Schofield. “Defect Management Through the Personal Software Process.”
Crosstalk: The Journal of Defense Software Engineering 16, no. 9 (September 2003): 17-
20.

Hogg, R.V., and J. Ledolter. Applied Statistics for Engineers and Physical Scientists. New York:
Macmillan, 1992.

Holmes, J.S. “Optimizing the Software Life Cycle.” ASQ Software Quality Professional 5, no. 4
(September 2003): 14-23.

Hou, L., and J.E. Tomayko. “Applying the Personal Software Process in CS1: An Experiment.”
In Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer Science
Education in Atlanta, February 25 - March 1, 1998, 322-325.

Humphrey, W.S. “Characterizing the Software Process.” IEEE Software 5, no. 2 (March 1988):
73-79.

________. Managing the Software Process. Boston: Addison-Wesley, 1989.

________. “CASE Planning and the Software Process.” Pittsburgh: Software Engineering
Institute, Carnegie Mellon University, 1989. CMU/SEI-89-TR-26.

410

________. A Discipline for Software Engineering. Reading, Massachusetts: Addison-Wesley,
1995.

________. “Using a Defined and Measured Personal Software Process.” IEEE Software 13, no. 3
(May 1996): 72-88.

________. Introduction to the Team Software Process. Reading, Massachusetts: Addison-
Wesley, 1999.

Institute of Electrical and Electronics Engineers. IEEE Standard for Software Reviews and
Audits (ANSI/IEEE Std 1028), 1988.

Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software
Engineering Terminology (ANSI/IEEE Std 610), 1991.

Ishikawa, K. Guide to Quality Control. White Plains, New York: Kraus International
Publications, 1986.

International Organization for Standardization. Software Quality Characteristics (ISO/IEC
9126), 1991.

JMP Statistics and Graphics Guide, Version 4. Cary, North Carolina: SAS Institute, 2000.

Johnson, N.L., and S. Kotz. Discrete Distributions (New York: John Wiley and Sons, 1969.

Johnson, P.M., and A.M. Disney. “The Personal Software Process: A Cautionary Case Study.”
IEEE Software 15, no. 6 (November/December 1998): 85-88.

________. “A Critical Analysis of PSP Data Quality: Results from a Case Study.” Empirical
Software Engineering 4, no. 4 (1999): 317-349.

Jones, C. “Backfiring” or Converting Lines of Code Metrics Into Function Points, (Burlington,
Massachusetts: Software Productivity Research, October 1995).

________. “Software Benchmarking.” IEEE Computer 28, no. 10 (October 1995): 102-103.

________. “Software Estimating Rules of Thumb.” IEEE Computer 29, no. 3 (March 1996):
116-118.

________. Applied Software Measurement, Second Edition. New York: McGraw Hill, 1997.

Jose, A., N.K. Anju, and S.K. Pillai. “Closed-Loop Defect Removal Model Using Statistical
Process Control.” ASQ Software Quality Professional 3, no. 1 (December 2000): 39-47.

Judd, C. M., and G.H. McClellan. Data Analysis: A Model-Comparison Approach. San Diego:
Harcourt Brace Jovanovich, 1989.

Kan, S.H. Metrics and Models in Software Quality Engineering, Second Edition. Boston:
Addison-Wesley, 2003.

411

Keiller, P.A.R. “Improving the Predictive Performance of the Nonhomogeneous Poisson Process
Software Reliability Growth Models.” Ph.D. diss., George Washington University, 1995.

Kemerer, C. F. “Reliability of Function Points Measurement: A Field Experiment.”
Communications of the ACM 36, no. 2 (February 1993): 85-97.

Khattree, R., and D.N. Naik. Applied Multivariate Statistics with SAS Software. Cary, North
Carolina: SAS Publishing, 1999.

Khoshgoftaar, T.M., E.B. Allen, R. Halstead, G.P. Trio, and R.M. Flass. “Using Process History
to Predict Software Quality.” IEEE Software 31, no. 4 (April 1998): 66-72.

Khoshgoftaar, T.M., and R.M. Szabo. “An Application of Zero-Inflated Poisson Regression for
Software Fault Prediction.” In Proceedings of the 12th International Symposium on
Software Reliability Engineering in Hong Kong, November 27-30, 2001, 66-73.

Kitchenham, B.A., L.M. Pickard, and S.J. Linkman. “An Evaluation of Some Design Metrics.”
Software Engineering Journal 5, no. 1 (January 1990): 50-58.

Kramer, S.H. “When Are Two Heads Better Than One? The Role of Expertise and Task
Difficulty in Individual, Statistical Group, and Interacting Group Problem Solving.”
Ph.D. diss., Harvard University, 1998.

Krasner, H. “Self-Assessment Experience at Lockheed.” In Proceedings of the Third Annual
SEPG Workshop in Pittsburgh, November 7, 1990.

________. “The Cost of Software Quality (CoSQ): Empowering Improvement.” In Proceedings
of the 7th International Conference on Software Quality in Montgomery, Alabama,
October 6-8, 1997.

________. “Accumulating the Body of Evidence for the Payoff of Software Process
Improvement – 1997.” In Software Process Improvement, ed. R.B. Hunter and R.H.
Thayer, 519-539. Los Alamitos, California: IEEE Computer Society, 2001.

Land, L.P.K. “Software Group Reviews and the Impact of Procedural Roles on Defect Detection
Performance.” Ph.D. diss., University of New South Wales, 2002.

Leemis, L.M. Reliability: Probabilistic Models and Statistical Methods. Upper Saddle River,
New Jersey: Prentice Hall, 1995.

Lehman, M.M., J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M. Turski. “Metrics and Laws of
Software Evolution – The Nineties View.” In Elements of Software Process Assessment
and Improvement, ed. K. El Emam and N.H. Madhavji, 343-368. Los Alamitos: IEEE
Computer Society Press, 1999.

Liberatore, R.L. “Performance and Efficiency of Individuals Charts in Applications to Obtain
Statistical Control.” Ph.D. diss., University of Pittsburgh, 1995.

412

Lipke, W., and M. Jennings. “Software Project Planning, Statistics, and Earned Value.”
Crosstalk: The Journal of Defense Software Engineering 13, no. 12 (December 2000):
10-14.

Lipow, M. “Number of Faults per Line of Code.” IEEE Transactions on Software Engineering 8,
no. 4 (July 1982): 437-439.

Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. SAS System for Mixed Models.
Cary, North Carolina: SAS Publishing, 1996.

Lyu, M.R., ed. Handbook of Software Reliability Engineering. Los Alamitos, California: IEEE
Computer Society Press, 1996.

MacCormack, A., C.F. Kemerer, M. Cusumano, and B. Crandall. “Trade-offs Between
Productivity and Quality in Selecting Software Development Practices.” IEEE Software
20, no. 5 (September/October 2003): 83-84.

Mah, M. “Defect Metrics, Inspections, and Testing: Pay Me Now, or Pay Me Later.” IT Metrics
Strategy 7, no. 1 (January 2001), p. 12.

Manley, J.H. Rise Above the Rest (Pittsburgh: Cathedral Publishing, 1998.

Mayer, A., and A.M. Sykes. “Statistical Methods for the Analysis of Software Metrics Data.”
Software Quality Journal 1, no. 4, (December 1992): 209-223.

McAndrews, D.R. “The Team Software Process (TSP): An Overview and Preliminary Results of
Using Disciplined Practices.” Pittsburgh: Software Engineering Institute, Carnegie
Mellon University, 2000. CMU/SEI-2000-TR-015.

McCann, R.T. “How Much Code Inspection Is Enough?” Crosstalk: The Journal of Defense
Software Engineering 14, no. 7 (July 2001): 9-12.

McGarry, F.E. “What Have We Learned in the Last Six Years: Measuring Software
Development Technology.” In Proceedings of the Seventh Annual Software Engineering
Workshop in Greenbelt, Maryland, 1982, 205-238.

Milliken, G.A., and D.E. Johnson. Analysis of Messy Data, Volume I: Designed Experiments.
New York: Chapman & Hall, 1992.

Montgomery, D.C. Introduction to Statistical Quality Control (3rd edition; New York: John
Wiley & Sons, 1996.

Montgomery, D.C., and G.C. Runger. Applied Statistics and Probability for Engineers, Second
Edition (New York: John Wiley & Sons, 1999.

Morgan, P.M., and R.S. Tindale. “Group vs Individual Performance in Mixed-Motive Situations:
Exploring an Inconsistency.” Organizational Behavior and Human Decision Processes
87, no. 1 (January 2002), p. 46.

413

Mullen, R.E. “The Lognormal Distribution of Software Failure Rates: Application to Software
Reliability Growth Modeling.” In Proceedings of the Ninth International Symposium on
Software Reliability Engineering in Paderborn, Germany, November 4-7, 1998, 124-133.

Musa, J.D., A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction,
Application. New York: McGraw-Hill, 1987.

National Institute of Standards and Technology. The Economic Impacts of Inadequate
Infrastructure for Software Testing, May 2002.

Nelson, L. “Control Charts for Individual Measures.” Journal of Quality Technology 14, no. 3
(July 1982): 172-174.

Neter, J., M.H. Kutner, and C.J. Nachtscheim. Applied Linear Statistical Models, Fourth Edition.
Chicago: Irwin, 1996.

Neufelder, A.M. “How to Measure the Impact of Specific Development Practices on Fielded
Defect Density.” In Proceedings of the 11th International Symposium on Software
Reliability Engineering in San Jose, California, October 8-11, 2000, 148-159.

Nikora, A.P. “Software System Defect Content Prediction from Development Process and
Product Characteristics.” Ph.D. diss., University of Southern California, 1998.

Orr, J.M., P.R. Sackett, and C.L.Z. DuBois. (1991). “Outlier Detection and Treatment in
Psychology: A Survey of Researcher Beliefs and an Empirical Illustration.” Personnel
Psychology 44 (1991), 473- 486.

Osborne, J. “Notes on the Use of Data Transformations.” Practical Assessment, Research &
Evaluation 8, no.6 (2002).

Ould, M.A. “CMM and ISO 9001.” Software Process: Improvement and Practice 2, no. 4
(December 1996):281-289.

Park, R.E. “Software Size Measurement: A Framework for Counting Source Statements.”
Pittsburgh: Software Engineering Institute, Carnegie Mellon University, 1992.
CMU/SEI-92-TR-20.

Parnas, D.L., and D.M. Weiss. “Active Design Reviews: Principles and Practices.” The Journal
of Systems and Software 7, no. 4 (December 1987): 259-265.

Parsons, H.M. “What Happened at Hawthorne?” Science 183, no. 4128 (March 8, 1974): 922-
932.

Paulk, M.C. “Toward Quantitative Process Management With Exploratory Data Analysis.” In
Proceedings of the Ninth International Conference on Software Quality in Cambridge,
Massachusetts, October 4-6, 1999, 35-42.

414

________. “Models and Standards for Software Process Assessment and Improvement.” In
Software Process Improvement, ed. R.B. Hunter and R.H. Thayer, 5-37. Los Alamitos,
California: IEEE Computer Society, 2001.

Paulk, M.C. and M.B. Chrissis. “The November 1999 High Maturity Workshop.” Pittsburgh:
Software Engineering Institute, Carnegie Mellon University, 2000. CMU/SEI-2000-SR-
003.

Paulk, M.C., D.R. Goldenson, and D.M. White. “The 1999 Survey of High Maturity
Organizations.” Pittsburgh: Software Engineering Institute, Carnegie Mellon University,
2000. CMU/SEI-2000-SR-002.

Paulk, M.C., C. Weber, B. Curtis, and M.B. Curtis. The Capability Maturity Model: Guidelines
for Improving the Software Process. Reading, Massachusetts: Addison-Wesley, 1995).

Perry, D.E., A. Porter, M.W. Wade, L.G. Votta, and J. Perpich. “Reducing Inspection Interval in
Large-Scale Software Development.” IEEE Transactions on Software Engineering 28,
no. 7 (July 2002): 695-705.

Phipps, G. “Comparing Observed Bug and Productivity Rates for Java and C++.” Software –
Practice and Experience 29, no. 4 (April 1999): 345-358.

Pierce, V.D. “Process Stability Analysis.” In Accenture Process Improvement Conference, June
16-17, 2005.

Porter, A.A., and P.M. Johnson. “Assessing Software Review Meetings: Results of a
Comparative Analysis of Two Experimental Studies.” IEEE Transactions on Software
Engineering 23, no. 3 (March 1997): 129-145.

Porter, A.A., and L.G. Votta. “What Makes Inspections Work?” IEEE Software 14, no. 6
(November/December 1997): 99-102.

________. “Comparing Detection Methods for Software Requirements Inspections: A
Replication Using Professional Subjects.” Empirical Software Engineering 3, no. 4
(December 1998): 355-379.

Porter, A.A., H. Siy, C. Toman and L.G. Votta. “An Experiment to Assess the Cost-Benefits of
Code Inspections in Large Scale Software Development.” IEEE Transactions on
Software Engineering, 23, no. 6 (June 1997): 329-346.

Porter, D. “Statistical Process Control (SPC) for Software Inspections.” In Proceedings of the
2001 Applications of Software Measurement in San Diego, February 12-16, 2001, 473-
486.

Prechelt, L., and B. Unger. “An Experiment Measuring the Effects of Personal Software Process
(PSP) Training.” IEEE Transactions on Software Engineering 27, no. 5 (May 2000): 465-
472.

415

Putnam, L.H., and W. Myers. Measures for Excellence (Englewood Cliffs, New Jersey: Yourdon
Press, 1992.

________. Industrial Strength Software: Effective Management Using Measurement (Los
Alamitos, California: IEEE Computer Society Press, 1997.

Pyzdek, T. “Process Control for Short and Small Runs.” ASQ Quality Progress 26, no. 4 (April
1993): 51-60.

Radice, R.A. High Quality Low Cost Software Inspections. Andover, Massachusetts:
Paradoxicon Publishing, 2002.

Raffo, D.M. “Modeling Software Processes Quantitatively and Assessing the Impact of Potential
Process Changes on Process Performance.” Ph.D. diss., Carnegie Mellon University,
1996.

Rawlings, J.O., S.G. Pantula, and D.A. Dickey. Applied Regression Analysis, Second Edition
(New York: Springer-Verlag, 1998.

Rifkin, S. “The Business Case for Software Process Improvement.” In Proceedings of the Fifth
SEPG National Meeting in Costa Mesa, California, April 26-29, 1993.

Rocke, D.M. “Robust Control Charts.” Technometrics 31, no. 2 (May 1988): 173-184.

Roes, K.C.B., R.J.M.M. Does, and Y. Schurink. “Shewhart-Type Control Charts for Individual
Observations.” Journal of Quality Technology 25, no. 3 (July 1993): 188-198.

Sackman, H., W.J. Erikson, and E.E. Grant. “Exploratory Experimental Studies Comparing
Online and Offline Programming Performance.” Communications of the ACM 11, no. 1
(January 1968): 3-11.

SAS Institute Inc. SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume 1. Cary, North
Carolina: SAS Publishing, 1989.

Sawyer, S., and P.J. Guinan. “Software Development: Processes and Performance.” IBM Systems
Journal 37, no. 4 (1998): 552-569.

Schaefer, H. “Metrics for Optimal Maintenance Management.” In Proceedings of the Conference
on Software Maintenance in Washington DC, 1995, 114-119.

Schilling, E.G., and P.R. Nelson. “The Effect of Non-Normality on the Control Limits of X
Charts.” Journal of Quality Technology 8, no. 4 (October 1976): 183-188.

Schneberger, S.L. “Distributed Computing Environments: Effects on Software Maintenance
Difficulty.” The Journal of Systems and Software 37, 1997, pp. 101-116.

Scholtes, P.R., B.L. Joiner, and B.J. Streibel. The TEAM Handbook, Second Edition. Madison,
Wisconsin: Oriel Incorporated, 1996.

416

Shaw, M. “Prospects for an Engineering Discipline of Software.” IEEE Software 7, no. 6
(November 1990): 15-24.

Shen, V.Y., T. Yu, S.M. Thebaut, and L.R. Paulsen. “Identifying Error-Prone Software – An
Empirical Study.” IEEE Transactions on Software Engineering 11, no. 4 (April 1985):
317-323.

Sheppard, S.B., B. Curtis, P. Milliman, and T. Love. “Modern Coding Practices and Programmer
Performance.” IEEE Computer 12, no. 12 (December 1979): 41-49.

Shewhart, W.A. Economic Control of Quality of Manufactured Product. New York: Van
Nostrand, 1931.

________. Statistical Method from the Viewpoint of Quality Control. Mineola, New York: Dover
Publications, 1939.

Takahasi, M., and Y. Kamayachi. “An Empirical Study of a Model for Program Error
Prediction.” In Proceedings of the 8th International Conference on Software Engineering
in London, August, 1985, 330-336.

Tichy, W.F., P. Lukowicz, L. Prechelt, and E.A. Heinz. “Experimental Evaluation in Computer
Science: A Quantitative Study.” The Journal of Systems and Software 28, no. 1 (January
1995): 9-18.

Votta, L. G. “Does Every Inspection Need a Meeting?” In Proceedings of the First ACM
SIGSOFT Symposium on the Foundations of Software Engineering in Los Angeles, CA,
1993, 107-114.

Webb, D.R. “Managing Risk with TSP.” Crosstalk: The Journal of Defense Software
Engineering 13, no. 6 (June 2000): 7-10.

Webb, D.R., and W.S. Humphrey. “Using the TSP on the TaskView Project.” Crosstalk: The
Journal of Defense Software Engineering 12, no. 2 (February 1999): 3-10.

Weinberg, G.M. The Psychology of Computer Programming: Silver Anniversary Edition. New
York: Dorset House, 1998.

Weller, E.F. “Lessons from Three Years of Inspection Data.” IEEE Software 10, no. 5
(September 1993): 38-45.

________. “Practical Applications of Statistical Process Control.” IEEE Software 17, no. 3
(May/June 2000): 48-55.

Wesslen, A. “Improving Software Quality through Understanding and Early Estimations.” Ph.D.
diss., Lund Institute of Technology, 1999.

________. “A Replicated Empirical Study of the Impact of the Methods in the PSP on Individual
Engineers.” Empirical Software Engineering 5, no. 2 (June 2000): 93-123.

417

Wheeler, D.J. Normality and the Process Behavior Chart. Knoxville, Tennessee: SPC Press,
2000.

________. Making Sense of Data: SPC for the Service Sector. Knoxville, Tennessee: SPC Press,
2003.

Wheeler, D.J., and D.S. Chambers. Understanding Statistical Process Control, Second Edition.
Knoxville, Tennessee: SPC Press, 1992.

Wheeler, D.J., and S.R. Poling. Building Continual Improvement: A Guide for Business.
Knoxville, Tennessee: SPC Press, 1998.

Williams, K.D. “The Value of Software Improvement… Results! Results! Results!” In
Proceedings of SPIRE 1997 (Software Process Improvement Realisation and Evaluation
Conference), June 4, 1997.

Williams, L.A. “The Collaborative Software Process.” Ph.D. diss., University of Utah, 2000.

Williams, L.A., R.R. Kessler, W. Cunningham, and R. Jeffries. “Strengthening the Case for Pair
Programming.” IEEE Software 17, no. 4 (July/August 2000): 19-25.

Williamson, E., and M.H. Bretherton. Tables of the Negative Binomial Distribution. New York:
John Wiley and Sons, 1963.

Withrow, C. “Error Density and Size in Ada Software.” IEEE Software, 7, no. 1
(January/February 1990): 26-30.

Wohlin, C. “Are Individual Differences in Software Development Performance Possible to
Capture Using a Quantitative Survey?” Empirical Software Engineering 9, no. 3
(September 2004): 211-228.

Wohlin, C., and H. Petersson. “Defect Content Estimation for Two Reviewers.” In Proceedings
of the 12th International Symposium on Software Reliability Engineering in Hong Kong,
November 27-30, 2001, 340-345.

Wohlin, C., and P. Runeson. “Defect Content Estimations from Review Data.” In Proceedings of
the 20th International Conference on Software Engineering in Kyoto, Japan, April 19-25,
1998, 400-409.

Wohlin, C., and A. Wesslen. “Understanding Software Defect Detection in the Personal
Software Process.” In Proceedings of the Ninth International Symposium on Software
Reliability in Paderborn, Germany, November 4-7, 1998, 49-58.

Yang, Z., and J.C. Paradi. “DEA Evaluation of a Y2K Software Retrofit Program.” IEEE
Transactions on Engineering Management 51, no. 3 (August 2004): 279-287.

Zhang, X. “Software Reliability and Cost Models with Environmental Factors.” Ph.D. diss.,
Rutgers, 1999.

	INTRODUCTION
	MOTIVATION FOR THIS RESEARCH
	STATEMENT OF THE SOFTWARE QUALITY PROBLEM
	PURPOSE AND SIGNIFICANCE OF THIS STUDY

	LITERATURE REVIEW
	THE SOFTWARE PROCESS
	The Capability Maturity Model for Software

	Table 1 Software Quality at Different Software CMM Maturity
	The Personal Software Process

	Figure 1 Trends in Defect Density in Testing Across PSP Ass
	The Team Software Process
	Relevance of PSP, TSP, and CMM to My Research

	PEER REVIEWS
	Inspections
	Relevance of Peer Reviews to My Research

	SOFTWARE QUALITY AND MEASUREMENT
	Characterizing Software Quality
	Statistical Distribution of Defects
	Defect Prediction and Estimation Models

	Table 2 COCOMO II and COQUALMO Drivers
	Relevance of Defect Prediction Models to My Research
	DIFFERENCES IN INDIVIDUAL PERFORMANCE
	Order of Magnitude Differences
	Relevance of Individual Differences to My Research

	TEAM PERFORMANCE
	Inspection Teams
	Relevance of Team Performance to My Research

	STATISTICAL THINKING

	Table 3 Statistical Distributions Used to Describe Software
	Operational Definitions
	Process Behavior and Control Charts
	Applying Statistical Control to Software Processes
	Relevance of Statistical Thinking to My Research

	SUMMARIZING THE RELEVANCE OF PRIOR RESEARCH

	RESEARCH METHODOLOGY
	THE RESEARCH QUESTIONS
	RETROSPECTIVE DATA SETS
	OVERVIEW OF THE ANALYSIS PROCESS
	CONCERNS WITH GENERALIZING PSP-BASED ANALYSES
	REMOVING INVALID PSP DATA

	Table 4 Sample Sizes for PSP Data Sets
	EXPLORING THE FACTORS AFFECTING SOFTWARE QUALITY
	THE RESEARCH QUESTION: EXPLORING QUALITY DRIVERS
	POTENTIAL EXPLANATORY VARIABLES
	DEFINING SOFTWARE QUALITY FOR PSP

	Figure 2 Program Size Across (PSPb, C)
	AN OVERVIEW OF SOME BASIC STATISTICS
	CONFIRMING PSP QUALITY TRENDS

	Figure 3 Trends in Software Quality
	Table 5 ANOVA for PSP Major Process
	Table 6 Estimates for PSP Major Process Levels
	EXPLORING THE POTENTIALLY CONFOUNDING VARIABLES
	Assignment (9A Versus 10A)

	Figure 4 Differences Between Assignment 9 and Assignment 10
	Table 7 ANOVA for Assignment (9A vs 10)
	Table 8 Estimates for Assignment Levels
	Table 9 ANOVA for Assignment (9A vs 10A) Excluding Outliers
	Table 10 Estimates for Assignment Levels Excluding Outliers
	Finishing All Ten Assignments Versus Not Finishing

	Figure 5 Differences Between All Ten Assignments Versus Les
	Table 11 ANOVA for Finishing All Ten Assignments
	Table 12 Estimates for Levels of Finishing All Ten Assignme
	Table 13 ANOVA for Finishing All Ten Assignments Excluding
	Table 14 Estimates for Levels of Finishing All Ten Assignme
	PSP Classes

	Table 15 Regression Models for PSP Class
	Table 16 Estimates for PSP Class
	Figure 6 PSP Classes Over Time
	Table 17 Regression Models for PSP Class Excluding Outliers
	Table 18 Estimates for PSP Class Excluding Outliers
	Highest Degree Attained

	Figure 7 Differences for Highest Degree Attained
	Table 19 ANOVA for Highest Degree Attained
	Table 20 Estimates for Highest Degree Attained Levels
	Table 21 ANOVA for Highest Degree Attained Excluding Outlie
	Table 22 Estimates for Highest Degree Attained Levels Exclu
	Years of Programming Experience

	Table 23 Regression Models for Years of Experience
	Table 24 Estimates for Years of Experience
	Table 25 Regression Models for Years of Experience Excludin
	Table 26 Estimates for Years of Experience Excluding Outlie
	Number of Languages Known

	Table 27 Regression Models for Number of Languages Known
	Table 28 Estimates for Number of Languages Known
	Table 29 Regression Models for Number of Languages Known Ex
	Table 30 Estimates for Number of Languages Known Excluding
	Percent of Time Programming

	Table 31 Regression Models for Percent of Time Programming
	Table 32 Estimates for Percent of Time Programming
	Table 33 Regression Models for Percent of Time Programming
	Table 34 Estimates for Percent of Time Programming Excludin
	Programming Language

	Figure 8 Differences Between Programming Language Levels
	Table 35 ANOVA for Programming Language
	Table 36 Estimates for Programming Language Levels
	Table 37 ANOVA for Programming Language Excluding Outliers
	Table 38 Estimates for Programming Language Levels Excludin
	Discussion of the Potentially Confounding Variables

	Table 39 Statistically Significant Results for Potentially
	EXPLORING SOLUTION COMPLEXITY (PROGRAM SIZE)
	Program Size and Defect Density in Testing

	Table 40 Regression Models for Program Size
	Table 41 Estimates for Program Size
	Table 42 Regression Models for Program Size Excluding Outli
	Table 43 Estimates for Program Size Excluding Outliers
	Program Size and the Number of Defects Removed in Testing

	Figure 9 Regressing Defect Density in Testing on Program Si
	Table 44 Regressing Defects Removed in Testing on Program S
	Table 45 Estimates for Regressing Defects Removed in Testin
	Table 46 Regressing Defects Removed in Testing on Program S
	Table 47 Estimates for Regressing Defects Removed in Testin
	Discussion of Program Size
	EXPLORING THE PROCESS VARIABLES

	Figure 10 Dependencies Between Software Engineering Activit
	Design Time

	Table 48 Regressing Design Defect Density on Design Time
	Table 49 Estimates for Regressing Design Defect Density on
	Table 50 Regressing Design Defect Density on Design Time Ex
	Table 51 Estimates for Regressing Design Defect Density on
	Design Review Rate

	Table 52 Regressing Defect Removal Effectiveness on Design
	Table 53 Estimates for Regressing Defect Removal Effectiven
	Table 54 Regressing Defect Removal Effectiveness on Design
	Table 55 Estimates for Regressing Defect Removal Effectiven
	Figure 11 Differences in Design Review Classes
	Table 56 ANOVA for Regressing Defect Removal Effectiveness
	Table 57 Estimates for Regressing Defect Removal Effectiven
	Table 58 ANOVA for Regressing Defect Removal Effectiveness
	Table 59 Estimates for Regressing Defect Removal Effectiven
	Defect Density in Design Review

	Table 60 Regression Models for Defect Density in Design Rev
	Table 61 Estimates for Defect Density in Design Review
	Table 62 Regression Models for Defect Density in Design Rev
	Table 63 Estimates for Defect Density in Design Review Excl
	Coding Time

	Table 64 Regressing Code Defect Density on Coding Time
	Table 65 Estimates for Regressing Code Defect Density on Co
	Table 66 Regressing Code Defect Density on Coding Time Excl
	Table 67 Estimates for Regressing Code Defect Density on Co
	Code Review Rate

	Table 68 Regressing Defect Removal Effectiveness on Code Re
	Table 69 Estimates for Regressing Defect Removal Effectiven
	Table 70 Regressing Defect Removal Effectiveness on Code Re
	Table 71 Estimates for Regressing Defect Removal Effectiven
	Table 72 ANOVA for Regressing Defect Removal Effectiveness
	Table 73 Estimates for Regressing Defect Removal Effectiven
	Table 74 ANOVA for Regressing Defect Removal Effectiveness
	Table 75 Estimates for Regressing Defect Removal Effectiven
	Defect Density in Code Review

	Table 76 Regression Models for Defect Density in Code Revie
	Table 77 Estimates for Defect Density in Code Review
	Table 78 Regression Models for Defect Density in Code Revie
	Table 79 Estimates for Defect Density in Code Review Exclud
	Defect Density in Compile

	Table 80 Regression Models for Defect Density in Compile
	Table 81 Estimates for Defect Density in Compile
	Table 82 ANOVA for Defect Density in Compile Excluding Outl
	Table 83 Estimates for Defect Density in Compile Excluding
	Discussion of the Process Variables

	Table 84 Statistically Significant Results for the Process
	EXPLORING PROGRAMMER ABILITY
	Comparing Improvement of Top and Bottom Quartiles

	Figure 12 Trends for Programmer Quartiles
	Table 85 Comparing Top and Bottom Quartile Average Performa
	Table 86 Comparing Top and Bottom Performers Excluding Outl
	Comparing Top and Bottom Performers at the End of PSP

	Figure 13 Differences in Performance Across Quartiles for (
	Table 87 ANOVA for Programmer Quartile
	Table 88 Estimates for Programmer Quartile Levels
	Table 89 ANOVA for Programmer Quartile Excluding Outliers
	Table 90 Estimates for Programmer Quartile Excluding Outlie
	Using a Continuous Measure of Programmer Ability

	Table 91 Regression Models for Programmer Ability
	Table 92 Estimates for Programmer Ability
	Table 93 ANOVA for Programmer Ability Excluding Outliers
	Table 94 Estimates for Programmer Ability Excluding Outlier
	Discussion of Programmer Ability
	CONCLUSIONS FOR EXPLANATORY VARIABLES FOR SOFTWARE QUALITY

	IDENTIFYING OUTLIERS IN THE SOFTWARE PROCESS
	THE RESEARCH QUESTION: IDENTIFYING OUTLIERS
	IDENTIFYING THE COMMON CAUSE SYSTEM
	SPECIFICATION LIMITS FOR SOFTWARE PROCESSES
	MEASURES FOR PROCESS CONTROL
	TECHNIQUES FOR IDENTIFYING OUTLIERS
	IDENTIFYING SIZE OUTLIERS

	Figure 14 Initial X Chart for Program Size in (PSPb, C, 9A)
	Figure 15 Robust X Chart for Program Size in (PSPb, C, 9A)
	Table 95 Outlier Statistics for Program Size (LOC)
	IDENTIFYING DESIGN OUTLIERS
	Design Effort

	Table 96 Outlier Statistics for Design Time
	Design Review Rate

	Table 97 Outlier Statistics for Design Review Rate
	Defect Density in Design Review

	Table 98 Outlier Statistics for Defect Density in Design Re
	IDENTIFYING CODING OUTLIERS
	Coding Effort

	Table 99 Outlier Statistics for Coding Time
	Code Review Rate

	Table 100 Outlier Statistics for Code Review Rate
	Defect Density in Code Review

	Table 101 Outlier Statistics for Defect Density in Code Rev
	IDENTIFYING COMPILATION OUTLIERS

	Table 102 Outlier Statistics for Defect Density in Compilat
	IDENTIFYING TESTING OUTLIERS

	Table 103 Outlier Statistics for Defect Density in Testing
	DISCUSSION OF OUTLIER IDENTIFICATION

	Table 104 Outlier Differences Between XmR Charts and Interq
	CONCLUSIONS FOR OUTLIER IDENTIFICATION

	STATISTICAL DISTRIBUTIONS OF SOFTWARE DEFECT DATA
	THE RESEARCH QUESTION: TESTING STATISTICAL DISTRIBUTIONS
	STATISTICS RELEVANT TO DISTRIBUTIONS
	DISTRIBUTION OF DESIGN DEFECTS

	Table 105 Statistics for the Number of Defects Removed in D
	Table 106 Number of Defects Removed in Design Review Agains
	Table 107 Statistics for Defect Density in Design Review
	DISTRIBUTION OF CODING DEFECTS

	Table 108 Statistics for the Number of Defects Removed in C
	Table 109 Number of Defects in Code Review Against the Nega
	Table 110 Statistics for Defect Density in Code Review
	DISTRIBUTION OF COMPILE DEFECTS

	Table 111 Statistics for Number of Defects Removed in Compi
	Table 112 Number of Defects Removed in Compile Against the
	Table 113 Statistics for Defect Density in Compile
	DISTRIBUTION OF TESTING DEFECTS

	Table 114 Statistics for Number of Defects Removed in Testi
	Table 115 Number of Defects Removed in Testing Against the
	Table 116 Statistics for Defect Density in Testing
	CONCLUSIONS FOR STATISTICAL DISTRIBUTIONS

	MODELING SOFTWARE QUALITY IN PSP
	THE RESEARCH QUESTION: PREDICTING DEFECTS
	DECISION POINTS IN THE PSP PROCESSES
	MULTIPLE REGRESSION MODELS FOR PSP QUALITY

	Table 117 Variable Names and Definitions for Multiple Regre
	An Overview of Regression Theory
	The Baseline Multiple Regression Models

	Table 118 Multiple Regression Models for the Baseline Case
	Table 119 Main Effects for the Baseline Models
	Table 120 Interaction Effects for the PSP Major Process in
	Table 121 Interaction Effects for Programmer Ability in the
	Multiple Regression Models in Design

	Table 122 Multiple Regression Models in Design
	Table 123 Main Effects for the Design Models
	Table 124 Two-Factor Interaction-Effect Estimates in the De
	Table 125 Other Interaction-Effect Estimates in the Design
	Multiple Regression Models in Coding

	Table 126 Multiple Regression Models in Code
	Table 127 Main Effects for the Code Models
	Table 128 Two-Factor Interaction-Effect Estimates in the Co
	Table 129 Other Interaction-Effect Estimates in the Code Mo
	Multiple Regression Models in Compile

	Table 130 Multiple Regression Models in Compile
	Table 131 Main Effects for the Compile Models
	Table 132 Two-Factor Interaction-Effect Estimates in the Co
	Table 133 Other Interaction-Effect Estimates in the Compile
	Multicollinearity and Variance Inflation Factors

	Table 134 Multicollinearity Diagnostics Using VIF
	Influential Outliers

	Table 135 Comparing Compile Models Including and Excluding
	Box-Cox Transformations
	Multiplicative Models

	Table 136 Comparing Additive and Multiplicative Compile Mod
	Stratifying by Programmer Quartile

	Table 137 Comparing Compile Models for Top-Quartile Student
	Stratifying by Conformant Processes

	Table 138 Comparing Compile Models for Conformant Processes
	Table 139 Comparing Compile Models for Conformant Processes
	Discussion of the Multiple Regression Models
	MIXED MODELS FOR PSP QUALITY
	An Overview of Mixed Model Theory
	Mixed Models in Design

	Table 140 Mixed Models for Design
	Table 141 Fixed-Effect Estimates for the Design Mixed Model
	Table 142 Mixed Models for Design Excluding Outliers
	Table 143 Fixed-Effect Estimates for the Design Mixed Model
	Mixed Models in Coding

	Table 144 Mixed Models for Code
	Table 145 Fixed-Effect Estimates for the Code Mixed Models
	Table 146 Interaction-Effect Estimates in the Code Mixed Mo
	Table 147 Mixed Models for Code Excluding Outliers
	Table 148 Fixed-Effect Estimates for the Code Mixed Models
	Table 149 Interaction-Effect Estimates in the Code Mixed Mo
	Mixed Models in Compile

	Table 150 Mixed Models for Compile
	Table 151 Fixed-Effect Estimates for the Compile Mixed Mode
	Table 152 Interaction-Effect Estimates in the Compile Mixed
	Table 153 Mixed Models for Compile Excluding Outliers
	Table 154 Fixed-Effect Estimates for the Compile Mixed Mode
	Table 155 Interaction-Effect Estimates in the Compile Mixed
	Random Effects in the Mixed Models for PSP
	Random Coefficient Mixed Models for Student-Specific Effects

	Figure 16 Trends in Software Quality from a Student-Specifi
	Table 156 Comparing Top and Bottom Quartile Average Perform
	Discussion of the Mixed Models
	CONCLUSIONS FOR DEFECT PREDICTION MODELS

	DEFECT REMOVAL EFFECTIVENESS OF REVIEWS AND INSPECTIONS
	THE RESEARCH QUESTION: DEFECT REMOVAL EFFECTIVENESS
	EFFECTIVENESS OF PSP REVIEWS
	Considering Transformations for Defect Removal Effectiveness

	Figure 17 Distribution of Defect Removal Effectiveness
	Figure 18 Distribution of Logit Transformation of Defect Re
	Design Reviews in PSP

	Table 157 Multiple Regression Models for PSP Design Reviews
	Table 158 Estimates for PSP Design Review Models
	Figure 19 Scatter Diagram for Design Review Rate vs Defect
	Figure 20 Differences in Design Review Classes Reprised
	Table 159 ANOVA for Regressing Defect Removal Effectiveness
	Table 160 Estimates for Regressing Defect Removal Effective
	Code Reviews in PSP

	Table 161 Multiple Regression Models for PSP Code Reviews
	Table 162 Estimates for PSP Code Review Models
	Figure 21 Scatter Diagram for Code Review Class vs Defect R
	Figure 22 Differences in Code Review Class Reprised
	Table 163 ANOVA for Regressing Defect Removal Effectiveness
	Table 164 Estimates for Regressing Defect Removal Effective
	EFFECTIVENESS OF TSPS REVIEWS AND INSPECTIONS
	Impact of Program Size

	Table 165 Regressing Defect Removal Effectiveness on Progra
	Table 166 Estimates for Regressing Defect Removal Effective
	Impact of the Programmer

	Table 167 Regressing Defect Removal Effectiveness on Progra
	Table 168 Estimates for Regressing Defect Removal Effective
	Impact of Review and Inspection Rates

	Table 169 Regressing Defect Removal Effectiveness on Review
	Table 170 Estimates for Regressing Defect Removal Effective
	EFFECTIVENESS OF HIGH-MATURITY CODE INSPECTIONS

	Table 171 Multiple Regression Models for a High-Maturity Pr
	Table 172 Estimates for High-Maturity Project Models
	Investigating Code Inspection Rate Further

	Figure 23 Differences Between Code Inspection Classes for a
	Table 173 ANOVA for Regressing Defect Removal Effectiveness
	Table 174 Estimates for Regressing Defect Removal Effective
	Investigating Team Size Further

	Figure 24 Differences Between Number of Inspectors for a Hi
	Table 175 ANOVA for Regressing Defect Removal Effectiveness
	Table 176 Estimates for Regressing Defect Removal Effective
	CONCLUSIONS FOR FACTORS AFFECTING REVIEW EFFECTIVENESS

	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
	CONCLUDING REMARKS
	LIMITATIONS
	FUTURE RESEARCH DIRECTIONS
	A.1 VARIABLES IN THE PSP DATA
	A.2 VARIABLES IN THE TSP PROJECT DATA
	A.3 VARIABLES IN THE HIGH-MATURITY PROJECT DATA
	B.1 GENERAL LINEAR MODELS FOR PSP
	B.2 INFLUENTIAL OUTLIERS FOR PSP
	B.3 MIXED MODELS (DESIGN, CODE, COMPILE) FOR PSP
	B.4 MIXED MODELS WITH A RANDOM EFFECT FOR PSP
	B.6 TSP PROJECT MODELS
	B.7 HIGH-MATURITY PROJECT MODELS
	C.1 COMPILE REGRESSION MODEL FOR (PSPB, C)
	C.2 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C
	C.3 COMPILE REGRESSION MODEL FOR (PSPB, C++, OUTLIERS)
	C.4 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C
	C.5 COMPILE REGRESSION MODEL FOR (PSPB, C, NOOUTLIERS)
	C.6 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C
	C.7 COMPILE REGRESSION MODEL FOR (PSPB, C++, NOOUTLIERS)
	C.8 COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C
	C.9 COMPILE MIXED MODELS FOR (PSPB, C, OUTLIERS)
	C.10 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, O
	C.11 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, N
	C.12 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, N
	C.13 COMPILE MIXED MODELS FOR (PSPB, C++, OUTLIERS)
	C.14 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
	C.15 COMPILE MIXED MODELS FOR (PSPB, C++, NOOUTLIERS)
	C.16 COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++,
	C.17 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSP
	C.18 RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSP
	C.19 DATA FOR TSP1

