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PHASE SPACE ANALYSIS AND CLASSIFICATION OF SONAR ECHOES

IN SHALLOW-WATER CHANNELS

Greg Okopal, PhD

University of Pittsburgh, 2009

A primary objective of active sonar systems is to detect, locate, and classify objects, such

as mines, ships, and biologics, based on their sonar backscatter. A shallow-water ocean

channel is a challenging environment in which to classify sonar echoes because interactions

of the sonar signal with the ocean surface and bottom induce frequency-dependent changes

(especially dispersion and damping) in the signal as it propagates, the effects of which typ-

ically grow with range. Accordingly, the observed signal depends not only on the initial

target backscatter, but also the propagation channel and how far the signal has propagated.

These propagation effects can increase the variability of observed target echoes and degrade

classification performance. Furthermore, uncertainty of the exact propagation channel and

random variations within a channel cause classification features extracted from the received

sonar echo to behave as random variables.

With the goal of improving sonar signal classification in shallow-water environments, this

work develops a phase space framework for studying sound propagation in channels with

dispersion and damping. This approach leads to new moment features for classification that

are invariant to dispersion and damping, the utility of which is demonstrated via simulation.

In addition, the accuracy of a previously developed phase space approximation method for

range-independent pulse propagation is analyzed and shown to be greater than the accuracy

of the standard stationary phase approximation for both large and small times/distances.

The phase space approximation is also extended to range dependent propagation. Finally,

the phase space approximation is used to investigate the random nature of moment features
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for classification by calculating the moments of the moment features under uncertain and

random channel assumptions. These moments of the moment features are used to estimate

probability distribution functions for the moment features, and we explore several ways in

which this information may be used to improve sonar classification performance.
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1.0 INTRODUCTION

In active sonar, detection and classification of objects via their backscattered sonar signa-

tures can be complicated by propagation effects such as dispersion and frequency-dependent

attenuation. These effects are especially significant in shallow water channels. It is in the

interest of improved classification that methods be derived to estimate and compensate for

these effects. Because these effects are best characterized in a time-frequency (or position-

wavenumber) space, we develop a phase space propagation model based on the Wigner distri-

bution. We then use this model to develop propagation-invariant features and to characterize

the statistical nature of ordinary moment features in uncertain and randomly-varying chan-

nels. Finally, we consider the range-dependent case by developing a phase space approach

and approximation for propagation in a wedge.

1.1 BACKGROUND

Because sound waves propagate far more efficiently than electromagnetic waves in water,

the primary means for exploring and communicating in undersea environments is sonar

[52]. Modern sonar systems are broadly characterized as either passive or active. Passive

sonar listens for acoustic energy emanating from entities in the underwater environment. In

contrast, active sonar creates a sound in the water via an explosion or a transducer and then

listens for the reflection of the acoustic energy [54]. Characteristics of the echo may be used

to identify objects in the sea because the interaction of acoustic energy with an object is

unique to the object’s size, shape, and material composition.
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One of the primary objectives of a sonar system is to distinguish between sounds emanat-

ing from or reflected by objects of interest (which, in this work, we will generally refer to as

targets) from sounds emanating from or reflected by other non-target objects in the undersea

environment (which we will generally refer to as clutter). This process is called classifica-

tion. The variety of approaches to sonar classification that have been pursued is quite large.

A common method for classification is the matched filter or correlator-receiver approach,

in which an observed signal is correlated with a reference signal, and then the correlation

coefficient is compared to a threshold [53]. Another method involves the construction of a

partitioned feature space from labeled training data. Observed data is classified by comput-

ing the feature vector and choosing the label corresponding to the location of the vector in

the feature space. The latter method is the method with which we are concerned.

Sound waves propagating through an ocean channel may exhibit nonstationarities, that

is, time- or spatially-varying spectral changes. These changes may complicate the task of

classifying echoes, because features computed from these echoes may reflect information

about the channel in addition to the object from which the sound wave reflected. Therefore,

it is logical to account for these nonstationarities in order to improve classification. Two

basic approaches can be taken: one is to use knowledge of the propagation environment to

compensate for channel effects on the observed wave; a second is to extract features from

the wave that are invariant to channel effects. We study both approaches in this work.

In one of the earlier papers on sonar classification, Hoffman [30] studied the problem

in the time domain by comparing the quadrature components of a received echo to the

quadrature components of reference echoes for known targets and computing a likelihood

ratio. Chestnut et al. [9, 10] studied the problem in the frequency domain using feature

vectors derived from filterbanks and autoregressive modeling of the spectra of sonar echoes.

The feature vector of a received echo was then compared to the feature vector of known

targets via a distance metric.

Classification techniques in the joint time-frequency domain have also been explored.

Altes [1] proposed a method for signal detection (or classification) using the spectrogram. In

general, the method involves computing a statistic that is a function of the spectrograms of a

reference signal and the received signal and comparing that statistic to a threshold. In cases
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where some parameters of the signal to be detected are random (e.g., delay and Doppler

shift), the statistic incorporates probability distributions for each of these parameters. In

the case of a known signal propagating in a noisy channel, the statistic is computed by

correlating the spectrogram of the received signal with an ensemble average spectrogram of

the output of the channel when the known signal is applied as input. In order to account

for channel effects with this method, the scattering function of the channel must be known.

To account for bottom reverberation with no specific a priori knowledge of the channel,

Chevret [11] proposed using a time-frequency filtering method. The Wigner distribution

of the free-field response of targets of interest is used to highlight areas of interest in the

time-frequency plane. These areas correspond to the regions that will be passed by the

filter. To detect or classify signals, the filter representing each target of interest slides along

the received signal in the time dimension. The output of the filter is then compared to the

reference free-field response using an error measure. The minimum error indicates detection

of the target corresponding to that filter. The possible misclassification of reverberation

echoes is handled by a signal-to-reverberation ratio; possible detections of signal components

whose amplitudes are less than this ratio are ignored.

1.2 SUMMARY OF THIS WORK

An approximate propagation model based on the Wigner distribution has recently been given

[40] that is applicable to range-independent shallow water channels. This model quantifies in

time-frequency space the changes induced in a propagating wave by dispersion and damping,

two frequency-dependent propagation effects that are characterized by the real and imagi-

nary parts of the dispersion relation, respectively. Time-frequency distributions such as the

Wigner distribution capture important characteristics of an evolving wave that may not be

obvious in the time series or spectrum. Statistical moments computed from these distribu-

tions quantify these characteristics and, therefore, may be used as features for classification.

It is important to understand how these moments can change in a deterministic propaga-

tion channel. Using the global and local moments of a propagating wave, we quantify the
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impact of dispersion and damping on the Wigner distribution and evaluate the accuracy

of the Wigner approximation under these conditions, and we also show that the Wigner

approximation is more accurate at short propagation distances than the stationary phase

approximation. We show that the spectral moments of the Wigner approximation are exact

for arbitrary dispersion and damping. We also show that the first order temporal moment is

exact for arbitrary dispersion and damping and that the second order temporal moment is

exact for arbitrary dispersion and damping that is linear with frequency. Temporal moments

higher than second order are not exact.

Using the knowledge of how the moments change due to dispersion and damping, we

develop a feature extraction process that is invariant to dispersion and certain important

forms of damping. We demonstrate the effectiveness of this process via simulation and

comparison to ordinary moments.

The effects of dispersion and damping are dependent upon various parameters of the

environment such as attenuation coefficients, sound speed profiles, channel depth, and range

of propagation. Uncertainty and randomness in these parameters leads to uncertainty and

randomness in the evolution of the wave as it propagates, which finally leads to increased

variability in features computed from the wave. We develop an analytical framework for

estimating the probability distribution functions (pdfs) of classification features using esti-

mates of the uncertainty or randomness of the environmental parameters by calculating the

moments of the features.

We make a distinction between an uncertain channel and a randomly-varying channel.

Uncertainty in propagation channels may cause variability in classification features. Prop-

agation effects such as dispersion and damping cause a wave to change as it propagates.

As the wave changes, the values of the features computed from that wave change as well.

The magnitude and nature of the changes are dependent upon the specific properties of the

channel, which are represented in the channel model by various parameters such as the sound

speed profile and the dispersion relation. The degree to which those parameters change over

the course of training directly affects the pdfs computed for the features used by the clas-

sifier, and changes in the channel parameters during application of a classifier will directly

affect the classification performance.
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In contrast to the uncertain channel model, we also investigate the effects of randomly-

varying channels. The ocean environment is complex and fluctuating, and the random

variations that occur in an ocean channel also induce variability in moment features. The

primary cause of ocean channel variability is internal waves, but other phenomena such as

ocean currents and planetary waves (large-scale water waves caused by the rotation of the

Earth) also induce variability. Using accepted models of random ocean acoustic propagation

[18], we may extend the moments of moments approach derived for uncertain channels to

randomly-varying channels. The expressions for the moments of the moment features are

found in terms of the moments of the signal in a corresponding deterministic channel and the

two-frequency mutual coherence function. The two-frequency mutual coherence function is

a commonly used measure to characterize fluctuating media, and its form is known and has

been experimentally verified for ocean channels [2, 18]. We also show how the two-frequency

mutual coherence function is related to the Wigner distribution by a Fourier transform.

The moments of moments approach may be used to provide guidance toward designing

feature sets. The characteristic function of a moment feature may be calculated via the

moments of the moment features, and the inverse Fourier transform of the characteristic

function is one estimate of the pdf of the moment feature. Another more general estimate

is provided by the maximum entropy pdf that satisfies the moments. Generalizing this to

higher dimensions and using joint moments, we may calculate the joint pdf and covariance

of a set (two or more) of moment features. Using the pdfs and covariance, we may evaluate

potential feature sets for their accuracy and redundancy. The accuracy of a feature is a

measure of how well the feature discriminates between the target and clutter classes, and

the redundancy of a feature is a measure of the discriminability gained by adding a certain

feature to a feature set. The amount of training data necessary to properly train a classifier

grows exponentially with the dimensionality of the feature set, and typically, training data is

not available in abundance. Therefore, it is important to construct feature sets with minimal

redundancy. Using these metrics to evaluate potential feature sets, we can build efficient,

environmentally robust feature sets.

For many problems, the range-independent parallel plate waveguide is a sufficient ap-

proximation to shallow-water ocean channels. However, in coastal regions, the ocean often
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has a sloping bottom, and thus a better approximation may be obtained by using a wedge

shape as a model. The solution to this problem has been previously obtained by several

authors using integral transforms and other methods [6, 4, 33]; however, it is also possible to

obtain a solution that emphasizes propagation effects such as dispersion and damping using

separation of variables. Using a transformation to polar coordinates and the technique of

separation of variables, we derive the exact solution for the acoustic field in a two-dimensional

wedge due to a point source at an arbitrary location. We then use this solution to derive

the Wigner approximation for sloping bottom shallow water channels and use numerical

simulation to compare the Wigner approximation to the exact solution.

Finally, we conclude this work with a look at future areas of research.
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2.0 WAVE PROPAGATION

The acoustic wave equation may be formulated in terms of pressure, velocity, or displacement

and in any coordinate system. The general form is derived from basic equations of motion

and is expressed as [23]

∇2p =
1

c2
∂2p

∂t2
(2.1)

where Φ is the wave, c is the speed of sound in the medium, and t is time. The Laplacian,

∇2 is defined as

∇2 =
∂2

∂x2
+

∂2

∂z2
(2.2)

in two-dimensional Cartesian coordinates where the x coordinate is range and the z coordi-

nate is depth. The wave equation is, therefore,

∂2p

∂x2
+
∂2p

∂z2
=

1

c2
∂2p

∂t2
(2.3)

The nature of this partial differential equation suggests a solution of the form

p (x, z, ω, t) = U(x, z, ω)ejωt (2.4)

where ω is radial frequency. Substituting this form of the solution into Eq. (2.3) and

simplifying, we arrive at the Helmholtz equation:

∂2U(x, z, ω)

∂x2
+
∂2U(x, z, ω)

∂z2
+ k2U(x, z, ω) = 0 (2.5)

where k = ω
c

is the acoustic wavenumber. We seek a solution of the acoustic field of the form

U(x, z, ω) =
∞
∑

m=1

Φm(x)Ψm(z) (2.6)

7



where Ψm(z) is one of a sequence of orthogonal functions called eigenfunctions or modes.

We will initially focus on the mth mode. The Helmholtz equation for the mth mode is given

by

Ψm(z)
∂2Φm(x)

∂x2
+ Φm(x)

∂2Ψm(z)

∂z2
+ k2

mΦm(x)Ψm(z) = 0 (2.7)

where km is the wavenumber in the direction of propagation for the mth mode, and may be

written in terms of the x and z components as

k2
m = k2

xm + k2
zm (2.8)

Eq. (2.7) may be written as

1

Φm(x)

∂2Φm(x)

∂x2
+

1

Ψm(z)

[

∂2Ψm(z)

∂z2
+ k2

mΨm(z)

]

= 0 (2.9)

and it is clear that the left-hand side of the equation is the sum of an x-dependent differential

term and a z-dependent differential term. Therefore, to satisfy the right-hand side, the terms

must be equal to the positive and negative values of a constant, k2
xm, which is the eigenvalue

corresponding to Ψm(z) [32]. We then obtain the following two partial differential equations:

1

Φm(x)

∂2Φm(x)

∂x2
= −k2

xm (2.10)

1

Ψm(z)

[

∂2Ψm(z)

∂z2
+ k2

mΨm(z)

]

= k2
xm (2.11)

Simplifying, we obtain,

∂2Φ(x)

∂x2
+ k2

xmΦ(x) = 0 (2.12)

∂2Ψ(z)

∂z2
+ k2

zmΨ(z) = 0 (2.13)

The general solutions to these second-order homogenous equations are given by

Φ(x) = A1 cos(kxmx) + A2 sin(kxmx) (2.14)

Ψ(z) = B1 cos(kzmz) +B2 sin(kzmz) (2.15)

where the constants (A1, A2, B1, B2) are determined by the boundary conditions.
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The full solution for the field at a given frequency is given by Eq. (2.6). To obtain a

time domain solution for pulse propagation, we use Fourier synthesis. The impulse response

at x is found by integrating the single frequency solution over all frequencies,

h(x, z, t) =
1√
2π

∫

U(x, z, ω)e−jωtdω (2.16)

and the time domain signal due to an arbitrary input pulse is given by

s(x, z, t) =
1√
2π

∫

F (0, ω)U(x, z, ω)e−jωtdω (2.17)

where F (0, ω) is the spectrum of the initial pulse. Substituting the expression from Eq. (2.6)

and changing the order of integration and summation, we obtain

s(x, z, t) =
1√
2π

∞
∑

m

Ψm(z)

∫

F (0, ω)Φm(x)e−jωtdω (2.18)

Assuming no specific boundary conditions for the solution given in Eq. (2.14), we are free

to choose the constants to be A1 = 1 and A2 = j, giving

Φ(x) = ejkxmx (2.19)

One can easily verify that this is a solution by substituting Eq. (2.19) in to Eq. (2.14). We

then have that a wave at x and z is given in the time domain by

s(x, z, t) =
1√
2π

∞
∑

m

Ψm(z)

∫

F (0, ω)ejkxmxe−jωtdω (2.20)

The spectrum of the wave at (x, z) is given by

S(x, z, ω) =

∞
∑

m

Ψm(z)F (0, ω)ejkxm(ω)x (2.21)

where we have explicitly denoted the frequency dependence of the dispersion relation with

the notation kxm(ω). For free space, k = ω
c
, whereas, in bounded media, k is generally a

nonlinear function of ω.

In the next section, we will develop the phase space solution of the propagating wave

using the Wigner distribution, which illuminates the propagation effects of dispersion and

damping.
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2.1 WIGNER DISTRIBUTION

The Wigner distribution of the wave at (x, z) is given by [14] 1

W (t, ω; x, z) =
1

2π

∫

s
(

x, z, t+
τ

2

)

s∗
(

x, z, t− τ

2

)

ejωτdτ (2.22)

or equivalently in terms of the spectrum as [14]

W (t, ω; x, z) =
1

2π

∫

S∗

(

x, z, ω +
θ

2

)

S

(

x, z, ω +
θ

2

)

ejtθdθ (2.23)

Plugging in the expression from Eq. (2.21), we obtain

W (t, ω; x, z) =
1

2π

∞
∑

m1=1

∞
∑

m2=1

Ψm1(z)Ψm2(z)

∫

F ∗

(

0, ω +
θ

2

)

F

(

0, ω − θ

2

)

e−jk
∗

xm1(ω+ θ
2)xejkxm2(ω−

θ
2)xejtθdθ (2.24)

which represents the Wigner distribution for the entire acoustic field (all modes). The Wigner

distribution of the initial pulse is given by

Wu(t, ω; 0) =
1

2π

∫

F ∗

(

0, ω +
θ

2

)

F

(

0, ω +
θ

2

)

ejtθdθ (2.25)

and, using Fourier relations, we have that

F ∗

(

0, ω +
θ

2

)

F

(

0, ω +
θ

2

)

=
1

2π

∫

Wu(t, ω; 0)e−jtθdt (2.26)

The expression in Eq. (2.26) may be used to simplify Eq. (2.24),

W (t, ω; x, z) =
1

2π

∞
∑

m1=1

∞
∑

m2=1

Ψm1(z)Ψm2(z)

∫ ∫

Wu(t
′, ω; 0) (2.27)

ejx[kxm1(ω−
θ
2)−k

∗

xm2(ω+ θ
2)]ejθ(t−t

′)dθdt′

and, therefore, we have that

W (t, ω; x, z) =
1

2π

∞
∑

m1=1

∞
∑

m2=1

Ψm1(z)Ψm2(z)Wu(t, ω; 0) ∗tWh;m1,m2(t, ω; x) (2.28)

1The formula given in Eq. (2.22) differs slightly from the usual definition of the Wigner distribution as
given in [14]; here, we prefer to define the Wigner distribution with a positive exponent in order to make
the expression for the Wigner approximation more intuitive. We use the definition in Eq. (2.22) throughout
this work.
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where ∗t denotes time domain convolution and Wh;m1,m2(t, ω; x) is the cross-Wigner distri-

bution of the channel for modes m1 and m2, given by

Wh;m1,m2(t, ω; x) =
1

2π

∫

ejx[kxm1(ω−
θ
2)−k∗xm2(ω+ θ

2)]ejθtdθ (2.29)

We may write the dispersion relation in terms of its real and imaginary parts as

kxm(ω) = kRxm(ω) + jkIxm(ω) (2.30)

and substitute this into Eq. (2.29), giving

Wh;m1,m2(t, ω; x) =
1

2π

∫

e
−x[kIxm1(ω−

θ
2)+k∗

Ixm2
(ω+ θ

2)]ejx[kRxm1(ω−
θ
2)−k∗Rxm2

(ω+ θ
2)]ejθtdθ (2.31)

Expanding the arguments of the exponentials in a Taylor series and keeping only lower-

ordered terms, we have

kIxm1

(

ω − θ

2

)

+ kIxm2

(

ω +
θ

2

)

≈ kIxm1(ω) + kIxm2(ω) (2.32)

−θ
2

(

k′Ixm1
(ω) − k′Ixm1

(ω)
)

(2.33)

kRxm1

(

ω − θ

2

)

− kRxm2

(

ω +
θ

2

)

≈ kRxm1(ω) − kRxm2(ω) (2.34)

−θ
2

(

k′Rxm1
(ω) + k′Rxm1

(ω)
)

(2.35)

Plugging this result into Eq. (2.31) and evaluating the integral over θ gives an approximate

solution for the cross-Wigner distribution of the channel:

Wh;m1,m2(t, ω; x) ≈ e−x[kIxm1
(ω)+kIxm2

(ω)] (2.36)

δ
(

t+ (kRxm1(ω) − kRxm2(ω)) − x

2

(

k′Rxm1
(ω) + k′Rxm1

(ω)
)

)

For the special case of m2 = m1, Eq. (2.36) becomes

Wh;m1,m1(t, ω; x) ≈ e−2xkIxm1
(ω)δ

(

t− k′Rxm1
(ω)x

)

(2.37)

In the next section, we will use this expression to develop the Wigner approximation for a

single mode.
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2.2 SINGLE MODE

As is common in wave propagation, we study one mode at a time. Given an initial wave at

x = 0,

u (0, t) =
1√
2π

∫

F (0, ω) e−jωtdω (2.38)

where F (0, ω) is the spectrum of u (0, t), the wave for mode m at some other point x is given

by

um (x, t) =
1√
2π

∫

Fm (x, ω) e−jωtdω (2.39)

=
1√
2π

∫

F (0, ω) ej(km(ω)x−ωt)dω (2.40)

where km (ω) is the dispersion relation for the mth mode (km (ω) = ±ω
c

for no dispersion).

Therefore,

Fm (x, ω) = F (0, ω) ejkm(ω)x (2.41)

This is analogous to a linear, time-invariant systems approach with the impulse response of

the channel given by

hm (t) =
1√
2π

∫

ej(km(ω)x−ωt)dω (2.42)

It will also be useful to write Fm(x, ω) in terms of amplitude Bm(x, ω) and phase ψm(x, ω),

which further highlights the effects of dispersion and damping. Let

Fm(x, ω) = Bm(x, ω)ejψm(x,ω) (2.43)

where

ψm(x, ω) = argFm(x, ω) (2.44)

and

Bm(x, ω) = Fm(x, ω)e−jψm(x,ω) (2.45)

Accordingly, it follows that the amplitude and phase are

Bm(x, ω) = B(0, ω)e−kIm(ω)x (2.46)

ψm(x, ω) = ψ(0, ω) + kRm(ω)x (2.47)
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2.2.1 Wigner Approximation

The Wigner distribution of the wave of a single mode at x is given by [14]

Wum (t, ω; x) =
1

2π

∫

um

(

x, t+
τ

2

)

u∗m

(

x, t− τ

2

)

ejωτdτ (2.48)

or, equivalently in the frequency domain as [14]

Wum (t, ω; x) =
1

2π

∫

F ∗
m

(

x, ω +
θ

2

)

Fm

(

x, ω − θ

2

)

ejθtdθ (2.49)

Using the expression from Eq. (2.41), we have that

Wum (t, ω; x) =
1

2π

∫

F ∗

(

0, ω +
θ

2

)

e−jkm(ω+ θ
2)xF

(

0, ω − θ

2

)

ejkm(ω− θ
2)xejθtdθ (2.50)

The relationship reduces to a convolution in time between the Wigner distribution of the

initial wave and the Wigner distribution of the impulse response,

Wum (t, ω; x) =

∫

Whm (t− τ, ω; x)Wu (τ, ω; 0) dτ (2.51)

By expanding the exponent of the transfer function in a Taylor series and keeping only the

first order terms (as in the previous section), we obtain the Wigner approximation of the

impulse response [39, 40, 37], as given in Eq. (2.37) for a single mode:

Whm (t, ω; x) ≈ e−2kIm(ω)xδ (t− k′Rm (ω)x) (2.52)

Substituting into Eq. (2.51), we find that the Wigner approximation of the wave for a single

mode m at x is given by

Wum (t, ω; x) ≈ e−2kIm(ω)xW (t− k′Rm (ω)x, ω, 0) (2.53)

This approximation has motivated the design of classification features that are invariant to

dispersion and attenuation. These features will be covered in Chapter 4. The approximation

will also be used to find approximate analytical expressions for the moments of moment

features in Chapter 5.
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3.0 MOMENTS OF THE WIGNER DISTRIBUTION

In this chapter we analytically quantify the impact of dispersion and damping on the global

and local moments of a propagating wave, and we also evaluate the accuracy of the Wigner

approximation under these conditions. We show that the spectral moments of the Wigner

approximation are exact for arbitrary dispersion and damping. The first order temporal

moment is exact for arbitrary dispersion and damping, and the second order temporal mo-

ment is exact for arbitrary dispersion and damping that is linear with frequency. Temporal

moments higher than second order are not exact, and we quantify the error terms up to the

third order moment.

We give the formulas for the global temporal and spectral moments of the exact Wigner

distribution and of the approximation and evaluate these for low-order temporal moments.

We compare the moments of the Wigner approximation to moments calculated from the

stationary phase approximation (method of steepest descent) and show that the Wigner

moments are more accurate for small propagation distances. At large propagation distances,

the two approximations approach the same result. We also give the local temporal moments

of the exact Wigner and approximation, with a few examples of the exact and approximate

moment values.

3.1 GLOBAL MOMENTS

Global moments quantify characteristics of a wave such as arrival time, duration, and band-

width. They are called “global” because they are calculated over the entire wave (or its

spectrum) for all time and all frequencies (in contrast to the “local” moments described in
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the next section, which are calculated from the time-frequency representation for specific

frequencies). Moments have been used as features for automatic classification of objects.

Our aim in this section is to examine the impact of propagation effects on the moments,

which could have a deleterious impact on the utility of such features for classification, since

the moments from two identical objects could differ simply because of different propagation

effects. To accomplish our aim, we calculate the moments using the Wigner approximation,

and compare these results with the exact results for low-order moments.

3.1.1 Temporal Moments

The global temporal moments are defined as [14]

〈tn〉x =

∫

tn |u(x, t)|2 dt (3.1)

Because the Wigner distribution satisfies the marginals, the temporal moments are equiva-

lently given by

〈tn〉x =

∫ ∫

tnW (x, t, ω)dωdt (3.2)

Using Eq. (2.27), these may be written in terms of the Wigner distribution at x = 0 as [16]

〈tn〉x = jn
∫ ∫

W (0, t, ω)

[

∂n

∂θn
e−x[kI(ω− θ

2)−kI(ω+ θ
2)]e−jθt

′

e−jx[k
∗(ω+ θ

2)−k(ω−
θ
2)]
]

dωdt (3.3)

The above expression is exact, and this form facilitates easy calculation of the moments of

the Wigner distribution at an arbitrary position x in terms of the moments of the initial

Wigner distribution (at x = 0).

We may also define global central temporal moments as

µnx = 〈(t− 〈t〉x)n〉x (3.4)
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3.1.1.1 Approximate Temporal Moments Global temporal moments may also be

computed from the Wigner approximation. Using Eq. (3.2) and inserting the Wigner ap-

proximation, we obtain

〈tn〉wax =

∫ ∫

tnWa(x, t, ω)dωdt (3.5)

=

∫ ∫

tne−2kI(ω)xW (0, t− k′R(ω)x, ω)dωdt (3.6)

=

∫ ∫

(t+ k′R(ω)x)
n
e−2kI (ω)xW (0, t, ω)dωdt (3.7)

3.1.1.2 Stationary Phase Approximation The stationary phase approximation is

commonly used in acoustics to approximate integrals of the form of the integral in Eq.

(2.40). The general form of the integral may be written as

u (x, t) =
1√
2π

∫

F (0, ω) ejφ(ω)dω (3.8)

where φ(ω) = (k (ω)x− ωt) is the phase term and the dispersion relation is complex. The

exponential term is highly oscillatory and the positive and negative contributions mostly

cancel each other out; therefore, the majority of the contributions to the integral come from

the points where the phase is approximately stationary, denoted ωs:

φ′(ωs) = 0 (3.9)

Because we are investigating the moments of a wave propagating in a channel with a complex

dispersion relation, we use the complex generalization of the stationary phase approximation

known as the method of steepest descent. Evaluating Eq. (3.9) gives

k′R(ωs) =
t

x
(3.10)

where we have the real part of the dispersion relation because, for the method of steepest

descent to be valid, the derivative of the imaginary part of the complex phase φ must be

zero at the stationary point [5]. The approximate solution to the integral in Eq. (3.8) is

given by the method of steepest descent to be [5]

u (x, t) ≈ F (0, ωs)
√

k′′R(ωs)x
ej(k(ωs)x−ωst) (3.11)
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and the magnitude-squared signal is given by

|u (x, t)|2 ≈ |F (0, ωs)|2
|k′′R(ωs)x|

e−2kI(ωs)x (3.12)

To calculate the global temporal moments using this approximate result, we use the

moment formulation given in Eq. (3.1) with the result given in Eq. (3.12), giving,

〈tn〉spx =

∫

tn
|F (0, ωs)|2
|k′′R(ωs)x|

e−2kI(ωs)xdt (3.13)

Using Eq. (3.10), we have

t = k′R(ωs)x (3.14)

dt = k′′R(ωs)xdωs (3.15)

Therefore, using a change of variables in Eq. (3.13) and rearranging terms, we get

〈tn〉spx =

∫

(k′R(ωs)x)
n
e−2kI (ωs)x |F (0, ωs)|2 dωs (3.16)

= 〈(k′R(ω))
n
dx(ω)〉0xn (3.17)

where, to simplify the notation of the moment values, we have defined

dx(ω) = e−2kI(ω)x (3.18)

In Table 1 we give the expressions for the first three global temporal moments of the

exact solution and the Wigner approximation. The notation 〈·〉0 indicates that the quantity

inside the brackets is averaged over the Wigner distribution of the initial wave (at x = 0). In

general, for arbitrary function g(t, ω), the bracket notation indicates the following operation:

〈g(t, ω)〉x =

∫ ∫

g(t, ω)W (x, t, ω)dtdω (3.19)

Note, first, how the moments are highly dependent on the propagation environment – i.e.,

on the dispersion and damping. Also, we observe that the first moment of the approximation

is exact, as is the second moment when there is no damping (it has been argued that this

is one reason, among others, why the Wigner approximation is a good approximation for

dispersive pulse propagation [16, 40]). The second moment of the approximation is also

exact for damping that is linear with frequency (kI(ω) ∼ ω).
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Table 1: Global moments

Quantity Exact Wigner Approx. Stat. Phase

〈t〉x 〈tdx(ω)〉0 + 〈k′R(ω)dx(ω)〉0x exact 〈(k′R(ω)) dx(ω)〉0x

〈t2〉x 〈t2dx(ω)〉0 + 2〈tk′R(ω)dx(ω)〉0x exact + 1
2
〈k′′I (ω)dx(ω)〉0x 〈(k′R(ω))2

dx(ω)〉0x2

+〈(k′R(ω))2 dx(ω)〉0x2

−1
2
〈k′′I (ω)dx(ω)〉0x

〈t3〉x 〈t3dx(ω)〉0 + 3〈t2k′R(ω)dx(ω)〉0x exact +3
2
〈tk′′I (ω)dx(ω)〉0x3 〈(k′R(ω))3

dx(ω)〉0x3

+3〈t (k′R(ω))2 dx(ω)〉0x2 +3
2
〈k′′I (ω)k′R(ω)dx(ω)〉0x2

+〈(k′R(ω))3 dx(ω)〉0x3 +1
4
〈k′′′R (ω)dx(ω)〉0x

−3
2
〈tk′′I (ω)dx(ω)〉0x

−3
2
〈k′′I (ω)k′R(ω)dx(ω)〉0x2

−1
4
〈k′′′R (ω)dx(ω)〉0x
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The moments calculated from the stationary phase approximation are the same as the

approximate Wigner moments for large values of x because the stationary phase result only

captures the highest ordered term. Hence, for large x, the two approximations approach the

same result. For small values of x, the stationary phase approximation is not applicable.

3.1.2 Spectral Moments

Because the Wigner distribution satisfies the marginals, we have that the exact global spec-

tral moments are given by

〈ωn〉x =

∫ ∫

ωnW (x, t, ω)dtdω (3.20)

=

∫

ωn |F (x, ω)|2 dω (3.21)

=

∫

ωne−2kI(ω)x |F (0, ω)|2 dω = 〈ωndx(ω)〉0 (3.22)

where we have made use of Eq. (2.41). Note that the spectral moments in general depend

on propagation distance x. However, if there is dispersion but no damping (dx(ω) = 1),

then the spectral moments at x are identical to those of the original wave for each mode:

〈ωn〉x = 〈ωn〉0.
For the Wigner approximation, the analogous calculation gives

〈ωn〉wax =

∫ ∫

ωnWa(x, t, ω)dtdω (3.23)

=

∫ ∫

ωne−2kI(ω)xW (0, t− k′R(ω)x, ω)dtdω (3.24)

=

∫

ωne−2kI(ω)x |F (0, ω)|2 dω = 〈ωndx(ω)〉0 (3.25)

which we observe is in fact exact: the Wigner approximation gives the exact spectral moments

(because it gives the correct frequency marginal).

We may also calculate moments from the spectrum of the stationary phase/steepest

descent approximation. The approximate spectrum is given by the Fourier transform of Eq.

(3.11),

F (x, ω) ≈ 1√
2π

∫

F (0, ωs)
√

k′′R(ωs)x
ej(k(ωs)x−ωst)ejωtdt (3.26)
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Therefore, using a change of variables defined by Eqs. (3.14) and (3.15) in Eq. (3.26), the

approximate spectrum is given by

F (x, ω) ≈ 1√
2π

∫

√

k′′R(ωs)xF (0, ωs)e
jk(ωs)xejk

′

R
(ωs)x[ω−ωs]dωs (3.27)

In general, this spectrum is not equivalent to the exact spectrum, which is given by

Fm (x, ω) = F (0, ω) ejkm(ω)x (3.28)

and therefore we may conclude that the spectral moments of the stationary phase/steepest

descent approximation are not exact.

3.2 EXACT AND APPROXIMATE LOCAL TEMPORAL MOMENTS

The local temporal moments quantify the temporal shape of the Wigner distribution at

individual frequencies. The local temporal moments of the wave at x are defined as

〈tn〉ω,x =
1

∫

W (x, t, ω)dt

∫

tnW (x, t, ω)dt (3.29)

Note that this definition of the local moments includes a normalization by
∫

W (x, t, ω)dt =

|F (x, ω)|2. With this normalization, the local moments are related to the global moments

by

〈tn〉x =

∫

〈tn〉ω,x |F (x, ω)|2 dω (3.30)

Following Eq. (3.3), we may write the local moments as

〈tn〉ω,x =
jn

e−2kI (ω)x |F (0, ω)|2
∫

W (0, t, ω) (3.31)

[

∂n

∂θn
e−x[kI(ω− θ

2)−kI(ω+ θ
2)]e−jθt

′

e−jx[k
∗(ω+ θ

2)−k(ω−
θ
2)]
]

dt

The local central temporal moments are defined as

µnω,x = 〈(t− 〈t〉ω,x)n〉ω,x (3.32)
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3.2.1 Approximate Local Temporal Moments

Using the Wigner approximation in place of the exact Wigner distribution, we obtain ap-

proximate local temporal moments by

〈tn〉waω,x =
1

e−2kI(ω)x |F (0, ω)|2
∫

tne−2kI(ω)xW (0, t− k′R(ω)x, ω)dt (3.33)

=
1

|F (0, ω)|2
∫

(t+ k′R(ω))
n
W (0, t, ω)dt (3.34)

Note that the normalization cancels out the damping term in the approximate moments.

In Table 2 we give the formulations for the first few local temporal moments. We also

give the formulation for the second-order local central temporal moment, a moment that

quantifies the duration of the wave at each frequency. As in the case of the global moments,

we see that the first-order local moment of the Wigner approximation is exact, and higher-

order moments of the Wigner approximation differ from the exact result by moments of

higher derivatives of the real and imaginary parts of the dispersion relation.

3.3 MOMENTS AS CLASSIFICATION FEATURES

Propagation effects such as dispersion and damping may degrade sonar classification perfor-

mance by increasing the variability of features extracted from a received waveform. Indeed,

the results given in this chapter show that in general the temporal and spectral moments

change as the wave propagates when there is dispersion and damping (as indicated by the

x-dependence of the values given in Tables 1 and 2).

The temporal and spectral moments, which are often used for classification, are generally

not invariant to arbitrary forms of both dispersion and damping. However, if there is no

damping (kI(ω) = 0, resulting in a purely real dispersion relation), then the global frequency

moments are dispersion-invariant:

〈ωn〉x = 〈ωn〉0 (3.35)
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Table 2: Local moments

Quantity Exact Wigner Approx.

〈t〉ω,x 〈t〉ω,0 + k′R(ω)x exact

〈t2〉ω,x 〈t2〉ω,0 + 2〈t〉ω,0k′R(ω)x exact + 1
2
k′′I (ω)x

+ (k′R(ω))2 x2 − 1
2
k′′I (ω)x

〈t3〉ω,x 〈t3〉ω,0 + 3〈t2〉ω,0k′R(ω)x+ 3〈t〉ω,0 (k′R(ω))2 x2 exact +3
2
〈t〉ω,0k′′I (ω)x

+ (k′R(ω))3 x3 − 3
2
〈t〉ω,0k′′I (ω)x +3

2
k′′I (ω)k′R(ω)x2

−3
2
k′′I (ω)k′R(ω)x2 − 1

4
k′′′R (ω)x +1

4
k′′′R (ω)x

µ2
ω,x µ2

ω,0 − 1
2
k′′I (ω)x exact +1

2
k′′I (ω)x
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Also, for the case of no damping or damping that is linear with frequency, the second-order

local central temporal moment (local duration) is given by

µ2
ω,x = µ2

ω,0 (3.36)

and is, therefore, dispersion-invariant.

In previous papers, we have given formulations and algorithms for extracting moment-

like classification features that are invariant to the effects of dispersion [15, 38, 44], and in

the next chapter we derive moment-like features that are invariant to dispersion and certain

forms of damping [42]. We also show through simulation that propagation-invariant features

may lead to improved classification results.
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4.0 PROPAGATION INVARIANT CLASSIFICATION

To improve classification in environments with certain propagation effects, features that

are invariant to those effects may be extracted from the sonar echo. Features invariant to

dispersion have previously been derived [43, 44]. We build on that result to develop features

that are invariant to dispersion and certain important forms of damping.

4.1 MOMENTS INVARIANT TO DISPERSION

Ordinary moments of a wave, such as its duration, change with propagation in a dispersive

environment. It is possible, however, to obtain temporal moment-like features that are

invariant to dispersion; this has been done by Okopal et al., who defined the “dispersion

invariant moments” by [44],

An(x) =

∫

F ∗ (x, ω)

(

j
∂

∂ω
− 〈t〉x,ω

)n

F (x, ω) dω (4.1)

where 〈t〉x,ω denotes the “local mean time” and is equal to the group delay of the wave,

〈t〉x,ω = −ψ′(x, ω). These moments are similar to ordinary central moments, with the

important exception that, instead of centering about the mean time 〈t〉x, they are centered

about the local mean time (i.e., the group delay). This centering about the local mean time

has the beneficial effect of removing the effects of dispersion; in particular [44],

An(x) = An(0) (4.2)

for purely real dispersion relation (no damping).
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While these moments are invariant to dispersion, they are not invariant to damping

(frequency-depedendent attenuation). To see the effect of damping, we consider the example

in Okopal et al. [44] of distinguishing between two different sized cylinders in a Pekeris

waveguide (however, in the following example, the maximum distance has been increased

to 15 kilometers to highlight the effect of damping). To introduce damping, we make the

dispersion relation complex, per Eq. (2.30), where kR(ω) is the dispersion relation of the 25

m deep Pekeris waveguide used in previous simulations (reported in [44]), and the damping

is given by kI(ω) = βω, where the constant parameter β determines the level of damping.

In Fig. 1, we show the performance of the 2nd order DIM in a dispersive channel with no

attenuation (β = 0, solid black line). Additionally, we give the performance of the same

feature for β = 10−8 m−1Hz−1 (dashed blue line), which corresponds to the average level

of damping seen in sea water for frequencies in the range considered here [8]. Clearly, the
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Figure 1: Comparison of DIMs performance for β = 0 (no damping, solid black

line) and β = 10−8 m−1Hz−1 (dashed blue line).

performance of the DIMs feature is reduced by the effect of damping. Accordingly, these

moments, like spectral moments, can serve as propagation-invariant features for classification

of waves propagating in dispersive channels. However, when there is damping in addition

to dispersion, these time-domain moment-like features will in fact change with propagation

distance, as will the spectral moments 〈ωn〉x. In the next section, we consider features that

are invariant to both frequency-dependent attenuation and dispersion.
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4.2 MOMENTS INVARIANT TO DISPERSION AND DAMPING

Our aim is to develop a signal processing approach that will allow extraction of features that

preserve the dispersion invariance of the DIMs, as well as achieve invariance to damping. To

meet this aim, first note that the DIMs of Eq. (4.1) can be equivalently computed by [44],

An (x) =
1

2π

∫ ∫

tn |F (x, ω)| e−jωtdωdt (4.3)

Thus, dispersion invariance is obtained by centering about the local mean time (or group

delay), as in Eq. (4.1), or, equivalently, by computing features from the spectral magnitude

(or its inverse Fourier transform) as in Eq. (4.3). Thus, the first step of the processing chain

to achieve invariance to dispersion and damping is analogous to that of the DIMs processing;

namely, we compute the magnitude-Fourier transform of the wave, to obtain the spectral

amplitude, given by Eq. (2.46).

In order to achieve invariance to damping, we wish to process the spectral amplitude

in order to separate the propagation effects of damping from the spectral properties of

the initial backscatter embodied in Bm(0, ω). Accomplishing this aim for arbitrary (and

unknown) damping kIm(ω) is a daunting task. However, for two physically important forms

of damping, a general processing algorithm is developed to achieve the desired invariance.

The first form we consider is where the damping term is linear with frequency, and the

second is where the damping term is proportional to log-frequency.

4.2.1 Exponential Attenuation

When the damping is linear, kI(ω) = βω, the spectral amplitude exhibits exponential atten-

uation,

B (x, ω) = B (0, ω) e−βωx (4.4)

Equivalently, the attenuation in dB is linear with frequency, which corresponds to physically

relevant situations, including attenuation by seawater over a wide range of frequencies [8].
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Features that are invariant to propagation effects are characterized by a lack of a de-

pendence upon x. In order to obtain such features, we take the derivative of the natural

logarithm of the spectral magnitude of the received signal to obtain

Z(x, ω) =
∂

∂ω
lnB (x, ω) =

B′ (x, ω)

B (x, ω)
=
B′ (0, ω)

B (0, ω)
− βx. (4.5)

Note that the function Z(x, ω) does not change shape over frequency as x changes; instead,

the βx term induces a constant level shift. This level shift may be eliminated by forcing the

mean over ω to be zero,

Z0(x, ω) = Z(x, ω) −mean {Z(x, ω)} (4.6)

This augmented spectral function of the received wave is now invariant to dispersion and

exponential damping. At this stage, any features could be extracted from this function.

We are interested in temporal features, so we exponentiate and transform back to the time

domain

v(x, t) =
1√
2π

∫

exp (Z0(x, ω)) e−jωt dω (4.7)

[Note: one could skip the exponentiation step, which we discuss further in the following

section.] The ADIMs are then computed as time-domain moments of the augmented signal

v(x, t),

Tn(x) =

∫

tn |v(x, t)|2 dt (4.8)

Because the augmented signal v(x, t) does not change with x, the moment features Tn(x)

are invariant to the effects of dispersion and exponential damping, i.e., v(x, t) = v(0, t) and

therefore Tn(x) = Tn(0).
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4.2.2 Power-law Attenuation

The second form of damping we consider is logarithmic, with kI(ω) = p log (ω). Accordingly,

the spectral attenuation is given by

B(x, ω) = B(0, ω)ω−px, p > 0, (4.9)

On a dB amplitude scale, the spectral attenuation is linear with log-frequency.

To compute propagation invariant features, we follow a similar procedure as in the ex-

ponential damping case. First, we compute the Z function by taking the partial derivative

in ω of the log-magnitude spectrum of the signal at x, which yields,

Z(x, ω) =
∂

∂ω
lnB (x, ω) =

B′ (0, ω)

B (0, ω)
− px

ω
(4.10)

or equivalently,

ωZ(x, ω) = ω
B′ (0, ω)

B (0, ω)
− px (4.11)

Analogous to the previous case, the x-dependence of the right-hand side of this equation is

a level shift, which may be removed by subtracting the mean over frequency,

Z0(x, ω) = ωZ(x, ω) −mean {ωZ(x, ω)} (4.12)

As with the exponential attenuation case, this augmented spectral function of the received

signal u(x, t) is now independent of the effects of dispersion and damping; any desired features

could be extracted from it to test their utility for classification. To obtain our time domain

attenuation- and dispersion-invariant moments (ADIMs), we exponentiate Z0 and transform

back to the time domain to obtain the augmented signal:

v(x, t) =
1√
2π

∫

exp (Z0(x, ω)) e−jωt dω (4.13)

Temporal moments are then computed from the augmented signal in the usual way,

Tn(x) =

∫

tn |v(x, t)|2 dt (4.14)

and because v(x, t) = v(0, t), the features are likewise invariant: Tn(x) = Tn(0).
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4.2.3 Cepstral Moments

The frequency domain log operation of the ADIMs processing given previously is reminiscent

of the cepstrum of a signal [45]. For u(x, t), the cepstrum is given by

cu(x, t) =
1√
2π

∫

lnB(x, ω) e−jωt dω (4.15)

For purely real dispersion relations (i.e., no damping, kI(ω) = 0)), it follows from Eq.

(2.46) that the cepstrum is invariant to dispersion, and in turn, features calculated from the

cepstrum are invariant to dispersion.

However, the cepstrum is not, in general, invariant to damping. When there is damping,

the cepstrum is given by

cu(x, t) =
1√
2π

∫

ln
(

B (0, ω) e−kI(ω)x
)

e−jωt dω (4.16)

=
1√
2π

∫

lnB (0, ω) e−jωt dω − x√
2π

∫

kI (ω) e−jωt dω (4.17)

= cu(0, t) − I(x) (4.18)

where

I(x) =
x√
2π

∫

kI (ω) e−jωt dω (4.19)

Accordingly, in general cu(x, t) 6= cu(0, t) when there is damping, and thus cepstral moments,

computed from the cepstrum as

Mc(x;n) =

∫

tn |cu(x, t)|2 dt (4.20)

are also not generally invariant to damping.

Some cepstral moments are, however, invariant to the specific case of exponential at-

tenuation, where kI (ω) = βω. For this case, the cepstrum at x is given by Eq. (4.18),

with

I(x) =
βx√
2π

∫

ω e−jωt dω (4.21)

= jβxδ′ (t) (4.22)
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The cepstral moments are then given by

Mc(x;n) =

∫

tn |cu(0, t) − jβxδ′(t)|2 dt (4.23)

=

∫

tnc2u(0, t)dt+ β2x2

∫

tn (δ′(t))
2
dt (4.24)

For odd n, the integrand of the second integral is an odd function, and thus integrates to

zero. Hence, the odd-order cepstral moments are invariant to dispersion and exponential

damping,

Mc(x;n) = Mc(0;n), [for n odd, exponential damping] (4.25)

4.2.4 Relation Between ADIMs and Cepstral Moments

Because the ADIMs and cepstral moments are computed via similar procedures (a log op-

eration in the frequency domain is common to both), it is worthwhile to further explore the

mathematical relationship between the two. As noted previously in the derivation of the

time-domain ADIMs, we exponentiate the Z0 function and then transform back to the time

domain. Initially, this exponentiation step was done to “undo” in some sense the ampli-

tude compression induced by the log operation in the earlier stage of the ADIMs processing.

Moreover, we found in our simulations that it led to improved classification performance

of our features in some cases. We can skip this exponentiation step and the zero-mean

normalization step in the ADIMs processing and consider the moments from the Z function,

〈tn〉Z =

∫

tn|Z(x, t)|2 dt (4.26)

From the definition of the Z function given in Eq. (4.5) and the definition of the cepstrum

given in Eq. (4.15), we have by Fourier properties that

Z(x, t) ∼ jtcu(x, t) (4.27)
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Hence, the nth-order temporal moments of the Z function are the (n+ 2)-order moments of

the cepstrum,

〈tn〉Z =

∫

tn|Z(x, t)|2 dt (4.28)

∼
∫

tn|t cu(x, t)|2 dt =

∫

tn+2|cu(x, t)|2 dt (4.29)

While this relationship is interesting and may be useful analytically, it is important to note

that eliminating the mean-subtraction step of the ADIMs processing, as done here, will

sacrifice the propagation-invariance to damping. Accordingly, we next examine the relation

between the cepstral moments and the moments computed using full ADIMs processing.

Let

V (x, ω) = eZ0(x,ω) (4.30)

Then the (complex) cepstrum of V (x, ω) is

cv(x, t) =

∫

log V (x, ω) ejωt dω =

∫

Z0(x, ω) ejωt dω (4.31)

Accordingly, if we skip the exponentiation step in the ADIMs processing prior to transforming

to the time domain (Eq. 4.7), then the time-domain moments obtained from the Z0(x, ω)

function are equivalent to the temporal moments of the complex cepstrum of the function

V (x, ω).
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Air-filled stainless

      steel shell

 Calculate features of the

wave at multiple distances

Figure 2: An overview of the simulations.

4.3 CLASSIFICATION SIMULATIONS

4.3.1 Simulation Setup

In this section, we present the results of simulations conducted to test the classification

utility of the features for discriminating between two differently-sized cylinders in a shallow

water channel model that includes dispersion and damping. Variability was introduced into

the simulation by varying the propagation distance uniformly over the range from 5 to 2500

meters, sampled at 5 meter increments. An overview of the simulations is shown in Fig. 2.

The backscatter from cylindrical shells of different radii and thicknesses was computed

using resonance scattering theory (RST) [22, 25, 24, 26, 51]. The physical parameters of the

various materials are given in Table 3. The geometry of the shells used in the simulations

was chosen to be similar to real world objects that might be encountered in an undersea

environment. The inner and outer radii of the shells are given in Table 4, along with the

value of h for each shell, defined by

h =

(

1 − rinner

router

)

× 100% (4.32)

The backscatter from each shell was propagated to various distances within a simulated

shallow water channel. For the simulation results presented in this paper, the channel is a
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Table 3: Physical parameters used in simulations

Water Air Steel

Density 1000 kg

m3 1.2 kg

m3 7800 kg

m3

Speed of 1500m
s

340m
s

5880m
s

(dilatational)

Sound Waves 3140m
s

(shear)

Table 4: Geometry of shells used in simulations

Inner Outer h

Radius (m) Radius (m)

Cylinder 1 1.19 1.20 0.83%

Cylinder 2 1.43 1.45 1.4%
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parallel-plate waveguide with a pressure-release top boundary and rigid bottom boundary,

and the medium exhibits attenuation with an exponential dependence upon frequency. Thus,

the dispersion relation of this channel is given by

k (ω) =
1

c

√

ω2 − ω2
0m + jβω (4.33)

where c = 1500 [m/s] is the velocity of sound, β is the attenuation parameter, and ω0m is

the cut-off frequency of the mode m, given by

ω0m =
(m− 0.5) πc

D
(4.34)

The first term in Eq. (4.33) is the expression for the dispersion relation of an ideal two-plate

waveguide [50] and the second term represents exponential attenuation. Mode separation is

implicit in our simulations, as we consider only the first propagated mode in the channel (m =

1 in Eq. 4.33). Also note that the two-plate channel model implicitly has a low-frequency

cut-off, since k(ω) becomes purely imaginary when ω <
(m−0.5)πc

D
. Hence, frequencies below

this value do not propagate in the model.

The depth of the channel was fixed at 25 meters. Feature values were calculated at 5

meter increments over a range of 5 to 2500 meters. Therefore, for each shell, we obtain 500

values for each feature. The sampling frequency was fixed at 10 kHz, and an anti-aliasing

filter was applied to limit the bandwidth of the backscattered echoes to 5 kHz.

The classification features extracted from each simulated propagated echo were ordinary

central temporal moments given in Eq. (3.4) for n = 2, 3, 4, the corresponding ADIMs given

by the procedures discussed in Sections 4.2.1 and 4.2.2, and cepstral moments computed

per Eq. (4.20). All moments were normalized by the respective zero-order moment so that

differences in signal energy between the classes would not contribute to classification perfor-

mance. The classification performance of each feature was evaluated via receiver operating

characteristic (ROC) curves, which plot the relationship between the probability of correct

classification and the probability of false positive. The ROC curves were obtained by com-

puting histograms of the feature values for each shell and sweeping a decision threshold

across the histograms. At each position of the threshold, the probability of correct classifi-

cation (correctly identifying a target) was calculated and plotted versus the probability of

false alarm (incorrectly labeling a clutter echo as a target).

34



4.3.2 Simulation Results

For the first simulation, the attenuation parameter was set to β = 10−8 m−1Hz−1. As

the wave propagates to longer distances in the channel, the low frequencies are increasingly

delayed due to dispersion and the higher frequencies are increasingly attenuated. These

effects may be seen in Figs. 3 and 4, which show the backscatter at 1250 meters and the

backscatter at 2500 meters of cylinder 1 and cylinder 2, respectively. The time series are

significantly affected as the waves propagate to greater distances, and it stands to reason

that ordinary temporal moments will not be effective classification features.
Cylinder 1 backscatter at 1250 m
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Cylinder 1 backscatter at 2500 m
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Figure 3: Waveforms generated by cylinder 1(1.25 km, 2.5 km).

The augmented wave, v(x, t), as given in Section 4.2.1 by Eq. (4.7) is shown for the

backscatter at 1250 meters and the backscatter at 2500 meters for cylinder 1 and cylinder

2 in Figs. 5 and 6, respectively. The time series of the augmented waves do not change

significantly with greater propagation distance, and the spectrum and spectrogram of each

augmented wave show that the processing enhances the natural resonances of the shells.

The ROC curves for this simulation are shown in Fig. 7. The cepstral moments and

the ADIMs exhibit significantly better performance compared to the ordinary temporal mo-

ments.

A second simulation was performed in which all parameters were identical to the first

simulation, except that the attenuation parameter was increased by an order of magnitude
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Cylinder 2 backscatter at 1250 m
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Cylinder 2 backscatter at 2500 m
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Figure 4: Waveforms generated by cylinder 2 (1.25 km, 2.5 km).

Augmented Cylinder 1 backscatter at 1250 m
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Augmented Cylinder 1 backscatter at 2500 m
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Figure 5: Augmented waveform generated by cylinder 1 (1.25 km, 2.5 km).

to β = 10−7 m−1Hz−1. The ROC curves for this simulation are given in Fig. 8. The

cepstral moments display less classification utility compared to their performance with β =

10−8 m−1Hz−1, while the ADIMs are not affected by the increased attenuation. The ordinary

temporal moments show no classification utility.
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Augmented Cylinder 2 backscatter at 1250 m
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Augmented Cylinder 2 backscatter at 2500 m
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Figure 6: Augmented waveform generated by cylinder 2 (1.25 km, 2.5 km).

To provide easy comparison of the results, we give in Table 5 the area under the ROC

curves for each result. These statistics are one way to express the quality of classification

performance in a single number. An area under ROC score of unity is a perfect score, while

a score of 0.5 represents chance. For each order of moment and attenuation parameter, the

cepstral moments and ADIMs achieve better classification performance than the ordinary

temporal moments.

In this chapter we have developed features, called ADIMs, that are invariant to dispersion

and certain important types of damping. To the extent that the ADIMs can separate the

classes in the free field, they will also separate the classes with dispersion and exponential

or power-law damping. Thus, the use of these features may aid classification performance in

complicated propagation channels such as shallow-water environments.

The ADIMs have been developed using a range-independent propagation model. If the

assumption of range independence is violated, however, the ADIMs may no longer be invari-

ant to propagation effects. As an example, we repeat the classification simulation presented

above, but we replace the range-independent two-plate waveguide with a range-dependent

wedge (the exact solution for the acoustic field in a wedge is given in Chapter 7). The angle

of wedge in this simulation is 0.5 degrees. The source is located 3 km from the apex at
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Figure 7: ROC curves showing classification performance of ordinary temporal

moments (MOM), cepstral moments (CMOM), and attenuation and dispersion

invariant temporal moments (ADIM) for n = 2, 3, and 4 in a channel with expo-

nential attenuation, β = 10−8 m−1Hz−1.

0.25 degrees, and the signal is propagated at 5 meter increments to a total distance of 5.5

km from the apex. The ROC curves for β = 10−8 m−1Hz−1 are given in Fig. 9. Clearly,

the performance of the ADIMs degrades in this range-dependent simulation, suggesting that

they lose their invariance. These results motivate consideration of our extension of the phase

space approach to the range-dependent case, as done in Chapter 7.
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Figure 8: ROC curves showing classification performance of ordinary temporal

moments (MOM), cepstral moments (CMOM), and attenuation and dispersion

invariant temporal moments (ADIM) for n = 2, 3, and 4 in a channel with expo-

nential attenuation, β = 10−7 m−1Hz−1.

Additionally, in cases where the ADIMs do not provide good free field class separation,

other features that are potentially affected by propagation effects must be used. In the next

chapter, we develop a method for estimating the impact of the propagation effects on a broad

class of potential classification features-the temporal and spectral statistical moments.
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Table 5: Area Under ROC for classification simulations.

MOM CMOM ADIM

n = 2, β = 10−8 0.6182 0.9159 0.9511

n = 2, β = 10−7 0.6443 0.8994 0.9526

n = 3, β = 10−8 0.5530 0.9157 0.9275

n = 3, β = 10−7 0.5635 0.8996 0.9188

n = 4, β = 10−8 0.4946 0.9154 0.9134

n = 4, β = 10−7 0.5215 0.8998 0.8993
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Figure 9: ROC curves showing classification performance of ordinary temporal

moments (MOM), cepstral moments (CMOM), and attenuation and dispersion

invariant temporal moments (ADIM) for n = 2, 3, and 4 in a wedge-shaped chan-

nel with exponential attenuation, β = 10−8 m−1Hz−1.
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5.0 MOMENTS OF MOMENTS

In this chapter we investigate the effects of channel propagation on a set of features, namely

the temporal and spectral moments of the received signal. We consider a channel model

with frequency dependent propagation effects (which arise in shallow water channels, and

in dispersive propagation in general), and we introduce randomness through uncertainty or

random variations in the channel. Uncertainty and random variations in an ocean chan-

nel increase the variability of features computed from sonar echoes that have propagated

in that channel, and the increased variability may have a negative effect on classification

performance. In order to quantify this variability, we compute the statistics of potential

features-the moments of the moment features of the wave. Ideally, the sonar echo from a

particular target of interest would produce the same feature value each time the target was

insonified. However, in practice this is not the case, as noise and other environmental factors

cause the features to take on random values. For this work, we neglect the effect of noise

and instead focus on variability introduced by the propagation channel.

The randomness of the moment features may be caused by two phenomena: uncertainty

of the propagation channel and random variations within the channel itself. Uncertainty

means that the parameters of the channel are assumed to be constant while the wave is

propagating through the channel, but a new realization of the random parameters is en-

countered for each subsequent wave that passes through the channel. This type of random

behavior could be caused by daily or seasonal weather cycles, or it could be caused by changes

in the operating location. In a randomly varying channel, the parameters of the channel are

fluctuating as the wave is passing through it. A major cause of these fluctuations in the
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ocean is internal waves, which are responsible for changes in the water such as tempera-

ture, density, salinity, and velocity of the medium [18]. All of these changes affect acoustic

propagation and can alter feature values.

In either case, the random fluctuations will affect the construction of a feature space from

training data as well as the proper classification of observed data. It is, therefore, in the

interest of improved classification to seek methods to quantify, approximate, or compensate

for these random variations.

5.1 UNCERTAIN CHANNELS

In this section, the channel is modeled by a realization of a spatially-dependent impulse

response defined by random parameters. Therefore, because a signal propagates through a

single realization of a random channel, the features computed from that signal may be viewed

as individual realizations of random variables. The purpose of this paper is to investigate

the statistical properties of the features and derive expressions for the relationships between

the random parameters of the channel and the random values of the features.

Liu and Yeh investigated the statistical properties of the temporal moments of optical

pulses propagating through turbulent media and obtained expressions for the moments (i.e.,

ensemble averages) of the temporal moments of the pulses in terms of the two-frequency

mutual coherence function [55, 34, 35]. The general concept of this chapter is similar –

to obtain expressions for the moments of the temporal and spectral moment features of

a propagating wave–but our approach is based on time-frequency methods because of the

inherent nonstationarities of dispersive propagation.

5.1.1 Uncertain Channel Model

For the uncertain channel model, we let the channel be defined by realizations of random

variables. For example, in the linear systems representation of the channel given in Eq.

(2.42), the parameter x could be taken to be a random variable, representing uncertainty in
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the target distance or how far the wave propagates. If the initial wave u(0, t) is deterministic,

then the propagation model in Eq. (2.51) becomes, in the ensemble sense,

〈Wu(t, ω; x)〉 = Wu(t, ω; 0) ∗t 〈Wh(t, ω; x)〉 (5.1)

where ∗t denotes time-domain convolution and the brackets 〈.〉 denote the ensemble average.

We use this propagation model to calculate the statistical behavior of the moment features

of a propagating wave.

5.1.2 Moments of Moments of the Wigner Distribution

Following an approach similar to Liu and Yeh [35], we analyze the variability in moment

features by calculating expected values of the temporal and spectral moment features; how-

ever, we do so from the Wigner distribution and approximation. In this section, we do not

consider turbulent or random media, but rather a channel model characterized by random

parameters. We note that, in this chapter, the variable m is used to denote the order of the

moments of the channel. Because we are considering single mode propagation, we drop the

m subscript from the dispersion relation that was used in previous chapters.

5.1.2.1 Temporal Moment Features The expected value of the temporal moments of

the signal at x is given by

〈〈tnu〉x〉 =

∫ ∫

tn〈Wu(t, ω; x)〉dωdt (5.2)

and the second-order expectation of the temporal moment features follows from

〈(〈tnu〉x)2〉 =

∫ ∫

(t1 t2)
n 〈Wu (t1, ω1; x)Wu (t2, ω2; x)〉 dt1dω1 dt2dω2 (5.3)

Higher-order expected values of the temporal moment features are given by

〈(〈tnu〉x)i〉 =

∫ ∫ ∫ ∫

...

∫ ∫

(t1 t2 ... ti)
n (5.4)

〈Wu (t1, ω1; x)Wu (t2, ω2; x) ... Wu (ti, ωi; x)〉 dt1dω1 dt2dω2 ... dtidωi
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We may write Eq. (5.4) in terms of the temporal moments of the initial wave (at x = 0) and

the expected values of the temporal moments of the channel impulse response as

〈(〈tnu〉x)i〉 =

n
∑

m1,m2...mi=0

(

n

m1

)(

n

m2

)

...

(

n

mi

)
∫ ∫

...

∫

(5.5)

(

〈tn−m1
u 〉0,ω1〈tn−m2

u 〉0,ω2...〈tn−mi
u 〉0,ωi

)

〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2...〈tmi

h 〉x,ωi
〉 dω1dω2...dωi

The detailed derivation of this formula for i = 1, 2 is given in the Appendix.

The random quantities in Eq. (5.5) are the local temporal moments of the channel

impulse response, which are given by

〈tmh 〉x,ω =

∫

tmWh(t, ω, x) dt (5.6)

The problem of solving for the statistics of the temporal moment features of the signal,

then, essentially reduces to finding the ensembles of products of the moment features of the

channel as given by Eq. (5.6). The per mode Wigner approximation for the channel, given

in Eq. (2.53), may be utilized here to obtain approximate values of the temporal moment

features of the channel:

〈tmh 〉x,ω ≈
∫

tme−2kI (ω)xδ(t− k′R(ω)x) dt = e−2kI(ω)x (k′R(ω)x)
m

(5.7)

Ensemble averages of products of Eq. (5.7) may be used to obtain approximate moments of

the temporal moment features of the signal. For example, if x is uncertain and described by

the probability distribution P (x), then the expected value of the moments is approximately

given by

〈〈tmh 〉x,ω〉 ≈
∫

e−2kI(ω)x (k′R(ω)x)
m
P (x) dx (5.8)

and the expected value of the product of i moments is approximately given by

〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2...〈tmi

h 〉x,ωi
〉 ≈

∫

e−2x(kI(ω1)+kI(ω2)+...+kI(ωi))

(k′R (ω1))
m1 (k′R (ω2))

m2 ... (k′R (ωi))
mi P (x)dx (5.9)

We point out that the Wigner approximation is exact for exponential damping, kI(ω) = bω,

and quadratic dispersion, kR(ω) = 1
c
ω + γω2 [40]. Therefore, the moments of the features

calculated using the expression in Eq. (5.9), which is based upon the approximation, are

also exact for this case.
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5.1.2.2 Frequency Moments The expected values of the frequency moment features

are given by

〈〈ωnu〉x〉 =

∫ ∫

ωn〈Wu(t, ω; x)〉dωdt (5.10)

which generalizes to higher-order ensemble averages (i.e., moments of moment features) as

〈(〈ωnu〉x)i〉 =

∫ ∫ ∫ ∫

...

∫ ∫

(ω1 ω2 ... ωi)
n (5.11)

〈Wu (t1, ω1; x)Wu (t2, ω2; x) ... Wu (ti, ωi; x)〉 dt1dω1 dt2dω2 ... dtidωi

We may write Eq. (5.11) in terms of the squared magnitude of the initial wave and the

squared magnitude of the channel as

〈(〈ωnu〉x)i〉 =

∫ ∫

...

∫

(ω1ω2 ... ωi)
n
(

|F (0, ω1)|2 |F (0, ω2)|2 ... |F (0, ωi)|2
)

〈|H(x, ω1)|2 |H(x, ω2)|2 ... |H(x, ωi)|2〉dω1dω2 ... dωi (5.12)

The random quantity in Eq. (5.12) is the squared magnitude of the channel frequency

response function, which is given by

|H(x, ω)|2 =

∫

Wh(t, ω, x)dt (5.13)

Using the Wigner approximation, we have

|H(x, ω)|2 ≈
∫

e−2kI (ω)xδ(t− k′R(ω)x)dt = e−2kI (ω)x (5.14)

which is, in fact, exact; hence, the spectral moments obtained using the approximation are

exact.

We now consider two examples in which the distance to the target x is uncertain and

modeled by a probability distribution. In the first example, the channel has dispersion only,

and x is modeled by a uniform distribution. In the second example, the channel has a

complex dispersion relation, and the distance x is modeled by a Gaussian distribution.
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5.1.3 Example 1

For this example, we take a channel with dispersion only, no damping (kI(ω) = 0), and let

x be a random variable, uniformly distributed on the interval [0, X]. This models a scenario

where the channel is fixed, but the distance from the target is random.

First, we will find the approximate expected values of the temporal moment features,

which are computed from Eq. (5.5) with i = 1. Using Eq. (5.8) with the uniform distribution

on x, we have

〈〈tmh 〉x,ω〉 ≈ (k′R(ω))m

X

∫ X

0

xmdx =
(k′R(ω))m

X

1

m+ 1
Xm+1 =

(k′R(ω)X)m

m+ 1
(5.15)

Substituting this result into Eq. (5.5) with i = 1 allows us to calculate the expected values

of the temporal moments of the signal. The general expression is given by

〈〈tnu〉x〉 =
n
∑

m1=0

(

n

m1

)
∫

〈tn−m1
u 〉0,ω1

(k′R(ω1)X)m1

m1 + 1
dω1 (5.16)

Accordingly, the expected value of the first temporal moment (n = 1) is

〈〈tu〉x〉 =

∫

〈tu〉0,ω1dω1 +

∫

k′R(ω1)X

2
|F (0, ω1)|2 dω1 (5.17)

= 〈tu〉0 +
X

2

∫

k′R(ω1) |F (0, ω1)|2 dω1 (5.18)

We note that the integral term is the average group slowness [43].

The expected value of the second temporal moment (n = 2) is

〈〈t2u〉x〉 =

∫

〈t2u〉0,ω1dω1 + 2

∫

〈tu〉0,ω1

k′R(ω1)X

2
dω1 +

∫

(k′R(ω1)X)2

3
|F (0, ω1)|2 dω1 (5.19)

= 〈t2u〉0 +X

∫

〈tu〉0,ω1k
′
R(ω1)dω1 +

X2

3

∫

(k′R(ω1))
2 |F (0, ω1)|2 dω1 (5.20)

To find the approximate variances of the temporal moment features, we must do the

calculation given in Eq. (5.5) for i = 2. First, we evaluate Eq. (5.9) with i = 2 to obtain

〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2〉 =
(k′R(ω1))

m1 (k′R(ω2))
m2

X

∫ X

0

xm1+m2dx (5.21)

=
(k′R(ω1))

m1 (k′R(ω2))
m2

X

1

m1 +m2 + 1
Xm1+m2+1 (5.22)

=
(k′R(ω1)X)m1 (k′R(ω2)X)m2

m1 +m2 + 1
(5.23)
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The general form of the second order expectation becomes

〈(〈tnu〉x)2〉 =

n
∑

m1,m2=0

(

n

m1

)(

n

m2

)
∫ ∫

〈tn−m1
u 〉0,ω1〈tn−m2

u 〉0,ω2〈〈tm1

h 〉x,ω1〈tm2

h 〉x,ω2〉dω1dω2

(5.24)

For the arrival time, which corresponds to the first-order moment feature (n = 1, or 〈tu〉x),
we have

〈(〈tu〉x)2〉 =

∫ ∫

〈tu〉0,ω1〈tu〉0,ω2dω1dω2 +

∫ ∫

〈tu〉0,ω1

k′R(ω2)X

2
|F (0, ω2)|2 dω1dω2 +

∫ ∫

k′R(ω1)X

2
|F (0, ω1)|2 〈tu〉0,ω2dω1dω2 +

∫ ∫

k′R(ω1)k
′
R(ω2)X

2

3
|F (0, ω1)|2 |F (0, ω2)|2 dω1dω2 (5.25)

= (〈tu〉0)2 + 〈tu〉0X
∫

k′R(ω) |F (0, ω)|2 dω +
X2

3

(
∫

k′R(ω) |F (0, ω)|2 dω
)2

(5.26)

The variance of the arrival time is therefore approximately given by

〈(〈tu〉x)2〉 − (〈〈tu〉x〉)2 ≈ X2

12

(
∫

k′R(ω) |F (0, ω)|2 dω
)2

(5.27)

≈ X2

12
(〈k′R(ω)〉0)2

(5.28)

If the propagation distance x was deterministic, the arrival time would also be deter-

ministic (i.e., the variance would be zero). Therefore, Eq. (5.28) partially quantifies the

uncertainty in the arrival time due to the uncertainty of the propagation distance. To fully

characterize this uncertainty, we would compute the entire set of moments in order to com-

pute the probability distribution function of the arrival time.
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5.1.4 Example 2

We now derive approximate expressions for the first two moments of the moment features

in a channel where the range x is uncertain and modeled by a Gaussian probability density

function:

P (x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (5.29)

where µ is the mean and σ2 is the variance. The expected value of each of the temporal

moments is given exactly by Eq. (5.5) with i = 1. Using Eq. (5.8), we have an approximate

expression for the temporal moments of the channel,

〈〈tmh 〉x,ω〉 ≈ (k′R(ω))
m

∫

xme−2kI (ω)xP (x)dx (5.30)

Inserting the density function for x given in Eq. (5.29) gives

〈〈tmh 〉x,ω〉 ≈
(k′R(ω))m

σ
√

2π

∫

xme−2kI (ω)xe
−(x−µ)2

2σ2 dx (5.31)

By completing the square in the exponent, the equation simplifies to

〈〈tmh 〉x,ω〉 ≈ (k′R(ω))
m
d1(ω)

[

1

σ
√

2π

∫

xme
−(x−(µ−2kI (ω)σ2))

2

2σ2 dx

]

(5.32)

where d1(ω) = e2k
2
I
(ω)σ2−2kI(ω)µ. The term in brackets is the expression for the moments of a

Gaussian distribution with mean (µ− 2kI(ω)σ2) and variance σ2. Accordingly, we have [20]

〈〈t0h〉x,ω〉 ≈ d1(ω) (5.33)

〈〈th〉x,ω〉 ≈ (k′R(ω))d1(ω)
[

µ− 2kI(ω)σ2
]

(5.34)
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5.1.4.1 First Temporal Moment Feature The general expression for the expected

value of the first temporal moment feature of the signal is given by Eq. (5.5) with i = 1 and

n = 1:

〈〈tu〉x〉 =

1
∑

m1=0

(

1

m1

)
∫

〈tn−m1
u 〉0,ω1〈〈tm1

h 〉x,ω1〉dω1 (5.35)

=

∫

〈t1u〉0,ω1〈〈t0h〉x,ω1〉dω1 +

∫

〈t0u〉0,ω1〈〈t1h〉x,ω1〉dω1 (5.36)

Utilizing the approximate expressions in Eqs. (7.37) and (5.34), we have

〈〈tu〉x〉 ≈
∫

〈tu〉0,ω1d1(ω1)dω1 +

∫

(k′R(ω1)) d1(ω1)
[

µ− 2kI(ω1)σ
2
]

|F (0, ω1)|2 dω1 (5.37)

For the second moment of the first temporal moment feature, we must approximate

〈〈tm1

h 〉x,ω1〈tm2

h 〉x,ω2〉:

〈〈tm1

h 〉x,ω1〈tm2

h 〉x,ω2〉 ≈
∫

e−2x(kI(ω1)+kI (ω2)) (k′R(ω1)x)
m1 (k′R(ω2)x)

m2 P (x)dx (5.38)

≈ (k′R(ω1))
m1 (k′R(ω2))

m2
1

σ
√

2π

∫

(5.39)

xm1+m2e−2x(kI(ω1)+kI(ω2))e
−(x−µ)2

2σ2 dx

≈ (k′R(ω1))
m1 (k′R(ω2))

m2 d2(ω1, ω2)
1

σ
√

2π

∫

xm1+m2e
−(x−(µ−2σ2(kI (ω1)+kI(ω2))))

2

2σ2 dx (5.40)

where d2(ω1, ω2) = e2k
2
I
(ω1)σ2+4kI(ω1)kI(ω2)σ2+2k2

I
(ω2)σ2−2kI(ω1)µ−2kI (ω2)µ. The integral is the ex-

pression for the (m1 +m2)-order moments of a Gaussian distribution with mean given by

(µ− 2σ2 (kI(ω1) + kI(ω2))) and variance given by σ2. Therefore, we have

〈〈t0h〉x,ω1〈t0h〉x,ω2〉 ≈ d2(ω1, ω2) (5.41)

〈〈t0h〉x,ω1〈t1h〉x,ω2〉 ≈ k′R(ω2)d2(ω1, ω2)
(

µ− 2σ2 (kI(ω1) + kI(ω2))
)

(5.42)

〈〈t1h〉x,ω1〈t0h〉x,ω2〉 ≈ k′R(ω1)d2(ω1, ω2)
(

µ− 2σ2 (kI(ω1) + kI(ω2))
)

(5.43)

〈〈t1h〉x,ω1〈t1h〉x,ω2〉 ≈ k′R(ω1)k
′
R(ω2)d2(ω1, ω2)

[

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)2

+ σ2
]

(5.44)
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The second-order expectation of the first-order temporal moment feature is given by

〈(〈tu〉x)2〉 =

∫ ∫

〈tu〉0,ω1〈tu〉0,ω2〈〈t0h〉x,ω1〈t0h〉x,ω2〉dω1dω2

+

∫ ∫

〈tu〉0,ω1〈t0u〉0,ω2〈〈t0h〉x,ω1〈t1h〉x,ω2〉dω1dω2

+

∫ ∫

〈t0u〉0,ω1〈tu〉0,ω2〈〈t1h〉x,ω1〈t0h〉x,ω2〉dω1dω2

+

∫ ∫

〈t0u〉0,ω1〈t0u〉0,ω2〈〈t1h〉x,ω1〈t1h〉x,ω2〉dω1dω2 (5.45)

which may be approximated by substituting the approximate expressions from Eqs. (5.41)-

(5.44):

〈(〈tu〉x)2〉 ≈
∫ ∫

〈tu〉0,ω1〈tu〉0,ω2d2(ω1, ω2)dω1dω2

+2

∫ ∫

〈tu〉0,dω1k
′
R(ω2)d2(ω1, ω2)

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)

|F (0, ω2)|2 dω1dω2

+

∫ ∫

k′R(ω1)k
′
R(ω2)d2(ω1, ω2)

[

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)2

+ σ2
]

|F (0, ω1)|2 |F (0, ω2)|2 dω1dω2 (5.46)

5.1.4.2 Second Temporal Moment Feature The expected value of the second tem-

poral moment feature is given by Eq. (5.5) with n = 2 and i = 1:

〈〈t2u〉x〉 =
2
∑

m1=0

(

2

m1

)
∫

〈tn−m1
u 〉0,ω1〈〈tm1

h 〉x,ω1〉dω1 (5.47)

=

∫

〈t2u〉0,ω1〈〈t0h〉x,ω1〉dω1 + 2

∫

〈t1u〉0,ω1〈〈t1h〉x,ω1〉dω1 +

∫

〈t0u〉0,ω1〈〈t2h〉x,ω1〉dω1 (5.48)

To find an approximate expression for this moment, we require the approximate temporal

moments of the channel to second order. The zeroth and first order approximate moments

are given in Eqs. (7.37) and (5.34), while the second order moment is approximately

〈〈t2h〉x,ω〉 ≈ (k′R(ω))
2
d1(ω)

[

(

µ− 2kI(ω)σ2
)2

+ σ2
]

(5.49)
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Plugging these values into Eq. (5.48), we obtain the general expression

〈〈t2h〉x,ω〉 ≈
∫

〈t2u〉0,ω1d1(ω1)dω1 + 2

∫

〈tu〉0,ω1 (k′R(ω1)) d1(ω1)
[

µ− 2kI(ω1)σ
2
]

dω1

+

∫

(k′R(ω1))
2
d1(ω1)

[

(

µ− 2kI(ω1)σ
2
)2

+ σ2
]

|F (0, ω1)|2 dω1 (5.50)

The second-order expectation of the second temporal moment feature is given by Eq. (5.5)

with n = 2 and i = 2:

〈
(

〈t2u〉x
)2〉 =

n
∑

m1,m2=0

(

2

m1

)(

2

m2

)
∫ ∫

〈tn−m1
u 〉0,ω1〈tn−m2

u 〉0,ω2〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2〉dω1dω2

(5.51)

By evaluating the summation and simplifying, we obtain

〈
(

〈t2u〉x
)2〉 =

∫ ∫

〈t2u〉0,ω1〈t2u〉0,ω2〈〈t0h〉x,ω1〈t0h〉x,ω2〉dω1dω2

+ 4

∫ ∫

〈t2u〉0,ω1〈t1u〉0,ω2〈〈t0h〉x,ω1〈t1h〉x,ω2〉dω1dω2

+ 2

∫ ∫

〈t2u〉0,ω1〈t0u〉0,ω2〈〈t0h〉x,ω1〈t2h〉x,ω2〉dω1dω2

+

∫ ∫

〈t1u〉0,ω1〈t1u〉0,ω2〈〈t1h〉x,ω1〈t1h〉x,ω2〉dω1dω2

+ 4

∫ ∫

〈t1u〉0,ω1〈t0u〉0,ω2〈〈t1h〉x,ω1〈t2h〉x,ω2〉dω1dω2

+

∫ ∫

〈t0u〉0,ω1〈t0u〉0,ω2〈〈t2h〉x,ω1〈t2h〉x,ω2〉dω1dω2 (5.52)

The above exact expression may be approximated by plugging in approximations to

〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2〉 for the various values of m1 and m2. In addition to the expressions in

Eqs. (5.41)-(5.44), the necessary expressions are:

〈〈t0h〉x,ω1〈t2h〉x,ω2〉 ≈ (k′R(ω2))
2
d2(ω1, ω2)

[

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)2

+ σ2
]

(5.53)

〈〈t1h〉x,ω1〈t2h〉x,ω2〉 ≈ k′R(ω1) (k′R(ω2))
2
d2(ω1, ω2) (5.54)

[

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)3

+ 3σ2
(

µ− 2σ2 (kI(ω1) + kI(ω2))
)

]

〈〈t2h〉x,ω1〈t2h〉x,ω2〉 ≈ (k′R(ω1))
2
(k′R(ω2))

2
d2(ω1, ω2) (5.55)

[
(

µ− 2σ2 (kI(ω1) + kI(ω2))
)4

+ 6σ2
(

µ− 2σ2 (kI(ω1) + kI(ω2))
)2

+3σ4]
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〈
(

〈t2u〉x
)2〉 =

∫ ∫

〈t2u〉0,ω1〈t2u〉0,ω2d2(ω1, ω2)dω1dω2

+ 4

∫ ∫

〈t2u〉0,ω1〈t1u〉0,ω2k
′(ω2)d2(ω1, ω2)

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)

dω1dω2

+ 2

∫ ∫

〈t2u〉0,ω1〈t0u〉0,ω2〈〈t0h〉x,ω1〈t2h〉x,ω2〉dω1dω2

+

∫ ∫

〈t1u〉0,ω1〈t1u〉0,ω2k
′(ω1)k

′(ω2)d2(ω1, ω2)
[

(

µ− 2σ2 (kI(ω1) + kI(ω2))
)2

+ σ2
]

dω1dω2

+ 4

∫ ∫

〈t1u〉0,ω1〈t0u〉0,ω2〈〈t1h〉x,ω1〈t2h〉x,ω2〉dω1dω2

+

∫ ∫

〈t0u〉0,ω1〈t0u〉0,ω2〈〈t2h〉x,ω1〈t2h〉x,ω2〉dω1dω2 (5.56)

For the general case of an arbitrary complex dispersion relation, however, most of these

integrals cannot be evaluated easily.

5.1.4.3 Real Dispersion Relation A channel model with a real dispersion relation is

a channel that has dispersion only, no damping. For this special case,

kI(ω) = 0 (5.57)

d1(ω) = 1 (5.58)

d2(ω1, ω2) = 1 (5.59)

and the approximate expressions for the moments of the moment features simplify greatly.

The approximate expected value of the first temporal moment feature becomes

〈〈tu〉x〉 ≈
∫

〈tu〉0,ω1dω1 +

∫

k′R(ω1)µ |F (0, ω1)|2 dω1 (5.60)

≈ 〈tu〉0 + µ〈k′R(ω)〉0 (5.61)

The second order expectation of the first temporal moment feature is

〈(〈tu〉x)2〉 ≈
∫ ∫

〈tu〉0,ω1〈tu〉0,ω2dω1dω2 + 2µ

∫ ∫

〈tu〉0,dω1k
′
R(ω2) |F (0, ω2)|2 dω1dω2

+
(

µ2 + σ2
)

∫ ∫

k′R(ω1)k
′
R(ω2) |F (0, ω1)|2 |F (0, ω2)|2 dω1dω2 (5.62)

≈ (〈tu〉0 + µ〈k′R(ω)〉0)2
+ σ2 (〈k′R(ω)〉0)2

(5.63)
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and, therefore, the variance of the first temporal moment feature is

〈(〈tu〉x)2〉 − 〈〈tu〉x〉2 = σ2 (〈k′R(ω)〉0)2 (5.64)

For the second-order temporal moment feature, we have that the approximate expected value

is given by

〈〈t2u〉x〉 ≈
∫

〈t2u〉0,ω1dω1 + 2µ

∫

〈tu〉0,ω1 (k′R(ω1)) dω1 (5.65)

+
(

µ2 + σ2
)

∫

(k′R(ω1))
2 |F (0, ω1)|2 dω1

≈ 〈t2u〉0 + 2µ〈tk′R(ω1)〉0 +
(

µ2 + σ2
)

〈(k′R(ω1))
2〉0 (5.66)

and the second-order expectation of the second-order temporal moment feature is approxi-

mately given by

〈
(

〈t2u〉x
)2〉 ≈

∫ ∫

〈t2u〉0,ω1〈t2u〉0,ω2dω1dω2 (5.67)

+4µ

∫ ∫

〈t2u〉0,ω1〈t1u〉0,ω2k
′
R(ω2)dω1dω2

+2
(

µ2 + σ2
)

∫ ∫

〈t2u〉0,ω1〈t0u〉0,ω2 (k′R(ω2))
2
dω1dω2

+
(

µ2 + σ2
)

∫ ∫

〈t1u〉0,ω1〈t1u〉0,ω2k
′
R(ω1)k

′
R(ω2)dω1dω2

+4
(

µ3 + 3µσ2
)

∫ ∫

〈t1u〉0,ω1〈t0u〉0,ω2k
′
R(ω1) (k′R(ω2))

2
dω1dω2

+
(

µ4 + 6µ2σ2 + 3σ4
)

∫ ∫

〈t0u〉0,ω1〈t0u〉0,ω2 (k′R(ω1))
2
(k′R(ω2))

2
dω1dω2

〈
(

〈t2u〉x
)2〉 ≈ 〈t2u〉20 + 4µ〈t2u〉0〈tk′R(ω)〉0 + 2

(

µ2 + σ2
)

〈t2u〉0〈(k′R(ω))
2〉0 (5.68)

+
(

µ2 + σ2
)

(〈tk′R(ω)〉0)2
+ 4

(

µ3 + 3µσ2
)

〈tk′R(ω)〉0〈(k′R(ω))
2〉0

+
(

µ4 + 6µ2σ2 + 3σ4
)

(

〈(k′R(ω))
2〉0
)2

Therefore, the variance is given by

〈
(

〈t2u〉x
)2〉 − 〈

(

〈t2u〉x
)

〉2 ≈ σ2 (〈tk′R(ω)〉0)2
+ 8µσ2〈tk′R(ω)〉0〈(k′R(ω))

2〉0 (5.69)

+2σ2
(

2µ2 + σ2
)

(

〈(k′R(ω))
2〉0
)2
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5.2 RANDOM CHANNELS

The ocean environment is complex and fluctuating, and the random variations that occur

in an ocean channel also induce variability to moment features. A major cause of ocean

channel variability is internal waves, which are responsible for changes in the water such as

temperature, density, salinity, and velocity of the medium, but other phenomena such as

ocean currents and planetary waves also induce variability [18]. Using accepted models of

random ocean acoustic propagation [18], we may extend the moments of moments approach

described for uncertain channels to randomly varying channels. The expressions for the

moments of the moment features are found in terms of the moments of the signal propagating

in the corresponding deterministic channel and the two-frequency mutual coherence function.

The two-frequency mutual coherence function is a commonly used measure to characterize

fluctuating media [2], and its form is known and has been experimentally verified for ocean

channels [18].

5.2.1 Randomly Varying Channels

We review the random propagation model given in [18]. The velocity of sound in the channel

is given by

c = c0 (1 + U0 (z) + µ (x, t)) (5.70)

where c0 is a constant, U0 (z) represents the deterministic vertical dependence of the sound

speed, and µ (x, t) is the random variation of the sound speed in the medium. We generally

define the correlation function of the random fluctuations in terms of the spatial and temporal

separation, and also in terms of the average position (to account for anisotropic randomness)

as

ρ

(

x − x′, t− t′,
1

2
(x + x′)

)

= 〈µ (x, t)µ (x′, t′)〉 (5.71)
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where the angle brackets represent an ensemble average. The nominal wavenumber is given

by

k0 =
ω

c0
(5.72)

while the spatially dependent wavenumber is given by

k (x) =
ω

c0 (1 + U0 (z))
(5.73)

The nature of the random variations in an ocean channel are described by two param-

eters that characterize the strength and the size of the variations. For simplicity, we will

assume that the random variations of the channel are isotropic. The strength of the random

fluctuations (denoted Σ) is characterized by the expected value of the squared integral of

the variations:

Σ2 = 〈
(

k0

∫ R

0

µdx

)2

〉 (5.74)

= k2
0

∫ R

0

∫ R

0

ρ (|x− x′|) dxdx′ (5.75)

where R is the distance from the source to the receiver, the spatial dimensionality of the

correlation function has been reduced because of the isotropic assumption, and, because the

acoustic wave speed is significantly greater than the internal wave speed, we eliminate the

temporal dependence of the correlation function [18].

The parameter describing the size of the fluctuations is defined as the average of the

squared radius of the first Fresnel zone over the line connecting the source and receiver. The

first Fresnel zone is the area within which refracted rays will constructively interfere with

one another at the receiver. Assuming that the sound speed in the channel does not have a

depth dependence, the radius can be found using the Pythagorean theorem. The radius of

the Fresnel zone at x, denoted RF (x), is given by

R2
F (x) =

λx (R − x)

R
(5.76)
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The size parameter, Λ, is

Λ =
1

2πRL2

∫ R

0

(RF (x))2
dx (5.77)

=
R

6k0L2
(5.78)

where L is the correlation length of the fluctuations, as illustrated in Fig. 10 [18].

Source Receiver

R
f

L

Fluctuations

R

x

Figure 10: Schematic of a fluctuating channel.

We may now characterize a given fluctuating channel in terms of the size and strength

parameters. The parameter space is divided into two regimes: saturated and unsaturated.

In the saturated regime, the fluctuations will refract the energy significantly enough that

multipath effects will appear. Multipath effects occur when several delayed and scaled copies

of a signal arrive at the receiver. Because multiple delayed copies of the signal arrive at the

receiver, the total energy undergoes a temporal spreading. In the unsaturated regime, the

multipath effects may be present, but they are not significant. A special sub-region of

the unsaturated regime is the geometrical optics regime, in which a single ray travels from

source to receiver, but its path is perturbed by the fluctuations. The scattering regimes in

the parameter space are shown in Fig. 11.
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Figure 11: Scattering regimes in Λ-Σ space.

5.2.2 Pulse Propagation

For a deterministic channel, the signal at x is given by

u(x, t) =

∫

F (0, ω)H(x, ω)e−jωtdω (5.79)

where H(x, ω) is the deterministic transfer function. Analogously, a channel with randomly

varying sound speed is modeled as

û(x, t) =

∫

F (0, ω)Ĥ(x, ω)e−jωtdω (5.80)

where Ĥ is the random transfer function. We define the reduced wavefunction as the random

transfer function normalized by the deterministic channel transfer function [18]

ψ̂(x, ω) =
Ĥ(x, ω)

H(x, ω)
(5.81)

58



and, substituting, we obtain an expression for the signal in a randomly varying channel in

terms of the original spectrum, deterministic transfer function, and the reduced wavefunc-

tion:

û(x, t) =

∫

F (0, ω)H(x, ω)ψ̂(x, ω)e−jωtdω (5.82)

This formulation of the signal at x will allow us to use the results of the previous section

when deriving the moments of the moment features.

5.2.2.1 Wigner Distribution for Randomly Varying Channels The Wigner dis-

tribution of the signal at x is defined as

Wû(t, ω; x) =
1

2π

∫

û
(

x, t+
τ

2

)

û∗
(

x, t− τ

2

)

ejωτdτ (5.83)

Substituting the expression from Eq. (5.82), we obtain the following relation:

Wû(t, ω; x) = Wu(t, ω; 0) ∗tWH(t, ω; x) ∗tWψ̂(t, ω; x) (5.84)

where WH(t, ω; x) is the Wigner distribution of the deterministic transfer function of the

channel, Wψ̂(t, ω; x) is the Wigner distribution of the reduced wavefunction, and ∗t represents

convolution in the time domain. Because the initial wave is deterministic, the model becomes,

in the ensemble sense,

〈Wû(t, ω; x)〉 = Wu(t, ω; 0) ∗tWH(t, ω; x) ∗t 〈Wψ̂(t, ω; x)〉 (5.85)

We may also write this model as

〈Wû(t, ω; x)〉 = Wu(t, ω; x) ∗t 〈Wψ̂(t, ω; x)〉 (5.86)

where

Wu(t, ω; x) = Wu(t, ω; 0) ∗tWH(t, ω; x) (5.87)

is the Wigner distribution of the signal propagating in the deterministic channel. Writing

the model as Eq. (5.86) will allow us to take advantage of the results of the previous chapters

when deriving the moments of the moment features in the randomly varying channel model.

59



5.2.3 Moments of Moments

The moments of the temporal moment features of the Wigner distribution of the signal are

given generally by

〈(〈tnû〉x)i〉 =

∫ ∫ ∫ ∫

...

∫ ∫

(t1 t2 ... ti)
n

〈Wû (t1, ω1; x)Wû (t2, ω2; x) ... Wû (ti, ωi; x)〉 dt1dω1 dt2dω2 ... dtidωi (5.88)

which can be written equivalently in terms of the moments of the deterministic signal and

moments of the reduced wavefunction as (see Eq. 5.89)

〈(〈tnû〉x)i〉 =
n
∑

m1,m2...mi=0

(

n

m1

)(

n

m2

)

...

(

n

mi

)
∫ ∫

...

∫

(5.89)

(

〈tn−m1
u 〉x,ω1〈tn−m2

u 〉x,ω2...〈tn−mi
u 〉x,ωi

)

〈〈tm1

ψ̂
〉x,ω1〈tm2

ψ̂
〉x,ω2...〈tmi

ψ̂
〉x,ωi

〉 dω1dω2...dωi

where 〈〈tn
ψ̂
〉x,ω〉 is the expected value of the nth temporal moment of the reduced wavefunction,

given by

〈〈tn
ψ̂
〉x,ω〉 =

∫

tn〈Wψ̂(t, ω; x)〉dt (5.90)

=
1

2π

∫ ∫

tn〈ψ∗

(

x, ω +
θ

2

)

ψ

(

x, ω − θ

2

)

〉ejtθdtdθ (5.91)

If we introduce a variable substitution,

ωa = ω − θ

2
(5.92)

ωb = ω +
θ

2
(5.93)

we find that the nth moment is given by

〈〈tn
ψ̂
〉x,ωb

〉 =
1

2π

∫ ∫

tn〈ψ̂∗ (x, ωa) ψ̂ (x, ωb)〉ejt(ωb−ωa)dtdωa (5.94)

= jn
∫

δ(n) (ωb − ωa) 〈ψ̂∗ (x, ωa) ψ̂ (x, ωb)〉dωa (5.95)

= jn
[

∂n

∂ωna
Γ2 (x;ωa, ωb)

]

ωa=ωb

(5.96)

where Γ2 is the two-frequency mutual coherence function (MCF), defined as:

Γ2 (x;ωa1 , ωb1) = 〈ψ̂∗ (x, ωa1) ψ̂ (x, ωb1)〉 (5.97)
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The two-frequency MCF is widely used to characterize a fluctuating environment because

it quantifies the coherence bandwidth and coherence time [2]. The definition of the two-

frequency MCF generalizes to higher order as

Γ2i (x;ωa1 , ωb1, ωa2 , ωb2, ..., ωai
, ωbi) = 〈ψ̂∗ (x, ωa1) ψ̂ (x, ωb1) ψ̂

∗ (x, ωa2) ψ̂ (x, ωb2)

...ψ̂∗ (x, ωai
) ψ̂ (x, ωbi)〉 (5.98)

The 2ith-frequency MCF will be used in the formulation of the moments of the moment

features. For higher order expectations, Eq. (5.96) generalizes to

〈〈tn1

ψ̂
〉x 〈tn2

ψ̂
〉x ... 〈tni

ψ̂
〉x〉 = jn1+n2+...+ni

[

∂n1

∂ωn1
a1

∂n2

∂ωn2
a2

...
∂ni

∂ωni
ai

Γ2i (x;ωa1 , ωb1, ωa2 , ωb2, ..., ωai
, ωbi)

]

(5.99)

evaluated at ωa1 = ωb1, ωa2 = ωb2 , ..., ωai
= ωbi.

The form of the two-frequency MCF for the various scattering regimes is given in the

literature (see, for example, Flatté [18]). However, because we need higher-order MCFs in

the calculation of the moments of moments, we must use the approximation method given

by Dashen to estimate the higher-order MCFs from the two-frequency MCF [19].

Assuming Gaussian statistics, we may approximate the 2ith-frequency MCF as [19]

Γ2i (x;ωa1 , ωb1 , ωa2, ωb2 , ..., ωai
, ωbi) ≈

∑

perms

i
∏

m,n=1

〈ψ̂∗ (x, ωam
) ψ̂ (x, ωbn)〉 (5.100)

where perms means that we sum over the permutations of the ms and ns. For example, for

i = 2, we have

Γ4 (x;ωa1 , ωb1, ωa2 , ωb2) ≈ 〈ψ̂∗ (x, ωa1) ψ̂ (x, ωb1)〉〈ψ̂∗ (x, ωa2) ψ̂ (x, ωb2)〉

+〈ψ̂∗ (x, ωa1) ψ̂ (x, ωb2)〉〈ψ̂∗ (x, ωa2) ψ̂ (x, ωb1)〉 (5.101)

We use this approximation in the formulation of the moments of moments.
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5.2.4 Example

In this section we compute expressions for the first two temporal moments of a signal prop-

agating in a fluctuating channel. To maximize generality, we make no assumptions about

the nature of the signal, the channel, or the fluctuations except to restrict the randomness

to the geometrical optics regime. In this regime, the two-frequency MCF is given by [18]

Γ2 (x;ω1, ω2) = e
−2

“

ω2−ω1
ω1+ω2

”2
Σ2

(5.102)

where Σ is the strength parameter given above. The expected value of first order temporal

moment is given by

〈〈tû〉x〉 =

∫

〈t1u〉x,ω1 〈〈t0
ψ̂
〉x,ω1〉 dω1 +

∫

〈t0u〉x,ω1 〈〈t1
ψ̂
〉x,ω1〉 dω1

= 〈tu〉x +

∫

〈〈t1
ψ̂
〉x,ω1〉 |F (x, ω1)|2 dω1 (5.103)

We must compute the expected value of the first temporal moment of the reduced wavefunc-

tion:

〈〈t1
ψ̂
〉x,ω1〉 = j

[

∂

∂ωa
〈ψ̂∗ (x, ωa) ψ̂ (x, ωb)〉

]

ωa=ωb

(5.104)

= 0 (5.105)

Therefore, we have that the first temporal moment of the wave in the random channel is

equal to the first temporal moment of the wave propagating in the associated deterministic

channel,

〈〈tû〉x〉 = 〈tu〉x (5.106)

The second order expectation of the first order temporal moment is given by

〈(〈tû〉x)2〉 =
n
∑

m1,m2=0

(

1

m1

)(

1

m2

)
∫ ∫

(5.107)

(

〈tn−m1
u 〉x,ω1〈tn−m2

u 〉x,ω2

)

〈〈tm1

ψ̂
〉x,ω1〈tm2

ψ̂
〉x,ω2〉 dω1dω2

=

∫ ∫

(

〈t1u〉x,ω1〈t1u〉x,ω2

)

〈〈t0
ψ̂
〉x,ω1〈t0ψ̂〉x,ω2〉 dω1dω2 (5.108)

+2

∫ ∫

(

〈t1u〉x,ω1〈t0u〉x,ω2

)

〈〈t0
ψ̂
〉x,ω1〈t1ψ̂〉x,ω2〉 dω1dω2

+

∫ ∫

(

〈t0u〉x,ω1〈t0u〉x,ω2

)

〈〈t1
ψ̂
〉x,ω1〈t1ψ̂〉x,ω2〉 dω1dω2
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which we write as

〈(〈tû〉x)2〉 = I1(x) + 2I2(x) + I3(x) (5.109)

where

I1(x) =

∫ ∫

(

〈t1u〉x,ω1〈t1u〉x,ω2

)

〈〈t0
ψ̂
〉x,ω1〈t0ψ̂〉x,ω2〉 dω1dω2 (5.110)

I2(x) =

∫ ∫

(

〈t1u〉x,ω1〈t0u〉x,ω2

)

〈〈t0
ψ̂
〉x,ω1〈t1ψ̂〉x,ω2〉 dω1dω2 (5.111)

I3(x) =

∫ ∫

(

〈t0u〉x,ω1〈t0u〉x,ω2

)

〈〈t1
ψ̂
〉x,ω1〈t1ψ̂〉x,ω2〉 dω1dω2 (5.112)

The expected value of the product of two zeroth order temporal moments of the reduced

wavefunction is given by

〈〈t0
ψ̂
〉x,ω1〈t0ψ̂〉x,ω2〉 = Γ4 (x;ω1, ω1, ω2, ω2) (5.113)

= 1 + 〈ψ̂∗ (x, ω1) ψ̂ (x, ω2)〉〈ψ̂∗ (x, ω2) ψ̂ (x, ω1)〉 (5.114)

= 1 + e
−4

“

ω2−ω1
ω1+ω2

”2
Σ2

(5.115)

and I1(x) then becomes

I1(x) =

∫ ∫

(

〈t1u〉x,ω1〈t1u〉x,ω2

)

[

1 + e
−4

“

ω2−ω1
ω1+ω2

”2
Σ2

]

dω1dω2 (5.116)

To find I2(x) we must evaluate

〈〈t1
ψ̂
〉x,ω1〈t0ψ̂〉x,ω2〉 = j

[

∂

∂ωa1
Γ4 (x;ωa1 , ω1, ωa2, ω2)

]

ωa1=ω1,ωa2=ω2

(5.117)

= j

(

ω2 (ω2 − ω1)
(

ω1+ω2

2

)3

)

Σ2e
−4

“

ω2−ω1
ω1+ω2

”2
Σ2

(5.118)

and I2(x) is then

I2(x) =

∫ ∫

(

〈t1u〉x,ω1〈t0u〉x,ω2

)

[

j

(

ω2 (ω2 − ω1)
(

ω1+ω2

2

)3

)

Σ2e
−4

“

ω2−ω1
ω1+ω2

”2
Σ2

]

dω1dω2 (5.119)

63



Finally, for I3(x), we must find

〈〈t1
ψ̂
〉x,ω1〈t1ψ̂〉x,ω2〉 = j2

[

∂

∂ωa1

∂

∂ωa2
Γ4 (x;ωa1 , ωb1 , ωa2 , ωb2)

]

ωa1=ωb1
,ωa2=ωb2

(5.120)

= Σ4ω1ω2

(

ω2 − ω1
(

ω1+ω2

2

)3

)2

e
−4

“

ω1−ω2
ω2+ω1

”2
Σ2

(5.121)

and I3(x) is then given by

I3(x) =

∫ ∫

(

〈t0u〉x,ω1〈t0u〉x,ω2

)



Σ4ω1ω2

(

ω2 − ω1
(

ω1+ω2

2

)3

)2

e
−4

“

ω1−ω2
ω2+ω1

”2
Σ2



 dω1dω2 (5.122)

The variance is given by

V ar {〈tû〉x} = 〈(〈tû〉x)2〉 − (〈〈tû〉x〉)2 (5.123)

While we cannot analytically evaluate these integrals without more information or as-

sumptions, these results provide a recipe for a future numerical implementation of this frame-

work. In general, as the variations of the medium increase in strength, the variability of the

features will also increase. The Wigner distribution of the reduced wavefunction is related to

the two-frequency MCF through a Fourier transform (Eqs. 5.90 and 5.91). As the strength

parameter in Eq. (5.102) increases, the shape of the two-frequency MCF becomes more

peaked. Because of the Fourier relation, the Wigner distribution of the reduced wavefunc-

tion will then become more broad, increasing the variability of the features.
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6.0 FEATURE DISTRIBUTIONS

The process of automatically classifying a sonar echo can be organized into two steps: first,

features that numerically describe characteristics of the received waveform are extracted from

the wave; second, the features are fed to a classifier, which is typically a machine learning

algorithm such as a Bayesian classifier, a neural network or a support vector machine [29].

The purpose of the classifier is to assign the observation to a class based upon knowledge

learned from training data.

To improve classification performance under this paradigm, either the features or classifier

must be improved. Our focus is on improving the features sent to the classifier, and in this

chapter we explore how we may use the moments of moment features developed in the earlier

chapters to improve classification performance. The method will use the estimates of the

feature variability to design more effective and efficient feature sets. First, however, we

review Bayesian classification in order to frame the discussion on classification performance.

6.1 BAYESIAN CLASSIFICATION

The process of training a classifier is the process of developing class specific probability

distributions in the feature space. Traditionally, for the supervised learning case, this is

done by feeding labelled training data examples to a classifier. The classifier uses this data

to estimate the pdfs of the feature values for each class. A decision rule, such as maximum

likelihood, is then applied over the pdfs in the feature space to determine decision thresholds.

Future observations are then classified by their location in the feature space relative to the

thresholds.
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In order to simplify the discussion of Bayesian classification, we limit the discussion to

the binary decision regime, with the two classes labeled as target and clutter. The concepts,

however, generalize to any number of classes.

Because this is a two-class problem, we have two hypotheses: Ht is the target hypothesis,

and Hc is the clutter hypothesis. The features are represented by the variable y. The likeli-

hood that a feature value belongs to the target class is given by the conditional probability

p {y|Ht}, and the likelihood that a feature value belongs to the clutter class is given by

p {y|Hc}.

The likelihood is related to the a posteriori or posterior probability, given by p {Ht|y},
through Bayes’ theorem, which is given by [53]

p {Ht|y} =
p {y|Ht} p {Ht}

p {y} (6.1)

where p {Ht} is the a priori or prior probability of the target hypothesis, and p {y} is the

unconditional probability of the feature value.

The classifier in Bayesian classification can be represented by a likelihood ratio test

(LRT):

Λ(y)

Ht

>

<

Hc

η (6.2)

where Λ(y) is the likelihood ratio and η is the threshold. The inequality notation indicates

that if the likelihood ratio is greater than η the classifier assigns the target hypothesis to

the observation, and if the likelihood ratio is less than η the classifier assigns the clutter

hypothesis to the observation.
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The maximum likelihood LRT is given by

p {y|Ht}
p {y|Hc}

Ht

>

<

Hc

1 (6.3)

Intuitively, this classifier chooses the hypothesis with the greater a priori likelihood.

The LRT for the maximum a posteriori (MAP) classifier is given by

p {Ht|y}
p {Hc|y}

Ht

>

<

Hc

1 (6.4)

This classifier chooses the more likely hypothesis given the feature value. Using Bayes’

theorem, we have

p {y|Ht}
p {y|Hc}

H1

>

<

H0

p {Hc}
p {Ht}

(6.5)

If the hypotheses have equal priors, p {Hc} = p {Ht}, the MAP classifier is equivalent to the

maximum likelihood classifier.

Given an observation and a decision by the classifier, there are four possible outcomes:

• Hit - The correct classification of a target; the probability of a hit is given by

PH =

∫ ∞

η

p {y|Ht} dy (6.6)

• Miss - The incorrect classification of a target as clutter; the probability of a miss is given

by

PM =

∫ η

−∞

p {y|Ht} dy = 1 − PH (6.7)
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• False alarm - The incorrect classification of clutter as a target; the probability of false

alarm is given by

PFA =

∫ ∞

η

p {y|Hc} dy (6.8)

• Correct rejection - The correct classification of clutter as clutter; the probability of

correct rejection is given by

PCR =

∫ η

−∞

p {y|Hc} dy = 1 − PFA (6.9)

p{y | Hc} p{y | Ht}

threshold

PCR
PH

PM PFA
y

Figure 12: Feature distributions and possible outcomes of a likelihood ratio test.

The probability of each of these scenarios is illustrated in Fig. 12 for target and clutter

distributions and a maximum likelihood threshold. Broadly speaking, to improve classifi-

cation, we must reduce the overlap of the distributions. This can be done by reducing the

width of each distribution or by moving them farther apart. In the remainder of this chapter,

we discuss how we can estimate the probability distributions of moment features and then

evaluate them for their class discriminability.

68



6.2 FEATURE DISTRIBUTIONS

The pdf of the feature conditioned on the target hypothesis is the likelihood of a feature value

given that the signal originated in the target class. We may use the moments of moment

features to estimate this likelihood. We write the likelihood as

p {y|Ht} =
1

2π

∫

MHt
(θ)e−jθydθ (6.10)

where MHt
(θ) is the characteristic function of the feature under the target hypothesis. The

characteristic function and pdf are Fourier transform pairs, so we may write

MHt
(θ) =

∫

p {y|Ht} ejθydy (6.11)

By expanding the exponential into a Taylor series, we have

MHt
(θ) =

∫ ∞
∑

m=1

(jθy)m

m!
p {y|Ht} dy (6.12)

Switching the order of summation and integration and evaluating the integral, we find that

the characteristic function may be constructed from the moments of the moment features

[14]

MHt
(θ) =

∞
∑

m=0

jmθm

m!
〈ym〉 (6.13)

The pdf may then be recovered via a Fourier transform as shown in Eq. (6.10). This

procedure may also be used to estimate joint densities. The joint characteristic function is

given by [14]

MHt
(θ1, θ2) =

∞
∑

m1,m2=0

(jθ1)
m1 (jθ2)

m2

m1!m2!
〈ym1

1 ym2
2 〉 (6.14)

and the joint pdf is then given by the two-dimensional Fourier transform:

p {y1, y2|Ht} =

(

1

2π

)2 ∫ ∫

MHt
(θ1, θ2)e

−jθ1y1−jθ2y2dθ1dθ2 (6.15)

The estimates of the pdfs obtained via this method, however, are just one of a potentially

infinite set of pdfs that could satisfy the moments. Because we have arrived at this solution

without specifying any requirements, there is no reason to believe that these are the ideal

estimates.
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A better estimate of the pdf would be obtained by following a procedure that specifically

does not make any assumptions beyond the values of the moments; or, to put it another

way, the most general pdf that still satisfies the moments. This estimate of the pdf is called

the maximum entropy estimate [47, 31], and it has been well studied in this application, that

is, in reconstructing the most general pdf from a finite set of moments. We review the main

results [21, 41, 49].

The entropy of a pdf is given by

H(p|Ht) = −
∫ b

a

p {y|Ht} ln p {y|Ht} dy (6.16)

and it is typically understood to be a measure of randomness. The maximum entropy pdf is

found via the method of Lagrange multipliers to be of the form

p {y|Ht} = exp

[

−
m
∑

r=0

λry
r

]

(6.17)

where λr are the multipliers whose exact values are chosen to satisfy the moment equation:

∫ b

a

ynexp

[

−
m
∑

r=0

λry
r

]

dy = 〈yn〉 (6.18)

As an example, for the case of m = 2, when we wish to estimate a pdf from only the first

two moments, the maximum entropy pdf is the normal or Gaussian distribution.

In the example given in Section 5.1.4, we found expressions for the first two moments

of the first temporal moment feature of an arbitrary initial signal propagating in a channel

where propagation distance x was random and characterized by a normal distribution with

mean µ and variance σ2. For the case of a real dispersion relation, we found the mean and

variance of the first temporal moment to be approximately given by

〈〈tu〉x〉 ≈ 〈tu〉0 + µ〈k′R(ω)〉0 (6.19)

V ar{〈tu〉x} ≈ σ2 (〈k′R(ω)〉0)2
(6.20)

Therefore, the maximum entropy pdf of the first temporal moment feature is approximately

given by the normal distribution with mean 〈tu〉0 + µ〈k′R(ω)〉0 and variance σ2 (〈k′R(ω)〉0)2.
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6.3 FEATURE SET DESIGN

Now that we have shown how the moments of the moment features are used to estimate the

pdfs of the features, we explore how estimates of the pdfs of classification features can be used

to design feature sets that will facilitate better classification performance. The individual

features to be included in a feature set must be evaluated on the basis of two qualities:

accuracy and redundancy. In general, there are three approaches to feature evaluation:

distance measures, dependence measures, and information measures [3]. In this section we

show how we can use these three measures to evaluate the accuracy and redundancy of

features.

Feature selection is a topic that has received much interest in the machine learning

community. This has been primarily motivated by the “curse of dimensionality,” which,

with regard to classification, prescribes that the amount of training data required to properly

characterize a feature space grows exponentially with the number of features used [17, 27].

In many realistic classification problems, training data is often limited; accordingly, the

number of features used should be as small as possible, which motivates the designer of a

sonar classification system to select the most effective features possible.

An effective feature set, therefore, consists of a small number of features that facilitate

the separation of classes in the feature space while simultaneously not providing information

that is redundant with respect to the other features in the set. Moreover, it is desireable that

the within-class variability of a feature be small. This means, ideally, that identical objects

have identical numerical values for a specific feature and other factors introduce minimal

variability. In reality, objects within a class are rarely “identical.” Additionally, random

variations arise due to factors such as noise and propagation effects that could be significant.

It is nevertheless desirable, if possible, to mitigate the feature variability introduced by these

latter factors. To address that goal, it is useful to quantitatively analyze the variability

arising from such sources.
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6.3.1 Accuracy

The accuracy of a feature is a measure of how well the feature discriminates between the

target and clutter classes. A first-order estimate of the discriminability of a feature can

be computed by calculating the Euclidean distance between the pdfs under the target and

clutter hypotheses. This method requires only the first moment of the moment feature for

each class, but it also ignores the variance and higher-order moments and, therefore, is not

a very good measure of accuracy.

Accuracy may also be estimated via a dependence measure such as correlation. The

correlation of a feature computed from a propagated echo with the expected free field feature

value is given by

ρy1,y1ff |Ht
=

〈y1y1ff〉Ht
− 〈y1〉Ht

〈y1ff〉Ht

σy1|Ht
σy1ff |Ht

(6.21)

where y1ff is the free field feature value, 〈·〉 is the expected value, and σ is the standard

deviation.

An additional quantity that may be used to evaluate accuracy is based upon the receiver

operating characteristic (ROC) curve. A ROC curve is a plot of the probability of a hit

(PH) versus the probability of false alarm (PFA)–two classification metrics obtained from

Eqs. (6.6) and (6.8), respectively. The classification performance as quantified by the ROC

curve can be summarized by a single number by computing the area under the ROC curve

(AUR). An AUR score of unity represents perfect classification while a score of 0.5 represents

chance.

6.3.2 Redundancy

The amount of training data necessary to properly train a classifier grows exponentially

with the dimensionality of the feature set, and typically for the sonar classification problem

training data is not available in abundance. Therefore, it is important to construct feature

sets with minimal redundancy. The within-class correlation of two features provides one

measure of redundancy. The correlation coefficient is given by

ρy1,y2 =
〈y1y2〉 − 〈y1〉〈y2〉

σy1σy2
(6.22)
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where σyn
is the standard deviation of the feature yn. Correlation coefficient values near

unity indicate that the features are highly redundant. Similarly, values near negative one

indicate anti-correlation, but this also indicates significant redundancy. Low redundancy is

indicated by correlation coefficients near zero.

Mutual information can also be used to quantify the redundancy of two features. The

mutual information between features y1 and y2 is given by

I(y1, y2|Ht) =

∫ ∫

p (y1, y2|Ht) ln

(

p (y1, y2|Ht)

p (y1|Ht) p (y2|Ht)

)

dy1dy2 (6.23)

If two features have no mutual information, that is, I(y1, y2|Ht) = 0, then there is no

redundancy and y1 and y2 are completely independent.

With these metrics established, the ideal feature set will be constructed by minimizing

the amount of redundancy and maximizing the accuracy. This approach is called “minimum-

redundancy-maximum-relevance” (mRMR) in the literature [36].
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7.0 ACOUSTIC PROPAGATION IN A WEDGE-SHAPED OCEAN

The exact nature of propagation effects such as dispersion and damping is due to the specific

geometry of the channel and the nature of the boundaries. Because of the complexity of the

ocean environment, however, it is often not possible to implement exact models of a given

shallow water channel. Highly accurate and useful approximations may be obtained by

using simplified models. For many problems of interest, the range-independent parallel-

plate waveguide is a sufficient approximation to a shallow-water ocean channel. A more

accurate model is given by the range-independent Pekeris waveguide, which models acoustic

interaction with bottom sediment in addition to propagation in the water column. Both of

these models assume that the bottom is horizontal. In coastal regions, however, the ocean

often has a sloping bottom, and thus a better approximation may be obtained by using a

wedge shape as a model.

The solution of the wave equation in wedge-shaped environments has received consid-

erable attention from researchers. Pierce studied the effect of dispersion on guided waves

in waveguides with boundaries that vary slowly with the horizontal coordinate using the

method of normal modes and an assumption of no coupling between modes [46]. Biot and

Tolstoy gave the solution for the field in a rigid wedge due to a point source using the method

of normal modes [4], and Chu then extended the method of Biot and Tolstoy to include the

penetrable wedge [12, 13].

Buckingham used integral transform methods to solve for the sound field in both the

perfectly reflecting wedge [6] and the penetrable-bottom wedge [7]. Harrison then generalized

the method of Buckingham to include more complicated geometries [28].

Stakgold used the method of Riemann surfaces to obtain the solution of the Helmholtz

equation within a wedge-shaped region with perfectly reflecting boundaries. The solution he
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obtained is similar to the normal mode solution [48]. Kuznetsov recognized that the wave

equation for the perfectly reflecting wedge is separable in cylindrical coordinates and used

separation of variables to obtain a normal mode solution [33].

Our goal in this work is to obtain a solution of the acoustic field in a wedge and also

an approximation to that solution that emphasizes propagation effects such as dispersion

and damping in the time-frequency plane. To accomplish this, we initially follow an ap-

proach similar to that of Kuznetsov [33]. We analyze a simplified model of a sloping-bottom

ocean channel, namely, a two-dimensional wedge with perfectly reflecting boundaries in po-

lar coordinates. Via the method of separation of variables, we obtain an expression for the

dispersion relation that couples radial frequency (ω) and spatial frequency (k) and highlight

the similarities between the form of the dispersion relation for the wedge and the form of

the dispersion relation for the two-plate waveguide. We compute the field in the wedge due

to a point source at a given location and use this solution to obtain a per mode Wigner

approximation of the acoustic field in the wedge. Finally, we give the results of simulations

comparing the Wigner distribution of the exact solution to the result given by the Wigner

approximation.

7.1 DISPERSION RELATION

Because our goal is to derive the Wigner approximation for the sloping-bottom waveguide,

which will be defined in terms of the initial wave and the dispersion relation, we first derive

the dispersion relation for the channel. The geometry and parameters relevant to the problem

are given in Fig. 13. The angle of the wedge is denoted θ0. The source is located at (r′, θ′) and

the receiver is located at (r, θ). The ocean surface and bottom are assumed to be perfectly

reflecting, that is, the solution of the wave equation goes to zero at the boundaries.

To find the dispersion relation, we begin with the unforced wave equation, given by [50]

∇2p (r, θ, t) =
1

c2
∂2p (r, θ, t)

∂t2
(7.1)
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(θ',r')

(θ,r)

θ0

Figure 13: Schematic of the perfect wedge.

In polar coordinates, the Laplacian is defined as

∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂θ2
(7.2)

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(7.3)

Eq. (7.1) then becomes
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2
=

1

c2
∂2p

∂t2
(7.4)

To obtain the Helmholtz equation, we plug in a solution with explicit time dependence,

p(r, θ, t) = U(r, θ)ejωt, giving

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂θ2
+
ω2

c2
U = 0 (7.5)

This equation is separable, and thus we seek a solution of the form U(θ, r) = Ψ(θ)Φ(r).

Substituing this form of the solution into Eq. (7.5), we get

1

Φ(r)

[

∂2Φ(r)

∂r2
+

1

r

∂Φ(r)

∂r

]

+
1

Ψ(θ)

[

1

r2

∂2Ψ(θ)

∂θ2
+
ω2

c2
Ψ(θ)

]

= 0 (7.6)

Eq. (7.6) has two sets of differential terms dependent upon different variables; therefore,

to satisfy the equation, the terms must be equal to the positive and negative values of a

constant, which we call k2
r [32]. We then have the following two equations:

1

Φ(r)

[

∂2Φ(r)

∂r2
+

1

r

∂Φ(r)

∂r

]

= −k2
r (7.7)

1

Ψ(θ)

[

1

r2

∂2Ψ(θ)

∂θ2
+
ω2

c2
Ψ(θ)

]

= k2
r (7.8)
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The two equations may be simplified algebraically to

∂2Φ(r)

∂r2
+

1

r

∂Φ(r)

∂r
+ k2

rΦ(r) = 0 (7.9)

∂2Ψ(θ)

∂θ2
+ r2

[

−k2
r +

ω2

c2

]

Ψ(θ) = 0 (7.10)

Eq. (7.10) is equivalent to

Ψ′′(θ) + C2Ψ(θ) = 0 (7.11)

where

C2 = r2

[

−k2
r +

ω2

c2

]

(7.12)

The solution to Eq. (7.11) is a sinusoidal function. The vanishing boundary condition at

θ = 0 forces the solution to be of the form

Ψ(θ) = A sin(Cθ) (7.13)

and the vanishing boundary condition at θ = θ0 requires that C be given by

C =
mπ

θ0
(7.14)

where m is an integer. The set of solutions given in Eq. (7.13) are called modes, and they

have the property that they are orthonormal, that is

∫ θ0

0

Ψm(θ)Ψn(θ)dθ =











1, if m = n

0, if m 6= n

(7.15)

The dispersion relation is found by substituting the value for C given in Eq. (7.14) into

Eq. (7.12) and solving for kr,

kr(ω) =
1

c

√

ω2 −
(

mπc

θ0r

)2

(7.16)

The dispersion relation shows how wavenumber (k) and radial frequency (ω) are coupled.

This coupling, as we will illustrate later, gives insight into how the time-frequency distribu-

tion of a wave evolves as it propagates.
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7.1.1 Comparison to Parallel-Plate Waveguide

The dispersion relation for an ideal, isovelocity, parallel-plate waveguide with perfectly re-

flecting boundaries is given by [50]

kr(ω) =
1

c

√

ω2 −
(mπc

D

)2

(7.17)

where D is the depth of the waveguide (separation of the plates). Fig. 14 gives a visual

comparison of the parameters for depth and range in the parallel-plate and sloping-bottom

waveguides. The parameters x and D correspond to range and depth in the parallel-plate

waveguide, respectively; while in the sloping-bottom waveguide the r parameter corresponds

to range and the θ0r parameter corresponds to the arc length separating the two plates at

range r.

D

 θ r
0

r

 x

θ
0

Figure 14: A comparison of the parameters for depth and range in the parallel-

plate (D and x) and sloping-bottom (θ0r and r) waveguides.

Using basic trigonometry, we can relate the parameters of the parallel-plate waveguide

to the parameters of the sloping-bottom waveguide as follows:

D = r sin θ0 (7.18)

x = r cos θ0 (7.19)
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For small angles (θ0 <∼ 5·), we may use the approximation

sin θ0 → θ0 (7.20)

cos θ0 → 1 (7.21)

Therefore, for small angles,

D → θ0r (7.22)

x → r (7.23)

Thus, as the angle of the slope of the bottom becomes smaller, we find that the form of

the dispersion relation for the sloping-bottom waveguide given in Eq. (7.16) approaches the

form of the dispersion relation for the parallel-plate waveguide. At exactly θ = 0 the wedge

would be closed, but we may obtain a channel of arbitrary depth as θ0 becomes small (but

greater than zero) by increasing the range from the apex.

7.2 ACOUSTIC FIELD DUE TO A POINT SOURCE

To find the acoustic field due to a point source in the waveguide, we drive the Helmholtz

equation (Eq. 7.5) with an impulse located at (r′, θ′), which is a point within the waveguide,

i.e., 0 < r′ < r and 0 < θ′ < θ0. The inhomogeneous Helmholtz equation is

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂θ2
+
ω2

c2
U = −δ(r − r′)δ(θ − θ′)

2πr
(7.24)

We seek a solution in the form of an expansion in terms of the modes given by Eq. (7.13),

or

U(θ, r) =

∞
∑

m=1

Ψm(θ)Φm(r) (7.25)

Plugging in this form of the solution, Eq. (7.24) then becomes

∞
∑

m=1

[

∂2Φm(r)

∂r2
+

1

r

∂Φm(r)

∂r

]

Ψm(θ)+

[

1

r2

∂2Ψm(θ)

∂θ2
+
ω2

c2
Ψm(θ)

]

Φm(r) = −δ(r − r′)δ(θ − θ′)

2πr

(7.26)
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This equation may be simplified by using Eq. (7.8) to obtain

∞
∑

m=1

[

∂2Φm(r)

∂r2
+

1

r

∂Φm(r)

∂r
+ k2

rmΦm(r)

]

Ψm(θ) = −δ(r − r′)δ(θ − θ′)

2πr
(7.27)

We apply the operator
∫ θ0

0
(·)Ψn(θ)dθ to both sides of Eq. (7.27) and, because of the or-

thonormality of the modes (see Eq. 7.15), we now have [32]

∂2Φn(r)

∂r2
+

1

r

∂Φn(r)

∂r
+ k2

rmΦn(r) = −δ(r − r′)Ψn(θ
′)

2πr
(7.28)

The solution to this equation is given by the Hankel function [32],

Φn(r) =
j

4
Ψn(θ

′)H
(1)
0 (krn(ω) (r − r′)) (7.29)

where krn(ω) is given by Eq. (7.16). The total solution for the field is given by the sum of

modes,

U(θ, r) =
j

4

∞
∑

m=1

Ψm(θ)Ψm(θ′)H
(1)
0 (krm(ω) (r − r′)) (7.30)

The solution of the field due to a point source given in Eq. (7.30) is for a single frequency

ω. The solution for a broadband pulse is found using Fourier synthesis. The spectrum of

the field at r due to a broadband source located at r′ is given by

Fn(r, ω) = F (r′, ω)H
(1)
0 (krn(ω) (r − r′)) (7.31)

where F (r′, ω) is the spectrum of the initial pulse at r′. Using the asymptotic form of the

Hankel function we may write the spectrum as

Fn(r, ω) ≃ e−j
π
4

√

2

πkrn(ω) (r − r′)
F (r′, ω)ejkrn(ω)(r−r′) (7.32)

To obtain the pulse in the time domain, we inverse Fourier transform the spectrum at r, i.e.,

un(r, t) =
1

2π

∫

Fn(r, ω)e−jωtdω (7.33)

where Fn(r, ω) is given exactly by Eq. (7.31) or approximately in the asymptotic regime

(krn (ω) (r − r′) >> 1) by Eq. (7.32).
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7.3 WIGNER DISTRIBUTION AND APPROXIMATION

The Wigner time-frequency distribution for the nth mode is given by [14]

Wun(r, t, ω) =
1

2π

∫

F ∗
n

(

r, ω +
λ

2

)

Fn

(

r, ω − λ

2

)

ejtλdλ (7.34)

By the properties of the Fourier transform, we have

F ∗
n

(

r, ω +
λ

2

)

Fn

(

r, ω − λ

2

)

=
1

2π

∫

Wun(r, t, ω)e−jtλdt (7.35)

Using the asymptotic form of the spectrum at r given in Eq. (7.32), the Wigner distribution

of the pulse due to a point source may be written as

Wun(r, t, ω) =
1

π2(r − r′)

∫

F ∗

(

r′, ω +
λ

2

)

F

(

r′, ω − λ

2

)

1
√

k∗rn(ω + λ
2
)krn(ω − λ

2
)

ej(krn(ω−λ
2
)−k∗rn(ω+ λ

2
))(r−r′)ejtλdλ (7.36)

Using the relation given in Eq. (7.35), we obtain

Wun(r, t, ω) =
1

π2(r − r′)

∫ ∫

W (r′, t′, ω)
1

√

k∗rn(ω + λ
2
)krn(ω − λ

2
)

ej(krn(ω−λ
2
)−k∗rn(ω+ λ

2
))(r−r′)ejλ(t−t′)dλdt′ (7.37)

where W (r′, t′, ω) is the Wigner distribution of the broadband source signal. We now write

the dispersion relation in terms of its real and imaginary parts,

krn(ω) = kRrn(ω) + jkIrn(ω) (7.38)

and Eq. (7.37) becomes

Wun(r, t, ω) =
1

π2(r − r′)

∫ ∫

W (r′, t′, ω)

1
√

(

kRrn(ω + λ
2
) − jkIrn(ω + λ

2
)
) (

kRrn(ω − λ
2
) + jkIrn(ω − λ

2
)
)

(7.39)

e−(kIrn(ω−λ
2
)+kIrn(ω+ λ

2
))(r−r′)ej(kRrn(ω−λ

2
)−kRrn(ω+ λ

2
))(r−r′)ejλ(t−t′)dλdt′
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Expanding the real and imaginary parts of the dispersion relation in the exponents into

Taylor series gives [39]

kIrn

(

ω − λ

2

)

+ kIrn

(

ω +
λ

2

)

=
∞
∑

n=0

k
(2n)
Irn (ω)

(2n)!

λ2n

22n−1
≈ 2kIrn(ω) +

1

4
k′′Irn(ω)λ2... (7.40)

kRrn

(

ω − λ

2

)

− kRrn

(

ω +
λ

2

)

=

∞
∑

n=0

k
(2n+1)
Rrn (ω)

(2n+ 1)!

λ2n+1

22n
≈ k′Rrn(ω)λ+

1

24
k′′′Rrn(ω)λ3...

(7.41)

We may write the terms under the radical in Eq. (7.39) as

(

kRrn

(

ω +
λ

2

)

− jkIrn

(

ω +
λ

2

))(

kRrn

(

ω − λ

2

)

+ jkIrn

(

ω − λ

2

))

=

kRrn

(

ω +
λ

2

)

kRrn

(

ω − λ

2

)

+ jkRrn

(

ω +
λ

2

)

kIrn

(

ω − λ

2

)

−jkRrn
(

ω − λ

2

)

kIrn

(

ω +
λ

2

)

+ kIrn

(

ω +
λ

2

)

kIrn

(

ω − λ

2

)

(7.42)

Expanding each of these terms into Taylor series, we have

kRrn

(

ω +
λ

2

)

kRrn

(

ω − λ

2

)

≈ (kRrn (ω))2 +

(

k′Rrn (ω)
λ

2

)2

+ ... (7.43)

jkRrn

(

ω +
λ

2

)

kIrn

(

ω − λ

2

)

≈ jkRrn (ω) kIrn (ω) − jkRrn (ω) k′Irn (ω)
λ

2
(7.44)

+jk′Rrn (ω)
λ

2
kIrn (ω) − jk′Rrn (ω) k′Irn (ω)

(

λ

2

)2

+ ...

jkRrn

(

ω − λ

2

)

kIrn

(

ω +
λ

2

)

≈ jkRrn (ω) kIrn (ω) + jkRrn (ω) k′Irn (ω)
λ

2
(7.45)

−jk′Rrn (ω)
λ

2
kIrn (ω) − jk′Rrn (ω) k′Irn (ω)

(

λ

2

)2

+ ...

kIrn

(

ω +
λ

2

)

kIrn

(

ω − λ

2

)

≈ (kIrn (ω))2 +

(

k′Irn (ω)
λ

2

)2

+ ... (7.46)

By keeping only the first order terms in each expansion, Eq. (7.42) is approximately equal

to

(

kRrn

(

ω +
λ

2

)

− jkIrn

(

ω +
λ

2

))(

kRrn

(

ω − λ

2

)

+ jkIrn

(

ω − λ

2

))

≈ (kRrn (ω))2 + (kIrn (ω))2 (7.47)
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Plugging the approximations into Eq. (7.39) gives

Wun(r, t, ω) ≈ e−2kIrn(ω)(r−r′)

π2(r − r′)
√

(kRrn(ω))2 + (kIrn(ω))2

∫ ∫

W (r′, t′, ω)ejλ(t−t′−k′Rrn(ω)(r−r′))dλdt′ (7.48)

We now evaluate the integrals to obtain the approximate expression:

Wun(r, t, ω) ≈ 2e−2kIrn(ω)(r−r′)

π(r − r′) |krn(ω)|W (r′, t− k′Rrn(ω)(r − r′), ω) (7.49)

This approximation provides a concise description of how the wave evolves in the time-

frequency plane as it propagates. The energy of the wave undergoes a frequency-dependent

time shift described by the first derivative of the real part of the dispersion relation. There

is also frequency-dependent attenuation as described by the leading term, which is highly

dependent upon the imaginary part of the dispersion relation.

7.4 NUMERICAL SIMULATIONS

To evaluate the accuracy of the approximation, we numerically compute the Wigner distri-

bution of the exact result given in Eq. (7.31) and the Wigner approximation given in Eq.

(7.49). We give two examples with different wedge geometries and source and receiver loca-

tions. For both examples, the sound channel is isovelocity at 1500m
s
, the sampling frequency

is 2000 Hz, and we simulate only the first propagating mode. The plots given are normalized

to allow for easy comparison.

In the first simulation, the wedge angle is θ0 = 0.5◦, the source is located at (r′, θ′) =

(3 km, 0.25◦), and the receiver is located at (r, θ) = (7 km, 0.3◦). Fig. 15 illustrates the

geometry of the problem in Cartesian coordinates. Note that, in the Cartesian coordinate

system, the source is at a depth of approximately 12 meters, and the channel at the source

range is approximately 25 meters deep. The receiver is approximately 35 meters deep, while

the channel at the receiver range is approximately 60 meters deep.
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Figure 15: Schematic diagram of the first example showing source (red x) and

receiver (blue +) positions.

Fig. 16 shows the results of the first numerical simulation. The Wigner distribution of

the exact solution is shown in the top panel while the Wigner approximation is shown in the

bottom panel. The approximation accurately captures the curvature induced by dispersion.

In the second simulation, the wedge angle is θ0 = 0.1◦, the source is located at (r′, θ′) =

(10 km, 0.05◦), and the receiver is located at (r, θ) = (15 km, 0.05◦). Fig. 17 illustrates the

geometry of the second simulation in Cartesian coordinates. Fig. 18 shows the results of

the second numerical simulation. As in the previous example, the approximation accurately

captures the frequency-dependent spreading of dispersion.

It is clear in both examples that the curvature caused by dispersion is similar in both the

approximation and the exact solution. However, it is also clear that there are differences be-

tween the plots, most notably that broadband energy in the lower frequency range is present

in the exact solution but not in the approximation. This energy is probably due to artifacts

that arise in the numerical computation of the Wigner distribution. To demonstrate this

fact, in Fig. 19 we compare the Wigner distribution of the exact solution to the spectrogram

of the exact solution. In the spectrogram, the excess broadband energy is not present.
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Figure 16: Normalized Wigner distribution of the exact solution (top panel) and

normalized Wigner approximation (bottom panel) for the first example.
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Figure 17: Schematic diagram of the second example showing source (red x) and

receiver (blue +) positions.
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Figure 18: Normalized Wigner distribution of the exact solution (top panel) and

normalized Wigner approximation (bottom panel) for the second example.
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Figure 19: Normalized Wigner distribution of the exact solution (top panel) and

normalized spectrogram of the exact solution (bottom panel) for the first exam-

ple.
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8.0 CONCLUSION

In this work we have presented a framework for estimating the variability of moment features

calculated from signals propagating in shallow water channels using a phase space approx-

imation method. In the process of developing this result, we have given the expression for

the full-field Wigner approximation. The accuracy of the Wigner approximation was vali-

dated using the statistical moments, and we have shown that the Wigner approximation is

more accurate than the stationary phase approximation for small propagation ranges. As

the propagation range increases, the Wigner approximation approaches the stationary phase

approximation.

Based upon the insights gained from the Wigner approximation, we have developed

propagation-invariant moment-like classification features and have shown their usefulness

through simulation. In classification problems where these features are not effective at

separating the classes, however, other features may have to be used. In that case, it is

important to be able to choose the best set of features, and to that end we developed a process

for estimating the moments of the moment features. We then showed how the moments of

moments could be used to estimate the pdfs of the features, and we gave two metrics with

which a feature set should be evaluated in order to develop effective and environmentally

robust feature sets.

Finally, we have extended the phase space approximation to the range-dependent propa-

gation case. Using the technique of separation of variables, we have derived the exact modal

solution of the acoustic field within a wedge-shaped region, and we used that exact solution

to derive the Wigner approximation for the wedge.
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8.1 FUTURE WORK

Many of the main results in this work, such as the moments of the Wigner approximation,

the propagation-invariant moments, and the moments of the moment features, have been

formulated for the range-independent propagation case. In the last chapter, we derived the

solution and Wigner approximation for a range-dependent waveguide. An area for future

work, then, is to develop those results for the wedge.

While the statistical moments are used as features to classify sonar signals in real world

applications, it is only a small subset of the possible features that could be used. The general

expression for moments of the Wigner distribution is given by

〈g(t, ω)〉 =

∫ ∫

g(t, ω)W (t, ω)dωdt (8.1)

In this work, we have studied the features where g(t, ω) = tn or g(t, ω) = ωn. However, any

function of t and ω could be used for g. To make the framework presented here more useful,

it would have to be extended to include more generalized features.

The propagation model used in this work is a one-way model. The initial signal in the

model used in this work is considered to be the target response. This is a simplification,

however. In active sonar, a pulse propagates from a source through the channel, interacts

with the target, and then propagates through the channel again to a receiver. Therefore,

a more accurate characterization of the pdfs of the features would be achieved by using a

two-way propagation model that included the interaction with the target.

The expressions for the moments of the moment features are given in terms of the (de-

terministic) moments of the initial wave and the moments of the channel. Therefore, we may

increase the separation between target and clutter distributions and simultaneously reduce

within-class feature variability by designing outgoing signals to produce specific values for

the moments of the initial wave. To illustrate this point, we return to the uncertain channel

example given in Chapter 5. In the first example (Section 5.1.3), the variance of the arrival

time of the signal was shown to be

〈(〈tu〉x)2〉 − (〈〈tu〉x〉)2 =
X2

12

(
∫

κ′R(ω) |F (0, ω)|2 dω
)2

(8.2)
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The variance depends upon three terms: X, which quantifies the uncertainty of the distance

of the receiver from the target; κ′R(ω), which is determined by the channel; and |F (0, ω)|2,
which is the initial target response. In active sonar, the target response is partially deter-

mined by the outgoing signal that interacts with the target. Therefore, in order to reduce

the variance of the feature, the only parameter in Eq. (8.2) over which the system designer

has any control is |F (0, ω)|2. To improve classification performance, the initial signal should

be designed to increase the distance between the means of the target and clutter classes,

while simultaneously reducing within-class variance.
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APPENDIX

DERIVATIONS

A.1 TEMPORAL

The expected values of the temporal moment features are given by Eq. (5.2),

〈〈tnu〉x〉 =

∫ ∫

tn〈Wu(t, ω; x)〉dωdt (.1)

By substituting in Eq. (5.1) and using the standard definition of convolution, we obtain

〈〈tnu〉x〉 =

∫ ∫ ∫

tnWu(t− τ, ω; 0)〈Wh(τ, ω; x)〉dωdtdτ (.2)

We then employ a change of variables,

〈〈tnu〉x〉 =

∫ ∫ ∫

(t+ τ)nWu(t, ω; 0)〈Wh(τ, ω; x)〉dωdtdτ (.3)

The binomial theorem is given by

(t+ τ)n =

n
∑

m=0

(

n

m

)

tn−mτm (.4)

Substituting this equation into Eq. (.3) gives

〈〈tnu〉x〉 =
n
∑

m=0

(

n

m

)
∫ ∫ ∫

tn−mτmWu(t, ω; 0)〈Wh(τ, ω; x)〉dωdtdτ (.5)
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We may now do the integrals over t and τ , giving

〈〈tnu〉x〉 =
n
∑

m=0

(

n

m

)
∫

〈tn−mu 〉0,ω〈〈tnh〉x,ω〉dω (.6)

which gives the expected value of all temporal moments.

The second order expectations of the temporal moment features are given by Eq. (5.3),

〈(〈tnu〉x)2〉 =

∫ ∫ ∫ ∫

tn1 t
n
2 〈Wu(t1, ω1, x)Wu(t2, ω2, x)〉dt1dt2dω1dω2 (.7)

Proceeding analogously to the previous case, we substitute in Eq. (5.1) twice,

〈(〈tnu〉x)2〉 =
∫ ∫ ∫ ∫

tn1 t
n
2 〈(Wu(t1, ω1, 0) ∗t1 Wh(t1, ω1, x)) (Wu(t2, ω2, 0) ∗t2 Wh(t2, ω2, x))〉dt1dt2dω1dω2

(.8)

We next use the standard definition of convolution twice and a change of variables to obtain

〈(〈tnu〉x)2〉 =

∫ ∫ ∫ ∫ ∫ ∫

(t1 + τ1)
n(t2 + τ2)

nWu(t1, ω1, 0)Wu(t2, ω2, 0)

〈Wh(τ1, ω1, x)Wh(τ2, ω2, x)〉 dτ1dτ2dt1dt2dω1dω2 (.9)

The binomial theorem may be used twice here, giving,

〈(〈tnu〉x)2〉 =
n
∑

m1,m2=0

(

n

m1

)(

n

m2

)
∫ ∫ ∫ ∫ ∫ ∫

tn−m1
1 τm1

1 tn−m2
2 τm2

2

Wu(t1, ω1, 0)Wu(t2, ω2, 0)〈Wh(τ1, ω1, x)Wh(τ2, ω2, x)〉 dτ1dτ2dt1dt2dω1dω2(.10)

We evaluate the integrals over t1 and t2

〈(〈tnu〉x)2〉 =

n
∑

m1,m2=0

(

n

m1

)(

n

m2

)
∫ ∫

〈tn−m1
u 〉0,ω〈tn−m2

u 〉0,ω ×
∫ ∫

τm1
1 τm2

2 〈Wh(τ1, ω1, x)Wh(τ2, ω2, x)〉 dτ1dτ2dω1dω2 (.11)

and finally evaluate the integrals over τ1 and τ2, giving

〈(〈tnu〉x)2〉 =

n
∑

m1,m2=0

(

n

m1

)(

n

m2

)
∫ ∫

〈tn−m1
u 〉0,ω〈tn−m2

u 〉0,ω〈〈tm1
h 〉x,ω1〈tm2

h 〉x,ω2〉dω1dω2 (.12)
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A.2 FREQUENCY

The expected values of the frequency moment features are given by Eq. (5.10),

〈〈ωnu〉x〉 =

∫ ∫

ωn〈Wu(t, ω; x)〉 dωdt (.13)

Substituting in the expression from Eq. (5.1), we obtain

〈〈ωnu〉x〉 =

∫ ∫

ωnWu(t, ω; 0) ∗t 〈Wh(t, ω; x)〉 dωdt (.14)

We use the standard definition of convolution to get

〈〈ωnu〉x〉 =

∫ ∫ ∫

ωnWu(t− τ, ω; 0)〈Wh(τ, ω; x)〉 dωdtdτ (.15)

and by the integrating over t first, and then over τ we find

〈〈ωnu〉x〉 =

∫

ωn |F (0, ω)|2 〈|H(x, ω)|2〉 dω (.16)

The second order expectation of the frequency moments is given by Eq. (5.11)

〈(ωnu)2〉x =

∫ ∫ ∫ ∫

ωn1ω
n
2 〈Wu(t1, ω1; x)Wu(t2, ω2; x)〉 dω1dω2dt1dt2 (.17)

Inserting the expression from Eq. (5.1) and organizing terms, we get

〈(ωnu)2〉x =

∫ ∫ ∫ ∫

ωn1ω
n
2Wu(t1 − τ1, ω1; 0)Wu(t2 − τ2, ω2; 0) ×

〈Wh(τ1, ω1; x)Wh(τ2, ω2; x)〉 dω1dω2dt1dt2dτ1dτ2 (.18)

By the integrating over t first, and then over τ we obtain

〈(ωnu)2〉x =

∫ ∫

ωn1ω
n
2 |F (0, ω1)|2 |F (0, ω2)|2 〈|H(x, ω1)|2 |H(x, ω2)|2〉 dω1dω2dτ1dτ2 (.19)
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