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CENTRAL NUCLEUS OF THE AMYGDALA 

Meera Devi Ramsooksingh, M.S. 

University of Pittsburgh, 2008

 

The limbic and central noradrenergic systems are sensitive to stress and demonstrate 

pathophysiology in individuals with mood and anxiety disorders. Neurons from the central nucleus 

of the amygdala (CeA) form synapses onto the dendrites of noradrenergic neurons of the locus 

coeruleus (LC) in the rostrolateral peri-coerulear area. The CeA-LC pathway is thought to contain 

GABA and corticotropin-releasing hormone (CRH), both of which have opposing effects on LC 

activity. The current study further characterized the CeA-LC pathway in vivo by examining 

extracellular electrophysiological LC activity during electrical and pharmacological manipulation of 

the CeA in halothane-anesthetized rats.  

The majority of LC neurons exhibited an excitatory response to electrical CeA stimulation, 

with a small group of neurons responding with pure inhibition or antidromic activation. 

Pharmacological activation of the CeA confirmed excitatory responses to electrical stimulation, 

whereas pharmacological inactivation of the CeA had no effect on LC activity. Excitatory responses 

to electrical CeA stimulation were partially attenuated following ventricular infusions of the CRH 

antagonist, D-Phe-CRH, but were completely attenuated following infusions of the excitatory amino 

acid antagonist, kynurenic acid. Ventricular administration of kynurenic acid during electrical CeA 

stimulation also revealed an inhibitory period that simultaneously occurs with excitatory responses. 

This study confirms previous findings suggesting that the CeA partially mediates excitatory 

responses via CRH. These findings further suggest that there is a glutamatergic component to 
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excitatory responses following activation of the CeA. In addition, these data suggest that upon 

activation, the CeA provides a simultaneous inhibitory drive to LC neurons. 

Collectively, these data provide additional support for an excitatory limbic input to neurons 

of the LC. The present data also suggest that the CeA may selectively modulate LC activity across its 

projection sites via the simultaneous inhibitory drive from the CeA. Activation of the CeA-LC 

pathway, particularly during stress responses, may be critical for noradrenergic modulation of 

cortical and limbic areas involved in attention, emotional learning, and responses to stressful stimuli. 
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1.0  INTRODUCTION 

Mood and anxiety disorders, e.g. post-traumatic disorder, panic disorder, generalized anxiety 

disorder, and major depression, often have detrimental effects on the daily functioning of about 

25% of the American population (Kessler et al., 2005; Merikangas et al., 2007). The prevalence of 

these disorders among all populations has driven in a wealth of clinical research that has provided 

evidence for abnormalities in the biological and neurological processes underlying the symptoms of 

these disorders. A combination of clinical, imaging and post mortem studies in individuals with 

mood and anxiety disorders have indicated pathophysiology in both the limbic and central 

noradrenergic systems, which contribute to the symptoms observed in these mood and anxiety 

disorders.  

Imaging studies of individuals who suffer from mood and anxiety disorders suggest 

abnormal hyperactivity in the amygdala, a limbic circuit nucleus involved in emotional regulation and 

processing. Baseline amygdala activity in patients suffering from depression, as measured by 

positron emission tomography (Drevets et al., 1999) or magnetic resonance imaging (Drevets et al., 

2002), is greater than in control subjects and it is positively correlated with the severity of 

depression. In studies that evaluated emotional processing to negative affect words, depressed 

individuals had increased activity in the amygdala, as measured by MRI, and this increased activity 

was sustained throughout the non-emotional processing trials (Siegle et al., 2002). Furthermore, 

there was exaggerated amygdala responsivity to fearful facial expressions in patients suffering from 

post-traumatic stress disorder (Rauch et al., 2000; Shin et al., 2005; Williams et al., 2006). Increased 
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amygdala activity is also associated with feelings of anxiety (Adolphs et al., 2001; Anand and 

Shekhar, 2003; Baxter and Murray, 2002). In individuals with mood and anxiety disorders, this 

abnormal activity in the amygdala may correlate with impairments in processing and responding to 

emotional information. 

The symptoms observed in mood and anxiety disorders are not completely attributed to 

pathophysiology of the amygdala and limbic system. Clinical studies have reported abnormalities in 

central norepinephrine system in the human central nervous system (CNS) of individuals with mood 

and anxiety disorders, and this suggests a role for the central noradrenergic system in these disorders 

(Anand and Charney, 1997; Anand and Charney, 2000; Asnis and Van Praag, 1995; Aston-Jones et 

al., 1994; Bremner et al., 1996; Charney et al., 1995; Wong et al., 2000). Like the amygdala, clinical 

studies suggest that central noradrenergic activity, in comparison to normal subjects, is increased in 

individuals suffering from mood and anxiety disorders. In these individuals, there are increases in 

urinary, plasma, or cerebrospinal fluid (CSF) levels of norepinephrine or its primary metabolite 

(Charney et al., 1995; Schatzberg and Schildkraut, 1995) and a blunted plasma catechol response to 

the adrenergic agonist clonidine (Charney et al., 1992; Matussek et al., 1980; Matussek and 

Laakmann, 1981; Nutt, 1989). When examining the dysfunctions observed in the central 

noradrenergic system in mood and anxiety disorders, the site of interest in clinical research has been 

a rostral pons nucleus, the locus coeruleus (LC), which contains the majority of NE-containing cell 

bodies in the CNS (Foote et al., 1983; Moore and Bloom, 1979; Moore and Card, 1984; Pfister and 

Danner, 1980). Post mortem human studies examining the LC from patients who suffered from 

mood and anxiety disorders have focused their attention on examining abnormalities in NE-specific 

proteins, such as tyrosine hydroxylase (TH), the rate limiting enzyme for catecholamines, and 

alpha2-noradrenergic autoreceptors. In patients diagnosed with major depression (Zhu et al., 1999) 

and suicide victims (Ordway et al., 1994a), elevated levels of TH were observed in the LC. There was 
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also an increased agonist binding to noradrenergic alpha2 autoreceptors in the LC from suicide 

victims, which implies an increased auto-inhibitory control of the LC in depressed patients (Ordway 

et al., 1994b). Pharmacological treatments for major depression and anxiety disorders modulate 

central noradrenergic activity and transmission thus providing additional evidence for dysfunction of 

the noradrenergic system in the pathophysiology of mood and anxiety disorders (Barker and Blakely, 

1995; Grant and Weiss, 2001; Thase et al., 1997; Thase et al., 2002). 

Clinical research has not only identified pathology in both the amygdala and the central 

noradrenergic system, but also indicates that stress plays a critical role in the manifestation of mood 

and anxiety disorders. Exposure to situations or environments that are aversive and stressful 

contributes to onset, development, and reoccurrence of mood and anxiety disorders, e.g., post-

traumatic disorder, panic disorder, generalized anxiety disorder, and major depression (Bremner et 

al., 1996; Kessler, 1997; Southwick et al., 1999; Sullivan et al., 1999). Since both the central 

noradrenergic system (Stanford, 1993; Stanford, 1995; Zigmond et al., 1995) and the amygdala 

(Akirav et al., 2001; Dayas et al., 2001; Rosen et al., 1998b) are sensitive to stressful stimuli and have 

pathophysiology in mood and anxiety disorders, understanding the interactions between the limbic 

and central noradrenergic systems may provide important insights into the circuitry involved in 

stress responses that precipitate and exacerbate the symptoms of mood and anxiety disorders. 

1.1 THE STRESS RESPONSE 

Whether in the clinic or basic science laboratories, the term “stress” is often used imprecisely to 

describe a wide range of conditions and environments and to characterize the consequences that 

arise from being in these environments. Most often, consequences of exposure to “stressful” 
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environments and conditions are negatively perceived and have the potential to be maladaptive for 

the normal functioning of an organism. In order to encompass the multitude of conditions and 

consequences of stress, it can be vaguely defined as a threat to the maintenance of homeostasis of an 

organism (Day, 2005; Pacak and Palkovits, 2001). The result of stress exposure is not limited to 

changes in an organism’s behavior when responding to a threat or to stressful stimuli. A “stress 

response”, another term that is also often used ambiguously, involves a combination of changes in 

neuroendocrine, cardiovascular, immune, and autonomic processes observed upon presentation or 

exposure to stressful stimuli and contexts (Kopin, 1995). The “stress response” is classically thought 

of as the activation of the hypothalamic-pituitary-adrenal (HPA) axis. However, research has shown 

that the stress responses is not limited to activation of the HPA axis, but also involves activation of 

various brain regions and circuits, and this differential activation of brain regions depends on the 

type of stress and its severity and duration (Dayas et al., 2001; Morrison, 2001; Pacak, 2000; Pacak 

and Palkovits, 2001). 

1.2 ACUTE STRESS ACTIVATES NORADRENERGIC NEURONS OF THE LOCUS 

COERULEUS 

The locus coeruleus is the major norepinephrine containing nucleus in the CNS (Foote et al., 1983; 

Moore and Bloom, 1979; Moore and Card, 1984; Pfister and Danner, 1980) that sends its 

projections throughout the entire neuroaxis (Foote et al., 1983). Although it is a small cell group 

comprised of roughly 1,600 neurons per hemisphere (Swanson, 1976), the LC projects widely 

(Aston-Jones et al., 1995) to innervate distinct brain regions such as the cerebellum, thalamus, and 

the paraventricular hypothalamus, which is one of the main output nuclei partially involved in the 
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stress response (Cunningham and Sawchenko, 1988; Foote et al., 1983; Moore and Bloom, 1979; 

Moore and Card, 1984; Sawchenko and Swanson, 1981, 1982). The LC also innervates limbic areas 

such as the hippocampus, cortex, and the amygdala (Asan, 1998; Aston-Jones et al., 1999; Delfs et 

al., 2000; Foote et al., 1983; Jones and Moore, 1977; Kobayashi et al., 1975; Mason, 1979; Moore and 

Bloom, 1979; Moore and Card, 1984; Room et al., 1981). Whereas the hippocampus and cortex 

receives the sole source of noradrenergic innervation from the LC (Levitt and Moore, 1978; Loy et 

al., 1980; Nagai et al., 1981a, b; Nakamura and Iwama, 1975), subnuclei of the amygdala, such as the 

basolateral nucleus of the amygdala (BLA; Asan, 1998) and bed nucleus of the stria terminals 

(BNST; Aston-Jones et al., 1999; Delfs et al., 2000) receive partial noradrenergic innervation from 

the LC. Within the amygdala, the BLA receives the majority of LC innervation in comparison to the 

central nucleus of the amygdala (Asan, 1998), whereas the BNST, which is considered to be a 

nucleus of the extended amygdala, receives a minor LC input (Aston-Jones et al., 1999; Delfs et al., 

2000). With its diffuse projections, particularly to cortical and limbic areas, the LC has the ability to 

initiate and maintain limbic and cortical arousals as well as modulate other neural systems. Thus any 

changes in NE levels throughout the brain will likely result in an overall change in behavior and 

emotional states (Aston-Jones et al., 1986; Thase et al., 2002).  

The diffuse projections of LC neurons to a variety of neural systems suggest that the LC is 

involved in a multitude of functions that modulate behavioral and emotional state. Although it has 

been suggested that the LC is critical in maintaining arousal and attention (Aston-Jones et al., 2000; 

Berridge, 2001; Robbins, 1997), the LC is also particularly sensitive to stress such that acute stress 

exposure and presentation of noxious stimuli result in activation of the LC neurons (Stanford, 1993; 

Stanford, 1995; Zigmond et al., 1995) as measured by a variety of techniques, such as 

immunohistochemistry, microdialysis, and electrophysiology. Subcutaneous injection of capsaicin 

and intraperitoneal injection of hypertonic salt solution (Ceccatelli et al., 1989), immobilization stress 
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(Ceccatelli et al., 1989; Chen and Herbert, 1995; Dayas et al., 2001; Dayas et al., 1999; Ma and 

Morilak, 2004) as well as footshock (Passerin et al., 2000; Pezzone et al., 1993) results in increased 

Fos expression in LC neurons. Correlating with increased LC activation following stress exposure, 

extracellular levels of NE in the hippocampus or cortex, as measured with in vivo microdialysis, is 

increased in response to immobilization stress or intermittent tailshock  (Abercrombie et al., 1988; 

Cenci et al., 1992; Nakane et al., 1994; Rossetti et al., 1990). Nitroprusside-induced hypotensive 

stress increases neuronal activity of LC neurons of both anesthetized and unanesthetized rats (Curtis 

et al., 2002; Curtis et al., 1993; Page et al., 1993; Valentino et al., 1991; Valentino and Wehby, 1988). 

In awake cats and primates, electrophysiological experiments have shown an increased neuronal 

activity of the LC in response to noxious or stressful stimuli (Abercrombie and Jacobs, 1987; Aston-

Jones et al., 1991a; Grant et al., 1988; Rasmussen and Jacobs, 1986). In anesthetized rats, indirect 

stimulation of the contralateral sciatic nerve through footshock, a noxious stimulus, also increases 

LC neuronal activity (Ennis et al., 1992; Mana and Grace, 1995). Noradrenergic LC activity 

following acute stress exposure was also measured by examining the activity of NE-specific proteins. 

Acute stress exposure increases the amount or activity of tyrosine hydroxylase, the rate limiting 

enzyme for NE synthesis, and dopamine beta-hydroxylase, the enzyme that converts dopamine into 

norepinephrine; thus increasing the capacity for NE synthesis in LC neurons (Chang, 2002; Melia 

and Duman, 1991; Nisenbaum and Abercrombie, 1992; Serova et al., 1999). 

1.3 ROLE OF CRH IN STRESS-INDUCED ACTIVATION OF LC NEURONS 

The neuropeptide corticotropin-releasing hormone (CRH) plays an important role in mediating 

responses to stress exposure. CRH was initially discovered as an excitatory neuropeptide released 
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from the hypothalamus and initiates adrenocorticotropin release from the pituitary in the endocrine 

response to stress (Vale et al., 1981). A number of studies examining stress-induced activation of LC 

neurons suggest that CRH may be mediating this activation, which provides an extrahypothalamic 

site of action of CRH during stress responses (Valentino et al., 1998; Valentino et al., 1993). 

Increased extracellular NE release in the prefrontal cortex following immobilization stress (Nakane 

et al., 1994) can be attenuated by CRH antagonist administration in the LC (Emoto et al., 1993; 

Nakane et al., 1994; Shimizu et al., 1994; Smagin et al., 1996; Smagin et al., 1997). Nitroprusside-

induced hypotensive stress activates LC neurons, and this activation is attenuated following 

coerulear or ventricular administration of CRH antagonists (Page et al., 1993; Valentino et al., 1991; 

Valentino and Wehby, 1988). Coerulear CRH administration resulted in increased behaviors typically 

elicited by stress exposure (Butler et al., 1990). Together, these data suggest that CRH may be 

mediating LC activation following acute stress exposure.  

Consistent with previous studies examining stress-induced activation of LC neurons via 

CRH, ventricular or coerulear administration of CRH results in increased LC neuronal activity 

(Jedema et al., 2001; Valentino and Foote, 1988; Valentino et al., 1983). Correlating with CRH-

induced activation of LC neuronal activity, CRH administration increased extracellular NE efflux in 

the hippocampus and prefrontal cortex as measured by microdialysis (Finlay et al., 1997; Page and 

Abercrombie, 1999; Smagin et al., 1995). CRH-induced activation of LC neuronal activity is 

attenuated by both ventricular (Curtis et al., 1994) and coerulear administration (Curtis et al., 1997b) 

of CRH antagonists. This is further correlated with attenuation of CRH-induced extracellular NE 

increase in the hippocampus by coerulear CRH antagonist administration (Page and Abercrombie, 

1999). These in vivo electrophysiological and microdialysis studies examining CRH-mediated 

activation of LC activity and extracellular NE efflux, respectively, in areas where the LC provides the 

sole source of noradrenergic innervation, are consistent with in vitro studies examining CRH-
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mediated activation of LC neurons (Curtis et al., 1994; Jedema and Grace, 2004), which is also 

attenuated by bath application of CRH antagonists (Curtis et al., 1994; Jedema and Grace, 2004). 

These in vitro studies further suggest that the LC is an extrahypothalamic site of action for CRH 

during stress responses. 

Localization of CRH receptors on LC neurons strongly suggest that CRH directly activates 

LC neurons following both CRH administration and acute stress exposure. Audioradiographic and 

immunohistochemical studies show that CRH can directly activate LC neurons via CRH receptors 

that are localized on LC neurons and their dendrites (Chen et al., 2000; De Souza and Insel, 1990; 

Fox et al., 2002; Millan et al., 1986; Primus et al., 1997; Reyes et al., 2006; Reyes et al., 2008; Sanchez 

et al., 1999; Sauvage and Steckler, 2001; Xu et al., 2004). Ultrastructural evidence shows that CRH 

receptors that are localized on LC neurons and its dendrites are of the CRH1 receptor subtype (Fox 

et al., 2002; Reyes et al., 2006; Reyes et al., 2008; Sauvage and Steckler, 2001). This is consistent with 

mRNA for the CRH1 receptor subtype within the LC, which was determined using reverse 

transcription polymerase chain reaction (Reyes et al., 2006). In vitro studies examining 

electrophysiological LC activity, which severs connectivity between the LC and its afferents, have 

demonstrated that CRH directly activates LC neurons in the presence of TTX (Jedema and Grace, 

2004). These findings suggest that CRH can directly activate LC neurons rather than by modulating 

LC afferents.  

In addition to the LC, several immunohistochemical studies have demonstrated multiple 

extrahypothalamic sites within the CNS for CRH-containing neurons, and these sites also innervate 

the LC. Combined immunohistochemical and anatomical tract-tracing studies have demonstrated 

that the peri-coerulear area is rich with CRH-positive axon terminals (Valentino et al., 1992; Van 

Bockstaele et al., 1996b) and brainstem regions, such as the nucleus paragigantocellularis, prepositus 

hypoglossi, and Barrington’s nucleus (Valentino et al., 1992), innervate and provide the LC with a 

 8 



source of CRH. In addition to the CRH-containing brainstem LC afferents, CRH-containing limbic 

regions, such as the central nucleus of the amygdala (CeA), which is the primary output nucleus of 

the amygdala (Lechner and Valentino, 1999; Sakanaka et al., 1986, 1987; Van Bockstaele et al., 1998; 

Wallace et al., 1992) and the bed nucleus of the stria terminalis (Van Bockstaele et al., 1999) form 

synapses onto dendrites of LC neurons in the peri-coerulear area, where the majority of CRH 

innervation occurs (Van Bockstaele et al., 2001). Although both of these limbic areas contain CRH 

and innervate LC neurons, ultra-structural evidences shows that only neurons of the CeA and not 

the BNST form CRH-positive synapses onto dendrites of the LC (Van Bockstaele et al., 1998; Van 

Bockstaele et al., 1999). While all of these CRH-containing brain regions that innervate the LC may 

be involved in CRH-mediated activation of the LC following exposure to acute stressors, the CeA is 

of particular interest for this study, since it provides the LC with a source of CRH and may 

contribute to the stress-induced activation of LC neurons that is thought to be mediated by CRH. In 

addition, clinical studies have shown abnormal amygdalar activity in individuals with mood and 

anxiety disorders in comparison to control subjects (Drevets, 1999; Drevets et al., 2002; Rauch et al., 

2000; Siegle et al., 2002; Williams et al., 2006) and this abnormal overactivity within the amygdala 

may have an abnormal influence of downstream structures (Gilboa et al., 2004). 

1.4 THE CENTRAL NUCLEUS OF THE AMYGDALA  

The amygdala is a complex of forebrain nuclei with separate yet highly integrated functions. Each 

nucleus within the amygdalar complex has distinct neurochemical and cytoarchitectonic features as 

well as anatomical connections. Among these nuclei of the amygdala are the basolateral nucleus 

(BLA) and the central nucleus of the amygdala (CeA). Of these two nuclei, the CeA is the focus of 
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this study as it provides a source of CRH to the LC (Van Bockstaele et al., 1998) and may partially 

mediate stress-induced activation of LC neurons (Curtis et al., 2002). 

Immunohistochemical studies have demonstrated that neurons of the CeA contain the 

inhibitory transmitter, γ-aminobutyric acid (Ben-Ari et al., 1976; Sun and Cassell, 1993; Sun et al., 

1994). Consistent with this, neurons of the CeA contain high levels of the immunohistochemical 

marker for GABA, glutamic acid decarboxylase (GAD), the enzyme which synthesizes GABA from 

glutamic acid (Ben-Ari et al., 1976; Oertel et al., 1983; Sun and Cassell, 1993; Sun et al., 1994; 

Veinante et al., 1997). Using in situ hybridization, there was substantial mRNA for GAD isoforms 

65 and 67 in neurons of the CeA (Day et al., 1999). Unlike the projection neurons of the BLA, 

which are glutamatergic (McDonald, 1982b, 1985, 1992, 1996; McDonald and Betette, 2001; 

McDonald and Pearson, 1989), projection neurons of the CeA that target the brainstem contain 

GABA (Sun et al., 1994). Although the CeA is often considered to be a GABAergic nucleus, 

immunohistochemical studies have shown that neurons of the CeA contain a variety of 

neuropeptides, such as neurotensin, enkephalin, somatostatin, substance P, cholecystokinin, 

vasoactive peptide, and galanin (Cassell et al., 1986; Gray and Magnuson, 1987a, b; Oertel et al., 

1983; Palkovits, 2000; Veinante et al., 1997). Furthermore, immunohistochemical studies have 

identified the CeA as an extrahypothalamic source of CRH (Gray and Magnuson, 1987b; Lechner 

and Valentino, 1999; Sakanaka et al., 1986, 1987; Swanson et al., 1983; Thompson and Cassell, 1989; 

Van Bockstaele et al., 1998). 

With respect to its cytoarchitectonic properties, the CeA is more striatal-like, in comparison 

to the BLA which is more similar to cortical structures (Carlsen and Heimer, 1988; McDonald, 

1982a; McDonald, 1992; McDonald and Pearson, 1989). Based on cytoarchitectonic features, the 

CeA is divided into three subdivisions, the medial, lateral, and capsular divisions (McDonald, 1982a). 

Like the BLA, CeA is comprised of both projection and local circuit interneurons with numerous 
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topographically organized intrinsic connections between its subdivisions (Jolkkonen and Pitkanen, 

1998; Pitkanen and Amaral, 1994; Pitkanen et al., 1997). Extensive interconnectivity exists between 

the different subdivisions of the CeA as well as reciprocal connections between the CeA and BLA 

(Jolkkonen and Pitkanen, 1998; Pitkanen et al., 1997). 

The BLA and CeA have distinct functions within the amgydalar complex based on afferent 

and efferent connections between the BLA and CeA and different brain regions. The BLA is 

thought to integrate sensory information (Davis, 1994; Davis and Whalen, 2001; LeDoux, 2000) 

received from sensory areas, sensory association cortex, and thalamic nuclei (Armony et al., 1997; 

Arnault and Roger, 1990; Campeau and Davis, 1995; Cassell and Wright, 1986; Edeline et al., 1993; 

Farb and Ledoux, 1999; Li et al., 1996; Mascagni et al., 1993; McDonald, 1998; Romanski et al., 

1993; Rosen et al., 1992; Shi and Cassell, 1997, 1998a, b, 1999; Turner and Herkenham, 1991; van 

Vulpen and Verwer, 1989). The CeA is thought to be the primary output nucleus of the amygdala 

(Davis, 1994; Davis and Whalen, 2001; LeDoux, 2000), since it projects to the hypothalamus and to 

different nuclei located throughout the brainstem (Gray et al., 1989; Gray and Magnuson, 1987a, b; 

Jongen-Relo and Amaral, 1998; Petrovich et al., 2001; Petrovich and Swanson, 1997; Saha et al., 

2000; Van de Kar and Blair, 1999; Veening et al., 1984). Through its efferent connections to the 

CeA (Pitkanen, 1997), the BLA sends integrated sensory information to the CeA, which is thought 

to influence autonomic, endocrine, and cardiovascular responses (Davis, 1994; Davis and Whalen, 

2001; LeDoux, 2000) through its innervation of hypothalamic and brainstem regions (Gray et al., 

1989; Gray and Magnuson, 1987a, b; Jongen-Relo and Amaral, 1998; Petrovich et al., 2001; 

Petrovich and Swanson, 1997; Saha et al., 2000; Veening et al., 1984). 

 11 



1.5 THE ROLE OF THE CENTRAL NUCLEUS OF THE AMYGDALA IN THE 

STRESS RESPONSE 

Like the LC, previous studies have shown that the CeA is involved in responses to a variety of 

stressful or noxious stimuli (Dayas et al., 2001) Psychological stressors, such as swim stress (Dayas et 

al., 2001), and immobilization stress activate neurons of the CeA as measured by Fos expression 

(Campeau et al., 1991; Honkaniemi, 1992) or expression of other immediate early genes (Rosen et 

al., 1998a). In rats that were exposed to physiological stressors, such as nitroprusside-induced 

hypotension (Curtis et al., 2002), hemorrhage and immune challenge (Dayas et al, 2001), and noise 

(Dayas et al, 2001), there were significant increases in Fos expression in a large number of neurons 

in the CeA in comparison to naïve rats. In anesthetized rats, electrophysiological neuronal activity of 

CeA neurons is increased following presentation of a noxious stimulus such as footshock (Correll et 

al., 2005). Several lesion studies have examined the role of the CeA in activation of the HPA axis 

during a stress response (for reviews, (Gray and Bingaman, 1996; Herman and Cullinan, 1997; 

Roozendaal et al., 1997). Lesions of the CeA disrupt adrenocorticotropin hormone (ACTH) and 

corticosterone responses to stressors, such as immobilization stress (Beaulieu et al., 1986; Beaulieu et 

al., 1987; Prewitt and Herman, 1994; Roozendaal et al., 1991b; Van de Kar et al., 1991) and 

unavoidable footshock (Roozendaal et al., 1991a). 

In addition to involvement in the stress response to a variety of aversive or stressful stimuli 

as evaluated through Fos expression in the CeA or measurement of neuroendocrine and autonomic 

responses to acute stressors following lesions of the CeA, the CeA is also critically involved in the 

expression of behaviors and neuroendocrine and autonomic responses observed during fear 

conditioning (Davis, 1994, 1997; Davis and Whalen, 2001; LeDoux, 2000). Fear conditioning 

involves the pairing of a conditioned stimulus, such as a tone or a light, with an unconditioned 
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stimulus, such as an electric shock (Brown et al., 1951). Chemical or electrolytic lesions of the CeA 

blocked expression of fear-potentiated startle (Davis et al., 1993; Falls and Davis, 1995; Gentile et 

al., 1986; Helmstetter, 1992; Hitchcock and Davis, 1991; Iwata et al., 1986; Kapp et al., 1979; Kim 

and Davis, 1993; Sananes and Campbell, 1989; Weisz et al., 1992; Zhang et al., 1986). Lesions of the 

CeA disrupt conditioned freezing (Iwata et al., 1986), conditioned increases in arterial pressure 

(Iwata et al., 1986), fear-potentiated startled (Campeau and Davis, 1995), and other conditioned 

responses (Gentile et al., 1986; Helmstetter, 1992). Consistent with this, blocking glutamate 

transmission within the CeA with infusions of the glutamate receptor antagonists into the CeA 

prevented expression of fear-potentiated startle (Davis et al., 1993; Walker and Davis, 1997).  

Due to its projections to brainstem and hypothalamic areas that modulate neuroendocrine 

and autonomic processes, the CeA has the potential to influence changes in autonomic and 

neuroendocrine processes that are involved in the stress responses (Dayas et al, 2001) and fear 

conditioning (Davis and Whalen, 2001). Although the CeA is known to be a GABAergic brain 

region, neurons of the CeA also synthesize the neuropeptide CRH (Gray et al, 1987b; Lechner et al, 

1999; Sakanaka et al, 1986, 1987; Swanson et al, 1983; Van Bockstaele et al, 1998), and it is suggested 

that changes in autonomic and endocrine processes during the stress response may be mediated by 

CRH (Gray and Bingaman, 1996; Roberts, 1992). Combined immunohistochemical and anatomical 

tract-tracing studies have shown that the CRH-positive neurons in the CeA project to regions in the 

brainstem that modulate neuroendocrine and autonomic processes, such as the parabrachial nucleus 

(Moga and Gray, 1985), dorsal vagal complex (Veening et al., 1984), the midbrain central gray (Gray 

et al., 1989), and the LC (Sakanaka et al, 1986; Swanson et al, 1983; Van Bockstaele et al, 1996a; Van 

Bockstaele et al, 1998; Wallace et al, 1992). Given the involvement of both the CeA and LC in mood 

and anxiety disorders and that both regions are activated by acute stressors, with evidence suggesting 
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that CRH mediates stress-induced activation of LC, this study examines the pathway between the 

CeA and LC, particularly with respect to CRH. 

1.6 THE CEA-LC PATHWAY MAY BE INVOLVED IN MODULATING 

RESPONSES TO ACUTE STRESSORS 

Anatomical tract-tracing studies examining the innervation of the LC have identified a specific 

spatial arrangement of the inputs within the LC. It was previously thought that innervation of the 

LC was restricted to brainstem regions, such as the PGi, prepositus hypoglossi, and Barrington’s 

nucleus (Aston-Jones et al, 1986; Aston-Jones et al, 1991b; Chiang and Aston-Jones, 1993; Valentino 

et al, 1992). However, Golgi staining and immunohistochemical staining for dopamine-beta-

hydroxylase showed that dendrites of the LC extend beyond the densely packed nucleus into what is 

known as the peri-coerulear area (Cintra et al., 1982; Grzanna and Molliver, 1980; Pfister and 

Danner, 1980; Shipley et al., 1996; Swanson, 1976). Subsequent studies have identified limbic 

afferents of LC, such as the prefrontal cortex (Aston-Jones et al., 1991b; Zhu and Aston-Jones, 

1996), the BNST (Van Bockstaele et al., 1999) and the CeA (Sakanaka et al., 1986; Van Bockstaele et 

al., 1996a; Wallace et al., 1992), that innervate dendrites of LC neurons in the peri-coerulear area. 

The peri-coerulear area can be further divided into the rostrolateral and rostromedial peri-coerulear 

areas (Shipley et al., 1996), which are differentially innvervated by limbic areas. The prefrontal cortex 

innervates LC dendrites in the rostromedial peri-coerulear area (Aston-Jones et al., 1991b; Zhu and 

Aston-Jones, 1996), whereas amygdalar inputs such as the BNST (Van Bockstaele et al, 1999) and 

the CeA (Van Bockstaele et al, 1996a; Van Bockstaele et al, 1998) innervate LC dendrites localized in 

the rostrolateral peri-coerulear area. It was suggested that brainstem afferents that innervate the LC 
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proper may convey information of immediate physiological survival value, i.e, the “systemic” 

stressors, while limbic afferents that innervate LC neuron dendrites in the peri-coerulear area may 

modulate LC responses to stressful stimuli (Herman and Cullinan, 1997). 

Combined anatomical tract-tracing and immunohistochemical studies have suggested that 

the CeA may modulate LC activity by providing an excitatory limbic input to LC neurons. Not only 

do neurons of the CeA form synapses onto dendrites of LC neurons in the rostrolateral peri-

coerulear area, but these synapses are CRH-positive (Van Bockstaele et al., 1998). This is consistent 

with ultra-structural studies showing that CRH-positive neurons of the CeA form putative 

asymmetric (excitatory) synapses onto TH-positive dendrites of LC (Van Bockstaele et al., 1998). 

Although this may suggest that the GABAergic projection from the CeA is separate from the CRH-

containing projection, it has been demonstrated that CRH co-localizes with GABA in terminals 

within the dendritic field of LC neurons (Valentino et al., 2001) in addition to neurons of the CeA 

(Veinante et al., 1997). Older studies using combined anterograde tract-tracing from the CeA and 

immunohistochemical staining for CRH show that neurons from the CeA provides a source of CRH 

to the dendritic areas of the LC (Sakanaka et al, 1986; Wallace et al, 1992). Lesions of the CeA 

decreased the density of CRH-positive fibers in the rostrolateral peri-coerulear area (Sakanaka et al., 

1986), an area rich with CRH-positive terminals (Van Bockstaele et al, 1996b). Furthermore, studies 

using combined retrograde tract-tracing from the LC and immunohistochemical staining for CRH 

show that CRH-containing CeA neurons target the LC and are located in the more medial areas of 

the CeA (Thompson et al, 1989; Van Bockstaele et al, 1998). Although combined 

immunohistochemical and anatomical tract-tract studies have demonstrated that CRH-positive 

neurons of the CeA form synapses onto TH-positive dendrites of the LC, there is no ultra-structural 

evidence to date that demonstrates that GABAergic neurons of the CeA form synaptic contacts with 

dendrites of LC neurons.  
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While anatomical tract-tracing and immunohistochemical studies have provided evidence for 

modulation of LC activity by the CeA that is excitatory, subsequent electrophysiological studies have 

examined the modulation of LC activity by the CeA. It is thought that the CeA mediates 

hypotension-induced LC activation through CRH since LC neurons were not activated by 

nitroprusside-induced hypotensive stress in animals with electrolytic lesions of the CeA (Curtis et al., 

2002). Subsequent electrophysiological studies more directly characterized the CeA-LC pathway. In 

anesthetized rats, electrical stimulation of the CeA resulted in activation of LC neurons, and this 

activation was attenuated following both ventricular and coerulear administration of CRH 

antagonists (Bouret et al., 2003). Taken together, previous studies examining the CeA-LC pathway 

suggest that the CeA provides an excitatory input to LC neurons and activation of this pathway may 

be activating LC neurons during exposure to acute stressors. Activation of the CeA-LC pathway may 

result in noradrenergic modulation of areas that are innervated by LC neurons. Therefore, together 

with other monoamines, NE innervation arising from the LC has the ability to modulate limbic and 

cortical arousal as well as modulate other neural systems, which suggests that any changes in NE 

levels throughout the brain as a result of LC activation will likely result in a modulation of behavior 

and emotional states (Aston-Jones et al, 2000; Aston-Jones et al, 1996; Thase et al, 2002). 

1.7 RESEARCH OBJECTIVES 

Studies examining stress-induced activation of the LC have suggested that this activation is mediated 

in part by CRH. Furthermore, previous studies have shown that the CeA, which is also activated by 

stress and aversive stimuli, provides a source of CRH to LC neurons. Ultra-structural evidence from 

combined anatomical tract-tracing and immunohistochemical studies along with electrophysiological 
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studies examining the CeA-LC pathway suggested that the CeA provides an excitatory limbic input 

to LC neurons and that this activation is mediated by CRH. Together these data suggests that the 

CeA modulates LC activity and may contribute to stress-induced LC activation via CRH during 

responses to stressful stimuli.  

Given that neurons of the CeA contain a combination of excitatory neuropeptides and 

inhibitory neurotransmitters and peptides, namely CRH and GABA, this present work characterized 

the CeA-LC pathway using a combination of electrophysiological and pharmacological techniques in 

an anesthetized rodent preparation.  Studies were designed to confirm results from previous work 

(Bouret et al., 2003) and further characterize how the CeA may modulate LC activity following both 

electrical and pharmacological manipulation of the CeA along the following specific aims: 

 

1. To determine the effects of electrical and pharmacological manipulation of the CeA on 

LC activity. 

 

A. Since neurons of the CeA contain the inhibitory neurotransmitter, GABA, as well as 

various peptides, all of which have either inhibitory or excitatory effects on LC activity, 

what is the effect of electrical stimulation of the CeA on LC activity? 

 
It is hypothesized that electrical activation of the CeA using a variety of stimulation 

parameters will result in both excitatory and inhibitory responses in LC neurons. Excitatory 

responses are expected since neurons of the CeA that directly form synapses on LC neurons will 

release CRH onto LC neurons, thereby mediating excitatory responses. In vivo CRH administration 

increases electrophysiological activity of LC neurons and in vitro electrophysiological studies show 

direct activation of LC neurons in the presence of TTX following bath application of CRH. These 

observations correlate with increased extracellular NE release at terminal sites as a result of CRH 

 17 



administration. Previous studies examining the CeA-LC pathway in anesthetized rats have shown 

that electrical stimulation of the CeA results in excitatory responses.  

In addition to excitatory responses, it is hypothesized that electrical stimulation of the CeA 

will result in pure inhibitory responses, since projection neurons of the CeA contain GABA and 

neuropeptides that depress LC activity. Electrophysiological studies have shown that bath 

application of GABA in vitro decreases electrophysiological LC activity (Shefner and Osmanovic, 

1991). LC activity is also depressed following administration of the following neuropeptides, which 

are contained in neurons of the CeA (Cassell et al, 1986): enkephalin (Travagli et al., 1995), 

neurotensin, somatostatin, and galanin (Olpe and Steinmann, 1991).  

 

B. What are the effects of pharmacological activation and inactivation of the CeA on LC 

activity? 

 

To confirm responses as a result of electrical stimulation of the CeA, responses to 

pharmacological activation of the CeA will be characterized. It is hypothesized that pharmacological 

activation of the CeA will result in both excitatory and inhibitory responses of LC neurons, which 

are hypothesized to be mediated by the same mechanisms underlying excitatory and inhibitory 

responses following electrical stimulation of the CeA. 

In addition, in vivo LC activity is under tonic inhibitory control (Ennis and Aston-Jones, 

1989; Kawahara et al, 1999; Pudovkina et al, 2001) that is thought to be mediated by local circuit 

GABAergic interneurons (Aston-Jones et al, 2004). Local application of GABAergic antagonists 

increases LC firing rate (Ennis and Aston-Jones, 1989a) and NE release both in the medial PFC and 

locally within the LC (Kawahara et al, 1999; Pudovkina et al, 2001). Sources of tonic inhibitory 

control may be intrinsic via GABAergic interneurons within the dendritic fields of the LC (Aston-
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Jones et al, 2004) or extrinsic (Van Bockstaele, 1998; Van Bockstaele and Chan, 1997). Since 

projection neurons of the CeA provides a source of GABA (Sun et al., 1994), pharmacological 

inactivation of the CeA will determine if the CeA may provide an extrinsic source of tonic inhibitory 

control of LC neurons. 

  

2. To determine whether CRH mediates the excitatory responses of LC neurons following 

electrical train stimulation of the CeA. Does CRH mediate the excitatory responses 

following CeA stimulation? 

 

Previous studies have shown that electrical stimulation of the CeA results in excitatory 

responses in the majority of LC neurons and this can be attenuated following ventricular and intra-

LC administration of the peptidergic CRH antagonist, alpha-helical CRH. To confirm this 

observation, the effects of ventricular administration of the CRH antagonist, D-Phe-CRH, on 

excitatory responses following high-frequency high-intensity electrical train stimulation of the CeA 

were examined. It is hypothesized that D-Phe-CRH will attenuate excitatory responses following 

electrical train stimulation of the CeA. 

Bouret et al suggested that excitatory responses to train stimulation were partially attenuated 

following ICV and intra-coerulear infusions of the peptidergic antagonist alpha-helical CRH. This 

suggested that the CeA activates the LC via other brain regions and/or mechanisms. To further 

evaluate whether excitatory responses to train stimulation of the CeA were mediated by CRH, and 

determine if glutamatergic afferents contribute to the excitatory responses as a result of electrical 

stimulation of the CeA, the effects of the glutamatergic antagonist, kynurenic acid, on excitatory 

responses to train stimulation were examined. It is hypothesized that excitatory responses to train 

stimulation will not be attenuated following ventricular administration of kynurenic acid. 
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2.0  METHODS 

2.1 ANIMALS 

Experiments were performed using 117 male Fisher 344 rats (Hilltop, Scottsdale, PA) (200-300 g) 

that were doubly housed in hanging stainless steel cages in a colony room maintained at 23 °C. 

Lights were maintained on a 12 hour light-dark cycle (lights on at 7 am), and food (Laboratory 

rodent diet 5001, PMI Feeds, St. Louis, MO) and water were available ad libitum. All protocols were 

approved by the Animal Care and Use Committee of the University of Pittsburgh and were in 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

2.2 MATERIALS 

D-Phe12-Nle21,38alpha-Me-Leu37-CRH(12-41) (D-Phe-CRH; Bachem) was dissolved to a concentration 

of 3 μg or 12 μg/3 μl in artificial cerebral spinal fluid (aCSF; in mM : 124 NaCl, 1.8 KCl, 1.2 

KH2PO4, 1.0 MgSO4, 20.0 NaCHO3, 1.25 glucose, 0.3 ascorbic acid, and 0.1% bovine serum 

albumin) and acidified with 0.5 uL 30% acetic acid. D-Phe-CRH was used in this experiment rather 

than alpha-helical CRH, since it was reported that D-Phe-CRH is more potent in the LC by 100-fold 

in vivo (Curtis et al., 1994). This difference in potency in vivo was attributed to differences in peptide 
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binding distribution following ICV infusion, such that the effective concentration that reaches the 

LC for alpha-helical CRH was less than that for D-Phe-CRH (Curtis et al., 1994). 

Kynurenic acid (KYN; Sigma) was first dissolved in 30 µl 10 N NaOH solution to a final 

concentration of 50 mM in aCSF. (±)-alpha-amino-3-hydroxy-4-methyl-isoxazole-4-proprionic acid 

hydrobromide (AMPA; Sigma) was dissolved in distilled water and further diluted to a final 

concentration of 0.24 mM with Dulbecco’s Phosphate Buffered Saline (dPBS; Sigma). Muscimol and 

baclofen (Sigma) were dissolved in dPBS to a final concentration of 0.2 µg/0.5 µl. 

 

2.3 SURGERY 

Rats were anesthetized with 5% halothane (Halocarbon Laboratories, River Edge, NJ) in O2 and 

placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). The nose was pointed 

downward at 15° from the horizontal plane with a 3.0-mm differential of dorsal-ventral (DV) 

coordinates of bregma and lambda. For the remainder of the experiments, anesthesia was 

maintained with 1.5-2.5% halothane in O2 using a vaporizer (VIP 3000, Matrix Medical, Orchard 

Park, NY) to maintain suppression of the limb compression withdrawal reflex. Core temperature 

was maintained between 36-38 °C using a heating pad (VL-20F, Fintronics, New Haven, CT).  

Glass recording electrodes (2.0 mm; World Precision Instruments, Inc., Sarasota, FL) were 

made using a vertical puller (PE2, Narishige, Tokyo, Japan) and filled with 2.0 M NaCl and 2% 

Pontamine Sky Blue (impedance 6-10 MΩ). Using a hydraulic microdrive (model 640, Kopf), 

recording electrodes were positioned in the LC (-3.5 mm anterior-posterior [AP], 1.1 mm medial-
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lateral [ML] with respect to lambda, and 5.5-6.8 mm DV from dorsal brain surface) (Paxinos and 

Watson, 2005). 

Local or intracerebroventricular (ICV) infusions of drugs were made though 33-gauge 

cannulae (Plastics One). The cannulae extended beyond the 26-gauge guide cannulae by 1.0 mm and 

were connected via PE10 tubing (Plastics One) to a 100-µl Hamilton syringe (Fisher, Pittsburgh, 

PA) for local or ICV infusions. The syringe was attached to a syringe pump (Bioanalytical Systems, 

West Lafayette, IN). The flexible tubing was filled with drugs prior to the implantation of the 

cannula and cannula guide in the contralateral lateral ventricle (-1.0 mm AP, 1.4 mm ML with 

respect to bregma, and 5.3 mm DV from dorsal brain surface) or the CeA (-4.8 mm AP, 4.4 mm ML 

with respect to bregma, and 5.1-5.3 mm DV from the dorsal brain surface). 

To electrically stimulate the CeA, a concentric bipolar electrode (Model NEX-100; Kopf) 

was lowered into the CeA (-4.8 mm AP, 4.4 mm ML with respect to bregma, and 5.1 - 5.3 mm DV 

from the dorsal brain surface) (Paxinos and Watson, 2005). The concentric bipolar electrode was 

connected to a current isolation unit (PSIU6 Grass) and a stimulator (S88 Grass). 

2.4 ELECTROPHYSIOLOGY 

LC neurons were identified based on well-established criteria including spike waveform, 

spontaneous firing, and response to paw and tail compression (Cedarbaum and Aghajanian, 1978a; 

Curtis et al., 2002; Foote et al., 1983). Signals were amplified using a high-impedance headstage 

connected to an amplifier/window discriminator (Fintronics). Electrophysiological activity was 

monitored using an audio monitor (AM6 Grass, Quincy, MA) and a storage oscilloscope (V134, 

Hitachi, Japan). Data were digitized and monitored online using a data acquisition board (Microstar 
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Labs, Bellevue, WA) connected to a Windows-based personal computer and custom-designed 

software (Neuroscope). 

Once isolated, the basal activity of single LC neurons was recorded for 3 minutes. For a 

subset of neurons, extracellular single-unit LC neuronal activity was recorded during single-pulse or 

train stimulation (5 pulses; 10 Hz) of the CeA (300-900 μA, 300 μsec, 0.4 Hz, 75 trials). For a second 

subset of neurons, extracellular single-unit LC neuronal activity was recorded during both single-

pulse and train stimulation (5 pulses; 20 Hz) of the CeA (900 μA, 300 μsec, 0.25-0.4 Hz, 75 trials), 

before and for approximately 50 minutes after an ICV infusion of 3 µl of aCSF, 3 or 12 μg/3 µl D-

Phe-CRH, or 50 mM/3 µl KYN at a rate of 1 µl/min. LC activity was recorded for 3 minutes 

before, during and 5 minutes after an ICV infusion and for approximately 2 minutes every 7 minutes 

between train stimulation of the CeA. 

Spontaneous LC activity was recorded for 3 minutes prior, during and for 7-10 minutes 

following a microinfusion of 0.25 mM AMPA in 0.25 or 0.5 µl dPBS, 0.2 μg muscimol and 0.2 μg 

baclofen in 0.5 µl dPBS, or 0.5 µl of dPBS into the CeA. Only one ICV or intra-CeA infusion was 

made per rat. 

2.5 EUTHANASIA AND HISTOLOGY 

At the end of each experiment, the location of the recording site was marked by an iontophoretic 

ejection of Pontamine Sky Blue from the tip of the recording electrode using -26 μA constant 

current delivered for 30-40 min. The electrical stimulation site in the CeA was marked by passing 

300 μA for 10 sec across the stimulating electrode. The microinfusion sites within the CeA or the 
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lateral ventricle were marked by infusion of 1 µl Pontamine Sky Blue or 3 µl Fast Green dye, 

respectively. 

Each rat received an overdose of chloral hydrate and was perfused transcardially with cold 

isotonic saline (Sigma) followed by 4% paraformaldehyde (Sigma) in 0.1 M phosphate buffer 

(Sigma). The rat was decapitated and the brain was removed. The presence of Fast Green dye in the 

third ventricle near the optic chiasm was evidence that the infusion cannula was in the lateral 

ventricle. The brain was fixed in 4% paraformaldehyde in 0.1 M phosphate buffer. Following 

fixation, the brain was cryoprotected with 25% sucrose (Sigma) in 0.1 M phosphate buffer, sectioned 

into 60-μm thick coronal slices, and stained with cresyl violet. 

Stained sections were examined microscopically to confirm the location of the recording and 

stimulating electrodes and cannulae lowered into the CeA with respect to the stereotaxic atlas of 

Paxinos and Watson (2005). Only data from animals with recording sites in the LC (figure 1A), 

electrical activation sites in the CeA (figure 1B), the presence of Pontamine Sky Blue in the CeA 

(figure 1C), and the presence of Fast Green dye in the third ventricle near the optic chiasm were 

included in the data analysis. 
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Figure 1. Recording sites in the LC and activation sites in the CeA in Nissl-stained coronal 

sections. 

A) The photomicrograph of the LC shows a representative placement of the tip of the recording 

electrode in the LC (arrow) made by ejection of Pontamine Sky Blue at the termination of recording. 

B) The photomicrograph of the CeA shows a representative placement of the stimulating electrode 

in the CeA (arrow). C) The photomicrograph of the CeA shows a representative placement of the 

cannula in the CeA. Following termination of recording, the CeA was marked by injecting 1 µL of 

dye (15 µL/hr) through the cannula (arrow). Scale bar = 500 µm. IV = Fourth ventricle. OT = optic 

tract. BLA = basolateral nucleus of the amygdala 
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2.6 DATA ANALYSIS 

2.6.1 Effects of electrical stimulation of the CeA on LC activity. 

To determine the effects of single-pulse or train stimulation of the CeA on LC activity, peri-stimulus 

time histograms (PSTH) were generated (5-ms bins for excitation; 25-ms bins for inhibition) for 75 

trials. For cells exhibiting an excitatory response, sliding averages of spike probability (spikes/bin) 

were calculated using 3 consecutive 5-ms bins. Baseline spike probability was expressed as the 

average number of spikes/bin prior to electrical stimulation of the CeA. A neuron was considered to 

be excited when a bin exceeded baseline spike probability by 2.5 standard deviations within 50 ms of 

single-pulse stimulation of the CeA or within 50 ms of each stimulus of the train. The latency for the 

peak spike probability in excitatory responses to single-pulse or train stimulation of the CeA was 

defined as the bin that expressed the maximum number of spikes within 50 ms of stimulus in single-

pulse stimulation or within 50 ms of each stimulus of the train and expressed as milliseconds (ms). 

In contrast, cells demonstrating an inhibition were characterized by at least 3 consecutive 25-ms bins 

that were less than 80% of the baseline spike probability within 1000 ms following single-pulse or 

the onset of train stimulation of the CeA. The average onset and offset of an inhibitory period was 

the first and last bin, respectively, of consecutive series of 3 25-ms bins that was less than 80% of 

baseline; data are expressed as milliseconds (ms). The duration of inhibition was the difference 

between the offset and onset of inhibition and expressed as milliseconds (ms). To quantify 

inhibition, spike probability was calculated from a given period that was determined by the average 

onset and duration of inhibition. Although not sufficient to eliminate othrodromic activation with a 

fixed-latency, antidromic activation was operationally defined as spikes elicited at a fixed latency and 

could follow high frequency stimulation (20 Hz) of the CeA. 
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Train stimulation of the CeA resulted in 3 types of excitatory responses: acute, late or 

multiple. An acute excitatory response was defined as the presence of at least 1 bin that exceeded 

baseline spike probability by 2.5 standard deviations following only the first stimulus of the train. A 

late excitatory response was defined by the presence of at least 1 bin that exceeded baseline spike 

probability by 2.5 standard deviations following the second-fifth stimuli of the train, but not 

following the first stimulus of the train. A multiple excitatory response was defined by the presence 

of at least 1 bin that exceeded baseline spike probability by 2.5 standard deviations following the first 

stimulus and any of the remaining stimuli of the train. 

2.6.2 Effects of ICV infusions and intra-CeA microinfusions on spontaneous and evoked 

LC activity. 

All data are normalized to the average spike probability obtained prior to ICV drug infusions, and 

are shown and analysed as percent change in spike probabilities. To examine spontaneous LC 

activity, sliding firing rate (FR) averages were calculated using 10 consecutive 1-sec bins. The 

maximal response to an intra-CeA microinfusion of dPBS, 60 and 120 pmol AMPA, or 0.2 µg 

muscimol/0.2 µg baclofen was defined as the difference between the peak value of sliding FR 

averages following microinfusion and the basal FR of the neuron. The time of maximal response 

was defined as the 1-sec bin during which the maximal increase in FR was first attained with respect 

to the onset of the microinfusion. 

Onset and offset of the increase in FR following microinfusions of dPBS, 60 and 120 pmol 

AMPA, or 0.2 µg muscimol/0.2 µg baclofen in the CeA was defined as the first and last bin, 

respectively, that was 10% greater than baseline FR. Duration of the increases in LC firing rate as a 
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result of microinfusions of drug into the CeA was the difference between the offset and onset of the 

increase FR. 

2.6.3 Statistics. 

For all data exhibiting a normal distribution, the following statistics tests were used to test 

significance: Chi-square test, t-test, paired t-test, 1-way ANOVA, or 1-way ANOVA with repeated 

measures followed by the Tukey or Holm-Sidak test, with type of excitation following 20-Hz train 

stimulation of the CeA, time or drug as between-subject or within-subject factor. Multiple 

comparisons were analyzed using a 2-way ANOVA followed by the Holm-Sidak test, with type of 

excitation following 20-Hz train stimulation of the CeA, drug, or stimulation type, as the between-

subject factor and time or current intensity as the within-subject factor. If data did not follow a 

normal distribution, a Wilcoxon Signed Rank test, Mann-Whitney Rank Sum Test, 1-way ANOVA 

on Ranks or Kruskal-Wallis 1-way ANOVA on Ranks followed by Dunn’s test were used with 

stimulation type or drug as the between-subject factor. Significance was set as a p value less than 

0.05. Data that are not significant are denoted as NS. 

 

 

 

 28 



3.0  RESULTS 

3.1 EFFECTS OF ELECTRICAL STIMULATION OF THE CEA ON LC ACTIVITY 

3.1.1 Effects of single-pulse stimulation of the CeA on LC activity. 

LC activity from 184 neurons was recorded during single-pulse stimulation of the CeA (900 µA, 300 

µsec, 0.4 Hz, 75 trials) to determine the effects of electrical activation of the CeA on LC neuronal 

activity. Of these neurons, 49% (90 neurons) responded with an excitation within 50 ms of the 

stimulus, 32% (59 neurons) responded with an inhibition within 1000 ms of the stimulus, 8% (15 

neurons) were antidromically activated, and 11% (20 neurons) did not respond to single-pulse 

stimulation of the CeA. 

To determine if LC responses to single-pulse stimulation of the CeA at 900 µA were due to 

high current intensities, LC activity from 16 neurons was recorded using lower intensities (0-600 µA) 

of single pulse stimulation of the CeA (300 µsec, 0.4 Hz, 75 trials). Of these neurons, 44% (7 

neurons) responded with an excitation within 50 ms of the stimulus, 38% (6 neurons) responded 

with an inhibition within 1000 ms of the stimulus, and 3 neurons did not respond to single-pulse 

stimulation of the CeA at 900 µA. 
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3.1.2 Excitatory responses to single-pulse stimulation of the CeA. 

The majority of LC cells (49%) recorded during single-pulse stimulation of the CeA at 900 µA 

responded with an excitatory response (n = 90/184; figure 2). The spike probability within 50 ms of 

the stimulus was two times greater than baseline spike probability (figure 2B and table 1; Wilcoxon 

Signed Rank test, p<0.05). The average latency of the peak spike probability of excitation was 24.1 ± 

1.4 ms from the onset of the stimulus. Excitation was followed by an inhibitory period (post-

excitation inhibition) that had an average onset of 94 ± 6 ms with respect to onset of single-pulse 

stimulation and lasted 236 ± 15 ms. During the post-excitation inhibitory period, single-pulse 

stimulation of the CeA exhibited a 36% decrease from baseline spike probability when tested 

between 100-350 ms from the onset of stimulation (table 1). Spike probability during the post-

excitation inhibitory period between 100-350 ms from the onset of stimulation was significantly less 

than baseline spike probability (figure 2C and table 1; paired t-test, p<0.05). 

A current-response relationship was examined for excitatory responses to single-pulse 

stimulation of the CeA (n = 7/16; figure 3). Increasing current intensities resulted in significant 

increases in spike probability within 50 ms of the stimulus during single-pulse stimulation of the 

CeA with respect to baseline spike probability (figure 4A; 2-way RM ANOVA, p<0.05). Baseline 

spike probability did not vary significantly at each current intensity tested (figure 4A; 2-way RM 

ANOVA, Holm-Sidak, NS). The spike probability within 50 ms of a 0-µA (control) or 300-µA 

stimulus was not significantly different from their respective baseline spike probabilities (figure 4A; 

2-way RM ANOVA, Holm-Sidak, NS). Higher current intensities (600 and 900 µA) during single-

pulse stimulation of the CeA resulted in spike probabilities within 50 ms of the stimulus that were 

significantly greater than their respective baseline spike probability (figure 4A; 2-way RM ANOVA, 

Holm-Sidak, p<0.05). In addition, increasing current intensities during single-pulse stimulation of 
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the CeA resulted in significant increases in post-excitation inhibition (figure 4B; 2-way RM 

ANOVA, p<0.05). In the neurons that showed an excitatory response to single-pulse CeA 

stimulation at 900 µA (n = 7/16; figure 3D), post-excitation inhibition had an average onset of 104 

± 25 ms following the onset of stimulation and lasted 211 ± 40 ms. During the post-excitation 

inhibitory period, the spike probability between 150-250 ms following lower current intensity single-

pulse stimulation (0 and 300 µA) was not significantly different from their respective baseline spike 

probabilities (figure 4B; 2-way RM ANOVA, Holm-Sidak, NS). Single-pulse CeA stimulation at 

higher current intensities (600 and 900 µA) resulted in significantly decreased spike probability 

during the post-excitation inhibitory period between 150-250 ms following the onset of the stimulus 

in comparison to their respective baseline spike probabilities (figure 4B; 2-way RM ANOVA, 

Holm-Sidak, p<0.05). 

 

Table 1. Excitatory responses to electrical stimulation of the CeA at 900 µA 

 
 

single-pulse 
(n = 90/184) 

10-Hz train 
(n = 9/11) 

20-Hz train 
(n = 

129/184) 
Baseline 5.5 ± 0.3 5.1 ± 1.0 5.7 ± 0.2 

S1 13.3 ± 1.0* 13.3 ± 3.6* 11.5 ± 0.7* 
S2 - 9.0 ± 2.2 10.6 ± 0.7* 
S3 - 6.3 ± 1.5 9.6 ± 0.7* 
S4 - 4.9 ± 1.2 9.9 ± 0.7* 

Excitation 

Spike 
probability 
(spikes/50 

ms) 
S5 - 5.7 ± 1.3 10.8 ± 0.7* 

Onset (ms) † 94 ± 6 494 ± 9 261 ± 8 
Duration (ms) 236 ± 15 267 ± 33 518 ± 20 

Period† 100-300 ms 500-750 ms 300-800 ms 
Baseline 27.4 ± 1.5 

spikes/200 ms 
25.51 ± 4.18 
spikes/250 

ms 

56.7 ± 2.5 
spikes/500 

ms 
Inhibition†† 17.9 ± 1.5 

spikes/200 ms*
7.9 ± 2.0 

spikes/250 
ms* 

23.5 ± 2.3 
spikes/500 

ms* 

Post-excitation 
inhibition Spike 

probability 

% BL† 64 ± 3 37 ± 12 40 ± 3 
 

† with respect to onset of electrical stimulation of the CeA 
†† spike probability within the period from onset of electrical CeA stimulation 
* p<0.05, compared to baseline spike probability 
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Figure 2. Excitatory responses to single-pulse CeA stimulation. 

A) The cumulative PSTH plots the average number of the spikes of all neurons (n = 90/184) that 

showed an excitatory response within 50 ms of single-pulse stimulation. Excitation was typically 

followed by an inhibitory period that lasted approximately 240 ms. B) Evoked spike probability 

evoked within 50 ms of the stimulus was two times and significantly greater than baseline (Wilcoxon 

Signed Rank test, p<0.05). C) Spike probability during post-excitation inhibition was significantly 

decreased by 36% in comparison to baseline (paired t-test, p<0.05). 
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Figure 3. Effects of increasing current intensity on spike probability in excitatory responses 

to single-pulse stimulation of the CeA. 

Cumulative PSTHs depict the average number of the spikes of all neurons (n = 7/16) that showed 

an excitatory response within 50 ms of single-pulse stimulation (D) at 900 µA. (A-C) LC activity 

from neurons that showed an excitatory response to single-pulse stimulation at 900 µA was also 

recorded at lower current intensities. 
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Figure 4. Current-response relationship for excitatory responses to single-pulse stimulation 

of the CeA. 

A) For excitatory responses, higher current intensities during single-pulse stimulation of the CeA 

resulted in significant increases in evoked spike probability in comparison to baseline (n = 7; 2-way 

RM ANOVA, Holm-Sidak, p<0.05), whereas (B) spike probability during post-excitation inhibition 

was significantly less in comparison to baseline (2-way RM ANOVA, Holm-Sidak, p<0.05). 
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3.1.3 Inhibitory responses to single-pulse stimulation of the CeA. 

In addition to excitatory responses, inhibitory responses were observed in approximately one-third 

of LC neurons recorded during single-pulse stimulation of the CeA in 32% (59/184) of the neurons 

tested (figure 5A). The inhibitory period following CeA stimulation had an average onset of 81 ± 8 

ms, which was similar to the average onset of post-excitation inhibition following excitatory 

responses to single-pulse CeA stimulation (94 ± 6 ms). The average duration of the inhibitory period 

was 226 ± 16 ms. Inhibitory responses to CeA stimulation showed a 40% decrease in spike 

probability with respect to baseline between 50-250 ms from the onset of stimulation, which was 

significantly less than baseline spike probability (figure 5B and table 3; 1-way RM ANOVA, Tukey, 

p<0.05). 

Similar to the excitatory responses, a current-response relationship was examined for 

inhibitory responses to single-pulse stimulation of the CeA (n = 6/16; figure 6). In neurons that 

showed an inhibitory response at 900 µA (figure 6D), the inhibition had an average onset latency of 

121 ± 15 ms and lasted 192 ± 46 ms. Increases in current intensities resulted in significant decreases 

in spike probability between 100-200 ms following the onset of stimulation in comparison to 

baseline spike probability (figure 7; 2-way RM ANOVA, p<0.05). There were no significant 

differences between the baseline spike probabilities at each current intensity tested (figure 7; 2-way 

RM ANOVA, Holm-Sidak, NS). The spike probability between 100-200 ms following the onset of a 

lower intensity stimulus (0 and 300 µA) was not significantly different from their respective baseline 

spike probability (figure 7; 2-way RM ANOVA, Holm-Sidak, NS). Higher current intensities (600 

and 900 µA) during inhibitory responses to single-pulse CeA stimulation resulted in significantly 

decreased spike probability between 100-200 ms following the onset of the stimulus in comparison 

to their respective baseline spike probabilities (figure 7; 2-way RM ANOVA, Holm-Sidak, p<0.05). 
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Figure 5. Pure inhibitory responses to single-pulse stimulation of the CeA. 

A) The cumulative PSTH plots the average number of the spikes of all neurons (n = 59/184) that 

showed a pure inhibitory response within 1000 ms of single-pulse stimulation at 900 µA. B) 

Inhibitory responses showed a significant decrease in spike probability between 50-250 ms from the 

onset of stimulation in comparison to baseline (1-way RM ANOVA, Tukey, p<0.05). 
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Figure 6. Effects of increasing current intensity on spike probability in inhibitory responses 

to single-pulse stimulation of the CeA. 

Cumulative PSTHs at increasing current intensities plot the average number of the spikes of all 

neurons (n = 6/16) that showed a pure inhibitory response within 1000 ms of single-pulse 

stimulation (D) at 900 µA. (A-C) LC activity from neurons that showed a pure inhibitory response 

to single-pulse stimulation at 900 µA was also recorded at lower current intensities. 
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Figure 7. Inverse current-response relationship for inhibitory responses to single-pulse 

stimulation of the CeA. 

Higher current intensities during single-pulse stimulation of the CeA resulted in significant decreases 

in spike probability during the inhibitory period in comparison to baseline (n = 6; 2-way RM 

ANOVA, Holm-Sidak, p<0.05). 

 

3.1.4 Antidromic activation in response to single-pulse and 20-Hz train stimulation of the 

CeA. 

Single-pulse and train stimulation (5 pulses; 20 Hz) of the CeA resulted in antidromic activation of 

8% LC neurons (n = 15/184; figure 8). Latencies of antidromic activation were between 10-55 ms 

from the onset of the stimulus (figure 8C). The majority of antidromically activated LC neurons (n 

= 11/15) showed shorter latencies between 10-30 ms from stimulus, whereas longer latencies of 40 

and 55 ms were observed in 4 antidromically activated LC neurons (figure 8C). 
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Figure 8. Electrical stimulation of the CeA resulted in antidromic activation of 8% of LC 

neurons. 

PSTHs plot the average number of spikes from a representative neuron responding with antidromic 

activation to (A) single-pulse and (B) 20-hz train stimulation of the CeA at 900 µA. Unlike 

excitatory responses to single-pulse stimulation CeA stimulation, antidromic responses have a fixed 

latency and (B) followed high-frequency train stimulation. C) The majority of antidromic responses 

had latencies between 10-30 ms from the stimulus. 
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3.1.5 Excitatory responses to 10-Hz train stimulation of the CeA. 

Given studies showing that peptidergic components of cotransmission are typically released at high 

frequencies (Bean et al., 1989; Bean and Roth, 1991), the response of 11 LC neurons to electrical 

train stimulation (5 pulses; 10 Hz) of the CeA (900 µA, 300 µsec, 0.4 Hz, 75 trials) was tested (figure 

9D). In response to train stimulation of the CeA at 900 µA, 82% of LC neurons (n = 9/11) 

responded with an excitation during the train, while the 2 remaining neurons responded with an 

inhibition within 1000 ms of the onset of train stimulation. To determine whether the LC responses 

to 10-Hz train stimulation of the CeA at 900 µA were due to high current intensities, LC activity was 

also recorded during lower intensities (0-600 µA) of train stimulation (5 pulses at 10 Hz, 300 µsec, 

0.4 Hz, 75 trials; figure 9A-C). 

A current-response relationship was examined only for excitatory responses to 10-Hz train 

stimulation of the CeA. Increasing current intensities resulted in increasing spike probability during 

the train with respect to baseline spike probability (figure 10A; 2-way RM ANOVA, p<0.05). There 

were no significant differences between the baseline spike probabilities at each current intensity 

tested (figure 10A; 2-way RM ANOVA, Holm-Sidak, NS). There were no significant differences in 

spike probability following the stimuli of the train at the lower current intensities (0-600 µA) in 

comparison to their respective baseline spike probabilities (figure 10A; 2-way RM ANOVA, Holm-

Sidak, NS). The spike probability following a 900-µA train was significantly greater than baseline 

spike probability (figure 10A; 2-way RM ANOVA, Holm-Sidak, p<0.05). 

A current-response relationship was examined for individual stimuli of the train. Increasing 

current intensities had the largest effect on spike probability at the first stimulus of the train (figure 

10B; 2-way RM ANOVA, p<0.05). There were no significant differences in the spike probability 

following any stimuli of the train at lower current intensities (0-600 µA) in comparison to their 
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respective baseline spike probabilities (figure 10B; 2-way RM ANOVA, Holm-Sidak, NS). At 900 

µA, the spike probability following the first stimulus of the train was significantly greater than 

baseline spike probability (figure 10B & table 1; 2-way RM ANOVA, Holm-Sidak, p<0.05), 

whereas the spike probability following the remaining stimuli was not significantly different from 

baseline (figure 10B; 2-way RM ANOVA, Holm-Sidak, NS). 

Similar to excitatory responses to single-pulse stimulation of the CeA, an inhibitory period 

followed excitatory responses to 10-Hz train stimulation of the CeA at 900 µA (figure 9D). This 

post-excitation inhibitory period had an average onset of 494 ± 9 ms with respect to onset of train 

stimulation and lasted 267 ± 33 ms (table 1). During the post-excitation inhibitory period, there was 

an approximate 63% decrease in spike probability with respect to baseline between 500-700 ms 

following the onset of the train, which was significantly less than baseline spike probability (figure 

11 and table 1; 2-way RM ANOVA, Holm-Sidak, p<0.05). A current-response relationship was 

examined for the post-excitation inhibitory period that occurred following excitatory responses to 

10-Hz train stimulation of the CeA. Similar to single-pulse stimulation of the CeA, there was a 

current-response relationship in the post-excitation inhibition following 10-Hz train stimulation of 

the CeA (figure 11; 2-way RM ANOVA, p<0.05). At 0 µA, the spike probability between 500-700 

ms following the onset of train stimulation was not significantly different from baseline spike 

probability (figure 11; 2-way RM AVOVA, Holm-Sidak, NS). In contrast, at all current intensities 

tested (300-900 µA), the spike probability between 500-700 ms following the onset of train 

stimulation was significantly less than baseline spike probability (figure 11; 2-way RM ANOVA, 

Holm-Sidak, p<0.05). 
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Figure 9. Effects of increasing current intensity on spike probability in excitatory responses 

to 10-Hz train stimulation of the CeA. 

Cumulative PSTHs at increasing current intensities plot the average number of the spikes of all 

neurons (n = 9/11) that showed an excitatory response to 10-Hz train stimulation (D) at 900 µA. 

(A-C) LC activity from neurons that showed an excitatory response to 10-Hz train stimulation at 

900 µA was also recorded at lower current intensities. Increasing the current intensity during 10-Hz 

train stimulation of the CeA resulted in increased evoked activity with an enhanced post-excitation 

inhibitory period. 
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Figure 10. Direct current-response relationship for excitatory responses to 10-Hz train 

stimulation of the CeA. 

A) Increasing the current intensity resulted in increased evoked activity with significant effects with 

respect to baseline occurring at 900 µA (n = 9; 2-way RM ANOVA, Holm-Sidak, p<0.05). B) Only 

the first stimulus of 10-Hz train stimulation at 900 µA elicited a significantly greater spike probability 

as compared to baseline (n = 9; 2-way RM ANOVA, Holm-Sidak, p<0.05). 
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Figure 11. Inverse current-response relationship for post-excitation inhibition in response to 

10-Hz train stimulation of the CeA. 

Increasing the current intensity during 10-Hz train stimulation resulted in significant decreases in 

spike probability with respect to baseline during the post-excitation inhibitory period (n = 9; 2-way 

RM ANOVA, Holm-Sidak, p<0.05). 

3.1.6 Effects of 20-Hz train stimulation of the CeA on LC activity. 

Since 10-Hz train stimulation of the CeA at high current intensities did not significantly increase LC 

spike probability following each stimulus of the train, the effects of 20-Hz train stimulation (5 

pulses) of the CeA (900 µA, 300 µsec, 0.25 Hz, 75 trials) on LC activity were examined in 184 

neurons. Of these neurons, 74% (129 neurons) responded with an excitation within 250 ms from 

the onset of the train, 21% (38 neurons) responded with an inhibition within 1000 ms from the 

onset of the train, and 2 neurons did not respond to train stimulation of the CeA. 
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3.1.7 Excitatory LC responses to 20-Hz train stimulation of the CeA. 

Following 20-Hz train stimulation of the CeA at 900 µA, 74% of neurons responded with an 

excitation within 250 ms from the onset of the train (n = 129/184; figure 12A). Unlike 10-Hz train 

stimulation at 900 µA, in neurons that responded with an excitation within 250 ms from the onset of 

20-Hz train stimulation at 900 µA, spike probabilities following each stimulus of the train were 

significantly greater than baseline spike probability (figure 12B and table 1; Friedman RM ANOVA 

on ranks, Tukey, p<0.05). Similar to single-pulse CeA stimulation at 900 µA, the average latency of 

the peak spike probability of excitation for each stimulus was 22.5± 1.0 ms, 20.7 ± 1.0 ms, 21.2 ± 

1.0 ms, 20.2 ± 1.0 ms, and 21.4± 1.1 ms from the onset of each stimulus.  

An inhibitory period followed excitatory responses to 20-Hz train stimulation, which was 

consistent with excitatory responses following both single-pulse and 10-Hz train stimulation. This 

post-excitation inhibitory period had an average onset of 261 ± 8 ms from the onset of train 

stimulation. There was a 60% decrease in spike probability with respect to baseline during the post-

excitation inhibit, which was significantly reduced in comparison to baseline spike probability 

(figure 12C and table 1; paired t-test, p<0.05). 

Three different types of excitatory responses resulted from 20-Hz train stimulation of the 

CeA: acute, late, and multiple excitatory responses (figure 13). A small population of LC neurons 

(14%; n = 18/129) responded with an acute excitatory response, which is characterized by an 

excitation following only the first stimulus of the train (figure 13A). In acute excitatory responses, 

spike probability following the first stimulus of the train was significantly greater than baseline spike 

probability (figure 14 and table 2; 2-way RM ANOVA, Holm-Sidak, p<0.05), whereas the spike 

probability following the remaining stimuli was not significantly different from baseline spike 

probability (figure 14 and table 2; 2-way RM ANOVA, Holm-Sidak, NS). In contrast, a larger 
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population of LC neurons responded with a late excitatory response (n = 37/129; figure 13B), 

which is characterized by an excitation occurring during the later stimuli of the train (2nd-5th stimuli). 

In late excitatory responses, the spike probability following only the later stimuli of the train (2nd-5th 

stimuli) was significantly greater than baseline spike probability (figure 14 and table 2; 2-way RM 

ANOVA, Holm-Sidak, p<0.05), whereas spike probability following the first stimulus of the train 

was not significantly different than baseline spike probability (figure 14 and table 2; 2-way RM 

ANOVA, Holm-Sidak, NS). The majority of excitatory responses to 20-Hz train stimulation were 

multiple excitatory responses (57%; n = 74/129), which are characterized by an excitation following 

the first and any of the remaining stimuli of the train (figure 13C). Multiple excitatory responses 

have combined properties of acute and late excitatory responses. In these responses, the spike 

probability following all stimuli of the train were significantly greater than baseline spike probability 

(figure 14 and table 2; 2-way RM ANOVA, Holm-Sidak, p<0.05). Overall, 20-Hz train stimulation 

of the CeA resulted in a greater magnitude of excitation following individual stimuli in multiple 

excitatory responses in comparison to acute and late excitatory responses. 

 

Table 2. Excitatory responses to 20-Hz train stimulation of the CeA at 900 µA 

 
  

Acute 
(n = 18/129) 

Late 
(n = 37/129) 

Multiple 
(n = 74/129) 

Baseline 6.0 ± 1.1 5.6 ± 0.4 5.6 ± 0.3 
S1 10.7 ± 1.8* 6.1 ± 0.6 14.5 ± 1.0* 
S2 3.6 ± 1.0 8.4 ± 0.8* 13.4 ± 1.0* 
S3 3.2 ± 0.9 8.5 ± 1.0* 11.7 ± 1.1* 
S4 2.7 ± 0.8 8.6 ± 0.9* 12.3 ± 1.0* 

Excitation 
Spike probability 
(spikes/50 ms) 

S5 4.3 ± 1.0 8.7 ± 0.8* 13.5 ± 1.0* 
Onset (ms) † 167 ± 32 282 ± 17 273 ± 6 

Duration (ms) 414 ± 45 445 ± 44 579 ± 23 
Baseline 59.5 ± 11.1 56.4 ± 4.1 56.2 ± 2.8 

Inhibition†† 44.0 ± 11.1* 29.0 ± 3.7* 15.9 ± 1.8* 

Post-
excitation 
inhibition Spike probability 

(spikes/500 ms) % BL 69 ± 8 50 ± 5 28 ± 3 
 

† with respect to onset of 20-Hz train stimulation 
†† spike probability within 300-800 ms from onset of 20-Hz train stimulation 
* p<0.05, compared to baseline spike probability 
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Figure 12. Excitatory responses to 20-Hz train stimulation of the CeA. 

A) Cumulative PSTH plots the average number of the spikes of all neurons (n = 129/184) that 

showed an excitatory response during 20-Hz train stimulation of the CeA. Excitation as followed by 

an enhanced post-excitation inhibitory period. B) Spike probability during the train was significantly 

greater than baseline (1-way RM ANOVA, Holm-Sidak, p<0.05), whereas spike probability during 

(C) post-excitation inhibition was significantly less than baseline (paired t-test, p<0.05). 
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Figure 13. Three types of excitatory responses to 20-Hz train stimulation of the CeA. 

Cumulative PSTHs plot the average number of the spikes for the three types of excitatory responses 

to 20-Hz train stimulation of the CeA. A) Acute excitatory responses (n = 18/129) occurred 

following the first stimulus of the train, whereas (B) late excitatory responses (n = 37/129) occurred 

during the later stimuli of the train. C) Multiple excitatory responses (n = 74/129) showed an 

excitatory response throughout the entire train. All types of excitatory responses were followed by 

post-excitation inhibition. 
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Figure 14. Evoked activity in the three different types of excitatory responses to 20-Hz train 

stimulation. 

Acute excitatory responses showed significant increases in evoked activity only following the first 

stimulus of the train in comparison to baseline (n = 18; 2-way ANOVA, Holm-Sidak, p<0.05), 

whereas late excitatory responses showed significant increases in evoked activity during the later 

stimuli of the train in comparison to baseline (n = 37; 2-way ANOVA, Holm-Sidak, p<0.05). 

Multiple excitatory responses showed significant increases in evoked activity following each stimulus 

of the train in comparison to baseline (n = 74; 2-way ANOVA, Holm-Sidak, p<0.05). 

 

 

Post-excitation inhibition followed all three types of excitatory responses to 20-Hz train 

stimulation of the CeA (figure 13). Acute excitatory responses were followed by a post-excitation 

inhibition than had an average latency of 167 ± 32 ms from the onset of train stimulation, which 

was significantly earlier than the latencies for post-excitation inhibition following late and multiple 

excitatory responses (figure 15A and table 2; Kruskal-Wallis 1-way ANOVA on Ranks, Dunn’s, 

p<0.05). The latency for post-excitation inhibition from the onset of train stimulation following 
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both late and multiple excitatory responses was not significantly different (figure 15A and table 2; 

Kruskal-Wallis 1-way ANOVA on Ranks, Dunn’s, NS). The duration of the inhibitory period 

following acute and late excitatory responses was not significantly different from each other (figure 

15A and table 2; 1-way ANOVA, Holm-Sidak, NS). In contrast, the duration of the inhibitory 

period that followed multiple excitatory responses was significantly longer than the inhibitory period 

that followed both acute and late excitatory responses (figure 15A and table 2; 1-way ANOVA, 

Holm-Sidak, p<0.05).  

For all types of excitatory responses, the spike probability during post-excitation inhibition 

(300-800 ms following the onset of train stimulation) was significantly reduced in comparison to 

their respective baseline spike probability (figure 15B and table 2; 2-way RM ANOVA, Holm-

Sidak, p<0.05). There were no significant differences between the baseline spike probabilities for 

each excitatory response (figure 15B and table 2; 2-way RM ANOVA, Holm-Sidak, NS). In acute 

excitatory responses, the spike probability between 300-800 ms from the onset of the train was 

reduced by about 31% from baseline spike probability. In comparison to acute excitatory responses, 

late excitatory responses were followed by a greater, but not significant post-excitation inhibition 

(figure 16 and table 2). In comparison to acute and late excitatory responses, the magnitude of the 

post-excitation inhibition was dramatically and significantly reduced by 72% from baseline spike 

probability (figure 16 and table 2; 1-way ANOVA on Ranks, Dunn’s, p<0.05). 
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Figure 15. Post-excitation inhibition following all types of excitatory responses to 20-Hz 

train stimulation. 

A) Post-excitation inhibition following acute excitatory responses had a significantly earlier onset 

than late and multiple excitatory responses (Kruskal-Wallis 1-way ANOVA on Ranks, Dunn’s, 

p<0.05). The duration of post-excitation inhibition following multiple excitatory responses was 

significantly longer than that following acute and late excitatory responses (1-way ANOVA, Holm-

Sidak, p<0.05). B) The spike probability during post-excitation inhibition was significantly less than 

baseline for all types of excitatory responses (2-way RM ANOVA, Holm-Sidak, p<0.05). 
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Figure 16. Magnitude of post-excitation inhibition following all types of excitatory responses 

to 20-Hz train stimulation. 

Spike probably as a percentage of baseline during post-excitation inhibition in multiple excitatory 

responses were significantly less than that in acute and late excitatory responses (1-way ANOVA on 

Ranks, Dunn’s, p<0.05). 

 

3.1.8 Inhibitory LC responses to 20-Hz train stimulation of the CeA. 

In addition to excitatory responses, 21% of LC neurons (n = 38/184 neurons) responded with a 

pure inhibitory response following 20-Hz train stimulation of the CeA (figure 17A). Inhibition had 

an average onset of 97±17 ms from the onset of train stimulation and lasted 403 ± 34 ms. During 

the inhibitory period, there was an 80% decrease in spike probability between 100-400 ms from the 

onset of train stimulation with respect to baseline (table 3). Spike probability between 100-275 ms 

and 350-400 ms from the onset of train stimulation was significantly less than baseline spike 

probability (figure 17B and table 3; 1-way RM ANOVA, Tukey, p<0.05). 
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Figure 17. Pure inhibitory responses to 20-Hz train stimulation of the CeA. 

A) The cumulative PSTH plots the average number of the spikes of all neurons (n = 38/184) that 

showed a pure inhibitory response within 1000 ms of the onset of train stimulation 900 µA. B) 

Inhibitory responses showed a significant decrease in spike probability between 100-275 ms and 

350-400 ms from the onset of train stimulation in comparison to baseline (1-way RM ANOVA, 

Tukey, p<0.05). 

 

 

 53 



Table 3. Inhibitory responses to electrical stimulation of the CeA at 900 µA 

 
 Single-pulse 

(n = 59/184) 
20-Hz train 
(n = 38/184) 

Onset (ms) † 81 ± 8 97 ± 17 
Duration (ms) 226 ± 16 403 ± 34 

Period† 50-250 ms 100-400 ms 

Baseline 23.0 ± 1.6 
spikes/200 ms 

31.6 ± 3.2 
spikes/300 ms 

Inhibition†† 13.9 ± 1.4 
spikes/200 ms* 

5.5 ± 0.6 
spikes/300 ms* 

Inhibition Spike 
probability 

% BL† 60 ± 4 20 ± 2 
 

† with respect to onset of electrical stimulation of the CeA 
†† spike probability within the period from onset of CeA stimulation 
* p<0.05, compared to baseline spike probability 

 

3.1.9 Single-pulse vs. train stimulation of the CeA. 

There were significant differences between single-pulse and high-frequency train stimulation of the 

CeA at 900 µA. There were significantly  more neurons responding with an excitation and 

significantly fewer neurons responding with an inhibition or were unresponsive to 20-Hz train 

stimulation (n = 2/184) compared to single-pulse stimulation (figure 18; Chi-square, p<0.05). The 

magnitude of the excitation as a percentage of baseline following single-pulse stimulation was not 

significantly different than that following individual stimuli of 10-Hz train stimulation (figure 19; 1-

way RM ANOVA, NS) or 20-Hz train stimulation (figure 19; 1-way RM ANOVA, NS). Although 

the later stimuli of 10-Hz train stimulation did not result in spike probability that significantly 

exceeded baseline (figure 10B), there were no significant differences in the magnitude of the 

excitation as a percentage of baseline following individual stimuli of 10-Hz train stimulation in 

comparison to 20-Hz train stimulation (figure 19; 2-way RM ANOVA, NS).  
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Figure 18. Reponses to single-pulse and 20-Hz train stimulation of the CeA. 

There were significantly more neurons responding with an excitation and significantly fewer neurons 

responding with an inhibition or were unresponsive to 20-Hz train stimulation in comparison to 

single-pulse stimulation of the CeA (Chi-square, p<0.05). 

 

 

 

Figure 19. Excitatory responses to single-pulse and train stimulation of the CeA. 

Although high-frequency 20-Hz train stimulation of the CeA resulted in an excitatory response 

following all stimuli of the train in the majority of excitatory responses, the magnitude of the 

response was not significantly different than that of single-pulse stimulation of the CeA (1-way RM 

ANOVA, NS). 
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There were significant differences between the different types of electrical stimulation of the 

CeA in the duration and magnitude of the inhibitory period following excitatory responses. There 

were no significant differences between single-pulse and 10-Hz train stimulation in the duration of 

post-excitation inhibition (figure 20A; 1-way ANOVA on Ranks, Dunn’s, NS). In contrast, post-

excitation-inhibition as a result of 20-Hz train stimulation was significantly longer than that as a 

result of both single-pulse or 10-Hz train stimulation (figure 20A and table 1; 1-way ANOVA on 

Ranks, Dunn’s, p<0.05). The magnitude of post-excitation inhibition as a percentage of baseline 

between 100-300 ms following single-pulse stimulation was greater but not significantly different 

that between 500-750 ms following the onset of 10-Hz train stimulation (figure 20B and table 1; 1-

way ANOVA on Ranks, Dunn’s, NS). The post-excitation inhibitory period as a percentage of 

baseline between 300-800 ms following the onset of 20-Hz train stimulation was not significantly 

different to that following 10-hz train stimulation (figure 20 and table 1; 1-way ANOVA on Ranks, 

Dunn’s, NS), but significantly less than that following single-pulse stimulation (figure 20 and table 

1; 1-way ANOVA on Ranks, Dunn’s, p<0.05). 

 

 

 

 

 

 

 56 



 

Figure 20. Inhibition following excitatory responses to single-pulse and train stimulation. 

A) Post-excitation inhibition was significantly longer following 20-Hz train stimulation in 

comparison to single-pulse and 10-Hz train stimulation (1-way ANOVA on Ranks, Dunn’s, p<0.05). 

B) The magnitude of post-excitation following excitatory responses to 20-Hz train stimulation was 

significantly enhanced in comparison to single-pulse stimulation (1-way ANOVA on Ranks, Dunn’s, 

p<0.05). 

 

 

There were also significant differences between types of electrical stimulation in the onset, 

duration, and magnitude of pure inhibitory responses to electrical stimulation. There were no 

significant differences in the onset of inhibition between single-pulse and 20-Hz train stimulation 

(figure 21A and table 3; Mann-Whitney Rank Sum Test, NS). Pure inhibitory responses as a result 

of 20-Hz train stimulation were significantly longer than pure inhibitory responses following single-

pulse stimulation (figure 21A and table 3; Mann-Whitney Rank Sum Test, p<0.05). Inhibition as a 

result of 20-Hz train stimulation exhibited an approximate 80% decrease from baseline spike 

probability between 100-400 ms, and this decrease was significantly greater following 20-Hz train 

stimulation than for inhibitory period between 50-250 ms following single-pulse stimulation (figure 

21B and table 3; Mann-Whitney Rank Sum Test, p<0.05). 
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Figure 21. Pure inhibitory responses to single-pulse and 20-Hz train stimulation. 

A) In comparison to single-pulse stimulation, pure inhibitory responses were significantly longer 

following 20-Hz train stimulation (Mann-Whitney Rank Sum Test, p<0.05) with no significant 

differences in onset (Mann-Whitney Rank Sum Test, NS). B) Train stimulation resulted in a 

significantly enhanced pure inhibitory response in comparison to single-pulse stimulation (Mann-

Whitney Rank Sum Test, p<0.05). 

 

3.1.10 Responses to electrical stimulation of the CeA with respect to the location of 

stimulating electrode within the CeA and recording electrode within the LC. 

To determine if electrical stimulation of different regions of the CeA preferentially produces a 

specific response to either single-pulse or train stimulation of the CeA, responses to both single-

pulse (figure 22) and 20-Hz train stimulation (figure 23) were correlated with the placement of the 

stimulating electrode within the CeA with respect to 1) the different divisions of the CeA (CeC: 

capsular CeA, CeM: medial CeA, CeL: lateral CeA) as defined by Paxinos and Watson, 2005, or 2) 

the entire anterior-posterior axis of the CeA in increments of 0.24 mm. In response to single-pulse 

CeA stimulation, the distribution of excitatory and inhibitory responses, antidromic activation or no 

response was not systematically dependent on the placement of the stimulating electrode 1) within 
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the different subdivisions of the CeA (figure 22A-D; Chi-square, NS) or 2) along the entire anterior-

posterior axis of the CeA (figure 22E-H; Chi-square, NS). Similar to single-pulse stimulation of the 

CeA, the distribution of the different types of excitatory responses (acute, late, and multiple) and 

inhibitory responses to 20-Hz train stimulation of the CeA was not significantly dependent on the 

placement of the stimulating electrode in the CeA 1) within the different subdivisions of the CeA 

(figure 23A-D; Chi-square, NS) or 2) along the entire anterior-posterior axis of the CeA (figure 

23E-H; Chi-square, NS). 

To determine if specific responses to either single-pulse or train stimulation of the CeA are 

preferentially distributed within the LC, responses to both single-pulse (figure 22) and 20-Hz train 

stimulation (figure 23) were correlated with the placement of the recording electrode within the LC 

along its entire anterior-posterior axis in increments of 120 µm. The distribution of excitatory and 

inhibitory responses, antidromic activation, or no response to single-pulse CeA stimulation was not 

significantly dependent on the placement of the recording electrode along the entire anterior-

posterior axis of the LC (figure 22I-L; Chi-square, NS). Similar to single-pulse stimulation of the 

CeA, the distribution of acute, late, and multiple excitatory responses and inhibitory responses to 20-

Hz train stimulation was not dependent on the placement of the recording electrode along the entire 

anterior-posterior axis of the LC (figure 23I-L; Chi-square, NS). 
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Figure 22. Responses to single-pulse stimulation of the CeA with respect to the location of 

stimulating and recording electrodes. 

All responses to single-pulse stimulation were not correlated to the location of the stimulating 

electrode in the different subdivisions (A-D; Chi-square, NS) or anterior-posterior axis of the CeA 

(E-H; Chi-square, NS), and location of the recording electrode in the anterior-posterior axis of the 

LC (I-L; Chi-square, NS). 
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Figure 23. Responses to 20-Hz stimulation of the CeA with respect to the location of 

stimulating and recording electrodes. 

All responses to single-pulse stimulation were not correlated to the location of the stimulating 

electrode in the different subdivisions (A-D; Chi-square, NS) or anterior-posterior axis of the CeA 

(E-H; Chi-square, NS), and location of the recording electrode in the anterior-posterior axis of the 

LC (I-L; Chi-square, NS). 
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3.2 EFFECTS OF ICV ANTAGONIST INFUSIONS ON SPONTANEOUS AND 

EVOKED LC ACTIVITY 

3.2.1 Spontaneous LC activity. 

To determine the effect of ICV infusions of CRF and glutamate antagonist on spontaneous LC 

activity, LC activity was recorded prior, during, and following ICV infusions of drugs. LC activity 

prior to ICV drug infusions were not significantly different between aCSF (n = 7), 3 µg D-Phe-CRH 

(n = 4), 12 µg D-Phe-CRH (n = 7), or 50 mM KYN (figure 24A; 1-way ANOVA, NS). Overall, 

there were no significant effects of ICV drug infusions on spontaneous LC activity over time (figure 

24B; 2-way RM ANOVA, NS). 

 

 

 

Figure 24. Spontaneous LC activity prior to and following ICV drug infusions. 
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3.2.2 Evoked LC activity. 

Since the majority of LC responses to 20-Hz train stimulation of the CeA were excitatory responses 

(n = 129/184), and within those, multiple excitatory responses (n = 74/129), the effects of ICV 

infusions of excitatory transmitter antagonists were examined only on multiple excitatory LC 

responses following 20-Hz train stimulation of the CeA (figure 25A-D). LC activity was recorded 

during 20-Hz train stimulation of the CeA prior to and approximately every 7 minutes for 

approximately 50 minutes after an ICV of aCSF aCSF (n = 7), 3 µg D-Phe-CRH (n = 4), 12 µg D-

Phe-CRH (n = 7), or 50 mM KYN (n = 6). To determine if multiple excitatory responses to 20-Hz 

train stimulation of the CeA were similar between drug groups prior to ICV drug infusions, the 

evoked spike probability, which is the spike probability elicited within 250 ms from the onset of the 

train stimulation, and spike probability during post-excitation inhibition was compared to baseline 

probability between drug groups (figure 26). There were no significant differences in either baseline 

spike probability (figure 26A-B), evoked spike probability (figure 26A), and spike probability during 

post-excitation inhibition (300-800 ms from onset of stimulation; figure 26B) between drug groups 

prior to ICV drug infusions (2-way RM ANOVA, NS). Spike probability within 250 ms of the onset 

of train stimulation was significantly greater than baseline spike probability (figure 26A and table 4; 

2-way RM ANOVA, Holm-Sidak, p<0.05), whereas spike probability during post-excitation 

inhibition was significantly less than baseline spike probability for each drug (figure 26B and table 

4; 2-way RM ANOVA, Holm-Sidak, p<0.05) for each drug prior to ICV drug infusions. 
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Figure 25. Effects of ICV drug infusions on multiple excitatory responses to 20-Hz train 

stimulation of the CeA. 

A-D) Cumulative PSTHs depict multiple excitatory responses to 20-Hz train stimulation of the CeA 

prior to ICV drug infusions of (A) aCSF, (B) 3 µg D-Phe-CRH, (C) 12 µg D-Phe-CRH or (D) 50 

mM KYN. E-H) Cumulative PSTHs depict spike activity as a result of 20-Hz train stimulation of 

the CeA at different time points following ICV drug infusions of (E) aCSF, (F) 3 µg D-Phe-CRH, 

(G) 12 µg D-Phe-CRH or (H) 50 mM KYN. 
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Table 4. Evoked activity prior to ICV infusions 

 aCSF 
(n = 7) 

3 µg D-Phe-
CRH 
(n = 4) 

12 µg D-
Phe-CRH 

(n = 7) 

50 mM 
KYN 

(n = 6) 
Baseline 34.1 ± 5.6 27.9 ± 2.8 23.1 ± 4.5 28.5 ± 6.4 

Excitation 
Spike probability 
(spikes/250 ms) Evoked‡ 55.6 ± 4.9* 63.3 ± 4.4* 57.4 ± 8.0* 56.4 ± 11.3* 

Onset (ms) † 271 ± 18 281 ± 14 286 ± 14 342 ± 15 
Duration (ms) 600 ± 80 519 ± 52 536 ± 56 354 ± 60 

Baseline 68.2 ± 11.1 55.8 ± 5.5 46.2 ± 9.0 57.1 ± 12.8 
Inhibition†† 21.4 ± 7.7* 11.0 ± 7.5* 11.5 ± 5.4* 13.1  ±4.0* 

Post-
excitation 
inhibition Spike probability 

(spikes/500 ms) % BL 27 ± 7 20 ± 13 23 ± 7 24 ± 6 
 

‡ spike probability during the train (S1-S5) 
† with respect to onset of 20-Hz train stimulation of the CeA 
†† spike probability within 300-800 ms from onset of 20-Hz train stimulation of the CeA 
* p<0.05, compared to baseline spike probability 
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Figure 26. Spike activity from multiple excitatory responses as a result of 20-Hz train 

stimulation of the CeA prior to ICV drug infusions. 

A-B) There were no significant differences in the spike probability between drug groups during (A-

B) baseline, (A) 20-Hz train stimulation, or (B) post-excitation inhibition (300-500 ms following 

onset of train stimulation) (2-way RM ANOVA, NS). A) Evoked spike probability from all drug 

groups was significantly greater than baseline, whereas (B) spike probability during post-excitation 

inhibition was significantly less than baseline (2-way RM ANOVA, Holm-Sidak, p<0.05). 
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ICV infusions rather than intra-LC infusions of drugs were made since the LC is below the 

4th ventricle, and drugs infused into the ventricle would diffuse through the LC and its dendrites in 

the rostrolateral peri-coerulear area, where neurons from the CeA synapse onto dendrites of LC 

neurons. To determine if multiple excitatory responses to train stimulation of the CeA were 

mediated by CRH, the effects of ICV infusions of the peptidergic CRH antagonist, D-Phe-CRH, 

were examined on multiple excitatory responses to train stimulation of the CeA. Two doses of D-

Phe-CRH (3 and 12 µg) were infused in the ventricle in order to determine a dose-response 

relationship on the effect of D-Phe-CRH on multiple excitatory responses to train stimulation of the 

CeA. Since D-Phe-CRH has similar properties to CRH (Curtis et al., 1994), it was expected to exert 

its effects on spontaneous and evoked LC activity for an extended period of time following ICV 

infusions (Curtis et al., 1994; Curtis et al., 1997b; Jedema et al., 2001; Valentino and Curtis, 1991a; 

Valentino et al., 1983); thus LC activity following train stimulation of the CeA was recorded every 7 

minutes for approximately 50 minutes following ICV infusions of aCSF and both doses of D-Phe-

CRH. It was reported that excitatory responses to train stimulation were only partially attenuated 

following ICV (3-4 µg) and intra-coerulear (1 µg) infusions of the peptidergic antagonist alpha-

helical CRH (Bouret et al., 2003). This suggested that the CeA activates the LC via other brain 

regions and/or mechanisms. To further evaluate whether multiple excitatory responses to 20-Hz 

train stimulation of the CeA were mediated by CRH, and determine if glutamate afferents play a role 

in mediating excitatory responses, the effects of the glutamatergic antagonist, KYN, on multiple 

excitatory responses to 20-Hz train stimulation were examined. Since an ICV infusion of KYN 

exerts its effects on evoked LC activity shortly after the infusion (Ennis and Aston-Jones, 1988; 

Ennis et al., 1992; Valentino et al., 1991), LC activity following train stimulation of the CeA was 

recorded every 7 minutes for approximately 25 minutes following ICV infusions. 
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ICV infusions of 12 µg D-Phe-CRH or 50 mM KYN significantly attenuated the excitatory 

response to train stimulation in comparison to aCSF (figure 27). The time course for the effects of 

12 µg D-Phe-CRH and 50 mM KYN on excitatory responses to train stimulation of the CeA were 

distinct and consistent with previous findings (figure 25E-H). More specifically, 12 µg D-Phe-CRH 

exerted significant effects only 42 minutes following the infusion, whereas effects of 50 mM KYN 

occurred almost immediately (figure 27A; 2-way RM ANOVA, Holm-Sidak, p<0.05). Following 

high doses of D-Phe-CRH, spike probability during the train was attenuated over time with a 

significant decrease approximately 42 minutes following the infusion (figure 27A; 2-way RM 

ANOVA, Holm-Sidak, p<0.05). At 42 minutes, the spike probability during the train following ICV 

infusions of 12 µg D-Phe-CRH was attenuated to baseline spike probability (figure 27C; 2-way RM 

ANOVA, Holm-Sidak, NS), but significantly less than the spike probability evoked during the train 

following ICV infusions of aCSF (figure 27C; 2-way RM ANOVA, Holm-Sidak, p<0.05). At 12 

minutes, the spike probability during the train following ICV infusions of 50 mM KYN was 

significantly attenuated in comparison to aCSF (figure 27D; 2-way RM ANOVA, Holm-Sidak, 

p<0.05), but was not significantly different from baseline (figure 27D; 2-way RM ANOVA, Holm-

Sidak, p<0.05). Neither low doses of D-Phe-CRH (3 µg; figure 27B) nor aCSF had a significant 

effect on the excitatory responses to train stimulation of the CeA (figure 27; 2-way RM ANOVA, 

Holm-Sidak, NS). 
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Figure 27. Effects of ICV infusions on evoked spike activity during 20-Hz train stimulation 

of the CeA. 

A) ICV infusions of drugs significantly exerted its effects on evoked spike probability during train 

stimulation (S1-S5) at different time points following the infusion. Spike probability as a percentage 

of spike probability prior to ICV infusions during all stimuli of train stimulation was significantly 

attenuated 42 minutes following ICV infusions of 12 µg D-Phe-CRH or 12 minutes following ICV 

infusions of 50 mM KYN  in comparison to aCSF (2-way RM ANOVA, Holm-Sidak, p<0.05). B) 

ICV infusions of 3 µg D-Phe-CRH did not attenuate evoked activiuty during all stmuli in the train in 

comparison to baseline or aCSF (2-way RM ANOVA, Holm-Sidak, NS). Evoked spike probability 

was significantly attenuated (C) 42 minutes following ICV infusions of 12 µg D-Phe-CRH or (D) 50 

mM KYN in comparison to aCSF (2-way RM ANOVA,  Holm-Sidak, p<0.05). * = p<0.05, 

compared to baseline; † = p<0.05, compared to aCSF 
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Excitatory responses to train stimulation of the CeA comprised two components: early and 

late. The early excitatory component was an excitatory response following the first stimulus of the 

train, whereas the late excitatory component occurred following the later stimuli of the train (2nd-5th 

stimuli). ICV drug infusions had differential effects on both the late and early excitatory components 

following train stimulation of the CeA. The early excitatory component was not significantly 

attenuated by any manipulation (figure 28; 2-way RM ANOVA, Holm-Sidak, NS). Although the 

spike probability during the early excitatory component was decreased but not significantly following 

50 mM KYN in comparison to aCSF (figure 28D; 2-way RM ANOVA, Holm-Sidak, NS), it was 

similar to baseline spike probability 12 minutes following the infusion (figure 28D; 2-way RM 

ANOVA, Holm-Sidak, NS). Overall, in comparison to the early excitatory component, the late 

excitatory component was significantly attenuated by ICV infusions of drug (figure 29A). Neither a 

low dose of D-Phe-CRH nor aCSF significantly attenuated the late excitatory component (figure 

29A-B; 2-way ANOVA, Holm-Sidak, NS). In contrast to the early excitatory component, the late 

excitatory component was significantly attenuated by 12 µg D-Phe-CRH and 50 mM KYN in 

comparison to aCSF (figure 29A; 2-way RM ANOVA, p<0.05). More specifically, 12 µg D-Phe-

CRH exerted a significant effect 42 minutes following infusion, whereas the effects of 50 mM KYN 

occurred almost immediately (figure 29A; 2-way RM ANOVA, Holm-Sidak, p<0.05). The late 

excitatory component was not completely blocked by 12 µg D-Phe-CRH at 42 minutes following 

ICV infusions. High doses of D-Phe-CRH resulted in a maximum 44% reduction in spike 

probability during the late excitatory component (figure 29A). At 42 minutes following ICV 

infusions of D-Phe-CRH, the spike probability during the late excitatory component was not 

significantly different from baseline spike probability (figure 29C; 2-way RM ANOVA, Holm-Sidak, 

NS), but in comparison to aCSF, it was significantly attenuated (figure 29C; 2-way RM ANOVA, 

Holm-Sidak, p<0.05). In contrast, 50 mM KYN had a much greater effect on the late excitatory 
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component and completely abolished excitatory responses to train stimulation (figure 29A). In 

comparison to a high dose of D-Phe-CRH, 50 mM KYN resulted in a maximum 80% reduction in 

spike probability during the late excitatory component (figure 29A) that was significantly less than 

both baseline spike probability and aCSF (figure 29D; 2-way RM ANOVA, Holm-Sidak, p<0.05). 
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Figure 28. Early excitatory component during 20-Hz train stimulation following ICV 

infusions of drugs. 

A-D) The early excitatory component was not significantly attenuated by any manipulation (2-way 

RM ANOVA, Holm-Sidak, NS). B-C) Neither dose of D-Phe-CRH nor (D) 50 mM KYN 

attenuated the spike probability following S1 of the train in comparison to aCSF (2-way RM 

ANOVA, NS). B-C) Evoked spike probability remained significantly greater than baseline for both 

doses of D-Phe-CRH (2-way RM ANOVA, Holm-Sidak, p<0.05), whereas (D) evoked spike 

probability following 50 mM KYN was reduced in comparison to baseline, but not significantly 

attenuated in comparison to aCSF (2-way RM ANOVA, Holm-Sidak, NS). * = p<0.05, compared to 

baseline 
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Figure 29. Late excitatory component during 20-Hz train stimulation following ICV 

infusions of drugs. 

A) Spike probability as a percentage of spike probability prior to ICV infusions during S2-S5 of train 

stimulation was significantly attenuated 42 minutes following ICV infusions of 12 µg D-Phe-CRH or 

12 minutes following ICV infusions of 50 mM KYN  in comparison to aCSF (2-way RM ANOVA, 

Holm-Sidak, p<0.05). B) Evoked spike probability was not significantly attenuated 27 minutes 

following ICV infusions of 3 µg D-Phe-CRH in comparison to aCSF (2-way RM ANOVA, Holm-

Sidak, NS), thus remained significantly greater than baseline (2-way RM ANOVA, Holm-Sidak, 

p<0.05). ICV infusions of (C) 12 µg D-Phe-CRh or (D) significantly attenuated evoked spike 

probability during S2-S5 in comparison to aCSF (2-way RM ANOVA, HolmSidak, p<0.05). Evoked 

spike probability following 50 mM KYN was significantly less than baseline (2-way RM ANOVA, 

Holm-Sidak, p<0.05). * = p<0.05, compared to baseline; † = p<0.05, compared to aCSF 
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In contrast to 50 mM KYN, neither aCSF nor either doses of D-Phe-CRH had any 

significant effect on onset, duration, or magnitude of spike probability of the post-excitation 

inhibition that occurred between 300-800 ms following the onset of train stimulation (figure 30 and 

table 4; 2-way RM ANOVA, NS). The spike probability during post-excitation inhibition following 

infusions of aCSF (figure 30B-D) and both doses of D-Phe-CRH (figure B-C) was significantly 

less than baseline spike probability (table 4; 2-way RM AVOVA, Holm-Sidak, p<0.05). In contrast, 

spike probability during post-excitation inhibition following infusions of 50 mM KYN was not 

significantly different than baseline (figure 30D and table 4; 2-way RM AVOVA, Holm-Sidak, NS). 

ICV infusions of KYN not only resulted in a complete blockage of excitatory responses to 20-Hz 

train stimulation of the CeA but also revealed an underlying short-onset (129 ± 44 ms) short-

duration (221 ± 52 ms) inhibitory period following train stimulation (figure 31). ICV infusions of 50 

mM KYN significantly reduced spike probability expressed as a percentage of baseline spike 

probability between 125-375 ms following the onset of the train in comparison to aCSF (figure 31A; 

2-way RM ANOVA, Holm-Sidak, p<0.05). At the maximal effect of 50 mM KYN, the inhibitory 

period between 125-375 ms was 49% of baseline spike probability (figure 31A). Spike probability 

during this underlying inhibitory period following infusions of 50 mM KYN was significantly less 

than baseline and less than that following aCSF infusions (figure 31B). 
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Figure 30. Effects of ICV infusions on post-excitation inhibition following excitatory 

responses to 20-Hz train stimulation. 

A) Spike probability as a percentage of baseline spike probability during post-excitation inhibition 

(300-500 ms post train onset) was significantly increased following ICV infusions of 50 mM KYN 

(2-way ANOVA, Holm-Sidak, p<0.05) but not following ICV infusions of either dose of D-Phe-

CRH (2-way ANOVA, Holm-Sidak, NS) in comparison to aCSF. Spike probability during post-

excitation inhibition remained significantly less than baseline following ICV infusions of both doses 

of (B-C) D-Phe-CRH and (B-D) aCSF (2-way ANOVA, Holm-Sidak, p<0.05). D) Spike 

probability during post-excitation inhibition was not significantly less than baseline following ICV 

infusions of 50 mM KYN (2-way ANOVA, Holm-Sidak, NS). * = p<0.05, compared to baseline; † 

= p<0.05, compared to aCSF 
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Figure 31. 50 mM KYN reveals underlying inhibitory period during 20-Hz train stimulation 

of the CeA. 

A) Spike probability expressed as a percentage of baseline spike probability between 125-375 ms 

following the onset of the train was significantly reduced 12 minutes following ICV infusions of 50 

mM KYN in comparison to aCSF (2-way RM ANOVA, Holm-Sidak, p<0.05). B) Spike probability 

during the underlying inhibitory period following ICV infusions of 50 mM KYN was significantly 

less than baseline (2-way RM ANOVA, Holm-Sidak, p<0.05) and aCSF (2-way RM ANOVA, 

Holm-Sidak, p<0.05). * = p<0.05, compared to baseline; † = p<0.05, compared to aCSF 
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3.3 EFFECTS OF PHARMACOLOGICAL ACTIVATION AND INACTIVATION OF 

THE CEA ON LC ACTIVITY 

3.3.1 Effects of pharmacological activation of the CeA on LC activity. 

Given the effects of 50 mM KYN on the multiple excitatory responses to electrical train stimulation, 

the effects of local pharmacological stimulation of the CeA via infusion of the glutamatergic agonist, 

AMPA, were examined to ensure that excitatory responses to train stimulation of the CeA were a 

result of activating neurons within the CeA and not fibers of passage. Consistent with the observed 

excitatory responses to electrical stimulation of the CeA, 120 pmol AMPA infusions within the CeA 

(n = 7) significantly increased LC activity in comparison to dPBS infusions within the CeA (n = 8) 

(figures 32A and 33A; 1-way ANOVA, p<0.05). Although not significant, there was a dose-

response relationship for the maximal increase in FR following intra-CeA infusions of increasing 

doses of AMPA (60 pmol and 120 mpol) (figure 32A; 1-way ANOVA, NS). The maximal increase 

in FR following 60 and 120 pmol AMPA intra-CeA infusions occurred at 132 ± 38 s and 137 ± 35 s, 

respectively, from the onset of the infusion. Intra-CeA infusions of 60 and 120 pmol AMPA 

resulted in LC activity that was at least 10% greater than baseline activity for 149 ± 33 s and 147 ± 

61 s, respectively. 

3.3.2 Effects of pharmacological inactivation of the CeA on LC activity. 

To determine if spontaneous activity within the CeA provides a tonic drive to the LC, the effects of 

chemical inactivation of the CeA on LC activity were examined by recording LC activity following 

intra-CeA infusions of a combination of the GABAA and GABAB agonists, muscimol and baclofen, 

 77 



respectively. Inactivation of the CeA (n = 8) had no effect on the maximum increase in LC activity 

in comparison to intra-CeA infusions of dPBS (n = 8) (figures 32A and 33B; 1-way ANOVA, NS). 

To determine if inactivation of the CeA had any long-term effects on LC activity, LC activity was 

recorded for approximately 30 minutes following an intra-CeA infusion of 0.2 µg mus/0.2 µg. There 

were no significant effects of CeA inactivation (n = 7) on LC activity over time in comparison to 

infusions of dPBS win the CeA (n = 5) (figure 32B; 2-way RM ANOVA, NS).  

 

 

Figure 32. Effects of pharmacological activation and inactivation of the CeA on LC activity. 

A) Pharmacological activation of the CeA with higher doses of AMPA significantly increased LC 

firing rate (1-way ANOVA, p<0.05), whereas lower doses of AMPA or inactivation of the CeA with 

0.2 µg muscimol/0.2 µg baclofen did not significantly alter LC activity in comparison to intra-CeA 

infusions of dPBS (1-way ANOVA, NS). Number in each drug group is indicated in the bar. B) 

Pharmacological inactivation of the CeA had no significant long term effects on LC activity in 

comparison to dPBS (2-way RM ANOVA, NS). 
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Figure 33. Representative firing rate histograms of LC activity following pharmacological 

manipulation of the CeA. 

A) Pharmacological activation of the CeA increased LC firing rate for approximately 4 minutes. The 

CeA was pharmacologically activated with 120 pmol AMPA infused over 2 minutes (red bar). There 

was a 50% peak increase in firing rate, which occurred approximately 1 minute from the start of the 

infusion. B) Pharmacological inactivation of the CeA with 0.2 µg muscimol/0.2 µg baclofen infused 

over 2 minutes (blue bar) has no significant effects on LC activity. 
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4.0  DISCUSSION 

Stress exposure has maladaptive consequences for an organism, which can precipitate and 

exacerbate the symptoms of mood and anxiety disorders. Clinical studies have demonstrated that 

there is a pathophysiology in the amygdala and the locus coeruleus in individuals with mood and 

anxiety disorders. More specifically, clinical studies suggest that both of these structures are 

hyperactive in individuals with mood and anxiety disorders, which may contribute to the symptoms 

observed in these disorders. Furthermore, studies have shown that stressful stimuli or stress 

exposure activates the complex of nuclei that comprise the amygdala in addition to the locus 

coeruleus. It is hypothesized that CRH mediates the stress-induced activation of the LC. Although 

the amygdala is comprised of several nuclei, the central nucleus of the amygdala is most relevant to 

this study, since neurons of the CeA directly contact the dendrites of the noradrenergic neurons of 

the LC and provide a source of CRH to the LC. Therefore, it is hypothesized that activation of the 

CeA-LC pathway may modulate stress responses by contributing to the stress-induced CRH-

mediated activation of the LC.  

Since both CRH and GABA are colocalized in neurons of the CeA (Veinante et al., 1997), 

both of which have opposing effects on LC activity, this study examined and further characterized 

the CeA-LC pathway using electrophysiological and pharmacological techniques. The current results 

confirm previous findings (Bouret et al., 2003) that activation of the CeA results in excitatory 

responses in the majority of LC cells, with inhibitory and antidromic activation being the other 

responses evoked by electrical stimulation of the CeA. Furthermore, excitatory responses as a result 

 80 



of electrical stimulation of the CeA may be partially attenuated by the peptidergic antagonist, D-Phe-

CRH. This current study also extends previously reported findings about the CeA-LC pathway by 

suggesting that there is a glutamatergic component in the excitatory responses following electrical 

stimulation of the CeA and that inhibition simultaneously occurs during excitatory responses to 

electrical stimulation of the CeA. 

4.1 LC RESPONSES TO ELECTRICAL STIMULATION OF THE CEA 

Electrical stimulation of the CeA evoked four response types in the LC: excitation followed by 

inhibition, pure inhibition, antidromic activation or no response. Consistent with previous findings 

(Bouret et al., 2003), the majority of the responses to both single-pulse and train stimulation of the 

CeA were excitatory, with 70% of neurons responding with an excitation following 20-Hz train 

stimulation in comparison to single-pulse stimulation. Excitatory responses to both single-pulse and 

train stimulation were followed by a long lasting inhibitory period. Though fewer in numbers in 

comparison to excitatory responses, pure inhibitory responses to both single-pulse and even fewer 

to train stimulation of the CeA were also observed, in contrast to previous findings that report a 

single pure inhibitory response to electrical stimulation of the CeA (Bouret et al., 2003). This 

inconsistency may be due the criteria used to determine if a neuron responded with an excitation. 

Furthermore, consistent with previous findings (Bouret et al., 2003), antidromic activation was 

observed in a small percentage of neurons. Finally, a small population of neurons did not respond to 

single-pulse CeA stimulation, and this proportion was greatly reduced following train stimulation. 

Anatomical and immunohistochemical studies have shown that neurons of the CeA contain 

CRH (Sakanaka et al., 1986, 1987; Van Bockstaele et al., 1998) and form asymmetric excitatory 
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synapses onto TH-positive dendrites of LC neurons in the rostrolateral peri-coerulear area (Van 

Bockstaele et al., 1996a; Van Bockstaele et al., 1998). Intracereboventricular or local application of 

CRH increases LC neuronal activity, which is correlated with increased levels of extracellular NE in 

the hippocampus and prefrontal cortex measured by microdialysis (Curtis et al., 1997b; Finlay et al., 

1997; Jedema et al., 2001; Page and Abercrombie, 1999; Smagin et al., 1995; Valentino and Foote, 

1988; Valentino et al., 1983). Moreover, studies show that CRH directly activates LC neurons in the 

presence of TTX in vitro (Jedema and Grace, 2004), demonstrating that the effect is mediated directly 

on LC neurons. CRH-induced activation of LC neurons and increases in extracelluar NE can be 

attenuated by administration of CRH antagonists D-Phe-CRH and alpha-helical CRH (Curtis et al., 

1994; Curtis et al., 1997b; Page and Abercrombie, 1999). Previous electrophysiological findings 

showed that alpha-helical CRH attenuated evoked LC activity following electrical stimulation of the 

CeA (Bouret et al., 2003). Taken together, CRH in the CeA-LC pathway appears to mediate at least 

some of the excitatory responses following electrical stimulation of the CeA. 

Excitatory responses to both single-pulse and train stimulation were typically followed by an 

inhibitory period called post-excitation inhibition. Post-excitation inhibition was first observed 

following activation of LC neurons by noxious stimuli in anesthetized subjects (Cedarbaum and 

Aghajanian, 1976) and is consistent with subsequent studies that observed an inhibitory period that 

followed glutamate-mediated excitation as a result of stimulation of the nucleus paragigantocellularis 

(Ennis and Aston-Jones, 1988) and indirect stimulation of the sciatic nerve (Ennis et al., 1992; Mana 

and Grace, 1997). This post-excitation inhibitory period following stimulation of the sciatic nerve, 

nucleus paragigantocellularis and presentation of noxious stimuli has been attributed to intrinsic LC 

mechanisms, such as activation of calcium-activated potassium channels and lateral inhibition 

mediated by alpha2 noradrenergic autoreceptors (Andrade and Aghajanian, 1984a; Andrade and 

Aghajanian, 1984b; Cedarbaum and Aghajanian, 1978a; Ennis and Aston-Jones, 1986). It is thought 
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that post-excitation inhibition in LC neurons occurs to modulate spike activity following activation 

(Cedarbaum and Aghajanian, 1976, 1978a; Ennis and Aston-Jones, 1986). 

In addition to excitatory responses, there was a small percentage of LC cells responding with 

a pure inhibitory response to both single-pulse and train stimulation of the CeA. Although the 

precise source of inhibition is not known, it may be mediated by a combination of GABA and 

inhibitory neuropeptides released directly from neurons in the CeA that synapse onto the dendrites 

of LC neurons (Cassell et al., 1986) and possibly via indirect GABAergic input into the LC (Van 

Bockstaele et al., 1996a; Van Bockstaele et al., 1998). Immunohistochemical studies show high levels 

of immunoreactivity for GABA and glutamic acid decarboxylase (GAD), the enzyme which 

catalyzes the syntheses of GABA from glutamic acid, within the CeA (Ben-Ari et al., 1976; Sun and 

Cassell, 1993; Sun et al., 1994); Sun & Cassell, 1993). In addition, projection neurons of the CeA that 

target the brainstem contain GABA (Sun et al., 1994). Electrophysiological studies have shown that 

GABA application onto LC neurons in vitro decreases electrophysiological LC activity (Shefner and 

Osmanovic, 1991) and inhibition as a result of electrical stimulation of the GABAergic afferent, 

prepositus hyperglossi, can be blocked by local and iontophoretic application of the GABAA 

antagonist, bicuculline (Ennis and Aston-Jones, 1989a). In addition to containing the fast inhibitory 

neurotransmitter, GABA, the CeA also contains neuropeptides other than CRH that have inhibitory 

effects on LC activity. Neurons of the CeA contain neuropeptides, such as neurotensin, enkephalin, 

somatostatin, substance P, cholecystokinin, vasoactive peptide (Cassell et al., 1986) and galanin 

(Palkovits, 2000). Electrophysiological studies have shown that enkephalin (Travagli et al., 1995), 

neurotensin, somatostatin, and galanin depress LC activity (Olpe and Steinmann, 1991). In addition 

to directly inhibiting LC activity, ultrastructural evidence suggests that the CeA may also inhibit the 

LC via indirect GABAergic inputs. CRH-positive neurons from the CeA form asymmetric synapses 

onto TH-negative neurons within the rostrolateral peri-coerulear area (Van Bockstaele et al., 1998). 
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These TH-negative neurons within the rostrolateral peri-coerulear area may be local GABAergic 

interneurons that modulate LC activity through inhibition following activation of its afferents 

(Aston-Jones et al., 2004). Taken together, the pure inhibitory responses and inhibitory period 

following excitatory responses to electrical CeA stimulation may be a result of CeA directly 

inhibiting LC neurons via GABA alone or in conjunction with inhibitory neuropeptides, or 

indirectly via activation of local interneurons within the rostrolateral peri-coerulear area. 

Combined with intrinsic mechanisms within the LC that inhibit LC activity immediately 

following activation, the inhibitory period that follows activation as a result of electrical stimulation 

of the CeA may be directly mediated by CeA. The occurrence of pure inhibitory responses following 

electrical stimulation of the CeA, which have a similar onset latency and duration as the inhibitory 

period that follows excitatory responses, indicate that the CeA may be simultaneously mediating the 

inhibitory period that immediately follows activation. Combined with present findings, 

immunohistochemical and tract-tracing findings suggest that the CeA provides an inhibitory input to 

the LC via GABA released directly from CeA neurons forming synapses onto LC neurons or 

indirectly by activating GABAergic interneurons within the peri-coerulear area. Present data do not 

indicate the precise source of inhibition, thus it is unclear whether mechanisms within the LC alone 

or combined with direct CeA input mediate the inhibitory period following excitatory responses to 

electrical stimulation of the CeA.  

A small population of LC neurons was antidromically activated by CeA stimulation. These 

neurons responded to single-pulse stimulation and followed high-frequency train stimulation of the 

CeA with fixed latencies. This was consistent with previous electrophysiological findings showing a 

small percentage of LC neurons that were antidromically activated following electrical stimulation of 

the CeA (Bouret et al., 2003). The majority of the latencies of antidromic responses were between 

10-25 ms from the onset of the stimulus, which was consistent with previous findings (Bouret et al., 
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2003). Together, these electrophysiological findings are consistent with anatomical tract-tracing 

studies confirming that the CeA receives a small LC input (Cedarbaum and Aghajanian, 1978b; 

Jones and Moore, 1977; Petrov et al., 1993; Usunoff et al., 2006). 

4.1.1 Single-pulse vs. train stimulation of the CeA. 

Present findings show differences in LC responses to electrical stimulation of the CeA with respect 

to stimulation parameters, such as increasing current intensity and use of high-frequency repeated 

stimulation. At the highest intensity, the majority of LC neurons responded with an excitatory 

response to both single-pulse and train stimulation of the CeA, which was consistent with previous 

findings (Bouret et al., 2003). For excitatory responses, the average latency to the peak of the 

excitation occurs between 20-25 ms from the onset of single-pulse or individual stimuli of train 

stimulation. Although Bouret et al reported an average onset latency of 11.7 ± 0.7 ms, but did not 

report the average peak latency, it can be estimated from PSTHs of individual neurons that the 

average peak latency occurred approximately 20-25 ms from the onset of the stimulus, which is 

consistent with the present findings. 

The present findings indicate a relationship between current intensity and the magnitude of 

evoked or inhibited activity with respect to baseline for both single-pulse and 10-Hz train 

stimulation of the CeA. For excitatory responses, higher current intensities (600-900 µA) in 

comparison to lower current intensities (0-300 µA) resulted in greater evoked activity during the 

excitatory period following the stimuli with respect to baseline activity, with the greatest effect 

occurring at the highest intensity. For pure inhibitory responses and during the inhibitory period 

following excitatory responses, there was an inverse relationship between current intensity and spike 

probability during the inhibitory period as a result of single-pulse and 10-Hz train stimulation of the 
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CeA. This suggests that increasing current intensities during electrical stimulation of the CeA 

activated more fibers that resulted in either increased evoked activity or increased inhibition during 

both pure inhibitory responses and the inhibitory period following excitatory responses. 

In addition to the effects of higher current intensities on evoked and inhibited activity as a 

result of electrical stimulation, the high-frequency repeated stimulation resulted in enhanced 

activation of LC neurons. Overall, train stimulation of the CeA (10- and 20-Hz) resulted in a greater 

proportion of neurons responding with an excitation in comparison to single-pulse CeA stimulation. 

There was also a significant reduction in the number of neurons responding with an inhibitory 

response or not responding to 20-Hz train stimulation in comparison to single-pulse CeA 

stimulation. These observations were consistent with previous observations that showed a greater 

percentage of neurons responding with an excitatory response to 200-Hz train stimulation in 

comparison to single-pulse stimulation of the CeA (Bouret et al., 2003). Furthermore, train 

stimulation resulted in three types of excitatory responses, two of which comprised the majority of 

excitatory responses. Both late and multiple excitatory responses showed enhanced activation during 

the later stimuli of the train. Previous studies have shown that high-frequency train stimulation 

facilitates peptide release (Bean et al., 1989; Bean and Roth, 1991). Since the CeA not only contains 

the fast inhibitory transmitter GABA (Ben-Ari et al., 1976; Sun and Cassell, 1993; Sun et al., 1994), 

but also the excitatory neuropeptide, CRH (Sakanaka et al., 1986, 1987; Van Bockstaele et al., 1998), 

high-frequency stimulation of the CeA may have facilitated release of CRH resulting in a greater 

number of neurons responding with an excitatory responses to train stimulation of CeA in 

comparison to single-pulse CeA stimulation. In addition, activation during later stimuli of the train 

in late and multiple excitatory responses may be due to facilitated CRH release during the later 

stimuli of the train as a result of high-frequency repeated stimulation. Present findings suggest that 

 86 



increased activation of the CeA with high-frequency stimulation at high current intensities increased 

the likelihood of an LC neuron responding with an excitation.  

The present findings also indicate differences in the magnitude of evoked activity following 

individual stimuli of the train at different frequencies. The activity evoked with train stimulation at 

10-Hz was over two times greater than baseline only after the first stimulus, with remaining stimuli 

not evoking activity exceeding baseline. In contrast, 20-Hz train stimulation resulted in evoked 

activity that exceeded baseline throughout the entire train. If the excitatory response to 20-Hz train 

stimulation is indeed due to facilitated peptide release, these data suggest that a 10-Hz train is not 

adequate to effectively facilitate peptide release from the CeA, and increasing the train frequency 

possibly enhanced CRH release from the CeA during later stimuli of the train, thus resulting in an 

excitatory response throughout the 20-Hz train. However, it should be noted that the magnitude of 

the excitatory responses following individual stimuli of a 20-Hz train was not greater than the 

magnitude of the excitation following single-pulse CeA stimulation or following the first stimulus of 

a 10-Hz train, which suggests that a maximum excitatory response to CeA stimulation was attained. 

Based on PSTHs for individual neurons during 200-Hz train stimulation in previously reported 

findings (Bouret et al., 2003), the magnitude of the excitatory response does not appear greater than 

those observed during 20-Hz train stimulation. Taken together, this suggests that increasing the train 

frequency increases the magnitude and likelihood of an LC neuron responding with an excitatory 

response; however, a train frequency that is greater than 20 Hz may not necessarily result in further 

enhancement of the evoked activity during train stimulation. 

High-frequency stimulation of the CeA not only resulted in enhanced activation of LC 

neurons, but also resulted in inhibition, both pure inhibition and inhibition that followed excitatory 

responses. Both types of inhibition were significantly longer with a significant reduction in spike 

activity with respect to baseline. Furthermore, acute excitatory responses, which occurred in a 
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minority of excitatory responses to 20-Hz train stimulation, showed an excitation only during the 

early part of the train. There are several mechanisms that may account for this finding, Thus, 

repeated stimulation may have facilitated both GABA and inhibitory peptide release from neurons 

of the CeA during the later stimuli of the train. Enhanced activation of the CeA may also have 

resulted in increased CRH-mediated activation of local GABAergic interneurons in the rostrolateral 

peri-coerulear area. A combination of these mechanisms may have accounted for a prolonged 

inhibitory period that showed greater reduction in spike activity with respect to baseline activity and 

may have contributed to the absence of excitation in acute excitatory responses during the later 

stimuli of the train. 

Immunohistochemical studies have shown that CRH is more prominent to the lateral and 

medial divisions of the CeA (Cassell et al., 1986), based on previously made delineations (McDonald, 

1982a). Consistent with these findings, CRH-containing CeA neurons that innervate the LC are 

located in the medial division of the CeA (Thompson and Cassell, 1989; Van Bockstaele et al., 1998). 

Given these immunohistochemical findings, placement of the stimulating electrode within the CeA 

may account for the enhanced activation of LC neurons and different types of excitatory responses 

following train stimulation of the CeA. However, the present findings indicate that excitatory, 

inhibitory, antidromic, and absence of responses to both single-pulse and train stimulation of the 

CeA were not dependent on the placement of the stimulating electrode within the CeA. High 

current intensity and current spread within the CeA may preclude observing a relationship between 

responses to electrical stimulation of the CeA and location of the stimulating electrode within the 

CeA. Responses to electrical stimulation were not dependent on the placement of the recording 

electrode within the LC. This may be due to methodology in that extracellular recordings of LC 

activity were made within the LC proper, while CRF-containing CeA neurons provide direct 

synaptic input to dendrites of LC neurons in the rostrolateral peri-coerulear area, which is located 
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outside of the recording area (Van Bockstaele et al., 1996a; Van Bockstaele et al., 1998). Although 

spatial relationship between location of the cell body and its dendrites is still currently unknown, 

present findings indicate that there is no topographical organization of responses within the LC. 

The present findings indicate that electrical stimulation of the CeA resulted in both 

excitatory and inhibitory responses in LC neurons. Increased activation of the CeA either by 

increasing the current intensity or use of high-frequency repeated stimulation resulted in enhanced 

activation of LC neurons that was followed by a prolonged enhanced inhibitory period. These 

general observations about excitatory responses to electrical stimulation were consistent with those 

previously reported (Bouret et al., 2003), although stimulation parameters, criteria for excitatory 

responses, and characteristics of excitatory responses to electrical stimulation of the CeA were 

different than those used and/or observed in this study. Although increased activation of the CeA 

through high-frequency stimulation resulted in fewer inhibitory responses, these responses were 

prolonged and enhanced. Taken together, the present findings indicate that the CeA provides both 

an excitatory and inhibitory drive to LC neurons, and that increasing current intensity and high-

frequency stimulation can greatly affect overall responses to stimulation. 

4.2 MECHANISMS MEDIATING EXCITATORY RESPONSES TO ELECTRICAL 

STIMULATION OF THE CEA 

Previous immunohistochemical, anatomical tract-tracing, and electrophysiological studies strongly 

suggest that CRH mediates the excitatory responses that occur in a majority of LC neurons 

following electrical stimulation of the CeA. This present study furthered confirmed that CRH 

partially mediates the excitatory responses following electrical train stimulation, and is the first to 
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suggest that excitatory responses to electrical stimulation of the CeA may be partially mediated by 

the excitatory amino acid, glutamate. Furthermore, pharmacological manipulations during excitatory 

responses to electrical stimulation of the CeA unmasked an underlying inhibitory period that occurs 

simultaneously with excitatory responses to train stimulation of the CeA. 

4.2.1 Effects of ICV infusions on spontaneous LC activity. 

Spontaneous LC activity remained unchanged during and following ICV infusions of both doses of 

D-Phe-CRH and KYN in comparison to aCSF. This is consistent with previous studies showing 

that ICV infusions of D-Phe-CRH do not modulate spontaneous LC activity in vivo (Curtis et al., 

1994; Curtis et al., 1997b; Menzaghi et al., 1994), although it was reported that D-Phe-CRH has 

partial agonist effects on spontaneous LC activity in vitro (Jedema and Grace, 2004). Similar to D-

Phe-CRH, KYN had no effect on spontaneous LC activity, which was consistent with previous 

findings (Ennis and Aston-Jones, 1988; Valentino et al., 1991). Taken together, this suggests that LC 

inputs containing either CRH or glutamate do not tonically modulate LC neurons in anesthetized 

rats. Furthermore, spontaneous LC activity was recorded between train stimulation of the CeA for 

approximately 50 minutes. Present findings indicate that previous train stimulation of the CeA does 

not affect spontaneous LC activity over long periods of time, which suggests that the CeA does not 

tonically modulate LC activity. 

4.2.2 Effects of ICV infusions of CRH antagonists on evoked LC activity. 

LC activity evoked by 20-Hz train stimulation of the CeA was significantly attenuated by D-Phe-

CRH. When compared to aCSF, high doses of D-Phe-CRH attenuated excitatory responses over 
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time with a significant decrease occurring approximately 42 minutes following infusions. ICV 

infusions of aCSF did not attenuate the excitatory response to train stimulation, which suggests that 

the attenuation of evoked activity during train stimulation following ICV administration of D-Phe-

CRH is not a consequence of high-frequency train stimulation or CRH depletion from neurons of 

the CeA that innervate dendrites of LC neurons. Ultra-structural evidence shows that CRH-positive 

terminals of CeA neurons form asymmetric synapses onto TH-positive dendrites of LC neurons 

(Van Bockstaele et al., 1998) in the rostrolateral peri-coerulear area (Van Bockstaele et al., 1996a). 

Previous electrophysiological findings showed that alpha-helical CRH attenuated evoked activity 

following electrical stimulation of the CeA (Bouret et al., 2003). Hypotensive stress-induced LC 

activation was proposed to be as a result of CeA activation, since LC neurons were not activated as a 

result of hypotensive stress in animals with electrolytic lesions of the CeA (Curtis et al., 2002). It was 

also suggested that LC activation as a result of hypotensive stress is mediated in part by CRH 

released from neurons of the CeA (Curtis et al., 2002). Previous and present data strongly suggest 

that multiple excitatory responses as a result of electrical stimulation of the CeA are partially 

mediated by CRH released from neurons of the CeA that innervate LC neurons. 

Although D-Phe-CRH significantly attenuated excitatory responses throughout the entire 

train, its most prominent effects occurred during the later stimuli of the train. Train stimulation of 

the CeA increased the probability that an LC neuron would respond with an excitation in 

comparison to single-pulse stimulation of the CeA, and it elicited significantly more excitatory 

responses than pure inhibitory responses, with the majority of cells exhibiting an excitation during 

the later stimuli of the train. This is consistent with the idea that neuropeptide release requires high-

frequency repeated stimulation (Bean et al., 1989; Bean and Roth, 1991). Since the majority of 

responses to train stimulation were excitatory and D-Phe-CRH attenuated the excitation during the 

later stimuli, this suggests that CRH mediates the late component of excitatory responses to train 
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stimulation of the CeA. These data also suggest that late excitatory responses, which show a late 

onset excitation, may be mediated by CRH as a result of high-frequency stimulation of the CeA.  

D-Phe-CRH did not attenuate the excitatory response following the first stimulus of the 

train. The differential effects of D-Phe-CRH on multiple excitatory responses indicate these 

responses are comprised of multiple components and display characteristics of both acute and late 

excitatory responses to train stimulation, with the late excitatory component being mediated by 

CRH. Bouret et al also suggested that excitatory responses to train stimulation of the CeA were 

comprised of multiple components, since ICV and intra-coerulear infusions of alpha-helical CRH 

partially attenuated the early component of the excitatory response to train stimulation, leaving the 

late component unaffected. This inconsistency between the present and previous findings may be 

attributed to differences in stimulation parameters, particularly with respect to the frequency of train 

stimulation. Attenuation of the early excitatory component, as previously described, in response to 

200-Hz train stimulation suggests that 200-Hz train stimulation of the CeA may have facilitated an 

earlier CRH release from the CeA in comparison to 20-Hz train stimulation, which may have 

mediated the early excitatory response as described by Bouret et al (2003). 

Present findings indicate differences in the efficacy of high and low doses of D-Phe-CRH as 

well as a time course with respect to ICV administration on attenuating excitatory responses to train 

stimulation of the CeA. Although examined only 27 minutes following the infusion, evoked activity 

during train stimulation of the CeA was not attenuated by low doses of D-Phe-CRH. In contrast, 

high doses of D-Phe-CRH only partially attenuated the excitatory response during the later stimuli 

of the train over time with significant effects occurring after approximately 42 min after the infusion. 

Since neurons of the CeA innervate LC neurons at their dendrites located in the rostrolateral peri-

coerulear area and not at the LC somata, where inputs such as the PGi and prepositus hypoglosi 

form their synapses (Aston-Jones et al., 1986; Aston-Jones et al., 1991b; Chiang and Aston-Jones, 
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1993a; Valentino et al., 1992), and the majority of CRH receptors are located in the peri-coerulear 

area (Fox et al., 2002), significant time is required for D-Phe-CRH, a peptide, to diffuse through the 

dendritic regions of the LC and block CRH receptors localized to these dendrites. This is consistent 

with unpublished data indicating that evoked activity as a result of CeA simulation was attenuated 

approximately 30-40 minutes following ICV infusions of alpha-helical CRH (Susan Sara, personal 

communication). In addition to the long diffusion rate throughout the dendritic regions of the LC, a 

possible mechanism that may account for the effects of the CRH antagonists long after its infusion 

in the both the previous (Bouret et al., 2003) and present studies may be attributed to CRH-binding 

protein (Behan et al., 1989; Potter et al., 1991). In general, it has been hypothesized that binding 

proteins sequester ligand activity or deliver the ligand to the target tissue (Kemp et al., 1998; Mendel 

et al., 1989). CRH-binding protein  attenuates the ACTH-releasing activity of CRH (Linton et al., 

1990) in addition to inactivating (Linton et al., 1990) or clearing (Woods et al., 1994) extracellular 

CRH in the periphery. Since the CRH antagonist D-Phe-CRH is considered to be an analogue of 

CRH, it is possible that CRH-binding protein may be inactivating the antagonist before it blocks 

CRH receptors in the dendritic regions of the LC. Thus a low dose of D-Phe-CRH has no effect on 

evoked activity as a result of train stimulation of the CeA and partial attenuation of excitatory 

responses by high doses of D-Phe-CRH occur long after the infusion. 

Alternatively, evoked spike activity that was not attenuated by high doses of D-Phe-CRH 

may be a result of disinhibition of local GABAergic interneurons within the rostrolateral peri-

coerulear area. Ultrastructural evidence shows that CRH-positive neurons from the CeA form 

asymmetric synapses onto TH-negative neurons within the rostrolateral peri-coerulear area (Van 

Bockstaele et al., 1996a; Van Bockstaele et al., 1998). These TH-negative neurons may be local 

GABAergic interneurons that are hypothesized to regulate LC activity during activation (Aston-

Jones et al., 2004). In the presence of CRH, activation of the CeA may result in activation of these 
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interneurons via CRH; therefore these interneurons have the potential to contribute to the inhibitory 

period that follows activation in response to electrical stimulation of the CeA. When CRH receptors 

localized on LC neurons are blocked, CRH released from neurons of the CeA cannot directly excite 

LC neurons, which is what the present findings suggest occurs following high doses of D-Phe-CRH. 

In addition to blocking direct activation of LC neurons by CRH released from the CeA, D-Phe-

CRH administration may have blocked CRH receptors localized to interneurons, therefore 

preventing CRH-mediated activation of local interneurons. This would result in CeA inhibition of 

these interneurons, resulting in disinhibition of LC neurons during train stimulation of the CeA in 

the presence of D-Phe-CRH. This is further supported by previous studies showing doses 

comparable to the low dose of D-Phe-CRH used in this study attenuated CRH-mediated activation 

of LC neurons (Curtis et al., 1994; Curtis et al., 1997b). 

4.2.3 Effects of ICV infusions of glutamatergic antagonists on evoked LC activity. 

The differential effects of D-Phe-CRH on excitatory responses suggested that the excitatory 

responses evoked by train stimulation of the CeA consist of multiple components, with CRH 

partially mediating the late excitatory component. This further suggested that the multiple excitatory 

responses are mediated by multiple mechanisms, one of them being CRH. The excitatory responses 

that were not completely attenuated by D-Phe-CRH are thought to be mediated by the excitatory 

amino acid, glutamate, since application of glutamate and activation of glutamatergic afferents 

activate LC neurons. 

ICV infusions of KYN attenuated excitatory responses elicited during train stimulation of 

the CeA, and had a more profound effect than D-Phe-CRH. The early excitatory component was 

attenuated to baseline levels following KYN infusions, but was not attenuated by D-Phe-CRH. In 
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contrast, KYN completely blocked the late excitatory component, while D-Phe-CRH only partially 

attenuated this component of the excitation. Attenuation of the excitatory response during train 

stimulation of the CeA following ICV infusions of KYN suggest that, in addition to CRH, glutamate 

partially mediates these excitatory responses. Without citing immunohistochemical evidence, it was 

suggested that the CeA contains glutamate (Davis, 1994). Furthermore, in axon terminals within the 

peri-coerulear area, CRH preferentially co-localizes with glutamate rather than GABA (Valentino et 

al., 2001). Although the origin of axon terminals showing co-localization of glutamate and CRH is 

unknown, it is unlikely that excitatory responses following electrical stimulation of CeA is a result of 

neurons from the CeA co-releasing glutamate with CRH onto dendrites of LC neurons. 

Glutamatergic vesicular transporters (VGLUT) serve as immunohistochemical markers for 

glutamate, thus identifying glutamatergic cell groups within the CNS. Although it has been 

demonstrated that the cell bodies of neurons in the CeA do not express immunoreactivity for 

VGLUT1, VGLUT2 (Fremeau et al., 2001; Poulin et al., 2006), and VGLUT3 (Poulin et al., 2008), it 

was demonstrated that the glutamatergic transporters are localized to excitatory synapses (Bellocchio 

et al., 1998; Fremeau et al., 2001) rather than in the cell bodies of neurons. Together, these data 

suggested that the CeA may still provide its targets with a potential source of glutamate. However, in 

situ hybridization studies have shown that neurons of the CeA do not express mRNA for vGLU1 

(Fremeau et al., 2001) and vGLUT2 (Fremeau et al., 2001; Hur and Zaborszky, 2005). This evidence 

suggests that neurons of the CeA do not synthesize VGLUT protein and further suggest that 

neurons of the CeA do not contain or use glutamate as an excitatory transmitter. Given the lack of 

immunohistochemical evidence for glutamate localization in neurons of the CeA, this suggests that 

the CeA may be activating LC neurons indirectly via glutamatergic afferents. 

A variety of excitatory amino acid afferents converge onto LC neurons (Aston-Jones et al., 

1991b) and it is likely that glutamate mediates LC activation following stimulation of these 
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glutamergic inputs. It is unlikely that these glutamatergic afferents, such as the medial prefrontal 

cortex (Jodo et al., 1998), paragigantocellularis (Ennis and Aston-Jones, 1988), and Barrington’s 

nucleus (Page et al., 1992), contribute to the excitatory responses as a result of CeA stimulation since 

the latencies of the maximal excitation as a result of stimulation of prefrontal cortex, 

paragigantocellularis and Barrington’s nucleus are similar to those observed in this study. Although 

the paragigantocellularis provides a source of both CRH and glutamate to the LC (Valentino et al., 

1992) and mediates LC activation as a result of indirect sciatic nerve stimulation (Chiang and Aston-

Jones, 1993b; Ennis et al., 1992) and opiate withdrawal (Akaoka & Aston-Jones), it is unlikely that 

activation of the LC as a result of the CeA is mediated by the paragigantocellularis. Thus, CRH 

antagonist administration does not alter PGi-mediated LC activation as a result of sciatic nerve 

stimulation (Curtis et al., 1994; Valentino and Curtis, 1991b) or opiate withdrawal (Valentino and 

Wehby, 1989), both of which are mediated by glutamate released from the PGi (Akaoka and Aston-

Jones, 1991; Ennis et al., 1992; Rasmussen and Aghajanian, 1989). Taken together, these data 

suggest that the CeA may modulate an unknown glutamatergic input into the LC, particularly during 

the early excitatory component of the responses to train stimulation. 

Another possible mechanism involved in excitatory responses to CeA stimulation may 

involve CRH-mediated modulation of glutamate receptors. There is ultrastructural evidence showing 

dendrites in the rostrolateral peri-coerulear area receiving convergent glutamatergic and CRH inputs 

(Valentino and Van Bockstaele, 2001). At least within the dopaminergic ventral tegmental area, 

electrophysiological data suggest that CRH can potentiate glutamatergic NMDA receptors via the 

CRH2 receptor subtype (Ungless et al., 2003). The CRH1 receptor subtype is more prevalent in the 

LC than the CRH2 receptor subtype (Fox et al., 2002; Sauvage and Steckler, 2001); nonetheless, 

CRH modulation of converging glutamate inputs at dendrites of LC neurons in the rostrolateral 

peri-coerulear area may be a potential mechanism to mediate excitatory responses to CeA 
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stimulation. The present findings indicate that KYN completely attenuates excitatory responses 

during the late excitatory component, while D-Phe-CRH only partially attenuates evoked activity. 

Although it was demonstrated that CRH directly excites LC neurons in vitro in the presence of TTX 

(Jedema and Grace, 2004), it was not demonstrated in the presence of excitatory amino acid 

antagonists. If CRH modulation of glutamate receptors is a potential mechanism underlying 

excitatory responses to CeA activation, together with ultrastructural findings, these present findings 

suggest that CRH activation may be attenuated once glutamate receptors are blocked by KYN. 

4.3 THE CEA ACTIVATES WHILE SIMULTANEOUSLY INHIBITING LC 

NEURONS 

A high dose of the CRH antagonist, D-Phe-CRH, and the glutamatergic antagonist, KYN, revealed 

that glutamate, together with CRH, may mediate excitatory responses during train stimulation of the 

CeA. In addition, attenuation of excitatory responses by KYN revealed a short-onset, short-latency 

inhibitory period that occurs simultaneously during the excitatory responses to train stimulation of 

the CeA. Furthermore, the presence of an underlying inhibitory period during excitatory responses is 

consistent with the CeA directly mediating the inhibitory period that immediately follows activation 

of LC neurons following electrical stimulation of the CeA. In colchicine-treated rats, it has been 

shown that CRH co-localizes with GABA in neurons of the CeA (Veinante et al., 1997). Using in 

situ hybridization, there was substantial coexistence of mRNA for both CRH and GAD isoforms 65 

and 67 in neurons of the CeA (Day et al., 1999). Within the rostrolateral peri-coerulear area, a small 

percentage of CRH-positive terminals were also dual labeled for GABA (Valentino et al., 2001). 

These present electrophysiological findings are consistent with immunohistochemical and in situ 
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hybridization studies suggesting that the inhibitory period underlying excitatory responses following 

electrical stimulation of the CeA may be mediated by both CRH and GABA simultaneously released 

from neurons of the CeA that directly innervate LC neurons. 

Immunohistochemical and in situ hybridization studies showing co-localization of GABA 

and CRH strongly suggest that GABA mediates the inhibitory period underlying the excitatory 

response following train stimulation of the CeA. Given that neurons of the CeA contain 

neuropeptides that have inhibitory effects on LC neurons, the underlying inhibition may also be 

mediated by these neuropeptides together with GABA as a result of facilitated peptide release during 

high-frequency repeated stimulation. It has been shown that the peptide enkephalin is contained in 

neurons of the CeA (Cassell et al., 1986), co-localizes with GABA in axon terminals within the LC 

(Van Bockstaele, 1998; Van Bockstaele and Chan, 1997), and decreases LC activity (Travagli et al., 

1995). High-frequency stimulation of the CeA may have facilitated enkephalin release, thus 

mediating the underlying inhibitory period. Although immunohistochemical evidence strongly 

suggests that inhibitory responses may be mediated by multiple inhibitory transmitters, it should be 

noted that the present data do not provide direct evidence regarding whether the inhibitory period is 

mediated by GABA alone or in conjunction with inhibitory neuropeptides released by projection 

neurons of the CeA following electrical stimulation. 

The presence of an underlying inhibitory period during excitatory responses to train 

stimulation of the CeA may be a mechanism by which the CeA modulates the magnitude of the 

excitatory response observed in the majority of LC neurons. This is consistent with the present 

findings, in which later stimuli of a 10-Hz train failed to elicit spike activity that exceeded baseline, 

whereas 20-Hz train stimulation of the CeA evoked excitatory responses throughout the entire train. 

Differences in evoked activity during the train may be due to the frequency of the train, in that a 

slower frequency failed to facilitate CRH release that would result in excitatory responses during the 
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later stimuli of the train. Alternatively, the inhibitory period that simultaneously occurs during 

excitatory responses to train stimulation may have prevented LC neurons from responding with an 

excitatory response during the latter stimuli of a 10-Hz train. In addition, the lack of response of 

some LC neurons to single-pulse stimulation of the CeA may be due to LC neurons simultaneously 

receiving excitatory and inhibitory input from the CeA, thus resulting in spike activity that is not 

significantly greater or less than baseline activity following electrical CeA stimulation. However, 

increased activation of the CeA as a result of high-frequency repeated stimulation resulted in more 

neurons responding with an excitatory response, with fewer pure inhibitory responses and 

nonresponsive neurons. The presence of an inhibitory period that occurs simultaneously with 

excitatory responses and pure inhibitory responses to activation of the CeA suggests that the CeA 

provides an extrinsic mechanism to regulate overall LC output as a result of activation of the CeA. 

CeA-mediated inhibition of LC neurons may modulate the magnitude of the excitation and the 

number of LC neurons that are excited based on the level of CeA activation. This has functional 

implications during behaviors that activate the CeA-LC pathway. 

4.4 EFFECTS OF PHARMACOLOGICAL ACTIVATION OF THE CEA 

The present findings indicate that electrical stimulation of the CeA results in excitatory responses in 

the majority of LC neurons. ICV infusions of D-Phe-CRH and KYN, antagonists for CRH and 

glutamate, respectively, differentially attenuated excitatory responses to train stimulation of the CeA, 

and further suggested that the CeA may activate LC neurons via both CRH and glutamate. 

Alternatively, attenuation of excitatory responses to electrical stimulation of the CeA by kynurenic 

acid and the absence of immunohistochemical evidence for glutamate localization in neurons of the 

 99 



CeA together suggest that excitatory responses to electrical train stimulation of the CeA may be 

mediated by activation of fibers of passage. Electrical stimulation of sites immediately adjacent to 

the CeA, such as the ventral striatum and ventral hippocampus, did not result in either excitatory or 

inhibitory responses in LC neurons (Bouret et al., 2003) and suggested the specificity of the CeA in 

mediating the excitatory responses. However, high current intensity and current spread within the 

CeA and to the output pathway of the bed nucleus of the stria terminalis (BNST), which lies in close 

proximity to the CeA, suggests that the BNST may mediate the excitatory responses as a result of 

electrical stimulation of the CeA. Anatomical tract-tracing studies and ultra-structural evidence 

suggest that the BNST-LC pathway is inhibitory since terminals of BNST neurons form symmetric 

synapses onto neurons that were both TH-positive and TH-negative in the rostrolateral peri-

coerulear area and also do not provide a significant source of CRH to the LC (Van Bockstaele et al., 

1999). Inconsistent with the ultra-structural evidence that strongly indicates that the BNST provides 

inhibitory input to LC neurons, unpublished electrophysiological data suggest that electrical 

stimulation of the BNST results in excitatory responses in LC neurons (Jedema & Grace, 

unpublished findings). This further suggests that excitatory responses as a result of electrical 

stimulation of the CeA may partially be a result of stimulating fibers originating in the BNST. 

In order to further characterize the specificity of CeA-mediated activation of LC neurons, 

pharmacological activation of the CeA with the excitatory amino acid agonist, AMPA, resulted in 

increases in LC firing rate. Presumably, infusions of AMPA within the CeA would activate AMPA 

receptors on cell bodies and dendrites of CeA neurons, resulting in an activation of neurons in the 

CeA that innervate LC neurons. Increases in LC firing rate as a result of AMPA infusions in the 

CeA is consistent with present and previous findings (Bouret et al., 2003) showing that electrical 

stimulation of the CeA results in excitatory responses in LC neurons. AMPA infusions in the CeA 

tended to increase LC firing rate in a dose-dependent manner, which is consistent with the direct 
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current-response relationship observed for excitatory responses as a result of electrical stimulation of 

the CeA. Increased LC firing rate following AMPA infusions in the CeA indicates that the excitatory 

responses following CeA electrical stimulation is not mediated by activation of fibers of passage 

through the CeA, possibly those originating from the BNST. These pharmacological results indicate 

that activation of LC neurons following AMPA infusions into the CeA may be mediated directly by 

neurons of the CeA or possibly indirectly by CeA-activated excitatory afferents to the LC. 

Given that CRH is localized in CeA terminals arising from neurons of the CeA that form 

synapses on dendrites of LC neurons (Van Bockstaele et al., 1998), and that excitatory responses to 

electrical train stimulation of the CeA are partially mediated by CRH, increases in LC activity 

following pharmacological activation of the CeA are thought to be at least partially mediated by 

CRH. AMPA infusions in the CeA resulted in increases that were long in duration with a late 

occurrence in the maximal increase in LC activity from the onset of the infusion. This observation is 

consistent with previous findings showing a slow-onset long-lasting activation of LC neurons as a 

result of intra-coerulear and ICV CRH administration (Curtis et al., 1997a; Curtis et al., 1994; 

Jedema et al., 2001; Valentino et al., 1983; Valentino and Wehby, 1988). Pharmacological activation 

of the CeA resulted in increased LC activity that was low in magnitude. This is consistent with 

present findings suggesting that CeA may also be providing an inhibitory drive via GABA alone or 

together with inhibitory neuropeptides to LC neurons while simultaneously increasing LC activity 

via CRH and possibly glutamate. 
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4.5 THE CEA DOES NOT PROVIDE A SOURCE OF TONIC INHIBITION TO LC 

ACTIVITY 

LC activity in vivo is under tonic inhibitory control of GABAergic neurons (Ennis and Aston-Jones, 

1989b; Kawahara et al., 1999; Pudovkina et al., 2001). Local application of GABAergic antagonists 

increases LC firing rate (Ennis and Aston-Jones, 1989b) and NE release both in the medial PFC and 

locally within the LC (Kawahara et al., 1999; Pudovkina et al., 2001). Tonic inhibition is mediated by 

GABAA receptors (Ennis and Aston-Jones, 1989b; Kawahara et al., 1999) with a small contribution 

of GABAB receptors (Kawahara et al., 1999; Shefner and Osmanovic, 1991). Sources of tonic 

inhibitory control may be intrinsic via GABAergic interneurons within the dendritic fields of the LC 

(Aston-Jones et al., 2004) or extrinsic (Van Bockstaele, 1998; Van Bockstaele and Chan, 1997). It 

was hypothesized that the CeA would provide an extrinsic source of tonic inhibitory control of LC 

neurons, since the CeA provides a source of GABA to the LC (Sun et al., 1994). Inactivation of the 

CeA by combination of the GABAA agonist, muscimol, and the GABAB agonist, baclofen, showed 

that the CeA does not provide an extrinsic source of tonic inhibitory control of the LC at least in the 

anesthetized rat. This is consistent with the slow firing rate of projection neurons within the CeA in 

anesthetized rats (Correll et al., 2005). This further suggests that the CeA-LC pathway may be 

important only during behaviors that activate the CeA, particularly following exposure to stressful or 

aversive stimuli. 
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4.6 METHODOLOGICAL CONSIDERATIONS 

Combined electrical and pharmacological activation of the CeA strongly suggests that the CeA 

provides an excitatory input to LC neurons. ICV administration of D-Phe-CRH and KYN suggests 

that the CeA activates LC neurons through multiple mechanisms that involve both CRH and 

glutamate. These findings are, in part, consistent with previously reported findings from 

immunohistochemical, anatomical tract-tracing, and electrophysiological studies. This study 

contributes to the current literature by further demonstrating that the CeA provides an excitatory 

input to LC neurons and providing insight into the mechanisms underlying these excitatory 

responses. 

In order to investigate possible mechanisms underlying these excitatory responses, drugs 

were administered into the ventricle rather than by local microinjections into the rostrolateral peri-

coerulear area, where neurons of the CeA form synapses onto LC dendrites. Drug infusions into the 

ventricle have the potential to affect other pathways by which the CeA modulates LC activity. 

Therefore, although strongly suggestive, this study still does not provide conclusive evidence that 

CRH, which is released from neurons of the CeA that innervate dendrites of LC neurons, mediates 

the excitatory responses as a result of CeA activation. It does, however, provide preliminary 

evidence that the CeA modulates the LC via multiple mechanisms, and possibly through an indirect 

pathway, which is evidence that was not previously elucidated from combined immunohistochemical 

and anatomical tract-tracing studies that investigated the CeA-LC pathway. Based on present 

findings, intracoerulear infusions of drugs that attenuate excitatory responses as a result of CeA 

stimulation still would not provide evidence for direct activation of the LC by the CeA. 

The present data, along with immunohistochemical and anatomical tract-tracing studies, 

further reinforce the importance of local inhibitory interneurons within the rostrolateral peri-
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coerulear area, particularly with respect to activation by CRH, in modulating LC activity during CeA 

activation. Furthermore, present findings suggest that the CeA modulates LC neurons through 

inhibition while simultaneously activating LC neurons. Whether this inhibitory response is mediated 

directly by GABA alone or in conjunction with inhibitory neuropeptides released from neurons of 

the CeA innervating LC neurons, or indirectly via inhibitory interneurons, is unclear. Nonetheless, 

this inhibitory period may be critical in modulating LC activity during behaviors that activate the 

CeA-LC pathway. 
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Figure 34. The CeA may modulate LC neurons via multiple mechanisms. 

A) Activation of LC neurons following activation of the CeA appears to be mediated in part by 

CRH likely originating from the direct projection from the CeA. During LC activation, neurons of 

the CeA may provide a simultaneous inhibitory drive to LC neurons via GABA. The CeA may also 

increase LC activity by (B) modulating glutamate receptors localized on dendrites of LC neurons 

within the rostrolateral peri-coerulear area via CRH or (C) modulating glutamatergic LC afferents 

via CRH. D) The CeA may modulate LC neurons via GABAergic interneurons localized within the 

rostrolateral peri-coerulear area. E) Increases in LC activity following activation of the CeA may be 

important for noradrenergic modulation of affective learning, arousal and attention, and responses 

to aversive stimuli. 
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4.7 FUNCTIONAL SIGNIFICANCE OF THE CEA-LC PATHWAY 

Several studies have indicated that the LC is sensitive to stress exposure in that some stressors result 

in the activation of LC neurons (Stanford, 1993; Stanford, 1995; Zigmond et al., 1995). Furthermore, 

several studies have shown that stress-induced activation of the LC is mediated by CRH. The 

present data, along with previous findings, indicate that the CeA provides an excitatory input to LC 

neurons, and that this excitation may be mediated by CRH. These findings suggest that stress-

induced activation of the LC, which is thought to be mediated by CRH, may be a result of activation 

of the CeA-LC pathway during exposure to stressful stimuli, given that the CeA is also activated 

following presentation of stressful stimuli.  

Several studies have also suggested that acute physiological and psychological stressors 

differentially activate distinct nuclei of the amygdala, such as the CeA and medial amygdala (Dayas et 

al., 2001; Dayas et al., 1999; Dayas and Day, 2002). Although both physiological and psychological 

stressors significantly activate the CeA and medial amygdala as measured by Fos expression (Dayas 

et al., 2001), physiological stressors, such as hemorrhage and immune challenge, preferentially 

activate the CeA (Dayas et al., 2001), while psychological stressors, such as swim stress and restraint 

activate the medial amygdala (Dayas et al., 2001). Observations from multiple studies have suggested 

that the CeA mediates LC activation as a result of nitroprusside-induced stress, which can be 

thought of as physiological stressor (Curtis et al., 2002). In animals with electrolytic lesions of the 

CeA, LC neurons failed to activate following nitroprusside-induced stress (Curtis et al., 2002), a 

stressor known to activate LC neurons via CRH (Page et al., 1993; Valentino et al., 1991; Valentino 

and Wehby, 1988) in addition to neurons of the CeA (Curtis et al., 2002). Although these studies 

suggest that amygdala nuclei are preferentially activated following different types of stress exposure, 

this does not completely eliminate any role the CeA may have in modulating activation of LC 
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neurons in response to psychological stressors, since these stressors still significantly activated 

neurons of the CeA in comparison to naïve rats (Dayas et al., 2001). Thus, immobilization stress-

induced increases in extracellular NE release in the prefrontal cortex, which is a correlate of LC 

neuronal activation and is attenuated following administration of CRH antagonists (Emoto et al., 

1993; Nakane et al., 1994; Shimizu et al., 1994; Smagin et al., 1996; Smagin et al., 1997), may be 

modulated by the CeA, given that the CeA is also activated following immobilization stress and 

provides a direct source of CRH to the LC. 

Although the CeA is activated following presentation of both acute physiological and 

psychological stressors, several studies have also demonstrated that the CeA is preferentially 

involved in conditioned fear rather than unconditioned fear (Davis et al., 1994; Davis and Whalen, 

2001; LeDoux, 2000; Walker and Davis, 1997). For example, it has been shown that the CeA 

preferentially mediates expression of conditioned fear, while the bed nucleus of the stria termianalis 

(BNST) preferentially mediates expression of unconditioned fear (Endres et al., 2005; Fendt et al., 

2005; Muller and Fendt, 2006; Walker and Davis, 1997). Following contextual fear conditioning, 

there was a significant increase in Fos expression in neurons of the LC cells as compared to non-

conditioned rats (Ishida et al., 2002). This suggests that activation of the CeA during fear 

conditioning may have contributed to the increased Fos expression in LC neurons during responses 

to conditioned fear (Davis and Whalen, 2001; Ishida et al., 2002)  

It was suggested the spatial arrangement of LC afferents would result in differential 

regulation of LC activity (Herman and Cullinan, 1997). Brainstem afferents, such as the 

paragigantocellularis, prepossitus hypoglossi, and Barrington’s nucleus, that innervate the LC proper 

would convey information of immediate physiological survival value, i.e, the “systemic” stressors, 

while limbic afferents that innervate the dendrites located in the peri-coerulear area would modulate 

LC responses to stressful stimuli (Herman and Cullinan, 1997). Since the CeA provides an excitatory 
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limbic input to the LC by forming synapses onto LC dendrites in the peri-coerulear area (Van 

Bockstaele et al., 1996a; Van Bockstaele et al., 1998), it was hypothesized that the CeA-LC pathway 

may modulate LC responses to footshock, which is mediated by the PGi, a glutamatergic brainstem 

LC afferent contacting somata of the LC. Although footshock, a noxious stimulus, activates not only 

LC neurons, but also CeA neurons in anesthetized rats (Correll et al., 2005), inactivation of the CeA 

does not affect footshock-induced LC activation in anesthetized rats (Ramsooksingh and Grace, 

unpublished findings). This may be due to the characterization of footshock as a noxious stimulus 

rather than an acute stressor and/or use of an anesthetized preparation in examining the role of the 

CeA-LC pathway in modulating LC responses to aversive stimuli. 

Together with the previous findings, the present findings provide support for the CeA not 

only as an excitatory limbic LC afferent, but as an afferent that is positioned to potently modulate 

other stimulatory drive of this nucleus.  This has implications for noradrenergic modulation of LC-

innervated brain regions that are involved in processes regulating affect, learning, and memory, 

particularly during exposure to stressful stimuli and/or fear conditioning (Aston-Jones et al., 1996). 

Studies have described the function of NE as means of gating information (Aston-Jones and Cohen, 

2005; Devilbiss and Waterhouse, 2000), since NE has decreased spontaneous activity, while 

simultaneously either increasing or decreasing evoked activity in the same neurons (Devilbiss and 

Waterhouse, 2000; Foote et al., 1975; Segal and Bloom, 1974, 1976; Waterhouse et al., 1998a; 

Waterhouse et al., 1980; Waterhouse et al., 1984). Increases in LC activity via activation of the CeA-

LC pathway may result in increased NE release throughout the entire neuroaxis, thereby altering the 

signal-to-noise ratio in regions that receive noradrenergic LC innervation and process sensory 

stimuli, such as the BLA, hippocampus, and cortex. Within the BLA and hippocampus, increases in 

NE releases as a result of activation of the CeA-LC pathway may modulate gating of sensory 

information (Waterhouse et al., 1998b) and modulate learning and memory processes involved in 
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fear conditioning (McGaugh et al., 1996). It has been suggested that the LC is critical in maintaining 

arousal and attention (Aston-Jones et al., 2000; Berridge, 2001; Robbins, 1997), thus increased LC 

activation during fear conditioning may result in increased vigilance and signal detection during 

states of fear and exposure to stressful stimuli (Davis and Whalen, 2001).  By biasing the LC either 

towards simultaneous activation via a CRF-mediated facilitation, or to a selective activation via 

GABAergic inhibition, the CeA may be positioned to selectively modulate the extent of this parallel 

activation across LC projection sites. 
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