
DYNAMIC TRAFFIC DRIVEN ARCHITECTURES

AND ALGORITHMS FOR SECURING NETWORKS

by

Subrata Acharya

M.Sc. Computer Science, Major: Computer Engineering, Texas

A&M University, USA, 2004

B.Eng. Computer Science and Engineering, University College of

Engineering, India, 2001

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Subrata Acharya

It was defended on

August 08, 2008

and approved by

Dr. Taieb Znati, Department of Computer Science

Dr. Rami Melhem, Department of Computer Science

Dr. Alexandros Labrinidis, Department of Computer Science

Dr. Ehab S. Al-Shaer, Department of Computer Science, Depaul University

Dissertation Director: Dr. Taieb Znati, Department of Computer Science

ii

DYNAMIC TRAFFIC DRIVEN ARCHITECTURES AND ALGORITHMS

FOR SECURING NETWORKS

Subrata Acharya, PhD

University of Pittsburgh, 2008

The continuous growth in the Internet’s size, the amount of data traffic, and the complexity

of processing this traffic gives rise to new challenges in building high performance network

devices. Such an exponential growth coupled with the increasing sophistication of attacks, is

placing stringent demands on the performance of networked systems (i.e. Firewalls). These

challenges require new designs, architecture and algorithms for the optimization of such sys-

tems.

The current or classical security of present day Internet is “static” and “oblivious” to

traffic dynamics in the network. Hence, there are tremendous efforts towards the design

and development of several techniques and strategies to deal with the above shortcomings.

Unfortunately, the current solutions have been successful in addressing some aspects of se-

curity. However, as a whole security remains a major issue. This is primarily due to the lack

of adaptation and dynamics in the design of such intrusion detection and mitigation systems.

This thesis focuses on the design of architectures and algorithms for the optimization

of such network systems, to aid not only adaptive and real-time “packet filtering” but also

fast “content based routing (differentiated services)” in today’s data-driven networks. The

approach proposed involves a unique combination of algorithmic and architectural techniques

that aims to outperform all current solutions in terms of adaptation, speed of operation

(under attack or heavily loaded conditions), and overall operational cost-effectiveness of

iii

such systems. The tools proposed in this thesis also aim to offer the flexibility to include

new approaches, and provide the ability to migrate or deploy additional entities for attack

detection and defense.

Keywords Computer Networks, Network Security, Distributed Denial-of-Service Attack,

Firewall, Hierarchical, Optimization.

iv

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Background of Firewalls . 4

1.2.1 Taxonomy of Firewalls . 4

1.2.1.1 Personal firewalls . 5

1.2.1.2 Network Firewalls . 5

1.2.2 Firewall Products . 7

1.2.2.1 Software Firewalls . 8

1.2.2.2 Appliance Firewalls . 8

1.2.2.3 Integrated Firewalls . 8

1.2.3 Firewall Technologies . 9

1.2.3.1 Personal firewalls . 9

1.2.3.2 Packet filters . 9

1.2.3.3 NAT Firewalls . 10

1.2.3.4 Circuit-Level Firewalls . 10

1.2.3.5 Proxy Firewalls . 10

1.2.3.6 Stateful Firewalls . 11

1.2.3.7 Transparent Firewalls . 12

1.2.3.8 Virtual Firewalls . 12

1.2.4 Open and Closed Source Firewalls 13

1.3 Firewall Security Policies . 13

v

1.3.1 Security Policy Format . 14

1.3.2 Common Security Policies . 16

1.3.2.1 Management-access policy 16

1.3.2.2 Filtering policy . 16

1.3.2.3 Routing policy . 16

1.3.2.4 Remote-access/VPN policy 17

1.3.2.5 Monitoring/logging policy 17

1.3.2.6 Demilitarized zone (DMZ) policy 17

1.3.3 Firewall Policies/Rule-sets . 18

1.4 Firewall Management . 19

1.4.1 Firewall Management Interface . 19

1.4.2 Firewall Management Access . 20

1.4.3 Firewall Management Tasks . 20

1.4.4 Complexity of firewall management and optimization 21

1.5 Thesis Problem and Challenges . 22

1.6 Thesis Contribution . 24

1.7 Thesis Organization . 25

2.0 BACKGROUND AND RELATED WORK 27

2.1 Packet classification and optimization . 28

2.1.1 Hardware Based Solutions . 28

2.1.2 Geometric based solutions . 29

2.1.3 Specialized data structures . 29

2.1.4 Statistical based solutions . 30

2.2 Firewall optimization . 30

2.2.1 Policy based optimization . 30

2.2.2 Traffic based optimization . 31

2.3 Anomaly detection and mitigation . 32

2.3.1 Attack classification . 32

2.3.2 Defense mechanisms . 34

3.0 FIREWALL DATA AND ANALYSIS . 36

vi

3.1 Firewall policy representation . 36

3.2 Firewall data . 37

3.3 Data Analysis . 38

3.3.1 Rule-set analysis . 41

3.3.1.1 Block size distribution . 41

3.3.1.2 Duplicates amongst blocks 41

3.3.1.3 Rule set variation . 43

3.3.1.4 Dependency amongst rules 43

3.3.2 Traffic log analysis . 45

3.3.2.1 Distribution of Accept vs. Drop rules 45

3.3.2.2 Rule hit distribution . 46

3.3.2.3 Default deny rule hits . 46

3.3.2.4 Field count distribution . 50

3.3.2.5 Protocol distribution . 50

3.4 Summary . 52

4.0 PITTWALL: A CENTRALIZED FIREWALL OPTIMIZATION AP-

PROACH . 56

4.1 List based firewalls . 56

4.2 Firewall Optimization Model . 58

4.2.1 Stage I: Pre-optimization . 60

4.2.2 Stage II: Rule-set based optimization 60

4.2.3 Stage III: Traffic based optimization 61

4.2.3.1 Hot caching . 62

4.2.3.2 Total reordering . 62

4.2.3.3 Default proxy . 63

4.2.3.4 Online Adaptation . 64

4.3 Theory: Rule Size and Cost Metric . 65

4.4 Evaluation . 67

4.4.1 Firewall Optimization . 67

4.4.1.1 Rule-set based optimization 68

vii

4.4.1.2 Traffic based optimization 68

4.4.2 Online Adaptation . 72

4.4.2.1 Benefit/Cost evaluation 72

4.4.2.2 Determining best Adaptation Interval 72

4.4.2.3 Benefit of adaptation with attack traffic 73

4.4.3 Proportionality of rule processing cost 77

4.5 Summary . 77

5.0 OPTWALL: A HIERARCHICAL FIREWALL OPTIMIZATION AP-

PROACH . 78

5.1 Introduction . 78

5.2 Firewall Transformation Framework . 79

5.3 Firewall Transformation Approach . 80

5.4 Firewall Splitting Approaches . 83

5.4.1 Optimal Approach . 83

5.4.2 Heuristic Approach . 84

5.4.3 Improvements to rule-set splitting approaches 86

5.4.3.1 Clustering rule split . 87

5.4.3.2 Parallel A* approach . 87

5.4.3.3 Weighted distance function 88

5.5 Design Architecture and Methodology . 88

5.5.1 OPTWALL Design Goals . 89

5.5.2 Hierarchical Firewall Optimization Model 92

5.5.2.1 Data Structure . 92

5.5.2.2 Hierarchical Structure Building 93

5.5.2.3 Hierarchical Structure Maintenance 94

5.6 Evaluation . 98

5.6.1 Evaluation results . 100

5.6.1.1 Hierarchical model evaluation 100

5.6.1.2 Worst case performance evaluation 100

5.6.1.3 Emulated traffic performance evaluation 101

viii

5.6.1.4 Handling attacks evaluation 103

5.6.1.5 Sensitivity analysis evaluation 103

5.6.1.6 Improved rule splitting . 103

5.7 Summary . 107

6.0 CONCLUSION . 108

7.0 FUTURE RESEARCH DIRECTION . 111

7.1 Introduction . 112

7.2 Collaborative Defense Model . 113

7.2.1 Mechanisms for Collaborative Defense 114

7.2.1.1 Intrusion Detection and Response 114

7.2.1.2 Packet Filtering and Traffic Monitoring 114

7.2.2 Type of Nodes in CDA . 115

7.2.3 Types of Communication in CDA 117

7.3 Collaborative Defense Operation . 118

7.3.1 Optimal Sentinel Placement . 118

7.3.2 Probabilistic Packet Inspection . 120

7.3.3 Dynamic Collaborative Packet Filtering 121

7.4 Summary . 124

BIBLIOGRAPHY . 125

ix

LIST OF TABLES

1 Pre-optimized rule-set: SI . 62

2 Disjoint rule-set: SD . 63

3 Final rule-set: SF . 63

x

LIST OF FIGURES

1 Threat trend (1988 - 2006) . 3

2 Firewall Taxonomy . 6

3 Firewall Security Layers . 15

4 Firewall Structure . 39

5 Block Structure . 40

6 Rule Structure . 40

7 Traffic Log Instance . 40

8 Block size distribution . 42

9 Duplicates amongst blocks . 42

10 Rule set variation over days . 44

11 Accepts vs. drop statistics . 45

12 Accept rule distribution . 47

13 Drop rule distribution . 48

14 Rule hit distribution: Over weeks . 49

15 Rule hit distribution: Over days . 51

16 Default deny rule hits . 53

17 Field count distribution . 54

18 Protocol distribution . 55

19 Firewall Optimization Framework . 59

20 Rule Set Based Optimization: Size-based . 69

21 Traffic Based Optimization: Size-based . 70

22 Traffic Based Optimization: Cost-based . 71

xi

23 Online Adaptation Benefit/Cost Curve . 73

24 Determining Best Adaptation Interval . 74

25 CPU Utilization vs. Number of rules . 75

26 CPU Utilization vs. Load . 76

27 N rules into K partition problem . 90

28 Basic operation of OPTWALL . 91

29 OPTWALL: Architecture . 96

30 Experimental Setup . 99

31 Hierarchical vs. List-Based . 101

32 Performance Evaluation (Worst-Case - 60,000 tuples) 102

33 Emulated Traffic Performance Evaluation . 104

34 Countering DoS Attacks . 105

35 Sensitivity Analysis . 105

36 Weighted split performance - Worst case . 106

37 Weighted split performance - Emulated case 106

38 Collaborative Defense Architecture (CDA) 116

39 Basic Message in CDA . 119

40 Basic Active sentinel Operation . 123

xii

 xiii

1 Optimal Approach for Rule-set Splitting ...83

2 Hit count-Hit count Heuristic Approach .……….................……………………..........85

LIST OF ALGORITHMS

PREFACE

First and foremost I would first like to thank Dr. Taieb Znati, my adviser and guide, who has

stood by me through this effort, without whose support and constant guidance, it would not

have been possible to see the finish line. I would also like to thank Dr. Rami Melhem, Dr.

Alexandros Labrinidis and Dr. Ehab S. Al-Shear for agreeing to be on my thesis committee

and for their helpful support in the shaping of this document.

My research group members and department colleagues and friends must also be thanked

for their help. They were ever ready to provide a helping hand, discuss ideas and topics that

would prove helpful to me. It was a pleasure working with them. Special thanks to my dear

friends Anandha, Brian, Bryan, Christine, Hammad, Hui, Ihsan, Lory, Mehmud, Michel,

Michal, Octavio, Peter, Roxana, Swapna, Weijia and Yaw. I wish that I have such great

friends forever in my life.

I would like to thank Bob, Terry, Russ, Chris, Loretta, Kathy, Nancy, Kathleen, Keena

and Karen for helping me resolve multiple issues with the department and for patiently an-

swering my many questions about procedures in the department, helping me with with all

technical details.

I would like to thank my parents, Mr. Basanta Kumar Acharya and Mrs. Gayatri

Acharya for their immense patience and never ending love and support. I would also like

to thanks my sister, Mrs. Susmita Acharya, my brother in law, Dr. Ranjan Kumar Dash

for their unfaltering love and support. Special thanks to my little sister, Ipsita Acharya and

cute nephew Animesh Dash, who keep up and spirits and made me laugh in these trying

xiii

times.

Amongst all, I would like to thank my mother, Mrs. Gayatri Acharya for giving me

enough and more of her love, care and support, whether it was to discuss my work or to

generally talk and regain my confidence. Many a time, just having her in my thoughts helped

me to live life positively. My existence would not have been possible without her. I dedicate

my Ph.D. and my life to her.

xiv

1.0 INTRODUCTION

The continuous growth in the Internet’s size, the amount of data traffic, and the complexity

of processing this traffic gives rise to new challenges in building high performance network

devices. Such an exponential growth coupled with the increasing sophistication of attacks, is

placing stringent demands on the performance of networked systems (i.e. Firewalls). These

challenges require new designs, architecture and algorithms for the optimization of such sys-

tems. This thesis focuses on the design of architectures and algorithms for the optimization

of such network systems, to aid not only adaptive and real-time “packet filtering” but also

fast “content based routing (differentiated services)” in today’s data-driven networks. The

approach proposed involves a unique combination of algorithmic and architectural techniques

that aims to outperform all current solutions in terms of adaptation, speed of operation (un-

der attack or heavily loaded conditions), and overall operational cost-effectiveness of such

systems. The tools proposed in this thesis also aim to offer the flexibility to include new ap-

proaches, and provide the ability to migrate or deploy additional entities for attack detection

and defense.

1.1 BACKGROUND AND MOTIVATION

Data communication networks are today an indispensable infrastructure for industrial and

academic institutions. Internet has undoubtedly become the largest public data network, en-

abling and facilitating both personal and business communications worldwide. The volume

of traffic traversing the Internet, as well as corporate networks, is expanding exponentially

everyday. As social dependence on such information systems continues to grow rapidly,

1

a similar growth in threats is concurrently taking place. Traffic anomalies and attacks are

commonplace in today’s networks. Attacks span the spectrum from computer worms and in-

dividual, localized intrusions aimed at gaining access to information and system’s resources,

to co-ordinated and distributed attacks aimed at disrupting services and disabling critical

infrastructure.

Furthermore, the number and frequency of these attacks has been increasing notice-

ably [1], as the knowledge and tools required to carry out devastating attacks are readily

available on the Internet. Figure 1 illustrates the exponential increase in the number of

security incidents over the past twenty years. As these attacks proliferate and grow in scope

and sophistication, different institutions find themselves under growing pressure to place

significant restrictions on open Internet access in the form of firewalls, selective application

deployment, and mandatory proxies. Firewalls, constitute the cornerstone of most network

defense systems and have been proven to be an effective solution to monitor and regulate

traffic.

While network defense systems have been designed in recent years to address the prob-

lem, they are not geared towards extremely challenging environments requiring the support

for high performance applications and open access policy for collaboration. Most of today’s

Internet service providers still rely on “offline” traffic analysis and manual detection to deal

with security threats and Denial of Service (DoS) attacks. As such, most of the Intrusion

Detection Systems (IDSs) tend to remain “reactive” and “non real-time” in nature and are

“non adaptive” to the dynamically changing network environment. The existing IDSs also

lack flexibility to deal with the ever-evolving characteristics of the attacks, in terms of di-

versity and intensity. More recently Artificial Intelligence(AI) based approaches have been

explored to solve this problem [49,50]. While the use of machine learning based approaches

holds promise, the schemes still remain “offline” in nature due to potentially prohibitive

high overhead.

A practical defense against intrusions and DoS attacks for high-performance collaborative

2

Number of Security Incidents Reported in US-CERT 1988-2006

0

100000

200000

300000

400000

500000

600000

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

Year

In
ci

d
en

ts

Figure 1: Threat trend (1988 - 2006)

environments must be “proactive”, “real-time”, and “adaptive” to the changing network

environment. The necessary design goals that an IDS must meet are as follows:

• Accurate attack detection in real-time with minimal false alarms,

• Dynamic, collaborative, and resource efficient defense to counter and mitigate attacks,

and

• Reliable delivery of legitimate traffic even under attack conditions.

These goals can be achieved using a “dynamic”, “proactive”, and “data-driven” approach.

Thus, the primary focus of this research is to provide real-time optimization in packet fil-

tering to achieve the above goals. Furthermore, the thesis also aims to offer flexibility to

include new approaches, and would aid the ability of networked systems to migrate or deploy

additional entities for detection and defense.

A detailed introduction about firewall technology and an extensive background of their

3

design and development of firewalls is discussed in Section 1.2. Details on the firewall security

policies are discussed in Section 1.3. Section 1.4 discusses the issues and challenges in

managing present day firewalls. This section concludes by presenting the challenges towards

efficient managing and optimizing enterprise firewalls. The thesis problem and challenges are

discussed in Section 1.5. We conclude in Section 1.6 with the contributions of the proposed

research.

1.2 BACKGROUND OF FIREWALLS

1.2.1 Taxonomy of Firewalls

A firewall is a combination of hardware and software used to implement a security policy

governing the flow of network traffic between two or more networks. The most typical idea

of a firewall is a dedicated system or appliance that sits in the network and segments an

“internal” network from the “external” Internet. In its simplest form, a firewall acts as

a security barrier to control traffic and manage connections between internal and external

network hosts. The actual means by which this is accomplished varies widely, and ranges

from packet filtering and proxy service to stateful inspection methods. A more sophisticated

firewall may hide the topology of the network it is employed to protect, as well as other infor-

mation, including names and addresses of hosts within the network. The ability of a firewall

to centrally administer network security can also be extended to log incoming and outgoing

traffic to allow accountability of user actions and to trigger alerts when unauthorized activ-

ities occur. Standard security practices dictate a “default-deny” firewall rule-set, in which

the only network connections which are allowed are the ones that have not been explic-

itly allowed earlier. Unfortunately, such a configuration requires detailed understanding of

the network applications and endpoints required for the organization’s day-to-day operation.

Firewall technology emerged in the late 1980s during the time Internet was a fairly new

technology in terms of its global use and connectivity. The original idea was formed in re-

4

sponse to a number of major Internet security breaches, which occurred in the late 1980s.

There are several classifications of firewalls depending on where the communication is taking

place, where the communication is intercepted and the state that is being traced. The overall

classification of firewalls is depicted in Figure 2.

In general, firewalls can be categorized as either Desktop or personal firewalls and Net-

work firewalls. The primary difference between the two types of firewalls simply depends on

the number of hosts that the firewall protects. Network firewalls are classified primarily into

three types, namely, Packet-filter firewalls, Circuit-level firewalls and Application-level gate-

ways. Most current networks operate on hybrid versions of the above types of firewalls [39].

1.2.1.1 Personal firewalls Personal firewalls are designed to protect a single host from

unauthorized access. Modern personal firewalls now integrate capabilities of antivirus soft-

ware monitoring, behavior analysis, and intrusion detection to protect the device. Some of

the commercial personal firewalls include BlackICE and Cisco Security Agent. Examples

in the small-office/home-office market include Trend Micro’s PC-cillin, ZoneAlarm, and the

Symantec personal firewall. Personal firewalls are geared towards small-office/home-office

users as they provide end user protection and control of policies and do not cater to enter-

prise network security requirements. In the case of enterprise users the need to centralize

policy control is very critical to minimize administrative burden.

1.2.1.2 Network Firewalls This classification of firewalls are designed to protect whole

networks from attacks. Network firewalls come in flavors, either they are a dedicated ap-

pliance or a firewall software suite installed on top of a host operating system. Cisco PIX,

the Cisco ASA, Juniper’s NetScreen firewalls, Nokia firewalls, and Symantec’s Enterprise

Firewall are some examples of network firewalls. The most prevalent network firewalls in-

clude Check Point’s Firewall-1 NG or NGX Firewalls [4], Microsoft ISA Server, Linux-based

IPTables [2], and BSD’s pf packet filter. This firewall type helps to provide enterprise users

the maximum flexibility and protection in a system. Over the years, network firewalls have

included many new features such as in-line intrusion detection, prevention as well as remote-

5

Personal
Firewalls

Network
Firewalls

Firewalls

Packet Filter
Firewalls

Stateful
Firewalls

Circuit Level
Gateways

Application
Level Firewalls

Stateful
Firewalls

NAT Firewalls Packet Filter
Firewalls

Figure 2: Firewall Taxonomy

6

access-user VPNs, and deep packet inspection capabilities. The firewall is able to identify

traffic requirements not just by scanning Layer 3 and Layer 4 information, but by delving

into the application data in order to make informed decisions to handle traffic flow. This

evolution in the firewall design and capabilities has led to the development of a new firewall,

the Integrated Firewall. We discuss details of this in the following sections.

Application-level firewalls work on the application layer of the TCP/IP stack (i.e., all

browser traffic, or all telnet or ftp traffic), and may intercept all packets traveling to and

from an application. XML firewall is an example of a recent application-layer firewall. These

firewalls block other packets, usually dropping them without acknowledgment to the sender.

In principle, application firewalls can prevent all unwanted outside traffic from reaching

protected machines. By inspecting all packets for improper content, application firewalls

can restrict or prevent the spread of networked computer worms and trojans. In practice,

such inspection is difficult to achieve due to the variety of applications and the diversity of

content in a given packet filter.

1.2.2 Firewall Products

There exist a wide variety of firewall products that includes three basic physical firewalls,

namely, software based, application based, and integrated firewalls. Software-based firewalls

typically run on top of a commercial operation system. Appliance-based firewalls are de-

signed such that the filter and inspection software is tightly integrated into a custom-built

or hardware operating system. Cisco PIX products, Juniper’s NetScreen firewalls and the

Symantec Enterprise firewalls are examples of Appliance-based firewalls. Integrated firewalls

are a synthesis of other products with the traditional firewall. The synthesis has the ben-

efit of reducing the number of hardware devices that require administration. This helps to

lower administrative overhead necessary to deploy and manage these devices. Examples of

Integrated firewalls include Cisco ASA and the TippingPoint X505 devices.

7

1.2.2.1 Software Firewalls Software firewalls include the Sun SunScreen firewall, IPF,

the Microsoft ISA Server, Check Point NG, Gauntlet, Linux’s IPTables and FreeBSD, and

OpenBSD’s pf packet filter. The primary advantage of such firewalls is that the administrator

can task them to be multipurpose in nature. For example, a firewall can also be a Domain

Name System(DNS) server or it can act as a spam filter. The most important benefit of

software firewalls is the ability to use commodity software for the device such that on failure,

the replacement hardware is relatively straightforward. In smaller environments, software

firewalls can be useful low-cost devices for advanced home users. However, for a typical

home user, the low-end appliance-based firewalls (such as Linksys, D-Link, and NETGEAR)

provides greater benefit due to the ease of setup and low maintenance overhead.

1.2.2.2 Appliance Firewalls Appliance firewalls are those that are integrated tightly

with custom-built hardware and provide firewall service to a network. They include the Cisco

PIX, NetScreen firewalls, SonicWall appliances, WatchGuard Fireboxes, Nokia firewalls, etc.

The underlying operating systems need not be a custom operating system. Appliance fire-

walls can also be highly customized version of the operating system such as the WatchGuard’s

use of Linux or Nokia’s use of FreeBSD. Mostly, appliance firewalls offer better performance

relative to software firewalls because of the nature of the customized underlying operat-

ing system and the use of specialized processors and application-specific integrated circuits

(ASICs) for data processing and handling input and output (I/O) requests. Also, these

firewalls have the benefit of fewer moving parts by eliminating the hard disk of the software

firewalls.

1.2.2.3 Integrated Firewalls Integrated firewalls are multipurpose devices that com-

bine the traditional firewall with other features such as remote-access VPN, LAN-to-LAN

VPN, intrusion detection or prevention, spam filtering, and antivirus filtering. These fire-

walls are designed for an “all-in-one” approach to network-edge security by collapsing the

responsibilities of several devices into one device. The most important benefit of integrated

firewalls is that they simplify the network design by reducing the number of devices on the

network as well as provide a single system for administration, thereby reducing the admin-

8

istrative burden on the network staff. The major drawback of integrated firewalls is that

the failure of such a device can lead to multiple exposures. Additionally, the complexity of

the device makes it difficult to troubleshoot connectivity problems due to the interaction of

different capabilities in the device and how they affect the underlying fundamental operation

of a firewall.

1.2.3 Firewall Technologies

In this section we focus on the technologies used in various firewalls. The focus of this

section is on wide range of firewall technologies, namely, Personal firewalls, Packet filters,

Network Address Translation (NAT) firewalls, Circuit-level firewalls, Proxy firewalls, Stateful

firewalls, Transparent firewalls, and Virtual firewalls. The firewall technologies presented in

this section may be used by any of the three basic physical firewalls discussed earlier. Each

of the subsection below focuses predominantly on the operation of the firewall in its function

as a network device.

1.2.3.1 Personal firewalls Personal firewalls are designed to protect a single host ma-

chine. Typically, personal firewalls assume that outbound traffic from the system is to be

permitted and inbound traffic requires inspection. By default, personal firewalls include

various profiles that accommodate the typical network traffic. For example, ZoneAlarm has

low, medium, and high settings that allow almost all traffic, selected traffic, or nearly no

traffic, respectively, through to the protected system. Similarly, IPTables during the setup

of the Linux system, enables installer to choose the level of protection for the system and the

customization for ports that do not fall into a specific profile. The centralized management

framework of personal firewalls makes it difficult to be adopted to large enterprise networks

due to consistency of security policies amongst the various firewall units.

1.2.3.2 Packet filters Packet filters are network devices that filter traffic based on sim-

ple packet characteristics. The term packet filter originated in the context of BSD operating

systems. These devices are typically stateless in that they do not keep a table of the con-

9

nection state of the various traffic flows through them. To allow traffic in both directions

they must be configured to permit return traffic. Examples of simple packet filters are the

Cisco IOS access lists, the Linux’s ipfwadm facility, etc. Although these firewalls provide

protection against a wide variety of threats, they are not dynamic enough to be considered

as true firewalls. Packet filters operate at a relatively low level of the TCP/IP protocol

stack, not allowing packets to pass through the firewall unless they match the established

rule-set. The firewall administrator may define the rules; or default rules may apply.

1.2.3.3 NAT Firewalls A distinct firewall that exists for a short period is the Network

Address Translation (NAT) firewall. NAT is a part of almost every firewall product, from

the lowliest small-office/home-office firewall such as the Linksys BEFSX41 to the high-end

enterprise PIX 535 firewall. NAT firewalls automatically provide protection to systems

behind the firewall because they only allow connections that originate from the inside of

the firewall. The basic purpose of NAT is to multiplex traffic from an internal network and

present it to a wider network (such as the Internet) as though it was originating from a single

IP address or a small range of IP addresses. The NAT firewall creates a table in memory

that contains information about connections that the firewall has already seen before. This

table maps the addresses of internal systems to an external address. The ability to place an

entire network behind a single IP address is based on the mapping of port numbers on the

NAT firewall.

1.2.3.4 Circuit-Level Firewalls Circuit-level firewalls work at the session layer of the

OSI model and monitor “handshaking” between packets to decide whether the traffic is

legitimate. Traffic to a remote computer is modified to make it appear as though it originated

from the circuit-level firewall. This change makes a circuit-level firewall particularly useful

in hiding information about a protected network but has the drawback that it does not filter

individual packets in a given connection.

1.2.3.5 Proxy Firewalls A Proxy is a central machine on the network that allows other

machines in that network to use a shared Internet connection. Proxy servers are intermediate

10

servers which accept requests from clients and forward them to other proxy servers, a source

server, or service the request from their own cache. A proxy firewall provides Internet access

to other computers on the network but is mostly deployed to provide safety or security. It

controls the information going in and out the network. Firewall proxy servers filter, cache,

log, and control requests coming from a client. A firewall proxy is one that is used for

restricting connections from a proxy to the outside world or to the source server inside of the

LAN. To support various services, the proxy firewall must have a specific service running for

each protocol, a Simple Mail Transport Protocol (SMTP) proxy for email, a File Transfer

Protocol (FTP) proxy for file transfers, and a Hypertext Transfer Protocol (HTTP) proxy

for web services. Due to their inspection capabilities, proxy firewalls can look more deeply

into the packets of a connection and apply additional rules to determine whether a packet

should be forwarded to an internal host. Proxy firewalls suffer from the disadvantages of

complexity and speed of operation due to the deep inspection functionality. Most modern

firewalls include basic proxy server architecture in their operation by providing some form

of proxy capabilities. For example, PIX OS 6 and earlier had the “fixup” command, and

“IPF” provided an FTP proxy service to handle active FTP connections.

1.2.3.6 Stateful Firewalls Stateful firewalls combine features and capabilities of NAT

firewalls, circuit-level firewalls, and proxy firewalls into one system. These firewalls filter

traffic initially based on packet characteristics, but also maintain context about active ses-

sions, and use that “state information” to speed up packet processing. Unlike proxy or

circuit-level firewalls, stateful firewalls are typically designed to be more transparent (like

the packet-filtering and NAT firewalls). In a packet filtering type of stateful firewall any

existing network connection can be described by several properties, including source and

destination IP address, UDP or TCP ports, and the current stage of the connection’s life-

time, which includes session initiation, handshaking, data transfer, or connection completion

information. If a packet does not match an existing connection, it will be evaluated accord-

ing to the rule-set for new connections. If a packet matches an existing connection based

on comparison with the firewall’s state table, it will be allowed to pass without further

processing. Stateful firewalls are more complex than their constituent component firewalls;

11

however, nearly all modern firewalls on the market today are stateful firewalls and represent

the baseline for security in today’s network systems.

Inverse to Stateful firewalls there exist Stateless firewalls that have packet-filtering ca-

pabilities, but cannot make more complex decisions on what stage communications between

hosts have reached. Stateless firewalls therefore offer less security. Modern firewalls can

filter traffic based on many packet attributes like source IP address, source port, destina-

tion IP address or port, destination service (i.e.WWW or FTP), protocols, TTL values,

netblock of originator, domain name of the source, etc.. Commonly used packet filters on

various versions of Unix are ipf, ipfw (FreeBSD/Mac OS X), pf (Upend, and all other BSDs),

iptables/ipchains (Linux) [2].

1.2.3.7 Transparent Firewalls Transparent firewalls (also referred to as bridge fire-

walls) are a considered to be a subset of stateful firewalls. Whereas nearly all firewalls

operate at the IP layer and above, transparent firewalls operate in Layer 2, the data link

layer, and monitor Layer 3+ traffic. The transparent firewalls can apply packet-filtering

rules like any other stateful firewall and still appear invisible to the end user, thus appearing

as a filtering bridge between two network segments. This firewall provides an excellent way

to apply security policies in the middle of the network segment without having to apply a

NAT filter. The bridging firewall requires no changes to the underlying network, which is

possible as the transparent bridge is plugged in-line with the network it is protecting. Since,

transparent firewalls operate at the data link layer, no IP address changes are required and

hence are simpler with lower processing overhead. The lower overhead enables them to pro-

vide better performance as well as deeper packet inspection. Finally, the stealth nature of

these firewalls are due to the fact that they are Layer 2 devices. The firewall is invisible to

an attacker and hence cannot be reached by an attacker.

1.2.3.8 Virtual Firewalls Virtual Firewalls are multiple logical firewalls running on a

single physical device. This arrangement allows for multiple networks to be protected by

a unique firewall running a unique security policy all in one physical appliance. A service

12

provider can provide firewall services for multiple customers, securing and separating their

traffic while managing the entire system on one device. Service providers achieve the above

by defining separate domains for each customer with each domain controlled by a separate

logical virtual firewall. Typically, this capability is available in higher-end firewalls such as

the Cisco PIX 525, Cisco PIX 535, and the Cisco ASA devices.

1.2.4 Open and Closed Source Firewalls

The Open source firewalls available today are Linux’s IPTables, OpenBSD’s pf, and the

Solaris IPF firewalls. Closed source firewalls are the Cisco PIX and ASA firewall, Juniper’s

ScreenOS, and Check Point’s firewall software. Some firewalls use an underlying open source

operating system and firewall code with closed modifications. Most commercial firewalls pro-

vide tight integration of VPN capabilities for remote users as well as deep packet inspection

within the firewall. In contract, Open source firewalls focus on the filtering capabilities in

the firewall process rather than the integration of the firewall with other applications.

1.3 FIREWALL SECURITY POLICIES

The term “security policy” refers to the written policies that dictate how the organization

manages the security of their resources and also the actual configuration of the network

security device (firewall) with the help of access control lists (ACLs).

Security policies exist to provide a road-map of what needs to be done to ensure that the

organization has a well-defined security strategy. Any organization’s overall security policy

typically consists of numerous individual security policies, which are written to address spe-

cific objective, devices, or issues. The objective of a security policy is to define what needs

to be protected, who is responsible for protection, and in some cases how the protection will

occur. The last function is typically separated out into a standalone procedure document

such as the ingress-filtering, egress-filtering, or the management-access policy documents.

13

The security policy should simply and concisely outline the specific requirements, rules, and

objectives that must be met, to provide a measurable method of validating the security of

the organization.

The firewall can be represented as set of security layers as depicted in Figure 3, where

each layer has a distinct operation. At the center is the firewall physical integrity layer, which

is predominantly responsible for the physical access to the firewall. The security policy in

this layer should address the issues related to gaining physical access to the device. The

next layer is the firewall static configuration, which is concerned with access to the static

configured software the firewall is running. In this layer, the security policy is responsible

for defining the controls that will be required to restrict administrative access, including

performing software updates and configuring the firewall. The third layer is the firewall

dynamic configuration, which complements the static configuration by being responsible for

the dynamic configuration of the firewall through the use of technologies, such as routing

protocols, Address Resolution Protocol (ARP) commands, interface and device status, audit

logs, and shun commands. The objective of the security policy at this point is to define the

requirements around what kinds of dynamic configuration will be permitted. Finally, we

have the network traffic through the firewall layer, which is responsible for protecting the

resources with the help of ACLs and service proxy information. The security policy at this

layer is responsible for defining the requirements as they relate to the traffic passing through

the firewall.

1.3.1 Security Policy Format

In order to accomplish the security goals discussed earlier, security policies follow a particular

format and share common elements. There are basically seven sections, namely, Overview,

Purpose, Scope, Policy, Enforcement, Definitions, and Revision history. The overview section

provides a brief explanation of what the policy addresses. The purpose of the security policy

is discussed in the purpose section. The scope section defines what the policy applies to and

14

 ACCESS TO NETWORKS THE FIREWALL PROTECTS

Network Traffic Through the Firewall

ROUTING PROTOCOLS

Firewall Dynamic Configuration

ADIMINISTATIVE ACCESS
SOFTWARE UPDATES

CONFIGURATION FILES

Firewall Static Configuration

PHYSICAL ACCESS

Firewall Physical Integrity

Figure 3: Firewall Security Layers

15

defines who is responsible for the policy. The enforcement section defines how the policy

should be enforced and the repercussions of not following the policy. The definition section

contains the definition of any terms or concepts used in the policy. Finally, the revision

history section is where the changes to the policy are documented and tracked.

1.3.2 Common Security Policies

Each organization has unique security requirements and hence have unique security policies.

However, there are a required number of common security policies, namely, Management-

access policy, Filtering policy, Routing policy, Remote-access/VPN policy, Monitoring/logging

policy, and Demilitarized zone (DMZ) policy. We will present each of them in detail in the

following subsections.

1.3.2.1 Management-access policy The Management-access policy is used to define

the permissible methods and manner of management access to the firewall. This policy

tends to address the firewall physical integrity and static configuration security layers. This

policy defines the permissible protocols for both remote and local management, as well as

the allowable users that can connect to the firewall, and the permissions those users will have

during the time they perform tasks. Additionally, the policy also defines the requirements for

management protocols such as Network Time Protocol (NTP), syslog, TFTP, FTP, Simple

Network Management Protocol (SNMP), etc.

1.3.2.2 Filtering policy A filtering policy is used instead of the actual firewall rule-set

to define the kinds of filtering that must be used and where filtering is applicable. This

policy addresses the firewall static configuration, specifically, the network traffic through the

firewall layers. A good filtering policy requires both ingress and egress filtering for the given

firewall. This policy also defines the general requirements in connecting different security

level networks and resources.

1.3.2.3 Routing policy Complex perimeter design and increased use of firewalls within

the internal network, causes firewalls to be part of the routing infrastructure. The routing

16

policy specifies the firewall in the routed infrastructure and defines the method in which the

routing is conducted. This policy addresses the firewall static and dynamic configuration

layers. Mostly, routing policy explicitly prohibits the firewall from sharing the internal

routing table with any external resource. It also determines the scenarios under which static

or dynamic routing protocols can be invoked.

1.3.2.4 Remote-access/VPN policy In today’s network environment, all major fire-

walls can serve as the termination points for VPNs. Thus, the remote-access/VPN policy

defines the requirements for the level of encryption and authentication that a VPN connec-

tion would require. This policy also defines the protocols that are used, namely, IP Security

(IPSsec), Layer 2 Transport Protocol (L2TP), or Point-to-Point Transport Protocol (PPTP).

Finally, the policy also determines what kind of access and resources will be made available

to remote connections and the types of connections that will be allowed.

1.3.2.5 Monitoring/logging policy A firewall monitoring system is critical to ensure

that a firewall is providing the expected level of security. The monitoring/logging pol-

icy defines the methods and degrees of monitoring performed by the firewall. It provides

a mechanism for tracking the performance of the firewall as well as the occurrence of all

security-related events and log entries. This policy addresses the firewall static configura-

tion layer. This policy also defines the manner in which logging information is collected,

maintained, and reported.

1.3.2.6 Demilitarized zone (DMZ) policy The objective of the Demilitarized zone

(DMZ) policy is to define the standards and requirements of all devices, connectivity and

traffic flow information. This policy tends to address the firewall static configuration and

network traffic through the firewall layers. There are three broad standards defined for all

DMZ-related devices, namely, Ownership responsibilities, Secure configuration requirements,

and Operational and change-control requirements.

In addition to the above firewall-specific policies, there are many generally applicable

17

policies,namely, Password policy, Encryption policy, Auditing policy, and Risk-assessment

policy. The password policy helps to define administrative access to the firewall, creation of

preshared secrets, hashes, and community strings. All forms of encryption access, including

Hypertext Transfer Protocol, Secure (HTTPS), Secure Sockets Layer (SSL), Secure Shell

(SSH), and IPsec/VPN access are referred via the encryption policy. The audit require-

ments of the firewall employs the auditing policy. Enterprise risk-assessment policy helps to

define the methodology that is used to identify the risks associated with all system updates(

additions, deletions, and changes).

1.3.3 Firewall Policies/Rule-sets

The “firewall policies” or “rule-sets” is the actual policy build based on the requirements

and specifications set by the organization. There are three common rule-sets for any given

firewall, namely, Ingress, Egress, and Management-access filters. Ingress filter is used to

restrict traffic coming into an interface or from a given network segment. This type of filter-

ing is commonly applied to traffic coming from an untrusted source (Internet) to a trusted

source (internal network). Unlike ingress filters, egress filters apply to traffic coming from

a trusted network to an untrusted network. Thus, egress filtering is typically applied to

firewall interfaces that connect to the internal network or to a DMZ segment.

The management access rule-set specifies the management details required by the enter-

prise network. It is important to restrict the management access to specific management

workstations and never allow access of this information from an untrusted network. Due to

the information criticality it is always advisable to use encrypted management method, if

this is not a possibility, IPsec can be implemented to secure the traffic instead. There are

various methods of performing remote management and logging of firewalls, namely, Telnet

and SSH, SNMP, Syslog, TFTP and FTP, HTTP and HTTPS, etc.

The most important factor in ensuring that the firewall is an effective security measure as

well as is secure in and of itself relies on a well-planned methodology of defining the security

18

requirements and objectives with a series of written security policies. The policies developed

can thus be used to build effective and functional filters.

1.4 FIREWALL MANAGEMENT

From the perspective of the small office/home user, the firewall is a single device that protects

the home network from malicious traffic. For the enterprise network, the firewall can be both

an inbound filter as well as an outbound filter depending on how the security policy calls

for enforcing the edge network. In both the above cases, it is important to manage firewalls

to ensure secure operation. In this section we discuss the management of firewalls through

the CLI and the GUI interfaces. We then discuss firewall management access and present

the common firewall management tasks. Finally, we present the challenges towards firewall

management and optimization for large scale enterprise networks, which is the focus of this

research.

1.4.1 Firewall Management Interface

Modern firewalls can be operated via two administrative interfaces, namely, Command Line

Interface (CLI) and Graphical User Interface. A CLI enables the use of a specific instruction

set to configure the firewall. The initial configuration of the firewall is performed by the

end user in the CLI interface. CLI usage demands the knowledge of the command set in

the firewall product. Linux NetFilter, for the most part, is configured via command line

interface. In contrast to CLI, a GUI provides a more user-friendly interface to configure

the firewall. The GUI for Symantec Norton Internet Security is configured through a direct

interface on the host system. GUI usage for Linksys, PIX 501 and 506E series systems

comes with a preconfigured IP address and an administrative password to enable access to

the firewall. An important advantage of CLI over GUI based interfaces is the availability of

CLI via Telnet and SSH sessions as well as through direct connections to the serial port.

19

1.4.2 Firewall Management Access

Access control to the management interface of network systems is vital to maintain expected

secure operation of the firewall. To provide this, network device access is usually restricted

to the administrator of the network system. Firewall management access can be of two

types, namely, in-band and out-of-band management. In-band management refers to the

administrative access to systems and network devices over the same network as used by the

traffic being filtered. In-band management should always be through encrypted communi-

cation, via SSH or HTTPS. In contrast, Out-of-band management results in access to the

firewall through a secondary channel that is not carrying production traffic. This can either

be a VLAN setup for administrative access to network devices and hosts, or, preferably, a

completely separate physical network. Out-of-band management can also be used to provide

access to the serial port of the network device for access, should the network fail. In com-

parison to in-bound management, out-of-bound management is a more time consuming and

costly management access.

1.4.3 Firewall Management Tasks

The first step to firewall deployment, both for enterprise or small-office/home-office networks,

is to configure it. Configuration involves changing the default administrative password, con-

figuring the default gateway, configuring the IP addresses for the internal and external in-

terfaces, and configuring the logging of messages from the firewall. In addition to the above,

the firewall administrator also manages the configuration of the firewall over time. This task

requires the use of change control system (Revision Control System (RCS)).

Initial configuration is the first task performed for firewall management and operation.

This task requires information about both the internal and external interface IP addresses,

the next-hop gateway, logging, and an administrative password. The firewall needs to be

maintained and updated with the correct security policies of the organization it protects.

Modifying the configuration task achieves this objective by enabling changing and modify-

ing the firewall configuration. The modifications are with the help of change control, which

20

ensures that the changes made are tracked and logged in case of any unexpected behavior

and/or anomalies. The final task while managing firewalls is to Update the Firewall Soft-

ware. There are two primary reasons to perform this task. Firstly, this task helps to take

advantage of new capabilities added to newer software versions. Secondly, this tasks aids the

administrator to fix bugs and other vulnerabilities in the software.

Managing firewalls is very vital to ensure security in any given network. Updating

firewall software and managing and modifying the firewall policy set will ensure that a

vulnerability is detected and mitigated at its inception to maintain the security of such

network environments.

1.4.4 Complexity of firewall management and optimization

Firewalls have proven to be useful in dealing with a large number of threats that originate

from outside a network. They are becoming ubiquitous and indispensable to the operation

of the network. The continuous growth of the Internet, coupled with the increasing sophis-

tication of attacks, however, is placing further demands and complexity on firewalls design

and management. Increased firewall complexity, undoubtedly, brings with it increased vul-

nerability and reduced availability of individual network services and applications. Analysis

of real configuration data has shown that corporate firewalls are often enforcing rule-sets

that violate established security guidelines.

Furthermore, the need to deal with large sets of diverse security policies and rules im-

poses additional burden on firewalls, thereby rendering the performance of the firewall highly

critical to enforcing the network security policy. In this context, the protection that a fire-

wall provides depends not only on the policies it is configured to implement, but equally on

the speed at which it enforces these firewall policies. Under attack or heavy load, firewalls

can easily become a bottleneck. As the network size, bandwidth, and processing power of

networked hosts continue to increase, there is a high demand for “optimizing” firewall oper-

ations for improved performance.

21

Multi-dimensional firewall optimization is proven to be NP-hard [33, 45]. This has led

the research community to focus on developing various “optimization” heuristics to make

firewalls more efficient and dependable. Despite significant progress in the design of fire-

walls, the techniques for firewall optimization remain static, and as such, fail to adapt to the

continuously varying dynamics of the network. This is mostly due to their inability to take

into account the traffic characteristics logged by the firewall, such as source and destination,

service requests and the resulting action taken by the firewall in response to these requests.

Moreover, current firewall designs do not support adaptive anomaly detection and counter-

measure mechanisms to deal with short and long term attacks. Consequently, they run the

risk to become unstable under attack.

In this thesis we aim to address the above shortcomings and develop a sound and effective

optimization framework to optimize firewall operations and “adapt” its performance to the

dynamically changing network traffic characteristics. In the following section we present the

thesis problem and challenges in achieving the desired goal.

1.5 THESIS PROBLEM AND CHALLENGES

The firewall technologies of present day Internet are “static” and “oblivious” to traffic dy-

namics in the network. With the advent of ultra-high speed (Gbps) networks, this “static”

and “traffic oblivious” approach has become a major hindrance in providing security and

performance of such network systems. Inspite of huge attention by the research community,

unfortunately, to date there is no current solution which addresses the above shortcomings.

Hence, as a whole security remains a major issue due to the:

• Lack of dynamics in the design of architectures and algorithms for intrusion detection

and mitigation systems

• Lack of adaptation of such systems

22

Thus, the objective of this research is to address the above shortcomings and develop a

sound and effective framework and algorithms to accelerate firewall operations and “adapt”

its performance to the dynamically changing network traffic characteristics. The thesis aims

at addressing the problem of firewall management and optimization taking the dynamics

of network traffic into consideration. Further, the thesis aims to design a proactive secu-

rity model which includes various optimizations to aid performance of such network systems.

Achieving this goal is a challenge, as the number of policies and security rules a firewall

has to enforce for enterprise networks is large. In addition, there is a need for maintaining

high policy integration. This is further compounded by the limited resources of firewalls

relative to the increased ability of the network to process and forward traffic at extremely

high speed.

Thus, the complexity of packet filtering along with providing content based services for

such scalable network systems, under the constantly changing and evolving network dynamics

makes the problem of firewall optimization a formidable task. Along with this, maintaining

the availability of the filtering agents (core routers or firewall servers), while meeting real

time requirements, is a daunting task. This thesis addresses these challenges by designing

better ways to search, update and filter a large set of data based on specific policies and

rules to optimize and better strategize to defend against attacks which go beyond the classic

peripheral model.

To state formally, this thesis aims to answer the fundamental question as follows:

Whether dynamic de-centralized (as well as centralized) approaches to attack detection

and mitigation feasible, and if so, would de-centralized, traffic aware “defense” mechanisms

enhance the ability of a network system (servers and core routers) to protect against anoma-

lies and malicious behavior.

23

Thus, the goal is the design of a Dynamic (gradual deployment through collaboration),

Adaptive (traffic-aware) and Scalable global defense platform. Our approach involves

a unique combination of algorithmic and architectural techniques that have a potential to

outperform all current techniques in terms of adaptiveness, speed of operation (under at-

tack/heavily loaded conditions) and overall operational cost-effectiveness of such network

systems.

1.6 THESIS CONTRIBUTION

The objective of this thesis is the design of dynamic and traffic-aware defense architectures

and algorithms to secure the present day network systems. The thesis contribution is enu-

merated as follows:

1. Design of techniques aimed at reorganizing firewalls and developing architectures and

algorithms to optimize firewall rule-sets

The first contribution is the design of PITTWALL, a centralized firewall optimization

toolkit. We present the design of a traffic-aware Firewall Optimization Framework and

optimization algorithms to improve the operational cost of firewalls. We validate our

contribution by evaluating on rule-set and traffic log data available from a large Tier-1

ISP against the widely used commercial Checkpoint NGX firewall [4].

2. Expand the linear model of security in networked systems towards a de-centralized design

to achieve “optimal” operation cost of firewalls and reduce their management overhead

As the second contribution we propose the design of a firewall optimization framework

and optimization approaches aimed at improving the performance and efficiency of de-

centralized firewalls. We achieve the firewall transformation via “rule-splitting” and

present an “optimal” and a “heuristic” approach to achieve the above transformation.

We present the design and implementation of OPTWALL, a hierarchical traffic-aware

optimization tool to validate the contribution. Our proposed approach is augmented

24

onto the open source firewall, Linux IPCHAINS [2].

3. Develop techniques to capture the nature and behavior of traffic and its characteristics

in the design of efficient firewalls

The third contribution of this thesis is the development of traffic-aware optimization

techniques to capture traffic information in the design of firewalls. We validate the pro-

posed techniques by evaluating on “hit-count” characteristics of the traffic. The proposed

architectures and algorithms are fully flexible to include other traffic characteristics as

per the decision of the network administrator. We validate the contribution on rule-set

and traffic log data available from a large Tier-1 ISP.

4. Design and implementation of an online adaptation scheme to adapt to short term and

long term traffic anomalies

In the fourth contribution we present the design of a strong anomaly detection and

mitigation approach to defend against short term and long term traffic behavior. Our

proposed adaptation technique is based on the characteristics of “variability between the

predicted and actual traffic data. We have incorporated the proposed contribution in

both the centralized (PITTWALL) and hierarchical (OPTWALL) firewall optimization

toolkit.

1.7 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 provides literature review of cur-

rent architectures and algorithms for firewall optimization. Chapter 3 presents the data set

and the analysis that motivates the research work in this thesis. The centralized firewall

optimization model and its architectures and algorithms are introduced in Chapter 4. In

Chapter 5, we outline the details design of the De-centralized/Hierarchical Firewall op-

timization framework. The various approaches to improve Rule Splitting for Hierarchical

25

firewall design are discussed in detail in this Chapter. Finally we conclude with the thesis

with the thesis summary in Chapter 6 and present the a very important future direction in

Chapter 7.

26

2.0 BACKGROUND AND RELATED WORK

Firewalls are becoming ubiquitous and indispensable to the operation of the network. The

continuous growth of the Internet, coupled with the increasing sophistication of attacks,

however, is placing further demands and complexity on firewalls design and management.

Increased firewall complexity, undoubtedly, brings with it increased vulnerability and re-

duced availability of individual network services and applications.

Analysis of real configuration data has shown that corporate firewalls are often enforc-

ing rule sets that violate established security guidelines. Furthermore, the need to deal with

large set of diverse security policies and rules imposes additional burden on firewalls, thereby

rendering the performance of the firewall highly critical to enforcing the network security

policy. In this context, the protection that a firewall provides becomes as good as, not only

the policies it is configured to implement, but equally importantly the speed at which it

enforces these policies. Under attack or heavy load, firewalls can easily become a bottleneck.

As the network size, bandwidth, and processing power of networked hosts continue to

increase, there is a high demand for “optimizing” firewall operations for improved perfor-

mance. The efficiency of firewalls in protecting the infrastructure, however, depends not only

on the integrity and coherence of the security policies they are configured to implement, but

equally importantly on the speed at which these policies are enforced. Optimizing firewalls,

however, remains a challenge for network designers and administrators.

Due to the enormous impact of firewalls on network security, there has been a significant

amount of research work on how to optimize firewalls. Recent researchers in both industry

27

and academia have focused extensively on the problem of packet classification and optimiza-

tion. Though packet classification is extensively studied, it is an evolving problem. With the

growth and changing needs of security threats and services, the security policies are larger

and more and more complex. This increased complexity and size impose challenges to hard-

ware based solutions and drive the design of software solutions. Current packet classification

solutions aimed at improving the matching time of filters include hardware based, geomet-

ric based, specialized data structure based or other heuristics and statistical solutions. We

discuss each of the approaches and their drawbacks in the following section.

2.1 PACKET CLASSIFICATION AND OPTIMIZATION

2.1.1 Hardware Based Solutions

Hardware based packet classification solutions using the concept of Context Addressable

Memory (CAM) exploit the notion of parallelism in hardware to speed of the rate of packet

matching. These solutions are limited to small policies due to cost, power and size limita-

tions of the CAMs. There are other hardware based solutions described in [35], but all of

the solutions are limited to number of rules. The policy structures the rules as a trie, with

the classification time as O(B), where B is the total number of bits in all dimensions. The

value of B can be very large as the bits and dimensions in the tuples increase.

The Aggregated Bit Vector (ABV) [9] approach helps to solve the problem with d inde-

pendent lookups on one dimension followed by a merging phase. Lookups are performed for

each dimension and then the final rule list is computed by finding rules with highest priority.

The memory consumed for storing the rules is extremely large and hence a compressed bit

vector is used instead. [46] builds a table of all possible field value combinations and pre-

computes the earliest rule matching each cross-product. Search is conducted by separate

lookups on each field. The results are then combined into a cross-product table followed by

28

indexing into the table. The limitation of this approach is that the cross-product table grows

significantly with the number of rules. There have also been other similar hardware based

solutions over the years but all of them lack the ability to handle (with real time guarantees)

large policy sets (∼ 1, 000, 000) due to memory size, power and cost limitations.

2.1.2 Geometric based solutions

Another research direction to address this problem was to search for geometric based solu-

tions. Feldmann et. al. in [19] proposed a geometric based solution and introduced a data

structure called Fat Inverted Segment (FIS) Tree. FIS partitions the first dimension with

the endpoints of the projection of the rules on that dimension. Each of the segments is then

partitioned, according to the remaining dimensions of the rules covering each segment, into

a number of d dimensional regions. To curb the storage requirement of such a structure, the

d dimensional regions are linked in a FIS Tree of bounded depth, and the common partitions

of the regions are pushed up in the tree. The proposed solution scales better than others,

but still cannot meet the tuple sizes for large Tier-1 ISPs. Another geometrical based solu-

tion, the Decision-tree based algorithm was introduced by [48, 22, 25], builds a decision tree

using local optimizations at each intermediate node to choose the next bit to test. Addition-

ally, [48] uses multiple decision trees which helps to reduce storage with increase in search

time. Similarly, [22] uses range checks instead of bit checks at each node of the decision tree

to advance the search for a packet match.

2.1.3 Specialized data structures

Researchers have also proposed various specialized data structures to enable fast packet clas-

sification. [45] builds a table of all possible field value combinations and pre-compute the

earliest rule matching each of them. Search is accelerated by performing separate lookups

on each field and then combining the results into a combination table followed by indexing

into the table. However, the approach does not scale to large number of rules. Furthermore,

29

numerous heuristic approaches have also been researched to aid fast packet classification.

The Recursive Flow Classification (RFC) [23] approach pipelines various packet matching

stages to achieve high throughput for hardware based implementations. Although all the

above research contributes to fast packet filtering, they only focus on improving the worst-

case (not the average case) matching time for packet filters. In addition, they exhibit high

space complexity, which limits their practical deployment in large Tier-1 ISPs.

2.1.4 Statistical based solutions

In [24] the authors introduced a statistical data structures in optimizing packet filtering.

They used depth-constrained alphabetic trees to reduce lookup time of destination IP ad-

dresses of packets against entries in the routing table. The authors show that using such

statistical data structures it is possible to improve the average-case lookup time for packet

filters. The work focuses on only single dimensional filters and does not consider any traf-

fic dynamics in rule-set building or real time operation of packet filters. The work in [41]

presents algorithms to optimize filtering policies by aggregating adjacent rules and eliminat-

ing redundant ones to reduce the size of the rule list. However, the work did not consider

traffic information in its optimization approach.

2.2 FIREWALL OPTIMIZATION

2.2.1 Policy based optimization

Most of the current research in firewall optimization has been in the area of firewall policy

modeling and optimization [20,21,42,22,25,44,17,28,47]. Very few attempts have been made

to achieve multi-dimensional firewall optimization. In [8], a tool to model firewall policies

and detect conflicts is described. In this work, the authors focus mainly on single attribute

rules. Similarly, in [17] a constraint logic programming (CLP) framework to analyze rule-sets

30

is discussed. These research work offer a good insight in how to model and analyze rule-

sets. Neither of these approaches, however, consider optimizing a multi-dimensional rule-set.

The approach proposed in [20] optimizes the firewall rule-set using Directed Acyclic

Graphs (DAGs) to describe rule dependencies. However, it does not provide a methodology

to build the DAG. Furthermore, for complex graphs this scheme is ineffective. The approach

proposed in this thesis removes all the dependencies and hence it becomes possible to achieve

optimum rule ordering. In [41], a framework to analyze and optimize rule-sets is described.

However, the authors do not provide specific details on how optimization can be achieved

within the proposed framework. Furthermore, this work does not consider the traffic charac-

teristics in its optimization approach. In this thesis we design architectures and algorithms

to optimize firewalls that differs from literature, in its unique approach to consider firewall

traffic characteristics in optimizing the rule-sets.

2.2.2 Traffic based optimization

Recently there has been great attention to address traffic-aware firewall optimization. Some

efforts in rule reordering using traffic specifications as in [16,26,27] have been proposed. But

these approaches consider a very small firewall policy set (∼ 200) in comparison to realis-

tic Tier-1 ISP firewall data sets (∼ 1, 000, 000 policies). The current approaches also lack

complete rule reordering due to existing dependencies in the policy sets. Furthermore, in

these approaches all traffic characterizations are not considered for firewall optimization. [7]

presents a tool geared towards adaptive optimization of list based firewalls, however, the

work falls short of addressing non-linear policy optimization. In other words, it does not

consider any traffic-aware design improvements in the firewall structure. All these previous

efforts suggest the lack of and need for dynamic, global firewall optimization architectures

and algorithms towards achieving next generation Internet security.

31

2.3 ANOMALY DETECTION AND MITIGATION

The design and deployment of the decentralized packet filtering framework requires the un-

derstanding of the various types of distributed attacks in the current networked systems. In

the following we present a brief background of attacks [3,37,14]. The primary reason behind

such attacks over the Internet is its design solely for functionality and not security. The

Internet’s distributed nature and the absence of a common policy makes it susceptible to

various kinds of attacks. Today’s Internet security is a highly interdependent concept; the

resources are limited and the intelligence and resources are not collocated. A typical dis-

tributed attack starts when the attacker recruits multiple slave machines by infecting them

with attack code. These slave machines typically launch attacks on behalf of the attacker

with a spoofed source address. The reason behind this attack is to inflict damage on the

victim either for personal reasons, material gain or for popularity.

2.3.1 Attack classification

Distributed attacks are classified either based on the means used to prepare and perform

the attack, the characteristics of the attack itself, and the effect it has on the victim. In

the classification based on Degree of Automation the attacker needs to locate prospective

agent machines and infect them with the attack code. These attacks are classified as manual,

semi-automatic or automatic attacks. Current distributed attacks are either semi-automatic

or automatic. In the semi-automatic attacks the nodes are infected using automated scripts

but then the attacker manually issues commands for the actual attack (with direct and in-

direct communication e.g. usage of IRC channels for agent/handler communication) and

automatic attacks. Attack phase is also automated, thus avoiding the need for communica-

tion between the attacker and the agent machines. Automatic distributed attacks automate

the attack phase. They avoid communication between the attacker and the agent machines.

All operations of the attack are preprogrammed in the attack code.

32

The agent machines in the semi-automatic and automatic attacks deploy various scan-

ning and propagation techniques. The scanning can be “random scanning” (e.g. Code

Red), “hitlist scanning , “topological scanning”, “permutation scanning”, and “local subnet

scanning”. In random scanning the compromised host probes random addresses in the IP

address space, using a different speed. The scanning in hitlist scanning is performed based

on an externally provide list. This technique is very powerful as there are no collisions dur-

ing the scanning phase. Topological scanning employs information on the compromised host

to select new targets. Email worms follow topological scanning technique. In Permutation

scanning all the compromised machines share a common pseudo- random permutation of the

IP address space, where each IP address is mapped to an index in this permutation. Local

subnet scanning preferentially scans for targets that reside on the same subnet as of the com-

promised host. Code Red II and Nimda Worm are examples of Local subnet scanning attacks.

Another classification of distributed attacks is based on the target of vulnerability dur-

ing the attack. This attack classification of Exploited Vulnerability include those that are

“Protocol (TCP SYN attack, CGI request attack, authentication server attack, etc)” and the

“Brute-force attacks”. Protocol attacks exploit a single or multiple feature of any protocol.

TCP SYN attack, CGI request attack and Authentication server attack are examples of

Protocol attacks. Brute-force attacks are achieved by initiating a vast amount of seemingly

legitimate transactions. This exhausts the victims network resources. Brute-force attacks

are classified as either Filterable or Non-filterable attacks. Attacks that employ packets for

non-critical services of the victim’s operation and can be filtered by a firewall belong to the

category of Filterable attacks. UDP flood attack and ICMP request flood attack on a Web

server are Filterable attacks. Attacks requesting legitimate services from the victim consti-

tute Non-filterable attacks. Example of a Non-filterable attacks is a HTTP request flood

targeting a Web server or a DNS request flood targeting a name server.

One other classification of distributed attack is based on the Attack Rate Dynamics.

The attacks in this classification include those that are either “Continuous rate attacks”

or “Variable rate attacks”. Most attacks employ continuous rate mechanisms. The rate of

33

change of attacks can be either increasing rate or fluctuating rate. The final category of

classification of distributed attacks is based on the impact of the attack. Impact attacks can

be classified either as Disruptive attacks or Degrading attacks. In the Disruptive attack case

the attacker completely denies the victim’s service to its clients. Most distributed attacks

are disruptive in nature. Degradation attacks as the name implies attack only a portion of

the victim’s resources. Due to its extent of disruption there attacks remain undetected for

for a significant period of time.

2.3.2 Defense mechanisms

To counter these attacks there are various defense mechanism proposed in the current liter-

ature. The distributed defense mechanisms are classified either based on the activity level

or on the location of deployment. Activity level defense mechanisms are either Preventive

or Reactive in nature. Preventive mechanisms work by either mitigating the attack while

maintaining desired availability to the legitimate clients or by completely eliminating the

attack. These include resource accounting and resource multiplication mechanisms. Preven-

tive attacks are classified as attack prevention and denial of service prevention mechanisms.

In attack prevention the system configuration is modified to eliminate the possibility of

attack. In denial of service prevention the victim endures the attack while servicing the

legitimate clients. Contrary to Preventive mechanisms, Reactive mechanisms include mech-

anisms where the goal is to detect as quickly as possible and have a low degree of false

positives. Reactive mechanisms are classified based on their attack detection strategy to

those of “Pattern detection”, “Anomaly detection” and “Hybrid detection”. In Pattern de-

tection the known attack signatures are stored in a database. Periodic Comparison against

a normal behavior model is the basis of Anomaly detection. Challenges in this detection

strategy include threshold setting and model update. Hybrid detection uses a combination

of the above two defense mechanisms.

34

Defense mechanisms of location of deployment are categorized based on the location

as either Victim-Network, Intermediate-Network or Source-Network mechanisms. Victim-

Network mechanisms protect the victim against distributed attacks. Intermediate-Network

mechanisms provide support mechanisms and service numerous Internet hosts. In the Source-

Network mechanism, the source network is monitored to prevent service abuse by clients

using the network. All the above attack and defense classification helps to understand the

gravity of distributed attacks and provide a platform to aid the design of mechanism for

dynamic defense.

In this chapter we present the background and related research in the area of packet

classification and optimization. The large size of the policy sets and the complexity due to

the varied services imposes tough challenges to non-linear multi-dimensional firewall opti-

mization. The current solutions lack in providing a realistic solution for large data sets, as

that of Tier-1 ISPs. Our goal is the design of dynamic and adaptive optimization techniques

that can detect in real-time that an attack has occurred or is underway to help mitigate such

distributed attacks. To this effect this thesis proposes fundamental research in de-centralized

firewall optimization and presents architectures and algorithms to mitigate anomalies over

the Internet.

35

3.0 FIREWALL DATA AND ANALYSIS

To motivate the importance of considering traffic characteristics in firewall optimization, we

will analyze the firewall data set and traffic log information from a real world scenario. The

data set used in the study is obtained from list-based firewalls managed by a large Tier-1

ISP for its partner networks. The Tier-1 ISP provides secure access to and from about 300

business partners. The data set consists of two parts; the firewall rule-sets and the traffic

logs. We have obtained firewall data from six firewalls of the Tier-1 ISP. The analysis is

conducted on all six firewalls. In this chapter we present the analysis of a typical firewall

data-set. All the other five firewalls follow the similar trends. Firstly, we discuss the various

firewall policy representations, we then present the Tier-1 ISP firewall data set consisting

of firewall rule-set and traffic log information, and finally present detailed analysis of the

enterprise firewall data set.

3.1 FIREWALL POLICY REPRESENTATION

Firewall security policies for an organization are expressed in the form of a policy repre-

sentation set. This representation governs the manner in which rules are invoked during

firewall operation. There are various policy representations, namely, trie-based, tree-based,

direct-acyclic graph (DAG) based, and list-based.

The trie-based policy representation is structured as an n-ary (where n is the number of

rules in the security policy set) retrieval tree with k levels, also referred to as the trie. Each

level corresponds to a network attribute and the nodes in the trie store the actual value of

36

the security policy. In the tree-based policy representation the rules are structured as a single

rooted tree. Each node of the tree represents a network field, and each branch at this node

represents a possible value of the associated field. A rule is defined by a tree path starting

at the root and ending at the leaf node. Rules that have similar network field value at any

given node share the same branch representing that value. As the name suggests in the

DAG based policy representation the rule-set is modeled as a DAG, in which the vertices are

firewall rules and edges indicate precedence relationships. A rule is modeled as an ordered

tuple of sets, the order is necessary to maintain the predefined semantic order of the original

policy set. In the list-based policy representation the security policies are in the form of a

list and the network packets for filtering traverse sequentially through the list. The focus of

this thesis is the list-based firewall representation.1 We will discuss list-based firewalls details

in Section 4.1.

3.2 FIREWALL DATA

The Tier-1 ISP firewall data consists of firewall rule-set and firewall traffic log information.

The ISP provides service to 300 customer or business partner networks. Partner network

services are disjoint from one another. The security policies detailing a partner network

security requirements are represented in the form of a block. The firewall rule-set consists of

a number of blocks, each block corresponding to a customer network as depicted in Figure 4.

The security policies within blocks are disjoint from one another. Each block consists of a

set of multi-dimensional security policies called the rules as illustrated in Figure 5.

A typical block consists of several thousand rules. Each rule is a multi-dimensional

structure of tuples. A typical rule on average consists of more than a million tuples. The

number of tuples indicate the strength of the data set under consideration. Figure 6 shows

an instance of a rule structure. The multidimensional structure of the rule include the source

address: src, the destination address: dst, the service type: srv, and the action field. The

1Most of the ISP firewalls at its core are list-based representations.

37

action can take values as accept, drop or forward. It is important to note that each dimen-

sion contains multiple values. Each such instance of the firewall rule is a tuple. We define

tuple as the fundamental unit of packet filtering of the firewall. A typical tuple instance of

a rule is represented as the following:

< src : 10.10.10.2; dst : 10.20.10.1; srv : ospf ; action : accept >.

The Tier-1 ISP firewall data also consists of the firewall traffic log information. Figure 7

depicts an entry of the firewall traffic log. The firewall traffic log information is reported on

every action of the firewall. Rule traffic is logged once per entry for every action per session

of firewall operation. Firewall traffic log includes various packet log information such as the

date and time the packet was filtered by the firewall rule, the action taken on the packet

(either accept, drop or forward), the source and destination ip address, protocol type, service

type, port number, etc. We conduct detailed analysis on the firewall rule-set and traffic log

to understand the manageability and performance of the Tier-1 ISP firewall.

The goal of all data analysis and optimizations throughout the proposed research is

aimed at improving the operational cost (average processing time) of the tuples for the given

firewall rule-set. In the next section we discuss the various factors that can impact the per-

formance of a firewall and conduct analysis on each of them for the Tier-1 ISP firewall data

set.

3.3 DATA ANALYSIS

In this section we will detail the various analysis performed on the data set obtained from

the large Tier-1 ISP. The aim of this analysis is to understand the management and perfor-

mance of firewall rule-set and traffic log information. In the first part we conduct detailed

38

 . .

 . .

 . .

 . .

 . .

 . .

 Blocks Customer/Partner Networks
 Bi ∩ Bj = �

Security Policy
of Customer 1

Security Policy
of Customer 2

Security Policy
of Customer N

Block1

Block2

BlockN

Figure 4: Firewall Structure

39

 …………………………….. Rule1 Rule2 RuleM

Figure 5: Block Structure

: rule (
: src (: srv (

: 10.10.10.2 : ospf
: 10.10.10.3 : traceroute
: 10.10.10.4 : echo-requests
: 10.10.10.5 : ping-replies
))

: dst (: action(
: 10.20.10.1 : accept
: 10.20.10.4)
: 10.20.10.5)
)

Figure 6: Rule Structure

num;date;time;orig;type;action;alert;i/f_name;i/f_d ir;
product;src;dst;s_port;service;proto;……………… ..

1;27Jul2005;23:59:04;10.10.10.1;log;accept;;qfe1;
inbound;X;10.30.10.1;10.20.10.1;53480;161;udp ;;;

Figure 7: Traffic Log Instance

40

analysis on the firewall rule-set data. Later, we perform the traffic based analysis on the

obtained data set from the large Tier-1 ISP. We present detailed analysis of the results in

the following subsections.

3.3.1 Rule-set analysis

3.3.1.1 Block size distribution Each rule-set in the firewall is organized into a set of

blocks. Each block of a rule-set corresponds to a given corporate network served by the Tier-

1 ISP. The number of rules in a block are dependent upon the requirement of the corporate

network served by the Tier-1 ISP. Hence, the blocks can consists of non-uniform set of rules.

This study is performed to analyze the distribution of rules within the different blocks. We

determine ranks based on the occurrence of blocks in the rule-set. Figure 8 shows that the

number of rules per block distribution w.r.t. the rank of the block.

The results depict statistics of average values for one week of firewall data. It is surpris-

ing that blocks do not follow any definite pattern of occurrence. The blocks are appended

to the list of firewall rules without any optimization considerations. We would imagine for

uniform rule hit distribution the blocks containing higher number of rules should be placed

earlier in the rule-set to decrease the operational cost of firewalls. For the realistic case of

non-uniform rule hit distribution, the hit distribution should govern the rank of the blocks

in the rule-set. The analysis results show the lack of any such optimization in the operation

of the Tier-1 ISP firewall.

3.3.1.2 Duplicates amongst blocks The basic functionality of any firewall manage-

ment system should ensure that each corporate network (client) have disjoint w.r.t to other

corporate networks or blocks. The disjoincy in the rules ensure that the rules in the blocks

do not perform any redundant operation. Figure 9 shows the existence of duplicates amongst

blocks in the firewall data of the large Tier-1 ISP.

41

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Rank of block

N
um

be
r o

f r
ul
es

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Rank of block

N
um

be
r o

f r
ul
es

Figure 8: Block size distribution

The redundancies cause the increase in the average operational cost of firewalls, hence

affecting the performance of the concerned network system. We have designed our analyzer

to be able to identify these rule tuples (src, dst, srv, action pairs) and report them to the

firewall administrator for proper action.

Days Duplicate Count Duplicate Block

06/06/05-06/13/05 2 16, 46

06/14/05-06/19/05 2 14, 44

Figure 9: Duplicates amongst blocks

42

3.3.1.3 Rule set variation Another important rule-set based analysis is to determine

the variation of rules in the rule-set over period of time. We have determined a typical set of

data for our analysis. Each rule-set consists of about 2000 rules. The rules are categorized

into three categories: “added′′ rules, “deleted′′ rules and “changed′′ rules. A rule is said to

be changed if there is a change in its rank from one day to another without any change in its

contents or if the rule’s attributes (such as src, dst, srv) are modified. The modification of

rules in the blocks occur as the new rule-set is determined and loaded during routine (daily)

operation of the firewall. Results in Figure 10 depict the rule-set variations of typical data

set of the Tier-1 ISP.

From the analysis we observe very few rule rank change (movement of rules) based on

daily traffic. This observation concludes that most rules follow long term stable patterns.

We also observe that there are very few rules that are added, deleted or changed from one

day to another. This analysis concludes that the rule changes are stable for most part of the

Tier-1 firewall operation.

3.3.1.4 Dependency amongst rules Another important criteria to analyze the firewall

rule-set data is to understand the dependency relationships that exists amongst the rules.

Comprehending dependency relationships amongst rules will aids to perform traffic based

optimization. It is important to note that rule dependencies amongst rules limit the position

of rules in the rule sets.

From our analysis we conclude that very few rules are dependent on one another in a

given typical firewall rule-set (100 of 1900 rules). Our aim is to detect these dependency

relationships amongst rules and eliminate them in order to provide the firewall optimization

tool with full flexibility of rule reordering at runtime. In the next chapters we will propose

techniques to exploit the above rule reordering flexibility to aid traffic aware optimizations.

43

Change from 06/06/05 to 06/07/05
New Addition: 1311-1322
Deletions: 1311-1320
Changes: 389-390

Change from 06/12/05 to 06/13/05
No Changes

Change from 06/07/05 to 06/08/05
No Changes

Change from 06/13/05 to 06/14/05
New Addition: 167-186, 1393-1406, 1625-1770
Deletions: 167-298, 1505-1506, 1725-1869
Changes: 62

Change from 06/08/05 to 06/09/05
No Changes

Change from 06/14/05 to 06/15/05
New Addition: 168-188, 1279-1283
Deletions: 168-186, 1277-1280

Change from 06/09/05 to 06/10/05
Changes: 67-78

Change from 06/15/05 to 06/16/05
No Changes

Change from 06/10/05 to 06/11/05
No Changes

Change from 06/16/05 to 06/17/05
No Changes

Change from 06/11/05 to 06/12/05
No Changes

Change from 06/17/05 to 06/18/05
New Additions: 170-190
Deletions: 170-188

Figure 10: Rule set variation over days

44

Figure 11: Accepts vs. drop statistics

3.3.2 Traffic log analysis

3.3.2.1 Distribution of Accept vs. Drop rules The next set of analysis are based

on the traffic log data obtained from the large Tier-1 ISP. The first study in this category

measures the accept and drop hit rates of the firewall traffic over a period of time. It is

widely believed that drop rules, especially the default deny reject rule, are the ones which

contribute towards the operational cost of the firewall.

Contrary to this belief, results in Figure 11 depict that there is a considerable number

of accept and drop rules. The ratio of accept hit rules is on average 3.5 times higher than

the drop hit rate. From our analysis we conclude that both accept and drop rules should be

considered while performing firewall optimization.

We further analyze the firewall log information to determine the hit distribution of the

45

accept and drop rules. Our aim in this study is to determine the highest hitting accept and

drop rules in each category. Figures 12 and 13 depict the distribution of the accept and

drop rules w.r.t. to their rank or priority level in the firewall rule-set. The results presented

are for a typical week data of the analyzed firewall.

We observe from the results that the rule-set is not optimized w.r.t. the traffic it expe-

riences over the network. This adversely affect the operational cost of firewalls. To counter

this problem we will present various traffic aware optimizations in the following chapters.

3.3.2.2 Rule hit distribution Another important traffic log analysis is the study of

rule hit distribution based on traffic characteristics. Our observation is for typical daily and

weekly hit distribution of the Tier-1 ISP firewall. Figures 14 and 15 depict the distribution

of top ten hit rules over various interval periods. For optimal firewall operation the rule rank

or priority level of rules in the rule-set should be proportional hit distribution of the rules.

From the analysis results, we conclude that heavy hit rules are not appropriately ranked

in the rule-set. In the proposed research we suggest to reorder the rules based on their hit-

counts to improve the performance of the firewall. From the study of the results we propose

that heavy hit rules, which have lower ranks, should be assigned higher ranks. For example,

in Figure 15, upon reordering, rule ranked 115 should be ranked 2, to improve the average

operational cost of the Tier-1 ISP firewall.

3.3.2.3 Default deny rule hits Default deny rules are those that do not match any

pre-defined rules in the operational rule-set of a given firewall. The terminal rule of a firewall

is usually a default deny action to eliminate all non-match rules after they have traversed

the entire list in a list-based firewall. All attack traffic cause the firewall to invoke the de-

fault deny, as they cause the firewall to over work on searching for a match in its entire

rule-set. The attacker plans to send high volume of traffic that do not match the firewall

46

Accept Rule Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

3 40 61 67 11
5

15
0

38
9

84
8

99
3

10
06

10
87

10
91

Rule rank

A
cc

ep
t

C
o

u
n

t

50205

50305

50405

50505

50605

50705

50805

Figure 12: Accept rule distribution

47

Drop Rule Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

37 44
6

59
9

60
1

80
1

80
3

85
6

85
8

11
21

12
54

16
87

18
46

18
51

Rule rank

D
ro

p
 C

o
u

n
t

50205

50305

50405

50505

50605

50705

50805

Figure 13: Drop rule distribution

48

0

50000

100000

150000

200000

250000

300000

3 37 40 41 61 115 150 518 1013 1097 1870

Rule Rank

H
it

C
ou

nt

Figure 14: Rule hit distribution: Over weeks

49

definitions, but cause the unnecessary work in the firewall. These attacks cause the increase

in the average operational cost of firewalls, in turn making the firewall a bottleneck system.

To understand the severity of the default deny action,we analyze the hit distribution of the

rules in a typical day for given firewall rule-set. As these attacks are usually short term and

transient, we observe the hit distribution over hours for a typical day. Results in Figure 16

depict that hit-count information of the default deny rules in a given firewall rule-set.

We conclude from our analysis that the current firewall operation is heavily bottle-necked

due to these anomalous conditions. To understand the problem better we take a closer look

at firewall data for 3 months. From our observation we conclude that on average about

65% of the tuples are consistently repeated in the default deny hit tuples set. This shows

that there is a large number of consistent default deny hit tuples. We will propose various

techniques in the following chapters to eliminate these anomalous traffic early in the firewall

rule-set operation.

3.3.2.4 Field count distribution In this study we aim to analyze the field count dis-

tribution in the traffic log information of the Tier-1 ISP firewall. As we have mentioned

earlier, traffic is logged on every action of the firewall. The log information helps to capture

the traffic characteristics during the operation of the firewall. Any optimization based on

traffic log will be limited by the size of the above logged information. Results in Figure 17

depict the use of only “16” out of “121” traffic log fields.

From the above results we conclude the presence of unnecessary huge overhead of main-

taining counters for unused fields. We propose to remove the unused traffic log fields in the

definition of log information in order to aid traffic-aware firewall optimization.

3.3.2.5 Protocol distribution The final traffic log analysis is to analyze the distribu-

tion of protocols in the Tier-1 ISP firewall. Figure 18 depicts the protocol distribution for a

50

Rule hit distribution per day (06/06 - 06/19)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

3 40 41 61 64 93

1
15

1
50

2
79

2
83

3
91

4
06

4
07

4
08

4
10

5
18

6
48

7
45

9
01

9
03

9
05

9
85

9
87

9
89

10
00

10
13

10
97

17
10

Rule Rank

H
it

C
ou

nt

0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619

Figure 15: Rule hit distribution: Over days

51

typical week of the firewall. From our the results we conclude that ICMP, TCP and UDP

form the major protocols defining most of the traffic. From the analysis results, we propose

that rules using these protocols should be placed earlier in the rule-set to improve the aver-

age rule processing time in the firewall. We believe that these statistics must be taken into

consideration in rule priority setting to improve the operational cost of firewalls.

The outcome of the above studies clearly illustrates the fact that considering traffic char-

acteristics in the optimization of firewalls is crucial in achieving significant improvement in

the performance of such network systems.

3.4 SUMMARY

In this chapter we present extensive data analysis of the firewall data set and traffic log

information of the Tier-1 ISP. The analysis and observations helps to establish the fact that

consideration of traffic information is vital to the design of efficient firewall operation. Based

on the above analysis, the proposed research aims at designing architectures and algorithms

towards efficient management and optimization of firewalls via traffic-aware approaches. We

strongly believe that such traffic-aware techniques would impact the performance, availabil-

ity and security of today’s networked systems. To summarize, the goal of this research is to

address the problem of firewall optimization by designing tools to enhance the capability of

firewalls to manage traffic volume and dynamics efficiently along with providing high system

availability. Furthermore, the research intends to design novel strategies to efficiently deal

with various network anomalies (DDoS, etc) in a proactive manner.

52

Rule Hit count per hour for 06/06

0

5000

10000

15000

20000

25000

3 37 40 41 61 64 93 109 115 407 1000 1013 1097 1868

Rule Rank

H
it

co
un

t i
n

a
gi

ve
n

ho
ur

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Rule # 1868 (Default Deny)

Figure 16: Default deny rule hits

53

Field Count Disitribution

0

200000

400000

600000

800000

1000000

1200000

ac
tio

n
att

ac
k

da
te ds

t
i/f_

dir

i/f_
nam

e
nu

m or
ig

pr
od

uc
t

pr
oto ru

le

s_
po

rt

se
rvi

ce src tim
e

typ
e

Field Names

U
se

 C
o

u
n

t

Min

Max

Average

Figure 17: Field count distribution

54

Protocol Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2 29 57 esp icmp ospf tcp udp

Protocol

H
it

C
o

u
n

t p
er

 D
ay

0606

0607

0608

0609

0610

0611

0612

0613

0614

0615

0616

0617

0618

0619

Figure 18: Protocol distribution

55

4.0 PITTWALL: A CENTRALIZED FIREWALL OPTIMIZATION

APPROACH

In this chapter we presents the architectures and algorithms for a centralized firewall op-

timization toolset: PITTWALL [7]. Our research aims at understanding the problem and

challenges towards firewall optimization via an in-depth study of firewall rules (packet fil-

ters) and daily firewall logs (traffic statistics) obtained from a large Tier-1 ISP. The analysis

helps to understand the problem of firewall optimization. Further, it lays the foundation to-

wards the design of efficient architectures and algorithms for managing and optimizing such

network defense systems (firewalls). Moreover, the firewall data analysis in the previous

chapter also supports the claim towards the design of a proactive security model to detect

and defend against attacks. We will first present details of list-based firewall representation

in Section 4.1, which is the focus of this thesis. We introduce the firewall optimization model

in Section 4.2. The details of the metrices are discussed in Section 4.3. Finally we conclude

the chapter with the evaluation study in Section 4.4.

4.1 LIST BASED FIREWALLS

In this thesis, we concentrate on “List based” firewalls, one of the widely used firewalls for

most large Tier-1 ISPs. List-based firewall structures rules and policies in a “priority” list.

The list contains the security policies that govern the network packet filtering process in the

operation of the firewall. The set of rules in the firewall set are referred to as the firewall

“rule-set”. The priority of a rule or a policy in the firewall “rule-set” is based on its position

in the list. Earlier occurring rules have higher priority than later ones and are enforced first.

56

Subsequently, the packet is filtered by the earliest rule or policy that matches the filter def-

inition. This is referred to as the first hit principle1. In the following subsection we present

the list-based policy representation which is the focus of this thesis work.

A firewall security is typically defined by a set of rules or filters. In this section we will

detail the most widely used firewall representation, List Based Firewalls which is the focus

of this research2.

A firewall rule is a multi-dimensional structure, where each dimension is either a set of

network fields or an action field. A network field can be source address, a destination address,

a service type, a protocol number or a port number. An action field can be either accept or

deny, or others (e.g. redirect to a server that perform further processes etc). Formally, a

rule R can be represented as: R = [Φ1, Φ2, · · · , Φk; Σ], where Φj, represents network fields

and Σ is an action field. In an Internet environment, a typical rule can be represented as

follows:

< src = {s1, s2, · · · , sn}; dst = {d1, d2, · · · , dm};
srv = {σ1, σ2, · · · , σl}; action = {drop} >,

where si represents a source IP address, di a destination IP address, and σi a service type.

In list-based firewalls, rules describing the network security policies form a “priority” list.

The priority of a rule, also referred to as its rank, is based on its position within the list.

Earlier occurring rules have higher rank than later ones.

List-based firewalls work by logically examining the rules in sequential order. For each

packet, the first matching rule determines the action taken by the firewall. This is referred

to as the first hit principle. It is to be noted that not all firewalls work with the first hit

principle, also there are list-based firewalls which do not use first hit principle. In the next

section we will discuss the challenges towards managing and optimizing firewalls for current

N/W systems.

1It is to be noted that all firewalls do not work with the first hit principle. Majority of Tier-1 ISP
firewalls, which is the focus of this thesis, follow the first hit principle.

2Most of the ISP firewall representations at its core are list-based

57

4.2 FIREWALL OPTIMIZATION MODEL

Firewall policies of an actively managed enterprise network may often change in response to

new services, new threats or when the underlying network changes. The intrinsic complexity

of the firewall policies makes it difficult to track down these changes. As a consequence, inef-

ficiency, such as redundancies between rules, and suboptimal representations of rule-sets and

fields within a rule, arise. Furthermore, the availability and goodput of the networked system

is greatly hindered due to the inefficiency in rule representation and filtering. To this effect,

the proposed research attempts to design a novel optimization model that involved traffic

characteristics to aid efficient firewall optimization. Furthermore, the research presents a

dynamic proactive security model to detect and defend against attacks by anomaly detec-

tion and countermeasure, thus improving the overall performance of such systems. In the

next subsections we will detail the methodology and the steps of the proposed optimization

framework. The overall architecture of this optimization framework is depicted in Figure 19.

The core component of the optimization process uses a “rule-set based” optimizer and

a “traffic based” optimizer. Both optimizers cooperate to adaptively optimize the rule-set

in response to dynamically changing traffic characteristics. This cooperation is achieved

through a dynamic feedback mechanism. The rule-set based optimizer takes as input the

pre-optimized rule-set and produces a rule-set based optimized set of rules. This set is then

fed to the traffic based optimizer. Using the current traffic log, the traffic based optimizer

produces an optimum rule-set which reflects the current characteristics of the traffic without

violating the semantic integrity of the initial rule-set. The traffic-aware optimized rule-set is

used by the firewall to enforce the security policy. This continues until changes in the traffic

characteristics take place. In response to these changes, the adaptive optimization process is

re-invoked using the current rule-set and a new traffic-aware optimized rule-set is produced.

This process continues iteratively, until the enterprise network security administrator changes

the rule-set. When this occurs, the new rule-set is pre-optimized before the rule-based and

traffic-based optimizers are invoked. In the following subsections, the basic optimization

steps, along with their collaborative interactions, are discussed in detail.

58

Online Adaptation

Optimized
Rule set

Traffic Based

Disjoint Set
Creation

Rule Set Based

Traffic Change

Disjoint Set
Merging

Total Reordering

Default Proxy

Hot Caching

Initial
Rule Set

Pre-Optimizer

Traffic Log

Online Adaptation

Optimized
Rule set

Traffic Based

Disjoint Set
Creation

Rule Set Based

Traffic Change

Disjoint Set
Merging

Total Reordering

Default Proxy

Hot Caching

Initial
Rule Set

Pre-Optimizer

Traffic Log

Online Adaptation

Optimized
Rule set

Traffic Based

Disjoint Set
Creation

Rule Set Based

Traffic Change

Disjoint Set
Merging

Total Reordering

Default Proxy

Hot Caching

Initial
Rule Set

Pre-Optimizer

Traffic Log

Figure 19: Firewall Optimization Framework

59

4.2.1 Stage I: Pre-optimization

The process starts with the Pre-optimization phase. The main objective of this phase is to

remove all redundancies in the rule-set. At the end of this phase, all internal and external

redundancies in the rule-set are removed. The details of rule redundancies with examples

from firewall rule filters are discussed in [6].

4.2.2 Stage II: Rule-set based optimization

The rule-set based optimizer operates exclusively on the rule-set, with no additional consid-

eration of other factors impacting network or traffic behavior. The optimizer continuously

seeks to create new definitions in order to make rules in the current rule-set disjoint. This,

in turn, provides the traffic based optimizer with full flexibility to reorder rules based on

traffic characteristics.

The rule-set based optimizer is composed of two basic components, namely the Disjoint

Set Creator (DSC) and the Disjoint Set Merger (DSM). These two components are typically

executed sequentially. Initially DSC detects and removes dependencies from the current

rule-set. Then it creates new rule definitions in order to make the entire rule-set disjoint. It

is to be noted that this phase may lead to an increase in the rule-set size. This is due to

the fact that more rules may be needed to define each set of dependent rules. It is typical

that there is only a small portion of rules that are dependent on other rules. In the analyzed

firewall data set, this ratio is around (1/15)th of the total number of rules.

The main task of DSM is to merge the rules of the disjoint rule-set produced by DSC

in order to optimize the rule-set representation. The merging process iteratively selects one

rule and tries to merge it with other rules. Merging occurs between rules with same action

field, to preserve semantic integrity. Merging between two rules, with respect to a specific

different field, occurs when the other corresponding field values are same in the field space.

Upon completion of this optimization step, the rule-set size is reduced to its most concise

representation.

60

Notice that it is possible to reduce the rule-set based optimization strategy to rule merg-

ing only, without the creation of disjoint rules. Such an approach still results in improved

rule-set representation, while minimizing the processing overhead. Combining disjoint set

creation and merging, however, enables the optimizer to effectively capture the dynamics

of the traffic characteristics, thereby resulting in an optimized rule-set representation. It is

important to note that DSC enables full flexibility of rule reordering during online adapta-

tion based on the dynamics nature of the incoming traffic to the firewall. As we will discuss

in Chapter 5 making the rules disjoint from one another also aids de-centralized firewall

optimization.

To illustrate the process of creation of disjoint rules out of an initial pre-optimized set of

rules, and merge the resulting disjoint rules into a concise rule-set representation, consider

the example of a pre-optimized rule-set, SI , as shown in Table 1.

Notice that R2 is dependent on R1, since the source and destination fields of R2 intersect

with the corresponding fields of R1, while the action fields of the two rules are different.

These rules can be made disjoint, without violating semantic integrity. This is achieved by

keeping R1 unchanged and forking R2 into two new rules, R1
2 and R2

2, resulting in the disjoint

rule-set, SD, as shown in Table 2.

As observed from the above example, creating a new disjoint rule-set increases the size

of the original rule-set. The new set size can be further optimized by merging rule R2
2 and

R3 into R4, to produce the final rule-set, SF , as shown in Table 3.

4.2.3 Stage III: Traffic based optimization

The traffic based optimizer operates on the rule-set produced by the rule-set based optimizer.

The optimizer uses current traffic characteristics to determine the order in which rules in the

rule-set are to be invoked to optimize the operational cost of the firewall. To achieve this

61

Rule Src Dst Srv Action

R1 s1, s2, s3 d1, d2, d3 σ1 drop

R2 s2, s3, s4 d2, d3, d4 σ1 accept

R3 s5 d4 σ1 accept

Table 1: Pre-optimized rule-set: SI

goal, we have designed four schemes, namely hot caching, total reordering, default proxy, and

online adaptation.

4.2.3.1 Hot caching Hot caching revolves around the concept of a hot rule-set. A rule is

said to be hot if it experiences a large number of traffic hits. The basic idea of this approach

is to identify a small set of very heavily used or hot rules, relative to the original rule-set,

and cache these rules at the top of the rule-set. Such a strategy results in dealing with a

large amount of traffic hits, very early in the inspection process, thereby reducing the overall

firewall operational cost. It is to be noted that we are able to perform hot caching due to

the removal of dependencies amonsgt the rules during Disjoint Set Creator. This scheme is

supported by the fact that in such network systems 80% of the traffic is filtered by 20% of

the rules.

4.2.3.2 Total reordering Contrary to the first scheme which focuses only on a small

set of rules, the total reordering scheme takes a more aggressive approach and performs a

total reordering of the rule-set based on the current traffic characteristics. This reordering

is achieved based on a priority assignment which takes into consideration, not only the fre-

quency at which the rule is invoked, but equally importantly the rule size. More specifically,

the priority of rule, Ri, can be expressed as: Pr(Ri) = hit count(Ri)
size(Ri)

. Notice that ordering

firewall rules based on the above priority assignment achieves the lowest expected cost [6].

62

Rule Src Dst Srv Action

R1 s1, s2, s3 d1, d2, d3 σ1 drop

R1
2 s4 d2, d3, d4 σ1 accept

R2
2 s2, s3 d4 σ1 accept

R3 s5 d4 σ1 accept

Table 2: Disjoint rule-set: SD

Rule Src Dst Srv Action

R1 s1, s2, s3 d1, d2, d3 σ1 drop

R1
2 s4 d2, d3, d4 σ1 accept

R4 s2, s3, s5 d4 σ1 accept

Table 3: Final rule-set: SF

4.2.3.3 Default proxy The default proxy is the third scheme and is based on the obser-

vation that, during traffic inspection, the default deny action is heavily invoked, in compar-

ison to actions resulting from other rules. In a list-based firewall, the default deny action is

“enforced” when a packet fails to match any of the rules within a rule-set. A relatively high

hit ratio of the default deny action is, therefore, bound to increase considerably the overall

operational cost of the firewall. The main reason for this increase is that, before a default

deny action is enforced and the packet is dropped, all rules in a rule-set have to be examined.

This is mainly caused by the absence of any representation of the default deny action in the

rule-set. This, in turn, suggests that the addition of drop rules may alleviate the problem.

Adding drop rules, however, brings about several issues, including how may rules must be

created, what values should be associated with these new reject rules and what should be

their priorities.

63

The default proxy scheme addresses these issues by creating a set of reject rules. The

field values of these rules are derived from the corresponding fields of the packets dropped

by the default deny action. Initially, the fields of a reject rule are set to any, except for the

action field which is set to drop. The reject rule can be represented as:

<Φ1 : any; Φ2 : any; · · · , Φn : any; action = drop>

As packets are dropped by default deny rule, the values of the reject rule are set to the

values of corresponding fields of the dropped packets. This corresponds to the hit rate of

the reject rule. The priority of each newly created reject rule is computed based on its hit

rate and size similar to the process as in total reordering.

4.2.3.4 Online Adaptation This optimization is a proactive security measure to im-

prove the availability of firewalls under dynamically changing network environment and The

online adaptation scheme encompasses two basic mechanisms: profile based reordering and

anomaly detection and countermeasure.

Profile based reordering uses traffic characteristics to build a long-term rule hit profile

during offline operation. The approach used to build this profile exploits traffic variability

as discussed in [43]. The resulting rule hit profile is then used to detect long and short term

anomalies and adapt the rule-set accordingly during online operation of the firewall.

The basic idea of Anomaly detection and countermeasure is to compare the short term

traffic pattern with a long term established traffic profile. The later is used to optimize the

firewall rules. If a significant discrepancy exists between the short term traffic pattern and

long term profile, and this discrepancy can result in bad predicted performance, the rules are

adjusted as a countermeasure against anomalies. Adjusting the rules entails rule reordering

and adding explicit reject rules.

64

Note that anomalies can be either transient or long-lived. If the anomaly analysis reveals

a potential performance hazard, a temporary reordering of rules is performed. If a given

anomaly occurs consistently then it is absorbed into the long term offline profile. The same

anomaly detection and countermeasure procedure is also applied to the default deny rule.

Depending on any potential performance hazard created by a default deny rule, a temporary

default deny rule is added to the short term profile. If the pattern is repetitive then the new

default deny rule is added to the rule-set based on its priority and hence absorbed into the

long term profile.

4.3 THEORY: RULE SIZE AND COST METRIC

The main factor that affects the performance of a firewall is the processing overhead due to

packet inspection. The metric calculation is performed for a rule and can easily be applied

to tuples within a rule.

We define two metrices to capture the overhead cost incurred by a firewall to process a

rule and enforce the security policy. The first metric, denoted as rule size(), measures the

size of a given rule in terms of the number of bits necessary to determine unambiguously a

match between the rule definition and the corresponding fields of a packet under inspection.

The assumption underlying the rule size() metric stems from the fact that the complexity

of a matching operation is proportional to the size of the rule. Formally, given a rule r,

rule size(r) can be defined as:

rule size(r) =





∑
Sp,Dp

{α1 × ‖sp‖+ α2 × ‖dp‖}
+β ×Ns × (‖Prr‖+ ‖Por‖),

where, α1, α2, and β are weight parameters, Sp and Dp are respectively the set of source

and destination prefixes which occur within the definition of the rule, sp and dp are the

bit representation of the source and destination prefixes, respectively, Ns is the number of

65

services defined within the rule, and Prr and Por are the bit representation of the protocol

and port identifiers, respectively.

The second metric used in our experimentation is the cost of operating a given rule-set.

This cost depends on the rule’s rank and size, and on how often the rule is invoked by the

firewall. Formally, given a set of rules r1, r2, . . . , rk, the cost of a given rule, ri, cost(ri), is

defined as follows:

cost(ri) = hit count(ri) ×
∑

∀rk∈Pri
‖rk‖

where, Pri is the set of ri’s predecessors in the list-based set of rules.

Using the above metrics, the aim of optimization is to reduce the rule-set size and con-

sequently the processing time of the rule-set. This in turn reduces the overall firewall oper-

ational cost. The resources that affect are the CPU utilization and the memory usage of the

firewall machine.3 In the following subsection we present the proof of the optimality of the

metric via contradiction.

Theorem 4.1. Firewall rules in a list-based ordering based on priority achieves the lowest

expected cost.

Proof. Assuming a rule-set in the order of r1, r2, . . . , rn

achieves the lowest expected cost and priority (ri) < priority(ri+1), the total cost associated

with this rule order is

Cost =
n∑

t=1

cost(rt) =
n∑

t=1

f(rt)
t∑

k=1

||rk||

We now show that by swapping ri and ri+1, the new rule order has a lower cost. The

function f() defines the rule hit frequency. This is proportional to the hit count of the rule.

The rule hit frequency is denoted by the function f(). The total cost associated with the

new rule order is

3The metric used in this research follow the same guideline as in [7].

66

Cost′ =
i−1∑
t=1

cost(rt) + cost(ri+1)

+cost(ri) +
n∑

t=i+2

cost(rt)

=
i−1∑
t=1

cost(rt) + f(ri+1)(
i−1∑

k=1

||rk||+ ||ri+1||)

+f(ri)(
i∑

k=1

||rk||+ ||ri+1||) +
n∑

t=i+2

cost(rt)

= Cost + f(ri)||ri+1|| − f(ri+1)||ri||

Since priority(ri) < priority(ri+1), we have

f(ri)

||ri|| <
f(ri+1)

||ri+1||
f(ri)||ri+1|| < f(ri+1)||ri||

f(ri)||ri+1|| − f(ri+1)||ri|| < 0

We have Cost′ < Cost. Thus the new rule order has a lower cost than the earlier rule

order. This contradicts our assumption that the first order is optimal. We arrive at a

contradiction and thus prove the theorem.

4.4 EVALUATION

4.4.1 Firewall Optimization

In this section we discuss the performance of the proposed Centralized Firewall Optimizer

and the discuss the results of the evaluation study. The details of the metrices designed for

the evaluation are presented in Section 4.3.

67

In order to evaluate the impact of the various optimization strategies on the firewall

performance, an experimental simulation-based study is conducted. The simulation is run

on SunOS 5.8 over a Sun-Fire-15000. Results show that the optimization strategies lead to

considerable firewall performance improvement.

4.4.1.1 Rule-set based optimization The results depicted in Figure 20 show that the

final rule-set size after optimization is similar to the size of the initial rule-set, but most

importantly, the rules in the resulting rule-set are all disjoint from each other. Rule-set

disjoincy helps to provide the network system administrator full flexibility to reorder the

rules based on traffic characteristics, as is necessary to respond to the traffic dynamics in

such network systems.

4.4.1.2 Traffic based optimization In this experiment, traffic based optimization are

applied to the firewall rule-set. Results in Figure 21 demonstrate a significant decrease in

the number of rules. More specifically, the results show that nearly 20% of initial operational

rules are eliminated.

The final experiment is aimed at evaluating the impact of the various optimization strate-

gies on the operational cost of firewalls. The results depicted in Figure 22 indicate that the

optimization strategies, applied to the pre-processed dataset, result in reducing the initial

operational cost to around 6.3%.

The evaluation study clearly indicate that the proposed traffic-aware optimization strate-

gies have great potential to significantly improve the performance of firewalls and reduce their

operational cost. A more extensive analysis of the schemes and experimental results can be

found in [6].

Furthermore, the study also confirms the importance of integrating traffic characteristics

into the optimization process. Finally, it should be noted that adaptive anomaly detection

is crucial in preventing and eliminating attacks, and avoiding bottle-necked firewalls. The

68

Rule Set Optimization - Size

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Operational raw data Redundancy
removal

Merging rules w/o
disjoint

Making rules disjoint Merging rules

Approach

S
iz

e

Figure 20: Rule Set Based Optimization: Size-based

69

Traffic based optimizations - # of Rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Operational raw
rule set

Size Optimized
rule set

Default deny
optimization

Online
Adaptation

Approach

of

 R
ul

es

Figure 21: Traffic Based Optimization: Size-based

70

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial operational
(unoptimized)

Rule set based
optimization

Traffic based w/o online
adaptation

Traffic based with online
adaptation

Techniques

C
os

t i
n

pe
rc

en
ta

ge

Reduced to 6.3%

Figure 22: Traffic Based Optimization: Cost-based

71

above proposed approaches helps to maintain availability of network defense systems during

critical conditions (overload/attack) to ensure the design of secure networks.

4.4.2 Online Adaptation

In this section we detail the evaluation of the online adaptation module for the proposed

Centralized Firewall Optimization approach.

4.4.2.1 Benefit/Cost evaluation It is important to estimate the Benefit/Cost ratio

for invoking the online optimization module in PITTWALL. In our experiments we evaluate

the ratio for the emulated(average) case scenario. The firewall used for the experiment is

open source Linux IP Chains. The rule-set and traffic load for the evaluation is emulated

rule-set and traffic log information from a large Tier-1 ISP. It is to be noted that this evalu-

ation is workload dependent. The traffic load is at the rate of 7000 packets/sec. The results

are validated over 20 runs of the experiment.

The results depicted in Figure 23 demonstrates that an adaptation interval of 75 minutes

is best (taking into account the benefit-cost ratio) for a typical packet filter set with the

typical traffic load. Results will vary with the variation of filter sets and traffic characteristics.

The evaluation acts as feedback to the network designer to prevent over engineering the

adaptation interval beyond the point of diminishing returns.

4.4.2.2 Determining best Adaptation Interval This evaluation is for the emulated (average)

case scenario. The firewall used for the experiment is open source Linux IP Chains. The

rule-set and traffic load for the evaluation is emulated rule-set and traffic log information

from a large Tier-1 ISP. The traffic load is at the rate of 7000 packets/sec. The results

are validated over 20 runs of the experiment. The result for the best adaptation interval

depends on the workload under evaluation.

The results depicted in Figure 24 show that an adaptation interval of 3 hours is the best

72

Benefit from Adaptation vs. Cost of Adapation (Online)

0

10

20

30

40

50

60

12 hours 6 hours 3 hours 1.5 hour 45 mins

Time interval of adaptation

N
o

rm
al

iz
ed

 c
o

st Cost of adaptation

Benefit from adaptation

Figure 23: Online Adaptation Benefit/Cost Curve

choice for the above test case scenario. The average rule processing time is the least in this

case. The result is an indication for setting the adaptation interval for executing the online

optimization. The most suited interval length will change as the packet filter set changes

and/or with dramatic changes in the in-coming traffic into the intrusion detection system.

4.4.2.3 Benefit of adaptation with attack traffic This evaluation is for the worst

case scenario of firewall operation. The firewall used for the experiment is the open source

Linux IP Chains. The rule-set considered for evaluation is the worst case filter set. The

traffic load is at the rate of 2000 packets/sec. The results are validated over 20 runs of the

experiment. It is to be noted that the result depends on the workload under consideration.

For this evaluation we designed an attack scenario on a single filter by increasing its hit

count step by step following an exponential path. The rule-set is also designed to fit the

worst case evaluations. The attack duration is 2 hours. The attack increased in intensity

from 0-100-0 percent during the observed time period. The attack; in terms of hit count

on the filter which attack is aimed at; followed a bell shaped curve. The best interval for

73

Determining (traffic aware) adaptation interval

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24 hour 12 hour 6 hour 3 hour 1 hour 30 min

Adaptation interval

N
o

rm
al

iz
ed

 r
u

le
 p

ro
ce

ss
in

g
 c

o
st

Figure 24: Determining Best Adaptation Interval

adaptation for this case is a period of every 30 minutes.

For attack traffic the benefit is very high, but the cost is also considerable. The main

aim in an attack scenario is to make sure there is “availability” of the networked defense sys-

tem. In this case the network administrator is ready to pay a higher average rule processing

price by having frequent adaptations and finer adaptation intervals. This enables fine mon-

itoring and rule switching in the rule-set to discard attack traffic at the earliest possible time.

The evaluation study demonstrates for a typical attack traffic the gain in rule processing

time by performing the adaptations (including the cost of performing such adaptations) is

more than 4 folds in comparison to the optimizer with no online adaptation. Along with

this the firewall remains available and fully functional during the attack (in contrast to the

firewall getting unavailable due to the attack).

74

Number of Rules
CPU Utiliza
tion

70006000500040003000200010000

100806040200
250 packets/sec Linear375 packets/sec Linear500 packets/sec Linear625 packets/sec Linear750 packets/sec Linear875 packets/sec Linear1000 packets/sec Linear

125 packets/sec Linear250 packets/sec Linear375 packets/sec Linear500 packets/sec Linear625 packets/sec Linear750 packets/sec Linear875 packets/sec Linear1000 packets/sec Linear125 packets/sec Linear
Variable FitsCPU Utilization vs. Number of Rules

Figure 25: CPU Utilization vs. Number of rules

75

Load (packets/sec)
CPU Utiliza
tion

1000875750625500375250125

9080706050403020100
1000 Rules Linear2000 Rules Linear3000 Rules Linear4000 Rules Linear5000 Rules Linear6000 Rules Linear7000 Rules Linear

0 Rules Linear1000 Rules Linear2000 Rules Linear3000 Rules Linear4000 Rules Linear5000 Rules Linear6000 Rules Linear7000 Rules Linear0 Rules Linear
Variable FitsCPU Utilization vs. Load (packets/sec)

Figure 26: CPU Utilization vs. Load

76

4.4.3 Proportionality of rule processing cost

The final evaluation is to study the variation of CPU utilization with the change in the

network traffic load or changes in the number of rules in the firewall rule-set. This study

helps to establish the relationship between the above stated entities. The firewall rule-set is

from a large Tier-1 ISP and the traffic is emulated from traffic traces obtained from the Tier-

1 ISP. The firewall used for our experimental study is the open source Linux IPCHAINS

firewall. Results in Figure 25 and 26 depict the proportionality relationship between

CPU utilization verses number of rules or variation in traffic load. We conclude from this

evaluation that the cost of rule processing is linearly proportional to the number of rules in

the firewall rule-set.

4.5 SUMMARY

In this chapter we present the architectures and algorithms for Centralized Firewall Opti-

mization. It is to be noted that this research is the first effort in incorporating the concept

of firewall traffic log information to design and optimize firewall rules sets. Both rule-set

based and traffic based optimizations are integrated in the proposed firewall optimizing tool.

We also introduce a novel adaptive anomaly detection/countermeasure mechanism to deal

with short term and long term anomalies. We have also performed a detailed validation of

the size and cost metrices and the optimization results as discussed in [6] and in Section

4.3. Our proposed model and tool is flexible to be used by other ISP datasets and firewalls.

We believe this research is the first step in the design of a complete optimizing toolkit for

firewall optimization.

77

5.0 OPTWALL: A HIERARCHICAL FIREWALL OPTIMIZATION

APPROACH

The overall efficiency, reliability, and availability of a firewall is crucial in enforcing and ad-

ministering security, especially when the network is under attack. These challenges require

new designs, architecture and algorithms to optimize firewalls. Contrary to a list-based

structure, a de-centralized (hierarchical) design leads to efficient organization of rule-sets,

thereby significantly increasing the performance of the firewall. The objective is to trans-

form the original list-based rule-set into more efficient and manageable structures, in order

to improve the performance of firewalls. The main features of the proposed approach are

the hierarchical design, rule-set transformation approaches, online traffic adaptation mech-

anisms, and a strong reactive scheme to counter malicious attacks (e.g. Denial-of-Service

(DoS) attacks).

5.1 INTRODUCTION

With the dynamic change in the network load, topology, and bandwidth demand, firewalls

are becoming a bottleneck. All these factors create a demand for more efficient, highly avail-

able, and reliable firewalls. Optimizing firewalls, however, remains a challenge for network

designers and administrators. A typical present day firewall enforces its security policies

via a set of multi-dimensional packet filters (rules). Optimization of this multi-dimensional

structure has been proven to be a NP hard [33,45] problem. This has motivated the research

community to focus on various approaches to provide reliable and dependable firewall opti-

mization methods. In-spite of a strong focus towards an efficient design, the techniques used

78

in current literature are static, and fail to adapt to the dynamic traffic changes of the net-

work. The large number of security policies in enterprise networks pose the most important

challenge to traffic-aware firewall optimization. Furthermore, with the increased ability of

current networks to process and forward traffic at extremely high speed, firewalls are becom-

ing highly resource constrained. Thus, the main objective of this chapter is to address the

shortcomings of the current firewalls and increase their ability to deal with dynamic changes

in network load and topology, particularly under attack conditions. In this chapter, the focus

is on optimizing the most widely used ‘list-based’ firewalls. To achieve this goal we propose

a firewall transformation framework aimed at creating hierarchical firewall optimization rule

subsets, to improve the operation and manageability of firewalls. The main challenge in the

construction of these rule subsets is the need to maintain semantic integrity of the policy set

at each level of the hierarchy. The overall goal it to improve the performance and manage-

ability of such network systems.

The rest of the chapter is organized as follows: Section 5.2 introduces the Firewall Trans-

formation Framework. We introduce the theory of the proposed transformation approach in

Section 5.3. We present details of the splitting approaches in Section 5.4. In Section 5.5

presents the architecture and implementation methodology details of the proposed hierar-

chical firewall. We present the evaluation and results in Section 5.6. Finally, we conclude

the chapter in Section 5.7.

5.2 FIREWALL TRANSFORMATION FRAMEWORK

In this section we introduce the proposed Firewall Transformation Framework aimed at

improving the performance and manageability of firewalls. A software firewall defines its

security policies via a set of security policies or rules. These security policies govern the

filtering of network packets to and from the autonomous system. In this chapter our aim is

to improve the availability and good-put of firewalls by proposing transformative algorithms

to the List-based firewall representation into more manageable and performance efficient

79

representations. Any proposed transformation should preserve the semantic integrity of the

original firewall rule-set, in order that the Tier-1 ISP network administrator accepts and

registers to replace the original firewall rule-set with the transformation. Additionally, the

transformed firewall rule-set should reduce the operational cost of packet filtering, in turn

improving the efficiency and manageability of the firewall. The proposed Firewall Transfor-

mation Framework is defined formally as follows:

Let F represent the original “list-based” firewall rule-set. Let T (F) represent the trans-

formed firewall that preserves the properties and rules of the original firewall rule-set F . We

define the cost function, C(f), that represent the average operational cost of operation of

firewall f .

T (F) is a acceptable transformation of F iff:

• T (F) preserves the properties and rules of F (Semantic Integrity property)

• C(T(F)) ≤ C(F) (Cost property)

We discuss details of these properties and prove the property for our proposed Firewall

Transformation Approach in Section 5.3.

5.3 FIREWALL TRANSFORMATION APPROACH

In this section we detail the theory behind the proposed firewall transformation approach.

As stated in the previous section, the objective of this transformation is to obtain an “accept-

able”, S(F), such that the transformation preserves the “Semantic Integrity” and “Reduced

Cost” properties as discussed in the following.

This thesis proposes to achieve the firewall transformation by the process of “splitting”

or dividing the original “list-based” firewall rule-set into groups of rule subsets. The input

firewall rule-set F is first sorted based on traffic characteristics (hit-count) before the trans-

80

formation is initiated. The resulting rule subsets preserve the “semantic integrity” properties

and rules of the original “list-based rule-set. To state formally:

Let S(F) represent the proposed Firewall Transformation” approach of the original list-

based firewall rule-set F .

Theorem 5.1. S(F) is a acceptable transformation of F iff:

• S(F) preserves the properties and rules of F (Semantic Integrity property)

• Cost (S(F)) ≤ Cost (F) (Cost property)

Proof. We prove the above theorem via “proof of contradiction”.

• Semantic integrity property

Let there be atleast one rule r in S(F) such that the action of r on a network packet p is

different than that of F on p. This implies that the action of the firewall rule-set F on

a given network traffic is different from the action taken by the new transformed repre-

sentation S(F). Thus, the semantics of the original firewall rule-set is not equivalent to

that of the transformed rule-set.

The rules in the list-based rule-set are scanned in a sequential manner and divided into

rule subsets based on traffic characteristics. Hence, the rules in the rule subsets in S(F)

originate from the rule-set F . The manner in which the rules are sub-divided into rule

sub-sets, does not add any new rule or cause any rule deletions. This implies that no

new rules are created or deleted due to the transformation process. This proves that the

rule r in S(F) must belong to some priority level in the original rule-set F , which implies

we arrive at a contradiction.

Hence, there are no rules in the transformed firewall rule-sets S(F), that have an action

different than one that is in the original rule-set F . This proves that the semantic prop-

erties and the rules of the original rule-set are preserved after transformation.

• Cost property

81

Let the operational cost of the original firewall rule-set and the transformed rule-set be

C(F) and C(S(F)), respectively. The focus of this research is on the most widely used

list-based firewalls. For our evaluation we have assumed that rule matching is the most

expensive operation. The operational cost of rule matching is proportional to the number

of rules in the rule-set1.

Let us assume for contradiction that C(F) > C(S(F)). For this assumption to be true,

there exists atleast one packet p such that it matches a rule r in the firewall rule-set,

where the cost of matching in the transformed firewall set is higher than the cost of

matching in the original rule-set. Let the operational cost of processing the network

packet p which matches rule r in the firewall rule-set F be represented as x and that

matches rule r in transformed firewall S(F) be y, where y > x. Due to the list-based

firewall operation, the only way y is greater than x, is if the rank of r in S(F) is lower

than the rank of r in F . Since, both the firewall rule-sets are sorted by traffic character-

istics (hit-count of incoming traffic), there exists rule r′ in the firewall rule-subset S(F)

that has higher hit-count than r and is lower rank in the original rule-set F . Since, all

the rules in F are sorted according to hit-count information and there are no new rules

created or deleted due to the transformation process, we arrive at a contradiction.

Hence, we prove that the operational cost of firewall rule-sets S(F) is <= the cost of the

original rule-set F . In the worst case, the length of S(F) will be equal to the length of

F , which implies C(F) = S(F).

In the next section 5.4 we discuss the details of two Firewall transformation approaches,

namely, the Optimal approach and the Heuristic approach.

1This result has been proved for Linux IPCHAINS as presented in Chapter 4

82

5.4 FIREWALL SPLITTING APPROACHES

5.4.1 Optimal Approach

The Optimal splitting approach is based on an A* search strategy. Achieving an optimal

partition is possible since the cost can be calculated cumulatively for any partition as it is

fixed and does not vary with the tuple priority. The basic steps of the Optimal Approach are

depicted in Algorithm 1.

g(i, n) = cost of lista and listb after adding tuple n to list i;1

h(n) = current cost of optimally placing the remaining tuples;2

cost(i, n) = g(i, n) + h(n);3

filtera, lista filter and tuples for list A;4

filterb, listb filter and tuples for list B ;5

stack = stack ordered with least cost on top;6

input : tuples[] = list of tuples sorted by cost
counter = 0;7

lista = ∅;8

listb = ∅;9

currentTuple = tuples[counter];10

Compute filtera, filterb, lista, listb;11

while counter < tuples.size() do12

if cost(A, currentTuple) < cost(B, currentTuple) then13

if filtera ∩ filterb.widen(currentTuple) 6= < any, any, any, any > then14

stack.add(< lista,listb ∪ currentTuple,filtera,filterb.widen(currentTuple),15

counter >);16

filtera.widen(currentTuple), lista.add(currentTuple);17

if filtera ∩ filterb = < any, any, any, any > then18

< lista, listb, filtera, filterb, counter > = stack.pop();19

else20

if filtera.widen(currentTuple) ∩ filterb 6=21

< any, any, any, any > then22

stack.add(< lista ∪ currentTuple,listb,filtera.widen(currentTuple),filterb,23

counter >);24

filterb.widen(currentTuple), listb.add(currentTuple);25

if filtera ∩ filterb = < any, any, any, any > then26

< lista, listb, filtera, filterb, counter > = stack.pop();27

counter + +;28

currentTuple = tuples[counter];29

output : < filtera, lista, filterb, listb >

Algorithm 1: Optimal Approach for Rule-set Splitting

The function g(n) determines the cost of the configuration in the current state. The

function h(n), on the other hand, computes the optimal cost of the remaining unassigned

83

tuples if placed in either of the subsets. The function hmax(n) calculates the maximum cost

of the remaining tuples. This can be used as a guideline to terminate the computation of

the filters if the cost benefit resulting from this new filters does not improve on the gains of

the previous configuration.

Another mechanism, which is used to reduce the overhead incurred by the search of the

feasible optimal solution, is to prune the search space. This is triggered when the difference

between hmax(n) and hmin(n) is lower than a specified error percentage. This enables the

search to converge to filters of a nearly optimal solution at a much faster rate.

Even though a feasible optimal solution can be obtained, the worst case time complexity

is of the order of 2N , where N is the number of tuples. As the number of tuples becomes

large searching for such a solution leads to a firewall bottleneck. Another shortcoming of the

optimal solution is that the memory requirement can also become prohibitive as the number

of tuples becomes very large. To address these drawbacks a set of heuristics are proposed.

These heuristics converge to a nearly optimal solution, while maintaining a time complexity

linear in the number of tuples.

5.4.2 Heuristic Approach

The heuristic solutions proposed are local greedy search solutions aimed at determining a

set of filters and splitting the list-based tuple set into two tuple subsets. Each tuple of the

list based set is disjoint from the other. This aids the performance and effectiveness of the

approach to split the tuples into smaller tuple subsets. As mentioned in [26] application

of greedy scheme works best when the tuples are all disjoint from one another. In other

words, making tuples disjoint from each other enables full flexibility for tuple splitting and

reordering based on traffic characteristics.

Depending on the choice of the initial filters, five different variations of the Greedy Heuristic

84

are proposed. The first variation is to deterministically assign the highest priority tuples as

the initial filters. This heuristic is referred to as Hit count-Hit count Heuristic. The

idea behind choosing the highest ranked tuples as the initial filters is to assign the highest

costing tuples into different tuple subsets in order to arrive at a cost balanced solution. The

main steps of the algorithm is described in Algorithm 2.

input : tuples[] = list of tuples sorted by cost
filtera = tuples[0];1

filterb = tuples[1];2

Compute filtera, filterb, lista, listb; for i = 2 to tuples.length() do3

if filtera.matches(tuples[i]) then4

add tuple[i] to lista;5

else6

if filterb.matches(tuples[i]) then7

add tuple[i] to listb;8

else9

distancea = filtera.distance(tuples[i]);10

distanceb = filterb.distance(tuples[i]);11

if distancea < distanceb then12

filtera.widen(tuples[i]);13

add tuple[i] to lista;14

else15

filterb.widen(tuples[i]);16

add tuple[i] to listb;17

output : < filtera, lista, filterb, listb >

Algorithm 2: Hit count-Hit count Heuristic

The next variation of the Greedy Heuristic is to assign one initial filter as the high-

est costing tuple and the next initial filter as one amongst the rest of the tuples which is

at a maximum distance from the highest cost tuple. The distance is calculated using the

DISTANCE() function as stated previously. This variation of the Greedy Heuristic is re-

ferred to as the Hit count-Max distance Heuristic.

The third variant of the Greedy Heuristic uses a randomly selected initial filter assign-

ment. This heuristic is referred to as Random-Random Heuristic. A randomized algo-

rithm is used to determine initial filters from a set of possible filters. The selected set is then

used to build the hierarchical structure.

85

The fourth variant of the Greedy Heuristic is to consider the distance between all pos-

sible pairs of filters. The pair which contains the filters with maximum distance from each

other is selected. This strategy has potential to split the tuples into well balanced sets.

This heuristic is referred to the Max distance-Max distance Heuristic. The complex-

ity for all the above approaches is proportional to the number of tuples in the initial tuple set.

The fifth variant of the Greedy Heuristic is the All Pair Heuristic. This variant con-

siders all possible pairs of tuples as initial filters. Using the method depicted in Algorithm 2

we determine a split for each possible pair and then pick the split with the least cost.

The results for All Pair Heuristic are not included as the heuristic never converged to a

solution due to the excessive overhead required to obtain the most cost efficient configuration

among all possible pairs of tuples. The time complexity of this heuristic is of the order of

N3, where N is the number of tuples. For large values of N , the computational cost of the

heuristic becomes prohibitive.

5.4.3 Improvements to rule-set splitting approaches

As we discussed in the previous section, establishing near optimal rule splits directly af-

fects the performance of the hierarchical filter in turn improving the operational cost of the

firewall. The reason being the filter split governs the “re-splits”, “re-promotions” and “re-

orders” of the rules in the rule subsets, which helps to incorporate traffic dynamics in the

filter operation for a given firewall. The better the split (based on the traffic characteristics)

the more stable and balanced the hierarchical firewall.

In this section our goal is to exploit the traffic characteristics further in order to deter-

mine the patterns in data which will aid the definition of better splits to enable hierarchical

firewall optimization. In our analysis we conclude that the choice of initial filters should be

accurate and is a defining factor in the design of stable rule split subsets. As discussed in

86

Algorithm 2, consideration of a single criteria (e.g. traffic volume/hit-count) information is

insufficient to determine accurate initial filters for the hierarchal rule split. In this chapter

we propose to consider the patterns in the traffic in order to aid the choice of the initial

filters. This will necessarily affect the computation of better or closer to optimal rule-set

splits (aiding better traffic filtering). In the following subsection we present the clustering

rule split approach to aid de-centralized firewall optimization.

5.4.3.1 Clustering rule split In the proposed approach we determine the patterns in

the traffic data via an exhaustive search algorithm to output a group of clusters. The criteria

for the cluster organization is specified by the firewall administrator. The criteria could be

a single attribute (e.g. protocol:TCP/UDP) or a combination of attributes. Such a search

results in sets of clusters based on the specified criteria. Since our problem deals with the

design of two initial filters for the hierarchical split operation, we arrive at two cluster sets

(groups) based on the self-similar criteria as defined earlier. These self-similar clusters are

the precursors to the rule splitting approaches as discussed above.

We then pick the initial filters one from each cluster group. We then follow the rule

splitting steps as discussed in Algorithm 2. The cluster groups act as a feedback to the rule

splitting process in this step. Each rule during the splitting process tries be retained in its

self-similar cluster group during the process of hierarchical filter set determination. Since

the clustering of the rules are run offline; we have the liberty to run the exhaustive search

algorithm. The disjoint nature of the rules in the rule-sets enables the clustering and rule

splitting process in determining traffic balanced rule split sets.

5.4.3.2 Parallel A* approach In the next improvement, we propose a change in the

Optimal splitting approach presented above to aid faster splits and to enable the split of

larger data sets. Previously we have proposed an A* search strategy to search for the defin-

ing filters for each split set. The runtime for such an approach in worst case is 2N , where N

87

is the number of initial rules in the linear rule-set. For rules greater than 1000 Algorithm

1 did not terminate and hence did not produce the split sets we required. To overcome this

problem we incorporated parallelism in the A* search to enhance the splitting performance

on larger data sets. We extended the optimal search approach developed earlier to include

parallelism. The challenge is to keep track of the various intermediate sub solutions. We

used multiple hashing mechanisms to store the locally optimal solutions to be used later to

arrive at the final optimal split subsets. The proposed parallel A* approach perform much

better and is able to arrive at rule splits for large data sets (nearly 10,000 rules).

5.4.3.3 Weighted distance function The distance function as presented in Algorithm

2 is calculated by assigning equal weights to all the dimensions of a packet filter. Our anal-

ysis concludes that this assumption is not accurate. We propose that the distribution of the

tuples amongst the dimensions should determine the weights that the dimensions takes and

the normalization should occur on them. We changed the present splitting approach of find-

ing the defining filter of a tuple by including a weighted distance function to determine the

weighted distance of a tuple from the defining filters. This approach leads to more balanced

splits. Results show that the split is about the improve from a 30 : 70 split to a almost

45 : 55 split. This optimization aids to reduces the worst case packet matching time for the

hierarchical firewall we designed.

5.5 DESIGN ARCHITECTURE AND METHODOLOGY

In this section we presents the architectures and algorithms for a de-centralized firewall opti-

mization, OPTWALL [5]. As we have discussed earlier, contrary to a list-based structure, a

hierarchical design leads to efficient organization of rule-sets, thereby increasing significantly

the performance of the firewall. OPTWALL uses a hierarchical approach to partition the

original rule-set into mutually exclusive subsets of rules to reduce the overhead of packet

88

filtering.

In OPTWALL, the processing of a packet at a firewall starts at the root of the hierarchi-

cal structure. The packet is subsequently forwarded to the remaining levels of the hierarchy

for further processing. Packet processing completes if a match between the attributes of the

packet, as defined by the firewall security policy, occurs. In this case, the action, defined by

the corresponding firewall rule, is enforced. Alternatively, on a non-match, a default action

is invoked. The default action can either be accept, in which case the packet is forwarded

to destination, or reject, in which case the packet is dropped. In the following, a formal

specification of the objective and basic operation of OPTWALL are discussed.

5.5.1 OPTWALL Design Goals

Given a large rule-set of size ‘N’, the objective of OPTWALL is to partition this set into ‘K’

mutually exclusive subsets. Each subset is associated with a unique filter which represents

a superset of the associated policy subset. The hierarchical approach of the OPTWALL

architecture is driven by three main design goals:

• Reduce the cost of processing the firewall rule-set, defined as the average processing time

a packet incurs before an action is enforced by the firewall,

• Preserve the semantics of the original rule-set, and

• Maintain the optimality of the rule-set as traffic patterns and rule-sets change.

It is to be noted that in its general form the ‘K-partition’ problem is NP hard, as it can

be reduced to the ‘Clustering’ [11] or the ‘K-median’ problem [12]. Figure 27 depicts the

process of partitioning ‘N’ rules into ‘K’ subsets.

To address the complexity of the partitioning problem, OPTWALL uses an iterative ap-

proach to partition the original set of rules and produce a multi-level hierarchy of mutually

exclusive, cost-balanced rule subsets. Initially, the rule-set is divided into two subsets and

89

 . .
 . .
 . .
 . .
 . .

 Filter i ∩ Filter j = Ф, N >>> K

 “F’’ with N rules “T (F)”, hierarchical K-partition rule subsets

Rule 1

Rule 2

Rule 3

.

.

.

.

.

.
Rule N

Filter K

Filter 2

Filter 1

Rule subset1

Rule subset2

Rule subsetK

Figure 27: N rules into K partition problem

90

.
 .

 .

 “F” with N rules “S(F)”, hierarchical K-partition rule subsets

 Fi ∩ Fj = Ф, N >>> K (F = Filter)

Rule 1

Rule 2

Rule 3

.

.

.

.

.

.
Rule N

F12

F11

FL1

Rule
subsetL1

F21

F22

F24

F23

FLK

Rule
subsetLK

FL2

Rule
subsetL2

Figure 28: Basic operation of OPTWALL

91

filters, which covers the rules contained in each subset. The resulting subsets, along with

their corresponding filters, form the first level of the hierarchy. This iterative process con-

tinues until further division of the subsets at the current level of the hierarchy is no longer

cost effective. It is to be noted that this cost also includes the cost of determining the filters.

The OPTWALL partitioning process is described in Figure 28.

5.5.2 Hierarchical Firewall Optimization Model

In this section we will present the processes used to achieve each of OPTWALL design goals.

We first describe the multi-level data structure composed of rule subsets and their corre-

sponding filters. We then discuss the procedure used to build the OPTWALL hierarchical

structure and the actions required to maintain this structure.

5.5.2.1 Data Structure In order to process the rules, OPTWALL uses a hierarchical

data structure in which the deepest level of the hierarchy contains the rule subsets and the

intermediate levels contain filters which cover the rules included in those subsets.

The design of the data structure must ensure that the operational cost is reduced. The

design must also ensure that the semantic integrity of the original rule-set is preserved. It is

to be noted that the operational cost is determined by the deepest rule subset. Balancing the

hierarchical structure in order to reduce the length of the deepest rule subset is, therefore,

vital if the desire is to achieve the maximum reduction in processing cost. Furthermore, the

data structure must be designed in such a way that the re-balancing process, in response to

traffic changes, can be achieved with minimal overhead.

Semantic integrity of the original rule-set can be achieved, during the rule-set partition-

ing process, by computing filters that represent accurately and completely the rule subsets.

Furthermore, packet processing must follow the same semantics specified by the filters result-

92

ing from the partitioning process. If the rules are split and reordered, in order to optimize

operational cost, the process of re-enforcing the original rule semantics must be achieved

with reduced overheard.

5.5.2.2 Hierarchical Structure Building The process of building the hierarchical

structure described previously is accomplished using three basic stages:

• pre-processing,

• ordering, and

• splitting.

In the following, we discuss the basic operations carried out at each of these design stages.

The pre-processing stage takes the original list-based rule-set as its input and produces

an optimized rule-set. This optimized rule-set consists of fully disjoint and concise rules,

where all rule redundancies and dependencies are removed [7]. The fact that the rules in the

rule set are mutually disjoint provides OPTWALL with full flexibility to reorder the rules

and divide them into rule subsets, without violating the semantics of the original rule-set.

In the reordering stage, rules are reordered such that the highest cost rules are moved

to the top of the rule-set. As stated previously, the cost of a rule is based upon the size of

the rule and the amount of traffic processed by that rule, as indicated by its hit-count. By

reordering rules the overall cost of processing traffic is reduced.

The goal of the splitting stage is to produce a partition of the original rule-set into a set

of mutually disjoint rule subsets. This process involves taking the pre-processed rule-set and

dividing it into rule subsets. Each rule subset is defined by a tuple which covers all rules in

the subset. All such covering tuples are disjoint from one another. To partition the original

rule-set, OPTWALL uses a multi-step process, whereby it initially splits the original rule-set

into two subsets. It then recursively runs this splitting process on the subsets produced by

93

the previous stage to generate the next level of the hierarchical structure. This splitting

process continues until the overall processing cost overshadows the benefit gained by further

splitting the current subsets. When this occurs, the splitting process terminates and the

previous level is selected as the feasible optimal depth of the hierarchical structure.

The efficiency of the partitioning process strongly depends on the way the rule subsets

are produced at different levels of the hierarchy. Several strategies to produce feasible rule-

set splitting can be used. These strategies are discussed in later sections of this chapter.

The produced hierarchical structure is then converted to a series of IP-table rule sub-

sets. It is to be noted that most list based firewalls, such as Linux IPCHAINS, support

the ability to forward packets from one list to another for further processing. Consequently,

the OPTWALL hierarchical structure can be used to augment the filtering capabilities of

list-based firewalls.

5.5.2.3 Hierarchical Structure Maintenance The hierarchical structure is built to

reflect the current traffic pattern and rule-sets. As the traffic pattern and rule sets change,

the hierarchical structure must be updated to maintain its balance. To detect changes,

OPTWALL monitors the traffic logs in real-time and adjusts the hit-counts. OPTWALL

asserts that changes have occurred if the difference between the old and updated hit-counts

of any rule exceeds a predetermined threshold. This threshold, a tunable parameter, is de-

termined based on the traffic characteristics and the policy set under consideration.

If the need to balance the hierarchical structure rises, OPTWALL uses the existing traffic

logs to update the cost of rules in the rule subsets, including rules which have been added to

reflect a new security policy. OPTWALL then uses reordering, re-splitting, and promoting

to re-establish the balance of a hierarchical structure.

Re-ordering consists of re-prioritizing the rule subsets at the deepest level of the hierar-

94

chical structure. This process is necessary to take into consideration the impact of traffic

variations on the hit-count of rules in a given rule-set. Re-ordering is triggered when the dif-

ference between the current and previous hit-counts of a given rule exceeds a preset threshold.

Re-splitting is invoked when a sub-hierarchical structure becomes out of balance, due

to traffic variations. A sub-hierarchical structure is considered to be out-of-balance if the

average packet processing cost exceeds a predefined threshold. This process can occur at any

level, including the root of the hierarchical structure. When sub-hierarchical structure is out

of balance, splitting is applied to the original rule subset that generated this sub-hierarchical

structure. In some cases, it is not possible to produce a more balanced hierarchical structure,

in which case the level is marked as currently optimal and the threshold for the intermediate

levels are increased.

Promoting aims at reducing the overhead of packet processing at different levels of the

hierarchy. The need for rule promotion occurs when a single rule hit-count increases dramat-

ically and exceeds its predefined threshold. This scenario is likely to occur during anomalous

traffic behavior, typically observed during Denial-of-Service (DoS) attacks. To mitigate the

impact of DoS attacks and drastically reduce the cost of processing traffic generated by these

attacks, the rule is promoted to a level above the filters. Depending on the rule’s priority,

promotion may continue recursively until it reaches its appropriate priority level. In the

extreme case, the rule may be moved all the way up to the root of the hierarchical structure.

This promotion is temporary and the rule is not removed from the rule subsets. The reason

behind the temporary promotion stems from the transitory nature of DoS attacks. Once the

traffic has returned to its normal levels, the promoted rule can be removed from the higher

levels.

The automatic interaction between the levels (parent-child modules) of OPTWALL is

illustrated in Figure 29. Each level, starting from the root, acts as a central authority to a

lower level in the hierarchy.

95

Original Ruleset

Remove Duplicate

Compress

Rules and

Create Disjoint

Rule Set

Re−order Rules

Based Upon Cost

Function

Split Capital Rules

Into Two Sets And

Produce Two Filters

That Describe Each

Subset

Install Rule Set On

Two Children And

Install Filters On

Parent

Trigger

Re−Split

Monitor Cost

At Children

Trigger

Rule Promotion

(DoS)

Feed Cost

Data Back
Monitor Cost

Re−order Rule

Locally

Child Process

Central Authority
S

ys
lo

g

M
on

ito
rin

g

S
S

H
 S

ys
te

m

C
al

l

Install Rule Set

Figure 29: OPTWALL: Architecture

96

The efficiency of the splitting process, in terms of packet processing overhead, strongly

impacts the performance of the firewall. We first describe the splitting process and discuss

various solutions proposed for splitting the rule-set. We define a tuple, as a rule with single

attribute value. We will use the tuple set as the input to our splitting process.

The output of the splitting operation are two filters and their corresponding tuple subsets.

The filters and tuple subsets are semantically similar to that of a single list-based tuple set.

The process of splitting relies upon three basic functions:

• MATCH(),

• DISTANCE(), and

• WIDEN().

All three function are available on the filter object and all accept a single argument of a

tuple.

The MATCH() function checks to see if a tuple is covered by the filter. The source and

destination IP addresses are compared to the range specified in the filter. Similarly the port

number is compared to the port range specified in the filter. The protocol type is matched

to a list of protocol types the filter evaluates upon. This function returns true if the tuple

matches the tuple and false otherwise.

The DISTANCE() function calculates the distance between a given tuple and the filter.

If the filter matches the tuple then the value returned by this function is 0. Otherwise, this

function returns a positive number between 0 and 1. The distance is based on the entire tuple.

The numerical value between two IP addresses represents the distance between them. If

the IP addresses represent ranges, the distance function based on the distance between the

two farthest points within the ranges is calculated. A similar procedure is used to calculate

the distance between ports or port ranges. The protocol distance is set to 0 if the protocol

already exists in the protocol list for the filter. Otherwise the distance is set to 1. All the

97

distances are then normalized to the maximum values of their respective fields. The sum-

mation of this normalized values are then weighted and re-normalized to produce a value

between 0 or 1.

The WIDEN() function is used to expand a filter such that it matches the given tuple.

This is achieved by expanding the IP range, port range, and protocols. A function calculates

the cost of the tuple based on traffic characteristics and other tuple properties.

The driver of the splitting process is the search for a set of filters, which covers the hi-

erarchical structure without violating the semantic integrity of the original rule-set, aiming

at improving the operational cost of the firewall. Ideally, optimal splitting ensures that,

at the end of the partitioning process, all subsets has equal cost. Consequently, when an

optimal split is achieved, the average processing cost of each packet is reduced by half of its

original cost. An optimal strategy for performing a cost-balanced split of the original set of

rules is to use two sub-lists and alternatively place the rules in each list, starting with the

highest cost rule, until the set of rules is exhausted. While this strategy is optimal, it is not

always feasible. This due to the fact that each rule subset produced at each stage of the

splitting process must have a mutually disjoint set of filters. Computing such filters may not

be always achievable.

In the next section we present the detailed evaluation study of the proposed OPTWALL

implementation.

5.6 EVALUATION

In this section we describe the experiments and evaluations to validate the proposed Hier-

archical Firewall Optimization approach. We perform our validations by improving on the

widely used open source firewall, Linux IPCHAINS. The data used for our experiments is

emulated data from a large Tier-1 ISP. Our choice of firewall is representative of list-based

98

Packet
Generator

Log Processor

Firewall

Original rule

set

Rule

subset
A

Rule

subset
B

Splitter

Figure 30: Experimental Setup

firewall, which is the focus of this research.

The experimental set up for the evaluation of the proposed approach consists of a ma-

chine acting as a firewall and another generating traffic and collecting logs. The machines

used for our evaluation are AMDAthlontm 64 bit Processors 3000+ running Ubuntu Linux

operating system. The machines are isolated for testing to ensure that there are no other

variants. Figure 30 shows the block diagram of the experimental setup.

There are two types of traffic characterizations used to evaluate OPTWALL, namely, the

worst case and the emulated case behavior. In the worst case scenario, traffic is composed

of a single packet type that does not match any of the tuples. This assures that the packet

will be filtered only by the default action tuple. The emulated traffic is generated by cre-

ating packets that match each tuple and proportionally instantiating them to a traffic trace

similar to that of a large Tier-1 ISP’s firewall operation. The worst case traces are used

to study the worst case performance of OPTWALL in comparison to the baseline case, a

99

list-based firewall. Performance at worst case is determined by using constant traffic rates

and measuring the overall CPU utilization. Traffic rates are determined by loading the fire-

wall from 25% to 100% utilization with the installed list-based rule-set. A similar approach

is used to determine the load for the emulated traffic evaluations.

5.6.1 Evaluation results

The following subsection discusses the various results highlighting the potential of the pro-

posed OPTWALL approach.

5.6.1.1 Hierarchical model evaluation This study is performed to evaluate the poten-

tial of the hierarchical design and its effect on efficient firewall optimization w.r.t. a list-based

design. The extent of the hierarchy depends on the tuple set size, the traffic characteristics

and the variability in traffic. For our evaluation we fixed the tuple size, load applied and

the splitting approach used to determine the benefit from the proposed hierarchical design.

The experiments are conducted on a heavily loaded system and using the best performing

heuristic amongst all the solutions proposed earlier in the chapter. We use a tuple set of

nearly 5,000 tuples, load of 1,440 packets/sec and the Max Distance-Max Distance Heuristic

for our evaluations. Results as in Figure 31 shows the potential of the proposed OPTWALL

framework. It is to be noted that after a point, re-splits cause more harm than good. The

results depict a way to arrive at a sweet spot between the number of re-splits and the gain

to due the hierarchical design.

5.6.1.2 Worst case performance evaluation The next study performed is to deter-

mine the worst case packet processing cost of the firewall. A worst case packet processing

occurs when every packet entering the system requires processing of the entire tuple subset.

This means that it will match the last tuple, which is default deny. We used various tuple

sizes for our evaluations. The results are for a typical large tuple set, consisting of 60,000

100

Hierarchical vs. List-Based
1440 packets/sec, Max-Distance-Max-Distance Heuristic

0

10

20

30

40

50

60

70

80

List Based Hierarchical -
Level 1

Hierarchical -
Level 2

Hierarchical -
Level 3

Hierarchical -
Level 4

Levels of hierarchy

O
ve

ra
ll

 C
P

U
 U

ti
li

za
ti

o
n

Figure 31: Hierarchical vs. List-Based

tuples. Due to the memory limitation of using the Optimal Approach, we use a pruned ap-

proach, ∼A* approach for our evaluation. Results in Figure 32 demonstrate that the ∼A*

Approach and Max distance-Max distance Heuristic perform best in comparison to the base-

line list-based approach. It is to be noted that filters output by the ∼A* Approach perform

better traffic filtering than the heuristics approaches.

5.6.1.3 Emulated traffic performance evaluation The next study is to determine

the CPU consumption of the firewall when the traffic applied follows the normal traffic trace.

Results as in Figure 33 show the benefit of the proposed scheme. The CPU improvement

in the worst case is about 35% and in the emulated case is about 14%. Since, the CPU

consumption is additive, any gain on the emulated case can be translated as a capacity for

dealing with more anomalous traffic that can be handled by the firewall. In other words,

OPTWALL can deal with a larger predicted traffic volume and also a much larger anomalous

traffic.

101

0

20

40

60

80

100

120

2028 1907 1605 1443 1052 961 833

Load in Packets/second

C
P

U
 U

til
iz

at
io

n

Hit count-Hit count

Hit count-Max distance

Random-Random

Max distance-Max distance

~A *

List Based

Figure 32: Performance Evaluation (Worst-Case - 60,000 tuples)

102

5.6.1.4 Handling attacks evaluation The aim of this study is to test the strength

of OPTWALL in handling attacks and traffic fluctuations. Since the hit-counts for default

action tuples are large and unpredictable, it can cause a huge bottleneck to the entire firewall

operation. Figure 16 illustrates an instance of a large hit-count for a default action tuple.

To test the performance of OPTWALL in handling such attacks we emulated the attack and

increasing the hit-count of a certain default action tuple from 0 ∼ 100, 000. Figure 34 shows

the competence of OPTWALL in countering dynamic traffic changes and hence aiding the

steady maintenance of firewall operation.

5.6.1.5 Sensitivity analysis evaluation The final study is aimed at sensitivity analysis

of the proposed approaches. The analysis is performed for tuple sizes varying from 0 - 1000

tuples. Figure 35 details a comparative study between the baseline list-based, the best per-

forming heuristic solution and the ∼A* approach. The evaluation is conducted for a heavily

loaded firewall operation. From the results we conclude that the proposed heuristic solutions

are best suited for hierarchical firewall optimization.

5.6.1.6 Improved rule splitting In this study we evaluate the benefit of the improved

traffic-aware splitting approach presented in Section 5.4.3. The evaluation is for the worst

case and the emulated case operation of the firewall. The traffic load is 2000 packets/second

and 7000 packets/second for worst case and emulated case, respectively. We invoke the best

performing Max-distance-Max-distance heuristic to determine encompassing filters from the

resulting cluster groups. The result is averaged over 20 runs of the experiment. The Y-axis

represents the CPU-Utilization and the various approaches are represented in the X-axis.

Results in Figure 36 and Figure 37 demonstrate the benefit of the proposed approach in

improving the operational cost of firewall.

103

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

O
ve

ra
ll

C
P

U
 U

til
iz

at
io

n

Load in Packets/sec

Worst case - List based
Worst Case - Max distance - Max distance

Emulated - List based
Emulated - Max distance - Max distance

Figure 33: Emulated Traffic Performance Evaluation

104

Handling Denial of Service Attack

0

5

10

15

20

25

30

0 500 1000 10000 100000 1000000

Hit count for a default deny rule

C
o

st
/R

u
le

w ithout OPTWALL

w ith OPTWALL

Figure 34: Countering DoS Attacks

0

5

10

15

20

25

30

35

200 400 600 800 1000

Number of tuples

O
ve

ra
ll

 C
P

U
 U

ti
li

za
ti

o
n

~A*

Max distance-Max distance

List based

Figure 35: Sensitivity Analysis

105

Rule-set Split performance - Worst case (Load: 2000 packets/sec)

0

20

40

60

80

100

120

List based Hierarchical (vannila split) Hierarchical (improved split)

Approach

O
ve

ra
ll

C
P

U
 U

ti
liz

at
io

n
 (

sy
st

em
 t

im
e)

Figure 36: Weighted split performance - Worst case

Rule-set Split performance - Average case (load: 7000 pkts/sec)

0

5

10

15

20

25

List based Hierarchical (vannila split) Hierarchical (improved split)

Approach

O
ve

ra
ll

C
P

U
 U

ti
liz

at
io

n
 (

sy
st

em
 t

im
e)

Figure 37: Weighted split performance - Emulated case

106

5.7 SUMMARY

This chapter introduces a novel firewall transformation framework and transformation ap-

proaches aimed at improving the performance and manageability of de-centralized firewall

operation. We introduce a hierarchical splitting approach via the proposed OPTWALL

toolset. OPTWALL helps to achieve the maximum benefit via various splitting processes

to arrive at feasible optimal and near optimal solutions. We study the performance of

OPTWALL both for worst case and normal firewall operation. We also introduce a novel

adaptive anomaly detection/countermeasure mechanism to deal with short term and long

term anomalies. Our proposed model and tool is flexible to be used in different firewall

environments and data sets. We believe this research presents the design of a complete op-

timizing toolkit for firewall optimization. Results demonstrate that the proposed approach

aids in improving the performance of de-centralized firewall operation.

107

6.0 CONCLUSION

The explosive growth of the Internet in the last few years has given rise to a vast number

of services being deployed on a global scale. The increase in the Internet size, volume of

data traffic, and the daunting task of processing this huge Internet traffic, has created new

challenges in building high performance network devices. Thus, Internet has undoubtedly

become the largest public data network, enabling and facilitating both personal and business

communication over the whole world.

Data communication networks have become an infrastructure resource for businesses,

corporations, government agencies, and academic institutions. The volume of traffic over

the Internet is expanding at an exponential rate everyday. More and more communication

is taking place over the Internet via Emails, the World Wide Web, Remote access, Collab-

oration, File sharing, Streaming media, Voice Telephony (VoIP), etc. In very simple terms,

Internet is the life-line of today’s world. As such social dependence on networked infor-

mation systems continues to grow exponentially, unfortunately, a similar growth in threats

against the security of the networked infrastructure and services is taking place.

Attacks span the spectrum from computer worms and individual and localized intrusions

aimed at gaining access to information and system resources, to coordinated and distributed

attacks aimed at disrupting services and disabling critical infrastructure. As these attacks

proliferate and grow in scope and sophistication, different institutions find themselves under

growing pressure to place signification restrictions on open Internet accessing in the form of

firewalls, selective application deployment and mandatory proxies. The goal of our research

is to solve the challenging problem of providing confidentiality and integrity along with fast

108

response and availability in the present day network systems.

This thesis presents dynamic architectures and algorithms to secure networks. The pro-

posed architectures are geared towards today’s a global data-driven environment. The main

characteristics of the techniques and approaches presented is the ability to involve traffic

characteristics to aid and optimize the design of such secure network systems.

The main contribution of this thesis is the development of theory and tools for Firewall

Optimization for large scale enterprise networks. This is achieved by involving the key mech-

anism of traffic information from the Internet as a feedback to design better and smarter

packet filtering mechanisms. The main challenge which we faced in such a design is the

number of security rules and policies that the firewall has to enforce. As the network speed

increases there is an increased burden on the firewall for fast packet filtering. Along with all

this demands there is also an invariable need to maintain high policy integration. All these

make the problem of Firewall Optimization a very challenging one.

We present architectures and algorithms for firewall optimization and show the tremen-

dous improvement in operational cost of firewalls. We also present transformation framework

and approaches geared towards optimizing de-centralized firewalls. We present detailed anal-

ysis and our results are validated over a real world open source firewall, Linux IPCHAINS.

Our proposed PITTWALL and OPTWALL framework is highly portable to other data set

and firewall environments. We believe, this research is one of the first efforts in using firewall

traffic log information to design and optimize firewall rules sets. Both rule set based and

traffic based optimizations are integrated in our firewall accelerating tool. We have also

introduced a novel adaptive anomaly detection and countermeasure mechanism to deal with

short term and long term anomalies. We have performed detailed validation on the rule size

and cost metrics to demonstrate the strength of the proposed research.

Our research conclusions are based on investigations over a large Tier-1 Internet Service

Provider’s (ISP’s) firewall traffic information. Investigation resulted in a tremendous scope

109

for adaptive, traffic-aware Firewall Optimization. Results demonstrated nearly 10 fold im-

provement in the operational cost of firewalls for the Tier -1 ISP. These outstanding results

propelled us to study in depth the issues related to the design of a sound and robust infras-

tructure for Firewall Optimization.

At the core of the proposed firewall optimization research are two driving goals; better

ways to search, update and filter a large set of data based on specific policies and rules to

optimize the operational cost of firewalls; and better strategies to defend against attacks

which go beyond the classic peripheral model. The proposed architectures and algorithms

are evaluated using traffic information from the large Tier-1 ISP. Evaluation results demon-

strated the powerful potential of the traffic-aware optimization strategy. To enlist, results

on the de-centralized firewalls achieved nearly 35% improvement in the operational cost of

firewalls. As future work we intend to use other ISP datasets and firewalls to study, optimize

and validate our approaches. We would also be extending our optimization ideas on other

types of firewalls (not only list based ones). We believe this research is the first step in the

design of a complete accelerating toolkit for firewall optimization.

Fortunately, the firewall optimization techniques developed in this thesis are incorporated

in the secure network system of a large Tier-1 ISP. We hope that our proposed solutions

would be included in numerous ISPs and would become a core part in the design of the next

generation Internets. Our long term goal is to include the proposed research in the day-to-

day operation of the Internet. In summary, we strongly believe that this area of research

is very vital and of profound importance to every aspect of human-technology interaction.

Our long term goal is to deploy and test our theory and tools over various networks to fully

demonstrate their potential. As future directions we propose to enhance and complement

the area of cyber-security with adaptive and on-time filtering and by protecting the privacy

of information exchange amongst applications. Another important research direction of

great potential is to develop a formal trust management model applicable to such a global

distributed environment. To conclude, we present the design of traffic-aware de-centralized

defense infrastructure for next generation network systems.

110

7.0 FUTURE RESEARCH DIRECTION

With the tremendous growth in the dependence of services on the Internet, service disruption

has become less and less tolerable. The greatest threat to service availability is the rapid

growth in the complexity and frequency of large-scale distributed attacks. These attacks

cause economic losses due to unavailability of services and potentially serious security prob-

lems by the incapacitation of critical infrastructures. Despite the tremendous attention by

the research community to find distributed attack countermeasures, a practical and compre-

hensive solution is yet to see the light of the day. In this chapter we present a future research

direction aimed at finding a solution to the above problem that builds on the contributions

of this thesis.

It is well understood that it is difficult to eliminate all distributed attacks, as it would

require securing all machines on the Internet against misuse, which is not a feasible solution.

A possible practical approach is to design defense mechanism that will detect the attack

and respond to it by dropping the excessive malicious traffic. Generally, it is very easy

to detect the distributed attack near the destination, however the approach is too late in

attack detection. In the ideal case, the attack should be stopped as close to the source as

possible, but with the distributed nature of the attack it is not possible to decipher such

attack with the little information available near the source of the attack. Additionally, the

attack source is distributed. Thus, a realistic solution should move away from single-point

and local solutions towards a global and collaborative approach of attack detection and

subsequent attack mitigation. In this chapter we propose a future research direction to

dynamic, de-centralized firewall optimization approaches proposed in the thesis.

111

7.1 INTRODUCTION

Distributed attacks, i.e. Distributed denial-of-service (DDoS) attacks are a serious threat

for the Internet’s stability and reliability. A DDoS attack is an explicit attempt to interrupt

an online service by generating a high volume of malicious traffic. These attacks consume

all available network resources, thus rendering legitimate users to face service disruptions.

The impact of the attack can vary from minor inconvenience to the users of a web-site, to se-

rious financial loss to companies that reply on their on-line availability to do business [36,40].

Recent massive Internet worm outbreaks such as Slammer [38], Blaster [29] or Sasser [30]

have shown that a large number of hosts [34] are patched lazily or are operated by security-

unaware users. Such hosts can be compromised within a short time to run arbitrary and

potentially malicious attack code transported in a worm or virus or injected through installed

back-doors. Distributed denial-of-service attacks (DDoS) use such poorly secured hosts as

attack platform and cause degradation and interruption of Internet services, which result in

major financial loss, especially if commercial servers are affected [15].

Keeping a commercial server available round the clock is a tough task; while attackers are

able to exploit the processing and bandwidth resources and the flexibility of a huge number of

compromised hosts to construct new attack tools and variants; operators of Internet servers

are left without appropriate means to counteract attacks. Widespread availability of attack

tools makes it trivial for naive users to carry out large-scale attacks. As a consequence, new

attacks appear frequently, while defense strategies lag far behind. We believe that current

security technologies and concepts that focus on end system and access networks soon cannot

cope anymore with the growing number and the increasing intensity of Internet attacks. We

are convinced that large-scale attacks can only be efficiently handled by providing increased

security within the network.

This motivates the need for robust, scalable and effective architectures for detecting

and mitigating such attacks. Any effective and realistic solution to see the light of the day

112

should not add significant complexity in the core routers and should exhibit characteristics

that allow it to scale to large network sizes and to handle large-scale distributed attacks.

The attack defense infrastructure should possess mechanisms to aid collaborative operation

and be able to easily adapt to the traffic dynamics of the network. Most importantly such a

solution should enable ease of security policy enforcement while maintaining and preserving

the semantic integrity of the policy set. Finally, the proposed solution should not require

considerable changes in the existing infrastructure in order to ease deployment in such large

scale networks.

In this chapter to present a research direction that focuses on a clean-slate approach

and argues for a separate security plane to detect and mitigate distributed attacks. The

decision logic for the security mechanisms is distributed in a small set of active security

guards (Active sentinels), each responsible for a set of core routers. The Active sentinels

collaborate both by proactive and reactive mechanisms to mitigate attacks. In the following

section we present a brief description of the collaborative defense model aimed at limiting

distributed attacks.

7.2 COLLABORATIVE DEFENSE MODEL

Defending against large-scale, DDoS attacks is challenging, with large changes to the net-

work core or end-hosts often suggested. Any practical solution must provide incentives for

deployment. Furthermore, as link speeds increases, there is mounting pressure on routers to

perform forwarding at link speed. With the increased complexity of the control, manage-

ment and data planes, it is important that a solution does not add further complexity to

the core routers. The salient features of the proposed collaborative defense infrastructure

are the following:

• No changes required to the core routers or in the end-hosts.

This implies that the proposed architecture can be easily deployed.

• No change in the computational overhead on core routers.

113

• The proposed architecture adds no complexity to management, control or data plane.

• Better detection capability against a variety of attacks.

The strength of the proposed architecture is its ability to handle distributed DoS attacks

by the coordination of Active sentinels which cannot be achieved by simple edge to edge

filtering.

• Attack detection is possible both from in-network and out-of-network attacks.

The task of the Active sentinels is to actively probe packets sent probabilistically by

routers in the network. Upon the detection of an attack the Active sentinels send messages

to the Edge firewall nodes to filter the attack traffic. The Active sentinels can also direct the

core routers to increase p, the sampling rate. The Collaborative Defense Architecture(CDA)

is presented in Figure 38. The collaborative action is achieved via two mechanisms, namely,

Intrusion Detection and Response and Packet Filtering and Traffic Monitoring.

7.2.1 Mechanisms for Collaborative Defense

7.2.1.1 Intrusion Detection and Response consists of an infrastructure comprising

of a network of peers, that dynamically and collaboratively defend against intrusions and

denial of service attacks. The thrust of this task is the design of resource efficient algorithm

for probabilistic sampling and inspection of packets to detect attacks, and the development of

algorithms and methods for a collaborative Sentinel deployment which guarantees “optimal”

network coverage and a scalable response to attacks.

7.2.1.2 Packet Filtering and Traffic Monitoring are critical components of the In-

trusion Detection System for the proposed collaborative defense architecture. Upon detection

of an attack, a security policy, consisting of a set of rules and their corresponding actions,

must be in place to drop attack packets before they infiltrate the systems which they target.

With the dramatic advances in link speed, packet filtering must be constantly optimized

to cope with traffic demands and attacks. This problem is even more critical when appli-

cation level filtering is used. In this task, we aim to investigate and develop efficient, yet

easy to implement, collaborative packet filtering techniques. The focus will be on dynamic,

114

collaborative solutions, which use the network traffic statistics to reduce the overhead. We

propose to import architectures and algorithms designed in the area of firewall optimization

as discussed in Chapter 4 and 5 to achieve the above goal.

7.2.2 Type of Nodes in CDA

We propose three basic node types in the CDA infrastructure as discussed in the following:

• “Active sentinels/Dominating nodes/Smart nodes”

Active sentinels are smart nodes which are responsible for monitoring the core nodes in

their coverage. These nodes are responsible for taking decisions about traffic anoma-

lies and inform the Firewall-enabled routers for changes in the rule-set to mitigate the

upcoming anomaly. Active Sentinels also receive information from other peers in the

Autonomous System(AS) informing them of local anomaly information at distant parts

of the network. On receiving this information they take a decision to inform their

Firewall-enabled routers to take appropriate action. Alternatively, on detection of an

anomaly in their covered network of core nodes, the Active Sentinels inform their peers

of the same. They also pass information about flows which do not raise individual

alarms probabilistically amongst each other. Depending on a specified criteria the

Active sentinels then aggregate the values periodically (during online operation) to check

if the defined threshold is exceeded. If the aggregate behavior of a flow is unexpected,

the Active sentinels inform the filtering agents to take necessary action to prevent dis-

tributed attacks. This is a collaborative process and helps to mitigate distributed attacks.

• “Passive sentinels/Core routers/Covered nodes”

The Passive sentinels are the core router nodes which are covered by the Active sentinels.

The “r” criteria or redundancy criteria determines the number of Active Sentinels that

are responsible for these nodes. Their function is to perform normal router operation and

also forward the packet to the enquiring Active sentinel at the desired rate set by “p”

(assigned by the Active sentinel). It is to be noted that the core router node is not devi-

115

Update p Attack !!
Attack !!

Sentinel (smart
routers)

Core routers

Filter Table

Attack Path
Server

Update pUpdate p Attack !!Attack !!
Attack !!Attack !!

Sentinel (smart
routers)

Core routers

Filter Table

Attack Path
Server

Figure 38: Collaborative Defense Architecture (CDA)

116

ated from it normal operation and hence would not inhibit its normal routing capabilities.

• “Firewall-enabled routers”

These nodes are the filtering agents pre-assigned by the Autonomous System (AS) ad-

ministrator. We propose to model them to include the hierarchical firewall optimization

as discussed in Chapter 5. These routers receive messages from the Active sentinels and

incorporate the anomalies by making online as well as offline changes to their rule-sets.

The change can in the form of a “re-splits”, “re-promotions” or “reorders”.

7.2.3 Types of Communication in CDA

The proposed communication amongst the various nodes in the collaborative defense infras-

tructure are detailed below. These interactions help to achieve the mitigation of anoma-

lies in the network. Due to the scale of the network system we propose the asynchronous

method of message passing. The messages are passed between the Active sentinel and the

Agents/Routers in a given Autonomous System or are passed between groups of Active sen-

tinels. There are five basic types of communication as described in the following:

• Active sentinel - Passive sentinel

This communication is from the Active sentinel to the Passive sentinel informing it to

increase/decrease “p”, the sampling rate to forward packets to the Active sentinel.

• Passive sentinel - Active sentinel

The Passive sentinel samples packets at the assigned rate p and then sends the sampled

information to the Active sentinel. It also receives messages from the Active sentinels to

update p periodically.

• Active sentinel - Firewall enabled router

In this communication the Active sentinel sends a list of rules whose priority is to be

updated to the Firewall enabled router.

• Firewall enabled router - Active sentinel

The Firewall enabled router receives the update message from Active sentinels and ac-

117

cordingly modifies its rule-set. The rules are either reordered or new rules are added in

the form of default deny rules.

• Active sentinel - Active sentinel

The communication between the Active sentinels helps to propagate local traffic in-

formation to the peering nodes. This is the basis for performing collaborative defense

operation.

The basic message types for CDA are illustrated in Figure 39. There are three basic

message types, Activate, Update and Create. The Activate message is sent by the Active

Sentinels to their respective core nodes specifying them to forward the packet at a probabil-

ity “p”. The Update message is invoked when the traffic characteristics of a packet filter(s)

exceeds the previous assigned threshold. The Create message is a variant of the Update

message that helps to set a different threshold.

7.3 COLLABORATIVE DEFENSE OPERATION

7.3.1 Optimal Sentinel Placement

In its most general form, the Optimal Sentinel P lacement(OSP) problem seeks to deter-

mine a minimum number of sentinels, S, such that any core node, i, is covered by at least

one node in S. This is necessary to ensure that any traffic entering the network is ultimately

inspected by the active sentinels. To illustrate this, consider the case where core routers

A and B use adjacent router C to forward traffic to its destination. It is clear that acti-

vating router C to forward probabilistically selected traffic to the covering active sentinel

is sufficient to cover router A and C. The minimum cardinality of the dominating set S is

denoted by C ′, and is called the domination number. The OSP problem is closely related

to the Dominating Set (DS) problem, where coverage represents adjacency to a sentinel in

S. The DS problem can be formally described as follows:

118

Core Router

Active Sentinel
Firewall

(Edge) Router

Information to Update rules (priority change)or Create rules (DDoS mitigation)

Activate, p

Update current rule st information

Probabilistically send pkts

Core Router

Active Sentinel
Firewall

(Edge) Router

Information to Update rules (priority change)or Create rules (DDoS mitigation)

Activate, p

Update current rule st information

Probabilistically send pkts

Figure 39: Basic Message in CDA

119

Given a graph G = (V, E), where V represents the set of vertices and E the set of edges,

the DS process divides V into a collection of subsets V1, V2...Vn, such that V =
⋃

i = 1...n

Vi and each subset Vi induces a connected subgraph of G. Notice that subsets need not be

disjoint. Furthermore, if the graph induced by S is connected, it is called a connected domi-

nating set. The computation of a DS of minimum cardinality for arbitrary graphs is known

to be NP-complete [10]. Several heuristics have been proposed to produce a near-optimal

solution for a variety of problems [13]. These heuristics, however, fall short in addressing

the major requirements of proposed defense system. The vulnerability of sentinels to at-

tacks, coupled with potential sentinel failures or network disconnection, imposes a variety

of conditions that must be satisfied in order to produce a resilient, secure and fault-tolerant

IDS defense. In order to ensure a high level of redundancy and resiliency against attacks

directed at the defense system, we ensure that each core node in V − S be dominated by

at least r sentinels in S, for a fixed positive integer r. Furthermore, in order to ensure that

the communication delay between core routers and sentinels is bound, we require that each

core node V − S be within distance d of at least r vertex in S, for a fixed positive integer d.

We refer to this problem as the (r, d) − OSP problem [31, 32]. The problem of computing

(r, d) − OSP of minimum cardinality for arbitrary graphs is NP-Complete. In our future

research we will attempt to design heuristics to compute an approximate solution to this

problem.

7.3.2 Probabilistic Packet Inspection

The approach used in this research to reduce the packet inspection workload builds on the

observation that effective intrusion detection can be achieved based on a reduced amount

of packet sampling and logging. The proposed research direction is similar to the work pre-

sented in [18] and uses random sampling to inspect packets. To illustrate this process, the

following simple, traffic sampling model is used as discussed. Assume that a flow is con-

sidered suspicious if its bandwidth usage exceeds a threshold percentage, t% (t is specified

by the network administrator) of the link capacity. These flows are labeled as delinquent

120

and become subjected to thorough inspection. In order to reduce false alarms, packets are

sampled randomly such that each byte of the packet has equal probability, p, of causing

the flow to become delinquent. At the end of the sampling period, flows that have been

identified as suspicious can be inspected more thoroughly before alerts are generated. In our

future research we aim to design a distributed probabilistic packet inspection algorithm for

the proposed collaborative defense infrastructure.

7.3.3 Dynamic Collaborative Packet Filtering

In this thesis we have developed effective, traffic-aware optimizations to improve the op-

erational cost of firewalls for both centralized and de-centralized firewall operation. The

proposed techniques “adapts” rule-set configurations to the dynamically changing network

traffic characteristics, while maintaining policy integration across the different networks. A

unique feature of the approach is its adaptive anomaly detection and countermeasure mech-

anism, used to dynamically alter the firewall rule-set to improve performance.

The strong motivation to the online dynamic packet filtering approach is the observation

that the major portion of the network traffic matches only a subset of the field values in the

security policy rules. This is known as the 80−20 rule, which states that 80% of the traffic is

filtered by 20% of the rules. One of the important traffic characteristics commonly observed

in our analysis of large number of Internet traces is the skewness of the traffic matching in

the policy, which reveals that the majority of inbound or outbound packet is matched against

a small subset of filtering field values which exists in the security policy implemented by the

firewalls. What is important of this property is that the traffic skewness property is unlikely

to change over a short period of time, and the total number of different skewness property

is unlikely to be large in a firewall policy. As future research we aim to embed our adaptive

dynamic packet optimization technique developed in this thesis to the proposed Collaborative

Defense infrastructure. The proposed architectures and algorithms are imported to the Fire-

wall Enabled edge routers to perform efficient traffic-aware filtering and attack mitigation.

121

These approaches mitigate out-of-network or denial-of-service (DoS) attacks. In order to

handle distributed in-network attacks (DDoS) the firewall routers depend upon the collabo-

rative action taken by the smart router nodes. We aim to apply various traffic characteristic

information to determine the distributed attacks for such network systems.

The basic operation of an Active sentinel is depicted in Figure 40. In the following we

discuss the steps of the collaborative defense action. In the first step of the defense operation

we aim at developing a novel node placement algorithm in the proposed separate security

plane.

In the next step we aim at the design and implementation of a simple probabilistic packet

inspection mechanism amongst the smart defense node in the separate security plane. The

probabilistic approach in packet inspection is due to the large volume of the network traffic

and the fast link speed operations of Tier-1 ISPs.

In the third step we aim to import all the de-centralized traffic aware optimizations as

discussed in Chapter 5 into the edge firewall nodes to enable fast and traffic-aware packet

filtering and attack mitigation. The implementation of these approaches help to mitigate

out-of-network and denial of service anomalies/attacks. This step however does not answer

to the in-network attacks.

In the last step our goal is the design of efficient but simple techniques to recognize the

presence of in-network (stealth) anomalies in the distributed collaborative framework. The

approach is proposed to be based on distributed statistical inference of traffic characteris-

tics amongst the smart defense nodes. The smart nodes would aggregate the information

received from one another and monitor (check) to detect any possible threshold violations.

We propose that the threshold information be specified by the network administrator. If

a violation of threshold is detected, the smart nodes immediately inform the edge firewall

(filtering) nodes to take appropriate action, either to promote the filter or create a new filter

corresponding to the misbehaving packet and thus limit or mitigate the developing anomaly.

122

Local information from
covered core nodes

Activate Edge node to
re-order or include rule

Global information
from peer Active nodes

Intrusion detection

Figure 40: Basic Active sentinel Operation

123

This in consequence helps to limit the distributed attack.

7.4 SUMMARY

In the chapter we present a future research direction aimed at the design of a dynamic col-

laborative defense infrastructure to detect and limit distributed attacks. We propose the

design of a separate security plane to manage and collaborate information between the var-

ious network elements. We believe that such a global and co-ordinated approach would be

real-time and cost-effective with very minimal changes to the current network infrastructure.

Moreover it would also addresses scalability and promises ease of deployment. Along with

the collaborative defense model, CDA benefits from the dynamic optimized packet filtering

approaches proposed in the thesis research. The dynamic de-centralized firewall optimiza-

tions helps to enable dynamic defense in such large scale network environments. Our long

term future direction is for the CDA infrastructure to be deployed in a real network envi-

ronment.

124

BIBLIOGRAPHY

[1] Symantec internet security threat report, http://eval.symantec.com.

[2] Linux ipchains, http://people.netfilter.org/ rusty/ipchains.

[3] Denial of service, http://www.cert.org/homeusers/ddos.html.

[4] Checkpoint ngx firewall, http://www.checkpoint.com.

[5] S. Acharya, M. Abliz, B. Mills, A. Greenberg, T. Znati, Z. Ge, and J. Wang. Optwall: A
hierarchical traffic-aware firewall. 14th Annual Network and Distributed System Security
Symposium, San Diego, CA, February, 2007.

[6] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg. A Traffic-Aware Framework
and Optimization Strategies for Large Scale Enterprise Networks. Technical Report,
pages 1–20, September 2005.

[7] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg. Traffic-aware firewall opti-
mization strategies. In IEEE International Conference on Communications, Istanbul,
Turkey, June 2006.

[8] Ehab Al-Shaer and Hazem Hamed. Modeling and management of firewall policies. IEEE
Trans. Network and Service Management, 1(1), Apr 2004.

[9] F. Baboescu and G. Varghese. Scalable packet classification. Proceedings of ACM
SIGCOMM, 2001.

[10] M. R. Barey and D. S. Johnson. Computer and Intractability. Freeman, San Fransisco,
1978.

[11] P. Brucker. On the complexity of clustering problems. In in Optimization and Operations
Research. Springer-Verlag, pp. 45-54, 1977, 1997.

[12] Moses Charikar, Sudipto Guha, Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. ACM Symposium on Theory of
Computing, 1999.

125

[13] G. Chen, F. Nocetti, J. Gonzalez, and I. Stojmenovic. Connectivity-based-k-hop clus-
tering in wireless networks. Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences (HICSS 02), IEEE Computer Society, 2002.

[14] C. Douligeris and A. Mitrokotsa. Ddos attacks and defense mechanims: classification
and state of the art. Computer Networks, Vol. 44(5), pp. 643-666, 2004.

[15] T. Dubendorfer, A. Wagner, and B. Plattner. An economic damage model for large-
scale internet attacks. Proceedings of the 13th International Workshop on Enabling
Technologies, June, 2004.

[16] Adel El-Atawy, Taghrid Samak, Ehab Al-Shaer, and Hong Li. Using online traffic
statistical matching for optimizing packet filtering performance. INFOCOM, 2007.

[17] Pasi Eronen and Jukka Zitting. An expert system for analyzing firewall rules. In
Proceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), pages
100–107, Copenhagen, Denmark, November 2001.

[18] Cristian Estan and George Varghese. New directions in traffic measurement and ac-
counting. ACM SIGCOMM Internet Measurement Workshop, 2001.

[19] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. In IEEE IN-
FOCOM, March, 2000.

[20] Errin W. Fulp. Optimization of network firewalls policies using directed acyclic graphs.
In Proceedings of the IEEE Internet Management Conference, 2005.

[21] Errin W. Fulp. Parallel firewall designs for high-speed networks. In IEEE INFOCOM
High Speed Networking Workshop, 2006.

[22] P. Gupta and N. McKeown. Packet classification using hierarchical intelligent cuttings.
In Proceedings of Hot Interconnects, 1999.

[23] P. Gupta and N. McKeown. Algorithms for packet classification. in IEEE Network, Vol.
15, No. 2, pp. 24-32, 2001.

[24] P. Gupta, B. Prabhakar, and S. Boyd. Near optimal routing lookups with bounded
worst case performance. In IEEE INFOCOM, 2000.

[25] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Proceedings
of SIGCOMM, 1999.

[26] Hazem Hamed and Ehab Al-Shaer. Dynamic rule-ordering optimization for high-speed
firewall filtering. In ASIACCS, 2006.

[27] Hazem Hamed, Adel El-Atawy, and Ehab Al-Shaer. Adaptive statistical optimization
techniques for firewall packet filtering. In IEEE INFOCOM, April, 2006.

126

[28] Susan Hinrichs. Integrating changes to a hierarchical policy model. In Proceedings of 9th
IFIP/IEEE International Symposium on Integrated Network Management, Nice, France,
2005. IEEE.

[29] http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html.
Symantec security response w32.blaster.worm, 2003.

[30] http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html.
Symantec security response w32.sasser.worm, 2004.

[31] N. Jariyakul and T. Znati. On the internet delay-based clustering. Proceedings of the
38th Annual Simulation Symposium, April 2005.

[32] N. Jariyakul and T. Znati. A clustering-based selective probing framework to support
internet quality of service routing. Distributed Computing - IWDC 2005, in Proceedings
of the 7th International Workshop, Kharagpur, India, December, 2005.

[33] T. V. Lakshman and D. Stidialis. High speed policy-based packet forwarding using
efficient multi-dimensional range matching. In Proceedings of SIGCOMM. ACM Press,
1998.

[34] R. Lemos. Msblast epidemic far larger than believed. http://news.com/msblast, 2004.

[35] A. J. McAulay and P. Francis. Fast routing table lookup using cams. Proceedings IEEE
INFOCOM, 1993.

[36] J. Mirkovic, G. Prier, and P. Reiher. Attacking ddos at the source. Proceedings of
ICNP, November 2002.

[37] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense mechanisms.
Computer Communications Review, Vol. 34(2), pp. 39-52, 2004.

[38] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
slammer worm. IEEE Security and Privacy, July, 2003.

[39] W. Noonan and I. Dubrawsky. Firewall Fundamentals: An introduction to network and
computer firewall security. June, 2006.

[40] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan. Cossack:
Coordinated suppression of simultaneous attacks. DARPA Information Survivability
Conference and Exposition, Washington, DC, 2003.

[41] Jiang Qian, Susan Hinrichs, and Klara Nahrstedt. ACLA: A framework for access control
list (acl) analysis and optimization. In Communications and Multimedia Security, 2001.

[42] Lili Qiu, George Varghese, and Subhash Suri. Fast firewall implementations for software-
based and hardware-based routers. In SIGMETRICS ’01: Proceedings of the 2001 ACM

127

SIGMETRICS international conference on Measurement and modeling of computer sys-
tems, pages 344–345, New York, NY, USA, 2001. ACM Press.

[43] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz, Jennifer
Yates, and Yin Zhang. Experience in measuring backbone traffic variability: Models,
metrics, measurements and meaning. In IMW ’02: Proceedings of the 2nd ACM SIG-
COMM Workshop on Internet Measurement, pages 91–92, New York, NY, USA, 2002.
ACM Press.

[44] Summet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification
using multidimensional cutting. In SIGCOMM, 2003.

[45] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search.
In Proceedings of SIGCOMM. ACM Press, 1999.

[46] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix expansion.
ACM Transactions on Computer Systems, Vol. 17, No. 1, 1999.

[47] Stephen J. Tarsa and Errin W. Fulp. Trie-based policy representations for network
firewalls. In Proceedings of the IEEE International Symposium on Computer Commu-
nications, 2005.

[48] T. Y. C. Woo. A modular approach to packet classification: Algorithms and results. in
Proc. of IEEE INFOCOM, March 2000.

[49] Yang Xiang and Wanlei Zhou. Intelligent ddos packet filtering in high-speed networks.
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, October, 2005.

[50] Xiao-Ling Zhao and Ji-Zhou Sun. A parallel scheme for ids. Proceedings of the Second
International Conference on Machine Learning and Cybernetics, November, 2003.

128

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Pre-optimized rule-set: SI
	2. Disjoint rule-set: SD
	3. Final rule-set: SF

	LIST OF FIGURES
	1. Threat trend (1988 - 2006)
	2. Firewall Taxonomy
	3. Firewall Security Layers
	4. Firewall Structure
	5. Block Structure
	6. Rule Structure
	7. Traffic Log Instance
	8. Block size distribution
	9. Duplicates amongst blocks
	10. Rule set variation over days
	11. Accepts vs. drop statistics
	12. Accept rule distribution
	13. Drop rule distribution
	14. Rule hit distribution: Over weeks
	15. Rule hit distribution: Over days
	16. Default deny rule hits
	17. Field count distribution
	18. Protocol distribution
	19. Firewall Optimization Framework
	20. Rule Set Based Optimization: Size-based
	21. Traffic Based Optimization: Size-based
	22. Traffic Based Optimization: Cost-based
	23. Online Adaptation Benefit/Cost Curve
	24. Determining Best Adaptation Interval
	25. CPU Utilization vs. Number of rules
	26. CPU Utilization vs. Load
	27. N rules into K partition problem
	28. Basic operation of OPTWALL
	29. OPTWALL: Architecture
	30. Experimental Setup
	31. Hierarchical vs. List-Based
	32. Performance Evaluation (Worst-Case - 60,000 tuples)
	33. Emulated Traffic Performance Evaluation
	34. Countering DoS Attacks
	35. Sensitivity Analysis
	36. Weighted split performance - Worst case
	37. Weighted split performance - Emulated case
	38. Collaborative Defense Architecture (CDA)
	39. Basic Message in CDA
	40. Basic Active sentinel Operation

	LIST OF ALGORITHMS
	1. Optimal Approach for Rule-set Splitting
	2. Hit count-Hit count Heuristic Approach

	PREFACE
	1.0 INTRODUCTION
	1.1 Background and Motivation
	1.2 Background of Firewalls
	1.2.1 Taxonomy of Firewalls
	1.2.1.1 Personal firewalls
	1.2.1.2 Network Firewalls

	1.2.2 Firewall Products
	1.2.2.1 Software Firewalls
	1.2.2.2 Appliance Firewalls
	1.2.2.3 Integrated Firewalls

	1.2.3 Firewall Technologies
	1.2.3.1 Personal firewalls
	1.2.3.2 Packet filters
	1.2.3.3 NAT Firewalls
	1.2.3.4 Circuit-Level Firewalls
	1.2.3.5 Proxy Firewalls
	1.2.3.6 Stateful Firewalls
	1.2.3.7 Transparent Firewalls
	1.2.3.8 Virtual Firewalls

	1.2.4 Open and Closed Source Firewalls

	1.3 Firewall Security Policies
	1.3.1 Security Policy Format
	1.3.2 Common Security Policies
	1.3.2.1 Management-access policy
	1.3.2.2 Filtering policy
	1.3.2.3 Routing policy
	1.3.2.4 Remote-access/VPN policy
	1.3.2.5 Monitoring/logging policy
	1.3.2.6 Demilitarized zone (DMZ) policy

	1.3.3 Firewall Policies/Rule-sets

	1.4 Firewall Management
	1.4.1 Firewall Management Interface
	1.4.2 Firewall Management Access
	1.4.3 Firewall Management Tasks
	1.4.4 Complexity of firewall management and optimization

	1.5 Thesis Problem and Challenges
	1.6 Thesis Contribution
	1.7 Thesis Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Packet classification and optimization
	2.1.1 Hardware Based Solutions
	2.1.2 Geometric based solutions
	2.1.3 Specialized data structures
	2.1.4 Statistical based solutions

	2.2 Firewall optimization
	2.2.1 Policy based optimization
	2.2.2 Traffic based optimization

	2.3 Anomaly detection and mitigation
	2.3.1 Attack classification
	2.3.2 Defense mechanisms

	3.0 FIREWALL DATA AND ANALYSIS
	3.1 Firewall policy representation
	3.2 Firewall data
	3.3 Data Analysis
	3.3.1 Rule-set analysis
	3.3.1.1 Block size distribution
	3.3.1.2 Duplicates amongst blocks
	3.3.1.3 Rule set variation
	3.3.1.4 Dependency amongst rules

	3.3.2 Traffic log analysis
	3.3.2.1 Distribution of Accept vs. Drop rules
	3.3.2.2 Rule hit distribution
	3.3.2.3 Default deny rule hits
	3.3.2.4 Field count distribution
	3.3.2.5 Protocol distribution

	3.4 Summary

	4.0 PITTWALL: A CENTRALIZED FIREWALL OPTIMIZATION APPROACH
	4.1 List based firewalls
	4.2 Firewall Optimization Model
	4.2.1 Stage I: Pre-optimization
	4.2.2 Stage II: Rule-set based optimization
	4.2.3 Stage III: Traffic based optimization
	4.2.3.1 Hot caching
	4.2.3.2 Total reordering
	4.2.3.3 Default proxy
	4.2.3.4 Online Adaptation

	4.3 Theory: Rule Size and Cost Metric
	4.4 Evaluation
	4.4.1 Firewall Optimization
	4.4.1.1 Rule-set based optimization
	4.4.1.2 Traffic based optimization

	4.4.2 Online Adaptation
	4.4.2.1 Benefit/Cost evaluation
	4.4.2.2 Determining best Adaptation Interval
	4.4.2.3 Benefit of adaptation with attack traffic

	4.4.3 Proportionality of rule processing cost

	4.5 Summary

	5.0 OPTWALL: A HIERARCHICAL FIREWALL OPTIMIZATION APPROACH
	5.1 Introduction
	5.2 Firewall Transformation Framework
	5.3 Firewall Transformation Approach
	5.4 Firewall Splitting Approaches
	5.4.1 Optimal Approach
	5.4.2 Heuristic Approach
	5.4.3 Improvements to rule-set splitting approaches
	5.4.3.1 Clustering rule split
	5.4.3.2 Parallel A* approach
	5.4.3.3 Weighted distance function

	5.5 Design Architecture and Methodology
	5.5.1 OPTWALL Design Goals
	5.5.2 Hierarchical Firewall Optimization Model
	5.5.2.1 Data Structure
	5.5.2.2 Hierarchical Structure Building
	5.5.2.3 Hierarchical Structure Maintenance

	5.6 Evaluation
	5.6.1 Evaluation results
	5.6.1.1 Hierarchical model evaluation
	5.6.1.2 Worst case performance evaluation
	5.6.1.3 Emulated traffic performance evaluation
	5.6.1.4 Handling attacks evaluation
	5.6.1.5 Sensitivity analysis evaluation
	5.6.1.6 Improved rule splitting

	5.7 Summary

	6.0 CONCLUSION
	7.0 FUTURE RESEARCH DIRECTION
	7.1 Introduction
	7.2 Collaborative Defense Model
	7.2.1 Mechanisms for Collaborative Defense
	7.2.1.1 Intrusion Detection and Response
	7.2.1.2 Packet Filtering and Traffic Monitoring

	7.2.2 Type of Nodes in CDA
	7.2.3 Types of Communication in CDA

	7.3 Collaborative Defense Operation
	7.3.1 Optimal Sentinel Placement
	7.3.2 Probabilistic Packet Inspection
	7.3.3 Dynamic Collaborative Packet Filtering

	7.4 Summary

	BIBLIOGRAPHY

