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 Antitrypsin Deficiency is a primary cause of juvenile liver disease and arises from 

expression of the “Z” variant of the alpha-1 protease inhibitor (A1Pi). Whereas A1Pi is 

secreted from the liver, A1PiZ is retro-translocated from the endoplasmic reticulum (ER) 

and degraded by the proteasome, an event that may offset liver damage.  To better define 

the mechanism of A1PiZ degradation, a yeast expression system was developed and a gene, 

ADD66, was identified that facilitates A1PiZ turn-over (Palmer et al., J. Cell. Sci. 116, 

2361-2373, 2003).  I report here that ADD66 encodes an ~30 kDa soluble, cytosolic protein 

and that the chymotrypsin-like activity of the proteasome is reduced in add66Δ mutants.  

This reduction in activity may arise from the accumulation of 20S proteasome assembly 

intermediates or from qualitative differences in assembled proteasomes.  Add66p also 

appears to be a proteasome substrate.  Consistent with its role in ER associated 

degradation (ERAD), synthetic interactions are observed between the genes encoding 

Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for 

both ADD66 and/or IRE1 accumulate polyubiquitinated proteins.  These data identify 

Add66p as a proteasome assembly chaperone (PAC) and provide the first link between 

PAC activity and ERAD.  

 iii 



TABLE OF CONTENTS 

LIST OF ABBREVIATIONS .................................................................................................. XII 

PREFACE................................................................................................................................. XIV 

1.0 INTRODUCTION........................................................................................................ 1 

1.1 UBIQUITIN PROTEASOME PATHWAY ...................................................... 2 

1.1.1 The proteasome ............................................................................................. 4 

1.1.2 26S proteasome assembly and maturation ............................................... 11 

1.1.3 Proteasome assembly chaperones (PACs) ................................................ 15 

1.2 SECRETORY PATHWAY............................................................................... 19 

1.3 ENDOPLASMIC RETICULM PROTEIN QUALITY CONTROL ............ 23 

1.3.1 ER- associated degradation (ERAD)......................................................... 24 

1.3.2 Unfolded protein response (UPR).............................................................. 30 

1.4 AUTOPHAGY ................................................................................................... 35 

1.5 PROTEIN CONFORMATIONAL DISEASES.............................................. 39 

1.5.1 Antitrypsin Deficiency ................................................................................ 40 

1.5.1.1 A1PiZ ................................................................................................... 47 

1.5.2 Antitrypsin degradation deficient (ADD) Genes...................................... 53 

1.5.3 Antitrypsin degradation deficient 66 (ADD66) ........................................ 54 

1.6 YEAST AS A MODEL ORGANISM .............................................................. 60 

 iv 



1.7 DISSERTATION OVERVIEW ....................................................................... 61 

2.0 CHARACTERIZATION OF ADD66 AND ITS ROLE IN PROTEASOME 

ASSEMBLY AND MATURATION.......................................................................................... 62 

2.1 INTRODUCTION ............................................................................................. 62 

2.2 MATERIALS AND METHODS...................................................................... 66 

2.2.1 Strains and growth conditions ................................................................... 66 

2.2.2 Detection of polyubiquitinated proteins in yeast ..................................... 67 

2.2.3 Expression of wild type and the Z variant of alpha-1-antitrypsin, PAC2, 

and epitope-tagged Add66p....................................................................................... 67 

2.2.4 A yeast colony blot assay for A1PiZ accumulation.................................. 69 

2.2.5 Add66p localization .................................................................................... 69 

2.2.6 Purification of yeast 26S proteasomes....................................................... 70 

2.2.7 Proteasome activity assays and glycerol gradient analysis ..................... 71 

2.2.8 Non-denaturing PAGE proteasome activity assay................................... 73 

2.2.9 Add66p-myc degradation assay ................................................................. 74 

2.2.10 Induction of autophagy .............................................................................. 74 

2.2.11 A1PiZ degradation assay in a genetically engineered mammalian cell 

line……. ...................................................................... ………………………………74 

2.2.12 Radiolabeling, immunoprecipitation and phosphorimaging .................. 75 

2.3 RESULTS ........................................................................................................... 76 

2.3.1 Pleiotropic phenotypes associated with add66Δ ....................................... 76 

2.3.2 Genetic interactions between ADD66 and IRE1, a transducer of the 

Unfolded Protein Response (UPR) ........................................................................... 78 

 v 



2.3.3 Add66p is a cytosolic, soluble protein ....................................................... 81 

2.3.4 Add66p is required for maximal proteasome activity ............................. 89 

2.3.5 The levels of 26S proteasome subunits are unaltered in the add66Δ 

strain………………………………………………………………………………...102 

2.3.6 The relative affinities of the subunits that mediate the CTL activity for 

specific inhibitors are not altered in extracts prepared from add66Δ yeast ....... 102 

2.3.7 20S precursors accumulate in yeast deleted for ADD66........................ 105 

2.3.8 The stability of the 26S proteasome is not reduced in the add66Δ 

strain……………………………………………………………………………….. 113 

2.3.9 Add66p is degraded by the 26S proteasome........................................... 116 

2.3.10 A1PiZ expression in the add66Δ yeast strain.......................................... 121 

2.3.11 PAC2 over-expression enhances A1PiZ degradation HELA cells. ...... 129 

3.0 THE REGULATION OF ADD66 DURING THE UNFOLDED PROTEIN 

RESPONSE ............................................................................................................................... 133 

3.1 INTRODUCTION ........................................................................................... 133 

3.2 MATERIALS AND METHODS.................................................................... 135 

3.2.1 Strains and growth conditions ................................................................. 135 

3.2.2 mRNA isolation and analysis ................................................................... 136 

3.3 RESULTS ......................................................................................................... 137 

3.3.1 Identification of a UPRE like sequence within the promoter of 

ADD66……………………………………………………………………………… 137 

3.3.2 The ADD66 UPRE is necessary for ADD66 mRNA induction during ER 

stress………………………………………………………………………………...138 

 vi 



4.0 DISCUSSION ........................................................................................................... 146 

4.1 INTRODUCTION ........................................................................................... 146 

4.2 ADD66 IS REQUIRED FOR MAXIMAL CHYMOTRYPSIN-LIKE 

ACTIVITY OF THE 26S PROTEASOME ................................................................... 146 

4.3 ADD66P FACILITATES EFFICIENT PROTEASOME ASSEMBLY..... 148 

4.4 ADD66P IS INVOLVED IN THE DEGRADATION OF A DISCRETE SET 

OF PROTEINS ................................................................................................................. 149 

4.5 RELATIONSHIP OF ADD66Δ YEAST EXPRESSING A1PIZ................. 151 

4.6 ROLE OF PAC2 IN A1PIZ CLEARANCE.................................................. 152 

4.7 REGULATION OF ADD66 DURING THE UNFOLDED PROTEIN 

RESPONSE....................................................................................................................... 153 

4.8 POSSIBLE FUTURE DIRECTIONS OF RESEARCH CONCERNING 

ADD66P…………………………………………………………………………………..155 

APPENDIX A............................................................................................................................ 157 

APPENDIX B ............................................................................................................................ 159 

BIBLIOGRAPHY..................................................................................................................... 169 

 vii 



 LIST OF TABLES 

 

Table 1.  Growth Conditions and Associated Biochemical Pathways.......................................... 77 

Table 2. Yeast strains used in this study ..................................................................................... 157 

Table 3. Arabidopsis thaliana species utilized in this study....................................................... 164 

 viii 



LIST OF FIGURES 

 

Figure 1.  The ubiquitination pathway............................................................................................ 6 

Figure 2. The 26S proteasome ........................................................................................................ 9 

Figure 3. 20S Proteasome assembly and maturation .................................................................... 13 

Figure 4.  Secretory pathway ........................................................................................................ 21 

Figure 5. ERAD pathway.............................................................................................................. 26 

Figure 6. UPR pathway................................................................................................................. 32 

Figure 7.  Autophagy .................................................................................................................... 37 

Figure 8. Antitrypsin structure...................................................................................................... 42 

Figure 9.  The accumulation of an aberrant form of antitrypsin in hepatocytes........................... 46 

Figure 10.  The proteasome is required for the ERAD of A1PiZ ................................................. 50 

Figure 11.  The fate of A1PiZ....................................................................................................... 52 

Figure 12.  Identification of ADD66 ............................................................................................. 56 

Figure 13.  Deletion of ADD66 exhibits differential effect on the degradation of two ERAD 

substrates....................................................................................................................................... 59 

Figure 14.  ADD6 and IRE1 synthetically interact ....................................................................... 80 

Figure 15.  Autophagy is robust in the add66Δ strain .................................................................. 83 

Figure 16.  The A1PiZ degradation defect is rescued in add66Δ strains expressing Add66p-myc

 ix 



....................................................................................................................................................... 86 

Figure 17.  Add66p is cytosolic .................................................................................................... 88 

Figure 18.  CTL activity detection of varying amounts of yeast cytosol...................................... 92 

Figure 19.  Expression of Add66p-myc from its endogenous promoter complements the 

chymotrypsin-like activity defect in add66Δ yeast....................................................................... 94 

Figure 20.  The chymotrypsin-like activity of the 26S proteasome is reduced in extracts prepared 

from the add66Δ complexes ......................................................................................................... 96 

Figure 21.  26S proteasome activity is reduced in the add66Δ strain with no increase in the 

relative level of 20S particles........................................................................................................ 99 

Figure 22.  The proteolytic activities of the 26S proteasome extracts prepared from various add 

strains .......................................................................................................................................... 101 

Figure 23.  The levels of 26S proteasome subunits are unaltered in the add66Δ strain ............. 104 

Figure 24.  The relative affinities of the subunits that mediate the CTL activity for specific 

inhibitors are not altered in extracts prepared from add66Δ yeast ............................................. 107 

Figure 25.  Sequence alignment of human PAC2 and yeast Add66p......................................... 110 

Figure 26.  Yeast deleted for ADD66 accumulate a 20S intermediate and unprocessed 20S 

subunits ....................................................................................................................................... 112 

Figure 27. Fractionation of proteasomes in lysates prepared after Add66p-myc over-expression in 

wild type and add66Δ yeast ........................................................................................................ 115 

Figure 28.  The stability of the 26S proteasome is not reduced in the add66Δ strain ................ 118 

Figure 29.  Add66p is degraded by the 26S proteasome ............................................................ 120 

Figure 30.  Over expression of A1PiZ in add66Δ yeast can result in lethality........................... 123 

Figure 31.  Expression of A1PiZ in different add66Δ strains..................................................... 126 

 x 



Figure 32.  add66Δ yeast that succumb to A1PiZ expression stop growing at relatively early 

times when A1PiZ is induced ..................................................................................................... 128 

Figure 33.  PAC2 over expression enhances A1PiZ clearance in HeLa cells ............................ 131 

Figure 34.  The ADD66 promoter contains a UPRE-like sequence and is conserved in four 

different Saccharomyces species ................................................................................................ 140 

Figure 35.  ADD66 strains used to examine UPR regulation ..................................................... 142 

Figure 36.  The ADD66 UPRE facilitates ADD66 mRNA induction during ER stress.............. 145 

Figure 37.  HSP101 induction due to temperature variation in nine different Arabidopsis thaliana 

ecotypes....................................................................................................................................... 166 

 xi 



LIST OF ABBREVIATIONS 

15S  Half-proteasome complex 

19S  Regulatory cap of the 26S proteasome 

20S  Core particle of the 26S proteasome 

26S   Proteasome; multi-subunit macromolecule  

ADD  Antitrypsin degradation deficient  

A1PiM  Antitrypsin, M allele, Wild type 

A1PiZ   Antitrypsin, Z allele 

ATD  Antitrypsin deficiency 

CTL  Chymotrypsin-like  

CP  Core particle of the 26S proteasome 

DUB  De-ubiquitinating enzyme 

E1  Ubiquitin activating enzyme 

E2  Ubiquitin ligase  

E3  Ubiquitin conjugating enzyme 

ERAD  Endoplasmic reticulum associated degradation 

HSP  Heat shock protein 

PAC  Proteasome assembly chaperone  

PGPH  Peptidylglutamyl-peptide hydrolyzing 

 xii 



TL  Trypsin-like  

Ub  Ubiquitin 

UPP  Ubiquitin proteasome pathway 

UPR  Unfolded protein response 

UPRE  Unfolded protein response element 

 xiii 



PREFACE 

 

I would like to begin and extend my most heartfelt gratitude to my advisor, Dr. Jeff Brodsky.  

Jeff has been a tremendous source of support, guidance, motivation, understanding, and 

inspiration to me during my graduate school career.  Thus, I was truly fortunate to wind up with 

one of the best advisors and mentors one could possibly imagine.  I am also thankful for being 

given the opportunity to join the Brodsky Lab and work under such a giant in the field of 

biology.  Throughout my graduate school career, Jeff was a consistent force of support, making 

time for my work, my experiments, teaching assignments, as well as my career plans.  I am 

extremely fortunate to have had Jeff as a role model during graduate school, allowing me to take 

the lessons I have learned over the years and apply them to the rest of my career. 

I would also like to take a moment to thank all of the members of the Brodsky lab, past 

and present, that I had the opportunity to work with during my graduate school career.  These 

brilliant and dedicated individuals were a constant bar to measure ones own work and progress 

against.  I especially like to thank Dr. Sheara Fewell and Dr. Kunio Nakatsukasa who assisted 

me in various technical, theoretical, and conceptual hurdles that I have encountered over the 

years.  I would also like to thank Jennifer Geockeler who was always there for me in any science 

related matter as well as many non-science related issues I might have had.   Finally, I would like 

to thank Rob Lee and Dr. Christine Wright who not only contributed stimulating scientific 

 xiv 



discussions, but provided friendship as well, and it was a pleasure to work with both of them in 

the lab.  

Next, I would like to take a moment to thank my thesis committee, Dr. Gerard Apodaca, 

Dr. Karen Arndt, Dr. Susan Gilbert, and Dr. Graham Hatfull.  These dedicated individuals 

provided significant contributions to my work; either in scientific guidance as well as career 

advice and support.  Additionally, I would like to thanks all the members of the Department of 

Biological Sciences staff for their assistance during my quest for my doctorate.  I would 

especially like to mention Cathy Barr for her invaluable assistance with all administrative 

concerns, thus allowing me to concentrate on my studies, assignments, research, presentations, 

and defense.  I would also like to acknowledge Dr. Laurel Roberts, Dr. Valerie Oke, Carole 

LaFave, and Lydia Daniels for their advice, support, and mentoring in my pursuit for my 

teaching minor. 

I would like to show my appreciation towards my friends and family that have supported 

my through the long journey that has lead to the completion of this degree.  I want to thank my 

parents for all their love, support, and help in my life that has allowed me to grow into the person 

I am today.  Only through their constant work and sacrifice have I had opportunity to pursue my 

goals and dreams.  Without them I would not have been able to complete this stage of my life.  

Finally, I also want to thank my good friends; Andrew and Meryl Lotz, Steve McNamara, 

Abigail Ellsworth PT, DPT, and CPS, Rachel Crossman-Kepper, Dr. Lisa Sproul, and Dr. 

Abigail Martin, MD.  These people have stayed with me during the highs and the lows of my 

undergraduate and graduate careers and I appreciate all their love and support.  

 

 

 xv 



 1 

1.0  INTRODUCTION 

Cells undergo a constant flux between catabolism and anabolism.  The final homeostatic state is 

achieved due to the choreographed relations of various proteins within the cell, themselves 

regulated at multiple levels.  For example, the rates of protein synthesis or degradation must be 

precisely balanced, for even a subtle shift one way or another for prolonged periods of time will 

result in abnormal cell growth and/or cellular mass (Mitch and Goldberg, 1996).   

An old adage states that it is easier to destroy than to create, and while that may be true in 

society, the process of degradation within the cell is neither simple nor easy.  Protein degradation 

consists of a very complex set of steps that must be followed in a temporal and spatially defined 

manner.  In brief, proteins must be recognized as being a target for degradation, transported to 

the site of degradation, unfolded, and then finally broken down to the proteins’ basic 

components.  It is easy to imagine that each step in the protein degradation pathway can be 

further delineated into multiple regulatory steps.  You can then add the additional level of 

difficulty, in which the cell segregates select proteins into organelle structures, thus the 

degradation machinery must gain access to the select proteins.  Therefore, it is easier to 

appreciate the complex nature of protein degradation. 

The bulk of the work presented in this dissertation involves the role of one protein and its 

effect on the efficient assembly and maturation of the proteasome, a proteolytic machine that 

facilitates protein degradation within eukaryotic cells. 



1.1 UBIQUITIN PROTEASOME PATHWAY 

Unlike most regulatory mechanisms found within the eukaryotic cell, protein degradation is 

fundamentlly an irreversible step.  Thus, elimination of a protein or protein complex abolishes 

the protein’s function, and alters the cellular composition of proteins.  All intracellular proteins 

are consistently being turned over by hydrolysis into their constituent amino acids.  Therefore, 

the destruction of proteins allows efficient recycling of many proteins and the synthesis of new 

proteins.   

In eukaryotic cells, protein degradation can be broken down into four distinct pathways.  

The majority of proteins destined for degradation are eliminated by the ubiquitin (Ub) 

proteasome pathway (UPP) (Rock et al., 1994) and will be discussed in detail in this section.  In 

contrast, many extracellular and cell surface proteins are degraded by the yeast vacuoles or 

lysosomes in mammals.  These organelles contain proteases and hydrolyases in an acidic micro-

environment that promotes uninhibited degradation of the proteins translocated into these 

compartments (Glickman and Ciechanover, 2002; Nandi et al., 2006).  A third pathway results 

when some cytosolic proteins are degraded by the vacuole/lysosome during cellular stress 

conditions via the autophagic pathway (see below).  The fourth and final mechanism of protein 

degradation is the result of various cytosolic proteases, such as calpain or caspases.  These 

proteases are involved in programmed cell death during development of higher eukaryotes, 

activated during cell injury, and play a role during apoptosis (Salvesen and Dixit, 1997; Goll et 

al., 2003).   

The destruction of a target protein by the UPP requires two discrete and successive steps: 

[1] selection of the target protein by tagging the substrate through covalent attachment (see 

below) of multiple ubiquitin molecules, and [2] the degradation of the tagged protein by the 26S 
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proteasome with the subsequent release of reusable ubiquitin (Bochtler et al., 1999; Voges et al., 

1999; Glickman and Ciechanover, 2002; Soboleva and Baker, 2004; Nandi et al., 2006; Reed, 

2006). 

 The UPP begins with the choreographed actions of various enzymes that create a chain 

of polyubiquitin covalently attached to a substrate protein (Figure 1) (Kuhlbrodt et al., 2005; 

Asher et al., 2006; Hurley et al., 2006; Lecker et al., 2006; Reed, 2006; Xu and Peng, 2006).  

Polyubiquitination of substrates targets them for degradation by the 26S proteasome (described 

in detail below). Ubiquitin is a highly conserved 76 amino acid polypeptide that is abundant in 

all eukaryotic cells.  The initial step in the ubiquitination pathway is ATP-dependent and 

involves the linkage of ubiquitin to a ubiquitin-activating enzyme, or E1 enzyme, via a high 

energy thioester bond (Ciechanover et al., 1982).  Ubiquitin is then transferred via a second 

thioester linkage to a ubiquitin conjugating enzyme (Ubc), or E2 enzyme, which in turn catalyzes 

the covalent transfer of ubiquitin to the substrate protein.  The C-terminus of a glycine residue 

forms an isopeptide bond with a lysine residue in the substrate, though there have been reports of 

bond formation with cysteine residues or the N-terminal residue of the substrate (Ciechanover 

and Ben-Saadon, 2004; Cadwell and Coscoy, 2005).  In some cases, substrate polyubiquitination 

requires another enzyme, the ubiquitin ligase, or E3 enzyme.  The ubiquitin ligase can participate 

in the transfer of ubiquitin onto the substrate, or it can function as an adaptor to facilitate the 

positioning and transfer of ubiquitin from the E2 directly onto the substrate. A number of E3s 

have been shown to associate with select substrates (Jackson et al., 2000).  The consecutive 

addition of ubiquitin molecules to a substrate generates a polyubiquitin chain.  Both E2 and E3 

enzymes exist as large families and it is thought that different combinations of E2s with different 

E3 proteins define substrate specificity (Joazeiro and Weissman, 2000). For example, seventeen 
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E2s have been identified in the budding yeast, Saccharomyces cerevisiae, and many more exist 

in humans. In contrast to the E2s, whose catalytic sites are well conserved among species, only a 

few E3 ligases possess conserved and defined catalytic motifs (e.g., the HECT and RING 

domains) (Jackson et al., 2000).  Together, these few E2 and E3 enzymes, working in concert, 

can potentially target thousands of different protein substrates for proteasomal degradation. 

In the last decade, a ubiquitin elongation factor was identified and termed an  E4 (Hoppe, 

2005).  It was shown that efficient multiubiquitination was required for proteasomal targeting of 

the ubiquitin-fusion substrate.  The first E4 protein identified, Ufd2 (Ubiquitin Fusion 

Degradation pathway), is involved in proteasomal targeting of chimeric degradation substrates 

with a stable ubiquitin moiety fused to their N-termini (Johnson et al., 1995).  In yeast, E4 binds 

to the ubiquitin of short Ub conjugates and catalyzes ubiquitin chain elongation in conjunction 

with E1, E2, and E3 enzymes. It thus renders them preferred substrates for proteasomal 

degradation. 

1.1.1 The proteasome 

The rapid and selective degradation of proteins upon conjugation with polyubiquitin is catalyzed 

by the 26S proteasome (Bochtler et al., 1999; Gorbea et al., 1999; Voges et al., 1999; 

Heinemeyer et al., 2004; Asher et al., 2006; Nandi et al., 2006).  The 26S proteasome is an ~2.5 

MDa complex that is composed of approximately 60 different subunits whose function is to 

selectively degrade proteins into short amino acid peptide sequences.  There are two fundamental 

differences between the 26S proteasome and other proteases: [1] the 26S proteasome is 

dependent on ATP hydrolysis for protein degradation.  [2] The 26S proteasome progressively 
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Figure 1.  The ubiquitination pathway.   

The ubiquitination pathway is the result of three key steps: Activation of ubiquitin, 

transfer of ubiquitin, and ubiquitination.  Ubiquitin is activated in a two-step reaction by an E1 

ubiquitin-activating enzyme in a ATP dependent manner.   The initial step involves production 

of an ubiquitin-adenylate intermediate (not illustrated). The second step transfers ubiquitin to the 

E1 active site cysteine residue, with release of AMP. This results in a thioester linkage between 

the C-terminal carboxyl group of ubiquitin and the E1 cysteine sulfhydryl group.  The next step 

transfers ubiquitin from the E1 to the active site cysteine of a ubiquitin-conjugating enzyme E2 

via a trans(thio)esterification reaction. The final step of the ubiquitination cascade generally 

requires the activity of an E3 ubiquitin ligase, which functions as the substrate recognition 

receptor of the system and is capable of interacting with both the E2 and the substrate.  (Image 

obtained from http://en.wikipedia.org/wiki/Image:Ubiquitylation.png on 5/10/2007 with 

permission granted by Roger B. Dodd). 
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 cleaves a polypeptide at multiple sites until the final peptide sequences, ranging from 3 to 25 

amino acid residues, are delivered from the particle, while a cytosolic protease may only cleave a 

substrate once or twice (Kisselev et al., 1999).   

The 26S proteasome is located in the cytoplasm, predominantly in a peri-nuclear sub-

cellular localization, and accounts for approximately 1% of the total cell mass (Peters et al., 

1994; Enenkel et al., 1998; Voges et al., 1999).  The 26S complex contains a central 20S 

proteolytic core particle (CP) and two 19S regulatory particles (Figure 2)  (Voges et al., 1999; 

Nandi et al., 2006).    The symmetrical, 20S barrel-shaped core particle of the proteasome is 

comprised of two half-proteasome complexes (15S) which result from two stacked hollow rings, 

per 15S complex,  of seven subunits per ring.  These half-proteasomes contain an outer ring of 

seven alpha subunits and an inner ring of seven beta subunits, in which three of the beta subunits 

are responsible for the CP’s proteolytic activity (Orlowski and Wilk, 2000).  The two outer alpha 

rings are identical to each other in composition and to the two inner beta rings also are identical 

in composition to each other.  The 20S core harbors three distinct proteolytic activities; a 

chymotrypsin-like (CTL), a trypsin-like (TL), and a peptidylglutamyl-peptide hydrolyzing 

(PGPH) activity (Voges et al., 1999; Heinemeyer et al., 2004). The beta subunits that are 

responsible for the proteolytic activity of the CP, belong to a family of hydrolases, designated as 

N-terminal nucleophilic (Ntn) hydrolases, and can hydrolyze amine bonds as well as peptide 

bonds (Bochtler et al., 1999).  These conserved beta subunits orient the region responsible for 

proteolytic activity towards the inner lumen of the CP, allowing efficient proteolysis of 

substrates within the CP.  Genes that encode Ntn hydrolases belong to a super-family of proteins 

and show great variability in protein structure as well proteolytic mechanisms.  However, the 

subunits  
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Figure 2. The 26S proteasome.   

Composite model of the three-dimensional structure of the 26S proteasome from Drosophila 

based on electron microscopy and using the crystal structure of the 20S proteasome from 

Thermoplasma (Walz et al., 1998). The 19S cap (blue) attaches to one or both ends of the 20S 

core (yellow).  
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responsible for proteolytic activity (Pre3p, Pre2p, and Pup1p) contain a conserved threonine 

(Thr1) and/or a conserved lysine (Lys33) residue that are required for proteolytic activity 

(Seemuller et al., 1995).   

Substrate entry into the 26S proteasome is gated by the 19S (also known as PA700) 

regulatory cap through a complex process.  The outer alpha rings of the CP create a narrow pore 

through which substrates enter and degradation products exit with the assistance of the 19S 

complex (Groll et al., 2000).  The 19S cap confines proteolysis within the 20S core and prevents 

nonspecific proteolysis of proteins in the cytoplasm.  The 19S particle contains polyubiquitin-

binding subunits, enzymes required for polypeptide de-ubiquitination, and six AAA ATPases 

(Glickman et al., 1998; Voges et al., 1999; Leggett et al., 2002; Verma et al., 2002; Guterman 

and Glickman, 2004; Soboleva and Baker, 2004).  These subunits are responsible for 

recognition, unfolding, de-ubiquitination, and translocation of the substrate into the lumen of the 

20S core.   

The 19S cap is made up of at least 19 different subunits and is conserved from yeast to 

mammals (Bochtler et al., 1999; Voges et al., 1999; Sharon et al., 2006).  This complex can be 

further divided into two sub-complexes, the base that binds directly to the 20S CP and the 

peripheral lid.  The base contains the AAA ATPases (Rpt1-Rpt6), as well as four non-ATPase 

subunits (Rpn1, Rpn2, Rpn10, Rpn13).  The ATPases are responsible for protein unfolding as 

well as CP channel opening (Glickman et al., 1998).  The lid is comprised of nine different non-

ATPase subunits (Rpn3, Rpn5-9, Rpn11, Rpn12, and Sem1).  The major activity of the lid is 

proposed to be de-ubiquitination (Yao and Cohen, 2002; Guterman and Glickman, 2004; 

Soboleva and Baker, 2004).  De-ubiquitinating enzymes (DUBs, Rpn11p is one example), which 

are thiol proteases, facilitate the recycling of Ub by cleaving ester, thiol ester, and amide bonds 
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which link Ub to amino acids (Yao and Cohen, 2002; Guterman and Glickman, 2004; Soboleva 

and Baker, 2004).  Rpn10p and Rpt5p have been shown to reversibly bind to ubiquitinated 

proteins and subsequently deliver them to the CP for degradation in an ATP dependent manner 

(Deveraux et al., 1994; Lam et al., 2002).  Thus, these various subunits, working in concert 

allow multi-ubiquitinated proteins to bind to the 19S cap, undergo de-ubiquitination, unfold, and 

be fed into the CP for proteolysis.  This exquisitely selective process allows only certain 

polypeptides to be degraded within the 26S proteasome.   

1.1.2 26S proteasome assembly and maturation  

The eukaryotic 26S proteasome serves as a vital final step in regulated protein degradation.  To 

ensure that this complex is present, a complex sequence of stages exists that allows the step-by-

step assembly and maturation of a proteolytic complex.    There are two distinct steps required 

for proteasome assembly: 20S core assembly and 19S assembly.   

While there have been significant strides to elucidate the mechanism for 20S core 

assembly over the last decade, the early steps in this process are still not clear.  At this time, a 

generalized theory of core assembly has been proposed, and is outlined in Figure 3 (Ramos et al., 

1998; Griffin et al., 2000; Witt et al., 2000; Tone and Toh, 2002; Heinemeyer et al., 2004; 

Hirano et al., 2006; Li et al., 2007).  In brief, alpha subunits assemble a ring structure which acts 

as a scaffold, and allows the beta subunits to combine and create a second stacked ring.   Thus, 

alpha ring formation provides the foundation for beta subunit ordering and orientation.  By 

expressing these subunits in bacteria, several groups have been able to recapitulate stages of 

alpha ring assembly in vitro from eukaryotic cells (Gerards et al., 1997; Gerards et al., 1998; 

Huang et al., 1999; Yao et al., 1999).  However, observations from these studies demonstrate  
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Figure 3. 20S Proteasome assembly and maturation 

A model outlining the steps involved in proteasome assembly.  Seven free alpha subunits 

(yellow circles) form a ring structure and then associate with free beta subunits (red and green 

circles).  Subpopulations of beta subunits are proteolyticly inactive due to the retention of a pro-

peptide sequence.   The association of beta subunits with the alpha ring results in the formation 

of the half-proteasome.  The two half proteasomes dimerize and allow the pro-peptides to be 

cleaved, thus activating the 20S CP.  The approximate molecular mass of each intermediate is 

given. 
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that the alpha subunits do not contain all the information necessary for their correct positioning 

within the ring structure in vitro.  This suggests that alpha subunits either require other factors to 

properly assemble in the correct orientation or that the subsequent addition of beta subunits 

promotes reordering or replacement of alpha subunits to yield the final and complete ring 

structure.  Putative early structures in the proteasome assembly pathway, such as dimers or ring 

structures containing predominantly alpha subunits, appear to be short lived as they have yet to 

be completely identified and characterized.  

Once alpha ring formation has occurred, beta subunits associate with this structure to 

provide various intermediate complexes of different molecular masses and sizes (Frentzel et al., 

1994; Yang et al., 1995; Chen and Hochstrasser, 1996; Nandi et al., 1997; Ramos et al., 1998).  

One structure of note is the half proteasome of approximately 400 kDa in size that sediments at 

15S (Schmidtke et al., 1997).  The half proteasome consists of one ring of alpha and one ring of 

beta subunits.  Many of the beta subunits are considered unprocessed when they are components 

of the half proteasome, as a pro-peptide sequence in the N-terminal region is still present.  The 

pro-peptide sequence prevents proteolytic activity by masking the catalytic Thr1 in the Ntn 

hydrolases. However, some non-catalytic beta subunits also retain a pro-peptide sequence 

(Heinemeyer et al., 1997).  In the absence of pro-peptide cleavage, indiscriminate proteolysis in 

the cell by the various beta subunits is prevented.  Upon the dimerization of the two assembled 

half-proteasomes, proteolytic beta subunits undergo autocatalytic processing, resulting in the 

cleavage and subsequent removal of the pro-peptide sequence associated with the Ntn 

hydrolases.  Several beta subunits (Pre2p, Pre3p, Pre4p, and Pup1p) have been shown to be 

involved in subunit precursor processing and activating the 20S core complex (Heinemeyer et 

al., 1997). 
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In general, less is known about the assembly and maturation of the 19S regulatory 

particle. The regulatory particles are believed to assemble as two distinct subcomponents, the 

ATPase-containing base and the ubiquitin-recognizing lid (Deveraux et al., 1994). The six 

ATPases in the base may assemble in a pair-wise manner mediated by coiled-coil interactions 

(Gorbea et al., 1999). The order in which the nineteen subunits of the regulatory particle bind to 

each other may also prevent non-specific proteins becoming exposed to the 20S core active site 

before assembly is complete (Sharon et al., 2006). 

While the exact nature of proteasome assembly is not completely understood, it has 

become very evident in recent years that a class of proteins has emerged that facilitate the proper 

assembly and maturation of the 20S CP.  These proteins are termed proteasome assembly 

chaperones and are described in detail in the next section. 

1.1.3 Proteasome assembly chaperones (PACs) 

Work in the yeast Saccharomyces cerevisiae as well as in human cells over the past few years 

has established a series of dedicated proteasome assembly chaperones (PACs), which are 

proteins that facilitate and regulate proteasome assembly and maturation (Hirano et al., 2005).  

The first member of this class of proteins was identified in yeast and was termed “Underpins the 

Maturation of the Proteasome” or Ump1p (Ramos et al., 1998).  This protein was isolated in a 

screen that identified mutants involved in ubiquitin/proteasome degradation.  From this study, it 

was observed that yeast harboring the ump1 deletion mutation are viable but are sensitive to 

cellular stresses that lead to an accumulation of proteins destined for degradation (Ramos et al., 

1998).  Furthermore, deletion of UMP1 results in a reduction of all three proteolytic activities of 

the 26S proteasome.  Examination of beta subunits in the deletion strain revealed the retention of 
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the pro-peptide sequence and subsequently showed a drastic impairment of the proteolytic 

activity associated with the three beta subunits (Pre2p, Pre3p, and Pup1p).  Furthermore, Ump1p 

associates with the half proteasome, but not with the fully assembled CP or the 26S proteasome.  

Ump1p is also extremely short lived and is degraded upon proteasome maturation (Ramos et al., 

1998).  In fact, analysis of a defective CP strain, obtained by a point mutation in PRE1 which 

compromises the CP CTL activity, demonstrated stability of Ump1p as well as an association 

with the CP previously not seen.  This latter observation indicates that upon CP activation, 

Ump1p is degraded due to its association within the lumen of the CP (Ramos et al., 1998).  More 

recent work showed that Ump1p acts as a quality control checkpoint for half-proteasome 

dimerization (Li et al., 2007).  It is proposed that β7, believed to be the last subunit to associate 

with the partially assembled half-proteasome, associates with Ump1p, which was previously 

preventing pre-mature half proteasome dimerization.  Upon β7 and Ump1p association, the half 

proteasome undergos dimerization (Li et al., 2007).  Taken together, these studies indicate that 

Ump1p associates with CP subunits and early CP intermediates in order to facilitate the assembly 

and maturation of the proteasome.  Since the identification of Ump1p, other eukaryotic 

homologs, as well as a human homolog (Pomp1), have been isolated, and these homologs 

possess many of the same characteristics as Ump1p (Griffin et al., 2000; Witt et al., 2000). 

Subsequent to the discovery of Ump1p, a second protein was identified that facilitates the 

proper assembly of the 20S CP (Tone et al., 2000; Tone and Toh, 2002).  This second 

proteasome assembly chaperone, Nob1p, exhibited many of the same features as Ump1p.  Based 

on work performed by the Toh-e lab in Japan, Nob1p was hypothesized to play four major roles 

in proteasome function (Tone et al., 2000; Tone and Toh, 2002).  First, Nob1p associates with 

20S and 19S complexes the in nucleus.  This was demonstrated by Nob1p’s association with 
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Pno1p, an uncharacterized nuclear protein.  If either Nob1p or Pno1p was mutated, this led to an 

accumulation of proteasomes in the cytoplasm.  Second, Nob1p facilitates the maturation of the 

20S proteasome and degradation of Ump1p.   A genetic interaction between Nob1p and Ump1p 

was established.  Specifically, the over-expression of Nob1p complemented proteasome 

assembly defects observed in the ump1Δ mutant strains.  Also, the nob1-4 mutant strain 

exhibited defects in the processing of beta subunits and accumulated CP intermediates, similar to 

those observed in the UMP1 deletion strain.  Third, disruptions in NOB1 also resulted in a 

significant reduction in the chymotrypsin-like proteolytic activity of the 26S proteasome.  

Fourth, Nob1p resides within the lumen of the CP and is subsequently degraded by the 26S 

proteasome upon its activation.  Finally, it should be noted that no Nob1p orthologs have been 

identified in other eukaryotes.   

Studies conducted in mammalian cells have also isolated a few proteins that seem to be 

involved in proteasome assembly and maturation (Hirano et al., 2005; Hirano et al., 2006).  

Three particular proteins, PAC1, PAC2, and PAC3 have been shown to be required for the 

efficient assembly of mammalian 20S CP.  Unlike Ump1p or Nob1p, these proteins must 

dimerize to be active:  PAC 1 and PAC2 form a heterodimer while PAC3 forms a homodimer.  

The Murata lab demonstrated that over-expression of both PAC1 and PAC2 proteins accelerates 

proteasome assembly, while the induction of RNAi against either PAC1 or PAC2 resulted in an 

accumulation of immature 20S proteasomes (Hirano et al., 2005).  Furthermore, disruption of 

either PAC1 or PAC2 resulted in a reduction of the CTL activity of the 26S proteasome.  It was 

also established that PAC1 and PAC2 facilitate efficient alpha ring formation, which allows the 

rings to remain competent for half-proteasome formation.  Early studies in proteasome assembly 

demonstrated that expression of alpha subunits in vitro resulted in  ring structures with incorrect 
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alpha subunit positions (Gerards et al., 1997; Gerards et al., 1998; Huang et al., 1999; Yao et al., 

1999).  The Murata lab’s observations provide valuable insight into early CP assembly by 

suggesting these proteasome assembly chaperones regulate competent alpha ring formation.  

Finally, the PAC1 and PAC2 heterodimer disassociates from the 20S CP and subsequently is 

degraded by the proteasome (Hirano et al., 2006).  This observation differs from the Ump1p and 

Nob1p degradation pathways, as they are internalized during half proteasome dimerization and 

then degraded (Ramos et al., 1998; Tone and Toh, 2002).   

Until very recently, all previous work regarding PACs elucidated proteins that associate 

with early CP intermediates and which facilitate the assembly of and are finally degraded by the 

activated CP.  Recently published work shows the mammalian PAC3 homodimer also 

associating with early 20S intermediates, but then disassociates prior to half proteasome 

assembly (Hirano et al., 2006).  PAC3 seems to associate with both alpha and beta subunits and 

is required for alpha ring formation, but upon coupling with Pomp1, PAC3 disassociates from 

the complex.  This PAC3 disassociation occurs prior to half proteasome formation and prevents 

PAC3 degradation upon 20S CP activation.  This suggests that PAC3 may be recycled for future 

proteasome assembly processes.  All these observations together suggest that not all proteasome 

assembly chaperones behave in the same manner or at the same step in the proteasome assembly 

pathway.  Yet, interactions and cooperation between the various PACs seem to be required for 

proper assembly, since a triple PAC1/PAC2/PAC3 knockdown by RNAi resulted in an 

accumulation of incompetent half proteasome that were unable to properly dimerize (Hirano et 

al., 2006). 
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1.2 SECRETORY PATHWAY 

The proteasome functions as the final destination of a significant number of proteins, some of 

which have traveled through the secretory pathway.  The secretory pathway is a series of 

compartments a cell uses to move proteins out of the cell or deposit them in the ER, Golgi 

network, or vacuole/lysome (Figure 4).  The pathway is under high demand as approximately 

20% of all proteins reside in or traverse the secretory pathway, as determined by analysis of 

various eukaryotic genomes (Lander et al., 2001).  

The path of a protein destined for secretion begins in the rough endoplasmic reticulum 

(ER), a membrane bound compartment located within the cell that is continuous with the nuclear 

membrane (Johnson and van Waes, 1999).  Newly synthesized polypeptides are translocated into 

the ER.  Proteins can be imported into the ER either co-translationally or post-translationally.  

Co-translationally translocated proteins that enter into the ER contain a signal peptide that is 

recognized by the signal recognition particle (SRP) as the signal sequence emerges from the 

ribosome (Keenan et al., 2001).  The SRP, while associated with the ribosome and the newly 

synthesized polypeptide, binds to the SRP receptor located on the ER membrane.  At this point, 

the polypeptide is threaded into the Sec61 translocation channel which facilitates polypeptide 

entry into the ER.  Post-translationally translocated polypeptides disassociate completely from 

the ribosome and do not bind the SRP (Rapoport et al., 1999).  Regardless of the mode of import, 

entry into the ER is immediately followed by cleavage of the signal sequence (Jackson and 

Blobel, 1977). 

A major role of the ER is to post-translationally modify and package proteins destined for 

secretion or deposited along the secretory pathway (Gorlach et al., 2006).  Various alterations in 

the ER include glycosylation, disulfide bond formation, folding, and multi-protein complex  
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Figure 4.  Secretory pathway 

Co-translational translocation is depicted by ribosomes (grey circles) associated with 

mRNA (green line) which are then attached to the rough ER.  Newly synthesized polypeptides 

(red lines) are hereby referred to as the substrate.  As translation is started, the substrate is 

inserted into the lumen of the ER or into the membrane (not shown).  Molecular chaperones 

(blue lines), begin assisting the substrate in its folding through association or modifications of 

the substrate.  Grey lines illustrate the various resident proteins found in all compartments of the 

pathway.  The substrate is then translocated into the Cis-Medial-Trans Golgi network where 

further folding, modifications, and associations occur.  Finally, the substrate in its final 

conformation is transported to the plasma membrane and can be secreted.  The substrate may 

also be targeted to the vacuole or lysosome as its final destination or for degradation if a non-

native state is adopted and not reversed. 
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assembly.  Therefore, the lumen of the ER is a highly specialized compartment containing high 

levels of Ca2+ and ATP, as well as a high oxidation potential (Clairmont et al., 1992; Hwang et 

al., 1992; Michalak et al., 2002).  Furthermore, there is a high concentration of molecular 

chaperones (see below) that reside within the ER lumen and whose function is tailored to prevent 

improper folded states of nascent polypeptides.    

Molecular chaperones are a large and diverse group of proteins that associate with 

substrates non-covalently and facilitate the folding and unfolding of proteins as well as the 

assembly or disassembly of larger protein complexes (Brodsky et al., 1999; Fewell et al., 2001; 

Nishikawa et al., 2005).  Since molecular chaperones assist other proteins, they are not 

permanent components of their substrates.  Molecular chaperones were first characterized during 

nucleosome assembly in amphibians (Laskey et al., 1978), but have grown to include a diverse 

population of different proteins of various sizes.  These proteins are required in all cells to 

prevent and/or reverse improper conformations or associations of the chaperones’ substrates; 

which include proteins or RNAs (Cristofari and Darlix, 2002).  Chaperones may be classified 

into two categories, constitutively expressed (Hsc) or heat shock proteins (Hsp).  Constitutively 

expressed chaperones are considered house-keeping proteins that maintain the balance of protein 

synthesis during non-stressful conditions. On the other hand, heat shock proteins are induced 

during cellular stress since the requirement for chaperones increases, and these conditions cause 

proteins to misassemble or misfold at an increased rate. 

After folding in the ER and passing ER quality control (see below), secreted proteins are 

selectively incorporated into budding vesicles to be transported into the ER-Golgi intermediate 

compartment or the Golgi complex (Bonifacino and Glick, 2004).  These vesicles, which are 

coated with the COPII protein complex, collect the selected cargo from the ER and migrate to 
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the Golgi complex (Barlowe et al., 1994).   Proteins that are retained in the ER require retrograde 

transport back to the ER from the Golgi, which occurs via COPI coated vesicles and through the 

recognition of an ER retention signal  (Letourneur et al., 1994).  Protein substrates will then 

traffic along the Cis-Medial-Trans Golgi Network and can be transported to the plasma 

membrane, lysosome (or the vacuole in Fungi or plants).  Proteins can also be recycled within 

several compartments via components associated with the endocytic pathway (Clague, 1998). 

Regardless of their final destination, the cell employs a series of quality control check-

points at various stages along the secretory pathway.  These check-points help regulate protein 

traffic by ensuring that only properly maintained proteins or protein complexes may pass further 

along the pathway. One of the earliest check-points in the secretory pathway is ER protein 

quality control, which is discussed next. 

1.3 ENDOPLASMIC RETICULM PROTEIN QUALITY CONTROL 

There are quality control systems required at every step during DNA replication and RNA and 

protein synthesis, which prevents the accumulation of misfolded proteins within the cell.  In 

eukaryotic cells, it is estimated that approximately 25% of all newly synthesized secretory 

proteins misfold and are subsequently degraded (Schubert et al., 2000).  This accounts for only 

normal housekeeping quality control, and thus an increase in the production of mutant proteins 

greatly increases the rate of protein turnover immediately after biosynthesis (Lomas and Parfrey, 

2004).  As stated earlier, proteins that traverse the secretory pathway are translocated into the ER 

during or immediately after translation.  Upon entry to the ER, nascent proteins must fold and 

assemble into a mature state prior to being transported further along the pathway.  A mechanism 
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known as ER quality control (ERQC) monitors protein folding and assembly and prevents the 

transport of immature molecules (Ahner and Brodsky, 2004; Nishikawa et al., 2005; Sayeed and 

Ng, 2005).  Failure to achieve a competent state might subject the protein to degradation by the 

26S proteasome after removing the aberrant protein from the ER.  This process has been dubbed 

ER associated degradation, or ERAD.  ERAD eliminates the formation of possibly toxic or 

aggregation-prone substrates within the crowded ER. 

1.3.1 ER- associated degradation (ERAD)  

Soluble proteins that fail to pass quality control within the ER will be targeted for degradation by 

the 26S proteasome in a multi-step process referred to as ERAD (Cabral et al., 2002; McCracken 

and Brodsky, 2003; Ahner and Brodsky, 2004; Meusser et al., 2005; Nishikawa et al., 2005; 

Romisch, 2005; Sayeed and Ng, 2005).  Since all proteins entering the secretory pathway have 

the potential to become misfolded, ERAD must be able to identify a range of substrates from 

large and complex proteins such as the cystic fibrosis transmembrane regulator (CFTR) to 

relatively small soluble proteins like antitrypsin (A1Pi) (Coughlan and Brodsky, 2003, 2005).  

ERAD may be generalized into a five step process: selection of substrate, retrotranslocation, 

polyubiquitination of the substrate and transport to the proteasome, de-ubiquitination, and 

degradation by the proteasome (Figure 5).   

Recent evidence has suggested that while the proteasome is the final destination for all 

ERAD substrates, the requirements for the earlier steps differ for different substrates, particularly 

if the substrate is an ER lumenal protein or a transmembrane protein (Brodsky and McCracken, 

1999; Vashist et al., 2001; Vashist and Ng, 2004; Nishikawa et al., 2005).  Proteins with 

misfolded lumenal domains are monitored by ERAD- lumenal (ERAD-L) pathway components.  
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Figure 5.  ERAD pathway 

A model of the steps during the ERAD of a polypeptide (string of red circles).  First, the 

polypeptide is identified as a misfolded substrate by molecular chaperones (purple circle) (step 

1) and retrotranslocated from the ER into the cytoplasm through a putative pore in the ER 

membrane (step 2).  The misfolded substrate is then polyubiquitinated via the ubiquitin 

conjugating pathway (step 3) and transported to the 26S proteasome (blue/yellow 

macromolecule).  Substrate binding to the 19S regulatory cap (blue segment of 26S proteasome) 

results in substrate unfolding and de-ubiquitination (step 4).  Finally the substrate is degraded 

into small peptides by the 20S CP (yellow segment of the 26S proteasome) (step 5). 
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ERAD-L substrates seem to require ER to Golgi transport, the molecular chaperone BiP (see 

below), the transmembrane protein Der1p (see below), and Hrd1p, an E3 ubiquitin ligase.  The 

requirement for ER-to-Golgi transport suggests that ERAD-L substrates are sequestered to an 

exit site located within  the ER prior to degradation (Nishikawa et al., 1994).  In contrast, 

substrates with aberrant cytosolic domains fall under the ERAD-cytosolic (ERAD-C) pathway.  

ERAD-C substrates are not transported from the ER to the Golgi and do not utilize Hrd1p.  

Instead, Doa10p, another E3 ubiquitin ligase, is required. ERAD-C substrates also seem to be 

sequestered within a specialized sub-compartment of the ER prior to their degradation (Huyer et 

al., 2004).  It should be noted that both ERAD-L and ERAD-C substrate compartmentalization 

has only been examined for a limited number of substrates; thus these phenomena might not hold 

true for all ERAD substrates. 

Potential substrates for ERAD are recognized as being misfolded by molecular 

chaperones within the lumen of the ER (ERAD-L) or in the cytoplasm (ERAD-C).  The actual 

mechanism in which chaperones target a protein for entry into ERAD is not completely 

understood at this time, but this may be the result of a global defect in the structure of the protein 

instead of a particular altered residue.  In some instances prolonged association of some 

chaperones with an unfolded protein might select the substrate protein.  While at other times, 

different molecular chaperones that do not assist in proper folding and protein assembly might 

help target a substrate for ERAD (Zhang et al., 2001; Youker et al., 2004).  One protein that is 

required for post-translational and co-translational entry into the ER, protein folding, and the 

ERAD of many lumenal proteins, is the lumenal Hsp70, BiP (Kabani et al., 2003; Vashist and 

Ng, 2004).    The analysis of various BiP mutants has demonstrated discrete roles of this 

molecular chaperone during protein folding, sensing ER stress, and targeting proteins for 
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degradation (Mori et al., 1992; Brodsky et al., 1999; Zhang et al., 2001; Cabral et al., 2002; 

Kabani et al., 2003). 

Prior to retrotranslocation from the ER, a protein needs to be disassociated from any 

associated macromolecular complexes, such as those complexes with molecular chaperones, in 

order to remain in a soluble state (Nishikawa et al., 2001).  In recent years, the search for the 

putative pore complex responsible for retrotranslocation has led to the characterization of two 

different multi-transmembrane protein complexes that form pores (in the case of one complex) 

within the ER membrane that seem to be required for retrotranslocation (Romisch, 2005). The 

heterotrimeric Sec61 complex in mammals was first identified as associated with ERAD 

substrates prior to their degradation by the 26S proteasome (Wiertz et al., 1996).  In yeast, 

mutant sec61 alleles display reduced ERAD efficiency for various substrates as demonstrated by 

pulse chase analysis (Plemper et al., 1997).  But, these observations are difficult to intepet 

conclusively due to the pleiotropic effects of the mutant allele.  The second putative pore 

complex was identified in 2004, by the Ploegh and Rapoport labs, who concluded that Derlin-1 

associates with ERAD substrates during their extraction from the mammalian ER (Lilley and 

Ploegh, 2004; Ye et al., 2004).  Mutations in the yeast homolog of Derlin-1, Der1p, result in 

ERAD substrate stabilization (Knop et al., 1996).  Recently, Derlin-1, and not Sec61p, was 

shown to be required for the retrotranslocation of a derivative of the yeast mating pheromone 

pro-alpha-factor (Wahlman et al., 2007).  Due to the observation that Der1p is involved with the 

export of select ERAD substrates, while having little or no effect on other ERAD substrates, it is 

unlikely that there is only one major export pore within the ER. 

As discussed above, the ubiquitination of ERAD substrates is facilitated by the ER 

resident E3 ligases, Hrd1p and Doa10p (Hampton et al., 1996; Bays et al., 2001; Swanson et al., 
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2001).  Hrd1p as well as Doa10p both work in conjunction with the ubiquitin conjugating 

enzymes, Ubc6p and Ubc7p (Bays et al., 2001; Swanson et al., 2001).  It should be noted that the 

26S proteasome-mediated clipping of the transmembrane protein Ole1p is independent of both 

Hrd1p and Doa10p but relies on Ubc6p and Ubc7p (Braun et al., 2002).  These observations 

suggest that other E3 ligases may be involved with ubiquitination of ERAD substrates. 

After polyubiquitination, the substrate binds to the surface of the 19S cap of the 26S 

proteasome.  Rpn10p and Rpt5p, subunits of the 19S regulatory cap of the proteasome, recognize 

the proteolytic degradation signal, polyubiquitin, in an ATP dependent manner (Deveraux et al., 

1994; Lam et al., 2002).  Upon substrate association with the 19S cap, the protein unfolds and is 

de-ubiquitinated and finally translocated into the lumen of the 20S CP for degradation.   A 

subunit (Rpn11p) of the 19S regulatory cap of the 26S proteasome was identified as a 

metalloprotease responsible for the de-ubiquitinating enzymatic (DUB) activity prior to substrate 

degradation (Verma et al., 2002).  These observations for Rpt5p, Rpn10p and Rpn11p have 

provided evidence for the necessity of the 19S regulatory cap by coupling its roles in substrate 

recognition and de-ubiquitination prior to protein degradation.   

During the degradation of some substrates, it has been shown that de-ubiquitination is a 

rate-limiting process during proteasomal degradation (Yao and Cohen, 2002; Guterman and 

Glickman, 2004; Hanna et al., 2006).   However, some ERAD substrates, such as the mutant 

form of antitrypsin, can be degraded in both a ubiquitin-dependent and -independent manner 

(Teckman et al., 2000).   

Overall, it appears that each ERAD substrate requires different factors to promote the 

efficient degradation of the misfolded substrate (Fewell et al., 2001).  Although many of these 

factors are unknown, further examination of different ERAD substrates will provide further 
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insight into essential, redundant, and/or unique factors required for ERAD.   

1.3.2 Unfolded protein response (UPR) 

As stated earlier, approximately 25% of all secretory proteins that are newly synthesized may 

misfold and be subsequently degraded (Schubert et al., 2000).  This percentage represents only 

the basal levels of protein turnover and does not account for environmental or genetic stresses 

that might enhance protein miss-assembly and turnover within the cell.  While ERAD performs 

normal housekeeping degradation, the system can get overwhelmed in the presence of many 

misfolded proteins.  Thus, a second quality control mechanism is induced within the cell, known 

as the Unfolded Protein Response or UPR (Patil and Walter, 2001; Schroder and Kaufman, 

2005).  The UPR is an intracellular signaling pathway that transcriptionally up-regulates a 

specific population of genes whose role is to alleviate or eliminate the accumulation of unfolded 

proteins within the ER.   

The UPR signaling pathway responds to a variety of different stimuli.  For example, the 

UPR is induced by viral infection (Dimcheff et al., 2003).  Furthermore, the UPR is induced by 

nutrient or carbohydrate reduction and/or starvation (Schroder et al., 2000; Kuhn et al., 2001).  

Finally, the accumulation of various misfolded proteins within the ER induce the UPR (Mori et 

al., 1992; Shamu and Walter, 1996; Casagrande et al., 2000; Travers et al., 2000). 

No matter what conditions induce the UPR signaling pathway, it begins within the ER 

membrane, through the three domain transmembrane serine kinase, Ire1p (Figure 6) (Cox et al., 

1993; Shamu and Walter, 1996).  Association of two or more Ire1p molecules with an unfolded 

protein allows Ire1p dimerization and subsequent phosphorylation of the cytosolic kinase domain 

(Shamu and Walter, 1996; Welihinda and Kaufman, 1996).  This activates the cytosolic  
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Figure 6.  UPR Pathway 

BiP, a molecular chaperone, is associated with Ire1p, a transmembrane protein kinase. It 

is unclear if this is a direct or indirect interaction (see text for details).  During non-stressful 

conditions, this BiP/Ire1p complex is maintained, which prevents the translation of HAC1 

mRNA, which encodes for a transcription factor.  During ER stress, BiP disassociates from 

Ire1p.  This allows Ire1p homodimerization and removal of the HAC1 mRNA intron which 

allows complete translation of the mRNA.  Hac1p then translocates into the nucleus and up-

regulates approximately 380 genes in yeast that help compensate for ER stress. 
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Figure 6. UPR pathway 
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endoribonuclease activity of Ire1p which cleaves an intron from a basic lucine zipper 

transcription factor Hac1p (Cox and Walter, 1996).  The removal of this classical intron allows 

HAC1 mRNA to be efficiently translated (Sidrauski and Walter, 1997).  Notably, removal of the 

HAC1 intron is not dependent on the spliceosome but only on Ire1p and is similar to tRNA 

splicing rather than mRNA splicing since a tRNA ligase is needed to repair the cleavage 

(Sidrauski et al., 1996).  Upon translation of Hac1p, the transcription factor is translocated into 

the nucleus and activates target gene transcription by binding a UPR specific upstream activating 

sequence, the unfolded protein response element (UPRE, see below) (Cox and Walter, 1996; 

Mori et al., 1996; Kawahara et al., 1997).   

The amino terminal domain of Ire1p resides in the ER lumen and recent structural 

examinations of this lumenal domain have created contradictory models for the mechanism of 

sensing unfolded proteins (Credle et al., 2005; Zhou et al., 2006).  Seminal work from the Kohno 

lab showed that BiP, a molecular chaperone, is tethered to Ire1p and upon accumulation of 

unfolded proteins within the ER, BiP dissociates from Ire1p to help fold substrates (Okamura et 

al., 2000).  This then lowers the level of the BiP-Ire1p complex, allowing Ire1p to homodimerize 

(Okamura et al., 2000; Zhou et al., 2006).  The Walters group disagrees with this model and 

suggests that Ire1p contains a groove in its lumenal domain which associates with unfolded 

proteins directly.  Ire1p dimerization is due to close association of Ire1p to a neighboring Ire1p 

along with a possible internal rearrangement of both Ire1ps when bound to an unfolded protein 

(Credle et al., 2005).   

The UPRE was originally defined as a 22-bp sequence that is involved in the up-

regulation of KAR2, the gene that encodes yeast BiP (Mori et al., 1992).  The 22-bp sequence has 

subsequently been reduced to an essential seven nucleotide E-box-like palindrome (CAGNGTG) 
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(Mori et al., 1998).  Furthermore, the UPRE has been identified in the promoter sequence for a 

variety of different UPR targets (Mori et al., 1998).  Mutations of the conserved sequence or the 

deletion of the central nucleotide result in reduced induction of UPR targets during times of ER 

stress (Mori et al., 1998).  Taken together, the specific sequence of the UPRE explains why only 

a discrete set of proteins are induced by the UPR to cope with ER stress. 

The target genes of the UPR encode factors that are involved in many different processes, 

such as phospholipid biosynthesis, protein maturation in the ER and secretory pathway function 

(Travers et al., 2000).  Yeast genomic microarray data indicate intimate interactions between 

ERAD and the UPR (Ng et al., 2000; Travers et al., 2000):  [1] Strains lacking nonessential 

genes required for ERAD lead to an induction of the UPR.  [2] Strains lacking ERAD required 

genes as well as IRE1 are inviable during heat stress.  [3] ERAD is less efficient in strains 

lacking Ire1p.  [4] Induction of the UPR increases the efficiency of ERAD.  Taken together, 

these observations indicate that cell viability is dependent on both ERAD and the UPR pathways 

and disruption of both will force cells to succumb to aberrant protein accumulation.   

Approximately 380 genes are induced during times of ER stress, and are thus putative 

targets of Hac1p (Travers et al., 2000).  However, initial examination of the promoter sequences 

in most of these genes failed to uncover a recognizable UPRE. However, computational analysis 

of upstream activating sequences (UAS) 5’ of UPR targets identified a second conserved 

sequence that is recognized by the Gcn4p transcription factor (Patil et al., 2004).  Gcn4p is up-

regulated during times of cellular stress by its activator Gcn2p.   Basal levels of Gcn4p are not 

sufficient to bind UPR targets, though its up-regulation during ER stress induces the UPR.  

Furthermore, dimerization with Hac1p facilitates the induction of many UPR targets.  These 

observations suggest that Gcn4p is a second UPRE-binding transcription factor that works in 
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parallel and/or downstream of Hac1p (Patil et al., 2004). 

1.4 AUTOPHAGY 

Eukaryotic cells have two complementary and conserved mechanisms to degrade proteins, the 

proteasome and the vacuole/lysosome.  The proteasome selectively degrades proteins that are 

misfolded, under metabolic regulation, a part of the major histocompatibility complex, or 

degraded for cell cycle progression (see above).  While the proteasome efficiently degrades 

soluble proteins, it may be limited in its ability to degrade aggregated proteins, membrane 

proteins, protein complexes, and even whole organelles.  To this end, the vacuole in yeast and 

plants or the lysosome in mammalian cells is designed to degrade larger and more complex 

substrates (Abeliovich and Klionsky, 2001; Huang and Klionsky, 2002; Noda et al., 2002).  

Autophagy is a membrane trafficking process that translocates bulk cytosoplasm and even entire 

organelles into the vacuole/lysosome during times of nutrient starvation or other physiological 

conditions (Clark, 1957; Ashford and Porter, 1962; Deter et al., 1967; Deter and De Duve, 

1967).  The vacuole/lysosome is a double membrane organelle that contains a plethora of 

hydrolases in a segregated compartment that forgoes the need for substrate selection upon entry 

into the organelle.  Entry into the vacuole/lysosome occurs through one of four different 

autophagic pathways: macroautophagy, the CVT pathway, microautophagy, and pexophagy 

(Figure 7).  For simplicity, the vacuole/lysosome will here by be referred to as the vacuole. 

Macroautophagy is often referred to as autophagy, and involves the de novo formation of 

a vesicle in the cytosol that sequesters cytoplasm and/or organelles which are then delivered to 

the vacuole (Noda et al., 2002).  One pre-vacuolar structure has been identified, the  
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Figure 7.  Autophagy 

Macroautophagy and CVT vesicle formation begin with the preautophagosomal structure, 

PAS (green circle), which then engulfs cargo and transports it to the vacuole.  CVT pathway 

operates during vegetative conditions whereas macroautophagy is induced during nutrient 

starvation.  Pexophagy (micro and macro) regulates the number of peroxisomes within the cell.  

Macroautophagy, macropexophagy, and the CVT pathways all begin with vesicle formation 

independent of the vacuole, whereas microautophagy and micropexophagy occur directly at the 

vacuole or lysosome membrane.  Figure obtained from (Huang and Klionsky, 2002). 
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Figure 7.  Autophagy 
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preautophagosomal structure (PAS), which contains various gene products that localize 

together transiently and catalyze vesicle formation  (Suzuki et al., 2001).  However, it is unclear 

how the PAS forms at this time.  The transport vesicle, or autophagosome, is a double membrane 

vesicle that is targeted to the vacuole by an unknown mechanism, and allows fusion of the outer 

membrane of the vesicle with the vacuole.  The interior membrane vesicle, or autophagic body, 

is then released into the lumen of the vacuole and its contents are degraded.  Autophagy requires 

a panoply of different proteins for vesicle formation, transport to the vacuole, and fusion of 

autophagosomes to the vacuole (partial list of autophagy factors located in Table 1 of Abeliovich 

and Klionsky, 2001).   

Macroautophagy is an inducible pathway that is up-regulated during times of nutrient 

stress or cell arrest.  The receptor that senses stress has been identified as the TOR (Target Of 

Rapamycin) receptor (Rohde et al., 2001).  TOR is a serine/theronine protein kinase that 

coordinates multiple cell responses due to nutrient conditions (Raught et al., 2001).  Through a 

signaling pathway involving a series of protein complexes, phosphorylation, and 

dephosphorylation, the result is the association of Atg13p and Atg1p, proteins required for 

macroautophagy initiation.  This association activates the Atg1p kinase function which is 

thought to in turn activate vesicle formation (Kamada et al., 2000).  Though, recent studies 

suggest that Atg1p may simply be required for macroautophagy (Abeliovich et al., 2003). 

While macroautophagy is an inducible catabolic pathway, a second conserved and 

constitutive pathway has been identified which operates similar to macroautophagy and is termed 

the cytoplasm-to-vacuole-targeting (CVT) pathway.  The majority of vacuolar hydrolases are 

transported to the vacuole via the secretory pathway due to the presence of specific vacuolar 

targeting sequences (Bryant and Stevens, 1998).  However, two vacuole hydrolases, Ams1p and 
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Ape1p, have been shown to be delivered to the vacuole independently of the secretory pathway 

(Yoshihisa and Anraku, 1990; Klionsky et al., 1992).  Ams1p and immature Ape1p (prApe1p) 

are encased in a densely compacted double membrane vesicle, called the CVT vesicle.  The 

overall process of Ams1p and prApe1p delivery to the vacuole is very similar to 

macroautophagy, but the process is not regulated by nutrient starvation.  It is interesting to note 

that CVT vesicles have been isolated inside autophagosomes in starved yeast (Baba et al., 1997).  

This suggests that the CVT pathway is co-opted by macroautophagy during times of ER stress 

and CVT vesicles are engulfed by autophagosomes. 

A third type of autophagy, which is not well defined, is microautophagy.  

Microautophagy is a process of invaginating a portion of the vacuole membrane to engulf 

neighboring cytoplasm and/or organelles (Yuan et al., 1997).  The fourth method of autophagy 

involves the degradation of peroxisomes, either by micro- or macropexophagy (Tuttle and Dunn, 

1995; Kim and Klionsky, 2000).   

1.5 PROTEIN CONFORMATIONAL DISEASES 

Over the past two decades a variety of human disorders have been identified and characterized 

due to our better understanding of how mutations affect synthesis, maturation, and regulation of 

specific proteins. Human disorders are classified into various groups; inflammatory, 

degenerative, infectious, neoplastic, or conformational.  Conformational disorders are the result 

of abnormal folding and subsequent aggregation of a particular protein (Carrell and Lomas, 

1997).  This is different than other genetic disorders, which result from a failure of protein 

production.  Proteins in this group are extremely diverse and are associated with a variety of 
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disorders: prion disorders such as encephalopathies, to neurodegenerative disorders like 

Huntington’s and Alzheimer’s disease, and the misfolded members of the serpin family protease 

inhibitors. The focus of this section is on one disorder, Antitrypsin Deficiency, which arises from 

a misfolded serpin. 

1.5.1 Antitrypsin Deficiency 

Alpha-1 Antitrypsin Deficiency (ATD) is a genetic disorder characterized by production of 

abnormal antitrypsin proteins (Carrell and Lomas, 1997, 2002; Parfrey et al., 2003; Lomas and 

Parfrey, 2004; Richmond and Zellner, 2005; Rudnick and Perlmutter, 2005).  Antitrypsin (AT) is 

a 53 kDa neutrophil inhibitor of pulmonary elastase that is induced during times of lung infection 

or due to lung irritation or injury (Myerowitz et al., 1972; Perlmutter, 2002).  Therefore, AT 

protects the tissue matrix of the pulmonary system from being damaged by proteolytic enzymes.  

AT is a serpin (short for serine protease inhibitor), which are a group of structurally related 

protein, that inhibit proteases (Law et al., 2006).  Most serpins, like antitrypsin, target trypsin-

like serine proteases, such as trypsin, which are characterized as having a serine residue in their 

catalytic site.  The structure of AT as well as over 80 other serpin family members have been 

solved and reveal the archetypical serpin fold (Figure 8). All serpins typically have three beta 

sheets and eight or nine alpha helices. Serpins also possess an exposed variable region termed the 

reactive central loop (RCL) that includes the specificity determining region and forms the initial 

interaction with the target protease.   The AT RCL loop contains key methionines and serines 

that act as bait for elastase and are essential for its inhibition (Carrell and Lomas, 2002).  

Inhibition is initiated when the RCL region is cleaved by the protease.  Elastase, which is then 

tethered to the RCL fragment, is flung to the other side of AT, which subsequently distorts the  
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Figure 8.  2.0A structure of alpha-1 antitrypsin 

The X-ray crystal structure of native human antitrypsin is shown (protein database code 

1QLP).  The RCL variable loop has been annotated.  The image was obtained and modified from 

http://www.rcsb.org/pdb/explore.do?structureId=1QLP on May 16, 2007). 
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elastase structure and presents the protease for removal from tissue in a manner that is not fully 

understood (Janoff, 1985). 

 AT is secreted predominantly by hepatocytes, and significant reduction of secreted AT 

results in ATD (Carrell and Lomas, 2002; Perlmutter, 2002; Parfrey et al., 2003; Lomas and 

Parfrey, 2004; Richmond and Zellner, 2005; Rudnick and Perlmutter, 2005).  The rate of incident 

of the disorder is rather high in the Caucasian population in the United States with an estimate of 

1/3000 individuals affected.  In comparison, the genetic disorder cystic fibrosis has an 

occurrence of 1/2500 in the Caucasian population.   

Individuals afflicted with ATD present with low levels of secretion of an abnormal AT 

protein, which results in pulmonary tissue damage.  Chronic lung diseases, such as emphysema, 

asthma, and bronchitis, are the most common symptoms of ATD in adults and present as early as 

the second decade of life in humans (Colp et al., 1993; King et al., 1996; Eden et al., 1997; 

Rudnick and Perlmutter, 2005).  Those individuals that smoke present the disease at a much 

earlier age with an increased severity of symptoms (Larsson, 1978).  Specifically, when 

comparing normal individuals and ATD individuals, including if they smoked or did not smoke, 

there is a significant decrease in the level of forced expiratory volume per second for the ATD 

individuals, which is compounded if the same person smoked (Piitulainen and Eriksson, 1999).   

The accumulation of abnormal protein bodies within hepatocytes results in various forms 

of liver disease.   Liver diseases, such as cirrhosis of the liver, can result from ATD at any age 

and is the second most common reason for liver transplants in the United States.  The major risk 

factor for liver cirrhosis is  an increased level of aberrant AT polymers,  which normally occur in 

patients that maintain two copies of a genetically unstable allele of AT (Campra et al., 1973; 

Cruz et al., 1976; Mahadeva et al., 1999).  Abnormal AT retained in the liver dilates the ER and 
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large globules of aggregated AT are evident (Figure 9, see below).  This retention of abnormal 

AT results in widespread necrosis of hepatocytes and thus is known as a global liver disease.  

Although the exact mechanism is unknown, some ATD individuals (approximately 10%) 

present with various forms of hepatocellular carcinoma (Sveger, 1988).    Recent work from the 

Perlmutter lab suggests that AT globule-devoid cells are “sick but not dead” compared to 

hepatocytes that contain large globules of aggregated AT undergoing necrosis (Rudnick and 

Perlmutter, 2005).  This hypothesis has three implications: [1] these cells have activated a variety 

of stress response pathways, such as autophagy; [2] the cells are deficient in proliferation as well 

as growth; and [3] the globule containing cells are somehow inducing regenerative signals.  The 

reason that only some hepatocytes contain globules may be age, as younger liver cells may have 

insufficient time to accumulate abnormal AT to sufficient levels.  Also, the third implication 

suggests that the neighboring globule devoid cells would have a proliferation advantage 

compared to those globule containing cells.  This increased rate of proliferation could 

subsequently lead to an increase rate of liver carcinomas. 

There are currently four major treatment plans for those individuals with confirmed 

diagnosis of ATD (refer to http://www.alphaone.org/ for more information); behavioral and 

lifestyle modification, drug therapy for lung problems, specialized therapy for ATD, and surgical 

options.  [1] Behavioral and lifestyle modifications involve the cessation of smoking, avoidance 

of environmental pollutants, and implementation of an exercise program.  The ultimate goal of 

this treatment plan is to strengthen the lung capacity of an ATD patient.     [2] Drug therapy for 

lung problems includes vaccinations against influenza as well as medications for lung infections, 

thereby preventing further lung damage.  [3] ATD patients may undergo specialized therapy for 

ATD by receiving intravenous infusions of alpha-1 antitrypsin derived from donated human  
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Figure 9.  The accumulation of an aberrant form of antitrypsin in hepatocytes. 

A liver section from an ATD individual.  AT stains dark purple with an 

immunoperoxidase stain. Nuclei were stained blue with haematoxylin, and eosin stained the 

cytoplasm a light blue or lavender.  Image obtained from 

http://www.meddean.luc.edu/Lumen/MedEd/orfpath/cellch2.htm on May 16, 2007). 
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Figure 9.  The accumulation of an aberrant form of antitrypsin in hepatocytes 
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plasma. This augmentation therapy is thought to arrest the course of the disease and halt any 

further damage to the lungs.  [4] ATD patients may undergo liver or lung transplants in cases of 

extreme damage to either organ. 

1.5.1.1 A1PiZ 

AT isolates were first defined by electrofocusing (isoelectric focusing) analysis, in which the 

protein underwent electrophoresis through a pH gradient (Myerowitz et al., 1972).  Normal wild 

type AT is termed "M", as it is neutral and does not migrate very far. Other variants, which are 

less active, are termed A-L and N-Z, dependent on whether they run more proximal or more 

distal to the M band. The presence of deviant bands by electrofocusing can signify the presence 

of ATD.  One allele of AT has been extensively studied and is linked to the most severe 

presentations of ATD; A1PiZ (or alpha-1 protease inhibitor, Z) (Lomas et al., 1992; Yu et al., 

1995).  Although secreted A1PiZ does retain partial activity, individuals expressing this protein 

have significantly lower circulating levels of the protein because the E342K mutation 

compromises its folding in the ER, rendering it a substrate for ERAD (Werner et al., 1996).  

However, when the A1PiZ variant accumulates, it can form loop-sheet polymers or aggregates 

that may trigger cirrhosis (Figure 9) (Foreman et al., 1984; Perlmutter et al., 1985; Mornex et al., 

1986; Verbanac and Heath, 1986; Brantly et al., 1988; McCracken et al., 1989; Lomas et al., 

1992; Mast et al., 1992; Kim et al., 1995; Sidhar et al., 1995; Carrell and Lomas, 2002; Parfrey 

et al., 2003) and hepatocellular carcinoma (Carlson et al., 1989; Rudnick and Perlmutter, 2005).  

Thus, A1PiZ is also a gain-of-function allele of ATD.  The loop sheet polymer formation of 

A1PiZ is due to aberrant alignment of the RCL due to steric interference of E342K, which results 

in a cleft at the top of the protein.  Thus, the RCL from one A1PiZ protein will then bind in the 

groove of a second A1PiZ protein, who’s RCL will then bind to a third A1PiZ protein, and so on, 
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until a loop-sheet polymer of A1PiZ aggregates are formed within hepatocytes. 

 Extensive studies of AT have been conducted over the years resulting in the elucidation 

of some of the processes by which both A1PiM as well as A1PiZ are secreted.  Unfortunately, 

the exact nature of how AT is expressed, processed, degraded, and secreted is unknown.  Also, 

due to the difficulty of manipulating and examining cultures from patients afflicted with ATD, 

the Brodsky and McCracken laboratories developed a yeast expression system to begin to 

address these questions (see below).   The results from the A1PiZ yeast expression system were 

valid for two reasons (McCracken and Kruse, 1993): [1] Components of the protein quality 

control machinery are highly conserved, and [2] yeast expression systems for several human 

disease-causing proteins have led to a better understanding of the pathological consequences of 

aberrant protein production (Coughlan and Brodsky, 2003).   

Notably, the A1PiZ yeast expression system helped establish this protein as a bona fide 

ERAD substrate (Werner et al., 1996).    Specifically, strains defective for the CTL activity of 

the proteasome degraded A1PiZ 3-times slower than wild type yeast strains (Figure 10).  

Furthermore, expression of wild type Pre1p and Pre2p in a pre-1-1 pre2-2 (proteasome mutant 

strain) strain complemented the A1PiZ degradation defect.  Later work identified BiP as an 

important player in A1PiZ turnover (Brodsky et al., 1999).  This result was subsequently 

confirmed in mammalian cells (Cabral et al., 2002; Schmidt and Perlmutter, 2005).   

The seminal work described above and more recent studies indicate that there are many 

possible fates for A1PiZ within the cell (Figure 11).  First, the AT gene product from cells 

containing the Z allele fails to properly mature and is not secreted from hepatocytes.  Therefore, 

the retained protein polymerizes to create large globules of aggregated protein that ultimately 

cause the cell to undergo apoptosis due to mitochondrial injury. 
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Figure 10.  The proteasome is required for the ERAD of A1PiZ. 

Pulse chase analysis of A1PiZ in the following yeast strains; pre1-1 pre2-2, pre1-1 pre2-

2 expressing Pre1p or Pre2p (pre1-1 pre2-2 + PRE1 or pre1-1 pre2-2 + PRE2), or an isogenic 

wild type.  (a) Mutations in the proteasome lead to an increase accumulation of A1PiZ in yeast.  

A representative phosphorimage of radiolabeled A1PiZ.  Immunoprecipitation products from 

samples taken at discrete time points (0, 60, 90, 120 mins) were treated (+) or not (-) with 

endoglycosidase H (EndoH) to remove carbohydrate chains that are added to A1PiZ within the 

ER.  (b)  Quantification of the degradation rates of A1PiZ in the above strains from three 

independent experiments.  Figure obtained from Werner et al. 1996.   
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Figure 11.   The fate of A1PiZ. 

 Generalized model showing the possible fates of A1PiZ (red circles).  The aberrant 

protein is not secreted by the cell, and the retained A1PiZ can form loop-sheet polymer 

aggregates, or if soluble, can be degraded via ERAD.  However, the retained mutant protein will 

not induce the UPR.  The aggregated protein can also be degraded by the lysosome via the 

autophagic pathway.   
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(Van Molle et al., 1997; Teckman and Perlmutter, 2000; Perlmutter, 2002).  In addition, a 

portion of the aggregated protein is degraded by the lysosome via the autophagic pathway in 

mammals and in the vacuole of yeast (Teckman and Perlmutter, 2000; Kruse et al., 2006).  

However, it is not completely clear whether mitochondrial dysfunction is the result of the 

autophagic response to ER retention of A1PiZ or arises from the UPR, which is known to induce 

apoptosis when chronically stimulated (Wang and Ron, 1996; Nakagawa et al., 2000; Yoneda et 

al., 2001).  One can imagine that mitochondria are damaged nonspecifically by the autophagic 

response, which is activated to remove and subsequently degrade the aggregated mutant protein.  

But, the retention of this aberrant protein does not induce the UPR, even though A1PiZ is an 

ERAD substrate and soluble A1PiZ is degraded by the 26S proteasome in yeast and mammals 

(Qu et al., 1996; Werner et al., 1996).  Therefore, A1PiZ ERAD or autophagy may lead to 

apoptosis.  Overall, because of its unique attributes, it is likely that many proteins play a role in 

the removal of this mutant protein from the secretory pathway.  

1.5.2 Antitrypsin degradation deficient (ADD) Genes 

The Brodsky and McCracken laboratories wished to identify genes that affect the degradation of 

A1PiZ.  This was accomplished utilizing both a classical genetic approach (McCracken et al., 

1996) as well as a targeted approach (Palmer et al., 2003), and a class of genes termed 

antitrypsin degradation deficient (ADD) genes were identified.  While many of these ADD genes 

have not been characterized for their roles in A1PiZ degradation, some have allowed valuable 

insights into the complex nature of quality control within the secretory pathway.   

One of the genes isolated was ATG6/VPS30/ADD3, which is required for autophagy 

(Kametaka et al., 1998).  This gene was originally identified because of a slower degradation rate 
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of A1PiZ compared to wild type yeast strains (McCracken et al., 1996; Palmer et al., 2003).  

Mutations in this gene lead to compromised targeting of proteins to the vacuole via the 

autophagic pathway (Kruse et al., 2006).  Consistent with these data, yeast cells over-expressing 

A1PiZ, deliver the aggregated protein to the autophagic pathway (Kruse et al., 2006), and 

autophagic vesicles are abundant in liver biopsies from individuals with late-stage ATD 

(Teckman and Perlmutter, 2000).  In addition, A1PiZ-expressing autophagy-deficient cell lines 

degrade A1PiZ less efficiently than wild type cells (Kamimoto et al., 2006).  Taken together, this 

work demonstrates that A1PiZ degradation is linked to autophagy when expression levels are 

increased or the aberrant protein escapes ERAD. 

Given that a subset of the genes that are the ultimate targets of the unfolded protein 

response are also required for ERAD (Ng et al., 2000; Travers et al., 2000), the Brodsky and 

McCracken lab examined yeast strains deleted for the targets of the UPR to determine if these 

genes had an effect on the degradation of A1PiZ (Palmer et al., 2003).  This targeted approached 

examined approximately 70 non-essential and uncharacterized yeast genes which had robust 

induction via the UPR (Casagrande et al., 2000; Travers et al., 2000).  Utilizing a novel colony 

blot immunoassay screen, yeast strains lacking the gene of interest and expressing A1PiZ were 

examined and the level of A1PiZ accumulation was measured compared to wild type yeast 

strains (Palmer et al., 2003 and Section 2.2.5 for details).  A total of 6 add mutants were 

identified (Figure 12).  ADD66 was one of these six identified genes and its characterization is 

the focus of this dissertation. 

1.5.3 Antitrypsin degradation deficient 66 (ADD66) 

ADD66 (YKL206c) is predicted to encode a protein with a molecular mass of 30kDa.  The initial 
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Figure 12. Identification of ADD66 

A representative image of the colony blot immunoassay used to identify the ADD genes.  

In brief, yeast strains (1-73), deleted for the non-essential candidate genes and expressing A1PiZ 

were grown and spotted in duplicate on nitrocellulose paper and lysed in situ.  The filters were 

then probed for antitrypsin using a colorimetric detection assay to identify yeast genes that had 

elevated levels of A1PiZ.  The levels of A1PiZ accumulated in WT yeast strains expressing 

A1PiM (M), A1PiZ (Z), or containing an empty vector (O) were compared to the mutant yeast 

strains.  The add66Δ samples have been highlighted by a red oval.  Image obtained from Palmer 

et al., 2003. 
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analysis of ADD66 demonstrated that the deletion of the gene caused an accumulation of A1PiZ 

and slowed the rate of degradation of A1PiZ (Figure 12 and Figure 13A), but the ERAD of other 

substrates such as the mutated form of carboxypeptidase (CPY*) was not affected (Figure 13B) 

(Palmer et al., 2003).  CPY* is a soluble ERAD substrate which requires BiP for its efficient 

degradation (Plemper et al., 1997; Zhang et al., 2001).  The deletion of ADD66 modestly slowed 

the degradation of CFTR, but had no effect on the degradation of pro-alpha factor, a yeast 

pheromone and another ERAD substrate (Palmer et al., 2003).  This supports the view that each 

ERAD substrate requires a unique set of factors for their degradation (Fewell et al., 2001).   

As detailed above, ADD66 was a candidate for the colony blot assay because it is up-

regulated by the UPR (Casagrande et al., 2000; Travers et al., 2000).  Specifically, ADD66 

mRNA expression is increased 9.8 fold when cells were treated by tunicamycin, which inhibits 

N-linked glycosolation (Travers et al., 2000).  Furthermore, expression of mouse major 

histocompatability complex class I heavy chain (H-2Kb), a substrate for ERAD, led to a 2.5 fold 

increase of ADD66 mRNA in yeast (Casagrande et al., 2000).  These data indicate that ADD66 is 

a bona fide target of the UPR.   

 Global ERAD defects can lead to UPR induction due to the wide-spread accumulation of 

aberrant proteins within the ER (Fewell et al., 2001).  On the other hand, subtle or specific 

substrate ERAD defects might not be sufficient to induce a noticeable UPR.  Interestingly, 

deletion of ADD66 itself disrupted ER homeostasis in yeast significantly enough to cause a 3-

fold increase in the UPR when compared to the isogenic wild type strain (Palmer et al., 2003).  

Therefore, not only is ADD66 a target of the UPR, but Add66p plays a significant role in 

minimizing ER stress. 
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Figure 13.  Deletion of ADD66 exhibits differential effect on the degradation of two ERAD 

substrates. 

Pulse chase radiolabeling experiments were performed in the various add mutant strains 

characterized in Palmer, et al. 2003, and the results were compared to the isogenic wild type 

yeast strain.  For simplicity, ADD66 (blue) and add66Δ (red) are highlighted.  (A) A1PiZ was 

immunoprecipitated from cell extracts at 0, 20, 40, 60 minutes and resolved by SDS PAGE.  The 

relative amounts of A1PiZ were quantified and the amount of A1PiZ at 0 min was set to 100%.  

(B) CPY* was immunoprecipitated from cell extracts at 0, 20, 40, 60 minutes and resolved by 

SDS PAGE.  The relative amounts of CPY* were quantified and the amount of CPY* at 0 min 

set to 100%.  Results shown are the average of five independent experiments, +/- SD. 
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Overall, the initial studies of the putative functions of Add66p suggest that: [1] Add66p is 

required for the degradation of only a subset of ERAD substrates examined (Palmer et al., 2003).  

[2] ADD66 mRNA is induced by the UPR (Travers et al., 2000). [3] Yeast cells deleted for 

ADD66 induce the UPR (Palmer et al., 2003). Because of these observations, I suggested that 

Add66p might play a more general role in ER protein quality control.   

1.6 YEAST AS A MODEL ORGANISM 

The yeast species Saccharomyces cerevisiae, also known as baker’s or brewer’s yeast, has been 

used in baking bread and fermenting alcoholic beverages for millennia. In the last century, it has 

become extremely important as a model organism in modern cell biology research, and is one of 

the most thoroughly researched eukaryotic microorganisms to date. Researchers utilize yeast as a 

model organism to gather information on the biology of the eukaryotic cell and ultimately human 

biology (Ostergaard et al., 2000).  For the purpose of this dissertation, the use of the yeast system 

is possible since many aspects of protein synthesis, trafficking, and degradation are conserved 

between yeast and mammals.  Furthermore, S. cerevisiae was the first eukaryote to have its 

genome, consisting of 12 million base pairs and approximately 6,000 open reading frames 

sequenced (Williams, 1996).  In addition, yeast can perform homologous recombination, 

allowing researchers to isolate, delete, or manipulate individual genes.  Also, the budding yeast 

Saccharomyces cerevisiae offers a variety of genetic and biochemical tools enabling me to 

investigate the impact of protein regulation and degradation.   
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1.7 DISSERTATION OVERVIEW 

Proteasome assembly and maturation is complicated and requires a panoply of different proteins 

to form one of the largest multi-subunit complexes within the eukaryotic cell (Voges et al., 

1999).  This choreographed assembly would not be possible without the assistance of a class of 

proteins recently termed proteasome assembly factors (Heinemeyer et al., 1997; Ramos et al., 

1998; Tone and Toh, 2002; Hirano et al., 2005; Hirano et al., 2006; Li et al., 2007).  Only a few 

proteins have been identified as PACS in yeast and mammals (Yeast: Ump1p and Nob1p; 

Mammals: Pomp1, PAC1, PAC2, and PAC3).  While the recent identification of these PACs has 

provided some insights into the order of assembly and regulation of maturation, it is difficult to 

believe that these few PACs represent the complete list of proteasome assembly chaperones.   

In this work, I discuss the further characterization of the Add66p protein and determine 

its cellular function.  Specifically, I show that Add66p is a bona fide PAC and is required for 

maximal proteasome activity.  This work complements earlier studies on Add66p and explains 

why the deletion of ADD66 affects the clearance of some but not all ERAD substrates.  Finally, 

my examination of Add66p is strengthened by recently published work from the Hochstrasser 

lab that suggests that Add66p (named Pba2p by that group) is involved in early CP assembly (Li 

et al., 2007). 
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2.0  CHARACTERIZATION OF ADD66 AND ITS ROLE IN PROTEASOME 

ASSEMBLY AND MATURATION 

2.1 INTRODUCTION 

 

Newly synthesized secreted proteins must pass a stringent quality control check-point in the 

endoplasmic reticulum (ER), which ensures that only properly folded, assembled, and processed 

proteins transit the secretory pathway (Ellgaard and Helenius, 2003).  Polypeptides that fail to 

pass this check-point may be targeted for ER associated degradation (ERAD), a process in which 

aberrant proteins are selected and then delivered—or retro-translocated—to the cytoplasm and 

degraded by the 26S proteasome (Fewell et al., 2001; Tsai et al., 2002; Kostova and Wolf, 2003; 

Meusser et al., 2005; Romisch, 2005; Sayeed and Ng, 2005; Nandi et al., 2006).  The 26S 

proteasome is an ~2.5 MDa multi-subunit complex that contains a central 20S proteolytic core 

particle and two 19S regulatory particles (Voges et al., 1999; Nandi et al., 2006).  The 20S core 

harbors three distinct proteolytic activities—a chymotrypsin-like (CTL), a trypsin-like (TL), and 

a peptidylglutamyl-peptide hydrolyzing (PGPH) activity—whereas the 19S “cap” (also known as 

PA700) functions as a gate-keeper at the entrance of the core particle.  In addition, the 19S 

particle contains polyubiquitin-binding subunits, enzymes required for polypeptide de-

ubiquitination, and 6 AAA ATPases that are thought to unfold and feed polypeptides into the 
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core (Glickman et al., 1998; Voges et al., 1999; Leggett et al., 2002; Verma et al., 2002; 

Guterman and Glickman, 2004; Soboleva and Baker, 2004).   

Some ERAD substrates in humans are mutated versions of wild type proteins.  Not 

surprisingly, the absence of these functional proteins may lead to the onset of specific diseases 

(Aridor and Hannan, 2000, 2002; Coughlan and Brodsky, 2003).  One substrate in which the 

connection between ERAD and loss-of-function disease is quite clear is the Z-variant of alpha-1-

antitrypsin, also known as A1PiZ (or alpha-1 protease inhibitor, Z).  Wild type A1Pi, originally 

termed the “M” variant or A1PiM (Myerowitz et al., 1972), is an ~53 kDa serine protease 

inhibitor that is primarily synthesized in and secreted by hepatocytes (Perlmutter, 2002).  Serum 

A1Pi inhibits neutrophil proteases, which are released during inflammatory responses and can 

mediate proteolysis of the pulmonary connective tissue matrix (Richmond and Zellner, 2005; 

Rudnick and Perlmutter, 2005).  Although secreted A1PiZ retains partial activity, individuals 

expressing this protein have lower circulating levels of the protein because the E342K mutation 

compromises its folding in the ER.  The subsquent decrease in plasma levels of the protease 

inhibitor lead to antitrypsin deficiency (ATD), which is exemplified by uninhibited neutrophil 

elastase activity and destruction of the pulmonary extracellular matrix.  However, when the 

A1PiZ variant accumulates, it can form loop-sheet polymers or aggregates that may trigger 

cirrhosis (Foreman et al., 1984; Perlmutter et al., 1985; Mornex et al., 1986; Verbanac and 

Heath, 1986; Brantly et al., 1988; McCracken et al., 1989; Lomas et al., 1992; Mast et al., 1992; 

Kim et al., 1995; Sidhar et al., 1995; Carrell and Lomas, 2002; Parfrey et al., 2003) and 

hepatocellular carcinoma (Carlson et al., 1989; Rudnick and Perlmutter, 2005).  Thus, ATD is 

also a gain-of-function disease.   

Interestingly, only ~10% of A1PiZ-homozygotes develop liver disease (Sveger, 1988).  
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Although the reason for this remains a mystery, this phenomenon may arise because a subset of 

individuals is unable to efficiently clear this aggregation-prone molecule from the ER.  Indeed, 

A1PiZ-expressing fibroblasts from individuals with liver disease degrade the substrate less 

efficiently than A1PiZ-expressing fibroblasts from healthy homozygotes (Wu et al., 1994).  

Therefore, factors that alter the efficiency of A1PiZ ERAD may represent genetic modifiers of 

ATD. 

To identify putative ATD modifiers, the Brodsky and McCracken labs developed an 

A1PiZ yeast expression system (McCracken and Kruse, 1993) because: [1] Components of the 

protein quality control machinery are highly conserved, and [2] yeast expression systems for 

several human disease-causing proteins have led to a better understanding of the pathological 

consequences of aberrant protein production (Coughlan and Brodsky, 2003).  Notably, the 

A1PiZ yeast expression system helped establish this protein as a bona fide ERAD substrate 

(Werner et al., 1996) and identified an Hsp70 molecular chaperone in the lumen of the ER, 

known as BiP, as an important player in A1PiZ clearance (Brodsky et al., 1999).  This result was 

subsequently confirmed in mammalian cells (Cabral et al., 2002; Schmidt and Perlmutter, 2005).  

The Brodsky and McCracken labs also identified antitrypsin degradation deficient (ADD) 

mutants using both a classical genetic (McCracken et al., 1996) and a targeted approach (Palmer 

et al., 2003).  One of the genes isolated was ATG6/VPS30, which is required for autophagy 

(Kametaka et al., 1998), and yeast over-expressing A1PiZ deliver the aggregated protein to the 

autophagic pathway (Kruse et al., 2006).  Similarly, autophagic vesicles are abundant in liver 

biopsies from individuals with late-stage ATD (Teckman and Perlmutter, 2000) and A1PiZ-

expressing autophagy-deficient cell lines degrade A1PiZ less efficiently than wild type cells 

(Kamimoto et al., 2006).   
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Another yeast gene that was isolated is ADD66 (YKL206c).  Even though Add66p is 

required for the degradation of only a subset of ERAD substrates examined (Palmer et al., 2003), 

the ADD66 transcript is induced by the Unfold Protein Response (UPR) (Travers et al., 2000), 

which serves as an indicator of ER stress; moreover, the UPR and ERAD provide 

complementary mechanisms to lessen the effects of aberrant protein accumulation in the ER 

(Fewell et al., 2001; Patil and Walter, 2001; Schroder and Kaufman, 2005).  Because of these 

observations, and because cells deleted for ADD66 also induce the UPR (Palmer et al., 2003), I 

examined the hypothesis that Add66p might play a more general role in ER protein quality 

control.   

Here, I report that Add66p facilitates the maturation of the 20S proteasome particle, is 

vital for maximal proteasome activity, and like some other proteasome chaperones (Ramos et al., 

1998; Tone and Toh, 2002; Hirano et al., 2005) is a substrate for proteasome-mediated 

degradation.  Based on these results and on the sequence similarity between ADD66 and the 

mammalian proteasome assembly chaperone-2 (PAC2) (Hirano et al., 2005; Hirano et al., 2006), 

I propose that the S. cerevisiae Add66p and PAC2 share similar functions. Together, these 

results provide the first direct link between PAC activity and ERAD. 
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2.2 MATERIALS AND METHODS 

 

2.2.1 Strains and growth conditions 

The E. coli strain used in this study was DH5α (endA1 hsdR17 supE44 thi-1 recA1 gyrA relA1 Δ 

[lacZYA-argF] U169 deoR [Φ80 dlac Δ lacZ M15]). Bacteria were grown in Luria-Bertani (LB) 

medium supplemented with ampicillin (50 µg/ml) for plasmid selection. An add66Δ disruption 

cassette was obtained by amplifying pRS400 (Brachmann et al., 1998) with the following 

oligonucleotides: 5’ ACT TCA GGA AAG AAT AGC ACA AAA CCC AAA GGA ACA TAC 

GCT GTG CGG TAT TTC ACA CCG 3’ and 5’ ATA TAT GCA CTT GTA TAG AAA ACA 

GAT ATA CTT CTC GGT TAG ATT GTA CTG AGA GTG CAC.  ADD66 mutants were 

obtained as previously described (Brachmann et al., 1998).  A pdr5Δ haploid strain was isolated 

by sporulation and dissection of the yeast pdr5Δ homozygous diploid (Invitrogen).  All other 

yeast strains used in this study are detailed in Table 2 located in Appendix A and were grown on 

yeast extract-peptone (YP)-dextrose (YPD) medium or on synthetic complete (SC) medium 

lacking the indicated nutrient but supplemented with a carbohydrate source to a final 

concentration of 2% with or without the addition of the various indicated chemicals (Table 1).  

Yeast were grown at the indicated temperatures and all genetic and molecular manipulations 

followed standard published protocols (Adams et al., 1997). 
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2.2.2 Detection of polyubiquitinated proteins in yeast 

Yeast were transformed with a plasmid engineered for the expression of a ubiquitin-myc fusion 

protein under the transcriptional control of a copper inducible promoter ((Ecker et al., 1987); 

sub-cloned and provided by A. Caplan, Mount Sinai School of Medicine), and transformants 

were isolated on selective medium (SC-HIS) containing glucose.  A culture containing 20 ODs 

(optical density measured at 600 nm) of cells was grown to mid-log phase  (~1.0 OD per ml) at 

30°C before CuSO4 was added at a final concentration of 100 μM and the cells were incubated 

for 1 h.  The yeast were harvested and re-suspended in 100 μl of sample buffer (1.0% beta-

mercaptoethanol, 1% SDS, 5% glycerol, 0.05 mg/ml bromophenol blue, 65 mM Tris, pH 6.8), 

0.2 g of glass beads were added, and lystates were prepared by vigorous agitation on a Vortex 

mixer ten times for 1 min with a 1 min incubation in an ice bath between each treatment.  The 

total protein in a 5 μl aliquot of each sample was resolved by SDS-PAGE and transferred onto 

nitrocellulose blots.  The nitrocellulose was incubated for 30 min, while sandwiched in Whatman 

filter paper, in boiling double-distilled de-ionized water.  Ubiquitin and Sec61p, a component of 

the translocon that served as a loading control, were identified by western blotting using anti-myc 

(kindly provided by G. Apodaca and O. Weisz, University of Pittsburgh School of Medicine) and 

anti-Sec61p (Stirling et al., 1992).  Western blots were developed using Enhanced 

Chemiluminescence (Pierce) according to the manufacturer’s instructions.  Images were obtained 

on a Kodak 440CF Image Station and the results were quantified using Kodak 1D (version 3.6) 

imaging software. 

 

2.2.3 Expression of wild type and the Z variant of alpha-1-antitrypsin, PAC2, and 
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epitope-tagged Add66p  

Yeast were transformed with plasmids containing the genes encoding A1PiM or A1PiZ under the 

transcriptional control of a galactose inducible promoter (McCracken et al., 1996) and 

transformants were isolated on selective medium (SC-URA) containing glucose.  As a control, 

the indicated strains were also transformed with the pYES2 vector (Invitrogen) lacking an insert.  

To create an epitope-tagged version of Add66p, a single myc epitope was appended onto 

the C-terminus of Add66p by PCR amplification of genomic yeast DNA with the following 

oligonucleotides: 5’ CGC GGA TCC ATG AGC TGC CTG GTG TTG 3’ (to construct the 

pGPD vectors, see below) or 5’ CGC GGA TCC TCC TCG ATT TGA CTG GAA AC 3’ (to 

construct the pRS vector) and 5’ CCC AAG CTT TCA CAG GTC CTC CTC TGA GAT CAG 

CTT CTG CTC CTC ATT GTA TAA ATC TAC AAA TTT ATC TCT TGC 3’ (the underlined 

portion encodes the 11 amino acid myc epitope (Evan et al., 1985)).  The PCR fragment was 

inserted into the BamH1 and ClaI sites in the pPRS315, pGPD425, and pGPD426 vectors 

(Sikorski and Hieter, 1989; Mumberg et al., 1995) and the in-frame insertion and integrity of 

ADD66 were confirmed by DNA sequence analysis.  The corresponding vectors or the vectors 

lacking an insert were introduced into the indicated strains and transformants were isolated on 

selective media.  Next, yeast were grown to mid-log phase, 2.0 ODs of cells were harvested, and 

total cell extracts were prepared as previously published (Brodsky et al., 1998).  Add66p-myc 

expression was assessed after SDS-PAGE by western blotting, as described above, using anti-

serum against myc. 

To create a mammalian PAC2 expression vector, I obtained PAC2 cDNA maintained in a 

Bluescript expression vector (Stratagene) which was received from Dr. Jiyang O-Wang (Riken 

Yokohama Institute, Japan).  The PAC2 cDNA is similar to the one reported previously, but with 
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a shortened 5’ UTR (Bahar et al., 2002).  The PAC2 cDNA insert was excised from the 

Bluescript vector and inserted at the same sites into a pcDNA 3.0 (Invitrogen) vector at the Xho1 

and EcoR1 restriction sites.  The in-frame insertion and integrity of ADD66 were confirmed by 

DNA sequence analysis. 

 

2.2.4 A yeast colony blot assay for A1PiZ accumulation  

A colony blot immunoassay was performed to assess A1PiZ levels in wild type and select mutant 

yeast as previously described (Palmer et al., 2003).  In brief, 3 μl (0.001 OD) of cells from a 

saturated culture were spotted onto nitrocellulose that had been overlaid onto selective medium 

containing 2% galactose to induce expression of A1PiZ.  After a 36 h incubation at 35°C, the 

cells were lysed.  A1Pi was detected by immunoblotting and the results were quantified using the 

Molecular Analyst program (Bio-Rad).  The signals corresponded to cell and protein levels in the 

linear range of detection.  Previous work established the validity of using the colony blotting 

protocol as a means to report on AiPiZ turn-over in wild type and the add66Δ mutant (Palmer et 

al., 2003). 

 

2.2.5 Add66p localization 

The residence of Add66p-myc was assessed by biochemical fractionation using a previously 

published method, with minor modifications (Kabani et al., 2002).  Specifically, detection of 

Add66p-myc by western blotting required 1000 ODs of mid-log phase yeast that contained the 
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pGPD425-Add66p-myc expression vector and that had been grown at 30°C.   

To assess Add66p-myc localization by indirect immunofluorescence (IF) microscopy, a 

previously described protocol was used (Coughlan et al., 2004) employing yeast containing 

either the Add66p-myc expression vector under the transcriptional control of a constitutive 

promoter (pGPD) or the vector lacking an insert (as a negative control).  Images were captured 

on an Olympus BX60 microscope fitted with a Hamamatsu C4742-95 digital camera and were 

analyzed using QED Imaging software (Pittsburgh, PA). 

 

2.2.6 Purification of yeast 26S proteasomes 

FLAG-tagged 26S proteasomes were purified from RJD1144 as described (Verma et al., 2000; 

Saeki et al., 2005; Verma and Deshaies, 2005) with minor modifications.  In brief, cells were 

grown to an OD of ~3, frozen in liquid nitrogen and ground in a Waring blender.  The ground 

powder (~20 ml) was thawed with 9 ml of lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10% 

glycerol, 5 mM MgCl2) plus 5 mM ATP, 2x ATP regenerating system (0.02 mg/ml creatine 

phophokinase, 20 mM creatine phosphate), 5 mM MgCl2 and 1 mM DTT.  After centrifugation 

at 15,000 rpm for 20 min at 4˚C in a Sorvall SS34 rotor, the supernatant (~13 ml) was 

supplemented with 5 mM ATP, 2x ATP regenerating system and 5 mM MgCl2, and incubated 

with 300 µl of 50% (v/v) washed FLAG agarose beads (Sigma) at 4˚C for 1.5 h with rocking.  

The agarose beads were washed twice with 10 ml of lysis buffer plus 2 mM ATP and 1 mM 

DTT, once with 5 ml of lysis buffer plus 2 mM ATP, 1 mM DTT and 0.2% TritonX-100, once 

with 5 ml of lysis buffer plus 2 mM ATP and 1 mM DTT, once with 800 µl of lysis buffer plus 2 

mM ATP and 1 mM DTT, and once with 1 ml of 26S elution buffer (25 mM Tris pH 7.5, 10 mM 
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MgCl2, 150 mM NaCl, 15% glycerol) plus 2 mM ATP.  The bound proteins were eluted with 

400 µl of 26S elution buffer plus 2 mM ATP supplemented with 1/50 volume of 5 mg/ml 

3xFLAG peptide (DYKDDDDK (Biotechnology Center, University of Pittsburgh)) by 

incubating for 3 h at 4˚C with rocking.  The eluted proteasomes were enriched to ~0.9 mg/ml 

using a Centricon-30 micro-concentrator and stored at -80°C. 

 

2.2.7 Proteasome activity assays and glycerol gradient analysis 

Proteasome activity was assessed in clarified yeast cytosols that were obtained from 2 l of the 

indicated strains grown in selective medium to mid-log phase at 30 °C.  The cell pellet was 

washed with water and re-suspended in 500 μl of Buffer 88 (20 mM HEPES pH 6.8, 150 mM 

KOAc, 5 mM MgOAc, 250 mM sorbitol), and the cell-slurry was frozen in liquid nitrogen.  

Frozen cells were lysed by grinding with a mortar-and-pestle in the presence of liquid nitrogen 

for 12 min and the cells were thawed in the presence of a minimal amount of Buffer 88 

containing 1 mM DTT.  Unbroken cells and debris were removed by centrifugation in a Sorvall 

SS34 rotor at 9,000xg for 10 min at 4 °C, and the supernatant was clarified by centrifugation at 

300,000xg for 1 h at 4 °C.  The clarified cytosol was then aliquoted and snap-frozen in liquid 

nitrogen and stored at -80 °C.  Total protein was quantified using the Bio-Rad protein assay kit 

with bovine serum albumin (BSA) as a standard. 

Proteasome activity was determined by modifying a previously described protocol 

(Glickman et al., 1998).  First, a total of 100 μg of clarified cytosol was diluted into 1.8 ml of 

Buffer A (50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 10% glycerol, 1 mM ATP, 1 mM DTT) and 

incubated on ice for 30 min in either the presence or absence of 100 μM MG-132 or leupeptin.  
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Next, a fluorescent substrate to detect each proteasome activity (CTL:  Suc-LLVY-AMC 

[Sigma], TL: Cbz-AAR-AMC [Cal BioChem], PGPH:  Cbz-LLE-AMC [Cal BioChem]) was 

added to a final concentration of 100 μM and the reactions were shifted to 30°C for the indicated 

time points and quenched by the addition of 1% SDS (final concentration).  Where noted, a total 

of 0.5 μg of purified 26S proteasomes were utilized and treated identically.  Fluorescence was 

determined on an Aminco-Bowman Series 2 Luminescence Spectrometer (excitation: 380 nm; 

emission: 436 nm).   The CTL, TL, and PGPH activities were confirmed using the following 

inhibitors at a final concentration of 100 μM: MG-132 (for CTL and PGPH) and leupeptin (for 

TL) (Savory and Rivett, 1993; Gaczynska and Osmulski, 2005).  The activity in each reaction 

and at each time point was obtained after the background fluorescence in the presence of each 

inhibitor was subtracted from the net fluorescence.  When extracts were examined, the data were 

then normalized to the activities observed in lysates from the reaction containing 400 μg of 

cytosol (Figure 18) or 100 μg (Figure 19) of the respective isogenic wild type strains at reaction 

times of 10 min for the CTL activity, and at 60 min for the TL and PGPH activities.  When 

highly enriched proteasomes were examined, the data were normalized to the activities observed 

in the absence of inhibitors at 180 min (Figure 19, third column), and when lysates were 

examined in this figure (Figure 19, first and second columns) the CTL, TL, and PGPH activities 

were normalized to the wild type activities observed at 180 min in the absence of inhibitors.  

Maximal, normalized activities are denoted as 100%. 

To assess the integrity of the proteasome using glycerol gradient centrifugation, the 

indicated cells expressing Add66p-myc under its endogenous promoter (Figure 26), an over-

expressing constitutive promoter (Figure 27), or an expression vector lacking an insert were 

grown in SC-LEU and 2% glucose at 30°C. A total of 100 ODs of mid-log phase cells were 
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harvested and washed once with water and resuspended in 2 ml of Buffer A lacking glycerol.  

(The pdr5Δ strain was incubated with 100 μg of MG132 for 1 h at 30°C prior to harvesting.)  

Cells were lysed as above and unbroken cells were removed by centrifugation in a Sorvall SS34 

rotor at 9,000xg for 30 min at 4°C.   Extracted proteins (5 mg total, as assessed using the Bio-

Rad protein assay kit with BSA as the standard) were fractionated on a 30 ml 4-25% linear 

glycerol gradient in an SW28 rotor (Beckman) at 83,000xg for 24 h at 4 °C.  Molecular mass 

markers (Sigma) were examined in parallel.  One ml fractions were removed and the refractive 

index was examined to verify the establishment of a linear gradient. Fractionated proteins were 

precipitated with trichloroacetic acid (TCA: 25% final concentration) and were resolved by SDS-

PAGE and analyzed as above by western blotting with anti-myc, anti-20S (BioMol), anti-HA 

(Roche Molecular Biochemicals), and anti-Cim5p (Ghislain et al., 1993) anti-sera.  

2.2.8 Non-denaturing PAGE proteasome activity assay 

A non-denaturing PAGE proteasome activity assay was slightly modified from a previously 

described method (Glickman et al., 1998).  In brief, 100 μg of clarified cytosol or 1 μg of 

purified 26S and 20S proteasomes were resolved on a non-denaturing single layer gel (0.18 M 

Tris-borate (pH 8.3), 5 mg MgCl2, 1mM ATP, 1mM DTT, and 4% acrylamide-bisacrrylamide 

(37:5:1 ratio)).  The running buffer was the same as the gel buffer but lacked acrylamide.  

Xylene cyanol was added to the samples prior to loading onto the gels.  The samples were 

resolved at 150mV at 4°C for approximately 2 h, allowing the xylene cyanol to run off. The gel 

was then incubated in 10 ml of 0.1 mM Suc-LLVY-AMC in buffer A (Section 2.2.7) for 10 min 

at 30°C.  Bands corresponding to the cleaved fluorescent substrate were visualized via the Kodak 

440CF Image Station when exposed to UV light (~360-380 nM wavelength).   
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2.2.9 Add66p-myc degradation assay 

The pdr5Δ yeast strain expressing Add66p-myc was grown in SC-LEU to mid-log phase at 30°C 

and protein synthesis was arrested by the addition of cycloheximide to a final concentration of 

100 µg/ml.  Four ODs of cells were removed at the indicated time points. The cells were washed, 

and total protein was isolated by glass bead lysis as detailed above. Proteins were resolved on 

either 12.5% or 18% polyacrylamide gels under denaturing conditions, and analyzed and 

quantified as above by western blotting with anti-myc and anti-Sec61p anti-sera.   

 

2.2.10 Induction of autophagy 

The indicated strains were grown overnight in YPD and 2.5 ODs of cells were diluted into 10 ml 

of rich medium (YP with 2% galactose) or nitrogen-depleted media (SC lacking ammonium 

sulfate but supplemented with 2% galactose) to induce autophagy.  After incubation for 5 h at 

30°C, equal numbers of cells were harvested and lysates were prepared by glass bead lysis as 

described above.  Equal amounts of protein (as assessed above) in each sample were resolved by 

SDS-PAGE and analyzed by western blotting using anti-Ape1p (Santa Cruz Biotechnology) and 

anti-Sec61p anti-sera. 

2.2.11 A1PiZ degradation assay in a genetically engineered mammalian cell line 

In collaboration with the Perlmutter laboratory, the HTO/Z cell line (HeLa cells with inducible 

expression of A1PiZ (Teckman et al., 2001) was transiently transfected with constructs 
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engineered for the expression of PAC2 (pcDNA 3.0) or GFP (pCMV (Invitrogen)) using 

Superfect (Qiagen) and the manufacturer’s recommendations.  Twenty-four hours after 

transfection, the cells were harvested and homogenized by 12 passages through an 18 gauge 

needle in 10 mM Tris, pH 7.4, 1 mM EDTA, 150 mM NaCl, 0.5% NP40, 2 mM PMSF.  The 

homogenate was centrifuged to remove the insoluble material.  Total proteins in the soluble 

homogenate were then resolved by SDS-PAGE and subjected to western blot analysis by probing 

for A1PiZ (Diasorin), GFP (Abcam), or GADPH (US Biological). 

2.2.12 Radiolabeling, immunoprecipitation and phosphorimaging 

To assay A1PiZ expression, a previously published procedure was modified (Brodsky et al., 

1998).  In brief, yeast strains were grown over night at 30°C on selective solid medium 

containing 2% glucose.  A total of 20 OD600 cells were scraped from the plates using 4 ml of 

sterile water and switched to liquid selective medium lacking cysteine and methionine but 

containing 2% galactose to induce expression of A1PiZ.  Cells were immediately pulsed with 

200 μCi/ml of 35S-Easy Tag (NEN) and grown for 2 h at 30°C with vigorous shaking.  After this 

time, samples were harvested after the 2 h incubation.  Cell lysis and immunoprecipitation were 

performed as described (Brodsky et al., 1998) using antibodies against A1Pi (Rockland) and BiP 

and eluted off Protein A sepharose (GE Healthcare). Proteins were resolved by SDS-PAGE and 

visualized using a BAS-2500 (Fuji). Quantification was performed using ImageGuage version 

3.45 (Fuji). 
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2.3 RESULTS 

 

2.3.1 Pleiotropic phenotypes associated with add66Δ 

Growth phenotypes associated with mutations are one of the most basic tools of genetic analysis 

since a particular phenotype or a set of phenotypes can suggest a function for the corresponding 

gene product.  Therefore, a series of initial growth assays were performed comparing the wild 

type and mutant ADD66 strains in the presence of various temperatures and chemicals.  First, 

wild type cells and the add66Δ mutant strain were incubated on a variety of different growth 

media supplemented with various carbohydrate sources (Table 1).  No detectable differences 

were observed.  Second, exposure to media supplemented with different chemical compounds 

yielded no visible growth defects in the add66Δ strains relative to the wild type strain.  Finally, 

the wild type and mutant ADD66 strains grew identically when incubated at different 

temperatures (15, 26, 30, 35, and 37° C).  Furthermore, additive or synergistic effects of media 

supplemented with different chemicals or carbohydrates, in addition to incubation at elevated 

temperatures, yielded no visible growth defects for the mutant strain.  Many of these compounds 

have been linked to specific biochemical pathways; ideally, then any observed growth defects 

would indicate a relationship to a specific biochemical pathway (Hampsey, 1997). 
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Table 1.  Growth Conditions and Associated Biochemical Pathways 

Growth 

Condition 

Associated 

Biochemical 

Pathway 

Growth 

Condition 

Associated 

Biochemical 

Pathway 

Growth 

Condition 

Associated 

Biochemical 

Pathway 

YP Raf Raffinose 

fermentation  

YP Suc sucrose 

fermentation 

YP Gal galactose 

fermentation 

YP Gly general 

respiration  

8 mM DTT ER protein 

folding  

- Inositol general 

transcription 

15 nM 

Caffeine 

MAP kinase 

pathway  

Various Salt 

Conditions 

and 

Concentrations

osmotic 

sensitivity 

Sorbitol osmotic 

sensitivity 

Hydroxyurea nucleic acid 

metabolism  

15 μM CdCl2 general 

protein 

folding 

and/or 

proteasome 
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2.3.2 Genetic interactions between ADD66 and IRE1, a transducer of the Unfolded 

Protein Response (UPR) 

The Brodsky and McCracken labs previously reported on the identification of UPR-target genes 

in yeast that, when deleted, result in A1PiZ stabilization (Palmer et al., 2003).  In turn, the 

deletion of one gene, ADD66, induced the UPR, suggesting that the corresponding protein might 

be involved in more general aspects of ER quality control.  Therefore, I wished to examine the 

possible connection between Add66p and the UPR pathway.  As a control, one strain lacked 

Ire1p, an ER-resident transmembrane protein that senses a rise in the concentration of misfolded 

ER lumenal proteins and initiates the transcription of genes whose products lessen ER stress 

(Cox et al., 1993; Mori et al., 1993; Shamu and Walter, 1996; Credle et al., 2005; Zhou et al., 

2006).  The ire1Δ strain was examined along with add66Δ yeast and an ire1Δadd66Δ strain.  

These cells, as well as an isogenic wild type strain (see Table 2 located in Appendix A) were 

transformed with either a control plasmid or with a plasmid that expresses a ubiquitin-myc fusion 

protein under the transcriptional control of a copper inducible promoter.  As shown in Figure 

14A (right half of figure), I first observed that strains lacking Add66p showed a modest increase 

in polyubiquitinated proteins compared to the ADD66 strain (~2-fold in this experiment), and 

yeast deleted for IRE1—regardless of whether ADD66 was present—accumulated somewhat 

greater amounts of polyubiquitinated protein.  Though in another experiment, I found a more 

robust increase in polyubiquitinated proteins in the add66 deletion strain when compared to the 

ADD66 strain (~5-fold in this experiment (Figure 14B).  Furthermore, I noted that yeast lacking 

both ADD66 and IRE1 exhibited a strong, synthetic growth defect when incubated on media       
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Figure 14.  ADD6 and IRE1 synthetically interact.   

ADD66, add66Δ, ire1Δ and ire1Δ add66Δ strains were transformed with a control 

plasmid or a plasmid expressing a ubiquitin-myc fusion protein under the transcriptional control 

of a copper inducible promoter (“pCu Ubmyc”).  (A) Representative western blots of extracts 

from cells containing a vector control or the ubiquitin expression vector are shown.  Extracts 

were prepared after cells had been treated with 100 μM CuSO4 for 1 h at 30°C.  Blots were 

probed with anti-myc and anti-Sec61p (as a loading control). (B) A second representative 

western blot of extracts from cells containing a vector control or the ubiquitin expression vector 

is shown.  Extracts were prepared after cells had been treated with 100 μM CuSO4 for 1 h at 

30°C.  Blots were probed with anti-myc and anti-Sec61p (as a loading control). (C) Serial 

dilutions of the indicated strains (see Table 2 located in Appendix A) were grown on YPD in the 

presence or absence of 8 mM DTT, as indicated, for 48 h at 30°C.  Of note, I chose to examine 

DTT-sensitivity on YPD media at pH 6.5 to reduce alternate stresses, although previously 

published work demonstrated a greater sensitivity to DTT in the ire1Δ strain when grown using 

other conditions (Frand and Kaiser, 1998; Pollard et al., 1998).   
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Figure 14.  ADD6 and IRE1 synthetically interact 
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containing DTT, a reducing agent that induces the UPR (Figure 14C).  These data support the 

hypothesis that Add66p plays a role in the turnover of polyubiquitinated proteins and ER quality 

control, and are consistent with reports indicating that mutations in genes required for both 

ERAD and the UPR exhibit synthetic phenotypes (Ng et al., 2000; Travers et al., 2000). 

In recently published work, autophagy has been shown to play a significant role in 

mediating A1PiZ degradation in yeast, mammalian cell culture, and mouse models (Teckman 

and Perlmutter, 2000; Kamimoto et al., 2006; Kruse et al., 2006).  Therefore, it was possible that 

deletion of ADD66 leads to the accumulation of A1PiZ and exhibits synthetic interactions with 

IRE1 because the autophagic pathway, which is induced by ER stress (Bernales et al., 2006; He 

et al., 2006; Ogata et al., 2006), is compromised.  To examine this hypothesis, the maturation of 

Ape1p, a protease that is targeted to the vacuole during autophagy, was assessed in both ADD66 

and add66Δ strains and in a well-characterized autophagy-deficient strain, atg14Δ  (Kametaka et 

al., 1998).  As Ape1p enters the vacuole it is proteolytically cleaved, and thus the conversion of 

immature-Ape1p (“pre-Ape1p”) to mature Ape1p (“m-Ape1p”) can be used to assess induction 

of autophagy (Suzuki et al., 2002).  As anticipated, I found that Ape1p failed to mature in the 

atg14 mutant, regardless of whether autophagy was induced upon nutrient starvation. In contrast, 

greater amounts of mature Ape1p were evident in both the wild type and add66Δ strains upon 

starvation (Figure 15). These data indicate that autophagy is proficient in yeast lacking ADD66.  

2.3.3 Add66p is a cytosolic, soluble protein 

To determine why cells deleted for ADD66 accumulate A1PiZ and polyubiquitinated proteins, I 

wished to characterize the gene product.  To this end, a sequence encoding the myc epitope was 
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 Figure 15. Autophagy is robust in the add66Δstrain.   

ADD66, add66Δ, and atg14Δ strains were grown in rich media (YPD) or in synthetic 

complete medium lacking ammonium sulfate (starvation media, or “Strv”).  Protein extracts were 

prepared from each strain, under each condition, and were resolved by SDS-PAGE and probed 

with an antiserum that recognizes the precursor (pre) and mature (m) forms of Ape1p.  Anti-

Sec61p antiserum was used as a loading control.  It should be noted that this assay only measures 

macroautophagy induction. 
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Figure 15.  Autophagy is robust in the add66Δ strain 
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appended onto the C-terminus of Add66p and the construct was cloned into a vector designed for 

the strong, constitutive expression of the desired protein (pGPD425) (Mumberg et al., 1995) or 

into a vector in which ADD66 expression was driven by the endogenous promoter (pRS315; see 

Section 2.2.3).  To determine if the tagged protein was active, I assessed whether A1PiZ 

degradation was restored to wild type levels in Add66p-myc-expressing add66Δ yeast.  To this 

end, Kristina Kruse of the McCracken lab utilized my constructs and employed a quantitative 

colony blot assay that reports on A1PiZ expression levels and ERAD, and in fact was used to 

isolate the ADD mutants (McCracken et al., 1996; Palmer et al., 2003).  As shown in Figure 

16A-B, A1PiZ accumulated to wild type levels when add66Δ cells contained the Add66p-myc 

expression vector.  I then examined the expression levels of A1PiZ in the various ADD66 and 

add66Δ strains.  As expected, Add66p-myc expression was observed only in ADD66 and add66Δ 

strains that had been transformed with the expression vector (Figure 16C).  

To determine Add66p’s residence, lysates were prepared from cells constitutively 

expressing epitope-tagged Add66p or containing a vector control, and the lysates were analyzed 

by differential centrifugation. Add66p was found exclusively in a high-speed supernatant (“S2”, 

Figure 17A), suggesting cytoplasmic residence.  Similar results were observed in strains 

expressing Add66p-myc expressed under the endogenous promoter (data not shown).  

Cytoplasmic residence was further supported through the use of indirect immunofluorescence 

microscopy: The anti-myc fluorescent signal exhibited a diffuse, cytoplasmic staining, unlike a 

marker for the ER, BiP, which was evident in perinuclear and peripheral patterns (Figure 17B). 

These data are consistent with earlier studies that attempted to define the localization of the vast 

majority of Saccharomyces cerevisiae proteins through the use of engineered GFP insertions at 
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Figure 16.  The A1PiZ degradation defect is rescued in add66Δ strains expressing Add66p-myc.   

(A) A colony-blot immunoassay was performed with anti-antitrypsin antiserum on 

add66Δ strains expressing A1PiZ lacking a vector or were transformed with an empty vector (-) 

or with an ADD66-myc expression plasmid (+).  (B) The results from three independent colony-

blot immunoassays were quantified for wild type yeast (ADD66) and add66Δ yeast that lacked a 

vector or were transformed with the ADD66-myc expression vector (+) or a vector control (-).  

Data were quantified from signals detected in the linear range of the analysis.  Data represent the 

means of three independent experiments, +/- SD:  The p value for the data for the ADD66 strain 

versus the add66Δ strain is <0.001.  The p value for the data for the ADD66 strain versus the 

add66Δ Add66pmyc (+) strain is <0.0001. The p value for the data for the ADD66 versus the 

add66Δ Add66pmyc (-) strain is <0.0005.  (C) Protein extracts were prepared from ADD66 and 

add66Δ yeast transformed with a vector control (-) or with the ADD66myc expression plasmid 

(+) and total proteins were resolved by SDS-PAGE.  The blots were probed with anti-myc and 

anti-Sec61p anti-sera.  Duplicate colonies were analyzed and are shown.   
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Figure 16.  The A1PiZ degradation defect is rescued in add66Δ strains expressing Add66p-myc 
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Figure 17.  Add66p is cytosolic.   

(A) add66Δ cells were transformed with a control plasmid or with a 2μ plasmid 

engineered for the constitutive expression of Add66p-myc.  Cell lysates (L) were subjected to 

16,000g and 150,000g centrifugations.  Total proteins in the pellets (P1 and P2) and supernatants 

(S1 and S2) were resolved by SDS-PAGE and analyzed by western blot analysis with anti-myc, 

anti-Sec61p (ER membrane protein), anti-Sse1p (a primarily cytosolic protein; (Goeckeler et al., 

2002)), and anti-Cim5p (a regulatory subunit of the 26S proteasome with cytosolic and ER 

membrane subcellular localizations) anti-sera. (B) Indirect immunofluorescence of add66Δ 

strains transformed with the plasmids described in part A were stained with DAPI (nuclear 

staining), and probed with anti-BiP (ER peri-nuclear and peripheral staining) and anti-myc anti-

sera and signals were detected as described in Section 2.2.5.   
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Figure 17.  Add66p is cytosolic 
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their C-termini (http://yeastgfp.ucsf.edu/).  Taken together, these data indicate that Add66p is a 

soluble cytosolic protein. 

2.3.4 Add66p is required for maximal proteasome activity 

A clue to Add66p’s function was provided by a large-scale yeast proteomic analysis in which the 

gene product was found in a multi-protein complex that included Pre1p (Ho et al., 2002).  Pre1p 

is a subunit in the 20S proteasome core that is one of two subunits that facilitates CTL activity 

(Heinemeyer et al., 1991; Hilt et al., 1993).  Add66p was also identified in a multi-protein 

complex with Pre5p (Krogan et al., 2006), a non-proteolytic subunit of the 20S proteasome 

(Heinemeyer et al., 1994), and with Ump1p, a protein required for the maturation of the 

proteasome core particle (Ramos et al., 1998).  These data suggested why add66Δ yeast 

accumulated polyubiquitinated proteins and why synthetic growth defects were observed when 

mutations in ADD66 and IRE1 were combined and ER stress was induced (Figure 14).  

Specifically, it suggests that Add66p is involved in proteasomal degradation and the removal of 

the protein results in the accumulation of misfolded protein substrates of the 26S proteasome.  

Therefore, I went on to examine the influence of Add66p on the proteolytic activity of the 26S 

proteasome. 

The activity of purified proteasomes has been measured and quantified utilizing an 

established fluorescence assay (Glickman and Ciechanover, 2002 and Section 2.2.7).  To 

facilitate the study of Add66p’s role in proteasome function, I modified this protocol to examine 

clarified cytosol in which the activities of the proteasomes could be assessed.  In each set of 

assays, the background (spontaneous) hydrolysis of the fluorogenic substrate was subtracted and 
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the resulting values for activity in the mutant lysates were normalized to the activity in the wild 

type lysates.  Previous studies on proteasome activities worked with approximately 1μg of highly 

enriched 26S proteasome (Glickman et al., 1998). Therfore, I examined 10-400 μg of clarified 

cytosol to determine if this was within the detectable and linear range of the CTL activity assay 

(Figure 18).  From this titration of cytosol concentrations, 100 μg of clarified cytosol was 

determined to be in the approximate linear range and was consequently utilized for subsequent 

assays.  The time dependence of the CTL, TL, and PGPH activity in each extract was also 

measured and compared to the activity in highly enriched 26S proteasomes (Figure 19).  From 

these experiments, 10 minutes was determined to be in the linear range for examining the CTL 

activity in yeast cytosol, and one hour was in the linear range for the TL and PGPH activity 

assays. 

To test directly whether the deletion of ADD66 affected proteasome function, the three 

proteolytic activities of the proteasome were measured in clarified cytosolic extracts derived 

from ADD66 and add66Δ strains using an established fluorescence assay (Glickman et al., 

1998).  As shown in Figure 19 and Figure 20A, I observed that the proteasome’s CTL activity—

which constitutes most of the proteasome’s activity—was markedly reduced in extracts from 

add66Δ yeast (BY4742).  To ensure that this effect was not strain-specific, the ADD66 gene was 

ablated in another strain background (W303) and a similar reduction in CTL activity was 

observed (Figure 20A, top panel, center).  As a control for these assays, I noted that all three 

activities were compromised in extracts prepared from a cim5-1 strain (Figure 20A, grey bars), 

which is known to exhibit delayed proteasome-dependent protein turnover, an elongated G2/M 

cell cycle transition, and growth arrest under various stress conditions (Ghislain et al., 1993; 

Rubin et al., 1998).   
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Figure 18.  CTL activity detection of varying amounts of yeast cytosol. 

 The chymotrypsin-like (CTL) activity in extracts prepared from the ADD66 strain was 

determined using a fluorogenic substrate, as described in section 2.2.7.  The indicated 

concentration of cytosol for each reaction is labeled below each bar.  Fluorescence was measured 

on a spectrofluorometer (emission at 380 nm and excitation at 436 nm) after 10 minutes.  The 

relative activities were normalized to the fluorescent signals of 400 μg of yeast cytosol, which 

was set at 100%.  Standard deviations were obtained from the results of three independent 

experiments. Data represent the means of three independent experiments, +/- SD. 
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Figure 18.  CTL activity detection of varying amounts of yeast cytosol 
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Figure 19.  Expression of Add66p-myc from its endogenous promoter complements the 

chymotrypsin-like activity defect in add66Δ yeast.   

The chymotrypsin-like (CTL), trypsin-like (TL) and peptidylglutamyl peptide 

hydrolyzing (PGPH) activities in extracts prepared from ADD66 (blue square) or add66Δ (red 

triangle) strains containing either a vector control or an Add66p-myc expression vector, or 

purified 26S proteasome (circles, last column), were determined using a fluorogenic substrate, as 

described in Section 2.2.7.  A total of 100 μg of cytosol and 0.5 μg of 26S proteasome was used 

in each reaction.  Fluorescence was measured on a spectrofluorometer (emission at 380 nm and 

excitation at 436 nm) at the indicated time points treated with DMSO (closed symbols) or 

inhibitor (open symbols; CTL: MG132, TL:  leupeptin, PGPH: MG-132).   The relative activities 

were normalized to the fluorescent signals for wild-type levels (first two columns) or the DMSO-

treated 26S proteasome (last column) at 180 min, which were set at 100%.  Data represent the 

means of three independent experiments, +/- SD.  The p value for the data for the CTL activity of 

the ADD666 strain versus the add66Δ strain without MG132 is 0.0001.  The p value for the data 

for the ADD66 strain versus the add66Δ strain with or without Add66myc and lacking treatment 

of a proteasome inhibitor is 0.7 or greater.  The p value for the data for the 26S proteasome in the 

presence versus the absence of inhibitor for the CTL, TL, and PGPH activities are less than or 

equal to 0.0001. 
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Figure 19.  Expression of Add66p-myc from its endogenous promoter complements the 

chymotrypsin-like activity defect in add66Δ yeast 
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Figure 20.  The chymotrypsin-like activity of the 26S proteasome is reduced in extracts prepared 

from the add66Δ strain.   

The chymotrypsin-like (CTL), trypsin-like (TL) and peptidylglutamyl peptide 

hydrolyzing (PGPH) activities in clarified extracts from ADD66 (black bar) or add66Δ (white 

bar) yeast in two different strain backgrounds (BY4742 and W303) were determined.  

Proteasome activities in extracts from CIM5 and cim5-1 (grey bar) strains were used as a positive 

control.  The relative activity was determined by normalizing the fluorescent signals to the levels 

corresponding to the wild-type strains, as described in section 2.2.7.  Data represent the means of 

three independent experiments, +/- SD.  The p value for the data for the CTL activity of the 

ADD666 strain versus the add66Δ (BY4742 or W303) strains is 0.0005 or less.  The p value for 

the data for the ADD66 strain versus add66Δ strains for the TL or PGPH activities is 0.1447 or 

greater.  The p value for the data for the CIM5 strain versus cim5-1 strain for the CTL, TL, and 

PGPH activities are less than or equal to 0.001.  (B) Constitutive expression of Add66p-myc 

restores the CTL activity in the add66Δ strain.  Wild-type and add66Δ strains were transformed 

with an empty vector (-) or a vector engineered for the expression of Add66p-myc (+) and the 

CTL activity was analyzed as in part A.  Data represent the means of three independent 

experiments, +/- SD of the means.  The p value for the data for the CTL activity of the ADD666 

strain versus the add66Δ strain lacking the expression of Add66p-myc is 0.0023.  The p value for 

the data for CTL activity from the ADD66 strain versus the ADD66 or the add66Δ strains 

expressing Add66pmyc is 0.0875 or greater.  (C) Cytosolic proteins from the strains in (B) were 

resolved by SDS-PAGE and probed for Add66p-myc and Sse1p expression by western blot 

analysis.  Sse1p served as a loading control.  
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Figure 20.  The chymotrypsin-like activity of the 26S proteasome is reduced in extracts prepared 

from the add66Δ complexes 
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I found that the constitutive, strong expression of Add66p-myc in the add66Δ strain 

complemented the CTL defect and restored activity to wild type levels (Figure 20B-C).  

However, it was unknown if over-expression of Add66p-myc would present some unforeseen 

secondary effect on proteasome activity.  Therefore, Add66p-myc was also expressed in strains 

under the control of its endogenous promoter and lysates were prepared from add66Δ yeast 

containing a vector control and the expression vector.  Here too I noted that the add66Δ CTL 

defect was complemented (Figure 19, “ADD66myc”).     

A complementary fluorescence assay was employed to confirm that the reduction in CTL 

activity observed in the add66Δ strain was due to a reduction of 26S proteasome activity 

(Glickman et al., 1998).  Equivalent amounts of ADD66, add66Δ, CIM5 and cim5-1 clarified 

cytosol, as well as purified 26S and 20S proteasomes, were resolved in a non-denaturing 

polyacrylamide gel and subsequently incubated with the fluorogenic substrate (Section 2.2.8).  

The gel was then subjected to UV light and the total signal of fluorescence was measured (Figure 

21).  Although this assay is not necessarily quantitative, I noted a general decrease in the CTL 

activity in the add66Δ mutant as well as in the cim5-1 strain.  It should be noted that there was no 

increase in 20S proteasomes in the add66Δ strain, while there was an increased level of CPs in 

the cim5-1 strain when compared to their respective isogenic wild type strains.   

The add66Δ mutant as well as five other add mutants were identified in the same screen 

(Palmer et al., 2003).  I therefore examined the proteolytic activities in four of the five other add 

mutants to determine if they had similar defects in proteasome activity (Figure 22).  Although 

varying levels of proteolytic activities were observed, the add66Δ mutant consistently showed a 

reduction in the chymotrypsin-like activity.  A possible explanation for this range of observed 

activities from each add mutant strain is that the strains were obtained from a commercial source  
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Figure 21.  26S proteasome activity is reduced in the add66Δ strain with no increase in the 

relative level of 20S particles. 

One hundred μg of clarified cytosol from the ADD66, add66Δ, CIM5 or cim5-1 or 1 μg 

of purified 26S or 20S proteasome were resolved on a non-denaturing PAGE gel.  The gel was 

then incubated 0.1 mM Suc-LLVY-AMC and proteasome bands were visualized via a Kodak 

440CF Image Station upon exposure to UV light (~360-380 nM).  (A) Quantification of the 

relative proteasome activity by measuring the combined levels of 26S and 20S activities of the 

above yeast strains.  The combined relative proteasome activity was determined by normalizing 

the fluorescent signals to the levels corresponding to the wild-type strains.  Wild type strains 

were normalized to 100% activity.  The bars show a range of activities from two independent 

experiments.  (B)  A representative blot of proteasome activity of all the above samples.  The 

relative sizes of 26S and 20S proteasomes are depicted to the left of the gel.  The faster migrating 

intermediate band in the 26S lane is possibly the result from one of the 19S regulatory caps 

disassociating from the 26S proteasome complex. 
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Figure 21.  26S proteasome activity is reduced in the add66Δ strain with no increase in the relative 

level of 20S particles 
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Figure 22.  The proteolytic activities of the 26S proteasome extracts prepared from various add 

strains.   

Extracts prepared from ADD, add6Δ, add37Δ, add66Δ, add67Δ, and add68Δ strains  (Palmer et 

al., 2003) were examined for the chymotrypsin-like (CTL), trypsin-like (TL), and 

peptidylglutamyl peptide hydrolyzing (PGPH) activities.  100 μg of clarified cytosol was used 

for each reaction.  Fluorescence was measured on a spectrofluorometer (emission at 380 nm and 

excitation at 436 nm).  The relative activities were determined by normalizing the fluorescent 

signals to those observed in extracts prepared from the ADD (wild-type) yeast, which was set at 

100%.  Standard deviations were determined from the means of four independent experiments 

with a p values comparing the data from the wild type strain to the isogenic mutant strain ( CTL, 

PGPH, and TL respectively):  add6Δ (0.001, <0.0001, and 0.0011), add37Δ (0.015, 0.004, and 

0.0516), add66Δ (<0.0001, 0.0008, and < 0.0001), add67Δ (0.035, < 0.0001, and 0.0235), and 

add68Δ (0.001, 0.001, and 0.006). 
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Figure 22.  The proteolytic activities of the 26S proteasome extracts prepared from various add 

strains 
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(BY4742, Research Genetics).  Strains in this commercial collection have been noted to have 

additional mutations and thus may not be homogeneous.  In the future, it would be worthwhile to 

reconstruct these mutations in another strain background and reassess the CTL acitivty. 

Combined with the fact that Add66p-myc rescues the A1PiZ degradation defect in 

add66Δ yeast (Figure 16), all these data indicate that Add66p is required for maximal CTL 

activity and strongly suggest that the A1PiZ degradation defect in add66Δ yeast arises from 

reduced proteasome activity.   

2.3.5 The levels of 26S proteasome subunits are unaltered in the add66Δ strain  

The simplest explanation for the reduced CTL activity in extracts derived from add66Δ yeast is 

that the number of proteasomes is decreased in this strain.  As demonstrated earlier (Figure 21), 

there appeared to be no significant accumulation of 20S complexes in the add66Δ strain.  

However, the reduced CTL activity observed in the ADD66 mutant strain could be the result of a 

decrease in the individual amount of subunits in the 26S complexes.  To address this possibility, 

quantitative immunoblotting was employed to measure the levels of six 20S subunits, using a 

non-specific polyclonal antiserum, and one 19S subunit (Cim5p) in the add66Δ and wild type 

strains (Figure 23).  However, no significant difference in the relative levels of these subunits 

was detected.   

2.3.6 The relative affinities of the subunits that mediate the CTL activity for specific 

inhibitors are not altered in extracts prepared from add66Δ yeast 

Pre1p is one of the two essential 20S subunits required for the CTL activity of the proteasome 
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Figure 23.  The levels of 26S proteasome subunits are unaltered in the add66Δ strain.   

(A) Proteins in clarified cytosol from ADD66 (black bar) and add66Δ (white bar) yeast 

were resolved by SDS-PAGE and western blot analyses were performed to detect the levels of 

20S subunits, a component of the 19S particle (Cim5p), Sse1p, and Hsp82p.  Relative protein 

levels were determined by quantifying the intensities of the various proteins, and then 

normalizing these values to the levels measured in the isogenic wild type strain. Data represents 

the means of eight independent experiments, +/- SD, with a p value comparing the data for the 

ADD66 strain to the add66Δ strain of 0.36559 or greater for each protein.  (B) A representative 

western blot used to amass the data in part A. 
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Figure 23.  The levels of 26S proteasome subunits are unaltered in the add66Δ strain 
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(Heinemeyer et al., 1991; Hilt et al., 1993).  Because reduced CTL activity was observed in 

extracts from ADD66-deleted cells (Figure 19, 20A, 21, and 22), it was possible that the absence 

of the corresponding protein might grossly alter the conformation of Pre1p’s substrate binding 

site.  To test this hypothesis, the CTL activity was assayed in extracts from wild type and add66Δ 

strains in the presence of increasing concentrations of MG-132 and epoximycin.  MG-132 and 

epoxomicin specifically block the CTL activities in nearly irreversible non-covalent and covalent 

manners, respectively (Gaczynska and Osmulski, 2005).  As shown in Figure 24, there was no 

difference in the apparent KIs for these inhibitors (~5 x 10-7 M) when titrated into cytosols 

prepared from wild type or add66Δ yeast. This result suggests that the conformation of the Pre1p 

substrate-binding site was not radically altered. 

2.3.7 20S precursors accumulate in yeast deleted for ADD66 

The 26S proteasome is comprised of at least 31 different subunits that combine in a spatially and 

temporally defined manner via various intermediate complexes (Ramos et al., 1998; Voges et al., 

1999; Tone et al., 2000; Hirano et al., 2005).  Although little is known about the exact 

mechanism by which the proteins in the cap and the 7 distinct alpha and 7 beta subunits in the 

core assemble (See Section 1.1.1 for further details), two proteins were previously identified that 

are required for the proper maturation of the core particle in yeast: Nob1p and Ump1p (Ramos et 

al., 1998; Tone et al., 2000).  Mutations in NOB1 exhibit defects in the processing of 20S beta 

subunits, which are the central, proteolytic subunits, and in the assembly of the 20S and 26S 

particles (Tone and Toh, 2002).  In addition, as described above, Ump1p co-precipitates with 

Add66p in a multi-protein complex (Krogan et al., 2006) and mutations in UMP1 affect the 

function of all three proteolytic activities due to defects in beta subunit maturation  
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Figure 24.  The relative affinities of the subunits that mediate the CTL activity for specific 

inhibitors are not altered in extracts prepared from add66Δ yeast.   

The CTL activities in extracts prepared from ADD66 (open circles) and add66Δ (closed 

circles) strains were determined (as described in Section 2.2.7) at the indicated concentration of 

(A) epoxomicin and (B) MG-132. The relative activity was determined by normalizing the 

fluorescent signals to wild-type levels in reactions lacking inhibitor. The structures of the 

inhibitors are shown, and the data represents the means of four independent experiments, +/- SD. 
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Figure 24.  The relative affinities of the subunits that mediate the CTL activity for specific inhibitors 

are not altered in extracts prepared from add66Δ yeast 
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(Ramos et al., 1998).  Thus, it was possible that Add66p participates in proteasome subunit 

maturation and/or assembly.  Moreover, I found that ADD66 is 20% identical to proteasome 

assembly chaperone “2” (PAC2; Figure 25.  This region of similarity between ADD66 and PAC2 

has been identified by other research groups (Hirano et al., 2005; Li et al., 2007).  PAC2  was 

shown to facilitate the assembly of the 26S proteasome in mammals (Hirano et al., 2005).  PAC2 

is also known as CLAST3 and HCCA3; a gene that is up-regulated in hepatic cancers (Wang et 

al., 2001; Bahar et al., 2002).  Based on these published observations and my data presented 

above, I examined whether 20S proteasome assembly intermediates accumulate in yeast lacking 

Add66p. 

Extracts derived from the ADD66 or the add66Δ strains transformed with a control 

plasmid or with the Add66-myc expression plasmid were fractionated on a glycerol density 

gradient.  A low percentage (4-25%) glycerol gradient was used in this experiment to better 

resolve early proteasome intermediates.  This technique was previously employed to note 

assembly intermediates in mammalian cells when PAC2 expression was silenced (Hirano et al., 

2005).  I first observed that the majority of 20S subunits and a component of the 19S cap 

resolved at fractions in the gradient that corresponded to particles with a molecular mass of ~2.5 

MDa (Figure 26).  This value is in good agreement with the native size of the 26S proteasome.  

Second, I observed a 20S immuno-reactive protein in a distinct, lighter fraction when extracts 

from the add66Δ strain were examined (see downward arrow, add66Δ, ”α−20S”).  This species, 

which migrated at ~300 kDa, was absent when extracts from wild type cells or from add66Δ 

yeast expressing endogenous levels of Add66p-myc were examined.  Third, I found that the same 

20S immuno-reactive species was present when extracts were resolved from yeast lacking  
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Figure 25.  Sequence alignment of human PAC2 and yeast Add66p. 

Single letter amino acid alignment of the full length sequence from human PAC2 

(Accession number: CR457181) and yeast Add6p (Accession number Z28206 Y13137).  

Sequence identities are shown in black.  Sequence alignment was performed by EMBOSS 

(needle) pairwise alignment algorithms (Blousum62: Gap open 10: Gap extend 0.5)   

(http://www.ebi.ac.uk/emboss/align/).. 
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PAC2        1 MFVPCGESAPDLAGFTLLMPAVSVGNVGQLAMDLIISTLNMSKIGYFYTD     50 
Add66p      1              MSCLVLPLVSVGNIPQLSIDWL---LNSQANEWEYLE     34 
 
PAC2       51 C-----LVPMVGNNPYATTEGNSTELSINA--------EVYSLPSRKLVA     87 
Add66p     35 ALDSKYLVEFVG--PLDRPEDGSDSLYKDADMKYSSALEVFYNKKRGLFA     82 
 
PAC2       88 LQLRS--IFIKYKSKPFCEKLLSWVKSSGCARVIVLSSSHS---------    126 
Add66p     83 IQQRTPLVSVNYLNNFIVEIILPFLSKYNISEICIWDSLYAMEDENGVIV    132 
 
PAC2      127 -----------YQRNDLQLRSTPFRYLLTPSMQKSVQNKIKSLNWEEMEK    165 
Add66p    133 RPQEVYSLGEFYFDDEAELLSN-----LHLNDQESMVN-----NWLHF--    170 
 
PAC2      166 SRCIPEIDDSEFCIRIPGGGITKTLYD-ESCSKEIQMAVLLKFVS----E    210 
Add66p    171 ---TPTSFQDKISVDQP---IFKILFQILNASQRPKALRSIKYCSCLANE    214 
 
PAC2      211 GDNIPDALGLVEYLNEWLQILKPLSDDPTVSASRWKIPSSWRLLFGSGLP    260 
Add66p    215 GDNSLDS----QQFLQWIISQKVIKNAPPI--VKFVRPISWQGAYGMADA    258 
 
PAC2      261 PALF                                                  264 
Add66p    259 RDKFVDLYN                                             267 
 
 

 
Figure 25.  Sequence alignment of human PAC2 and yeast Add66p 
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Figure 26.  Yeast deleted for ADD66 accumulate a 20S intermediate and unprocessed 20S 

subunits.  

Cell extracts were prepared from an ADD66 and add66Δ strain containing either a control 

plasmid or a plasmid engineered for the endogenous expression of Add66p-myc, and from a 

UMP1 (JD133) and ump1Δ (JD134) strain. A total of 5 mg of protein was then resolved on a 

linear glycerol gradient (4-25%) and fractions were collected.  Proteins in every other fraction 

were examined for the presence of 20S subunits, a component of the 19S subunit (Cim5p), and 

Add66p-myc by western blot analysis.  The migrations of molecular mass markers, which were 

analyzed in parallel, are indicated below the gel, the black downward bracket indicates fractions 

containing immature 20S subunits (a slower migrating doublet), and the black downward arrow 

indicates the migration of a 20S assembly intermediate.  Note that the later two were observed 

only in extracts prepared from add66Δ and ump1Δ cells.  The immuno-reactive HA species in 

the UMP1 and ump1Δ gradients represents Pre2p (see Table 2 located in Appendix A). 
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Figure 26.  Yeast deleted for ADD66 accumulate a 20S intermediate and unprocessed 20S subunits 
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Ump1p (ump1Δ, ”α−20S”), a factor required for 20S maturation (Ramos et al., 1998).  Fourth, 

when extracts were examined from add66Δ or ump1Δ yeast, a 20S, slower-migrating doublet 

was observed that fractionated at the native size for 26S proteasomes (see downward bracket).  

Previous work demonstrated that one of the species in the doublet represents an unprocessed beta 

subunit in the 20S proteasome (Ramos et al., 1998).  This result suggests some overlap in the 

defects during 20S subunit processing in the add66Δ and ump1Δ strains.  And fifth, I found that 

Add66p resided at a position consistent with a molecular mass of ~150-300 kDa, suggesting that 

Add66p, an ~30 kDa protein, is a component of a multi-protein complex and/or forms higher-

order oligomers (see Chapter 4, below, and Li et al., 2007).  Over-expression of Add66p-myc 

was also able to decrease the amount of the immature 20S doublet and of the ~300 kDa assembly 

intermediate (Figure 27), although the Add66p-myc instead resolved in fractions corresponding 

to a molecular mass of ~66-150 kDa. This suggests that over-expression of Add66p-myc rescues 

the add66Δ   20S maturation defect, but also results in improper association with itself and/or 

other proteins.  Together, these data indicate that yeast deleted for ADD66 accumulate an 

intermediate in the 20S assembly pathway, similar to what was observed in ump1Δ and nob1Δ 

strains (Ramos et al., 1998; Tone et al., 2000). 

2.3.8 The stability of the 26S proteasome is not reduced in the add66Δ strain 

Another explanation for these findings is that the overall stability of the 20S proteasome is 

compromised in the add66Δ strain and that the particle is labile in extracts derived from the 

add66Δ strain and breaks-down during gradient centrifugation.  To test this possibility, I treated 

wild type and add66Δ extracts with two concentrations of detergent, which I predicted to either  
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Figure 27.  Fractionation of proteasomes in lysates prepared after Add66p-myc over-expression 

in wild type and add66Δ yeast.  

Cell extracts were prepared from an ADD66 and add66Δ strain containing a plasmid 

engineered for the constitutive, strong over-expression of Add66p-myc. A total of 5 mg of 

protein were then resolved on a linear glycerol gradient (4-25%) and fractions were collected.  

Proteins in every other fraction were examined for the presence of 20S subunits, a component of 

the 19S subunit (Cim5p), and Add66p-myc by western blot analysis.  The migrations of 

molecular mass markers, which were analyzed in parallel, are indicated below the gel. 
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Figure 27. Fractionation of proteasomes in lysates prepared after Add66p-myc over-expression in 

wild type and add66Δ yeast 
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modestly or vigorously disrupt the integrity of the particle. The proteins in these treated extracts, 

as well as untreated samples, were fractionated on a 10-40% glycerol density gradient to resolve 

various proteasome complexes.  As shown in Figure 28, all of the 20S immuno-reactive species 

fractionated at ~2.5 MDa—a size that corresponds to the native 26S particle—when extracts 

were examined from wild type or ADD66-deleted cells.  In contrast, when extracts from ADD66 

and add66Δ cells were treated with 0.02% SDS the 20S subunits eluted in fractions consistent in 

size with a half proteasome complex at ~400 KDa.  Treatment of cell extracts with 0.05% SDS 

further disrupted the 20S proteasomal subunits into smaller complexes that migrated at ~200-300 

KDa.  In each case, no significant differences were observed between gradients that employed 

extracts from ADD66 and add66Δ cells, suggesting that the 26S particles, once assembled, are 

equally stable in wild type and add66Δ yeast. 

2.3.9 Add66p is degraded by the 26S proteasome 

A number of proteasome chaperones interact transiently with early proteasome assembly 

intermediates, and in some cases are then degraded by the proteasome (Ramos et al., 1998; Tone 

et al., 2000; Tone and Toh, 2002; Hirano et al., 2005).  I therefore incubated a pdr5Δ Add66p-

myc expressing strain with either DMSO or MG-132.  The pdr5Δ strain was employed based on 

the fact that this mutation, like other similarly employed mutations, disables a plasma membrane 

drug efflux pump; therefore, the effect of proteasome inhibitors is magnified (Balzi et al., 1994; 

Lee and Goldberg, 1996).  As shown in Figure 29A, Add66p-myc shifts to fractions containing 

complexes of greater molecular masses, which contain 20S subunits, when extracts were 

prepared from cells treated with MG-132.  Treatment with MG-132 also results in the 

accumulation of the slower-migrating, 20S “doublets”, as seen when extracts were examined  
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Figure 28.  The stability of the 26S proteasome is not reduced in the add66Δ strain.   

Extracts were prepared from ADD66 or add66Δ strains and 5mg of protein were resolved 

on a linear glycerol gradient (10-40%).  Gradients contained 0%, 0.02% or 0.05% SDS, which 

were analyzed in parallel. Proteins in every other fraction were immunoblotted for the indicated 

proteins or epitope tags.  Size markers are indicated below the figure. 
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Figure 29.  Add66p is degraded by the 26S proteasome.   

A pdr5Δ strained transformed with a plasmid designed for the constitutive expression of 

ADD66myc was incubated either with 100 μM MG-132 or the equivalent volume of DMSO for 1 

h at 30°C.  (A) Cell extracts from each strain were prepared and 5 mg of protein were resolved 

on a linear glycerol gradient (4-25%) and fractions were collected.  Proteins in every other 

fraction were immunoblotted for 20S subunits, a component of the 19S subunit (Cim5p), and 

Add66p-myc.  Molecular mass markers, which were analyzed in parallel, are indicated below the 

gel. Note that these blots were purposely over-exposed (compared to those in Figure 26).  (B) 

The strains described in part A were harvested at the indicated time points after the addition of 

cycloheximide, and cell extracts were prepared and subjected to SDS-PAGE and immunoblotted 

for Add66p-myc and Sec61p (as a loading control).  The amount of Add66p-myc at the start of 

the chase in each strain, after standardization to the amount of Sec61p at each time point, was set 

to 100%: (О), MG-132; (●), DMSO control.  The data represent three independent experiments, 

+/- SD, with p values of 0.0812 (30 min), 0.0323 (60 min), and 0.0065 (90 min) when comparing 

the strain with and without MG132 treatment. 
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Figure 29.  Add66p is degraded by the 26S proteasome 
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from add66Δ and ump1Δ strains (Figure 26) when the blots were over-exposed (data not shown).   

Next, to examine whether Add66p, like several other proteasome chaperones, is degraded 

by the proteasome, a cycloheximide chase was performed in the presence or absence of MG-132.  

Once again, the pdr5Δ strain was transformed with a plasmid engineered for the constitutive 

expression of Add66p-myc and the cells were incubated with either DMSO or MG-132 for 1 

hour prior to the chase (Figure 29B). Although Add66p was rapidly degraded in cells treated 

with DMSO, I discovered that the addition of MG-132 to wild type yeast cells resulted in a 

profound, reproducible stabilization of the protein, indicating that Add66p is a proteasome 

substrate. 

2.3.10 A1PiZ expression in the add66Δ yeast strain 

Even though the add66Δ strain displayed no visible phenotype when incubated on media 

supplemented with various carbohydrates or chemicals and incubated at elevated temperatures 

(Table 1), I observed a significant growth defect in ~15% of A1PiZ-expressing add66Δ cells (see 

Figure 30 for one example).  Furthermore, these add66Δ cells had not obtained secondary 

mutations in the gene required for galactose utilization (Figure 30 last panel); i.e. a gal- 

phenotype might have given rise to this observation. This was shown by rescuing the A1PiZ-

expression vector from add66Δ strains that were either inviable or viable on galactose-containing 

media, and then retransforming them with the expression vector. I found that this phenomenon 

most commonly arose stochastically since in any given transformation ~15% of the 

transformants containing the pGAL A1PiZ expression vector failed to grown on galactose (data 

not shown).   
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Figure 30.  Over expression of A1PiZ in add66Δ yeast can result in lethality.   

Ten-fold serial dilutions of ADD66 and add66Δ transformed with either control plasmids 

or plasmids expressing A1PiM or A1PiZ (all of which were URA-marked) under the 

transcriptional control of a galactose inducible promoter were grown at 30°C for 48 h on YPD, 

SC-URA+GLC, or SC-URA+GAL (left half of figure).  The growth defect in the add66Δ strain 

expressing A1PiZ in the presence of galactose was seen in ~15% of transformants after 50 

individual transformants were examined (one transformant in which this phenomenon was 

observed is denoted by an asterisk, and a transformant in which growth was unaffected is 

denoted by a double-dagger).  To establish that the lethal phenotype was not because the cells 

had become auxotrophic for galactose utilization (i.e., Gal-), the following protocol was 

followed: add66Δ strains transformed with either a control plasmid or a plasmid containing 

A1PiM or A1PiZ under the transcriptional control of a galactose inducible promoter were re-

plated three times in the presence of 5FOA (in order to select for cells lacking the expression 

vector).  Next, the resulting cultures (right half of figure) were serial diluted on 5FOA (to 

confirm selection for yeast lacking vector), SC-URA+GAL (to confirm that the yeast did indeed 

lack the URA-marked vector), or SC-URA+GAL (to confirm the Gal+ phenotype).  
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Figure 30.  Over expression of A1PiZ in add66Δ yeast can result in lethality 
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Because it has been proposed that generic variations and/or stochastically elevated 

expression levels might modify the degradation efficiency and/or solubility of proteins 

associated with conformational diseases (Perlmutter, 2002; Kamimoto et al., 2006), I reasoned 

that this phenomenon might have been recapitulated in A1PiZ-expressing yeast.  One possibility 

is that the protein is expressed at different levels in each yeast cell, and that only add66 mutants 

expressing the highest levels of A1PiZ were inviable.  To test this hypothesis, I measured the 

A1PiZ expression levels by immunoprecipitation of radiolabeled A1PiZ at early time points after 

A1PiZ expression was induced in add66Δ cells that either succumbed (GD) or survived (ND).  

Examination of A1PiZ expression within 4 hours of A1PiZ induction showed that cells that 

succumbed to a growth defect did so within 2 hours of induction (i.e., a switch from glucose to 

galactose containing media (data not shown)).  However, the level of A1PiZ expression within 2 

hours of induction was identical in both strains (Figure 31).   

Because the add66Δ growth defect shown in Figure 30 represents the stationary phase of 

growth, a series of growth curves were calculated from dividing ADD66 and add66Δ strains on 

selectable media containing various carbon sources that affect A1PiZ expression system (Figure 

32).  Very little growth was observed over the time course in the wild type and add66Δ strains 

transformed with an expression vector inserted with A1Pi in selectable media containing 2.0% 

galactose (data not shown).  In an effort to regulate the levels of the galactose inducible 

promoter, media containing 0.2% glucose and 2.0% galactose was utilized to limit the expression 

of AT.   ADD66 strains showed no defect in the doubling time when containing an empty  
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Figure 31. Expression of A1PiZ in different add66Δ strains 

Representative image from a radiolabeled immunoprecipitation of A1PiZ expression in 

various yeast strains.  Equivalent levels of cells from add66Δ strains that eventually either 

succumbed (GD) or survived (ND) induction of A1PiZ or an add66Δ strain containing an empty 

vector (V) were radiolabeled for 2 hours.  Cells were lysed and immunoprecipitated for BiP (as a 

loading control) and A1PiZ.  Cells that eventually succumbed to A1PiZ expression were still 

viable at this time point.   
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Figure 31.  Expression of A1PiZ in different add66Δ strains 
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Figure 32.  add66Δ yeast that succumb to A1PiZ expression stop growing at relatively early 

times when A1PiZ is induced.   

Wild-type and add66Δ strains were transformed with expression plasmids containing 

A1PiM or A1PiZ under the control of a galactose inducible promoter or with the expression 

vector lacking an insert (pYes2).  Equivalent numbers of transformed cells were grown for 18 h 

in selectable medium containing 2.0% raffinose and then switched to selectable media containing 

2.0% glucose (Glc), or 2.0% galactose and 0.2% glucose for a 12 h time course at 30° C.  Every 

2 h the optical density (OD at 600 nm) of the culture was determined by a spectrophotometer and 

charted on a log scale. 
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Figure 32.  add66Δ yeast that succumb to A1PiZ expression stop growing at relatively early times 

when A1PiZ is induced  
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expression vector or a vector expressing wild type (A1PiM) or the Z mutant.  In contrast, a 

significant defect in the doubling time was observed in add66Δ pYes2A1PiZ yeast (that  

succumbed to A1PiZ expression) after 8 hours, which is most likely due to the accumulation of 

high levels of the toxic A1PiZ polymer in the cells (Kruse et al., 2006).  Furthermore, add66Δ 

strains that do not succumb to A1PiZ expression did not show a similar defect (data not shown).  

Overall, the nature of this growth defect in A1PiZ expressing yeast is not clear. 

2.3.11 PAC2 over-expression enhances A1PiZ degradation HELA cells. 

As shown in Figure 25, Dr. Jeffrey Brodsky noted that a region in a mammalian protein exhibits 

low sequence identity with Add66p; during the course of my studies, a similar finding was 

reported by the Murata lab and the mammalian protein was characterized as PAC2, proteasome 

assembly chaperone-2 (Hirano et al., 2005).  PAC2 was also recently noted by the Hochstrasser 

lab to share 19% identity with ADD66, which they called PBA2 for proteasome biogenesis 

associated polypeptide (Li et al., 2007).  Because PAC2 is expressed in hepatocytes (Wang et al., 

2001), the tissue in which A1Pi is synthesized, and because PAC2 over-expression accelerates 

proteasome biogenesis (Hirano et al., 2005), I hypothesized that PAC2 over-expression might 

help clear A1PiZ in mammalian cells.  In collaboration with the Perlmutter lab, I cloned PAC2 

into a mammalian expression vector (See section 2.2.3).  Subsequently, Béla Schmidt of the 

Perlmutter lab utilized a HeLa cell line that stably expresses A1PiZ (Teckman et al., 2001) and 

these cells were transiently transfected with vectors to drive the expression of PAC2 or GFP.  

We found that the HeLa cells over-expressing PAC2 showed a concentration-dependent 

reduction in the amount of A1PiZ, whereas the levels of A1PiZ were unaffected in cells 

transfected with equal amounts of the GFP-encoding DNA (Figure 33).  These data suggest  
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Figure 33.  PAC2 over expression enhances A1PiZ clearance in HeLa cells.   

HeLa cells stably expressing A1PiZ were transiently transfected with pcDNA3.0 

containing either the PAC2 or GFP coding sequences in the amounts indicated.  Cells were 

harvested, and cell extracts were prepared and subjected to SDS-PAGE.  Western blots for 

A1PiZ, GFP, and GADPH (as a loading control) were then performed.    
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Figure 33.  PAC2 over expression enhances A1PiZ clearance in HeLa cells 
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that PAC2 plays a role in the clearance of A1PiZ, perhaps similar to the role that Add66p plays 

during the degradation of A1PiZ in yeast (Palmer et al., 2003).  
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3.0  THE REGULATION OF ADD66 DURING THE UNFOLDED PROTEIN 

RESPONSE 

3.1 INTRODUCTION 

The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a 

transcriptional induction process termed the unfolded protein response (UPR) (Kaufman, 1999; 

Patil and Walter, 2001).  In Saccharomyces cerevisiae, the basic leucine zipper containing 

transcription factor Hac1p is responsible for transcriptional induction of a relatively small 

number of  the approximately 380 UPR-target genes that have been identified (Cox and Walter, 

1996; Mori et al., 1996; Travers et al., 2000).  The transcription of many other UPR targets 

appear to be activated by the Gcn4p transcription factor, which is not sufficient to bind UPR 

targets during permissive conditions; however up-regulation of the gene, as seen during ER 

stress, does cause an induction of the UPR (Patil et al., 2004).  In any event, targets of the UPR 

include ER localized molecular chaperones, components of the ER-associated degradation 

machinery, and numerous proteins involved in various aspects of the secretory pathway.  These 

proteins alleviate the accumulation of unfolded proteins residing within the ER.  Induction of 

these UPR targets is crucial for ER homeostasis under stress conditions and cells unable to 

induce the UPR are highly sensitive to ER stress (Kaufman, 1999; Patil and Walter, 2001). 

The expression and activity of Hac1p are tightly regulated at the level of mRNA splicing.  
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HAC1 mRNA is constitutively synthesized but contains an un-spliced intron under non-stress 

conditions (Cox and Walter, 1996; Kawahara et al., 1997).  Splicing of HAC1 precursor mRNA 

is initiated by Ire1p-mediated processing, and is the result of ER stress (Sidrauski and Walter, 

1997).  Ire1p is a transmembrane protein kinase with endoribonuclease activity, and is activated 

by ER stress-induced homodimerization and subsequent autophosphorylation (Cox et al., 1993; 

Mori et al., 1993; Shamu and Walter, 1996; Welihinda and Kaufman, 1996).  It is not yet clear 

how unfolded ER proteins activate the cytosolic nuclease activity of Ire1p. 

Splicing regulates the activity of Hac1p in two ways. First, Hac1p is synthesized only 

after splicing occurs, since the HAC1 intron inhibits translation (Kawahara et al., 1997).  Second, 

activity of Hac1p artificially translated from spliced mRNA is much stronger than that of Hac1p 

translated from un-spliced mRNA.  This is the result of the DNA-binding domain being encoded 

by the first exon, whereas the activation domain is encoded by the second exon (Mori et al., 

2000).   Regardless, the subsequent activation of Hac1p target genes in the nucleus occurs via 

direct binding to a cis-acting UPR element (UPRE) (Mori et al., 1992; Mori et al., 1998).  The 

UPRE was originally defined as a 22-bp sequence that up-regulates the transcription of KAR2, 

the gene that encodes yeast BiP  (ER lumenal Hsp70p) (Mori et al., 1992).  The necessity of the 

22-bp sequence has since been simplified to a 10-bp core sequence and has subsequently been 

reduced to an essential seven nucleotide E-box-like palindrome (CAGNGTG) (Mori et al., 

1998).   

In this chapter, I report on the characterization of a nucleotide sequence up-stream of the 

coding region of ADD66, which is likely involved in its transcriptional regulation during times of 

ER stress.   The ADD66 gene is known to be up-regulated during ER stress via the UPR and 

strains lacking ADD66 initiate the UPR (Travers et al., 2000; Palmer et al., 2003).  Furthermore, 
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the nucleotide sequence that I identified upstream of ADD66 shows similarity to the consensus 

sequence recognized by Hac1p, suggesting that Hac1p may regulate ADD66.  Interestingly, the 

putative UPRE resides in the gene upstream of ADD66, which is known as LOS1.   

3.2  MATERIALS AND METHODS 

3.2.1 Strains and growth conditions 

An add66Δ disruption cassette was obtained by amplifying pRS400 (Brachmann et al., 1998) 

with the following oligonucleotides: 5’ ACT TCA GGA AAG AAT AGC ACA AAA CCC 

AAA GGA ACA TAC GCT GTG CGG TAT TTC ACA CCG 3’ and 5’ ATA TAT GCA CTT 

GTA TAG AAA ACA GAT ATA CTT CTC GGT TAG ATT GTA CTG AGA GTG CAC.  An 

los1Δ disruption cassette was obtained by amplifying pRS400 (Brachmann et al., 1998) with 

insertion of a KanMX gene utilizing the following oligonucleotides: 5’ AAG CAA CCT ATA 

GAA CAA GTG TTT CCA GTC AAA TCG AGG ACT GTG CGG TAT TTC ACA CCG 3’ 

and 5’ TAT TCT TAT TTA CGG AGG TGG CTG TGA CTG CAG TGT CTA TAG ATT GTA 

CTG AGA GTG CAC 3’.  ADD66 and LOS1 mutants were then isolated on G418-containing 

medium as previously described (Brachmann et al., 1998). 

All yeast strains used in this study are detailed in Table 2 (located in Appendix A) and 

were grown on yeast extract-peptone (YP)-dextrose (YPD (2%)) medium. Yeast were grown at 

the indicated temperatures and all genetic and molecular manipulations followed standard 

published protocols (Adams et al., 1997). 
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3.2.2 mRNA isolation and analysis 

A single yeast colony was inoculated into 2 ml of YPD incubated over night at 30° C with 

vigorous shaking. The culture was diluted into 10 ml of YPD (pH 5.4) to an OD (optical density 

measured at 600 nm) of 0.25 and grown for 4 h at 30°C with vigorous shaking to obtain mid-log 

phase cells.  Ten ODs of cells were harvested and resuspended in YPD adjusted to pH 5.4 and 

supplemented either with or without 2 mM DTT and incubated at 30° C with vigorous shaking 

for 2 h.  A total of 5 ODs of cells were harvested by centrifugation at 3000 rpm for 5 min in a 

clinical centrifuge.  Cells were then resuspended in 0.2 ml of RNA buffer ((0.5 M NaCl, 0.2 M 

Tris-HCL (pH 7.6), 1.0% SDS).  A total of 0.2 g of glass beads were added, and lystates were 

prepared by vigorous agitation on a Vortex mixer five times for one min with a one min 

incubation in an ice bath between each treatment.  Total RNA was isolated utilizing the RNeasy 

Mini kit (Qiagen) in conjunction with the standard protocol provided by the manufacturer.  RNA 

concentration and purity were determined spectrophotometrically by measuring the A
260 

and 

A
280

. Only samples with a ratio of A
260

/A
280 

higher than 1.8 were used.  Aliquots of all RNA 

samples were frozen and stored at -20°C.   

Reverse transcription (RT) was conducted by utilizing random primers (Hexanucleotide 

Mix (Roche)), dNTP mix (Applied Biosystems), and the company-supplied protocol for the 

Super Script II Reverse Transcriptase (Invitrogen) kit with the following thermacyclic protocol: 

1 cycle of 25 C° for 10 min, 37 C° for 1 hr, 72 C° for 10 min, 23 C° for 10 min and finally stored 

at 4 C°.  Subsequent PCR reactions were performed to examine actin and ADD66 mRNA levels 

in accordance with the GoTaq PCR Kit (Promega) protocol.  ADD66 mRNA was amplified with 

5’ CGC TAT ATA AAG ACG CTG 3’ and 5’ GAA TAT ACC TCC TGT GGA CG 3’ primers 
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and actin was amplified with 5’ TGT CAC CAA CTG CGA CGA TA 3’ and 5’ GGC TTG GAT 

GGA AAC GTA GA3’ primers with the following PCR protocol:  1cycle of 94 C° for 2 min,  30 

cycles  of 94 C° for 1 min, 45 C° for 1 min, 72 C° for 1 min, 1 cycle  of 72 C° for 10 min, and 

finally store at 4 C°.  PCR products were resolved on a 1.0% agarose gel, stained with 2 μg/ml 

ethidium bromide, and images were obtained on a Kodak 440CF Image Station, and the results 

were quantified using Kodak 1D (version 3.6) imaging software. 

3.3 RESULTS 

3.3.1 Identification of a UPRE like sequence within the promoter of ADD66 

Examining targets of the unfolded protein response as well as their induction level revealed a 

robust increase in the level of ADD66 mRNA when cells were treated with ER stress inducing 

compounds (Casagrande et al., 2000; Travers et al., 2000).  Specifically, there was a 9.8 fold 

increase in ADD66 mRNA levels in cells treated with tunicamycin to inhibit N-linked 

glycosylation (Travers et al., 2000).  Expression of mouse major histocompatability complex 

class I heavy chain (H-2Kb), an ERAD substrate when unassembled but stable when the UPR is 

compromised, increased ADD66 mRNA 2.5-fold (Casagrande et al., 2000).  Taken together, 

ADD66 apears to be a bona fide UPR target, although examination of the 5’ UTR of ADD66 

failed to detect a UPRE (Travers et al., 2000).  One caveat of that initial search was that only 

previously described UPRE sequences (as observed in KAR2) were sought.  The original 22-bp 

UPRE sequence has subsequently been reduced to an essential seven nucleotide E-box-like 

palindrome (CAGNGTG) (Mori et al., 1992; Mori et al., 1998), which again was not detected 
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upstream of ADD66, at least in the region between ADD66 and LOS1 (Figure 34A).  However, 

expansion of the search criteria yielded a putative ADD66 UPRE 284 bps upstream of the coding 

region of ADD66 and residing in the correct orientation to induce ADD66 expression.  

Interestingly, this putative UPRE is located within the coding region of the neighboring gene, 

LOS1.  LOS1 is a nonessential tRNA alternate splicing enzyme located 249 base pairs upstream 

of ADD66 (Yoshihisa et al., 2003).  The putative ADD66 UPRE maintains 6 of the 7 essential 

nucleotides described as the E-box-like palindrome (Figure 34B).  Furthermore, comparisons of 

this region of DNA in three other yeast strains show a conservation of these nucleotides, 

suggesting an important function for this sequence (Figure 34B). 

3.3.2 The ADD66 UPRE is necessary for ADD66 mRNA induction during ER stress 

Given the similarity of the ADD66 UPRE to the KAR2 UPRE, and given that this sequence is 

conserved within different yeast specieis, I predict that this putative UPRE sequence would be 

required to provide maximal induction of ADD66 during the unfolded protein response.  In order 

to examine this hypothesis, a series of yeast strains were constructed or obtained from other 

sources (Figure 35).  The add66Δ and los1Δ  strains in the BY4742 background were constructed 

by disrupting the desired gene with a KANMX cassette (Brachmann et al., 1998).  The final two 

isogenic strains, in the W303-1A strain background, were obtained from the Endo lab, which 

included a wild type as well as a second los1Δ strain.  The second los1Δ strain had the majority 

of the LOS1 gene disrupted, by an ADE2 cassette, but retained the region that contained the 

putative ADD66 UPRE (Figure 35A MT3) (Yoshihisa et al., 2003).   
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Figure 34.  The ADD66 promoter contains a UPRE-like sequence and is conserved in four 

different Saccharomyces species 

(A)  A simple diagram of the chromosomal locations of the putative ADD66 UPRE (red) 

in relation to the coding regions of the ADD66 (blue) and LOS1 (green) genes.  Arrows indicate 

the direction of transcription from ADD66 (Crick stand) and LOS1 (Watson strand).  (B) 

Nucleotide sequence alignment of the putative UPRE for ADD66 in four different yeast species 

compared to the KAR2 UPRE.  Sequences were obtained from the Saccharomyces Genome 

Database (http://www.yeastgenome.org/).  Bold type face shows identity with the KAR2 UPRE, 

which is 153-bp upstream of the KAR2 start site.  The putative ADD66 UPRE is 284-bp upstream 

of the start site and is in the correct orientation to induce ADD66 expression.  Red type face 

indicates the E-box-like palindrome.  Underline shows the core 10 base pair element.   
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Figure 34.  The ADD66 promoter contains a UPRE-like sequence and is conserved in four different 

Saccharomyces species 
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Figure 35.  ADD66 strains used to examine UPR regulation 

(A) A diagram of the chromosomal locations of the putative ADD66 UPRE (red) in 

relation to the coding regions of the genomic ADD66 (blue) and LOS1 (green) genes.  The 

ADD66 (WT1; BY4742) strain is isogenic to add66Δ (MT1) and los1Δ (MT2) strains.  MT1 and 

MT2 are disruptions with the insertion of a KANMX gene (black).  The other ADD66 wild type 

(WT2; W303-1A) strain is isogenic to los1Δ (MT3) in which LOS1 is replaced with ADE2 (grey) 

while still maintaining the putative ADD66 UPRE.  All strains are described in Section 3.2.1 and 

in Table 2, located in Appendix A.  The ADD66, LOS1, KanMX, and ADE2 genes are presented 

in relative size to each other.  Asterisks denote the locations of primers utilized for the RT-PCR 

of ADD66, as presented in Figure 36.  (B)  PCR products corresponding to the regions of the 

ADD66 (left panel) and LOS1 (right panel) genes in the five strains indicated above.  Primers 

utilized for this PCR are detailed in section 3.2.1.  The sizes of the PCR products are shown to 

the left of the figure.  
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Figure 35.  ADD66 strains used to examine UPR regulation 
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To examine ADD66 mRNA induction during ER stress, mid-log phase yeast cells were 

subjected to 2 mM DTT to increase the propensity of misfolded proteins within the ER (Travers 

et al., 2000). Cells under identical conditions were also mock-treated. Cells treated with DTT 

that contained the putative ADD66 UPRE showed an increase in the levels of ADD66 expression 

(Figure 36A, WT1, WT2, and MT3).  As predicted, strains that did not contain putative ADD66 

UPRE maintained basal levels of mRNA induction when treated with DTT (Figure 36A, MT2).  

Furthermore, there was a significant difference between the level of ADD66 mRNA induction 

when comparing the two different yeast genotypes.  The BY4742 ADD66 strain incubated with 

DTT showed a 2.3 fold increase in expression of ADD66 mRNA compared to non-treated cells, 

whereas the W303-1A strain exhibited a 7.9 fold increase.  Taken together, these very 

preliminary data suggest that the region containing the putative ADD66 UPRE is necessary for 

transcriptional induction during the unfolded protein response. 
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 Figure 36.  The ADD66 UPRE facilitates ADD66 mRNA induction during ER stress 

RT-PCR was performed on the ADD66 (BY4742; WT1), add66Δ (BY4742; MT1), los1Δ 

(BY4742; MT2), ADD66 (W303-1A; WT2), and los1Δ (W303-1A; MT3) strains.  (A)  Relative 

fold increase of ADD66 mRNA expression when cells were incubated with 2mM DTT (black 

bars) or the equivalent volume of water (white bars) for 2 hours at 30° C.  The RT-PCR product 

was obtained by amplifying an internal region of the ADD66 gene (Figure 35, asterisks).  

Quantification of each PCR product was determined by measuring the intensities of the various 

products, and then normalizing these values to the levels measured for the actin RT-PCR 

product.  The relative fold increase was subsequently determined by normalizing each RT-PCR 

product to the product from the untreated isogenic WT strain, which was set to 1.  (B)  The 

agarose gels used to amass the data for part A are presented.   Each strain was treated with (+) or 

without (-) DTT as indicated.  It is important to note that these data represent one experiment 

utilizing one set of PCR parameters.  In addition, the mRNA might not be within the linear range 

for the assay. 
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Figure 36.  The ADD66 UPRE facilitates ADD66 mRNA induction during ER stress 
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4.0  DISCUSSION 

4.1 INTRODUCTION 

In this chapter I will revisit the data presented in this dissertation from chapters two and three 

and discuss the significance and relevance of these findings.  Furthermore, I will present these 

findings in the context of what is currently known about proteasome assembly, maturation, and 

activity and the regulation of ADD66 during the unfolded protein response. 

4.2 ADD66 IS REQUIRED FOR MAXIMAL CHYMOTRYPSIN-LIKE ACTIVITY OF 

THE 26S PROTEASOME 

In this dissertation I presented the characterization of Add66p (Chapter 2), a protein previously 

implicated in the ERAD of A1PiZ in yeast (Palmer et al., 2003). I found that strains deleted for 

ADD66 accumulate polyubiquitinated proteins and grow poorly when they are unable to mount a 

UPR upon being challenged with a UPR-inducing agent.  These data can be explained by my 

discovery that the CTL activity of the proteasome is compromised in add66Δ yeast.  Yeast 

deleted for ADD66 also accumulate the similar proteasome assembly intermediates as those 

observed when the gene encoding the Ump1p proteasome assembly factor is disabled.  My 

observations are consistent with the fact that Add66p is found in a multi-protein complex that 
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includes Pre1p and Pre5p—proteins embedded within the 20S core particle—as well as Ump1p 

itself (Ho et al., 2002; Krogan et al., 2006). Based on these data, I propose that Add66p is a yeast 

proteasome assembly chaperone (PAC, discussed below) and is vital for maximal proteasome 

function. 

A surprising aspect of this research was that deletion of ADD66 appeared to affect the 

CTL activity of the 26S proteasome, whereas there were no obvious defects in the TL and PGPH 

activities.  This is in contrast to the fact that all three activities are decreased in an ump1Δ strain 

(Ramos et al., 1998).  I propose two explanations for this phenomenon.  First, Ump1p may have 

a global effect on proteasome activity due to its role as an assembly checkpoint during the 

dimerization of half proteasomes (Li et al., 2007).  Thus, deletion of UMP1 may result in a 

significant accumulation of defective dimers or other intermediates, thus reducing the level of 

functional 26S proteasomes.  In contrast, the Add66p-dependence during proteasome maturation 

may give rise to subtle changes in proteasome assembly or even in the conformations of 

individual, catalytic subunits or associated subunits.  Consistent with this model, more severe 

proteasome assembly defects were noted in ump1Δ versus add66Δ mutants when intermediates 

were resolved by gel filtration chromatography (Ramos et al., 1998; Li et al., 2007).  Second, 

more trivially, I note that neither the TL nor PGPH activities was measured when the activities of 

specific proteasome assembly factors were ablated (Tone and Toh, 2002; Hirano et al., 2005; 

Hirano et al., 2006).  Therefore, it remains possible that unique effects on proteolytic activities 

do exist when related PACs are disabled, at least in some cell types or under specific conditions. 
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4.3 ADD66P FACILITATES EFFICIENT PROTEASOME ASSEMBLY 

 

The recent characterization of PACs in both yeast and mammals have yielded new insights into 

the previously described pathway of proteasome biogenesis (Chen and Hochstrasser, 1995, 1996; 

Heinemeyer et al., 1997; Ramos et al., 1998; Arendt and Hochstrasser, 1999; Burri et al., 2000; 

Griffin et al., 2000; Tone et al., 2000; Witt et al., 2000; Tone and Toh, 2002; Ramos et al., 2004; 

Hirano et al., 2005; Hirano et al., 2006; Li et al., 2007).  The symmetrical, 20S barrel-shaped 

core particle (CP) of the proteasome is comprised of two half-proteasome (15S) complexes 

(Nandi et al., 1997).  These half-proteasomes contain a ring of alpha subunits and a ring of beta 

subunits, three of which are responsible for the CP’s proteolytic activity and must be processed 

(Figure 3). In mammals, after the two 15S complexes combine, the “pro” regions in the beta 

subunits are cleaved and a cohort of PACs—including hUmp1 (also known as POMP or 

Proteassemblin), PAC1, PAC2, and PAC3—participate in complex formation.  PAC1 and PAC2 

have been proposed to maintain the assembly-competence of the alpha ring and are degraded 

after the assembly of the two half proteasomes; in contrast, PAC3 assists in the assembly of the 

beta ring before dissociating from the complex.  PAC3 also recruits hUmp1, which later 

catalyzes the dimerization of the two half-proteasomes; in yeast Nob1p helps glue the 19S 

particle to the CP (Tone and Toh, 2002; Hirano et al., 2005; Hirano et al., 2006).   Based on my 

results and data derived from studies of PAC2 function in mammalian cells (Hirano et al., 2005; 

Hirano et al., 2006), I propose that Add66p is the S. cerevisiae homologue of PAC2: [1] The 

proteins are ~20% identical throughout their sequence; [2] Both factors are proteasome 

substrates; [3] Lowering protein levels (by RNAi in mammalian cells) or completely ablating the 

gene (in yeast) leads to the accumulation of CP precursors, increases the concentration of 
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polyubiquitinated proteins,  and decreases the proteasome’s CTL activity; and [4] MG-132 

treatment in each cell-type results in the accumulation of the protein in heavier (larger 

complexes) fractions after glycerol gradient centrifugation.   

Very recent work from  Hochstrasser and colleagues reported that Add66p (which they 

named Pba2p, for proteasome biogenesis associated polypeptide) associates with another protein 

(Pba1p) to form a stable complex (Li et al., 2007); the Add66p-Pba1p complex resolves with 

distinct proteasome assembly intermediates and it was found that deletion of ADD66 restores the 

growth of an ump1Δ mutant, which is consistent with antagonistic action between Ump1 and the 

PACs.  They also reported that the concentration of a pro-β5 assembly intermediate increased in 

the add66Δ mutant, which is consistent with the intermediate I observe in add66Δ yeast (Figure 

26 and Figure 27).  Combined with the results reported here and with studies in mammalian cells 

(Hirano et al., 2005; Hirano et al., 2006), these data provide support that Pba1p and Add66p 

have similar functions as PAC1 and PAC2, respectively. 

4.4 ADD66P IS INVOLVED IN THE DEGRADATION OF A DISCRETE SET OF 

PROTEINS 

In contrast to other studies of PAC function in mammalian cells and yeast, I have determined the 

importance of Add66p on the degradation of a distinct class of proteins.  More specifically, I 

have discovered a link between PAC function and ERAD.  In previous work, the Brodsky and 

McCracken laboratories noted that Add66p facilitates the degradation of some ERAD substrates 

(A1PiZ and the cystic fibrosis transmembrane conductance regulator, CFTR) but not others 

(CPY* and pro-α factor) (Palmer et al., 2003).  At first glance, these data and the results 
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presented in this dissertation may seem at odds.  If the proteasome is partially disabled in add66 

mutants, why isn’t the turn-over of all ERAD substrates affected similarly, especially since any 

one of the proteasome’s three activities may be sufficient to remove an ERAD substrate 

(Oberdorf et al., 2001)?  Consistent with data from other laboratories, I suggest two possible 

answers to this question: 

First, I propose that the rate-limiting step during ERAD differs for unique classes of 

substrates.  Notably, ERAD can be envisaged as a five-step temporal and—for some substrates—

spatial process, consisting of substrate identification, retro-translocation, polyubiquitination, 

deubiquitination, and degradation (Figure 5).  In reality, each of these steps is likely further 

delineated into multiple, discrete kinetic events.  Regardless, the overall rate of substrate 

degradation, as for any multi-step process, is established by the rate-limiting step.  For the 

degradation of some substrates, it has been shown that de-ubiquitination is the rate-limiting step 

(Yao and Cohen, 2002; Guterman and Glickman, 2004; Hanna et al., 2006).  At present, the 

identity of the DUB that acts on A1PiZ and whether it is proteasome associated are unknown.  

During ERAD, the removal of a specific substrate class (proteins in the “ERAD-L” family) takes 

significantly longer than the removal of other substrates (proteins in the “ERAD-C” family).  

This may be because only ERAD-L substrates can transit to the Golgi apparatus prior to ER-

retrieval and degradation (Vashist et al., 2001).  Thus, effects arising from impaired proteasome 

function (Figure 19-22) might be masked by earlier steps in the ERAD process when they are 

acting as an alternative, rate-limiting step. 

Second, it has been proposed that proteasome isoforms exist within cells: those that are 

stable and those that recycle (Fujimuro et al., 1998; Tone and Toh, 2002).  In fact it was later 

reported that the proteasome disassembles after ATP hydrolysis and substrate degradation 
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(Babbitt et al., 2005).  Combined with the concept that specific proteasome sub-populations may 

recognize distinct classes of substrates (Fujimuro et al., 1998), it is possible that A1PiZ is 

degraded by only one of these “classes”.   Formally then, the deletion of ADD66 might 

compromise the assembly of a unique proteasome sub-set, which is required for the degradation 

of some but not all substrates.  Alternatively, the absence of Add66p might alter the 

proteasome’s interaction with the ER membrane.  Different ERAD substrates might be delivered 

from the ER in different conformations, only some of which may require close apposition of the 

proteasome with the ER and possibly Sec61p, which is the translocation and possibly the retro-

translocation channel (Kalies et al., 2005). 

4.5 RELATIONSHIP OF ADD66Δ YEAST EXPRESSING A1PIZ  

One of the long-term goals of my studies is to identify conserved yeast genes that impact the 

ERAD of distinct substrates.  This undertaking is particularly relevant for A1PiZ, given that only 

a small percentage of A1PiZ homozygotes develop severe liver disease (Sveger, 1988).  It is 

believed that both environmental and genetic modifiers play a role in determining the onset and 

severity of liver disease (Wu et al., 1994; Perlmutter, 2002).  Therefore, it is critical that genetic 

polymorphisms or secondary mutations that alter A1PiZ quality control are identified.  

Intriguingly, I found that ~15% of add66Δ cells expressing A1PiZ are inviable (data not shown, 

Figure 30 for one example).  In principle, one might be able to co-opt this phenotype to screen 

for second-site or suppressor mutations.  It is also possible that the observed genetic penetrance 

arises from stochastic variability in some cells relative to others: Recent insights into phenotypic 

variation have led to a greater understanding of the “noise” that accounts for the stochastic nature 
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of protein production and phenotypic variation, especially in single-cell organisms (Raser and 

O'Shea, 2004; Newman et al., 2006; Samoilov et al., 2006).     

Another explanation for why a sub-population of cells exhibit growth defects (and why a 

sub-population of individuals with ATD develop liver disease) is that alternate mechanisms exist 

to clear the ER of A1PiZ.  Indeed, it is now established that the autophagic pathway can degrade 

A1PiZ in mammalian cells (Teckman and Perlmutter, 2000; Kamimoto et al., 2006) and in yeast 

(Kruse et al., 2006) when the protein is over-expressed.  However, I found that the autophagic 

pathway is active in add66Δ cells (Figure 15), suggesting that variations in this alternate mode of 

protein quality control do not contribute to the toxic effects of A1PiZ, at least in yeast.  In the 

future, it will be important to measure how variations in the efficiency of autophagy, as well as 

variations in the relative steady-state levels of A1PiZ, impact A1PiZ clearance and liver disease 

in individuals afflicted with ATD. 

4.6 ROLE OF PAC2 IN A1PIZ CLEARANCE 

 

In Chapter 2, I showed that expression of Add66p is required for maximal proteasome activity in 

yeast, and previous studies have shown that Add66p facilitates the efficient degradation of 

A1PiZ (Palmer et al., 2003).  As noted above, I also propose that Add66p functions similarly to 

mammalian PAC2 (Hirano et al., 2005; Hirano et al., 2006; Li et al., 2007).  Neverless, these 

data do not address the fundamental question of whether PAC2 plays a role in the regulation of 

the mutant form of AT in mammalian tissues.  In collaboration with the Perlmutter lab, we 

observed that PAC2 over-expression enhances A1PiZ clearance in HeLa cells (Figure 33).  
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While these data are extremely encouraging, they are preliminary and difficult to interpret with a 

high level of confidence. Thus, further investigations will be necessary to determine if PAC2 

plays a significant role in the clearance of A1PiZ.  Specifically, all three proteolytic activities of 

the 26S proteasome in cells over-expressing PAC2 must be quantified and compared to control 

HeLa cells to determine if the over-expression of PAC2 induces higher rates of proteolytic 

activity.  Next, PAC2 knock-down, performed by RNAi as previously published (Hirano et al., 

2005), will need to be undertaken to examine the effects on A1PiZ solubility and stability.  

Finally, it would be interesting to determine if PAC2 decreases the accumulation of A1PiZ 

observed in the add66Δ yeast strain.   If the results from the experiments described above are 

positive, then we can conclude that PAC2 plays a role in the clearance of A1PiZ, perhaps in a 

manner similar to the one that Add66p plays during the degradation of A1PiZ in yeast (Palmer et 

al., 2003). 

4.7 REGULATION OF ADD66 DURING THE UNFOLDED PROTEIN RESPONSE 

It has been previously shown that ADD66 mRNA is induced robustly during to the unfolded 

protein response (Casagrande et al., 2000; Travers et al., 2000).  To begin characterizing the 

regulation of ADD66 during the UPR, two questions needed to be addressed: First is ADD66 

expression transcriptionally regulated by the transcription factor Hac1p, which is one of the two 

known transcription factors that up-regulates the 380 genes targeted by the UPR (Mori et al., 

1992; Cox and Walter, 1996; Sidrauski et al., 1996; Mori et al., 1998; Travers et al., 2000)?   

Second, does the ADD66 promoter contain a bona fide UPRE, which is a conserved sequence 

recognized by Hac1p (Mori et al., 1992; Mori et al., 1998)? 
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            A previous examination of the 5’ UTR of ADD66 did not reveal a UPRE (Mori et al., 

1992; Mori et al., 1998; Travers et al., 2000).  However, I have expanded the search and 

identified a putative ADD66 UPRE, which is located in the correct orientation for proper 

transcriptional regulation of ADD66 (Figure 34A).  The putative ADD66 UPRE maintains 6 of 

the 7 essential nucleotides described as the E-box-like palindrome (Figure 34B).  Furthermore, 

preliminary data suggest that the region containing the putative ADD66 UPRE is required for 

maximal induction of ADD66 mRNA during the UPR (Figure 36).   

As stated, these data are preliminary and require further investigations, because only one 

assay was performed.  Replicates should be carried out to determine the significance of the data.  

Next, it was shown previously that yeast cells treated with 2mM DTT produced a 9-fold 

induction of ADD66 mRNA expression (Travers et al., 2000), while I observed only 2- or 5-fold 

induction (Figure 36A, BY4724 or W303-1A yeast strains respectively).  While the parameters 

to induce ER stress in the yeast cells were similar to previously published methods, the detection 

of mRNA induction was different.  While I performed RT-PCR, the previous study utilized 

microarray analysis, which could possibly account for the variability I observed (Travers et al., 

2000).  Finally, it is unknown whether the RT-PCR assay I performed was within the linear 

range of the assay, which is essential to accurately measure mRNA induction.  Thus, the 

decreased mRNA induction I observed in my initial assay may be masking a true, higher level of 

induction.  It should be noted that in parallel with the ADD66 induction studies, KAR2, a known 

UPR target, induction was also examined, and no significant increase of expression was 

observed (data not shown) (Mori et al., 1992; Cox et al., 1993; Mori et al., 1998; Patil et al., 

2004).  I hypothesize that the lack of KAR2 induction, which is basally produced at abundant 

levels (13.6 copies of KAR2 mRNA per cell versus 0.8 copies of ADD66 mRNA per cell 
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(http://web.wi.mit.edu/young/expression/transcriptome2.html), was not detectable via RT-PCR 

during ER stress, because the substrate was already saturating the system.  Thus, further assays 

will need to be conducted, varying the RT-PCR conditions.  Furthermore, real time PCR can be 

employed to complement this assay.  Finally, the deletion of ADD66 caused sufficient ER stress 

to induce the UPR, as detected by an in vitro β-Galactosidase reporter assay (Palmer et al., 

2003).  Therefore, I predict that the putative ADD66 UPRE, cloned as a UAS into the reporter 

plasmid, would be sufficient to report ER stress.  These experiments will be performed in the 

future. 

To induce the UPR, Hac1p binds to the target gene’s UPRE (Patil and Walter, 2001; 

Schroder and Kaufman, 2005).  Currently, it is unclear if transcriptional regulation of ADD66 is 

conducted by Hac1p.  However, the idea of ADD66 transcriptional regulation by Hac1p is 

supported by the identification of a putative UPRE.  To examine if Hac1p binds upstream of 

ADD66, electrophoretic mobility shift assays (EMSA) will need to be conducted on DNA 

isolated from yeast strains, under conditions that promote ER stress, containing or lacking the 

ADD66 UPRE.  It is predicted that the sequence containing the putative ADD66 UPRE is 

sufficient to bind Hac1p when these strains are grown in conditions that induce the UPR.  The 

EMSA assay results will be complimented with a chromatin immunoprecipitation (CHIP) assay 

to verify Hac1p association with the putative ADD66 UPRE in vivo.  These two assays will be 

performed in the future. 

4.8 POSSIBLE FUTURE DIRECTIONS OF RESEARCH CONCERNING ADD66P 

Beyond the experiments detailed above concerning the regulation of ADD66 during UPR 
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induction, future work should be conducted concerning Add66p’s role in proteasome assembly 

and activity.  The eukaryotic proteasome is one of the most complex ring shaped 

macromolecules, and future efforts must focus on the resolution of pre-half proteasome 

complexes.  The isolation of these initial proteasome assembly intermediates and subsequent 

analysis with tandem mass spectrometry will allow better insights how the proteasome subunits 

associate with the various PACs, i.e. Add66p, as well as the order of events regarding of subunit 

assembly.  Furthermore, this line of investigation may also isolate yet unidentified PACs. 

. 
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APPENDIX A 

YEAST STRAINS USED IN THIS STUDY 

Table 2. Yeast strains used in this study 

Strain Relevant Genotype Reference 

ADD66 

(BY4742) 

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

add66Δ MATα add66::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

ire1Δ MATα ire1::kanMX his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

ire1Δ add66Δ MATα ire1::kanMX add66::HIS3 his3Δ1 leu2Δ0 

lys2Δ0 ura3Δ0 

this study 

ADD66 (W303) MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1, 

urs3-1 

 

add66Δ MATa add66::kanMX ade2-1 can1-100 his3-11,15    

leu2-3,112 trp1-1, ura3-1 

this study 

CIM5 MATα ura3-52 lys2-801 ade2-101 his3Δ200 leu2- Δ1 Ghislain et al, 1993 

cim5-1 MATa cim5-1 ura3-52 his3Δ0200 leu2- Δ1 Ghislain et al, 1993 

atg14Δ MATα atg14::kanMX his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 
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pdr5Δ MATa pdr5::kanMX his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 

met15Δ0 

this study 

JD133 MATa his3-Δ200 leu2-3,112 lys2-801 trp1-Δ63 ura3-

52 UMP1-ha::YIplac128 PRE2-HA::YIplac211 

Ramos et al., 1998 

JD134 MATa his3-Δ200 leu2-3,112 lys2-801 trp1-Δ63 ura3-

52 ump1-Δ1::HIS3 PRE2-HA::YIplac211 

Ramos et al., 1998 

add66Δ MATα add66::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

add37Δ MATα add37::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

add67Δ MATα add67::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

add68Δ MATα add68::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

add66Δ MATα add66::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

los1Δ MATα los1::kanMX  his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Invitrogen 

RJD1144 MATa his3Δ200 leu2-3,112 lys2-801 trp1Δ63 ura3-

52 PRE1-Flag-HIS6::Ylpac211 (URA3) 

Vera et al., 2000 

W303-1A MATa ura3-1, leu2-1, trp 1-1, his3-11, can1-100 

ADE2  

Yoshihisa, 2003  

TYSC188 MATa ura3-1, leu2-1, trp 1-1, his3-11, can1-100 

ADE2 los1::URA3 (W303-1A) 

Yoshihisa, 2003  
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APPENDIX B 

HEAT SHOCK PROTEIN (HSP101) EXPRESSION IN ARABIDOPSIS THALIANA 

UNDER CONTROLLED THERMAL CONDITIONS 

B.1 INTRODUCTION 

Global warming as well as climate shifts have presented a unique ecological situation in regards 

to plant tolerance and fitness.  The ability or the inability to adapt to various and sudden 

temperature shifts can result in a decrease in an individual’s or species’ fitness as well as 

biodiversity in a natural community of plants.  Previous examination of plant thermal tolerance, 

specifically crop plants, demonstrated a decrease in corn crop yield when the plants experienced 

a temperature increase during the growing seasons (Lobell and Asner, 2003).  High temperature 

affects organisms by causing membrane integrity loss, protein inactivation and denaturation, and 

metabolic and cellular disequilibrium, which may ultimately lead to cellular death (Quinn, 1988; 

Lindquist, 1992; Los and Murata, 2000).  However, most plant species have an innate capacity to 

survive high temperature stress and can sense and acclimate to high temperatures with metabolic 

and cellular adjustments.  This allows some level of tolerance to heat extremes that would 

otherwise be lethal.  This process is known as  acquired thermal tolerance (Vierling, 1991).    

Heat shock proteins (HSPs) are a type of molecular chaperone that reduces protein 
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denaturation and aggregation, targets denatured proteins for proteasome degradation, and 

facilitates protein folding necessary for proper maturation (Johnson and Craig, 1997; Lee and 

Vierling, 2000; Frydman, 2001).  Plant HSPs lessen high temperature stress by allowing some 

level of thermal protein protection  (Vierling, 1991).   

The Tonsor lab wished to examine the naturally occurring genetic variation in expression 

of heat shock protein 101 (HSP101), in Arabidopsis thaliana.  Arabidopsis thaliana, commonly 

called arabidopsis, thale or mouse-ear cress, is a small flowering plant related to cabbage and 

mustard.  HSP101 has been shown previously to be a component of acquired thermal tolerance in 

Arabidopsis thaliana (Queitsch et al., 2000).  In other eukaryotes, members of this class of 

proteins are involved in thermal tolerance and repairing aggregated proteins (Sanchez and 

Lindquist, 1990; Sanchez et al., 1992; Parsell et al., 1994; Lindquist et al., 1995; Glover and 

Lindquist, 1998).  Over the past decade, there has been significant research in the role of HSPs as 

capacitors of variation (Queitsch et al., 2002; Maresca and Schwartz, 2006), but there is little 

known about variations of HSP101 expression and the effects of these variations.  Therefore, in 

collaboration with the Tonsor lab, I examined nine different Arabidopsis thaliana ecotypes to 

quantify their HSP101 expression levels grown at various temperatures.   
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B.2 MATERIALS AND METHODS 

 

B.2.1 HSP101 Isolation, expression, and quantification 

The experiment consisted of four replicate arrays, and the following protocols were performed 

by Imene Boumaza, Toby Liss, and Steve Tonsor.  Each array contained three replicate plants of 

each genotype. Labeling was blind and location within an array was random. Plants were grown 

in Ray Leach SC10 “Supercell Conetainer” 164 ml. plastic pots 

(http://www.stuewe.com/products/rayleach.html) filled with Turface (www.turface.com) growth 

medium.  After five days at 4 ºC (to break dormancy) ,  racks of 21 Supercell Conetainers were 

placed in fiberglass trays and watered with an automatic ebb-and-flood system in which nutrients 

were supplied with Dosatron apportioners at a rate that maximized plant growth (Tonsor, 

unpublished).  Plants were grown in two Conviron PGW36 chambers retrofitted with automatic 

mist and watering controls. Light was supplied at 270 μMoles photons m-2s-1 for 16 hrs/24 hour 

period.  Temperatures cycled between 15 and 22 ºC night/day.  Two thermal treatments were 

imposed.  The control treatment was maintained as described above.  An HSP induction 

treatment was imposed by moving one array containing three replicates of each genotype from 

each of the control chambers to a third chamber for 2-3 hours every Monday, Wednesday and 

Friday between 11:00 and 15:00.  This third chamber had identical conditions to the control 
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chambers, except that temperature was maintained at 38 ºC.  After the ~2-hour induction 

treatment, all plants were returned to the control treatment chambers.   Locations of the control 

and induction replicate trays were switched within control chambers following each induction 

treatment to minimize location effects within the control chamber.  However, individual plants 

were consistently given either the control treatment or the periodic HSP induction treatment.   

At day 21, a single leaf was removed from each plant and total protein extract was 

obtained and clarified utilizing a previously established protocol (Hong and Vierling 2001).  I 

then assayed Hsp101 content was by western blot analysis.  In brief, 5 μg of total protein of each 

sample was resolved by SDS-PAGE and transferred onto nitrocellulose.  Hsp101 and GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase), a component of the glycolytic pathway, were 

identified by western blotting using anti-Hsp101 and anti-GAPDH.  Western blots were 

developed using Enhanced Chemiluminescence (Pierce) according to the manufacturer’s 

instructions.  Images were obtained on a Kodak 440CF Image Station.  The results were 

quantified using Kodak 1D (version 3.6) imaging software, normalizing the level of Hsp101 

expression to the background as well as to GAPDH levels.   
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B.3 RESULTS 

B.3.1 Temperature-response curve slopes differ genetically among natural populations 

across an induction temperature gradient 

A previous study demonstrated that HSP101 is a component of acquired thermal tolerance in 

Arabidopsis thaliana (Queitsch et al., 2000).   However, this study did not account for genetic 

variation of the Arabidopsis ecotypes located throughout the world, which could affect HSP101 

expression as a result of evolutionary pressures, such as acquired thermal tolerance.  Therefore, 

the Tonsor lab collected nine representative Arabidopsis species and subjected them to brief and 

various temperatures.  Next, leaves were collected from these plants (Table 3).  The Tonsor lab 

isolated cellular extracts from the different ecotypes, which I subsequently used to examine and 

quantify the level of HSP101 expression by immunoblotting techniques (Figure 37).  The 

HSP101 levels of these various ecotypes showed very little variation of protein expression at 

lower temperatures (22-34° C).  However, HSP101 protein levels showed significant variability 

in the different ecotypes when grown at 40° C.  Particularly, PHW-24 and Loch Ness, the two 

ecotypes examined in this study that resided at the most northern latitude, showed the greatest 

induction of HSP101 when heat shocked to 40° C. 
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Table 3. Arabidopsis thaliana species utilized in this study 

Northern latitude (lat) and longitude (lon) (negative sign indicates West, positive East) 

are given.  “Accession” names are those used in the www.arabidopsis.org stock list. 

Accession  
Common 

Name 
Country Town/Source Lat Lon 

Altitude 

(m) 

Col Columbia Poland Landsberg/Warthe 53 16 100 

Sha Shakdara  Tadjikistan Pamiro-Alay 38 68 3400 

Mt Martuba Libya Martuba/Cyrenaika 33 23 312 

Ct Catania  Italy Catania, Sicily 37 15 100 

Lc Loch Ness  Scotland Loch Ness 58 -5 100 

Bay Bayreuth  Germany Bayreuth 49 16.5 150 

Est Estland  Russia Estland 59 28 200 

Co Coimbra  Portugal Coimbra 41 -9 100 

PHW-24 N/A United Kingdom Sidmouth 51 -3 10 
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Figure 37.  HSP101 induction due to temperature variation in nine different Arabidopsis 

thaliana ecotypes.   

Leaves from nine different wild type Arabidopsis thaliana ecotypes ((Bayreuth ; Bay, 

Columbia ; Col, Coimbra ; Co, Estland ; Est, Loch Ness ; LC, Martuba; Mt, No common name; 

PHW-24, Shakdara ; Sha, Catania ; Ct) see Table 3) were collected after heat induction at 

various temperatures (22, 28, 34, and 40°C).  Proteins in the leaf cellular extracts were resolved 

by SDS-PAGE and quantitative western blots were performed to detect the protein levels of 

HSP101 and GAPDH (as a loading control).  (A) Relative protein levels were determined by 

quantifying the intensities of HSP101 expression, and then normalizing these values to the levels 

GAPDH expression. Data represents the means of 9 independent experiments.  (B) A 

representative western blot used to amass the data in part A.  The samples resolved in the three 

lanes for each temperature are three random ecotypes assayed in this study. 
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B.4 DISCUSSION 

During cellular stress, such as seen during growth at relatively non-permissive temperatures, for 

a given species there is an increased propensity of proteins to denature, misfold, or aggregate 

(Johnson and Craig, 1997; Brodsky and McCracken, 1999; Fewell et al., 2001; Frydman, 2001; 

Cristofari and Darlix, 2002; Nishikawa et al., 2005; Schroder and Kaufman, 2005).  

Furthermore, prolonged exposure to these stress-inducing conditions may ultimately lead to cell 

death.  Thus one must have a series of adaptive processes to prevent an untimely demise.  One of 

these processes is HSP induction, which is a significant response to alleviate the negative results 

of thermal stress (Johnson and Craig, 1997; Lee and Vierling, 2000; Frydman, 2001).  As noted 

earlier, HSP101 is a component of acquired thermal tolerance in Arabidopsis thaliana (Queitsch 

et al., 2000).  If HSP101 expression is beneficial, it suggests that this protein, as well as other 

proteins in the HSP family, would be s trongly and constitutively expressed regardless of the 

thermal conditions the plant might encounter.  However, examination of the nine ecotypes of 

Arabidopsis shows that the induction response varies widely in this species, both in the 

maximum amount of HSP101 expression in this experiment, as well as in the sensitivity to 

various temperature triggers (Figure 37).  These observations lead to two questions; why is 

HSP101 induced during times of thermal stress and not as strongly at other times, and why is 

there variation of HSP101 expression in the different ecotypes of Arabidopsis? 

To address the first question, there has been evidence suggesting that HSP expression is 

costly in both terms of energy and nitrogen use (Feder and Hofmann, 1999).  While the Tonsor 

lab demonstrated that the expression of the HSPs improves the amount of fruit in plants and thus 
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fitness when HSP is expressed (unpublished data), long-term expression of these molecular 

chaperones would ultimately reduce the fitness of the individual.  Thus, HSP101 is rapidly 

induced during times of thermal stress, but is not maintained for prolonged periods. 

To address the second question, we must consider the wide variations among the nine 

ecotypes of Arabidopsis in regards to the induction response at different temperatures.  The 

results suggest evolutionary adaptation.  Ecotypes such as PW-24 and Loch Ness, whose natural 

habitat is at the most northern latitude of those examined, exhibited the greatest induction of 

HSP101 at temperature greater than 38°C (Figure 37 and Table 3).  In contrast, ecotypes located 

closer to the equator, such as Catania and Martuba, showed a modest temperature-dependant 

increase in the level of HSP101 expression (Figure 37 and Table 3).  This suggests that the 

various ecotypes have adapted to their respective environments, at least with regard to thermal 

stress.  Northern ecotypes, which would have a lower mean temperature than those latitudes 

closer to the equator, would require a rapid response to sudden and dramatic tempature increases.  

Expression of HSP101 could accommodate the infrequent increase levels of denature, misfold, or 

aggregated proteins. Indeed data from studies on plant HSP101 homologues support this view.  It 

is unclear at this time what other adaptations these ecotypes might have acquired over time. 

These observations suggest further studies in the evolutionary adaptation of thermal 

tolerance and its variation in natural populations.  This will be invaluable in understanding the 

evolution of complex cellular stress responses and the cost-benefits of these responses in a 

varying environment.  Since agriculture output is strongly affected by thermal conditions, 

understanding the consequences of adapted thermal tolerance can be of considerable value for 

agriculture and man kind as a whole.   
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