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AN EMPIRICAL STUDY OF PROCESS DISCIPLINE AND SOFTWARE QUALITY 
 

Mark Christopher Paulk, PhD 
 

University of Pittsburgh, 2005 
 
 

There is a widespread, but not universal, belief in the software community that software 

organizations and projects can systematically improve their ability to meet commitments and 

build high-quality products using principles of software quality management.   Quality affects 

cost and schedule, therefore the engineering practices that affect quality are also a management 

concern.  Understanding the factors that influence software quality is crucial to the continuing 

maturation of the software industry; an improved understanding of software quality drivers will 

help software engineers and managers make more informed decisions in controlling and 

improving the software process. 

My research is motivated by a desire to understand the effect of disciplined processes and 

effective teams on improving performance and lessening variability with respect to software 

quality.  Classroom data provides insight into interpersonal differences between competent 

professionals as increasingly disciplined processes are adopted.  Project data using similar 

processes enables an exploration of the impact of effective teams on software quality. 

My results show that: 

• Program size, programmer ability, and disciplined processes significantly affect software 

quality. 

• Factors frequently used as surrogates for programmer ability, e.g., years of experience, 

and technology, e.g., programming language, do not significantly impact software 

quality. 



 v

• Recommended practices are not necessarily followed even when processes are 

consistently performed, e.g., peer reviews may be consistently performed, but the review 

rates may exceed recommended practice for effective reviews. 

• When moving from ad hoc processes to disciplined processes, top-quartile performers 

improve more than 2X; bottom-quartile performers improve more than 4X.   

• Rigorous statistical techniques that allow for individual differences confirm the 

importance of process discipline and following recommended practice for improving 

software quality.  
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1.0 INTRODUCTION 

 

1.1 MOTIVATION FOR THIS RESEARCH 

During the last four decades, there have been recurring complaints by customers and 

executives about software projects that are chronically late and over-budget and about software 

products that are of unsatisfactory quality – to the extent that customers speak of the “software 

crisis” [Gibbs 1994].  A recent study by the National Institute of Standards and Technology 

suggests that costs associated with software quality problems annually range between $22.2 and 

$59.5 billion [National Institute of Standards and Technology 2002].  During the last two 

decades, there have been systematic attempts to address the software crisis by applying the 

concepts of Total Quality Management (TQM) and industrial engineering to software projects. 

Quality affects cost and schedule; the engineering practices that affect quality are 

therefore a management concern.  The number of defects in a software product is a quantitative 

measure for software quality.  Although “quality” includes other attributes, such as availability, 

features, and cost, the number of defects in the software provides insight into potential customer 

satisfaction, when the software will be ready to release, how effective and efficient the quality 

control processes are, how much rework needs to be done, and what processes need to be 

improved. 

The broad-scale use of the concepts of TQM, including rigorous statistics and statistical 

process control (SPC), in design-intensive, human-centric processes such as those for building 

software is a relatively recent phenomenon.  There is now a widespread, but not universal, belief 
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in the software community that software organizations and projects can systematically improve 

their ability to meet commitments and build high-quality products by following fundamental 

principles of software quality: 

• Competent Professionals.  Competent professionals, who are trained and experienced in 

software engineering methodologies and relevant application domains, are essential for 

high-quality work [DeMarco and Lister 2003]. 

• Project Management.  Effective project management enables the consistent performance 

of effective engineering practices [Humphrey 1989]. 

• Techniques and Tools.  Software professionals need effective and appropriate techniques 

and tools to do high-quality work [Humphrey 1989]. 

• Disciplined Processes.  Disciplined processes, which are consistently performed by 

competent professionals, lead to high-quality work [Paulk et al. 1995; Sawyer and 

Guinan 1998]. 

• Quantitative Management.  Quantitative management of disciplined processes, which 

includes the use of rigorous statistical techniques, enables informed decision making by 

both managers and engineers, i.e., management by fact [Florac and Carleton 1999]. 

• Effective Teams.  Effective teams, which are so strongly knit together that the whole is 

greater than the sum of the parts, do superior work with less variation than individuals or 

“ad hoc” teams [DeMarco and Lister 1999, 123]. 

Most software professionals would agree with the tenor of these principles, although 

there are many barriers to effectively implementing them.  Organizational politics, cynicism by 

the staff, resistance to change, and dysfunctional customer-supplier relationships are among the 

challenges software organizations must deal with in building high-quality products [Goldenson 
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and Herbsleb 1995; Beer, Eisenstat, and Spector 1990; Besselman, Arora, and Larkey 1995].  

Software organizations are only beginning to apply quality management concepts that have been 

well-known in manufacturing for decades, and the preferred quantitative techniques remain 

sharply debated.   

Three schools of thought can be observed in the software community with respect to 

statistics and quantitative management.  Adherents of the first school consider rigorous statistical 

analysis inappropriate for software processes and products.  They consider the software process 

to be a design activity, an intellectual and social activity subject to many influences, that 

manufacturing-style statistical process control (SPC) cannot be applied to [Ould 1996].  They 

recommend simple graphical tools and engineering judgment. 

The second school includes some of the most respected names in software engineering.  

After years of attempting to characterize software projects using classical statistical techniques, 

such as regression analysis, they have concluded the classical techniques are inappropriate 

because of the scarcity of data, the large variation in individual performance, and a lack of 

consistently applied operational definitions.  They recommend alternative statistical techniques 

such as non-parametric analyses [Curtis 1981], Bayesian Belief Networks that incorporate expert 

judgment [Fenton and Neil 1999], and a “relaxed” use of statistics, e.g., pseudo-control charts 

[Kan 2003, 145]. 

The third school, which I belong to, acknowledges the challenges identified by the 

members of the second school but argues that classical statistical techniques can be useful if 

certain prerequisites are satisfied:  software process data for statistical analysis must come from 

competent professionals using disciplined and conformant processes in effective teams.  A 

disciplined process can be defined as a set of activities that is consistently performed to achieve 
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some given purpose.  If the disciplined process is consistently performed in accordance with a set 

of identified requirements, it can also be characterized as a conformant process.  (A mature 

process is both measured and measurably improving; the term is typically used for organizational 

standard processes since the baseline against which improvement is measured is typically 

established by organizations engaged in process improvement.)  Rigorous studies of the effective 

use of statistical techniques for controlling the software process are needed to help overcome the 

resistance to applying sophisticated quality management principles to the software process. 

 

1.2 STATEMENT OF THE SOFTWARE QUALITY PROBLEM 

In the last two decades, the focus of software process improvement has been on 

addressing the principle of disciplined processes by implementing fundamental project 

management and organizational learning practices.  Unrealistic plans and over-commitments 

lead to abandoning good engineering practice in the resultant schedule crunch, which in turn 

leads to inconsistent execution and poor software quality.  A number of “best practices” are 

known in software engineering, but self-discipline is difficult, and imposing discipline on 

software professionals externally without their buy-in and commitment is impractical.   

For example, the most powerful defect identification technique known for software 

engineering is a review of a work product by the peers of its producer called an inspection 

[Fagan 1976; Fagan 1986].  Recommended preparation rates, inspection rates, team size, etc., 

specify the preferred inspection process, although there are variants [Glass 1999].  Undisciplined 

processes are intrinsically unstable; for example, inspections that do not follow the pertinent 

rules are inconsistent and ineffective.  Peer reviews that are consistently performed can be 

considered disciplined, but they must satisfy the specified inspection rules to be conformant to 
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the inspection process.  The defect removal effectiveness (the percentage of defects ultimately 

found) of testing and walkthroughs is on the order of 30% [Jones 1996]; the defect removal 

effectiveness of inspections typically ranges from 60-90% [Fagan 1986, 750].  If the defect 

removal effectiveness of an inspection process improves over time for an organization, the 

measurable improvement is an objective indicator that the inspection process is mature. 

In recent years, a growing number of software organizations has begun to focus on 

quantitative management, which implies an understanding of variation.  The state-of-the-practice 

in software engineering is not yet sufficiently advanced to assume that rigorous statistical 

techniques are being consistently and correctly applied, even when a process is reputed to be 

“quantitatively managed” [Paulk and Chrissis 2000].  Disciplined and conformant processes are 

generally considered a prerequisite for quantitative management, along with competent 

professionals performing the work and effective teamwork. 

Competent professionals are necessary for high-quality work, but the range of 

performance between individuals can span an order of magnitude [DeMarco and Lister 1999, 

45].  Frequently a manager or supervisor has little control over who is assigned to his or her 

team.  Effective teams perform better and with less variation than individuals [Hare et al. 1995], 

therefore appropriately-formed teams and disciplined processes are considered prerequisites for 

quantitative management.  Effective teams are considered a prerequisite for quantitative 

management to occur in any rigorous statistical sense, yet the optimum size of an inspection 

team, for example, remains a controversial topic in spite of over 25 years of research [Radice 

2002, 314]. 
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Without competent professionals and disciplined processes, variability is so great that 

quantitative management provides little useful insight.  Without appropriate techniques and tools 

or in the absence of effective teams, data simply highlights the ineffectiveness of the process.   

It is specifically the use of “rigorous statistics” that arouses controversy, however.  

Rigorous is difficult to define precisely, but in the context of my research it implies an explicit 

understanding of variation.  Averages and trend lines are quantitative; averages with confidence 

intervals and trend lines with prediction intervals are rigorous.  Intervals, control limits, and 

other techniques for bounding variability sharpen the decision making process by setting 

expectations for what is usual and what is atypical.   

Design-intensive work inherently has high variability; processes are potentially 

repeatable, even if they are not repetitive in the assembly line sense.  Although the application of 

rigorous statistical techniques to software development is skeptically viewed by some, a number 

of organizations has demonstrated that statistical process control (SPC) can be applied to 

software processes [Florac and Carleton 1999; Paulk, Goldenson, and White 2000; Paulk and 

Chrissis 2000; Florac, Carleton, and Barnard 2000; Weller 2000].  The software profession 

cannot be considered an engineering discipline without a firm foundation in the use of 

quantitative data [Shaw 1990, 15]. 

In addition to the high variability intrinsic to software processes, many of the statistical 

tools that support decision-making incorporate assumptions about the statistical distributions 

followed by the data.  For example, u-charts assume that (software) defect data follow a Poisson 

distribution.  Relatively few papers have been published in the software field with 

experimentally validated results [Tichy et al. 1995], and assumptions have been used that are 

plausible but not empirically validated.  Inconsistent, contradictory, and counter-intuitive 
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research results compounded by poor theory and methodology are widespread problems in 

software experimentation [Fenton, Pfleeger, and Glass 1994].  Published results are inadequate 

for supporting or denying the various statistical assumptions that have been made, especially 

when exacerbated by high variability.  As a result, software organizations striving to apply 

rigorous statistical techniques have inconsistent and contradictory advice on which statistical 

assumptions it is reasonably safe to make. 

Statistical control surfaces a number of issues that impact the quality of the product, such 

as complexity of the application domain, competence and experience of the people doing the 

work, power of the tools and support environment, etc.  Covariates that affect product quality 

may confound a statistical analysis unless those variables are appropriately factored in. 

My research is therefore motivated by a desire to understand the effect of using 

disciplined processes and effective teams on lessening the intrinsic variability of individual 

performance in the software process, specifically with respect to the statistical characteristics of 

software defects.  While I agree on the importance of competent professionals for software 

quality, separating the effect of individual differences from that of disciplined processes should 

refute those who argue against a process focus [Bach 1994] and demonstrate the feasibility of 

using rigorous and sophisticated statistical techniques on software process data. 

The use of classroom data, obtained when teaching about disciplined personal processes, 

provides insight into interpersonal differences between competent professionals when using 

appropriate techniques and tools and disciplined processes.  Demographic data for the students 

permits an exploration of the factors affecting individual performance, and increasingly 

sophisticated processes permit an exploration of the effect of disciplined processes.  Data from 
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industry projects allows analysis of mature software processes, thereby exploring the impact of 

inspection teams. 

 

1.3 PURPOSE AND SIGNIFICANCE OF THIS STUDY 

The purpose of this study is to verify and quantify the common wisdom that process 

discipline and effective teams improve performance and decrease variability for software quality.  

The definition of quality is limited to “conformance to requirements,” thereby excluding issues 

associated with requirements elicitation and volatility.   

Although the specific parameters that characterize organizational environments or 

application domains may differ, when reasonable statistical characterizations of software 

processes are determined for disciplined processes, engineers will be better able to identify 

appropriate statistical control and process modeling techniques to support making day-to-day 

decisions.  In the presence of skewed distributions, the preferred statistical technique is likely to 

be one that takes appropriate advantage of the underlying distribution of the data [Porter 2001; 

Das 2003; Mullen 1998]. 

My research uses relatively large process data sets from disciplined software processes to 

empirically characterize software defects in rigorous statistical terms that incorporate measures 

of dispersion as well as central tendency.  The use of large data sets is unusual for the software 

industry; many published studies rely on fewer than 30 data points.  The classroom data that I 

use for the majority of my analyses has about 10,000 observations, which allows me to use 

multiple data sets split by factors such as programming language.  The richness of the data 

allows the use of statistical techniques that are not feasible with small data sets, such as 

sophisticated regression models and mixed models.  Each observation has over 30 different 
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attributes, which are described in Appendix A along with the derived measures used in my 

analyses.   

Real-time control of the software process, in the sense of making efficient day-to-day 

engineering and management decisions, depends on a realistic understanding of the defects 

injected and removed from the work product.  Understanding the statistical nature of software 

defects is therefore crucial to the continuing maturation of the software industry because of the 

insight it provides into rework issues, which take as much as 50% of the effort in many projects 

[Krasner 1997].  An improved understanding of software defect patterns will help software 

engineers and managers make more informed and efficient decisions in controlling and 

improving the software process. 

The number of defects injected into work products should intuitively be a function of the 

competence of the workers, the process used, the size and complexity of the work product, and 

previously injected defects in antecedent work products.  Data from disciplined processes are 

analyzed to identify explanatory variables, as suggested by previous empirical research and by 

the drivers in widely used models for software projects.   

Chapter 2 summarizes the published research relevant to analyzing the impact of process 

variables, programmer ability, and teamwork on software quality. 

Chapter 3 describes the research methodology used to explore the software quality factors 

in a broad sense.  It also discusses issues affecting the generalizability of my results and how the 

classroom data was cleaned up for these analyses. 

Chapter 4 explores the factors that significantly affect software quality in the classroom.  

These factors can be broadly characterized as programmer ability, problem/solution complexity, 

technology issues, and process variables.  Although some of these factors may be beyond the 
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control of a software manager, many – especially those related to process – can be influenced by 

engineering and managerial decisions.  Potential confounding factors are investigated to 

determine which ones should be actively considered when analyzing the programmer and 

process variables that are of primary interest.   

Chapter 5 considers how atypical data, which is not part of the common cause system for 

software development, can be effectively identified and excluded from analyses.  Atypical data is 

frequently excluded from software research in an ad hoc manner.  Systematically identifying 

data that may unduly influence results is preferred.  It also enables a distinction between 

consistently performed processes (stable processes) and processes that conform to recommended 

best practices (capable processes).  Additional techniques for identifying outliers based on 

regression models are considered in Chapter 7.   

Chapter 6 investigates the statistical distributions that best describe software defects.  

Many of the statistical tools used in the software industry make distributional assumptions that 

are rarely verified.  For example, u-charts are frequently used by organizations beginning to 

apply statistical process control to their software processes.  The u-chart assumes a Poisson 

distribution that may not be empirically supported, suggesting that other techniques might be 

superior.   

Chapter 7 contains multiple regression models and mixed models that predict software 

quality based on the process, people, technology, and product factors investigated in Chapters 4 

to 6.  Sophisticated statistical models capture quality factors and their interactions and focus 

attention on critical leverage points for process and people.   

Chapter 8 expands the analysis of software quality factors beyond classroom data into 

project data from industry.  Two projects are analyzed; one using processes directly derived from 
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those used in the classroom and one using processes that have systematically matured over many 

years.  These two analyses provide an initial investigation into some of the team effects on 

software quality in the context of software inspections. 

Chapter 9 summarizes the contributions of my research and identifies opportunities for 

future research based on my results. 

The purpose of my research is not to build a defect prediction model.  It is to characterize 

the contributions of process discipline to software quality for individuals and for team-based 

inspections.  Defect prediction models need to be designed for, and calibrated to, the application 

domain, development environment, processes, and organizational culture of a software project.   

The importance of my research lies in two conclusions.  First, sophisticated statistical 

models using detailed process data are feasible and potentially useful, if appropriate techniques 

are used.  This conclusion refutes those who argue that software processes are intrinsically too 

chaotic to benefit from statistical analysis and control.  Second, even though performance 

depends on the capability of the people building the software, disciplined processes can 

significantly improve the performance of even the best workers.  This conclusion refutes those 

who resist disciplined processes and prefer the “flexibility” of an ad hoc environment.  A third 

conclusion is implied by my research and partially explored in Chapter 8:  effective teams also 

significantly improve performance, specifically in the context of software inspections. 
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2.0 LITERATURE REVIEW 

 

2.1 THE SOFTWARE PROCESS 

A process is a sequence of steps performed for a given purpose [IEEE-610 1991].  The 

software process can be defined as a set of activities, methods, practices, and transformations 

that people use to develop and maintain software and the associated products (e.g., project plans, 

design documents, code, test cases, and user manuals) [Paulk et al. 1995, 8].  Any use of 

“software process” should emphasize the actions performed to achieve a given purpose rather 

than the description of the process, which may or may not be realized in practice. 

The basic software life cycle can be described in terms of requirements analysis, design, 

coding, testing, operations, maintenance, and retirement of the software product.  These 

processes may be part of a larger systems life cycle, subdivided, or composed into multiple 

iterations.  For example, requirements analysis may be divided into requirements elicitation, 

feasibility studies, operational concept studies, and software requirements analysis; design may 

be divided into top-level design (architecture) and detailed design; and testing may be divided 

into unit, integration, system, and acceptance testing.  Processes may be composed according to a 

variety of life cycle models, from the classic waterfall life cycle to an incremental or 

evolutionary life cycle [Davis 1997].   

There are a number of models and standards for software process definition and 

improvement [Paulk 2001].  Among the best known and most widely used are the Capability 
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Maturity Model® for Software (Software CMM®), for improving organizational capability [Paulk 

et al. 1995]; the Personal Software ProcessSM (PSPSM), for improving the capability of 

individuals [Humphrey 1995]; and the Team Software ProcessSM (TSPSM), for improving the 

capability of teams [Humphrey 1999]. 

2.1.1 The Capability Maturity Model for Software  

The Capability Maturity Model for Software is a five-level staged model for building 

organizational capability, which emphasizes quantitative management for controlling and 

improving the software process at Levels 4 and 5.  A mature organization consistently 

implements mature processes in its software projects to achieve repeatable performance. 

On the five-level CMM scale, Level 1 organizations follow an ad hoc process.  They do 

whatever it takes to get the job done, relying on the competence and heroics of their staff for 

success.  Their primary problems stem from poor management practices.  Level 2 organizations 

have an effective project management system in place.  They may not always make the right 

decision, but they have a framework for process consistency.  Level 3 organizations have 

installed the infrastructure needed to support organizational learning across projects.  They have 

common processes, training, and measures that support systematic process improvement. 

Levels 4 and 5 in the CMM are based on applying quantitative techniques, particularly 

statistical techniques, to controlling and improving the software process.  In SPC terms, Level 4 

focuses on eliminating assignable causes of variation, and Level 5 addresses common causes of 

                                                 
® Capability Maturity Model and CMM are registered with the U.S. Patent and Trademark Office 
by Carnegie Mellon University. 

SM Personal Software Process, PSP, Team Software Process, and TSP are service marks of 
Carnegie Mellon University. 
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variation, although the Software CMM does not explicitly require the use of SPC or control 

charts.  Levels 4 and 5 were originally described in terms of operational definitions and 

comparability in the presence of variation [Humphrey 1988].  Most high maturity organizations 

as assessed against the Software CMM use control charts and other rigorous statistical 

techniques [Paulk, Goldenson, and White 2000; Paulk and Chrissis 2000].  The effect of CMM-

based process improvement on software quality as reported in several studies is summarized in 

Table 1. 

Table 1  Software Quality at Different Software CMM Maturity Levels 

Maturity 
Level 

Delivered Defects / 
FP [Jones 1995] 

Shipped Defects 
/ KSLOC 
[Krasner 1990] 

Relative Defect 
Density 
[Williams 1997] 

Shipped Defects 
[Rifkin 1993] 

5 0.05 0.5 0.05 1 

4 0.14 2.5 0.1 5 

3 0.27 3.5 0.2 7 

2 0.44 6 0.4 12 

1 0.75 30 1.0 61 
 

2.1.2 The Personal Software Process  

The Personal Software Process (PSP) applies the Software CMM concepts of process 

discipline and quantitative management to the work of the individual software professional in a 

classroom setting.  PSP is taught as a one-semester university course at several universities or as 

a multi-week industry training course.  It typically involves the development of ten programs, 

using increasingly sophisticated processes [Humphrey 1995].  The life cycle processes for PSP 

are planning, design, coding, compiling, testing, and a post-mortem activity for learning.  The 
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primary development processes are design and coding, since there is no requirements analysis 

step. 

There are four PSP major processes (PSP0, PSP1, PSP2, and PSP3), with minor variants 

for the first three (PSP0.1, PSP1.1, and PSP2.1; PSP3 can also be considered a minor variant of 

PSP2). 

• PSP0.  The “current” process of the student at the beginning of the course is PSP0.  

Basic measures of historical size, time, and defect data are collected to establish an 

initial baseline for assignment 1A (using a linked list, write a program to calculate the 

mean and standard deviation of a set of data).  PSP0.1 adds a coding standard, process 

improvement proposals, and size measurement.  It is used for assignments 2A (write a 

program to count program lines of code) and 3A (enhance 2A to count total program 

and object LOC.). 

• PSP1.  PSP1 adds size estimating and test reports.  It is used for assignment 4A 

(using a linked list, write a program to calculate linear regression parameters).  

PSP1.1 adds task planning and schedule planning.  It is used for assignments 5A 

(write a program to perform a numerical integration) and 6A (enhance 4A to calculate 

linear regression parameters and the prediction interval). 

• PSP2.  PSP2 introduces design reviews and code reviews.  It is used for assignments 

7A (using a linked list, write a program to calculate the correlation of two sets of 

data) and 8A (write a program to sort a linked list).  PSP2.1 adds design templates.  It 

is used for assignment 9A (using a linked list, write a program to do a χ2 test for a 

normal distribution). 
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• PSP3.  PSP3 introduces the concept of cyclic development – incrementally building a 

program in multiple cycles.  It is used for assignment 10A (using a linked list, write a 

program to calculate the 3-parameter multiple regression parameters and the 

prediction interval). 

Each level builds on the prior level by adding a few engineering or management 

activities. This minimizes the impact of process change on the engineer, who needs only to adapt 

the new techniques into an existing baseline of practices.   

PSP students are asked to measure and record three basic types of data:  time (effort), 

defects, and size.  All other PSP measures are derived from these three basic measures.  The 

information recorded for each defect includes the defect type, phase in which the defect was 

injected, phase in which it was removed, fix time, and a description of the problem and fix.   

Lines of code (LOC) were chosen as the size measure for PSP because they can be 

automatically counted, precisely defined, and are well correlated with development effort.  Size 

is also used to normalize other data, such as productivity (LOC per hour) and defect density 

(defects per KLOC, where K stands for “thousand”) [Gill and Kemerer 1991; Withrow 1990].  

Each PSP program involves some amount of new development, enhancement, and/or reuse.  

Developing new or modified code represents most of the programming effort in the PSP course; 

consequently, new and changed LOC is the basis for most size measurement in PSP.  

Design and code reviews are introduced in assignment 7.  Design and code reviews are 

personal reviews conducted by an engineer on his or her own design or code.  They are designed 

to help engineers achieve 100% yield:  all defects removed before compiling the program.  

Design templates are introduced in assignment 9.  The design templates are for functional 

specifications, state specifications, logic specifications, and operational scenarios.   
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Over the course of the PSP assignments, studies have shown a decrease in defect density 

(and in its dispersion), which is replicated in PSP data collected for my research as is shown in 

Figure 1 [Hayes and Over 1997; Wesslen 2000].  Some outliers are trimmed in the box-and-

whisker charts in the figures in this dissertation.  Outliers can skew a statistical analysis, but they 

can also provide insight when appropriately investigated.  In a retrospective study such as this, 

causal analysis of why outliers are atypical is not feasible.  Discarding outliers without root cause 

analysis, however, can adversely affect the validity of conclusions.  Interquartile limits, as 

illustrated by the “whiskers” in Figure 1, can be used to identify outliers (the limits are set at 1.5 

times the interquartile range beyond the 25% and 75% quantiles [SAS Institute 2000, 36]).  

Consistent results of statistical analyses of the data both with and without the outliers suggest 

that the conclusions are robust. 

D
D

 in
 T

es
tin

g 
(d

ef
ec

ts
/K

LO
C

)

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

Assignment
 

Figure 1  Trends in Defect Density in Testing Across PSP Assignments 
 

Most PSP studies deal with improvement during the PSP course, showing percent 

decreases in defect density in testing between 63% and 82% [Humphrey 1996; Hayes and Over 
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1997; Wohlin and Wesslen 1998; Wesslen 2000], although one study addresses the impact across 

several companies before and after adopting PSP [Ferguson et al. 1997].  Some studies have 

observed that talented students do well regardless of how they structure their work time, but less-

talented students benefit from a more disciplined approach [Hou and Tomayko 1998; Prechelt 

and Unger 2000].   

It should be noted that quality improvement continues after the PSP class, as the PSP 

ideas are further internalized in an industry setting, and that software products developed by 

PSP-trained teams reportedly have very few to zero defects found in the field [Hayes 1998; 

Ferguson et al. 1997; Holmes 2003; Hirmanpour and Schofield 2003].  In spite of the positive 

impact of PSP, its continued use after the class depends on a working environment that actively 

supports its discipline [Prechelt and Unger 2000, 471]. 

2.1.3 The Team Software Process  

The Team Software Process (TSP) brings PSP-trained students together as a team in an 

industry project setting.  TSP is designed for use with teams of two to 20 members; a multi-team 

variant can be used for projects with up to 150 members.  Companies that have adopted TSP 

have reported significant improvements in quality.  

• Teradyne reported a 100X improvement over the company’s typical projects 

[McAndrews 2000].   

• The Taskview project at Hill Air Force Base reported an unprecedented performance, 

with only one high-priority defect found in candidate evaluation and system test, and 

reduction in test time from 22% of the project duration to 2.7% [Webb and Humphrey 

1999; Webb 2000; McAndrews 2000]. 
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• Boeing reported a 90% decrease in post-release defects and a decrease in test time of 

94% [McAndrews 2000, 17]. 

2.1.4 Relevance of PSP, TSP, and CMM to My Research 

These process improvement frameworks are relevant to my research because individuals 

and projects using these frameworks are performing disciplined, mature processes and are the 

sources of my data.  They provide the context for exploring the impact of disciplined processes 

on software quality. 

The bulk of my analyses use PSP data, although data from TSP and CMM high maturity 

projects are used in Chapter 8.  Data from PSP, TSP, and high maturity CMM processes can be 

characterized as coming from consistently performed, disciplined processes that use appropriate 

techniques and tools.  PSP and TSP are measurement-driven approaches, where the 

programmer’s own data drives the learning process as incrementally more powerful processes 

are adopted.  PSP in particular allows exploration of the impact of increasingly disciplined 

processes on quality, and the improvement in quality as the process matures can be empirically 

observed in PSP.  Data from the three categories of disciplined processes give multiple 

perspectives on the effect of programmer ability and disciplined processes on software quality. 

 

2.2 PEER REVIEWS  

The most powerful defect detection technique for the work products of a software process 

is the peer review – reviews of work products by the peers of the producer to evaluate whether 

the conditions imposed on the work product at the start of the phase have been satisfied.  

Identification of defects in peer reviews is the primary mechanism for in-process control using 
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defect data.  Reliance on identifying and repairing defects in testing is analogous to mass 

inspection in the manufacturing environment; “testing in quality” is notoriously ineffective and 

inefficient. 

2.2.1 Inspections 

A number of peer review methods have been defined, from informal walkthroughs to 

formal inspections [IEEE-1028 1988; Freedman and Weinberg 1990; Fagan 1976; Fagan 1986].  

Peer reviews are reviews of a work product by the peers of its producer, which may be 

performed at any point during development, while testing occurs when an executable software 

module can be created, which is usually near the end of a development effort.  It is generally 

accepted that inspections are the most effective peer review technique, with about five hours 

saved in testing for every hour spent in inspections [Ackerman, Buchwald, and Lewski 1989].   

A typical set of rules for effective inspections includes the following: 

• The optimum number of inspectors is four. 

• The preparation rate for inspecting design documents should be about 100 lines of 

text/hour (no more than 200 lines of text/hour). 

• The meeting review rate for design inspections should be about 140 lines of text/hour 

(no more than 280 lines of text/hour). 

• The preparation rate for inspecting code should be about 100 LOC/hour (no more 

than 200 LOC/hour). 

• The meeting review rate for code inspections should be about 125 LOC/hour (no 

more than 250 LOC/hour) for code. 

• Inspection meetings should not last more than two hours. 
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The crucial point in understanding the power of peer reviews is that defects escaping 

from one phase of the life cycle to another can cost an order of magnitude more to repair in the 

next phase.  A requirements defect that escapes to the customer can cost 100-200 times as much 

to repair as it would have cost if it had been detected during the requirements analysis phase 

[Boehm 1981].  Thus, in-process verification techniques such as inspections can have a 

significant impact on the cost, quality, and development time of the software since they can be 

applied early in the development cycle.  It has also been observed, however, that no matter how 

well inspections are executed, they cannot overcome a seriously flawed development process 

[Weller 1993, 45].   

Empirical research on the factors that lead to effective inspections has been contradictory, 

however, and it is unclear which factors are significant.  Weller found that familiarity with the 

software product and preparation rate were the most important factors affecting inspection 

effectiveness, although for design inspections, controlling the amount of material inspected in a 

single meeting was also significant [Weller 1993].  Parnas and Weiss argue that a face-to-face 

meeting is ineffective and unnecessary [Parnas and Weiss 1987], even though in Fagan’s 

inspection process, the meeting is where defect detection occurs (preparation time is for 

understanding the software product, not identifying defects).  Supporting the argument against 

meetings, Eick and colleagues found that 90% of the defects could be found in preparation [Eick 

et al. 1998, 64].  The findings of other researchers also indicate that face-to-face meetings are of 

negligible value in finding defects [Porter and Johnson 1997; Perry et al. 2002; Land 2002].  

Porter, Votta, and their colleagues conclude that, based on the competing views and conflicting 

arguments, we have yet to identify the fundamental drivers of inspection costs and benefits 

[Porter and Votta 1997; Perry et al. 2002].   



 

22 

Some software professionals disagree with this conclusion [Michael Fagan, personal 

communication, 13 April 2001], arguing that in many cases the studies were based on 

inspections that did not follow rules such as those listed earlier in this section.  Fagan stated that 

two of the three essential requirements for implementing inspections were a proper description of 

the inspection process and its correct execution [Fagan 1986].  Identifying the drivers for 

effective inspections remains an active area of research, since the benefits of inspections are 

indisputable, even if alternative methods that might improve the inspection process remain 

shrouded in controversy.   

2.2.2 Relevance of Peer Reviews to My Research 

Peer reviews are relevant to my research because they are the source of the process data 

used to investigate the impact of disciplined processes on software quality.  They instrument the 

software process; the data for meaningful analyses of quality would simply not be available 

without some form of peer review. 

PSP reviews are a variant of peer review that invoke the formality of software inspections 

without actually involving peers in the review.  This allows an investigation into the impact on 

software quality of a disciplined process on individual performance.  These results can be 

contrasted to team effects in comparison to the TSP and high maturity peer reviews within the 

scope of what can be investigated in a retrospective analysis. 

 

2.3 SOFTWARE QUALITY AND MEASUREMENT 

The four general classes of measurement commonly used in the software industry are 

cost, schedule, functionality, and quality.  Although cost is easily measured directly, effort in 
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terms of person-hours is a common surrogate for cost since it dominates the cost equation for 

software projects [Goethert, Bailey, and Busby 1992].  Schedules are usually measured in terms 

of calendar time and are predominantly determined by the effort needed to implement a given 

functionality and by resource allocation and conflict. 

Size measures are typically used as surrogates for measuring functionality, e.g., the 

number of requirements [Abbot 1999], module count [Lehman et al. 1999], function points 

[Albrecht and Gaffney 1983; Kemerer 1993; Jones 1997], or lines of code (LOC) [Park 1992].  

Size is also a useful leading indicator in management control, since mistakes in the size estimate 

can have dramatic ripple effects on planning parameters such as effort and schedule.  Complexity 

metrics are closely correlated to size metrics like LOC [Fenton and Neil 1999; Graves et al. 

2000]. 

When discussing “quality” in the software industry, “defects” is the common indicator 

[Florac 1992], although software quality characteristics include functionality, reliability, 

usability, efficiency, maintainability, and portability [ISO 9126].  When considering multiple 

dimensions of performance, whether explicitly labeled as “quality” or not, different practices are 

likely to affect different dimensions of performance [MacCormack et al. 2003].  Defect density is 

a common quality surrogate in the software industry [Gill and Kemerer 1991; Withrow 1990].   

The total number of defects injected in a software product can never be identified with 

certainty.  Even in high-reliability software, the possibility always exists that another defect lurks 

undiscovered.  In operational terms, a cut-off point is identified for counting and comparing the 

total number of defects in a product.  Common cut-off points for counting defects include at the 

end of acceptance testing, after six months of operational use in the field, and after one year of 

operational use.  The choice of when to cut off data collection is constrained by the ability of the 
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organization to gather valid feedback from users and guided by the operational profiles of the 

users as the product is deployed.  Defects are still identified and addressed as appropriate after 

the cut-off point, but the cut-off determines the data profile for purposes of comparison.   

2.3.1 Characterizing Software Quality 

The focus of my research is on software quality.  A defect is a flaw in a system or system 

component that causes the system or component to fail to perform its required function.  A 

defect, if encountered during execution, may cause a failure of the system.  Defects may be 

categorized according to their expected severity, e.g., major/minor, or type, e.g., function, 

interface, or data [Chillarege and Bhandari 1992].  For in-process control during development, 

the defect data from peer reviews is a practical reliability surrogate.   

The software process is a design-intensive, human-centric process.  People naturally 

make mistakes as they design and build software.  Reported defect injection rates range from 30 

per KLOC [Boehm 1981] to 110 per KLOC [Hayes and Over 1997], depending on when defects 

are recorded and the operational definitions of “defect” and “line of code.”  Defect removal 

effectiveness for peer reviews ranges from 30% [Jones 1996] to over 90% [Fagan 1986; McCann 

2001].    

Defects have a significant impact on cost, effort, and schedule because of rework.  It is 

not uncommon for software projects to run at 40-50% rework, although some high maturity 

organizations report rework under 5%, which implies shorter cycle times and higher customer 

satisfaction [Krasner 1997].  Research consistently finds that the Pareto principle (or 80-20 rule) 

applies to software:  a small number of modules contain most of the defects discovered during 

pre-release testing, and a small number of modules contain most of the operational defects, e.g., 
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87% of the defects found to lie in 26% of the modules [Cook and Roesch 1994; Schaefer 1985; 

Fenton and Ohlsson 2000; Khoshgoftaar et al. 1998].   

In a survey of project managers, Schneberger identifies eight factors affecting software 

failures:  1) requirements change, addition, and definition; 2) programmer / team member 

experience and turnover; 3) design changes, scope, and complexity; 4) coding and testing phase 

problems; 5) new technology, languages, and tools; 6) ongoing experience; 7) upper 

management influence, bidding and time constraints; and 8) lack of data available to use in 

metrics and models [Schneberger 1997].  Evanco and Lacovava identified three factors affecting 

software failures:  development complexity, percent of reusable code, and the experience and 

educational levels of the software development staff [Evanco and Lacovava 1994].  From a 

survey of 32 environmental factors affecting software reliability, Zhang found the top four 

factors to be program complexity, programmer skills, testing coverage, and testing effort [Zhang 

1999].  MacCormack, Kemerer, Cusumano, and Crandall identified four factors affecting 

customer-reported defects:  systems software projects, early prototypes, design reviews, and 

regression testing [MacCormack et al. 2003].  Neufelder identified ten process parameters whose 

presence affected fielded defect density; the most significant was “consistent and documented 

formal and informal reviews of the software and system requirements prior to design and code.” 

[Neufelder 2000] 

In these studies, programmer experience and skills are frequently identified as important 

factors affecting software quality.  Wohlin and Wesslen, however, found that previous 

experience and background have no statistically significant impact on defect density for PSP 

assignments [Wohlin and Wesslen 1998].   
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Many researchers have found a positive relationship between size and defects [Putnam 

and Myers 1997, 32; Criscione, Ferree, and Porter 2001].  Fenton and Neil found that LOC and 

complexity metrics are reasonable predictors of the absolute number of defects but very poor 

predictors of defect density; they concluded that complexity and/or size measures alone cannot 

provide accurate predictions of software defects [Fenton and Neil 1999].  Fenton and Ohlsson 

found that size metrics (such as LOC) are not good predictors of post-release defects in a 

module, a module’s pre-release defect density, or a module’s post-release defect density [Fenton 

and Ohlsson 2000].   

Putnam and Myers found a log-log relationship between program size and the number of 

defects in testing.  It is apparent from their results that programs must span more than four orders 

of magnitude in size before the relationship between size and quality becomes easily visible 

[Putnam and Myers 1997, 32]. 

Some researchers have found that defect density decreases as size increases [Basili and 

Perricone 1984; Shen et al. 1985], perhaps because the number of interface defects for smaller 

modules grows as the system becomes larger and more complex.  Hatton approached this issue 

from a cognitive science perspective, arguing that those components that fit comfortably into 

short-term memory cache are the ones with the lowest defect densities and that components 

should be neither too small nor too large – the most reliable systems are those with component 

sizes grouped around 200-400 lines of code [Hatton 1997].  Gaffney also observed an optimum 

module size, although it was about 877 lines of code [Gaffney 1984].   

2.3.2 Statistical Distribution of Defects 

The distribution of defects may be viewed over the modules comprising a system or over 

time as they are discovered.  Across modules, software defects are sometimes assumed to follow 
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a normal distribution [Raffo 1996].  They are sometimes assumed to follow a lognormal 

distribution, based on the fact that the product of random variables approaches a lognormal 

distribution and the observation that software data tend to be skewed [Raffo 1996; Mullen 1998; 

Hayes and Over 1997; Devnani-Chulani 1999, 86-87].   

Over time, the discovery of software defects is frequently assumed to follow a (non-

homogenous) Poisson process [Musa, Iannino, and Okumoto 1987, 255-259; Keiller 1995].  

Non-homogenous implies that the parameters of the Poisson distribution change over time, i.e., 

defect injection and discovery are not uniform across life cycle phases.  The times between 

detecting software defects are sometimes assumed to follow an exponential distribution (based 

on their being discovered according to an assumed Poisson distribution [Porter 2001; Wohlin and 

Runeson 1998, 402; Biffl 2000, 38]), a Rayleigh distribution (based on the logic that errors are 

proportional to work done, work done is proportional to effort, and effort follows a Rayleigh 

curve according to the SLIM cost model [Putnam and Myers 1997, 168]), or a gamma 

distribution [Graves et al. 2000, 657].   

These statistical assumptions may be plausible in a particular context, but they are 

inconsistent and rarely verified empirically.  It is sometimes even unclear whether the assumed 

distribution is over modules or over time.  For my research, the distributions of interest are over 

modules. 

2.3.3 Defect Prediction and Estimation Models 

In reliability engineering, prediction models use parameters associated with the software 

product and its development environment, and estimation models apply statistical techniques to 

observed failures during testing and operation [AIAA R-013, 6].  Defect prediction models are 

useful earlier in the life cycle, which is beneficial from a management perspective.  It is 
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commonly assumed that the software failure rate is related to the number of defects remaining in 

the software product [AIAA R-013, 18].  A number of defect prediction models have been built 

based on lines of code, number of decisions, number of subroutine calls, Halstead volume, 

McCabe cyclomatic complexity, and other measures [Lyu 1996; Fenton and Neil 1999]. 

Akiyama’s model is based on program size [Akiyama 1972]: 

D = 4.086 + 0.018 L 

where D is the expected number of defects found and L is lines of code.  The data set consists of 

seven modules written in assembly language.  For this size model, the correlation coefficient 

ρ=0.83.  Akiyama also built a model based on the complexity of a program: 

D = -0.084 + 0.12 C 

where C is the sum of the number of decision symbols and subroutine call symbols in the 

program’s flow chart.  For this complexity model, ρ=0.92.   

Halstead’s model is based on another size measure [Halstead 1977, 87-91]: 

D = V / 3000 

where the volume V is a size measure, which is the product of the total number of operators and 

operands times the log2 of the unique number of operators and operands.  Using Akiyama’s data, 

Halstead characterized this model as representing the data with considerable fidelity but does not 

report a statistical measure of goodness. 

Compton and Withrow’s model uses another of Halstead’s size measures [Compton and 

Withrow 1990]: 

D = 0.069 + 0.00156 N̂  + 0.00000047 N̂ 2 
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where N̂  is Halstead’s estimated program length, the sum of the unique operators and operands 

times their respective logs.  When modeling all software packages, they found R2=0.0064; but 

when modeling only those packages where defects were found, R2=0.9801. 

Jones’ model uses a functionality-based size measure [Jones 1996]: 

D = F1.25 

where F is the number of function points (a size measure).  No measure of goodness was 

reported for this model, and Jones characterizes it as a useful rule of thumb rather than a rigorous 

model. 

Lipow’s model incorporates a technology factor for programming language along with 

program size [Lipow 1982]: 

D / L = A0 + A1 (ln L) + A2 (ln2 L) 

where the Ai coefficients are language-dependent factors.  No measure of goodness was reported 

for this model. 

Gaffney’s model removes the technology factor [Gaffney 1984]: 

D = 4.2 + 0.0015 L4/3  

It is a variant of Lipow’s that assumes programming language is not a significant factor.  The 

measure of goodness reported is relative error=8.4%. 

Criscione, Ferree, and Porter’s model is a process-based model that incorporates solution 

complexity and process effectiveness [Criscione, Ferree, and Porter 2001]: 

D = (0.1) (0.2) (0.3) [0.4 SR] + (0.1) (0.2) [0.3 SD] + (0.1) [0.015 SC] 

Data from previous phases in the product’s life cycle is used to estimate test defects: summing 

the results from multiplying sizes of various work product times, empirical defect density (SR, 

SD, and SC for requirements, design, and code), and the percentage of defects escaping a phase.  
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Their model depends on a stable development and testing environment [Fenton and Neil 1999, 

677].  For four releases, the reported number of defects was 0.46, 0.47, 0.99, and 2.30 standard 

deviations from the predicted number using their model. 

Takahashi and Kamayachi’s model is a process-based model that incorporates problem 

complexity, programmer ability, and solution complexity [Takahashi and Kamayachi 1985]: 

D = 67.98 + 0.4579 SCHG – 9.687 ISKL – 0.083 DOCC 

where SCHG is the frequency of program specification change, ISKL is the average number of 

years of programming experience for the team, and DOCC is the volume of program design 

documents.  For this model, R2=0.6012. 

Defect prediction models based on simple measures of size and complexity do not 

consider the difficulty of the problem, the complexity of the proposed solution, the skill of the 

programmer, or the software engineering techniques used [Fenton and Neil 1999, 683].  

Multivariate analyses, such as factor analysis, generate synthetic measures that combine a 

number of different measures, such as lines of code and complexity, to avoid multicollinearity, 

but the practical application of the synthetic metric may be obscure.   

One of the more detailed defect prediction models is the COnstructive QUALity MOdel 

(COQUALMO), which has defect injection and removal submodels that incorporate 21 of the 

COCOMO II cost drivers, with the exception of development flexibility [Boehm et al. 2000, 254-

268; Devnani-Chulani 1999].  COCOMO II has 17 multiplicative cost drivers (or effort 

multipliers), which are grouped into four categories, and five scaling cost drivers, as listed in 

Table 2.  Each cost driver can accept one of six possible qualitative ratings, ranging from very 

low to extra high. 
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Table 2  COCOMO II and COQUALMO Drivers 

COCOMO II Categories COCOMO II and COQUALMO Drivers 

Product factors Required software reliability 

Data base size 

Product complexity 

Required reusability 

Documentation match to life cycle needs 

Platform factors Execution time constraint 

Main storage constraint 

Platform volatility 

Personnel factors Analyst capability 

Programmer capability 

Applications experience 

Platform experience 

Language and tool experience 

Personnel continuity 

Project factors  Use of software tools 

Multi-site development 

Required development schedule 

Scaling cost drivers Precedentedness 

Development flexibility (not in COQUALMO) 

Architecture and risk resolution 

Team cohesion 

Process maturity 
 

The Software Error Estimation Reporter (STEER), which is based on SLIM, 

characterizes defect patterns over time by a Rayleigh curve [Kan 1995, 191-192].  Capture 

recapture models, originally developed for estimating wildlife populations, are based on 

extrapolating from defects found by multiple inspectors [Briand et al. 2000; El Emam and 
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Laitenberger 2001; Humphrey 1999, 245-250].  Comparisons of different defect prediction 

models suggest that different models are best for different environments; it is not possible to find 

a single superior model [Brocklehurst and Littlewood 1996, 126-127; Wohlin and Runeson 1998, 

407-408]. 

Inconsistent or undocumented decisions about when in a product’s life cycle to stop 

counting defects, e.g., at acceptance test, six months after delivery, one year after delivery, etc., 

make it difficult to determine whether a model is predicting discovered or residual defects.   

Fenton and Neil have observed that current approaches to defect prediction must deal 

with several as yet unresolved issues.  Some issues are based on poor operational definitions or 

problems in statistical methodology, some depend on the unknown relationship between defects 

and failures, and some are intrinsic problems with using size and complexity metrics as the (sole) 

predictors of defects.  They conclude that traditional statistical (regression-based) methods are 

inappropriate for defect prediction, preferring Bayesian techniques, and that more complete 

models should include other explanatory factors, such as testing effort and operational usage 

[Fenton and Neil 1999, 153]. 

2.3.4 Relevance of Defect Prediction Models to My Research 

Defect prediction models are relevant to my research because the simple regression 

models in Chapter 4 and the multiple regression models and mixed models in Chapter 7 are 

defect prediction models.  The PSP data provides an abundance of process and contextual 

information that can be investigated for their impact on software quality; this addresses the desire 

for “more complete models” expressed by Fenton and Neil [Fenton and Neil 1999, 153].  

Although the PSP environment is too limited for general use (other factors may also be important 

in a team context), the objective of building the PSP models is to identify the factors that are 
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important determinants of software quality and to quantify their relative contributions.  Managers 

and engineers can then make informed decisions about software processes with an understanding 

of the relative impact of those decisions on software quality. 

Some of the questions posed by researchers such as Fenton and Neil are addressed by my 

models, e.g., the feasibility of more comprehensive process-based models than have been built 

by previous researchers.  The previous models contributed to identifying factors that were 

considered, where feasible, in building my defect prediction models. 

 

2.4 DIFFERENCES IN INDIVIDUAL PERFORMANCE 

Differences in performance between individuals, which may span an order of magnitude, 

are generally acknowledged to be the greatest source of variability in software engineering 

research [Hayes and Over 1997, 22; Wohlin 2004, 212].  Weinberg observed, “Individual 

variation is… the bane of project predictability.  The social nature of team programming can be 

used to average out this variation – but such averaging prevents us from getting experimental 

information on individual programmers.  The devastating cost of individual variation on real 

projects has supported the validity of my prediction that the individual working alone is neither a 

fruitful unit of study, nor a productive component of programming project work” [Weinberg 

1998, 3.iii].   

2.4.1 Order of Magnitude Differences 

Curtis observes that many software technology advances will be masked by the impact of 

individual differences [Curtis 1988, 279].  The earliest known study of differences in 

performance between professional programmers by Sackman and colleagues found a 28:1 
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difference [Sackman, Erikson, and Grant 1968, 6].  McGarry found a performance difference of 

22:1 on small projects (less than 20 KSLOC) and of 8:1 on larger projects [McGarry 1982, 226].   

Perhaps the best known example of the variation in individual performance is a study by 

DeMarco and Lister of productivity in programming, which showed the best people 

outperforming the worst by about 10:1, the best outperforming the median performer by about 

2.5:1, and the half that were better than the median outperforming the half that were worse than 

the median by more than 2:1 [DeMarco and Lister 1999, 45].  Even in controlled experiments, 

the variation related to individual differences accounted for one-third to one-half of the variation 

in performance [Curtis 1988, 286].   

2.4.2 Relevance of Individual Differences to My Research 

Individual differences are important to my research because much of the resistance to 

disciplined processes lies in the fear that discipline will cripple creativity and agility [Highsmith 

2000, 11-13; Boehm and Turner 2004, 1-24].  Process discipline and powerful statistical 

techniques enable us to address Weinberg’s concerns over the devastating impact of individual 

variation.  The importance of balancing discipline and creativity, however, is well stated by 

Glass:  “If we appreciate science, we understand that the discipline imposed by the scientific 

mind forms a frame for the opportunistic, even serendipitous, and certainly creative discoveries 

that constitute an amazing portion of what science has given us” [Glass 1995, 41].  Statistical 

evidence that even top professionals can significantly improve both their performance and their 

consistency by appropriately implementing disciplined processes can help sway resisters to 

consider more disciplined approaches. 
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2.5 TEAM PERFORMANCE 

Statisticians have observed that “group thinking is usually better, less variable, and more 

precise than individual thinking” [Hare et al. 1995, 54]  There is empirical support for team 

performance typically surpassing that of individuals in a wide range of problem solving tasks 

[Brodbeck and Greitemeyer 2000, 621; Morgan and Tindale 2002, 46; Land 2000, 181-182].  

DeMarco and Lister have observed that the range of team performance, rather than being an 

order of magnitude, tends to be between 85% and 115% of the norm, after removing other risk 

factors [DeMarco and Lister 2003].  A meta-analysis of 27 independent studies indicates that 

81% of the increase of performance of groups over individuals is due to statistical pooling of the 

participants and 19% of the improvement is due to interaction effects within the group [Kramer 

1998, 23].  It is also worth noting that high academic performers tend to collaborate more than 

low performers [Land 2000, 82].  

Software researchers have focused on the qualitative aspects of team building [Scholtes 

1996] and workgroup development [Curtis, Hefley, and Miller 2001, 285-308] rather than 

quantifying the differences in performance between individuals and teams in various contexts, 

although Curtis notes that the productivity differences between high-performance and low-

performance teams are typically about 3:1 [Curtis 1988, 288].  Research has focused on how to 

structure and build high performance teams, e.g., chief programmer teams [Baker 1972; Baker 

and Mills 1973] and structured open teams [Constantine 1995, 83-86].   

2.5.1 Inspection Teams 

One of the few quantitative analyses of software team effectiveness deals with the size of 

an inspection team.  The recommended size is four participants [Fagan 1976, 191], although 
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three to five is usually considered acceptable [Briand et al. 2000, 519; Bourgeois 1996].  Some 

researchers identify four as the most effective team size, followed by team sizes of three and then 

five [Mah 2001, 12; Hall and Nixon 2000, 17].   Others simply recommend “more than two” 

[Glass 1999, 19].  In contrast, some researchers argue that there is no significant difference in 

effectiveness between teams of size two and teams of size four [Perry et al. 2002, 697].  Related 

research on pair programming suggests that pairs of programmers working together have more 

consistent and superior results than individuals working alone [Williams et al. 2000, 23; 

Williams 2000, 40].  Recommended inspection team sizes therefore range from two to five, with 

the caveat that relevant expertise be represented on the team.  

In general, team size and composition is known to affect performance:  teams composed 

exclusively of low-ability individuals show process loss, and large teams can result in social 

loafing and diffusion of responsibility [Bowers, Pharmer, and Salas 2000, 310-314].  There may 

be an optimal inspection team size, but factors such as the inspection process structure, 

techniques, inputs, context, and technology are also critical and likely to affect the best team size 

[Porter and Votta 1997]. 

2.5.2 Relevance of Team Performance to My Research 

Team performance is relevant to my research because effective teams are considered a 

prerequisite for applying statistical control to software processes.  While the bulk of my research 

focuses on individual performance in PSP, the statistical models built highlight the fact that there 

are order-of-magnitude differences between individuals.  Disciplined processes improve 

performance and lessen variation, but much more is necessary before statistical control is truly 

feasible.  Effective teams improve performance and lessen variation over and above the 

contribution of disciplined processes, as explored in Chapter 8. 
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2.6 STATISTICAL THINKING 

Statistics deals with the collection and analysis of data to solve real-world problems in 

the presence of variability [Hogg and Ledolter 1992, 1].  The fundamental axioms of statistical 

thinking are that all work is a series of interconnected processes, all processes are variable, and 

understanding the impact of variation leads to better decisions and systematic improvement 

[Britz et al. 1997; Hare et al. 1995].  These axioms embody a way of thinking, a way of acting, 

and a way of understanding the data generated by processes that collectively result in improved 

quality, increased productivity and competitive products.  

Statistical thinking is fundamental to TQM [Deming 1986; Hogg and Ledolter 1992, 7-8].  

Controlled processes are stable, and stable processes are predictable.  If a controlled process is 

not capable of meeting customer requirements or other business objectives, the process must be 

improved or retargeted. 

The statistical thinking characteristic of a high maturity organization depends on two 

fundamental principles.  First, process data is collected at the “process step” level for real-time 

process control.  Engineers use data to drive technical decision making in real-time, thereby 

maximizing efficiency.  Second, and a direct consequence of statistical thinking, is that decision 

making incorporates an understanding of variation.   

The statistical distributions described in Table 3 have all been suggested as appropriate 

for describing software defect patterns, either over time or over modules.  The normal 

distribution is frequently assumed simply because it is common [Hogg and Ledolter 1992, 19-

24].  The lognormal distribution is frequently assumed because the product of random variables 

tends towards the lognormal [Hogg and Ledolter 1992, 131-133].  Putnam and colleagues have 
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found that many software processes follow a Rayleigh distribution over time [Putnam and Myers 

1992, 45-46; Montgomery 1996, 67; Leemis 1995, 88-89].  Defect data is frequently assumed to 

follow the Poisson distribution [Hogg and Ledolter 1992, 102-104], although the negative 

binomial distribution has been found more appropriate by Das [Das 2003; Montgomery and 

Runger 1999, 124-126; Williamson and Bretherton 1963, 7-10].  The normal, lognormal, and 

Rayleigh distributions are continuous.  The Poisson and negative binomial distributions are 

discrete. 

Table 3  Statistical Distributions Used to Describe Software Defects 

Distribution Probability Density 
Function f(x) 

Mean Variance 
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The mean of a distribution is typically denoted with the Greek letter µ, and the variance is 

denoted with σ2.  If a random variable Y is lognormal, then X=ln(Y) is N(µ,σ2).  For the Rayleigh 

distribution, λ is a shape parameter and t is time.  For the Poisson distribution, the mean is equal 

to the variance, and λ is the single parameter expressing both.  For the negative binomial 
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distribution, given a constant probability p of a success (or failure), the random variable indicates 

the number of trials until k successes (or failures) occur. 

2.6.1 Operational Definitions 

The first step in establishing a statistical understanding of a process is understanding how 

it is measured so that process consistency and data validity provide a basis for rigorous analysis.  

When looking at their process data, software organizations typically discover that measures are 

not as consistently defined and data are not as consistently collected as desired.  Software 

organizations also typically discover that the defined processes used by the projects are not as 

consistently implemented as desired.   

Well-defined processes are a prerequisite for statistical process control since consistent 

process performance is necessary for quantitative or statistical management.  Wheeler expresses 

this point from an SPC perspective as “improvement begins with establishing operational 

definitions and standardizing procedures” [Wheeler and Poling 1998, 270].  Much of the work in 

software measurement has been aimed at building frameworks for establishing good operational 

definitions for such fundamental measures as effort [Goethert, Bailey, and Busby 1992], lines of 

code [Park 1992], and defects [Florac 1992]. 

2.6.2 Process Behavior and Control Charts 

The questions of process consistency, effectiveness, and efficiency require measurement 

of process behavior as it is being executed over some reasonable time period.  Other disciplines 

have addressed this issue by using statistical process control methods.   

Statistical process control (SPC) can be defined as the use of statistical techniques and 

tools to analyze a process or its outputs to control, manage, and improve the quality of the output 
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or the capability of the process.  Operationally, statistical process control implies the use of 

seven basic tools:  flow charts, scatter diagrams, histograms, Pareto analysis, cause-and-effect 

(fishbone) diagrams, run (trend) charts, and control charts [Ishikawa 1986].  It is generally 

accepted, however, that SPC implies the use of control charts.  Control charts provide a sound 

foundation for making process decisions and predicting process behavior [Wheeler and 

Chambers 1992]. 

A control chart is a run chart with upper (UCL) and lower control limits (LCL) added that 

indicate the normal execution of the process.  The control limits are normally based on ±3σ 

boundaries for the underlying common cause system that the process represents.  Control charts 

provide a statistical method for distinguishing between variation caused by normal process 

operation and variation caused by anomalies in the process. 

Common cause variation is variation in process performance due to normal or inherent 

interaction among the system components (people, processes, machines, material, and 

environment).  It is characterized by a stable and consistent pattern over time.  This variation is 

random and will vary within predictable bounds.  The 3σ limits identify the amount of intrinsic 

variation that is natural to the process.  This is the “voice of the process” telling what it is 

capable of doing.  If this performance is satisfactory, the process is “capable.”  If the predictable 

performance is not satisfactory, then the process must be changed if the requirements for the 

process are to be satisfied since the variation is intrinsic to the common cause system underlying 

the process data. 

Assignable cause variation, or special cause variation, is caused by anomalies that have 

marked impact on product characteristics and other measures of process performance.  

Assignable cause variations arise from events that are not part of the normal process.  They 
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represent sudden or persistent abnormal changes to one or more of the process components.  

These changes can be in things such as inputs to the process, the environment, the process steps 

themselves, or the way in which the process steps are executed.  When all assignable causes have 

been removed and prevented from recurring in the future so that only a single, constant system of 

chance causes remains, the process is stable (predictable), and unexpected results are rare. 

Stability of a process with respect to any given attribute is determined by measuring the 

attribute and tracking the results over time.  If one or more measurements fall outside the range 

of chance variation, or if systematic patterns are apparent, the process may not be stable, and a 

causal analysis should be performed.  When all assignable causes have been removed and 

prevented from recurring in the future so that only a single, constant system of chance causes 

remains, the process is stable and predictable. 

The simplest rule for detecting a signal (a possible assignable cause) is when a point falls 

outside the 3σ control limits.  Many other sets of detection rules have been proposed [Wheeler 

and Chambers 1992, 96], which both make the control chart more sensitive to signals and also 

lead to a greater number of false alarms.  The decision on which detection rules to use should be 

based on the economic trade-off between sensitivity and unnecessary work.  

When process performance falls outside of the 3σ limits, the variation is very likely 

caused by an anomaly in the process.  Shewhart used Tchebycheff’s theorem to put a bound of 

11% of the data being outside 3σ limits for any data set, thus identifying the worst-case 

boundary for false alarms when using 3σ limits [Shewhart 1939, 91].  Wheeler’s Empirical Rule 

characterizes the typical behavior of a homogenous data set as having approximately 99-100% of 

the data within 3σ of the average [Wheeler and Chambers 1992, 61]. 
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There are many different kinds of control chart.  The XbarR chart was the first developed 

[Shewhart 1931].  It plots the averages of a homogeneous subgroup of data, e.g., for a sample 

taken from an assembly line at a particular point in time, on an Xbar chart (the “bar” indicates an 

average of the attribute of interest for the subgroup).  The variation within the subgroup is 

captured on an R (or range) chart. 

For many software processes, it is more desirable to plot individual data points than the 

averages of subgroups.  The most commonly used chart for individual data is the XmR chart 

[Wheeler and Poling 1998], also known as the individuals and moving range chart, although 

other charts that take advantage of knowledge about the statistical distribution of the data can 

also be used when appropriate.  Two graphs are generated in an XmR chart:  an X chart for the 

individual values and an mR chart for the moving ranges, i.e., 1−−= iii XXmR .  The upper and 

lower control limits for the X chart (UCLX and LCLX), and the upper control limit for the mR 

chart (UCLR), are calculated by 

)(66.2 mRXUCLx +=  

)(66.2 mRXLCLx −=  

)(268.3 mRUCLR =  

where the X’s are the individual values and the mR’s are the moving ranges between adjacent 

values.  The lower control limit for the moving range chart is always zero.  X is the average of 

the individual values, and mR  is the average of the moving ranges.   

Control charts and other statistical tools can be ineffective if operational definitions are 

poorly formulated or aggregated data is used.  Aggregated data has elements that are 

combinations (mixtures) of values from non-homogeneous sources.  When initially looking at 

their process data, software organizations typically discover that the defined processes used by 
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the projects are not as consistently implemented or measured as believed.  This initial 

investigation, sometimes called “informally stabilizing the process,” involves understanding and 

refining the operational definitions of processes and measures and categorizing the 

processes/data into reasonably homogenous sets. 

The control charts making the minimal assumptions about the underlying process are 

XbarR and XmR charts [Wheeler 2000].  Other control charts, such as the u-chart, make 

distributional assumptions about the data, e.g., the u-chart assumes the data follow a Poisson 

distribution.  The most commonly used control charts by high maturity software organizations 

are XmR charts and u-charts [Paulk, Goldenson, and White 2000, 58-59].  It is important to 

verify that distributional assumptions are appropriate.  As Wheeler expresses this issue, “If the 

theory is right, then the theoretical value is right, and the empirical value will mimic the 

theoretical value.  But if the theory is wrong, then the theoretical value will be wrong, yet the 

empirical value will still be correct” [Wheeler and Poling 1998, 184].   

2.6.3 Applying Statistical Control to Software Processes 

From an industrial engineering perspective, SPC procedures are by default part of the 

minimum essential information needed to fully describe a process [Manley 1998, 221-230].  This 

is not a normal assumption in the software industry.  Some doubt that SPC can be applied to 

software processes [Ould 1996; Kan 1995, 143-144].  Some of the objections are based on 

misunderstandings, e.g. the argument that data has to be normally distributed to apply SPC [Ould 

1996].  Valid concerns center on the intrinsic high variability of software work, the validity of 

considering the combined output of multiple individuals on a single control chart, and the 

potential for causing dysfunctional behavior by the motivational use of data.   
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One of the first concerns about process performance is compliance: is the process being 

executed properly, are the personnel trained, are appropriate tools available, etc.  If the process is 

not in compliance, there is little chance of performing consistently or satisfactorily.  Even if the 

process is consistently performed, the intrinsic variation may be so great that no value can be 

obtained from statistical analysis; individual differences in performance can span an order of 

magnitude [DeMarco and Lister 1999, 45; Curtis 1981]. 

One source of variation is that items expected to be on the same control chart, e.g., 

different code modules, may be produced by different members of the team [Mayer and Sykes 

1992, 212].  The result is software process data that is aggregated across individuals.  In a 

manufacturing environment, placing data from different machines on the same control chart is 

not recommended.     

Collecting software data on an individual basis would address this, but could have severe 

consequences if there were any chance of motivational use of the data, e.g., during performance 

appraisals.  Deming was a strong advocate of statistical techniques and strongly averse to 

performance evaluations, declaring performance measurement “the most powerful inhibitor to 

quality and productivity in the Western world” [Deming 1986].  Austin has shown that the 

potential for dysfunction arises when any critical dimension of effort expenditure is not 

measured, and unless the latitude to subvert measures can be eliminated, i.e, measures can be 

made perfect, or a means established for preventing the motivational use of data, dysfunction is 

destined to accompany organizational measurement [Austin 1996]. 

Analyzing data at the individual level would also significantly decrease the amount of the 

data available for any specific statistical analysis at the team, project, or organizational level.  

Disaggregating process data by individual, by defect type, or by other categories may be critical 
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to obtaining insight into separate common cause systems, but this may imply severe practical 

limits to the value of SPC for software processes [Florac and Carleton 1999; Florac, Carleton, 

and Barnard 2000; Wheeler and Poling 1998, 270].   

On the other hand, processes and systems are subject to hundreds of cause-and-effect 

relationships [Wheeler and Poling 1998, 85].  When every process is subject to many different 

cause-and-effect relationships, predictable processes are those where the net effect of the 

multiple causes is in a sort of equilibrium, which can be characterized as the common cause 

system [Wheeler and Poling 1998, 87].  Pyzdek comments that even companies producing one-

of-a-kind products usually do so with the same equipment, employees, and facilities, and the key 

to controlling the quality of single parts is to concentrate on process elements rather than on 

product features [Pyzdek 1993, 53].  Each software product is unique, but is generated using a 

potentially repeatable process. 

It is generally acknowledged that there are three conditions expected before design-

intensive processes can be seriously considered for statistical control:  best practices, discipline, 

and teamwork.  Software engineering that uses “best practices” supports repeatable performance 

[Fagan 1986].  Less effective practices generally increase variation; for example, the only form 

of peer review successfully used for SPC is inspections, the most formal variant.  A disciplined 

process with consistent performance will have less variability than an ad hoc process [Hayes and 

Over 1997, 34; Wesslen 2000, 113].  Inconsistently performed processes are by definition 

unstable.  An effective team will demonstrate less variability than that shown by individuals 

[Hare et al. 1995, 54].   

Applying SPC even to the work of effective teams applying disciplined processes may 

result in significant work to “informally stabilize the process” as process consistency and 



 

46 

disaggregation issues are identified and addressed.  This investment has been deemed 

worthwhile by a number of CMM high maturity organizations that are obtaining business value 

by applying SPC to their software processes [Paulk, Goldenson, and White 2000; Paulk and 

Chrissis 2000; Florac, Carleton, and Barnard 2000; Weller 2000].  This suggests a useful degree 

of predictability is possible, even if significant variation remains in the common cause system. 

2.6.4 Relevance of Statistical Thinking to My Research 

Statistical thinking is relevant to my research because my research is an exemplar of 

applying statistical thinking to software processes.  Basic statistical concepts such as good 

operational definitions and well-instrumented processes such as PSP are prerequisites for 

empirical research.   

The amount of variation due to individual differences makes management by fact 

difficult, but identifying the common cause systems in PSP enables me to determine whether 

disciplined processes result in better performance and less variation than ad hoc processes.  More 

importantly, analysis of PSP data allows a quantitative answer as to how much better disciplined 

processes are than ad hoc processes, and how much less variation they have.   

 

2.7 SUMMARIZING THE RELEVANCE OF PRIOR RESEARCH 

My research primarily relies on analyzing PSP data, which supports statistical research 

into factors that affect software quality.  The PSP data set is both comprehensive and well-

defined.  It supports investigation of people, technology, and process factors, and the granularity 

of its process measurement allows a much more exhaustive study of process variables than is 

typically possible for software projects.  Because the PSP data is for individual professionals, an 
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investigation of the effect of programmer ability is possible in concert with many attributes that 

characterize the individual programmers, e.g., years of experience.  The large size of the PSP 

data sets allows the use of sophisticated and powerful statistical techniques, e.g., mixed models. 

The focus of my analysis of PSP are the review processes, similar to inspection, for 

design and code.  Other factors identified in research on defect prediction are considered where 

relevant.  Because PSP data is for individuals rather than teams, the high variability in individual 

performance is a concern, but it is alleviated by the richness of the PSP data and the use of 

statistical techniques, such as outlier identification for removing extreme observations and mixed 

models for addressing individual differences.   

Analyses of TSP and high maturity projects provide some additional insight into factors 

affecting the defect removal effectiveness of inspections.  Although the data sets are relatively 

small and not as comprehensive as the PSP data sets, they are adequate for an initial exploration 

of team/project issues.  

My research therefore applies statistical techniques, including regression models, analysis 

of variance, and mixed models, to understanding the relationship of process measures and other 

factors to software quality.  It examines data from disciplined software processes as defined by 

PSP, TSP, and the Software CMM, allowing an exploration of both individual and team factors.  

Control charts, interquartile limits, and regression diagnostics are used to identify atypical 

programs.  The appropriateness of various assumptions about statistical distributions is tested.  In 

the end, the importance of both competent professionals and disciplined processes in building 

high-quality software is confirmed and quantified, which should aid software professionals and 

managers in implementing good software engineering practices in a turbulent world. 
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3.0 RESEARCH METHODOLOGY 

 

3.1 THE RESEARCH QUESTIONS 

Given a disciplined software process performed by an effective team, the question to 

explore is whether useful insights can be provided to software managers and engineers on the 

quality of the work products, expressed in defects, using statistical techniques.  In this 

dissertation, I address the following questions; the answers will help managers and engineers 

plan their work, choose appropriate statistical tools, and efficiently control their processes.   

• What are the factors associated with process discipline and programmer ability that 

impact software quality? 

• Are the control limits for disciplined processes within the specification limits for 

good software engineering practice, specifically with respect to peer reviews? 

• Can defect data for software design, coding, and testing be reasonably described by 

statistical distributions such as Poisson and lognormal? 

• Can a useful defect prediction model be built, using the factors identified earlier? 

• What factors, such as team size, affect the defect removal effectiveness of 

inspections? 

The first two analyses deal with the impact of a disciplined process on software quality.  

In the first analysis, the impact of programmer ability is a crucial factor that must be identified 

and separated from that of a disciplined process.  While project managers may not be able to 

exercise the control they might like on the ability of their staff, they have direct control over the 
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engineering discipline applied.  If control charts do not add insight beyond what good 

engineering practice would suggest, i.e., the control limits are outside the bounds set by 

recommended practice, then their value is negligible in this context. 

The third and fourth analyses deal with a statistical understanding of software defects, 

given a disciplined process.  Such an understanding is useful for process modeling and training 

tools.   

The fifth analysis focuses on the impact of effective teams on software quality in the 

specific context of peer reviews.  It may provide useful recommendations for performing peer 

reviews, specifically for decisions on how they should be performed. 

 

3.2 RETROSPECTIVE DATA SETS 

My research uses retrospective data from PSP, TSP, and CMM high maturity projects.  

These data are used for exploratory, observational studies.  Sufficient data has been collected, 

particularly for the PSP data, that the rule of thumb that there should be six to ten cases for every 

potential explanatory variable is easily satisfied in most instances [Neter et al. 1996, 330]. 

The primary data set used in investigating these issues is PSP class data.  There are 

several advantages to using PSP data.  First, disciplined processes are followed in the ending 

assignments, 7A to 10A.  Second, many potential explanatory variables, such as those associated 

with teams or requirements volatility, that might confound the analysis can be eliminated from 

consideration.  Third, a reasonably comprehensive, detailed, and large data set is available from 

PSP classes since 1993. 

One set of PSP data, covering PSP classes from 1993 to 1996, was previously used in 

analyzing the results of PSP, and the results of my research can be compared to that report 
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[Hayes and Over 1997], although with the caveat that the objectives of the two studies are 

different.  Hayes and Over were interested in the impact of PSP on estimation accuracy, 

productivity, and quality; my research focuses on the underlying process drivers that affect 

quality, such as review rates, which are independent of whether the PSP processes are the 

encompassing framework.  This first data set, labeled PSPa for the 1997 report, contains data for 

2,365 assignments and 298 students.  The second PSP data set covers PSP classes from 1994 to 

2001.  This PSPb data set contains data for 10,347 assignments and 1,345 students. 

Using the PSP data for understanding the effect of disciplined processes allows an 

inference of causality by meeting three methodological conditions: 1) the presumed cause and 

effect are related, 2) the presumed cause precedes the effect in time, and 3) other competing 

explanations for the observed effect can be ruled out [Duncan et al. 1999, 1].  The focus of the 

PSP class is on instilling disciplined processes, not learning programming languages or other 

techniques, therefore the predominant cause of any effects observed in the PSP data should be 

driven by increased discipline.  The observed effects follow the process changes instilled by PSP.  

The PSP environment is sufficiently controlled that competing explanations should not have a 

significant impact, although they will be considered in my research so they can be ruled out 

explicitly.   

Outliers can skew a statistical analysis, but they can also provide insight when 

appropriately investigated.  In a retrospective study such as this, causal analysis of why outliers 

are atypical is not feasible.  Discarding outliers without root cause analysis, however, can 

adversely affect the validity of conclusions.  Interquartile limits can be used to identify outliers 

(the limits are set at 1.5 times the interquartile range beyond the 25% and 75% quantiles).  
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Consistent results of statistical analyses of the data both with and without the outliers suggest 

that the conclusions are robust. 

Software measures, such as the number of defects, are usually normalized by the size of 

the program in lines of code to provide a defect density.  During development, however, the 

number of lines of code may not be known, so other measures may be used such as function 

points, number of requirements, or number of pages of design [Abbott 1999].  Since this is a 

retrospective analysis, the actual software size can be used as the “area of opportunity” for 

normalizing the data, although only an estimate of LOC would be available during the early life 

cycle phase when requirements and design work products are built and inspected.  In the case of 

the PSP data, residual defects after testing remain undiscovered; the cut-off point is when the 

assignment is turned in. 

The primary advantage in using TSP data is that team members follow the PSP processes 

and collect PSP data, plus TSP data, therefore differences in operational definitions are 

minimized.  TSP data can be easily compared to PSP data, and team performance can be 

compared to individual performance (including variation) with minimal issues with respect to 

differing operational definitions.  Concerns in using TSP data center around explanatory 

variables that are introduced, such as requirements volatility, which need not be considered in the 

PSP environment.   

In general, data from CMM high maturity projects may be well-defined within an 

organization, but operational definitions may differ significantly between the projects.  While 

comparisons between PSP and TSP data are not unreasonable, comparing results from different 

organizations directly is inadvisable, although analysis of the factors affecting those results, 

where comparable data is available, is feasible. 
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3.3 OVERVIEW OF THE ANALYSIS PROCESS 

My research is based on a series of observational studies rather than a controlled 

experiment.  These are confirmatory studies in the sense that most of the factors considered for 

affecting quality have been previously studied.  The inconsistencies in the results of previous 

studies may have been due to deficiencies in the data collected, small data sets, inconsistencies in 

process fidelity, or problems in generalizing and comparing results. 

The use of data from high maturity environments implies that a reasonably 

comprehensive set of measures has been identified and that a defined process has been 

consistently implemented.  This data should have relatively few confounding factors for 

investigating plausible explanatory variables, such as years of experience, that may affect 

software quality.   

The first step is to collect the data, which should include the size of each module, the 

number of inspectors per module, inspection preparation time, inspection meeting time, and the 

number of defects injected and detected by life cycle phase.  For PSP data, individuals review 

their own work, so there is no inspection team, and preparation and review times are 

synonymous.   

The second step is to remove invalid data.  An example of invalid data is where the 

number of defects removed in an inspection is greater than the number injected at that point in 

time.  For PSP data, the students perform a causal analysis of every defect found and where it 

was injected as well as where it was found.  This allows verification of internal data reliability.  

This is described in Section 3.5. 
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The third step is to identify explanatory variables that affect software quality.  PSP data 

on potential explanatory variables, such as programming language used and years of experience, 

are available for many of the students, although a full set of demographic data was not 

consistently collected for all classes.  Although data on non-process variables were not 

consistently captured, process variables, such as time spent in different activities and the number 

of defects found in reviews, were consistently recorded.  This is described in Chapter 4. 

If a variable does not affect software quality in a statistically significant way, then it can 

be ignored.  If a variable is statistically significant, but its contribution is minimal in practical 

terms, then it can be ignored.  If it is statistically and practically significant, it must be addressed 

in the further steps of the analysis.  One way of addressing such a variable is to simplify it out of 

the analysis, e.g., if programming language is a significant explanatory variable, disaggregate 

the data by language and analyze modules written in a single language.  Some variables may 

need to be transformed, since non-linear relationships are common in software data.   

The fourth step is to identify data from atypical processes.  These outliers are not 

representative of the normal operation of the process and should be removed before conclusions 

can be drawn about the attributes of a consistently performed process.  Identification of atypical 

values is usually done using control charts, such as the XmR chart, although simpler outlier 

identification techniques can also be used, and techniques for identifying outliers specifically in 

the context of regression models are also available.  Interquartile limits are used to identify 

outliers in Chapters 4 and 6.  XmR charts are explored as a potentially superior alternative to 

interquartile limits for identifying outliers in Chapter 5.  A variety of regression-based techniques 

for identifying influential outliers are used in Chapters 7 and 8. 
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Atypical production processes can be identified using design and coding times.  Atypical 

modules can be identified using module size and defect density from reviews.  Atypical reviews 

can be identified by using preparation rate and meeting review rate.  (For PSP data, preparation 

rate is not applicable.)   

The fifth step is to remove data from out-of-specification processes.  The inspection rules 

can be considered equivalent to setting specification limits on the review (or inspection) process.  

Note that if the control limits are outside the specification limits, the process is not capable, and a 

distinction can be made between stable and conformant processes.  For the PSP data, some 

inspection rules, such as the team size recommendations, are not pertinent. 

The sixth step is to investigate the distributional assumptions for the defect data.  

Statistical techniques frequently make assumptions about the distribution of the data, with the 

normal distribution being the most common assumption.  When averages are being tested, this is 

a reasonable assumption since the Central Limit Theorem indicates that averages approach a 

normal distribution as more observations are averaged.  For software processes, however, 

individual observations must frequently be analyzed.  Statistical distributions to be considered 

include the lognormal and Poisson; other distributions will be considered as appropriate.  This is 

described in Chapter 6.   

The seventh step is to model software quality in terms of the appropriate explanatory 

factors.  Atypical data, outliers, and influential cases should be appropriately addressed.  This 

may be by removing the atypical data or by considering the data sets with, and without, the 

atypical data as alternatives for the model.  This is described in Chapter 7.   

The eighth step is to extend the research beyond the context of the PSP classroom data, 

repeating the steps in the PSP analysis as appropriate.  This analysis uses TSP and CMM high 
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maturity project data.  Using project data allows the investigation of team effects.  This is 

described in Chapter 8. 

The final step is to summarize the results of each analysis with respect to each of the 

research questions.  This is described in Chapter 9. 

 

3.4 CONCERNS WITH GENERALIZING PSP-BASED ANALYSES 

The primary source of data for most of these analyses is PSP.  PSP is thoroughly 

instrumented, and there is a great deal of available data for analysis.  Split data sets may be 

created across a number of different variables, such as programming language or assignment, as 

well as the PSPa data set, to verify results. 

There are several concerns in using the PSP data, which can be summarized as limitations 

on the generalizability of analyses based on classroom data.  Classroom data cannot be assumed 

to extrapolate to industrial settings.  Subsequent analyses of TSP and CMM high maturity project 

data should mitigate these concerns but do not remove them since the project data available does 

not permit the same depth of analysis as the PSP data.  Specific concerns include: 

• Classroom measures.  Potential explanatory variables that are eliminated from 

consideration by virtue of the data being classroom data may be significant in an 

industrial environment.  Examples include variables associated with teamwork or 

larger systems.  This concern is mitigated by analyzing TSP and high maturity project 

data, as described in Chapter 8, although further research in an industry setting is 

desirable. 

• Disciplined professionals.  The people who take the PSP course, or who choose to 

work in high maturity organizations, may not be typical of most software 
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professionals.  A corollary is that people who finish the PSP course may differ from 

those who begin the class but do not finish.  Students have generally been shown to 

provide an adequate model of software professionals within the scope of classroom-

sized programs [Biffl and Gutjahr 2002, 269; Porter and Votta 1998].  This concern is 

mitigated by the analyses in Section 4.6.2, which suggest that professionals finishing 

the PSP course do not differ significantly from those who do not finish. 

• Small programs.  The systems built in real-world software projects are much larger 

than PSP assignments.  For industrial projects, a design module may correspond to 

several code modules, since design is a higher level of abstraction than code.  

Similarly, a code module may consist of several procedures or subroutines, which 

may be independently reviewed.  For PSP, however, data collection is at the level of 

the assignment rather than the module.   

• Programmer differences.  The surrogates, e.g., years of programming experience, 

available for testing the competence of programmers, while frequently used, are 

known to be inadequate [Curtis 1981].  This concern is mitigated by empirically 

measuring programmer ability using the data from the early PSP assignments, but 

using process and defect data to characterize the ability of programmers in an 

industry setting can lead to dysfunctional behavior, such as data falsification or 

inappropriate emphases, e.g., maximizing “productivity” at the expense of defects 

[Austin 1996].   

• Missing data.  Some contextual information, such as programming language and 

years of programming experience, was not consistently recorded in the PSP 

repository, therefore fewer data points are available for analyzing potential 
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explanatory variables.  The richness of the PSP data mitigates this concern since in 

most cases the data sets remain relatively large even without the missing data. 

• Instructor differences.  There could be differences between classes due to the ability 

of the instructors [Johnson and Disney 1999, 331].  This should not be significant 

since the classes were taught by SEI-authorized instructors who have been through 

the PSP instructor training, and classes are typically co-taught by two to three 

instructors.  This concern is mitigated by the analyses in Section 4.6.3, which suggest 

that there are no significant differences between the PSP classes. 

• No requirements phase.  PSP data captures time spent, defects injected, and defects 

removed in each PSP phase (or activity):  planning, design, design reviews, coding, 

code reviews, compiling, testing, and postmortem.  In PSP there is no requirements 

elicitation or analysis phase since the assignments are relatively straightforward; 

misunderstandings of the requirements are captured in the design, code, and test 

activities.   

 

3.5 REMOVING INVALID PSP DATA 

Johnson and Disney identified a number of concerns for PSP data validity centered 

around the manual reporting of personal data by the students [Johnson and Disney 1998; Johnson 

and Disney 1999].  In spite of reviews by the instructor and exhortations to approach the course 

professionally, they found about 5% of the data to be defective.  Some of the classes of data 

errors they identified, such as errors of calculation, are irrelevant to this study because none of 

the analyses performed by the PSP students are used in my research – only the basic measures 

reported.  Entry errors are a concern since they occur in the data collection stage and are difficult 
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to identify and correct, but less than 10% of the errors identified by Johnson and Disney were 

entry errors.   

For the PSPb data set, internal data consistency errors were identified for 2.8% of the 

reported data.  The steps where known defects were injected and where they were found are 

reported by the students; while there may be unknown defects latent in a program, acceptance of 

the assignment by the instructors sets a reasonable context for the defect data.  Data is available 

for 112 classes with 1,345 students providing data from 10,223 assignments where a program 

was successfully completed.  Inconsistencies between the total number of defects injected and 

removed resulted in the removal of 264 observations.  For 21 observations, more defects were 

found in the design review than had been injected by that point in the process.  For four 

observations, more defects were found in the code review than had been injected by that point in 

the process.  Data errors were identified in 289 of the 10,223 observations, leaving 9,934 for 

analysis in the PSPb data set. 

For the PSPa data set, errors were identified for 4.4% of the reported data.  Data is 

available for 23 classes with 298 students providing data from 2,360 assignments where a 

program was successfully completed.  In addition to internal consistency errors, two of the 

classes did not follow the standard ten programming assignments, therefore 299 observations 

were removed, leaving 21 classes.  Inconsistencies between the total number of defects injected 

and removed resulted in the removal of 86 observations.  For four observations, more defects 

were found in the design review than had been injected by that point in the process.  No 

observations were removed because of more defects being found in the code review than had 

been injected by that point in the process.  Data errors were identified in 390 of the 2,360 

observations, leaving 1,970 for analysis in the PSPa data set.   
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A similar data cleanup was performed for the Hayes and Over study, but since repeated 

measures ANOVA was the primary analytic tool, an additional requirement was added that data 

be reported for all of the first nine assignments (assignment 10 was not analyzed) [Hayes 1996], 

with the result that data from 181 of the 298 students was usable [Hayes and Over 1997, 51]. 

The PSP data provides a wealth of data that provide natural data splits for replication of 

analyses.  The PSPb and PSPa data sets are an obvious partition since they allow comparison of 

results to the Hayes and Over report [Hayes and Over 1997] insofar as the objectives of the 

different analyses are comparable. Splitting the data by programming language used is another 

natural partition since that technology factor affects productivity [Jones 1995] even though the 

impact of language on quality is one of the issues I am investigating.   

Table 4 lists the number of observations for each assignment in the PSPa and PSPb data 

sets, including splits for the programming languages C and C++.  The most frequently used 

languages for PSP are C and C++.  Since programming language affects effort [Jones 1995], 

even if the impact on quality as measured by defect density is minimal, separating the data sets 

by programming language is a conservative decision. 
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Table 4  Sample Sizes for PSP Data Sets 

Assignment 2001 2001 
C 

2001 
C++ 

1997 1997 
C 

1997 
C++ 

1A 1086 185 97 221 68 13 

2A 1117 184 102 234 73 16 

3A 1115 190 99 226 71 15 

4A 1091 192 99 227 77 16 

5A 1059 189 97 201 72 15 

6A 1032 192 97 201 72 15 

7A 966 178 90 176 63 12 

8A 901 163 91 176 66 15 

9A 830 152 82 163 61 13 

10A 737 133 66 145 57 11 

Totals 9934 1758 920 1970 677 140 

 
Although the (PSPa, C++) data sets are small for useful statistical results, they are 

comparable to those found in many software studies, where data sets frequently have fewer than 

30 data points, and the other data sets have ample data for useful analyses.  For analyses focusing 

on performance with a disciplined process, the later assignments are preferred; in the first three 

assignments, a visible learning curve effect is noticeable as students become accustomed to 

following a defined personal process [Wesslen 1999, 177]. 

The statistical packages used in these analyses are JMP Version 4 and SAS Version 8.2, 

both of which are built by the SAS Institute in Cary, North Carolina.  JMP was used for the 

analyses in Chapters 4 and 5, SAS was used for the analyses in Chapters 6 and 7, and both JMP 

and SAS were used for the analyses in Chapter 8. 
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4.0 EXPLORING THE FACTORS AFFECTING SOFTWARE QUALITY 

 

4.1 THE RESEARCH QUESTION: EXPLORING QUALITY DRIVERS 

The research in this chapter focuses on an initial exploration of the factors that 

significantly affect software quality and specifically on the effect of process discipline on 

software quality.  The context of this analysis is software quality for individual professionals.  

Process-based factors are the variables of direct concern since the emphasis of my research is on 

the impact of disciplined processes, but hundreds of factors can affect the performance of a 

process.  The majority of these factors contribute random noise to performance, but some are 

likely to systematically drive performance. 

Many different factors have been suggested as affecting software quality, ranging from 

surrogates for ability, such as years of experience, to surrogates for technology and tools, such as 

the programming language used.  The term surrogate is used because direct measurement of 

complex constructs such as “ability” and “technology” is difficult, and relatively easy-to-collect 

measures may suffice.  Data for many of these surrogates is available for the Personal Software 

Process (PSP) course, and data from the ten PSP assignments enables exploring the effect of 

process discipline, and variables characterizing competent professionals and techniques and tools 

set the context.   

The abilities of the PSP students and the effectiveness of their tools underlie the 

production and quality control processes for software work products such as design and code.  

While the emphasis of the exploratory data analysis is on the process variables that affect 
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software quality, confounding variables that could confound the results need to be appropriately 

addressed. 

 

4.2 POTENTIAL EXPLANATORY VARIABLES 

Potential explanatory variables identified in prior research can be divided into categories 

related to the application domain, the technologies used, the software engineering processes 

followed, and the ability of the individuals doing the work.  These correspond to categories 

commonly used in causal analysis with cause-and-effect diagrams:  people, equipment, methods, 

materials, measurement, and environment [Brassard and Ritter 1994, 25].  The results of my 

research deal with quantitative management, directly addressing the measurement category.  

Quality issues related to incoming material, i.e., the customer requirements, are outside the scope 

of my research.  Although requirements volatility is a significant quality concern in software 

projects, requirements volatility is not an issue for PSP. 

Although the focus of my research is on consistently following good practices, process 

discipline is only one of the factors that affect productivity and quality.  Process and non-process 

contributors to software quality can be separated, but relationships between variables can be 

expected, e.g., capable programmers tend to consistently use effective techniques and tools. 

The potential explanatory variables for software quality are identified based on the 

drivers in COQUALMO and empirical observations about software defects, as discussed in 

Section 2.3, and the available data from the PSP course.  Some factors change systematically 

across PSP assignments as part of the teaching process, but many of the possible explanatory 

variables can be assumed to be constant within a PSP class (or within a project or team) and can 

therefore be ignored in this analysis.   
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The following factors from COQUALMO [Boehm et al. 2000, 254-268; Devnani-

Chulani 1999] are not expected to change significantly within any of the data sets used in my 

research:  applications experience, architecture and risk resolution, application domain 

complexity, customer information, data base size, documentation match to life cycle needs, 

execution time constraint, language and tool experience, main storage constraint, multi-site 

development, personnel continuity, platform experience, platform volatility, precedentedness, 

product complexity, required development schedule, required reusability, and required software 

reliability.  Significant shifts in any of these factors should be proactively managed by a software 

project but are outside the scope of this analysis.  Factors related to experience could affect the 

PSP learning curve, but should not be significant for the application and tools factors beyond the 

first few assignments; experience in using techniques such as reviews and design templates may 

be an issue as the PSP processes evolve. 

The out-of-scope factors for PSP highlight the challenges in generalizing PSP results to 

software work in general.  While it is reasonable to expect that significant factors in PSP will 

remain significant in an industrial context, other factors may need to be considered in building a 

comprehensive defect prediction model for industry projects.  The factors that will be considered 

in this analysis address technology, process, and people issues.  Team composition is not a 

consideration when analyzing the PSP data, but the increase in performance and decrease in 

variation associated with effective teams will be analyzed in the context of TSP and CMM high 

maturity project data in Chapter 8. 

For the application domain factors, problem and solution complexity are indicated by 

lines of code (LOC) [Akiyama 1972; Lipow 1982; Gaffney 1984; Criscione, Ferree, and Porter 

2001], which are available for all PSP assignments for new and changed code.  The amount of 
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reused code is not available, therefore the size measure does not fully cover the functionality of 

the assignments.   

Problem complexity would not appear to be a significant factor in PSP, given the relative 

simplicity of the assignments.  Programs smaller than 10 KLOC are usually considered simple 

programs, between 10 and 100 KLOC are considered of medium complexity, and programs 

larger than 100 KLOC are considered relatively complex.  Models frequently shift, even to 

different formulations, around these boundaries [Akiyama et al. 2002; Yang and Paradi 2004].   

Solution complexity, or product complexity, is not constrained, and can be a significant 

source of variation [Weinberg 1998, 126-132; Criscione, Ferree, and Porter 2001; Takahashi and 

Kamayachi 1985].  A student’s preferred style in optimizing memory space, speed, reliability 

(e.g., exception handlers), generality, reuse, etc., can lead to radically different solution 

complexities.  Since PSP does not impose performance requirements, students have significant 

latitude in how they solve the problems – a latitude available in many industry contexts as well.  

Solution complexity can be indirectly measured by program size.  The use of defect density 

should normalize out differences in solution complexity since program size can be used as a 

surrogate for solution complexity.   

For technology factors, programming language captures an important technology 

consideration [Jones 1986; Lipow 1982].  For the small programs assigned to PSP students, tools 

should not be a differentiator, but the programming language could be a significant factor 

affecting productivity or quality.  

For process factors, the two components are the production and review processes.  

Design templates for functional specifications, state specifications, logic specifications, and 

operational scenarios are introduced in PSP assignment 9.  The use of more powerful design 
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techniques could result in an increase in design time.  Design and code reviews are introduced in 

PSP assignment 7.  Time spent in reviews and the number of defects removed in each review are 

captured.  Defect removal effectiveness can be calculated based on the phase defects are injected 

in.  More time in review should lead to higher defect removal effectiveness. 

Process maturity is a generic concept that can be considered “low” for PSP0 and “high” 

for PSP3 [Boehm et al. 2000, 36].  One of the objectives of my research is to independently 

measure those aspects of the software process, e.g., review rates, that objectively define what 

“process maturity” is, i.e., the consistent execution of good engineering practices.  It is 

interesting to note that in COQUALMO, process maturity has the highest impact of all factors on 

defect injection [Boehm et al. 2000, 260]. 

Because of the learning curve effects intrinsic to the PSP course, many of these analyses 

will focus on assignments 9 and 10.  These two assignments incorporate design techniques and 

reviews that are considered good software engineering.  In principle, these assignments represent 

a disciplined process employing recommended software techniques and tools.  Assignments 9 

and 10 can be separately analyzed to provide a split data set; to the degree significant learning 

curve effects remain in PSP between these two assignments, this may be desirable anyway.   

Programmer/analyst capability is difficult to objectively determine.  Factors such as 

highest degree attained and number of years of programming experience have been used as 

surrogates for programmer capability.  Breadth of experience is usually considered a superior 

indicator of competence, and the number of languages known by the programmer is a plausible 

surrogate [Curtis, Krasner, and Iscoe 1988].  Percent of time programming in the previous year 

may indicate the steepness of the learning curve for students for the early assignments, and 

correlate with applications experience and language and tool experience.  Software developer 
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experience with techniques may be an issue as the PSP design techniques are introduced since 

there may be learning curve effects even in the later assignments.   

Ability, however, may be independent of any credentials an individual may possess.  

Programmer ability can be empirically identified for PSP assignments if comparative 

performance remains stable over assignments, i.e., top performers remain top performers as 

process discipline and techniques and tools are added.  For industrial projects, programmer 

ability can be directly measured via the personnel review system [Banker, Datar, and Kemerer 

1987; Banker, Datar, and Kemerer 1991], but the availability of such data may be constrained by 

privacy and confidentiality requirements.  Untangling the effect of experience in general and 

experience with specific techniques and tools can be challenging, but the PSP data provides a 

direct and objective measure of programmer capability, which does not suffer from being either a 

surrogate or subjective. 

 

4.3 DEFINING SOFTWARE QUALITY FOR PSP 

Quality is a complex topic, with many different aspects [Garvin 1987].  Many definitions 

focus on customer perceptions, but for my research, the focus is on meeting stated customer 

requirements:  the PSP assignments.  In analyzing software quality for PSP, defect density in 

testing will be the surrogate measure for quality.  Quality as perceived in terms of reliability (or 

other quality attributes) by the customer may differ from that observed in testing in terms of 

defects against the stated requirements.  Conformance to requirements is a minimal definition of 

quality, but when PSP or TSP are applied to industry projects, very few to no defects, or the 

associated failures, are typically reported in the field [Ferguson et al. 1997; Webb and Humphrey 

1999, 8], indicating that few defects escape the PSP and TSP processes.  
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The number of defects removed in testing is a plausible alternative.  Defect density is the 

number of defects divided by size.  Even for the relatively simple PSP assignments, program size 

ranges from 25 to over 300 LOC as shown in Figure 2.  
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Figure 2  Program Size Across (PSPb, C) 
 

The area of opportunity for injecting defects as measured by program size may vary an 

order of magnitude.  Comparing the results for defect density and number of defects in the 

following analyses led to no additional insights or significant differences in the results (see 

Section 4.7.2).  Defect density is a commonly used quality surrogate in the software industry 

[Gill and Kemerer 1991; Withrow 1990], and defect density in testing is the primary dependent 

variable and quality surrogate in these analyses.  Unless otherwise noted, defect density in testing 

is the response variable in the tables and figures in this dissertation. 

Defects removed in compile could be grouped with those removed in testing since the 

compiler is being used to detect syntactic defects that escaped from coding.  The average effort 

per defect removed in testing is more than five times greater than that per defect removed in 
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compile (23.3 minutes/defect in testing versus 4.3 minutes/defect in compile for the PSPb data 

set).  Focusing on defect density in testing therefore appears appropriate since it is relatively 

inexpensive to repair compile-time defects.   

Direct measures of the effectiveness of some specific processes, and the quality of their 

work products, are available.  An example for the design process is the defect density at the end 

of the production effort, e.g., the number of defects known to be present at the end of design per 

KLOC.  For reviews, an appropriate quality surrogate is defect removal effectiveness, i.e., the 

percentage of defects detected of those known to be present at the beginning of the review.  

These are direct measures of the quality resulting from an interim process that contribute to the 

general quality surrogate, defect density in testing. 

 

4.4 AN OVERVIEW OF SOME BASIC STATISTICS 

In statistical tests, a null hypothesis H0, such as the means of different treatments are 

equal or a regression coefficient is zero, is tested [Montgomery and Runger 1999, 296-304].  The 

objective of the researcher is usually to reject the null hypothesis, since the conclusion of interest 

is that the alternative hypothesis Ha is true.  For example, Ha is that the mean for treatment A is 

greater than the mean for treatment B when the null hypothesis H0, states they are equal (the 

treatment has no effect). 

There is a possibility in any statistical test that the null hypothesis will be rejected when it 

is true, which is called a Type I error.  The acceptable probability of a Type I error, P(reject H0 

when H0 is true), is the significance level of the test and is denoted α, and α=0.05 for these 

analyses.  The p-value of a test is the estimated probability of a Type I error for a given data set 

under the relevant assumptions, typically normality and independence of the data.  When p-
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value<α, the null hypothesis, e.g., the means for two different treatments are equal, can be 

rejected.  When the p-value>α, the proper conclusion is that the null hypothesis cannot be 

rejected. 

There is also a possibility that the null hypothesis will be accepted when it is false, which 

is a Type II error.  The probability of a Type II error, P(failing to reject H0 when H0 is false), is β.  

The power of a statistical test is (1-β).  The sample size necessary to achieve a desired β may be 

calculated, but the power of a test is usually estimated rather than being specified in advance 

because of the practical difficulties frequently present in obtaining a large enough sample size to 

attain a desired power. 

Nominal (or categorical) variables, such as programming language, can be analyzed 

using analysis of variance (ANOVA) techniques [Neter et al. 1996, 663-709].  Different 

treatments for an explanatory variable, e.g., different programming languages, are likely to have 

different variances, in which case the normal ANOVA assumption of equal variances for 

different treatments is not satisfied.  The Welch test for means, which allows the variances to be 

unequal, is used rather than the standard ANOVA F test in such cases [Milliken and Johnson 

1992, 27-28; SAS Institute 2000, 110].  For the Welch test, the means are weighted by the 

reciprocal of the sample variances of the treatment means.  The Levene test is used to test the 

constancy of error variance.  It is robust to departures from normality, and sample sizes need not 

be equal [Neter et al. 1996, 763].   

For multiple comparisons, the Each Pair, Student’s t and the All Pairs, Tukey-Kramer 

honest significant difference tests provide liberal and conservative comparison tests respectively 

[Milliken and Johnson 1992, 36-37; SAS Institute 2000, 100].  The Each Pair test is sized for 

individual comparisons and computes individual pair-wise comparisons, but there is no 
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protection across inferences, and the Type I error rate across the hypothesis tests is higher than 

that for individual differences.  The All Pairs test is sized for all differences among the means 

and is a conservative alpha-level test if the sample sizes are different.  Comparison circles 

graphically show the results of these comparison tests:  the greater the overlap, the less likely 

there is a significant difference. 

Regression models relate a dependent variable to one or more predictor variables.  The 

coefficient of determination, R2, can be used to judge the adequacy of the regression models 

[Montgomer and Runger 1999, 464-465].  Loosely speaking, R2 describes the amount of 

variation in the data accounted for by the model.  This coefficient may be adjusted when 

comparing models with differing numbers of predictor variables using the formula:  

2 211 ( )(1 )a
nR R
n p
−

= − −
−

 

where there are n data points and p-1 predictor variables [Neter et al. 1996, 230-231]. 

A statistical correlation between two variables does not necessarily indicate a cause-and-

effect relationship.  Although we may say that there are statistically significant results due to 

variable X for variable Y, the causal relationship should be based on a conceptual model of how 

X drives Y that the data supports.  Even when the analysis supports the theory, it is always 

possible that unidentified factors are confounding the analysis or that correlations between 

variables are masking the effects of each variable considered individually. 

 

4.5 CONFIRMING PSP QUALITY TRENDS 

As can be observed in Figure 3, the software quality trend across the PSP major processes is 

apparent, confirming prior analyses [Hayes and Over 1997; Wesslen 2000].  Performance 
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improves and variation decreases as the PSP processes become more sophisticated:  PSP0 is the 

baseline process, PSP1 adds size estimating and test reports, PSP2 inserts reviews and design 

templates, and PSP3 introduces cyclic development.  The figure shows the differences in defect 

density in testing for each PSP major process for the PSPb data set. 
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Figure 3  Trends in Software Quality 
 

The Each Pair and All Pairs tests indicate that the means for each of the PSP major 

processes are significantly different, as illustrated by the comparison circles in the figure.   

The ANOVA results for the effect of the PSP major process on defect density in testing 

are shown in Table 5.  The null hypothesis is 0 0 1 2 3: PSP PSP PSP PSPH µ µ µ µ= = =  with alternative 

hypothesis Ha: not all of the means are equal.  The table includes the ANOVA information for 

the two data sets used to analyze the PSP major process, including the information for the 

treatment levels (the four processes), the error term, and the total model.  The information 

includes degrees of freedom (DF), sum of squares (SS), mean square (MS), the F Ratio and p-

value for the F test, and the adjusted coefficient of determination (R2
a) for the model. 



 

72 

Table 5  ANOVA for PSP Major Process 

Source PSPa PSPb 

DF 3 3 

SS 330630 2122446 

Model 

MS 110210 707482 

DF 1966 9930 

SS 3317337 16072027 

Error 

MS 1687 1619 

DF 1969 9933 Total 

SS 3647966 18194474 

F Ratio 102.8W 532.7W 

Prob > F <.0001W <.0001W 

R2
a 0.0892 0.1164 

 
The effect of the PSP major process on defect density in testing was shown to be 

statistically significant for both of the data sets.  This indicates that PSP major process is a useful 

predictor variable for defect density in testing, at least within the context of the PSP class.  As 

might be expected, and as demonstrated by the Levene test for equal variances, variation 

decreases as more sophisticated processes are used.  The Welch test is therefore preferred over 

the F test, which assumes equal variances, for testing the differences in mean performance and is 

noted with the symbol W next to the F ratio.   
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The estimates of the means for defect density in testing at the four levels of PSP major 

process, and the associated standard errors for the means, are listed in Table 6 for the data sets.  

A model can be built using indicator variables for estimating the defect density associated with 

each level of the PSP major process.  The formula could be written as: 

(Defect density in testing) = (PSP0 Estimate) (PSP0 Indicator) 

+ (PSP1 Estimate) (PSP1 Indicator) 

+ (PSP2 Estimate) (PSP2 Indicator) 

+ (PSP3 Estimate) (PSP3 Indicator) 

where the indicator variable is either 0 or 1 depending on which level of the PSP major process 

is applicable.  A more concise notation is: 

(Defect density in testing) = β PSP Major Process  X PSP Major Process 

where βj is an estimate of the mean for the jth level of the categorical variable (PSP major 

process in this instance) and Xj is the corresponding indicator variable.  For models with multiple 

categorical variables, the ith categorical variable with j levels is described by βi,j Xi,j. 

For the null hypothesis 0 0 1 2 3: PSP PSP PSP PSPH µ µ µ µ= = =  in the following tables of level 

estimates, the p-values are captured in the column header for the model.  A p-value<0.05 is 

indicated with *, a p-value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and 

a p-value<0.0001 is indicated with ****. 
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Table 6  Estimates for PSP Major Process Levels 

Level PSPa**** 

 (std err) 

PSPb**** 

(std err) 

PSP0 45.6 

(2.2) 

51.6 

(1.0) 

PSP1 28.5 

(1.4) 

30.3 

(0.6) 

PSP2 16.2 

(0.9) 

18.0 

(0.5) 

PSP3 8.7 

(0.9) 

11.4 

(0.5) 
 

The differences between the PSP major processes are both statistically and practically 

significant.  The differences of 5.2 to 1 for PSPa and 4.5 to 1 for PSPb show a decrease in defect 

density in testing from 78-81%.  This is a quality improvement that would be of interest and 

value to most software professionals. 

Some statistical assumptions are violated in this analysis.  First, the number of data points 

for each PSP major process is different since some students drop out of the PSP course before 

finishing, leading to unbalanced data sets with missing data.  Second, because each data set 

contains multiple data points per student, the usual assumption of independence is violated.  

Third, it cannot be assumed that any software data set is normally distributed; software data is 

usually skewed.  These concerns are systematically addressed in the multiple regression models 

and mixed models in Chapter 7, but they are ignored in the exploratory data analysis in this 

chapter since the techniques used are robust. 

This analysis also ignores the possible influence of outliers.  Excluding outliers without 

causal analysis, as well as including them when they are atypical, can skew results.  Statisticians 
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debate whether it is preferable to remove outliers before doing statistical analysis [Orr, Sackett, 

and Dubois 1991; Judd and McClelland 1989, 207-237].  The remaining analyses in this chapter 

are performed both with and without outliers, using the interquartile limits (IQL) technique to 

identify outliers.  Chapter 5 compares the IQL technique to XmR charts as an outlier 

identification technique. 

 

4.6 EXPLORING THE POTENTIALLY CONFOUNDING VARIABLES 

Before exploring the primary variables for process discipline and individual differences, 

it is desirable to investigate a number of confounding variables that could confound the analyses 

if not appropriately addressed.  The hypotheses for confounding variables will be considered 

statistically significant for α=0.05.   

Confounding variables related to people include those associated with learning curve 

effects, programmer differences, instructor differences, credentials, experience, recent 

experience, and breadth of experience.  In some cases these potentially confounding variables are 

specific to the classroom environment, e.g., instructor differences.  In other cases, such as years 

of experience, some studies have found the variable significantly related to software quality, as 

described in Chapter 2, although the results of other studies may have differed. 

Hypothesis C1 is that there is a difference in defect density in testing between 

assignments 9 and 10.  Since the process, tools, and application domain are essentially the same, 

a significant difference indicates a learning curve effect is occurring. 



 

76 

Hypothesis C2 is that there is a difference in defect density in testing between the 

students who finish all ten PSP assignments and those who do not.  A significant difference 

would suggest a selection effect that would affect the generalizability of the results. 

Hypothesis C3 is that there is a difference in defect density in testing between the PSP 

classes (the different offerings of the PSP course).  A significant difference would suggest that 

classes are not similar learning environments, perhaps due to different instructors, changes in the 

teaching materials, or changes in the student population.  

Hypothesis C4 is that the highest degree attained is related to defect density in testing.  A 

significant difference would indicate that educational credentials affect programming 

performance and could indicate that credentials are a reasonable surrogate for programmer 

ability. 

Hypothesis C5 is that years of experience is related to defect density in testing.  A 

significant difference would indicate that experience affects programming performance and 

could indicate that experience is a reasonable surrogate for programmer ability. 

Hypothesis C6 is that percent of time programming in the previous year is related to 

defect density in testing.  A significant difference would indicate that recent experience affects 

programming performance and could indicate that recent experience is a reasonable surrogate for 

programmer ability.  This should not be a factor by the end of the class but could affect 

performance on early assignments. 

Hypothesis C7 is that the number of programming languages known is related to defect 

density in testing.  A significant difference would indicate that that the number of programming 

languages known, which presumably corresponds to a diversity of programming experiences, is a 

reasonable surrogate for breadth of experience, which is an aspect of programmer ability. 
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Hypothesis C8 is that the programming language used is related to defect density in 

testing.  A significant difference would indicate that that technology used is affecting software 

quality.  If no significant difference is found, technology may still affect other concerns, such as 

productivity. 

Since differences between individuals can contribute over half of the variance in 

performance [Curtis 1981], the values of the (adjusted) coefficient of determination, R2
a, are 

likely to be small for any specific explanatory variable, and a statistically significant explanatory 

variable with R2
a>0.05 may be a useful addition to a defect prediction model.  Programming is a 

creative process and a social activity [Cockburn 2004, 7-10].  In the social sciences, R2
a=0.30 

might be considered acceptable [SAS Institute 1989, 15], and the multiple regression models 

described in Chapter 7 should exceed that value (and larger values of R2
a are desirable).  The 

focus of this analysis is identifying which explanatory variables are worthy of further 

consideration and exploration.  Later analyses will consider data transformations and correlations 

that may affect the relationships. 

In this section, the data sets used are primarily the PSPa and PSPb data sets since the 

analysis of potential confounding variables, such as the programming language used, is intended 

to help identify useful criteria for splitting the data in later analyses.  A secondary criterion is 

assignment since that removes process and problem complexity differences that might confound 

the analyses.  Where it is appropriate to focus on data from relatively mature processes, the data 

sets are split by assignments 9 and 10.  For the comparison of programmers who finished all ten 

assignments versus those who did not, in Section 4.6.2, the appropriate data split is by 

assignments 1 and 2. 
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4.6.1 Assignment (9A Versus 10A) 

As reported in various studies of PSP, there are consistent, statistically significant 

changes in defect density in testing across assignments.  Even when the focus of these analyses is 

on assignments 9 and 10 to minimize the effects of process changes and learning, if learning 

curve effects between these two assignments are significant, then the data may need to be split 

by assignment.  Figure 4 illustrates the differences in defect density in testing between 

assignments 9 and 10 for the PSPb data set, including outliers. 
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Figure 4  Differences Between Assignment 9 and Assignment 10 
 

The Each Pair and All Pairs tests indicate that the means for assignments 9 and 10 are 

significantly different, as illustrated by the comparison circles in the figure.   

The ANOVA results for the effect of the assignment on defect density in testing are 

shown in Table 7.  The null hypothesis is 0 9 10: A AH µ µ=  with alternative hypothesis 

9 10:a A AH µ µ≠ .   
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Table 7  ANOVA for Assignment (9A vs 10) 

Source PSPa PSPb 

DF 1 1 

SS 1851.8 12062.4 

Model  

MS 1851.8 12062.4 

DF 306 1565 

SS 63791.1 480130.0 

Error 

MS 208.5 306.8 

DF 307 1566 Total 

SS 65642.9 492192.4 

F Ratio 9.3W 40.9W 

Prob > F 0.0025W <.0001W 

R2
a 0.0250 0.0239 

 
The effect of assignment on defect density in testing was shown to be statistically 

significant for both of the data sets.  This indicates that assignment is a useful predictor variable 

for defect density in testing, at least within the context of the PSP class. 

The estimates of the means for defect density in testing at the different levels of 

assignment, and the associated standard errors for the means, are listed in Table 8 for the data 

sets including outliers.  The model can be expressed as: 

(Defect density in testing) = β Assignment X Assignment 

where β Assignment is the level for the assignment (9A or 10A) and X Assignment is an indicator 

variable for whether that assignment is the correct one for the observation. 
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Table 8  Estimates for Assignment Levels 

Levels 

 

PSPa** 

(std err) 

PSPb**** 

(std err) 

9A 13.65 

(1.31) 

16.95 

(0.69) 

10A 8.74 

(0.94) 

11.39 

(0.53) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 9.  Outliers 

were identified with respect to defect density in testing. 

Table 9  ANOVA for Assignment (9A vs 10A) Excluding Outliers 

Source PSPa PSPb 

DF 1 1 

SS 1169.2 5971.8 

Model  

MS 1169.2 5971.8 

DF 298 1486 

SS 28319.1 140680.2 

Error 

MS 95.0 94.7 

DF 299 1487 Total 

SS 29488.3 146652.0 

F Ratio 12.6W 64.7W 

Prob > F 0.0005W <.0001W 

R2
a 0.0364 0.0401 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers. This indicates that assignment is a useful predictor variable for defect density 

in testing. 
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The estimates of the means for defect density in testing at the different levels of 

assignment, and the associated standard errors for the means, are listed in Table 10 for the data 

sets excluding outliers.   

Table 10  Estimates for Assignment Levels Excluding Outliers 

Levels 

 

PSPa*** 

(std err) 

PSPb**** 

(std err) 

9A 11.66 

(0.84) 

13.40 

(0.38) 

10A 7.70 

(0.73) 

9.39 

(0.32) 
 

The ANOVA results indicate there is a consistent, statistically significant difference 

between assignments 9 and 10 for defect density in testing.  The data sets will be split by 

assignment where appropriate in subsequent analyses.   

The difference between assignments 9 and 10 could be due to the process changes 

between PSP2.1 and PSP3 involved in adopting cyclic development.  Conceptually, this 

difference seems minor, but the size of the programs in assignment 10 is noticeably greater than 

those in the earlier assignments (see Figure 2).  There may be learning curve effects due to new 

software engineering techniques, since PSP2.1 introduces design techniques for assignment 9.  

This may be a significant process change for those who have not used these design techniques 

before, even if they have used other design techniques on earlier PSP assignments.   It seems 

unlikely that there are significant learning curve effects due to the application domain.   

It is unclear whether the difference between assignments should be attributed to process 

differences or learning curve effects (and the two are related since there are learning curve 

effects associated with adopting new processes).  As observed in previous PSP studies [Ferguson 
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et al. 1997], performance continues to improve after the PSP class, so the presence of on-going 

learning curve effects would not be surprising.   

4.6.2 Finishing All Ten Assignments Versus Not Finishing 

The data for each of the PSP0 assignments can be examined to determine whether those 

who finish all ten assignments differ from those who begin the course but drop out for some 

reason.  For the PSPa data set, 103 students finished all ten assignments; for PSPb, 573 students 

finished all ten.  Figure 5 illustrates the differences in defect density in testing for the students 

finishing all ten assignments versus those not finishing the course for (PSPb, 1A, Outliers).  
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Figure 5  Differences Between All Ten Assignments Versus Less Than Ten 
 

The Each Pair and All Pairs tests indicate that the means for the students finishing all ten 

assignments are not significantly different from those not finishing the course, as illustrated by 

the comparison circles in the figure.   
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The ANOVA results for the effect of finishing all ten assignments on defect density in 

testing are shown in Table 11.  The null hypothesis is 0 : AllTen LessThanTenH µ µ=  with alternative 

hypothesis :a AllTen LessThanTenH µ µ≠ .   

Table 11  ANOVA for Finishing All Ten Assignments 

Source PSPa 1A PSPa 2A PSPb 1A PSPb 2A 

DF 1 1 1 1 

SS 7729.5 3332.1 3826.3 3822.2 

Model 

MS 7729.5 3332.1 3826.3 3822.2 

DF 219 232 1084 1115 

SS 435605.5 939809.9 2017638.5 4011508.5 

Error 

MS 1989.1 4050.9 1861.3 3597.8 

DF 220 233 1085 1116 Total 

SS 443335.0 943142.0 2021464.8 4015330.7 

F Ratio 4.2W 0.8 2.0W 1.1W 

Prob > F 0.0423W 0.3654 0.1574W 0.3053W 

R2
a 0.0129 -0.0008 0.0010 0.0001 

 
The effect of finishing all ten assignments on defect density in testing was shown to be 

statistically significant for only one of the four data sets:  (PSPa, 1A, Outliers).  This indicates 

that finishing all ten assignments is unlikely to be a useful predictor variable for defect density in 

testing. 

The estimates of the means for defect density in testing for those finishing all ten 

assignments versus those finishing less than ten, and the associated standard errors for the 

means, are listed in Table 12 for the data sets including outliers.  The model can be expressed as: 
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(Defect density in testing) = β All Ten X All Ten 

where β All Ten is the level for (not) finishing all ten assignments and X All Ten is an indicator 

variable for whether all ten or less than ten is the correct one for the observation. 

Table 12  Estimates for Levels of Finishing All Ten Assignments 

Levels 

 

PSPa 1A* 
(std err) 

PSPa 2A 

 (std err) 

PSPb 1A 

(std err) 

PSPb 2A 

(std err) 

All Ten 32.3 

(3.0) 

51.9 

(5.2) 

39.0 

(1.6) 

51.6 

(2.3) 

Less Than Ten 44.1 

(5.0) 

44.3 

(6.2) 

42.8 

(2.1) 

55.3 

(2.8) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 13. 

Outliers were identified with respect to defect density in testing. 
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Table 13  ANOVA for Finishing All Ten Assignments Excluding Outliers 

Source PSPa 1A PSPa 2A PSPb 1A PSPb 2A 

DF 1 1 1 1 

SS 1208.0 2382.9 21.6 15.8 

Model  

MS 1208.0 2382.9 21.6 15.8 

DF 202 215 1021 1039 

SS 109112.2 139693.0 737581.9 1085639.0 

Error 

MS 540.2 649.7 722.4 1044.9 

DF 203 216 1022 1040 Total 

SS 110320.2 142075.9 737603.5 1085654.7 

F Ratio 2.2 3.7 0.03 0.02 

Prob > F 0.1364 0.0568 0.8627 0.9023 

R2
a 0.0061 0.0122 -0.0010 -0.0010 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers, differing only for the one case that was shown to be statistically significant 

when outliers were included.  The preponderance of the evidence therefore indicates that 

finishing all ten assignments is unlikely to be a useful predictor variable for defect density in 

testing. 

The estimates of the means for defect density in testing for those finishing all ten 

assignments versus those finishing less than ten, and the associated standard errors for the 

means, are listed in Table 14 for the data sets excluding outliers.   
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Table 14  Estimates for Levels of Finishing All Ten Assignments Excluding Outliers 

Levels 

 

PSPa 1A 

(std err) 

PSPa 2A 

(std err) 

PSPb 1A 

(std err) 

PSPb 2A 

(std err) 

All Ten 27.1 

(2.2) 

37.7 

(2.8) 

33.2 

(1.1) 

41.5 

(1.4) 

Less Than Ten 31.9 

(2.4) 

31.0 

(2.2) 

32.9 

(1.2) 

41.2 

(1.5) 
 

The preponderance of the evidence in the ANOVA results indicates that finishing the 

course should not be considered a significant explanatory variable.  Although a statistically 

significant difference was shown for defect density in testing in (PSPa, 1A, Outliers), the 

statistical significance is marginal and disappears when outliers are excluded.  This suggests that 

people finishing the PSP course are reasonably typical of programmers who choose to take the 

PSP course.   

Excluding observations with missing data, i.e., excluding observations for students who 

did not finish all ten assignments, is advantageous for some statistical analyses, such as repeated 

measures ANOVA.  For example, the Hayes and Over analysis of the PSPa data only used the 

data for those students finishing assignments 1-9 (assignment 10 was not considered in their 

analysis) [Hayes and Over 1997, 51].  This result supports the generalizability of such analyses 

of PSP data. 

4.6.3 PSP Classes 

There are two situations that could cause systemic differences across PSP classes:  1) 

changes in the teaching materials used in the PSP class, or 2) differences between instructors.  

The possibility of a trend due to systemic changes in the student population does not appear 

likely, since there are no known reasons for a systemic change in the student population for PSP, 
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although sporadic cases where exceptionally poorly-prepared or well-prepared classes could 

occur.  The PSP class has been based on the text A Discipline for Software Engineering since its 

publication in 1995 [Humphrey 1995]; prior classes used drafts of the manuscript.  PSP 

instructors are all qualified and authorized by the Software Engineering Institute, and instruction 

is typically done by teams of instructors.  There would not appear to be any reason for changes in 

PSP class performance over time, although there might be cases where particular classes might 

have significantly different results because of special causes of variation. 

Viewing the PSP classes as a sequential variable over time allows an exploration of time-

based shifts in quality.  The regression results for the effect of PSP class on defect density in 

testing are shown in Table 15, where the PSP class is a sequence number rather than a nominal 

variable, which allows an exploration of systemic trends over time.  For the regression model: 

(Defect density in testing) = β0 + β1 (PSP class) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 15  Regression Models for PSP Class 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 188.9 5.6 1685.6 395.2 

Model  

MS 188.9 5.6 1685.6 395.2 

DF 161 143 828 735 

SS 45302.2 18294.4 328541.2 149508.1 

Error 

MS 281.4 127.9 396.8 203.4 

DF 162 144 829 736 Total 

SS 45491.1 18300.0 330226.8 149903.2 

F Ratio 0.7 0.04 4.2 1.9 

Prob > F 0.4138 0.8339 0.0396 0.1638 

R2
a -0.0020 -0.0067 0.0039 0.0013 

 
The effect of PSP class on defect density in testing was shown to be statistically 

significant for only one of the four data sets:  (PSPb, 9A, Outliers). This indicates that design 

review class is unlikely to be a useful predictor variable for defect density in testing. 

The parameter estimates for the regression models for PSP class trends, and the 

associated standard errors, are listed in Table 16 for the data sets including outliers. For the null 

hypothesis 0iβ =  in the following tables of parameter estimates, a p-value<0.05 is indicated 

with *, a p-value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and a p-

value<0.0001 is indicated with ****. 
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Table 16  Estimates for PSP Class 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 11.97**** 

(2.43) 

9.05**** 

(1.78) 

20.49**** 

(1.85) 

13.23**** 

(1.42) 

β1 0.13 

(0.15) 

-0.02 

(0.11) 

-0.04* 

(0.02) 

-0.02 

(0.02) 
 

Some classes may be atypical; the PSP class is naturally a nominal variable.  The Each 

Pair and All Pairs tests for a nominal representation of the class data indicate that some PSP 

classes are atypical, as illustrated by the comparison circles in Figure 6 for (PSPb, 9A, Outliers). 
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Figure 6  PSP Classes Over Time 
 

The class with the largest average defect density in testing (44.0 defects/KLOC) appears 

clearly different from the rest of the classes, which range from 1.6 to 30.2 defects/KLOC.  Upon 

further examination of this, and four other classes where defect density in testing was abnormally 

high at the end of the course, the anomalies appear related to a limited number of students having 

trouble with one or more assignments.   
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In the case of the class with an average defect density of 44.0 defects/KLOC, two 

students discovered more than ten defects in testing in assignment 10 (14 defects in 238 LOC 

and 12 defects in 163 LOC).  Since only five students finished all ten programs in this class, the 

average and standard deviation for defect density in testing are high.  Similarly for the other four 

atypical classes, there are one or two students with an unusually high number of defects.  In one 

case, a student had 8 defects in a 35 LOC program on assignment 10, for a defect density of 229 

defects/KLOC.   Similarly for PSPa, one class was atypical because of one student with 11 

defects in a 72 LOC program for a defect density of 153 defects/KLOC. 

Combining a small number of finishing students with one or two students struggling to 

finish assignment 9 and/or 10 leads to the occasional atypical class, which is not unexpected 

given the large number (112) of classes being analyzed.  Since there does not appear to be a 

statistically or practically significant trend over time, it seems reasonable to conclude that, in 

general, PSP classes are relatively stable learning environments, although a small number of 

students may have trouble on some assignments.  Atypical student data will be removed as 

appropriate for later analyses rather than excluding class data. 

To support this conclusion, additional analyses were run for the trends with outliers 

excluded.  Outliers were identified with respect to defect density in testing for students rather 

than classes.  The ANOVA results for the data sets excluding outliers are provided in Table 17. 
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Table 17  Regression Models for PSP Class Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 1.6 88.9 209.2 10.0 

Model  

MS 1.6 88.9 209.2 10.0 

DF 156 136 788 702 

SS 17551.9 7130.2 98369.6 50231.6 

Error 

MS 112.5 52.4 124.8 71.6 

DF 157 137 789 703 Total 

SS 17553.5 7219.1 98578.9 50241.6 

F Ratio 0.01 1.7 1.7 0.1 

Prob > F 0.9053 0.1950 0.1958 0.7083 

R2
a -0.0063 0.0051 0.0009 -0.0012 

 
None of the regression models shows a statistically significant regression for PSP classes 

for defect density in testing for the data sets excluding outliers.   

The parameter estimates for the regression models for PSP class, and the associated 

standard errors, are listed in Table 18 for the data sets excluding outliers.  

Table 18  Estimates for PSP Class Excluding Outliers 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 11.50**** 

(1.55) 

8.12**** 

(1.15) 

14.97**** 

(1.07) 

9.69**** 

(0.87) 

β1 0.01 

(0.09) 

-0.09 

(0.07) 

-0.02 

(0.01) 

-0.004 

(0.01) 
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The preponderance of the evidence in the ANOVA tables indicates that PSP class is 

unlikely to be a useful predictor variable.  Although a statistically significant difference was 

shown for defect density in testing in (PSPb, 9A, Outliers), the statistical significance is marginal 

and disappears when outliers are excluded.  This suggests that the PSP class is a reasonably 

stable learning environment and that excluding outliers adequately addresses any concerns 

related to differences between classes or instructors.   

 

4.6.4 Highest Degree Attained 

In analyzing the highest degree attained, a full representation of undergraduate and graduate 

degrees is available for PSPb: BE (Bachelor of Engineering), BS (Bachelor of Science), MS 

(Master of Science), and PhD (Philosophy Doctorate).  For PSPa, there are only two people with 

BE or PhD degrees, therefore only the BS and MS are considered in those models.  The Each 

Pair and All Pairs tests indicate that the means for students with different academic credentials 

(degrees) are not significantly different, as illustrated by the comparison circles in Figure 7 for 

(PSPb, 9A, Outliers). 
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Figure 7  Differences for Highest Degree Attained 
 

The ANOVA results for the effect of highest degree attained on defect density in testing 

are shown in Table 19.  The null hypothesis is 0 : BE BS MS PhDH µ µ µ µ= = =  with alternative 

hypothesis Ha: not all of the means are equal. 
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Table 19  ANOVA for Highest Degree Attained 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 3 3 

SS 40.7 470.4 437.8 327.2 

Model  

MS 40.7 470.4 145.9 109.1 

DF 85 78 321 269 

SS 14242.3 4976.4 107895.9 35963.3 

Error 

MS 167.6 63.8 336.1 133.7 

DF 86 79 324 272 Total 

SS 14282.9 5446.8 108333.7 36290.6 

F Ratio 0.2 4.3W 0.4 0.8 

Prob > F 0.6236 0.0500W 0.7287 0.4861 

R2
a -0.0089 0.0746 -0.0053 -0.0020 

 
The effect of the highest degree attained on defect density in testing was shown not to be 

statistically significant for all of the data sets.  This indicates that the highest degree attained is 

not a useful predictor variable for defect density in testing. 

The estimates of the means for defect density in testing at the different levels of highest 

degree attained, and the associated standard errors for the means, are listed in Table 20 for the 

data sets including outliers.  The model can be expressed as: 

(Defect density in testing) = β Highest Degree X Highest Degree 

where β Highest Degree is the level for the highest degree attained and X Highest Degree is an indicator 

variable for whether that highest degree attained is the correct one for the observation. 
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Table 20  Estimates for Highest Degree Attained Levels 

Levels  

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

BE --- --- 13.49 

(1.28) 

10.90 

(1.21) 

BS 12.20 

(1.67) 

6.40 

(0.83) 

15.71 

(2.07) 

11.43 

(1.31) 

MS 13.78 

(2.44) 

12.00 

(2.58) 

15.13 

(1.54) 

9.95 

(1.14) 

PhD --- --- 18.69 

(4.36) 

6.00 

(2.69) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 21. 

Outliers were identified with respect to defect density in testing. 
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Table 21  ANOVA for Highest Degree Attained Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 3 3 

SS 165.5 153.2 166.7 174.2 

Model  

MS 165.5 153.2 55.6 58.1 

DF 83 75 299 261 

SS 8909.1 3128.0 26467.4 19871.9 

Error 

MS 107.3 41.7 88.5 76.1 

DF 84 76 302 264 Total 

SS 9074.6 3281.2 26634.0 20046.1 

F Ratio 1.5 2.4W 0.6 0.8 

Prob > F 0.2179 0.1347W 0.5976 0.5159 

R2
a 0.0064 0.0340 -0.0037 -0.0027 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, indicate that the highest 

degree attained is not a useful predictor variable for defect density in testing. 

The estimates of the means for defect density in testing at the different levels of the 

highest degree attained, and the associated standard errors for the means, are listed in Table 22 

for the data sets excluding outliers.   
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Table 22  Estimates for Highest Degree Attained Levels Excluding Outliers 

Levels 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

BE --- --- 12.94 

(1.18) 

10.08 

(1.10) 

BS 10.59 

(1.26) 

6.00 

(0.74) 

11.11 

(0.91) 

9.60 

(0.96) 

MS 13.77 

(2.44) 

9.33 

(2.01) 

11.28 

(0.86) 

8.87 

(0.82) 

PhD --- --- 11.38 

(2.30) 

6.00 

(2.69) 
 

Although degree credentials are not a significant factor for PSP assignments, educational 

credentials may contribute to improved performance for more complex programs, where deeper, 

more extensive domain or engineering knowledge may be crucial to understanding both the 

problem and potential solutions. 

4.6.5 Years of Programming Experience 

Programmer skill is frequently identified as a major contributor to quality, and years of 

experience is frequently used as a surrogate for skill.  The regression results for the effect of 

years of experience on defect density in testing are shown in Table 23.  For the regression model: 

(Defect density in testing) = β0 + β1 (Years of programming experience) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0. 
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Table 23  Regression Models for Years of Experience 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 100.1 177.1 846.3 185.2 

Model  

MS 100.1 177.1 846.3 185.2 

DF 70 65 364 306 

SS 12289.7 5895.4 119685.5 42010.9 

Error 

MS 175.6 90.7 328.8 137.3 

DF 71 66 365 307 Total 

SS 12389.9 6072.4 120531.8 42196.1 

F Ratio 0.6 2.0 2.6 1.3 

Prob > F 0.4527 0.1671 0.1095 0.2464 

R2
a -0.0061 0.0142 0.0043 0.0011 

 
The effect of years of experience on defect density in testing was shown not to be 

statistically significant for all of the data sets. This indicates that years of experience is not a 

useful predictor variable for defect density in testing. 

The parameter estimates of the regression model for years of experience, and the 

associated standard errors, are listed in Table 24 for the data sets including outliers.   
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Table 24  Estimates for Years of Experience 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 10.96*** 

(2.98) 

5.99** 

(2.25) 

13.59**** 

(1.49) 

9.79**** 

(1.03) 

β1 0.17 

(0.22) 

0.23 

(0.17) 

0.19 

(0.12) 

0.10 

(0.09) 
 

The regression models for the data sets excluding outliers are provided in Table 25.  

Outliers were identified with respect to defect density in testing; no outliers were identified for 

years of experience. 

Table 25  Regression Models for Years of Experience Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 282.5 14.9 5.1 1.2 

Model  

MS 282.5 14.9 5.1 1.2 

DF 68 62 346 295 

SS 6930.8 3411.3 36388.3 21607.6 

Error 

MS 101.9 55.0 105.2 73.2 

DF 69 63 347 296 Total 

SS 7213.3 3426.1 36393.3 21608.8 

F Ratio 2.8 0.3 0.05 0.02 

Prob > F 0.1006 0.6052 0.8265 0.8994 

R2
a 0.0250 -0.0117 -0.0028 -0.0033 
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The regression results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, therefore indicate that 

years of experience is not a useful predictor variable for defect density in testing. 

The parameter estimates of the regression model for years of experience, and the 

associated standard errors, are listed in Table 26 for the data sets excluding outliers.   

Table 26  Estimates for Years of Experience Excluding Outliers 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 8.17*** 

(2.31) 

6.50*** 

(1.84) 

12.58**** 

(0.86) 

9.29**** 

(0.77) 

β1 0.28 

(0.17) 

0.07 

(0.14) 

-0.02 

(0.07) 

-0.01 

(0.07) 
 

While some researchers have empirically found that years of experience are related to 

quality [Zhang 1999, 153; Takahasi and Kamayachi 1985], that was not the case in this analysis, 

although the results are similar to those of Wohlin and Wesslen for PSP [Wohlin and Wesslen 

1998, 57; Wohlin 2004, 223].  When the studies finding experience a useful factor for less-

experienced programmers were performed in the 1970s and 1980s, entry-level programmers 

were relatively unfamiliar with computers.  The familiarity of the general population with 

computers has grown markedly over the last few decades.  Students and entry-level programmers 

in the 1990s are likely to be well-acquainted with computers before beginning their professional 

careers.  The consequence is that the operational definition of years of experience for 

programmers is likely to have shifted in the last three decades.  The results of the earlier studies 

may have been valid and yet be irrelevant to today’s population of “inexperienced” 

programmers. 
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This does not imply that experience does not affect ability.  Holmes found that for his 

PSP data, collected over a seven year period, developer experience was a significant factor 

[Holmes 2003].  His results, however, apply to a single individual engaged in applying PSP as 

part of a systematic improvement program.  They indicate that individual professionals can 

substantially improve their performance over time, but they cannot be generalized to years of 

experience across different individuals, which is the point of this analysis. 

Industry studies of the effect of years of experience on quality typically use the average 

number of years for the team [Zhang 1999, 153].  In averaging experience across the team, 

related factors in assigning professionals to the team with diverse backgrounds may impact the 

operational meaning of “experience.”  The relevant factors may be related to a well-qualified 

team, with a variety of skills and capabilities, and years of experience may be confounded with 

other factors related to the skills of the team. Years of experience may therefore be a useful 

surrogate for team ability, even though it provides little insight with respect to the ability of the 

individual professionals comprising the team. 

4.6.6 Number of Languages Known 

While length of experience is usually considered a poor surrogate for ability, breadth of 

experience is considered a more realistic indicator [Curtis, Krasner, and Iscoe 1988; Curtis 1988, 

289], particularly for programmers with three or fewer years of experience [Sheppard et al. 1979, 

47].  The number of languages that a programmer has a working knowledge of may be 

considered a reasonable surrogate for breadth of experience.   

The regression results for the effect of the number of languages known on defect density 

in testing are shown in Table 27.  For the regression model: 
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(Defect density in testing) = β0 + β1 (Number of languages known) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0. 

Table 27  Regression Models for Number of Languages Known 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 19.0 17.6 313.8 1127.2 

Model  

MS 19.0 17.6 313.8 1127.2 

DF 93 88 366 308 

SS 16804.3 9225.3 121034.5 40864.9 

Error 

MS 180.7 104.8 330.7 131.7 

DF 94 89 367 309 Total 

SS 16823.2 9242.9 121348.3 41992.2 

F Ratio 0.1 0.2 0.9 8.5 

Prob > F 0.7468 0.6827 0.3306 0.0038 

R2
a -0.0096 -0.0094 -0.0001 0.0237 

 
The effect of the number of languages known on defect density in testing was shown to be 

statistically significant for only one of the four data sets:  (PSPb, 10A, Outliers). This indicates 

that the number of languages known is unlikely to be a useful predictor variable for defect 

density in testing. 

The parameter estimates of the regression model for the number of languages known, and 

the associated standard errors, are listed in Table 28 for the data sets including outliers.   
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Table 28  Estimates for Number of Languages Known 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 14.17**** 

(2.93) 

8.16*** 

(2.24) 

16.90**** 

(1.89) 

7.48**** 

(1.31) 

β1 -0.17 

(0.52) 

0.16 

(0.40) 

-0.41 

(0.43) 

0.86** 

(0.29) 
 

The regression models for the data sets excluding outliers are provided in Table 29.  

Outliers were identified with respect to defect density in testing; no outliers were identified with 

respect to the number of languages known. 

Table 29  Regression Models for Number of Languages Known Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 6.3 92.2 154.9 0.8 

Model  

MS 6.3 92.2 154.9 0.8 

DF 89 82 344 298 

SS 8670.0 3674.2 33154.8 22312.3 

Error 

MS 97.4 44.8 96.4 74.9 

DF 90 83 345 299 Total 

SS 8676.3 3766.4 33309.7 22313.1 

F Ratio 0.07 2.1 1.6 0.01 

Prob > F 0.7993 0.1552 0.2057 0.9194 

R2
a -0.0105 0.0126 0.0018 -0.0033 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers, differing only for the one case that was shown to be statistically significant 
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when outliers were included.  The preponderance of the evidence therefore indicates that the 

number of languages known is unlikely to be a useful predictor variable for defect density in 

testing. 

The parameter estimates of the regression model for number of languages known, and the 

associated standard errors, are listed in Table 30 for the data sets excluding outliers.   

Table 30  Estimates for Number of Languages Known Excluding Outliers 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 11.93**** 

(2.22) 

5.04** 

(1.50) 

13.20**** 

(1.10) 

9.32**** 

(0.03) 

β1 -0.10 

(0.40) 

0.38 

(0.26) 

-0.32 

(0.24) 

0.03 

(0.25) 
 

While breadth of experience may be superior to length of experience in determining 

ability, the number of languages known does not appear to be useful surrogate for ability. 

4.6.7 Percent of Time Programming  

The PSP student background questionnaire was revised in 1998.  The question on percent 

of time programming in the previous year was revised to be more detailed, asking about software 

requirements, design, code, and test percentages (among other topics) separately.  The 

instructions state that the total percentage need not sum to 100%.  One consequence is that 116 

of the students in the PSP repository have percentages of programming experience that sum to 

more than 100%.  This was operationally resolved by using 100% for totals greater than 100%, 

but this measure may be systematically flawed for this analysis, and no firm conclusions should 

be reached.   
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The regression results for the effect of the percent of time programming in the previous 

year on defect density in testing are shown in Table 31.  For the regression model: 

(Defect density in testing) = β0 + β1 (Percent of time programming) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0. 

Table 31  Regression Models for Percent of Time Programming 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 0.005 34.4 67.6 155.7 

Model  

MS 0.005 34.4 67.6 155.7 

DF 32 31 330 274 

SS 3653.4 2041.1 108002.2 35672.1 

Error 

MS 114.2 65.8 327.3 130.2 

DF 33 32 331 275 Total 

SS 3653.4 1075.5 108069.8 35827.7 

F Ratio 0.0000 0.5 0.2 1.2 

Prob > F 0.9947 0.4749 0.6498 0.2751 

R2
a -0.0313 -0.0151 -0.0024 0.0007 

 
The effect of the percent of time programming in the previous year on defect density in 

testing was shown not to be statistically significant for all of the data sets. This indicates that the 

percent of time programming in the previous year is not a useful predictor variable for defect 

density in testing. 

The parameter estimates of the regression model for the percent of time programming in 

the previous year, and the associated standard errors, are listed in Table 32 for the data sets 

including outliers.   
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Table 32  Estimates for Percent of Time Programming 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 11.64* 

(5.29) 

9.86* 

(4.05) 

16.25**** 

(2.48) 

12.23**** 

(1.63) 

β1 0.0005 

(0.08) 

-0.04 

(0.06) 

-0.01 

(0.03) 

-0.02 

(0.02) 
 

The regression models for the data sets excluding outliers are provided in Table 33.  

Outliers were identified with respect to defect density in testing; no outliers were identified with 

respect to the percent of time programming in the previous year. 

Table 33  Regression Models for Percent of Time Programming Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 80.4 0.3 23.2 99.5 

Model 

MS 80.4 0.3 23.2 99.5 

DF 30 29 315 264 

SS 2003.6 910.8 32411.4 18567.2 

Error 

MS 66.8 31.4 102.9 70.3 

DF 31 30 316 265 Total 

SS 2084.0 911.1 32434.6 18666.7 

F Ratio 1.2 0.01 0.2 1.4 

Prob > F 0.2812 0.9172 0.6356 0.2354 

R2
a 0.0065 -0.0341 -0.0025 0.0016 

 
The regression results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, indicate that the percent 
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of time programming in the previous year is not a useful predictor variable for defect density in 

testing. 

The parameter estimates of the regression models for the percent of time programming in 

the previous year, and the associated standard errors, are listed in Table 34 for the data sets 

excluding outliers.   

Table 34  Estimates for Percent of Time Programming Excluding Outliers 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 14.22** 

(4.11) 

5.36 

(2.91) 

11.75**** 

(1.44) 

10.48**** 

(1.22) 

β1 -0.07 

(0.06) 

0.004 

(0.04) 

0.009 

(0.02) 

-0.02 

(0.02) 
 

Recent experience in programming is primarily a concern for learning curve effects 

associated with programming skills in general.  Given the small size of the PSP assignments, it 

seems likely that the bulk of any learning curve effects associated with basic programming skills 

are concentrated in the first few assignments. 

4.6.8 Programming Language  

Although some researchers have noted that the programming language used does not 

appear to be significantly correlated with productivity or quality except at a gross level 

[DeMarco and Lister 1999, 32-33; Yang and Paradi 2004], others have found that programming 

language can have a significant impact on both.  For example, in defining the backfiring 

technique for estimating function points based on lines of code, Jones found noticeable 

differences between different languages:  it takes 128 lines of code in C to implement one 
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function point, but only 53 in C++ [Jones 1995].  Similarly, defect injection rates have been 

found to differ by two to three times between different programming languages [Phipps 1991, 

351], although this may be driven by productivity differences between languages. 

The most frequently used languages for PSPb are C, C++, Java, and Visual Basic.  For 

PSPa, only two students used Visual Basic, and none used Java, so the only languages 

considered for the PSPa data set are C and C++.   The Each Pair and All Pairs tests indicate that 

the means for the programming language are not significantly different, as illustrated by the 

comparison circles in Figure 8 for (PSPb, 9A, Outliers). 
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Figure 8  Differences Between Programming Language Levels 
 

The ANOVA results for the effect of the programming language used on defect density 

in testing are shown in Table 35.  The null hypothesis is 0 : C C Java VisualBasicH µ µ µ µ++= = =  for 

PSPb, and 0 : C CH µ µ ++=  for PSPa, with alternative hypothesis Ha: not all of the means are 

equal. 
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Table 35  ANOVA for Programming Language 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 3 3 

SS 26.5 45.8 342.2 14.8 

Model  

MS 26.5 45.8 114.1 4.9 

DF 72 66 285 238 

SS 14727.9 7447.0 109524.0 34141.9 

Error 

MS 204.6 112.8 384.3 143.5 

DF 73 67 288 241 Total 

SS 14754.4 7492.9 109866.1 34156.7 

F Ratio 0.1 0.4 0.3 0.03 

Prob > F 0.7200 0.5261 0.8277 0.9915 

R2
a -0.0121 -0.0089 -0.0074 -0.0122 

 
The effect of the programming language used on defect density in testing was shown not 

to be statistically significant for all of the data sets.  This indicates that the programming 

language used is not a useful predictor variable for defect density in testing. 

The estimates of the means for defect density in testing at the different levels of the 

programming language used, and the associated standard errors for the means, are listed in Table 

36 for the data sets including outliers.  The model can be expressed as: 

(Defect density in testing) = β Programming Language  X Programming Language 

where β Programming Langue is the level for the programming language used and X Programming Language is 

an indicator variable for whether that programming language is the correct one for the 

observation. 
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Table 36  Estimates for Programming Language Levels 

Levels  

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

C 13.80 

(1.93) 

9.68 

(1.45) 

15.69 

(1.31) 

10.85 

(0.96) 

C++ 12.23 

(2.67) 

7.45 

(2.53) 

16.11 

(2.49) 

11.05 

(1.63) 

Java --- --- 19.13 

(3.88) 

11.63 

(2.98) 

Visual Basic --- --- 17.60 

(5.12) 

10.63 

(2.19) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 37.  

Outliers were identified with respect to defect density in testing. 
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Table 37  ANOVA for Programming Language Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 3 3 

SS 22.0 0.03 5.7 143.3 

Model  

MS 22.0 0.03 1.9 47.8 

DF 68 62 268 228 

SS 6555.8 3395.4 28534.4 15781.1 

Error 

MS 96.4 54.8 106.5 69.2 

DF 69 63 271 231 Total 

SS 6577.8 3395.4 28540.1 15924.3 

F Ratio 0.2 0.0006 0.02 0.7 

Prob > F 0.6345 0.9811 0.9968 0.5590 

R2
a -0.0113 -0.0161 -0.0110 -0.0040 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, indicate that the 

programming language used is not a useful predictor variable for defect density in testing. 

The estimates of the means for defect density in testing at the different levels of the 

programming language used, and the associated standard errors for the means, are listed in Table 

38 for the data sets excluding outliers.   
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Table 38  Estimates for Programming Language Levels Excluding Outliers 

Levels 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

C 10.79 

(1.31) 

7.40 

(0.99) 

12.66 

(0.87) 

9.66 

(0.73) 

C++ 12.23 

(2.67) 

7.45 

(2.53) 

12.59 

(1.26) 

8.07 

(0.99) 

Java --- --- 13.11 

(1.73) 

9.22 

(1.84) 

Visual Basic --- --- 12.71 

(1.59) 

10.63 

(2.19) 
 

Language does not seem to affect quality when measured in terms of defect density.  If 

defect density is fairly stable across languages, it seems reasonable to view lines of code as an 

appropriate measure of the opportunities for defects in a program. 

Although language may not significantly affect defect density, the productivity difference 

between languages implies that the number of defects will vary significantly, depending on the 

language(s) used [Wesslen 1999, 225; Wohlin 2004, 223].  In other words, if it takes twice as 

many LOC to implement a program in language A as in language B, then there will be twice as 

many opportunities for defects in the language A program as for the language B program, even if 

the defect density is the same.  Because of the impact of programming language on productivity, 

and the related effects on process variables such as review rates, the programming language used 

should not be ignored in analyzing software quality, although it may not be a statistically 

significant variable for quality (as measured by defect density in testing) when considered in 

isolation. 
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4.6.9 Discussion of the Potentially Confounding Variables 

The results of the analyses of the potentially confounding variables indicate, with the 

exception of the PSP-specific factor of the assignment, that none of the variables is a potentially 

useful predictor variable.  These results are summarized in Table 39. 

Table 39  Statistically Significant Results for Potentially Confounding Variables 

Variable Including 
Outliers 

Excluding 
Outliers 

C1) assignment (9A vs 10A) 2 of 2 2 of 2 

C2) all ten vs less than ten assignments finished 1 of 4 0 of 4 

C3) PSP class 1 of 4 0 of 4 

C4) highest degree attained 0 of 4 0 of 4 

C5) years of programming experience  0 of 4 0 of 4 

C6) percent of time programming in the previous year 0 of 4 0 of 4 

C7) number of languages known 1 of 4 0 of 4 

C8) programming language used 0 of 4 0 of 4 
 

These results are consistent for data sets including and excluding outliers, but the 

potentially confounding variables will be explored further in more sophisticated statistical 

models in Chapter 7.   
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4.7 EXPLORING SOLUTION COMPLEXITY (PROGRAM SIZE) 

4.7.1 Program Size and Defect Density in Testing 

Hypothesis S1 is that program size is related to defect density in testing.  Since all defect 

prediction models use program size as a predictor variable (and many use it as the only predictor 

variable), this variable is expected to be significant. 

The regression results for the effect of program size on defect density in testing are 

shown in Table 40.  For the regression model: 

(Defect density in testing) = β0 + β1 (Program size) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 40  Regression Models for Program Size 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 1367.0 602.3 16893.0 5988.0 

Model  

MS 1367.0 602.3 16893.0 5988.0 

DF 161 143 828 735 

SS 44124.1 17697.7 313333.8 143915.2 

Error 

MS 274.1 123.8 378.4 195.8 

DF 162 144 829 736 Total 

SS 45491.1 18300.0 330226.8 149903.2 

F Ratio 5.0 4.9 44.6 30.6 

Prob > F 0.0269 0.0290 <0.0001 <0.0001 

R2
a 0.0240 0.0261 0.0500 0.0386 
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The effect of program size on defect density in testing was shown to be statistically 

significant for all of the data sets. This indicates that program size is a useful predictor variable 

for defect density in testing as expected. 

The parameter estimates of the regression models for program size, and the associated 

standard errors, are listed in Table 41 for the data sets including outliers.   

Table 41  Estimates for Program Size 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 18.22**** 

(2.42) 

12.53**** 

(1.95) 

24.92**** 

(1.37) 

16.90**** 

(1.12) 

β1 -0.03* 

(0.01) 

-0.02* 

(0.007) 

-0.05**** 

(0.007) 

-0.02**** 

(0.004) 
 

The regression models for the data sets excluding outliers are provided in Table 42.  

Outliers were identified with respect to both defect density in testing and program size. 
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Table 42  Regression Models for Program Size Excluding Outliers 

Source PSPa 9A PSPa 10A PSPb 9A PSPb 10A 

DF 1 1 1 1 

SS 334.5 21.1 2098.7 1576.0 

Model  

MS 334.5 21.1 2098.7 1576.0 

DF 149 136 748 659 

SS 16661.4 7198.0 86154.3 46445.1 

Error 

MS 111.9 52.9 115.2 70.5 

DF 150 137 749 660 Total 

SS 16995.9 7219.1 88253.0 48021.1 

F Ratio 3.0 0.4 18.2 22.4 

Prob > F 0.0858 0.5293 <0.0001 <0.0001 

R2
a 0.0131 -0.0044 0.0225 0.0314 

 
The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in two cases:  (PSPa, 9A, NoOutliers) and (PSPa, 10A, NoOutliers) were no 

longer shown to be statistically significant.  The preponderance of the evidence indicates that 

program size is a useful predictor variable for defect density in testing, but the PSPa results 

reinforce the observation that there is a great deal of individual variation between programmers 

and suggest that further study of the effect of program size, which is contained in Chapter 7, is 

appropriate. 

The parameter estimates of the regression model for program size, and the associated 

standard errors, are listed in Table 43 for the data sets excluding outliers.   



 

117 

Table 43  Estimates for Program Size Excluding Outliers 

Parameter 

 

PSPa 9A 

(std err) 

PSPa 10A 

(std err) 

PSPb 9A 

(std err) 

PSPb 10A 

(std err) 

β0 (Intercept) 14.73**** 

(1.94) 

7.60**** 

(1.33) 

17.30**** 

(0.95) 

13.64**** 

(0.92) 

β1 -0.02 

(0.01) 

-0.003 

(0.005) 

-0.02**** 

(0.006) 

-0.02**** 

(0.004) 
 

Defect density in testing decreases as program size increases within the PSP context.  

With respect to hypothesis S1, it appears that program size is related to defect density in testing, 

but the relationship is weaker than might have been expected. 

4.7.2 Program Size and the Number of Defects Removed in Testing 

As illustrated in Figure 9 for (PSPb, 9A, NoOutliers), there are several n
x

 patterns in the 

size versus defect density chart.  This pattern arises because the number of defects removed in 

testing, which corresponds to “n,” has a fairly small number of integer values – typically zero to 

six defects are found in testing.  Program size, which corresponds to “x,” can vary significantly. 
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Figure 9  Regressing Defect Density in Testing on Program Size 
 

Program size is already included in defect density as a normalizing factor.  Regressing 

the number of defects removed in testing on the program size is a plausible alternative.  The 

programming language used may affect the number of defects removed in testing since there are 

productivity differences between programming languages [Jones 1995], and it therefore becomes 

a useful criterion for splitting the data.  This should not have been a concern in the analyses in 

Section 4.7.1 because of the use of defect density as the respondent variable.  Because of the 

relatively small sizes of the resulting PSPa data sets, however, the analyses use only the PSPb 

data sets.   

The regression results for the effect of program size on the number of defects removed in 

testing are shown in Table 44.  For the regression model: 

(Defects removed in testing) = β0 + β1 (Program size) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 44  Regressing Defects Removed in Testing on Program Size 

Source PSPb 9A  

C 

PSPb 9A  

C++ 

PSPb 10A 

C 

PSPb 10A 

C++ 

DF 1 1 1 1 

SS 120.6 23.3 15.4 107.5 

Model  

MS 120.6 23.3 15.4 107.5 

DF 150 80 131 64 

SS 681.6 431.6 431.9 889.7 

Error 

MS 4.5 5.4 3.3 13.9 

DF 151 81 132 65 Total 

SS 802.2 454.9 447.3 997.3 

F Ratio 26.5 4.3 4.7 7.7 

Prob > F <0.0001 0.0409 0.0323 0.0071 

R2
a 0.1447 0.0393 0.0271 0.0939 

 
The effect of program size on the number of defects removed in testing was shown to be 

statistically significant for all of the data sets. This indicates that program size is a useful 

predictor variable for the number of defects removed in testing. 

The parameter estimates of the regression models for program size, and the associated 

standard errors, are listed in Table 45 for the data sets including outliers.   
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Table 45  Estimates for Regressing Defects Removed in Testing on Program Size 

Parameter 

 

 

PSPb 9A  

C 

(std err) 

PSPb 9A  

C++ 

(std err) 

PSPb 10A 

C 

(std err) 

PSPb 10A 

C++ 

(std err) 

β0 (Intercept) 0.44 

(0.36) 

1.34** 

(0.49) 

1.30**** 

(0.31) 

0.26 

(0.97) 

β1 0.01**** 

(0.002) 

0.005* 

(0.002) 

0.003* 

(0.001) 

0.009** 

(0.003) 
 

The regression models for the data sets excluding outliers are provided in Table 46.  

Outliers were identified with respect to both the number of defects removed in testing and 

program size.   

Table 46  Regressing Defects Removed in Testing on Program Size Excluding Outliers 

Source PSPb 9A  

C 

PSPb 9A  

C++ 

PSPb 10A 

C 

PSPb 10A 

C++ 

DF 1 1 1 1 

SS 8.8 0.3 0.7 0.1 

Model  

MS 8.8 0.3 0.7 0.1 

DF 136 73 122 58 

SS 221.4 150.3 251.2 117.1 

Error 

MS 1.6 2.1 2.1 2.0 

DF 137 74 123 59 Total 

SS 230.2 150.7 252.0 117.3 

F Ratio 5.4 0.2 0.4 0.05 

Prob > F 0.0219 0.6935 0.5551 0.8219 

R2
a 0.0310 -0.0115 -0.0053 -0.0163 
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The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in three of the four cases:  (PSPb, 9A, C++, NoOutliers), (PSPb, 10A, C, 

NoOutliers), and (PSP, 10A, C++, NoOutliers) were no longer shown to be statistically 

significant.  These results suggest that, while program size should be considered a potential 

predictor variable for the number of defects removed in testing (or defect density in testing), the 

conclusion for individual performance is not the straightforward one that might be assumed 

based on prior research using project data. 

The parameter estimates of the regression models for program size, and the associated 

standard errors, are listed in Table 47 for the data sets excluding outliers.   

Table 47  Estimates for Regressing Defects Removed in Testing on Program Size Excluding 
Outliers 

Parameter 

 

 

PSPb 9A 

C 

(std err) 

PSPb 9A 

C++ 

(std err) 

PSPb 10A 

C 

(std err) 

PSPb 10A 

C++ 

(std err) 

β0 (Intercept) 1.04*** 

(0.28) 

1.53*** 

(0.39) 

1.47*** 

(0.41) 

1.85*** 

(0.49) 

β1 0.004* 

(0.002) 

0.0009 

(0.002) 

0.001 

(0.002) 

-0.0004 

(0.002) 
 

The number of defects removed in testing increases as program size increases within the 

PSP context.  This is as expected. 

4.7.3 Discussion of Program Size 

The preponderance of the evidence indicates that program size is related to software 

quality, although both defect density in testing and the number of defects removed in testing 

appear only weakly related to program size for the PSP data.  For the reasons mentioned in 
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Section 4.3 and the loss of significance when outliers are excluded, the quality surrogate used in 

these analyses for overall quality is defect density in testing, although other quality surrogates are 

used in Section 4.8 and Chapter 8 as direct measures of the effectiveness of specific processes. 

The poorness of the fit (R2
a<0.05) is also somewhat surprising since many defect 

prediction models have been built based on program size with far better fits than this.   

These observations reinforce the conclusion that the impact of individual differences on 

software quality overwhelms most other factors, although individual differences may be 

“smoothed out” by team performance in a project.  The use of data from individual 

programmers, with significantly greater variation than that of project teams, is likely to have 

affected the goodness of the fit.  Weinberg observed that the problem of ambiguous 

programming objectives allows the individual programmer to choose whether to emphasize 

program size, execution speed, clarity, development time, or other objectives, all of which leads 

to increased variability in program size [Weinberg 1998, 128-132]. 

 

4.8 EXPLORING THE PROCESS VARIABLES 

The focus of my research is not specifically on the quality trend over PSP assignments.  

My research focuses on the fundamental process drivers for quality that the PSP assignments 

(and processes) are a surrogate for.  Potential confounding variables were explored to ensure that 

they were appropriately addressed if necessary, and they will be revisited in Chapter 7.  The 

specific hypotheses regarding primary variables for disciplined processes to be investigated 

involve the design, coding, and compilation processes.  These hypotheses will be considered 

statistically significant for α=0.05.   
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Hypothesis P1 is that time per LOC in design is related to defect density in testing.  

Insufficient time in design is a frequent complaint and can result in design work being performed 

less efficiently in later phases of the life cycle. 

Hypothesis P2 is that design review rate is related to defect density in testing.  A fast 

review rate leads to ineffective reviews. 

Hypothesis P3 is that defect density in design review is related to defect density in testing. 

Hypothesis P4 is that time per LOC in coding is related to defect density in testing. 

Hypothesis P5 is that code review rate is related to defect density in testing. 

Hypothesis P6 is that defect density in code review is related to defect density in testing. 

Hypothesis P7 is that defect density in compile is related to defect density in testing. 

Data sets are split by the programming language used.  Since programming language 

affects process factors such as effort and is the primary technology factor available for 

consideration, using it as a splitting criterion is a conservative decision that should not adversely 

affect the statistical analyses given the wealth of data available, especially for PSPb.  Since the 

process variables are being investigated, splitting by assignment would be inappropriate, given 

that the process systematically shifts by assignment.   

Defect injection depends primarily on the competence of the programmer, on the quality 

of the inputs, and the production process.  For example, the number of code defects depends on 

the coding skills of the programmer, the quality of the design, and the power of the design 

methods (as applied). 

Reviews have an indirect impact, since the objective is to remove defects before they 

become visible in testing (and release).  Defects can be removed from the software more 

efficiently early in the life cycle; at the end of development, the compiler acts as a verification 
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tool for the code identifying syntactical defects.  A simple graphic of the cause-and-effect 

relationships is shown in Figure 10. 

 

Figure 10  Dependencies Between Software Engineering Activities and Quality 
 

As shown in the figure, the verification and validation activities in the diamond-shaped 

boxes are steps in the software process where defects may be identified and corrected.  The 

number of defects removed in testing is a surrogate for quality, but even in a disciplined test 

process, defects may escape to the customer and cause failures in use.  Testing can demonstrate 

the presence of defects; it cannot demonstrate their absence [Dijkstra 1979, 44].  The number of 

defects that can be found in testing will depend on the number of defects escaping from 

requirements analysis, design, coding, and compilation.  Factors such as the confounding 

variables already considered may affect the number of defects injected in each phase of the life 

cycle.  Process factors, such as review rates, will affect the defect removal effectiveness of 
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verification and validation activities such as reviews.  Compiling the code can also be considered 

a verification step in the sense that syntactic defects will be identified by the compiler. 

For the process variables analyzed in this section, outliers for the specific process 

variable are identified and excluded, along with the outliers for defect density in testing, in those 

analyses where outliers are excluded. 

4.8.1 Design Time 

The number of design defects that may impact defect density in testing will depend on the 

number that escape from design, which in turn depends on the quality of the requirements (the 

assignment statement), the number of design defects injected, and the defect removal 

effectiveness of the design reviews.  There may also be interactions between factors:  a large 

number of defects injected may be alleviated by skill in removing defects during design reviews 

or by the effectiveness of later steps in the process, such as the code reviews.  Competing factors 

to consider in investigating design time include: 

• Investing more time in the design process may correspond to increasing “reflective 

thought,” which has been shown to be correlated with improved quality [Campbell 

1999, 97].  In this context, more time in design presumably corresponds to more care 

in design decisions, leading to better quality by lowering the defect injection rate.   

• A significant amount of reuse could result in less design time.  It would also 

presumably be associated with a smaller program, and no defects would be added 

since otherwise the code would be modified rather than reused.  This should not, 

however, affect defect density measures since the size of reused code is not recorded 

in the PSP repository.  
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• Longer design times may correspond to difficulties in design, which may in turn 

result from the student being an ineffective designer, perhaps due to unfamiliarity 

with the application domain or the design methods used in PSP.  Short design times 

may indicate very efficient designers. 

• Although the number of defects in design may be comparatively large if little time is 

spent in design, the student may remove defects in the coding (or code review) 

process effectively, if perhaps not as efficiently as could have been done in design. 

• A small number of design defects could indicate an inadequate design with major 

problems to address.  In this case, short design times may be associated with a large 

number of defects in coding, compile, or testing. 

Design time per LOC is a leading indicator of quality, which could be used to control the 

design process since it can be measured in the design phase, if there is a dominant cause-and-

effect relationship.  An appropriate quality surrogate in this context is design defect density, i.e., 

the number of defects known to be present at the end of design (and beginning of design review, 

regardless of whether a design review was actually held) per KLOC.  This enables a focus on the 

design process, regardless of defect removal activities that may occur later in the life cycle. 

The regression results for the effect of design time on design defect density are shown in 

Table 48.  For the regression model: 

(Design defect density) = β0 + β1 (Design time per LOC) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 48  Regressing Design Defect Density on Design Time 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 48468.3 172847.2 61374.6 60835.5 

Model  

MS 48468.3 172847.2 61374.6 60835.5 

DF 675 138 1756 918 

SS 194000.1 151390.0 827849.6 584533.5 

Error 

MS 287.4 1097.0 471.4 636.7 

DF 676 139 1757 919 Total 

SS 242468.3 324237.2 889224.2 645369.1 

F Ratio 168.6 157.6 130.2 95.5 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.1987 0.5297 0.0685 0.0933 

 
The effect of design time on design defect density was shown to be statistically significant 

for all of the data sets. This indicates that design time is a useful predictor variable for design 

defect density. 

The parameter estimates of the regression model for design time, and the associated 

standard errors, are listed in Table 49 for the data sets including outliers.   
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Table 49  Estimates for Regressing Design Defect Density on Design Time 

Parameter 

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 6.10**** 

(0.84) 

1.38 

(3.34) 

7.57**** 

(0.69) 

9.57**** 

(1.03) 

β1 11.36**** 

(0.87) 

38.84**** 

(2.85) 

10.72**** 

(0.94) 

13.59**** 

(1.39) 
 

The regression models for the data sets excluding outliers are provided in Table 50.  

Outliers were identified with respect to design defect density and design time. 

Table 50  Regressing Design Defect Density on Design Time Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 11670.7 1026.7 16737.8 14610.5 

Model  

MS 11670.7 1026.7 16737.8 14610.5 

DF 609 120 1559 809 

SS 82332.3 25426.2 191966.6 116236.2 

Error 

MS 135.2 211.9 123.1 143.7 

DF 610 121 1560 810 Total 

SS 94003.0 26452.9 208704.4 130846.7 

F Ratio 86.3 4.8 135.9 101.7 

Prob > F <0.0001 0.0296 <0.0001 <0.0001 

R2
a 0.1227 0.0308 0.0796 0.1106 

 
The regression results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, indicate that design time 

is a useful predictor variable for design defect density. 
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The parameter estimates of the regression models for design time, and the associated 

standard errors, are listed in Table 51 for the data sets excluding outliers.   

Table 51  Estimates for Regressing Design Defect Density on Design Time Excluding 
Outliers 

Parameters 

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 4.47**** 

(0.75) 

7.58*** 

(2.17) 

3.18**** 

(0.47) 

4.51**** 

(0.65) 

β1 12.60**** 

(1.36) 

9.54* 

(4.33) 

11.42**** 

(0.98) 

15.92**** 

(1.58) 
 

Design defect density increases as design time increases within the PSP context.  There 

are two plausible explanations for this result.  First, learning curve effects associated with the 

design techniques introduced in assignment 9 may be confounding the results.  The PSP design 

techniques, although effective, are older than the object-oriented and pattern design methods 

used by today’s programmers.  The students may be struggling with applying these unfamiliar 

techniques and, as a consequence, be making more mistakes during design as they endeavor to 

use them.  As a corollary, the problems in the PSP assignments are relatively simple, and the 

design process may have less effect on software quality than the coding process, which may 

compound the learning curve effects associated with unfamiliar design techniques.  Second, it is 

possible that significant reuse, with defects already removed and whose size is not included in 

the program size measure, leads to smaller programs and less design time.   

In the first case, the root cause is ineffective design; in the second, it is superior design.  

Interactions between design time and other variables are considered in Chapter 7 and may 

suggest which driver is predominant. 
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4.8.2 Design Review Rate 

The effect of design and code reviews on software quality is indirect, although removing 

design and code defects early in the life cycle will decrease the number of defects available in 

testing.  The effectiveness of the reviews cannot be directly measured until the end of the project, 

however, and the process control measures available are those associated with performing an 

effective review, e.g., the preparation and meeting review rates and the defects found by the 

reviews.   

The review rate is the amount of time spent by a reviewer inspecting the design (or other 

work product) normalized by the size of the design (expressed in LOC for PSP).  For PSP, since 

the review is for individuals, there is no meeting as would occur in an inspection, therefore the 

“review” rate is analogous to the preparation rate for inspections.  A design review rate faster 

than 200 LOC/hour is considered unacceptable [Fagan 1976; Fagan 1986]. 

An appropriate quality surrogate in this context is defect removal effectiveness, i.e., the 

percentage of defects detected of those known to be present at the beginning of the design 

review.  This is a direct measure of software quality resulting from the review. 

If there are no known defects in the design at the time of the review (as determined at the 

end of the assignment), the effectiveness of the review is irrelevant.  Assignments where no 

defects are available to be identified in a review are therefore excluded.  Assignments where no 

design review was held are also excluded from this analysis. 

For this analysis, the design review rate is measured in minutes/LOC rather than 

LOC/hour.  Time normalized by size is similar to the other normalized measures and is used in 

later multiple regression models where there is a natural progression from “no reviews held” (0 
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minutes/LOC) to “fast review rates” (< 0.3 minutes/LOC, which corresponds to 200 LOC/hour) 

to “recommended review rates” (> 0.3 minutes/LOC). 

The regression results for the effect of design review rate on defect removal effectiveness 

are shown in Table 52.  For the regression model: 

(Defect removal effectiveness) = β0 + β1 (Design review rate) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 52  Regressing Defect Removal Effectiveness on Design Review Rate 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 4896.0 6.8 5259.2 6788.5 

Model  

MS 4896.0 6.8 5259.2 6788.5 

DF 145 32 372 247 

SS 225183.1 37897.3 533311.0 356060.7 

Error 

MS 1553.0 1184.3 1433.6 1401.1 

DF 146 33 373 248 Total 

SS 230079.0 37904.1 538570.2 352849.2 

F Ratio 3.2 0.006 3.7 4.8 

Prob > F 0.0779 0.9402 0.0582 0.0286 

R2
a 0.0145 -0.0311 0.0071 0.0153 

 
The effect of design review rate on defect removal effectiveness was shown to be 

statistically significant for one of the four data sets:  (PSPb, C++, Outliers). This indicates that 

design review rate may be a useful predictor variable for defect removal effectiveness. 

The parameter estimates of the regression models for design review rate, and the 

associated standard errors, are listed in Table 53 for the data sets including outliers.   
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Table 53  Estimates for Regressing Defect Removal Effectiveness on Design Review Rate 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 36.59**** 

(4.41) 

50.49**** 

(6.80) 

49.03**** 

(2.94) 

46.73**** 

(3.38) 

β1 25.48 

(14.35) 

-0.67 

(8.88) 

16.52 

(8.62) 

22.36* 

(10.30) 
 

The regression models for the data sets excluding outliers are provided in Table 54.  

Outliers were identified with respect to design review rate.  Note that unusually large values of 

design review rate correspond to unusually meticulous design reviews in this particular instance 

(the interquartile limit for unusually “fast” design review rates is less than zero, therefore there 

can be no outliers for fast review rates).      
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Table 54  Regressing Defect Removal Effectiveness on Design Review Rate Excluding 
Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 13602.4 10366.7 31626.8 7322.8 

Model  

MS 13602.4 10366.7 32626.8 7322.8 

DF 133 28 337 238 

SS 205697.5 25214.0 489333.0 334738.4 

Error 

MS 1546.6 900.5 1452.0 1406.5 

DF 134 29 338 239 Total 

SS 219299.9 35580.7 520959.8 342061.2 

F Ratio 8.8 11.5 21.8 5.2 

Prob > F 0.0036 0.0021 <0.0001 0.0234 

R2
a 0.0550 0.2661 0.0579 0.0173 

 
The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in three cases since all of the results for data sets excluding outliers were shown 

to be statistically significant.  The preponderance of the evidence therefore indicates that design 

review rate is a useful predictor variable for defect removal effectiveness.   

The parameter estimates of the regression model for design review rate, and the 

associated standard errors, are listed in Table 55 for the data sets excluding outliers.   
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Table 55  Estimates for Regressing Defect Removal Effectiveness on Design Review Rate 
Excluding Outliers 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 27.02**** 

(5.81) 

18.56 

(10.79) 

36.50**** 

(4.11) 

43.61**** 

(4.15) 

β1 91.84** 

(30.97) 

154.57** 

(45.56) 

82.00**** 

(17.57) 

37.84* 

(16.58) 
 

For all of the statistically significant data sets, including and excluding outliers, the 

greater the design review rate, as measured by minutes/LOC, the greater the defect removal 

effectiveness of the design reviews.  Using the normal definition in software engineering of 

design review rate as LOC/hour, this is equivalent to saying the slower the design review, the 

greater the defect removal effectiveness. 

It is worth investigating whether following recommended practice for the design review 

rate is effective.  The recommended design review rate is less than 200 LOC/hour (or greater 

than 0.3 minutes/LOC).  A faster rate is considered ineffective, and re-inspection should be 

scheduled.  This provides two classes of design review based on review rate:  those where the 

design review rate is faster than the recommended (specification) limit of 200 LOC/hour; and 

design reviews according to recommended practice.  As illustrated in Figure 11 for (PSPb, C, 

Outliers), the classes of design review rate appear significantly different.  Note that a “fast design 

review rate” corresponds to less than 0.3 minutes/LOC; the term “fast” is used here to connect 

with the normal software engineering usage. 
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Figure 11  Differences in Design Review Classes  
 

The ANOVA results for the effect of design review class on defect removal effectiveness 

are shown in Table 56.  The null hypothesis is 0 Re: FastDRRate cDRRateH µ µ=  with alternative 

hypothesis Ha: not all of the means are equal.   
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Table 56  ANOVA for Regressing Defect Removal Effectiveness on Design Review Class 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 7326.6 2790.1 23420.8 2430.1 

Model  

MS 7326.6 2790.1 23420.8 2430.1 

DF 145 32 372 247 

SS 222752.4 35114.0 515149.4 350419.1 

Error 

MS 1536.2 1097.3 1384.8 1418.7 

DF 146 33 373 248 Total 

SS 230079.0 37904.1 538570.2 352849.2 

F Ratio 6.1W 2.5 19.2W 2.2W 

Prob > F 0.0173W 0.1206 <0.0001W 0.1442W 

R2
a 0.0252 0.0447 0.0409 0.0029 

 
The effect of design review class on defect removal effectiveness was shown to be 

statistically significant for two of the four data sets:  (PSPa, C, Outliers) and (PSPb, C, Outliers).  

This indicates that design review class may be a useful predictor variable for defect removal 

effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels of 

design review class, and the associated standard errors for the means, are listed in Table 57 for 

the data sets including outliers.  The model can be expressed as: 

(Defect removal effectiveness) = β DR Class X DR Class 

where β DR Class is the level for the design review class and X DR Class is an indicator variable for 

whether that design review class is the correct one for the observation. 
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Table 57  Estimates for Regressing Defect Removal Effectiveness on Design Review Class 

Levels 

 

PSPa C* 

(std err) 

PSPa C++ 

(std err) 

PSPb C**** 

(std err) 

PSPb C++ 

(std err) 

Fast DR Rate 38.69 

(3.65) 

44.80 

(6.99) 

48.15 

(2.38) 

49.77 

(2.91) 

Recommended  

DR Rate 

57.48 

(6.63) 

65.33 

(8.97) 

66.57 

(3.18) 

56.92 

(3.90) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 58.  

Outliers were identified with respect to design review rate.   

Table 58  ANOVA for Regressing Defect Removal Effectiveness on Design Review Class 
Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 6943.7 4213.5 27829.5 1080.6 

Model  

MS 6943.7 4213.5 27829.5 1080.6 

DF 133 28 337 238 

SS 212356.2 31367.2 493130.3 340980.6 

Error 

MS 1596.7 1120.3 1463.3 1432.7 

DF 134 29 338 239 Total 

SS 219299.9 35580.7 520959.8 342061.2 

F Ratio 4.3 3.8 19.0 1.0W 

Prob > F 0.0389 0.0626 <0.0001 0.3287W 

R2
a 0.0244 0.0869 0.0506 -0.0010 

 
The ANOVA results for the data sets excluding outliers are similar to those for the data 

sets with outliers; the same data sets were shown to have statistically significant results, and 
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(PSPa, C++, NoOutliers) is close to statistical significance.  These results indicate that design 

review class may be a useful predictor variable for defect removal effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels of 

design review class, and the associated standard errors for the means, are listed in Table 59 for 

the data sets excluding outliers.   

Table 59  Estimates for Regressing Defect Removal Effectiveness on Design Review Class 
Excluding Outliers 

Levels 

 

PSPa C* 

(std err) 

PSPa C++ 

(std err) 

PSPb C**** 

(std err) 

PSPb C++ 

(std err) 

Fast DR Rate 38.69 

(3.65) 

44.80 

(6.99) 

48.31 

(2.38) 

50.15 

(2.91) 

Recommended  

DR Rate 

63.00 

(10.13) 

76.60 

(10.12) 

70.24 

(4.24) 

55.20 

(4.25) 
 

These results indicate that design review rate is related to defect removal effectiveness, 

but the results are mixed for whether a review rate less than 200 LOC/hour provides significantly 

better performance than a faster review rate.   

4.8.3 Defect Density in Design Review 

It is unclear how defect density in testing should relate to defect density as found in 

design reviews.  A high defect density in the review could suggest a defect-prone module with 

many more defects to be found.  It could also suggest a superior review, and that the majority of 

the defects were found, thus leading to a high-quality program.   

If the review process is properly and consistently performed, then a reasonably 

predictable percentage of defects should be found by the review.  To ensure that the reviews are 

properly performed, those that were outside the specification limits of 200 LOC/hour for design 
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reviews were excluded in the analyses below.  Assignments where no design review was held 

were also excluded. 

The regression results for the effect of defect density in design review on defect density in 

testing are shown in Table 60.  For the regression model: 

(Defect density in testing) = β0 + β1 (Defect density in design review) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 60  Regression Models for Defect Density in Design Review 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 609.1 972.4 3550.8 28293.9 

Model  

MS 609.1 972.4 3550.8 28293.9 

DF 180 36 618 333 

SS 66290.4 6330.6 215459.6 143957.2 

Error 

MS 368.3 175.9 348.6 432.3 

DF 181 37 619 334 Total 

SS 66899.5 7303.1 219010.4 172251.1 

F Ratio 1.7 5.5 10.2 65.4 

Prob > F 0.2001 0.0243 0.0015 <0.0001 

R2
a 0.0036 0.1091 0.0146 0.1618 

 
The effect of defect density in design review on defect density in testing was shown to be 

statistically significant for three of the four data sets. This indicates that defect density in design 

review should be a useful predictor variable for defect density in testing. 

The parameter estimates of the regression models for defect density in design review, and 

the associated standard errors, are listed in Table 61 for the data sets including outliers.   
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Table 61  Estimates for Defect Density in Design Review 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 14.27**** 

(1.72) 

8.27** 

(2.63) 

13.85**** 

(0.88) 

10.55**** 

(1.28) 

β1 0.15 

(0.12) 

0.14* 

(0.06) 

0.14** 

(0.04) 

0.38**** 

(0.05) 
 

The regression models for the data sets excluding outliers are provided in Table 62.  

Outliers were identified with respect to defect density in testing and defect density in design 

review.  

Table 62  Regression Models for Defect Density in Design Review Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 63.6 85.0 401.6 599.2 

Model  

MS 63.6 85.0 401.6 599.2 

DF 173 34 563 298 

SS 28297.8 3872.9 89214.3 41250.6 

Error 

MS 163.6 113.9 158.5 138.4 

DF 174 35 564 299 Total 

SS 28361.3 3957.9 89616.0 41849.8 

F Ratio 0.4 0.7 2.5 4.3 

Prob > F 0.5339 0.3938 0.1120 0.0383 

R2
a -0.0035 -0.0073 0.0027 0.0110 

 
The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in two cases:  (PSPa, C++, NoOutliers) and (PSPb, C, NoOutliers) were no 
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longer shown to be statistically significant.  The results indicate that defect density in design 

review may be a useful predictor variable for defect density in testing. 

The parameter estimates of the regression models for defect density in design review, and 

the associated standard errors, are listed in Table 63 for the data sets excluding outliers.   

Table 63  Estimates for Defect Density in Design Review Excluding Outliers 

Parameter  

 

 

PSPa C 

Estimate 

(std err) 

PSPa C++ 

Estimate 

(std err) 

PSPb C 

Estimate 

(std err) 

PSPb C++ 

Estimate 

(std err) 

β0 (Intercept) 12.47**** 

(1.19) 

8.48** 

(2.46) 

12.37**** 

(0.65) 

10.15**** 

(0.87) 

β1 0.06 

(0.09) 

0.08 

(0.08) 

0.08 

(0.05) 

0.14* 

(0.07) 
 

Defect density in testing increases as defect density in design review increases within the 

PSP context.  This may imply that low-quality designs correspond to low-quality software, 

although the interaction between the review rate and defect density should also be considered. 

4.8.4 Coding Time 

Coding time per LOC is a leading indicator of quality, which could be used to control the 

coding process since it can be measured in the code phase.  The number of code defects that may 

impact defect density in testing will depend on the number that escape from coding, which in 

turn depends on the quality of the design, the number of code defects injected, and the defect 

removal effectiveness of the code reviews.  There may be interactions between factors:  a large 

number of defects injected may be alleviated by skill in removing defects during code reviews or 

by the effectiveness of later steps in the process, such as the compiler.  Competing factors to 

consider in investigating coding time include: 
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• Longer coding times may correspond to doing design work in the coding step due to a 

poor design.   

• A significant amount of reuse could result in less coding time.  It would also 

presumably be associated with a smaller program, and no defects would be added 

since otherwise the code would be modified rather than reused.  This should not, 

however, affect defect density measures since the size of reused code is not recorded 

in the PSP repository.  

• Longer coding times may correspond to difficulties in coding, which may in turn 

result from the student being a poor coder.  Short coding times may indicate very 

efficient coders. 

• Short code (and code review) times may result in a small number of code defects, but 

they may indicate an inadequate program with major problems to address. 

An appropriate quality surrogate in this context is code defect density, i.e., the number of 

defects known to be present at the end of coding (and beginning of code review, regardless of 

whether a code review was actually held) per KLOC.   

The regression results for the effect of coding time on code defect density are shown in 

Table 64.  For the regression model: 

(Code defect density) = β0 + β1 (Coding time per LOC) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 64  Regressing Code Defect Density on Coding Time 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 2153740.4 21974.1 1436046.2 741084.8 

Model  

MS 2153740.4 21974.1 1436046.2 741084.8 

DF 675 138 1756 918 

SS 2093891.1 349998.7 7239537.5 360.1490.1 

Error 

MS 3102.0 2536.2 4123.0 3923.0 

DF 676 139 1757 919 Total 

SS 4247631.4 371972.8 8675583.7 4342574.9 

F Ratio 694.3 8.7 348.3 188.9 

Prob > F <0.0001 0.0038 <0.0001 <0.0001 

R2
a 0.5063 0.0523 0.1651 0.1698 

 
The effect of coding time on code defect density was shown to be statistically significant 

for all of the data sets.  This indicates that coding time is a useful predictor variable for code 

defect density. 

The parameter estimates of the regression models for coding time, and the associated 

standard errors, are listed in Table 65 for the data sets including outliers.   
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Table 65  Estimates for Regressing Code Defect Density on Coding Time 

Parameter 

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 23.71**** 

(2.81) 

57.43**** 

(7.34) 

49.71**** 

(2.23) 

44.51**** 

(3.32) 

β1 52.03**** 

(1.97) 

21.02** 

(7.14) 

36.92**** 

(1.98) 

49.24**** 

(3.58) 
 

The regression models for the data sets excluding outliers are provided in Table 66.  

Outliers were identified with respect to code defect density and coding time. 

Table 66  Regressing Code Defect Density on Coding Time Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 73407.7 4329.9 345119.2 142331.2 

Model  

MS 73407.7 4329.9 345119.2 142331.2 

DF 603 123 1580 831 

SS 778914.1 160894.0 2351483.3 1455403.1 

Error 

MS 1291.7 1308.1 1488.0 1751.0 

DF 604 124 1581 832 Total 

SS 852321.8 165223.9 2696602.5 1597734.2 

F Ratio 56.8 3.3 231.9 81.3 

Prob > F <0.0001 0.0713 <0.0001 <0.0001 

R2
a 0.0846 0.0183 0.1274 0.0880 

 
The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in only one case:  (PSPa, C++, NoOutliers) was no longer shown to be 
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statistically significant.  The preponderance of the evidence therefore indicates that coding time 

is a useful predictor variable for code defect density. 

The parameter estimates of the regression models for coding time, and the associated 

standard errors, are listed in Table 67 for the data sets excluding outliers.   

Table 67  Estimates for Regressing Code Defect Density on Coding Time Excluding Outliers 

Parameters 

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 38.63**** 

(2.96) 

55.40**** 

(6.68) 

37.23**** 

(2.09) 

42.83**** 

(3.08) 

β1 27.52**** 

(3.65) 

15.12 

(8.31) 

42.21**** 

(2.77) 

40.43**** 

(4.48) 
 

Code defect density increases as coding time increases within the PSP context.  A lack of 

effort in design can be expected to result in an increase in coding time, as design work is 

performed in a coding context, with implications for software quality.  For the multiple 

regression models in Chapter 7, this shift may be observed in a statistically significant interaction 

between design time and coding time. 

4.8.5 Code Review Rate 

For this analysis, the code review rate is measured in minutes/LOC.   Assignments where 

no defects are available to be identified in a code review were excluded.  Assignments where no 

code review was held were also excluded from this analysis. 

The regression results for the effect of code review rate on defect removal effectiveness 

are shown in Table 68.  For the regression model: 
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(Defect removal effectiveness) = β0 + β1 (Code review rate) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 68  Regressing Defect Removal Effectiveness on Code Review Rate 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 6272.2 875.0 28375.4 9914.4 

Model  

MS 6272.2 875.0 28375.4 9914.4 

DF 239 55 611 328 

SS 176949.4 38294.6 523083.5 254640.6 

Error 

MS 740.4 696.3 856.1 776.3 

DF 240 56 612 329 Total 

SS 183221.5 39169.5 551459.0 264554.9 

F Ratio 8.5 1.3 33.1 12.8 

Prob > F 0.0039 0.2672 <0.0001 0.0004 

R2
a 0.0302 0.0046 0.0491 0.0345 

 
The effect of code review rate on defect removal effectiveness was shown to be 

statistically significant for three of the four data sets:  (PSPa, C, Outliers), (PSPb, C, Outliers), 

and (PSPb, C++, Outliers).  This indicates that code review rate should be a useful predictor 

variable for defect removal effectiveness. 

The parameter estimates of the regression models for code review rate, and the associated 

standard errors, are listed in Table 69 for the data sets including outliers.   
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Table 69  Estimates for Regressing Defect Removal Effectiveness on Code Review Rate 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 46.06**** 

(2.41) 

51.29**** 

(4.65) 

35.59**** 

(2.04) 

39.97**** 

(2.28) 

β1 17.71** 

(6.08) 

10.28 

(9.17) 

37.07**** 

(6.44) 

23.06*** 

(6.45) 
 

The regression models for the data sets excluding outliers are provided in Table 70.  

Outliers were identified with respect to code review rate.     

Table 70  Regressing Defect Removal Effectiveness on Code Review Rate Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 4991.7 3620.2 25900.3 8267.7 

Model  

MS 4991.7 3620.2 25900.3 8267.7 

DF 222 52 583 304 

SS 160486.7 35467.1 501211.4 230898.4 

Error 

MS 722.9 682.1 859.7 759.5 

DF 223 53 584 305 Total 

SS 165478.5 39087.3 527111.8 239166.1 

F Ratio 6.9 5.3 30.1 10.9 

Prob > F 0.0092 0.0253 <0.0001 0.0011 

R2
a 0.0258 0.0752 0.0475 0.0314 

 
The regression results for the data sets excluding outliers differ from those for the data 

sets with outliers in only one case:  (PSPa, C++, NoOutliers) was shown to be statistically 

significant.  All of the data sets were shown to be statistically significant for the data sets without 
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outliers.  The preponderance of the evidence therefore indicates that code review rate is a useful 

predictor variable for defect removal effectiveness. 

The parameter estimates of the regression models for code review rate, and the associated 

standard errors, are listed in Table 71 for the data sets excluding outliers.   

Table 71  Estimates for Regressing Defect Removal Effectiveness on Code Review Rate 
Excluding Outliers 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 43.36**** 

(3.17) 

39.94**** 

(1.23) 

33.18**** 

(2.42) 

36.18**** 

(3.09) 

β1 32.35** 

(12.31) 

57.61* 

(25.01) 

49.77**** 

(9.07) 

41.30** 

(12.52) 
 

Defect removal effectiveness increases as code review rate increases within the PSP 

context.  Using the normal definition in software engineering of code review rate as LOC/hour, 

this is equivalent to saying the slower the code review, the greater the defect removal 

effectiveness. 

It is worth investigating whether following recommended practice for the code review 

rate is effective.  The recommended code review rate is less than 200 LOC/hour (or greater than 

0.3 minutes/LOC).  A faster rate is considered ineffective, and re-inspection should be 

scheduled.  This provides two classes of code review based on review rate:  those where the code 

review rate is faster than the recommended (specification) limit of 200 LOC/hour; and code 

reviews according to recommended practice.   
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The regression results for the effect of code review class on defect removal effectiveness 

are shown in Table 72.  The null hypothesis against defect removal effectiveness is 

0 Re: FastCRRate cCRRateH µ µ=  with alternative hypothesis Ha: not all of the means are equal.   

Table 72  ANOVA for Regressing Defect Removal Effectiveness on Code Review Class 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 5692.5 3745.87 14509.4 5949.0 

Model  

MS 5692.5 3745.87 14509.4 5949.0 

DF 239 55 611 328 

SS 177529.1 35423.6 536949.6 258606.0 

Error 

MS 742.8 644.1 878.8 788.4 

DF 240 56 612 329 Total 

SS 183221.5 39169.5 551459.0 264554.9 

F Ratio 7.7 5.8 16.5 7.5 

Prob > F 0.0061 0.0192 <0.0001 0.0063 

R2
a 0.0270 0.0792 0.0247 0.0195 

 
The effect of code review class on defect removal effectiveness was shown to be 

statistically significant for all of the data sets including outliers. This indicates that code review 

class is a useful predictor variable for defect removal effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels for the 

two classes of code review rate, and the associated standard errors for the means, are listed in 

Table 73 for the data sets including outliers.  The model can be expressed as: 

(Defect removal effectiveness) = β CR Class X CR Class 
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where β CR Class is the level for the class of code review rate and X CR Class is an indicator variable 

for whether that code review class is the correct one for the observation. 

Table 73  Estimates for Regressing Defect Removal Effectiveness on Code Review Class 

Levels 

 

PSPa C** 

(std err) 

PSPa C++* 

(std err) 

PSPb C**** 

(std err) 

PSPb C++** 

(std err) 

Fast CR Rate 47.93 

(1.98) 

48.53 

(4.71) 

41.90 

(1.44) 

43.51 

(1.84) 

Recommended  

CR Rate 

58.88 

(3.70) 

65.33 

(4.21) 

52.42 

(2.14) 

53.22 

(2.82) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 74.  

Outliers were identified with respect to code review rate.   
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Table 74  ANOVA for Regressing Defect Removal Effectiveness on Code Review Class 
Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 4384.5 3780.8 10740.8 2442.5 

Model  

MS 4384.5 3780.8 10740.8 2442.5 

DF 222 52 583 304 

SS 161094.0 35306.6 516371.0 236723.5 

Error 

MS 725.7 679.0 885.7 778.7 

DF 223 53 584 305 Total 

SS 165478.5 39087.3 527111.8 239166.1 

F Ratio 6.0 5.6 12.1 3.1 

Prob > F 0.0147 0.0221 0.0005 0.0775 

R2
a 0.0221 0.0794 0.0187 0.0070 

 
The ANOVA results for the data sets excluding outliers differ from those for the data sets 

with outliers in only one case: (PSPb, C++, NoOutliers) was not shown to be statistically 

significant, although it is close.  The preponderance of the evidence therefore indicates that code 

review class is a useful predictor variable for defect removal effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels for the 

two classes of code review rate, and the associated standard errors for the means, are listed in 

Table 75 for the data sets excluding outliers.   
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Table 75  Estimates for Regressing Defect Removal Effectiveness on Code Review Class 
Excluding Outliers 

Levels 

 

PSPa C* 

(std err) 

PSPa C++* 

(std err) 

PSPb C*** 

(std err) 

PSPb C++ 

(std err) 

Fast CR Rate 47.93 

(1.98) 

48.53 

(4.71) 

42.04 

(1.45) 

43.53 

(1.84) 

Recommended  

CR Rate 

58.71 

(4.23) 

66.28 

(4.90) 

51.61 

(2.32) 

50.61 

(3.09) 
 

These analyses indicate that code review rate is related to defect removal effectiveness.   

4.8.6 Defect Density in Code Review 

It is unclear how defect density in testing should relate to defect density as found in code 

review.  A high defect density in the review could suggest a defect-prone module with many 

more defects to be found.  It could also suggest a superior review, and that the majority of the 

defects were found, thus leading to a high-quality program.   

If the review process is properly and consistently performed, then a reasonably 

predictable percentage of defects should be found by the review.  To ensure that the reviews 

were properly performed, those that were outside the specification limits of 200 LOC/hour for 

code reviews were excluded in the analyses below.  Assignments where no code review was held 

were also excluded. 

The regression results for the effect of defect density in code review on defect density in 

testing are shown in Table 76.  For the regression model: 

(Defect density in testing) = β0 + β1 (Defect density in code review) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 76  Regression Models for Defect Density in Code Review 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 8829.5 850.4 5503.8 46129.8 

Model  

MS 8829.5 850.4 5503.8 46129.8 

DF 249 55 634 336 

SS 82175.8 13184.4 217656.1 126177.7 

Error 

MS 330.0 239.7 343.3 375.5 

DF 250 56 635 337 Total 

SS 91005.3 14034.8 223160.0 172307.5 

F Ratio 26.8 3.5 16.0 122.8 

Prob > F <0.0001 0.0649 <0.0001 <0.0001 

R2
a 0.0934 0.0435 0.0231 0.2655 

 
The effect of defect density in code review on defect density in testing was shown to be 

statistically significant for three of the four data sets:  (PSPa, C, Outliers), (PSPb, C, Outliers), 

and (PSPb, C++, Outliers).  (PSPa, C++, Outliers) is close. This indicates that defect density in 

code review should be a useful predictor variable for defect density in testing. 

The parameter estimates of the regression models for defect density in code review, and 

the associated standard errors, are listed in Table 77 for the data sets including outliers.   
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Table 77  Estimates for Defect Density in Code Review 

Parameter  

 

 

PSPa C 

Estimate 

(std err) 

PSPa C++ 

Estimate 

(std err) 

PSPb C 

Estimate 

(std err) 

PSPb C++ 

Estimate 

(std err) 

β0 (Intercept) 10.00**** 

(1.59) 

9.87** 

(3.02) 

12.53**** 

(1.03) 

5.93**** 

(1.36) 

β1 0.20**** 

(0.04) 

0.10 

(0.05) 

0.11**** 

(0.03) 

0.32**** 

(0.03) 
 

The regression models for the data sets excluding outliers are provided in Table 78.  

Outliers were identified with respect to defect density in testing and defect density in code 

review.  

Table 78  Regression Models for Defect Density in Code Review Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 1213.6 2.7 854.8 1778.2 

Model  

MS 1213.6 2.7 854.8 1778.2 

DF 226 52 588 305 

SS 31419.1 6746.1 95785.5 39436.5 

Error 

MS 139.0 129.7 162.9 129.3 

DF 227 53 589 306 Total 

SS 32632.8 6748.8 96640.2 41214.7 

F Ratio 8.7 0.02 5.2 13.8 

Prob > F 0.0035 0.8859 0.0223 0.0002 

R2
a 0.0329 -0.0188 0.0072 0.0400 
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The regression results for the data sets excluding outliers are similar to those for the data 

sets including outliers.  The preponderance of the evidence therefore indicates that defect density 

in code review is a useful predictor variable for defect density in testing. 

The parameter estimates of the regression models for defect density in code review, and 

the associated standard errors, are listed in Table 79 for the data sets excluding outliers.   

Table 79  Estimates for Defect Density in Code Review Excluding Outliers 

Parameter  

 

 

PSPa C 

Estimate 

(std err) 

PSPa C++ 

Estimate 

(std err) 

PSPb C 

Estimate 

(std err) 

PSPb C++ 

Estimate 

(std err) 

β0 (Intercept) 9.56**** 

(1.26) 

12.45**** 

(2.59) 

11.78**** 

(0.81) 

8.28**** 

(1.03) 

β1 0.13** 

(0.04) 

-0.009 

(0.06) 

0.06* 

(0.03) 

0.14*** 

(0.04) 
 

Defect density in testing increases as defect density in code review increases within the 

PSP context.  Code reviews may be identifying a high percentage of syntactical defects, such as 

the compiler might find, rather than more serious logical defects, which surface in testing.  

Wesslen found that PSP reviews identified a higher percentage of compile defects than design 

defects, suggesting that further improvement in the review process is needed for the code 

reviews to be as effective as they could be [Wesslen 1999, 32].   

4.8.7 Defect Density in Compile 

The compiler can act as a debugging tool in detecting syntactic defects, therefore the 

number of defects removed during compilation seems likely to be correlated to the number that 

will be removed during testing.  The defects found by the compiler are relatively minor 

compared to those found during testing since more than five times the effort is required to repair 
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testing defects than compilation defects, but studies have shown that clusters of minor defects are 

highly correlated with major defects [Endres and Rombach 2003, 131-133; Glass 2004, 135-

137].   

The regression results for the effect of defect density in compile on defect density in 

testing are shown in Table 80.  For the regression model: 

(Defect density in testing) = β0 + β1 (Defect density in compile) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 80  Regression Models for Defect Density in Compile 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 483963.5 35048.0 499387.9 234907.9 

Model  

MS 483963.5 35048.0 499387.9 234907.9 

DF 675 138 1756 918 

SS 1096141.7 76167.0 2211308.0 961010.7 

Error 

MS 1624.0 551.9 1259.0 1047.2 

DF 676 139 1757 919 Total 

SS 1580105.2 111215.0 2710695.9 1195918.6 

F Ratio 298.0 63.5 3.4 224.4 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.3053 0.3102 0.1838 0.1955 

 
The effect of defect density in compile on defect density in testing was shown to be 

statistically significant for all of the data sets. This indicates that defect density in compile is a 

useful predictor variable for defect density in testing. 
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The parameter estimates of the regression model for defect density in compile, and the 

associated standard errors, are listed in Table 81 for the data sets including outliers.   

Table 81  Estimates for Defect Density in Compile 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 13.66**** 

(1.83) 

8.92** 

(3.02) 

18.61**** 

(1.07) 

13.48**** 

(0.31) 

β1 0.44**** 

(0.03) 

0.44**** 

(0.06) 

0.30**** 

(0.01) 

0.31**** 

(0.02) 
 

The ANOVA statistics for the data sets excluding outliers are provided in Table 82.  

Outliers were defined with respect to defect density in compile and defect density in testing.   

Table 82  ANOVA for Defect Density in Compile Excluding Outliers 

Source PSPa C PSPa C++ PSPb C PSPb C++ 

DF 1 1 1 1 

SS 24635.6 6462.7 72009.1 30370.8 

Model  

MS 24635.6 6462.7 72009.1 30370.8 

DF 608 123 1576 855 

SS 205182.5 28147.4 567025.4 278028.9 

Error 

MS 337.5 228.8 359.8 325.2 

DF 609 124 1577 856 Total 

SS 229818.1 34610.1 639034.4 308399.6 

F Ratio 73.0 28.2 200.1 93.4 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.1057 0.1801 0.1121 0.0974 
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The regression results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  All of the analyses, including and excluding outliers, indicate that defect 

density in compile is a useful predictor variable for defect density in testing. 

The parameter estimates of the regression model for defect density in compile, and the 

associated standard errors, are listed in Table 83 for the data sets excluding outliers.   

Table 83  Estimates for Defect Density in Compile Excluding Outliers 

Parameter  

 

PSPa C 

(std err) 

PSPa C++ 

(std err) 

PSPb C 

(std err) 

PSPb C++ 

(std err) 

β0 (Intercept) 14.81**** 

(1.11) 

10.76**** 

(2.18) 

15.89**** 

(0.71) 

15.15**** 

(0.85) 

β1 0.25**** 

(0.03) 

0.26**** 

(0.05) 

0.23**** 

(0.02) 

0.13**** 

(0.01) 
 

Defect density in testing increases as defect density in compile increases within the PSP 

context. 

Although defect density in compile is a leading indicator for defect density in testing, it is 

of limited value in controlling the development process since it is measured so near testing.  The 

earlier in the life cycle that a factor can be measured and used for decision making, the more 

useful it is.  For example, design measures, if sufficiently correlated to defect density in testing, 

will be of more value than code measures, which in turn are more useful than compilation 

measures.   

Adding later measures to a multiple regression model that spans the life cycle should, 

however, add value to models that are refined as a project continues.  A model that includes 

compile-time data may be used to set expectations for the number of defects removed in testing.  

Defect estimation models are based on defects found in testing (which is later in the life cycle 
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than compile) and are used in planning testing and making product release decisions [AIAA R-

013].  Defect prediction models are process-based, and useful for controlling the development 

process as well as making release decisions.  Both kinds of models can be useful for process 

control, but the added insight possible with process-based models must be balanced with the 

additional difficulty and expense necessary to collect detailed process data. 

4.8.8 Discussion of the Process Variables 

The results for the process variables are summarized in Table 84, identifying which 

process variables should be considered in further analyses of the explanatory variables for 

software quality.  As expected, the process variables are consistently related to software quality – 

more so than program size, which is the most common predictor variable in defect prediction 

models.  Following “best practices,” such as recommended review rates, is supported.   

Table 84  Statistically Significant Results for the Process Variables 

Process Variable (Quality Surrogate) Including 
Outliers 

Excluding 
Outliers 

P1) design time (design defect density) 4 of 4 4 of 4 

P2) design review rate (defect removal effectiveness) 1 of 4 4 of 4 

P3) defect density in design review (defect density in 
testing) 

3 of 4 1 of 4 

P4) coding time (code defect density) 4 of 4 3 of 4 

P5) code review rate (defect removal effectiveness) 3 of 4 4 of 4 

P6) defect density in code review (defect density in 
testing) 

3 of 4 3 of 4 

P7) defect density in compile (defect density in testing) 4 of 4 4 of 4 
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These results indicate that the process variables are potentially useful predictor variables 

for software quality – and that a disciplined software process that consistently follows 

recommended practice is important for building high-quality software products.  The process 

variables, and their interactions, will be explored further in more sophisticated statistical models 

in Chapter 7.   

The R2
a values are too low for the simple regression models to be of practical value in 

predicting defects. This does not imply that programmers could not build simple regression 

models useful for predicting their individual performance.  This observation applies to simple 

regression models based on individual data for many different individuals, where the individual 

differences dominate other factors. 

My analyses differ from those of previous studies of software projects in two crucial and 

related ways.  First, the analyses are based on individual performance rather than project or team 

performance.  Second, the amount of the variability in individual performance that is explained 

by simple regression models is far less than that reported for projects and teams.  These results 

dramatically reinforce the observation that team performance is typically both better and less 

variable than individual performance since the R2
a values for these models are notably less than 

those reported for team/project performance in the published literature. 

 

4.9 EXPLORING PROGRAMMER ABILITY 

Programmer ability can be inferred if there is a consistent pattern in the PSP assignments 

indicating that the programmers with superior performance on one assignment tend to be 

superior performers on other assignments.  Possible explanations that rely on characterizations 

such as “the best designers may,” such as the discussion in Section 4.8.1, can be addressed, at 
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least in part, by a variable that empirically captures programmer ability.  Hypothesis A1 is that 

relative programmer ability is consistent across PSP assignments as measured by average defect 

density in testing for assignments 1-3. 

 

4.9.1 Comparing Improvement of Top and Bottom Quartiles  

A statistically rigorous analysis of the impact of programmer ability would be based on 

natural growth curves or repeated measures ANOVA.  That analysis is deferred to Chapter 7; for 

this simple analysis, defect density in testing was averaged for the first three assignments and 

used to identify the top, middle two, and bottom quartiles for student performance.  Figure 12 

illustrates the differences in performance for these three categories for the (PSPb, C) data set 

across the ten PSP assignments. 
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Figure 12  Trends for Programmer Quartiles 
 

The students who are the top-quartile performers on the first three assignments tend to 

remain top performers (with the smallest defect density in testing) in the later assignments; the 

middle performers tend to remain in the middle; and the bottom-quartile performers (with the 

largest defect density in testing) tend to remain at the bottom.   (A spike in the data for 

assignment 3 is consistently observed for all measures, suggesting that assignment 3 is somewhat 

more complex than the norm for the PSP assignments.) 

The average performance and the standard deviation for the students in the top and 

bottom quartiles is contrasted for assignments 1 and 10 in Table 85 using the PSPa and PSPb 

data sets.  Only students finishing all ten assignments are used in these calculations to ensure 

comparability between the two assignments. 
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Table 85  Comparing Top and Bottom Quartile Average Performance 

PSPa 

TQ : BQ  

PSPb 

TQ : BQ  

PSPa 

TQ : BQ  

PSPb 

TQ : BQ  

 

Average Standard Deviation 

1A  9.0 : 59.3 13.8 : 78.5 9.5 : 37.8 11.9 : 51.1 

10A  3.5 : 17.1 6.6 : 15.6 3.5 : 17.9 8.5 : 12.9 

N 20 : 26 144 : 134 20 : 26 144 : 134 

Percent Change 61% : 71% 52% : 80% 63% : 53% 29% : 75% 
 

The average performance of the top-quartile students improved 52-61%, and the bottom-

quartile students improved 71-80%.  The variability in the performance of the top-quartile 

students decreased 29-63%, and the variability of the bottom-quartile students decreased 53-

75%.   

To express this another way, top-quartile students improved by a factor between 2.1 and 

2.6, and their variability decreased by a factor between 1.4 and 2.7. Bottom-quartile students 

improved by a factor between 3.5 and 5.0, and their variability decreased by a factor between 2.1 

and 4.0.  The performance of top-quartile students is better than that of bottom-quartile students 

by a factor of 5.7 to 6.6 initially, and changes to 2.4 to 4.9 by the end of PSP.   

The comparisons between top and bottom performers for the data sets excluding outliers 

are provided in Table 86.  Outliers were defined with respect to defect density in testing within 

the top and bottom quartiles for assignments 1 and 10.  Note that N now differs for the top and 

bottom quartiles, even though only students finishing all ten assignments were considered. 
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Table 86  Comparing Top and Bottom Performers Excluding Outliers 

PSPa 

TQ : BQ  

PSPb 

TQ : BQ  

PSPa 

TQ : BQ  

PSPb 

TQ : BQ  

 

Average Standard Deviation 

1A  9.0 : 59.3 13.0 : 73.7 9.5 : 37.8 10.7 : 43.5 

10A  3.5 : 13.3 6.1 : 15.2 3.5 : 12.3 6.8 : 11.9 

N for 1A 20 : 26 141 : 130 20 : 26 141 : 130 

N for 10A 20 : 24 143 : 133 20 : 24 143 : 133 

Percent Change 61% : 78% 53% : 79% 63% : 67% 36% : 73% 
 

When outliers are excluded, the top-quartile students improved 53-61%; bottom-quartile 

students improved 78-79%.  The variability in the performance of the top-quartile students 

decreased 36-63%; the variability of the bottom-quartile students decreased 57-73%.   

Top-quartile students improved by a factor between 2.1 and 2.6, and their variability 

decreased by a factor between 1.6 and 2.7. Bottom-quartile students improved by a factor 

between 4.6 and 4.8, and their variability decreased by a factor between 3.1 and 3.7.  These 

values are similar to those when outliers were included:  by adopting disciplined processes, top-

quartile students improve their software quality by a factor more than two, and bottom-quartile 

students improve theirs by a factor more than four. 

When outliers are excluded, the performance of top-quartile students is better than that of 

bottom-quartile students by a factor of 5.7 to 6.6 initially, and changes to 2.5 to 3.8 by the end of 

PSP.  While top-quartile students continue to perform better than those in the bottom quartile, a 

disciplined process leads to superior performance for the bottom-quartile students, and even the 

top-quartile students improved markedly. 
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4.9.2 Comparing Top and Bottom Performers at the End of PSP 

The differences between the top and bottom performers appear to persist across the 

course of the PSP class.  This can be confirmed by comparing performance in the later 

assignments in the class.  This also removes the need to restrict the data sets to those students 

who finished all ten assignments.  As illustrated in Figure 13 for (PSPb, C, 9A), differences in 

performance for the first three assignments tend to persist in the later assignments.     
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Figure 13  Differences in Performance Across Quartiles for (PSPb, C, 9A) 
 

The Each Pair and All Pairs tests indicate that the means for the top and bottom quartiles 

of programmer ability are significantly different from each other, although there is overlap with 

the middle two quartiles.     

The ANOVA results for the effect of programmer quartile on defect density in testing are 

shown in Table 87.  The null hypothesis against defect density in testing is 

0 2: TQ M BQH µ µ µ= = with alternative hypothesis Ha: not all of the means are equal. 
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Table 87  ANOVA for Programmer Quartile 

Source PSPa 9A  
C 

PSPa 9A 
C++ 

PSPb 10A 
C 

PSPb 10A 
C++ 

DF 2 2 2 2 

SS 3196.8 2021.1 349.3 810.6 

Model  

MS 1598.4 1010.6 174.7 405.3 

DF 149 79 130 63 

SS 36219.7 39228.9 15853.7 10572.2 

Error 

MS 243.1 496.6 122.0 167.8 

DF 151 81 132 65 Total 

SS 39416.5 41250.0 16203.0 11382.9 

F Ratio 10.1W 2.0 1.4 4.2W 

Prob > F 0.0001W 0.1375 0.2425 0.0302W 

R2
a 0.0688 0.0249 0.0065 0.0417 

 
The effect of programmer quartile on defect density in testing was shown to be 

statistically significant for only two of the four data sets.  This indicates that programmer 

quartile may be a useful predictor variable for defect density in testing. 

The estimates of the means for defect density in testing at the different levels of 

programmer quartile, and the associated standard errors for the means, are listed in Table 88 for 

the data sets including outliers.  The model can be expressed as: 

(Defect density in testing) = β Programmer Quartile X Programmer Quartile 

where β Programmer Quartile is the level for programmer quartile and X Programmer Quartile is an indicator 

variable for whether that programmer quartile is the correct one for the observation. 
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Table 88  Estimates for Programmer Quartile Levels 

Levels  

 

 

PSPb 9a  
C**** 

(std err) 

PSPb 9A 
C++ 

(std err) 

PSPb 10A 
C 

(std err) 

PSPb 10A 
C++* 

(std err) 

TQ 21.68 

(2.76) 

23.09 

(5.62) 

13.39 

(1.62) 

10.33 

(4.14) 

M2 16.35 

(2.09) 

18.10 

(3.85) 

10.72 

(1.53) 

13.82 

(2.50) 

BQ 9.14 

(1.36) 

8.61 

(2.13) 

8.73 

(1.51) 

5.84 

(1.24) 
 

The ANOVA results for the data sets excluding outliers are provided in Table 89.  

Outliers were identified with respect to defect density in testing for the top and bottom quartiles 

for assignments 1 and 10. 
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Table 89  ANOVA for Programmer Quartile Excluding Outliers 

Source PSPa 9A  
C 

PSPa 9A 
C++ 

PSPb 10A 
C 

PSPb 10A 
C++ 

DF 2 2 2 2 

SS 1213.5 573.9 330.6 101.6 

Model  

MS 606.8 287.0 165.3 50.8 

DF 140 75 127 57 

SS 14240.4 9014.9 8524.4 2730.6 

Error 

MS 101.7 120.2 67.7 47.9 

DF 142 77 128 59 Total 

SS 15453.9 9588.9 8855.0 2832.2 

F Ratio 6.0 2.4 2.4 1.1 

Prob > F 0.0033 0.0988 0.0910 0.3530 

R2
a 0.0654 0.0348 0.0221 0.0020 

 
The ANOVA results for the data sets excluding differ from those for the data sets with 

outliers in one case:  (PSPb, 10A, C++) is no longer shown to be significant.  While the evidence 

continues to indicate that programmer quartile may be a useful predictor variable for defect 

density in testing, it does not appear to be a good distinguisher when disciplined processes are 

used. 

The estimates of the means for defect density in testing at the different levels of 

programmer quartile, and the associated standard errors for the means, are listed in Table 90 for 

the data sets excluding outliers.   
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Table 90  Estimates for Programmer Quartile Excluding Outliers 

Levels  

 

 

PSPb 9a  
C** 

(std err) 

PSPb 9A 
C++ 

(std err) 

PSPb 10A 
C 

(std err) 

PSPb 10A 
C++ 

(std err) 

TQ 17.18 

(1.71) 

16.56 

(4.35) 

12.57 

(1.44) 

7.25 

(3.13) 

M2 12.58 

(1.32) 

13.80 

(1.61) 

8.80 

(1.00) 

8.73 

(1.25) 

BQ 9.14 

(1.36) 

8.61 

(2.13) 

8.73 

(1.51) 

5.84 

(1.24) 
 

It is intuitively clear that programmer ability is a fundamental driver for software quality, 

but a simple measure such as the quartiles for the initial PSP assignments may not be an 

adequate choice to characterize that ability. 

4.9.3 Using a Continuous Measure of Programmer Ability 

A better surrogate for programmer ability than the programmer quartile may be the 

direct use of the average defect density in testing for the first three assignments.  Note that large 

values for this surrogate correspond to relatively low ability (PSP students may be above average 

for software professionals in general). 

The regression results for the effect of programmer ability, as measured by the average 

defect density in testing on the first three assignments, on defect density in testing in assignments 

9 and 10 are shown in Table 91.  For the regression model: 

(Defect density in testing) = β0 + β1 (Programmer ability) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 91  Regression Models for Programmer Ability 

Source PSPa 9A   
C 

PSPa 9A 
C++ 

PSPb 10A 
C 

PSPb 10A 
C++ 

DF 1 1 1 1 

SS 3584.0 3369.5 573.1 160.7 

Model  

MS 3584.0 3369.5 573.1 160.7 

DF 150 80 131 64 

SS 35832.5 37880.5 15629.9 11222.1 

Error 

MS 238.9 473.5 119.3 175.3 

DF 151 81 132 65 Total 

SS 39416.5 41250.0 16203.0 11382.9 

F Ratio 15.0 7.1 4.8 0.9 

Prob > F 0.0002 0.0092 0.0302 0.3419 

R2
a 0.0849 0.0702 0.0280 -0.0013 

 
The effect of programmer ability on defect density in testing was shown to be statistically 

significant for three of the data sets. This indicates that programmer ability should be a useful 

predictor variable for defect density in testing. 

The parameter estimates of the regression model for programmer ability, and the 

associated standard errors, are listed in Table 92 for the data sets including outliers.   
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Table 92  Estimates for Programmer Ability 

Parameter  

 

PSPa 9A   
C 

(std err) 

PSPa 9A 
C++ 

(std err) 

PSPb 10A 
C 

(std err) 

PSPb 10A 
C++ 

(std err) 

β0 (Intercept) 9.65**** 

(2.00) 

7.63 

(3.99) 

8.22**** 

 (1.53) 

8.82** 

(2.84) 

β1 0.12*** 

(0.03) 

0.19** 

(0.07) 

0.05* 

(0.02) 

0.05 

(0.05) 
 

The ANOVA statistics for the data sets excluding outliers are provided in Table 93.  

Outliers were defined with respect to defect density in testing.   

Table 93  ANOVA for Programmer Ability Excluding Outliers 

Source PSPa 9A   
C 

PSPa 9A 
C++ 

PSPb 10A 
C 

PSPb 10A 
C++ 

DF 1 1 1 1 

SS 1207.3 896.7 534.1 0.5 

Model  

MS 1207.3 896.7 534.1 0.5 

DF 141 76 127 58 

SS 14246.6 8692.2 8320.9 2831.6 

Error 

MS 101.0 114.4 65.5 48.8 

DF 142 77 128 59 Total 

SS 15453.9 9588.9 8855.0 2832.2 

F Ratio 11.9 7.8 8.2 0.01 

Prob > F 0.0007 0.0065 0.0050 0.9165 

R2
a 0.0716 0.0816 0.0529 -0.0171 

 
The regression results for the data sets excluding outliers are similar to those for the data 

sets with outliers.  The preponderance of the evidence therefore indicates that programmer 



 

172 

ability should be a useful predictor variable for defect density in testing, and that a continuous 

variable such as the average defect density in testing is preferable over a categorical variable, at 

least from a statistical perspective. 

The parameter estimates of the regression model for programmer ability, and the 

associated standard errors, are listed in Table 94 for the data sets excluding outliers.   

Table 94  Estimates for Programmer Ability Excluding Outliers 

Parameter  

 

PSPa 9A   
C 

(std err) 

PSPa 9A 
C++ 

(std err) 

PSPb 10A 
C 

(std err) 

PSPb 10A 
C++ 

(std err) 

β0 (Intercept) 9.09**** 

(1.33) 

7.53*** 

(2.18) 

7.11**** 

(1.14) 

7.48**** 

(1.57) 

β1 0.07*** 

(0.02) 

0.12** 

(0.04) 

0.05** 

(0.02) 

0.003 

(0.03) 
 

Defect density in testing increases as programmer ability, as measured by average defect 

density in testing on the first three assignments, increases within the PSP context.  To say this in 

a more intuitive manner, as ability improves, so does software quality. 

4.9.4 Discussion of Programmer Ability 

My research finds that programmer ability, as empirically measured by the average 

defect density in testing for the first three PSP assignments, should be a predictor variable for 

software quality.  This holds true even for a simple regression model that does not address 

program size or any of the process variables that were also shown to be useful predictor 

variables.   

A continuous measure is preferable to a categorical measure within the PSP context.  

There is a caveat in generalizing this observation, however.  The use of measures such as defect 
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density for promotions and raises will drive dysfunctional behavior unless used in the context of 

a balanced set of project and organizational measures [Austin 1996].  Collecting this data for 

strictly informational purposes in building defect prediction models should not cause 

dysfunctional behavior, but there is a risk that collecting this kind of data will be perceived as 

being used for motivational purposes, which could in turn lead to dysfunctional behavior that 

might comprise the validity of the data.  Categories such as programmer quartile may be less 

amenable to abuse and other factors could be incorporated that may be important in a project or 

organizational context – some of which may not be easily quantifiable, such as good teamwork 

skills. 

While top-quartile students performed better than those in the bottom quartile on average, 

a disciplined process leads to significantly better performance for the bottom-quartile students, 

and even the top-quartile students improved markedly.  Over the course of PSP, top-quartile 

students improved their software quality by a factor more than two, and bottom-quartile students 

improved theirs by a factor more than four.  Variation in performance within each quartile also 

decreased markedly.  

 

4.10 CONCLUSIONS FOR EXPLANATORY VARIABLES FOR SOFTWARE 
QUALITY 

In this exploratory data analysis I found that 1) process-based variables are important 

factors for software quality; 2) program size, which is an indicator of solution complexity, is an 

important quality factor; and 3) programmer ability is an important quality factor when 

empirically measured.  Other variables that may appear to be plausible surrogates for important 

areas such as ability and technology were not shown to be significant. 
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Building on earlier research into defect prediction models [Boehm et al. 2000, 254-268; 

Devnani-Chulani 1999; Evanco and Lacovava 1994; Neufelder 2000; Schneberger 1997; Wohlin 

and Wesslen 1998; Zhang 1999], the relevant explanatory variables for individual performance 

that are good candidates for use in defect prediction are program size, programmer ability, 

design time, design review rate, defect density in design review, coding time, code review rate, 

defect density in code review, and defect density in compile.  The PSP major process and PSP 

assignment may capture additional variation due to application domain or learning curve effects, 

but they are of no practical value outside the PSP context.  While the variables found to be 

important factors for software quality in my research are likely to also be important for software 

projects in general, other variables outside the scope of this analysis, such as those related to 

problem complexity or team effects, are likely to be important for projects in industry.   

My research differs from previous PSP analyses in several respects.  Hayes and Over 

focused on the impact of PSP at the PSP major process or assignment level [Hayes and Over 

1997].  Their results have been replicated [Wohlin and Wesslen 1998; Wesslen 2000; Wohlin 

2004], and PSP is widely considered an effective method for building high-quality software.  My 

research replicates their results with respect to software quality, then explores the impact on 

software quality of more detailed process measures, such as design time, review rate, and defect 

density in reviews.   

I was able to extend the research into the impact of potential confounding variables, such 

as academic degrees and experience, and rule out those factors.  I was able to empirically 

consider the issue of programmer ability and verify its importance and influence on the various 

process variables.  The issue of relative ability of programmers is particularly important, since 

the finding that even top-quartile performers improve over 2X refutes those who resist the need 
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for discipline, while acknowledging that their performance is superior and their opportunities for 

improvement are less than many of their colleagues. 

My research supports the premise of PSP and similar process improvement strategies:  

disciplined software processes, such as PSP2 and PSP3, result in superior performance compared 

to ad hoc processes, such as PSP0.  This improvement can be seen in both improved 

performance and decreased variation.  It can be inferred that this is the minimum level of 

improvement that can be expected for a set of programmers since other researchers have 

observed that improvement continues after the PSP class [Hayes 1998; Ferguson et al. 1997; 

Holmes 2003; Hirmanpour and Schofield 2003].   

My contribution in this analysis therefore consists of the following results:   

• Disciplined processes were shown to improve individual performance in software 

quality by a factor of about five, similar to the results of previous researchers 

analyzing PSP data [Hayes and Over 1997, 22; Wesslen 2000; Wohlin 2004]. 

• Individual differences of more than an order-of-magnitude were shown to remain 

even when disciplined processes were used [Ferguson et al. 1997; Hayes and Over 

1997, 22; Hayes 1998; Hirmanpour and Schofield 2003; Holmes 2003; Wohlin 2004, 

212]. 

• Programmer ability was shown to significantly affect software quality when 

empirically measured; surrogates such as years of experience were not found to be 

useful, although some earlier researchers have found team-based experience 

significant [Takahashi and Kamayachi 1985; Zhang 1999].   

• Top-quartile performers were shown to improve by a factor of two or more; bottom-

quartile performers were shown to improve by a factor of four or more. 
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• Although technology factors, i.e., programming language used, may affect 

productivity, they were not shown to affect software quality as measured by defect 

density in testing, unlike some earlier researchers in a project/team environment 

[Gaffney 1984; Lipow 1982]. 

• Program size was shown to be a weak predictor of quality in the presence of 

individual differences, unlike the findings of most previous researchers in a 

project/team environment [Akiyama 1972; Compton and Withrow 1990; Criscione, 

Ferree, and Porter 2001; Halstead 1977, 87-91; Jones 1996; Lipow 1982; Lyu 1996; 

Fenton and Neil 1999; Fenton and Ohlsson 2000; Putnam and Myers 1997, 32]. 

• Detailed process measures provide more insight into performance than broad 

categories such as PSP major process or CMM maturity level, partially addressing 

Fenton and Neil’s desire for more complete models [Fenton and Neil 1999, 153], at 

least within the context of individual programmers.   

The practical implications of my research for software managers and professionals are 

relatively simple, although they may be challenging to address.  First, although programmer 

ability is a crucial factor affecting software quality, surrogates such as seniority and academic 

credentials are inadequate for ranking programmers, and empirical measures that are more 

effective may cause dysfunctional behavior when used for determining raises and promotions 

[Austin 1996].  Second, consistent performance of recommended engineering practices improves 

software quality, even for top performers, who may resist discipline and measurement-based 

decisions because they already are superior performers.  Third, organizations, teams, and 

individuals can use frameworks such as the Software CMM, TSP, and PSP to help 
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institutionalize disciplined, measurement-driven processes that are more effective than intuitively 

managed processes. 
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5.0 IDENTIFYING OUTLIERS IN THE SOFTWARE PROCESS  

 

5.1 THE RESEARCH QUESTION: IDENTIFYING OUTLIERS 

The research in this chapter focuses on identifying atypical programs.  The common 

cause system for PSP software development can be characterized with respect to a number of 

factors, especially process variables, as has been shown in Chapter 4.  While the PSP process is 

rigorously defined, it may not be consistently implemented (or implemented according to 

recommended practice).  The primary emphasis in this chapter is on identifying atypical 

performance (outliers) and characterizing the stable process, i.e., the consistent and predictable 

process. 

From an analytic perspective, atypical data should be discarded.  To understand the 

impact of process discipline on individual performance, the common cause system must be 

characterized so that analyses focus on expected performance and is not skewed by a handful of 

atypical results.  Identifying atypical performance in the software process or atypical entities in 

software work products is important for statistically analyzing process and product data and for 

statistical process control of the software process.  Outliers may skew the results of a statistical 

analysis, but outliers that are not clearly erroneous should neither be completely discarded nor 

blindly included in a statistical analysis [Judd and McClelland 1989, 210; Neter et al. 1996, 103-

104]. 

Outliers may result from three general sources [Judd and McClelland 1989, 207-237].  

First are errors in data entry, which clearly should be corrected or discarded (if they can be 
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accurately identified).  Invalid PSP data was identified and removed in Section 3.5  Second are 

outliers when the data sets are heterogeneous – they contain two or more separate types of entity.  

For process control, the traditional technique for identifying outliers is the control chart (or 

process behavior chart), which can be used to identify signals of assignable (or special) causes of 

variation in the common cause system used to build software.  In the case of the control chart, 

the two different types of entity are the assignable causes and the common cause system.  Causal 

analysis of the signals allows software professionals to take corrective and preventive actions as 

appropriate.  Third are distributions with thick tails, in which “atypical” events may be relatively 

common. 

In previous studies of individual performance, a few individuals were unable to solve the 

problems posed.  These cases were considered atypical, although as many as one in six 

programmers might be involved, and their data was discarded in identifying order of magnitude 

differences in performance [Curtis 1988, 290].  This is similar to removing data for students not 

finishing all ten PSP assignments, but the removal of outliers allows an arguably more refined 

insight into normal performance. 

The normal tool used for identifying special (or assignable) causes of variation in a 

process is the control chart.  There are other techniques for identifying outliers; a corollary to this 

analysis is comparing a simple outlier identification technique (interquartile limits) with the 

XmR control chart. 
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5.2 IDENTIFYING THE COMMON CAUSE SYSTEM 

The common cause system to be analyzed in depth is that for the final PSP processes, as 

captured in C and C++ programs for assignments 9 and 10 in the PSPb data set.  The processes 

used are the epitome of the disciplined PSP, including reviews and design templates.  

Process control techniques, such as control charts, enable in-process control, once the 

factors affecting software quality are known.  In a retrospective analysis such as this one, the 

objective is to identify outliers that are atypical of normal performance and that can be excluded 

from further analysis.  The X and Xbar charts are robust in the presence of non-normal data, 

therefore they are appropriate control charts to consider for identifying outliers given the skewed 

nature of software data [Schilling and Nelson 1976; Wheeler 2000]. 

For some measures, specification limits for factors such as review rates, in conjunction 

with the control limits, determine whether a process can be considered “capable.”  If the control 

limits that identify outliers are outside the specifications, then the process is not capable in the 

SPC sense, and the points outside the specification limits should be viewed as nonconformant to 

good practice. 

Control charts may not be useful in the context of software processes.  If the control 

limits are too wide to be useful, they do not add value.  “Useful” suggests that some points are 

identified as signals, therefore causal analysis and corrective action can be taken.  “Useful” may 

be a subjective judgment to some degree, but if the control limits for preparation rate or meeting 

rate are outside the specification limits for the rate, the direct conclusion is that the control chart 

does not add value.   

A stable process, i.e., one from which assignable causes of variation have been removed, 

is predictable, and process performance is consistent over time.  Predictable performance, 
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however, could be predictably bad.  This is one of the concerns expressed by skeptics regarding 

process discipline and SPC.  If the process is not capable, then the value added by SPC for 

control is negligible, but the need for improvement has been identified and quantified – a notable 

benefit in itself.    

 

5.3 SPECIFICATION LIMITS FOR SOFTWARE PROCESSES 

Published recommendations for design and code effort are not relevant to the PSP 

context.  While cost models allow the estimation of design and code effort, small programs such 

as the PSP assignments do not address issues such as productizing and integration, which can 

each impose a three-fold increase in effort [Brooks 1995, 230].  The consequence is that there is 

no established “best practice” for design and coding effort in a PSP-like context.  Similarly for 

defect density in design inspections, code inspections, and testing, the relevant studies are for 

software systems.   

The recommended rates for inspections, however, appear relevant, although inspections 

are a team effort, and teams with four members are recommended [Fagan 1976, 191].  The 

preparation rate for code should be about 100 LOC/hour (no more than 200 LOC/hour).  Rates 

greater than 200 LOC/hour are grounds for re-inspection.     

The recommended review rate for high-level design is twice that of code, based on the 

estimated lines of code.  The recommended review rate for detailed design is the same as that of 

code [Fagan 1986, 749].  Based on PSP design being analogous to detailed design and PSP 

review time being analogous to inspection preparation time, the unacceptable review rates are 

those above 200 LOC/hour for both design reviews and code reviews. 
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5.4 MEASURES FOR PROCESS CONTROL 

The development processes to control in PSP are the design and coding processes, since 

there is no requirements analysis step.  Defect data from the design and code reviews can be used 

to control design and coding.  Causal analysis of signals in the defect data can point to anomalies 

in either the production (design or code) or review processes.  Production effort and review rates 

are also useful measures to consider and may provide added insight into whether good 

engineering practice is being followed.  A signal in either of these measures may correspond to a 

signal in the corresponding defect measures.   

The measures analyzed to identify the common cause PSP system are therefore: 

• program size, LOC 

• design time, minutes/LOC 

• design review rate, LOC/hour 

• defect density in design review, defects removed in design review / KLOC 

• coding time, minutes/LOC 

• code review rate, LOC/hour 

• defect density in code review, defects removed in code review / KLOC 

• defect density in compile, defects removed in compile / KLOC 

• defect density in testing, defects removed in testing / KLOC 

 

5.5 TECHNIQUES FOR IDENTIFYING OUTLIERS 

The natural technique for identifying atypical performance is the control chart, 

specifically the XmR chart for individual values and moving ranges.  Although it can be argued 



 

183 

that control charts should not be used for PSP data since the PSP assignments do not capture a 

process “over time” in the sense traditionally used for process control, for a mature production 

process over an extended period of time, which PSP appears to be as shown in the exploration of 

the PSP class data in Section 4.6.3, the sequence of production is not relevant [Hahn and Meeker 

1993, 6].   

In recent years, SPC has been successfully applied to services as well as manufacturing 

[Wheeler and Poling 1998; Wheeler 2003].  The same observations that characterize the service 

environment – high variability in data combined from multiple individuals – also apply to using 

SPC on software processes.  The empirical observation is that SPC is being used in both 

environments with success; the extension to individual data is a natural, although challenging, 

extension.  Normally, machines operate with less variation than human teams, and human teams 

function with less variation than individuals.  High variability does not invalidate the use of 

control charts. 

No changes in the common cause system are expected since the PSP text and SEI-

authorized instructors provide a stable instructional context.  This conclusion is supported by the 

analysis of PSP classes in Section 4.5.3.  Signals of possible assignable causes could be used by 

the instructors to identify individuals needing additional help, although care would be needed 

that a motivational use of the data did not cause dysfunctional behavior, e.g., falsified data.  This 

suggests the view that the process being controlled is one for building PSP-trained students 

rather than software programs. 

Assignable causes of variation should be removed when calculating control limits, but 

causal analysis cannot be performed when doing a retrospective analysis [Liberatore 1995, 6], 

therefore robust control limits are calculated using a two-stage procedure [Rocke 1988; Roes 
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1993].  Points outside the initial 3σ limits are removed, and robust control limits calculated.  In 

normal SPC, points are only removed when they are confirmed by causal analysis as assignable 

causes of variation, but that is not feasible for a retrospective analysis.  One iteration, the two-

stage procedure, is a reasonable compromise for identifying the “voice of the process.”  The 

robust limits should be closer to the “true” process capability than the initial limits.  Another 

robust technique, “robust regression,” drops data points more than two standard deviations from 

the mean response variable, but it is only appropriate when dealing with a small number of 

predictor variables [Devnani-Chulani 1999, 36]. 

Other commonly used detection rules are run tests.  These would be problematic for PSP, 

since the PSP as an educational process is arguably a mature, constant process.  Each set of 

assignments comes from a different source (individual), therefore any run test would be 

conceptually inappropriate.  The use of control charts with the PSP data is essentially an exercise 

in rigorously identifying outliers from a stable population.   

All of the lower limits for the PSP data are less than zero, which means that the effective 

lower control limit is zero for the measures chosen.  In some instances a data transformation 

might allow the potential for a lower control limit.  A “low” signal for effort might indicate poor 

design or coding practices, which might in turn indicate a high defect injection in the design or 

coding phases.  A “low” signal for review rate might indicate a meticulous review, perhaps 

suggesting concern on the part of the programmer about the quality of the design or code.  A 

“low” signal for defect density might indicate an inadequate review, which could suggest a high 

escape rate.  The XmR charts used in this section are unable to identify such cases. 

A simple alternative to control charts for identifying outliers is to set limits at 1.5 times 

the interquartile range below the 25% and above the 75% quantiles [SAS Institute 2000, 36].  
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This interquartile limit (IQL) provides an independent check on the plausibility of the robust 

limits as truly representing the voice of the process. 

A variety of techniques can be used for identifying outliers, including those based on the 

influence of data points on regression models, such as Cook’s D and DFFITS [Rawlings, 

Pantula, and Dickey 1998, 361-364].  Care in discarding outliers is recommended, however; 

direct evidence of recording errors or miscalculations is desirable to justify discarding data 

[Neter et al. 1996, 103-104].  For a retrospective analysis, that is not practical, therefore 

relatively simple approaches to identifying outliers, such as XmR charts and interquartile limits, 

are appropriate. 

 

5.6 IDENTIFYING SIZE OUTLIERS 

The graph in Figure 14 is an X chart.  In principle, the mR chart should not add insight 

since each data point can be considered a random pull from the PSP statistical universe, which is 

a variant of the argument against using run tests.  Some statisticians recommend not plotting the 

mR chart in any case, arguing that the X chart contains all of the information available [Nelson 

1982; Roes 1993].   
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Figure 14  Initial X Chart for Program Size in (PSPb, C, 9A) 

 
Size is the most commonly used factor in defect prediction models and is a critical 

software product measure.  Atypically large programs are also atypical solutions to the PSP 

assignments.  The above figure contains the initial control limits for program size for (PSPb, C, 

9A).  Figure 15 below contains the robust control limits, with the initial set of “outliers” 

removed.   
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Figure 15  Robust X Chart for Program Size in (PSPb, C, 9A) 
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Table 95 contains the outlier statistics for program size.  It shows the initial XmR, robust 

XmR, and interquartile limits, as well as the number of points identified as outliers for each set 

of limits.     

Table 95  Outlier Statistics for Program Size (LOC) 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  145.1 167.2 204.2 255.4 

Initial XUCL  324.0 424.7 430.8 613.9 

Number of points 
outside the initial limits 

4 1 4 1 

Robust X  137.2 159.2 187.9 245.3 

Robust XUCL  284.3 380.9 360.4 552.6 

Number of points 
outside the robust limits 

7 2 7 2 

Interquartile limit 284.0 399.0 359.0 552.0 

Number of points 
outside the IQL 

7 1 7 2 

 
An atypical size, i.e., a point be above the upper limit for program size, could indicate an 

inappropriate solution was chosen for the problem.  Differing emphases on aspects of a program 

such as flexibility and speed can have a dramatic impact on size, which has been characterized as 

the “problem of ambiguous programming objectives” [Weinberg 1998, 126-132].   
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5.7 IDENTIFYING DESIGN OUTLIERS 

5.7.1 Design Effort 

Table 96 contains the outlier statistics for design time.  It is widely believed that time 

spent in design has a high benefit, although the learning curve effects for the PSP design 

templates may counteract that effect here. 

Table 96  Outlier Statistics for Design Time 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  0.6 0.6 0.5 0.5 

Initial XUCL  1.6 1.8 1.4 1.6 

Number of points 
outside the initial limits 

2 1 4 2 

Robust X  0.6 0.6 0.5 0.5 

Robust XUCL  1.5 1.6 1.2 1.3 

Number of points 
outside the robust limits 

4 1 9 2 

Interquartile limit 1.6 1.9 1.3 1.4 

Number of points 
outside the IQL 

2 1 9 2 

 
Points above the upper limit for design effort could result from problem complexity, 

solution complexity, or the learning curve.  Problem complexity should not be an issue since 

each assignment is the same for all students.  Solution complexity can be a factor, especially if 

some students are more successful at reusing software from earlier assignments.  Unfamiliarity 

with the application domain should not be a factor since assignments 9 and 10 are 
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straightforward elaborations of earlier assignments.  The most likely cause for a signal in design 

effort is difficulty in learning to use the design templates.   

5.7.2 Design Review Rate 

Table 97 contains the outlier statistics for design review rate.   

Table 97  Outlier Statistics for Design Review Rate 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  525.6 746.5 588.5 537.9 

Initial XUCL  1712.9 2868.5 1907.0 1840.3 

Number of points 
outside the initial limits 

7 5 7 3 

Robust X  450.6 502.0 474.6 457.8 

Robust XUCL  1336.5 1637.3 1353.9 1557.1 

Number of points 
outside the robust limits 

13 10 10 5 

Interquartile limit 1278.6 1473.6 1443.1 1325.0 

Number of points 
outside the IQL 

14 10 9 7 

 
The natural process limits are well above the maximum rate of 200 LOC/hour for 

effective design reviews.  Since the upper limit for design review rate is not within the 

specification limits, the design review process is not capable (in statistical terms), although even 

poor reviews are better than none at all.  Since the design review process is not capable, the 

process improvement focus should be on ensuring that the design review rate conforms to 

recommended practice rather than analyzing signals that are outside the limits for the process. 
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Points above the upper limit for design review rate clearly indicate, in this case, that the 

student is not following a rigorous design review process.  The comparatively large number of 

points outside the limits indicates that, even with an incapable process, a number of students are 

failing to follow the “normal design review” process as learned by most PSP students by this 

time in the course.  Points inside the limits, but significantly higher than 200 LOC/hour, suggest 

that the student’s behavior is normal, even if less than effective.  For the 38 cases where there are 

signals for design review rate, based on the robust limits, the average defect removal 

effectiveness is 23%.  Comparing this to the average defect removal effectiveness of 62% for 

design reviews with a rate less than the maximum 200 LOC/hour confirms that high review rates 

indicate ineffective design reviews. 

5.7.3 Defect Density in Design Review 

Table 98 contains the outlier statistics for defect density in design review.     
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Table 98  Outlier Statistics for Defect Density in Design Review 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  13.5 13.5 7.3 9.7 

Initial XUCL  53.7 60.8 32.3 43.5 

Number of points 
outside the initial limits 

8 2 4 2 

Robust X  10.5 12.0 6.1 8.3 

Robust XUCL  45.1 53.0 26.6 37.1 

Number of points 
outside the robust limits 

15 6 7 3 

Interquartile limit 50.6 46.3 29.7 31.8 

Number of points 
outside the IQLt 

10 7 7 5 

 
Points above the upper limit for defect density in design review could indicate that the 

design review was unusually effective in identifying defects or that the student was having 

difficulty with the application domain.   

 

5.8 IDENTIFYING CODING OUTLIERS 

5.8.1 Coding Effort 

Table 99 contains the outlier statistics for coding time.  While high values for design time 

may indicate a deliberate approach to design, high values of coding time may suggest that design 

work is being (inappropriately) performed in coding.   
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Table 99  Outlier Statistics for Coding Time 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  0.6 0.6 0.5 0.5 

Initial XUCL  1.7 1.7 1.1 1.2 

Number of points 
outside the initial limits 

4 3 6 3 

Robust X  0.6 0.5 0.5 0.5 

Robust XUCL  1.4 1.4 1.0 1.1 

Number of points 
outside the robust limits 

6 6 11 4 

Interquartile limit 1.4 1.4 1.1 1.3 

Number of points 
outside the IQL 

6 6 10 2 

 
Points above the upper limit for coding effort may suggest an inadequate design.  There 

should be few learning curve effects associated with the coding process; by this point in PSP, 

any unfamiliarity with the programming language should have been largely overcome.  A “low” 

signal for coding effort may indicate inadequate programming, which might in turn indicate a 

high defect density in the coding or testing phases, but this XmR chart is unable to identify such 

problems.   

5.8.2 Code Review Rate 

Table 100 contains the outlier statistics for code review rate.   
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Table 100  Outlier Statistics for Code Review Rate 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  403.6 403.6 580.5 451.7 

Initial XUCL  1191.6 1239.0 1954.5 1381.8 

Number of points 
outside the initial limits 

5 2 4 1 

Robust X  365.7 355.9 438.7 429.4 

Robust XUCL  999.9 1024.6 1090.6 1253.1 

Number of points 
outside the robust limits 

12 4 10 2 

Interquartile limit 981.7 962.3 1172.5 1031.8 

Number of points 
outside the IQL 

12 6 8 3 

 
Similar to the case for design reviews, the average code review rate exceeds the 

maximum code inspection rate of 200 LOC/hour, and the code review process cannot be 

considered “capable.”  

Points above the upper limit for code review rate suggest that the student is not following 

a rigorous code review process, similar to the case for design review rate.  Points inside the 

limits, but significantly higher than 200 LOC/hour, suggest that the student’s behavior is normal, 

even if less than effective.  For the 28 cases where there are signals for code review rate, based 

on the robust limits, the defect removal effectiveness is 19%.  Comparing this to the average 

defect removal effectiveness of 50% for code reviews with a rate less than 200 LOC/hour 

confirms that high review rates indicate ineffective code reviews. 
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5.8.3 Defect Density in Code Review 

Table 101 contains the outlier statistics for defect density in code review.      

Table 101  Outlier Statistics for Defect Density in Code Review 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  24.5 27.7 16.9 19.4 

Initial XUCL  90.3 97.8 58.7 66.8 

Number of points 
outside the initial limits 

6 4 2 3 

Robust X  21.2 22.6 15.7 16.0 

Robust XUCL  73.9 77.0 53.3 52.8 

Number of points 
outside the robust limits 

9 6 2 3 

Interquartile limit 69.0 74.8 61.5 55.8 

Number of points 
outside the IQL 

12 6 2 3 

 
Points above the upper limit for defect density in code review could indicate that the code 

review was unusually effective in identifying defects, that the design inputs were defect prone, or 

that the student was having difficulty with the application domain or programming language.   

 

5.9 IDENTIFYING COMPILATION OUTLIERS 

A compiler can be used as a debugging tool.  One of the ongoing discussions about code 

inspections is whether the inspected code should come from a clean compile, i.e., the compiler 
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should be used to remove “obvious” syntactic defects.  Table 102 contains the outlier statistics 

for defect density in compilation.     

Table 102  Outlier Statistics for Defect Density in Compilation 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  16.1 22.2 12.7 16.8 

Initial XUCL  65.8 91.1 46.5 63.2 

Number of points 
outside the initial limits 

4 3 1 1 

Robust X  14.0 18.8 12.4 15.9 

Robust XUCL  54.1 75.6 44.8 58.7 

Number of points 
outside the robust limits 

7 5 2 2 

Interquartile limit 60.0 66.0 47.0 52.5 

Number of points 
outside the IQL 

5 6 1 4 

 
Points above the upper limit for defect density in compilation could indicate that a large 

number of syntactic mistakes were made in coding, which might suggest a lack of expertise in 

the programming language.  Wesslen found that PSP reviews identified a higher percentage of 

compile defects than design defects, suggesting that one possible improvement for PSP reviews 

would be a greater focus on logical errors [Wesslen 1999, 32].  It may also indicate a large 

number of defects escaping from earlier phases of the life cycle. 
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5.10 IDENTIFYING TESTING OUTLIERS 

Table 103 contains the outlier statistics for defect density in testing, which, while of 

limited value as a process control measure, provides insight into the effectiveness of the other 

measures and indicates the stability of the overall PSP process.     

Table 103  Outlier Statistics for Defect Density in Testing 

Statistic PSPb C   
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Initial X  15.7 16.1 10.9 11.1 

Initial XUCL  56.8 60.6 39.0 43.8 

Number of points 
outside the initial limits 

6 1 2 3 

Robust X  13.4 14.1 10.1 9.0 

Robust XUCL  43.6 49.7 34.2 33.7 

Number of points 
outside the robust limits 

9 4 4 6 

Interquartile limit 41.0 47.1 35.5 30.5 

Number of points 
outside the IQL 

9 4 4 6 

 
Defect density in testing is not used for process control, since it is the surrogate for 

software quality, but high values indicate poor quality programs.  A point above the upper limit 

for defect density in testing suggests that an unusual number of defects in design or coding 

escaped those life cycle activities and were captured in testing.  Association of signals in testing 

with in-process signals indicates opportunities for taking corrective action earlier in 

development.   For the 23 signals in defect density in testing, there is an associated in-process 



 

197 

signal in 15 cases.  The most commonly associated signals are for defect density in code review 

and defect density in compile (6 and 7 instances respectively).   

Unfortunately, a high percentage (33%) of the assignments have signals for one or more 

of the eight explanatory variables. There are 143 assignments with one or more signals for the 

433 assignments.  This suggests that learning occurs at the end of an assignment rather than 

during it, which is reasonable given the small size of the PSP assignments.  

 

5.11 DISCUSSION OF OUTLIER IDENTIFICATION 

The control charts demonstrate that signals of assignable causes may occur in the PSP 

data, more than would be expected by chance.  One or two points outside the limits can be 

expected for these data sets using Wheeler’s Empirical Rule that a homogenous data set will 

have approximately 99-100% of the data within the 3σ limits [Wheeler and Chambers 1992, 61].  

Numbers greater than three or four for these PSP data sets suggest instability, i.e., some students 

are not consistently following the PSP process.  It may also be that some students have had a bad 

day independent of their use of PSP… or are simply poor programmers.   

The latter suggestion highlights the concern that the results of statistical analysis should 

not be used for motivational purposes; “grades” in PSP should depend on learning how to 

program better, not on performing well relative to the other students.  A consistent conclusion in 

analyzing individual differences in programmers, however, is that investments in eliminating the 

lower tail of the individual differences distribution, whether via training or reassignment, provide 

the greatest potential benefit in improving performance [Curtis 1988, 290; Boehm 1981, 666-

667].  As shown in Section 4, disciplined processes can contribute significantly to addressing 
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these issues, but effective performance, which can be supported by SPC, is needed as well as 

consistency. 

The process instability index provides a heuristic for determining whether a process is 

reasonably stable [Pierce 2005].  The formula for calculating this index is: 

#( )*100
#t

signalsS
observations

=  

and St > 3% is considered statistically unstable.  For the individual process variables, the 

processes are predominantly unstable.  In three cases, one data set has St < 3, and in two other 

cases, two data sets have St < 3.  For the other 29 data sets, St > 3. 

The identification of signals by the XmR charts do not necessarily add value to the PSP 

process.  The determination of value can be approximated by the association of in-process 

signals with poor software quality, if the processes are capable (the control limits are within the 

specification limits).  As already shown, 65% of the signals in defect density in testing could 

have been identified early in the life cycle.  If the full set of eight variables is used for process 

control, however, 33% of the assignments would undergo causal analysis at one or more points 

in the process – an unacceptably high rate for practical use.  If only the defect data are used, one 

or more signals in 53 assignments are identified in development that correspond to 12 of the 23 

signals in testing.  Causal analysis of 12% of the assignments is more realistic, although the 

benefits remain limited compared to the potential. 

For design and code review rates, the control limits failed to fall within recommended 

best practice, therefore those charts do not add value for control, and the charts simply confirm 

that high review rates are associated with ineffective reviews.  Charts for effort provided 

minimal insight.  Charts for defect density in reviews provided benefit, although there were a 

large number of false alarms. 
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Table 104 compares the number of outliers identified using interquartile limits to the 

number identified using XmR charts.  A positive number indicates the number of additional 

signals identified by the XmR chart over the interquartile limit; a negative number indicates 

more signals were identified by the interquartile limits.   

Table 104  Outlier Differences Between XmR Charts and Interquartile Limits 

Confounding Variable PSPb C 
9A 

PSPb C++ 
9A 

PSPb C 
10A 

PSPb C++ 
10A 

Program Size  0 1 0 0 

Design Time / LOC 2 0 0 0 

Design Review Rate -1 0 1 -2 

Defect Density in Design Review 5 -1 0 -2 

Coding Time / LOC 0 0 1 2 

Code Review Rate 0 -2 2 -1 

Defect Density in Code Review -3 0 0 0 

Defect Density in Compile 2 -1 1 -2 

Defect Density in Testing 0 0 0 0 

Totals 5 -3 5 -5 
 

The interquartile limits are about as effective as XmR charts in identifying outliers.  

Although the XmR chart identifies slightly more points than the interquartile limits, the 

comparison suggests that detection rules such as run tests are needed to maximize the benefits of 

XmR charts.  Use of more sophisticated control charting techniques, such as u-charts, depends 

on an analysis of the distributional assumptions made by those techniques. 

This analysis confirms the high variability of individual performance, even when 

following a disciplined process at the end of the PSP course, where the variation has decreased 



 

200 

relative to the ad hoc process at the beginning of the course.  In a sense, this analysis identifies 

worst-case bounds for performance when following a disciplined software process.  It is difficult 

to conceive of an industrial setting that could match the potential for individual variation found 

in the PSP environment, since the preferred unit of study in an industry setting is the team or 

project.   

Even when SPC is successfully applied, there is a tension between having stable 

processes and continual process improvement.  The process data for the previous process may 

not be valid for the new process, and new control limits may need to be recalculated on an 

ongoing basis.  These process shifts are illustrated in a small way by the statistically significant 

differences between assignments 9 and 10 identified in Section 4.5.1, as well as the shifts 

between the PSP major processes. 

 

5.12 CONCLUSIONS FOR OUTLIER IDENTIFICATION 

One may conclude from this analysis that, although disciplined processes improve 

performance and decrease variation – sufficiently that the learning objectives for the PSP 

students are attained – the disciplined process at the end of the course remains unsatisfactory 

compared to the potential of conformant processes that follow generally-accepted best practice.  

In spite of the growing adoption of SPC (and specifically control charts) in industry, it is clear 

from this analysis that to get the best value from statistical techniques, a consistently-

implemented process is necessary but not sufficient for statistical control.  The effective 

implementation of recommended practices is also needed before the adjectives “disciplined” or 

“mature” can be used.   
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Many of the PSP students have not arrived at “industry best practice” with respect to 

review rates.  The objective of PSP to induce learning based on personal data is an on-going 

process that is not completed within the confines of the course, as has been observed in previous 

studies [Hayes 1998, 65; Ferguson et al. 1997, 28-30].   

As this analysis shows, if outliers are identified for an assignment for each of the eight 

variables that might be used for process control retrospectively, about one third of the 

assignments would be excluded for analysis based on one or more outliers – an excessive 

number to exclude without causal analysis of why the data was atypical.  This does not 

necessarily mean that in-process control using all eight variables with causal analysis performed 

in real-time would not be cost effective.  It does mean that a retrospective analysis of a complex 

process, the PSP process in this case, cannot effectively identify outliers on a per-variable basis 

effectively, although outlier identification per variable was useful in the simple regression 

models in Chapter 4.  Multiple regression models, as described in Chapter 7, use regression 

outlier techniques to identify influential outliers more effectively. 

My contributions in this analysis are therefore the following results: 

• PSP processes are not statistically capable or stable by the end of the ten assignments 

in the PSP class. 

• For a retrospective analysis, XmR control charts using only out-of-bounds signals are 

roughly equivalent to interquartile limits in identifying outliers.  This suggests that 

run-based signaling techniques should also be used to identify assignable causes of 

variation.  

• When the natural process limits for a PSP process are identified, the measured 

process performance may not meet recommended practice, reinforcing the need for 
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continual improvement to continue after the course.  The Team Software Process is 

the recommended mechanism for continuing professional development and deploying 

the PSP ideas in a team context [Humphrey 1999]. 

For software professionals, the implications of my research are two-fold.  First, factors 

known to affect the review process, such as review rates, should be measured, and recommended 

practices should be quantified and followed.  Second, data collection without analysis is not 

helpful for controlling performance.  Measurement must be followed by analysis and action if 

the benefits of measurement are to be achieved.  As demonstrated in the PSP data, measurement 

does not necessarily lead to control.  Although this is intrinsic to the PSP context, which focuses 

on learning from measured performance rather than meeting a specific technique’s requirements, 

i.e., the inspection rules established by Fagan [Fagan 1986], controlling and improving 

performance based on measurement is the ultimate objective of PSP and the related TSP and 

CMM work. 
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6.0 STATISTICAL DISTRIBUTIONS OF SOFTWARE DEFECT DATA 

 

6.1 THE RESEARCH QUESTION: TESTING STATISTICAL DISTRIBUTIONS 

The research in this chapter focuses on the statistical distributions that best describe 

defects in the software process.  Since the choice of an appropriate statistical analysis frequently 

depends on assumptions about the distribution followed by the data, empirical results will help 

make informed decisions. 

This is particularly an issue in choosing u-charts as a tool for process control since they 

assume a Poisson distribution.  While a common choice, the empirical research on its 

appropriateness is mixed, and it is frequently used without checking whether the Poisson 

assumption is valid.   

The goal of this analysis is not to argue that software defect data follow a particular 

distribution; the goal is to reject invalid hypotheses that the defect data follow distributions that 

cannot be empirically supported.  Data drawn from a complex world cannot be expected to 

follow a mathematical formalism such as a statistical distribution exactly.  The question is 

whether the formalism is a sufficiently accurate approximation of the real world to provide 

useful insight.   
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6.2 STATISTICS RELEVANT TO DISTRIBUTIONS 

In these analyses, the distributions of concern are over modules rather than time, although 

much of the research previously performed, specifically for reliability models, has looked at 

defect detection over time.  The number of defects is frequently assumed to follow a Poisson 

distribution; defect density is frequently assumed to follow a lognormal distribution.   

The empirical distribution of a data set can be compared to a theoretical distribution such 

as the lognormal or Poisson distributions.  For continuous distributions, such as defect density, 

the Shapiro-Wilk test is used to measure goodness of fit [SAS Institute 1989, 126].  For discrete 

distributions, such as the number of defects, the 2χ  (chi-squared) test is used to measure 

goodness of fit [Hogg and Ledolter 1992, 254-255].  In testing goodness-of-fit, the null 

hypothesis is that the empirical distribution follows a theoretical distribution; unlike other 

statistical analyses, it is desirable not to reject the null hypothesis.  These hypotheses will be 

considered statistically significant at α=0.05. 

Several informal checks of distributional assumptions can be made.  For the normal 

distribution, the mean is equal to the median, the skewness is zero, and the kurtosis is three 

[Wheeler 2000, 84; Leemis 1995, 60; Wheeler and Chambers 1992, 325].  Skewness measures 

the symmetry of a distribution (or the relative sizes of the tails); a positive skewness indicates the 

right-hand tail is more massive.  Kurtosis measures peakedness (or the combined weight of the 

tails); a kurtosis value less than three is considered light-tailed.  For the lognormal distribution, 

the informal checks are not so simple, although the log transformation of the variable follows a 

normal distribution; for example, the median of a lognormal distribution is at x=eµ [Aitchison 

and Brown 1957, 8-9]. 
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For the Poisson distribution, the mean is equal to the variance [Hogg and Ledolter 1992, 

102-104].  Distributions related to the Poisson distribution include the binomial, where the 

variance is less than the mean, and the negative binomial, where the variance is greater than the 

mean [Johnson and Kotz 1969, 138].  For the exponential distribution, the mean is equal to the 

standard deviation, the skewness is two, and the kurtosis is nine [Leemis 1995, 85; Wheeler 

2000, 84].   

The data sets used in these analyses were for assignments 9 and 10 in C and C++ for 

PSPb.  Outliers were identified using interquartile limits for the variable whose distribution is 

being analyzed.   

 

6.3 DISTRIBUTION OF DESIGN DEFECTS 

Table 105 summarizes statistics for the number of defects removed in design review both 

including and excluding outliers as identified by interquartile limits.  The column labeled “w” 

includes all data points for the assignment.  The column labeled “w/o” summarizes the data with 

the outliers for the variable removed, and the values are in bold italics to ease comparison. 
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Table 105  Statistics for the Number of Defects Removed in Design Review 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 1 1 1 1 1 1 1 1 

Mean 2.0 1.5 1.7 1.1 1.8 1.4 2.3 1.6 

Interquartile Range 3 2 2 2 3 2 3 2 

Standard Deviation 3.1 1.9 3.0 1.6 2.4 1.8 4.2 2.0 

Variance 9.8 3.7 9.3 2.5 5.6 3.1 17.6 4.1 

Skewness 3.1 1.5 3.8 1.5 2.1 1.9 4.8 2.1 

Kurtosis 14.5 1.9 18.0 1.6 5.3 4.1 29.5 6.0 

 
The variance is consistently and significantly greater than the mean for the number of 

defects removed in design review, suggesting that the Poisson distribution is a poor fit for the 

data (and that the negative binomial distribution might be a better fit).   

Table 106 contains the results of 2χ  tests of the number of defects removed in design 

review against the negative binomial distribution.  Two parameters, p and k, characterize this 

distribution; they are estimated using the method of moments [Williamson and Bretherton 1963, 

12].  The differences between the observed frequencies and the theoretical frequencies are used 

to calculate qk-3, which is compared to a critical value of 2χ  derived from the number of cells in 

the table and the specified significance level (α=0.05).  If qk-3< 2 ( , )hχ α , the fit against the 

theoretical distribution is not rejected.  None of the variables tested against the negative binomial 

distribution fit with outliers included, therefore all of the reported results are for data sets with 

outliers excluded.  Statistically significant results at α=0.05 for qk-3 are in bold. 
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Table 106  Number of Defects Removed in Design Review Against the Negative Binomial 
Excluding Outliers 

Data Set  p k qk-3 Critical Value 

PSPb, C, 9A 0.405 1.021 12.844 2 (5,0.05)χ =11.070 

PSPb, C, 10A 0.440 0.864 8.080 2 (4,0.05)χ =9.488 

PSPb, C++, 9A 0.452 1.155 3.007 2 (3,0.05)χ =7.815 

PSPb, C++, 10A 0.390 1.023 4.231 2 (4,0.05)χ =9.488 

 
In three of four instances, the negative binomial distribution is not rejected as a 

reasonable fit to the data.  In the remaining instance, a slightly more liberal choice for α would 

not reject the negative binomial.  The negative binomial distribution therefore seems a 

reasonable choice for describing the number of defects removed in design review.  Das observes 

that the negative binomial distribution should be considered whenever the assumption of pure 

randomness cannot be met in count data because of clustering [Das 2003]. 

Table 107 summarizes statistics for the defect density in design review both including and 

excluding outliers.   
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Table 107  Statistics for Defect Density in Design Review 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 6.2 5.1 3.3 2.2 6.4 5.6 6.0 5.0 

Mean 13.5 9.9 7.3 5.5 13.5 9.1 9.7 6.9 

Interquartile Range 19.7 16.1 11.8 9.9 18.1 12.7 12.7 10.0 

Standard Deviation 18.8 12.9 11.3 7.0 18.1 11.4 12.7 7.5 

Variance 354.5 166.2 126.7 49.5 327.8 129.5 161.1 56.3 

Skewness 1.9 1.4 3.0 1.2 1.7 1.4 2.2 1.1 

Kurtosis 4.2 1.2 14.9 0.3 2.1 1.1 5.8 0.7 

 
The hypothesis that defect density in design review follows either the normal or 

lognormal distributions is uniformly rejected by the Shapiro-Wilk test at p-value<0.0001 for all 

data sets. 

 

6.4 DISTRIBUTION OF CODING DEFECTS 

Table 108 summarizes statistics for the number of defects removed in code review both 

including and excluding outliers. 
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Table 108  Statistics for the Number of Defects Removed in Code Review 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 2 2 3 3 3 3 3 3 

Mean 3.5 2.6 3.4 3.1 4.0 3.4 4.7 4.0 

Interquartile Range 3 3 4 4 5 4 5 4 

Standard Deviation 4.3 2.5 3.8 3.1 3.8 3.1 5.7 4.1 

Variance 18.7 6.3 14.4 9.5 14.8 9.3 32.2 17.1 

Skewness 3.1 1.8 2.2 1.3 1.8 1.2 2.8 2.3 

Kurtosis 13.8 5.3 7.1 1.8 4.3 1.4 10.0 6.4 

 
The variance is consistently and significantly greater than the mean for the number of 

defects removed in code review, suggesting that the Poisson distribution is a poor fit for the data 

(and that the negative binomial distribution might be a better fit).  Table 109 contains the results 

of 2χ  tests of the number of defects removed in code review against the negative binomial 

distribution.   

Table 109  Number of Defects in Code Review Against the Negative Binomial Excluding 
Outliers 

Data Set  p k qk-3 Critical Value 

PSPb, C, 9A 0.413 1.829 12.648 2 (7,0.05)χ =14.067 

PSPb, C, 10A 0.326 1.499 19.969 2 (13,0.05)χ =22.362 

PSPb, C++, 9A 0.366 1.963 13.431 2 (8,0.05)χ =15.507 

PSPb, C++, 10A 0.234 1.222 14.474 2 (15,0.05)χ =28.869 
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In all four instances, the negative binomial distribution is not rejected as a reasonable fit 

to the data.  The negative binomial distribution therefore seems a reasonable choice for 

describing the number of defects removed in code review. 

Table 110 summarizes statistics for defect density in code review both including and 

excluding outliers. 

Table 110  Statistics for Defect Density in Code Review 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 19.0 18.1 13.8 12.8 19.7 18.5 12.6 12.4 

Mean 24.5 18.8 16.9 15.7 27.7 20.8 19.4 16.0 

Interquartile Range 24.3 20.4 22.5 22.2 25.6 19.5 19.3 16.7 

Standard Deviation 25.0 15.2 16.5 13.7 30.4 16.6 19.9 12.4 

Variance 623.6 232.0 273.8 187.1 924.3 274.1 396.4 153.0

Skewness 1.8 0.7 1.6 0.5 2.4 0.9 2.4 0.8 

Kurtosis 3.3 0 5.2 -0.9 7.0 0.9 7.4 0 

 
The hypothesis that defect density in code review follows either the normal or lognormal 

distributions is rejected by the Shapiro-Wilk test at p-value<0.01 (and at p-value<0.0001 for 

most cases).  The normal distribution is rejected at p-value=0.0004 for (PSPb, C++, 9A, 

NoOutliers) and at p-value=0.0010 for (PSPb, C++, 10A, NoOutliers).  The lognormal 

distribution is rejected at p-value=0.0040 for (PSPb, C++, 10A, Outliers). 
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6.5 DISTRIBUTION OF COMPILE DEFECTS 

Table 111 summarizes statistics for the number of defects removed in compile both 

including and excluding outliers. 

Table 111  Statistics for Number of Defects Removed in Compile 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 2 1 2 2 2 2 3 2.5 

Mean 2.1 1.8 2.6 2.5 3.2 2.4 3.9 3.4 

Interquartile Range 3 3 2 2.5 3 3 5 4 

Standard Deviation 2.6 2.1 3.3 3.1 3.8 2.2 4.4 3.7 

Variance 6.9 4.2 10.6 9.9 14.5 5.0 19.7 13.9 

Skewness 2.9 2.4 4.1 4.4 2.5 1.0 2.0 1.9 

Kurtosis 11.2 9.2 27.7 32.4 7.9 0.7 5.2 5.4 

 
The variance is consistently and significantly greater than the mean for the number of 

defects removed in compile, suggesting that the Poisson distribution is a poor fit for the data (and 

that the negative binomial distribution might be a better fit).  Table 112 contains the results of 

2χ  tests of the number of defects removed in compile against the negative binomial distribution.   
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Table 112  Number of Defects Removed in Compile Against the Negative Binomial 
Excluding Outliers 

Data Set  p k qk-3 Critical Value 

PSPb, C, 9A 0.857 10.787 54.497 2 (6,0.05)χ =12.592 

PSPb, C, 10A 0.245 0.844 25.562 2 (11,0.05)χ =19.675 

PSPb, C++, 9A 0.480 2.215 17.083 2 (8,0.05)χ =15.507 

PSPb, C++, 10A 0.245 1.103 9.150 2 (9,0.05)χ =16.919 

 
In one instance, the negative binomial distribution is not rejected as a reasonable fit to the 

data.  In one other instance, a slightly more liberal choice for α would not reject the negative 

binomial.  The negative binomial distribution therefore seems worth considering for describing 

the number of defects removed in compile, but care should be taken if it is used. 

Table 113 summarizes statistics for defect density in compile both including and 

excluding outliers. 
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Table 113  Statistics for Defect Density in Compile 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 11.0 10.6 10.8 10.2 12.5 11.8 9.5 8.7 

Mean 16.2 13.7 12.7 12.4 22.1 15.6 16.8 13.8 

Interquartile Range 23.8 22.7 17.8 18.9 24.1 19.4 19.1 17.7 

Standard Deviation 18.6 12.8 11.8 11.3 26.5 14.9 17.8 13.7 

Variance 346.9 162.8 140.3 128.2 701.0 223.5 317.4 186.3

Skewness 2.4 0.9 0.9 0.7 2.0 1.2 1.4 1.1 

Kurtosis 8.1 0.6 0.3 -0.3 3.8 1.0 1.4 0.5 

 
The hypothesis that defect density in compile follows either the normal or lognormal 

distributions is uniformly rejected by the Shapiro-Wilk test at p-value<0.0001 for all data sets. 

 

6.6 DISTRIBUTION OF TESTING DEFECTS 

Table 114 summarizes statistics for the number of defects removed in testing both 

including and excluding outliers. 
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Table 114  Statistics for Number of Defects Removed in Testing 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 2 1 2 2 1 1 2 1 

Mean 2.1 1.8 1.9 1.7 2.2 2.0 2.6 2.1 

Interquartile Range 2 1 2 2 2 2 2 2 

Standard Deviation 2.3 2.0 1.8 1.5 2.4 2.2 3.9 2.6 

Variance 5.3 3.9 3.4 2.4 5.6 4.8 15.3 6.8 

Skewness 2.9 3.7 2.0 1.3 2.0 2.3 4.0 3.1 

Kurtosis 11.7 21.2 6.3 3.3 4.6 6.5 20.4 11.6 

 
The variance is consistently and significantly greater than the mean for the number of 

defects removed in testing, suggesting that the Poisson distribution is a poor fit for the data (and 

that the negative binomial distribution might be a better fit).  Table 115 contains the results of 

2χ  tests of the number of defects removed in testing against the negative binomial distribution.   

Table 115  Number of Defects Removed in Testing Against the Negative Binomial Excluding 
Outliers 

Data Set  p k qk-3 Critical Value 

PSPb, C, 9A 0.462 1.546 17.863 2 (4,0.05)χ =9.488 

PSPb, C, 10A 0.500 1.700 12.700 2 (6,0.05)χ =12.592 

PSPb, C++, 9A 0.417 0.431 14.216 2 (5,0.05)χ =11.070 

PSPb, C++, 10A 0.309 0.939 12.576 2 (3,0.05)χ =12.592 
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In one instance, the negative binomial distribution is not rejected as a reasonable fit to the 

data.  In two other instances, a slightly more liberal choice for α would not reject the negative 

binomial.  The negative binomial distribution therefore seems worth considering for describing 

the number of defects removed in testing, but care should be taken if it is used. 

Table 116 summarizes statistics for defect density in testing both including and excluding 

outliers. 

Table 116  Statistics for Defect Density in Testing 

PSPb, C PSPb, C++ 

9A 10A 9A 10A 

Statistic 

with w/o with w/o with w/o with w/o 

Median 12.1 11.8 8.1 7.6 10.2 9.8 7.0 6.2 

Mean 15.7 12.7 10.8 9.6 16.1 12.6 11.1 7.6 

Interquartile 
Range 

13.8 12.7 13.1 12.3 17.0 14.5 11.1 8.4 

Standard 
Deviation 

16.1 10.4 11.0 8.3 22.5 11.1 13.2 6.9 

Variance 260.7 108.2 122.0 68.6 506.7 124.2 174.9 47.5 

Skewness 2.0 0.8 2.3 0.6 4.9 0.9 2.2 1.1 

Kurtosis 5.0 0.3 10.6 -0.6 33.4 0 5.8 1.2 

 
The hypothesis that defect density in testing follows either the normal or lognormal 

distributions is rejected by the Shapiro-Wilk test at p-value<0.0001 for all data sets, except 

(PSPb, C++, 10A, Outliers), where it is rejected at p-value=0.0017 for the lognormal 

distribution. 
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6.7 CONCLUSIONS FOR STATISTICAL DISTRIBUTIONS 

For the PSP data, my research indicates that the number of defects found in a review 

cannot be accurately characterized by the Poisson distribution.  To the degree this conclusion can 

be generalized to industry projects, this is a concern since u-charts are commonly used when 

applying SPC to software defect data.  The XmR chart, which is a robust technique in the 

presence of non-normal data, is a safer choice [Wheeler 2000].   

If techniques using distributional assumptions are used, my results suggest that the 

negative binomial distribution should be considered for counts of defects.  Although the results 

are fairly consistent for the PSP data, such assumptions should be tested against the data being 

analyzed in any specific case. 

No good theoretical distribution was found for characterizing defect density data.  

Although the lognormal distribution is a plausible choice to consider, the empirical results for the 

PSP data indicate that distributional assumptions such as this should always be tested.   

In general, when analyzing software data, the statistical techniques used should be 

rigorous when distributional assumptions are violated, and whatever assumptions are made 

should be tested against the data.  The normal distribution is frequently assumed but is 

inappropriate for most software data.  Using averages that approach a normal distribution is not 

feasible if there is no appropriate grouping in which averages can be calculated, whether for 

conceptual or pragmatic reasons. 

If defect data follow a Poisson distribution, the u-chart is an appropriate technique, but if 

the negative binomial distribution is a better choice, control charts specifically designed for that 

distribution should be used [Das 2003]. 
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Examples of robust techniques in the presence of non-normal data include the X and 

Xbar control charts [Schilling and Nelson 1976 ; Wheeler 2000], two-sided hypothesis tests 

concerning the coefficients in a linear regression, and analysis of variance for equal means [Hahn 

1971, 21]. 

My contributions in this analysis are therefore the following results:  

• Statistical assumptions, such as the distribution that data follow, should be tested 

where they are important for achieving correct conclusions, i.e., the statistical 

techniques making the assumption cannot be characterized as robust when the 

assumptions are violated.   

• The frequently made assumption that defect data follow a Poisson distribution is not 

valid for the PSP defect data; a negative binomial distribution is preferable. 

• Although u-charts may be commonly used in the software industry for defect data 

[Paulk, Goldenson, and White 2000, 58-59], their use is questionable unless the 

statistical assumption of a Poisson distribution has been tested.   
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7.0 MODELING SOFTWARE QUALITY IN PSP 

 

7.1 THE RESEARCH QUESTION: PREDICTING DEFECTS 

The research in this chapter focuses on the predictor variables for predicting software 

quality early in the life cycle based on process and product information.  More pertinently from a 

management perspective, given a set of product characteristics such as program size, this 

research attempts to identify the software process factors that affect the quality of the software 

product.   

The fundamental assumption in software process improvement, as explicitly stated in 

models such as the Software CMM [Paulk et al. 1995, 8], is that the software process largely 

determines software quality.  It is, in turn, a specific instance of a fundamental assumption in 

TQM:  good engineering and management practices (good processes) drive quality as part of a 

chain reaction that ultimately impacts business drivers such as cost, schedule, customer 

satisfaction, profitability, and market share [Deming 1986, 3].  There is an implicit assumption 

that competent people are doing the work.  As already noted, there are dramatic differences in 

programmer performance even when disciplined processes are followed, and programmer ability 

is a crucial contributor to quality. 

If software process factors, such as review rates, determine the quality of the software 

product as observed in testing, then it seems reasonable from a management perspective to 

encourage the good practices that result in superior quality.  Even for organizations focusing on 

cycle time or cost, the chain reaction of quality can be expected to lessen cycle time and decrease 
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cost.  Although the specific coefficients are likely to change in moving from the classroom to an 

industry environment, the factors affecting quality can be expected to remain significant.   

Some factors that are not applicable in the classroom are likely to become important in 

industry projects, e.g., personnel continuity, as are other factors that are not significant for 

classroom-sized problems, e.g., problem complexity.  Both kinds of factor are outside the scope 

of the analysis in this chapter. 

 

7.2 DECISION POINTS IN THE PSP PROCESSES 

The data for these analyses span the ten assignments in the PSP course.  Processes range 

from ad hoc at the beginning to relatively disciplined in the final four assignments.  Even when 

good practices are followed in principle, however, the implementations may not follow 

recommendations for best practice, e.g., reviews may not be performed at an acceptable review 

rate.  From a research perspective, PSP provides large amounts of high-quality, detailed data that 

enable exploring software processes in a non-trivial way for individual professionals. 

While it is clear from the analyses in Chapter 4 that the PSP process has a significant 

impact on software quality, the focus of these analyses is on the interactions of the underlying 

drivers.  The primary process drivers are the design and code reviews introduced in assignment 

7.  There is a learning curve associated with adopting these techniques that continues after the 

PSP class, as demonstrated by the relatively few assignments where the recommended review 

rate of less than 200 LOC/hour is followed in the class and by the reports of improved 

performance in projects after the class [Ferguson et al. 1997; Hilburn and Humphrey 2002, 75].  

These results should be considered as indicating a trend rather than the ultimate performance 

possible using these techniques.  
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Decisions made early in the life cycle tend to be more cost effective, e.g., identifying a 

defect-prone module in the design stage and taking corrective action versus addressing it in the 

testing stage.  These models therefore consider the insights possible in design, in coding, and in 

compile as three distinct decision points in the software process.   

Factors that are significant early in the life cycle may be superseded by later factors.  The 

earlier factors are likely to drive, and be correlated with, the later factors.  For example, skimping 

on design time may lead to increased coding and testing times as design issues are resolved later 

in the life cycle.  These issues are explored in the analyses below. 

 

7.3 MULTIPLE REGRESSION MODELS FOR PSP QUALITY 

The multiple regression models described in this section use the general linear model.  

The focus in these analyses is on identifying the factors that affect software quality rather than 

building a specific regression model that would primarily be relevant in the PSP context. 

The process variables of primary interest in predicting defects are the times spent in 

design and code, the review rates, and the defect densities found in the reviews.  Defect density 

in compile provides data for a third decision point in addition to design and code.  Program size 

and programmer ability address the product and people issues; they are common variables 

considered for all models.  Note that programmer ability in these regression models is 

empirically determined by average performance on the first three assignments; with only three 

possible values, it is a simple surrogate for ability. 

Program size is expressed in thousands-of-lines-of-code (KLOC), and times are 

expressed in hours.  This makes measures across variables consistent.  When review rates are 

measured in hrs/KLOC, there is a natural progression from zero (no review held) to fast reviews 
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to reviews that comply with the recommended review rates.  The recommended review rate of 

less than 200 LOC/hour therefore becomes a value greater than 5 hours/KLOC. 

As a rule of thumb, it is desirable to have six to ten cases in the data set per variable 

being analyzed [Neter et al. 1996, 330].  As a result, the data sets primarily used in these 

analyses are the C and C++ data sets for PSPb, which have 1758 and 920 observations 

respectively.  This is reasonable for a rigorous analysis of models that may have as many as nine 

main effects and as many as 17 statistically significant interaction effects. 

The variable names for the factors used in the multiple regression models in this chapter, 

and their definitions, are listed in Table 117.   

Table 117  Variable Names and Definitions for Multiple Regression Models 

Variable Name Definition 

PgmrAb Programmer Ability (Average Defect Density in Testing 1A-3A) 

KLOC Program Size (Thousands of Lines of Code) 

MajPrcs PSP Major Process (PSP0, PSP1, PSP2, PSP3) 

DDsTim Design Time (hrs/KLOC) 

EDRR Design Review Rate (hrs/KLOC) 

FDDDR Defect Density in Design Review (defects/KLOC) 

GCoTim Coding Time (hrs/KLOC) 

HCCR Code Review Rate (hrs/KLOC) 

IDDCR Defect Density in Code Review (defects/KLOC) 

JDDCm Defect Density in Compile (defects/KLOC) 

TDDTs Defect Density in Testing (defects/KLOC) 
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7.3.1 An Overview of Regression Theory 

The equation for the standard linear regression model in matrix form is Y=Xβ+ξ, where Y 

is the vector of observations (the dependent variable), X is the treatment design matrix for the 

predictor variables, β is the vector of treatment fixed-effect parameters, and ξ is the vector of 

experimental errors [Littell et al. 1996, 16; Neter et al. 1996, 226-230].  The β parameters are 

partial regression coefficients since they express the partial effect of one prediction variable 

when the others are held constant.   

There are n observations and p-1 predictor variables.  The errors ξ are assumed to be 

independent, normal variables with the expected value, E(ξ)=0 and σ2(ξ)=σ2I.  The least squares 

estimates for β are b=(X’X)-1(X’Y).  The estimates for Y are Ŷ Xb= .  The residual errors are 

ˆe Y Y= − . 

The adjusted coefficient of multiple determination, R2
a, may be used for comparing 

models.  It measures the proportionate reduction of total variation in Y associated with the set of 

X variables.  The error mean square (MSE) is an estimate of σ2 and can be compared to the 

regression mean square (MSR) to test whether parameters β=0 in analysis of variance. 

7.3.2 The Baseline Multiple Regression Models 

The exploratory data analysis indicated that the useful variables, excluding the primary 

process variables, are the PSP major process, program size, and programmer ability.  The PSP 

major process aggregates process information that will be further explored at a finer level of 

detail for design, coding, and compilation. 

The multiple regression results for the baseline models on defect density in testing are 

shown in Table 118.  The baseline regression model without interaction effects is: 
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(Defect density in testing) = β0 + βMajPrcs (XMajPrcs) + βPgmrAb (PgmrAb)  

+ βKLOC (KLOC) 

where β MajPrcs is the level for the PSP major process and X MajPrcs is an indicator variable for 

whether that PSP major process is the correct one for the observation.  The baseline regression 

model with interaction effects, noted with “-IE” attached to the model name in the table headers, 

is: 

(Defect density in testing) = β0 + βMajPrcs (XMajPrcs) + βPgmrAb (PgmrAb)  

+ βKLOC (KLOC) 

+ βMajPrcs* PgmrAb (XMajPrcs*PgmrAb) + βMajPrcs* KLOC (XMajPrcs*KLOC) 

+ βPgmrAb* KLOC (PgmrAb*KLOC) + βMajPrcs*PgmrAb* KLOC (XMajPrcs*PgmrAb*KLOC) 
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Table 118  Multiple Regression Models for the Baseline Case 

Source Baseline 
Model 

PSPb C 

Baseline 
Model 

PSPb C++ 

Baseline 
Model - IE 

PSPb C 

Baseline 
Model - IE 
PSPb C++ 

DF 5 5 15 15 

SS 943691.3 391640.5 1430081.7 564995.4 

Model 

MS 188738.3 78328.1 95338.8 37666.4 

DF 1752 914 1742 904 

SS 1768047.5 804368.0 1281657.0 631013.1 

Error 

MS 1009.2 880.1 735.7 698.0 

DF 1757 919 1757 919 Total 

SS 2711738.7 1196008.5 2711738.7 1196008.5 

F Ratio 187.0 89.0 129.6 54.0 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.3469 0.3253 0.5255 0.4684 

 
The baseline models were shown to be statistically significant for both of the data sets, 

including and excluding interaction effects.  The baseline models provide a benchmark for 

comparing the process-based models.  Any model built in design, coding, or compile that 

accounts for less of the variation in the software quality than the equivalent baseline model 

provides less insight than the relatively simple baseline model that can be used prior to beginning 

the software effort. 

The parameter estimates of the baseline regression models, and the associated standard 

errors (in parentheses under the estimate), are listed in Table 119 for the main effects.  Estimates 

where the p-values for the null hypothesis 0iβ =  are less than 0.05 are denoted with *, less than 

0.01 with **, less than 0.001 with ***, and less than 0.0001 with ****. 
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Table 119  Main Effects for the Baseline Models 

Parameter  

 

Baseline 
Model 

PSPb C 

Baseline 
Model 

PSPb C++ 

Baseline 
Model - IE 

PSPb C 

Baseline 
Model - IE 
PSPb C++ 

β0 (Intercept) 2.44 

(3.71) 

4.71 

(4.81) 

11.69 

(7.37) 

10.53 

(19.02) 

PSP0 31.52**** 

(3.36) 

24.36**** 

(4.27) 

-16.57* 

(8.06) 

-14.28 

(19.39) 

PSP1 13.59**** 

(3.25) 

9.82* 

(4.26) 

9.08 

(8.11) 

5.63 

(19.59) 

PSP2 -1.06 

(3.30) 

-2.58 

(4.31) 

-2.07 

(8.02) 

-0.10 

(19.72) 

MajPrcs 

PSP3 0.0 

(.) 

0.0 

(.) 

0.0 

(.) 

0.0 

(.) 

PgmrAb 0.42**** 

(0.02) 

0.49**** 

(.03) 

0.08 

(0.14) 

0.07 

(0.39) 

KLOC -62.16**** 

(10.86) 

-58.70**** 

(10.32) 

-16.59 

(30.09) 

-6.41 

(75.82) 
 

All three variables were shown to be statistically significant in the baseline models 

without interaction effects.  When interaction effects were considered (in the last two columns of 

the table), they dominated the models, suggesting the complexity of the interdependencies 

between the ability of the programmer, the processes used by the programmer, and the size of the 

program being built.  Note that terms including categorical variables such as the PSP major 

process are not uniquely estimable and are estimated relative to one of the categories, e.g., PSP3, 

which has an estimate of 0 and no standard error.   

The interaction effects for the PSP major process are separately listed in Table 120.   
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Table 120  Interaction Effects for the PSP Major Process in the Baseline Models 

Parameter  

 

Baseline 
Model 

PSPb C 

Baseline 
Model 

PSPb C++ 

Baseline 
Model - IE 

PSPb C 

Baseline 
Model - IE 
PSPb C++ 

PSP0 -- -- 1.25**** 

(0.15) 

1.40*** 

(0.40) 

PSP1 -- -- 0.27 

(0.15) 

0.39 

(0.40) 

PSP2 -- -- 0.11 

(0.15) 

0.23 

(0.40) 

MajPrcs 
* 

PgmrAb 

PSP3 -- -- 0.0 

(.) 

0.0 

(.) 

PSP0 -- -- 147.89** 

(46.59) 

121.43 

(79.34) 

PSP1 -- -- 9.98 

(41.51) 

-27.11 

(81.58) 

PSP2 -- -- 14.50 

(38.72) 

-18.72 

(83.74) 

MajPrcs 
*   

KLOC 

PSP3 -- -- 0.0 

(.) 

0.0 

(.) 

PSP0 -- -- -6.34**** 

(0.98) 

-6.73*** 

(1.77) 

PSP1 -- -- -1.26 

(0.81) 

-0.62 

(1.76) 

PSP2 -- -- -0.42 

(0.74) 

-0.73 

(1.77) 

MajPrcs 
* 

PgmrAb 
*   

KLOC 

PSP3 -- -- 0.0 

(.) 

0.0 

(.) 
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The difference between PSP0 and the other PSP processes is clearly dominant, indicating 

that any disciplined process is superior to an ad hoc process.   

The interaction effects for programmer ability are separately listed in Table 121.   

Table 121  Interaction Effects for Programmer Ability in the Baseline Models 

Parameter  

 

Baseline 
Model 

PSPb C 

Baseline 
Model 

PSPb C++ 

Baseline 
Model - IE 

PSPb C 

Baseline 
Model - IE 
PSPb C++ 

PSP0 -- -- 1.25**** 

(0.15) 

1.40*** 

(0.40) 

PSP1 -- -- 0.27 

(0.15) 

0.39 

(0.40) 

PSP2 -- -- 0.11 

(0.15) 

0.23 

(0.40) 

MajPrcs 
* 

PgmrAb 

PSP3 -- -- 0.0 

(.) 

0.0 

(.) 

PgmrAb * KLOC -- -- -0.16 

(0.61) 

-0.07 

(1.62) 

PSP0 -- -- -6.34**** 

(0.98) 

-6.73*** 

(1.77) 

PSP1 -- -- -1.26 

(0.81) 

-0.62 

(1.76) 

PSP2 -- -- -0.42 

(0.74) 

-0.73 

(1.77) 

MajPrcs 
* 

PgmrAb 
*    

KLOC 

PSP3 -- -- 0.0 

(.) 

0.0 

(.) 
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Programmer ability appears to be most important as a factor when an ad hoc process is 

followed.  This is consistent with the findings in Chapter 4 that a disciplined process decreases 

the differences between the top-quartile and bottom-quartile performers in PSP.   

The interaction effects for program size are included in the separate tables for interaction 

effects of the other two variables.  Program size appears to only be statistically significant in 

conjunction with PSP0 when interaction effects are considered. 

All three variables in the baseline models can be considered useful predictor variables for 

software quality.   

7.3.3 Multiple Regression Models in Design 

In the process-based models, the PSP major process variable is superseded by the 

variables characterizing the process in greater depth.  For the design process, those variables are 

the design time, design review rate, and defect density in design review.  The multiple regression 

results for the design models are shown in Table 122.  The design regression model without 

interaction effects (named Design or Design Additive hereafter) is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

The design regression model with interaction effects (named Design –IE or Design Additive –IE 

hereafter) is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*DDsTim (PgmrAb*DDsTim) 

+ βPgmrAb*EDRR (PgmrAb*EDRR) + βPgmrAb*FDDDR (PgmrAb*FDDDR) 
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+ βDDsTim*FDDDR (DDsTim*FDDDR) + βEDRR*FDDDR (EDRR*FDDDR) 

+ βPgmrAb*KLOC*EDRR (PgmrAb*KLOC*EDRR) 

+ βPgmrAb*KLOC*FDDDR (PgmrAb*KLOC*FDDDR) 

+ βPgmrAb*DDsTim*EDRR (PgmrAb*DDsTim*EDRR) 

+ βPgmrAb*EDRR*FDDDR (PgmrAb*EDRR*FDDDR) 

+ βKLOC*DDsTim*EDRR (KLOC*DDsTim*EDRR) 

+ βDDsTim*EDRR*FDDDR (DDsTim*EDRR*FDDDR) 

+ βPgmrAb*DDsTim*EDRR*FDDDR (PgmrAb*DDsTim*EDRR*FDDDR) 

+ βPgmrAb*KLOC*DDsTim*EDRR*FDDDR (PgmrAb*KLOC*DDsTim*EDRR*FDDDR) 

Table 122  Multiple Regression Models in Design 

Source Design 
Model 

PSPb C 

Design 
Model 

PSPb C++ 

Design 
Model - IE     

PSPb C 

Design 
Model - IE     
PSPb C++ 

DF 5 5 19 19 

SS 735278.5 328348.6 1022548.6 496651.9 

Model 

MS 147055.7 65669.7 53818.3 26139.6 

DF 1752 914 1738 900 

SS 1976460.2 867659.9 1689190.2 699356.5 

Error 

MS 1128.1 949.3 971.9 777.1 

DF 1757 919 1757 919 Total 

SS 2711738.7 1196008.5 2711738.7 1196008.5 

F Ratio 130.4 69.2 55.37 33.64 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.2691 0.2706 0.3703 0.4029 
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The design models were shown to be statistically significant for both of the data sets, 

including and excluding interaction effects.  Perhaps the most important observation about the 

design models, however, is that they not account for as much of the variation in the data as the 

baseline models.  Since the primary difference between the two sets of models is the replacement 

of the PSP major process variable with the three design process variables, it seems reasonable to 

infer that other aspects of the process, which are holistically captured by the simple PSP major 

process, are necessary to understand the relationship of process and software quality, at least 

within the PSP context. 

The parameter estimates of the design models, and the associated standard errors (in 

parentheses under the estimate), are listed in Table 123 for the main effects.   

Table 123  Main Effects for the Design Models 

Parameter  

 

Design 
Model 

PSPb C 

Design 
Model 

PSPb C++ 

Design 
Model - IE 

PSPb C 

Design 
Model - IE 
PSPb C++ 

β0 (Intercept) 21.21**** 

(1.86) 

15.37**** 

(2.45) 

5.72* 

(2.48) 

-0.20 

(3.34) 

PgmrAb 0.42**** 

(0.02) 

0.47**** 

(0.03) 

0.83**** 

(0.04) 

0.95**** 

(0.06) 

KLOC -95.43**** 

(10.62) 

-62.82**** 

(10.27) 

63.99**** 

(16.70) 

57.31*** 

(17.07) 

DDsTim 0.31*** 

(0.09) 

0.49**** 

(0.11) 

0.27 

(0.17) 

0.17 

(0.19) 

EDRR -2.48**** 

(0.35) 

-3.28**** 

(0.52) 

0.39 

(0.81) 

1.54 

(1.14) 

FDDDR -0.06 

(0.09) 

0.33*** 

(0.09) 

-0.52 

(0.33) 

-0.44 

(0.47) 
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All three design variables, along with programmer ability and program size, were shown 

to be statistically significant in at least one of the design models without interaction effects.  

When interaction effects were considered, the design variables were no longer shown to be 

statistically significant, suggesting the complexity of the interdependencies between the ability of 

the programmer, the design processes used by the programmer, and the size of the program being 

built.  All three design variables in the design models can be considered useful predictor 

variables for software quality. 

All interactions were investigated, but only the 14 interaction effects that were shown to 

be statistically significant for at least one of the data sets were retained.  The focus of this 

analysis is on understanding the importance of the predictor variables, rather than building a 

parsimonious defect prediction model.  This approach was also used for the coding and 

compilation models.  The two-factor interaction effects are separately listed in Table 124.   
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Table 124  Two-Factor Interaction-Effect Estimates in the Design Models 

Parameter  

 

Design 
Model 

PSPb C 

Design 
Model 

PSPb C++ 

Design 
Model - IE 

PSPb C 

Design 
Model - IE 
PSPb C++ 

PgmrAb*KLOC -- -- -4.01**** 

(0.34) 

-3.40**** 

(0.42) 

PgmrAb*DDsTim -- -- -0.002 

(0.002) 

0.003 

(0.002) 

PgmrAb*EDRR -- -- -0.18**** 

(0.02) 

-0.15**** 

(0.03) 

PgmrAb*FDDDR -- -- -0.02**** 

(0.004) 

-0.01* 

(0.007) 

DDsTim*FDDDR -- -- 0.05** 

(0.02) 

0.04 

(0.02) 

EDRR*FDDDR -- -- -0.004 

(0.07) 

0.04 

(0.09) 
 

Programmer ability is involved in interaction effects with every other variable in the 

design models, although the interaction with design time was not shown to be statistically 

significant when all statistically significant interaction effects for either data set were joined. 

The possibility of an interaction between design review rate and defect density in design 

review was raised in Section 4.8.3, but the interaction effect was not shown to be statistically 

significant when all statistically significant interaction effects for either data set were joined (and 

the signs of the coefficient differ).  Although design review rate was shown to be correlated with 

defect removal effectiveness, it seems likely that defect density in design review is also 

significantly affected by the number of defects in the design, and this relationship supersedes that 

with design review rate. 
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The interaction effects involving more than two factors are separately listed in Table 125.  

Interaction effects involving more than two factors are usually of little practical impact but are 

included in the models for completeness. 

Table 125  Other Interaction-Effect Estimates in the Design Models 

Parameter  

 

Design 
Model 

PSPb C 

Design 
Model 

PSPb C++ 

Design 
Model -IE 

PSPb C 

Design 
Model -IE 
PSPb C++ 

PgmrAb*KLOC 
*EDRR 

-- -- 0.57**** 

(0.10) 

0.27 

(0.14) 

PgmrAb*KLOC 
*FDDDR 

-- -- 0.06* 

(0.03) 

0.04 

(0.03) 

PgmrAb 
*DDsTim*EDRR 

-- -- 0.006**** 

(0.0006) 

0.004**** 

(0.0007) 

PgmrAb*EDRR 
*FDDDR 

-- -- 0.006**** 

(0.001) 

0.002 

(0.001) 

KLOC*DDsTim 
*EDRR 

-- -- -2.02**** 

(0.43) 

-1.19* 

(0.55) 

DDsTim*EDRR 
*FDDDR 

-- -- -0.002 

(0.003) 

-0.0007 

(0.004) 

PgmrAb*DDsTim 
*EDRR*FDDDR 

-- -- -0.0002**** 

(0.00005) 

-0.00009 

(0.00008) 

PgmrAb*KLOC 
*DDsTim*EDRR 

*FDDDR 

-- -- -0.0001 

(0.0002) 

0.0002 

(0.0003) 

 
The interaction effect for programmer ability with design time, and with design review 

rate, was shown to be statistically significant for both data sets.  Programmer ability was shown 

to be a statistically significant factor as a main effect and as an interaction effect with every other 
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variable in the design models; it is arguably the most important factor in understanding software 

quality during design. 

As a defect prediction model, the design models are inadequate in comparison with the 

baseline models.  From a management perspective, the design models reinforce the importance 

of programmer ability in building high quality programs. 

7.3.4 Multiple Regression Models in Coding 

The variables added to the code models are the coding time, code review rate, and defect 

density in code review.  The multiple regression results for the code models are shown in Table 

126.  The code model without interaction effects (named Code or Code Additive hereafter) is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR) 

The code model with interaction effects, (named Code –IE or Code Additive –IE hereafter) is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR) 

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*EDRR (PgmrAb*EDRR)  

+ βPgmrAb*FDDDR (PgmrAb*FDDDR) + βPgmrAb*GCoTim (PgmrAb*GCoTim) 

+ βPgmrAb*HCRR (PgmrAb*HCRR) + βPgmrAb*IDDCR (PgmrAb*IDDCR) 

+ βKLOC*HCRR (KLOC*HCRR) + βEDRR*GCoTim (EDRR*GCoTim) 

+ βEDRR*HCRR (EDRR*HCRR) + βHCRR*IDDCR (HCRR*IDDCR) 

+ βPgmrAb*KLOC*GCoTim (PgmrAb*KLOC*GCoTim) 
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+ βPgmrAb*KLOC*HCRR (PgmrAb*KLOC*HCRR) 

+ βPgmrAb*DDsTim*EDRR (PgmrAb*DDsTim*EDRR) 

+ βPgmrAb*EDRR*HCRR (PgmrAb*EDRR*HCRR) 

+ βPgmrAb*FDDDR*IDDCR (PgmrAb*FDDDR*IDDCR) 

+ βPgmrAb*KLOC*GCoTim*HCRR*IDDCR  

(PgmrAb*KLOC*GCoTim*HCRR*IDDCR) 

Table 126  Multiple Regression Models in Code 

Source Code 
Model 

PSPb C 

Code 
Model 

PSPb C++ 

Code 
Model -IE    

PSPb C 

Code 
Model -IE    
PSPb C++ 

DF 8 8 25 25 

SS 893503.7 419377.4 1221840.6 598696.3 

Model 

MS 111688.0 52422.2 48873.6 23947.9 

DF 1749 911 1732 894 

SS 1818235.0 776631.1 1489898.2 597312.1 

Error 

MS 1039.6 852.5 860.2 668.1 

DF 1757 919 1757 919 Total 

SS 2711738.7 1196008.5 2711738.7 1196008.5 

F Ratio 107.4 61.5 56.8 35.8 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.3264 0.3449 0.4426 0.4866 

 
The code models were shown to be statistically significant for both of the data sets, 

including and excluding interaction effects.  The code models account for more of the variation 

in the data than the baseline models only for the C++ data sets.   Detailed process data for the 
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design and code processes provides, at best, marginally superior models to the models based on 

the PSP major process. 

The parameter estimates of the code models, and the associated standard errors (in 

parentheses under the estimate), are listed in Table 127 for the main effects.   

Table 127  Main Effects for the Code Models 

Parameter  

 

Code 
Model 

PSPb C 

Code 
Model 

PSPb C++ 

Code 
Model -IE 

PSPb C 

Code 
Model -IE 
PSPb C++ 

β0 (Intercept) 13.81**** 

(2.03) 

2.35 

(2.65) 

5.04 

(2.94) 

5.05 

(4.14) 

PgmrAb 0.41**** 

(0.02) 

0.41**** 

(0.03) 

0.76**** 

(0.04) 

0.55**** 

(0.08) 

KLOC -73.14**** 

(10.47) 

-36.75*** 

(10.06) 

72.36**** 

(18.27) 

24.59 

(17.69) 

DDsTim 0.15 

(0.09) 

0.05 

(0.11) 

0.09 

(0.09) 

-0.14 

(0.11) 

EDRR -0.45 

(0.42) 

-2.40*** 

(0.70) 

1.01 

(1.33) 

-2.32 

(1.81) 

FDDDR 0.14 

(0.08) 

0.33*** 

(0.09) 

-0.03 

(0.14) 

0.44* 

(0.21) 

GCoTim 0.59**** 

(0.06) 

1.21**** 

(0.12) 

0.06 

(0.12) 

0.28 

(0.18) 

HCRR -2.06**** 

(0.48) 

-0.34 

(0.67) 

1.33 

(1.11) 

2.90 

(1.50) 

IDDCR -0.16** 

(0.05) 

0.02 

(0.07) 

-0.40*** 

(0.11) 

-0.13 

(0.15) 
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All three code variables were shown to be statistically significant in at least one of the 

code models.  Design time dropped out of all the code models as a statistically significant main 

effect, suggesting that, at least within the PSP context, design time is superseded by code time, 

which is reasonable since the PSP assignments are primarily programming problems. 

All interactions were investigated, but only the 17 interaction effects that were shown to 

be statistically significant for at least one of the data sets were retained.  The two-factor 

interaction effects are separately listed in Table 128.   
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Table 128  Two-Factor Interaction-Effect Estimates in the Code Models 

Parameter  

 

Code 
Model 

PSPb C 

Code 
Model 

PSPb C++ 

Code 
Model -IE 

PSPb C 

Code 
Model -IE 
PSPb C++ 

PgmrAb*KLOC -- -- -3.65**** 

(0.44) 

-0.91 

(0.49) 

PgmrAb*EDRR -- -- -0.05** 

(0.02) 

-0.08* 

(0.03) 

PgmrAb*FDDDR -- -- -0.0003 

(0.003) 

-0.007 

(0.004) 

PgmrAb*GCoTim -- -- 0.006**** 

(0.001) 

0.02**** 

(0.002) 

PgmrAb*HCRR -- -- -0.13**** 

(0.02) 

-0.06* 

(0.03) 

PgmrAb*IDDCR -- -- 0.002 

(0.001) 

-0.001 

(0.003) 

KLOC*HCRR -- -- -21.28** 

(7.07) 

-8.80 

(7.72) 

EDRR*GCoTim -- -- 0.06 

(0.03) 

0.10* 

(0.05) 

EDRR*HCRR -- -- -0.26 

(0.15) 

-0.42* 

(0.18) 

HCRR*IDDCR -- -- 0.06**** 

(0.01) 

0.02 

(0.01) 
 

Although the possibility of an interaction between design time and code time was raised 

in Sections 4.8.1 and 4.8.3, no statistically significant interaction was shown.  The original 

concern was that an increase in design time corresponded to an increase in design defect density, 

possibly as a result of design activities occurring in coding; the loss of statistical significance for 



 

239 

design time weighs against this potential explanation.  No interaction was shown to be 

statistically significant for design time with defect density in design review or defect density in 

code review, which lessens the likelihood that bad design decisions are being addressed in 

reviews as defects are identified. 

The possibility that reuse of defect-free components is lessening design time can be 

tentatively ruled out since the interaction effect between design time and program size was not 

shown to be statistically significant.  This suggests that reuse is not a major factor in decreasing 

design effort. 

This leaves the possibility that the relatively simple PSP assignments do not require 

powerful design techniques, with the implication that learning curve effects associated with the 

PSP design techniques are driving the positive relation of design time to defect density in testing.  

This suggests that students taking more time to understand the PSP design techniques are also 

more prone to defects.  It remains possible that design activities are occurring in coding, but they 

are relatively minor.  There is, however, no direct way of testing whether this explanation has 

empirical support given the PSP data available. 

The interaction effects involving more than two factors are separately listed in Table 129.   
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Table 129  Other Interaction-Effect Estimates in the Code Models 

Parameter  

 

Code 
Model 

PSPb C 

Code 
Model 

PSPb C++ 

Code 
Model -IE 

PSPb C 

Code 
Model -IE 
PSPb C++ 

PgmrAb*KLOC 
*GCoTim 

-- -- -0.03 

(0.02) 

-0.15**** 

(0.03) 

PgmrAb*KLOC 
*HCRR 

-- -- 0.80**** 

(0.12) 

0.24 

(0.16) 

PgmrAb 
*DDsTim*EDRR 

-- -- -0.0002 

(0.0005) 

0.002**** 

(0.0006) 

PgmrAb*EDRR 
*HCRR 

-- -- 0.009**** 

(0.002) 

0.008** 

(0.003) 

PgmrAb*FDDDR 
*IDDCR 

-- -- 0.00007 

(0.00004) 

-0.000005 

(0.00002) 

PgmrAb*KLOC 
*DDsTim*EDRR 

*FDDDR 

-- -- 0.00001 

(0.0001) 

0.0003 

(0.0002) 

PgmrAb*KLOC 
*GCoTim*HCRR 

*IDDCR 

-- -- -0.0002* 

(0.00007) 

-0.00006 

(0.00008) 

 
While it is interesting to note that programmer ability and program size interact with the 

three design variables and with the three code variables as five-factor interaction effects, the lack 

of statistical significance and the small size of the coefficients suggest that these two effects are 

of little practical import. 

As a defect prediction model, the code models are on the cusp of becoming preferable to 

the baseline models.  From a management perspective, the code models again reinforce the 

importance of programmer ability. 
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7.3.5 Multiple Regression Models in Compile 

The variable added to the compile models is defect density in compile.  The multiple 

regression results for the compile models are shown in Table 130.  The compile model without 

interaction effects (named Compile or Compile Additive hereafter) is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR) 

+ βJDDCm (JDDCm) 

The compile model with interaction effects (named Compile –IE or Compile Additive –IE 

hereafter)  is: 

(Defect density in testing) = β0 + βPgmrAb (PgmrAb) + βKLOC (KLOC)  

+ βDDsTim (DDsTim) + βEDRR (EDRR) + βFDDDR (FDDDR) 

+ βGCoTim (GCoTim) + βHCRR (HCRR) + βIDDCR (IDDCR) 

+ βJDDCm (JDDCm) 

+ βPgmrAb*KLOC (PgmrAb*KLOC) + βPgmrAb*GCoTim (PgmrAb*GCoTim) 

+ βPgmrAb*HCRR (PgmrAb*HCRR) + βPgmrAb*IDDCR (PgmrAb*IDDCR) 

+ βPgmrAb*JDDCm (PgmrAb*JDDCm) + βKLOC*GCoTim (KLOC*GCoTim) 

+ βKLOC*HCRR (KLOC*HCRR) + βKLOC*JDDCm (KLOC*JDDCm) 

+ βGCoTim*JDDCm (GCoTim*JDDCm) + βHCRR*IDDCR (HCRR*IDDCR) 

+ βPgmrAb*KLOC*GCoTim (PgmrAb*KLOC*GCoTim) 

+ βPgmrAb*KLOC*IDDCR (PgmrAb*KLOC*IDDCR) 

+ βPgmrAb*KLOC*JDDCm (PgmrAb*KLOC*JDDCm) 
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+ βPgmrAb*FDDDR*IDDCR (PgmrAb*FDDDR*IDDCR) 

+ βFDDDR*IDDCR*JDDCm (FDDDR*IDDCR*JDDCm) 

+ βPgmrAb*KLOC*GCoTim*JDDCm(PgmrAb*KLOC*GCoTim*JDDCm) 

+ βPgmrAb*FDDDR*IDDCR*JDDCm(PgmrAb*FDDDR*IDDCR*JDDCm) 

Table 130  Multiple Regression Models in Compile 

Source Compile 
Model 

PSPb C 

Compile 
Model 

PSPb C++ 

Compile 
Model -IE 

PSPb C 

Compile  
Model -IE 
PSPb C++ 

DF 9 9 26 26 

SS 1002755.9 471233.4 1270016.2 682000.2 

Model 

MS 111417.3 52359.3 48846.8 26230.8 

DF 1748 910 1731 893 

SS 1708982.9 724775.1 1441722.6 514008.3 

Error 

MS 977.7 796.5 832.9 575.6 

DF 1757 919 1757 919 Total 

SS 2711738.7 1196008.5 2711738.7 1196008.5 

F Ratio 114.0 65.7 58.7 45.6 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.3665 0.3880 0.4604 0.5577 

 
The compile models were shown to be statistically significant for both of the data sets, 

including and excluding interaction effects.  The compile models account for more of the 

variation in the data than the baseline models for three of the four data sets.   The compile 

models are somewhat superior to the baseline models and provide the basis for further 

exploration of the detailed process data. 
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The parameter estimates of the compile models, and the associated standard errors (in 

parentheses under the estimate), are listed in Table 131 for the main effects.   

Table 131  Main Effects for the Compile Models 

Parameter  

 

Compile 
Model 

PSPb C 

Compile 
Model 

PSPb C++ 

Compile 
Model -IE 

PSPb C 

Compile 
Model -IE 
PSPb C++ 

β0 (Intercept) 9.01**** 

(2.02) 

-3.53 

(2.66) 

7.97* 

(3.16) 

20.98**** 

(4.52) 

PgmrAb 0.37**** 

(0.02) 

0.36**** 

(0.03) 

0.48**** 

(0.05) 

0.006 

(0.09) 

KLOC -56.27**** 

(10.28) 

-22.36* 

(9.89) 

-1.39 

(25.38) 

-53.16* 

(25.58) 

DDsTim 0.10 

(0.09) 

0.04 

(0.11) 

-0.008 

(0.08) 

0.10 

(0.10) 

EDRR -0.14 

(0.41) 

-1.90** 

(0.68) 

0.23 

(0.40) 

-1.20* 

(0.59) 

FDDDR 0.12 

(0.08) 

0.29** 

(0.09) 

-0.03 

(0.12) 

0.06 

(0.10) 

GCoTim 0.37**** 

(0.07) 

0.97**** 

(0.12) 

-0.18 

(0.16) 

0.48 

(0.27) 

HCRR -1.55*** 

(0.47) 

0.16 

(0.65) 

-1.51 

(0.85) 

-0.65 

(1.05) 

IDDCR -0.14** 

(0.05) 

0.005 

(0.07) 

-0.17 

(0.09) 

-0.10 

(0.13) 

JDDCm 0.16**** 

(0.02) 

0.17**** 

(0.02) 

0.13** 

(0.04) 

-0.34**** 

(0.06) 
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Defect density in compile was shown to be statistically significant in all four of the 

compile models.  It is interesting to note that, in general, all of the other process variables were 

shown not to be statistically significant when interaction effects were included in the compile 

models.  This reinforces the importance of the interactions between programmer ability, 

program size, and the process in determining software quality.   

From a management perspective, the message appears clear that the competence of the 

staff and the processes they follow are synergistic in achieving high-quality software products.  

While this message is hardly surprising, in the sometimes passionate discussions of process 

discipline and professional heroics [Bach 1994], one side of the equation may be emphasized to 

the detriment of the other. 

All interactions were investigated, but only the 17 interaction effects that were shown to 

be statistically significant for either or both of the data sets were retained.  The two-factor 

interaction effects are separately listed in Table 132.   
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Table 132  Two-Factor Interaction-Effect Estimates in the Compile Models 

Parameter  

 

Compile 
Model 

PSPb C 

Compile 
Model 

PSPb C++ 

Compile 
Model -IE 

PSPb C 

Compile 
Model -IE 
PSPb C++ 

PgmrAb*KLOC -- -- -1.15* 

(0.50) 

0.65 

(0.55) 

PgmrAb*GCoTim -- -- 0.01**** 

(0.002) 

0.003 

(0.004) 

PgmrAb*HCRR -- -- -0.03*** 

(0.009) 

0.01 

(0.02) 

PgmrAb*IDDCR -- -- -0.005**** 

(0.001) 

-0.001 

(0.003) 

PgmrAb*JDDCm -- -- 0.0007 

(0.0005) 

0.009**** 

(0.0009) 

KLOC*GCoTim -- -- 3.17 

(2.12) 

-2.08 

(2.65) 

KLOC*HCRR -- -- 0.63 

(4.54) 

-3.40 

(5.86) 

KLOC*JDDCm -- -- 0.64 

(0.58) 

2.37**** 

(0.47) 

GCoTim*JDDCm -- -- -0.003**** 

(0.0007) 

0.002 

(0.001) 

HCRR*IDDCR -- -- 0.05**** 

(0.009) 

0.02** 

(0.007) 
 

The interaction effects involving more than two factors are separately listed in Table 133.   
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Table 133  Other Interaction-Effect Estimates in the Compile Models 

Parameter  

 

Compile 
Model 

PSPb C 

Compile 
Model 

PSPb C++ 

Compile 
Model -IE 

PSPb C 

Compile 
Model -IE 
PSPb C++ 

PgmrAb*KLOC 
*GCoTim 

-- -- -0.13**** 

(0.03) 

0.02 

(0.05) 

PgmrAb*KLOC 
*IDDCR 

-- -- 0.02*** 

(0.007) 

-0.003 

(0.01) 

PgmrAb*KLOC 
*JDDCm 

-- -- -0.02 

(0.009) 

-0.04**** 

(0.007) 

PgmrAb*FDDDR 
*IDDCR 

-- -- 0.00003 

(0.00003) 

-0.00009** 

(0.00003) 

FDDDR*IDDCR 
*JDDCm 

-- -- -0.00001 

(0.00008) 

0.00006 

(0.00004) 

PgmrAb*KLOC 
*GCoTim 
*JDDCm 

-- -- 0.0004 

(0.0004) 

-0.0006 

(0.0003) 

PgmrAb*FDDDR 
*IDDCR*JDDCm 

-- -- 0.000001 

(0.0000009) 

0.0000005 

(0.0000008) 
 

As a defect prediction model, the compile models are preferable to the baseline models.  

The compile models are the focus of the remaining analyses in this chapter, and the emphasis 

will be on regression diagnostics and on increasing the amount of variation explained by the 

compile models from the 37-56% measured by the adjusted coefficient of determination. 

From a management perspective, all of the process-based models emphasize the 

importance of programmer ability.  This is not a surprising result.  Neither is the fact that, with 

the possible exception of design time, the process variables are useful predictor variables for 

software quality.  The lack of significance for design time may be driven by the simple nature of 
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the PSP assignments compared to the complex design needs in a real-world software project; 

evidence for alternate explanations is lacking in the statistical results. 

7.3.6 Multicollinearity and Variance Inflation Factors 

Multicollinearity occurs when the predictor variables in the regression equation are 

correlated.  When there is significant multicollinearity, the regression coefficients cannot be 

interpreted as reflecting the effects of the different predictor variables; the regression coefficients 

depend on which other predictor variables are included in the model and which ones are left out 

[Neter et al. 1996, 285-295]. 

The variance inflation factors (VIF) for the predictor variables can be used to detect the 

presence of multcollinearity.  If the maximum VIF value is greater than ten, multicollinearity is 

likely to be a problem, and if the mean VIF values are considerably larger than one, it indicates 

serious multicollinearity issues [Neter et al. 1996, 386-387].  Table 134 lists the maximum and 

average VIF values for the compile models. 

Table 134  Multicollinearity Diagnostics Using VIF 

Multicollinearity 
Diagnostics 

Compile Model    
PSPb C 

Compile Model 
PSPb C++ 

Maximum VIF 3.0 5.0 

Average VIF 1.7 2.3 
 

Multicollinearity is a concern for these data sets, but arguably not a serious problem. 

7.3.7 Influential Outliers  

A number of standard diagnostics are available for identifying outliers that may be 

influential in the context of a regression model: leverage, the studentized deleted residual, 
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Cook’s distance, and DFFITS.  Leverage addresses the question of whether the predictor variable 

Xij (or the set of Xij values) is atypical.  The studentized deleted residual addresses the question 

of whether the dependent variable Yi is atypical.  Cook’s distance and DFFITS address the 

question of whether omission of the observation would produce a dramatic change in the 

parameter estimates for the regression model. 

Leverage, hii, which measures the distance from the ith case to the center of all X 

observations, can be used to identify potential outliers in the predictor variables.  If 2ii
ph
n

> , 

where p is the number of variables in the regression equation, and n is the number of 

observations, then the observation is a potential outlier.  In this case, the number of observations 

is quite large for each of the data sets:  (PSPb, C) has 1758 observations, and (PSPb, C++) has 

920 observations.  As a result, this rule is not practical for these data sets.  An alternative rule is 

to identify an observation as a potential outlier if hii > 0.5, which was the rule used here [Neter et 

al. 1996, 375-378].   

The studentized deleted residual, ti, can be used to identify outliers for the predictor 

variable.  The Bonferroni test, (1 ; 1)
2it t n p

n
α

> − − − , is used to identify outliers [Neter et al. 

1996, 373-375].  For these data sets, t(0.9995,∞)=3.291, was used. 

Cook’s distance, Di, measures the effect of an observation on Β̂  [Neter et al. 1996, 380-

382].  If Di > F(0.50,p,n-p), then the fitted values obtained with and without the ith observation 

can be considered to differ substantially.  For these data sets, Di > F(0.50,27,∞) =1.03 was used 

to identify influential observations. 
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DFFITSi measures the effect of an observation on îY .  If 2i
pDFFITS
n

> , then the ith 

observation is influential [Neter et al. 1996, 378-380].  For (PSPb, C), the test is for DFFITSi > 

0.151 for the main-effects compile model and for DFFITSi > 0.248 for the compile model with 

interactions; for (PSPb, C++), the test is for DFFITSi > 0.209 for the main-effects compile model 

and for DFFITSi > 0.343 for the compile model with interactions. 

Table 135 summarizes the results for the compile models, including and excluding 

influential outliers.  Any observation that violated one or more of the heuristics was considered 

an influential outlier. 

Table 135  Comparing Compile Models Including and Excluding Influential Outliers 

Model and Data Set Outliers N Outliers R2
a MSE SSE 

with 47 0.3665 977.7 1708982.9 Compile model  

PSPb, C w/o -- 0.3380 513.1 872722.4 

with 28 0.3880 796.5 724775.1 Compile model  

PSPb, C++  w/o -- 0.2929 461.6 388579.1 

with 53 0.4604 832.9 1441722.6 Compile model –IE  

PSPb, C  w/o -- 0.4038 440.6 774573.0 

with 36 0.5577 575.6 514008.3 Compile model –IE  

PSPb, C++  w/o -- 0.4475 393.1 336902.0 
 

The influential outliers were subsets of the outliers identified by both the XmR charts and 

the interquartile limits in Chapter 5.  The R2
a values for the models without influential outliers 

were not as good as those for the original models.  The mean sum of squares of the errors (MSE) 

for the models, which is an estimate of σ2, decreased by 32-48%, however, and decreasing 

variability is desirable.  Minimizing the sum of squares of the errors (SSE) is also desirable. 
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As described in Section 5.11, the analysis of outliers for the eight process variables using 

XmR charts and interquartile limits led to 33% of the assignments being identified as potential 

outliers.  Although in-process control would be preferred for identifying potential assignable 

causes (and is the proper use of XmR charts), causal analysis is not feasible for a retrospective 

analysis, and excluding 33% of the data is impractical.  Shewhart chose 3σ limits for control 

charts in part because of the theoretical maximum of 11% of the data being outside the 3σ limits; 

the 3σ limits were considered economically reasonable [Shewhart 1939, 91].  Wheeler’s 

Empirical Rule suggests that it is most common for 99-100% of the data to be within 3σ of the 

average [Wheeler and Chambers 1992, 61].  Identifying 2-4% of the data as atypical, as the 

regression diagnostics do, provides a more practical set of outliers in this context than identifying 

outliers for each process variable independently. 

7.3.8 Box-Cox Transformations  

As already shown in Chapter 6, the PSP data is not described well by theoretical 

distributions such as lognormal or exponential.  Box-Cox power transformations of the 

dependent variable attempt to provide a simple, normal linear model that simultaneously satisfies 

constant variance, normality, and ˆ( )E Y X β=  [Rawlings, Pantula, and Dickey 1998, 409-412].  

A power transformation of λ=0.3 was found to be the best value for both (PSPb, C) and (PSPb, 

C++).  None of the models using the Box Cox transformation were superior to those using non-

transformed values in terms of R2
a, and the sum of squares of the error (SSE), which is 

minimized as the criterion for choosing the best transformation, is better for the models with 

non-transformed variables. 
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7.3.9 Multiplicative Models 

A multiplicative model, with log transformations of the continuous variables, would 

appear to be a natural model of the software process since a chain reaction of interactions from 

injecting defects in production to detecting and removing defects in reviews can be expected 

across the life cycle.  We expect defect density in design reviews and code reviews to correspond 

to defect density in testing, as was demonstrated in Sections 4.8.3 and 4.8.6.  We expect review 

rates to affect defect removal effectiveness, as was demonstrated in Sections 4.8.2 and 4.8.5.  We 

expect design time to affect design defect density, and coding time to affect code defect density, 

and that defects early in the life cycle will result in an increase in defects at the end of the 

development.  This was demonstrated in Sections 4.8.1 and 4.8.4, even though an increase in 

time corresponded to an increase in defect density in both cases.  A variety of statistically 

significant interaction effects in the multiple regression models in this chapter suggest complex 

relationships between these factors.   

Table 136 contains a comparison of the additive compile models already investigated 

with their multiplicative counterparts.  All of the models were shown to be statistically 

significant at α=0.01.  The multiplicative compile model without interaction effects (named 

Compile Multiplicative hereafter) is: 

Ln(Defect density in testing) = β0 + βPgmrAb [Ln(PgmrAb)] + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

+ βJDDCm [Ln(JDDCm)] 

The multiplicative compile model with interaction effects (named Compile Multiplicative –IE 

hereafter) is: 
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Ln(Defect density in testing) = β0 + βPgmrAb [Ln(PgmrAb)] + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

+ βJDDCm [Ln(JDDCm)] 

+ βPgmrAb*KLOC [Ln(PgmrAb)*Ln(KLOC)]  

+ βPgmrAb)*Ln(GCoTim [Ln(PgmrAb)*Ln(GCoTim)] 

+ βPgmrAb*HCRR [Ln(PgmrAb)*Ln(HCRR)]  

+ βPgmrAb*IDDCR [Ln(PgmrAb)*Ln(IDDCR)] 

+ βPgmrAb*JDDCm [Ln(PgmrAb)*Ln(JDDCm)]  

+ βKLOC*GCoTim [Ln(KLOC)*Ln(GCoTim)] 

+ βKLOC*HCRR [Ln(KLOC)*Ln(HCRR)]  

+ βKLOC*JDDCm [Ln(KLOC)*Ln(JDDCm)] 

+ βGCoTim*JDDCm [Ln(GCoTim)*Ln(JDDCm)]  

+ βHCRR*IDDCR [Ln(HCRR)*Ln(IDDCR)] 

+ βPgmrAb*KLOC*GCoTim [Ln(PgmrAb)*Ln(KLOC)*Ln(GCoTim)] 

+ βPgmrAb*KLOC*IDDCR [Ln(PgmrAb)*Ln(KLOC)*Ln(IDDCR)] 

+ βPgmrAb*KLOC*JDDCm [Ln(PgmrAb)*Ln(KLOC)*Ln(JDDCm)] 

+ βPgmrAb*FDDDR*IDDCR [Ln(PgmrAb)*Ln(FDDDR)*Ln(IDDCR)] 

+ βFDDDR*IDDCR*JDDCm [Ln(FDDDR)*Ln(IDDCR)*Ln(JDDCm)] 

+ βPgmrAb*KLOC*GCoTim*JDDCm[Ln(PgmrAb)*Ln(KLOC)*Ln(GCoTim)*Ln(JDDCm)] 

+ βPgmrAb*FDDDR*IDDCR*JDDCm[Ln(PgmrAb)*Ln(FDDDR)*Ln(IDDCR)*Ln(JDDCm)] 
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Table 136  Comparing Additive and Multiplicative Compile Models 

Data Set Compile Model Outliers R2
a MSE SSE 

with 0.3665 977.7 1708982.9 Additive  

w/o 0.3380 513.1 872722.4 

with 0.3266 1039.3 1816675.9 

PSPb C 

Multiplicative 

w/o 0.3589 496.9 845196.2 

with 0.3880 796.5 724775.1 Additive 

w/o 0.2929 461.6 388579.1 

with 0.3156 890.7 810506.1 

PSPb C++ 

Multiplicative 

w/o 0.3041 433.5 382386.2 

with 0.4604 832.9 1441722.6 Additive -IE 

w/o 0.4038 440.6 774573.0 

with 0.4224 891.4 1543008.0 

PSPb C 

Multiplicative -IE 

w/o 0.4296 441.7 741111.6 

with 0.5577 575.6 514008.3 Additive -IE 

w/o 0.4475 393.1 336902.0 

with 0.5144 631.9 564309.3 

PSPb C++ 

Multiplicative -IE 

w/o 0.4463 394.0 337625.6 
 

In general, the comparison between additive and multiplicative models suggests: 

• the additive models including influential outliers account for more of the variation 

than the other models 

• the multiplicative models excluding influential outliers account for more of the 

variation than the additive models excluding influential outliers 

• MSE and SSE decrease markedly for all models when influential outliers are excluded 
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The multiplicative compile models are not noticeably superior to the additive models for 

the PSP data sets.  This is not an expected result, but some researchers have found linear models 

preferred over non-linear models for defect prediction models that are functions of program 

structural characteristics and elapsed implementation time [Nikora 1998, 138]. 

7.3.10 Stratifying by Programmer Quartile 

Programmer ability is related to all aspects of the software process, even when 

characterized by the simple three-category programmer quartiles.  Since top-quartile performers 

have less variability, as well as better performance, models using data from only the top 

performers may be superior to the inclusive models already analyzed.   

Table 137 compares the multiple regression models for the top-quartile performers in 

additive and multiplicative forms, including and excluding outliers, to the additive models for all 

the PSP students including outliers.  All of the models were shown to be statistically significant 

at α=0.01.  The additive compile models are the same as those described in Section 7.3.5; the 

multiplicative compile models are the same as those described in Section 7.3.9.  Only the data 

sets differ. 
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Table 137  Comparing Compile Models for Top-Quartile Students 

Data Set Compile Model Outliers R2
a MSE SSE 

PSPb C Additive  with 0.3665 977.7 1708982.9 

with 0.1227 195.5 91316.8 Additive 

w/o 0.2068 96.3 40151.3 

with 0.1695 1.7 798.7 

PSPb C  
TQ 

Multiplicative  

w/o 0.2725 1.4 590.4 

PSPb C++ Additive  with 0.3880 796.5 724775.1 

with 0.0830 220.2 59016.9 Additive 

w/o 0.1847 90.5 22163.9 

with 0.1038 1.7 447.3 

PSPb C++ 
TQ 

Multiplicative  

w/o 0.1933 1.4 336.2 

PSPb C Additive -IE with 0.4604 832.9 1441722.6 

with 0.1520 189.0 85051.9 Additive -IE 

w/o 0.2633 113.1 45451.9 

with 0.1959 1.7 745.1 

PSPb C  
TQ 

Multiplicative -IE 

w/o 0.2815 1.5 584.9 

PSPb C++ Additive -IE with 0.5577 575.6 514008.3 

with 0.2110 189.5 47556.2 Additive -IE 

w/o 0.2404 91.3 20443.6 

with 0.2393 1.4 355.6 

PSPb C++ 
TQ 

Multiplicative -IE 

w/o 0.2321 1.3 295.6 
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In general, the comparison between the additive and multiplicative models for the top-

quartile students suggests: 

• the additive models for all of the PSP students, including influential outliers, account 

for more of the variation than the models for just the top-quartile students 

• MSE and SSE decrease markedly for the models for the top-quartile students, 

especially when influential outliers are excluded 

• the multiplicative models for the top-quartile students account for more of the 

variation than the additive models for the top-quartile students 

The shift from additive to multiplicative models when the data are restricted to the top-

quartile students fits the mental model of the process interactions better, but the stratification also 

leads to a less useful model in terms of accounting for variation.  The decrease in MSE, the 

estimator for σ2, is also desirable, even if perhaps not as desirable as an increase in R2
a. 

7.3.11 Stratifying by Conformant Processes 

The common wisdom is that programmers who conform to recommended practice will 

have better results than those who do not.  The performance of programmers following 

recommended practice, i.e., review rates less than 200 LOC/hour, should therefore be better and 

more predictable than that of the population as a whole.  Table 138 summarizes the results of 

analyzing processes that conform to recommended practice for review rates.  All of the models 

were shown to be statistically significant at α=0.01.  The additive compile models are the same 

as those described in Section 7.3.5; the multiplicative compile models are the same as those 

described in Section 7.3.9. Only the data sets differ. 
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Table 138  Comparing Compile Models for Conformant Processes 

Data Set Compile Model Outliers R2
a MSE SSE 

PSPb C Additive  with 0.3665 977.7 1708982.9 

with 0.5337 461.3 39670.3 Additive  

w/o 0.2503 167.1 13032.4 

with 0.1664 1.8 157.4 

PSPb C 
Conformant 

Multiplicative  

w/o -0.0784 1.7 132.8 
 

The first thing to note is that there were insufficient observations with reviews that satisfy 

recommended practice to generate a useful multiple regression model for the C++ data sets and 

for the models that have interaction effects.  The rule of thumb is that there should be six to ten 

cases for every potential predictor variable [Neter et al. 1996, 330], which means there should be 

at least 54 observations for the main-effects compile models and 156 for the compile models 

with interaction effects. 

This is a consequence of the PSP being a learning environment.  While students are 

aware of the rules for inspections, the purpose of the personal software process is to identify the 

most effective review process for the individual programmer.  While it is expected that most 

students should conform to recommended practice, part of the learning experience is to 

experientially and quantitatively go through that learning process, therefore most students do not 

meet the review rate initially (and many may continue to converge to “their best personal review 

rate” after the PSP class is over if they continue to use the PSP’s measurement-driven 

improvement approach for personal learning). 

The additive model for the conformant process, including influential outliers, accounts 

for more of the variation than any other model.  When influential outliers are excluded, the value 

of R2
a decreases, which is not desired, but the value of MSE also decreases, which is desirable.  
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One way of addressing the inadequate number of observations is to not split the data sets 

by programming language used.  Table 139 summarizes the results of analyzing processes that 

conform to recommended practice for review rates for PSPa and PSPb.  All of the models were 

shown to be statistically significant at α=0.01.   

Table 139  Comparing Compile Models for Conformant Processes Without Considering 
Programming Language 

Data Set Compile Model Outliers R2
a MSE SSE 

with 0.1777 505.2 43948.4 Additive  

w/o 0.2131 347.6 29198.3 

with 0.0683 2.3 202.6 

PSPa 
Conformant 

Multiplicative  

w/o 0.0449 2.3 194.9 

PSPb C 
Conformant 

Additive  with 0.5337 461.3 39670.3 

with 0.3239 1418.2 707674.2 Additive  

w/o 0.2858 501.4 245191.7 

with 0.1631 2.1 1061.9 

PSPb 
Conformant 

Multiplicative  

w/o 0.1511 2.0 992.9 

with 0.4372 1180.4 568966.7 Additive –IE  

w/o 0.2736 451.5 212209.9 

with 0.1630 2.1 1025.9 

PSPb 
Conformant 

Multiplicative –IE  

w/o 0.1365 2.0 961.9 
 

There were insufficient observations with reviews that satisfy recommended practice to 

generate a useful multiple regression model for the PSPa data set with interaction effects.  The 

additive model for the conformant process, including influential outliers, continues to account for 

more of the variation than any other model.   
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In general, the comparison between the additive and multiplicative models for the 

conformant processes suggests: 

• MSE and SSE decrease markedly for the conformant processes, especially when 

influential outliers are excluded 

• the additive models for the conformant processes account for more of the variation 

than the multiplicative ones 

The lack of observations with conformant reviews is a concern since PSP is intended to 

instill good engineering behaviors in its students.  As has already been discussed, however, PSP 

is also intended to be a learning experience where measured performance drives improvement 

actions.  The lack of conformant reviews reinforces the conclusion that following recommended 

practice is not easy, and quantified benefits are helpful in reinforcing preferred behaviors. 

7.3.12 Discussion of the Multiple Regression Models 

Processes that conform to recommended practice for reviews appear to be superior to 

those that do not, but the scarcity of observations for the conformant processes within the various 

data splits make that conclusion less compelling than it could be.  From a management 

perspective, however, the importance of quality control and quality assurance are reinforced in 

achieving high-quality products. 

Removing influential outliers reduces the variance markedly, although it also reduces the 

amount of variation explained by the models.  The majority of the outliers are associated with 

nonconformant design or code reviews.  From a management perspective, this implies that 

identifying atypical instances of the process, for example, by applying statistical process control 

techniques, would improve the predictability of performance. 
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The additive models are, in general, superior to their multiplicative variants with the 

exception of data sets restricted to the data from the top-quartile performers.  The additive 

models are therefore preferred, at least within the context of general linear models (multiplicative 

models are preferred for the more sophisticated mixed models in Section 7.4).   

Models with interaction effects are, not surprisingly, superior to those that do not include 

interaction effects.   

The preferred multiple regression model is the additive compile model with interactions 

and applied to software processes that conform to recommended practice.  Influential outliers 

may be included to maximize R2
a or excluded to minimize MSE.  The normality of the residuals 

for the additive compile regression model with interactions for conformant processes and 

excluding influential outliers was checked using the Shapiro-Wilk test.  The null hypothesis that 

residuals follow a normal distribution could not be rejected for (PSPb, C) with p-value=0.1282 

or for (PSPb, C++) with p-value=0.3739. 

The variability explained by the multiple regression models may be more than the 

baseline models by compile time, but the simple baseline model with interactions is close enough 

in performance early enough in the life cycle that it would be preferred over the design and code 

models.   

Published software defect prediction models accounting for 60-70% of the variability in 

the data with only a small number of predictor variables, perhaps only program size, are 

common.  In some cases this may be because of the small data sets used; several researchers used 

the Akiyama data set, which has only seven data points [Akiyama 1972; Halstead 1977, 88-91; 

Gaffney 1984], and studies based on classroom data with fewer than 30 data points are common 



 

261 

[Wohlin and Petersson 2001, 343; Takahasi and Kamayach 1985, 330].  In other cases, it seems 

likely that team effects reduced the variation.   

It is clear that programmer ability is a crucial variable.  It is statistically significant as a 

main effect and in interaction with multiple other variables, even though the surrogate used is not 

a sophisticated one.  It is also clear that a disciplined process, specifically one that conforms to 

good programming practices, materially improves the quality of the software product.   

Interaction effects between the process variables, programmer ability, and program size 

are significant factors.  A more sophisticated statistical analysis that addresses the significant 

differences between individuals is called for.  The assumption of independence has been 

deliberately ignored in these regression models since multiple observations from each student are 

included in the data sets.  This issue is addressed in the context of repeated measures in the 

mixed models in Section 7.4.   

From a management perspective, emphasis on both the competence of the staff and the 

processes they follow is crucial for achieving high-quality software products.  Overly 

emphasizing either process or people factors, to the detriment of the other, is counterproductive. 

 

7.4 MIXED MODELS FOR PSP QUALITY 

In analyzing the PSP data, natural growth curves can be used to model the relationships 

between various explanatory variables and software quality since an increase in performance is 

expected for students across the course.  The repeated measures ANOVA used in earlier analyses 

of the PSP data [Hayes and Over 1997; Wesslen 2000] is a special case of growth curve models 

that focuses only on the factor means (the means of the treatments) [Duncan et al. 1999, 13].  

Growth curve models preserve the concept that individual differences are both meaningful and 
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important, even when everyone develops the same way [Duncan et al. 1999, 3].  Mixed models 

can be used for analyzing growth curves using repeated data. 

7.4.1 An Overview of Mixed Model Theory 

In statistical analysis, blocks are formed that are as nearly homogeneous as possible, and 

treatments (or explanatory factors) are randomly assigned to blocks.  Many commonly used 

statistical tools, such as the general linear model focus on fixed effects, i.e., those where the 

treatments in the analysis are the only ones for which inferences are to be made. 

Random effects are those where the blocks in the analysis are a subset of a larger set of 

blocks in the population for which the researcher wishes to make inferences.  Mixed models 

address both fixed and random effects, and the general linear mixed model equation is: 

Y = X β + Z u + e 

where  

 Y is the vector of observations 

X is the matrix of values of the predictor variables (treatment design matrix) 

β is the vector of regression parameters (treatment fixed effect parameters) 

Z is the block design matrix  

u is the vector of random block effects, assumed to be multivariate normal, MVN(0, G) 

e is the vector of errors, assumed to be MVN(0,R) 
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G and R are covariance matrices that are required to be positive definite [Littell et al. 

1996, 491-493].  These assumptions – that positive definite covariance matrices G and R can be 

constructed from the random and repeated measures variables – are satisfied in all of the models 

described in this chapter, although workarounds were necessary in some instances and are 

described at the appropriate points.   The covariance matrix for Y is: 

V = Z G Z’ + R 

where Y is assumed to be MVN(Xβ,ZGZ’+R).  Xβ is defined by the fixed effects specified in the 

the mixed model.     

For the PSP data, the repeated measures are for the students across the ten assignments.  

The Y vector contains the defect density in testing observations.  Rather than being a separate 

variable, the ability of the programmers is incorporated into the mixed models as repeated 

measures that capture improving quality across the PSP assignments.  Repeated measures 

analysis addresses the independence issue noted earlier, i.e., that data from the same student may 

be analyzed for multiple assignments.  Program size and the process variables are the fixed 

effects contained in X.  The confounding variables, such as academic degrees and experience, 

which were explored in Section 4.6, can be more rigorously explored as random effects captured 

in the Z matrix.   

The mixed model is an appropriate tool for analyzing models containing both fixed and 

random effects and is theoretically superior to tools that focus on fixed effects.  The general 

linear model, for example, essentially treats random effects as fixed effects.  In the case of PSP, 

student data is being used to make inferences about the larger population of programmers, 

therefore random effects need to be appropriately addressed. 
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There are several reasons why a mixed model is preferred over a fixed effects model 

[Littell et al. 1996]: 

• The inference space for a statistical analysis can be characterized as narrow, 

intermediate, or broad, depending on how it deals with random effects.  In the 

majority of practical applications, the broad inference space is of primary interest.  

The mixed model calculates broad inference space estimates and standard errors.  The 

general linear model works with the narrow inference space.  In the case of the PSP 

data, the broad inference space is appropriate since generalizing to the general 

population of programmers is desirable. 

• Estimates in the general linear model are ordinary least squares.  Estimates in the 

mixed model are estimated generalized least squares, which are theoretically superior.   

• In the presence of random effects, the mixed model calculates correct standard errors 

by default, incorporating the variance components of random effects.  The general 

linear model does not.  

• In linear model theory, a linear function of (fixed) model effects is estimable if it can 

be written as a linear combination of expected values of the observations. Estimable 

functions do not depend on random effects.  Linear combinations of fixed and random 

effects are called predictable functions.  If all model effects are considered fixed, 

correct estimable functions in mixed models where the coefficients for all random 

effects are zero are falsely declared nonestimable.  

• Specific random effects, or linear functions of random effects, can be estimated using 

best linear unbiased predictors (BLUP), which are unique to mixed model theory.  

Fixed effect models use best linear unbiased estimates (BLUE). To the degree that 
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random effects such as years of experience or programming language are significant 

in the mixed models, estimates incorporating all effects, whether fixed or random, 

correctly are appropriate. 

• Observations with missing data for any repeated measures variable are discarded for 

the general linear model, where the mixed model can use all data present for a 

subject, so long as the missing data are random.  Since any missing data for a subject 

causes all of the subject’s data to be discarded in the general linear model, the power 

of statistical tests is likely to be low.  Unfortunately the PSP data for the random 

effects to be explored was not consistently captured, so missing data are an issue that 

needs to be appropriately addressed. 

The mixed model deals with repeated measures, where multiple measurements of a 

response variable on the same subject are taken [Littell et al. 1996, 87-134; Khattree and Naik 

1999, 247-301].  For PSP, the repeated measures are taken on the students over the course of the 

class, and the treatments (or between-subject) factors are the process changes that occur across 

PSP assignments.  The objective of the analysis is to compare treatment means or treatment 

regression curves over time.  Without considering repeated measures, the implicit assumption is 

that the covariances between observations on the same subject are the same, which is unrealistic 

since observations close in time are likely to be more highly correlated than those far apart in 

time.   

The covariance structure for the repeated measures is specified by the analyst, and a 

number of options are available [Littell et al. 1996, 269-274].  In the unstructured (UN) case, no 

mathematical pattern is imposed on the covariance structure.  This is the most general structure.  

In the compound symmetry (CS) structure, variances are homogenous, and correlation is 
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constant.  For AR(1), the autoregressive order 1 structure, variances are homogeneous, and 

correlations decline exponentially with distance.  The UN, CS, and AR(1) covariance structures 

are the most commonly used; these three and five others were explored for the PSP data.  

Typically a model fit criterion, such as Akaike’s Information Criterion (AIC), is used to select 

the most appropriate covariance structure and model (smaller values of AIC are better) [Littell et 

al. 1996, 101-102; Khattree and Naik 1999, 264], although a likelihood ratio test is preferred for 

rigorous conclusions [Khattree and Naik 1999, 255-265].   

For the mixed models reported below, the unstructured covariance structure is used.  It 

has the smallest AIC value of all the covariance structures investigated.  A likelihood ratio test 

was performed for each covariance structure [Khattree and Naik 1999, 255-265], and the 

unstructured covariance structure was consistently better than the other structures at α=0.005. 

When investigating the mixed models, a multiplicative model was found to reduce the 

AIC by 2-3 times compared to the additive model in all cases.  As a result, the models studied for 

the mixed models are all multiplicative models.  This result suggests that multiplicative effect of 

the process variables, which is conceptually correct but not visible in the multiple regression 

models, is better addressed in the mixed models. 

7.4.2 Mixed Models in Design 

The dimensions and fit statistics for the design mixed models for defect density in testing 

are shown in Table 140, where the X matrix of fixed effects contains the program size and the 

design process variables, the repeated measures are for the students across assignments, and 

there are no random effects.  Influential outliers are included.   
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There are no random effects in this model.  The repeated measures across assignments 

are captured in the R matrix for the error terms, which is a 10x10 matrix.  The design mixed 

model without interaction effects (named Design Mixed hereafter) for the fixed effects is: 

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

No statistically significant interaction effects were found for the design mixed models, so there is 

no design mixed model with interaction effects. 

Table 140  Mixed Models for Design 

 Design Mixed 
PSPb C 

Design Mixed 
PSPb C++ 

Covariance Parameters 55 55 

Columns in X 5 5 

Columns in Z 0 0 

Subjects 197 108 

Observations Used 1758 920 

Prob > ChiSq <0.0001 <0.0001 

AIC 5888.3 3103.0 
 

The parameter estimates of the fixed main effects for the design mixed models, and the 

associated standard errors, are listed in Table 141 for the data sets including influential outliers.  

In the following tables, for the null hypotheses H0: βi=0, a p-value<0.05 is indicated with *, a p-

value<0.01 is indicated with **, a p-value<0.001 is indicated with ***, and a p-value<0.0001 is 

indicated with ****. 



 

268 

Table 141  Fixed-Effect Estimates for the Design Mixed Models 

Parameter Design Mixed 
PSPb C 

(std err) 

Design Mixed 
PSPb C++ 

(std err) 

Intercept 1.51**** 

(0.15) 

1.45**** 

(0.17) 

KLnKLOC -0.17*** 

(0.05) 

-0.30**** 

(0.06) 

DLnDsTim 0.22**** 

(0.04) 

0.08 

(0.06) 

ELnDRR -0.36**** 

(0.03) 

-0.30**** 

(0.04) 

FLnDDDR 0.13*** 

(0.04) 

0.09 

(0.05) 
 

As program size increases, defect density in testing decreases, which is consistent with 

the findings of some other researchers [Basili and Perricone 1984; Shen et al. 1985].  There is 

some evidence that as design time increases, defect density in testing increases, which is 

consistent with the findings in Section 4.8.1.  As the design review rate increases in terms of 

hours/KLOC, defect density in testing decreases.  Given this formulation of review rate, the 

result is consistent with the belief that following recommended practice will result in higher 

quality software.  There is some evidence that as defect density in design review increases, defect 

density in testing also increases, which is also as expected. 

The dimensions and fit statistics for the design mixed models for defect density in testing 

are shown in Table 142 for the mixed models excluding influential outliers.   
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Table 142  Mixed Models for Design Excluding Outliers 

 Design Mixed 
PSPb C 

Design Mixed 
PSPb C++ 

Covariance 
Parameters 

55 55 

Columns in X 5 5 

Columns in Z 0 0 

Subjects 197 108 

Observations Used 1711 892 

Prob > ChiSq <0.0001 <0.0001 

AIC 5687.2 2981.7 
 

The results for the design mixed models excluding outliers are consistent with those for 

the design mixed models including outliers.  The design mixed models excluding outliers had a 

consistently lower AIC than the models including outliers. 

The parameter estimates of the fixed main effects for the design mixed models, and the 

associated standard errors, are listed in Table 143 for the data sets excluding outliers.   
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Table 143  Fixed-Effect Estimates for the Design Mixed Models Excluding Outliers 

Parameter  Design Mixed 
PSPb C 

(std err) 

Design Mixed 
PSPb C++ 

(std err) 

Intercept 1.80**** 

(0.15) 

1.65**** 

(0.17) 

KLnKLOC -0.07 

(0.05) 

-0.17* 

(0.07) 

DLnDsTim 0.20**** 

(0.05) 

0.09 

(0.07) 

ELnDRR -0.36**** 

(0.03) 

-0.33**** 

(0.04) 

FLnDDDR 0.12** 

(0.04) 

0.10 

(0.05) 
 

The parameter estimates of the fixed main effects for the design mixed models excluding 

outliers are consistent with those of the design mixed models including outliers. 

7.4.3 Mixed Models in Coding 

The dimensions and fit statistics for the code mixed models for defect density in testing 

are shown in Table 144, where the X matrix of fixed effects contains the program size and the 

design and code process variables, the repeated measures are for the students across assignments, 

and there are no random effects.  Influential outliers are included.   

There are no random effects in this model.  The repeated measures across assignments 

are captured in the R matrix for the error terms, which is contained in the SAS output in 

Appendix C, along with the values for the unstructured covariance matrix.  The code mixed 

model without interaction effects (named Code Mixed hereafter) for the fixed effects is: 
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Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

The code mixed model with interaction effects (named Code Mixed –IE hereafter) is: 

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

+ βKLOC*DDsTim [Ln(KLOC)*Ln(DDsTim)] 

+ βKLOC*EDRR [Ln(KLOC)*Ln(EDRR)] 

+ βKLOC*FDDDR [Ln(KLOC)*Ln(FDDDR)] 

+ βKLOC*IDDCR [Ln(KLOC)*Ln(IDDCR)]  

+ βEDRR*FDDDR [Ln(EDRR)*Ln(FDDDR)] 

+ β*KLOC*DDsTim*EDRR*FDDDR[Ln(KLOC)*Ln(DDsTim)*Ln(EDRR)*Ln(FDDDR)] 

+ β*KLOC*GCoTim*HCRR*IDDCR[Ln(KLOC)*Ln(GCoTim)*Ln(HCRR)*Ln(IDDCR)] 
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Table 144  Mixed Models for Code 

 Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

Covariance 
Parameters 

55 55 55 55 

Columns in X 8 15 8 15 

Columns in Z 0 0 0 0 

Subjects 197 197 108 108 

Observations 
Used 

1758 1758 920 920 

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001 

AIC 5861.4 5854.6 3084.9 3096.5 
 

The parameter estimates of the fixed main effects for the code mixed models, and the 

associated standard errors, are listed in Table 145 for the data sets including influential outliers.   
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Table 145  Fixed-Effect Estimates for the Code Mixed Models 

Parameter Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

Intercept 1.08**** 

(0.18) 

0.88* 

(0.39) 

0.60* 

(0.23) 

0.18 

(0.47) 

KLnKLOC -0.06 

(0.05) 

-0.17 

(0.14) 

-0.15* 

(0.07) 

-0.46* 

(0.19) 

DLnDsTim 0.17**** 

(0.05) 

-0.09 

(0.14) 

0.04 

(0.06) 

0.30 

(0.17) 

ELnDRR -0.12 

(0.06) 

-0.48*** 

(0.13) 

-0.12 

(0.09) 

-0.16 

(0.16) 

FLnDDDR 0.12** 

(0.04) 

-0.46** 

(0.16) 

0.08 

(0.05) 

0.29 

(0.20) 

GLnCoTim 0.33**** 

(0.06) 

0.27**** 

(0.06) 

0.46**** 

(0.09) 

0.37**** 

(0.09) 

HLnCRR -0.21*** 

(0.06) 

-0.26*** 

(0.07) 

-0.22* 

(0.09) 

-0.28 

(0.10) 

ILnDDCR -0.001 

(0.04) 

-0.60**** 

(0.12) 

0.12 

(0.06) 

0.21 

(0.18) 
 

The parameter estimates of the fixed main effects for the code mixed models are 

consistent with those of the design mixed models, with the exception that defect density in testing 

decreases as defect density in design review increases for the code model with interactions, 

possibly as a result of interaction effects. 

As code time increases, defect density in testing increases, which is consistent with the 

findings in Section 4.8.4.  As the code review rate increases in terms of hours/KLOC, defect 

density in testing decreases.  Given this formulation of review rate, the result is consistent with 
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the belief that following recommended practice will result in higher quality software.  As defect 

density in code review increases, defect density in testing decreases, which is inconsistent with 

the results of Section 4.8.6, but the only statistically significant instance is for one of the models 

with interaction effects, and interactions may be affecting the result for the main effect. 

All interactions were investigated, but only the seven interaction effects that were shown 

to be statistically significant for either or both of the data sets were retained.  The fixed 

interaction effects are listed in Table 146.   
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Table 146  Interaction-Effect Estimates in the Code Mixed Models 

Parameter 

 

Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

KLnKLOC 
*DLnDDsTim 

-- -0.11* 

(0.05) 

-- 0.11 

(0.06) 

KLnKLOC 
*ELnDRR 

-- -0.15*** 

(0.04) 

-- -0.04 

(0.06) 

KLnKLOC 
*FLnDDDR 

-- -0.25*** 

(0.07) 

-- 0.12 

(0.09) 

KLnKLOC 
*ILnDDCR 

-- 0.27**** 

(0.05) 

-- 0.11 

(0.08) 

ELnDRR 
*FLnDDDR 

-- 0.22** 

(0.07) 

-- -0.04 

(0.09) 

KLnKLOC 
*DLnDsTim 
*ELnDRR 

*FLnDDDR 

-- 0.03*** 

(0.009) 

-- -0.008 

(0.01) 

KLnKLOC 
*GLnCoTim 
*HLnCRR 
*ILnDDCR 

-- -0.01** 

(0.004) 

-- -0.02*** 

(0.005) 

 
Program size interacts with all of the design variables individually and as a whole, as 

well as with all of the code variables as a whole. 

The dimensions and fit statistics for the code mixed models for defect density in testing 

are shown in Table 147 for the mixed models excluding influential outliers.   
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Table 147  Mixed Models for Code Excluding Outliers 

 Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

Covariance 
Parameters 

55 55 55 55 

Columns in X 8 15 8 15 

Columns in Z 0 0 0 0 

Subjects 197 197 108 108 

Observations 
Used 

1711 1705 892 884 

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001 

AIC 5663.5 5645.7 2968.1 2955.2 
 

The results for the code mixed models excluding outliers are consistent with those of the 

code mixed models including outliers.  The code mixed models excluding outliers have a 

consistently lower AIC than the models including outliers. 

The parameter estimates of the fixed main effects for the code mixed models, and the 

associated standard errors, are listed in Table 148 for the data sets excluding outliers.   
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Table 148  Fixed-Effect Estimates for the Code Mixed Models Excluding Outliers 

Parameter  Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

Intercept 1.45**** 

(0.18) 

0.92* 

(0.41) 

0.87*** 

(0.23) 

0.37 

(0.50) 

KLnKLOC 0.01 

(0.05) 

-0.18 

(0.15) 

-0.03 

(0.07) 

-0.36 

(0.21) 

DLnDsTim 0.15*** 

(0.05) 

-0.02 

(0.14) 

0.05 

(0.06) 

0.50** 

(0.17) 

ELnDRR -0.09 

(0.07) 

-0.47*** 

(0.14) 

-0.14 

(0.09) 

-0.03 

(0.17) 

FLnDDDR 0.11** 

(0.04) 

-0.46** 

(0.16) 

0.10 

(0.05) 

0.04 

(0.21) 

GLnCoTim 0.28**** 

(0.06) 

0.26**** 

(0.07) 

0.42**** 

(0.09) 

0.32*** 

(0.09) 

HLnCRR -0.23*** 

(0.06) 

-0.25*** 

(0.07) 

-0.23* 

(0.09) 

-0.29** 

(0.10) 

ILnDDCR -0.02 

(0.04) 

0.56**** 

(0.13) 

0.11 

(0.06) 

0.16 

(0.19) 
 

The parameter estimates of the fixed main effects for the code mixed models excluding 

outliers are consistent with those of the code mixed models including outliers with the exception 

of defect density in code review, where the parameter estimate is now positive and consistent 

with the results of Section 4.8.6. 

The fixed interaction effects are listed in Table 149.   
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Table 149  Interaction-Effect Estimates in the Code Mixed Models 

Ln(Parameter) 

 

Code 
Mixed 

PSPb C 

Code 
Mixed –IE 

PSPb C 

Code 
Mixed 

PSPb C++ 

Code 
Mixed –IE 
PSPb C++ 

KLnKLOC 
*DLnDsTim 

-- -0.08 

(0.05) 

-- 0.20** 

(0.07) 

KLnKLOC 
*ELnDRR 

-- -0.15*** 

(0.05) 

-- 0.03 

(0.07) 

KLnKLOC 
*FLnDDDR 

-- -0.24*** 

(0.07) 

-- 0.009 

(0.09) 

KLnKLOC 
*ILnDDCR 

-- 0.25**** 

(0.05) 

-- 0.07 

(0.09) 

ELnDRR 
*FLnDDDR 

-- 0.21** 

(0.08) 

-- -0.03 

(0.09) 

KLnKLOC 
*DLnDsTim 
*ELnDRR  

*FLnDDDR 

-- 0.03*** 

(0.01) 

-- -0.008 

(0.01) 

KLnKLOC 
*GLnCoTim 
*HLnCRR 
*ILnDDCR 

-- -0.009* 

(0.004) 

-- -0.01** 

(0.005) 

 
The parameter estimates of the fixed interaction effects for the code mixed models 

excluding outliers are consistent with those of the code mixed models including outliers with the 

exception of (program size * design time), where the sign of the interaction term has become 

positive. 
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7.4.4 Mixed Models in Compile 

The dimensions and fit statistics for the compile mixed models for defect density in 

testing are shown in Table 150, where the X matrix of fixed effects contains the program size 

and the design, code, and compile process variables; the repeated measures are for the students 

across assignments; and there are no random effects.  Influential outliers are included.   

There are no random effects in this model.  The repeated measures across assignments 

are captured in the R matrix for the error terms, which is contained in the SAS output in 

Appendix C, along with the values for the unstructured covariance matrix.  The compile mixed 

model without interaction effects (named Compile Mixed hereafter) for the fixed effects is: 

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

+ βJDDCm [Ln(JDDCm)] 



 

280 

The compile mixed model with interaction effects (named Compile Mixed –IE hereafter) is: 

Ln(Defect density in testing) = β0 + βKLOC [Ln(KLOC)]  

+ βDDsTim [Ln(DDsTim)] + βEDRR [Ln(EDRR)] + βFDDDR [Ln(FDDDR)] 

+ βGCoTim [Ln(GCoTim)] + βHCRR [Ln(HCRR)] + βIDDCR [Ln(IDDCR)] 

+ βKLOC*DDsTim [Ln(KLOC)*Ln(DDsTim)] 

+ βKLOC*EDRR [Ln(KLOC)*Ln(EDRR)] 

+ βKLOC*FDDDR [Ln(KLOC)*Ln(FDDDR)] 

+ βKLOC*IDDCR [Ln(KLOC)*Ln(IDDCR)]  

+ βGCoTim*JDDCm [Ln(GCoTim)*Ln(JDDCm)] 

+ β*KLOC*GCoTim*HCRR*IDDCR[Ln(KLOC)*Ln(GCoTim)*Ln(HCRR)*Ln(IDDCR)] 

Table 150  Mixed Models for Compile 

 Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

Covariance 
Parameters 

55 55 55 55 

Columns in X 9 15 9 15 

Columns in Z 0 0 0 0 

Subjects 197 197 108 108 

Observations 
Used 

1758 1758 920 920 

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001 

AIC 5847.3 5840.3 3077.1 3084.6 
 

The parameter estimates of the fixed main effects for the compile mixed models, and the 

associated standard errors, are listed in Table 151 for the data sets including influential outliers.   
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Table 151  Fixed-Effect Estimates for the Compile Mixed Models 

Parameter Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

Intercept 1.01**** 

(0.18) 

1.44*** 

(0.44) 

0.49* 

(0.23) 

-0.26 

(0.53) 

KLnKLOC -0.06 

(0.05) 

-0.22 

(0.15) 

-0.10 

(0.07) 

-0.31 

(0.19) 

DLnDsTim 0.16*** 

(0.05) 

-0.03 

(0.14) 

0.04 

(0.06) 

0.28 

(0.17) 

ELnDRR -0.10 

(0.06) 

-0.39** 

(0.13) 

-0.09 

(0.09) 

-0.08 

(0.16) 

FLnDDDR 0.12** 

(0.04) 

-0.18 

(0.13) 

0.06 

(0.05) 

0.16 

(0.17) 

GLnCoTim 0.28**** 

(0.06) 

-0.05 

(0.12) 

0.41**** 

(0.08) 

0.56*** 

(0.17) 

HLnCRR -0.19** 

(0.06) 

-0.24*** 

(0.06) 

-0.19* 

(0.09) 

-0.25** 

(0.09) 

ILnDDCR -0.003 

(0.04) 

0.53**** 

(0.12) 

0.11 

(0.06) 

0.16 

(0.17) 

JLnDDCm 0.11**** 

(0.02) 

-0.12 

(0.08) 

0.13**** 

(0.03) 

0.27* 

(0.11) 
 

The parameter estimates of the fixed main effects for the compile mixed models are 

consistent with those of the design and code mixed models.  Defect density in testing increases as 

defect density in code review increases, which is expected and consistent with the design mixed 

model. 
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As defect density in compile increases, defect density in testing increases, which is 

consistent with the results of Section 4.8.7.  Program size was not shown to be statistically 

significant for any of the compile mixed models as a main effect but is well represented as an 

interaction effect. 

All interactions were investigated, but only six interaction effects that were shown to be 

statistically significant for either or both of the data sets were retained.  The interaction effects 

are listed in Table 152.   

Table 152  Interaction-Effect Estimates in the Compile Mixed Models 

Parameter 

 

Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

KLnKLOC 
*DLnDDsTim 

-- -0.07 

(0.05) 

-- 0.10 

(0.06) 

KLnKLOC 
*ELnDRR 

-- -0.13** 

(0.04) 

-- -0.01 

(0.06) 

KLnKLOC 
*FLnDDDR 

-- -0.13* 

(0.05) 

-- 0.06 

(0.07) 

KLnKLOC 
*ILnDDCR 

-- 0.25**** 

(0.05) 

-- 0.08 

(0.08) 

GLnCoTim 
*JLnDDCm 

-- 0.09** 

(0.03) 

-- -0.07 

(0.04) 

KLnKLOC 
*GLnCoTim 
*HLnCRR 
*ILnDDCR 

-- -0.01** 

(0.004) 

-- -0.02**** 

(0.004) 

 
Program size interacts with all of the design variables individually, as well as with all of 

the compile variables as a whole. 
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The dimensions and fit statistics for the compile mixed models for defect density in 

testing are shown in Table 153 for the mixed models excluding influential outliers.   

Table 153  Mixed Models for Compile Excluding Outliers 

 Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

Covariance 
Parameters 

55 55 55 55 

Columns in X 9 15 9 15 

Columns in Z 0 0 0 0 

Subjects 197 197 108 108 

Observations 
Used 

1711 1705 892 884 

Prob > ChiSq <0.0001 <0.0001 <0.0001 <0.0001 

AIC 5645.2 5629.7 2960.3 2936.5 
 

The results for the compile mixed models excluding outliers are consistent with those of 

the compile mixed models including outliers.  The compile mixed models excluding outliers 

have a consistently lower AIC than the models including outliers. 

The parameter estimates of the fixed main effects for the compile mixed models, and the 

associated standard errors, are listed in Table 154 for the data sets excluding outliers.   
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Table 154  Fixed-Effect Estimates for the Compile Mixed Models Excluding Outliers 

Parameter  Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

Intercept 1.37**** 

(0.18) 

1.37** 

(0.45) 

0.74** 

(0.23) 

-0.42 

(0.55) 

KLnKLOC 0.03 

(0.05) 

-0.21 

(0.15) 

0.006 

(0.07) 

-0.18 

(0.21) 

DLnDsTim 0.13** 

(0.05) 

0.04 

(0.14) 

0.05 

(0.06) 

0.48** 

(0.17) 

ELnDRR -0.06 

(0.07) 

-0.39** 

(0.13) 

-0.12 

(0.09) 

0.09 

(0.17) 

FLnDDDR 0.11** 

(0.04) 

-0.19 

(0.13) 

0.08 

(0.05) 

-0.07 

(0.18) 

GLnCoTim 0.23*** 

(0.06) 

-0.02 

(0.13) 

0.36**** 

(0.09) 

0.67**** 

(0.17) 

HLnCRR -0.21*** 

(0.06) 

-0.23*** 

(0.07) 

-0.19* 

(0.09) 

-0.25** 

(0.09) 

ILnDDCR -0.02 

(0.04) 

0.48*** 

(0.13) 

0.11 

(0.06) 

0.08 

(0.18) 

JLnDDCm 0.12**** 

(0.02) 

-0.07 

(0.09) 

0.13**** 

(0.03) 

0.41*** 

(0.12) 
 

The parameter estimates of the fixed main effects for the compile mixed models 

excluding outliers are consistent with those of the compile mixed models including outliers. 

The fixed interaction effects are listed in Table 155.   
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Table 155  Interaction-Effect Estimates in the Compile Mixed Models 

Parameter 

 

Compile 
Mixed 

PSPb C 

Compile 
Mixed –IE 

PSPb C 

Compile 
Mixed 

PSPb C++ 

Compile 
Mixed –IE 
PSPb C++ 

KLnKLOC 
*DLnDsTim 

-- -0.04 

(0.05) 

-- 0.17* 

(0.07) 

KLnKLOC 
*ELnDRR 

-- -0.13** 

(0.05) 

-- 0.08 

(0.07) 

KLnKLOC 
*FLnDDDR 

-- -0.13* 

(0.05) 

-- -0.04 

(0.08) 

KLnKLOC 
*ILnDDCR 

-- 0.22**** 

(0.05) 

-- 0.01 

(0.08) 

GLnCoTim 
*JLnDDCm 

-- 0.07* 

(0.03) 

-- -0.12* 

(0.05) 

KLnKLOC 
*GLnCoTim 
*HLnCRR 
*ILnDDCR 

-- -0.008* 

(0.004) 

-- -0.01* 

(0.005) 

 
The parameter estimates of the fixed interaction effects for the compile mixed models 

excluding outliers are consistent with those of the compile mixed models including outliers. 

7.4.5 Random Effects in the Mixed Models for PSP 

The analyses described in Section 4.6 did not find the potentially confounding variables, 

such as years of experience or highest degree attained, statistically significant.  In mixed models, 

such variables can be analyzed as random effects.  A separate set of random effects models was 

built for each random effect investigated, using the compile mixed models to provide fixed 

effects.  The models were run with and without interaction effects, , for data sets PSPa and PSPb, 

including and excluding influential outliers.   
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The PSP major process was not found to be a statistically significant random effect for 

any of the mixed models.  This is inconsistent with the results of Section 4.5, but it is the 

expected result for a repeated measures mixed model across assignments, since the repeated 

measure incorporates a more detailed measure of change over time than the PSP major process. 

The number of programs finished was not found to be a statistically significant random 

effect for any of the mixed models.  This is consistent with the results of Section 4.6.2, which 

focused on the difference between those finishing all ten assignments versus those finishing less 

than ten. 

The PSP class was found to be a statistically significant random effect for the mixed 

models that included outliers.  For the data sets excluding outliers, PSP class was not found to be 

a statistically significant random effect.  This is consistent with the results of Section 4.6.3:  a 

few individuals in a small class who are struggling with an assignment can skew the performance 

of the class as a whole, but when those atypical cases were excluded, there were no statistically 

significant differences between the different offerings of the PSP course. 

The highest degree attained was not found to be a statistically significant random effect 

for any of the mixed models.  This is consistent with the results of Section 4.6.4. 

Years of experience was not found to be a statistically significant random effect for any 

of the mixed models.  This is consistent with the results of Section 4.6.5. 

The number of languages known was not found to be a statistically significant random 

effect for any of the mixed models.  This is consistent with the results of Section 4.6.6. 

The percent of time programming in the previous year was not found to be a statistically 

significant random effect for any of the mixed models.  This is consistent with the results of 

Section 4.6.7. 
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The programming language used was not found to be a statistically significant random 

effect for any of the mixed models.  This is consistent with the results of Section 4.6.8. 

Programmer ability, as measured by average defect density in testing for the first three 

assignments, was shown to be a statistically significant random effect for all of the mixed 

models.  This is consistent with the results of Section 4.9, and is to be expected since it is a 

subject-specific measure, and the repeated measures across assignments in the compile mixed 

models capture the change in performance across PSP for the entire population.  Subject-specific 

repeated measures are analyzed in Section 7.4.6 and provide a more sophisticated insight based 

on individual regression curves than the surrogate for ability used here. 

7.4.6 Random Coefficient Mixed Models for Student-Specific Effects 

In conventional regression theory, subject-specific terms do not occur in the model 

[Khattree and Naik 1999, 288-293; Littell et al. 1996, 231-232].  Estimates of the intercept and 

the slope are averages over the entire population, which is why the programmer ability variable 

was shown to be a statistically significant random effect.   

Mixed models can support subject-specific parameters, where the model equations 

include random variables for the intercept and the slope.  This model can be described by:  

0 1( )ij i i ij ijy s d X eβ β= + + + +  

where β0 is the fixed intercept, β1 is the fixed slope, si is the random deviation of the ith subject’s 

intercept from β0, and di is the random deviation of the ith subject’s slope from β1.  Subject-

specific estimates are a form of BLUP.  When the PSP assignment is viewed as a random 

coefficient, a unique regression formula can be assigned to the ith student’s performance for each 

of the ten assignments: 
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Ln[(Defect density in testing)i,Assignment] = β0 + (Student Intercept)i  

+ [β1 + (Student Slope)i] Assignment 

In Figure 16, the 110 students finishing all ten assignments in (PSPb, C) are grouped into 

quartiles based on their individual intercepts, and the average performance of each quartile is 

plotted – the top quartile (TQ), middle top quartile (T M2), middle bottom quartile (B M2), and 

bottom quartile (BQ) provide a distinctive view on performance across the PSP class for 

programmers of differing abilities.  This graph is similar to Figure 12, however it is based on 

using regression estimates to assign a quartile for each student and averaging estimated 

performance for each assignment within each quartile, rather than empirically assigning a 

programmer quartile based on performance on the first three assignments and averaging actual 

performance for each assignment within each quartile.  This is a more holistic view of 

performance across the PSP course, but it is also estimated rather than empirical performance. 
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Figure 16  Trends in Software Quality from a Student-Specific Mixed Model 
 

The slopes for all of the students are negative, ranging from -0.215 to -0.105 for 

(PSPb,C) and from -0.223 to -0.110 for (PSPb,C++).  Note that these values are for the log 

transforms of defect density in testing.  Defect density in testing decreased for every student 

finishing the course.  The student-specific intercepts and slopes for the data sets (PSPb, C) and 

(PSPb, C++) are contained in Appendix C.   

The average performance of students in the top quartile for assignments 1 and 10 is 

compared to that of students in the bottom quartile in Table 156.    
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Table 156  Comparing Top and Bottom Quartile Average Performance Based on 
Regression Estimates 

 PSPb C 

TQ : BQ 

PSPb C++ 

TQ : BQ 

1A 16.4 : 66.8 14.4 : 39.8 

10A 4.0 : 12.4 3.1 : 11.1 

N 27 27 

Percent Change 76% : 82% 78% : 72% 
 

The top-quartile students improved 76-78%, and the bottom-quartile students improved 

72-82%.  Based on the regressions for the individual students, the top-quartile students improved 

roughly the same as the bottom-quartile students:  about 4.1X to 4.6X for the top quartile and 

3.6X to 5.4X for the bottom quartile.  The distinction in the empirical results in Section 4.9.1 

between the improvement rates for the top and bottom quartiles essentially disappeared when the 

random coefficients mixed model was used to generate the average performance for each 

quartile.  This arguably makes an even stronger case for the importance of disciplined processes 

than the empirical comparison. 

7.4.7 Discussion of the Mixed Models 

The mixed models appear to be conceptually superior to the regression models.  The 

multiplicative models perform better than the additive models, which fits the mental picture of 

how the process factors as described in Figure 10 earlier.  The potentially confounding variables 

were not statistically significant as random effects, which is both desirable and consistent with 

the results in Chapter 4.  The random coefficient model indicates that subject-specific differences 

are significant, which supports the intuitive understanding of “ability” as well as the exploratory 

data analysis and multiple regression results for the programmer ability surrogate. 
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While confirmation of the results from regression and ANOVA analyses from the more 

statistically sophisticated mixed models is useful, the practical value may lie in using the 

programmer as a random effect in building statistical models.  In this context, the important 

result is the consistent improvement of performance across students by employing increasingly 

sophisticated processes.  While the Hawthorne effect, that people change their behavior as a 

result of being observed [Parsons 1974], cannot be ruled out as a factor, systematic and sustained 

improvement is the management objective.  Explicitly factoring in the human element into our 

statistical models is a possibility to be actively considered, if sufficient data can be collected, and 

if the potential for driving dysfunctional behavior as a result of the motivational use of 

measurement can be avoided. 

 

7.5 CONCLUSIONS FOR DEFECT PREDICTION MODELS 

My research demonstrates that sophisticated process-based models for defect prediction 

are feasible, even when using data from individual professionals where order-of-magnitude 

differences are to be expected.  Mixed models demonstrate that individual differences are both 

practically and statistically significant and that factors frequently used as surrogates for ability 

and technology are not useful, at least for individual data.  Although the amount of variation 

explained by the PSP models is less than might be preferred, it is still sufficient to be useful.  

Models using detailed process data from teams and individuals over a period of time should not 

suffer from the same degree of variability, although high amounts of variation are intrinsic to 

human-centric, design-intensive processes such as software engineering. 

The unique contribution of the mixed models, in comparison to the repeated measures 

ANOVA performed by earlier researchers, is the ability to probe into both random effects and 
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the individual performance of each student.  These results for the impact of PSP on software 

quality are consistent with those of repeated measures ANOVA in the Hayes and Over study 

[Hayes and Over 1997], but Hayes and Over focused on the trends at the level of the PSP major 

process, where my analyses investigated programmer ability and the underlying process factors 

that affected software quality. 

Multiple regression models using detailed process data have the potential for being 

generalized, at least conceptually, for use in industry.  The flexibility and power of the mixed 

models in dealing with random effects make them a tool worth exploring further in a team or 

project context.   

Some researchers prefer Bayesian models that integrate expert judgment, arguing that 

curve fitting models are inappropriate for software because current curve fitting models are too 

simplistic, not addressing process-based issues.  My research indicates that sophisticated 

process-based regression models are feasible, although they do require significant amounts of 

data, and there is a non-trivial cost in both money and effort in collecting the data.   

A related challenge is instantiating disciplined and measured processes without driving 

dysfunctional behavior in those performing the work [Austin 1996].  Even in the PSP context, 

relatively few students arrive at a disciplined process that follows recommended practice in the 

class, although the measurement-based learning process continues afterwards.  A motivational 

use of the PSP (or TSP) data, e.g. for promotions or raises, could adversely affect the validity of 

the data reported or the behavior of the programmers with respect to important project or 

organizational concerns that are not addressed by the measurement program. 
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My contribution in this analysis therefore consists of the following results: 

• Programmer ability, when empirically measured, is an important factor affecting 

software quality that interacts with program size and the process variables in multiple 

interaction effects with two or more factors. 

• Process variables, such as effort and review rate, affect software quality both as main 

effects and as interaction effects, allowing the development of sophisticated models 

when sufficient data is available, as was the case with the PSP data. 

• More complete statistical models, as Fenton and Neil desired [Fenton and Neil 1999, 

153], need large amounts of data and sophisticated techniques, e.g., mixed models to 

address random effects and individual differences effectively, as intuitively 

demonstrated by the contrasting results for multiplicative and additive models when 

building mixed models versus multiple regression models. 

• When increasing process discipline is applied across the PSP assignments, individual 

performance with respect to software quality is consistently improved for all students 

as shown by the mixed models. 

For managers, these results may be intuitively obvious, but my research quantifies these 

conclusions, at least within the context of PSP.  Some programmers performed consistently 

better than others.  Top-quartile programmers performed better than bottom-quartile 

programmers by a factor ranging from 2.8X to 4.1X.  In all cases, disciplined processes 

significantly improved the quality of the work – by a conservative factor of 2X or better for top-

quartile professionals; by a factor of 4X or better for bottom-quartile professionals.  For 

individual professionals, the message is also clear:  disciplined processes can improve 

performance. 
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8.0 DEFECT REMOVAL EFFECTIVENESS OF REVIEWS AND INSPECTIONS 

 

8.1 THE RESEARCH QUESTION: DEFECT REMOVAL EFFECTIVENESS 

The research in this chapter focuses on identifying factors that significantly affect the 

defect removal effectiveness of the peer review (or inspection) process.  Defect removal 

effectiveness is defined as the percentage of defects eventually known to be present in a work 

product that are identified by a specific verification step, such as an inspection.  It therefore 

ranges from 0% to 100%.  When there are no defects in a work product at the time of the 

verification step, defect removal effectiveness is not well defined.  

A number of peer review methods have been defined, from informal walkthroughs to 

formal inspections.  Rules for effective inspections [Fagan 1976; Fagan 1986] include: 

• The optimum number of inspectors is four. 

• The preparation rate for inspecting code should be about 100 LOC/hour (no more 

than 200 LOC/hour). 

• The meeting review rate for code inspections should be about 125 LOC/hour (no 

more than 250 LOC/hour) for code. 

• Inspection meetings should not last more than two hours. 

The crucial point in understanding the power of peer reviews is that defects escaping 

from one phase of the life cycle to another can cost an order of magnitude more to repair in the 

next phase.  Peer reviews can have a significant impact on the cost, quality, and development 

time of the software since they can be applied early in the development cycle. 
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In addition to the PSP data already analyzed, data from one TSP project and one high 

maturity project were available for this analysis, although not all of the data that might be desired 

was available.  One of the challenges for empirical research in software engineering is obtaining 

valid data, and the data available for this research is limited.  It is, however, sufficient for an 

initial analysis. 

Since the focus of this analysis is on the effectiveness of the inspection process, the 

surrogate for software (process) quality is defect removal effectiveness.  Analysis of defect 

removal effectiveness implies that reviews or inspections where no defects were initially present 

should be excluded since the effectiveness of the inspection process is a moot point in such a 

case.   

 

8.2 EFFECTIVENESS OF PSP REVIEWS 

The Personal Software Process (PSP) applies the concepts of process discipline and 

quantitative management to the work of the individual software professional in a classroom 

setting.  PSP typically involves the development of ten programs, using increasingly 

sophisticated processes [Humphrey 1995].  Design and code reviews, which are personal reviews 

conducted by an engineer on his or her own design or code, are introduced in the 7th of the ten 

PSP assignments.  They are designed to help engineers achieve 100% yield:  all defects removed 

before compiling the program.  

PSP reviews are a variant of inspections.  Although inspections are a form of peer review, 

and the PSP reviews are performed by the student on his or her own code, some of the rules for 

effectively doing the review are likely to be applicable.  The premier example is that the review 
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rate should be about 100 LOC/hour and no more than 200 LOC/hour.  As already shown, most 

PSP students do not perform the reviews at this recommended rate. 

This is a consequence of the PSP being a learning environment.  Although students are 

aware of the rules for inspections, the purpose of the personal software process is to identify the 

most effective review process for the individual programmer.  While it is likely that most 

students should conform to recommended practice, part of the learning experience is to 

experientially and quantitatively go through that learning process, therefore most students do not 

meet the review rate initially (and many may continue to converge to “their best personal review 

rate” after the PSP class is over if they continue to use the PSP’s measurement-driven 

improvement approach for personal learning). 

Both design and code reviews were analyzed.  The variables of interest are programmer 

ability, as measured by average software quality on the first three PSP assignments, program size 

(in KLOC), design time and coding time (in hours/KLOC), and review rate (in hours/KLOC, 

which is the inverse of the more frequently used LOC/hour). 

8.2.1 Considering Transformations for Defect Removal Effectiveness 

Transformations of the defect removal effectiveness variable were considered, including 

the arcsine root and logit transformations.  The arcsine root transformation is commonly used for 

proportions, i.e., arcsin( )i iT X=  [Osborne 2002].  A logit transformation of percentage 

variables may also be used to approximate a normal distribution., i.e., log( )i
i

i

X LowerLimitT
UpperLimit X

−
=

−
 

[Breyfogle 1999, 380].   

Figure 17 illustrates the frequency distribution for defect removal effectiveness of PSP 

code reviews for (PSPb, C, NoOutliers).  Data transformations can be useful in approximating a 



 

297 

normal distribution, which is assumed by many statistical analyses, but they work best on data 

skewed on one side.  Data transformations alter the distance between observations in the data set, 

but order is maintained [Osborne 2002].  As can be observed in the figure, the histogram has 

peaks at 0% and 100% defect removal effectiveness. 
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Figure 17  Distribution of Defect Removal Effectiveness  
 

Figure 18 illustrates the frequency distribution for the logit transformation of defect 

removal effectiveness of PSP code reviews for (PSPb, C). 
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Figure 18  Distribution of Logit Transformation of Defect Removal Effectiveness 
 

As can be observed for the logit transformation, the central portion of the data 

approximates a normal distribution more closely, but the tails at 0% and 100% prevent the 

transformed variable from being a good approximation of the normal distribution.  The 

transformations did not materially improve the multiple regression models.  This pattern was 

consistently observed for the defect removal effectiveness of the reviews.   

The defect removal effectiveness variable is therefore used as the dependent variable 

without any transformation in the multiple regression models used to initially explore the factors 

affecting the reviews.  Scatter diagrams and ANOVA are used to focus on specific factors. 

8.2.2 Design Reviews in PSP 

The multiple regression model used in the initial analysis of defect removal effectiveness 

for PSP design reviews was:   
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(Defect removal effectiveness) = β0 + βPgmrAb (Programmer ability)  

+ βKLOC (Program size) + βDsTim (Design time) + βDRR (Design review rate)  

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0.  The 

regression results for this model are contained in Table 157.  The data sets analyzed include 

those with and without influential outliers, as identified using leverage, studentized deleted 

residuals, Cook’s distance, and DFFITS (see Section 7.3.7).  Note that the outliers excluded in 

this analysis are different from those excluded in Section 4.8.2; in that section, the outliers were 

identified relative to design review rate using the interquartile limits technique. 

Table 157  Multiple Regression Models for PSP Design Reviews 

Source PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

DF 4 4 4 4 

SS 1.8 2.1 1.8 2.0 

Model 

MS 0.4 0.5 0.5 0.5 

DF 371 356 242 233 

SS 52.7 50.8 33.0 31.2 

Error 

MS 0.1 0.1 0.1 0.1 

DF 375 360 246 237 Total 

SS 54.4 52.9 34.8 33.2 

F Ratio 3.1 3.6 3.3 3.8 

Prob > F 0.0154 0.0065 0.0115 0.0050 

R2
a 0.0220 0.0283 0.0363 0.0454 
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The small values for R2
a in these models reinforce the impact of individual differences in 

PSP.  Larger values of R2
a would be expected for projects if team effects decrease variability and 

increase predictability.  This will be considered in the analysis of the TSP and high maturity 

projects. 

The parameter estimates of the regression model for defect removal effectiveness, and the 

associated standard errors, are listed in Table 158.  In the following tables, for the null 

hypothesis H0: βi=0, a p-value<0.05 is indicated with *, a p-value<0.01 is indicated with **, a p-

value<0.001 is indicated with ***, and a p-value<0.0001 is indicated with ****. 

Table 158  Estimates for PSP Design Review Models 

Parameter  PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

β0 (Intercept) 0.51**** 

(0.05) 

0.48**** 

(0.06) 

0.59**** 

(0.06) 

0.58**** 

(0.07) 

Programmer Ability -0.001* 

(0.0005) 

-0.001* 

(0.0005) 

-0.0005 

(0.0007) 

-0.0005 

(0.0008) 

Program Size 0.23 

(0.19) 

0.44 

(0.25) 

-0.31 

(0.21) 

-0.37 

(0.21) 

Design Time -0.001 

(0.003) 

-0.001 

(0.003) 

-0.008* 

(0.003) 

-0.008* 

(0.004) 

Design Review Rate 0.02** 

(0.006) 

0.02** 

(0.006) 

0.02** 

(0.007) 

0.03** 

(0.009) 
 

Defect removal effectiveness consistently increases as design review rate increases, which 

is as expected since the review rate is measured in hours/KLOC.  There is some evidence that 

programmer ability and design time also affect defect removal effectiveness.  As programmer 

ability increases (or more accurately, as the ability of the programmer lessens), defect removal 
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effectiveness decreases, which is as expected.  As design time increases, defect removal 

effectiveness decreases, which may indicate that difficulties in developing the design correspond 

to more defects in the design or a less capable programmer, as was discussed in Section 4.8.1. 

It is clear from this model that design review rate is related to effective design reviews.  

This suggests that, from a statistical process control perspective, design review rate is a useful 

variable to control.  This is consistent with the practices of many high maturity organizations 

[Florac 2000; Weller 2000]. 

The scatter diagram in Figure 19 illustrates the relationship between design review rate 

and defect removal effectiveness for (PSPb, C, NoOutliers).  It is unclear from this diagram what 

the best rate is; the recommended design review rate is less than 200 LOC/hour, which is more 

than 5 hours/KLOC in the units used for design review rate in this analysis. 
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Figure 19  Scatter Diagram for Design Review Rate vs Defect Removal Effectiveness 
 

The analysis in Section 4.8.2 is repeated with the new definition of outliers to confirm 

whether following recommended practice for the design review rate is effective.  The 
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recommended design review rate is less than 200 LOC/hour.  A faster rate is considered 

ineffective, and re-inspection should be scheduled.  This provides two classes of design review 

based on review rate:  those where the design review rate is faster than the recommended 

(specification) limit of 200 LOC/hour; and design reviews according to recommended practice.  

As illustrated in Figure 20 for (PSPb, C, NoOutliers), the classes of design review rate appear 

significantly different.   
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Figure 20  Differences in Design Review Classes Reprised 
 

The ANOVA results for the effect of design review class on defect removal effectiveness 

are shown in Table 159.  The null hypothesis is 0 Re: FastDRRate cDRRateH µ µ=  with alternative 

hypothesis Re:a FastDRRate cDRRateH µ µ≠ .   
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Table 159  ANOVA for Regressing Defect Removal Effectiveness on Design Review Class 

Source PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

DF 1 1 1 1 

SS 23420.8 26005.4 2430.1 3722.0 

Model  

MS 23420.8 26005.4 2430.1 3722.0 

DF 372 357 247 238 

SS 515149.4 497166.3 350419.1 333258.3 

Error 

MS 1384.8 1392.6 1418.7 1400.2 

DF 373 358 248 239 Total 

SS 538570.2 523171.7 352849.2 336980.3 

F Ratio 19.2W 21.8W 2.2W 3.6W 

Prob > F <0.0001W <0.0001W 0.1442W 0.0609W 

R2
a 0.0409 0.0470 0.0029 0.0069 

 
The effect of design review class on defect removal effectiveness was shown to be 

statistically significant for two of the four data sets, although it is also close to being significant 

for (PSPb, C++, NoOutliers).  This indicates that design review class may be a useful predictor 

variable for defect removal effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels of 

design review class, and the associated standard errors for the means, are listed in Table 160.  

The model can be expressed as: 

(Defect removal effectiveness) = β DR Class X DR Class 

where β DR Class is the level for the design review class and X DR Class is an indicator variable for 

whether that design review class is the correct one for the observation. 



 

304 

Table 160  Estimates for Regressing Defect Removal Effectiveness on Design Review Class 

Levels 

 

PSPb C 
including 

outliers**** 

(std err) 

PSPb C 
excluding 
outliers**** 

(std err) 

PSPb C++ 
including 
outliers 

(std err) 

PSPb C++ 
excluding 
outliers 

(std err) 

Fast DR Rate 48.15 

(2.38) 

48.15 

(2.44) 

49.77 

(2.91) 

50.46 

(2.93) 

Recommended  

DR Rate 

66.57 

(3.18) 

67.02 

(3.22) 

56.92 

(3.90) 

59.66 

(3.88) 
 

All of the analyses, in Section 4.8.2 and here, of the effect of design review class on 

defect removal effectiveness provided mixed results.  In the PSP context for individual 

programmers, it is unclear whether “following recommended practice” is “best practice.”  The 

evidence does indicate that a slower review rate leads to a more effective design review, but 

there is no clear-cut point for individual professionals where performance is significantly 

improved.  This reinforces, to some degree, the PSP strategy that suggests that each student find 

his or her best process based on measurement and systematic improvement. 

8.2.3 Code Reviews in PSP 

The multiple regression model used in the initial analysis of defect removal effectiveness 

for PSP code reviews is:   

(Defect removal effectiveness) = β0 + βPgmrAb (Programmer ability)  

+ βKLOC (Program size) + βCoTim (Code time) + βCRR (Code review rate)  

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0.  The 

regression results for this model are contained in Table 161.  The data sets analyzed include 

those with and without influential outliers.  Note that the outliers excluded in this analysis are 
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different from those excluded in Section 4.8.5; in that section, the outliers were identified 

relative to code review rate using the interquartile limits technique. 

Table 161  Multiple Regression Models for PSP Code Reviews 

Source PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

DF 4 4 4 4 

SS 5.5 5.3 2.4 3.0 

Model 

MS 1.4 1.3 0.6 0.7 

DF 611 593 325 315 

SS 50.4 49.8 24.0 23.0 

Error 

MS 0.08 0.08 0.07 0.07 

DF 615 597 329 319 Total 

SS 55.9 55.1 26.4 26.0 

F Ratio 16.8 15.7 8.1 10.2 

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 

R2
a 0.0929 0.0897 0.0790 0.1033 

 
The parameter estimates of the regression model for defect removal effectiveness, and the 

associated standard errors, are listed in Table 162.   
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Table 162  Estimates for PSP Code Review Models 

Parameter  PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

β0 (Intercept) 0.42**** 

(0.03) 

0.40**** 

(0.04) 

0.49**** 

(0.04) 

0.45**** 

(0.04) 

Programmer Ability -0.000002 

(0.0003) 

-0.00002 

(0.0003) 

-0.0007 

(0.0005) 

-0.0008 

(0.0004) 

Program Size -0.07 

(0.13) 

0.03 

(0.16) 

-0.06 

(0.14) 

-0.02 

(0.14) 

Code Time -0.01**** 

(0.002) 

-0.01**** 

(0.002) 

-0.01**** 

(0.003) 

-0.01*** 

(0.003) 

Code Review Rate 0.03**** 

(0.004) 

0.04**** 

(0.005) 

0.02**** 

(0.005) 

0.04**** 

(0.006) 
 

Defect removal effectiveness consistently increases as code review rate increases, which 

is as expected since the review rate is measured in hours/KLOC.  Defect removal effectiveness 

consistently decreases as code time increases. 

It is clear from this model that code review rate is related to effective code reviews.  This 

suggests that, from a statistical process control perspective, code review rate is a useful variable 

to control.  Code time is also a significant factor, but it is unclear what actions should be taken to 

control the process, since there may be design activities occurring in coding, as discussed in 

Sections 4.8.4 and 7.3.4. 

The scatter diagram in Figure 21 illustrates the relationship between code review rate and 

defect removal effectiveness for (PSPb, C, NoOutliers).  It is unclear from this diagram what the 

best rate is; the recommended code review rate is less than 200 LOC/hour, which is more than 5 

hours/KLOC in the units used for code review rate in this analysis. 
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Figure 21  Scatter Diagram for Code Review Class vs Defect Removal Effectiveness 
 

The analysis in Section 4.8.5 is repeated with the new definition of outliers to confirm 

whether following recommended practice for the code review rate is effective.  The 

recommended code review rate is less than 200 LOC/hour.  As illustrated in Figure 22 for (PSPb, 

C, NoOutliers), the classes of code review rate appear significantly different.   
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Figure 22  Differences in Code Review Class Reprised 
 

The ANOVA results for the effect of code review class on defect removal effectiveness 

are shown in Table 163.  The null hypothesis is 0 Re: FastCRRate cCRRateH µ µ=  with alternative 

hypothesis Re:a FastCRRate cCRRateH µ µ≠ .   
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Table 163  ANOVA for Regressing Defect Removal Effectiveness on Code Review Class  

Source PSPb C 
including 
outliers 

PSPb C 
excluding 
outliers 

PSPb C++ 
including 
outliers 

PSPb C++ 
excluding 
outliers 

DF 1 1 1 1 

SS 14509.4 13981.6 5949.0 7505.0 

Model  

MS 14509.4 13981.6 5949.0 7505.0 

DF 611 593 328 318 

SS 536949.6 529115.4 258606.0 252385.0 

Error 

MS 878.8 892.3 788.4 793.7 

DF 612 594 329 319 Total 

SS 551459.0 543096.9 264554.9 259890.0 

F Ratio 16.5 15.7 7.5 9.5 

Prob > F <0.0001 <0.0001 0.0063 0.0023 

R2
a 0.0247 0.0241 0.0195 0.0258 

 
The effect of code review class on defect removal effectiveness was shown to be 

statistically significant for all of the data sets.  This indicates that code review class is a useful 

predictor variable for defect removal effectiveness. 

The estimates of the means for defect removal effectiveness at the different levels of code 

review class, and the associated standard errors for the means, are listed in Table 164.  The 

model can be expressed as: 

(Defect removal effectiveness) = β CR Class X CR Class 
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where β CR Class is the level for the code review class and X CR Class is an indicator variable for 

whether that code review class is the correct one for the observation. 

Table 164  Estimates for Regressing Defect Removal Effectiveness on Code Review Class  

Levels 

 

PSPb C 
including 

outliers**** 

(std err) 

PSPb C 
excluding 
outliers**** 

(std err) 

PSPb C++ 
including 
outliers** 

(std err) 

PSPb C++ 
excluding 
outliers** 

(std err) 

Fast CR Rate 41.90 

(1.44) 

42.07 

(1.46) 

43.51 

(1.84) 

43.51 

(1.84) 

Recommended 

CR Rate 

52.42 

(2.14) 

52.68 

(2.25) 

53.22 

(2.82) 

54.95 

(3.02) 

 
For code reviews, it is clearer that “following recommended practice” is desirable than it 

was for design reviews, even if it is unclear what the best rate is.  The evidence indicates that a 

slower review rate leads to a more effective code review, but there is no clear-cut point for 

individual professionals where performance is significantly improved.   

 

8.3 EFFECTIVENESS OF TSPS REVIEWS AND INSPECTIONS 

Data from a project using the Team Software Process (TSP) was obtained.  TSP is a 

follow-on to the PSP that incorporates the PSP concepts of measured process control and 

improvement and adds team-building and coordination in an industry context.  TSP includes both 

individual reviews and inspections by the team. 

The TSP project was a pilot project.  The project was staffed by five programmers 

building 15 modules.  There was a significant amount of requirements volatility (requirements 
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were added and deleted throughout the project) and some resource issues during the course of the 

pilot.  As a result of the volatility in the project, there were some instances where the process was 

not followed, e.g., design inspections were not held on four of the 15 modules.  Because there are 

only 15 observations for this project, only simple regression models for defect removal 

effectiveness are reported.   

The variables of interest are programmer, encoded as A, B, C, D, and E; program size (in 

KLOC), review rate (in hours/KLOC for the individual), and inspection rate (in hours/KLOC for 

the team).  The inspection rates are for meetings; the number of inspectors participating in the 

meeting was not reported, although it seems likely that all project members participated when 

available.  Preparation time was not reported.  Observations were excluded for modules where 

there were no defects present at the time of the review or inspection. 

8.3.1 Impact of Program Size 

The regression results for the effect of program size on defect removal effectiveness for 

design reviews, design inspection, code reviews, and code inspections are shown in Table 165.  

For the regression model: 

(Defect removal effectiveness) = β0 + β1 (Program size) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   
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Table 165  Regressing Defect Removal Effectiveness on Program Size in TSP 

Source TSP Design 
Reviews 

TSP Design 
Inspections 

TSP Code 
Reviews 

TSP Code 
Inspections 

DF 1 1 1 1 

SS 0.04 0.008 0.0004 0.13 

Model 

MS 0.04 0.008 0.0004 0.13 

DF 9 9 12 11 

SS 0.19 0.80 1.25 2.11 

Error 

MS 0.02 0.09 0.10 0.19 

DF 10 10 13 12 Total 

SS 0.23 0.80 1.25 2.24 

F Ratio 1.7 0.09 0.0 0.7 

Prob > F 0.2314 0.7717 0.9501 0.4366 

R2
a 0.1547 0.0098 0.0003 0.0559 

 
The effect of program size on defect removal effectiveness was consistently shown not to 

be statistically significant for TSP. This indicates that program size is not a useful predictor 

variable for defect removal effectiveness. 

The parameter estimates of the regression model for program size, and the associated 

standard errors, are listed in Table 166.   
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Table 166  Estimates for Regressing Defect Removal Effectiveness on Program Size in TSP 

Parameter  

 

TSP Design 
Reviews 

(std err) 

TSP Design 
Inspections 

(std err) 

TSP Code 
Reviews 

(std err) 

TSP Code 
Inspections 

(std err) 

β0 (Intercept) 0.16* 

(0.06) 

0.77**** 

(0.12) 

0.29* 

(0.11) 

0.65** 

(0.16) 

β1 -0.17 

(0.13) 

-0.08 

(0.27) 

-0.02 

(0.27) 

-0.30 

(0.38) 
 

It is not surprising that program size is not a significant factor for defect removal 

effectiveness.  One of the inspection rules for effective inspections is to limit the size of the work 

product being inspected so that fatigue will not affect the effectiveness of the review.  Only two 

of the modules were large enough for this to be a concern (817 and 1154 LOC), and the related 

meetings did not exceed the two-hour limit. 

8.3.2 Impact of the Programmer 

The regression results for the effect of programmer on defect removal effectiveness for 

design reviews, design inspections, code reviews, and code inspections are shown in Table 167.  

For the programmer, the regression model is: 

(Defect removal effectiveness) = β Programmer X Programmer  

where β Programmer is the level for a specific programmer and X Programmer is an indicator variable 

for whether that programmer is the correct one for the observation.  The null hypothesis against 

defect removal effectiveness is 0 : A B C D EH µ µ µ µ µ= = = = with alternative hypothesis Ha: not 

all of the means are equal.   
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Table 167  Regressing Defect Removal Effectiveness on Programmer in TSP 

Source TSP Design 
Reviews 

TSP Design 
Inspections 

TSP Code 
Reviews 

TSP Code 
Inspections 

DF 4 4 4 4 

SS 0.05 0.09 0.77 2.13 

Model 

MS 0.01 0.02 0.19 0.53 

DF 6 6 9 8 

SS 0.18 0.72 0.47 0.11 

Error 

MS 0.03 0.12 0.05 0.01 

DF 10 10 13 12 Total 

SS 0.23 0.81 1.25 2.24 

F Ratio 0.4 0.2 3.7 37.5 

Prob > F 0.7738 0.9424 0.0486 <0.0001 

R2
a -0.2856 -0.4911 0.4513 0.9420 

 
The effect of programmer on defect removal effectiveness was shown to be statistically 

significant for code but not for design. This may indicate a systemic problem with the design 

process, which is perhaps also indicated by the lack of design reviews and inspections for four 

modules.  The effect of programmer on defect removal effectiveness for code indicates that 

programmer is a useful predictor variable, but it is difficult to draw any firm conclusions given 

the small number of observations. 

The parameter estimates of the regression model for programmer, and the associated 

standard errors, are listed in Table 168.   
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Table 168  Estimates for Regressing Defect Removal Effectiveness on Programmer in TSP 

Parameter  

 

TSP Design 
Reviews 

(std err) 

TSP Design 
Inspections 

(std err) 

TSP Code 
Reviews* 

(std err) 

TSP Code 
Inspections**** 

(std err) 

A 0.0 

(.) 

0.60 

(.) 

0.35 

(.) 

0.0 

(.) 

B 0.21 

(0.15) 

0.67 

(0.33) 

0.22 

(0.09) 

0.74 

(0.12) 

C 0.08 

(0.06) 

0.76 

(0.08) 

0.61 

(0.19) 

0.0 

(0.0) 

D 0.06 

(0.06) 

0.86 

(0.05) 

0.28 

(0.03) 

0.61 

(0.11) 

E 0.08 

(0.08) 

0.84 

(0.06) 

0.0 

(0.0) 

1.00 

(0.0) 
 

It is not surprising that programmer is a significant factor for defect removal 

effectiveness, but it seems more likely that there would be an observable effect for reviews than 

inspections since inspections are team processes and reviews are individual processes.  The 

underlying drivers for the code review and inspection results may be not be visible in the data 

available, e.g., if one of the team was a superior inspector but did not participate in all 

inspections. 
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8.3.3 Impact of Review and Inspection Rates 

The regression results for the effect of review / inspection rate on defect removal 

effectiveness for design reviews, design inspections, code reviews, and code inspections are 

shown in Table 169.  For the regression model: 

(Defect removal effectiveness) = β0 + β1 (Design|code review|inspection rate) 

the null hypothesis tested is H0: β1=0 with alternative hypothesis Ha: β1≠0.   

Table 169  Regressing Defect Removal Effectiveness on Review / Inspection Rate in TSP  

Source TSP Design 
Reviews 

TSP Design 
Inspections 

TSP Code 
Reviews 

TSP Code 
Inspections 

DF 1 1 1 1 

SS 0.39 0.14 0.37 0.22 

Model 

MS 0.39 0.14 0.37 0.22 

DF 9 9 12 11 

SS 0.41 0.09 0.88 2.02 

Error 

MS 0.05 0.01 0.07 0.18 

DF 10 10 13 12 Total 

SS 0.81 0.23 1.25 2.24 

F Ratio 8.6 14.4 5.0 1.2 

Prob > F 0.0169 0.0042 0.0453 0.2971 

R2
a 0.4872 0.6161 0.2937 0.0982 

 
The effect of review / inspection rate on defect removal effectiveness was shown to be 

statistically significant in three of the four cases. This indicates that review / inspection rate is a 

useful predictor variable for defect removal effectiveness.  It is also interesting to note that the 

R2
a values for the statistically significant TSP models are noticeably larger than those for the PSP 
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models, suggesting that there is a substantive difference between the PSP and TSP processes.  In 

part this difference may be due to the small size of the TSP data set, but the TSP models are 

simple regression models with only one predictor variable. 

The parameter estimates of the regression model for review / inspection rate, and the 

associated standard errors, are listed in Table 170.   

Table 170  Estimates for Regressing Defect Removal Effectiveness on Review / Inspection 
Rate in TSP 

Parameter  

 

TSP Design 
Reviews 

(std err) 

TSP Design 
Inspections 

(std err) 

TSP Code 
Reviews 

(std err) 

TSP Code 
Inspections 

(std err) 

β0 (Intercept) 0.45** 

(0.12) 

0.02 

(0.04) 

0.09 

(0.11) 

0.34 

(0.24) 

β1 0.003* 

(0.001) 

0.005** 

(0.001) 

0.009* 

(0.004) 

0.02 

(0.02) 
 

No design or code inspection performed by the team met the recommended rate of 200 

LOC/hour or less, but almost all of the design and code reviews performed by individuals did.  

Comparison of conformant to nonconformant reviews or inspections is therefore not feasible.  

Since this was a pilot project, it seems likely that the team has the potential for continuing to 

learn from its data and improving performance in its inspections. 

 

8.4 EFFECTIVENESS OF HIGH-MATURITY CODE INSPECTIONS 

Data was obtained from a high maturity project that has been engaged in maintaining a 

high-reliability system for a number of years.  The organization has been assessed at maturity 
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level 5 against the Software CMM.  The process has changed over time, but the focus of these 

analyses is on code inspection data, which should be a relatively stable process.   

The code inspections followed by this project are expected to follow a rigorous Fagan-

style inspection [Fagan 1976; Fagan 1986].  The data reported is for modules written in a 

domain-specific high-order language.  After removing observations with no defects present at the 

time of the inspection, there were 162 observations. 

The variables of interest are program size (in KLOC), preparation rate (in hours/KLOC 

for the inspection team as a whole), inspection rate (in hours/KLOC), and the number of 

inspectors.   

The multiple regression model used in the initial analysis of defect removal effectiveness 

for the high-maturity code reviews is:   

(Defect removal effectiveness) = β0 + βKLOC (Program size)  

+ βPrepRate (Preparation rate) + βCIR (Code inspection rate)  

+ βNInsp (Number of inspectors)  

with the null hypotheses tested being H0: βi=0 with alternative hypothesis Ha: βi≠0.  The 

regression results for this model are contained in Table 171.  Influential outliers, as identified 

using leverage, studentized deleted residuals, Cook’s distance, and DFFITS (see Section 7.3.7) 

were identified, and models were built including and excluding outliers.   
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Table 171  Multiple Regression Models for a High-Maturity Project 

Source High-Maturity Project 
including outliers 

High-Maturity Project 
excluding outliers 

DF 4 4 

SS 0.42 0.93 

Model 

MS 0.10 0.23 

DF 157 152 

SS 27.16 25.78 

Error 

MS 0.17 0.17 

DF 161 156 Total 

SS 27.58 26.71 

F Ratio 0.6 1.4 

Prob > F 0.6591 0.2461 

R2
a -0.0099 0.0095 

 
Somewhat surprisingly, neither of the models was shown to be statistically significant.  

This is not an expected result, especially since 31 of the 162 code inspections did not conform to 

the recommended code inspection rate. 

This high maturity project is a maintenance project that has been involved in process 

improvement for a number of years in a domain where high reliability is crucial.  Its quality 

control mechanisms are rich and diverse – problems reported after release are essentially 

unknown.  One plausible explanation for these results is that there are so many process and 

quality control mechanisms in place that a minor deficiency in any one mechanism is addressed 

by other mechanisms, such as statistical process control.  Further investigation of the code 
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inspection rate and the number of inspectors comprising an inspection team is appropriate, 

however. 

The parameter estimates of the regression model for defect removal effectiveness, and the 

associated standard errors, are listed in Table 172.   

Table 172  Estimates for High-Maturity Project Models 

Parameter  High Maturity Project 
including outliers 

High Maturity Project 
excluding outliers 

β0 (Intercept) 0.65**** 

(0.11) 

0.67**** 

(0.12) 

Program Size 0.03 

(0.07) 

-0.04 

(0.14) 

Preparation Rate -0.0002 

(0.0002) 

0.0009 

(0.0008) 

Code Inspection Rate 0.0003 

(0.0008) 

-0.004 

(0.002) 

Number of Inspectors -0.002 

(0.02) 

-0.001 

(0.02) 
 

None of the effects investigated were shown to be statistically significant.  Code 

inspection rate and the size of the inspection team, i.e., the number of inspectors, are usually 

considered important variables, so these two factors are explored further. 

8.4.1 Investigating Code Inspection Rate Further 

The recommended code inspection rate is less than 250 LOC/hour.  As illustrated in 

Figure 23 for the data set including influential outliers, the classes of code inspection rate were 

not shown to be statistically significant.   
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Figure 23  Differences Between Code Inspection Classes for a High Maturity Project 
 

Perhaps the most interesting point about this figure is that the fast code inspections 

appear more effective than those following the recommended rate.  The difference was not 

shown to be statistically significant, however.  The ANOVA results for the effect of code 

inspection class on defect removal effectiveness are shown in Table 173.  The null hypothesis is 

0 Re: FastCIR cCIRH µ µ=  with alternative hypothesis Re:a FastCIR cCIRH µ µ≠ .   
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Table 173  ANOVA for Regressing Defect Removal Effectiveness on Code Inspection Class  

Source High Maturity Project 
including outliers 

High Maturity Project 
excluding outliers 

DF 1 1 

SS 2953.5 2817.2 

Model  

MS 2953.5 2817.2 

DF 160 155 

SS 272812.1 264283.7 

Error 

MS 1705.1 1705.1 

DF 161 156 Total 

SS 275765.6 267100.9 

F Ratio 2.8W 2.6W 

Prob > F 0.0979W 0.1086W 

R2
a 0.0045 0.0042 

 
The estimates of the means for defect removal effectiveness at the different levels of code 

inspection class, and the associated standard errors for the means, are listed in Table 174.  The 

model can be expressed as: 

(Defect removal effectiveness) = β CI Class X CI Class 

where β CI Class is the level for the code inspection class and X CI Class is an indicator variable for 

whether that code inspection class is the correct one for the observation. 
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Table 174  Estimates for Regressing Defect Removal Effectiveness on Code Inspection Class  

Levels 

 

High Maturity Project 
including outliers 

(std err) 

High Maturity Project 
excluding outliers 

(std err) 

Fast CI Rate 72.08 

(5.22) 

71.57 

(5.37) 

Recommended 

CI Rate 

61.23 

(3.81) 

60.79 

(3.87) 

 

8.4.2 Investigating Team Size Further 

One of the topics of particular interest is the effect of the number of inspectors on defect 

removal effectiveness, but the number of inspectors was not shown to be statistically significant.  

Further exploration of this point shows that most inspection teams have between four and eight 

inspectors; higher values have only single data points.  Only the inspections with 4-8 inspectors 

are considered.  As illustrated in Figure 24 for the data set including influential outliers, the 

classes of number of inspectors were not shown to be statistically significant.   
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Figure 24  Differences Between Number of Inspectors for a High Maturity Project 
 

Perhaps the most interesting point about this figure is that the larger teams appear to be 

more effective up until a size of about seven or eight team members.  The difference was not 

shown to be statistically significant, however.  The ANOVA results for the effect of number of 

inspectors on defect removal effectiveness are shown in Table 175.  The null hypothesis is 

0 4 5 6 7 8: TeamSize TeamSize TeamSize TeamSize TeamSizeH µ µ µ µ µ= = = =  with alternative hypothesis Ha: not all of 

the means are equal.   
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Table 175  ANOVA for Regressing Defect Removal Effectiveness on Number of Inspectors  

Source High Maturity Project 
including outliers 

High Maturity Project 
excluding outliers 

DF 4 4 

SS 9287.7 7785.2 

Model  

MS 2321.9 1946.3 

DF 153 148 

SS 256872.1 249802.6 

Error 

MS 1678.9 1687.9 

DF 157 152 Total 

SS 266159.8 257587.8 

F Ratio 1.5W 1.2 

Prob > F 0.2307W 0.3340 

R2
a 0.0097 0.0040 

 
The estimates of the means for defect removal effectiveness at the different numbers of 

inspectors, and the associated standard errors for the means, are listed in Table 176.  The model 

can be expressed as: 

(Defect removal effectiveness) = β Team Size X Team Size 

where β Team Size is the level for the number of inspectors and X Team Size is an indicator variable for 

whether that number of inspectors is the correct one for the observation. 
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Table 176  Estimates for Regressing Defect Removal Effectiveness on Number of Inspectors  

Levels 

 

High Maturity Project 
including outliers 

(std err) 

High Maturity Project 
excluding outliers 

(std err) 

Number of Inspectors 
= 4 

57.38 

(5.30) 

57.60 

(6.36) 

Number of Inspectors 
= 5 

63.53 

(5.83) 

62.71 

(5.90) 

Number of Inspectors 
= 6 

78.33 

(7.18) 

76.92 

(7.77) 

Number of Inspectors 
= 7 

74.54 

(11.12) 

74.54 

(11.12) 

Number of Inspectors 
= 8 

64.06 

(15.17) 

64.06 

(15.17) 

 
 

8.5 CONCLUSIONS FOR FACTORS AFFECTING REVIEW EFFECTIVENESS 

The contribution of this analysis is to reinforce the message, which is consistent across 

the PSP, TSP and high maturity data, that process discipline is a major driver in software quality.  

Review rates are critical contributors to effective inspections.  Programmer ability is also a 

crucial factor, but process performance builds beyond the foundation of competent people.   

Following disciplined processes is a non-trivial achievement.  As was observed in the 

PSP class and for the TSP project, even trained professionals can easily fall short of 

recommended best practices.  Mature organizations that have infrastructure and culture that 
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support discipline provide an environment where disciplined processes can be successfully 

deployed – and the results demonstrate their effectiveness.  As may be the case for the high 

maturity project investigated here, a variety of powerful quality control mechanisms reinforce  

and complement one another in mature processes. 

This highlights the need for a continuum of approaches to process improvement.  The 

Software Engineering Institute has addressed three tiers that need attention:  the individual 

(PSP), the team or project (TSP), and the organization (Software CMM).  Organization-focused 

improvement may not affect the behavior of the individual effectively.  Individual-focused 

improvement may fail when the software professional returns to the high-pressure industry 

environment after participating in the PSP class. 

Individual professionals need to be aware of the need for – and the benefits of – applying 

disciplined processes to their day-to-day work.  The PSP data shows the impact of such 

discipline, but without reinforcement at the team and organizational level, it is easy for such 

discipline to slip away. 

My contribution in this analysis therefore consists of the following results: 

• Data transformations are of limited applicability for percentage data where there are 

peaks at both 0% and 100%, as is the case for defect removal effectiveness of many 

inspections, which implies that robust statistical techniques should be used. 

• An optimal review/inspection rate is not readily apparent, although defect removal 

effectiveness generally improved as the rate slowed.  This suggests that the 

recommended rate should be determined either on a per-individual basis or as part of 

a cost-benefit analysis that factors in issues such as the time to repair a defect at 

different points in the life cycle. 
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• An optimal team size is not readily apparent.  Although defect removal effectiveness 

generally improved with increasing team size, the difference was not shown to be 

statistically significant. 

For software managers, the consequences are simple to state, although they may be 

difficult to implement.  First is the importance of competent professionals in doing high-quality 

work.  Second, those professionals should be actively supported in following recommended 

practice, especially for inspections.  Third, measurement-driven management is needed for the 

effective support of those recommended practices. 
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9.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

9.1 CONCLUDING REMARKS 

In recent years process discipline has moved to the forefront of software engineering 

concerns, largely because of concerns about software quality, and driven by the wide-spread 

adoption of the Software CMM.  In many developing countries, credentials such as being 

assessed at high levels against the Software CMM are considered a requirement for being 

competitive [Cusumano, MacCormack, Kemerer, and Crandall 2003]. 

The results of my research clarify a number of outstanding empirical issues.  Because the 

results are based on data from disciplined processes for both individuals and teams, some of the 

confounding factors in analyzing defect data can be separately addressed.  Since the results of 

PSP, TSP, and CMM high maturity analyses are consistent with one another, there is reason to 

believe that the conclusions of my research are general with respect to the impact of using 

disciplined processes.   

The PSP data provides a wealth of information about programmers and processes, which 

allows a much more comprehensive set of analyses than is typical.  Although PSP data has been 

extensively analyzed by many different researchers, my research is unique in that it has a large 

enough data set to support more sophisticated models and techniques than is the norm.  The 

richness of the data, plus the large data sets, is unusual for empirical analysis in software 

engineering. 
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In the exploratory data analysis, I demonstrated that process-based variables, program 

size, and programmer ability are related to software quality.  Confounding variables that may 

appear to be plausible surrogates for areas such as ability and technology were shown not to be 

statistically significant within the PSP context. 

I observed a notable improvement in performance and variation for software quality as 

students moved from ad hoc to disciplined processes across the PSP data sets.  This supports the 

premise of PSP and similar process improvement strategies:  disciplined software processes 

result in superior performance compared to ad hoc processes.  More importantly, although 

empirically the top-quartile students did not improve as much as the bottom-quartile students, the 

2X improvement for top-quartile performers was dramatic, demonstrating the importance of 

disciplined processes in addition to competent professionals as drivers of software quality. 

In the outlier analysis, I demonstrated that XmR control charts using only out-of-bounds 

signals are roughly as effective as interquartile limits in identifying assignable causes of 

variation (and implying that run-based signaling techniques should be used for process control).  

When the stable process is identified, it may not be capable in terms of recommended practice in 

the PSP class, reinforcing the need for continual improvement to continue after the course.  The 

Team Software Process (TSP) is the recommended mechanism for continuing professional 

development and deploying the PSP ideas in a team context. 

To get the best value from statistical techniques, a consistently-implemented process is 

necessary but not sufficient for statistical control.  The effective implementation of 

recommended practices is also needed before the adjective “mature” can be used.  Many of the 

PSP students have not arrived at “industry best practice” with respect to review rates.  The 
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objective of PSP to induce learning based on personal data, which is an on-going process that is 

not completed within the confines of the course. 

For the statistical distributions of the PSP data, I found that the number of defects 

discovered in a review cannot be accurately characterized by the Poisson distribution.  This is a 

concern since u-charts are commonly used when applying SPC to software defect data.  The 

XmR chart, which is a robust technique in the presence of non-normal data, is a safer choice. 

If techniques using distributional assumptions are used, I observed that the negative 

binomial distribution is one that should be considered for counts of defects.  Although the results 

are fairly consistent for the PSP data, such assumptions should be tested against the data being 

analyzed in a specific case.  In general, when analyzing software data, the statistical techniques 

used should be rigorous when distributional assumptions are violated, and whatever assumptions 

are made should be tested against the data. 

I demonstrated that sophisticated process-based models for defect prediction are feasible 

even for individual software professionals.  The results of the mixed models demonstrated that 

individual differences are both practically and statistically significant and that factors frequently 

used as surrogates for ability and technology are not useful, at least for individual data.  The 

flexibility and power and power of the mixed models in dealing with random effects make them 

a tool worth exploring further in a team or project context.   

Some analysis of project data was possible, allowing an exploration of review rates and 

team sizes, along with programmer differences and program size.  The two factors of particular 

interest are the review rate and the team size since both can be controlled by the software project.  

Review rates that follow recommended best practice usually have superior performance, 

although whether the boundary for establishing the recommendation is optimal is not clear from 
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these empirical results.  Similarly, although defect removal effectiveness increases as inspection 

team size grows from four to six inspectors, the difference is not statistically significant.  For 

PSP, TSP, and the high maturity contexts, while classical statistical analyses provide useful 

insights, the variability is sufficiently high, even in the presence of disciplined processes, that the 

concerns of those who prefer non-parametric approaches, Bayesian Belief Networks, and a 

“relaxed” use of statistics are understandable. 

My contributions in this research are summarized in the following results:   

• Disciplined processes were shown to improve individual performance in software 

quality by a factor of about five, similar to the results of previous researchers 

analyzing PSP data [Hayes and Over 1997, 22; Wesslen 2000; Wohlin 2004]. 

• Individual differences of more than an order-of-magnitude were shown to remain 

even when disciplined processes were used [Ferguson et al. 1997; Hayes and Over 

1997, 22; Hayes 1998; Hirmanpour and Schofield 2003; Holmes 2003; Wohlin 2004, 

212]. 

• Programmer ability was shown to significantly affect software quality when 

empirically measured; surrogates such as years of experience were not found to be 

useful, although some earlier researchers have found team-based experience 

significant [Takahashi and Kamayachi 1985; Zhang 1999].   

• Top-quartile performers were shown to improve by a factor of two or more; bottom-

quartile performers were shown to improve by a factor of four or more. 

• Although technology factors, i.e., programming language used, may affect 

productivity, they were not shown to affect software quality as measured by defect 
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density in testing, unlike some earlier researchers in a project/team environment 

[Gaffney 1984; Lipow 1982]. 

• Program size was shown to be a weak predictor of quality in the presence of 

individual differences, unlike the findings of most previous researchers in a 

project/team environment [Akiyama 1972; Compton and Withrow 1990; Criscione, 

Ferree, and Porter 2001; Halstead 1977, 87-91; Jones 1996; Lipow 1982; Lyu 1996; 

Fenton and Neil 1999; Fenton and Ohlsson 2000; Putnam and Myers 1997, 32]. 

• Detailed process measures provide more insight into performance than broad 

categories such as PSP major process or CMM maturity level, partially addressing 

Fenton and Neil’s desire for more complete models [Fenton and Neil 1999, 153], at 

least within the context of individual programmers.   

• PSP processes are not statistically capable or stable by the end of the ten assignments 

in the PSP class. 

• For a retrospective analysis, XmR control charts using only out-of-bounds signals are 

roughly equivalent to interquartile limits in identifying outliers.  This suggests that 

run-based signaling techniques should also be used to identify assignable causes of 

variation.  

• When the natural process limits for a PSP process are identified, the measured 

process performance may not meet recommended practice, reinforcing the need for 

continual improvement to continue after the course.  The Team Software Process is 

the recommended mechanism for continuing professional development and deploying 

the PSP ideas in a team context [Humphrey 1999]. 
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• Statistical assumptions, such as the distribution that data follow, should be tested 

where they are important for achieving correct conclusions, i.e., the statistical 

techniques making the assumption cannot be characterized as robust when the 

assumptions are violated.   

• The frequently made assumption that defect data follow a Poisson distribution is not 

valid for the PSP defect data; a negative binomial distribution is preferable. 

• Although u-charts may be commonly used in the software industry for defect data 

[Paulk, Goldenson, and White 2000, 58-59], their use is questionable unless the 

statistical assumption of a Poisson distribution has been tested.   

• Programmer ability, when empirically measured, is an important factor affecting 

software quality that interacts with program size and the process variables in multiple 

interaction effects with two or more factors. 

• Process variables, such as effort and review rate, affect software quality both as main 

effects and as interaction effects, allowing the development of sophisticated models 

when sufficient data is available, as was the case with the PSP data. 

• More complete statistical models, as Fenton and Neil desired [Fenton and Neil 1999, 

153], need large amounts of data and sophisticated techniques, e.g., mixed models to 

address random effects and individual differences effectively, as intuitively 

demonstrated by the contrasting results for multiplicative and additive models when 

building mixed models versus multiple regression models. 

• When increasing process discipline is applied across the PSP assignments, individual 

performance with respect to software quality is consistently improved for all students 

as shown by the mixed models. 
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• Data transformations are of limited applicability for percentage data where there are 

peaks at both 0% and 100%, as is the case for defect removal effectiveness of many 

inspections, which implies that robust statistical techniques should be used. 

• An optimal review/inspection rate is not readily apparent, although defect removal 

effectiveness generally improved as the rate slowed.  This suggests that the 

recommended rate should be determined either on a per-individual basis or as part of 

a cost-benefit analysis that factors in issues such as the time to repair a defect at 

different points in the life cycle. 

• An optimal team size is not readily apparent.  Although defect removal effectiveness 

generally improved with increasing team size, the difference was not shown to be 

statistically significant. 

In conclusion, the major contribution of my research is that process discipline is a major 

driver in software quality that managers can proactively address.  Programmer ability is also a 

crucial factor, but process performance builds beyond the foundation of competent people.  

Following disciplined processes is a non-trivial achievement.  Even trained professionals can 

easily fall short of recommended best practices.   

Mature organizations that have infrastructure and culture that support discipline provide 

an environment where disciplined processes can be successfully deployed – and the results 

demonstrate their effectiveness.  My research repeatedly identifies the need for software 

managers and professionals who are interested in building high-quality products to focus on: 

• hiring competent professionals, because there are order-of-magnitude differences in 

performance between people; 
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• supporting those professionals in consistently implementing good software 

engineering practices such as inspections because it is difficult to follow 

recommended practice; 

• using measurement to control the disciplined process, because the measurement 

feedback is necessary for implementing recommend practice; 

• ensuring that all workers exercise discipline, because even top performers improve 

their performance significantly by consistently implementing recommended practices 

(with the caveat that better practices may be identified for both the software 

engineering discipline and the individual as time goes by); 

• using statistics to control and improve the process after the proper foundation of 

discipline and measurement has been put in place, because the statistical techniques 

will primarily identify conformance problems without the foundation. 

The actions necessary to build high-quality software products may be simple, but they are 

not easy to implement.  Quantifying the impact, as my research does, supports those managers 

and professionals who wish to follow disciplined processes but must address the challenges and 

resistance endemic to the demanding field we work in. 

 

9.2 LIMITATIONS 

The bulk of my research used classroom data.  Although empirical research in software 

engineering frequently uses classroom data, the challenges for generalizing the results to industry 

projects are notable.  TSP and high maturity projects offer opportunities for exploring software 

engineering with relatively reliable data, but gaining access to useful and reliable industry data is 

difficult.  The project data analyzed here can be considered indicative but not definitive. 
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9.3 FUTURE RESEARCH DIRECTIONS 

Replicating these analyses with industry data is desirable.  TSP projects in particular have 

the potential to provide data of similar richness as the PSP data.  Inspections provide, in 

principle, an even richer set of data than the reviews in PSP, although as has been observed here, 

obtaining data from conformant inspections may be a greater challenge than obtaining industry 

data.  

Further exploration of the interactions between programmer ability and process discipline 

in the arena of agile methods [Boehm and Turner 2004] would illuminate a number of 

controversial issues, as well as reinforcing the applicability of discipline in the agile approach.  

Objectively defining “ability” would be a prerequisite to such a series of studies.  Given the 

emphasis of the agile methods on people over process, an empirical investigation of the issues 

raised in my results for agile methods would provide a useful complement to the PSP analyses. 

Similar analyses to these for software quality could be performed for productivity.  The 

PSP data highlights an issue with how productivity is frequently defined:  measures such as 

LOC/hour are clearly inadequate measures of productivity given the program size ranges for 

each PSP assignment.  Proposed alternative size measures, such as function points, also appear 

inadequate.  This definitional issue would need to be adequately addressed as a prerequisite to 

productivity analyses on the PSP data. 

The distributional analysis could be explored more comprehensively.  While the primary 

point – that the Poisson distribution of software defect data is questionable, and use of the u-

chart may be not justified – was made, other distributions could be considered that might be 

superior to the negative binomial.  The possibility could be explored that software defect data is 
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zero-inflated, i.e., there is a large number of zeroes in the data that are generated by a different 

process than the positive counts [Khoshgoftaar and Szabo 2001]. 

The use of control charts remains a controversial topic in software engineering, but the 

use of statistical process control is growing, as encouraged by the Software CMM and similar 

process improvement frameworks.  A resolution of what signaling rules are appropriate for 

software processes depends on causal analysis, which was not feasible in the retrospective 

studies of the PSP data.  Initiating statistical process control with the basic “point outside the 

control limits” is a reasonable start, but, as my research suggests, further exploration of which 

signal rules add value – and of which control chart techniques are appropriate – would benefit 

the software community. 
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APPENDIX A 
 
 
 

Descriptions of Variables in Data Sets 
 

A.1  VARIABLES IN THE PSP DATA 

Note that SAS variable names for process variables have a unique first letter to prevent 

confusion when multiple variables interact in an effect. 

Assignment PSP Assignment (1, 2, 3, … 10) 

AvgDDT Average Defect Density in Testing for 1A-3A 

ClassID PSP Class 

DDsTim Design Time (hrs/KLOC) 

Degree Highest Degree Attained 

DfInCm Defects Injected in Compile 

DfInCo Defects Injected in Coding 

DfInCR Defects Injected in CR 

DfInDR Defects Injected in DR 

DfInDs Defects Injected in Design 

DfInPl Defects Injected in Planning 

DfInTs Defects Injected in Testing 

DfRmCm Defects Removed in Compile 

DfRmCo Defects Removed in Coding 

DfRmCR Defects Removed in Code Review 
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DfRmDR Defects Removed in Design Review 

DfRmDs Defects Removed in Design 

DfRmPl Defects Removed in Planning 

DfRmTs Defects Removed in Test 

DLnDsTim Log Transform of Design Time 

dreCR Defect Removal Effectiveness of Code Review (0-1) 

dreDR Defect Removal Effectiveness of Design Review (0-1) 

EDRR Design Review Rate (hrs/KLOC) 

ELnDRR Log Transform of Design Review Rate 

FDDDR Defect Density in Design Review (defects/KLOC) 

FLnDDDR Log Transform of Defect Density in Design Review 

GCoTim Coding Time (hrs/KLOC) 

GLnCoTim Log Transform of Coding Time 

HCRR Code Review Rate (hrs/KLOC) 

HLnCRR Log Transform of Code Review Rate 

IDDCR Defect Density in Code Review (defects/KLOC) 

ILnDDCR Log Transform of Defect Density in Code Review 

JDDCm Defect Density in Compile (defects/KLOC) 

JLnDDCm Log Transform of Defect Density in Compile 

KLnKLOC Log Transform of KLOC 

KLOC Program Size (Thousands of Lines of Code) 

Lang Programming Language (C, C++, Java, VisualBasic) 

LOC Program Size (Lines of Code) 

MajPrcs PSP Major Process (PSP0, PSP1, PSP2, PSP3) 

NDfCR Number of Defects at Code Review 
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NDfDR Number of Defects at Design Review 

NLang Number of Languages Known 

PercSWTi Percent of Software Time in Previous Year (0-1) 

PgmCnt Count of Assignments Finished (1, 2, 3, … 10) 

PmgrAb Programmer Ability (Average Defect Density in Testing for 1A-3A) 

Program PSP Assignment (1A, 2A, 3A, … 10A) 

PSPa PSPa Data Set Indicator (y/n) 

Quartiles Programmer Quartiles (TQ, M2, BQ) 

Student Student 

StuNum Student Number 

TDDTs Defect Density in Testing (defects/KLOC) 

TimCm Time Compile (min) 

TimCo Time Coding (min) 

TimCR Time CR (min) 

TimDR Time DR (min) 

TimDs Time Design (min) 

TimPl Time Planning (min) 

TimPM Time Postmortem (min) 

TimTs Time Testing (min) 

TLnDDTs Log Transform of Defect Density in Testing 

YrsExp Years of Experience 
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A.2  VARIABLES IN THE TSP PROJECT DATA 

CIR Code Inspection Rate (team) (hrs/KLOC) 

CRR Code Review Rate (individual) (hrs/KLOC) 

ddCI Code Inspection Defect Density 
(defects/KLOC) 

ddCR Code Review Defect Density (defects/KLOC) 

ddDLDI Design Inspection Defect Density 
(defects/KLOC) 

ddDLDR Design Review Defect Density 
(defects/KLOC) 

DLDIR Design Inspection Rate (team) (hrs/KLOC) 

DLDRR Design Review Rate (individual) (hrs/KLOC) 

dreCI Code Inspection Defect Removal 
Effectiveness (0-1) 

dreCR Code Review Defect Removal Effectiveness 
(0-1) 

dreDLDI Design Inspection Defect Removal 
Effectiveness (0-1) 

dreDLDR Design Review Defect Removal Effectiveness 
(0-1) 

KLOC Program Size (Thousands of Lines of Code) 

Pgmr Programmer 
 

 

A.3  VARIABLES IN THE HIGH-MATURITY PROJECT DATA 

CIR Code Inspection Rate (hrs/KLOC) 

ddCI Defect Density in Code Inspections 
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(defects/KLOC) 

dreCI Defect Removal Effectiveness of Code 
Inspections (0-1) 

InspDefects Number of Defects Found in Inspection 

InspNum Inspection ID Number 

KLOC Program Size (Thousands of Lines of Code) 

LOC Lines of Code 

MtgTime Meeting Time (hrs) 

NDefects Number of Defects Present 

NumReqdIn Number of Required Inspectors 

PrepRate Preparation Rate (hrs/KLOC) 

PrepTime Preparation Time (hrs) 
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APPENDIX B 
 
 
 

SAS Code  
 

B.1  GENERAL LINEAR MODELS FOR PSP 

TITLE1 'Mark Paulk -- PSP Data Analysis'; 
 
DATA pspData; 
INFILE 'c:\SASData\RawPSP.txt' LRECL=512; 
 
INPUT 
ClassID $ StuNum Student $ YrsExp PercSWTi Degree $ NLang Lang $  
Assignment Program $ LOC 
TimPl TimDs TimDR TimCo TimCR TimCm TimTs TimPM 
DfInPl DfInDs DfInDR DfInCo DfInCR DfInCm DfInTs 
DfRmPl DfRmDs DfRmDR DfRmCo DfRmCR DfRmCm DfRmTs 
PgmCnt QPgmr Quartiles $ PSP1997 $; 
 
/* Set the right data split - PSP1997 vs PSP2001 and C vs C++ usually. */ 
 
TITLE2 'GLM REGRESSION MODELS -- PSP Data Analysis for PSPb C'; 
IF PSP1997 ^= 'n' THEN DELETE; 
IF Lang ^= 'C' THEN DELETE; 
 
LABEL 
ClassID = 'PSP Class' 
StuNum = 'Student Number' 
Student = 'Student' 
YrsExp = 'Years of Experience' 
PercSWTi = 'Percent of Software Time in Previous Year' 
Degree = 'Highest Degree Achieved' 
NLang = 'Number of Languages Known' 
Lang = 'Programming Language' 
Assignment = 'PSP Assignment' 
Program = 'PSP Assignment' 
 
TimPl = 'Time Planning (min)' 
TimDs = 'Time Design (min)' 
TimDR = 'Time DR (min)' 
TimCo = 'Time Coding (min)' 
TimCR = 'Time CR (min)' 
TimCm = 'Time Compile (min)' 
TimTs = 'Time Testing (min)' 
TimPM = 'Time Postmortem (min)' 
 
DfInPl = 'Defects Injected in Planning' 
DfInDs = 'Defects Injected in Design' 
DfInDR = 'Defects Injected in DR' 
DfInCo = 'Defects Injected in Coding' 
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DfInCR = 'Defects Injected in CR' 
DfInCm = 'Defects Injected in Compile' 
DfInTs = 'Defects Injected in Testing' 
 
DfRmPl = 'Defects Removed in Planning' 
DfRmDs = 'Defects Removed in Design' 
DfRmDR = 'Defects Removed in Design Reviews' 
DfRmCo = 'Defects Removed in Coding' 
DfRmCR = 'Defects Removed in Code Reviews' 
DfRmCm = 'Defects Removed in Compile' 
DfRmTs = 'Defects Removed in Test' 
 
PgmCnt = 'Count of Assignments Finished' 
QPgmr = 'Average DD in Testing 1A-3A' 
Quartiles = 'Programmer Ability Quartiles' 
PSP1997 = 'PSP1997 Data Set'; 
 
/* Missing values for YearsExp, PercSWTi, and NLang are encoded as -1. 
    Missing (and too rare) values for Degree and Language are encoded as "Unknown". 
    In some instances, students reported spending zero time for an activity such as design; the missing values for 
Prodvty, DsPerc, and CoPerc are encoded as -1. 
    Note that for review effectiveness, -1 is a code for "no review" and -2 is a code for "no defects to be found." */ 
 
IF YrsExp = -1 THEN YrsExp = .; 
IF PercSWTi = -1 THEN PercSWTi = .; 
IF NLang = -1 THEN NLang = .; 
IF Degree = 'Unknown' THEN Degree =.; 
IF Lang = 'Unknown' THEN Lang =.; 
 
/* Calculate assignment variables. */ 
 
KLOC = LOC / 1000; 
 
IF Assignment = 1 THEN MajPrcs = 0; 
ELSE IF Assignment = 2 THEN MajPrcs = 0; 
ELSE IF Assignment = 3 THEN MajPrcs = 0; 
ELSE IF Assignment = 4 THEN MajPrcs = 1; 
ELSE IF Assignment = 5 THEN MajPrcs = 1; 
ELSE IF Assignment = 6 THEN MajPrcs = 1; 
ELSE IF Assignment = 7 THEN MajPrcs = 2; 
ELSE IF Assignment = 8 THEN MajPrcs = 2; 
ELSE IF Assignment = 9 THEN MajPrcs = 2; 
ELSE MajPrcs = 3; 
 
/* Calculate design variables. */ 
 
DDsTim = (TimDs / 60) / KLOC; 
EDRR = (TimDR / 60) / KLOC; 
FDDDR = DfRmDR / KLOC; 
 
LABEL 
DDsTim = 'Design Time (hrs) / KLOC' 
EDRR = 'DR Rate (hrs/KLOC)' 
FDDDR = 'DD in DR (defects/KLOC)'; 
 
/* Calculate coding variables. */ 
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GCoTim = (TimCo / 60) / KLOC; 
HCCR = (TimCR / 60) / KLOC; 
IDDCR = DfRmCR / KLOC; 
 
LABEL 
GCoTim = 'Coding Time (hrs) / KLOC' 
HCCR = 'CR Rate (hrs/KLOC)' 
IDDCR = 'DD in CR (defects/KLOC)'; 
 
/* Calculate compile variables. */ 
 
JDDCm = DfRmCm / KLOC; 
 
LABEL 
JDDCm = 'DD in Compile (defects/KLOC)'; 
 
/* Calculate testing variables. */ 
 
TDDTs = DfRmTs / KLOC; 
 
LABEL 
TDDTs = 'DD in Testing (defects/KLOC)'; 
RUN; 
 
/* GLM regression models with interactions. */ 
 
TITLE3 'GLM design models using STEPWISE variables'; 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR 
/solution; 
RUN; 
 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR 
QPgmr*KLOC QPgmr*DDsTim QPgmr*EDRR QPgmr*FDDDR 
DDsTim*FDDDR EDRR*FDDDR  
QPgmr*KLOC*EDRR QPgmr*DDsTim*EDRR QPgmr*EDRR*FDDDR 
QPgmr*KLOC*FDDDR KLOC*DDsTim*EDRR DDsTim*EDRR*FDDDR 
QPgmr*DDsTim*EDRR*FDDDR QPgmr*KLOC*DDsTim*EDRR*FDDDR 
/solution; 
RUN; 
 
TITLE3 'GLM code models using STEPWISE variables'; 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR 
/solution; 
RUN; 
 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR 
QPgmr*KLOC QPgmr*EDRR QPgmr*FDDDR QPgmr*GCoTim 
QPgmr*HCCR QPgmr*IDDCR KLOC*HCCR 
EDRR*GCoTim EDRR*HCCR HCCR*IDDCR 
QPgmr*KLOC*GCoTim QPgmr*KLOC*HCCR QPgmr*DDsTim*EDRR 
QPgmr*EDRR*HCCR QPgmr*FDDDR*IDDCR  
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QPgmr*KLOC*DDsTim*EDRR*FDDDR QPgmr*KLOC*GCoTim*HCCR*IDDCR 
/solution; 
RUN; 
 
TITLE3 'GLM compile models using STEPWISE variables'; 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm 
/solution; 
RUN; 
 
PROC GLM DATA= pspData; 
MODEL TDDTs = QPgmr KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm 
QPgmr*KLOC QPgmr*GCoTim QPgmr*HCCR QPgmr*IDDCR QPgmr*JDDCm 
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR 
QPgmr*KLOC*GCoTim QPgmr*KLOC*IDDCR QPgmr*KLOC*JDDCm 
QPgmr*FDDDR*IDDCR FDDDR*IDDCR*JDDCm 
QPgmr*KLOC*GCoTim*JDDCm QPgmr*FDDDR*IDDCR*JDDCm 
/solution; 
RUN; 

 

B.2  INFLUENTIAL OUTLIERS FOR PSP 

/* Calculating leverage and other influential outlier stats. */ 
 
TITLE3 'GLM compile models using STEPWISE variables'; 
PROC GLM DATA= pspData; 
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm; 
OUTPUT out=OutCm p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd; 
RUN; 
 
PROC GLM DATA= pspData; 
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm 
PgmrAb*KLOC PgmrAb*GCoTim PgmrAb*HCCR PgmrAb*IDDCR PgmrAb*JDDCm 
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR 
PgmrAb*KLOC*GCoTim PgmrAb*KLOC*IDDCR PgmrAb*KLOC*JDDCm 
PgmrAb*FDDDR*IDDCR FDDDR*IDDCR*JDDCm 
PgmrAb*KLOC*GCoTim*JDDCm PgmrAb*FDDDR*IDDCR*JDDCm; 
OUTPUT out=OutCmIE p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd; 
RUN; 
 
/* Identify influential outliers */ 
 
TITLE3 'Identify influential outliers for compile'; 
DATA IDCm; 
SET OutCm; 
IF Lang = 'C' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.151 AND cook < 1.03 THEN DELETE; 
IF Lang = 'C++' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.209 AND cook < 1.03 THEN DELETE; 
RUN; 
PROC PRINT DATA=IDCm; 
VAR Student Program yhat lever cook dff prs rstd; 
RUN; 
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TITLE3 'Identify influential outliers for compile IE'; 
DATA IDCmIE; 
SET OutCmIE; 
IF Lang = 'C' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.248 AND cook < 1.03 THEN DELETE; 
IF Lang = 'C++' AND lever < 0.5 AND rstd < 3.291 AND dff < 0.343 AND cook < 1.03 THEN DELETE; 
RUN; 
PROC PRINT DATA=IDCmIE; 
VAR Student Program yhat lever cook dff prs rstd; 
RUN; 
 
/* Remove influential outliers */ 
 
TITLE3 'GLM compile models without influential outliers'; 
 
DATA XCm; 
SET OutCm; 
IF lever > 0.5 THEN DELETE; 
IF rstd > 3.291 THEN DELETE; 
IF cook > 1.03 THEN DELETE; 
IF Lang = 'C' AND (dff > 0.151) THEN DELETE; 
IF Lang = 'C++' AND (dff > 0.209) THEN DELETE; 
RUN; 
 
PROC GLM DATA= XCm; 
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm 
/solution; 
RUN; 
 
TITLE3 'GLM compile models IE without influential outliers'; 
DATA XCmIE; 
SET OutCmIE; 
IF lever > 0.5 THEN DELETE; 
IF rstd > 3.291 THEN DELETE; 
IF cook > 1.03 THEN DELETE; 
IF Lang = 'C' AND (dff > 0.248) THEN DELETE; 
IF Lang = 'C++' AND (dff > 0.343) THEN DELETE; 
RUN; 
 
PROC GLM DATA= XCmIE; 
MODEL TDDTs = PgmrAb KLOC DDsTim EDRR FDDDR GCoTim HCCR IDDCR JDDCm 
PgmrAb*KLOC PgmrAb*GCoTim PgmrAb*HCCR PgmrAb*IDDCR PgmrAb*JDDCm 
KLOC*GCoTim KLOC*HCCR KLOC*JDDCm GCoTim*JDDCm HCCR*IDDCR 
PgmrAb*KLOC*GCoTim PgmrAb*KLOC*IDDCR PgmrAb*KLOC*JDDCm 
PgmrAb*FDDDR*IDDCR FDDDR*IDDCR*JDDCm 
PgmrAb*KLOC*GCoTim*JDDCm PgmrAb*FDDDR*IDDCR*JDDCm 
/solution; 
RUN; 

 

B.3  MIXED MODELS (DESIGN, CODE, COMPILE) FOR PSP 

TITLE3 'Multiplicative mixed models for design including outliers'; 
PROC MIXED data=pspData mmeq; 
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CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR  
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 'Multiplicative mixed models for design excluding outliers'; 
PROC MIXED data=XCm mmeq; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR  
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 ' Multiplicative mixed models for code including outliers'; 
PROC MIXED data=pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 ' Multiplicative mixed models for code with interactions including outliers'; 
PROC MIXED data=pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR 
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
ELnDRR*FLnDDDR  
KLnKLOC*DLnDsTim*ELnDRR*FLnDDDR KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 ' Multiplicative mixed models for code excluding outliers'; 
PROC MIXED data=XCm; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 ' Multiplicative mixed models for code with interactions excluding outliers'; 
PROC MIXED data=XCmIE; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR 
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
ELnDRR*FLnDDDR 
KLnKLOC*DLnDsTim*ELnDRR*FLnDDDR KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 'Multiplicative mixed models for compile including outliers'; 
PROC MIXED data= pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
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/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 'Multiplicative mixed models for compile with interactions including outliers'; 
PROC MIXED data= pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
GLnCoTim*JLnDDCm 
KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 'Multiplicative mixed models for compile excluding outliers'; 
PROC MIXED data= XCm; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 
 
TITLE3 'Multiplicative mixed models for compile with interactions excluding outliers'; 
PROC MIXED data= XCmIE; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
GLnCoTim*JLnDDCm 
KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RUN; 

 

B.4  MIXED MODELS WITH A RANDOM EFFECT FOR PSP 

/* Multiplicative mixed models */ 
 
TITLE3 'Testing random variable with compile mixed model including outliers'; 
PROC MIXED data= pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RANDOM PgmrAb /solution; 
RUN; 
 
TITLE3 'Testing random variable with compile mixed model -IE including outliers'; 
PROC MIXED data= pspData; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
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GLnCoTim*JLnDDCm KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RANDOM PgmrAb /solution; 
RUN; 
 
TITLE3 'Testing random variable with compile mixed model excluding outliers'; 
PROC MIXED data= XCm; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RANDOM PgmrAb /solution; 
RUN; 
 
TITLE3 'Testing random variable with compile mixed model -IE excluding outliers'; 
PROC MIXED data= XCmIE; 
CLASS Student Assignment; 
MODEL TLnDDTs = KLnKLOC DLnDsTim ELnDRR FLnDDDR GLnCoTim HLnCRR ILnDDCR JLnDDCm  
KLnKLOC*DLnDsTim KLnKLOC*ELnDRR KLnKLOC*FLnDDDR KLnKLOC*ILnDDCR 
GLnCoTim*JLnDDCm KLnKLOC*GLnCoTim*HLnCRR*ILnDDCR 
/ ddfm=satterth solution; 
REPEATED Assignment / type=un sub=Student r rcorr; 
RANDOM PgmrAb /solution; 
RUN; 

 

B.5  DEFECT REMOVAL EFFECTIVENESS FOR PSP 

DATA DRData; 
SET pspData; 
IF NDfDR = 0 THEN DELETE;  /* Delete any reviews where there were no defects */ 
IF TimDR = 0 THEN DELETE;  /* Delete assignments where there were no reviews */ 
RUN; 
 
DATA DRNoOut; 
SET XCm;  /* Start without outliers */ 
IF NDfDR = 0 THEN DELETE;  /* Delete any reviews where there were no defects */ 
IF TimDR = 0 THEN DELETE;  /* Delete assignments where there were no reviews */ 
RUN; 
 
TITLE3 'Defect Removal Effectiveness - Design Regression Models'; 
TITLE4 'Design DRE including outliers'; 
PROC GLM DATA= DRData; 
MODEL dreDR = PgmrAb KLOC DDsTim EDRR 
/solution; 
OUTPUT out=ErrDs residual=err; 
RUN; 
 
TITLE4 'Design DRE without outliers'; 
PROC GLM DATA= DRNoOut; 
MODEL dreDR = PgmrAb KLOC DDsTim EDRR 
/solution; 
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OUTPUT out=ErrDsNo residual=err; 
RUN; 
 
DATA CRData; 
SET pspData; 
IF NDfCR = 0 THEN DELETE;  /* Delete any reviews where there were no defects */ 
IF TimCR = 0 THEN DELETE;  /* Delete assignments where there were no reviews */ 
RUN; 
 
DATA CRNoOut; 
SET XCm; /* Start without outliers */ 
IF NDfCR = 0 THEN DELETE;  /* Delete any reviews where there were no defects */ 
IF TimCR = 0 THEN DELETE;  /* Delete assignments where there were no reviews */ 
RUN; 
 
TITLE3 'Defect Removal Effectiveness - Code Regression Models'; 
TITLE4 'Code DRE including outliers'; 
PROC GLM DATA= CRData; 
MODEL dreCR = PgmrAb KLOC GCoTim HCRR  
/solution; 
OUTPUT out=ErrCod residual=err; 
RUN; 
 
TITLE4 'Code DRE without outliers'; 
PROC GLM DATA= CRNoOut; 
MODEL dreCR = PgmrAb KLOC GCoTim HCRR  
/solution; 
OUTPUT out=ErrCodNo residual=err; 
RUN; 

 

B.6  TSP PROJECT MODELS 

TITLE1 'Mark Paulk -- TSP Data Analysis'; 
 
DATA tspData; 
INFILE 'c:\SASData\TSP1.txt' LRECL=512; 
 
INPUT 
Module $ Pgmr $  
DfInRq DfInRI DfInHLD DfInHLDI DfInDLD DfInDLDR  
DfInDLDI DfInCode DfInCR DfInCm DfInCI DfInUT DfInBnI DfInST  
DfRmRq DfRmRI DfRmHLD DfRmHLDI DfRmDLD DfRmDLDR  
DfRmDLDI DfRmCode DfRmCR DfRmCM DfRmCI DfRmUT DfRmBnI DfRmST   
DLDLines LOC  
TimDLD TimDLDR TimDLDI TimCode TimCR TimCm TimCI TimUT; 
 
Injected = DfInRq + DfInRI + DfInHLD + DfInHLDI + 
DfInDLD + DfInDLDR + DfInDLDI + 
DfInCode + DfInCR + DfInCm + DfInCI + 
DfInUT + DfInBnI + DfInST; 
 
Removed = DfRmRq + DfRmRI + DfRmHLD + DfRmHLDI +  
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DfRmDLD + DfRmDLDR + DfRmDLDI + 
DfRmCode + DfRmCR + DfRmCM + DfRmCI + 
DfRmUT + DfRmBnI + DfRmST; 
 
IF LOC = 0 THEN DELETE; 
KLOC = LOC / 1000; 
 
/* Calculate design variables. */ 
 
DLDRR = TimDLDR / KLOC;  /* Detailed design reviews (individual) */ 
ddDLDR = DfRmDLDR / KLOC; 
NDfDLDR = DfInRq + DfInRI + DfInHLD + DfInHLDI + DfInDLD + DfInDLDR -  
          DfRmRq - DfRmRI - DfRmHLD - DfRmHLDI - DfRmDLD; 
IF NDfDLDR > 0 THEN dreDLDR = DfRmDLDR / NDfDLDR; ELSE dreDLDR = .; 
 
LABEL 
DLDRR = 'Design Review Rate (individual) (hrs/KLOC)' 
ddDLDR = 'DLDR Defect Density (defects/KLOC)' 
dreDLDR = 'DLDR Defect Removal Effectiveness (0-1)'; 
 
DLDIR = TimDLDI / KLOC;  /* Detailed design inspections (team) */ 
AvgDLDIR = DLDIR / 5; 
ddDLDI = DfRmDLDI / KLOC; 
NDfDLDI = NDfDLDR + DfInDLDI - DfRmDLDR; 
IF NDfDLDI > 0 THEN dreDLDI = DfRmDLDI / NDfDLDI; ELSE dreDLDI = .; 
 
LABEL 
DLDIR = 'Design Inspection Rate (team) (hrs/KLOC)' 
ddDLDI = 'DI Defect Density (defects/KLOC)' 
dreDLDI = 'DI Defect Removal Effectiveness (0-1)'; 
 
/* Calculate coding and compile variables. */ 
 
CRR = TimCR / KLOC;  /* Code reviews (individual) */ 
ddCR = DfRmCR / KLOC; 
NDfCR = NDfDLDI + DfInCode + DfInCR - DfRmDLDI - DfRmCode; 
IF NDfCR > 0 THEN dreCR = DfRmCR / NDfCR; ELSE dreCR = .; 
 
LABEL 
CRR = 'Code Review Rate (individual) (hrs/KLOC)' 
ddCR = 'CR Defect Density (defects/KLOC)' 
dreCR = 'CR Defect Removal Effectiveness (0-1)'; 
 
ddCm = DfRmCm / KLOC; /* Compile */ 
NDfCm = NDfCR + DfInCm - DfRmCR; 
IF NDfCm > 0 THEN dreCm = DfRmCm / NDfCm; ELSE dreCm = .; 
 
CIR = TimCI / KLOC;  /* Code inspections (team) */ 
AvgCIR = CIR / 5; 
ddCI = DfRmCI / KLOC; 
NDfCI = NDfCm + DfInCI - DfRmCm ; 
IF NDfCI > 0 THEN dreCI = DfRmCI / NDfCI; ELSE dreCI = .; 
 
LABEL 
CIR = 'Code Inspection Rate (team) (hrs/KLOC)' 
ddCI = 'CI Defect Density (defects/KLOC)' 
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dreCI = 'CI Defect Removal Effectiveness (0-1)'; 
 
/* Calculate testing variables. */ 
 
ddTs = (DfRmUT + DfRmBnI + DfRmST) / KLOC; 
NDfTs = NDfCI + DfInUT + DfInBnI + DfInST - DfRmCI ; 
 
RUN; 
 
TITLE3 'TSP1 Design Reviews (individual)'; 
PROC GLM DATA= tspData; 
MODEL dreDLDR = KLOC /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
CLASS Pgmr; 
MODEL dreDLDR = Pgmr /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
MODEL dreDLDR = DLDRR /solution; 
RUN; 
 
TITLE3 'TSP1 Design Inspections (team)'; 
PROC GLM DATA= tspData; 
MODEL dreDLDI = KLOC /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
CLASS Pgmr; 
MODEL dreDLDI = Pgmr /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
MODEL dreDLDI = DLDIR /solution; 
RUN; 
 
TITLE3 'TSP1 Code Reviews (individual)'; 
PROC GLM DATA= tspData; 
MODEL dreCR = KLOC /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
CLASS Pgmr; 
MODEL dreCR = Pgmr /solution; 
RUN; 
 
PROC GLM DATA= tspData; 
MODEL dreCR = CRR /solution; 
RUN; 
 
TITLE3 'TSP1 Code Inspections (team)'; 
PROC GLM DATA= tspData; 
MODEL dreCI = KLOC /solution; 
RUN; 
 



 

355 

PROC GLM DATA= tspData; 
CLASS Pgmr; 
MODEL dreCI = Pgmr/solution; 
RUN; 
 
PROC GLM DATA= tspData; 
MODEL dreCI = CIR/solution; 
RUN; 

 

B.7  HIGH-MATURITY PROJECT MODELS 

TITLE1 'Mark Paulk -- High Maturity Project Data Analysis'; 
 
DATA HMData; 
INFILE 'c:\SASData\HM1.txt' LRECL=512; 
 
INPUT 
InspNum MtgTime NumCh PrepTime LOC NDefects InspDefects NumInsp NumOptIn; 
 
LABEL 
InspNum = 'Inspection ID Number' 
MtgTime = 'Meeting Time (hrs)' 
NumInsp = 'Number of Checklists' 
PrepTime = 'Preparation Time (hrs)' 
LOC = 'Lines of Code' 
NDefects = 'Number of Defects Present' 
InspDefects = 'Number of Defects Found in Inspection' 
NumInsp = 'Number of Inspectors' 
NumOptIn = 'Number of Optional Inspectors'; 
 
IF LOC = 0 THEN DELETE; 
KLOC = LOC / 1000; 
IF NDefects = 0 THEN DELETE; 
IF PrepTime = 0 THEN DELETE; 
IF MtgTime = 0 THEN DELETE; 
 
PrepRate = (PrepTime / NumInsp) / KLOC; 
StdPrep = LOC / (PrepTime / NumInsp); 
CIR = MtgTime / KLOC;   
StdCIR = LOC / MtgTime; 
ddCI = InspDefects / KLOC; 
dreCI = InspDefects / NDefects;  
 
LABEL 
PrepRate = 'Preparation Rate (hrs/KLOC)' 
StdPrep = 'Preparation Rate (LOC/hr)' 
CIR = 'Code Inspection Rate (hrs/KLOC)' 
StdCIR = 'Code Inspection Rate (LOC/hr)' 
ddCI = 'Defect Density in CI (defects/KLOC)' 
dreCI = 'Defect Removal Effectiveness (0-1)'; 
RUN; 
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TITLE3 'HM1 Code Inspections'; 
PROC GLM DATA= HMData; 
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution; 
OUTPUT out=RegStats p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd; 
RUN; 
 
DATA Conform; 
SET HMData; 
IF StdPrep > 200 THEN DELETE; 
IF StdCIR > 250 THEN DELETE; 
RUN; 
 
TITLE3 'HM1 Conformant Code Inspections'; 
PROC GLM DATA= Conform; 
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution; 
RUN; 
 
TITLE3 'Identify Influential Outliers'; 
DATA IDOut; 
SET RegStats; 
IF lever < 0.5 AND rstd < 3.291 AND dff < 0.3514 AND cook < 1.15 THEN DELETE; 
RUN; 
PROC PRINT DATA=IDOut; 
VAR InspNum dreCI KLOC PrepRate CIR NumInsp; 
RUN; 
DATA NoOut; 
SET RegStats; 
IF lever > 0.5 THEN DELETE; 
IF rstd > 3.291 THEN DELETE; 
IF cook > 1.15 THEN DELETE; 
IF dff > 0.3514 THEN DELETE; 
RUN; 
 
TITLE3 'HM1 Code Inspections without Influential Outliers'; 
PROC GLM DATA= NoOut; 
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution; 
RUN; 
 
TITLE3 'HM1 Code Inspections with Interactions'; 
PROC GLM DATA= HMData; 
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution; 
OUTPUT out=RegStats p=yhat h=lever cookd=cook dffits=dff press=prs rstudent=rstd; 
RUN; 
 
TITLE3 'HM1 Code Inspections with Interactions without Influential Outliers'; 
PROC GLM DATA= NoOut; 
MODEL dreCI = KLOC PrepRate CIR NumInsp /solution; 
RUN; 
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APPENDIX C 
 
 
 

SAS Output 
 

C.1  COMPILE REGRESSION MODEL FOR (PSPB, C) 

                                        The GLM Procedure 
 
                                 Number of observations    1758 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        9     1002755.877      111417.320     113.96    <.0001 
 
       Error                     1748     1708982.871         977.679 
 
       Corrected Total           1757     2711738.748 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.369783      98.96412      31.26786      31.59515 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     542630.3977     542630.3977     555.02    <.0001 
       KLOC                         1     108539.3555     108539.3555     111.02    <.0001 
       DDsTim                       1       1031.1429       1031.1429       1.05    0.3046 
       EDRR                         1      82529.5492      82529.5492      84.41    <.0001 
       FDDDR                        1        548.0905        548.0905       0.56    0.4541 
       GCoTim                       1      96301.1321      96301.1321      98.50    <.0001 
       HCRR                         1      52765.3203      52765.3203      53.97    <.0001 
       IDDCR                        1       9158.7602       9158.7602       9.37    0.0022 
       JDDCm                        1     109252.1285     109252.1285     111.75    <.0001 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     371531.4448     371531.4448     380.01    <.0001 
       KLOC                         1      29284.4003      29284.4003      29.95    <.0001 
       DDsTim                       1       1308.1471       1308.1471       1.34    0.2475 
       EDRR                         1        108.9308        108.9308       0.11    0.7386 
       FDDDR                        1       2175.6647       2175.6647       2.23    0.1359 
       GCoTim                       1      32080.7130      32080.7130      32.81    <.0001 
       HCRR                         1      10649.6419      10649.6419      10.89    0.0010 
       IDDCR                        1       7126.4152       7126.4152       7.29    0.0070 
       JDDCm                        1     109252.1285     109252.1285     111.75    <.0001 
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                                                  Standard 
                Parameter         Estimate           Error    t Value    Pr > |t| 
 
                Intercept       9.01033915      2.01697875       4.47      <.0001 
                QPgmr           0.37233356      0.01909996      19.49      <.0001 
                KLOC          -56.27032737     10.28156949      -5.47      <.0001 
                DDsTim          0.10205399      0.08822666       1.16      0.2475 
                EDRR           -0.13582316      0.40690838      -0.33      0.7386 
                FDDDR           0.12238609      0.08204162       1.49      0.1359 
                GCoTim          0.37236571      0.06500486       5.73      <.0001 
                HCRR           -1.54679942      0.46866729      -3.30      0.0010 
                IDDCR          -0.14386592      0.05328691      -2.70      0.0070 
                JDDCm           0.16029801      0.01516391      10.57      <.0001 

 

C.2  COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C) 

                                        The GLM Procedure 
 
                                 Number of observations    1758 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       26     1270016.183       48846.776      58.65    <.0001 
 
       Error                     1731     1441722.565         832.884 
 
       Corrected Total           1757     2711738.748 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.468340      91.34230      28.85973      31.59515 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     542630.3977     542630.3977     651.51    <.0001 
       KLOC                         1     108539.3555     108539.3555     130.32    <.0001 
       DDsTim                       1       1031.1429       1031.1429       1.24    0.2660 
       EDRR                         1      82529.5492      82529.5492      99.09    <.0001 
       FDDDR                        1        548.0905        548.0905       0.66    0.4174 
       GCoTim                       1      96301.1321      96301.1321     115.62    <.0001 
       HCRR                         1      52765.3203      52765.3203      63.35    <.0001 
       IDDCR                        1       9158.7602       9158.7602      11.00    0.0009 
       JDDCm                        1     109252.1285     109252.1285     131.17    <.0001 
       QPgmr*KLOC                   1     101843.6726     101843.6726     122.28    <.0001 
       QPgmr*GCoTim                 1      29479.7567      29479.7567      35.39    <.0001 
       QPgmr*HCRR                   1      33262.0662      33262.0662      39.94    <.0001 
       QPgmr*IDDCR                  1       6453.6212       6453.6212       7.75    0.0054 
       QPgmr*JDDCm                  1       4805.6870       4805.6870       5.77    0.0164 
       KLOC*GCoTim                  1          0.1321          0.1321       0.00    0.9900 
       KLOC*HCRR                    1       1294.9884       1294.9884       1.55    0.2126 
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       KLOC*JDDCm                   1       3020.8334       3020.8334       3.63    0.0570 
       GCoTim*JDDCm                 1      13232.1198      13232.1198      15.89    <.0001 
       HCRR*IDDCR                   1      24272.5344      24272.5344      29.14    <.0001 
       QPgmr*KLOC*GCoTim            1      20927.8369      20927.8369      25.13    <.0001 
       QPgmr*KLOC*IDDCR             1      18531.3765      18531.3765      22.25    <.0001 
       QPgmr*KLOC*JDDCm             1        662.0601        662.0601       0.79    0.3727 
       QPgmr*FDDDR*IDDCR            1       5254.1937       5254.1937       6.31    0.0121 
       FDDDR*IDDCR*JDDCm            1       1669.7826       1669.7826       2.00    0.1570 
       QPgm*KLOC*JCoT*JDDCm         1        967.5751        967.5751       1.16    0.2813 
       QPgm*FDDD*MDDC*JDDCm         1       1582.0693       1582.0693       1.90    0.1683 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     78200.77163     78200.77163      93.89    <.0001 
       KLOC                         1         2.48667         2.48667       0.00    0.9564 
       DDsTim                       1         8.38981         8.38981       0.01    0.9201 
       EDRR                         1       273.59240       273.59240       0.33    0.5666 
       FDDDR                        1        75.25084        75.25084       0.09    0.7638 
       GCoTim                       1      1052.37319      1052.37319       1.26    0.2611 
       HCRR                         1      2633.65478      2633.65478       3.16    0.0755 
       IDDCR                        1      3089.47517      3089.47517       3.71    0.0543 
       JDDCm                        1      7195.91308      7195.91308       8.64    0.0033 
       QPgmr*KLOC                   1      4503.17033      4503.17033       5.41    0.0202 
       QPgmr*GCoTim                 1     34385.20851     34385.20851      41.28    <.0001 
       QPgmr*HCRR                   1      9019.30676      9019.30676      10.83    0.0010 
       QPgmr*IDDCR                  1     16245.52724     16245.52724      19.51    <.0001 
       QPgmr*JDDCm                  1      1706.91635      1706.91635       2.05    0.1524 
       KLOC*GCoTim                  1      1864.82457      1864.82457       2.24    0.1348 
       KLOC*HCRR                    1        15.79952        15.79952       0.02    0.8905 
       KLOC*JDDCm                   1      1005.14511      1005.14511       1.21    0.2721 
       GCoTim*JDDCm                 1     14715.96285     14715.96285      17.67    <.0001 
       HCRR*IDDCR                   1     23823.34169     23823.34169      28.60    <.0001 
       QPgmr*KLOC*GCoTim            1     12207.59706     12207.59706      14.66    0.0001 
       QPgmr*KLOC*IDDCR             1     10601.52352     10601.52352      12.73    0.0004 
       QPgmr*KLOC*JDDCm             1      2256.87788      2256.87788       2.71    0.0999 
       QPgmr*FDDDR*IDDCR            1       643.23098       643.23098       0.77    0.3796 
       FDDDR*IDDCR*JDDCm            1        27.59118        27.59118       0.03    0.8556 
       QPgm*KLOC*JCoT*JDDCm         1      1068.69462      1068.69462       1.28    0.2575 
       QPgm*FDDD*MDDC*JDDCm         1      1582.06926      1582.06926       1.90    0.1683 
 
                                                       Standard 
          Parameter                    Estimate           Error    t Value    Pr > |t| 
 
          Intercept                 7.973375875      3.15757595       2.53      0.0117 
          QPgmr                     0.479810943      0.04951730       9.69      <.0001 
          KLOC                     -1.386723274     25.37891977      -0.05      0.9564 
          DDsTim                   -0.008317739      0.08287461      -0.10      0.9201 
          EDRR                      0.226689473      0.39552292       0.57      0.5666 
          FDDDR                    -0.034871453      0.11601301      -0.30      0.7638 
          GCoTim                   -0.182261586      0.16214463      -1.12      0.2611 
          HCRR                     -1.513544439      0.85115385      -1.78      0.0755 
          IDDCR                    -0.170372151      0.08846033      -1.93      0.0543 
          JDDCm                     0.131947725      0.04489017       2.94      0.0033 
          QPgmr*KLOC               -1.151139924      0.49506388      -2.33      0.0202 
          QPgmr*GCoTim              0.014093616      0.00219346       6.43      <.0001 
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          QPgmr*HCRR               -0.030034076      0.00912683      -3.29      0.0010 
          QPgmr*IDDCR              -0.004512944      0.00102185      -4.42      <.0001 
          QPgmr*JDDCm               0.000688872      0.00048120       1.43      0.1524 
          KLOC*GCoTim               3.171703120      2.11965828       1.50      0.1348 
          KLOC*HCRR                 0.625553189      4.54186925       0.14      0.8905 
          KLOC*JDDCm                0.636513461      0.57940938       1.10      0.2721 
          GCoTim*JDDCm             -0.003043093      0.00072396      -4.20      <.0001 
          HCRR*IDDCR                0.046247340      0.00864724       5.35      <.0001 
          QPgmr*KLOC*GCoTim        -0.133896891      0.03497419      -3.83      0.0001 
          QPgmr*KLOC*IDDCR          0.023838214      0.00668162       3.57      0.0004 
          QPgmr*KLOC*JDDCm         -0.015629781      0.00949492      -1.65      0.0999 
          QPgmr*FDDDR*IDDCR         0.000029568      0.00003365       0.88      0.3796 
          FDDDR*IDDCR*JDDCm        -0.000014421      0.00007923      -0.18      0.8556 
          QPgm*KLOC*JCoT*JDDCm      0.000441760      0.00038999       1.13      0.2575 
          QPgm*FDDD*MDDC*JDDCm      0.000001175      0.00000085       1.38      0.1683 

 

C.3  COMPILE REGRESSION MODEL FOR (PSPB, C++, OUTLIERS) 

                                        The GLM Procedure 
 
                                  Number of observations    920 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        9      471233.364       52359.263      65.74    <.0001 
 
       Error                      910      724775.121         796.456 
 
       Corrected Total            919     1196008.485 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.394005      100.3984      28.22156      28.10957 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     238533.8340     238533.8340     299.49    <.0001 
       KLOC                         1      44555.5687      44555.5687      55.94    <.0001 
       DDsTim                       1       7682.2529       7682.2529       9.65    0.0020 
       EDRR                         1      24024.9210      24024.9210      30.16    <.0001 
       FDDDR                        1      13552.0192      13552.0192      17.02    <.0001 
       GCoTim                       1      90794.5485      90794.5485     114.00    <.0001 
       HCRR                         1        190.3839        190.3839       0.24    0.6250 
       IDDCR                        1         43.8565         43.8565       0.06    0.8145 
       JDDCm                        1      51855.9793      51855.9793      65.11    <.0001 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     107367.6841     107367.6841     134.81    <.0001 
       KLOC                         1       4073.5762       4073.5762       5.11    0.0240 
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       DDsTim                       1        121.9735        121.9735       0.15    0.6956 
       EDRR                         1       6291.8791       6291.8791       7.90    0.0051 
       FDDDR                        1       8402.7255       8402.7255      10.55    0.0012 
       GCoTim                       1      54793.2298      54793.2298      68.80    <.0001 
       HCRR                         1         47.6208         47.6208       0.06    0.8069 
       IDDCR                        1          5.6243          5.6243       0.01    0.9330 
       JDDCm                        1      51855.9793      51855.9793      65.11    <.0001 
 
   
                                                Standard 
                Parameter         Estimate           Error    t Value    Pr > |t| 
 
                Intercept      -3.53317911      2.66397493      -1.33      0.1851 
                QPgmr           0.36097262      0.03108983      11.61      <.0001 
                KLOC          -22.36150120      9.88767023      -2.26      0.0240 
                DDsTim          0.04269482      0.10909968       0.39      0.6956 
                EDRR           -1.89818773      0.67535158      -2.81      0.0051 
                FDDDR           0.28872659      0.08889097       3.25      0.0012 
                GCoTim          0.97060218      0.11701964       8.29      <.0001 
                HCRR            0.15921811      0.65114121       0.24      0.8069 
                IDDCR           0.00547345      0.06513400       0.08      0.9330 
                JDDCm           0.16593590      0.02056468       8.07      <.0001 

 

C.4  COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++, 
OUTLIERS) 

                                        The GLM Procedure 
 
                                  Number of observations    920 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       26      682000.223       26230.778      45.57    <.0001 
 
       Error                      893      514008.262         575.597 
 
       Corrected Total            919     1196008.485 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.570230      85.35032      23.99161      28.10957 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1     238533.8340     238533.8340     414.41    <.0001 
       KLOC                         1      44555.5687      44555.5687      77.41    <.0001 
       DDsTim                       1       7682.2529       7682.2529      13.35    0.0003 
       EDRR                         1      24024.9210      24024.9210      41.74    <.0001 
       FDDDR                        1      13552.0192      13552.0192      23.54    <.0001 
       GCoTim                       1      90794.5485      90794.5485     157.74    <.0001 



 

362 

       HCRR                         1        190.3839        190.3839       0.33    0.5654 
       IDDCR                        1         43.8565         43.8565       0.08    0.7826 
       JDDCm                        1      51855.9793      51855.9793      90.09    <.0001 
       QPgmr*KLOC                   1      51322.5655      51322.5655      89.16    <.0001 
       QPgmr*GCoTim                 1      24191.3326      24191.3326      42.03    <.0001 
       QPgmr*HCRR                   1      14897.8947      14897.8947      25.88    <.0001 
       QPgmr*IDDCR                  1          2.0072          2.0072       0.00    0.9529 
       QPgmr*JDDCm                  1      41360.5445      41360.5445      71.86    <.0001 
       KLOC*GCoTim                  1       6761.5254       6761.5254      11.75    0.0006 
       KLOC*HCRR                    1       8995.3028       8995.3028      15.63    <.0001 
       KLOC*JDDCm                   1        475.7257        475.7257       0.83    0.3635 
       GCoTim*JDDCm                 1         37.1526         37.1526       0.06    0.7995 
       HCRR*IDDCR                   1      17943.5591      17943.5591      31.17    <.0001 
       QPgmr*KLOC*GCoTim            1      12450.4681      12450.4681      21.63    <.0001 
       QPgmr*KLOC*IDDCR             1       1528.4804       1528.4804       2.66    0.1035 
       QPgmr*KLOC*JDDCm             1      22181.9771      22181.9771      38.54    <.0001 
       QPgmr*FDDDR*IDDCR            1        887.7710        887.7710       1.54    0.2146 
       FDDDR*IDDCR*JDDCm            1       5430.3733       5430.3733       9.43    0.0022 
       QPgm*KLOC*JCoT*JDDCm         1       2051.6648       2051.6648       3.56    0.0594 
       QPgm*FDDD*MDDC*JDDCm         1        248.5146        248.5146       0.43    0.5113 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       QPgmr                        1         2.34570         2.34570       0.00    0.9491 
       KLOC                         1      2485.60709      2485.60709       4.32    0.0380 
       DDsTim                       1       559.02517       559.02517       0.97    0.3246 
       EDRR                         1      2397.78772      2397.78772       4.17    0.0415 
       FDDDR                        1       174.11590       174.11590       0.30    0.5825 
       GCoTim                       1      1728.13338      1728.13338       3.00    0.0835 
       HCRR                         1       217.22489       217.22489       0.38    0.5392 
       IDDCR                        1       383.79451       383.79451       0.67    0.4144 
       JDDCm                        1     18262.74520     18262.74520      31.73    <.0001 
       QPgmr*KLOC                   1       798.51238       798.51238       1.39    0.2392 
       QPgmr*GCoTim                 1       475.77621       475.77621       0.83    0.3635 
       QPgmr*HCRR                   1       183.71623       183.71623       0.32    0.5722 
       QPgmr*IDDCR                  1       107.98822       107.98822       0.19    0.6650 
       QPgmr*JDDCm                  1     57317.88688     57317.88688      99.58    <.0001 
       KLOC*GCoTim                  1       354.14953       354.14953       0.62    0.4330 
       KLOC*HCRR                    1       193.74390       193.74390       0.34    0.5619 
       KLOC*JDDCm                   1     14494.73587     14494.73587      25.18    <.0001 
       GCoTim*JDDCm                 1       951.51233       951.51233       1.65    0.1989 
       HCRR*IDDCR                   1      4435.95996      4435.95996       7.71    0.0056 
       QPgmr*KLOC*GCoTim            1        98.68005        98.68005       0.17    0.6789 
       QPgmr*KLOC*IDDCR             1        27.96249        27.96249       0.05    0.8256 
       QPgmr*KLOC*JDDCm             1     18259.85940     18259.85940      31.72    <.0001 
       QPgmr*FDDDR*IDDCR            1      6218.99232      6218.99232      10.80    0.0011 
       FDDDR*IDDCR*JDDCm            1      1256.57645      1256.57645       2.18    0.1399 
       QPgm*KLOC*JCoT*JDDCm         1      2144.73506      2144.73506       3.73    0.0539 
       QPgm*FDDD*MDDC*JDDCm         1       248.51456       248.51456       0.43    0.5113 
 
                                                       Standard 
          Parameter                    Estimate           Error    t Value    Pr > |t| 
 
          Intercept                 20.98140979      4.51893343       4.64      <.0001 
          QPgmr                      0.00565435      0.08857398       0.06      0.9491 
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          KLOC                     -53.16460241     25.58383536      -2.08      0.0380 
          DDsTim                     0.09573212      0.09714072       0.99      0.3246 
          EDRR                      -1.20173555      0.58879331      -2.04      0.0415 
          FDDDR                      0.05746353      0.10447982       0.55      0.5825 
          GCoTim                     0.47640336      0.27494480       1.73      0.0835 
          HCRR                      -0.64644791      1.05229635      -0.61      0.5392 
          IDDCR                     -0.10499646      0.12858331      -0.82      0.4144 
          JDDCm                     -0.33948120      0.06026873      -5.63      <.0001 
          QPgmr*KLOC                 0.64567584      0.54819243       1.18      0.2392 
          QPgmr*GCoTim               0.00324878      0.00357338       0.91      0.3635 
          QPgmr*HCRR                 0.01024159      0.01812812       0.56      0.5722 
          QPgmr*IDDCR               -0.00136498      0.00315136      -0.43      0.6650 
          QPgmr*JDDCm                0.00870856      0.00087269       9.98      <.0001 
          KLOC*GCoTim               -2.07961061      2.65123370      -0.78      0.4330 
          KLOC*HCRR                 -3.39898255      5.85860518      -0.58      0.5619 
          KLOC*JDDCm                 2.36778475      0.47184177       5.02      <.0001 
          GCoTim*JDDCm               0.00179134      0.00139325       1.29      0.1989 
          HCRR*IDDCR                 0.02072646      0.00746605       2.78      0.0056 
          QPgmr*KLOC*GCoTim          0.02114498      0.05106837       0.41      0.6789 
          QPgmr*KLOC*IDDCR          -0.00274769      0.01246632      -0.22      0.8256 
          QPgmr*KLOC*JDDCm          -0.04197092      0.00745176      -5.63      <.0001 
          QPgmr*FDDDR*IDDCR         -0.00008755      0.00002664      -3.29      0.0011 
          FDDDR*IDDCR*JDDCm          0.00005846      0.00003957       1.48      0.1399 
          QPgm*KLOC*JCoT*JDDCm      -0.00055831      0.00028923      -1.93      0.0539 
          QPgm*FDDD*MDDC*JDDCm       0.00000053      0.00000080       0.66      0.5113 

 

C.5  COMPILE REGRESSION MODEL FOR (PSPB, C, NOOUTLIERS) 

                                        The GLM Procedure 
 
                                 Number of observations    1711 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        9      452568.423       50285.380      98.01    <.0001 
 
       Error                     1701      872722.394         513.064 
 
       Corrected Total           1710     1325290.817 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.341486      80.88062      22.65092      28.00538 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     176181.3310     176181.3310     343.39    <.0001 
       KLOC                         1      74495.9772      74495.9772     145.20    <.0001 
       DDsTim                       1          6.9931          6.9931       0.01    0.9071 
       EDRR                         1      69821.8671      69821.8671     136.09    <.0001 
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       FDDDR                        1        166.7246        166.7246       0.32    0.5687 
       GCoTim                       1      29555.7466      29555.7466      57.61    <.0001 
       HCCR                         1      49062.0844      49062.0844      95.63    <.0001 
       IDDCR                        1       4691.2356       4691.2356       9.14    0.0025 
       JDDCm                        1      48586.4638      48586.4638      94.70    <.0001 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     133071.1807     133071.1807     259.37    <.0001 
       KLOC                         1      23978.0737      23978.0737      46.74    <.0001 
       DDsTim                       1       1421.1501       1421.1501       2.77    0.0962 
       EDRR                         1        179.4885        179.4885       0.35    0.5543 
       FDDDR                        1       1256.3482       1256.3482       2.45    0.1178 
       GCoTim                       1       8388.2222       8388.2222      16.35    <.0001 
       HCCR                         1      16368.1461      16368.1461      31.90    <.0001 
       IDDCR                        1       3490.9815       3490.9815       6.80    0.0092 
       JDDCm                        1      48586.4638      48586.4638      94.70    <.0001 
 
                                                  Standard 
                Parameter         Estimate           Error    t Value    Pr > |t| 
 
                Intercept      17.82635277      1.56887991      11.36      <.0001 
                PgmrAb          0.23530681      0.01461095      16.10      <.0001 
                KLOC          -58.38809583      8.54088886      -6.84      <.0001 
                DDsTim          0.10919400      0.06560920       1.66      0.0962 
                EDRR           -0.18248740      0.30853214      -0.59      0.5543 
                FDDDR           0.09533294      0.06092196       1.56      0.1178 
                GCoTim          0.20144163      0.04981959       4.04      <.0001 
                HCCR           -2.03515964      0.36031691      -5.65      <.0001 
                IDDCR          -0.10433942      0.04000005      -2.61      0.0092 
                JDDCm           0.11376523      0.01169063       9.73      <.0001 

 

C.6  COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C, 
NOOUTLIERS) 

                                        The GLM Procedure 
 
                                 Number of observations    1705 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       26      544743.862       20951.687      45.39    <.0001 
 
       Error                     1678      774573.004         461.605 
 
       Corrected Total           1704     1319316.866 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.412898      77.20018      21.48499      27.83024 
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       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     185425.4955     185425.4955     401.70    <.0001 
       KLOC                         1      61462.2165      61462.2165     133.15    <.0001 
       DDsTim                       1        161.4403        161.4403       0.35    0.5543 
       EDRR                         1      80757.9448      80757.9448     174.95    <.0001 
       FDDDR                        1         31.8665         31.8665       0.07    0.7928 
       GCoTim                       1      36930.8677      36930.8677      80.01    <.0001 
       HCCR                         1      33302.2912      33302.2912      72.14    <.0001 
       IDDCR                        1       1958.1438       1958.1438       4.24    0.0396 
       JDDCm                        1      47694.7709      47694.7709     103.32    <.0001 
       PgmrAb*KLOC                  1      29181.4638      29181.4638      63.22    <.0001 
       PgmrAb*GCoTim                1      14667.0393      14667.0393      31.77    <.0001 
       PgmrAb*HCCR                  1      13804.2840      13804.2840      29.90    <.0001 
       PgmrAb*IDDCR                 1        827.4200        827.4200       1.79    0.1808 
       PgmrAb*JDDCm                 1        528.7466        528.7466       1.15    0.2847 
       KLOC*GCoTim                  1          3.1720          3.1720       0.01    0.9339 
       KLOC*HCCR                    1        111.7268        111.7268       0.24    0.6228 
       KLOC*JDDCm                   1       4266.1335       4266.1335       9.24    0.0024 
       GCoTim*JDDCm                 1       3671.6585       3671.6585       7.95    0.0049 
       HCCR*IDDCR                   1      16684.6168      16684.6168      36.14    <.0001 
       PgmrAb*KLOC*GCoTim           1       8020.8651       8020.8651      17.38    <.0001 
       PgmrAb*KLOC*IDDCR            1       4052.7452       4052.7452       8.78    0.0031 
       PgmrAb*KLOC*JDDCm            1         14.3783         14.3783       0.03    0.8599 
       PgmrAb*FDDDR*IDDCR           1        349.3723        349.3723       0.76    0.3844 
       FDDDR*IDDCR*JDDCm            1        276.3257        276.3257       0.60    0.4392 
       Pgmr*KLOC*GCoT*JDDCm         1         55.0625         55.0625       0.12    0.7299 
       Pgmr*FDDD*IDDC*JDDCm         1        503.8143        503.8143       1.09    0.2963 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     14847.13966     14847.13966      32.16    <.0001 
       KLOC                         1      1155.56996      1155.56996       2.50    0.1138 
       DDsTim                       1         3.05958         3.05958       0.01    0.9351 
       EDRR                         1         5.52283         5.52283       0.01    0.9129 
       FDDDR                        1       276.27145       276.27145       0.60    0.4393 
       GCoTim                       1       910.88752       910.88752       1.97    0.1603 
       HCCR                         1      1866.36628      1866.36628       4.04    0.0445 
       IDDCR                        1      2194.31261      2194.31261       4.75    0.0294 
       JDDCm                        1      1989.47511      1989.47511       4.31    0.0380 
       PgmrAb*KLOC                  1       662.59961       662.59961       1.44    0.2311 
       PgmrAb*GCoTim                1     14606.61658     14606.61658      31.64    <.0001 
       PgmrAb*HCCR                  1      4698.93910      4698.93910      10.18    0.0014 
       PgmrAb*IDDCR                 1      3368.61510      3368.61510       7.30    0.0070 
       PgmrAb*JDDCm                 1       159.34576       159.34576       0.35    0.5569 
       KLOC*GCoTim                  1      1785.99491      1785.99491       3.87    0.0493 
       KLOC*HCCR                    1         1.57097         1.57097       0.00    0.9535 
       KLOC*JDDCm                   1       714.90053       714.90053       1.55    0.2135 
       GCoTim*JDDCm                 1      1261.81913      1261.81913       2.73    0.0984 
       HCCR*IDDCR                   1     16403.77219     16403.77219      35.54    <.0001 
       PgmrAb*KLOC*GCoTim           1      4665.06107      4665.06107      10.11    0.0015 
       PgmrAb*KLOC*IDDCR            1      3080.17002      3080.17002       6.67    0.0099 
       PgmrAb*KLOC*JDDCm            1        11.96236        11.96236       0.03    0.8721 
       PgmrAb*FDDDR*IDDCR           1       132.32336       132.32336       0.29    0.5924 
       FDDDR*IDDCR*JDDCm            1       786.41823       786.41823       1.70    0.1920 
       Pgmr*KLOC*GCoT*JDDCm         1        43.13441        43.13441       0.09    0.7599 
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       Pgmr*FDDD*IDDC*JDDCm         1       503.81430       503.81430       1.09    0.2963 
 
                                                       Standard 
          Parameter                    Estimate           Error    t Value    Pr > |t| 
 
          Intercept                 15.83744334      2.78945475       5.68      <.0001 
          PgmrAb                     0.27624909      0.04870961       5.67      <.0001 
          KLOC                     -33.84707782     21.39233836      -1.58      0.1138 
          DDsTim                     0.00522418      0.06416854       0.08      0.9351 
          EDRR                      -0.03722814      0.34035006      -0.11      0.9129 
          FDDDR                      0.07273790      0.09402167       0.77      0.4393 
          GCoTim                    -0.20389290      0.14514595      -1.40      0.1603 
          HCCR                      -1.44779065      0.72001663      -2.01      0.0445 
          IDDCR                     -0.16878653      0.07741475      -2.18      0.0294 
          JDDCm                      0.09298733      0.04479089       2.08      0.0380 
          PgmrAb*KLOC               -0.57525338      0.48014100      -1.20      0.2311 
          PgmrAb*GCoTim              0.01382192      0.00245713       5.63      <.0001 
          PgmrAb*HCCR               -0.02929011      0.00918029      -3.19      0.0014 
          PgmrAb*IDDCR              -0.00306803      0.00113571      -2.70      0.0070 
          PgmrAb*JDDCm               0.00025176      0.00042850       0.59      0.5569 
          KLOC*GCoTim                3.62618867      1.84350996       1.97      0.0493 
          KLOC*HCCR                  0.22938806      3.93207331       0.06      0.9535 
          KLOC*JDDCm                 0.60646029      0.48732059       1.24      0.2135 
          GCoTim*JDDCm              -0.00181884      0.00110009      -1.65      0.0984 
          HCCR*IDDCR                 0.04042283      0.00678094       5.96      <.0001 
          PgmrAb*KLOC*GCoTim        -0.12188286      0.03833974      -3.18      0.0015 
          PgmrAb*KLOC*IDDCR          0.02240647      0.00867404       2.58      0.0099 
          PgmrAb*KLOC*JDDCm         -0.00146798      0.00911897      -0.16      0.8721 
          PgmrAb*FDDDR*IDDCR         0.00001472      0.00002749       0.54      0.5924 
          FDDDR*IDDCR*JDDCm         -0.00013476      0.00010325      -1.31      0.1920 
          Pgmr*KLOC*GCoT*JDDCm      -0.00012705      0.00041562      -0.31      0.7599 
          Pgmr*FDDD*IDDC*JDDCm       0.00000166      0.00000158       1.04      0.2963 

 

C.7  COMPILE REGRESSION MODEL FOR (PSPB, C++, NOOUTLIERS) 

                                        The GLM Procedure 
 
                                  Number of observations    892 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        9     166539.5510      18504.3946      42.00    <.0001 
 
       Error                      882     388579.1474        440.5659 
 
       Corrected Total            891     555118.6984 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.300007      86.48124      20.98966      24.27077 
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       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     59813.03423     59813.03423     135.76    <.0001 
       KLOC                         1     22833.39692     22833.39692      51.83    <.0001 
       DDsTim                       1       669.41692       669.41692       1.52    0.2180 
       EDRR                         1     43236.50622     43236.50622      98.14    <.0001 
       FDDDR                        1        30.36474        30.36474       0.07    0.7930 
       GCoTim                       1     26002.84200     26002.84200      59.02    <.0001 
       HCCR                         1      3557.68114      3557.68114       8.08    0.0046 
       IDDCR                        1       185.92645       185.92645       0.42    0.5161 
       JDDCm                        1     10210.38237     10210.38237      23.18    <.0001 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     38822.38725     38822.38725      88.12    <.0001 
       KLOC                         1      4970.27357      4970.27357      11.28    0.0008 
       DDsTim                       1       364.96204       364.96204       0.83    0.3630 
       EDRR                         1      3153.10340      3153.10340       7.16    0.0076 
       FDDDR                        1       309.97469       309.97469       0.70    0.4018 
       GCoTim                       1     18738.77161     18738.77161      42.53    <.0001 
       HCCR                         1       778.22104       778.22104       1.77    0.1842 
       IDDCR                        1       222.10555       222.10555       0.50    0.4779 
       JDDCm                        1     10210.38237     10210.38237      23.18    <.0001 
 
                                                  Standard 
                Parameter         Estimate           Error    t Value    Pr > |t| 
 
                Intercept       9.82921216      2.11768433       4.64      <.0001 
                PgmrAb          0.23336474      0.02485991       9.39      <.0001 
                KLOC          -25.71253595      7.65526480      -3.36      0.0008 
                DDsTim          0.08094949      0.08893971       0.91      0.3630 
                EDRR           -1.58618880      0.59291334      -2.68      0.0076 
                FDDDR           0.07282847      0.08682475       0.84      0.4018 
                GCoTim          0.60775135      0.09318818       6.52      <.0001 
                HCCR           -0.72865909      0.54824964      -1.33      0.1842 
                IDDCR          -0.03861900      0.05439096      -0.71      0.4779 
                JDDCm           0.08032920      0.01668622       4.81      <.0001 

 

C.8  COMPILE REGRESSION MODEL WITH INTERACTIONS FOR (PSPB, C++, 
NOOUTLIERS) 

                                        The GLM Procedure 
 
                                  Number of observations    884 
 
Dependent Variable: TDDTs   DD in Testing (defects/KLOC) 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       26     291356.2288      11206.0088      28.51    <.0001 
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       Error                      857     336902.0468        393.1179 
 
       Corrected Total            883     628258.2756 
 
                       R-Square     Coeff Var      Root MSE    TDDTs Mean 
 
                       0.463752      81.33140      19.82720      24.37829 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1     104113.3820     104113.3820     264.84    <.0001 
       KLOC                         1      23194.4445      23194.4445      59.00    <.0001 
       DDsTim                       1         48.0820         48.0820       0.12    0.7266 
       EDRR                         1      35159.7892      35159.7892      89.44    <.0001 
       FDDDR                        1        579.4338        579.4338       1.47    0.2251 
       GCoTim                       1      28544.7235      28544.7235      72.61    <.0001 
       HCCR                         1       3539.5178       3539.5178       9.00    0.0028 
       IDDCR                        1         45.3275         45.3275       0.12    0.7343 
       JDDCm                        1      16371.5002      16371.5002      41.65    <.0001 
       PgmrAb*KLOC                  1      11464.4237      11464.4237      29.16    <.0001 
       PgmrAb*GCoTim                1      23023.9475      23023.9475      58.57    <.0001 
       PgmrAb*HCCR                  1       3665.4414       3665.4414       9.32    0.0023 
       PgmrAb*IDDCR                 1        292.3120        292.3120       0.74    0.3888 
       PgmrAb*JDDCm                 1      11335.6172      11335.6172      28.84    <.0001 
       KLOC*GCoTim                  1         20.4778         20.4778       0.05    0.8195 
       KLOC*HCCR                    1       1409.1021       1409.1021       3.58    0.0587 
       KLOC*JDDCm                   1        630.0462        630.0462       1.60    0.2059 
       GCoTim*JDDCm                 1       3393.8182       3393.8182       8.63    0.0034 
       HCCR*IDDCR                   1       5137.2858       5137.2858      13.07    0.0003 
       PgmrAb*KLOC*GCoTim           1      14556.7058      14556.7058      37.03    <.0001 
       PgmrAb*KLOC*IDDCR            1        276.8374        276.8374       0.70    0.4016 
       PgmrAb*KLOC*JDDCm            1       1425.5066       1425.5066       3.63    0.0572 
       PgmrAb*FDDDR*IDDCR           1         17.3264         17.3264       0.04    0.8338 
       FDDDR*IDDCR*JDDCm            1       1162.2406       1162.2406       2.96    0.0859 
       Pgmr*KLOC*GCoT*JDDCm         1         17.0194         17.0194       0.04    0.8352 
       Pgmr*FDDD*IDDC*JDDCm         1       1931.9201       1931.9201       4.91    0.0269 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       PgmrAb                       1        66.83404        66.83404       0.17    0.6802 
       KLOC                         1      8367.92833      8367.92833      21.29    <.0001 
       DDsTim                       1       306.58851       306.58851       0.78    0.3774 
       EDRR                         1       982.62619       982.62619       2.50    0.1142 
       FDDDR                        1         0.26383         0.26383       0.00    0.9793 
       GCoTim                       1       393.04726       393.04726       1.00    0.3176 
       HCCR                         1      1155.18863      1155.18863       2.94    0.0869 
       IDDCR                        1       872.49526       872.49526       2.22    0.1367 
       JDDCm                        1        79.19711        79.19711       0.20    0.6537 
       PgmrAb*KLOC                  1      5723.17336      5723.17336      14.56    0.0001 
       PgmrAb*GCoTim                1     13277.28025     13277.28025      33.77    <.0001 
       PgmrAb*HCCR                  1       290.58441       290.58441       0.74    0.3902 
       PgmrAb*IDDCR                 1       105.87516       105.87516       0.27    0.6039 
       PgmrAb*JDDCm                 1      5924.65508      5924.65508      15.07    0.0001 
       KLOC*GCoTim                  1      3797.69892      3797.69892       9.66    0.0019 
       KLOC*HCCR                    1       605.02487       605.02487       1.54    0.2151 
       KLOC*JDDCm                   1      1734.51733      1734.51733       4.41    0.0360 
       GCoTim*JDDCm                 1      3327.95105      3327.95105       8.47    0.0037 
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       HCCR*IDDCR                   1      3918.57360      3918.57360       9.97    0.0016 
       PgmrAb*KLOC*GCoTim           1      8390.17752      8390.17752      21.34    <.0001 
       PgmrAb*KLOC*IDDCR            1       178.56869       178.56869       0.45    0.5005 
       PgmrAb*KLOC*JDDCm            1      1273.15584      1273.15584       3.24    0.0723 
       PgmrAb*FDDDR*IDDCR           1        39.01813        39.01813       0.10    0.7528 
       FDDDR*IDDCR*JDDCm            1      2745.96740      2745.96740       6.99    0.0084 
       Pgmr*KLOC*GCoT*JDDCm         1        11.41940        11.41940       0.03    0.8647 
       Pgmr*FDDD*IDDC*JDDCm         1      1931.92013      1931.92013       4.91    0.0269 
 
                                                       Standard 
          Parameter                    Estimate           Error    t Value    Pr > |t| 
 
          Intercept                  22.3530181      4.21267417       5.31      <.0001 
          PgmrAb                     -0.0342946      0.08317424      -0.41      0.6802 
          KLOC                     -111.5722083     24.18290483      -4.61      <.0001 
          DDsTim                      0.0794410      0.08995561       0.88      0.3774 
          EDRR                       -0.8336760      0.52730820      -1.58      0.1142 
          FDDDR                      -0.0028817      0.11123687      -0.03      0.9793 
          GCoTim                     -0.2815211      0.28154644      -1.00      0.3176 
          HCCR                       -1.7026238      0.99323876      -1.71      0.0869 
          IDDCR                      -0.1791328      0.12024167      -1.49      0.1367 
          JDDCm                      -0.0294056      0.06551438      -0.45      0.6537 
          PgmrAb*KLOC                 1.9631478      0.51451253       3.82      0.0001 
          PgmrAb*GCoTim               0.0241036      0.00414753       5.81      <.0001 
          PgmrAb*HCCR                -0.0146178      0.01700232      -0.86      0.3902 
          PgmrAb*IDDCR                0.0015358      0.00295939       0.52      0.6039 
          PgmrAb*JDDCm                0.0038903      0.00100211       3.88      0.0001 
          KLOC*GCoTim                 8.1514228      2.62261517       3.11      0.0019 
          KLOC*HCCR                   7.0997841      5.72294990       1.24      0.2151 
          KLOC*JDDCm                  1.2185559      0.58011962       2.10      0.0360 
          GCoTim*JDDCm               -0.0061636      0.00211841      -2.91      0.0037 
          HCCR*IDDCR                  0.0212104      0.00671810       3.16      0.0016 
          PgmrAb*KLOC*GCoTim         -0.2424967      0.05249061      -4.62      <.0001 
          PgmrAb*KLOC*IDDCR          -0.0112783      0.01673406      -0.67      0.5005 
          PgmrAb*KLOC*JDDCm          -0.0238445      0.01324976      -1.80      0.0723 
          PgmrAb*FDDDR*IDDCR          0.0000178      0.00005653       0.32      0.7528 
          FDDDR*IDDCR*JDDCm           0.0002259      0.00008548       2.64      0.0084 
          Pgmr*KLOC*GCoT*JDDCm        0.0000893      0.00052420       0.17      0.8647 
          Pgmr*FDDD*IDDC*JDDCm       -0.0000047      0.00000210      -2.22      0.0269 

 

C.9  COMPILE MIXED MODELS FOR (PSPB, C, OUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                      9 
                               Columns in Z                      0 
                               Subjects                        197 
                               Max Obs Per Subject              10 
                               Observations Used              1758 
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                               Observations Not Used             0 
                               Total Observations             1758 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      6054.96563064 
                           1              2      5738.13230271      0.00060339 
                           2              1      5737.30657788      0.00001357 
                           3              1      5737.28912193      0.00000001 
                           4              1      5737.28910593      0.00000000 
 
                                   Convergence criteria met. 
 
                             Estimated R Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      2.1682      0.5629      0.4006      0.3713      0.4196      0.3628      0.3058 
       2      0.5629      2.0100      0.5104      0.7049      0.5652      0.3164      0.3287 
       3      0.4006      0.5104      1.3926      0.4115      0.2034      0.2168      0.1530 
       4      0.3713      0.7049      0.4115      2.4451      0.5020      0.3014      0.2416 
       5      0.4196      0.5652      0.2034      0.5020      1.6398      0.1888      0.3959 
       6      0.3628      0.3164      0.2168      0.3014      0.1888      0.8740      0.3197 
       7      0.3058      0.3287      0.1530      0.2416      0.3959      0.3197      2.2193 
 
                       Estimated R Correlation Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      1.0000      0.2696      0.2305      0.1613      0.2225      0.2636      0.1394 
       2      0.2696      1.0000      0.3051      0.3180      0.3113      0.2387      0.1556 
       3      0.2305      0.3051      1.0000      0.2230      0.1346      0.1965     0.08703 
       4      0.1613      0.3180      0.2230      1.0000      0.2507      0.2062      0.1037 
       5      0.2225      0.3113      0.1346      0.2507      1.0000      0.1577      0.2076 
       6      0.2636      0.2387      0.1965      0.2062      0.1577      1.0000      0.2295 
       7      0.1394      0.1556     0.08703      0.1037      0.2076      0.2295      1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      2.1682 
                                UN(2,1)       Student      0.5629 
                                UN(2,2)       Student      2.0100 
                                UN(3,1)       Student      0.4006 
                                UN(3,2)       Student      0.5104 
                                UN(3,3)       Student      1.3926 
                                UN(4,1)       Student      0.3713 
                                UN(4,2)       Student      0.7049 
                                UN(4,3)       Student      0.4115 
                                UN(4,4)       Student      2.4451 
                                UN(5,1)       Student      0.4196 
                                UN(5,2)       Student      0.5652 
                                UN(5,3)       Student      0.2034 
                                UN(5,4)       Student      0.5020 
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                                UN(5,5)       Student      1.6398 
                                UN(6,1)       Student      0.3628 
                                UN(6,2)       Student      0.3164 
                                UN(6,3)       Student      0.2168 
                                UN(6,4)       Student      0.3014 
                                UN(6,5)       Student      0.1888 
                                UN(6,6)       Student      0.8740 
                                UN(7,1)       Student      0.3058 
                                UN(7,2)       Student      0.3287 
                                UN(7,3)       Student      0.1530 
                                UN(7,4)       Student      0.2416 
                                UN(7,5)       Student      0.3959 
                                UN(7,6)       Student      0.3197 
                                UN(7,7)       Student      2.2193 
                                UN(8,1)       Student      0.1732 
                                UN(8,2)       Student     0.06235 
                                UN(8,3)       Student      0.1473 
                                UN(8,4)       Student      0.4334 
                                UN(8,5)       Student     0.09947 
                                UN(8,6)       Student      0.1502 
                                UN(8,7)       Student      0.5163 
                                UN(8,8)       Student      2.3354 
                                UN(9,1)       Student      0.4035 
                                UN(9,2)       Student     0.05281 
                                UN(9,3)       Student      0.3657 
                                UN(9,4)       Student     0.09652 
                                UN(9,5)       Student      0.2284 
                                UN(9,6)       Student      0.5841 
                                UN(9,7)       Student      0.5218 
                                UN(9,8)       Student      0.5944 
                                UN(9,9)       Student      1.6218 
                                UN(10,1)      Student      0.4895 
                                UN(10,2)      Student     0.08354 
                                UN(10,3)      Student      0.1559 
                                UN(10,4)      Student      0.3676 
                                UN(10,5)      Student      0.2044 
                                UN(10,6)      Student      0.4573 
                                UN(10,7)      Student      0.4787 
                                UN(10,8)      Student      0.3149 
                                UN(10,9)      Student      0.5715 
                                UN(10,10)     Student      1.3903 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          5737.3 
                              AIC (smaller is better)        5847.3 
                              AICC (smaller is better)       5850.9 
                              BIC (smaller is better)        6027.9 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        317.68          <.0001 
 



 

372 

                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept      1.0056      0.1789     880       5.62      <.0001 
                KLnKLOC      -0.05516     0.05128     731      -1.08      0.2824 
                DLnDsTim       0.1556     0.04503     947       3.46      0.0006 
                ELnDRR       -0.09745     0.06437     798      -1.51      0.1305 
                FLnDDDR        0.1226     0.03751     584       3.27      0.0011 
                GLnCoTim       0.2766     0.06317    1002       4.38      <.0001 
                HLnCRR        -0.1935     0.06307     796      -3.07      0.0022 
                ILnDDCR      -0.00297     0.03888     613      -0.08      0.9391 
                JLnDDCm        0.1063     0.02273    1494       4.68      <.0001 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         KLnKLOC         1     731       1.16    0.2824 
                         DLnDsTim        1     947      11.94    0.0006 
                         ELnDRR          1     798       2.29    0.1305 
                         FLnDDDR         1     584      10.68    0.0011 
                         GLnCoTim        1    1002      19.17    <.0001 
                         HLnCRR          1     796       9.41    0.0022 
                         ILnDDCR         1     613       0.01    0.9391 
                         JLnDDCm         1    1494      21.87    <.0001 

 

C.10  COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, 
OUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                     15 
                               Columns in Z                      0 
                               Subjects                        197 
                               Max Obs Per Subject              10 
                               Observations Used              1758 
                               Observations Not Used             0 
                               Total Observations             1758 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      6054.83902591 
                           1              2      5731.82809085      0.00101888 
                           2              1      5730.39527631      0.00004449 
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                           3              1      5730.33699984      0.00000015 
                           4              1      5730.33680973      0.00000000 
 
                                   Convergence criteria met. 
 
                             Estimated R Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      2.1373      0.5550      0.4163      0.3732      0.4358      0.3602      0.3421 
       2      0.5550      2.0284      0.4974      0.7213      0.5793      0.3225      0.3320 
       3      0.4163      0.4974      1.3148      0.3689      0.2319      0.2284      0.1491 
       4      0.3732      0.7213      0.3689      2.4432      0.5253      0.3254      0.2952 
       5      0.4358      0.5793      0.2319      0.5253      1.6055      0.1945      0.4022 
       6      0.3602      0.3225      0.2284      0.3254      0.1945      0.8514      0.2894 
       7      0.3421      0.3320      0.1491      0.2952      0.4022      0.2894      2.2507 
 
                       Estimated R Correlation Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      1.0000      0.2665      0.2483      0.1633      0.2353      0.2670      0.1560 
       2      0.2665      1.0000      0.3046      0.3240      0.3210      0.2454      0.1554 
       3      0.2483      0.3046      1.0000      0.2058      0.1596      0.2159     0.08669 
       4      0.1633      0.3240      0.2058      1.0000      0.2652      0.2256      0.1259 
       5      0.2353      0.3210      0.1596      0.2652      1.0000      0.1663      0.2116 
       6      0.2670      0.2454      0.2159      0.2256      0.1663      1.0000      0.2090 
       7      0.1560      0.1554     0.08669      0.1259      0.2116      0.2090      1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      2.1373 
                                UN(2,1)       Student      0.5550 
                                UN(2,2)       Student      2.0284 
                                UN(3,1)       Student      0.4163 
                                UN(3,2)       Student      0.4974 
                                UN(3,3)       Student      1.3148 
                                UN(4,1)       Student      0.3732 
                                UN(4,2)       Student      0.7213 
                                UN(4,3)       Student      0.3689 
                                UN(4,4)       Student      2.4432 
                                UN(5,1)       Student      0.4358 
                                UN(5,2)       Student      0.5793 
                                UN(5,3)       Student      0.2319 
                                UN(5,4)       Student      0.5253 
                                UN(5,5)       Student      1.6055 
                                UN(6,1)       Student      0.3602 
                                UN(6,2)       Student      0.3225 
                                UN(6,3)       Student      0.2284 
                                UN(6,4)       Student      0.3254 
                                UN(6,5)       Student      0.1945 
                                UN(6,6)       Student      0.8514 
                                UN(7,1)       Student      0.3421 
                                UN(7,2)       Student      0.3320 
                                UN(7,3)       Student      0.1491 
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                                UN(7,4)       Student      0.2952 
                                UN(7,5)       Student      0.4022 
                                UN(7,6)       Student      0.2894 
                                UN(7,7)       Student      2.2507 
                                UN(8,1)       Student      0.2295 
                                UN(8,2)       Student     0.04714 
                                UN(8,3)       Student      0.1716 
                                UN(8,4)       Student      0.4935 
                                UN(8,5)       Student      0.1099 
                                UN(8,6)       Student      0.1350 
                                UN(8,7)       Student      0.4639 
                                UN(8,8)       Student      2.3588 
                                UN(9,1)       Student      0.3710 
                                UN(9,2)       Student     0.03693 
                                UN(9,3)       Student      0.3859 
                                UN(9,4)       Student     0.06697 
                                UN(9,5)       Student      0.2244 
                                UN(9,6)       Student      0.5248 
                                UN(9,7)       Student      0.4552 
                                UN(9,8)       Student      0.5941 
                                UN(9,9)       Student      1.5354 
                                UN(10,1)      Student      0.4509 
                                UN(10,2)      Student     0.09155 
                                UN(10,3)      Student      0.1330 
                                UN(10,4)      Student      0.3165 
                                UN(10,5)      Student      0.1958 
                                UN(10,6)      Student      0.4833 
                                UN(10,7)      Student      0.5097 
                                UN(10,8)      Student      0.3219 
                                UN(10,9)      Student      0.5596 
                                UN(10,10)     Student      1.3669 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          5730.3 
                              AIC (smaller is better)        5840.3 
                              AICC (smaller is better)       5844.0 
                              BIC (smaller is better)        6020.9 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        324.50          <.0001 
 
                                   Solution for Fixed Effects 
 
                                               Standard 
           Effect                  Estimate       Error      DF    t Value    Pr > |t| 
 
           Intercept                 1.4351      0.4364     933       3.29      0.0010 
           KLnKLOC                  -0.2160      0.1462     996      -1.48      0.1398 
           DLnDsTim                -0.02944      0.1396     813      -0.21      0.8331 
           ELnDRR                   -0.3930      0.1268     575      -3.10      0.0020 
           FLnDDDR                  -0.1812      0.1280     451      -1.42      0.1576 
           GLnCoTim                -0.05378      0.1221    1097      -0.44      0.6596 
           HLnCRR                   -0.2407     0.06493     788      -3.71      0.0002 
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           ILnDDCR                   0.5272      0.1230     531       4.29      <.0001 
           JLnDDCm                  -0.1168     0.08290    1229      -1.41      0.1589 
           KLnKLOC*DLnDsTim        -0.06684     0.05204     945      -1.28      0.1993 
           KLnKLOC*ELnDRR           -0.1322     0.04389     623      -3.01      0.0027 
           KLnKLOC*FLnDDDR          -0.1323     0.05269     527      -2.51      0.0123 
           KLnKLOC*ILnDDCR           0.2475     0.05050     721       4.90      <.0001 
           GLnCoTim*JLnDDCm         0.08671     0.03190    1128       2.72      0.0067 
           KLnK*GLnC*HLnC*ILnDD    -0.01066    0.003645     664      -2.93      0.0036 
 
                                  Type 3 Tests of Fixed Effects 
 
                                             Num     Den 
                    Effect                    DF      DF    F Value    Pr > F 
 
                    KLnKLOC                    1     996       2.18    0.1398 
                    DLnDsTim                   1     813       0.04    0.8331 
                    ELnDRR                     1     575       9.60    0.0020 
                    FLnDDDR                    1     451       2.00    0.1576 
                    GLnCoTim                   1    1097       0.19    0.6596 
                    HLnCRR                     1     788      13.74    0.0002 
                    ILnDDCR                    1     531      18.37    <.0001 
                    JLnDDCm                    1    1229       1.99    0.1589 
                    KLnKLOC*DLnDsTim           1     945       1.65    0.1993 
                    KLnKLOC*ELnDRR             1     623       9.07    0.0027 
                    KLnKLOC*FLnDDDR            1     527       6.30    0.0123 
                    KLnKLOC*ILnDDCR            1     721      24.02    <.0001 
                    GLnCoTim*JLnDDCm           1    1128       7.39    0.0067 
                    KLnK*GLnC*HLnC*ILnDD       1     664       8.56    0.0036 

 

C.11  COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, 
NOOUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                      9 
                               Columns in Z                      0 
                               Subjects                        197 
                               Max Obs Per Subject              10 
                               Observations Used              1711 
                               Observations Not Used             0 
                               Total Observations             1711 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      5839.53298935 
                           1              2      5536.64757938      0.00102614 
                           2              1      5535.28486200      0.00003602 
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                           3              1      5535.24020277      0.00000008 
                           4              1      5535.24010328      0.00000000 
 
                                   Convergence criteria met. 
 
                             Estimated R Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      2.1033      0.5066      0.3211      0.3134      0.3842      0.3729      0.3071 
       2      0.5066      1.9528      0.3270      0.7759      0.5939      0.3554      0.3479 
       3      0.3211      0.3270      1.1972      0.2729      0.2339      0.1394     0.02399 
       4      0.3134      0.7759      0.2729      2.4203      0.5248      0.3515      0.1612 
       5      0.3842      0.5939      0.2339      0.5248      1.6156      0.1965      0.3254 
       6      0.3729      0.3554      0.1394      0.3515      0.1965      0.8853      0.3075 
       7      0.3071      0.3479     0.02399      0.1612      0.3254      0.3075      2.1271 
 
                       Estimated R Correlation Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      1.0000      0.2500      0.2023      0.1389      0.2084      0.2733      0.1452 
       2      0.2500      1.0000      0.2139      0.3569      0.3344      0.2703      0.1707 
       3      0.2023      0.2139      1.0000      0.1603      0.1682      0.1354     0.01504 
       4      0.1389      0.3569      0.1603      1.0000      0.2654      0.2401     0.07106 
       5      0.2084      0.3344      0.1682      0.2654      1.0000      0.1643      0.1755 
       6      0.2733      0.2703      0.1354      0.2401      0.1643      1.0000      0.2241 
       7      0.1452      0.1707     0.01504     0.07106      0.1755      0.2241      1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      2.1033 
                                UN(2,1)       Student      0.5066 
                                UN(2,2)       Student      1.9528 
                                UN(3,1)       Student      0.3211 
                                UN(3,2)       Student      0.3270 
                                UN(3,3)       Student      1.1972 
                                UN(4,1)       Student      0.3134 
                                UN(4,2)       Student      0.7759 
                                UN(4,3)       Student      0.2729 
                                UN(4,4)       Student      2.4203 
                                UN(5,1)       Student      0.3842 
                                UN(5,2)       Student      0.5939 
                                UN(5,3)       Student      0.2339 
                                UN(5,4)       Student      0.5248 
                                UN(5,5)       Student      1.6156 
                                UN(6,1)       Student      0.3729 
                                UN(6,2)       Student      0.3554 
                                UN(6,3)       Student      0.1394 
                                UN(6,4)       Student      0.3515 
                                UN(6,5)       Student      0.1965 
                                UN(6,6)       Student      0.8853 
                                UN(7,1)       Student      0.3071 
                                UN(7,2)       Student      0.3479 
                                UN(7,3)       Student     0.02399 
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                                UN(7,4)       Student      0.1612 
                                UN(7,5)       Student      0.3254 
                                UN(7,6)       Student      0.3075 
                                UN(7,7)       Student      2.1271 
                                UN(8,1)       Student      0.1918 
                                UN(8,2)       Student     0.08647 
                                UN(8,3)       Student      0.1226 
                                UN(8,4)       Student      0.3873 
                                UN(8,5)       Student     0.09661 
                                UN(8,6)       Student      0.1069 
                                UN(8,7)       Student      0.5222 
                                UN(8,8)       Student      2.2734 
                                UN(9,1)       Student      0.3945 
                                UN(9,2)       Student      0.1547 
                                UN(9,3)       Student      0.2853 
                                UN(9,4)       Student      0.1376 
                                UN(9,5)       Student      0.1896 
                                UN(9,6)       Student      0.5897 
                                UN(9,7)       Student      0.5051 
                                UN(9,8)       Student      0.5793 
                                UN(9,9)       Student      1.5748 
                                UN(10,1)      Student      0.5176 
                                UN(10,2)      Student      0.1200 
                                UN(10,3)      Student     0.08563 
                                UN(10,4)      Student      0.3700 
                                UN(10,5)      Student      0.2303 
                                UN(10,6)      Student      0.4920 
                                UN(10,7)      Student      0.5105 
                                UN(10,8)      Student      0.2990 
                                UN(10,9)      Student      0.5998 
                                UN(10,10)     Student      1.4386 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          5535.2 
                              AIC (smaller is better)        5645.2 
                              AICC (smaller is better)       5649.0 
                              BIC (smaller is better)        5825.8 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        304.29          <.0001 
 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept      1.3671      0.1824     888       7.50      <.0001 
                KLnKLOC       0.02557     0.05130     732       0.50      0.6184 
                DLnDsTim       0.1319     0.04511     932       2.92      0.0036 
                ELnDRR       -0.06354     0.06572     798      -0.97      0.3339 
                FLnDDDR        0.1114     0.03790     587       2.94      0.0034 
                GLnCoTim       0.2263     0.06315     929       3.58      0.0004 
                HLnCRR        -0.2120     0.06377     791      -3.33      0.0009 
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                ILnDDCR      -0.02155     0.03887     603      -0.55      0.5795 
                JLnDDCm        0.1183     0.02285    1426       5.18      <.0001 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         KLnKLOC         1     732       0.25    0.6184 
                         DLnDsTim        1     932       8.54    0.0036 
                         ELnDRR          1     798       0.93    0.3339 
                         FLnDDDR         1     587       8.64    0.0034 
                         GLnCoTim        1     929      12.84    0.0004 
                         HLnCRR          1     791      11.06    0.0009 
                         ILnDDCR         1     603       0.31    0.5795 
                         JLnDDCm         1    1426      26.79    <.0001 

 

C.12  COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C, 
NOOUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                     15 
                               Columns in Z                      0 
                               Subjects                        197 
                               Max Obs Per Subject              10 
                               Observations Used              1705 
                               Observations Not Used             0 
                               Total Observations             1705 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      5824.64410745 
                           1              2      5520.98269895      0.00090660 
                           2              1      5519.78039793      0.00002943 
                           3              1      5519.74387433      0.00000006 
                           4              1      5519.74380373      0.00000000 
 
                                   Convergence criteria met. 
 
                             Estimated R Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      2.0908      0.5079      0.3893      0.3106      0.3989      0.3625      0.3263 
       2      0.5079      1.9523      0.3283      0.7708      0.5939      0.3544      0.3942 
       3      0.3893      0.3283      1.1398      0.2381      0.2313      0.1799     0.04148 
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       4      0.3106      0.7708      0.2381      2.3948      0.5222      0.3485      0.2583 
       5      0.3989      0.5939      0.2313      0.5222      1.5854      0.1814      0.4180 
       6      0.3625      0.3544      0.1799      0.3485      0.1814      0.8546      0.2515 
       7      0.3263      0.3942     0.04148      0.2583      0.4180      0.2515      2.1897 
 
                       Estimated R Correlation Matrix for Student 1995m10 
 
     Row        Col1        Col2        Col3        Col4        Col5        Col6        Col7 
 
       1      1.0000      0.2514      0.2522      0.1388      0.2191      0.2712      0.1525 
       2      0.2514      1.0000      0.2201      0.3565      0.3376      0.2744      0.1907 
       3      0.2522      0.2201      1.0000      0.1441      0.1721      0.1822     0.02626 
       4      0.1388      0.3565      0.1441      1.0000      0.2680      0.2436      0.1128 
       5      0.2191      0.3376      0.1721      0.2680      1.0000      0.1558      0.2244 
       6      0.2712      0.2744      0.1822      0.2436      0.1558      1.0000      0.1838 
       7      0.1525      0.1907     0.02626      0.1128      0.2244      0.1838      1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      2.0908 
                                UN(2,1)       Student      0.5079 
                                UN(2,2)       Student      1.9523 
                                UN(3,1)       Student      0.3893 
                                UN(3,2)       Student      0.3283 
                                UN(3,3)       Student      1.1398 
                                UN(4,1)       Student      0.3106 
                                UN(4,2)       Student      0.7708 
                                UN(4,3)       Student      0.2381 
                                UN(4,4)       Student      2.3948 
                                UN(5,1)       Student      0.3989 
                                UN(5,2)       Student      0.5939 
                                UN(5,3)       Student      0.2313 
                                UN(5,4)       Student      0.5222 
                                UN(5,5)       Student      1.5854 
                                UN(6,1)       Student      0.3625 
                                UN(6,2)       Student      0.3544 
                                UN(6,3)       Student      0.1799 
                                UN(6,4)       Student      0.3485 
                                UN(6,5)       Student      0.1814 
                                UN(6,6)       Student      0.8546 
                                UN(7,1)       Student      0.3263 
                                UN(7,2)       Student      0.3942 
                                UN(7,3)       Student     0.04148 
                                UN(7,4)       Student      0.2583 
                                UN(7,5)       Student      0.4180 
                                UN(7,6)       Student      0.2515 
                                UN(7,7)       Student      2.1897 
                                UN(8,1)       Student      0.2523 
                                UN(8,2)       Student     0.07714 
                                UN(8,3)       Student     0.09264 
                                UN(8,4)       Student      0.4446 
                                UN(8,5)       Student      0.1111 
                                UN(8,6)       Student      0.1031 
                                UN(8,7)       Student      0.3983 
                                UN(8,8)       Student      2.2943 
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                                UN(9,1)       Student      0.3639 
                                UN(9,2)       Student      0.1036 
                                UN(9,3)       Student      0.3271 
                                UN(9,4)       Student     0.07943 
                                UN(9,5)       Student      0.2018 
                                UN(9,6)       Student      0.5197 
                                UN(9,7)       Student      0.4038 
                                UN(9,8)       Student      0.5611 
                                UN(9,9)       Student      1.5201 
                                UN(10,1)      Student      0.4778 
                                UN(10,2)      Student      0.1056 
                                UN(10,3)      Student     0.07142 
                                UN(10,4)      Student      0.3319 
                                UN(10,5)      Student      0.2101 
                                UN(10,6)      Student      0.4858 
                                UN(10,7)      Student      0.4821 
                                UN(10,8)      Student      0.2997 
                                UN(10,9)      Student      0.5543 
                                UN(10,10)     Student      1.3860 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          5519.7 
                              AIC (smaller is better)        5629.7 
                              AICC (smaller is better)       5633.5 
                              BIC (smaller is better)        5810.3 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        304.90          <.0001 
 
                                   Solution for Fixed Effects 
 
                                               Standard 
           Effect                  Estimate       Error      DF    t Value    Pr > |t| 
 
           Intercept                 1.3656      0.4502     922       3.03      0.0025 
           KLnKLOC                  -0.2079      0.1521     952      -1.37      0.1720 
           DLnDsTim                 0.03645      0.1429     821       0.26      0.7987 
           ELnDRR                   -0.3908      0.1327     575      -2.94      0.0034 
           FLnDDDR                  -0.1881      0.1315     440      -1.43      0.1535 
           GLnCoTim                -0.01706      0.1251    1070      -0.14      0.8916 
           HLnCRR                   -0.2283     0.06562     766      -3.48      0.0005 
           ILnDDCR                   0.4750      0.1275     530       3.72      0.0002 
           JLnDDCm                 -0.07373     0.08686    1231      -0.85      0.3961 
           KLnKLOC*DLnDsTim        -0.03506     0.05324     928      -0.66      0.5104 
           KLnKLOC*ELnDRR           -0.1337     0.04638     612      -2.88      0.0041 
           KLnKLOC*FLnDDDR          -0.1318     0.05425     513      -2.43      0.0155 
           KLnKLOC*ILnDDCR           0.2199     0.05230     712       4.20      <.0001 
           GLnCoTim*JLnDDCm         0.07396     0.03358    1167       2.20      0.0278 
           KLnK*GLnC*HLnC*ILnDD    -0.00818    0.003855     657      -2.12      0.0342 
 
                                  Type 3 Tests of Fixed Effects 
 
                                             Num     Den 
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                    Effect                    DF      DF    F Value    Pr > F 
 
                    KLnKLOC                    1     952       1.87    0.1720 
                    DLnDsTim                   1     821       0.07    0.7987 
                    ELnDRR                     1     575       8.67    0.0034 
                    FLnDDDR                    1     440       2.04    0.1535 
                    GLnCoTim                   1    1070       0.02    0.8916 
                    HLnCRR                     1     766      12.10    0.0005 
                    ILnDDCR                    1     530      13.88    0.0002 
                    JLnDDCm                    1    1231       0.72    0.3961 
                    KLnKLOC*DLnDsTim           1     928       0.43    0.5104 
                    KLnKLOC*ELnDRR             1     612       8.31    0.0041 
                    KLnKLOC*FLnDDDR            1     513       5.90    0.0155 
                    KLnKLOC*ILnDDCR            1     712      17.68    <.0001 
                    GLnCoTim*JLnDDCm           1    1167       4.85    0.0278 
                    KLnK*GLnC*HLnC*ILnDD       1     657       4.50    0.0342 

 

C.13  COMPILE MIXED MODELS FOR (PSPB, C++, OUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                      9 
                               Columns in Z                      0 
                               Subjects                        108 
                               Max Obs Per Subject              10 
                               Observations Used               920 
                               Observations Not Used             0 
                               Total Observations              920 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      3088.72979503 
                           1              2      2967.24021713      0.00017340 
                           2              1      2967.12359823      0.00000080 
                           3              1      2967.12308002      0.00000000 
 
                                   Convergence criteria met. 
 
 
                              Estimated R Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.5747   0.07598    0.3105    0.2739   0.08546    0.1535    0.3859    0.2643    0.1871 
    2   0.07598    1.7492    0.6261    0.2981    0.4030    0.5539    0.2012    0.1561    0.3617 
    3    0.3105    0.6261    1.5053  -0.06126    0.4040    0.3995   0.04650    0.2590    0.2753 
    4    0.2739    0.2981  -0.06126    2.0031  -0.09393    0.1597    0.3243  0.002969    0.1348 
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    5   0.08546    0.4030    0.4040  -0.09393    1.7179    0.4640    0.3274    0.2291    0.1158 
 
                                           Estimated R 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            1   0.04361 
                                            2   0.08112 
                                            3    0.1510 
                                            4   -0.1360 
                                            5    0.4102 
 
                              Estimated R Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    6    0.1535    0.5539    0.3995    0.1597    0.4640    1.0476   0.02608    0.3152    0.2119 
    7    0.3859    0.2012   0.04650    0.3243    0.3274   0.02608    2.1947    0.1963    0.4105 
    8    0.2643    0.1561    0.2590  0.002969    0.2291    0.3152    0.1963    2.0493   0.09875 
    9    0.1871    0.3617    0.2753    0.1348    0.1158    0.2119    0.4105   0.09875    1.2246 
   10   0.04361   0.08112    0.1510   -0.1360    0.4102    0.1668    0.2386    0.1423   0.07995 
 
                                           Estimated R 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            6    0.1668 
                                            7    0.2386 
                                            8    0.1423 
                                            9   0.07995 
                                           10    1.0990 
 
                        Estimated R Correlation Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.0000   0.04578    0.2017    0.1542   0.05196    0.1195    0.2076    0.1471    0.1347 
    2   0.04578    1.0000    0.3859    0.1592    0.2325    0.4092    0.1027   0.08243    0.2471 
    3    0.2017    0.3859    1.0000  -0.03528    0.2512    0.3181   0.02559    0.1475    0.2028 
    4    0.1542    0.1592  -0.03528    1.0000  -0.05064    0.1103    0.1547  0.001465   0.08606 
 
                                           Estimated R 
                                           Correlation 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            1   0.03315 
                                            2   0.05851 
                                            3    0.1174 
                                            4  -0.09164 
 



 

383 

                        Estimated R Correlation Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    5   0.05196    0.2325    0.2512  -0.05064    1.0000    0.3459    0.1686    0.1221   0.07982 
    6    0.1195    0.4092    0.3181    0.1103    0.3459    1.0000   0.01720    0.2151    0.1871 
    7    0.2076    0.1027   0.02559    0.1547    0.1686   0.01720    1.0000   0.09254    0.2504 
    8    0.1471   0.08243    0.1475  0.001465    0.1221    0.2151   0.09254    1.0000   0.06234 
    9    0.1347    0.2471    0.2028   0.08606   0.07982    0.1871    0.2504   0.06234    1.0000 
   10   0.03315   0.05851    0.1174  -0.09164    0.2985    0.1554    0.1536   0.09485   0.06892 
 
                                           Estimated R 
                                           Correlation 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            5    0.2985 
                                            6    0.1554 
                                            7    0.1536 
                                            8   0.09485 
                                            9   0.06892 
                                           10    1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      1.5747 
                                UN(2,1)       Student     0.07598 
                                UN(2,2)       Student      1.7492 
                                UN(3,1)       Student      0.3105 
                                UN(3,2)       Student      0.6261 
                                UN(3,3)       Student      1.5053 
                                UN(4,1)       Student      0.2739 
                                UN(4,2)       Student      0.2981 
                                UN(4,3)       Student    -0.06126 
                                UN(4,4)       Student      2.0031 
                                UN(5,1)       Student     0.08546 
                                UN(5,2)       Student      0.4030 
                                UN(5,3)       Student      0.4040 
                                UN(5,4)       Student    -0.09393 
                                UN(5,5)       Student      1.7179 
                                UN(6,1)       Student      0.1535 
                                UN(6,2)       Student      0.5539 
                                UN(6,3)       Student      0.3995 
                                UN(6,4)       Student      0.1597 
                                UN(6,5)       Student      0.4640 
                                UN(6,6)       Student      1.0476 
                                UN(7,1)       Student      0.3859 
                                UN(7,2)       Student      0.2012 
                                UN(7,3)       Student     0.04650 
                                UN(7,4)       Student      0.3243 
                                UN(7,5)       Student      0.3274 
                                UN(7,6)       Student     0.02608 
                                UN(7,7)       Student      2.1947 
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                                UN(8,1)       Student      0.2643 
                                UN(8,2)       Student      0.1561 
                                UN(8,3)       Student      0.2590 
                                UN(8,4)       Student    0.002969 
                                UN(8,5)       Student      0.2291 
                                UN(8,6)       Student      0.3152 
                                UN(8,7)       Student      0.1963 
                                UN(8,8)       Student      2.0493 
                                UN(9,1)       Student      0.1871 
                                UN(9,2)       Student      0.3617 
                                UN(9,3)       Student      0.2753 
                                UN(9,4)       Student      0.1348 
                                UN(9,5)       Student      0.1158 
                                UN(9,6)       Student      0.2119 
                                UN(9,7)       Student      0.4105 
                                UN(9,8)       Student     0.09875 
                                UN(9,9)       Student      1.2246 
                                UN(10,1)      Student     0.04361 
                                UN(10,2)      Student     0.08112 
                                UN(10,3)      Student      0.1510 
                                UN(10,4)      Student     -0.1360 
                                UN(10,5)      Student      0.4102 
                                UN(10,6)      Student      0.1668 
                                UN(10,7)      Student      0.2386 
                                UN(10,8)      Student      0.1423 
                                UN(10,9)      Student     0.07995 
                                UN(10,10)     Student      1.0990 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          2967.1 
                              AIC (smaller is better)        3077.1 
                              AICC (smaller is better)       3084.3 
                              BIC (smaller is better)        3224.6 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        121.61          <.0001 
 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept      0.4853      0.2296     403       2.11      0.0352 
                KLnKLOC      -0.09935     0.06654     314      -1.49      0.1364 
                DLnDsTim      0.04044     0.06038     580       0.67      0.5032 
                ELnDRR       -0.08726     0.09045     332      -0.96      0.3353 
                FLnDDDR       0.06032     0.05264     285       1.15      0.2528 
                GLnCoTim       0.4140     0.08495     605       4.87      <.0001 
                HLnCRR        -0.1913     0.09277     345      -2.06      0.0400 
                ILnDDCR        0.1080     0.05886     313       1.84      0.0674 
                JLnDDCm        0.1319     0.03264     625       4.04      <.0001 
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                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         KLnKLOC         1     314       2.23    0.1364 
                         DLnDsTim        1     580       0.45    0.5032 
                         ELnDRR          1     332       0.93    0.3353 
                         FLnDDDR         1     285       1.31    0.2528 
                         GLnCoTim        1     605      23.75    <.0001 
                         HLnCRR          1     345       4.25    0.0400 
                         ILnDDCR         1     313       3.37    0.0674 
                         JLnDDCm         1     625      16.33    <.0001 

 

C.14  COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++, 
OUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                     15 
                               Columns in Z                      0 
                               Subjects                        108 
                               Max Obs Per Subject              10 
                               Observations Used               920 
                               Observations Not Used             0 
                               Total Observations              920 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      3094.57558895 
                           1              2      2974.89205832      0.00037643 
                           2              1      2974.63052572      0.00000397 
                           3              1      2974.62789751      0.00000000 
 
                                   Convergence criteria met. 
 
 
                              Estimated R Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.5770   0.06633    0.2795    0.3032    0.1208    0.1758    0.2972    0.2673    0.1548 
    2   0.06633    1.6828    0.6151    0.2837    0.4051    0.5476    0.2175    0.2546    0.3747 
    3    0.2795    0.6151    1.4848   -0.1078    0.3818    0.3759   0.06945    0.3235    0.2712 
    4    0.3032    0.2837   -0.1078    2.0254  -0.06966    0.1705    0.3905   0.06101    0.1377 
    5    0.1208    0.4051    0.3818  -0.06966    1.7821    0.5010    0.4324    0.2301    0.1385 
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                                           Estimated R 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            1   0.01377 
                                            2    0.1294 
                                            3    0.1351 
                                            4  -0.07869 
                                            5    0.4109 
 
                              Estimated R Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    6    0.1758    0.5476    0.3759    0.1705    0.5010    1.0486   0.01167    0.3560    0.1600 
    7    0.2972    0.2175   0.06945    0.3905    0.4324   0.01167    1.9675   0.08781    0.4342 
    8    0.2673    0.2546    0.3235   0.06101    0.2301    0.3560   0.08781    2.0629    0.2146 
    9    0.1548    0.3747    0.2712    0.1377    0.1385    0.1600    0.4342    0.2146    1.2343 
   10   0.01377    0.1294    0.1351  -0.07869    0.4109    0.1554    0.2309    0.1153    0.1434 
 
                                           Estimated R 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            6    0.1554 
                                            7    0.2309 
                                            8    0.1153 
                                            9    0.1434 
                                           10    1.0853 
 
 
                        Estimated R Correlation Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.0000   0.04072    0.1826    0.1696   0.07206    0.1367    0.1687    0.1482    0.1109 
    2   0.04072    1.0000    0.3891    0.1537    0.2340    0.4122    0.1195    0.1366    0.2600 
    3    0.1826    0.3891    1.0000  -0.06219    0.2347    0.3012   0.04064    0.1848    0.2003 
    4    0.1696    0.1537  -0.06219    1.0000  -0.03667    0.1170    0.1956   0.02985   0.08712 
 
                                           Estimated R 
                                           Correlation 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            1   0.01053 
                                            2   0.09573 
                                            3    0.1065 
                                            4  -0.05307 
 
                        Estimated R Correlation Matrix for Student 1995p6 
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  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    5   0.07206    0.2340    0.2347  -0.03667    1.0000    0.3665    0.2309    0.1200   0.09340 
    6    0.1367    0.4122    0.3012    0.1170    0.3665    1.0000  0.008124    0.2421    0.1406 
    7    0.1687    0.1195   0.04064    0.1956    0.2309  0.008124    1.0000   0.04359    0.2786 
    8    0.1482    0.1366    0.1848   0.02985    0.1200    0.2421   0.04359    1.0000    0.1345 
    9    0.1109    0.2600    0.2003   0.08712   0.09340    0.1406    0.2786    0.1345    1.0000 
   10   0.01053   0.09573    0.1065  -0.05307    0.2955    0.1457    0.1580   0.07708    0.1239 
 
                                           Estimated R 
                                           Correlation 
                                           Matrix for 
                                         Student 1995p6 
 
                                          Row     Col10 
 
                                            5    0.2955 
                                            6    0.1457 
                                            7    0.1580 
                                            8   0.07708 
                                            9    0.1239 
                                           10    1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      1.5770 
                                UN(2,1)       Student     0.06633 
                                UN(2,2)       Student      1.6828 
                                UN(3,1)       Student      0.2795 
                                UN(3,2)       Student      0.6151 
                                UN(3,3)       Student      1.4848 
                                UN(4,1)       Student      0.3032 
                                UN(4,2)       Student      0.2837 
                                UN(4,3)       Student     -0.1078 
                                UN(4,4)       Student      2.0254 
                                UN(5,1)       Student      0.1208 
                                UN(5,2)       Student      0.4051 
                                UN(5,3)       Student      0.3818 
                                UN(5,4)       Student    -0.06966 
                                UN(5,5)       Student      1.7821 
                                UN(6,1)       Student      0.1758 
                                UN(6,2)       Student      0.5476 
                                UN(6,3)       Student      0.3759 
                                UN(6,4)       Student      0.1705 
                                UN(6,5)       Student      0.5010 
                                UN(6,6)       Student      1.0486 
                                UN(7,1)       Student      0.2972 
                                UN(7,2)       Student      0.2175 
                                UN(7,3)       Student     0.06945 
                                UN(7,4)       Student      0.3905 
                                UN(7,5)       Student      0.4324 
                                UN(7,6)       Student     0.01167 
                                UN(7,7)       Student      1.9675 
                                UN(8,1)       Student      0.2673 
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                                UN(8,2)       Student      0.2546 
                                UN(8,3)       Student      0.3235 
                                UN(8,4)       Student     0.06101 
                                UN(8,5)       Student      0.2301 
                                UN(8,6)       Student      0.3560 
                                UN(8,7)       Student     0.08781 
                                UN(8,8)       Student      2.0629 
                                UN(9,1)       Student      0.1548 
                                UN(9,2)       Student      0.3747 
                                UN(9,3)       Student      0.2712 
                                UN(9,4)       Student      0.1377 
                                UN(9,5)       Student      0.1385 
                                UN(9,6)       Student      0.1600 
                                UN(9,7)       Student      0.4342 
                                UN(9,8)       Student      0.2146 
                                UN(9,9)       Student      1.2343 
                                UN(10,1)      Student     0.01377 
                                UN(10,2)      Student      0.1294 
                                UN(10,3)      Student      0.1351 
                                UN(10,4)      Student    -0.07869 
                                UN(10,5)      Student      0.4109 
                                UN(10,6)      Student      0.1554 
                                UN(10,7)      Student      0.2309 
                                UN(10,8)      Student      0.1153 
                                UN(10,9)      Student      0.1434 
                                UN(10,10)     Student      1.0853 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          2974.6 
                              AIC (smaller is better)        3084.6 
                              AICC (smaller is better)       3091.9 
                              BIC (smaller is better)        3232.1 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        119.95          <.0001 
 
                                   Solution for Fixed Effects 
 
                                               Standard 
           Effect                  Estimate       Error      DF    t Value    Pr > |t| 
 
           Intercept                -0.2592      0.5276     420      -0.49      0.6234 
           KLnKLOC                  -0.3089      0.1946     526      -1.59      0.1130 
           DLnDsTim                  0.2792      0.1656     601       1.69      0.0924 
           ELnDRR                  -0.07527      0.1605     272      -0.47      0.6395 
           FLnDDDR                   0.1593      0.1656     246       0.96      0.3369 
           GLnCoTim                  0.5575      0.1679     429       3.32      0.0010 
           HLnCRR                   -0.2529     0.09494     371      -2.66      0.0081 
           ILnDDCR                   0.1633      0.1703     288       0.96      0.3383 
           JLnDDCm                   0.2708      0.1130     495       2.40      0.0170 
           KLnKLOC*DLnDsTim         0.09675     0.06331     624       1.53      0.1269 
           KLnKLOC*ELnDRR          -0.00980     0.06428     310      -0.15      0.8789 
           KLnKLOC*FLnDDDR          0.06365     0.07008     300       0.91      0.3644 
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           KLnKLOC*ILnDDCR          0.08133     0.07547     320       1.08      0.2820 
           GLnCoTim*JLnDDCm        -0.06841     0.04483     546      -1.53      0.1276 
           KLnK*GLnC*HLnC*ILnDD    -0.01646    0.003980     335      -4.13      <.0001 
 
                                  Type 3 Tests of Fixed Effects 
 
                                             Num     Den 
                    Effect                    DF      DF    F Value    Pr > F 
 
                    KLnKLOC                    1     526       2.52    0.1130 
                    DLnDsTim                   1     601       2.84    0.0924 
                    ELnDRR                     1     272       0.22    0.6395 
                    FLnDDDR                    1     246       0.93    0.3369 
                    GLnCoTim                   1     429      11.03    0.0010 
                    HLnCRR                     1     371       7.10    0.0081 
                    ILnDDCR                    1     288       0.92    0.3383 
                    JLnDDCm                    1     495       5.74    0.0170 
                    KLnKLOC*DLnDsTim           1     624       2.34    0.1269 
                    KLnKLOC*ELnDRR             1     310       0.02    0.8789 
                    KLnKLOC*FLnDDDR            1     300       0.83    0.3644 
                    KLnKLOC*ILnDDCR            1     320       1.16    0.2820 
                    GLnCoTim*JLnDDCm           1     546       2.33    0.1276 
                    KLnK*GLnC*HLnC*ILnDD       1     335      17.09    <.0001 

 

C.15  COMPILE MIXED MODELS FOR (PSPB, C++, NOOUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                      9 
                               Columns in Z                      0 
                               Subjects                        108 
                               Max Obs Per Subject              10 
                               Observations Used               892 
                               Observations Not Used             0 
                               Total Observations              892 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      2957.10078571 
                           1              2      2850.62169063      0.00042974 
                           2              1      2850.34384472      0.00000340 
                           3              1      2850.34174635      0.00000000 
 
                                   Convergence criteria met. 
 
                              Estimated R Matrix for Student 1995p6 
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  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.5403   0.06337    0.2276    0.2917   0.09685    0.1518    0.2307    0.1566   0.01517 
    2   0.06337    1.6605    0.5676    0.2597    0.3472    0.4645   0.08267    0.3040    0.1366 
    3    0.2276    0.5676    1.4513   -0.1147    0.4336    0.3466    0.2081    0.1918    0.1494 
    4    0.2917    0.2597   -0.1147    1.9647  -0.07842    0.2344  -0.02442    0.1089   -0.1125 
    5   0.09685    0.3472    0.4336  -0.07842    1.6416    0.4282    0.1400   0.03356    0.2984 
    6    0.1518    0.4645    0.3466    0.2344    0.4282    1.0390    0.2820    0.1838    0.1637 
    7    0.2307   0.08267    0.2081  -0.02442    0.1400    0.2820    1.9705   0.05804    0.1256 
    8    0.1566    0.3040    0.1918    0.1089   0.03356    0.1838   0.05804    1.2002   0.08885 
    9   0.01517    0.1366    0.1494   -0.1125    0.2984    0.1637    0.1256   0.08885    1.1200 
 
                        Estimated R Correlation Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    1    1.0000   0.03962    0.1522    0.1677   0.06091    0.1200    0.1324    0.1152   0.01155 
    2   0.03962    1.0000    0.3657    0.1438    0.2103    0.3536   0.04570    0.2153    0.1002 
    3    0.1522    0.3657    1.0000  -0.06794    0.2809    0.2823    0.1231    0.1454    0.1172 
    4    0.1677    0.1438  -0.06794    1.0000  -0.04367    0.1641  -0.01241   0.07092  -0.07584 
    5   0.06091    0.2103    0.2809  -0.04367    1.0000    0.3279   0.07786   0.02391    0.2200 
 
                        Estimated R Correlation Matrix for Student 1995p6 
 
  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9 
 
    6    0.1200    0.3536    0.2823    0.1641    0.3279    1.0000    0.1971    0.1646    0.1517 
    7    0.1324   0.04570    0.1231  -0.01241   0.07786    0.1971    1.0000   0.03774   0.08453 
    8    0.1152    0.2153    0.1454   0.07092   0.02391    0.1646   0.03774    1.0000   0.07663 
    9   0.01155    0.1002    0.1172  -0.07584    0.2200    0.1517   0.08453   0.07663    1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      1.5403 
                                UN(2,1)       Student     0.06337 
                                UN(2,2)       Student      1.6605 
                                UN(3,1)       Student      0.2276 
                                UN(3,2)       Student      0.5676 
                                UN(3,3)       Student      1.4513 
                                UN(4,1)       Student      0.2917 
                                UN(4,2)       Student      0.2597 
                                UN(4,3)       Student     -0.1147 
                                UN(4,4)       Student      1.9647 
                                UN(5,1)       Student     0.09685 
                                UN(5,2)       Student      0.3472 
                                UN(5,3)       Student      0.4336 
                                UN(5,4)       Student    -0.07842 
                                UN(5,5)       Student      1.6416 
                                UN(6,1)       Student      0.1518 
                                UN(6,2)       Student      0.4645 
                                UN(6,3)       Student      0.3466 
                                UN(6,4)       Student      0.2344 
                                UN(6,5)       Student      0.4282 
                                UN(6,6)       Student      1.0390 
                                UN(7,1)       Student      0.3080 
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                                UN(7,2)       Student      0.1098 
                                UN(7,3)       Student    -0.03507 
                                UN(7,4)       Student      0.4120 
                                UN(7,5)       Student      0.5200 
                                UN(7,6)       Student    -0.03202 
                                UN(7,7)       Student      1.9672 
                                UN(8,1)       Student      0.2307 
                                UN(8,2)       Student     0.08267 
                                UN(8,3)       Student      0.2081 
                                UN(8,4)       Student    -0.02442 
                                UN(8,5)       Student      0.1400 
                                UN(8,6)       Student      0.2820 
                                UN(8,7)       Student     0.02473 
                                UN(8,8)       Student      1.9705 
                                UN(9,1)       Student      0.1566 
                                UN(9,2)       Student      0.3040 
                                UN(9,3)       Student      0.1918 
                                UN(9,4)       Student      0.1089 
                                UN(9,5)       Student     0.03356 
                                UN(9,6)       Student      0.1838 
                                UN(9,7)       Student      0.3398 
                                UN(9,8)       Student     0.05804 
                                UN(9,9)       Student      1.2002 
                                UN(10,1)      Student     0.01517 
                                UN(10,2)      Student      0.1366 
                                UN(10,3)      Student      0.1494 
                                UN(10,4)      Student     -0.1125 
                                UN(10,5)      Student      0.2984 
                                UN(10,6)      Student      0.1637 
                                UN(10,7)      Student      0.2443 
                                UN(10,8)      Student      0.1256 
                                UN(10,9)      Student     0.08885 
                                UN(10,10)     Student      1.1200 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          2850.3 
                              AIC (smaller is better)        2960.3 
                              AICC (smaller is better)       2967.8 
                              BIC (smaller is better)        3107.9 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        106.76          <.0001 
 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept      0.7437      0.2335     395       3.18      0.0016 
                KLnKLOC      0.006278     0.06841     315       0.09      0.9269 
                DLnDsTim      0.04883     0.06202     588       0.79      0.4314 
                ELnDRR        -0.1195     0.09017     330      -1.32      0.1862 
                FLnDDDR       0.08317     0.05242     283       1.59      0.1137 
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                GLnCoTim       0.3614     0.08588     577       4.21      <.0001 
                HLnCRR        -0.1916     0.09210     348      -2.08      0.0383 
                ILnDDCR        0.1057     0.05840     309       1.81      0.0713 
                JLnDDCm        0.1336     0.03310     610       4.04      <.0001 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         KLnKLOC         1     315       0.01    0.9269 
                         DLnDsTim        1     588       0.62    0.4314 
                         ELnDRR          1     330       1.76    0.1862 
                         FLnDDDR         1     283       2.52    0.1137 
                         GLnCoTim        1     577      17.71    <.0001 
                         HLnCRR          1     348       4.33    0.0383 
                         ILnDDCR         1     309       3.28    0.0713 
                         JLnDDCm         1     610      16.29    <.0001 

 

C.16  COMPILE MIXED MODELS WITH INTERACTIONS FOR (PSPB, C++, 
NOUTLIERS) 

 
                                       The Mixed Procedure 
 
                                           Dimensions 
 
                               Covariance Parameters            55 
                               Columns in X                     15 
                               Columns in Z                      0 
                               Subjects                        108 
                               Max Obs Per Subject              10 
                               Observations Used               884 
                               Observations Not Used             0 
                               Total Observations              884 
 
                                        Iteration History 
 
                   Iteration    Evaluations    -2 Res Log Like       Criterion 
 
                           0              1      2940.84127538 
                           1              2      2827.01976447      0.00082158 
                           2              1      2826.47960430      0.00001167 
                           3              1      2826.47233962      0.00000000 
 
                                   Convergence criteria met. 
 
                              Estimated R Matrix for Student 1995p6 
 
   Row       Col1       Col2       Col3       Col4       Col5       Col6       Col7       Col8 
 
     1     1.5646     0.1025     0.2871     0.1027     0.1633     0.2217     0.1248   0.006519 
     2     0.1025     1.6125     0.2463     0.3276     0.4565     0.1948     0.2913     0.2308 
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     3     0.2871     0.2463     1.9349   -0.07419     0.2174   -0.06249    0.06371    0.07906 
     4     0.1027     0.3276   -0.07419     1.7292     0.4215     0.1177    0.01137     0.3638 
     5     0.1633     0.4565     0.2174     0.4215     0.9927     0.3383     0.1209     0.1191 
     6     0.2217     0.1948   -0.06249     0.1177     0.3383     1.9334     0.1725    0.08857 
     7     0.1248     0.2913    0.06371    0.01137     0.1209     0.1725     1.2023     0.1139 
     8   0.006519     0.2308    0.07906     0.3638     0.1191    0.08857     0.1139     0.9706 
 
                        Estimated R Correlation Matrix for Student 1995p6 
 
   Row       Col1       Col2       Col3       Col4       Col5       Col6       Col7       Col8 
 
     1     1.0000    0.06450     0.1650    0.06244     0.1311     0.1275    0.09097   0.005290 
     2    0.06450     1.0000     0.1394     0.1962     0.3608     0.1103     0.2092     0.1845 
     3     0.1650     0.1394     1.0000   -0.04056     0.1569   -0.03231    0.04177    0.05769 
     4    0.06244     0.1962   -0.04056     1.0000     0.3217    0.06438   0.007886     0.2808 
     5     0.1311     0.3608     0.1569     0.3217     1.0000     0.2442     0.1106     0.1213 
     6     0.1275     0.1103   -0.03231    0.06438     0.2442     1.0000     0.1131    0.06466 
     7    0.09097     0.2092    0.04177   0.007886     0.1106     0.1131     1.0000     0.1055 
     8   0.005290     0.1845    0.05769     0.2808     0.1213    0.06466     0.1055     1.0000 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm      Subject    Estimate 
 
                                UN(1,1)       Student      1.5646 
                                UN(2,1)       Student      0.1025 
                                UN(2,2)       Student      1.6125 
                                UN(3,1)       Student      0.3550 
                                UN(3,2)       Student      0.7686 
                                UN(3,3)       Student      1.5318 
                                UN(4,1)       Student      0.2871 
                                UN(4,2)       Student      0.2463 
                                UN(4,3)       Student    -0.04275 
                                UN(4,4)       Student      1.9349 
                                UN(5,1)       Student      0.1027 
                                UN(5,2)       Student      0.3276 
                                UN(5,3)       Student      0.4282 
                                UN(5,4)       Student    -0.07419 
                                UN(5,5)       Student      1.7292 
                                UN(6,1)       Student      0.1633 
                                UN(6,2)       Student      0.4565 
                                UN(6,3)       Student      0.4171 
                                UN(6,4)       Student      0.2174 
                                UN(6,5)       Student      0.4215 
                                UN(6,6)       Student      0.9927 
                                UN(7,1)       Student      0.2577 
                                UN(7,2)       Student      0.1078 
                                UN(7,3)       Student     0.04398 
                                UN(7,4)       Student      0.3607 
                                UN(7,5)       Student      0.4866 
                                UN(7,6)       Student    -0.04656 
                                UN(7,7)       Student      1.9244 
                                UN(8,1)       Student      0.2217 
                                UN(8,2)       Student      0.1948 
                                UN(8,3)       Student      0.3189 
                                UN(8,4)       Student    -0.06249 
                                UN(8,5)       Student      0.1177 
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                                UN(8,6)       Student      0.3383 
                                UN(8,7)       Student    -0.07570 
                                UN(8,8)       Student      1.9334 
                                UN(9,1)       Student      0.1248 
                                UN(9,2)       Student      0.2913 
                                UN(9,3)       Student      0.3054 
                                UN(9,4)       Student     0.06371 
                                UN(9,5)       Student     0.01137 
                                UN(9,6)       Student      0.1209 
                                UN(9,7)       Student      0.2926 
                                UN(9,8)       Student      0.1725 
                                UN(9,9)       Student      1.2023 
                                UN(10,1)      Student    0.006519 
                                UN(10,2)      Student      0.2308 
                                UN(10,3)      Student      0.2763 
                                UN(10,4)      Student     0.07906 
                                UN(10,5)      Student      0.3638 
                                UN(10,6)      Student      0.1191 
                                UN(10,7)      Student      0.2268 
                                UN(10,8)      Student     0.08857 
                                UN(10,9)      Student      0.1139 
                                UN(10,10)     Student      0.9706 
 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          2826.5 
                              AIC (smaller is better)        2936.5 
                              AICC (smaller is better)       2944.0 
                              BIC (smaller is better)        3084.0 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                  54        114.37          <.0001 
 
                                   Solution for Fixed Effects 
 
                                               Standard 
           Effect                  Estimate       Error      DF    t Value    Pr > |t| 
 
           Intercept                -0.4214      0.5504     377      -0.77      0.4444 
           KLnKLOC                  -0.1755      0.2082     461      -0.84      0.3997 
           DLnDsTim                  0.4791      0.1735     543       2.76      0.0059 
           ELnDRR                   0.08923      0.1654     239       0.54      0.5901 
           FLnDDDR                 -0.06682      0.1813     220      -0.37      0.7128 
           GLnCoTim                  0.6692      0.1707     365       3.92      0.0001 
           HLnCRR                   -0.2486     0.09435     354      -2.63      0.0088 
           ILnDDCR                  0.07726      0.1790     257       0.43      0.6664 
           JLnDDCm                   0.4127      0.1163     438       3.55      0.0004 
           KLnKLOC*DLnDsTim          0.1741     0.06804     549       2.56      0.0108 
           KLnKLOC*ELnDRR           0.07545     0.06942     282       1.09      0.2780 
           KLnKLOC*FLnDDDR         -0.04014     0.07889     279      -0.51      0.6113 
           KLnKLOC*ILnDDCR          0.01309     0.08237     313       0.16      0.8738 
           GLnCoTim*JLnDDCm         -0.1208     0.04697     487      -2.57      0.0104 
           KLnK*GLnC*HLnC*ILnDD    -0.01073    0.004948     282      -2.17      0.0310 
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                                  Type 3 Tests of Fixed Effects 
 
                                             Num     Den 
                    Effect                    DF      DF    F Value    Pr > F 
 
                    KLnKLOC                    1     461       0.71    0.3997 
                    DLnDsTim                   1     543       7.63    0.0059 
                    ELnDRR                     1     239       0.29    0.5901 
                    FLnDDDR                    1     220       0.14    0.7128 
                    GLnCoTim                   1     365      15.37    0.0001 
                    HLnCRR                     1     354       6.94    0.0088 
                    ILnDDCR                    1     257       0.19    0.6664 
                    JLnDDCm                    1     438      12.60    0.0004 
                    KLnKLOC*DLnDsTim           1     549       6.54    0.0108 
                    KLnKLOC*ELnDRR             1     282       1.18    0.2780 
                    KLnKLOC*FLnDDDR            1     279       0.26    0.6113 
                    KLnKLOC*ILnDDCR            1     313       0.03    0.8738 
                    GLnCoTim*JLnDDCm           1     487       6.62    0.0104 
                    KLnK*GLnC*HLnC*ILnDD       1     282       4.70    0.0310 
 

C.17  RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB, C, 
ALLTEN) 

 
                                       The Mixed Procedure 
 
                                   Solution for Fixed Effects 
 
                                          Standard 
                Effect        Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept       3.6587      0.1060     109      34.51      <.0001 
                Assignment     -0.1749     0.01373     109     -12.74      <.0001 
 
                                  Solution for Random Effects 
 
                                                Std Err 
          Effect        Student    Estimate        Pred      DF    t Value    Pr > |t| 
 
          Intercept     1996h12     -0.3048      0.4466    16.8      -0.68      0.5042 
          Assignment    1996h12    0.007978     0.04891    2.36       0.16      0.8833 
          Intercept     1996h3      -0.3748      0.4466    16.8      -0.84      0.4131 
          Assignment    1996h3     -0.00108     0.04891    2.36      -0.02      0.9842 
          Intercept     1996i3       0.1211      0.4466    16.8       0.27      0.7895 
          Assignment    1996i3     -0.01903     0.04891    2.36      -0.39      0.7295 
          Intercept     1996i4     -0.05369      0.4466    16.8      -0.12      0.9057 
          Assignment    1996i4     -0.01511     0.04891    2.36      -0.31      0.7825 
          Intercept     1997c10     -0.8873      0.4466    16.8      -1.99      0.0636 
          Assignment    1997c10     0.02629     0.04891    2.36       0.54      0.6373 
          Intercept     1997d1       0.1048      0.4466    16.8       0.23      0.8172 
          Assignment    1997d1     0.003319     0.04891    2.36       0.07      0.9512 
          Intercept     1997e1      -0.4253      0.4466    16.8      -0.95      0.3545 
          Assignment    1997e1     0.005557     0.04891    2.36       0.11      0.9185 
          Intercept     1997e12      0.2007      0.4466    16.8       0.45      0.6588 
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          Assignment    1997e12    0.005833     0.04891    2.36       0.12      0.9145 
          Intercept     1997e13      1.0741      0.4466    16.8       2.41      0.0280 
          Assignment    1997e13    -0.03342     0.04891    2.36      -0.68      0.5553 
          Intercept     1997g14     -0.5965      0.4466    16.8      -1.34      0.1995 
          Assignment    1997g14     0.02908     0.04891    2.36       0.59      0.6041 
          Intercept     1997i17      0.2230      0.4466    16.8       0.50      0.6241 
          Assignment    1997i17    -0.00437     0.04891    2.36      -0.09      0.9359 
          Intercept     1997i19     -0.1334      0.4466    16.8      -0.30      0.7688 
          Assignment    1997i19    -0.03205     0.04891    2.36      -0.66      0.5704 
          Intercept     1997i2       0.5943      0.4466    16.8       1.33      0.2011 
          Assignment    1997i2     0.001104     0.04891    2.36       0.02      0.9838 
          Intercept     1997i5       1.2558      0.4466    16.8       2.81      0.0121 
          Assignment    1997i5     -0.02423     0.04891    2.36      -0.50      0.6626 
          Intercept     1997i8      0.05956      0.4466    16.8       0.13      0.8955 
          Assignment    1997i8     0.006022     0.04891    2.36       0.12      0.9117 
          Intercept     1998f2      0.05922      0.4466    16.8       0.13      0.8961 
          Assignment    1998f2     -0.00478     0.04891    2.36      -0.10      0.9299 
          Intercept     1998m12     -0.2962      0.4466    16.8      -0.66      0.5161 
          Assignment    1998m12    -0.00882     0.04891    2.36      -0.18      0.8713 
          Intercept     1998m14      0.6531      0.4466    16.8       1.46      0.1621 
          Assignment    1998m14    -0.01162     0.04891    2.36      -0.24      0.8312 
          Intercept     1998m20     -0.5544      0.4466    16.8      -1.24      0.2316 
          Assignment    1998m20    -0.01602     0.04891    2.36      -0.33      0.7701 
          Intercept     1998m4       0.6423      0.4466    16.8       1.44      0.1688 
          Assignment    1998m4     -0.00457     0.04891    2.36      -0.09      0.9328 
          Intercept     1998m6      0.08284      0.4466    16.8       0.19      0.8551 
          Assignment    1998m6     -0.00278     0.04891    2.36      -0.06      0.9591 
          Intercept     1998w2      -0.5866      0.4466    16.8      -1.31      0.2067 
          Assignment    1998w2     -0.01397     0.04891    2.36      -0.29      0.7983 
          Intercept     1998w8      -0.2172      0.4466    16.8      -0.49      0.6330 
          Assignment    1998w8     0.009547     0.04891    2.36       0.20      0.8608 
          Intercept     1998x3       0.4032      0.4466    16.8       0.90      0.3794 
          Assignment    1998x3     -0.00787     0.04891    2.36      -0.16      0.8850 
          Intercept     1998x4       0.3560      0.4466    16.8       0.80      0.4365 
          Assignment    1998x4     -0.01458     0.04891    2.36      -0.30      0.7899 
          Intercept     1998x6      -0.3372      0.4466    16.8      -0.76      0.4607 
          Assignment    1998x6     -0.00973     0.04891    2.36      -0.20      0.8582 
          Intercept     1999g1       0.4789      0.4466    16.8       1.07      0.2988 
          Assignment    1999g1     -0.01296     0.04891    2.36      -0.27      0.8124 
          Intercept     1999g2      -0.3442      0.4466    16.8      -0.77      0.4515 
          Assignment    1999g2      0.01567     0.04891    2.36       0.32      0.7748 
          Intercept     1999g3      -0.2380      0.4466    16.8      -0.53      0.6011 
          Assignment    1999g3     0.008959     0.04891    2.36       0.18      0.8692 
          Intercept     1999h15      0.7776      0.4466    16.8       1.74      0.1000 
          Assignment    1999h15    -0.00208     0.04891    2.36      -0.04      0.9693 
          Intercept     1999j13      0.2514      0.4466    16.8       0.56      0.5809 
          Assignment    1999j13    -0.00095     0.04891    2.36      -0.02      0.9860 
          Intercept     1999j4      -0.5495      0.4466    16.8      -1.23      0.2356 
          Assignment    1999j4     0.003079     0.04891    2.36       0.06      0.9547 
          Intercept     1999j6       0.2416      0.4466    16.8       0.54      0.5956 
          Assignment    1999j6     -0.00567     0.04891    2.36      -0.12      0.9168 
          Intercept     1999p3      -0.2750      0.4466    16.8      -0.62      0.5463 
          Assignment    1999p3     -0.00385     0.04891    2.36      -0.08      0.9434 
          Intercept     1999p5       0.5162      0.4466    16.8       1.16      0.2640 
          Assignment    1999p5     0.009001     0.04891    2.36       0.18      0.8686 
          Intercept     1999p6      -0.4868      0.4466    16.8      -1.09      0.2911 
          Assignment    1999p6      0.02572     0.04891    2.36       0.53      0.6442 
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          Intercept     1999p8       0.1140      0.4466    16.8       0.26      0.8015 
          Assignment    1999p8      0.01017     0.04891    2.36       0.21      0.8519 
          Intercept     1999t2      0.01897      0.4466    16.8       0.04      0.9666 
          Assignment    1999t2     -0.01675     0.04891    2.36      -0.34      0.7602 
          Intercept     1999u1      -0.3288      0.4466    16.8      -0.74      0.4718 
          Assignment    1999u1      0.01017     0.04891    2.36       0.21      0.8519 
          Intercept     1999u2       0.2825      0.4466    16.8       0.63      0.5356 
          Assignment    1999u2     0.005729     0.04891    2.36       0.12      0.9160 
          Intercept     1999u3     -0.08606      0.4466    16.8      -0.19      0.8495 
          Assignment    1999u3      0.01953     0.04891    2.36       0.40      0.7229 
          Intercept     1999u4      -0.4468      0.4466    16.8      -1.00      0.3313 
          Assignment    1999u4     0.002407     0.04891    2.36       0.05      0.9646 
          Intercept     1999w1      -0.6129      0.4466    16.8      -1.37      0.1881 
          Assignment    1999w1      0.01424     0.04891    2.36       0.29      0.7945 
          Intercept     1999w3       0.1550      0.4466    16.8       0.35      0.7328 
          Assignment    1999w3     -0.01321     0.04891    2.36      -0.27      0.8090 
          Intercept     1999w5       0.6402      0.4466    16.8       1.43      0.1701 
          Assignment    1999w5     -0.01211     0.04891    2.36      -0.25      0.8243 
          Intercept     1999w6      -0.7726      0.4466    16.8      -1.73      0.1020 
          Assignment    1999w6      0.05116     0.04891    2.36       1.05      0.3906 
          Intercept     2000b3      0.03865      0.4466    16.8       0.09      0.9321 
          Assignment    2000b3      0.02451     0.04891    2.36       0.50      0.6592 
          Intercept     2000b6       0.3488      0.4466    16.8       0.78      0.4457 
          Assignment    2000b6     -0.03065     0.04891    2.36      -0.63      0.5861 
          Intercept     2000b7       0.8056      0.4466    16.8       1.80      0.0893 
          Assignment    2000b7     -0.02748     0.04891    2.36      -0.56      0.6230 
          Intercept     2000b8       0.6679      0.4466    16.8       1.50      0.1534 
          Assignment    2000b8      0.01685     0.04891    2.36       0.34      0.7588 
          Intercept     2000b9      -0.2752      0.4466    16.8      -0.62      0.5461 
          Assignment    2000b9     -0.00349     0.04891    2.36      -0.07      0.9487 
          Intercept     2000c12      0.2533      0.4466    16.8       0.57      0.5782 
          Assignment    2000c12    -0.01280     0.04891    2.36      -0.26      0.8146 
          Intercept     2000c13      0.4540      0.4466    16.8       1.02      0.3238 
          Assignment    2000c13    -0.00099     0.04891    2.36      -0.02      0.9854 
          Intercept     2000c5      -1.2123      0.4466    16.8      -2.71      0.0149 
          Assignment    2000c5     0.008343     0.04891    2.36       0.17      0.8781 
          Intercept     2000e8       0.8047      0.4466    16.8       1.80      0.0896 
          Assignment    2000e8     -0.02159     0.04891    2.36      -0.44      0.6961 
          Intercept     2000f7      -0.1123      0.4466    16.8      -0.25      0.8045 
          Assignment    2000f7     -0.00074     0.04891    2.36      -0.02      0.9891 
          Intercept     2000j16     -0.1775      0.4466    16.8      -0.40      0.6960 
          Assignment    2000j16    0.008327     0.04891    2.36       0.17      0.8783 
          Intercept     2000j2      -0.1696      0.4466    16.8      -0.38      0.7090 
          Assignment    2000j2     -0.01475     0.04891    2.36      -0.30      0.7875 
          Intercept     2000j4       0.5086      0.4466    16.8       1.14      0.2708 
          Assignment    2000j4     -0.00441     0.04891    2.36      -0.09      0.9352 
          Intercept     2000j5       0.3223      0.4466    16.8       0.72      0.4804 
          Assignment    2000j5     -0.00593     0.04891    2.36      -0.12      0.9131 
          Intercept     2000k16     -0.2080      0.4466    16.8      -0.47      0.6474 
          Assignment    2000k16     0.02809     0.04891    2.36       0.57      0.6157 
          Intercept     2000k5      -0.5470      0.4466    16.8      -1.22      0.2376 
          Assignment    2000k5     -0.02131     0.04891    2.36      -0.44      0.6997 
          Intercept     2000k8       0.5752      0.4466    16.8       1.29      0.2152 
          Assignment    2000k8     -0.00236     0.04891    2.36      -0.05      0.9654 
          Intercept     2000m13      0.4368      0.4466    16.8       0.98      0.3420 
          Assignment    2000m13    -0.00243     0.04891    2.36      -0.05      0.9643 
          Intercept     2001c1      -0.7506      0.4466    16.8      -1.68      0.1114 
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          Assignment    2001c1      0.02730     0.04891    2.36       0.56      0.6251 
          Intercept     2001c11      0.2915      0.4466    16.8       0.65      0.5228 
          Assignment    2001c11     0.01063     0.04891    2.36       0.22      0.8453 
          Intercept     2001c12      0.3296      0.4466    16.8       0.74      0.4707 
          Assignment    2001c12    -0.01506     0.04891    2.36      -0.31      0.7832 
          Intercept     2001c15     -1.0710      0.4466    16.8      -2.40      0.0284 
          Assignment    2001c15    -0.00003     0.04891    2.36      -0.00      0.9996 
          Intercept     2001c17      0.3558      0.4466    16.8       0.80      0.4367 
          Assignment    2001c17    -0.03524     0.04891    2.36      -0.72      0.5358 
          Intercept     2001c18     -0.8884      0.4466    16.8      -1.99      0.0632 
          Assignment    2001c18     0.01270     0.04891    2.36       0.26      0.8161 
          Intercept     2001c19     -0.1360      0.4466    16.8      -0.30      0.7645 
          Assignment    2001c19    -0.01342     0.04891    2.36      -0.27      0.8060 
          Intercept     2001c2      -0.5913      0.4466    16.8      -1.32      0.2032 
          Assignment    2001c2      0.02920     0.04891    2.36       0.60      0.6028 
          Intercept     2001c20     -0.5904      0.4466    16.8      -1.32      0.2039 
          Assignment    2001c20     0.05505     0.04891    2.36       1.13      0.3616 
          Intercept     2001c3      -1.3193      0.4466    16.8      -2.95      0.0090 
          Assignment    2001c3      0.03981     0.04891    2.36       0.81      0.4896 
          Intercept     2001f15     -0.4551      0.4466    16.8      -1.02      0.3227 
          Assignment    2001f15     0.01699     0.04891    2.36       0.35      0.7568 
          Intercept     2001h6       1.1690      0.4466    16.8       2.62      0.0182 
          Assignment    2001h6     -0.02395     0.04891    2.36      -0.49      0.6661 
          Intercept     2001i1      0.07415      0.4466    16.8       0.17      0.8701 
          Assignment    2001i1     -0.02184     0.04891    2.36      -0.45      0.6929 
          Intercept     2001i11     0.05225      0.4466    16.8       0.12      0.9083 
          Assignment    2001i11    -0.03754     0.04891    2.36      -0.77      0.5121 
          Intercept     2001i12      0.5468      0.4466    16.8       1.22      0.2377 
          Assignment    2001i12    -0.02628     0.04891    2.36      -0.54      0.6375 
          Intercept     2001i13     0.01078      0.4466    16.8       0.02      0.9810 
          Assignment    2001i13     0.04322     0.04891    2.36       0.88      0.4575 
          Intercept     2001i16      0.9648      0.4466    16.8       2.16      0.0455 
          Assignment    2001i16    -0.03592     0.04891    2.36      -0.73      0.5287 
          Intercept     2001i2     -0.01497      0.4466    16.8      -0.03      0.9737 
          Assignment    2001i2     0.000569     0.04891    2.36       0.01      0.9916 
          Intercept     2001i3       0.1973      0.4466    16.8       0.44      0.6643 
          Assignment    2001i3     -0.00983     0.04891    2.36      -0.20      0.8567 
          Intercept     2001i6      -2.2508      0.4466    16.8      -5.04      0.0001 
          Assignment    2001i6      0.05161     0.04891    2.36       1.06      0.3871 
          Intercept     2001i7       0.2889      0.4466    16.8       0.65      0.5265 
          Assignment    2001i7      0.02780     0.04891    2.36       0.57      0.6192 
          Intercept     2001i8       0.2046      0.4466    16.8       0.46      0.6528 
          Assignment    2001i8     -0.01433     0.04891    2.36      -0.29      0.7933 
          Intercept     2001i9      -0.3631      0.4466    16.8      -0.81      0.4277 
          Assignment    2001i9      0.01721     0.04891    2.36       0.35      0.7539 
          Intercept     2001m11      0.5245      0.4466    16.8       1.17      0.2567 
          Assignment    2001m11    -0.02173     0.04891    2.36      -0.44      0.6942 
          Intercept     2001m12      1.1613      0.4466    16.8       2.60      0.0188 
          Assignment    2001m12    -0.02447     0.04891    2.36      -0.50      0.6596 
          Intercept     2001m14      0.5189      0.4466    16.8       1.16      0.2616 
          Assignment    2001m14    -0.00437     0.04891    2.36      -0.09      0.9358 
          Intercept     2001m3       0.3950      0.4466    16.8       0.88      0.3890 
          Assignment    2001m3     0.002615     0.04891    2.36       0.05      0.9615 
          Intercept     2001m4       0.6047      0.4466    16.8       1.35      0.1937 
          Assignment    2001m4     -0.00954     0.04891    2.36      -0.19      0.8609 
          Intercept     2001m5       0.2304      0.4466    16.8       0.52      0.6127 
          Assignment    2001m5     -0.00783     0.04891    2.36      -0.16      0.8855 
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          Intercept     2001m7       0.7501      0.4466    16.8       1.68      0.1116 
          Assignment    2001m7     -0.02660     0.04891    2.36      -0.54      0.6336 
          Intercept     2001q10      0.3245      0.4466    16.8       0.73      0.4775 
          Assignment    2001q10    -0.02628     0.04891    2.36      -0.54      0.6374 
          Intercept     2001r8       0.2736      0.4466    16.8       0.61      0.5484 
          Assignment    2001r8     -0.01673     0.04891    2.36      -0.34      0.7604 
          Intercept     2001s1      -0.5242      0.4466    16.8      -1.17      0.2569 
          Assignment    2001s1     0.000334     0.04891    2.36       0.01      0.9951 
          Intercept     2001s11     -0.2904      0.4466    16.8      -0.65      0.5243 
          Assignment    2001s11    -0.04058     0.04891    2.36      -0.83      0.4821 
          Intercept     2001s12     -0.4596      0.4466    16.8      -1.03      0.3180 
          Assignment    2001s12    -0.00114     0.04891    2.36      -0.02      0.9832 
          Intercept     2001s13      0.1187      0.4466    16.8       0.27      0.7936 
          Assignment    2001s13    -0.02920     0.04891    2.36      -0.60      0.6028 
          Intercept     2001s14      0.8471      0.4466    16.8       1.90      0.0752 
          Assignment    2001s14    -0.01228     0.04891    2.36      -0.25      0.8220 
          Intercept     2001s15    0.009684      0.4466    16.8       0.02      0.9830 
          Assignment    2001s15     0.02472     0.04891    2.36       0.51      0.6566 
          Intercept     2001s2      -0.5830      0.4466    16.8      -1.31      0.2094 
          Assignment    2001s2      0.01796     0.04891    2.36       0.37      0.7438 
          Intercept     2001s3      0.08654      0.4466    16.8       0.19      0.8487 
          Assignment    2001s3     0.007631     0.04891    2.36       0.16      0.8884 
          Intercept     2001s4      -0.9935      0.4466    16.8      -2.22      0.0402 
          Assignment    2001s4      0.03062     0.04891    2.36       0.63      0.5865 
          Intercept     2001s5      -0.3049      0.4466    16.8      -0.68      0.5042 
          Assignment    2001s5      0.01420     0.04891    2.36       0.29      0.7951 
          Intercept     2001s6      -1.5104      0.4466    16.8      -3.38      0.0036 
          Assignment    2001s6      0.02455     0.04891    2.36       0.50      0.6587 
          Intercept     2001s7       0.5843      0.4466    16.8       1.31      0.2084 
          Assignment    2001s7      0.01144     0.04891    2.36       0.23      0.8339 
          Intercept     2001s8      -0.7383      0.4466    16.8      -1.65      0.1169 
          Assignment    2001s8      0.07039     0.04891    2.36       1.44      0.2683 
          Intercept     2001s9     0.008021      0.4466    16.8       0.02      0.9859 
          Assignment    2001s9     0.001507     0.04891    2.36       0.03      0.9778 
 
                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                         Effect          DF      DF    F Value    Pr > F 
 
                         Assignment       1     109     162.28    <.0001 
 

C.18  RANDOM COEFFICIENT MIXED MODELS BY ASSIGNMENT FOR (PSPB, 
C++, ALLTEN) 

                                   Solution for Fixed Effects 
 
                                          Standard 
                Effect        Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept       3.3630      0.1480      44      22.72      <.0001 
                Assignment     -0.1640     0.02135      44      -7.68      <.0001 
 
                                  Solution for Random Effects 
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                                                Std Err 
          Effect        Student    Estimate        Pred      DF    t Value    Pr > |t| 
 
          Intercept     1995p6       0.5800      0.3781    2.84       1.53      0.2277 
          Assignment    1995p6      0.03588     0.04814       1       0.75      0.5923 
          Intercept     1998i18      0.3479      0.3781    2.84       0.92      0.4289 
          Assignment    1998i18     0.05378     0.04814       1       1.12      0.4648 
          Intercept     1998x12      0.5846      0.3781    2.84       1.55      0.2249 
          Assignment    1998x12     0.02549     0.04814       1       0.53      0.6900 
          Intercept     1999h11     -0.7682      0.3781    2.84      -2.03      0.1404 
          Assignment    1999h11    -0.01702     0.04814       1      -0.35      0.7837 
          Intercept     1999h13     -0.2564      0.3781    2.84      -0.68      0.5489 
          Assignment    1999h13     0.01641     0.04814       1       0.34      0.7909 
          Intercept     1999j5      -0.2180      0.3781    2.84      -0.58      0.6069 
          Assignment    1999j5     -0.01303     0.04814       1      -0.27      0.8318 
          Intercept     1999t4       0.3500      0.3781    2.84       0.93      0.4265 
          Assignment    1999t4     -0.01213     0.04814       1      -0.25      0.8428 
          Intercept     1999v1     -0.09071      0.3781    2.84      -0.24      0.8267 
          Assignment    1999v1     -0.00098     0.04814       1      -0.02      0.9871 
          Intercept     1999v5       0.1384      0.3781    2.84       0.37      0.7399 
          Assignment    1999v5     -0.00616     0.04814       1      -0.13      0.9189 
          Intercept     2000b10     -0.1856      0.3781    2.84      -0.49      0.6589 
          Assignment    2000b10     0.03562     0.04814       1       0.74      0.5945 
          Intercept     2000c10     -0.7509      0.3781    2.84      -1.99      0.1465 
          Assignment    2000c10    -0.05869     0.04814       1      -1.22      0.4374 
          Intercept     2000c14     -0.5670      0.3781    2.84      -1.50      0.2358 
          Assignment    2000c14    -0.00413     0.04814       1      -0.09      0.9455 
          Intercept     2000c2     -0.01920      0.3781    2.84      -0.05      0.9629 
          Assignment    2000c2      0.01193     0.04814       1       0.25      0.8454 
          Intercept     2000c3      0.02136      0.3781    2.84       0.06      0.9587 
          Assignment    2000c3     -0.02114     0.04814       1      -0.44      0.7366 
          Intercept     2000c7      -0.1556      0.3781    2.84      -0.41      0.7098 
          Assignment    2000c7     -0.04114     0.04814       1      -0.85      0.5498 
          Intercept     2000c9       0.3712      0.3781    2.84       0.98      0.4024 
          Assignment    2000c9      0.02466     0.04814       1       0.51      0.6987 
          Intercept     2000e13      0.1953      0.3781    2.84       0.52      0.6430 
          Assignment    2000e13    0.004683     0.04814       1       0.10      0.9383 
          Intercept     2000e2       0.3081      0.3781    2.84       0.81      0.4779 
          Assignment    2000e2     0.007018     0.04814       1       0.15      0.9079 
          Intercept     2000e4     -0.08446      0.3781    2.84      -0.22      0.8384 
          Assignment    2000e4     -0.00564     0.04814       1      -0.12      0.9258 
          Intercept     2000e9     -0.08929      0.3781    2.84      -0.24      0.8293 
          Assignment    2000e9      0.01385     0.04814       1       0.29      0.8217 
          Intercept     2000f14      0.1516      0.3781    2.84       0.40      0.7168 
          Assignment    2000f14    -0.01205     0.04814       1      -0.25      0.8438 
          Intercept     2000g11      0.2069      0.3781    2.84       0.55      0.6244 
          Assignment    2000g11    -0.00288     0.04814       1      -0.06      0.9619 
          Intercept     2000g3       0.2055      0.3781    2.84       0.54      0.6265 
          Assignment    2000g3     -0.01967     0.04814       1      -0.41      0.7531 
          Intercept     2000g8       1.0320      0.3781    2.84       2.73      0.0766 
          Assignment    2000g8      0.03943     0.04814       1       0.82      0.5631 
          Intercept     2000j10      0.1985      0.3781    2.84       0.52      0.6379 
          Assignment    2000j10    0.009477     0.04814       1       0.20      0.8763 
          Intercept     2000j11     -0.2961      0.3781    2.84      -0.78      0.4937 
          Assignment    2000j11     0.01290     0.04814       1       0.27      0.8333 
          Intercept     2000j12     -0.7348      0.3781    2.84      -1.94      0.1525 
          Assignment    2000j12    -0.03263     0.04814       1      -0.68      0.6208 
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          Intercept     2000j13     -0.1356      0.3781    2.84      -0.36      0.7450 
          Assignment    2000j13     0.01998     0.04814       1       0.41      0.7496 
          Intercept     2000j14     -0.3197      0.3781    2.84      -0.85      0.4632 
          Assignment    2000j14     0.01214     0.04814       1       0.25      0.8428 
          Intercept     2000j15     -0.5879      0.3781    2.84      -1.55      0.2230 
          Assignment    2000j15     0.01312     0.04814       1       0.27      0.8306 
          Intercept     2000j18     0.04799      0.3781    2.84       0.13      0.9075 
          Assignment    2000j18    -0.00923     0.04814       1      -0.19      0.8794 
          Intercept     2000j7      0.07687      0.3781    2.84       0.20      0.8526 
          Assignment    2000j7      0.01244     0.04814       1       0.26      0.8390 
          Intercept     2000j8       0.3068      0.3781    2.84       0.81      0.4796 
          Assignment    2000j8     -0.02673     0.04814       1      -0.56      0.6773 
          Intercept     2001k11      0.2850      0.3781    2.84       0.75      0.5086 
          Assignment    2001k11     0.03531     0.04814       1       0.73      0.5972 
          Intercept     2001m1      -1.1960      0.3781    2.84      -3.16      0.0548 
          Assignment    2001m1     -0.03697     0.04814       1      -0.77      0.5831 
          Intercept     2001m13      0.3766      0.3781    2.84       1.00      0.3964 
          Assignment    2001m13     0.02745     0.04814       1       0.57      0.6701 
          Intercept     2001q3       0.1724      0.3781    2.84       0.46      0.6810 
          Assignment    2001q3     -0.00817     0.04814       1      -0.17      0.8930 
          Intercept     2001q4       0.1031      0.3781    2.84       0.27      0.8038 
          Assignment    2001q4     -0.02163     0.04814       1      -0.45      0.7312 
          Intercept     2001q5      -0.3091      0.3781    2.84      -0.82      0.4767 
          Assignment    2001q5     -0.04197     0.04814       1      -0.87      0.5436 
          Intercept     2001q6       0.2436      0.3781    2.84       0.64      0.5678 
          Assignment    2001q6     -0.00915     0.04814       1      -0.19      0.8804 
          Intercept     2001q7      -0.3390      0.3781    2.84      -0.90      0.4395 
          Assignment    2001q7     -0.00619     0.04814       1      -0.13      0.9186 
          Intercept     2001r3       0.2718      0.3781    2.84       0.72      0.5269 
          Assignment    2001r3      0.02445     0.04814       1       0.51      0.7008 
          Intercept     2001r4      0.06026      0.3781    2.84       0.16      0.8840 
          Assignment    2001r4     0.000912     0.04814       1       0.02      0.9879 
          Intercept     2001t10      0.1789      0.3781    2.84       0.47      0.6702 
          Assignment    2001t10     0.01040     0.04814       1       0.22      0.8645 
          Intercept     2001t7       0.2885      0.3781    2.84       0.76      0.5039 
          Assignment    2001t7     -0.03999     0.04814       1      -0.83      0.5587 
 
                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                         Effect          DF      DF    F Value    Pr > F 
 
                         Assignment       1      44      59.00    <.0001 
 

C.19  DATA FOR TSP1 

                                             NDf                                  NDf 
  Obs   Module   Pgmr    DLDRR     ddDLDR   DLDR   dreDLDR     DLDIR    ddDLDI   DLDI   dreDLDI 
 
    1    M1       D     11.0092    27.523    25    0.12000   168.807   183.486    22    0.90909 
    2    M2       D      1.5598     0.000    69    0.00000    37.262    48.527    69    0.81159 
    3    M3       C     17.1359     2.448    60    0.03333    49.327    41.616    58    0.58621 
    4    M4       C      7.3260     0.000    52    0.00000    83.150   161.172    52    0.84615 
    5    M5       B     87.5000   100.000     8    0.50000   175.000   100.000     4    1.00000 
    6    M6       B     34.4086    32.258    22    0.13636   191.398   204.301    19    1.00000 
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    7    M7       C      0.0000    19.608    15    0.20000    51.634    65.359    12    0.83333 
    8    M8       A      6.7708     0.000    42    0.00000   108.333   130.208    42    0.59524 
    9    M10      E      7.1429    10.204    12    0.16667    95.408    45.918    10    0.90000 
   10    M11      E     27.8846     0.000     9    0.00000    63.462    67.308     9    0.77778 
   11    M12      B      0.0000     0.000     1    0.00000     0.000     0.000     1    0.00000 
   12    M13      E      0.0000     0.000     0     .          0.000     0.000     0     . 
   13    M14      E      0.0000     0.000     0     .         96.923     0.000     0     . 
   14    M15      C      0.0000     0.000     0     .          0.000     0.000     0     . 
   15    M16      C      0.0000     0.000     0     .          0.000     0.000     0     . 
 
                                             NDf                                 NDf 
   Obs   Module   Pgmr     CRR        ddCR    CR    dreCR      CIR        ddCI    CI    dreCI 
 
     1    M1       D     14.6789    36.697    16   0.25000   16.5138    18.349     4   0.50000 
     2    M2       D     12.7383    25.997    99   0.30303    2.4263    28.596    46   0.71739 
     3    M3       C      4.0392     8.568    33   0.21212    3.7944     0.000    26   0.00000 
     4    M4       C     18.3150    18.315    13   0.38462    3.2967     0.000     8   0.00000 
     5    M5       B     62.5000   100.000    10   0.40000   22.5000    50.000     4   0.50000 
     6    M6       B     26.8817    21.505    13   0.15385   17.2043    86.022    10   0.80000 
     7    M7       C     13.0719    39.216     7   0.85714    3.2680     0.000     1   0.00000 
     8    M8       A     33.3333    36.458    20   0.35000   13.5417     0.000     6   0.00000 
     9    M10      E      5.1020     0.000     4   0.00000   11.2245    20.408     4   1.00000 
    10    M11      E     20.1923     0.000    12   0.00000   11.5385   115.385    12   1.00000 
    11    M12      B     14.8810    17.857    29   0.10345    9.5238   119.048    22   0.90909 
    12    M13      E     15.7895     0.000     2   0.00000   10.5263    52.632     2   1.00000 
    13    M14      E      1.5385     0.000     3   0.00000   10.7692    46.154     3   1.00000 
    14    M15      C     81.6327     0.000     0    .         4.0816     0.000     0    . 
    15    M16      C     57.1429    42.857     3   1.00000    4.2857     0.000     0    . 
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