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MATHEMATICAL ARCHITECTURE FOR MODELS OF FLUID FLOW

PHENOMENA

Alexandr Labovschii, PhD

University of Pittsburgh, 2008

This thesis is a study of several high accuracy numerical methods for fluid flow problems

and turbulence modeling.

First we consider a stabilized finite element method for the Navier-Stokes equations which

has second order temporal accuracy. The method requires only the solution of one linear

system (arising from an Oseen problem) per time step.

We proceed by introducing a family of defect correction methods for the time dependent

Navier-Stokes equations, aiming at higher Reynolds’ number. The method presented is

unconditionally stable, computationally cheap and gives an accurate approximation to the

quantities sought.

Next, we present a defect correction method with increased time accuracy. The method

is applied to the evolutionary transport problem, it is proven to be unconditionally stable,

and the desired time accuracy is attained with no extra computational cost.

We then turn to the turbulence modeling in coupled Navier-Stokes systems - namely,

MagnetoHydroDynamics. Magnetically conducting fluids arise in important applications

including plasma physics, geophysics and astronomy. In many of these, turbulent MHD

(magnetohydrodynamic) flows are typical. The difficulties of accurately modeling and sim-

ulating turbulent flows are magnified many times over in the MHD case.

We consider the mathematical properties of a model for the simulation of the large

eddies in turbulent viscous, incompressible, electrically conducting flows. We prove existence,

uniqueness and convergence of solutions for the simplest closed MHD model. Furthermore,
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we show that the model preserves the properties of the 3D MHD equations.

Lastly, we consider the family of approximate deconvolution models (ADM) for turbulent

MHD flows. We prove existence, uniqueness and convergence of solutions, and derive a bound

on the modeling error. We verify the physical properties of the models and provide the results

of the computational tests.
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1.0 INTRODUCTION

The accurate and reliable solution of fluid flow problems is important for many applications.

In these one core problem is the Navier-Stokes equations, given by:

ut + u · ∇u− ν∆u +∇p = f , for x ∈ Ω, 0 < t ≤ T

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T.

In the numerical solution of higher Reynolds number flow problems some of the standard

iterative methods fail. One common mode of failure is non-convergence of the iterative

nonlinear and linear solvers used to compute the velocity and pressure at the new time

levels. In Sections 2 and 3 we introduce two unconditionally stable methods designed to

overcome this type of failure.

The method, introduced in Section 2, is the Crank-Nicolson Linear Extrapolation with

Stabilization. The two main ingredients are the linear extrapolation of the velocity and

the artificial viscosity stabilization. The method is unconditionally stable and second-order

accurate. Most importantly, the method requires the solution of one linear system per time

step, and this linear system is a discretized Oseen problem (with cell Reynolds number O(1))

plus an O(h) artificial viscosity operator. Thus, the standard iterative solvers and well-tested

preconditioners can be used successfully, independent of how small the viscosity coefficient

is. We also show that the stabilization in the method alters the numerical method’s kinetic

energy rather than in its energy dissipation. We discuss the physical fidelity of the method

and provide the results of numerical tests, that verify the accuracy and the convergence

rates.
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In Sections 3 and 4 we introduce the family of Defect Correction methods for time de-

pendent fluid flow problems. There has been an extensive study and development of this ap-

proach for equilibrium flow problems, see e.g. Hemker[Hem82], Koren[K91], Heinrichs[Hei96],

Layton, Lee, Peterson[LLP02], Ervin, Lee[EL06], and subsection 3.1.1 for a review of this

work. Briefly, let a kth order accurate discretization of the equilibrium Navier-Stokes equa-

tions (NSE) be written as

NSEh(uh) = f, (1.0.1)

The DCM computes uh
1 , ..., u

h
k as

− αh∆huh
1 + NSEh(uh

1) = f, (1.0.2)

−αh∆huh
l + NSEh(uh

l ) = f − αh∆huh
l−1, for l = 2, ..., k,

where the velocity approximations uh
i are sought in the finite element space of piecewise

polynomials of degree k.

It has been proven under quite general conditions (see, e.g., [LLP02]) that for the inter-

mediate approximations of the equilibrium NSE

‖uNSE − uh
l ‖energy−norm = O(hk + h‖uNSE − uh

l−1‖energy−norm) = O(hk + hl),

and thus, after l = k steps,

‖u− uh
k‖energy−norm = O(hk).

Note that (1.0.2) requires solving an AV approximation k times which is often cheaper and

more reliable than solving (1.0.1) once.

For many years, it has been widely believed that the method could be directly imported

into implicit time discretizations of flow problems in the obvious quasistatic way. Unfortu-

nately, this natural idea doesn’t seem to be even stable (see Section 3.7). We give a critically

important modification of the natural extension to time dependent problems, that we prove

to be unconditionally stable (Theorem 3.1) and convergent. Hence, we develop a method for

which standard iterative solvers can be applied (for arbitrarily large Reynolds number); the

method is unconditionally stable, computationally attractive and highly accurate: in order
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to obtain an accuracy of O(hk), one needs to solve an artificial viscosity approximation k

times, which is often cheaper and more reliable (for high Reynolds number) than solving

the NSE once. Section 4 presents a modification of this method, that allows to obtain extra

time accuracy with almost no extra computational cost.

In Chapter 5 we consider the coupling between the porous media problem

−∇ · (k∇p) = g

u = −k∇p,

and the convection diffusion problem

φt − ε∆φ + u · ∇φ + cφ = f.

This type of coupling is of great importance in a wide array of applications, including

oil recovery and nuclear waste storage. The method introduced in this chapter is based on

a consistent multiscale mixed method formulation, presented for the stationary convection

diffusion problem by W. Layton [Layton02]. We couple the eddy viscosity discretization to

the porous media problem, prove the stability of the method and track the velocity error

estimate from Darcy’s problem to the convection diffusion to prove the near optimal error

bound.

In Sections 6 and 7 we consider turbulence modeling in MagnetoHydroDynamics. Even in

the hydro-dynamic (flow governed by the Navier-Stokes equations) case the modern science

does not yet have a good understanding of turbulent phenomena - due to the turbulence

being diffusive, chaotic, irregular, highly dissipative. Another important characteristics of

the turbulent flow is the continuum of scales (unsteady vortices can appear at different scales

and interact with each other). From the critical length scale determined by Kolmogorov, the

size of the smallest persistent eddy is O(Re−3/4), where the Reynolds number Re could be

described as the ratio of advection coefficient to the diffusion coefficient. Hence, in order to

accurately capture all physical properties of the three-dimensional flow, one needs to resolve

the flow with O(Re9/4) meshpoints. However, the Reynolds number for air flow around a car

is of the order 106, around an airplane - 107, and it can achieve O(1020) for some atmospheric

3



flows. Therefore, it is not computationally feasible to use direct numerical simulations for

most of the turbulent flows. Hence - the modeling.

Magnetically conducting fluids arise in important applications including climate change

forecasting, plasma confinement, controlled thermonuclear fusion, liquid-metal cooling of

nuclear reactors, electromagnetic casting of metals, MHD sea water propulsion. In many of

these, turbulent MHD (magnetohydrodynamics [Alfv42]) flows are typical. The difficulties

of accurately modeling and simulating turbulent flows are magnified many times over in the

MHD case. They are evinced by the more complex dynamics of the flow due to the coupling

of Navier-Stokes and Maxwell equations via the Lorentz force and Ohm’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced by the

interaction of electric currents and magnetic fields in the fluid. The Lorentz forces can be used

to control the flow and to attain specific engineering design goals such as flow stabilization,

suppression or delay of flow separation, reduction of near-wall turbulence and skin friction,

drag reduction and thrust generation.

The mathematical description of the problem proceeds as follows. Assuming the fluid

to be viscous and incompressible, the governing equations are the Navier- Stokes and pre-

Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g. [Sher65]). Let

Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity, pressure, and the

magnetic field of the flow, driven by the velocity body force f and magnetic field force curl g.

Then u, p, B satisfy the MHD equations:

ut +∇ · (uu)− 1

Re
∆u +

S

2
∇(B2)− S∇ · (BB) +∇p = f,

Bt +
1

Rem

curl(curl B) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.0.3)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (1.0.4)

and with periodic boundary conditions (with zero mean):

Φ(t, x + Lei) = Φ(t, x), i = 1, 2, 3,

∫

Ω

Φ(t, x)dx = 0, (1.0.5)
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for Φ = u, u0, p, B, B0, f, g.

Here Re, Rem, and S are nondimensional constants that characterize the flow: the

Reynolds number, the magnetic Reynolds number and the coupling number, respectively.

Direct numerical simulation of a 3d turbulent flow is often not computationally economi-

cal or even feasible. On the other hand, the largest structures in the flow (containing most of

the flow’s energy) are responsible for much of the mixing and most of the flow’s momentum

transport. This led to various numerical regularizations; one of these is Large Eddy Simula-

tion (LES) [S01], [J04], [BIL06]. It is based on the idea that the flow can be represented by

a collection of scales with different sizes, and instead of trying to approximate all of them

down to the smallest one, one defines a filter width δ > 0 and computes only the scales

of size bigger than δ (large scales), while the effect of the small scales on the large scales

is modeled. This reduces the number of degrees of freedom in a simulation and represents

accurately the large structures in the flow.

In Sections 6 and 7 we consider the problem of modeling the motion of large struc-

tures in a viscous, incompressible, electrically conducting, turbulent fluid. We introduce a

family of approximate deconvolution models - referring to the family of models in [AS01].

Given the filtering widths δ1 and δ2, the model computes w, q, W - the approximations to

uδ1 ,pδ1 ,B
δ2

. Here aδ1 , aδ2 denote two local, spacing averaging operators that commute with

the differentiation. The ADM for the MHD reads

wt +∇ · (G1
Nw)(G1

Nw)
δ1 − 1

Re
∆w − S∇ · (G2

NW ) (G2
NW )

δ1
+∇q = f

δ1
, (1.0.6a)

Wt +
1

Rem

curl(curl W ) +∇ · ((G2
NW )(G1

Nw)
δ2

)−∇ · ((G1
Nw)(G2

NW )
δ2

) (1.0.6b)

= curl gδ2 ,

∇ · w = 0, ∇ ·W = 0, (1.0.6c)

subject to w(0, x) = uδ1
0 (x),W (0, x) = B

δ2
0 (x) and periodic boundary conditions (with zero

means). Here G1
N and G2

N are the deconvolution operators, that will be defined in Section

7.2.

We begin by proving the existence and uniqueness of solutions to the equations of the

model, and that the solutions to the model equations converge to the solution of the MHD

5



equations in a weak sense as the averaging radii converge to zero. Then the physical fidelity

of the models has to be established. For that we consider the conservation laws - and

verify that the model’s energy and helicities are also conserved, as they are for the MHD

equations; the models also preserve the Alfvén waves - the unique property of the MHD flows.

We perform the computational tests to verify the models’ verifiability, and we also conclude

that in the situations when the direct numerical simulation is no longer available (flows with

high Reynolds and magnetic Reynolds numbers), the solution can still be obtained by the

ADM approach.
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2.0 THE STABILIZED, EXTRAPOLATED TRAPEZOIDAL FINITE

ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS

2.1 INTRODUCTION

The accurate and reliable solution of fluid flow problems is important for many applications.

In these one core problem is the Navier-Stokes equations, given by: find u : Ω × [0, T ] →
Rd (d = 2, 3), p : Ω× (0, T ] → R satisfying

ut + u · ∇u− ν∆u +∇p = f , for x ∈ Ω, 0 < t ≤ T

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u = 0, on ∂Ω, for 0 < t ≤ T , (2.1.1)

u(x, 0) = u0(x), for x ∈ Ω,

with the usual normalization condition that
∫

Ω
p(x, t) dx = 0 for 0 < t ≤ T when (2.1.1)

is discretized by accepted, accurate and stable methods, such as the finite element method

in space and Crank-Nicolson in time, the approximation can still fail for many reasons.

One common mode of failure is non-convergence of the iterative nonlinear and linear solvers

used to compute the velocity and pressure at the new time levels. We consider herein a

simple, second order accurate, and unconditionally stable method which addresses these

failure modes. The method requires the solution of one linear system per time step.

This linear system is a discretized Oseen problem plus an O(h) artificial viscosity operator

- so the standard iterative solvers and well-tested preconditioners can be used successfully

(the preconditioners are described, e.g., in chapter 8 of [ESW05]). Suppressing the spatial
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discretization, the method can be written as (with time step k = ∆t and tuning parameter

α = O(1))

∇ · un+1 = 0 and

un+1 − un

k
+ Un+1/2 · ∇(

un+1 + un

2
)− ν∆(

un+1 + un

2
)− αh∆un+1

+∇(
pn+1 + pn

2
) = f(tn+1/2)− αh∆un. (2.1.2)

Here Un+1/2 := 3
2
un− 1

2
un−1 is the linear extrapolation of the velocity to tn+1/2 from previous

time levels. Thus, (2.1.2) is an extension of Baker’s [B76] extrapolated Crank-Nicolson

method. Artificial viscosity stabilization is introduced into the linear system for un+1 by

adding −αh∆un+1 to the LHS and correcting for it by −αh∆un (the previous time level)

on the RHS. This is a known idea1 in practical CFD, and likely has been used in practical

computations with many different timestepping methods. To our knowledge however, it has

only been proven unconditionally stable in combination with first order, backward Euler time

discretizations, e.g. E and Liu [EL01], Anitescu, Layton and Pahlevani [ALP04], Pahlevani

[P06] for related stabilizations and also He [He03] for a two-level method based on Baker’s

extrapolated Crank-Nicolson method.

The increase in accuracy from first order Backward Euler with stabilization to second

order in (2.1.2) (extrapolated CN with stabilization) is important. There is also a quite

simple proof that (2.1.2) is unconditionally stable. We give the stability proof in Proposition

2.3 and then explore the effect the stabilization (and correction) in (2.1.2) have on the rates

of convergence for various flow quantities.

No discretization is perfect. However, simple and stable ones leading to easily solvable

linear systems can be very useful. We therefore conclude with numerical tests which verify

accuracy and decrease in complexity in the linear equation solver.

1William Layton first saw it used as a numerical regularization in 1980 and it seems to have been known
well before that. It is related to the simple Kelvin-Voight model of viscoelasticity, Oskolkov [O80], Kalantarev
and Titi [KT07].
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Defining the method precisely requires a small amount of notation. The spatial part of

(2.1.1) is naturally formulated in

X := H1
0 (Ω)d, Q := L2

0(Ω).

The finite element approximation begins by selecting conforming finite element spaces Xh ⊂
X, Qh ⊂ Q satisfying the usual discrete inf-sup condition (defined in Section 2). Denote the

usual L2 norm and inner product by ‖·‖ and (·, ·), and the space of discretely divergence free

functions Vh by:

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0, ∀ qh ∈ Qh}.

Define the explicitly skew-symmetrized trilinear form

b∗(u,v,w) :=
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v), (2.1.3)

and the extrapolation to tn+ 1
2

:= tn+tn+1

2
by

E[uh
n,uh

n−1] :=
3

2
uh

n −
1

2
uh

n−1, (2.1.4)

where uh
j (x) is a known approximation to u(x, tj).

The method studied is a 2-step method, so the initial condition and first step must be

specified, but are not essential. We choose the Stokes Projection, defined in Section 2.2.

Algorithm 2.1 (Stabilized, extrapolated trapezoid rule). Let uh
0 be the Stokes Projection

of u0(x) into Vh. At the first time level (uh
1 , p

h
1) ∈ (Xh, Qh) are sought, satisfying

(
uh

1 − uh
0

k
,vh) + ν(∇(

uh
1 + uh

0

2
),∇vh) + αh(∇uh

1 ,∇vh)

+b∗(uh
0 ,

uh
1 + uh

0

2
,vh) − (

1

2
(ph

1 + ph
0),∇ · vh)

= (f(t 1
2
),vh) + αh(∇uh

0 ,∇vh), ∀ vh ∈ Xh, (2.1.5)

(∇ · uh
1 , q

h) = 0, ∀ qh ∈ Qh.
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Given a time step k > 0 and an O(1) constant α, the method computes uh
2 ,u

h
3 , · · · , ph

2 , p
h
3 , · · ·

where tj = jk and uh
j (x) ∼= u(x, tj), p

h
j (x) ∼= p(x, tj). For n ≥ 1, given (uh

n, ph
n) ∈ (Xh, Qh)

find (uh
n+1, p

h
n+1) ∈ (Xh, Qh) satisfying

(
uh

n+1 − uh
n

k
,vh) + ν(∇(

uh
n+1 + uh

n

2
),∇vh) + αh(∇uh

n+1,∇vh)

+b∗(E[uh
n,u

h
n−1],

uh
n+1 + uh

n

2
,vh) − (

1

2
(ph

n+1 + ph
n),∇ · vh)

= (f(tn+ 1
2
),vh) + αh(∇uh

n,∇vh), ∀ vh ∈ Xh, (2.1.6)

(∇ · uh
n+1, q

h) = 0, ∀ qh ∈ Qh.

We will refer to Algorithm 2.1 as CNLEStab (Crank-Nicolson with Linear Extrapolation

Stabilized). If α = 0, i.e. if no stabilization is used, Algorithm 2.1 reduces to one studied by

G. Baker in 1976 [B76] and others, that we will refer to as CNLE.

We shall show that Algorithm 2.1 (CNLEStab) is unconditionally stable and second order

accurate, O(k2 +hk +spatial error). The extra stabilization terms added are O(hk) because

αh(∇(uh
n+1 − uh

n),∇vh) = αhk(∇(
uh

n+1 − uh
n

k
),∇vh) ' hk(−∆ut) = O(hk).

As stated above, each time step of the method requires the solution of only one linear Oseen

problem at cell Reynolds number O(1).

Remark 2.1. At the first time level, a nonlinear treatment of the trilinear term can be used

instead of extrapolation: find (uh
1 , p

h
1) ∈ (Xh, Qh), satisfying

(
uh

1 − uh
0

k
,vh) + ν(∇(

uh
1 + uh

0

2
),∇vh) + αh(∇uh

1 ,∇vh)

+b∗(
uh

1 + uh
0

2
,
uh

1 + uh
0

2
,vh) − (

1

2
(ph

1 + ph
0),∇ · vh)

= (f(t 1
2
),vh) + αh(∇uh

0 ,∇vh), ∀ vh ∈ Xh, (2.1.7)

(∇ · uh
1 , q

h) = 0, ∀ qh ∈ Qh.

We shall show that this modification affects neither the stability of the method nor the conver-

gence rate of the velocity error approximation, but increases the convergence rate of pressure

approximation.
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The stabilization in the method alters the numerical method’s kinetic energy rather than

in its energy dissipation. Proposition 2.4 and Section 2.5 show that

Kinetic Energy in CNLEStab =
1

2L3
[||uh

n||2 + αkh||∇uh
n||2],

Energy Dissipation in CNLEStab =
ν

L3
||∇uh

n||2.

We shall show in Sections 2.5 and 2.6 that this has several interesting consequences.

Section 2.2 collects some mathematical preliminaries for the analysis that follows. Sec-

tions 2.3 and 2.4 present a convergence analysis of the method (2.1.2). The modification

of the method’s kinetic energy influences the norm in which convergence is proven. A ba-

sic convergence analysis is fundamental to a numerical method’s usefulness but there are

many important questions it does not answer. We try to address some of these in Section

2.5 and onward. In Section 2.5 we consider physical fidelity of a simulation produced by

the method (2.1.2). One aspect of physical fidelity is conservation of important integral

invariants of the Euler equations (ν = 0) and near conservation when ν is small. The con-

servation of the method’s kinetic energy when ν = 0 is clear from the stability proof in

Section 2.3. The second important integral invariant of the Euler equations in 3d is helicity,

[MT92],[DG01],[CCE03] and in 2d, enstrophy. Approximate conservation of these is explored

in Section 2.5. Section 2.6 gives some insight into the predictions of (2.1.1) of flow statistics

in turbulent flows. In Section 2.7 we present the results of the computational tests. These

confirm the rates of convergence, predicted in Section 2.3.

2.2 MATHEMATICAL PRELIMINARIES

Recall that (2.1.1) is naturally formulated in

X := H1
0 (Ω)d, Q := L2

0(Ω).

The dual space of X is denoted by X∗ (and its norm, by || · ||−1), and V = {v ∈ X :

(q,∇ · v) = 0, ∀ q ∈ Q} is the set of weakly divergence free functions in X. Norms in the

Sobolev spaces Hk(Ω)d (or W k
2 (Ω)d) are denoted by ‖ · ‖k, and seminorms by | · |k.
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Later analysis will require upper bounds on the nonlinear term, given in the following

lemma.

Lemma 2.1. Let Ω ⊂ R3or R2. For all u,v,w ∈ X

|b∗(u,v,w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖,

and

|b∗(u,v,w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

If, in addition, v,∇v ∈ L∞(Ω),

|b∗(u,v,w)| ≤ C(Ω)(‖v‖L∞(Ω) + ‖∇v‖L∞(Ω))‖u‖‖∇w‖

and

|b∗(u,v,w)| ≤ C(‖u‖‖∇v‖L∞(Ω) + ‖∇u‖‖v‖L∞(Ω))‖w‖.

Proof. See Girault and Raviart [GR86] for a proof of the first inequality. The second inequal-

ity follows from Hölder’s inequality, the Sobolev embedding theorem and an interpolation

inequality, e.g., [LT98]. The third bound follows from the definition of the skew-symmetric

form and Hölder’s inequality

|b∗(u,v,w)| ≤ 1

2
‖∇v‖L∞(Ω)‖u‖‖w‖+

1

2
‖v‖L∞(Ω)‖u‖‖∇w‖,

and Poincare’s inequality, since w ∈ X. The proof of the last inequality can be found, e.g.,

in [LT98].

Throughout the chapter, we shall assume that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming, have approximation properties typical of finite element

spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖∇vh‖‖qh‖ ≥ βh > 0, (2.2.1)
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where βh is bounded away from zero uniformly in h. Examples of such spaces can be found

in [GR79], [GR86], [G89]. In addition, we assume that an inverse inequality holds, i.e. there

exists a constant C independent of h and k, such that

‖∇v‖ ≤ Ch−1‖v‖, ∀v ∈ Xh. (2.2.2)

We assume that (Xh, Qh) satisfy the following approximation properties typical of piece-

wise polynomials of degree (m,m− 1), [BS94]:

inf
v∈Xh

‖u− v‖ ≤ Chm+1|u|m+1, u ∈ Hm+1(Ω), (2.2.3)

inf
v∈Xh

‖∇(u− v)‖ ≤ Chm|u|m+1, u ∈ Hm+1(Ω), (2.2.4)

inf
q∈Qh

‖p− q‖ ≤ Chm|p|m, p ∈ Hm(Ω). (2.2.5)

We will also use the following inequality, which holds under (2.2.1) and for all u ∈ V:

inf
v∈Vh

‖∇(u− v)‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖. (2.2.6)

The proof of (2.2.6) can be found, e.g., in [GR79] (p.60, inequality (1.2)).

Throughout the chapter we use the following Stokes Projection.

Definition 2.1 (Stokes Projection). The Stokes projection operator PS: (X, Q) → (Xh, Qh),

PS(u, p) = (ũ, p̃), satisfies

ν(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0,

(∇ · (u− ũ), qh) = 0, (2.2.7)

for any vh ∈ Xh, qh ∈ Qh.

In (Vh, Qh) this formulation reads: given (u, p) ∈ (X, Q), find ũ ∈ Vh satisfying

ν(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (2.2.8)

for any vh ∈ Vh, qh ∈ Qh. Under the discrete inf-sup condition (2.2.1), the Stokes projection

is well defined.
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Proposition 2.1 (Stability of the Stokes Projection). Let u, ũ satisfy (2.2.8). The following

bound holds

ν‖∇ũ‖2 ≤ 2[ν‖∇u‖2 + dν−1 inf
qh∈Qh

‖p− qh‖2], (2.2.9)

where d is the dimension, d = 2, 3.

Proof. Take vh = ũ ∈ Vh in (2.2.8). This gives

ν‖∇ũ‖2 = ν(∇u,∇ũ)− (p− qh,∇ · ũ). (2.2.10)

Using the Cauchy-Schwarz and Young inequalities, we obtain

ν‖∇ũ‖2 ≤ ν‖∇u‖2 +
ν

4
‖∇ũ‖2 (2.2.11)

+dν−1 inf
qh∈Qh

‖p− qh‖2 +
ν

4d
‖∇ · ũ‖2.

Next, use the obvious inequality ‖∇ · ũ‖2 ≤ d‖∇ũ‖2. Combining the like terms in (2.2.11)

concludes the proof.

In the error analysis we shall use the error estimate of the Stokes Projection (2.2.8).

Proposition 2.2 (Error estimate for the Stokes Projection). Suppose the discrete inf-sup

condition (2.2.1) holds. Then the error in the Stokes Projection satisfies

ν‖∇(u− ũ)‖2 ≤ C[ν inf
vh∈Xh

‖∇(u− vh)‖2 + ν−1 inf
qh∈Qh

‖p− qh‖2], (2.2.12)

where C is a constant independent of h and ν.

Proof. Decompose the projection error e = u− ũ into e = u− I(u)− (ũ− I(u)) = η − φ,

where η = u− I(u), φ = ũ− I(u), and I(u) approximates u in Vh. Take vh = φ ∈ Vh in

(2.2.8). This gives

ν‖∇φ‖2 = ν(∇η,∇φ)− (p− qh,∇ · φ). (2.2.13)

The Cauchy-Schwarz and Young inequalities lead to

ν‖∇φ‖2 ≤ 2ν‖∇η‖2 + Cν−1 inf
qh∈Qh

‖p− qh‖2. (2.2.14)

Since I(u) is an approximation of u in Vh, we can take infimum over Vh. The proof is

concluded by applying (2.2.6) and the triangle inequality.
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Remark 2.2. Using the Aubin-Nitsche lift, one can obtain (see, e.g., [BDK82])

‖u− ũ‖ ≤ Ch

(
inf

vh∈Xh
‖∇(u− vh)‖+ inf

qh∈Qh
‖p− qh‖

)
, (2.2.15)

where C = C(ν, Ω).

The following variation on the discrete Gronwall Lemma is given in [HR90] as a remark

to Lemma 5.1. In this estimate, the first sum on the right hand side is only up to the

next-to-last time step, which allows for an estimate with no smallness condition on k.

Lemma 2.2 (Discrete Gronwall). Let k, B, an, bn, cn, dn for integers n ≥ 0 be nonnegative

numbers such that for N ≥ 1, if

aN + k

N∑
n=0

bn ≤ k

N−1∑
n=0

dnan + k

N∑
n=0

cn + B,

then for all k > 0,

aN + k

N∑
n=0

bn ≤ exp(k
N−1∑
n=0

dn)

(
k

N∑
n=0

cn + B

)
.

The following results are readily obtained by Taylor series expansion.

Lemma 2.3. Let k = tn+1− tn for all i and denote tn+1/2 = tn+1+tn
2

. Let ψ(·, t) be a function

such that ψt ∈ C0(0, T ; L2(Ω)). Then there exists θ ∈ (0, 1) such that

‖ψ(·, tn+1)− ψ(·, tn)

k
‖ ≤ C‖ψt(·, tn+θ)‖.

If ψtt ∈ C0(0, T ; L2(Ω)), then there exist θ1, θ2 ∈ (0, 1) such that

‖ψ(·, tn+1) + ψ(·, tn)

2
− ψ(·, tn+1/2)‖ ≤ Ck2‖ψtt(·, tn+θ1)‖

and

‖3

2
ψ(·, tn)− 1

2
ψ(·, tn−1)− ψ(·, tn+1/2)‖ ≤ Ck2‖ψtt(·, tn+θ2)‖.

If ψttt ∈ C0(0, T ; L2(Ω)), then there exists θ3 ∈ (0, 1) such that

‖ψ(·, tn+1)− ψ(·, tn)

k
− ψt(·, tn+1/2)‖ ≤ Ck2‖ψttt(·, tn+θ3)‖.
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2.3 STABILITY AND CONVERGENCE OF THE STABILIZED METHOD

We start with the proof of unconditional stability, which is the mathematical key to the good

properties of the method, and motivates the more technical error analysis that follows.

The unconditional stability of Algorithm 2.1 is proven in the following proposition.

Proposition 2.3. [Stability of extrapolated trapezoidal method] Let f ∈ L2(0, T ; H−1(Ω)).

The stabilized, extrapolated trapezoid scheme (2.1.5)-(2.1.6) (and the scheme (2.1.6)-(2.1.7))

is unconditionally stable. For any h, k > 0 and α ≥ 0, n ≥ 0

||uh
n+1||2 + αkh||∇uh

n+1||2 + νk

n∑
i=0

||∇(
uh

i+1 + uh
i

2
)||2

≤ ||uh
0 ||2 + αkh||∇uh

0 ||2 + ν−1k

n∑
i=0

||f(ti+ 1
2
)||2−1.

Proof. Taking vh =
uh

1+uh
0

2
∈ Vh in (2.1.5) (and in (2.1.7)) gives

(
uh

1 − uh
0

k
,
uh

1 + uh
0

2
) + ν‖∇(

uh
1 + uh

0

2
)‖2 + αhk(∇uh

1 − uh
0

k
,∇uh

1 + uh
0

2
)

= (f(t 1
2
),

uh
1 + uh

0

2
). (2.3.1)

Apply the Cauchy-Schwarz and Young inequalities. This gives

‖uh
1‖2 − ‖uh

0‖2

2k
+ ν‖∇(

uh
1 + uh

0

2
)‖2 + αhk

‖∇uh
1‖2 − ‖∇uh

0‖2

2k

≤ 1

2
ν−1‖f(t 1

2
)‖2
−1 +

1

2
ν‖∇(

uh
1 + uh

0

2
)‖2. (2.3.2)

Thus, on the first time level we obtain the stability bound

‖uh
1‖2 + νk‖∇(

uh
1 + uh

0

2
)‖2 + αhk‖∇uh

1‖2 ≤ ‖uh
0‖2 + αhk‖∇uh

0‖2 + ν−1k‖f(t 1
2
)‖2
−1.(2.3.3)

Now consider (2.1.6) for n ≥ 1; let vh =
uh

n+1+uh
n

2
∈ Vh. This gives

(
uh

n+1 − uh
n

k
,
uh

n+1 + uh
n

2
) + ν‖∇(

uh
n+1 + uh

n

2
)‖2 + αhk(∇(

uh
n+1 − uh

n

k
),∇(

uh
n+1 + uh

n

2
))

= (f(tn+ 1
2
),

uh
n+1 + uh

n

2
). (2.3.4)
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Applying Cauchy-Schwarz and Young inequalities leads to

‖uh
n+1‖2 − ‖uh

n‖2

2k
+ ν‖∇(

uh
n+1 + uh

n

2
)‖2 + αhk

‖∇uh
n+1‖2 − ‖∇uh

n‖2

2k

≤ 1

2
ν−1‖f(tn+ 1

2
)‖2
−1 +

1

2
ν‖∇(

uh
n+1 + uh

n

2
)‖2. (2.3.5)

Simplifying (2.3.5) gives

(‖uh
n+1‖2 − ‖uh

n‖2) + νk‖∇(
uh

n+1 + uh
n

2
)‖2 + αhk(‖∇uh

n+1‖2 − ‖∇uh
n‖2)

≤ ν−1k‖f(tn+ 1
2
)‖2
−1. (2.3.6)

Summing (2.3.6) over the time levels gives

‖uh
n+1‖2 + k

n∑
i=1

ν‖∇(
uh

i+1 + uh
i

2
)‖2 + αhk‖∇uh

n+1‖2

≤ ‖uh
1‖2 + αhk‖∇uh

1‖2 + k

n∑
i=1

ν−1‖f(ti+ 1
2
)‖2
−1. (2.3.7)

Finally, using the bound on (‖uh
1‖2 + αhk‖∇uh

1‖2) from (2.3.3), we obtain that for all n ≥ 1

‖uh
n+1‖2 + k

n∑
i=0

ν‖∇(
uh

i+1 + uh
i

2
)‖2 + αhk‖∇uh

n+1‖2

≤ ‖uh
0‖2 + αhk‖∇uh

0‖2 + k

n∑
i=0

ν−1‖f(ti+ 1
2
)‖2
−1. (2.3.8)

This result, combined with Proposition 2.1, proves the Proposition.

Hence the method is unconditionally stable. The question remains: how fast does uh

converge to u? To evaluate the rates of convergence as h → 0, we must make a specific

choice of Xh, Qh.
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Theorem 2.3.1 (Velocity Convergence Rates). Let the finite-element spaces (Xh, Qh) in-

clude continuous piecewise polynomials of degree m and m − 1 respectively (m ≥ 2), and

satisfy the discrete inf-sup condition (2.2.1) and approximation properties (2.2.3)-(2.2.5).

Let C‖u‖L∞(0,T ;Hm+1(Ω))khm− 3
2 ≤ 1/2, and

u ∈ L∞(0, T ; Hm+1(Ω)) ∩ L∞(0, T ; L∞(Ω)) ∩ C0(0, T ; H1(Ω)),

∇u ∈ L∞(0, T ; L∞(Ω)),

ut ∈ L2(0, T ; Hm+1(Ω)) ∩ L∞(0, T ; L2(Ω)),∇utt ∈ L2(0, T ; H1(Ω)),

ptt ∈ L2(0, T ; L2(Ω)).

Then there is a C = C(ν,u, p, T ) < ∞ such that ∀n ∈ {0, 1, ..., N − 1} the error in

Algorithm 2.1 satisfies

‖u(tn+1)− uh
n+1‖+

(
k

n∑
i=0

ν‖∇(
(u(ti+1)− uh

i+1) + (u(ti)− uh
i )

2
)‖2

) 1
2

+α
1
2 h

1
2 k

1
2‖∇(u(tn+1)− uh

n+1)‖ ≤ C(ν,u, p)
(
hm + αhk + k2

)
.

The rest of this section will be devoted to proving this theorem.

Proof. Consider the variational formulation corresponding to the Navier-Stokes equations

(2.1.1), for any time t, in Xh,

(ut,v
h) + b∗(u,u,vh) + ν(∇u,∇vh)− (p,∇ · vh) = (f ,vh), ∀vh ∈ Xh. (2.3.9)

Then subtract (2.1.6) from (2.3.9), taken at t = tn+ 1
2
, to get

(ut(tn+ 1
2
)− uh

n+1 − uh
n

k
,vh) + ν(∇u(tn+ 1

2
)−∇(

uh
n+1 + uh

n

2
),∇vh)

− αh(∇(uh
n+1 − uh

n),∇vh) + b∗(u(tn+ 1
2
),u(tn+ 1

2
),vh)

− b∗(E[uh
n,u

h
n−1],

uh
n+1 + uh

n

2
,vh)− (p(tn+ 1

2
)− p(tn+1) + p(tn)

2
,∇ · vh) = 0.(2.3.10)

Let the velocity error be decomposed as

en := u(tn)− uh
n = (u(tn)−Un)− (uh

n −Un) =: ηn − φh
n, (2.3.11)
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where Un is the Stokes Projection of un into Vh (therefore φh
n ∈ Vh, but ηn /∈ Vh). For

ξ = e, φh or η, define ξn+ 1
2

:=
ξn+1+ξn

2
.

Add and subtract

(
u(tn+1)− u(tn)

k
,vh) + ν(∇(

u(tn+1)− u(tn)

2
),∇vh)

+αh(∇(u(tn+1)− u(tn)),∇vh)− (
p(tn+1) + p(tn)

2
,∇ · vh)

+b∗(u(tn+ 1
2
) + E[u(tn),u(tn−1)] + E[uh

n,u
h
n−1],

u(tn+1) + u(tn)

2
,vh)

to (2.3.10) to obtain the error equation (recall also that (qh,∇ · vh) = 0,∀qh ∈ Qh)

(
en+1 − en

k
,vh) + ν(∇en+1/2,∇vh) + αh(∇(en+1 − en),∇vh)

= (
p(tn+1) + p(tn)

2
− qh,∇ · vh)− b∗(E[uh

n,u
h
n−1], en+1/2,v

h)

+b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,vh) + T (u, p;vh), (2.3.12)

where

T (u, p;vh) = (
u(tn+1)− u(tn)

k
− ut(tn+ 1

2
),vh) + ν(∇(

u(tn+1) + u(tn)

2
)−∇u(tn+ 1

2
),∇vh)

−αh(∇(u(tn+1)− u(tn)),∇vh)− (
p(tn+1) + p(tn)

2
− p(tn+ 1

2
),∇ · vh)

+b∗(u(tn+ 1
2
),

u(tn+1) + u(tn)

2
− u(tn+ 1

2
),vh)

−b∗(E[u(tn),u(tn−1)]− u(tn+ 1
2
),

u(tn+1) + u(tn)

2
,vh). (2.3.13)

Using the error decomposition (2.3.11) and setting vh = φh
n+1/2 in (2.3.12) gives

1

2k
(‖φh

n+1‖2 − ‖φh
n‖2) + ν‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

= (
ηn+1 − ηn

k
,φh

n+1/2) + ν(∇ηn+1/2,∇φh
n+1/2)

+αhk(∇(
ηn+1 − ηn

k
),∇φh

n+1/2)− (
p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1/2)

+b∗(E[uh
n,uh

n−1], ηn+1/2,φ
h
n+1/2) + b∗(E[ηn,ηn−1],

u(tn+1) + u(tn)

2
,φh

n+1/2)

+b∗(E[φh
n, φ

h
n−1],

u(tn+1) + u(tn)

2
,φh

n+1/2) + T (u, p; φh
n+1/2), (2.3.14)

since b∗(E[uh
n,uh

n−1], φ
h
n+1/2,φ

h
n+1/2) = 0.
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Also it follows from the choice of the projection Un that

ν(∇ηn+1/2,∇φh
n+1/2)− (

p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1/2) = 0.

Applying the Cauchy-Schwarz and Young’s inequalities to the linear terms on the right hand

side of (2.3.14) gives

1

2k
(‖φh

n+1‖2 − ‖φh
n‖2) +

3ν

4
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2

+| b∗(E[uh
n,u

h
n−1],ηn+1/2, φ

h
n+1/2) |

+| b∗(E[ηn,ηn−1],
u(tn+1) + u(tn)

2
,φh

n+1/2) |

+| b∗(E[φh
n,φh

n−1],
u(tn+1) + u(tn)

2
,φh

n+1/2) |+ |T (u, p; φh
n+1/2) |, (2.3.15)

For clarity, we analyze each of the remaining nonlinear terms on the RHS of (2.3.15) indi-

vidually. Here we use frequently Lemma 2.1 and the inverse estimate (2.2.2), together with

Young’s inequality.

We start with the first nonlinear term in (2.3.15). Adding and subtracting the quantity

b∗(E[u(tn),u(tn−1)],ηn+1/2, φ
h
n+1/2), and using Lemma 2.1, followed by Young’s inequality,

we get

∣∣b∗(E[uh
n,uh

n−1], ηn+1/2,φ
h
n+1/2)

∣∣

≤ ν

16
‖φh

n+1/2‖2 + Cν−1‖∇E[u(tn),u(tn−1)]‖2 ‖∇ηn+1/2‖2

+ Cν−1‖∇E[ηn,ηn−1]‖2 ‖∇ηn+1/2‖2

+ C‖E[φh
n,φh

n−1]‖1/2‖∇E[φh
n, φ

h
n−1]‖1/2‖∇ηn+1/2‖ ‖∇φh

n+1/2‖. (2.3.16)

The first two terms involving the operator E[·, ·] can be bounded by using its definition

(2.1.4) and regularity assumptions on u,

‖∇E[u(tn),u(tn−1)]‖ ≤ C and ‖∇E[ηn, ηn−1]‖ ≤
3

2
‖∇ηn‖+

1

2
‖∇ηn−1‖.(2.3.17)
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For the third and fourth terms, we also need the inverse estimate (2.2.2), resulting in

‖E[φh
n, φ

h
n−1]‖ ‖∇E[φh

n, φ
h
n−1]‖ ≤ C(‖φh

n‖+ ‖φh
n−1‖) (‖∇φh

n‖+ ‖∇φh
n−1‖),

≤ Ch−1(‖φh
n‖+ ‖φh

n−1‖)2,

so that

‖E[φh
n,φ

h
n−1]‖1/2 ‖∇E[φh

n,φh
n−1]‖1/2‖∇ηn+1/2‖ ‖∇φn+1/2‖

≤ Ch−3/2‖∇ηn+1/2‖ (‖φh
n‖+ ‖φh

n−1‖) (‖φh
n‖+ ‖φh

n+1‖), (2.3.18)

Putting (2.3.17) and (2.3.18) back into (2.3.16), we have

∣∣b∗(E[uh
n,u

h
n−1],ηn+1/2, φ

h
n+1/2)

∣∣

≤ ν

16
‖φh

n+1/2‖2 + Cν−1 ‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) ‖∇ηn+1/2‖2

+Ch−3/2‖∇ηn+1/2‖ (‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2). (2.3.19)

For the second trilinear term, use Lemma 2.1 and the assumption that ‖∇u(t)‖ is

bounded for any t ∈ [0, T ]. Then we apply Young’s inequality and (2.3.17), resulting in

∣∣∣∣b∗(E[ηn,ηn−1],
u(tn+1) + u(tn)

2
,φh

n+1/2)

∣∣∣∣ ≤ C‖∇E[ηn,ηn−1]‖‖∇φh
n+1/2‖

≤ Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)

+
ν

16
‖∇φh

n+1/2‖2. (2.3.20)

The third trilinear term is bounded with the help of the third inequality in Lemma 2.1

and the regularity assumptions on u. As a result,

∣∣∣∣b∗(E[φh
n,φh

n−1],
u(tn+1) + u(tn)

2
,φh

n+1/2)

∣∣∣∣ ≤ C‖E[φh
n,φh

n−1]‖‖∇φh
n+1/2‖

≤ Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+
ν

16
‖∇φh

n+1/2‖2, (2.3.21)

where the last step follows from Young’s inequality.
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Now, with (2.3.19), (2.3.20) and (2.3.21), the error equation (2.3.15) can be rewritten as

1

2k
(‖φh

n+1‖2 − ‖φh
n‖2) +

9ν

16
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2 + Cν−1‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) + Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+Ch−3/2‖∇ηn+1/2‖(‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2) + |T (u, p; φh

n+1/2) |, (2.3.22)

and what is left is to bound |T (u, p; φh
n+1/2) |. Each of its four linear terms can be bounded

by the Cauchy-Schwarz and Young’s inequalities, together with the estimates in Lemma 2.3.

We take care of one at a time below.

|(u(tn+1)− u(tn)

k
− ut(tn+1/2),φ

h
n+1/2)| ≤ ν

80
‖∇φh

n+1/2‖2

+Cν−1k4‖uttt(tn+θ1)‖2, (2.3.23)

ν|(∇(
u(tn+1) + u(tn)

2
− u(tn+ 1

2
)),∇φh

n+1/2)| ≤ ν

80
‖∇φh

n+1/2‖2

+Cνk4‖∇utt(tn+θ2)‖2, (2.3.24)

αhk|(∇(
u(tn+1)− u(tn)

k
),∇φh

n+1/2)| ≤ ν

80
‖∇φh

n+1/2‖2

+Cν−1α2h2k2‖∇ut(tn+θ3)‖2, (2.3.25)

|(p(tn+1) + p(tn)

2
− p(tn+1/2),∇ · φh

n+1/2)| ≤ ν

80
‖∇φh

n+1/2‖2

+Cν−1k4‖ptt(tn+θ4)‖2, (2.3.26)

for some θ1, θ2, θ3, θ4 ∈ (0, 1).
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For the two nonlinear terms in |T (u, p; φh
n+1/2) |, use Lemma 2.1, Lemma 2.3 and Young’s

inequality, together with ‖∇u(t)‖ ≤ C, for any t ∈ [0, T ]. This gives

∣∣∣∣b∗(E[u(tn),u(tn−1)]− u(tn+1/2),
u(tn+1) + u(tn)

2
,φh

n+1/2)

∣∣∣∣

+

∣∣∣∣b∗(u(tn+1/2),
u(tn+1) + u(tn)

2
− u(tn+1/2),φ

h
n+1/2)

∣∣∣∣

≤ C(Ω)‖∇(
3

2
u(tn)− 1

2
u(tn−1)− u(tn+1/2))‖‖∇(

u(tn+1) + u(tn)

2
)‖‖∇φh

n+1/2‖

+C(Ω)‖∇(
u(tn+1) + u(tn)

2
− u(tn+1/2))‖‖∇u(tn+1/2)‖‖∇φh

n+1/2‖
≤ Cν−1k4‖∇utt(tn+θ5)‖2 +

ν

80
‖∇φh

n+1/2‖2, (2.3.27)

for some θ5 ∈ (0, 1).

Combining (2.3.23)-(2.3.27), we have

|T (u, p; φh
n+1/2) | ≤ ν

16
‖∇φh

n+1/2‖2 + Cν−1k4(‖uttt(tn+θ1)‖2 + ‖ptt(tn+θ4)‖2)

+Cνk4‖∇utt(tn+θ5)‖2 + Cν−1α2h2k2‖∇ut(tn+θ3)‖2, (2.3.28)

so that error equation (2.3.22) gives

1

2k
(‖φh

n+1‖2 − ‖φh
n‖2) +

ν

2
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2 + Cν−1‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) + Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+Ch−3/2‖∇ηn+1/2‖(‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2)

+Cν−1k4(‖uttt(tn+θ1)‖2 + ‖ptt(tn+θ4)‖2)

+Cνk4‖∇utt(tn+θ5)‖2 + Cν−1α2h2k2‖∇ut(tn+θ3)‖2. (2.3.29)
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Multiply both sides of (2.3.29) by 2k and use (2.2.12),(2.2.15) together with the approxi-

mation properties (2.2.3)-(2.2.5) of the spaces (Xh, Qh). Then sum over the time levels from

1 to n, choosing U0 = uh
0 , which gives φh

0 = 0, and

‖φh
n+1‖2 + k

n∑
i=1

ν‖∇φh
i+1/2‖2 + αhk‖∇φh

n+1‖2

≤ ‖φh
1‖2 + αhk‖∇φh

1‖2 + Cν−1h2m+2‖ut‖2
L2(0,T ;Hm+1(Ω))

+Cν−1αh2m+1k‖ut‖2
L2(0,T ;Hm+1(Ω)) + Cν−1h2m‖u‖2

L2(0,T ;Hm+1(Ω))

+Cν−1h4m‖u‖2
L2(0,T ;Hm+1(Ω))

+Cν−1h2m‖u‖2
L2(0,T ;Hm+1(Ω)) + Cν−1k4(‖uttt‖2

L2(0,T ;L2(Ω)) + ‖ptt‖2
L2(0,T ;L2(Ω)))

+Cνk4‖∇utt‖2
L2(0,T ;L2(Ω)) + Cν−1α2h2k2‖∇ut‖2

L2(0,T ;L2(Ω))

+Cν−1k

n∑
i=1

(‖φh
i−1‖2 + ‖φh

i ‖2)

+Chm−3/2k

n∑
i=1

|u(ti+1/2) |m+1(‖φh
i−1‖2 + ‖φh

i ‖2 + ‖φh
i+1‖2). (2.3.30)

Since u ∈ L∞(0, T ; Hm+1(Ω)), the last two sums in (2.3.30) can be combined as

C‖u‖L∞(0,T ;Hm+1(Ω))h
m−3/2k‖φh

n+1‖2 + C(hm−3/2 + ν−1)k
n∑

i=1

‖φh
i ‖2.

Using the regularity of u and p, and the assumption that C‖u‖L∞(0,T ;Hm+1(Ω))h
m−3/2k ≤

1/2, the error equation finally takes the form

1

2
‖φh

n+1‖2 + k

n∑
i=1

ν‖∇φh
i+1/2‖2 + αhk‖∇φh

n+1‖2

≤ ‖φh
1‖2 + αhk‖∇φh

1‖2 + Cν−1(2 + h2 + αhk + h2m)h2m

+Cν−1α2h2k2 + C(ν−1 + ν)k4

+Ck

n∑
i=1

(ν−1 + hm−3/2)‖φh
i ‖2. (2.3.31)

To complete the proof bounds are needed for φh
1 in the above estimates. These bounds

depend upon the way the first time step is taken, and there are two possibilities (2.1.5) and

(2.1.7); we shall analyze both. Both lead to an optimal velocity error estimate. The more

expensive method (2.1.7) also leads to an optimal pressure error estimate (in Theorem 2.4.3
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below). The error equation for φh
1 is the same as for φh

n except for the nonlinear terms, and

is treated in the same way, except for the nonlinear term. Therefore, we go directly to the

treatment of the nonlinear term in both cases (2.1.5) and (2.1.7).

We start with formulation (2.1.5). Adding and subtracting b∗(uh
0 − u(t0),

u(t0)+u(t1)
2

,vh)

to the nonlinear terms in (2.3.10), we have

b∗(u(t1/2),u(t1/2),v
h)− b∗(uh

0 ,
uh

0 + uh
1

2
,vh) = b∗(u(t1/2),u(t1/2),v

h)

+ b∗(uh
0 , e1/2,v

h)− b∗(e0,
u(t0) + u(t1)

2
,vh)

+ b∗(u(t0),
u(t0) + u(t1)

2
,vh). (2.3.32)

Taking vh = φh
1/2, the second and third terms in (2.3.37) can be treated exactly as in (2.3.16),

(2.3.20) and (2.3.21). The first and last are bounded as follows. Using Lemma 2.3 and the

fact that there exists tθ ∈ (0, k) such that u(t1/2)− u(t0) = kut(tθ), we obtain

|b∗(u(t0),
u(t1) + u(t0)

2
,φh

1/2)− b∗(u(t1/2),u(t1/2), φ
h
1/2)|

= |b∗(u(t0),u(t1/2) + Ck2utt(tθ),φ
h
1/2)− b∗(u(t1/2),u(t1/2),φ

h
1/2)|

≤ |b∗(u(t0)− u(t1/2),u(t1/2),φ
h
1/2)|+ Ck2|b∗(u(t0),utt(tθ), φ

h
1/2)|

≤ k|b∗(ut(tθ),u(t1/2), φ
h
1/2)|+ Ck2|b∗(u(t0),utt(tθ),φ

h
1/2)|

≤ k|b∗(ut(tθ),u(t1/2), φ
h
1/2)|+ εν‖∇φh

1/2‖2 + Cν−1k4. (2.3.33)

In order to bound the first term in (2.3.33), we use integration by parts and Hölder’s in-

equality to obtain

b∗(ut(tθ),u(t1/2),φ
h
1/2) = (ut(tθ) · ∇u(t1/2),φ

h
1/2) +

1

2
(∇ · ut(tθ),u(t1/2) · φh

1/2). (2.3.34)

Thus,

k|b∗(ut(tθ),u(t1/2),φ
h
1/2)| ≤ Ck(‖ut(tθ)‖‖∇u(t1/2)‖L∞(Ω)

+‖∇ut(tθ)‖‖u(t1/2)‖L∞(Ω))‖φh
1/2‖

≤ Ck3 +
1

4k
‖φh

1/2‖2. (2.3.35)
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Now use the bounds (2.3.33) and (2.3.35) in the error analysis at the first time level (note

that φh
1/2 = 1

2
φh

1 , since φh
0 = 0) to get

‖φh
1‖2 + νk‖∇φh

1‖2 + αhk‖∇φh
1‖2 ≤ C[ν−1kh2m + ν−1kh2m + ν−1kh2m+2

+ν−1α2h2k3 + ν−1αh2m+1k2 + ν−1kh4m

+ν−1k5 + νk5 + k4]. (2.3.36)

If formulation (2.1.7) is used, then, instead of (2.3.37), we obtain, by adding and subtracting

b∗(uh
1+uh

0

2
− u(t1)+u(t0)

2
+u(t1/2),

u(t0)+u(t1)
2

,vh) to the nonlinear terms in first time level analog

of (2.3.10), the following

b∗(u(t1/2),u(t1/2),v
h)− b∗(

uh
0 + uh

1

2
,
uh

0 + uh
1

2
,vh)

= b∗(u(t1/2),u(t1/2)− u(t1) + u(t0)

2
,vh)

+b∗(
uh

0 + uh
1

2
, e1/2,v

h)− b∗(e0,
u(t0) + u(t1)

2
,vh)

+b∗(
u(t0) + u(t1)

2
− u(t1/2),

u(t0) + u(t1)

2
,vh) (2.3.37)

Taking vh = φh
1/2, the second and third terms in (2.3.37) can be treated exactly as in (2.3.16),

(2.3.20) and (2.3.21). The first and last are similar, since, after application of Lemma 2.1

and regularity assumptions on u, both can be bounded as

C‖∇(u(t1/2 − u(t0) + u(t1)

2
)‖‖∇φh

1/2‖ ≤ εν‖∇φh
1/2‖2 + Cν−1k4,

with the help of Lemma 2.3 and Young’s inequality. This leads to the upper bound

‖φh
1‖2 + νk‖∇φh

1‖2 + αhk‖∇φh
1‖2 ≤ C[ν−1kh2m + ν−1kh2m + ν−1kh2m+2 + ν−1α2h2k3

+ν−1αh2m+1k2 + ν−1kh4m + ν−1k5 + νk5]. (2.3.38)

This bound is sharper than (2.3.36), but it will not contribute to a higher order estimate.

We thus insert the bound for ‖φh
1‖2 +αhk‖∇φh

1‖2, obtained in (2.3.36), into (2.3.31), which

gives

‖φh
n+1‖2 + 2k

n∑
i=0

ν‖∇(
φh

i+1 + φh
i

2
)‖2 + 2αhk‖∇φh

n+1‖2

≤ C(ν + ν−1)
(
h2m + α2h2k2 + k4

)
+ Cν−1(k

n∑
i=0

‖φh
i ‖2). (2.3.39)
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Hence, it follows from the discrete Gronwall Lemma, that there exists C = C(ν, Ω, T,u, p)

such that for any n ≥ 0

‖φh
n+1‖2 + k

n∑
i=0

ν‖∇(
φh

i+1 + φh
i

2
)‖2 + αhk‖∇φh

n+1‖2

≤ C
(
h2m + α2h2k2 + k4

)
. (2.3.40)

Finally, the statement of the theorem follows from the triangle inequality.

2.4 ERROR ESTIMATES FOR TIME DERIVATIVES AND PRESSURE

In order to prove pressure stability and convergence, we need to derive a bound on the time

difference of the velocity error ‖en+1−en

k
‖.

Theorem 2.4.1. Let the finite-element spaces (Xh, Qh) include continuous piecewise poly-

nomials of degree m and m−1 respectively (m ≥ 2) and satisfy the discrete inf-sup condition.

Let the assumptions of Theorem 2.3.1 be satisfied and

∇utt ∈ L2(0, T ; L∞(Ω)), ∆utt ∈ L2(0, T ; L2(Ω)),

uttt ∈ L∞(0, T ; L2(Ω)),

∇ptt ∈ L2(0, T ; L2(Ω)).

Then, if the finite element approximation uh
n is defined by (2.1.5)-(2.1.6), there exists a

constant C = C(ν,u, p, T ) < ∞ such that

νk2‖∇(
en − en−1

k
)‖2 + ν‖∇(

en + en−1

2
)‖2

+ k

n−1∑
i=0

‖ei+1 − ei

k
‖2 + αhk · k

n−1∑
i=0

‖∇(
ei+1 − ei

k
)‖2

≤ C(h2m + α2h2k2 + h−3k8 + k3). (2.4.1)
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If the finite element approximation uh
n is defined via (2.1.7)-(2.1.6), then there exists a

C = C(ν,u, p, T ) < ∞ such that

νk2‖∇(
en − en−1

k
)‖2 + ν‖∇(

en + en−1

2
)‖2

+ k

n−1∑
i=0

‖ei+1 − ei

k
‖2 + αhk · k

n−1∑
i=0

‖∇(
ei+1 − ei

k
)‖2

≤ C(h2m + α2h2k2 + h−3k8 + k4). (2.4.2)

Proof. Consider the error decomposition (2.3.11). Take vh =
φh

n+1−φh
n

k
∈ Vh in (2.3.12),(2.3.13)

to obtain

‖φh
n+1 − φh

n

k
‖2 + ν

‖∇φh
n+1‖2 − ‖∇φh

n‖2

2k
+ αhk‖∇(

φh
n+1 − φh

n

k
)‖2

= (
ηn+1 − ηn

k
,
φh

n+1 − φh
n

k
) + ν(∇(

ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))

−(
p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1 − φh
n

k
)

+b∗(E[u(tn),u(tn−1)], en+1/2,
φh

n+1 − φh
n

k
)

−b∗(E[ηn,ηn−1], en+1/2,
φh

n+1 − φh
n

k
)

+b∗(E[φn,φn−1], en+1/2,
φh

n+1 − φh
n

k
)

+b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)

+T (u, p;
φh

n+1 − φh
n

k
), (2.4.3)
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where, using Taylor expansion,

T (u, p;
φh

n+1 − φh
n

k
) = (

u(tn+1)− u(tn)

k
− ut(tn+1/2),

φh
n+1 − φh

n

k
)

+αhk(∇(
ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))

+Ck2ν(∇utt(tn+θ),∇(
φh

n+1 − φh
n

k
)) + Ck2(uttt(tn+θ),

φh
n+1 − φh

n

k
)

+Ck2b∗(utt(tn+θ),
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)

+Ck2b∗(u(tn+1/2),utt(tn+θ),
φh

n+1 − φh
n

k
)

+αhk(∇(
uh

n+1 − uh
n

k
),∇(

φh
n+1 − φh

n

k
))

+Ck2(ptt(tn+θ),∇ · (φ
h
n+1 − φh

n

k
)), (2.4.4)

for some θ ∈ (0, 1) and ∀qh ∈ Qh.

Also it follows from the definition of Stokes Projection that

ν(∇(
ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))− (

p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1 − φh
n

k
) = 0. (2.4.5)

We bound the four nonlinear terms on the right-hand side of (2.4.3), using Lemma 2.1

and Cauchy-Schwarz and Young’s inequalities. For the first term integrating by parts and

applying Hölder’s inequality gives

|b∗(E[u(tn),u(tn−1)], en+1/2,
φh

n+1 − φh
n

k
)|

= |(E[u(tn),u(tn−1)] · ∇en+1/2,
φh

n+1 − φh
n

k
)

+
1

2
(∇ · E[u(tn),u(tn−1)], en+1/2 ·

φh
n+1 − φh

n

k
)|

= |(E[u(tn),u(tn−1)] · ∇en+1/2,
φh

n+1 − φh
n

k
)|

≤ C‖∇en+1/2‖‖
φh

n+1 − φh
n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2 + C‖∇(

en+1 + en

2
)‖2. (2.4.6)
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Using the first bound from Lemma 2.1 and the inverse inequality (2.2.2), we obtain the

bounds on the second and third nonlinear terms

|b∗(E[ηn,ηn−1], en+1/2,
φh

n+1 − φh
n

k
)| ≤ Ch−1‖∇E[ηn, ηn−1]‖‖∇en+1/2‖‖

φh
n+1 − φh

n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2

+ Ch−2‖∇(
3

2
ηn −

1

2
ηn−1)‖2‖∇(

en+1 + en

2
)‖2,(2.4.7)

and, using also the intermediate result (2.3.40) of Theorem 2.3.1,

|b∗(E[φn,φn−1], en+1/2,
φh

n+1 − φh
n

k
)|

≤ Ch−3/2‖E[φn, φn−1]‖‖∇(
en+1 + en

2
)‖‖φh

n+1 − φh
n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2 + Ch−3(h2m + α2h2k2 + k4)‖∇(

en+1 + en

2
)‖2. (2.4.8)

Finally, consider the fourth nonlinear term. Use the obvious identity 3
2
en− 1

2
en−1 = en+en−1

2
+

(en − en−1) and the regularity of u. It follows from the last inequality of Lemma 2.1 that

|b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

≤ |b∗(en + en−1

2
,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

+|b∗(ηn − ηn−1,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

+|b∗(kφh
n − φh

n−1

k
,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

≤ ε‖φh
n+1 − φh

n

k
‖2 + C‖∇(

en+1 + en

2
)‖2

+C(h2m + α2h2k2 + k4) + Ck2‖∇(
φh

n − φh
n−1

k
)‖2. (2.4.9)

Insert these bounds in (2.4.3). The bound on |T (u, p;
φh

n+1−φh
n

k
)| is obtained as in the proof

of Theorem 2.3.1. Choosing ε = 1
24

gives

1

2
‖φh

n+1 − φh
n

k
‖2 + ν

‖∇φh
n+1‖2 − ‖∇φh

n‖2

2k
+

αhk

2
‖∇(

φh
n+1 − φh

n

k
)‖2

≤ C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

φh
n − φh

n−1

k
)‖2 + C(h2m + α2h2k2 + k4)

+Ch−3(h2m + α2h2k2 + k4)‖∇(
en+1 + en

2
)‖2. (2.4.10)
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At the first time level, take vh = φh
1−φh

0

k
; taking U0 = uh

0 in the initial error decomposition

gives φh
0 = 0. For the constant extrapolation (2.1.5) we obtain

1

2
‖φh

1 − φh
0

k
‖2 + ν

‖∇φh
1‖2 − ‖∇φh

0‖2

2k
+

αhk

2
‖∇(

φh
1 − φh

0

k
)‖2

≤ C(h2m + α2h2k2 + k4) + kb∗(ut(tθ),u1/2,
φh

1 − φh
0

k
). (2.4.11)

If we use (2.1.7) instead of (2.1.5) at the first time level, we have

1

2
‖φh

1 − φh
0

k
‖2 + ν

‖∇φh
1‖2 − ‖∇φh

0‖2

2k
+

αhk

2
‖∇(

φh
1 − φh

0

k
)‖2

≤ C(h2m + α2h2k2 + k4) + k2b∗(ut(tθ),u1/2,
φh

1 − φh
0

k
). (2.4.12)

Sum (2.4.10) over the time levels n ≥ 1 and add to (2.4.11) (or to (2.4.12) in the case of

linear extrapolation). Multiply by 2k to obtain

k

n∑
i=0

‖φh
i+1 − φh

i

k
‖2 + ν‖∇φh

n+1‖2 + αhk · k
n∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2

≤ Ck2 · k
n−1∑
i=0

‖∇(
φh

i+1 − φh
i

k
)‖2 + C(h2m + α2h2k2 + k4 + h−3k8)

+k2+σb∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
), (2.4.13)

where σ = 0 for the constant extrapolation (2.1.5) and σ = 1 for the linear extrapolation

(2.1.7).

For any n ≥ 1, add the inequalities (2.4.13) at the time levels n + 1 and n. Use the

identity

‖∇φh
n+1‖2 + ‖∇φh

n‖2 =
1

2
k2‖∇(

φh
n+1 − φh

n

k
)‖2 + 2‖∇(

φh
n+1 + φh

n

2
)‖2. (2.4.14)
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At any time level n ≥ 1 we obtain

1

2
νk2‖∇(

φh
n+1 − φh

n

k
)‖2 + 2ν‖∇(

φh
n+1 + φh

n

2
)‖2

+k

n∑
i=0

‖φh
i+1 − φh

i

k
‖2 + αhk · k

n∑
i=0

‖∇(
φh

i+1 − φh
i

k
)‖2

≤ Cν−1 · k
n−1∑
i=0

1

2
νk2‖∇(

φh
i+1 − φh

i

k
)‖2

+C(h2m + α2h2k2 + k4 + h−3k8)

+k2+σb∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
). (2.4.15)

Next, decompose the last term in the right-hand side of (2.4.15), using Lemma 2.1 and

Young’s inequality. This yields

k2+σ|b∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
)| ≤ 1

2
k‖φh

1 − φh
0

k
‖2 + Ck3+2σ. (2.4.16)

Hence it follows from the discrete Gronwall Lemma that

νk2‖∇(
φh

n+1 − φh
n

k
)‖2 + ν‖∇(

φh
n+1 + φh

n

2
)‖2 + k

n∑
i=0

‖φh
i+1 − φh

i

k
‖2

+αhk · k
n∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2 ≤ C(h2m + α2h2k2 + k4 + k3+2σ + h−3k8).(2.4.17)

The proof of the theorem is now concluded by the triangle inequality.

For the stability of pressure we will need the following á priori bounds

Lemma 2.4. Let the assumptions of Theorem 2.4.1 hold. Then there exists a constant

C = C(ν,u, p, T ) such that for any n

k

n∑
i=0

‖u
h
i+1 − uh

i

k
‖ ≤ k

n∑
i=0

‖ei+1 − ei

k
‖+ k

n∑
i=0

‖u(ti+1)− u(ti)

k
‖ ≤ C,

k2‖∇(
uh

n+1 − uh
n

k
)‖2 ≤ k2‖∇(

en+1 − en

k
)‖2 + k2‖∇(

u(tn+1)− u(tn)

k
)‖2 ≤ C.

Proof. Use the decomposition uh
i = u(ti)− ei. The triangle inequality completes the proof.
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Theorem 2.4.2 (Pressure Stability). Let (uh
n, p

h
n) satisfy (2.1.5)-(2.1.6) (or (2.1.7)-(2.1.6)).

Let f ∈ L2(0, T ; H−1(Ω)) and let the assumptions of Theorem 2.4.1 be satisfied. Then,

k

n−1∑
i=0

‖ph
i+1 + ph

i

2
‖ ≤ C(uh

0 , f , β
h),

where βh is the constant from the discrete LBBh condition (2.2.1).

Proof. Consider (2.1.6). Using the Cauchy-Schwarz inequality, the first bound from Lemma

2.1, the discrete LBBh condition (2.2.1) and the identity 3
2
uh

n+1− 1
2
uh

n =
uh

n+1+uh
n

2
+k

uh
n+1−uh

n

k
,

we obtain

βh‖ph
n+1 + ph

n

2
‖ ≤ ‖u

h
n+1 − uh

n

k
‖−1 + ν‖∇(

uh
n+1 + uh

n

2
)‖

+αhk‖∇(
uh

n+1 − uh
n

k
)‖+ C‖∇(

uh
n+1 + uh

n

2
)‖2

+Ck2‖∇(
uh

n+1 − uh
n

k
)‖2 + ‖f(tn+1/2)‖−1.

Sum over all time levels; the bounds of Lemma 2.4 complete the proof.

We conclude this section by deriving the pressure error estimate.

Theorem 2.4.3 (Pressure Convergence). Let (uh
n, ph

n) satisfy (2.1.6) for n ≥ 2. Let (uh
1 , p

h
1)

satisfy the constant extrapolation (2.1.5) or the linear extrapolation (2.1.7). Then, under the

assumptions of Theorem 2.4.1,

k

n−1∑
i=0

‖p(ti+1/2)− ph
i+1/2‖ ≤ C(ν,u, p, T )(hm + αhk + h−3/2k4 + k3/2+σ/2), (2.4.18)

where σ = 0 for the constant extrapolation and σ = 1 for the linear extrapolation.
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Proof. Consider (2.3.10), which holds true for any vh ∈ Xh. Decompose the pressure ap-

proximation error into

p(tn+1)− ph
n+1 = (p(tn+1)− I(p))− (ph

n+1 − I(p)) = η̃n+1 − φ̃h
n+1, (2.4.19)

where φ̃h
n+1 ∈ Qh, I(p) is a projection of p(tn+1) into Qh.

Use the error decomposition (2.4.19) in (2.3.10) and apply the discrete LBBh condition

to obtain for any n ≥ 1

βh‖ φ̃h
n+1 + φ̃h

n

2
‖ ≤ ‖en+1 − en

k
‖−1 + C‖∇(

en+1 + en

2
)‖

+C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

en − en−1

k
)‖2 + Ck‖∇(

en − en−1

k
)‖

+ν‖∇(
en+1 + en

2
)‖+ αhk‖∇(

en+1 − en

k
)‖

+‖ η̃n+1 + η̃n

2
‖+ Cνk2 + Ck2 + Cαhk. (2.4.20)

Hence from the triangle inequality we get

βh‖(p(tn+1)− ph
n+1) + (p(tn)− ph

n)

2
‖ ≤ ‖en+1 − en

k
‖−1 + C‖∇(

en+1 + en

2
)‖

+C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

en − en−1

k
)‖2

+Ck‖∇(
en − en−1

k
)‖+ ν‖∇(

en+1 + en

2
)‖

+αhk‖∇(
en+1 − en

k
)‖+ Cνk2 + Ck2 + Cαhk

+ inf
qh∈Qh

‖p(tn+1) + (p(tn)

2
− qh‖. (2.4.21)

On the first time level consider the constant extrapolation (2.1.5). Using the discrete

LBBh condition and (2.3.36), we obtain the following bound (which can be improved in the

case of linear extrapolation):

βhk‖(p(t1)− ph
1) + (p(t0)− ph

0)

2
‖ ≤ C(k2 + hm + αhk). (2.4.22)

Add the inequalities (2.4.21) for all n ≥ 1, multiply by k and add to (2.4.22). The proof is

concluded by applying the result of Theorem 2.4.1
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2.5 PHYSICAL FIDELITY: CONSERVATION OF INTEGRAL

INVARIANTS

We begin by proving that CNLEStab exactly conserves a modified kinetic energy.

Proposition 2.4. Let the boundary conditions be periodic; assume also f = ν = 0 . Define

Kinetic energy in (2.1.6)= KE(tn) :=
1

2L3
[||uh

n||2 + αkh||∇uh
n||2]

The method exactly conserves kinetic energy. Specifically, for all tn > 0

KE(tn) = KE(0).

Proof. Set vh =
uh

n+1+uh
n

2
and ν = f = 0 in (2.1.5)-(2.1.6).

Exact conservation of helicity likely does not hold for CNLEStab. We thus consider

approximate helicity conservation experimentally by considering and inviscid (ν = 0) fluid

with no forcing term (f = 0). A comparison of the CNLE and CNLEStab under these

conditions, in Figure 1, shows that, for a fixed mesh size, CNLEStab nearly conserves helicity,

while CNLE does not. Both conserve kinetic energies during these experiments.
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Figure 1: Conservation of helicity, CNLE (α = 0) versus CNLEStab (α = 1)

A comparison of the CNLEStab performance for different mesh sizes is shown in Figure

2, confirming that as the mesh is refined, conservation of helicity improves.

2.6 PHYSICAL FIDELITY: PREDICTIONS OF THE TURBULENT

ENERGY CASCADE

We consider the energy cascade predicted by (1.1) in the case of homogeneous, isotropic

turbulence. Motivated by the consistency error argument, we consider the modified equa-

tion of the method (1.1). Since αh(∇u(tn+1),∇v) − αh(∇u(tn),∇v) = −αhk(∆ut,v), we

postulate a fluid with equations of motion given by: w : Ω× [0, T ] → Rd, q : Ω× (0, T ] → R
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Figure 2: Conservation of helicity for different mesh sizes in CNLESTAB (with α = 1): as

h gets smaller, helicity is conserved longer.

satisfying:

[w − αhk4w]t + w · ∇w − ν∆w +∇q = f , for x ∈ Ω, 0 < t ≤ T

∇ ·w = 0, x ∈ Ω, for 0 < t ≤ T,

periodic boundary conditions on ∂Ω, for 0 < t ≤ T , (2.6.1)

w(x, 0) = u0(x), for x ∈ Ω,

and the usual normalization condition in the periodic case that
∫
Ω

φ(x, t) dx = 0 on φ =

w, q, f ,u0 for 0 < t ≤ T . Thus we explore more subtle effects of the stabilization in Algorithm

2.1 through its modified equation (2.6.1).
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We multiply (2.6.1) by w and integrate over the domain and time to obtain its precise

energy balance given by

1

2
{||w(t)||2 + αhk||∇w(t)||2}+

∫ T

0

ν||∇w(t)||2 =

1

2
{||w(0)||2 + αhk||∇w(0)||2}+ (f(t),w(t)).

We can clearly identify three physical quantities of kinetic energy, energy dissipation rate

and power input. Let L denote the global length scale, e.g., L = vol(Ω)1/3; then these are

given by

Modified equations kinetic energy: Emodel(w)(t) :=
1

2L3
{||w(t)||2 + αhk||∇w(t)||2},(2.6.2)

Modified equations dissipation rate: εmodel(w)(t) :=
ν

L3
||∇w(t)||2, (2.6.3)

Modified equations power input: Pmodel(w)(t) :=
1

L3
(f(t),w(t)). (2.6.4)

The kinetic energy has an extra term which reflects extraction of energy from resolved scales.

The energy dissipation rate in the model (2.6.3) is the same as for NSE equations.

Equation (2.6.1) shares the common features of the Navier-Stokes equations which make

existence of an energy cascade likely, e.g. [F95], [P00]. First, (2.6.1) has the same nonlinearity

as the Navier-Stokes equations, which pumps energy from larger to smaller scales. Next,

the solution of (2.6.1) satisfies an energy equality in which its kinetic energy and energy

dissipation are readily discernible, and for ν = 0 the kinetic energy is conserved through a

large range of scales/wave-numbers. Since both conditions are satisfied we are to proceed to

develop a quantitative theory of energy cascade of (2.6.1).
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2.6.1 Kraichnan’s Dynamic Analysis Applied to CNLEStab

The energy cascade will now be investigated more closely using the dynamical argument of

Kraichnan, [K71]. Let Πmodel(κ) be defined as the total rate of energy transfer from all wave

numbers < κ to all wave numbers > κ (not to confuse the wave number κ with the time step

k). Following Kraichnan [K71] we assume that Πmodel(κ) is proportional to the total energy

( κEmodel(κ) ) in wave numbers of the order κ and to some effective rate of shear σ(κ) which

acts to distort flow structures of scale 1/κ. That is:

Πmodel(κ) ' σ(κ) κEmodel(κ) (2.6.5)

Furthermore, we expect

σ(κ)2 '
∫ κ

0

p2Emodel(p)dp (2.6.6)

The major contribution to (2.6.6) is from p ' κ, in accord with Kolmogorov’s localness

assumption, [Kol41]. This is because all wave numbers ≤ κ should contribute to the effective

mean-square shear acting on wave numbers of order κ, while the effects of all wave numbers

À κ can plausibly be expected to average out over the scales of order 1/κ and over times

the order of the characteristic distortion time σ(κ)−1.

Let E(κ) := lim supT→∞
1
T

∫ T

0
E(κ, t) is the distribution of the time averaged kinetic

energy by wave number. Here, we have E(κ, t) = L
2π

∑
|k|=κ

1
2
|û(k, t)|2 where L - the reference

length, k, κ - the wave number vector and the wave number respectively, and û(k, t) - the

Fourier modes of the Navier-Stokes velocity.

We shall say that there is an energy cascade if in some “inertial” range, Πmodel(κ) is

independent of the wave number, i.e., Πmodel(κ) = εmodel. Using the equations (2.6.5) and

(2.6.6) we get

Emodel(κ) ' ε
2/3
modelκ

−5/3

We have the relation

E model(κ) ' (1 + αhkκ2)E(κ). (2.6.7)
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Using (2.6.7) we obtain:

Model’s cutoff lengthscale :
√

αhk,

E(κ) ' ε
2/3
modelκ

−5/3, for κ ¿ 1

(αhk)1/2
,

E(κ) ' ε
2/3
model(αhk)−1κ−11/3 , for κ À 1

(αhk)1/2
.

Therefore, (2.6.1) possesses an energy cascade with an enhanced kinetic energy. The

extra term in (2.6.1) triggers an accelerated energy decay of O(κ−11/3) beyond the cutoff

length scale. Above the cutoff length scale (2.6.1) predicts the correct energy cascade of

O(κ−5/3).

2.7 COMPUTATIONAL TESTS

We first test convergence rates for a problem with a known exact solution. The example is

one for which the true solution is known,

u =




cos(2π(z + t))

sin(2π(z + t))

sin(2π(x + t))


 , (2.7.1)

and then the right-hand side f and initial condition u0 are computed such that (2.7.1) satisfies

(2.1.1). We selected this test problem because it is simple but already possesses complex

rotational structures.

For α = 1, ν = 1 and final time T = 0.5, the calculated convergence rates in Table 1

confirm what is predicted by Theorem 2.3.1 for (P2, P1) discretization in space.

Next we give a simple test of the positive effects of the stabilization on the methods

complexity. The linear solver used in the simulations was (unpreconditioned) Conjugate

Gradient Squared (CGS). On a h = 1/16 mesh in R3, with ν = 1
500

and the same true

solution (2.7.1), the number of CGS iterates needed for the first 8 solves of Crank-Nicolson

with Linear Extrapolation (CNLE), i.e. α = 0, and CNLE with stabilization (CNLEStab,

α > 0) are compared in Table 2.

The linear system to be solved at each time step is also better conditioned when α > 0.
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h ||u− uh ||H1(Ω) ratio rate

1/8 0.6910 - -

1/16 0.1772 3.8995 1.9633

1/32 0.0447 3.9642 1.9870

Table 1: Experimental convergence rates.

time level CNLE CNLEStab

1 349 193

2 350 199

3 347 200

4 372 212

5 348 206

6 347 206

7 351 205

8 365 192

Table 2: Number of CGS iterations for CNLE versus CNLEStab.

2.8 CONCLUSIONS

A simple second order time stepping algorithm for the Navier-Stokes equations was analyzed.

It is a modification (by introduction of artificial viscosity stabilization and correction for the

associated loss of accuracy) of the commonly used Crank-Nicolson scheme that requires the

solution of only one linear system per time step. We not only proved that it is unconditionally

stable and investigated how the rates of convergence for velocity and pressure behave, but

we also went beyond error analysis. We showed that this scheme conserves kinetic energy

exactly, and provided experimental numerical evidence that it nearly conserves helicity, an
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important integral invariant in three dimensional rotational flows. Dynamic analysis applied

to their algorithm reveals the existence of an energy cascade with the correct statistics up

to a cutoff length scale and with an accelerated energy decay above the cutoff length scale.

Lastly, we presented more computational tests. The first confirms the velocity convergence

rates obtained in the analysis in Section 3, and the second shows that even with a simple,

unpreconditioned iterative method the linear system to be solved at each time step is better

conditioned than the corresponding system without stabilization.
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3.0 A DEFECT CORRECTION METHOD FOR THE TIME-DEPENDENT

NAVIER-STOKES EQUATIONS

3.1 INTRODUCTION

In the numerical solution of higher Reynolds number flow problems some of the standard

iterative methods fail - see, e.g., [ES00] and remarks in [S03] (p. 48, section 2.1.2), [B96]

(p.24), [C00] (project overview). Often ”failure” means that the iterative method used to

solve the linear and/or nonlinear system for the approximate solution at the new time level

failed to converge within the time constraints of the problem or the resulting approximation

had poor solution quality. The first type of failure can usually be overcome easily by using an

upwind or artificial viscosity (AV) discretization at the expense of decreasing dramatically

the accuracy of the method and possibly even altering the predictions of the simulation at

the qualitative, O(1) level, therefore increasing the likelihood of the second type of failure.

One interesting approach to attaining (by a convergent method) an approximate solution

of desired accuracy is the defect correction method (DCM). Briefly, let a kth order accurate

discretization of the equilibrium Navier-Stokes equations (NSE) be written as

NSEh(uh) = f, (3.1.1)

The DCM computes uh
1 , ..., u

h
k as

− αh∆huh
1 + NSEh(uh

1) = f, (3.1.2)

−αh∆huh
l + NSEh(uh

l ) = f − αh∆huh
l−1, for l = 2, ..., k,

where the velocity approximations uh
i are sought in the finite element space of piecewise

polynomials of degree k.
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It has been proven under quite general conditions (see, e.g., [LLP02]) that for the inter-

mediate approximations of the equilibrium NSE

‖uNSE − uh
l ‖energy−norm = O(hk + h‖uNSE − uh

l−1‖energy−norm) = O(hk + hl),

and thus, after l = k steps,

‖u− uh
k‖energy−norm = O(hk).

Note that (3.1.2) requires solving an AV approximation k times which is often cheaper and

more reliable than solving (3.1.1) once.

In problems with high Reynolds number we may expect turbulence. In that case the

DCM needs to be combined with appropriate turbulence models. These models tend to

introduce extra nonlinearities (due to the closure of the model); it might be possible to

incorporate them into the residual on the right-hand side, as was done in the quasistatic

case by Ervin, Layton, Maubach [ELM00].

There has been an extensive study and development of this approach for equilibrium flow

problems, see e.g. Hemker[Hem82], Koren[K91], Heinrichs[Hei96], Layton, Lee,

Peterson[LLP02], Ervin, Lee[EL06], and subsection 3.1.1 for a review of this work.

For many years, it has been widely believed that (3.1.2) can be directly imported into

implicit time discretizations of flow problems in the obvious way: discretize in time, given

uh(tOLD), the quasistatic flow problem for uh(tNEW ) is solved by applying (3.1.2) directly,

resulting in

− αh∆huh
1(tNEW ) + B(uh

1(tNEW ), uh
k(tOLD)) + NSEh(uh

1(tNEW )) = f, (3.1.3)

−αh∆huh
l (tNEW ) + B(uh

l (tNEW ), uh
k(tOLD)) + NSEh(uh

l (tNEW ))

= f − αh∆huh
l−1(tNEW ), for l = 2, ..., k,

where B is a time stepping operator (e.g., Backward Euler), and k is the degree of piecewise

polynomials in the finite element space.

Unfortunately, this natural idea doesn’t seem to be even stable (see Section 3.7).

On the other hand, there is a parallel development of DCM’s, for initial value problems

in which no spacial stabilization (such as −αh∆h in (3.1.2)) is used, but DCM is used to
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increase the accuracy of the time discretization. This work contains no reports of instabilities:

see, e.g., Heywood, Rannacher[HR90], Hemker, Shishkin[HSS], Lallemand, Koren[LK93],

Minion[M04]. Yet, in spite of this parallel development and after 30+ years of studies of

(3.1.2), there has yet to be a successful extension of (3.1.2) to time dependent flow problems.

This chapter will present this extension of (3.1.2) to the time dependent problem. We

notice that the obvious extension, described above, is in fact unstable, see Section 3.7 .

We give a small but critically important modification of the above natural extension to

time dependent problems, that we prove to be unconditionally stable (Theorem 3.1) and

convergent (Theorem 3.2). We complement the stability proof of the modified DCM by a

complete error analysis, which confirms the expected error in the resulting method: ‖u(tn)−
uh

l (tn)‖energy−norm = O(∆ta + hk + hl), l = 1, ..., k, where a is the order of accuracy of the

(implicit) time stepping employed.

The error analysis is necessarily technical. To keep the details under some control, we

study the backward Euler time discretization (It will be clear from our analysis that extension

to more accurate time discretizations requires no new ideas and only more pages).

In subsection 3.1.1 we review important previous work on DCM in space and DCM in

time. Section 3.2 begins with (the inevitable) notation and preliminaries. Section 3.3, the

heart of the chapter, gives the stability proof. The error analysis is given in Sections 3.4,

3.5.2 and Section 3.7 gives a numerical illustration.

Consider the time dependent, incompressible Navier-Stokes equations

∂u

∂t
−Re−1∆u + u · ∇u +∇p = f, for x ∈ Ω, 0 < t ≤ T, (3.1.4)

∇ · u = 0, x ∈ Ω, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω,

u|∂Ω = 0, for 0 < t ≤ T,

where Ω ⊂ Rd, d = 2, 3.

Before proceeding with the analysis we shall present carefully next the precise extension

of (3.1.2) to the time dependent NSE that we study.
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Let Xh ⊂ X, Qh ⊂ Q be finite-dimensional finite element spaces. Denote the finite-

element discretization of the Navier-Stokes operator by

Nh
Re(u, p) ≡ ∂u

∂t
−Re−1∆hu + (u · ∇h)u +∇hp.

Adding an artificial viscosity parameter to the inverse Reynolds number leads to the modified

Navier-Stokes operator

Nh
R̃e

(u, p) ≡ ∂u

∂t
− (h + Re−1)∆hu + (u · ∇h)u +∇hp.

The method proceeds as follows: first we compute the AV approximation (u1, p1) ∈
(Xh, Qh) via

Nh
R̃e

(u1, p1) = f.

The accuracy of the approximation is then increased by the correction step: compute

(u2, p2) ∈ (Xh, Qh), satisfying

Nh
R̃e

(u2, p2)−Nh
R̃e

(u1, p1) = f −Nh
Re(u1, p1).

The Backward Euler time discretization, combined with the two-step defect correction

method in space leads to the following system of equations for (uh,n+1
1 , ph,n+1

1 ), (uh,n+1
2 , ph,n+1

2 ) ∈
(Xh, Qh),∀vh ∈ Xh at t = tn+1, n ≥ 0, with k := ∆t = ti+1 − ti

(
uh,n+1

1 − uh,n
1

k
, vh) + (h + Re−1)(∇uh,n+1

1 ,∇vh) + b∗(uh,n+1
1 , uh,n+1

1 , vh) (3.1.5)

−(ph,n+1
1 ,∇ · vh) = (f(tn+1), v

h),

(
uh,n+1

2 − uh,n
2

k
, vh) + (h + Re−1)(∇uh,n+1

2 ,∇vh) + b∗(uh,n+1
2 , uh,n+1

2 , vh)

−(ph,n+1
2 ,∇ · vh) = (f(tn+1), v

h) + h(∇uh,n+1
1 ,∇vh),

where b∗(·, ·, ·) is the explicitely skew-symmetrized trilinear form, defined below.

The initial value approximations are taken to be uh,0
1 = uh,0

2 = us
0, where us

0 is the

modified Stokes projection of u0 onto the space V h of discretely divergence-free functions

(this projection and this space are defined in section 3.2). The stability and error estimate

for the modified Stokes projection are proven in the sections 3.3 and 3.4.
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3.1.1 Previous results

Many iterative methods can be written as a Defect Correction method, see e. g. Bohmer,

Hemker, Stetter [BHS]. In the DCM we consider, no iterates occur; a small number of

updates are calculated to increase the accuracy of the velocity and pressure approximations.

Thus it is most similar to DCM’s which are close to Richardson extrapolation (see, for ex-

ample, Mathews, Fink [MF04]). In the late 1970’s Hemker (Bohmer, Stetter, Heinrichs and

others) discovered that DCM, properly interpreted, is good also for nearly singular prob-

lems. Examples for which this has been successful include equilibrium Euler equations (Ko-

ren, Lallemand [LK93]), high Reynolds number problems (Layton, Lee, Peterson [LLP02]),

viscoelastic problems (Ervin, Lee [EL06]).

There has also been interesting work on Spectral Deferred Correction (SDC) for IVP’s

(e.g., Minion [M04], Bourlioux, Layton, Minion [BLM03], Kress, Gustafsson [KG02], Dutt,

Greengard, Rokhlin [DGR00]). With the exception of the SDC methods for time stepping,

the majority of the results has been obtained for the equilibrium problems - an odd fact,

since, e.g., for the Euler equations the time-dependent problem is natural. For example, it

has not been known apparently if the natural idea of time stepping combined with the DCM

in space for the associated quasi-equilibrium problem is stable.

3.2 MATHEMATICAL PRELIMINARIES AND NOTATIONS

Throughout this chapter the norm ‖ · ‖ will denote the usual L2(Ω)-norm of scalars, vectors

and tensors, induced by the usual L2 inner-product, denoted by (·, ·). The space that velocity

(at time t) belongs to, is

X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω}.

with the norm ‖v‖X = ‖∇v‖. The space dual to X, is equipped with the norm

‖f‖−1 = sup
v∈X

(f, v)

‖∇v‖ .
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The pressure (at time t) is sought in the space

Q = L2
0(Ω) = {q : q ∈ L2(Ω),

∫

Ω

q(x)dx = 0}.

Also introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

For measurable v : [0, T ] → X, we define

‖v‖Lp(0,T ;X) = (

∫ T

0

‖v(t)‖p
Xdt)

1
p , 1 ≤ p < ∞,

and

‖v‖L∞(0,T ;X) = ess sup
0≤t≤T

‖v(t)‖X .

Define the trilinear form on X ×X ×X

b(u, v, w) =

∫

Ω

u · ∇v · wdx.

The following lemma is also necessary for the analysis

Lemma 3.1. There exist finite constants M = M(d) and N = N(d) s.t. M ≥ N and

M = sup
u,v,w∈X

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖ < ∞ , N = sup
u,v,w∈V

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖ < ∞.

The proof can be found, for example, in [GR79]. The corresponding constants Mh and

Nh are defined by replacing X by the finite element space Xh ⊂ X and V by V h ⊂ X, which

will be defined below. Note that M ≥ max(Mh, N,Nh) and that as h → 0, Nh → N and

Mh → M (see [GR79]).

Throughout the chapter, we shall assume that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties of finite element

spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖∇vh‖‖qh‖ ≥ βh > 0, (3.2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can be found

in [GR79]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous piecewise
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polynomials of degree m and m − 1, respectively, with m ≥ 2. The case of m = 1 is not

considered, because the optimal error estimate (of the order h) is obtained after the first

step of the method - and therefore the DCM in this case is reduced to the artificial viscosity

approach.

The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0, ∀qh ∈ Qh}.

In the analysis we use the properties of the following Modified Stokes Projection

Definition 3.1 (Modified Stokes Projection). Define the Stokes projection operator PS:

(X,Q) → (Xh, Qh), PS(u, p) = (ũ, p̃), satisfying

(h + Re−1)(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0, (3.2.2)

(∇ · (u− ũ), qh) = 0,

for any vh ∈ V h, qh ∈ Qh.

In (V h, Qh) this formulation reads: given (u, p) ∈ (X, Q), find ũ ∈ V h satisfying

(h + Re−1)(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (3.2.3)

for any vh ∈ V h, qh ∈ Qh.

Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following estimate is easy to prove (see, e.g., [GR79]): there exists a constant C = C(Ω)

such that

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (3.2.4)

The proofs will require the sharper bound on the nonlinearity. This upper bound is

improvable in R2.

Lemma 3.2 (The sharper bound on the nonlinear term). Let Ω ⊂ Rd, d = 2, 3. For all

u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.
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Proof. See [GR79].

We will also need the following inequalities: for any u ∈ V

inf
v∈V h

‖∇(u− v)‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖, (3.2.5)

inf
v∈V h

‖u− v‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖. (3.2.6)

The proof of (3.2.5) can be found, e.g., in [GR79], and (3.2.6) follows from the Poincare-

Friedrich’s inequality and (3.2.5).

Define also the number of time steps N := T
k
.

We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see, e.g.

[HR90]

Lemma 3.3. Let k,B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative numbers such

that:

an + k

n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ + B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k

n∑
µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑

µ=0

cµ + B].

3.3 STABILITY OF THE VELOCITY

In this section we prove the unconditional stability of the discrete artificial viscosity approx-

imation uh
1 and use this result to prove stability of the higher order approximation uh

2 . Over

0 ≤ t ≤ T < ∞ the approximations uh
1 and uh

2 are bounded uniformly in Re.

Hence, the formulation (3.1.5) gives the unconditionally stable extension of the defect

correction method to the time-dependent Navier-Stokes equations. We start by proving

stability of the modified Stokes Projection, that we use as the approximation ũ0 to the

initial velocity u0.
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Proposition 3.1 (Stability of the Stokes projection). Let u, ũ satisfy (3.2.3). The following

bound holds

(h + Re−1)‖∇ũ‖2 ≤ 2(h + Re−1)‖∇u‖2 (3.3.1)

+2d(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2,

where d is the dimension, d = 2, 3.

Proof. Take vh = ũ ∈ V h in (3.2.3). This gives

(h + Re−1)‖∇ũ‖2 = (h + Re−1)(∇u,∇ũ) (3.3.2)

−(p− qh,∇ · ũ).

Using the Cauchy-Schwarz and Young’s inequalities, we obtain

(h + Re−1)‖∇ũ‖2 ≤ (h + Re−1)‖∇u‖2 +
h + Re−1

4
‖∇ũ‖2 (3.3.3)

+d(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2 +
h + Re−1

4d
‖∇ · ũ‖2.

Using the inequality ‖∇·ũ‖2 ≤ d‖∇ũ‖2 and combining the like terms concludes the proof.

Now we prove the main results of this section - stability of the AV approximation uh
1 and

the Correction Step approximation uh
2 .

Lemma 3.4 (Stability of the AV approximation). Let uh
1 satisfy the first equation of (3.1.5).

Let f ∈ L2(0, T ; H−1(Ω)). Then for n = 0, ..., N − 1

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 ≤ ‖us

0‖2

+
1

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1.

Also, if f ∈ L2(0, T ; L2(Ω)) and the time constraint T is finite, then there exists a constant

C = C(T ) such that

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.3.4)

≤ C(‖us
0‖2 + kΣn+1

i=1 ‖f(ti)‖2).
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Proof. Let vh = uh,n+1
1 ∈ V h in the first equation of (3.1.5). Since b∗(u, v, v) = 0, we obtain

‖uh,n+1
1 ‖2 − (uh,n

1 , uh,n+1
1 )

k
+ (h + Re−1)‖∇uh,n+1

1 ‖2 − (ph,n+1
1 ,∇ · uh,n+1

1 )

= (f(tn+1), u
h,n+1
1 ).

Since ph,n+1
1 ∈ Qh and uh,n+1

1 ∈ V h it follows that (ph,n+1
1 ,∇ · uh,n+1

1 ) = 0. Applying Cauchy-

Schwartz and Young’s inequalities gives

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + Re−1)‖∇uh,n+1

1 ‖2 ≤ (f(tn+1), u
h,n+1
1 ). (3.3.5)

The definition of the dual norm and the Young’s inequality, applied to the inner-product on

the right-hand side, lead to

(fn+1, uh,n+1
1 ) ≤ ‖fn+1‖−1‖∇uh,n+1

1 ‖ (3.3.6)

≤ h + Re−1

2
‖∇uh,n+1

1 ‖2 +
1

2(h + Re−1)
‖f(tn+1)‖2

−1.

We obtain

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+

h + Re−1

2
‖∇uh,n+1

1 ‖2 ≤ 1

2(h + Re−1)
‖f(tn+1)‖2

−1. (3.3.7)

Summing (3.3.7) over all time levels and multiplying by 2k gives

‖uh,n+1
1 ‖2 + (h + Re−1)kΣn+1

i=1 ‖∇uh,i
1 ‖2 ≤ ‖us

0‖2 (3.3.8)

+
1

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1.

This proves the first part of Lemma.

Consider (3.3.5). Apply the Cauchy-Schwarz and Young’s inequalities to the right-hand

side. Different choice of constants in the Young’s inequality gives

(f(tn+1), u
h,n+1
1 ) ≤ ‖f(tn+1)‖‖uh,n+1

1 ‖ ≤ 1

2
‖uh,n+1

1 ‖2 +
1

2
‖f(tn+1)‖2 (3.3.9)

and

(f(tn+1), u
h,n+1
1 ) ≤ ‖f(tn+1)‖‖uh,n+1

1 ‖ ≤ 1

4k
‖uh,n+1

1 ‖2 + k‖f(tn+1)‖2. (3.3.10)
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Sum (3.3.5) over all time levels, using (3.3.9) at the time levels t0, t1, ..., tn and (3.3.10) at

t = tn+1. We obtain

‖uh,n+1
1 ‖2 − ‖us

0‖2

2k
+ Σn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.3.11)

≤ 1

4k
‖uh,n+1

1 ‖2 +
1

2
Σn

i=1‖uh,i
1 ‖2 + k‖f(tn+1)‖2 +

1

2
Σn

i=1‖f(ti)‖2.

Multiply by 4k and simplify to obtain

‖uh,n+1
1 ‖2 + 4kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.3.12)

≤ 2‖us
0‖2 + 4k2‖f(tn+1)‖2 + 2kΣn

i=1‖f(ti)‖2 + 2kΣn
i=1‖uh,i

1 ‖2.

For the finite time constraint T , the discrete Gronwall’s lemma yields

‖uh,n+1
1 ‖2 + 4kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.3.13)

≤ 2e( 2T
1−k

)(‖us
0‖2 + kΣn+1

i=1 ‖f(ti)‖2).

We use the result of Lemma 3.4 in the following

Theorem 3.1 (Stability). Let uh
1 , uh

2 satisfy (3.1.5). Let f ∈ L2(0, T ; H−1(Ω)). Then for

n = 0, ..., N − 1: uh,n+1
1 , uh,n+1

2 are bounded and

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.3.14)

≤ (1 +
2h2

(h + Re−1)2
)‖us

0‖2

+(1 +
h2

(h + Re−1)2
)

2

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1.

Also, if f ∈ L2(0, T ; L2(Ω)) and the time constraint T is finite, then there exists a constant

C = C(T ) such that

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.3.15)

≤ C(‖us
0‖2 + kΣn+1

i=1 ‖f(ti)‖2).
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It follows from (3.3.15) that both approximations uh
1 and uh

2 are bounded at any time

level and for any viscosity, provided that the initial approximation and the forcing term are

L2-integrable.

The rest of the section is devoted to the proof of Theorem 3.1.

Proof. Take vh = uh,n+1
2 ∈ V h in the second equation of (3.1.5). This gives

1

2k
(‖uh,n+1

2 ‖2 − ‖uh,n
2 ‖2) + (h + Re−1)‖∇uh,n+1

2 ‖2 ≤ (f(tn+1), u
h,n+1
2 ) (3.3.16)

+h(∇uh,n+1
1 ,∇uh,n+1

2 ).

The Cauchy-Schwarz and Young’s inequalities give

1

2k
(‖uh,n+1

2 ‖2 − ‖uh,n
2 ‖2) + (h + Re−1)‖∇uh,n+1

2 ‖2 (3.3.17)

≤ 1

h + Re−1
‖f(tn+1)‖2

−1 +
h + Re−1

4
‖∇uh,n+1

2 ‖2

+
h2

h + Re−1
‖∇uh,n+1

1 ‖2 +
h + Re−1

4
‖∇uh,n+1

2 ‖2.

Multiply (3.3.17) by 2k and simplify to obtain

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2 + (h + Re−1)k‖∇uh,n+1
2 ‖2 (3.3.18)

≤ 2

h + Re−1
k‖f(tn+1)‖2

−1 +
2h2

h + Re−1
k‖∇uh,n+1

1 ‖2.

Summing over all time levels leads to

‖uh,n+1
2 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
2 ‖2 (3.3.19)

≤ ‖us
0‖2 +

2

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1

+
2h2

(h + Re−1)2
kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2.

Inserting the bound on kΣn+1
i=1 (h + Re−1)‖∇uh,i

1 ‖2 from the stability result (3.3.8) in (3.3.19)

gives

‖uh,n+1
2 ‖2 + (h + Re−1)kΣn+1

i=1 ‖∇uh,i
2 ‖2 (3.3.20)

≤ ‖us
0‖2 +

2

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1

+
2h2

(h + Re−1)2
(‖us

0‖2 − ‖uh,n+1
1 ‖2 +

1

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1).
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Thus

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + (h + Re−1)kΣn+1
i=1 ‖∇uh,i

2 ‖2 (3.3.21)

≤ (1 +
2h2

(h + Re−1)2
)‖us

0‖2

+(1 +
h2

(h + Re−1)2
)

2

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2
−1.

This proves the first statement of Theorem 3.1. To conclude, consider (3.3.16); as in

(3.3.9)-(3.3.10), use the Young’s inequalities differently at different time levels to obtain

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2

2k
+ (h + Re−1)‖∇uh,n+1

2 ‖2 (3.3.22)

≤ k‖f(tn+1)‖2 +
1

4k
‖uh,n+1

2 ‖2

+
h2

2(h + Re−1)
‖∇uh,n+1

1 ‖2 +
h + Re−1

2
‖∇uh,n+1

2 ‖2,

and

‖uh,i+1
2 ‖2 − ‖uh,i

2 ‖2

2k
+ (h + Re−1)‖∇uh,i+1

2 ‖2 (3.3.23)

≤ 1

2
‖f(ti+1)‖2 +

1

2
‖uh,i+1

2 ‖2

+
h2

2(h + Re−1)
‖∇uh,i+1

1 ‖2 +
h + Re−1

2
‖∇uh,i+1

2 ‖2,

for ∀i = 0, 1, .., n− 1.

Sum (3.3.23) over all time levels and add to (3.3.22); multiply by 4k to obtain

‖uh,n+1
2 ‖2 − 2‖us

0‖2 + 2kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.3.24)

≤ 2kΣn
i=1‖uh,i

2 ‖2 + 4k2‖f(tn+1)‖2

+2kΣn
i=1‖f(ti)‖2 +

2h2

(h + Re−1)2
kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2.

Insert the bound on kΣn+1
i=1 (h + Re−1)‖∇uh,i

1 ‖2 from (3.3.13) into (3.3.24) and simplify.

For the finite time constraint T , the discrete Gronwall’s lemma yields

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + 2kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.3.25)

≤ (2e( 2T
1−k

) + 4e( 4T
1−k

) h2

(h + Re−1)2
)[‖us

0‖2 + kΣn
i=1‖f(ti)‖2].
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The result of Theorem 3.1, combined with the result of Proposition 3.1, proves the

unconditional stability of both uh,i
1 and uh,i

2 for any i ≥ 0.

3.4 ERROR ESTIMATES

In this section we explore the error estimates in approximating the NSE velocity u by the

Artificial Viscosity approximation u1 and the Correction Step approximation u2. The results

agree with the general theory of the defect correction methods: ‖u−uh
1‖energy−norm ≤ C(hm+

h), ‖u−uh
2‖energy−norm ≤ C(hm+h2), where the velocity approximations uh

1 and uh
2 are sought

in the finite-element space of piecewise polynomials of degree m.

In the error analysis we shall use the error estimate of the Stokes projection (3.2.3).

Proposition 3.2 (Error estimate for Stokes Projection). Suppose the discrete inf-sup con-

dition (3.2.1) holds. Then the error in the Stokes Projection satisfies

(h + Re−1)‖∇(u− ũ)‖2 ≤ C[(h + Re−1) inf
vh∈V h

‖∇(u− vh)‖2 (3.4.1)

+(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2],

where C is a constant independent of h and Re.

Proof. Decompose the projection error e = u − ũ into e = u − I(u) − (ũ − I(u)) = η − φ,

where η = u − I(u), φ = ũ − I(u), and I(u) approximates u in V h. Take vh = φ ∈ V h in

(3.2.3). This gives

(h + Re−1)‖∇φ‖2 = (h + Re−1)(∇η,∇φ) (3.4.2)

−(p− qh,∇ · φ).

Since Ω ⊂ Rd, we have ‖∇ · φ‖2 ≤ d‖∇φ‖2.

Applying the Cauchy-Schwarz and Young’s inequalities to (3.4.2) gives

(h + Re−1)‖∇φ‖2 ≤ 2(h + Re−1)‖∇η‖2 (3.4.3)

+2d(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2.
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Since I(u) is an approximation of u in V h, we can take infimum over V h. The proof is

concluded by applying the triangle inequality.

The following constants (depending upon Ω and u) are introduced in order to simplify

the notation.

Definition 3.2. Let

Cu := ‖u(x, t)‖L∞(0,T ;L∞(Ω)),

C∇u := ‖∇u(x, t)‖L∞(0,T ;L∞(Ω)),

and introduce C̃, satisfying

inf
v∈V h

‖∇(u− v)‖ ≤ C inf
v∈Xh

‖∇(u− v)‖ ≤ C1h
m‖u‖Hm+1 ≤ C̃hm.

Also, using the constant C(Ω) from Lemma 3.2, we define

C̄ := 1728C4(Ω).

The main results of this section are presented in the following theorem:

Theorem 3.2 (Error estimates). Let f ∈ L2(0, T ; H−1(Ω)), let uh
1 , u

h
2 satisfy (3.1.5),

k ≤ h + Re−1

4C2
u + 2(h + Re−1)C∇u + 2C̄C̃4(h + Re−1)−2h4m

,

u ∈ L2(0, T ; Hm+1(Ω))
⋂

L∞(0, T ; L∞(Ω)),∇u ∈ L∞(0, T ; L∞(Ω)),

ut ∈ L2(0, T ; Hm+1(Ω)), utt ∈ L2(0, T ; L2(Ω)), p ∈ L2(0, T ; Hm(Ω)).

Then there exists a constant C = C(Ω, T, u, p, f, h + Re−1), such that

max
1≤i≤N

‖u(ti)− uh,i
1 ‖+

(
k

n+1∑
i=1

(h + Re−1)‖∇(u(ti)− uh,i
1 )‖2

)1/2

≤ C(hm + h + k),

and

max
1≤i≤N

‖u(ti)− uh,i
2 ‖+

(
k

n+1∑
i=1

(h + Re−1)‖∇(u(ti)− uh,i
2 )‖2

)1/2

≤ C(hm + h2 + hk + k).
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Hence, the second (Correction) step of the method gives an approximation of the true

solution, that is improved by (roughly) an order of h compared to the first step (Artificial

Viscosity) approximation.

The goal of this section is to prove Theorem 3.2 - that is, that the method is of the first

order in time and that the order of the approximation in space depends upon the step of

defect correction procedure.

Proof. By Taylor expansion, u(tn+1)−u(tn)
k

= ut(tn+1) − kρn+1, where ρn+1 = utt(tn+θ), for

some θ ∈ [0, 1]. The variational formulation of the NSE, followed by the equations (3.1.5),

gives for u ∈ X, p ∈ Q, u1, u2 ∈ Xh, p1, p2 ∈ Qh,∀v ∈ V h

(
u(tn+1)− u(tn)

k
, v) + (h + Re−1)(∇u(tn+1),∇v) + b∗(u(tn+1), u(tn+1), v) (3.4.4)

−(p(tn+1),∇ · v) = (f(tn+1), v) + h(∇u(tn+1),∇v)− k(ρn+1, v),

(
uh,n+1

1 − uh,n
1

k
, v) + (h + Re−1)(∇uh,n+1

1 ,∇v) + b∗(uh,n+1
1 , uh,n+1

1 , v) (3.4.5)

−(ph,n+1
1 ,∇ · v) = (f(tn+1), v),

(
uh,n+1

2 − uh,n
2

k
, v) + (h + Re−1)(∇uh,n+1

2 ,∇v) + b∗(uh,n+1
2 , uh,n+1

2 , v) (3.4.6)

−(ph,n+1
2 ,∇ · v) = (f(tn+1), v) + h(∇uh,n+1

1 ,∇v).

Subtract (3.4.5) from (3.4.4). Introduce the error in the AV approximation ei
1 := u(ti) −

uh,i
1 ,∀i. This gives

(
en+1
1 − en

1

k
, v) + (h + Re−1)(∇en+1

1 ,∇v) (3.4.7)

+[b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
1 , uh,n+1

1 , v)]

−((p(tn+1)− ph,n+1
1 ),∇ · v) = h(∇u(tn+1),∇v)− k(ρn+1, v).

Adding and subtracting b∗(uh,n+1
1 , u(tn+1), v) to the nonlinear terms in (3.4.7) gives

b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
1 , uh,n+1

1 , v) (3.4.8)

= b∗(en+1
1 , u(tn+1), v) + b∗(uh,n+1

1 , en+1
1 , v).
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Decompose the error

ei
1 = u(ti)− uh,i

1 = u(ti)− ũi + ũi − uh,i
1 = ηi

1 − φh,i
1 , (3.4.9)

where ũi ∈ V h is some projection of u(ti) into V h,

and ηi
1 = u(ti)− ũi, φh,i

1 = uh,i
1 − ũi, φh,i

1 ∈ V h,∀i.

Take v = φh,n+1
1 ∈ V h in (3.4.7) and use (3.4.8). Using also b∗(·, φh,n+1

1 , φh,n+1
1 ) = 0 and

V h⊥Qh, we obtain

(
ηn+1

1 − ηn
1

k
, φh,n+1

1 )− (
φh,n+1

1 − φh,n
1

k
, φh,n+1

1 ) (3.4.10)

+(h + Re−1)(∇ηn+1
1 ,∇φh,n+1

1 )− (h + Re−1)‖∇φh,n+1
1 ‖2

+b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )− b∗(φh,n+1

1 , u(tn+1), φ
h,n+1
1 )

+b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )− (p(tn+1)− qh,n+1,∇ · φh,n+1

1 )

= h(∇u(tn+1),∇φh,n+1
1 )− k(ρn+1, φh,n+1

1 ).

Apply the Cauchy-Schwarz and Young’s inequalities to (3.4.10). Since ‖∇ · φh,n+1
1 ‖2 ≤

d‖∇φh,n+1
1 ‖2 for ∀ε > 0

‖φh,n+1
1 ‖2 − ‖φh,n

1 ‖2

2k
+ (h + Re−1)‖∇φh,n+1

1 ‖2 (3.4.11)

≤ ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

1

4ε(h + Re−1)
‖ηn+1

1 − ηn
1

k
‖2
−1

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

(h + Re−1)

4ε
‖∇ηn+1

1 ‖2

+|b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )|+ |b∗(φh,n+1

1 , u(tn+1), φ
h,n+1
1 )|

+|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )|

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

d

4ε(h + Re−1)
inf

qh∈Qh
‖p(tn+1)− qh,n+1‖2

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

h2

4ε(h + Re−1)
‖∇u(tn+1)‖2

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

1

4ε(h + Re−1)
k2‖ρn+1‖2

−1.
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We bound the nonlinear terms on the right-hand side of (3.4.11), starting now with the first

one. Use the bound (3.2.4), the regularity of u and Young’s inequality to obtain

|b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )| ≤ ε(h + Re−1)‖∇φh,n+1

1 ‖2 (3.4.12)

+C
1

h + Re−1
‖∇ηn+1

1 ‖2.

The second nonlinear term can be bounded, using the definition of b∗(·, ·, ·) and the regularity

of u. This gives

|b∗(φh,n+1
1 , u(tn+1), φ

h,n+1
1 )| ≤ C∇u

2
‖φh,n+1

1 ‖2 +
Cu

2
(|φh,n+1

1 |, |∇φh,n+1
1 |) (3.4.13)

≤ C∇u

2
‖φh,n+1

1 ‖2 + ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

C2
u

16ε(h + Re−1)
‖φh,n+1

1 ‖2.

For the third nonlinear term of (3.4.11), use the error decomposition to obtain

|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ |b∗(u(tn+1), η

n+1
1 , φh,n+1

1 )| (3.4.14)

+|b∗(ηn+1
1 , ηn+1

1 , φh,n+1
1 )|+ |b∗(φh,n+1

1 , ηn+1
1 , φh,n+1

1 )|.

Use the regularity of u and the inequality (3.2.4) to bound the first two terms on the right-

hand side of (3.4.14). Applying Lemma 3.2 to the third term gives

|b∗(φh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ C(Ω)‖∇φh,n+1

1 ‖3/2‖φh,n+1
1 ‖1/2‖ηn+1

1 ‖. (3.4.15)

We apply the Young’s inequality to (3.4.15) with p = 4
3

and q = 4. Finally it follows from

(3.4.14) that

|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ ε(h + Re−1)‖∇φh,n+1

1 ‖2 (3.4.16)

+
C

h + Re−1
(‖∇ηn+1

1 ‖2 + ‖∇ηn+1
1 ‖4)

+
27C4(Ω)

64ε3(h + Re−1)3
‖∇ηn+1

1 ‖4‖φh,n+1
1 ‖2,

where C(Ω) is the constant from Lemma 3.2 .
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Take ε = 1
16

in (3.4.11). Using the bounds (3.4.12)-(3.4.16), we obtain

‖φh,n+1
1 ‖2 − ‖φh,n

1 ‖2

2k
+

h + Re−1

2
‖∇φh,n+1

1 ‖2 (3.4.17)

≤ C

h + Re−1
‖ηn+1

1 − ηn
1

k
‖2
−1

+C(h + Re−1)‖∇ηn+1
1 ‖2

+
C

h + Re−1
inf

qh∈Qh
‖p(tn+1)− qh,n+1‖2

+
C

h + Re−1
h2‖∇u(tn+1)‖2

+
C

h + Re−1
k2‖ρn+1‖2

−1 +
C

h + Re−1
(‖∇ηn+1

1 ‖2 + ‖∇ηn+1
1 ‖4)

+(
1

2
C∇u +

C2
u

h + Re−1
+

C̄

(h + Re−1)3
‖∇ηn+1

1 ‖4)‖φh,n+1
1 ‖2.

Sum (3.4.17) over all time levels and multiply by 2k. It follows from the regularity

assumptions of the theorem that

k

n∑
i=0

‖ρi+1‖2
−1 ≤ Ck

n∑
i=0

‖ρi+1‖2 ≤ C.

Therefore we obtain

‖φh,n+1
1 ‖2 + (h + Re−1)k

n∑
i=0

‖∇φh,i+1
1 ‖2 ≤ ‖φh,0

1 ‖2 (3.4.18)

+
2C

h + Re−1
k

n∑
i=0

[‖ηi+1
1 − ηi

1

k
‖2
−1 + (h + Re−1)2‖∇ηi

1‖2

+‖∇ηi
1‖2 + ‖∇ηi

1‖4 + inf
qh∈Qh

‖p(ti)− qh,i‖2 + h2 + k2]

+k

n∑
i=0

(C∇u +
2C2

u

h + Re−1
+

2C̄

(h + Re−1)3
‖∇ηi+1

1 ‖4)‖φh,i+1
1 ‖2.

Take ũi in the error decomposition (3.4.9) to be the L2-projection of u(ti) into V h, for

i ≥ 1. Take ũ0 to be us
0. This gives φh,0

1 = 0 and e0
1 = η0

1. Also it follows from Proposition 3.2
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that ‖∇η0
1‖ ≤ Chm; under the assumptions of the theorem the discrete Gronwall’s lemma

gives

‖φh,n+1
1 ‖2 + (h + Re−1)k

n∑
i=0

‖∇φh,i+1
1 ‖2 (3.4.19)

≤ C

h + Re−1
k

n∑
i=0

[‖ηi+1
1 − ηi

1

k
‖2
−1 + ‖∇ηi

1‖2

+‖∇ηi
1‖4 + inf

qh∈Qh
‖p(ti)− qh,i‖2 + h2 + k2].

Using the error decomposition and the triangle inequality, we obtain

‖en+1
1 ‖ ≤ ‖ηn+1

1 ‖+ ‖φh,n+1
1 ‖, (3.4.20)

‖en+1
1 ‖2 ≤ 2‖ηn+1

1 ‖2 + 2‖φh,n+1
1 ‖2,

‖∇ei+1
1 ‖2 ≤ 2‖∇ηi+1

1 ‖2 + 2‖∇φh,i+1
1 ‖2,

k

n∑
i=0

(h + Re−1)‖∇ei+1
1 ‖2

≤ 2k
n∑

i=0

(h + Re−1)‖∇φh,i+1
1 ‖2 + 2k

n∑
i=0

(h + Re−1)‖∇ηi+1
1 ‖2.

Then it follows from (3.4.19),(3.4.20) that

‖en+1
1 ‖2 + k

n∑
i=0

(h + Re−1)‖∇ei+1
1 ‖2 (3.4.21)

≤ C

h + Re−1
k

n∑
i=0

[‖ηi+1
1 − ηi

1

k
‖2
−1 + ‖∇ηi

1‖2

+‖∇ηi
1‖4 + inf

qh∈Qh
‖p(ti)− qh,i‖2 + h2 + k2].

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend upon the

time level, it follows from (3.2.5),(3.2.6) that

k

n∑
i=0

‖ηi+1
1 − ηi

1

k
‖2
−1 ≤ Ck

n∑
i=0

‖ηi+1
1 − ηi

1

k
‖2 ≤ Ch2m, (3.4.22)

k

n∑
i=0

‖∇ηi
1‖2 ≤ Ch2m,

k

n∑
i=0

inf
qh∈Qh

‖p(ti)− qh,i‖2 ≤ Ch2m.
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Hence, we obtain from (3.4.21),(3.4.22) that

‖u(tn+1)− uh,n+1
1 ‖2 + k

n∑
i=0

(h + Re−1)‖∇(u(tn+1)− uh,n+1
1 )‖2 (3.4.23)

≤ C

h + Re−1
[h2m + h2 + k2],

where C = C(Ω, T, u, p, f).

This proves the first statement of the theorem.

Now subtract (3.4.6) from (3.4.4). Introduce the error in the Correction Step approxi-

mation ei
2 := u(ti)− uh,i

2 , ∀i. This gives

(
en+1
2 − en

2

k
, v) + (h + Re−1)(∇en+1

2 ,∇v) (3.4.24)

+[b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
2 , uh,n+1

2 , v)]

−((p(tn+1)− ph,n+1
2 ),∇ · v) = h(∇en+1

1 ,∇v)− k(ρn+1, v).

Note that (3.4.24) differs from (3.4.7) only in the first term on the right-hand side. Using

the Cauchy-Schwarz and Young’s inequality, we obtain that for any ε > 0

|h(∇en+1
1 ,∇v)| ≤ ε(h + Re−1)‖∇v‖2 +

1

4ε(h + Re−1)
h2‖∇en+1

1 ‖2. (3.4.25)

Therefore,

k

n∑
i=0

|h(∇en+1
1 ,∇v)| ≤ k

n∑
i=0

ε(h + Re−1)‖∇v‖2 (3.4.26)

+
1

4ε(h + Re−1)2
h2k

n∑
i=0

(h + Re−1)‖∇en+1
1 ‖2.

Using the bound on k
∑n

i=0(h + Re−1)‖∇en+1
1 ‖2 from (3.4.23), we obtain

k

n∑
i=0

|h(∇en+1
1 ,∇v)| ≤ k

n∑
i=0

ε(h + Re−1)‖∇v‖2 (3.4.27)

+
C

(h + Re−1)3
[h2m+2 + h4 + h2k2].

Decompose the error

ei
2 = u(ti)− uh,i

2 = u(ti)− ũi + ũi − uh,i
2 = ηi

2 − φh,i
2 , (3.4.28)

where ηi
2 = u(ti)− ũi, φh,i

2 = uh,i
2 − ũi, φh,i

2 ∈ V h, ∀i.
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To conclude, repeat the proof of the first statement of the theorem, replacing uh
1 , e1, φ

h
1 , η1

by uh
2 , e2, φ

h
2 , η2, respectively, and using (3.4.27). Note that the term C

h+Re−1 h
2 on the right-

hand side of (3.4.23), which was obtained from the bound on h(∇u(tn+1),∇v), is now replaced

by C
(h+Re−1)3

[h2m+2 + h4 + h2k2]. Hence, we obtain

‖u(tn+1)− uh,n+1
2 ‖2 + k

n∑
i=0

(h + Re−1)‖∇(u(tn+1)− uh,n+1
2 )‖2 (3.4.29)

≤ C

(h + Re−1)3
[h2m + h4 + h2k2 + k2],

where C = C(Ω, T, u, p, f).

This completes the proof of Theorem 3.2. Thus, we have derived the error estimates,

that agree with the general theory of the defect correction methods. Namely, the Correction

Step approximation uh
2 is improved by an order of h, compared to the Artificial Viscosity

approximation uh
1 .

Next we shall prove stability and derive the error estimates for the pressure.

3.5 PRESSURE

This section gives the proof of stability and the convergence rates for pressure approximations

ph
1 and ph

2 .

For the pressure analysis we shall need the bounds on discrete time derivatives ‖ en+1
1 −en

1

k
‖

and ‖ en+1
2 −en

2

k
‖. For pressure stability it is enough to bound these quantities by a constant,

but a more subtle estimate is needed for proving the convergence rates. We start by proving

this estimate as a theorem.

Throughout this section we use the error decomposition ei
j = u(ti) − uh,i

j = ηi
j − φh,i

j ,

j = 1, 2, i = 1, ..., n, introduced in (3.4.9),(3.4.28).

Also, taking ũi = us
0 on the initial time level gives φh,0

1 = φh,0
2 = 0 and e0

1 = η0
1, e0

2 = η0
2.

It follows from Proposition 3.2 that ‖∇η0
1‖ ≤ Chm and ‖∇η0

2‖ ≤ Chm.
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Theorem 3.3. Let the regularity assumptions of Theorem 3.2 be satisfied. Let

pt ∈ L2(0, T ; Hm(Ω)), uttt ∈ L2(0, T ; L2(Ω)).

Also let k ≤ min(h, (h + Re−1)3). Then for any time level n ≥ 0

‖en+1
1 − en

1

k
‖+ (k

n∑
i=1

(h + Re−1)‖∇(
ei+1
1 − ei

1

k
)‖2)1/2 ≤ C(hm + h + k),

and

‖en+1
2 − en

2

k
‖+ (k

n∑
i=1

(h + Re−1)‖∇(
ei+1
2 − ei

2

k
)‖2)1/2 ≤ C(hm + h2 + hk + k).

Proof. Start with the proof of the bound for ‖φh,n+1
1 −φh,n

1

k
‖. Consider (3.4.7) with (3.4.8) for

n ≥ 1

(
en+1
1 − en

1

k
, v) + (h + Re−1)(∇en+1

1 ,∇v) (3.5.1)

+b∗(en+1
1 , u(tn+1), v) + b∗(uh,n+1

1 , en+1
1 , v)

−((p(tn+1)− ph,n+1
1 ),∇ · v) = h(∇u(tn+1),∇v)− k(ρn+1, v),

where kρn+1 = ut(tn+1)− u(tn+1)− u(tn)

k
.

Take v =
φh,n+1

1 −φh,n
1

k
=: sh,n+1 ∈ V h in (3.5.1). Then consider (3.5.1) at the previous time

level and make exactly the same choice v = sh,n+1 ∈ V h. Subtract the equations, using the

Taylor expansion to simplify the last term on the right-hand side. We obtain

k(
ηn+1

1 − 2ηn
1 + ηn−1

1

k2
, sh,n+1)− (sh,n+1 − sh,n, sh,n+1) (3.5.2)

+(h + Re−1)k(∇(
ηn+1

1 − ηn
1

k
),∇sh,n+1)− (h + Re−1)k‖∇sh,n+1‖2

+b∗(en+1
1 , u(tn+1), s

h,n+1) + b∗(uh,n+1
1 , en+1

1 , sh,n+1)

−b∗(en
1 , u(tn), sh,n+1)− b∗(uh,n

1 , en
1 , s

h,n+1)

−k(
(p(tn+1)− ph,n+1

1 )− (p(tn)− ph,n
1 )

k
,∇ · sh,n+1)

= hk(∇(
u(tn+1)− u(tn+1)

k
),∇sh,n+1)− Ck2(ρn+1

t , sh,n+1),

where ρn+1
t = uttt(tn+θ) for some θ ∈ [0, 1].
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Consider the nonlinear terms of (3.5.2). Adding and subtracting b∗(en
1 , u(tn+1), s

h,n+1) and

b∗(uh,n+1
1 , en

1 , s
h,n+1) gives

b∗(en+1
1 , u(tn+1), s

h,n+1)− b∗(en
1 , u(tn), sh,n+1) (3.5.3)

+b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n
1 , en

1 , s
h,n+1)

= [b∗(en+1
1 , u(tn+1), s

h,n+1)− b∗(en
1 , u(tn+1), s

h,n+1)

+b∗(en
1 , u(tn+1), s

h,n+1)− b∗(en
1 , u(tn), sh,n+1)]

+[b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n+1
1 , en

1 , s
h,n+1)

+b∗(uh,n+1
1 , en

1 , s
h,n+1)− b∗(uh,n

1 , en
1 , s

h,n+1)].

Use the error decomposition (3.4.9). Since b∗(·, sh,n+1, sh,n+1) = 0, it follows from (3.5.3)

that

b∗(en+1
1 , u(tn+1), s

h,n+1)− b∗(en
1 , u(tn), sh,n+1) (3.5.4)

+b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n
1 , en

1 , s
h,n+1)

= kb∗(
ηn+1

1 − ηn
1

k
, u(tn+1), s

h,n+1)− kb∗(sh,n+1, u(tn+1), s
h,n+1)

+kb∗(en+1
1 ,

u(tn+1)− u(tn)

k
, sh,n+1) + kb∗(uh,n+1

1 ,
ηn+1

1 − ηn
1

k
, sh,n+1)

+kb∗(
uh,n+1

1 − uh,n
1

k
, en

1 , s
h,n+1).

Use the regularity of u and the Cauchy-Schwarz and Young’s inequalities to obtain the

bounds on the terms in (3.5.4). It follows from (3.2.4) that for any ε > 0

k|b∗(η
n+1
1 − ηn

1

k
, u(tn+1), s

h,n+1)| (3.5.5)

≤ ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇(

ηn+1
1 − ηn

1

k
)‖2.

For the second term on the right-hand side of (3.5.4) use the regularity of u and the Cauchy-

Schwarz and Young’s inequalities to obtain

k|b∗(sh,n+1, u(tn+1), s
h,n+1)| ≤ ε(h + Re−1)k‖∇sh,n+1‖2 (3.5.6)

+
C

h + Re−1
C2

uk‖sh,n+1‖2 +
1

2
C∇uk‖sh,n+1‖2.
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The third nonlinear term on the right-hand side of (3.5.4) is bounded by

k|b∗(en+1
1 ,

u(tn+1)− u(tn)

k
, sh,n+1)| (3.5.7)

≤ ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇en+1

1 ‖2.

For the fourth nonlinear term, add and subtract u(tn+1) to the first term of the trilinear

form. Using (3.2.4) and Lemma 3.2 leads to

k|b∗(uh,n+1
1 ,

ηn+1
1 − ηn

1

k
, sh,n+1)| ≤ 2ε(h + Re−1)k‖∇sh,n+1‖2 (3.5.8)

+
C

h + Re−1
k‖∇(

ηn+1
1 − ηn

1

k
)‖2 + Ck‖en+1

1 ‖‖∇en+1
1 ‖‖∇(

ηn+1
1 − ηn

1

k
)‖2.

For the fifth term add and subtract u(tn+1) to the first term of the trilinear form to obtain

k|b∗(u
h,n+1
1 − uh,n

1

k
, en

1 , s
h,n+1)| ≤ k|b∗(u(tn+1)− u(tn)

k
, en

1 , s
h,n+1)| (3.5.9)

+k|b∗(η
n+1
1 − ηn

1

k
, en

1 , s
h,n+1)|+ k|b∗(sh,n+1, en

1 , s
h,n+1)|.

Apply the result of Lemma 3.2 to the last trilinear form in (3.5.9) and use the Young’s

inequality with p = 4
3

and q = 4. This gives

k|b∗(u
h,n+1
1 − uh,n

1

k
, en

1 , s
h,n+1)| (3.5.10)

≤ 3ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇en

1‖2

+
C

h + Re−1
k‖∇en

1‖2‖∇(
ηn+1

1 − ηn
1

k
)‖2 +

C

(h + Re−1)3
k‖∇en

1‖4‖sh,n+1‖2.

67



Apply the Cauchy-Schwarz and Young’s inequalities to (3.5.2), using the bounds (3.5.4)-

(3.5.10) for the nonlinear terms. This gives

‖sh,n+1‖2 − ‖sh,n‖2

2
+ (h + Re−1)k‖∇sh,n+1‖2 (3.5.11)

≤ 13ε(h + Re−1)k‖∇sh,n+1‖2

+
C

h + Re−1
k‖ηn+1

1 − 2ηn
1 + ηn−1

1

k2
‖2
−1 + C(h + Re−1)k‖∇(

ηn+1
1 − ηn

1

k
)‖2

+
C

h + Re−1
k inf

qh∈Qh
‖p(tn+1)− p(tn)

k
− qh,n+1 − qh,n

k
‖2

+
C

h + Re−1
k[‖∇(

ηn+1
1 − ηn

1

k
)‖2 + ‖∇en

1‖2 + ‖∇(
ηn+1

1 − ηn
1

k
)‖2‖∇en

1‖2]

+Ck‖en
1‖2‖∇en

1‖2 + Ck‖∇(
ηn+1

1 − ηn
1

k
)‖4

+
C

h + Re−1
k · h2‖∇(

u(tn+1)− u(tn)

k
)‖2 +

C

h + Re−1
k · k2‖ρn+1

t ‖2
−1

+C(C∇u +
C2

u

h + Re−1
+

1

(h + Re−1)3
‖∇en

1‖4)k‖sh,n+1‖2.

Since uttt ∈ L2(0, T ; L2(Ω)), we have

k

n∑
i=0

‖ρi+1
t ‖2

−1 ≤ Ck

n∑
i=0

‖ρi+1
t ‖2 ≤ C.

It follows from the assumption k ≤ h and the result of Theorem 3.2 that

max
i
‖∇ei

1‖ ≤ C,

max
i
‖∇ei

2‖ ≤ C.
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Take ε = 1
26

in (3.5.11), simplify, multiply both sides of the inequality by 2 and sum over

all time levels n ≥ 1 to obtain

‖sh,n+1‖2 + (h + Re−1)k
n∑

i=1

‖∇sh,i+1‖2 ≤ ‖sh,1‖2 (3.5.12)

+
C

h + Re−1
k

n∑
i=1

[‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2
−1

+(h + Re−1)2‖∇(
ηi+1

1 − ηi
1

k
)‖2 + ‖∇(

ηi+1
1 − ηi

1

k
)‖2

+(h + Re−1)‖∇(
ηi+1

1 − ηi
1

k
)‖4

+ inf
qh∈Qh

‖p(ti+1)− p(ti)

k
− qh,i+1 − qh,i

k
‖2 + h2 + k2]

+
C

(h + Re−1)2
k

n∑
i=1

(h + Re−1)‖∇ei
1‖2 + Ck

n∑
i=1

‖ei
1‖2

+Ck

n∑
i=1

(C∇u +
C2

u

h + Re−1
+

1

(h + Re−1)3
‖∇ei

1‖4)‖sh,i+1‖2.

Consider the error decomposition (3.4.9). Take ũi to be the L2 projection of u(ti) into V h,

for all i ≥ 1. Since the mesh nodes do not depend upon the time level, it follows from the

approximation properties of Xh, Qh and the regularity of u, p that

k

n∑
i=1

‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2
−1 ≤ Ck

n∑
i=1

‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2 ≤ Ch2m, (3.5.13)

k

n∑
i=1

‖∇(
ηi+1

1 − ηi
1

k
)‖2 ≤ Ch2m,

k

n∑
i=1

‖∇(
ηi+1

1 − ηi
1

k
)‖4 ≤ Ch4m,

k

n∑
i=1

inf
qh∈Qh

‖p(ti+1)− p(ti)

k
− qh,i+1 − qh,i

k
‖2 ≤ Ch2m.

Using (3.5.13) and (3.4.23), we derive from (3.5.12) that

‖sh,n+1‖2 + (h + Re−1)k
n∑

i=1

‖∇sh,i+1‖2 ≤ ‖sh,1‖2 (3.5.14)

+C[h2m + h2 + k2]

+Ck

n∑
i=1

(C∇u +
C2

u

h + Re−1
+

1

(h + Re−1)3
‖∇ei

1‖4)‖sh,i+1‖2.
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Take ũ0 = us
0 on the initial time level. This gives φh,0

1 = 0 and e0
1 = η0

1 = u0 − us
0.

For the bound on ‖sh,1‖2 = ‖φh,1
1 −φh,0

1

k
‖2, consider (3.5.1) at n = 0 and take v =

φh,1
1 −φh,0

1

k
.

This gives

(
e1
1 − e0

1

k
,
φh,1

1 − φh,0
1

k
) + (h + Re−1)(∇e1

1,∇(
φh,1

1 − φh,0
1

k
)) (3.5.15)

+b∗(e1
1, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(uh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−((p(t1)− ph,1
1 ),∇ · (φ

h,1
1 − φh,0

1

k
))

= h(∇u(t1),∇(
φh,1

1 − φh,0
1

k
))− k(ρ1,

φh,1
1 − φh,0

1

k
).

Rewrite the left-hand side of (3.5.15) so that we could use the properties of the modified

Stokes projection (3.2.3)

(
e1
1 − e0

1

k
,
φh,1

1 − φh,0
1

k
) + (h + Re−1)k(∇(

e1
1 − e0

1

k
),∇(

φh,1
1 − φh,0

1

k
)) (3.5.16)

+b∗(e1
1, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(uh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

+(h + Re−1)(∇e0
1,∇(

φh,1
1 − φh,0

1

k
))− ((p(t1)− ph,1

1 ),∇ · (φ
h,1
1 − φh,0

1

k
))

= h(∇u(t1),∇(
φh,1

1 − φh,0
1

k
))− k(ρ1,

φh,1
1 − φh,0

1

k
).

Since
φh,1

1 −φh,0
1

k
∈ V h and ph,1

1 ∈ Qh, it follows from the choice of initial approximation ũ0 and

from (3.2.3) that

(h + Re−1)(∇e0
1,∇(

φh,1
1 − φh,0

1

k
))− ((p(t1)− ph,1

1 ),∇ · (φ
h,1
1 − φh,0

1

k
)) = 0. (3.5.17)
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Hence, using the Cauchy-Schwarz and Young’s inequalities, we derive from (3.5.16) and

(3.5.17) that for any ε, ε1 > 0

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (3.5.18)

≤ ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η1

1 − η0
1

k
‖2

+ε(h + Re−1)k‖φh,1
1 − φh,0

1

k
‖2 + C(h + Re−1)k‖∇(

η1
1 − η0

1

k
)‖2

+ε1‖φh,1
1 − φh,0

1

k
‖2 + Ck2‖ρ1‖2 + ε(h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2

+
C

h + Re−1
h2k‖∇(

u(t1)− u0

k
)‖2 + ε1‖φh,1

1 − φh,0
1

k
‖2 + Ch2‖∆u0‖2

+kb∗(
e1
1 − e0

1

k
, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(e0

1, u(t1),
φh,1

1 − φh,0
1

k
)

+b∗(u(t1), e
1
1,

φh,1
1 − φh,0

1

k
) + b∗(φh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−b∗(η1
1, e

1
1,

φh,1
1 − φh,0

1

k
).

Using the fact that φh,0
1 = 0, we obtain b∗(·, φh,1

1 ,
φh,1

1 −φh,0
1

k
) = 0. The nonlinear terms in

(3.5.18) are bounded by applying Cauchy-Schwarz and Young’s inequalities. We obtain

kb∗(
e1
1 − e0

1

k
, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(e0

1, u(t1),
φh,1

1 − φh,0
1

k
) (3.5.19)

+b∗(u(t1), e
1
1,

φh,1
1 − φh,0

1

k
) + b∗(φh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−b∗(η1
1, e

1
1,

φh,1
1 − φh,0

1

k
)

≤ C

h + Re−1
k‖φh,1

1 − φh,0
1

k
‖2 + ε(h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2

+ε(h + Re−1)k‖∇(
φh,1

1 − φh,0
1

k
)‖2 +

C

h + Re−1
k‖∇(

η1
1 − η0

1

k
)‖2

+ε(h + Re−1)k‖∇(
φh,1

1 − φh,0
1

k
)‖2 +

C

(h + Re−1)3
k‖∇η1

1‖4‖φh,1
1 − φh,0

1

k
‖2

+2ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η0

1‖2 + C‖∇η0
1‖2

+2ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η1

1‖2 + C‖∇η1
1‖2

+ε1‖φh,1
1 − φh,0

1

k
‖2 + Ch−2‖∇η1

1‖4.
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The inequalities (3.5.18)-(3.5.19) give

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (3.5.20)

≤ (8ε1 +
C

h + Re−1
k +

C

(h + Re−1)3
k‖∇η1

1‖4)‖φh,1
1 − φ0

1

k
‖2

+5ε(h + Re−1)k‖∇(
φ1

1 − φ0
1

k
)‖2

+C[‖η1
1 − η0

1

k
‖2 + (h + Re−1)k‖∇(

η1
1 − η0

1

k
)‖2

+k2‖ρ1‖2 +
1

h + Re−1
h2k‖∇(

u(t1)− u(t0)

k
)‖2 + h2‖∆u0‖2

+
1

h + Re−1
k‖∇(

η1
1 − η0

1

k
)‖2 + ‖η1

1‖2 + ‖∇η1
1‖2 + h−2‖∇η1

1‖4].

It follows from the approximation properties of Xh, Qh that

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (3.5.21)

≤ C[h2m + h2 + k2],

and the triangle inequality gives

‖e1
1 − e0

1

k
‖2 + (h + Re−1)k‖∇(

e1
1 − e0

1

k
)‖2 (3.5.22)

≤ C[h2m + h2 + k2].

Insert the bound on ‖φh,1
1 −φh,0

1

k
‖2 into (3.5.14). The restriction on the time step k allows to

apply discrete Gronwall’s lemma. This leads to

‖φh,n+1
1 − φh,n

1

k
‖2 + (h + Re−1)k

n∑
i=1

‖∇(
φh,i+1

1 − φh,i
1

k
)‖2 (3.5.23)

≤ C[h2m + h2 + k2].

Using the triangle inequality we obtain

‖en+1
1 − en

1

k
‖2 + (h + Re−1)k

n∑
i=1

‖∇(
ei+1
1 − ei

1

k
)‖2 (3.5.24)

≤ C[h2m + h2 + k2].

This result proves the first statement of Theorem 3.3.
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For the bound on ‖φh,n+1
2 −φh,n

2

k
‖ consider (3.4.24), n ≥ 1. Following the proof above, take

v =
φh,n+1

2 −φh,n
2

k
=: sh,n+1

2 , then consider (3.4.24) at the previous time level, make the same

choice v = sh,n+1
2 and subtract the two equations. This leads to

k(
ηn+1

2 − 2ηn
2 + ηn−1

2

k2
, sh,n+1

2 )− (sh,n+1
2 − sh,n

2 , sh,n+1
2 ) (3.5.25)

+(h + Re−1)k(∇(
ηn+1

2 − ηn
2

k
),∇sh,n+1

2 )− (h + Re−1)k‖∇sh,n+1
2 ‖2

+b∗(en+1
2 , u(tn+1), s

h,n+1
2 ) + b∗(uh,n+1

2 , en+1
2 , sh,n+1

2 )

−b∗(en
2 , u(tn), sh,n+1

2 )− b∗(uh,n
2 , en

2 , s
h,n+1
2 )

−k(
(p(tn+1)− ph,n+1

2 )− (p(tn)− ph,n
2 )

k
,∇ · sh,n+1

2 )

= hk(∇(
en+1
1 − en

1

k
),∇sh,n+1

2 )− Ck2(ρn+1
t , sh,n+1

2 ).

The nonlinear terms in (3.5.25) are bounded in the same manner as those in (3.4.24), with

sh, φh
1 and η1 replaced by sh

2 , φh
2 and η2. Using these bounds and the Cauchy-Schwarz and

Young’s inequalities, we obtain from (3.5.25) that

‖sh,n+1
2 ‖2 − ‖sh,n

2 ‖2

2
+ (h + Re−1)k‖∇sh,n+1

2 ‖2 (3.5.26)

≤ 13ε(h + Re−1)k‖∇sh,n+1
2 ‖2

+
C

h + Re−1
k‖ηn+1

2 − 2ηn
2 + ηn−1

2

k2
‖2
−1 + C(h + Re−1)k‖∇(

ηn+1
2 − ηn

2

k
)‖2

+
C

h + Re−1
k inf

qh∈Qh
‖p(tn+1)− p(tn)

k
− qh,n+1 − qh,n

k
‖2

+
C

h + Re−1
k[‖∇(

ηn+1
2 − ηn

2

k
)‖2 + ‖∇en

2‖2 + ‖∇(
ηn+1

2 − ηn
2

k
)‖2‖∇en

2‖2]

+Ck‖en
2‖2‖∇en

2‖2 + Ck‖∇(
ηn+1

2 − ηn
2

k
)‖4

+
C

h + Re−1
k · h2‖∇(

en+1
1 − en

1

k
)‖2 +

C

h + Re−1
k · k2‖ρn+1

t ‖2
−1

+C(C∇u +
C2

u

h + Re−1
+

1

(h + Re−1)3
‖∇en

2‖4)k‖sh,n+1
2 ‖2.

It follows from the assumption k ≤ h and the result of Theorem 3.2 that maxi ‖∇ei
2‖ ≤ C.
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Take ε = 1
26

in (3.5.26), simplify, multiply both sides of (3.5.26) by 2 and sum over all

time levels n ≥ 1. The bound on (h + Re−1)k
∑n

i=1 ‖∇(
ei+1
1 −ei

1

k
)‖2 is obtained from (3.5.24).

Using the approximation properties of Xh, Qh and the triangle inequality, we obtain

‖sh,n+1
2 ‖2 + (h + Re−1)k

n∑
i=1

‖∇sh,i+1
2 ‖2 ≤ ‖sh,1

2 ‖2 (3.5.27)

+C[h2m + h4 + h2k2 + k2]

+Ck

n∑
i=1

(C∇u +
C2

u

h + Re−1
+

1

(h + Re−1)3
‖∇ei

2‖4)‖sh,i+1
2 ‖2.

The bound on ‖sh,1
2 ‖ = ‖φh,1

2 −φh,0
2

k
‖ is obtained in the same manner as the bound on ‖φh,1

1 −φh,0
1

k
‖.

Consider (3.4.24) at n = 0 and take v = sh,1
2 =

φh,1
2 −φh,0

2

k
. This leads to

‖φh,1
2 − φh,0

2

k
‖2 + (h + Re−1)k‖∇(

φh,1
2 − φh,0

2

k
)‖2 (3.5.28)

≤ (8ε1 +
C

h + Re−1
k +

C

(h + Re−1)3
k‖∇η1

2‖4)‖φh,1
2 − φh,0

2

k
‖2

+5ε(h + Re−1)k‖∇(
φh,1

2 − φh,0
2

k
)‖2

+C[‖η1
2 − η0

2

k
‖2 + (h + Re−1)k‖∇(

η1
2 − η0

2

k
)‖2

+k2‖ρ1‖2 +
1

h + Re−1
h2k‖∇(

e1
1 − e0

1

k
)‖2 + h2‖∆η0

1‖2

+
1

h + Re−1
k‖∇(

η1
2 − η0

2

k
)‖2 + ‖η1

2‖2 + ‖∇η1
2‖2 + h−2‖∇η1

2‖4].

Use the bound on (h+Re−1)k‖∇(
e1
1−e0

1

k
)‖2 from (3.5.22). It follows from the approxima-

tion properties of Xh, Qh and the triangle inequality, that

‖φh,1
2 − φh,0

2

k
‖2 + (h + Re−1)k‖∇(

φh,1
2 − φh,0

2

k
)‖2 (3.5.29)

≤ C[h2m + h4 + h2k2 + k2]

and

‖e1
2 − e0

2

k
‖2 + (h + Re−1)k‖∇(

e1
2 − e0

2

k
)‖2 (3.5.30)

≤ C[h2m + h4 + h2k2 + k2].
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Insert the bound on ‖φh,1
2 −φh,0

2

k
‖2 into (3.5.27). The restriction on the time step k allows to

apply discrete Gronwall’s lemma. This leads to

‖φh,n+1
2 − φh,n

2

k
‖2 + (h + Re−1)k

n∑
i=1

‖∇(
φh,i+1

2 − φh,i
2

k
)‖2 (3.5.31)

≤ C[h2m + h4 + h2k2 + k2].

Using the triangle inequality we obtain

‖en+1
2 − en

2

k
‖2 + (h + Re−1)k

n∑
i=1

‖∇(
ei+1
2 − ei

2

k
)‖2 (3.5.32)

≤ C[h2m + h4 + h2k2 + k2].

This completes the proof of Theorem 3.3.

3.5.1 Stability of the Pressure

The stability of the pressure approximations ph
1 and ph

2 follows from the discrete inf-sup

condition (3.2.1). The required bound on the time derivative of velocity is obtained under

the assumptions of Theorem 3.3.

Theorem 3.4. Let f ∈ L2(0, T ; H−1(Ω)). Let ph
1 and ph

2 satisfy the equations (3.1.5) and let

the assumptions of Theorem 3.3 be satisfied. Then there exists a constant C = C(T, f, h +

Re−1, us
0) s.t.

k

n∑
i=0

‖ph,i+1
1 ‖ ≤ C

and

k

n∑
i=0

‖ph,i+1
2 ‖ ≤ C

Proof. Consider the first equation of (3.1.5). It holds true for ∀vh ∈ Xh. Apply the Cauchy-

Schwarz inequality, divide both sides of the inequality by ‖∇vh‖ and regroup the terms,

leaving only the pressure term on the left-hand side. Using Lemma 3.1 gives

(ph,n+1
1 ,∇ · vh)

‖∇vh‖ ≤ ‖uh,n+1
1 − uh,n

1

k
‖−1 + (h + Re−1)‖∇uh,n+1

1 ‖ (3.5.33)

+M‖∇uh,n+1
1 ‖2 + ‖f(tn+1)‖−1.
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It follows from (3.5.33) and the discrete LBB condition (3.2.1) that

βh‖ph,n+1
1 ‖ ≤ ‖uh,n+1

1 − uh,n
1

k
‖−1 + (h + Re−1)‖∇uh,n+1

1 ‖ (3.5.34)

+M‖∇uh,n+1
1 ‖2 + ‖f(tn+1)‖−1.

Decompose the first term on the right-hand side of (3.5.34), using the error decomposition

and the triangle inequality. This gives

‖uh,n+1
1 − uh,n

1

k
‖−1 ≤ ‖u(tn+1)− u(tn)

k
‖−1 + ‖en+1

1 − en
1

k
‖−1. (3.5.35)

Multiply both sides of (3.5.34) by k and sum over the time levels. Using (3.5.35), we obtain

βhk

n∑
i=0

‖ph,i+1
1 ‖ ≤ k

n∑
i=0

‖u(ti+1)− u(ti)

k
‖−1 + k

n∑
i=0

‖ei+1
1 − ei

1

k
‖−1 (3.5.36)

+(h + Re−1)k
n∑

i=0

‖∇uh,i+1
1 ‖+ Mk

n∑
i=0

‖∇uh,i+1
1 ‖2 + k

n∑
i=0

‖f(ti+1)‖−1.

The discrete Hölder’s inequality gives

k

n∑
i=0

‖∇uh,i+1
1 ‖ = k

n∑
i=0

‖∇uh,i+1
1 ‖ · 1 (3.5.37)

≤ (k
n∑

i=0

‖∇uh,i+1
1 ‖2)

1
2 · (k

n∑
i=0

12)
1
2 = C(k

n∑
i=0

‖∇uh,i+1
1 ‖2)

1
2 .

Similarly,

k

n∑
i=0

‖ei+1
1 − ei

1

k
‖−1 ≤ C(k

n∑
i=0

‖ei+1
1 − ei

1

k
‖2
−1)

1
2 ≤ C(k

n∑
i=0

‖ei+1
1 − ei

1

k
‖2)

1
2 . (3.5.38)

The stability bound on k
∑n

i=0 ‖∇uh,i+1
1 ‖2 is obtained from Lemma 3.4. Using (3.5.38)

and Theorem 3.3, it follows from (3.5.36) that

βhk

n∑
i=0

‖ph,i+1
1 ‖ ≤ C[

1

h + Re−1
‖us

0‖2 +
1

(h + Re−1)2
k

n∑
i=0

‖f(ti+1)‖2
−1]. (3.5.39)

Hence, if the forcing term f is sufficiently smooth, the pressure approximation ph
1 is stable.
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Next, consider the second equation of (3.1.5). Apply the Cauchy-Schwarz inequality,

divide both sides of the inequality by ‖∇vh‖ and regroup the terms. Following the outline

of the proof above, we obtain

βhk

n∑
i=0

‖ph,i+1
2 ‖ ≤ k

n∑
i=0

‖u(ti+1)− u(ti)

k
‖−1 + k

n∑
i=0

‖ei+1
2 − ei

2

k
‖−1 (3.5.40)

+(h + Re−1)k
n∑

i=0

‖∇uh,i+1
2 ‖+ Mk

n∑
i=0

‖∇uh,i+1
2 ‖2

+hk

n∑
i=0

‖∇uh,i+1
1 ‖+ k

n∑
i=0

‖f(ti+1)‖−1.

Use the discrete Hölder’s inequality as in (3.5.37). It follows from Theorem 3.3 and Theorem

3.1 that

βhk

n∑
i=0

‖ph,i+1
2 ‖ ≤ C[

1

h + Re−1
‖us

0‖2 +
1

(h + Re−1)2
k

n∑
i=0

‖f(ti+1)‖2
−1]. (3.5.41)

3.5.2 Error estimates for the pressure

In this section we estimate the error in pressure approximations ‖p(ti)−ph,i
1 ‖ and ‖p(ti)−ph,i

2 ‖.
The results are obtained by using the inf-sup condition (3.2.1) and the result of Theorem

3.3. The main result of the section is

Theorem 3.5 (Pressure Convergence Rates). Let u, p, uh
1 , p

h
1 , u

h
2 , p

h
2 satisfy the equations

(3.4.4)-(3.4.6). Let the assumptions of Theorem 3.3 be satisfied. Then, for ∀n ≥ 0

k

n∑
i=0

‖p(ti+1)− ph,i+1
1 ‖ ≤ C[hm + h + k] (3.5.42)

and

k

n∑
i=0

‖p(ti+1)− ph,i+1
2 ‖ ≤ C[hm + h2 + hk + k]. (3.5.43)
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Proof. Decompose the error in the pressure approximation

p(tn+1)− ph,n+1
1 = (p(tn+1)− qh,n+1)− (ph,n+1

1 − qh,n+1) (3.5.44)

=: γn+1
1 − ψh,n+1

1 ,

where qh,n+1 is some projection of p(tn+1) into Qh. Thus, ψh,n+1
1 ∈ Qh.

Divide both sides of (3.5.1) by ‖∇v‖ and regroup the terms. Use the result of Lemma

3.1 and the Cauchy-Schwarz inequality to obtain

(ψh,n+1
1 ,∇ · v)

‖∇v‖ ≤ ‖en+1
1 − en

1

k
‖−1 (3.5.45)

+(h + Re−1)‖∇en+1
1 ‖+ M‖∇u(tn+1)‖‖∇en+1

1 ‖+ M‖∇uh,n+1
1 ‖‖∇en+1

1 ‖
+ inf

qh∈Qh
‖p(tn+1)− qh,n+1‖+ h‖∇u(tn+1)‖+ k‖ρn+1‖−1.

Apply the discrete inf-sup condition. Multiply both sides of (3.5.45) by k and sum over all

time levels. Decomposing uh,n+1
1 = u(tn+1)− en+1

1 gives

βhk

n∑
i=0

‖ψh,i+1
1 ‖ ≤ k

n∑
i=0

‖ei+1
1 − ei

1

k
‖−1 (3.5.46)

+(h + Re−1)k
n∑

i=0

‖∇ei+1
1 ‖+ 2M max

0≤i≤n+1
‖∇u(ti)‖k

n∑
i=0

‖∇ei+1
1 ‖

+Mk

n∑
i=0

‖∇ei+1
1 ‖2 + hk

n∑
i=0

‖∇u(ti+1)‖

+k

n∑
i=0

inf
qh∈Qh

‖p(ti+1)− qh,i+1‖+ k · k
n∑

i=0

‖ρi+1‖−1.

Applying the discrete Hölder’s inequality and the triangle inequality and using Theorem 3.3

and Theorem 3.2 proves (3.5.42).

Next, subtract (3.4.6) from (3.4.4). This gives for any v ∈ Xh

(
en+1
2 − en

2

k
, v) + (h + Re−1)(∇en+1

2 ,∇v) (3.5.47)

+b∗(en+1
2 , u(tn+1), v) + b∗(uh,n+1

2 , en+1
2 , v)

−((p(tn+1)− ph,n+1
2 ),∇ · v) = h(∇en+1

1 ,∇v)− k(ρn+1, v).
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Following the proof above, we obtain

βhk

n∑
i=0

‖ψh,n+1
2 ‖ ≤ k

n∑
i=0

‖ei+1
2 − ei

2

k
‖−1 (3.5.48)

+(h + Re−1)k
n∑

i=0

‖∇ei+1
2 ‖+ 2M max

0≤i≤n+1
‖∇u(ti)‖k

n∑
i=0

‖∇ei+1
2 ‖

+Mk

n∑
i=0

‖∇ei+1
2 ‖2 + hk

n∑
i=0

‖∇ei+1
1 ‖

+k

n∑
i=0

inf
qh∈Qh

‖p(ti+1)− qh,i+1‖+ k · k
n∑

i=0

‖ρi+1‖−1.

Applying the discrete Hölder’s inequality and the triangle inequality and using Theorem 3.3

and Theorem 3.2 leads to (3.5.43).

3.6 COMPUTATIONAL TESTS

We test the convergence rates for a two-dimensional problem with a known exact solution.

Consider the Chorin’s vortex decay problem in the unit square Ω = (0, 1)2. Take

u =


− cos(πx) sin(πy)exp(−2π2t/Re)

sin(πx) cos(πy)exp(−2π2t/Re)


 , (3.6.1)

p = −1

4
(cos(2πx) + cos(2πy))exp(−4π2t/Re),

and then the right-hand side f and initial condition u0 are computed such that (3.6.1)

satisfies (3.1.4).

In order to reduce the influence of the time discretization error, the time step is taken

to be very small: ∆t = O(h3).

For Re = 1, Re = 100000 and final time T = 1/320, the calculated convergence rates in

Tables 3-6 confirm what is predicted by Theorem 3.2 for (P2, P1) discretization in space.

The convergence rate of ‖u − uh
2‖L2(0,T ;L2(Ω)), predicted by Theorem 3.2, appears to be

improvable in the case of moderate Reynolds’ number. However, for the flow with sufficiently

large Reynolds’ number, the computed rates agree with those predicted by the theorem.
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Table 3: AV approximation. Re = 1.

h ||u− uh
1 ||L2(0,T ;L2(Ω)) rate || u− uh

1 ||L2(0,T ;H1(Ω)) rate

1/4 0.000295318 - 0.0111291 -

1/8 5.77794E-05 2.35 0.00280563 1.99

1/16 2.28146E-05 1.34 0.000756655 1.89

1/32 0.000011235 1.02 0.000244007 1.63

Table 4: Correction Step approximation. Re = 1.

h ||u− uh
2 ||L2(0,T ;L2(Ω)) rate || u− uh

2 ||L2(0,T ;H1(Ω)) rate

1/4 0.00027283 - 0.0110347 -

1/8 3.56252E-05 2.94 0.00271592 2.02

1/16 4.55025E-06 2.97 0.000665649 2.03

1/32 5.77583E-07 2.98 0.000164297 2.02

Table 5: AV approximation. Re = 100000.

h ||u− uh
1 ||L2(0,T ;L2(Ω)) rate || u− uh

1 ||L2(0,T ;H1(Ω)) rate

1/4 0.000339015 - 0.00534596 -

1/8 7.39569E-05 2.2 0.00104601 2.35

1/16 3.19763E-05 1.21 0.00025783 2.02

1/32 1.62156E-05 0.98 9.19028E-05 1.49
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Table 6: Correction Step approximation. Re = 100000.

h ||u− uh
2 ||L2(0,T ;L2(Ω)) rate || u− uh

2 ||L2(0,T ;H1(Ω)) rate

1/4 0.000300427 - 0.00525358 -

1/8 0.000040032 2.91 0.000975526 2.43

1/16 5.94795E-06 2.75 0.000190267 2.36

1/32 1.37357E-06 2.11 4.26364E-05 2.16

3.7 COMPARISON OF THE APPROACHES

For many years, it has been widely believed that (3.1.2) can be directly imported into implicit

time discretizations of flow problems in the obvious way: discretize in time, given uh(tOLD),

the quasistatic flow problem for uh(tNEW ) is solved by DCM of the form (3.1.2). In this

section we compare this approach and our method (3.1.5), applied to the same problem.

Apply both methods to the one-dimensional singularly perturbed equation

ut − εuxx + ux = f

Our method leads to the coupled pair of equations

un+1
1,i − un

1,i

∆t
− (ε + h)

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
+

un+1
1,i+1 − un+1

1,i−1

2h

= fn+1
i ,

un+1
2,i − un

2,i

∆t
− (ε + h)

un+1
2,i−1 − 2un+1

2,i + un+1
2,i+1

h2
+

un+1
2,i+1 − un+1

2,i−1

2h

= fn+1
i − h

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
,

whereas the other method gives

un+1
1,i − un

2,i

∆t
− (ε + h)

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
+

un+1
1,i+1 − un+1

1,i−1

2h
= fn+1

i ,

un+1
2,i − un

2,i

∆t
− (ε + h)

un+1
2,i−1 − 2un+1

2,i + un+1
2,i+1

h2
+

un+1
2,i+1 − un+1

2,i−1

2h

= fn+1
i − h

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
.
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Consider 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, u(0, t) = 0, u(1, t) = 25, u(x, 0) = 0, f(x, t) = tx2 + 20x,

ε = 0.000001.

As one could have predicted, if we let the time interval be fixed and reasonably big

(∆t = 0.1) and decrease the space-interval, both methods give almost the same results,

since they mainly differ in treating the time-derivative. But if we fix ∆h and monotonically

decrease ∆t, we immediately see the oscillations of the solution, obtained by the alternative

method.

Figures Fig.3-Fig.6 show the solution, obtained by our method (denoted by the solid

line) and the solution, obtained by the alternative approach (dashed line on the graphs).

The spacial mesh is fixed (with ∆h = 0.01) and the time step ∆t decreases to zero (see the

captions).
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Figure 3: ∆t = 0.01
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Figure 4: ∆t = 0.001

As we see, although this alternative approach uses the Correction Step approximation

of the true solution on each time level (instead of the AV approximation), the results are
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Figure 5: ∆t = 0.0002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

20

30

40

50
h = 0.01, ∆t = 1e−05

Figure 6: ∆t = 0.00001

worse even for a simple one-dimensional problem with the bounded domain and bounded

right-hand side.

We conclude the comparison of the methods by applying them to the Navier-Stokes

equations in R2. Consider the Chorin’s vortex decay problem in the square Ω = (−1
2
, 1

2
)2

with

f(x, y, t) =




1
2
π sin(2πx)exp(−4π2t/Re)

1
2
π sin(2πy)exp(−4π2t/Re)


 (3.7.1)

and Re = 105. The final time is taken to be T = 1/10 and the mesh diameter is fixed at

h = 1/4. As the time step ∆t is decreased, the error estimates, obtained by the DCM (3.1.5),

do not change - see the following table.

At the same time, applying the alternative approach we obtain

Hence, in the alternative approach the error increases as ∆t tends to zero.
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Table 7: DCM. Re = 100000, T = 1/10, h = 1/4

∆t ||u− uh
2 ||L2(0,T ;L2(Ω)) ||u− uh

2 ||L2(0,T ;H1(Ω))

10−3 0.00682 0.0585

10−4 0.00682 0.0585

10−5 0.00682 0.0585

Table 8: ALTERNATIVE APPROACH. Re = 100000, T = 1/10, h = 1/4

∆t ||u− uh
2 ||L2(0,T ;L2(Ω)) ||u− uh

2 ||L2(0,T ;H1(Ω))

10−3 0.01019 0.1104

10−4 0.01449 0.1759

10−5 0.01582 0.2076

We have seen from Figures Fig.3-Fig.6 that the alternative approach gives worse results

than the DCM, when solving the convection diffusion equation. Comparing the Tables 7-8,

we conclude that the Defect Correction Method (3.1.5) also behaves better, when applied to

a more difficult Navier-Stokes problem.
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4.0 A DEFECT CORRECTION METHOD FOR THE EVOLUTIONARY

CONVECTION DIFFUSION PROBLEM WITH INCREASED TIME

ACCURACY

4.1 INTRODUCTION

Consider the evolutionary convection diffusion problem: find u : Ω× [0, T ] → Rd (d = 2, 3)

such that

ut − ε∆u + b · ∇u + gu = f , for x ∈ Ω, 0 < t ≤ T (4.1.1)

u = 0, on ∂Ω, for 0 < t ≤ T,

where u is the velocity field, ε is a diffusion coefficient, g is an absorbtion/reaction coefficient,

and f is a forcing function.

In the problems with high Peclet number (i.e. ε ¿ 1) some iterative solvers fail to

converge to a solution of (4.1.1). We propose a certain Defect Correction Method (DCM),

that is stable, computes a solution to (4.1.1) for any ε with high space and time accuracy,

and is computationally attractive.

The general theory of Defect Correction Methods is presented, e.g., in Bohmer, Hemker,

Stetter [BHS]. In the late 1970’s Hemker (Bohmer, Stetter, Heinrichs and others) discov-

ered that DCM, properly interpreted, is good also for nearly singular problems. Examples

for which this has been successful include equilibrium Euler equations (Koren, Lallemand

[LK93]), high Reynolds number problems (Layton, Lee, Peterson [LLP02]), viscoelastic prob-

lems (Ervin, Lee [EL06]).

There has been an extensive study and development of the DC methods for equilib-

rium flow problems, see e.g. Hemker[Hem82], Koren[K91], Heinrichs[Hei96], Layton, Lee,
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Peterson[LLP02], Ervin, Lee[EL06]. On the other hand, there is a parallel development of

DCM’s, for initial value problems in which no spacial stabilization is used, but DCM is

used to increase the accuracy of the time discretization. This work contains no reports of

instabilities: see, e.g., Heywood, Rannacher[HR90], Hemker, Shishkin[HSS], Minion[M04],

Bourlioux, Layton, Minion [BLM03].

It was shown in [L07] that the natural idea of time stepping combined with the DCM in

space for the associated quasi-equilibrium problem gives an oscillatory computed solution of

poor quality. Another DC method was introduced for an evolutionary PDE, that was proven

to be stable and accurate.

The method presented in this chapter, is the modification (aiming at higher accuracy in

time) of the DCM for the evolutionary PDEs, presented in [L07]. Compared to the method

in [L07], the right hand side of the system is modified in the correction step, resulting in

higher time accuracy with no extra computational cost.

The method proceeds as follows: first we compute the AV approximation uh
1 ∈ Xh via

Lh
ε+h(u

h
1) = f ,

where

Lh
ε+h(u

h) = uh
t − (h + ε)∆uh + b · ∇uh + guh.

The accuracy of the approximation is then increased by the correction step: compute uh
2 ∈

Xh, satisfying

Lh
ε+h(u

h
2)− Lh

ε+h(u
h
1) = f − Lh

ε (u
h
1) + B(uh

1).

Here B(·) is the time difference operator, that increases the accuracy of the discrete time

difference for ut.
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The Crank-Nicolson time discretization, combined with the two-step defect correction

method in space leads to the following system of equations for uh,n+1
1 ,uh,n+1

2 ∈ Xh,∀vh ∈ Xh

at t = tn+1, n ≥ 0, with k := ∆t = ti+1 − ti

(
uh,n+1

1 − uh,n
1

k
,vh) + (h + ε)(∇(

uh,n+1
1 + uh,n

1

2
),∇vh) + (b · ∇(

uh,n+1
1 + uh,n

1

2
),vh) (4.1.2a)

+g(
uh,n+1

1 + uh,n
1

2
,vh) = (f(tn+1/2),v

h),

(
uh,n+1

2 − uh,n
2

k
,vh) + (h + ε)(∇(

uh,n+1
2 + uh,n

2

2
),∇vh) + (b · ∇(

uh,n+1
2 + uh,n

2

2
),vh) (4.1.2b)

+g(
uh,n+1

2 + uh,n
2

2
,vh) = (f(tn+1/2),v

h) + h(∇(
uh,n+1

1 + uh,n
1

2
),∇vh) + Bn(uh

1 ,v
h),

where

B0(u, v) =
1

12
k2

(
u4 − 5u3 + 9u2 − 7u1 + 2u0

k3
, v

)
(4.1.3a)

− 1

16
k2

(
f(t3)− 5f(t2) + 7f(t1)− 3f(t0)

k2
, v

)
,

Bn(u, v) = − 1

12
k2

(
un+2 − 3un+1 + 3un − un−1

k3
, v

)
(4.1.3b)

+
1

16
k2

(
f(tn+2)− f(tn+1)− f(tn) + f(tn−1)

k2
, v

)
, for n = 1, ..., N − 2,

BN−1(u, v) = − 1

12
k2

(
2uN − 7uN−1 + 9uN−2 − 5uN−3 + uN−4

k3
, v

)
(4.1.3c)

+
1

16
k2

(
3f(tN)− 7f(tN−1) + 5f(tN−2)− f(tN−3)

k2
, v

)
.

Depending on the current time level, we vary the templates - this demonstrates the

resilience of the method. However, the condition N ≥ 4 needs to be satisfied, where N = T/k

is the number of time levels.

Note that the operator B is chosen so that for any n the true solution u satisfies

(
u(tn+1)− u(tn)

k
,vh) + (h + ε)(∇(

u(tn+1) + u(tn)

2
),∇vh) + (b · ∇(

u(tn+1) + u(tn)

2
),vh)

+g(
u(tn+1) + u(tn)

2
,vh) = (f(tn+1/2),v

h) + h(∇(
u(tn+1) + u(tn)

2
),∇vh) + Bn(u,vh)

+k4(u(5)(tn+θ),v
h),

for some θ ∈]0, 1[.
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Also, the only extra computational cost for the correction step is due to the storage of

a few vectors uh,i
1 . The Crank-Nicolson scheme is used for computing both uh

1 and uh
2 , but

the time accuracy of the approximate solution uh
2 is increased to be O(k4).

The method is proven to be unconditionally stable over the finite time; it is also stable

over all time under the assumption g − 1
2
∇ · b ≥ β > 0.

In section 4.2 we briefly describe notation used and a few established results. Stability

of the method is proven in Section 4.3. We conclude with the numerical results, proving the

error estimates for the method - this is presented in Section 4.4.

4.2 NOTATION AND PRELIMINARIES

We begin with a few definitions, assumptions, and forms used, and conclude the section with

a statement of the method to be studied. The variational formulation of (4.1.1) is naturally

stated in

X := H1
0 (Ω)d = {v : Ω → Rd,v ∈ L2(Ω)d,∇v ∈ L2(Ω)d,v = 0 on ∂Ω}.

We use the standard L2 norm, ‖·‖, and the usual norm on the Sobolev space Hk, namely

‖·‖k.

We make several common assumptions.

Remark 4.1. There exists a constant β such that

g − 1

2
∇ · b ≥ β > 0.

The method is proven to be stable over a finite time even if the Assumption 4.1 doesn’t

hold. If it does, the method is stable over all time.

We shall assume that the velocity finite element spaces Xh ⊂ X are conforming and have

typical approximation properties of finite element spaces commonly in use. Namely, we take

Xh to be spaces of continuous piecewise polynomials of degree k, with k ≥ 1.

The interpolating properties of Xh are given by the following assumption.
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Remark 4.2. For any function u ∈ X

inf
χ∈Xh

{‖u− χ‖+ h‖∇(u− χ)‖} ≤ chr+1‖u‖r+1, 1 ≤ r ≤ k.

We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see, e.g.

[HR90]

Lemma 4.1. Let k,B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative numbers such

that:

an + k

n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ + B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k

n∑
µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑

µ=0

cµ + B].

4.3 STABILITY OF THE METHOD

In this section we prove the unconditional stability of the discrete artificial viscosity approx-

imation uh
1 and use this result to prove stability of the higher order approximation uh

2 . The

approximations uh
1 and uh

2 are shown to be bounded uniformly in ε.

Theorem 4.1. Let f ∈ L2(0, T ; L2(Ω)). Let g − 1
2
∇ · b ≥ β > −∞. If β < 0, let the length

of the time step satisfy k|β| < 1/4. Then the approximation uh
1 , satisfying (4.1.2a), is stable

over the finite time T < ∞. Specifically, there exist positive constants C1, C2 such that for

any n ≤ N − 1

‖uh,n+1
1 ‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (4.3.1)

≤ eC1T

(
‖uh,0

1 ‖2 +
1

C2

k

n∑
i=0

‖f(ti+1/2)‖2

)
.
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If Assumption 4.1 is satisfied, then uh
1 is stable over all time and

‖uh,n+1
1 ‖2 + βk

n∑
i=0

‖u
h,i+1
1 + uh,i

1

2
‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (4.3.2)

≤ ‖uh,0
1 ‖2 +

1

β
k

n∑
i=0

‖f(ti+1/2)‖2.

Proof. Take vh =
uh,n+1

1 +uh,n
1

2
∈ Xh in (4.1.2a). Apply Green’s theorem to the last two terms

on the left hand side (with uh
1 = 0 on ∂Ω) and use the assumption g − 1

2
∇ · b ≥ β. The

Cauchy-Schwartz and Young’s inequalities, applied to the left hand side, yield

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2 (4.3.3)

+β‖u
h,n+1
1 + uh,n

1

2
‖2 ≤ (f(tn+1/2),

uh,n+1
1 + uh,n

1

2
).

If Assumption 4.1 is satisfied, we bound the right hand side of (4.3.3) by

|(f(tn+1/2),
uh,n+1

1 + uh,n
1

2
)| ≤ 1

2β
‖f(tn+1/2)‖2 +

β

2
‖u

h,n+1
1 + uh,n

1

2
‖2. (4.3.4)

Multiply (4.3.3) by 2k and sum over the time levels i = 0, .., n + 1. Using (4.3.4), we obtain

‖uh,n+1
1 ‖2 + k

n∑
i=0

2(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (4.3.5)

+k

n∑
i=0

β‖u
h,i+1
1 + uh,i

1

2
‖2 ≤ ‖uh,0

1 ‖2 + k

n∑
i=0

1

β
‖f(ti+1/2)‖2,

which proves stability over all time (provided that Assumption 4.1 is satisfied).

If g − 1
2
∇ · b ≥ β with −∞ < β < 0, then we bound the right hand side of (4.3.3) by

|(f(tn+1/2),
uh,n+1

1 + uh,n
1

2
)| ≤ 1

4|β|‖f(tn+1/2)‖2 + |β|‖u
h,n+1
1 + uh,n

1

2
‖2. (4.3.6)

It follows from (4.3.3),(4.3.6) and the triangle inequality that

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2 (4.3.7)

≤ 1

4|β|‖f(tn+1/2)‖2 + |β|(‖uh,n+1
1 ‖2 + ‖uh,n

1 ‖2).
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Multiply (4.3.7) by 2k and sum over the time levels i = 0, .., n + 1. Under the condition

k|β| < 1/4 the discrete Gronwall’s lemma yields

‖uh,n+1
1 ‖2 + k

n∑
i=0

2(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2

≤ ecT

(
‖uh,0

1 ‖2 + k

n∑
i=0

1

2|β|‖f(ti+1/2)‖2

)
,

with c > 0.

We now proceed to the proof of stability of uh
2 . It follows from (4.1.3) that |Bi(u

h
1 ,v

h)| ≤
C‖vh‖ for any vh ∈ Xh, provided that the time difference

uh,i+1
1 −uh,i

1

k
is bounded for any

i = 0, ..., N − 1. Hence, we begin by establishing the bound for
uh,i+1

1 −uh,i
1

k
.

Lemma 4.2. Let uh,0
1 ∈ H2(Ω), ft ∈ L2(0, T ; L2(Ω)). Let g − 1

2
∇ · b ≥ β > −∞. If β < 0,

let the length of the time step satisfy k|β| < 1/4. Then
uh,n+1

1 −uh,n
1

k
is bounded for the finite

time T < ∞. Specifically, there exist positive constants c, C = C(b, g, f ,uh,0
1 ) such that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2

≤ ecT

(
C + k

n∑
i=1

1

2β
‖f(ti+1/2)− f(ti−1/2)

k
‖2

)
.

If Assumption 4.1 is satisfied, then
uh,n+1

1 −uh,n
1

k
is bounded over all time: there exists

C = C(b, g, f ,uh,0
1 ) such that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2

+k

n∑
i=1

1

4
β‖u

h,i+1
1 − uh,i−1

1

k
‖2 ≤ C + k

n∑
i=1

1

β
‖f(ti+1/2)− f(ti−1/2)

k
‖2.
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Proof. Consider (4.1.2a) at any time level n ≥ 1. Take vh =
uh,n+1

1 −uh,n−1
1

k
and make the same

choice for vh in (4.1.2a) at the previous time level. Subtracting the resulting equations leads

to

(
uh,n+1

1 − 2uh,n
1 + uh,n−1

1

k
,
uh,n+1

1 − uh,n−1
1

k
) +

1

2
(h + ε)k‖∇(

uh,n+1
1 − uh,n−1

1

k
)‖2

+
1

2
k(b · ∇(

uh,n+1
1 − uh,n−1

1

k
),

uh,n+1
1 − uh,n−1

1

k
) +

1

2
kg‖u

h,n+1
1 − uh,n−1

1

k
‖2

= k(
f(tn+1/2)− f(tn−1/2)

k
,
uh,n+1

1 − uh,n−1
1

k
).

Apply Green’s theorem to the last two terms on the left hand side (with
uh,n+1

1 −uh,n−1
1

k
= 0

on ∂Ω) and use the assumption g− 1
2
∇ · b ≥ β. Rewrite the first term on the left hand side,

using the identity

(
uh,n+1

1 − 2uh,n
1 + uh,n−1

1

k
,
uh,n+1

1 − uh,n−1
1

k
) = ‖u

h,n+1
1 − uh,n

1

k
‖2 − ‖u

h,n
1 − uh,n−1

1

k
‖2.

This yields

‖u
h,n+1
1 − uh,n

1

k
‖2 − ‖u

h,n
1 − uh,n−1

1

k
‖2 +

1

2
(h + ε)k‖∇(

uh,n+1
1 − uh,n−1

1

k
)‖2 (4.3.8)

+
1

2
kβ‖u

h,n+1
1 − uh,n−1

1

k
‖2 ≤ k(

f(tn+1/2)− f(tn−1/2)

k
,
uh,n+1

1 − uh,n−1
1

k
).

Sum (4.3.8) over all time levels i = 1, .., n and consider the cases β > 0 and −∞ < β < 0

separately, as in the proof of Theorem 4.1. If the Assumption 4.1 holds, this yields

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2 (4.3.9)

+k

n∑
i=1

1

4
β‖u

h,i+1
1 − uh,i−1

1

k
‖2 ≤ ‖u

h,1
1 − uh,0

1

k
‖2 + k

n∑
i=1

1

β
‖f(ti+1/2)− f(ti−1/2)

k
‖2.

If −∞ < β < 0 and k|β| < 1/4, it follows from the discrete Gronwall’s lemma that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2 (4.3.10)

≤ ecT

(
‖u

h,1
1 − uh,0

1

k
‖2 + k

n∑
i=1

1

2β
‖f(ti+1/2)− f(ti−1/2)

k
‖2

)
.
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To complete the proof, we need a bound on ‖uh,1
1 −uh,0

1

k
‖2. Consider (4.1.2a) at n = 0 and

take vh =
uh,1

1 −uh,0
1

k
. This gives

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)(∇(

uh,1
1 + uh,0

1

2
),∇(

uh,1
1 − uh,0

1

k
)) (4.3.11)

+(b · ∇(
uh,1

1 + uh,0
1

2
),

uh,1
1 − uh,0

1

k
) + g(

uh,1
1 + uh,0

1

2
,
uh,1

1 − uh,0
1

k
)

= (f(t1/2),
uh,1

1 − uh,0
1

k
).

Using the identity
uh,1

1 +uh,0
1

2
=

uh,1
1 −uh,0

1

2
+ uh,0

1 , we can rewrite the last three terms in the

left hand side of (4.3.11). Applying Green’s theorem as in the proofs above, yields

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 + (h + ε)(∆uh,0

1 ,
uh,1

1 − uh,0
1

k
)

+
1

2
kβ‖u

h,1
1 − uh,0

1

k
‖2 + (b · ∇uh,0

1 ,
uh,1

1 − uh,0
1

k
) + g(uh,0

1 ,
uh,1

1 − uh,0
1

k
)

≤ (f(t1/2),
uh,1

1 − uh,0
1

k
).

The Cauchy-Schwartz and Young’s inequalities give

1

2
‖u

h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 +

1

2
kβ‖u

h,1
1 − uh,0

1

k
‖2

≤ C,

where C = ‖b · ∇uh,0
1 ‖2 + 2g2‖uh,0

1 ‖2 + 2(h + ε)2‖∆uh,0
1 ‖2 + ‖f(t1/2)‖2 < ∞. Hence, if

Assumption 4.1 is satisfied, or if −∞ < β < 0 and k|β| < 1/4, we obtain the bound

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 ≤ C < ∞. (4.3.12)

Inserting the bound on ‖uh,1
1 −uh,0

1

k
‖2 into (4.3.9) and (4.3.10) completes the proof.

The unconditional stability of uh
2 (uniform in ε) follows from Theorem 4.1 and Lemma

4.2. The last term in the right hand side of (4.1.2b) is bounded by means of Lemma 4.2.
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Theorem 4.2. Let the assumptions of Theorem 4.1 and Lemma 4.2 be satisfied.

Let g− 1
2
∇·b ≥ β > −∞. If β < 0, let the length of the time step satisfy k|β| < 1/4. Then

the approximation uh
2 , satisfying (4.1.2b), is stable over the finite time T < ∞. Specifically,

there exist positive constants c1, C2, C3 such that for any n ≤ N − 1

‖uh,n+1
2 ‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

2 + uh,i
2

2
)‖2

≤ ec1T

(
C3 + ‖uh,0

2 ‖2 + ‖uh,0
1 ‖2 +

1

C2

k

n∑
i=0

‖f(ti+1/2)‖2

)
.

If Assumption 4.1 is satisfied, then uh
1 is stable over all time and

‖uh,n+1
2 ‖2 + βk

n∑
i=0

‖u
h,i+1
2 + uh,i

2

2
‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

2 + uh,i
2

2
)‖2

≤ C + ‖uh,0
2 ‖2 + ‖uh,0

1 ‖2 +
1

β
k

n∑
i=0

‖f(ti+1/2)‖2,

with C = C(b, g, f ,uh,0
1 ).

Proof. The proof resembles the proof of Theorem 4.1. Take vh =
uh,n+1

2 +uh,n
2

2
∈ Xh in (4.1.2b).

Apply Green’s theorem to the last two terms on the left hand side. This gives

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
2 + uh,n

2

2
)‖2 + β‖u

h,n+1
2 + uh,n

2

2
‖2 (4.3.13)

≤ (f(tn+1/2),
uh,n+1

2 + uh,n
2

2
) + h(∇(

uh,n+1
1 + uh,n

1

2
),∇(

uh,n+1
2 + uh,n

2

2
))

+Bn(uh
1 ,

uh,n+1
2 + uh,n

2

2
).

It is easy to verify that for any n

|Bn(uh
1 ,

uh,n+1
2 + uh,n

2

2
)| ≤ C +

1

2
|β|‖u

h,n+1
2 + uh,n

2

2
‖2, (4.3.14)

where C =
1

|β| max
0≤i≤N−1

‖u
h,i+1
1 − uh,i

1

k
‖2 +

1

|β|k
2 max

0≤i≤N−1
‖f(ti+1)− f(ti)

k
‖2.

It also follows from Lemma 4.2 that this constant is finite, C < ∞.
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Using Cauchy-Schwartz and Young’s inequalities gives

h|(∇(
uh,n+1

1 + uh,n
1

2
),∇(

uh,n+1
2 + uh,n

2

2
))| ≤ 1

2
(h + ε)‖∇(

uh,n+1
2 + uh,n

2

2
)‖2 (4.3.15)

+
h2

2(h + ε)2
(h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2.

Multiply (4.3.13) by 2k, sum over the time levels and use (4.3.14),(4.3.15). Theorem 4.1

gives the bound on k
∑n

i=0(h + ε)‖∇(
uh,i+1

1 +uh,i
1

2
)‖2. The cases when Assumption 4.1 holds

and when −∞ < β < 0, k|β| < 1/4 are treated as in the proof of Theorem 4.1.

Thus, the method is unconditionally stable for all time, provided that the Assumption

4.1 is satisfied. The approximate solutions uh
1 and uh

2 are bounded uniformly in h and ε. If

the condition g− 1
2
∇ · b ≥ β is satisfied with −∞ < β < 0, then the assumption k|β| < 1/4

is needed to conclude stability and uniform boundedness of the approximate solutions over

a finite time.

4.4 COMPUTATIONAL RESULTS

Based on the results of [L07] (and the general theory of Defect Correction Methods), we are

expecting to obtain the following error estimates:

‖u− uh
1‖L2(0,T ;L2(Ω)) ≤ C(h + k2),

‖u− uh
2‖L2(0,T ;L2(Ω)) ≤ C(h‖u− uh

1‖L2(0,T ;L2(Ω)) + k4)

≤ C(h2 + hk2 + k4).

Consider the following transport problem in Ω = [0, 1] × [0, 1]: find u satisfying (4.1.1)

with ε = 10−5, b = (1, 1)T , g = 1 and f = [(2 + 2επ2) sin(πx) sin(πy) + π sin(πx + πy)]et.

This problem has a solution u = sin(πx) sin(πy)et.

The results presented in the following tables are obtained by using the software FreeFEM+

+. In order to draw conclusions about the convergence rate, we take k = h and k =
√

h.

Note that the method needs the number of time steps N ≥ 4.
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Table 9: Error estimates, ε = 10−5, T = 1, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/4 0.648482 0.36992

1/8 0.406708 0.6731 0.159371 1.2148

1/16 0.233742 0.7991 0.0590029 1.4335

1/32 0.126373 0.8872 0.0202292 1.5443

Table 10: Error estimates, ε = 10−5, T = 1, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/16 0.267117 0.059804

1/64 0.0717964 0.9477 0.00712605 1.5345

1/256 0.0179559 0.9997 0.00076384 1.6109

The method doesn’t resolve the problem of oscillations in the boundary layer, but the

oscillations do not spread beyond the boundary layer. This is verified by the figure plots of

the computed solution uh
2 , as the mesh size and the time step are decreased.

Figure 7: Computed solution uh
2 , k = h = 1/8
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Figure 8: Computed solution uh
2 , k = h = 1/16

Figure 9: Computed solution uh
2 , k = h = 1/32

Finally, we compute the approximation error away from the boundary layer, namely in

(0, 0.75)× (0, 0.75).

Table 11: Error estimates in (0, 0.75)× (0, 0.75), ε = 10−5, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/4 0.545619 0.26598

1/8 0.32111 0.7648 0.0844715 1.6548

1/16 0.172327 0.8979 0.02094 2.0122

Hence, the computational results verify the claimed accuracy of the method away from

boundaries. Also, the oscillations of the computed solution do not spread outside of the

boundary layer.
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Table 12: Error estimates in (0, 0.75)× (0, 0.75), ε = 10−5, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/16 0.197961 0.0186758

1/64 0.0491873 1.0044 0.0016107 1.7677

1/256 0.0120236 1.0162 0.000112279 1.9213
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5.0 NUMERICAL ANALYSIS OF A METHOD FOR HIGH PECLET

NUMBER TRANSPORT IN POROUS MEDIA

5.1 INTRODUCTION

Consider the porous media problem (or Darcy’s problem): find (u, p) such that

−∇ · (k∇p) = g

u = −k∇p.
(5.1.1)

In this equation, u represents the convection field of some fluid through a porous medium,

p is the pressure, k represents the relative permeability, and g is a source term.

The associated evolutionary convection diffusion problem is: find φ such that

φt − ε∆φ + u · ∇φ + cφ = f (5.1.2)

where φ is a scalar quantity modeling some characteristic of a fluid flow such as temperature

or concentration level, ε is a diffusion coefficient, c is an absorbtion/reaction coefficient, and

f is a forcing function.

The coupling of the porous media problem with the convection diffusion problem is of

great importance in a wide array of applications. Any situation in which one is concerned

with a scalar quantity associated with a flow through a porous medium is pertinent. Appli-

cations include oil recovery, the tracking of contaminants in groundwater flow, and nuclear

waste storage among many others.

Numerically speaking, this coupling is rather straightforward. Darcy’s problem is solved

to obtain a convection field, u. This computed convection field is then used in the convection
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diffusion problem to obtain a concentration level, φ. This coupling is unidirectional in that

the computed value of φ plays no part in determining u.

A full error analysis of the coupled system requires two components. First, we determine a

bound on the error in the approximation, uh, of u through whatever numerical method is used

to solve Darcy’s problem. Next, we must follow this inherited error and its effects through the

analysis of the error in approximating the concentration level, φ via the convection diffusion

problem. For Darcy’s problem we use the Galerkin approximation to obtain uh. For the

convection diffusion problem we follow a thread of recent results of Guermond [guermond],

Layton [Layton02], and Heitmann [heitmann].

The fundamental difficulty in this type of modeling arises from the interplay of convec-

tion, a large scale result of fluid velocity, and diffusion, which acts on small scales via Brow-

nian motion. Specifically, the inequality |u|h/ε >> 1 frequently results in solutions display-

ing numerical instability around boundary or interior layers. A wide variety of stabilization

methods have been developed in an effort to gain stability while maintaining solution qual-

ity (see Codina [codina] for a survey of some common methods). One branch of techniques

have been the multiscale methods of Hughes et al. [hughes1, hughes2, hughes3, hughes4] and

Guermond [guermond, guermond2] among others, which have added stability by augmenting

the solution space with bubble functions.

In particular, the method of Guermond creates a composite space via the direct sum of

a large scale finite element space, X and a space composed of bubble functions, X ′. The

resulting space Xh = X ⊕ X ′ allows for every vh ∈ Xh to be decomposed as vh = v + v′

where v seeks to capture the large scale behavior and artificial viscosity is added only to the

fine scales through v′.

In Layton [Layton02] a consistent multiscale mixed method formulation is presented for

the stationary convection diffusion problem. The method decomposes the finite element

space Xh into large scales represented by LH and fine scales represented by I−LH . Stability

is added to the equation and then removed via the mixed variable. By clever selection of the

space LH that part of the stabilization term remaining acts only on fluctuations in ∇φh. A

natural selection is the choice LH ≡ ∇XH . This choice is analyzed by Layton with

• Xh := conforming, C0 piecewise linears on a mesh of width h,
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• XH := conforming, C0 piecewise linears on a coarser mesh of width H, and

• LH := ∇XH = L2 piecewise linears on the coarser mesh.

This results in near optimal error bounds. In Heitmann [heitmann] the method of Layton

is extended to the evolutionary problem using a Crank-Nicholson time discretization. Em-

ploying the same choice of LH ≡ ∇XH bounds are obtained for the cases of conforming, C0

piecewise linear, quadratic, and cubic elements.

This chapter seeks to move the efforts of Layton and Heitmann forward in a next logical

step by coupling the eddy viscosity discretization of their work to the porous media problem.

We turn to a backward Euler time discretization to simplify some of the computation and

notation however these results would translate easily to the Crank-Nicholson method or any

other higher order methods.

In section 5.2 we briefly describe notation used and a few established results. We also

present the method to be studied. Section 5.3 states and proves results for Darcy’s prob-

lem. In particular, stability is established and a bound on the approximation error for the

convection field is determined. In section 5.4, a comprehensive analysis of stability and the

error associated with finding φ is performed.

5.2 NOTATION AND PRELIMINARIES

We begin with a few definitions, assumptions, and forms used, and conclude the section

with a statement of the method to be studied. The variational formulation of the coupled

problem (5.1.1)-(5.1.2) is naturally stated in

X := H0,div(Ω)d, S := H1
0 (Ω), Q := L2

0(Ω),

where Hdiv(Ω)d = {v : Ω → Rd,v ∈ L2(Ω)d,∇ · v ∈ L2(Ω)d}.

Definition 5.1. For v ∈ L2 let P be the orthogonal projection operator from L2(Ω) to LH .

Let P ′ = I − P .
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We use the standard L2 norm, ‖·‖, and the usual norm on the Sobolev space Hk, namely

‖·‖k, as well as the Hdiv norm defined below.

Definition 5.2. For u such that u ∈ L2 and ∇ · u ∈ L2 we define the Hdiv norm

‖u‖2
Hdiv

= ‖u‖2 + ‖∇ · u‖2

Definition 5.3. For φ ∈ H1(Ω), the weighted norm of a function φ : Ω → R is defined by

‖φ‖2
1,ε,α = ‖φ‖2 + ε‖∇φ‖2 + α‖P ′∇φ‖2

We make several common assumptions about the finite element spaces. The first is the

discrete inf-sup condition.

Remark 5.1. The finite dimensional spaces Xh ⊂ X and Qh ⊂ Q satisfy the discrete inf-sup

condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

||qh|| ||vh||Hdiv

≥ β > 0 (5.2.1)

Examples of such spaces are common in the literature. We shall consider Xh ⊂ X,

Qh ⊂ Q to be spaces of continuous piecewise polynomials of degree k and k−1, respectively,

with k ≥ 1. The concentration finite element space Sh is the space of continuous piecewise

polynomials of degree m, m ≥ 1.

The interpolating properties of the finite element spaces Xh, Sh and Qh are given by the

following assumption.

Remark 5.2. For the functions u ∈ X, φ ∈ S, p ∈ Q

inf
χ∈Xh,qh∈Qh

{‖u− χ‖+ h‖∇(u− χ)‖+ h‖p− qh‖} ≤ chr+1(‖u‖r+1 + ‖p‖r), 1 ≤ r ≤ k,

inf
ξ∈Sh

‖φ− ξ‖ ≤ chr+1‖φ‖r+1, 1 ≤ r ≤ m.

The following assumption is known as the inverse estimate.

Remark 5.3. For any vµ ∈ Xµ

‖∇vµ‖ ≤ Cµ−1‖vµ‖,

holds in Xµ, where µ is a characteristic length scale and C is of order one for typical finite

element spaces.
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Remark 5.4. Let P be the orthogonal projection from L2 onto a given finite element space

LH ⊂ Xh, where h and H denote characteristic mesh widths (h < H). Then, for any

φh ∈ Xh

‖P∇φh‖ ≤ CH−1‖φh‖.

For more detail on this assumption see John, Kaya, and Layton [johnkayalayton] and

Kaya [kaya].

We also define the following three forms for notational efficiency.

Definition 5.4. For all φ,w ∈ S define

b(φ,w) ≡ (u · ∇φ,w) + (c φ, w),

a(φ,w) ≡ ε(∇φ,∇w) + b(φ,w),

A(φ,w) ≡ a(φ,w) + α(P ′∇φ, P ′∇w).

The superscript h on any of these forms indicates that the concentration level and the velocity

field to be used are the approximations uh, φh. Thus, for instance we have

ah(φh, w) ≡ ε(∇φh,∇w) + bh(φh, w) ≡ ε(∇φh,∇w) + (uh · ∇φh, w) + (c φh, w).

We now turn toward the approximation method to be studied. The variational formu-

lation of (5.1.1)-(5.1.2) is found as usual by multiplying (5.1.1) by a test function v ∈ X,

multiplying (5.1.2) by a test function w ∈ S and integrating over the spatial domain. The

result is to find (u, p, φ) ∈ (X, Q, S) such that for all (v, w) ∈ (X, S)

k−1(u,v)− (p,∇ · v) = 0 (5.2.2)

∇ · u = g (5.2.3)

(φt, w) + a(φ,w) = (f, w) (5.2.4)
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Following the developments of Layton [Layton02] and Heitmann [heitmann] for the sta-

tionary and evolutionary convection diffusion problem respectively, the coupled method is to

find uh ∈ Xh, φh ∈ Sh and ph ∈ Qh such that for all vh ∈ Xh, wh ∈ Sh and for all qh ∈ Qh

k−1(uh,vh)− (ph,∇ · vh) = 0, (5.2.5)

(∇ · uh, qh) = (g, qh), (5.2.6)

(φh
t , w

h) + α(P ′∇φh, P ′∇wh) + ah(φh, wh) = (f, wh). (5.2.7)

Recall, this system is only coupled in one direction (porous media to convection diffu-

sion), thus we begin by proving stability and error estimates of the Galerkin approximation

(5.2.5,5.2.6) of the Darcy’s problem (5.2.2,5.2.3).

5.3 STABILITY AND ERROR ANALYSIS OF THE DARCY PROBLEM

Theorem 5.1. The Galerkin approximation (uh, ph) to equations (5.2.5,5.2.6) is stable pro-

vided g ∈ L2(Ω).

Proof. Let vh = uh in (5.2.5) and qh = ph in (5.2.6). This gives

k−1||uh||2 = (ph,∇ · uh) (5.3.1)

and

(∇ · uh, ph) = (ph,∇ · uh) = (g, ph). (5.3.2)

Inserting into the inf-sup condition (5.2.1) and rearranging gives

β||ph|| ≤ (ph,∇ · uh)

||uh||Hdiv

=
(ph,∇ · uh)√

||uh||2 + ||∇ · uh||2 ≤
(ph,∇ · uh)

||uh|| =
k−1||uh||2
||uh|| = k−1||uh||.

(5.3.3)

It follows from equations (5.3.1)-(5.3.3) that

k−1||uh||2 = (g, ph) ≤ ||g|| ||ph|| ≤ 1

β
k−1||g|| ||uh||.
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Thus,

||uh|| ≤ 1

β
||g||

proving the stability of uh. Furthermore, equation (5.3.3) combined with the above gives

||ph|| ≤ 1

β2
k−1||g||

completing the proof.

Convergence is established in the following theorem.

Theorem 5.2. Let (u, p) ∈ (X, Q) satisfying equations (5.2.2,5.2.3). Let (uh, ph) ∈ (Xh, Qh)

be the Galerkin approximation of equations (5.2.5,5.2.6). Then

||u− uh||Hdiv
+ ||p− ph|| ≤ C

(
inf

vh∈Xh
||u− vh||Hdiv

+ inf
qh∈Qh

||p− qh||
)
.

For the proof, we will bound each norm on the left hand side individually. Beginning

with the u− uh term, it follows from (5.2.3) that for all qh ∈ Qh

(∇ · u, qh) = (g, qh).

Subtracting (5.2.6) from the above gives

(∇ · (u− uh), qh) = 0, ∀qh ∈ Qh. (5.3.4)

Let I(u) be some projection of u into Xh. The error is then decomposed via eu = u− uh =

(u−I(u))− (uh−I(u)) = η−ψh, where ψh ∈ Xh and η /∈ Xh. Then (5.3.4) can be written

as

(∇ ·ψh, qh) = (∇ · ηh, qh)

Letting vh = ψh in the inf-sup condition (5.2.1) and using the above equation gives

β||qh|| ≤ (∇ ·ψh, qh)

||ψh||Hdiv

=
(∇ · η, qh)

||ψh||Hdiv

.

It follows then that

β||qh|| ||ψh||Hdiv
≤ ||∇ · η|| ||qh||,

which implies

||ψh||Hdiv
≤ 1

β
||∇ · η||.
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Now, by the triangle inequality

||u− uh||Hdiv
≤ ||η||Hdiv

+ ||ψh||Hdiv
≤

(
1 +

1

β

)
||η||Hdiv

.

Since I(u) is an arbitrary function in Xh, we obtain

||u− uh||Hdiv
≤

(
1 +

1

β

)
inf

vh∈Xh
||u− vh||Hdiv

, (5.3.5)

completing the bound on u − uh. The bound on p − ph is completed in similar fashion.

Subtracting equations (5.2.2)-(5.2.3) gives

k−1(u− uh,vh)− (p− ph,∇ · vh) = 0, ∀vh ∈ Xh.

The error in the pressure approximation is decomposed via p−ph = (p−I(p))−(ph−I(p)) =

ηp − ψh
p where ψh

p ∈ Qh, ηp /∈ Qh, and I(p) is some projection of p into Qh. The previous

equation is then rewritten

(ψh
p ,∇ · vh) = (ηp,∇ · vh)− k−1(u− uh,vh).

Using the inf-sup condition on the left hand side and the triangle inequality on the right

hand side gives

β ||ψh
p || ||vh||Hdiv

≤ ||ηp|| ||∇ · vh||+ k−1||u− uh|| ||vh||.

Dividing by β and ||vh||Hdiv
which is greater than ||∇ · vh|| and ||vh|| gives

||ψh
p || ≤

1

β
||ηp||+ 1

β
k−1||u− uh||.

The triangle inequality on the decomposition gives ||p− ph|| ≤ ||ηp||+ ||ψh
p ||, which applied

to the above gives

||p− ph|| ≤
(
1 +

1

β

)
||ηp||+ 1

β
k−1||u− uh||.

Since I(p) is an arbitrary function in Qh we have

||p− ph|| ≤
(
1 +

1

β

)
inf

qh∈Qh
||p− qh||+ 1

β
k−1||u− uh|| (5.3.6)

and combining (5.3.5) with (5.3.6) completes the proof.
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5.4 THE CONVECTION DIFFUSION PROBLEM

The backward Euler method is used to approximate the time derivative. The subscript n is

used to denote the value of the function at the time level tn. Thus (5.2.4) is rewritten

(φn+1 − φn

∆t
, wh

)
+ ε(∇φn+1,∇wh) + (un+1 · ∇φn+1, w

h) + (cφn+1, w
h) (5.4.1)

= (fn+1, w
h) + (ρn+1, w

h),

where ρn+1 = (φn+1 − φn)/∆t − φt(tn+1) is the error in the approximation of the time

derivative at tn+1. The approximation method seeks to find φh ∈ Sh satisfying

(φh
n+1 − φh

n

k
, wh

)
+ (uh

n+1 · ∇φh
n+1, w

h) + α(P ′∇φh
n+1, P

′∇wh)

+ ε(∇φh
n+1,∇wh) + (cφh

n+1, w
h) = (fn+1, w

h), ∀wh ∈ Sh. (5.4.2)

5.4.1 Stability of the method

Theorem 5.3. For some C = C(Ω) = O(1) let

∆t(H−3/2 inf
vh∈Xh

||u− vh||Hdiv
+ α−3 inf

vh∈Xh
||u− vh||4Hdiv

) < C (5.4.3)

Let f ∈ L2(0, T ; L2(Ω)). Then the solution of (5.4.2) is stable over any time T < ∞ and

||φh
n+1||2 + ∆t

n+1∑
i=1

[
ε||∇φh

i ||2 + βc||φh
i ||2 + ||P ′∇φh

i ||2
]
≤ C(||φh

0 ||2 + ∆t

n+1∑
i=1

||fi||2),

where βc is a constant satisfying the coercivity condition C − 1
2
g ≥ βc > 0.
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Proof. Let wh = φh
n+1 ∈ Sh in (5.4.2). This gives

||φh
n+1||2 − ||φh

n||2
2∆t

+ ε||∇φh
n+1||2 + α||P ′∇φh

n+1||2 + (cφh
n+1, φ

h
n+1)

− 1

2
((∇ · uh

n+1)φ
h
n+1, φ

h
n+1) ≤ (fn+1, φ

h
n+1).

Introduce the error term en+1 = un+1−uh
n+1. Adding and subtracting 1

2
((∇·un+1)φ

h
n+1, φ

h
n+1)

to the left hand side and rearranging gives

||φh
n+1||2 − ||φh

n||2
2∆t

+ ε||∇φh
n+1||2 + α||P ′∇φh

n+1||2 + ((c− 1

2
g)φh

n+1, φ
h
n+1)

≤ (fn+1, φ
h
n+1)−

1

2
((∇ · en+1)φ

h
n+1, φ

h
n+1). (5.4.4)

Hölder’s inequality is used for the last term on the right hand side giving

1

2
((∇ · en+1)φ

h
n+1, φ

h
n+1) =

∫

Ω

(∇ · en+1) φh
n+1 φh

n+1 ≤ ||∇ · en+1||L2 ||φh
n+1||L6 ||φh

n+1||L3 .

It follows from the Sobolev embedding theorem that in either 2-d or 3-d, H1/2 ↪→ L3 and

H1 ↪→ L6, thus we have

|1
2
((∇ · en+1)φ

h
n+1, φ

h
n+1)| ≤ ||∇ · en+1|| ||φh

n+1||H1/2 ||φh
n+1||H1

≤ C||∇ · en+1|| ||φh
n+1||1/2 ||∇φh

n+1||3/2.

Using the above estimate, the Cauchy-Schwarz inequality, and Young’s inequality on (5.4.4)

it follows that

||φh
n+1||2 − ||φh

n||2
2∆t

+ ε||∇φh
n+1||2 + α||P ′∇φh

n+1||2 + βc||φh
n+1||2

≤ 1

2
βc||φh

n+1||2 +
1

2βc

||fn+1||2 + C||∇ · en+1|| ||φh
n+1||1/2 ||∇φh

n+1||3/2. (5.4.5)

Noting that ∇φh
n+1 = P∇φh

n+1 + P ′∇φh
n+1, the triangle inequality insures the last term on

the left hand side is bounded by

C||∇ · en+1|| ||φh
n+1||1/2 ||P∇φh

n+1||3/2 + C||∇ · en+1|| ||φh
n+1||1/2 ||P ′∇φh

n+1||3/2.
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For the first term we use the inverse inequality ||P∇φh
n+1|| ≤ CH−1||φh

n+1||. The second term

is bounded using the generalized Young’s inequality (with p = 4/3, q = 4). Thus, (5.4.5)

can be rewritten

||φh
n+1||2 − ||φh

n||2
2∆t

+ ε||∇φh
n+1||2 + α||P ′∇φh

n+1||2 + βc||φh
n+1||2 ≤

1

2βc

||fn+1||2

+ CH−3/2||∇ · en+1|| ||φh
n+1||2 +

α

2
||P ′∇φh

n+1||2 + Cα−3||∇ · en+1||4 ||φh
n+1||2.

Rearranging, multiplying by 2∆t, and then summing from i = 0 to n gives

||φh
n+1||2 + ∆t

n∑
i=0

[
2ε||∇φh

i ||2 + α||P ′∇φh
i ||2 + βc||φh

i ||2
]

≤ ||φh
0 ||2 + ∆t

n∑
i=0

1

βc

||fi||2 + C∆t

n+1∑
i=1

[
(H−3/2||∇ · ei||+ α−3||∇ · ei||4) ||φh

i ||2
]
.

Applying the discrete Gronwall’s lemma and the hypothesis of the theorem completes the

proof.

Corollary 5.1. Let the finite dimensional subspace Xh ∈ X be a space of C0 piecewise

polynomials of degree k. Then the method is stable provided that

∆t(H−3/2hk + α−3h4k) < C(Ω).

In addition, the solution is bounded uniformly in epsilon.
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5.4.2 Error estimates for the method

Let χh ∈ Sh be the equilibrium projection of φ ∈ S into Sh satisfying

A(φ,wh) = A(χh, wh)− ((u− uh) · ∇χh, wh), ∀wh ∈ Sh (5.4.6)

For the right hand side we define the bilinear form B(·, ·) given by

B(s, w) ≡ A(s, w)− (eu · ∇s, w), ∀s, w ∈ S,

where eu = u− uh.

Lemma 5.1. Let u ∈ L∞(Ω). B(·, ·) is continuous. Furthermore if

H−3/2 inf
vh∈Xh

||u− vh||Hdiv
+ α−3 inf

vh∈Xh
||u− vh||4Hdiv

< C(Ω, βc) = O(1) · βc (5.4.7)

is satisfied, then B(·, ·) is coercive. Specifically, there exists a constant C = C(Ω) such that

for all s, w ∈ S

B(s, w) ≤ C||s||1,1,α ||w||1,1,α, and

B(s, s) ≥ C||s||1,ε,α

Proof. The Cauchy-Schwarz inequality implies that

B(s, w) ≤ ε||∇s|| ||∇w||+ ||u||L∞(Ω)||s|| ||∇w||+ ||c||L∞(Ω)||s|| ||w||+ α||P ′∇s|| ||P ′∇w||
+ ||∇eu|| ||∇s|| ||∇w||

≤ C
(||s||2 + ||∇s||2 + α||P ′∇s||2)1/2(||w||2 + ||∇w||2 + α||P ′∇w||2)1/2

= C||s||1,1,α||w||1,1,α.

This proves continuity. For coercivity we have

B(s, s) = ε||∇s||2 +
((

c− 1

2
∇ · u)

s, s
)

+ α||P ′∇s||2 − (eu · ∇s, s)

≥ ε||∇s||2 + βc||s||2 + α||P ′∇s||2 +
1

2

(
(∇ · eu)s, s

)
.
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The last term can be decomposed using Hölder’s inequality and then the embeddings H1/2 ↪→
L3 and H1 ↪→ L6 to obtain

1

2

∫

Ω

(∇eu)s · s ≤ 1

2
||∇eu|| ||s||L3||s||L6

≤ C||∇eu|| ||s||1/2||∇s||3/2

= C||∇eu|| ||s||1/2
(||P∇s||3/2 + ||P ′∇s||3/2

)
.

We use the inverse inequality on ||P∇s|| and Young’s inequality (p = 4, q = 4/3) to obtain

B(s, s) ≥ ε||∇s||2 + βc||s||2 + α||P ′∇s||2 − CH−3/2||∇eu|| ||s||2

−α

2
||P ′∇s||2 − Cα−3||∇eu||4||s||2

= ε||∇s||2 +
(
βc − CH−3/2||∇eu|| − Cα−3||∇eu||4

)||s||2 +
α

2
||P ′∇s||2

Finally, we use the bound (5.4.7) to obtain that B(s, s) ≥ C||s||1,ε,α, which completes the

proof. We will assume throughout the rest of the chapter that the bound (5.4.7) holds,

thus B(·, ·) is continuous and coercive.

Corollary 5.2. Let Xh be a space of C0 piecewise polynomials of degree k. Then (5.4.7)

reads

H−3/2hk + α−3h4k < C(Ω, βc) = O(1) · βc.

Theorem 5.4. Let φ ∈ S. The equilibrium projection χh ∈ Sh, given by equation (5.4.6),

exists uniquely.

Proof. Define F (w) ≡ A(φ,w) for any φ ∈ S. Then equation (5.4.6) can be rewritten as

B(χh, wh) = F (wh). F is a continuous, linear functional. In the finite dimensional space Sh

all norms are equivalent. Thus, we need only one norm in which B(·, ·) is continuous and

coercive. This was accomplished by lemma 5.1. Thus, the hypotheses of the Lax-Milgram

theorem are satisfied and χh exists uniquely.

We next seek an a priori error estimate in the approximation of φ by the equilibrium

projection χh.
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Theorem 5.5. Let u ∈ L∞(Ω) ∩Hk+1(Ω), φ ∈ Hm+1(Ω), and ∇φ ∈ L∞(Ω). Further, let

H−3/2 inf
vh∈Xh

||u− vh||Hdiv
+ α−3 inf

vh∈Xh
||u− vh||4Hdiv

< C(Ω). (5.4.8)

Then

||φ− χh||1,ε,α ≤ C(Ω, m, k, g, f)
{

(1 + H−1 + α−1/2)hm+1 + (ε + α)1/2hm + hk + (H−1 + α−1/2)hm+k−1/2
}

Proof. We define and decompose the error as e = φ−χh = (φ− I(φ))− (χh− I(φ)) = η−γh

such that η /∈ Sh and γh ∈ Sh, and where I(φ) is some projection of φ into Sh. Using the

triangle inequality we will complete the proof by finding bounds on ||η||1,ε,α and ||γh||1,ε,α

separately. Beginning with the γh, it follows from equation (5.4.6) that

A(γh, wh) = A(η, wh) + (eu · ∇χh, wh),

where eu ≡ u− uh. We choose wh = γh ∈ Sh and decompose A(·, ·) into its symmetric (As)

and skew-symmetric (Ass) parts. As Ass(γ
h, γh) = 0 we have

As(γ
h, γh) = As(η, γh) + Ass(η, γh) + (eu · ∇χh, γh).

Applying the Cauchy-Schwarz inequality and Green’s theorem leads to

As(γ
h, γh) ≤

√
As(γh, γh) +

√
As(η, η) + Ass(η, γh) + (eu · ∇χh, γh)

≤ 1

2
As(γ

h, γh) +
1

2
As(η, η)− (uη,∇γh)− 1

2
((∇ · u)η, γh) + (eu · ∇χh, γh).

Following the proof of Heitmann [heitmann] we obtain

||γh||21,ε,α ≤ C
{
||η||21,ε,α +

1

βC

H−2||P (uη)||2 +
1

2α
||P ′(uη)||2 +

1

βC

||η||2
}

+ (eu · ∇χh, γh). (5.4.9)

Using the error decomposition the last term on the right hand side can be bounded via

|(eu · ∇χh, γh)| ≤ |(eu · ∇φ, γh)|+ |(eu · ∇η, γh)|+ |(eu · ∇γh, γh)|.
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We proceed by separately bounding each of the terms on the right hand side. The regularity

of φ gives

|(eu · ∇φ, γh)| ≤ ||∇φ||L∞(Ω)|(eu, γ
h)| ≤ 1

8
||γh||2 + 2||∇φ||2L∞(Ω)||eu||2 (5.4.10)

for the first term. For the second term a combination of Hölder’s inequality with Sobolev

embeddings, followed by the triangle inequality, inverse inequality, and Young’s inequality

gives

|(eu · ∇η, γh)| ≤ ||eu||L3||∇η||L2||γh||L6

≤ C||eu||H1/2||∇η|| ||γh||H1

≤ C||eu||1/2||∇eu||1/2||∇η|| ||∇γh||
≤ C||eu||1/2||∇eu||1/2||∇η||(||P∇γh||+ ||P ′∇γh||)

≤ 1

8
||γh||2 + CH−2||eu|| ||∇eu|| ||∇η||2 +

α

4
||P ′∇γh||2

+
C

α
||eu|| ||∇eu|| ||∇η||2.

(5.4.11)

Finally, for the third term we obtain

|(eu · ∇γh, γh)| ≤ 1

2
|((∇ · eu)γ

h, γh
)|

≤ C||∇ · eu|| ||γh||1/2||∇γh||3/2

≤ C||∇ · eu|| ||γh||1/2
(||P∇γh||3/2 + ||P ′∇γh||3/2

)

≤ CH−3/2||∇ · eu|| ||γh||2 +
α

4
||P ′∇γh||2 + Cα−3||∇ · eu||4||γh||2.

(5.4.12)

The combination of equations (5.4.9) - (5.4.12) gives

||γh||21,ε,α ≤ C
{
||η||21,ε,α +

(
1 + ||u||2L∞(Ω)(H

−2 + α−1)
)||η||2 + ||∇φ||2L∞(Ω) inf

vh∈Xh
||u− vh||2Hdiv

+ (H−2 + α−1)h−1 inf
vh∈Xh

||u− vh||2Hdiv
||∇η||2

}

+ C
(
H−3/2 inf

vh∈Xh
||u− vh||Hdiv

+ α−3 inf
vh∈Xh

||u− vh||4Hdiv

)||γh||2.

(5.4.13)
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For the bound on ||η||1,ε,α we choose I(φ) to be the L2-projection of φ into Sh. This gives

||η|| ≤ Chm+1||φ||Hm+1 and ||∇η|| ≤ Chm||φ||Hm+1 . Thus, we have

||η||1,ε,α ≤ C(hm+1 + (ε + α)1/2hm)||φ||Hm+1 . (5.4.14)

Now applying the hypothesis (5.4.8), we obtain from equations (5.4.13) and (5.4.14) the

result

||φ− χh||1,ε,α ≤ C(Ω,m, k, g, f)
{

hm+1 + (ε + α)1/2hm + H−1hm+1 + α−1/2hm+1

+ hk + H−1hm+k−1/2 + α−1/2hm+k−1/2
}

Corollary 5.3. Under the condition H−3/2hm +h4m−3 < C(Ω), the choice of α(h) = h gives

||φ− χh||1,ε,α ≤ C(Ω,m, k, g, f)
{

hk + (1 + H−1h1/2)(hm+1/2 + hm+k−1)
}

.

The next step is to find an a priori bound on the discrete time derivative.

Theorem 5.6. Let the assumptions of theorem 5.5 be satisfied. Let ut ∈ L∞(Ω)d and

φt,∇φt ∈ L∞(Ω). Then for any n ≥ 0

∥∥∥∥∥
(φn+1 − χh

n+1)− (φn − χh
n)

∆t

∥∥∥∥∥ ≤ C(Ω,m, k, g, f)(H−1 + α−1/2)

{
hm+1 + (ε + α)1/2hm + H−1hm+1 + α−1/2hm+1

+hk + H−1hm+k−1/2 + α−1/2hm+k−1/2
}

.
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Proof. The proof is analagous to that of theorem 5.5. We introduce the bilinear form

Ã(φ,w) ≡ ε(∇φ,∇w) + (un+1 · ∇φ,w) + (cφ, w) + α(P ′∇φ, P ′∇w).

It is straightforward to show the same continuity and coercivity results hold for Ã. At the

(n + 1)st time level we obtain

Ã(φn+1 − χh
n+1, w

h) = −(eu,n+1 · ∇χh
n+1, w

h),

where eu,n+1 ≡ un+1 − uh
n+1. From the nth time level we have

Ã(φn − χh
n, w

h) = ∆t
((un+1 − un

∆t

)
· ∇(φn − χh

n), wh
)
− (eu,n · ∇χh

n, w
h).

Subtracting these two equations yields

Ã
((φn+1 − χh

n+1)− (φn − χh
n)

∆t

)
= −

[(un+1 − un

∆t
· ∇(φn − χh

n), wh
)

+
1

∆t
(eu,n+1 · ∇χh

n+1 − eu,n · ∇χh
n, wh)

]
. (5.4.15)

Decompose φn+1−χh
n+1 = (φn+1− I(φn+1))− (χh

n+1− I(φn+1)) = ηn+1−γh
n+1. Since I(φn+1)

is an arbitrary projection of φn+1 into Sh, we have

∥∥∥ηn+1 − ηn

∆t

∥∥∥ ≤ Chm+1‖φt‖Hm+1 .

Thus, we only need to bound
∥∥(γh

n+1−γh)/∆t
∥∥ and then apply the triangle inequality. Using

the error decomposition, rewrite (5.4.2) as

Ã
(ηn+1 − ηn

∆t
, wh

)
+

((un+1 − un

∆t

)
· ∇(φn − χh

n), wh
)

+
1

∆t
(eu,n+1 · ∇χh

n+1 − eu,n+1 · ∇χh
n + eu,n+1 · ∇χh

n − eu,n · ∇χh
n, wh) = Ã

(γh
n+1 − γh

n

∆t
, wh

)

Take wh =
γh

n+1−γh
n

∆t
∈ Sh above. This gives

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

1,ε,α
≤ Ãs

(ηn+1 − ηn

∆t
,
γh

n+1 − γh
n

∆t

)
+ Ãss

(γh
n+1 − γh

n

∆t

)

+
((un+1 − un

∆t

)
· ∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)

+
(
eu,n+1 ·

(χh
n+1 − χh

n

∆t

)
,
γh

n+1 − γh
n

∆t

)
−

(eu,n+1 − eu,n

∆t
· ∇χh

n,
γh

n+1 − γh
n

∆t

)
.

115



Following the proof of theorem 5.5, we obtain

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

1,ε,α
≤ C

{∥∥∥ηn+1 − ηn

∆t

∥∥∥
2

1,ε,α
+ (H−2 + α−1)

∥∥∥ηn+1 − ηn

∆t

∥∥∥
2}

+
∣∣∣
((un+1 − un

∆t

)
· ∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)∣∣∣

+
∣∣∣
(
eu,n+1 · ∇

(γh
n+1 − γh

n

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣

+
∣∣∣
(
eu,n+1 · ∇

(ηn+1 − ηn

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣

+
∣∣∣
(
eu,n+1 · ∇

(γh
n+1 − γh

n

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣

+
∣∣∣
(eu,n+1 − eu,n

∆t
· ∇φn,

γh
n+1 − γh

n

∆t

)∣∣∣

+
∣∣∣
(eu,n+1 − eu,n

∆t
· ∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)∣∣∣.

We proceed by bounding each of the six as yet unbounded terms on the right hand side

individually. For the first term, the regularity of u gives

∣∣∣
((un+1 − un

∆t

)
· ∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)∣∣∣

≤
∥∥∥un+1 − un

∆t

∥∥∥
L∞(Ω)

∣∣∣
(
∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)∣∣∣

≤ CH−2‖φn − χh
n‖2 +

1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+ Cα−1‖φn − χh
n‖2 +

α

8

∥∥∥P ′∇
(γh

n+1 − γh
n

∆t

)∥∥∥
2

.

(5.4.16)

The second term uses the regularity of φ yielding

∣∣∣
(
eu,n+1 · ∇

(φn+1 − φn

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣ ≤
∥∥∥∇

(φn+1 − φn

∆t

)∥∥∥
L∞(Ω)

∣∣∣
(
eu,n+1,

γh
n+1 − γh

n

∆t

)∣∣∣

≤ 1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+ C‖eu,n+1‖2.

(5.4.17)
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The third term is bounded by using Hölder’s inequality, followed by Sobolev embeddings

and Young’s inequality giving
∣∣∣
(
eu,n+1 · ∇

(ηn+1 − ηn

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣

≤ C‖eu,n+1‖1/2‖∇eu,n+1‖1/2
∥∥∥∇

(ηn+1 − ηn

∆t

)∥∥∥
(∥∥∥P∇

(γh
n+1 − γh

n

∆t

)∥∥∥ +
∥∥∥P ′∇

(γh
n+1 − γh

n

∆t

)∥∥∥
)

≤ 1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+
α

8

∥∥∥P ′∇
(γh

n+1 − γh
n

∆t

)∥∥∥
2

+C(H−2 + α−1)‖eu,n+1‖ ‖∇eu,n+1‖
∥∥∥∇

(ηn+1 − ηn

∆t

)∥∥∥
2

.

(5.4.18)

The fourth term is bounded as follows
∣∣∣eu,n+1 · ∇

(γh
n+1 − γh

n

∆t

)
,
γh

n+1 − γh
n

∆t

)∣∣∣

=
1

2

∣∣∣
(
(∇ · eu,n+1)

γh
n+1 − γh

n

∆t
,
γh

n+1 − γh
n

∆t

)∣∣∣

≤ C‖∇ · eu,n+1‖
∥∥∥γh

n+1 − γh
n

∆t

∥∥∥
1/2(∥∥∥P∇

(γh
n+1 − γh

n

∆t

)∥∥∥
3/2

+
∥∥∥P ′∇

(γh
n+1 − γh

n

∆t

)∥∥∥
3/2)

≤ α

8

∥∥∥P ′∇
(γh

n+1 − γh
n

∆t

)∥∥∥
2

+ C(H−3/2‖∇ · eu,n+1‖+ α−3‖∇ · eu,n+1‖4)
∥∥∥γh

n+1 − γh
n

∆t

∥∥∥
2

.

(5.4.19)

The fifth term uses the regularity of φ leading to
∣∣∣
((eu,n+1 − eu,n

∆t

)
· ∇φn,

γh
n+1 − γh

n

∆t

)∣∣∣ ≤ ‖∇φn‖L∞(Ω)

∣∣∣
(eu,n+1 − eu,n

∆t
,
γh

n+1 − γh
n

∆t

)∣∣∣

≤ 1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+ C
∥∥∥eu,n+1 − eu,n

∆t

∥∥∥
2

.

(5.4.20)

Finally, the sixth term is bounded by
∣∣∣
(eu,n+1 − eu,n

∆t
· ∇(φn − χh

n),
γh

n+1 − γh
n

∆t

)∣∣∣

≤ C
∥∥∥eu,n+1 − eu,n

∆t

∥∥∥
1/2∥∥∥∇

(eu,n+1 − eu,n

∆t

)∥∥∥
1/2

‖∇(φn − χh
n)‖

(∥∥∥P∇
(γh

n+1 − γh
n

∆t

)∥∥∥ +
∥∥∥P ′∇

(γh
n+1 − γh

n

∆t

)∥∥∥
)

≤ 1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+
α

8

∥∥∥P ′∇
(γh

n+1 − γh
n

∆t

)∥∥∥
2

+ C(H−2 + α−1)
∥∥∥eu,n+1 − eu,n

∆t

∥∥∥
∥∥∥∇

(eu,n+1 − eu,n

∆t

)∥∥∥(‖P∇(φn − χh
n)‖2 + ‖P ′∇(φn − χh

n)‖2)

≤ 1

8

∥∥∥γh
n+1 − γh

n

∆t

∥∥∥
2

+
α

8

∥∥∥P ′∇
(γh

n+1 − γh
n

∆t

)∥∥∥
2

+ C(H−2 + α−1)
∥∥∥eu,n+1 − eu,n

∆t

∥∥∥
∥∥∥∇

(eu,n+1 − eu,n

∆t

)∥∥∥‖φn − χh
n‖2

1,ε,α.

(5.4.21)
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Applying the bounds of the inequalities (5.4.16) - (5.4.21) to the inequality (5.4.2) and using

the triangle inequality gives

∥∥∥∥∥
(φn+1 − χh

n+1)− (φn − χh
n)

∆t

∥∥∥∥∥

2

≤ C(Ω,m, k, g, f)
{

h2k +
[
1 + (H−2 + α−1) + (H−2 + α−1)h2k−1

]‖φn − χh
n‖2

1,ε,α

}
. (5.4.22)

Finally, the application of theorem 5.5 to ‖φn − χh
n‖2

1,ε,α completes the proof.

Remark 5.1. The bound

∥∥∥eu,n+1 − eu,n

∆t

∥∥∥ ≤ Chk‖ut‖Hk+1

is obtained by following the proof of theorem 5.2 with η and ψh replaced by (ηn+1 − ηn)/∆t

and (ψh
n+1 −ψh

n)/∆t respectively.

We conclude with the theorem that gives the a priori estimate for the approximation

error of the method (5.4.2).

Theorem 5.7. Let the assumptions of theorem 5.6 be satisfied and let φtt ∈ L2(0, T ; L2(Ω)).

Further, assume that the stability condition (5.4.3) of theorem 5.3 is satisfied. Then for any

time level n

‖φn − φh
n‖2

1,ε,α ≤ ‖φ0 − φh
0‖2 + C(Ω, m, f, g)

(
(H−2 + α−1)

{
h2m+2 + (ε + α)h2m + H−2h2m+2 + α−1h2m+2

+h2k + H−2h2m+2k−1 + α−1h2m+2k−1
}

+αk

N∑
i=1

‖P ′∇φi‖2 + ∆t2
)
.
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Proof. The model equation and the equation of the method can be written respectively as

(φn+1 − φn

∆t
, wh

)
+ Ã(φn+1, w

h)− α(P ′∇φn+1, P
′∇wh)

= (fn+1, w
h) +

(φn+1 − φn

∆t
− φt(tn+1), w

h
)
. (5.4.23)

and (φh
n+1 − φh

n

∆t
, wh

)
+ Ã(φh

n+1, w
h)− (eu,n+1 · ∇φh

n+1) = (fn+1, w
h). (5.4.24)

We use the equilibrium projection χh in the error decomposition

φn+1 − φh
n+1 = (φn+1 − χh

n+1)− (φh
n+1 − χh

n+1) = ηn+1 − γh
n+1,

where ηn+1 ≡ φn+1 − χh
n+1 /∈ Sh and γh

n+1 ≡ φh
n+1 − χh

n+1 ∈ Sh. Note that we have obtained

the bounds on ‖ηn+1‖1,ε,α and
∥∥∥ηn+1−ηn

∆t

∥∥∥
1,ε,α

in theorems 5.5 and 5.6. Thus, we only need

to bound ‖γh
n+1‖1,ε,α and use the triangle inequality. We subtract (5.4.24) from (5.4.23) and

use the error decomposition to obtain for all wh ∈ Sh

(ηn+1 − ηn

∆t
, wh

)
−

(γh
n+1 − γh

n

∆t
, wh

)
+ Ã(ηn+1, w

h)− Ã(γh
n+1, w

h)

− α(P ′∇φn+1, P
′∇wh) + (eu,n+1 · ∇φh

n+1, w
h) = ∆t(ρn+1, w

h), (5.4.25)

where ρn+1 = φtt(tn+1−θ) for some θ ∈]0, 1[. Now, by definition of the equilibrium projection

we have

Ã(ηn+1, w
h) = Ã(φn+1 − χh

n+1, w
h) = −(eu,n+1 · ∇χh

n+1, w
h).

By regrouping terms in (5.4.25) and using the above we have for all wh ∈ Sh

(γh
n+1 − γh

n

∆t
, wh

)
+ Ã(γh

n+1, w
h) =

(ηn+1 − ηn

∆t
, wh

)
− α(P ′∇φn+1, P

′∇wh)−∆t(ρn+1, w
h) + (eu,n+1 · ∇γh

n+1, w
h).

Now set wh = γh
n+1 ∈ Sh above. This gives

‖γh
n+1‖2 − ‖γh

n‖2

2∆t
+ ε‖∇γh

n+1‖2 + βc‖γh
n+1‖2 + α‖P ′∇γh

n+1‖2

≤
∥∥∥ηn+1 − ηn

∆t

∥∥∥‖γh
n+1‖+ α‖P ′∇φn+1‖ ‖P ′∇γh

n+1‖+ ∆t‖ρn+1‖ ‖γh
n+1‖

− 1

2
((∇ · eu,n+1)γ

h
n+1, γ

h
n+1).
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Applying Young’s inequality gives

‖γh
n+1‖2 − ‖γh

n‖2

2∆t
+ ε‖∇γh

n+1‖2 + βc‖γh
n+1‖2 + α‖P ′∇γh

n+1‖2

≤ 1

4
βc‖γh

n+1‖2 +
1

βc

∥∥∥ηn+1 − ηn

∆t

∥∥∥
2

+
α

4
‖P ′∇γh

n+1‖2 + α‖P ′∇φn+1‖2

+
1

4
βc‖γh

n+1‖2 +
1

βc

∆t2‖ρn+1‖2 +
α

4
‖P ′∇γh

n+1‖2

+ C(H−3/2‖∇ · eu,n+1‖+ α−3‖∇ · eu,n+1‖4)‖γh
n+1‖2.

Finally, summing over the time levels, multiplying by 2∆t and using the discrete Gronwall’s

lemma completes the proof.

5.5 CONCLUSIONS

We have presented rigorous analysis of the coupling of the porous media problem with the

evolutionary convection diffusion problem. In the case of the porous media problem we

use the Galerkin approximation to obtain the velocity field, uh. The convection diffusion

problem is then solved using this approximation in conjunction with the stabilization schemes

presented by Layton [Layton02] and Heitmann [heitmann]. It is shown that the convergence

rate is near optimal and independent of the diffusion coefficient, ε. Logical next steps in

this direction would include coupling with the Navier-Stokes equations and computational

experiments using this method.
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6.0 LARGE EDDY SIMULATION FOR MHD FLOWS

6.1 INTRODUCTION

Magnetically conducting fluids arise in important applications including plasma physics,

geophysics and astronomy. In many of these, turbulent MHD (magnetohydrodynamics

[Alfv42]) flows are typical. The difficulties of accurately modeling and simulating turbu-

lent flows are magnified many times over in the MHD case. They are evinced by the more

complex dynamics of the flow due to the coupling of Navier-Stokes and Maxwell equations

via the Lorentz force and Ohm’s law.

In this chapter we consider the problem of modeling the motion of large structures in a

viscous, incompressible, electrically conducting, turbulent fluid.

The MHD equations are related to engineering problems such as plasma confinement,

controlled thermonuclear fusion, liquid-metal cooling of nuclear reactors, electromagnetic

casting of metals, MHD sea water propulsion.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced by the

interaction of electric currents and magnetic fields in the fluid. The Lorentz forces can be

used to control the flow and to attain specific engineering design goals such as flow sta-

bilization, suppression or delay of flow separation, reduction of near-wall turbulence and

skin friction, drag reduction and thrust generation. There is a large body of literature dedi-

cated to both experimental and theoretical investigations on the influence of electromagnetic

force on flows (see e.g., [HeSt95, MeHeHr92, MeHeHr94, GPT, Tsin90, GL61, TS67, HS95,

SB97, BKLL00]). The MHD effects arising from the macroscopic interaction of liquid metals

with applied currents and magnetic fields are exploited in metallurgical processes to con-
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trol the flow of metallic melts: the electromagnetic stirring of molten metals [MDRV84],

electromagnetic turbulence control in induction furnaces [ViRi85], electromagnetic damping

of buoyancy-driven flow during solidification [PrIn93], and the electromagnetic shaping of

ingots in continuous casting [SaLiEv88].

The mathematical description of the problem proceeds as follows. Assuming the fluid

to be viscous and incompressible, the governing equations are the Navier- Stokes and pre-

Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g. [Sher65]). Let

Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity, pressure, and the

magnetic field of the flow, driven by the velocity body force f and magnetic field force curl g.

Then u, p, B satisfy the MHD equations:

ut +∇ · (uuT )− 1

Re
∆u +

S

2
∇(B2)− S∇ · (BBT ) +∇p = f,

Bt +
1

Rem

curl(curl B) + curl (B × u) = curl g,

∇ · u = 0,∇ · B = 0,

(6.1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (6.1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x + Lei) = Φ(t, x), i = 1, 2, 3,

∫

Ω

Φ(t, x)dx = 0, (6.1.3)

for Φ = u, u0, p, B, B0, f, g.

Here Re, Rem, and S are nondimensional constants that characterize the flow: the

Reynolds number, the magnetic Reynolds number and the coupling number, respectively.

For derivation of (6.1.1), physical interpretation and mathematical analysis, see [Cowl57,

LL69, ST83, GMP91] and the references therein.

122



If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the differ-

entiation, then averaging (6.1.1) gives the following non-closed equations for uδ1 , B
δ2

, pδ1 in

(0, T )× Ω:

uδ1
t +∇ · (uuT

δ1
)− 1

Re
∆uδ1 − S∇ · (BBT

δ1
) +∇

(S

2
B2

δ1
+ pδ1

)
= f

δ1
,

B
δ2
t +

1

Rem

curl(curl B
δ2

) +∇ · (BuT
δ2

)−∇ · (uBT
δ2

) = curl gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2
= 0.

(6.1.4)

The usual closure problem which we study here arises because uuT
δ1 6= uδ1 uδ1 , BBT

δ1 6=
B

δ1
B

δ1
, uBT

δ2 6= uδ1 BT
δ2

. To isolate the turbulence closure problem from the difficult

problem of wall laws for near wall turbulence, we study (6.1.1) hence (6.1.4) subject to (6.1.3).

The closure problem is to replace the tensors uuT
δ1

, BBT
δ1

, uBT
δ2

with tensors T (uδ1 , uδ1),

T (B
δ2

, B
δ2

), T (uδ1 , B
δ2

), respectively, depending only on uδ1 , B
δ2

and not u, B. There are

many closure models proposed in large eddy simulation reflecting the centrality of closure in

turbulence simulation. Calling w, q, W the resulting approximations to uδ1 , pδ1 , B
δ2

, we are

led to considering the following model

wt +∇ ·T (w, w)− 1

Re
∆w − ST (W,W ) +∇q = f

δ1

Wt +
1

Rem

curl(curl W ) +∇ ·T (w, W )−∇ ·T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

(6.1.5)

With any reasonable averaging operator, the true averages uδ1 , B
δ2

, pδ1 are smoother than

u,B, p. We consider the simplest, accurate closure model that is exact on constant flows

(i.e., uδ1 = u, B
δ2

= B) is

uuT
δ1 ≈ uδ1 uT

δ1
δ1

=: T (uδ1 , uδ1),

BBT
δ1 ≈ B

δ2
BT

δ2
δ1

=: T (B
δ2

, B
δ2

), (6.1.6)

uBT
δ2 ≈ uδ1 BT

δ2
δ2

=: T (uδ1 , B
δ2

),
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leading to

wt +∇ · (wwT
δ1

)− 1

Re
∆w − S∇ · (W W T

δ1
) +∇q = f

δ1
, (6.1.7a)

WT +
1

Rem

curl(curl W ) +∇ · (WwT
δ2

)−∇ · (wW T
δ2

) = curl gδ2 , (6.1.7b)

∇ · w = 0, ∇ ·W = 0, (6.1.7c)

subject to w(x, 0) = uδ1
0 (x),W (x, 0) = B

δ2
0 (x) and periodic boundary conditions (with zero

means).

We shall show that the LES MHD model (6.1.7) has the mathematical properties which

are expected of a model derived from the MHD equations by an averaging operation and

which are important for practical computations using (6.1.7).

The model considered can be developed for quite general averaging operators, see e.g.

[AS01]. The choice of averaging operator in (6.1.7) is a differential filter, defined as follows.

Let the δ > 0 denote the averaging radius, related to the finest computationally feasible

mesh. (In this chapter we use different lengthscales for the Navier-Stokes and Maxwell

equations). Given φ ∈ L2
0(Ω), φ

δ ∈ H2(Ω) ∩ L2
0(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ
+ φ

δ
= φ in Ω, (6.1.8)

subject to periodic boundary conditions. Under periodic boundary conditions, this averaging

operator commutes with differentiation, and with this averaging operator, the model (6.1.6)

has consistency O(δ2), i.e.,

uuT
δ1

= uδ1 uT
δ1

+ O(δ1
2),

BBT
δ1

= B
δ2

BT
δ2

δ1

+ O(δ2
2),

uBT
δ2

= uδ1 BT
δ2

δ2

+ O(δ1
2 + δ2

2),

for smooth u,B. We prove that the model (6.1.7) has a unique, weak solution w, W that

converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 6.2 we prove the global existence and uniqueness of the solution for the closed

MHD model, after giving the notations and a definition. Section 6.3 treats the questions of

limit consistency of the model and verifiability. The conservation of the kinetic energy and
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helicity for the approximate deconvolution model is presented in Section 6.4. Section 6.5

shows that the model preserves the Alfén waves, with the velocity tending to the velocity of

Alfvén waves in the MHD, as the radii δ1, δ2 tend to zero.

6.2 EXISTENCE AND UNIQUENESS FOR THE MHD LES EQUATIONS

6.2.1 Notations and preliminaries

We shall use the standard notations for function spaces in the space periodic case (see

[Tema95]). Let Hm
p (Ω) denote the space of functions (and their vector valued counterparts

also) that are locally in Hm(R3), are periodic of period L and have zero mean, i.e. satisfy

(6.1.3). We recall the solenoidal space

D(Ω) = {φ ∈ C∞(Ω) : φ periodic with zero mean,∇ · φ = 0},

and the closures of D(Ω) in the usual L2(Ω) and H1(Ω) norms :

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2,

V = {φ ∈ H1
2 (Ω),∇ · φ = 0 in D(Ω)′}2.

We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =

∫

Ω

(
1

Re
∇w1 · ∇w2 +

S

Rem

curl W1curl W2

)
dx, (6.2.1)

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the domain

D(A ) = {(w,W ) ∈ V ; (∆w, ∆W ) ∈ H} and we denote again by A its restriction to H.

We define also a continuous tri-linear form B0 on V × V × V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =

∫

Ω

(
∇ · (w2wT

1

δ1
) w3 (6.2.2)

−S∇ · (W2W T
1

δ1
) w3 +∇ · (W2wT

1

δ2
) W3 −∇ · (w2W T

1

δ2
) W3

)
dx
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and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2,W2)〉 = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .

The following properties of the trilinear form B0 hold (see [JLL69, ST83, Gris80, Furs00])

B0((w1,W1), (w2,W2), (Aδ1w2, SAδ2W2)) = 0,

B0((w1,W1), (w2,W2), (Aδ1w3, SAδ2W3))

= −B0((w1,W1), (w3, W3), (Aδ1w2, SAδ2W2)),

(6.2.3)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2, W2), (w3,W3))| (6.2.4)

≤ C‖(w1,W1)‖m1‖(w2,W2)‖m2+1‖(w3
δ1 ,W3

δ2
)‖m3

for all (w1,W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3,W3) ∈ Hm3(Ω) and

m1 + m2 + m3 ≥ d

2
, if mi 6= d

2
for all i = 1, . . . , d,

m1 + m2 + m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V, H, A , B(·) we can rewrite (6.1.7) as

d

dt
(w, W ) + A (w, W )(t) + B((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (uδ1
0 , B

δ2
0 ),

(6.2.5)

where (f , curl g) = P (f, curl g), and P : L2(Ω) → H is the Hodge projection.
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Definition 6.1. Let (u0
δ1 , B0

δ2
) ∈ H, f

δ1
, curl gδ2 ∈ L2(0, T ; V ′). The measurable functions

w, W : [0, T ]×Ω → R3 are the weak solutions of (6.2.5) if w, W ∈ L2(0, T ; V )∩L∞(0, T ; H),

and w, W satisfy
∫

Ω

w(t)φdx +

∫ t

0

∫

Ω

1

Re
∇w(τ)∇φ + w(τ) · ∇w(τ)

δ1
φ− SW (τ) · ∇W (τ)

δ1
φ dxdτ

=

∫

Ω

u0
δ1φdx +

∫ t

0

∫

Ω

f(τ)
δ1

φ dxdτ, (6.2.6)

∫

Ω

W (t)ψdx +

∫ t

0

∫

Ω

1

Rem

∇W (τ)∇ψ + w(τ) · ∇W (τ)
δ2

ψ −W (τ) · ∇w(τ)
δ2

ψ dxdτ

=

∫

Ω

B0
δ2

ψdx +

∫ t

0

∫

Ω

curl g(τ)
δ2

ψ dxdτ,

∀t ∈ [0, T ), φ, ψ ∈ D(Ω).

Also, it is easy to show that for any u, v ∈ H1(Ω) with ∇ · u = ∇ · v = 0, the following

identity holds

∇× (u× v) = v · ∇u− u · ∇v. (6.2.7)

6.2.2 Stability and existence for the model

The first result states that the weak solution of the MHD LES model (6.1.7) exists globally

in time, for large data and general Re, Rem > 0 and that it satisfies an energy equality while

initial data and the source terms are smooth enough.

Theorem 6.1. Let δ1, δ2 > 0 be fixed. For any (u0
δ1 , B0

δ2
) ∈ V and (f

δ1
, curl gδ2) ∈

L2(0, T ; H), there exists a unique weak solution w, W to (6.1.7). The weak solution also

belongs to L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)) and wt,Wt ∈ L2((0, T ) × Ω). Moreover, the

following energy equality holds for t ∈ [0, T ]:

M (t) +

∫ t

0

N (τ)dτ = M (0) +

∫ t

0

P(τ)dτ, (6.2.8)

where

M (t)=
δ1

2

2
‖∇w(t, ·)‖2

0 +
1

2
‖w(t, ·)‖2

0 +
δ2

2S

2
‖∇W (t, ·)‖2

0 +
S

2
‖W (t, ·)‖2

0,

N (t)=
δ1

2

Re
‖∆w(t, ·)‖2

0+
1

Re
‖∇w(t, ·)‖2

0+
δ2

2S

Rem

‖∆W (t, ·)‖2
0+

S

Rem

‖∇W (t, ·)‖2
0, (6.2.9)

P(t)=(f(t), w(t)) + S(curl g(t),W (t)).
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We shall use the semigroup approach proposed in [BS01] for the Navier-Stokes equations,

based on the machinery of nonlinear differential equations of accretive type in Banach spaces.

Let us define the modified nonlinearity BN(·) : V → V by setting

BN(w, W ) =





B(w,W ) if ‖(w, W )‖1 ≤ N,(
N

‖(w,W )‖1

)2

B(w, W ) if ‖(w, W )‖1 > N.
(6.2.10)

By (6.2.4) we have for the case of ‖(w1,W1)‖1, ‖(w2,W2)‖1 ≤ N

|〈BN(w1,W1)−BN(w2,W2), (w1 − w2,W1 −W2)〉|
= |B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2)|

+ B0((w2,W2), (w1 − w2,W1 −W2), (w1 − w2, W1 −W2)|
≤ C‖(w1 − w2,W1 −W2)‖1/2‖(w1,W1)‖1‖(w1 − w2

δ1 ,W1 −W2
δ2

)‖1

≤ ν

2
‖(w1 − w2,W1 −W2)‖2

1 + CN‖(w1 − w2,W1 −W2)‖2
0,

where ν = inf{1/Re, S/Rem}.
In the case of ‖(wi,Wi)‖1 > N we have

|〈BN(w1,W1)−BN(w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖2
1

B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

+

(
N2

‖(w1,W1)‖2
1

− N2

‖(w2,W2)‖2
1

)
B0((w2,W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/2
1 ‖(w1 − w2,W1 −W2)‖1/2

0

+ CN‖(w1 − w2,W1 −W2)‖2
1

≤ ν

2
‖(w1 − w2,W1 −W2)‖2

1 + CN‖(w1 − w2,W1 −W2)‖2
0.
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For the case of ‖(w1,W1)‖1 > N, ‖(w2,W2)‖1 ≤ N (similar estimates are obtained when

‖(w1,W1)‖1 ≤ N, ‖(w2,W2)‖1 > N) we have

|〈BN(w1,W1)−BN(w2, W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖2
1

B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

−
(

1− N2

‖(w1,W1)‖2
1

)
B0((w2,W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/2
1 ‖(w1 − w2,W1 −W2)‖1/2

0

+ CN‖(w1−w2,W1−W2)‖1‖(w1−w2,W1−W2)‖1/2

≤ ν

2
‖(w1 − w2,W1 −W2)‖2

1 + CN‖(w1 − w2,W1 −W2)‖2
0.

Combining all the cases above we conclude that

|〈BN(w1,W1)−BN(w2,W2), (w1 − w2,W1 −W2)〉| (6.2.11)

≤ ν

2
‖(w1 − w2,W1 −W2)‖2

1 + CN‖(w1 − w2,W1 −W2)‖2
0.

The operator BN is continuous from V to V ′. Indeed, as above we have (using (6.2.4) with

m1 = 1,m2 = 0, m3 = 1 )

|〈BN(w1,W1)−BN(w2,W2), (w3,W3)〉| (6.2.12)

≤ |B0 ((w1 − w2,W1 −W2), (w1,W1), (w3, W3))|
+ |B0 ((w2,W2), (w1 − w2, W1 −W2), (w3,W3))|

≤ CN‖(w1 − w2,W1 −W2)‖1‖(w3, W3)‖1.

Now consider the operator ΓN : D(ΓN) → H defined by

ΓN = A + BN , D(ΓN) = D(A ).

Here we used (6.2.4) with m1 = 1,m2 = 1/2,m3 = 0 and interpolation results (see e.g.

[GR86, Tema79, Furs00]) to show that

‖BN(w,W )‖0 ≤ C‖(w, W )‖3/2
1 ‖A (w, W )‖1/2

0 ≤ CN ‖A (w, W )‖1/2
0 . (6.2.13)
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Lemma 6.1. There exists αN > 0 such that ΓN + αNI is m-accretive (maximal monotone)

in H ×H.

Proof. By (6.2.11) we have that

((ΓN + λ)(w1,W1)− (ΓN + λ)(w2,W2), (w1 − w2,W1 −W2)) (6.2.14)

≥ ν

2
‖(w1 − w2,W1 −W2)‖2

1, for all (wi,Wi) ∈ D(ΓN),

for λ ≥ CN . Next we consider the operator

FN(w, W ) = A (w, W ) + BN(w,W ) + αN(w,W ), for all (w, W ) ∈ D(FN),

with

D(FN) = {(w, W ) ∈ V ; A (w, W ) + BN(w,W ) ∈ H}.

By (6.2.12) and (6.2.14) we see that FN is monotone, coercive and continuous from V to V ′.

We infer that FN is maximal monotone from V to V ′ and the restriction to H is maximal

monotone on H with the domain D(FN) ⊇ D(A ) (see e.g. [Brez73, Barb76]).

Moreover, we have D(FN) = D(A ). For this we use the perturbation theorem for nonlinear

m-accretive operators and split FN into a continuous and a ω-m-accretive operator on H

F 1
N = (1− ε

2
)A , D(F 1

N) = D(A ),

F 2
N =

ε

2
A + BN(·) + αNI, D(F 2

N) = {(w, W ) ∈ V, F 2
N(w, W ) ∈ H}.

As seen above by (6.2.13) we have

∥∥F 2
N(w, W )

∥∥
0
≤ ε

2
‖A (w, W )‖0 + ‖BN(w,W )‖0 + αN‖(w, W )‖0

≤ ε‖A (w, W )‖0 + αN‖(w, W )‖0 +
C2

N

2ε
, for all (w,W ) ∈ D(F 1

N) = D(A ),

where 0 < ε < 1.

Since F 1
N + F 2

N = ΓN + αNI we infer that ΓN + αNI with domain D(A ) is m-accretive in

H as claimed.
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Proof of Theorem 6.1. As a consequence of Lemma 6.1 (see, e.g., [Barb76, Barb93]) we have

that for (u0
δ1 , B0

δ2
) ∈ D(A ) and (f

δ1
, curl gδ2) ∈ W 1,1([0, T ], H) the equation

d

dt
(w, W ) + A (w,W )(t) + BN((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (u0
δ1 , B0

δ2
),

(6.2.15)

has a unique strong solution (wN ,WN) ∈ W 1,∞([0, T ]; H) ∩ L∞(0, T ; D(A )).

By a density argument (see, e.g., [Barb93, JLL69]) it can be shown that if (u0
δ1 , B0

δ2
) ∈ H

and (f
δ1

, curl gδ2) ∈ L2(0, T, V ′) then there exist absolute continuous functions (wN , WN) :

[0, T ] → V ′ that satisfy (wN ,WN) ∈ C([0, T ]; H)∩L2(0, T : V )∩W 1,2([0, T ], V ′) and (6.2.15)

a.e. in (0, T ), where d/dt is considered in the strong topology of V ′.

First, we show that D(A ) is dense in H. Indeed, if (w, W ) ∈ H we set (wε,Wε) =

(I + εΓN)−1(w, W ), where I is the unity operator in H. Multiplying the equation

(wε,Wε) + εΓN(wε,Wε) = (w,W )

by (wε,Wε) it follows by (6.2.3), (6.2.11) that

‖(wε,Wε)‖2
0 + 2εν‖(wε,Wε)‖2

1 ≤ ‖(w, W )‖2
0

and by (6.2.10)

‖(wε − w, Wε −W )‖−1 = ε‖Γε(wε,Wε)‖−1 ≤ εN‖(wε,Wε)‖1/2
0 ‖(wε,Wε)‖1/2

1 .

Hence, {(wε,Wε)} is bounded in H and (wε,Wε) → (w, W ) in V ′ as ε → 0. Therefore,

(wε,Wε) ⇀ (w, W ) in H as ε → 0, which implies that D(ΓN) is dense in H.

Secondly, let (u0
δ1 , B0

δ2
) ∈ H and (f

δ1
, curl gδ2) ∈ L2(0, T, V ′). Then there are sequences

{(u0
δ1
n , B0

δ2
n )} ⊂ D(ΓN), {(f δ1

n , curl gδ2
n )} ⊂ W 1,1([0, T ]; H) such that

(u0
δ1
n , B0

δ2
n ) → (u0

δ1 , B0
δ2

) in H,

(f
δ1
n , curl gδ2

n ) → (f
δ1

, curl gδ2) in L2(0, T ; V ′),
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as n → ∞. Let (wn
N ,W n

N) ∈ W 1,∞([0, T ]; H) be the solution to problem (6.2.15) where

(w, W )(0) = (u0
δ1
n , B0

δ2
n ) and (f

δ1
, curl gδ2) = (f

δ1
n , curl gδ2

n ). By (6.2.14) we have

d

dt
‖(wn

N − wm
N ,W n

N −Wm
N )‖2

0 +
ν

2
‖(wn

N − wm
N ,W n

N −Wm
N )‖2

1

≤ 2CN‖(wn
N − wm

N ,W n
N −Wm

N )‖2
0 +

2

ν
‖(f δ1

n − f
δ1
m, curl(gδ2

n − gδ2
m))‖2

−1,

for a.e. t ∈ (0, T ). By the Gronwall inequality we obtain

‖(wn
N − wm

N , W n
N −Wm

N )(t)‖2
0 ≤ e2CN t‖(u0

δ1
n − u0

δ1
m, B0

δ2
n −B0

δ2
m)‖2

0

+
2e2CN t

ν

∫ t

0

‖(f δ1
n − f

δ1
m, curl(gδ2

n − gδ2
m))(τ)‖2

−1dτ.

Hence

(wN(t),WN(t)) = lim
n→∞

(wn
N(t),W n

N(t))

exists in H uniformly in t on [0, T ]. Similarly we obtain

‖wn
N(t)‖2

0 + ‖W n
N(t)‖2

0 +

∫ t

0

(
1

Re
(‖∇wn

N(s)‖2
0 +

S

Rem

(‖curl W n
N(s)‖2

0

)
ds

≤ CN

[
‖u0

δ1
n ‖2

0 + ‖B0
δ2
n ‖2

0 +

∫ t

0

(
‖f δ1

n (s)‖2
−1 + ‖curlgδ2

n (s)‖2
−1

)
ds

]
,

and

∫ T

0

∥∥∥∥
d

dt
(wn

N ,W n
N)(t)

∥∥∥∥
2

−1

dt

≤ CN

[
‖u0

δ1
n ‖2

0 + ‖B0
δ2
n ‖2

0 +

∫ t

0

(
‖f δ1

n (s)‖2
−1 + ‖curl gδ2

n (s)‖2
−1

)
ds

]
.

Hence on a sequence we have

(wn
N ,W n

N) → (wN ,WN) weakly in L2(0, T ; V ),

d

dt
(wn

N ,W n
N) → d

dt
(wN ,WN) weakly in L2(0, T ; V ′),

where d(wN ,WN)/dt is considered in the sense of V ′-valued distributions on (0, T ). We

proved that (wN ,WN) ∈ C([0, T ]; H) ∩ L2(0, T ; V ) ∩W 1,2([0, T ]; V ′).
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It remains to prove that (wN ,WN) satisfies the equation (6.2.15) a.e. on (0, T ). Let

(w, W ) ∈ V be arbitrary but fixed. We multiply the equation

d

dt
(wn

N ,W n
N) + ΓN(wn

N ,W n
N) = (f

δ1
n , curl gδ2

n ), a.e. t ∈ (0, T ),

by (wn
N − w,W n

N −W ), integrate on (s, t) and get

1

2

(
‖(wn

N(t),W n
N(t))− (w,W )‖2

0 − ‖(wn
N(s), W n

N(s))− (w, W )‖2
0

)

≤
∫ t

s

〈(f δ1
n (τ), curl gδ2

n (τ))− ΓN(w,W ), (wn
N(τ),W n

N(τ))− (w, W )〉dτ.

After we let n →∞ we get

〈
(wN(t),WN(t))− (wN(s),WN(s))

t− s
, (wN(s),WN(s))− (w, W )

〉
(6.2.16)

≤ 1

t− s

∫ t

s

〈(f δ1
(τ), curl gδ2(τ))− ΓN(w, W ), (wN(τ),WN(τ))− (w,W )〉dτ.

Let t0 denote a point at which (wN ,WN) is differentiable and

(f
δ1

(t0), curl gδ2(t0)) = lim
h→0

1

h

∫ t0+h

t0

(f
δ1

(h), curl gδ2(h))dh.

Then by (6.2.16) we have

〈
d(wN ,WN)

dt
(t0)− (f

δ1
, curl gδ2)(t0) + ΓN(w,W ), (wN , WN)(t0)− (w, W )

〉
≤ 0.

Since (w, W ) is arbitrary in V and ΓN is maximal monotone in V × V ′ we conclude that

d(wN ,WN)

dt
(t0) + ΓN(wN ,WN)(t0) = (f

δ1
, curl gδ2)(t0).

If we multiply (6.2.15) by (Aδ1wN , SAδ2WN), use (6.2.3) and integrate in time we obtain

1

2

(‖wN(t)‖2
0 + S‖WN(t)‖2

0

)
+

δ1
2

2
‖∇wN(t)‖2

0 +
δ2

2S

2
‖curl WN(t)‖2

0

+

∫ t

0

(
1

Re
(‖∇wN(s)‖2

0 + δ1
2‖∆wN(s)‖2

0)

+
S

Rem

(‖curl WN(s)‖2
0 + δ2

2‖curl curlWN(s)‖2
0)

)
ds

=
1

2

(
‖u0

δ1‖2
0 + S‖B0

δ2‖2
0

)
+

δ1
2

2
‖∇u0

δ1‖2
0 +

δ2
2S

2
‖curl B0

δ2‖2
0

+

∫ t

0

(
‖f δ1

(s)‖−1‖wN(s)‖1 + S‖curl gδ2(s)‖−1‖WN(s)‖1

)
ds.
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Using the Cauchy-Schwarz and Gronwall inequalities this implies

‖(wN ,WN)(t)‖1 ≤ Cδ1,δ2 for all t ∈ (0, T ),

where Cδ1,δ2 is independent of N . In particular, for N sufficiently large it follows from (6.2.10)

that BN = B and (wN ,WN) = (w, W ) is a solution to (6.1.7).

In the following we prove the uniqueness of the weak solution. Let (w1,W1) and (w2,W2)

be two solutions of the system (6.2.5) and set ϕ = w1 − w2, Φ = B1 − B2. Thus (ϕ, Φ) is a

solution to the problem

d

dt
(ϕ, Φ) + A (ϕ, Φ)(t) = −B((w1,W1)(t)) + B((w2,W2)(t)), t ∈ (0, T ),

(ϕ, Φ)(0) = (0, 0).

We take (Aδ1ϕ, SAδ2Φ) as test function, integrate in space, use the incompressibility condi-

tion (6.2.3) and the estimate (6.2.4) to get

1

2

d

dt

(‖ϕ‖2
0 + δ1

2‖∇ϕ‖2
0 + S‖Φ‖2

0 + Sδ2
2‖∇Φ‖2

0

)

+
1

Re

(‖∇ϕ‖2
0 + δ2

1‖∆ϕ‖2
0

)
+

S

Rem

(‖∇Φ‖2
0 + δ2

2‖∆Φ‖2
0

)

= B0((ϕ, Φ), (w1, W1), (Aδ1ϕ, SAδ2Φ))

≤ C‖(w1,W1)‖0‖(ϕ, Φ)‖1/2
0 ‖(∇ϕ,∇Φ)‖3/2

0

≤ Cδ1,δ2‖(w1,W1)‖0

(‖ϕ‖2
0 + δ1

2‖∇ϕ‖2
0 + S‖Φ‖2

0 + Sδ2
2‖∇Φ‖2

0

)
.

Applying the Gronwall’s lemma we deduce that (ϕ, Φ) vanishes for all t ∈ [0, T ], and hence

the uniqueness of the solution.

Remark 6.1. The pressure is recovered from the weak solution via the classical DeRham

theorem (see [Lera34]).
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6.2.3 Regularity

Theorem 6.2. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ; Hm−1(Ω)).

Then there exists a unique solution w,W, q to the equation (6.1.7) such that

(w,W ) ∈ L∞(0, T ; Hm+1(Ω)) ∩ L2(0, T ; Hm+2(Ω)),

q ∈ L2(0, T ; Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 6.1. For any m ∈ N∗, we assume

that

(w, W ) ∈ L∞(0, T ; Hm(Ω)) ∩ L2(0, T ; Hm+1(Ω)) (6.2.17)

so it remains to prove

(Dmw, DmW ) ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the mth derivative of

(6.1.7) and have

(Dmw)t − 1

Re
∆(Dmw) + Dm(w · ∇w)

δ1 − SDm(W · ∇W )
δ1

= Dmf
δ1

,

(DmW )t +
1

Rem

∇×∇× (DmW ) + Dm(w · ∇W )
δ2 −Dm(W · ∇w)

δ2
= ∇×Dmg

δ2
,

∇ · (Dmw) = 0,∇ · (DmW ) = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,

with periodic boundary conditions and zero mean, and the initial conditions with zero di-

vergence and mean. Taking Aδ1D
mw, Aδ1D

mW as test functions we obtain

1

2

d

dt

(‖Dmw‖2
0 + δ1

2‖∇Dmw‖2
0 + S‖DmW‖2

0 + Sδ2
2‖∇DmW‖2

0

)
(6.2.18)

+
1

Re

(‖∇Dmw‖2
0 + δ2

1‖∆Dmw‖2
0

)
+

1

Rem

(‖∇DmW‖2
0 + δ2

2‖∆DmW‖2
0

)

=

∫

Ω

(DmfDmw +∇× gDmW ) dx−X ,
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where

X =

∫

Ω

(
Dm(w ·∇w)−SDm(W ·∇W )

)
Dmw +

(
Dm(w ·∇W )−Dm(W ·∇w)

)
DmWdx.

Now we apply (6.2.4) and use the induction assumption (6.2.17)

X =
∑

|α|≤m


 m

α




3∑
i,j=1

∫

Ω

DαwiD
m−αDiwjD

mwj − SDαWiD
m−αDiWjD

mwj

−DαwiD
m−αDiWjD

mWj −DαWiD
m−αDiwjD

mWj

≤ ‖w‖3/2
m+1‖w‖1/2

m+2‖w‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖w‖m

+ ‖w‖m+1‖W‖1/2
m+1‖W‖1/2

m+2‖W‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖W‖m.

Integrating (6.2.18) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, and the

assumption (6.2.17) we obtain the desired result for w, W . We conclude the proof mentioning

that the regularity of the pressure term q is obtained via classical methods, see e.g. [Tart78,

AmGi94].

6.3 ACCURACY OF THE MODEL

We will address first the question of consistency error, i.e., we show in Theorem 6.3 that

the solution of the closed model (6.1.7) converges to a weak solution of the MHD equations

(6.1.1) when δ1, δ2 go to zero. This proves that the model is consistent as δ1, δ2 → 0.

Let τu, τB, τBu denote the model’s consistency errors

τu = uδ1uδ1 − uu, τB = B
δ2

B
δ2 −BB, τBu = B

δ2
uδ1 −Bu, (6.3.1)

where u,B is a solution of the MHD equations obtained as a limit of a subsequence of the

sequence wδ1 ,Wδ2 .

We will also prove in Theorem 6.4 that ‖uδ1 − w‖L∞(0,T ;L2(Q)), ‖Bδ2 − W‖L∞(0,T ;L2(Q)) are

bounded by ‖τu‖L2(QT ), ‖τB‖L2(QT ), ‖τBu‖L2(QT ).
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6.3.1 Limit consistency of the model

Theorem 6.3. There exist two sequences δn
1 , δn

2 → 0 as n → 0 such that

(wδn
1
,Wδn

2
, qδn

1
) → (u,B, p) as δn

1 , δn
2 → 0,

where (u,B, p) ∈ L∞(0, T ; H) ∩ L2(0, t; V ) × L
4
3 (0, T ; L2(Ω)) is a weak solution of the

MHD equations (6.1.1). The sequences {wδn
1
}n∈N, {Wδn

2
}n∈N converge strongly to u, B in

L
4
3 (0, T ; L2(Ω)) and weakly in L2(0, T ; H1(Ω)), respectively, while {qδn

1
}n∈N converges weakly

to p in L
4
3 (0, T ; L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [LaLe04], and is an easy consequence of

Theorem 6.4 and Proposition 6.2; we will sketch it for the reader’s convenience.

6.3.2 Verifiability of the model

Theorem 6.4. Suppose that the true solution of (6.1.1) satisfies the regularity condition

(u,B) ∈ L4(0, T ; V ). Then e = uδ1 − w, E = B
δ2 −W satisfy

‖e(t)‖2
0 + S‖E(t)‖2

0 +

∫ t

0

(
1

Re
‖∇e(s)‖2

0 +
S

Rem

‖curlE(s)‖2
0

)
ds

≤ CΦ(t)

∫ t

0

(
Re‖τu(s) + SτB(s)‖2

0 + Rem‖τBu(s)− τBu
T (s)‖2

0

)
ds,

(6.3.2)

where Φ(t) = exp
{

Re3
∫ t

0
‖∇u‖4

0ds, Rem
3
∫ t

0
‖∇u‖4

0ds + RemRe2
∫ t

0
‖∇B‖4

0

}
.

Proof. The errors e = uδ1 − w,E = B
δ2 −W satisfy in variational sense

et +∇ · (uδ1uδ1 − ww
δ1

)− 1

Re
∆e + S∇ · (Bδ2

B
δ2 −WW

δ1

) +∇(pδ1 − q)

= ∇ · (τ δ1
u + Sτ δ1

B ),

Et +
1

Rem

curl curl E +∇ · (Bδ2
uδ1 −Ww

δ2

)−∇ · (uδ1B
δ2 − wW

δ2

)

= ∇ · (τ δ2
Bu − τ δ2

Bu
T ),
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and ∇ · e = ∇ · E = 0, e(0) = E(0) = 0. Taking the inner product with (Aδ1e, SAδ2E) we

get as in (6.2.8) the energy estimate

1

2

d

dt

(‖e‖2
0 + S‖E‖2

0 + δ2
1‖∇e‖2

0 + δ2
2S‖curlE‖2

0

)

+
1

Re
‖∇e‖2

0 +
S

Rem

‖curl E‖2
0 +

δ2
1

Re
‖∆e‖2

0 +
δ2
2S

Rem

‖curl curlE‖2
0

+

∫

Ω

(
∇ · (uδ1uδ1 − ww)e + S∇ · (Bδ2

B
δ2 −WW )e

+ S∇ · (Bδ2
uδ1 −Ww)E − S∇ · (uδ1B

δ2 − wW )E
)
dx

= −
∫

Ω

(
(τu + SτB) · ∇e + S(τBu − τBu

T ) · ∇E
)
dx

≤ 1

2Re
‖∇e‖2

0 +
S

2Rem

‖curlE‖2
0 +

Re

2
‖τu + SτB‖2

0 +
Rem

2S
‖τBu − τBu

T‖2
0.

Since uδ1uδ1 −ww = euδ1 + we, B
δ2

B
δ2 −WW = EB

δ2
+ WE, B

δ2
uδ1 −Ww = Euδ1 + We,

uδ1B
δ2 − wW = eB

δ1
+ wE, and

∫
Ω
∇ · (we)edx =

∫
Ω
∇ · (WE)Edx = 0 we have

d

dt

(‖e‖2
0 + S‖E‖2

0 + δ2
1‖∇e‖2

0 + Sδ2
2‖curlE‖2

0

)

+
1

Re
‖∇e‖2

0 +
S

Rem

‖curl E‖2
0 +

δ2
1

Re
‖∆e‖2

0 +
δ2
2S

Rem

‖curl curlE‖2
0

≤
∫

Ω

(
− e · ∇uδ1e− S∇ · (EB

δ2
)e− S∇ · (Euδ1)E + Se · ∇B

δ2
E

)
dx

+ Re‖τu + SτB‖2
0 + Rem‖τBu − τBu

T‖2
0

≤ C
(
‖∇e‖3/2

0 ‖e‖1/2
0 ‖∇uδ1‖0 + 2S‖E‖1/2

0 ‖∇E‖1/2
0 ‖∇B

δ2‖0‖∇e‖0

+ S‖E‖1/2
0 ‖∇E‖3/2

0 ‖∇uδ1‖0

)
+ Re‖τu + SτB‖2

0 + Rem‖τBu − τBu
T‖2

0.

Using ab ≤ εa4/3 + Cε−3b4 we obtain

d

dt

(‖e‖2
0 + S‖E‖2

0 + δ2
1‖∇e‖2

0 + Sδ2
2‖curlE‖2

0

)

+
1

Re
‖∇e‖2

0 +
S

Rem

‖curl E‖2
0 +

δ2
1

Re
‖∆e‖2

0 +
δ2
2S

Rem

‖curl curlE‖2
0

≤ C
(
Re3‖e‖2

0‖∇uδ1‖4
0 + RemRe2‖E‖2

0‖∇B
δ2‖4

0 + Rem
3‖E‖2

0‖∇uδ1‖4
0

)

+ Re‖τu + SτB‖2
0 + Rem‖τBu − τBu

T‖2
0
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and by the Gronwall inequality we deduce

‖e(t)‖2
0 + S‖E(t)‖2

0 +

∫ t

0

(
1

Re
‖∇e(s)‖2

0 +
S

Rem

‖curlE(s)‖2
0

)
ds

≤ CΨ(t)

∫ t

0

(
Re‖τu(s) + SτB(s)‖2

0 + Rem‖τBu(s)− τBu
T (s)‖2

0

)
ds,

where

Ψ(t) = exp

{
Re3

∫ t

0

‖∇uδ1‖4
0ds, Rem

3

∫ t

0

‖∇uδ1‖4
0ds + RemRe2

∫ t

0

‖∇B
δ2‖4

0ds

}
.

Using the stability bounds ‖∇uδ1‖0 ≤ ‖∇u‖0, ‖∇B
δ2‖0 ≤ ‖∇B‖0 we conclude the proof.

6.3.3 Consistency error estimate

Here we shall give bounds on the consistency errors (6.3.1) as δ1, δ2 → 0 in L1((0, T ) × Ω)

and L2((0, T )× Ω).

Proposition 6.1. Let us assume that (f, curl g) ∈ L2(0, T ; V ′). Then the following holds

‖τu‖L1(0,T ;L1(Ω)) ≤ 23/2δ1T
1/2Re1/2E (T ),

‖τB‖L1(0,T ;L1(Ω)) ≤ 23/2δ2T
1/2 Rem

1/2

S
E (T ), (6.3.3)

‖τBu‖L1(0,T ;L1(Ω)) ≤ 21/2T 1/2 1

S
(δ1Re1/2 + δ2Rem

1/2)E (T ),

where

E (T ) =

(
‖u0‖2

0 + S‖B0‖2
0 + Re‖f‖2

L2(0,T ;H−1(Ω)) +
Rem

S
‖curl g‖2

L2(0,T ;H−1(Ω))

)
.
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Proof. Using the stability bounds we have

‖τu‖L1(0,T ;L1(Ω)) ≤ ‖u + uδ1‖L2(0,T ;L2(Ω))‖uδ1 − u‖L2(0,T ;L2(Ω))

≤ 2‖u‖L2(0,T ;L2(Ω))

√
2δ1‖∇u‖L2(0,T ;L2(Ω)).

Similarly

‖τB‖L1(0,T ;L1(Ω)) ≤ ‖B + B
δ2‖L2(0,T ;L2(Ω))‖Bδ2 −B‖L2(0,T ;L2(Ω))

≤ 2‖B‖L2(0,T ;L2(Ω))

√
2δ2‖∇B‖L2(0,T ;L2(Ω)),

‖τBu‖L1(0,T ;L1(Ω)) ≤ ‖Bδ2 −B‖L2(Q)‖uδ1‖L2(Q) + ‖B‖L2(Q)‖uδ1 − u‖L2(Q)

≤
√

2δ2‖∇B‖L2(Q)‖u‖L2(Q) +
√

2δ1‖∇u‖L2(Q)‖B‖L2(Q).

The classical energy estimates for the MHD system (6.1.1) will yield now (6.3.3).

Assuming more regularity on (u, B) leads to the sharper bounds on the consistency errors.

Remark 6.2. Let (u,B) ∈ L2(0, T ; H2(Ω)). Then

‖τu‖L1(0,T ;L1(Ω)) ≤ Cδ2
1,

‖τB‖L1(0,T ;L1(Ω)) ≤ Cδ2
2,

‖τBu‖L1(0,T ;L1(Ω)) ≤ C(δ2
1 + δ2

2),

where C = C(T, Re, Rem, ‖(u,B)‖L2(0,T ;L2(Ω)), ‖(u,B)‖L2(0,T ;H2(Ω))).

Proof. The result is obtained by following the proof of Proposition 6.1 and using the bounds

‖uδ1 − u‖L2(0,T ;L2(Ω)) ≤ δ2
1‖∆u‖L2(0,T ;L2(Ω)),

‖Bδ2 −B‖L2(0,T ;L2(Ω)) ≤ δ2
2‖∆B‖L2(0,T ;L2(Ω)).

Next we estimate the L2-norms of the consistency errors τu, τB, τBu, which were used in

Theorem 6.4 to estimate the filtering errors e, E.

140



Proposition 6.2. Let u,B be a solution of the MHD equations (6.1.1) and assume that

(u,B) ∈ L4((0, T )× Ω) ∩ L2(0, T ; H2(Ω)).

Then we have

‖τu‖L2(Q) ≤ Cδ1,

‖τB‖L2(Q) ≤ Cδ2,

‖τBu‖L2(Q) ≤ C(δ1 + δ2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L2(0,T ;H2(Ω))).

Proof. As in the proof of Proposition 6.1, using the stability bounds we have

‖τu‖L2(Q) ≤ 2‖u‖L4(Q)‖uδ1 − u‖L4(Q)

≤ 23/2‖u‖L4(Q)

(∫ T

0

‖uδ1 − u‖L2(Ω)‖∇(uδ1 − u)‖3
L2(Ω)dt

)1/4

≤ 23/2‖u‖L4(Q)

(∫ T

0

4δ4
1‖∇u‖L2(Ω)‖∆u‖3

L2(Ω)dt

)1/4

≤ 4δ1‖u‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

Similarly we deduce

‖τB‖L2(Q) ≤ 4δ2‖B‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω)),

and

‖τBu‖L2(Q) ≤ ‖u‖L4(Q)‖Bδ2 −B‖L4(Q) + ‖B‖L4(Q)‖uδ2 − u‖L4(Q)

≤ 2δ2‖u‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω))

+ 2δ1‖B‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

As in Remark 6.2, assuming extra regularity on (u,B) leads to the sharper bounds.
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Remark 6.3. Let

(u,B) ∈ L4((0, T )× Ω) ∩ L4(0, T ; H2(Ω)).

Then

‖τu‖L2(Q) ≤ Cδ2
1,

‖τB‖L2(Q) ≤ Cδ2
2,

‖τBu‖L2(Q) ≤ C(δ2
1 + δ2

2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L4(0,T ;H2(Ω))).

The proof repeats the one of Remark 6.2.

6.4 CONSERVATION LAWS

As our model is some sort of a regularizing numerical scheme, we would like to make

sure that the model inherits some of the original properties of the 3D MHD equations.

It is well known that kinetic energy and helicity are critical in the organization of the

flow.

The energy E = 1
2

∫
Ω
(u(x) · u(x) + SB(x) · B(x))dx, the cross helicity HC = 1

2

∫
Ω
(u(x) ·

B(x))dx and the magnetic helicity HM = 1
2

∫
Ω
(A(x)·B(x))dx (where A is the vector potential,

B = ∇×A) are the three invariants of the MHD equations (6.1.1) in the absence of kinematic

viscosity and magnetic diffusivity ( 1
Re

= 1
Rem

= 0).

Introduce the characteristic quantities of the model

ELES =
1

2
[(Aδ1w, w) + S(Aδ2W,W )],

HC,LES =
1

2
(Aδ1w, Aδ2W ),

and

HM,LES =
1

2
(Aδ2W,Aδ2

), where Aδ2
= A−1

δ2
A.
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This section is devoted to proving that these quantities are conserved by (6.1.7) with the

periodic boundary conditions and 1
Re

= 1
Rem

= 0. Also, note that

ELES → E, HC,LES → HC , HM,LES → HM , as δ1,2 → 0.

Theorem 6.5 (Conservation Laws). The following conservation laws hold, ∀T > 0

ELES(T ) = ELES(0), (6.4.1)

HC,LES(T ) = HC,LES(0) + C(T ) max
i=1,2

δ2
i , (6.4.2)

and

HM,LES(T ) = HM,LES(0). (6.4.3)

Note that the cross helicity HC,LES of the model is not conserved exactly, but it possesses

two important properties:

HC,LES → HC as δ1,2 → 0,

and

HC,LES(T ) → HC,LES(0) as N increases.
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Proof. Start by proving (6.4.1). Consider (6.1.7) with 1
Re

= 1
Rem

= 0. Multiply (6.1.7a) by

Aδ1w, and multiply (6.1.7b) by SAδ2W . Integrating both equations over Ω gives

1

2

d

dt
(Aδ1w,w) = S((∇×W )×W,w), (6.4.4)

1

2
S

d

dt
(Aδ2W,W )− S(W · ∇w, W ) = 0. (6.4.5)

Use the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u). (6.4.6)

Add (6.4.4) and (6.4.5). Using (6.4.6) leads to

1

2

d

dt
[(Aδ1w, w) + S(Aδ2W,W )]

= S(W · ∇W,w)− S(w · ∇W,W ) + S(W · ∇w,W ).

Hence

1

2

d

dt
[(Aδ1w, w) + S(Aδ2W,W )] = 0, (6.4.7)

which proves (6.4.1).

To prove (6.4.2), multiply (6.1.7a) by Aδ1W , and multiply (6.1.7b) by Aδ2w. Integrating

both equations over Ω gives

(
∂Aδ1w

∂t
,W ) + (w · ∇w,W ) = 0, (6.4.8)

(
∂Aδ2W

∂t
, w) + (w · ∇W,w) = 0. (6.4.9)

Add (6.4.8) and (6.4.9); the identity (u · ∇v, w) = −(u · ∇w, v) implies

(
∂Aδ1w

∂t
,W ) + (

∂Aδ2W

∂t
, w) = 0. (6.4.10)
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It follows from (6.1.8) that

w = Aδ1w + δ2
1∆w, (6.4.11)

W = Aδ2W + δ2
2∆W.

Then (6.4.10) gives

(
∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) (6.4.12)

= (
∂Aδ1w

∂t
, δ2

2∆W ) + (
∂Aδ2W

∂t
, δ2

1∆w).

Hence,

d

dt
(Aδ1w, Aδ2W ) = δ2

2(
∂Aδ1w

∂t
, ∆W ) (6.4.13)

+ δ2
1(

∂Aδ2W

∂t
, ∆w),

which proves (6.4.2).

Next, we prove (6.4.3) by multiplying (6.1.7b) by Aδ2A
δ2

, and integrating over Ω. This

gives

1

2

d

dt
(∇× Aδ2A

δ2
,Aδ2

) (6.4.14)

+ (w · ∇W,Aδ2
)− (W · ∇w,Aδ2

) = 0.

Since the cross-product of two vectors is orthogonal to each of them,

((∇× Aδ2
)× w,∇× Aδ2

) = 0.

It follows from (6.4.15) and (6.4.6) that

(w · ∇Aδ2
,∇× Aδ2

) = ((∇× Aδ2
) · ∇Aδ2

, w). (6.4.15)

Since W = ∇× Aδ2
, we obtain from (6.4.14) and (6.4.15) that (6.4.3) holds.

145



6.5 ALFVÉN WAVES

In this section we prove that our model possesses a very important property of the MHD:

the ability of the magnetic field to transmit transverse inertial waves - Alfvén waves. We

follow the argument typically used to prove the existence of Alfvén waves in MHD, see, e.g.,

[Davi01].

Using the density ρ and permeability µ, we write the equations of the model (6.1.7) in

the form

wt +∇ · (wwT
δ1

) +∇pδ1 =
1

ρµ
(∇×W )×W

δ1 − ν∇× (∇× w), (6.5.1a)

∂W

∂t
= ∇× (w ×W )

δ2 − η∇× (∇×W ), (6.5.1b)

∇ · w = 0, ∇ ·W = 0, (6.5.1c)

where ν = 1
Re

, η = 1
Rem

.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field w. We

denote the perturbations in current density and magnetic field by jmodel and Wp, with

∇×Wp = µjmodel. (6.5.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (6.5.3)

Since w ·∇w is quadratic in the small quantity w, it can be neglected in the Navier-Stokes

equation (6.5.1a), and therefore

∂w

∂t
+∇pδ1 =

1

ρµ
(∇×Wp)×W0

δ1 − ν∇× (∇× w). (6.5.4)

The leading order terms in the induction equation (6.5.1b) are

∂Wp

∂t
= ∇× (w ×W0)

δ2 − η∇× (∇×Wp). (6.5.5)
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Using (6.5.2), we rewrite (6.5.4) as

∂w

∂t
+∇pδ1 =

1

ρ
jmodel ×W0

δ1
+ ν∆w. (6.5.6)

Take curl of (6.5.6) and use the identity (6.2.7). Since ∇W0 = 0, we obtain from (6.5.3) that

∂ωmodel

∂t
=

1

ρ
W0 · ∇jmodel

δ1
+ ν∆ωmodel. (6.5.7)

Taking curl of (6.5.5) and using (6.5.2),(6.5.3) yields

µ
∂jmodel

∂t
= W0 · ∇ωmodel

δ2
+ ηµ∆jmodel. (6.5.8)

Divide (6.5.8) by µ to obtain

∂jmodel

∂t
=

1

µ
W0 · ∇ωmodel

δ2
+ η∆jmodel. (6.5.9)

We now eliminate jmodel from (6.5.7) by taking the time derivative of (6.5.7) and substituting

for ∂jmodel

∂t
using (6.5.9). This yields

∂2ωmodel

∂t2
=

1

ρ
W0 · ∇

( 1

µ
W0 · ∇ωmodel

δ2
+ η∆jmodel

)δ1

+ ν∆
∂ωmodel

∂t
. (6.5.10)

The linearity of A−1
δ1

implies

∂2ωmodel

∂t2
=

1

ρµ
W0 · ∇(W0 · ∇ωmodel

δ2
)
δ1

(6.5.11)

+
η

ρ
W0 · ∇(∆jmodel)

δ1
+ ν∆

∂ωmodel

∂t
.

In order to eliminate the term containing ∆jmodel from (6.5.11), we take the Laplacian of

(6.5.7):

∆
∂ωmodel

∂t
=

1

ρ
W0 · ∇(∆jmodel)

δ1
+ ν∆2ωmodel. (6.5.12)

It follows from (6.5.11)-(6.5.12) that

∂2ωmodel

∂t2
=

1

ρµ
W0 · ∇(W0 · ∇ωmodel

δ2
)
δ1

(6.5.13)

+(η + ν)∆
∂ωmodel

∂t
− ην∆2ωmodel.
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Next we look for the plane-wave solutions of the form

ωmodel ∼ ω0e
i(k·x−θt), (6.5.14)

where k is the wavenumber. It immediately follows from (6.5.14) that

∂ωmodel

∂t
= −iθωmodel, (6.5.15)

∂2ωmodel

∂t2
= −θ2ωmodel,

∆
∂ωmodel

∂t
= iθk2ωmodel,

∆2(ωmodel) = k4ωmodel.

Substitute (6.5.14) into the wave equation (6.5.13). Using (6.5.15) gives

− θ2ωmodel =
1

ρµ
W0 · ∇(W0 · ∇ωmodel

δ2
)
δ1

(6.5.16)

+(η + ν)iθk2ωmodel − ηνk4ωmodel.

It follows from (6.1.8) that

W0 · ∇ωmodel
δ2

= W0 · ∇ωmodel + O(δ2
2), (6.5.17)

W0 · ∇(W0 · ∇ωmodel
δ2

)
δ1

= (W0 · ∇)2ωmodel + O(δ2
1) + O(δ2

2).

Thus we obtain from (6.5.16),(6.5.17) that

−θ2ωmodel =
1

ρµ
(W0 · ∇)2ωmodel + (η + ν)iθk2ωmodel (6.5.18)

− ηνk4ωmodel + O(δ2
1 + δ2

2).

It follows from (6.5.14) that

(W0 · ∇)2ωmodel = −W 2
0 k2

||ωmodel, (6.5.19)

where k|| is the component of k parallel to W0. Hence, (6.5.18),(6.5.19) imply

−θ2ωmodel = −
W 2

0 k2
||

ρµ
ωmodel + (η + ν)iθk2ωmodel (6.5.20)

− ηνk4ωmodel + O(δ2
1 + δ2

2).
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This gives

− θ2 = −
W 2

0 k2
||

ρµ
+ (η + ν)iθk2 − ηνk4 + O(δ2

1 + δ2
2). (6.5.21)

Solving this quadratic equation for θ gives the dispersion relationship

θ = −(η + ν)k2

2
i±

(√
W 2

0 k2
||

ρµ
− (ν − η)2k4

4
+ O(δ2

1 + δ2
2)

)
. (6.5.22)

Hence, for a perfect fluid (ν = η = 0) we obtain

θ = ±ṽak||,

ṽa = va + O(δ2
1 + δ2

2),

where va is the Alfvén velocity W0/
√

ρµ.

When ν = 0 and η is small (i.e. for high Rem) we have

θ = ±ṽak|| − ηk2

2
i,

which represents a transverse wave with a group velocity equal to ±va + O(δ2
1 + δ2

2).

We conclude that our model (6.1.7) preserves the Alfvén waves and the group velocity

of the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.
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7.0 APPROXIMATE DECONVOLUTION MODELS FOR

MAGNETOHYDRODYNAMICS

7.1 INTRODUCTION

Magnetically conducting fluids arise in important applications including climate change

forecasting, plasma confinement, controlled thermonuclear fusion, liquid-metal cooling of

nuclear reactors, electromagnetic casting of metals, MHD sea water propulsion. In many of

these, turbulent MHD (magnetohydrodynamics [Alfv42]) flows are typical. The difficulties

of accurately modeling and simulating turbulent flows are magnified many times over in the

MHD case. They are evinced by the more complex dynamics of the flow due to the coupling

of Navier-Stokes and Maxwell equations via the Lorentz force and Ohm’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced by the

interaction of electric currents and magnetic fields in the fluid. The Lorentz forces can be used

to control the flow and to attain specific engineering design goals such as flow stabilization,

suppression or delay of flow separation, reduction of near-wall turbulence and skin friction,

drag reduction and thrust generation. There is a large body of literature dedicated to

both experimental and theoretical investigations on the influence of electromagnetic force on

flows (see e.g., [HeSt95, MeHeHr92, MeHeHr94, GPT, GT05, Tsin90, GL61, TS67, HS95,

SB97, BKLL00, GK06]). The MHD effects arising from the macroscopic interaction of liquid

metals with applied currents and magnetic fields are exploited in metallurgical processes to

control the flow of metallic melts: the electromagnetic stirring of molten metals [MDRV84],

electromagnetic turbulence control in induction furnaces [ViRi85], electromagnetic damping

of buoyancy-driven flow during solidification [PrIn93], and the electromagnetic shaping of
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ingots in continuous casting [SaLiEv88].

In Section 6 we considered the problem of modeling the motion of large structures in

a viscous, incompressible, electrically conducting, turbulent fluid. We introduced a simple

closed LES model, and performed full numerical analysis. This model can be also addressed

as zeroth order Approximate Deconvolution Model - referring to the family of models in

[AS01]. In this chapter we consider the family of the Approximate Deconvolution Models for

MagnetoHydroDynamics (ADM for MHD); we perform the numerical analysis of the models

and also verify their physical fidelity.

The mathematical description of the problem proceeds as follows. Assuming the fluid

to be viscous and incompressible, the governing equations are the Navier- Stokes and pre-

Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g. [Sher65]). Let

Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity, pressure, and the

magnetic field of the flow, driven by the velocity body force f and magnetic field force curl g.

Then u, p, B satisfy the MHD equations:

ut +∇ · (uu)− 1

Re
∆u +

S

2
∇(B2)− S∇ · (BB) +∇p = f,

Bt +
1

Rem

curl(curl B) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(7.1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (7.1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x + Lei) = Φ(t, x), i = 1, 2, 3,

∫

Ω

Φ(t, x)dx = 0, (7.1.3)

for Φ = u, u0, p, B, B0, f, g.

Here Re, Rem, and S are nondimensional constants that characterize the flow: the

Reynolds number, the magnetic Reynolds number and the coupling number, respectively.

For derivation of (7.1.1), physical interpretation and mathematical analysis, see [Cowl57,

LL69, ST83, GMP91] and the references therein.
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If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the differ-

entiation, then averaging (7.1.1) gives the following non-closed equations for uδ1 , B
δ2

, pδ1 in

(0, T )× Ω:

uδ1
t +∇ · (uuδ1)− 1

Re
∆uδ1 − S∇ · (BB

δ1
) +∇

(S

2
B2

δ1
+ pδ1

)
= f

δ1
,

B
δ2
t +

1

Rem

curl(curl B
δ2

) +∇ · (Bu
δ2

)−∇ · (uB
δ2

) = curl gδ2 ,

∇ · uδ1 = 0, ∇ · Bδ2
= 0.

(7.1.4)

The usual closure problem which we study here arises because uuδ1 6= uδ1 uδ1 , BB
δ1 6=

B
δ1

B
δ1

, uB
δ2 6= uδ1 B

δ2
. To isolate the turbulence closure problem from the difficult problem

of wall laws for near wall turbulence, we study (7.1.1) hence (7.1.4) subject to (7.1.3).

The closure problem is to replace the tensors uuδ1 , BB
δ1

, uB
δ2

with tensors T (uδ1 , uδ1),

T (B
δ2

, B
δ2

), T (uδ1 , B
δ2

), respectively, depending only on uδ1 , B
δ2

and not u, B. There are

many closure models proposed in large eddy simulation reflecting the centrality of closure in

turbulence simulation. Calling w, q, W the resulting approximations to uδ1 , pδ1 , B
δ2

, we are

led to considering the following model

wt +∇ ·T (w, w)− 1

Re
∆w − ST (W,W ) +∇q = f

δ1

Wt +
1

Rem

curl(curl W ) +∇ ·T (w, W )−∇ ·T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

With any reasonable averaging operator, the true averages uδ1 , B
δ2

, pδ1 are smoother than

u,B, p. We consider the family of closure models, pioneered by Stolz and Adams [AS01].

These Approximate Deconvolution Models (ADM) use the deconvolution operators G1
N and

G2
N , that will be defined in Section 7.2. The ADM for the MHD reads

wt +∇ · (G1
Nw)(G1

Nw)
δ1 − 1

Re
∆w − S∇ · (G2

NW ) (G2
NW )

δ1
+∇q = f

δ1
, (7.1.5a)

Wt +
1

Rem

curl(curl W ) +∇ · ((G2
NW )(G1

Nw)
δ2

)−∇ · ((G1
Nw)(G2

NW )
δ2

) (7.1.5b)

= curl gδ2 ,

∇ · w = 0, ∇ ·W = 0, (7.1.5c)
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subject to w(0, x) = uδ1
0 (x),W (0, x) = B

δ2
0 (x) and periodic boundary conditions (with zero

means).

We shall show that the ADM MHD model (7.1.5) has the mathematical properties ex-

pected of a model derived from the MHD equations by an averaging operation and which

are important for practical computations. Note that N = 0 in (7.1.5) leads to the model

discussed in [LaTr07, LLMNRST07].

The model considered can be developed for quite general averaging operators, see e.g.

[AS01]. The choice of averaging operator in (7.1.5) is a differential filter, defined as follows.

Let the δ > 0 denote the averaging radius, related to the finest computationally feasible

mesh. (In this chapter we use different lengthscales for the Navier-Stokes and Maxwell

equations). Given φ ∈ L2
0(Ω), φ

δ ∈ H2(Ω) ∩ L2
0(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ
+ φ

δ
= φ in Ω, (7.1.6)

subject to periodic boundary conditions. Under periodic boundary conditions, this averaging

operator commutes with differentiation, and with this averaging operator, the model (7.1.5)

has consistency O(δ2N+2), i.e.,

uuδ1 = G1
Nuδ1 G1

Nuδ1
δ1

+ O(δ1
2N+2),

BB
δ1

= G2
NB

δ2
G2

NB
δ2

δ1

+ O(δ2
2N+2),

uB
δ2

= G1
Nuδ1 G2

NB
δ2

δ2

+ O(δ1
2N+2 + δ2

2N+2),

for smooth u,B. We prove that the model (7.1.5) has a unique, strong solution w, W that

converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 7.2 we address the global existence and uniqueness of the solution for the

closed MHD model. Section 7.3 treats the questions of limit consistency of the model and

verifiability. The conservation of the kinetic energy and helicity for the approximate decon-

volution model is presented in Section 7.4. Section 7.5 shows that the model preserves the

Alfén waves, with the velocity tending to the velocity of Alfvén waves in the MHD, as the

radii δ1, δ2 tend to zero. The computational results in Section 7.6 confirm the accuracy and

the physical fidelity of the models.

153



7.2 EXISTENCE AND UNIQUENESS FOR THE ADM MHD EQUATIONS

Introduce the family of the approximate deconvolution operators G1
N , G2

N , that are used in

the ADM models (7.1.5).

Definition 7.1 (Approximate Deconvolution Operator). For a fixed finite N , define the N th

approximate deconvolution operators G1
N and G2

N by

Gi
Nφ =

N∑
n=0

(I − A−1
δi

)nφ, for i = 1, 2.

Note that since the differential filter Aδi
is self adjoint, Gi

N is also. Gi
N was shown to be

an O(δ2N+2
i ) approximate inverse to the filter operator A−1

δi
(see [DE06]). Finally, it is easy

to show that since Aδi
commutes with differentiation, so does Gi

N .

Lemma 7.1. The operator Gi
N is compact, positive, and is an asymptotic inverse to the

filter A−1
δi

, i.e., for very smooth φ and as δi → 0 satisfies

φ = G1
Nφ

δ1
+ (−1)N+1δ2N+2

1 ∆N+1A
−(N+1)
δ1

φ,

φ = G2
Nφ

δ2
+ (−1)N+1δ2N+2

2 ∆N+1A
−(N+1)
δ2

φ.
(7.2.1)

The proof of Lemma 7.1 can be found in [DE06].

Lemma 7.2. ‖ · ‖Gi
N

defined by ‖v‖Gi
N

= (v, Gi
Nv) is a norm on Ω, equivalent to the L2(Ω)

norm, and (·, ·)Gi
N

defined by (v, w)Gi
N

= (v,Gi
Nw) is an inner product on Ω.

For the proof see [BIL06].

We shall use the standard notations for function spaces in the space periodic case (see

[Tema95]). Let Hm
p (Ω) denote the space of functions (and their vector valued counterparts

also) that are locally in Hm(R3), are periodic of period L and have zero mean, i.e. satisfy

(7.1.3). We recall the solenoidal spaces

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2,

V = {φ ∈ H1
2 (Ω),∇ · φ = 0 in D(Ω)′}2.
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We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =

∫

Ω

(
1

Re
∇w1 · ∇w2 +

1

Rem

curl W1curl W2

)
dx, (7.2.2)

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the domain

D(A ) = {(w,W ) ∈ V ; (∆w, ∆W ) ∈ H} and we denote again by A its restriction to H.

We define also a continuous tri-linear form B0 on V ×V ×V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =

∫

Ω

(
∇ · (G1

Nw2)(G1
Nw1)

δ1
w3 (7.2.3)

−S∇·(G2
NW2)(G2

NW1)
δ1

w3+∇·(G2
NW2)(G1

Nw1)
δ2

W3−∇·(G1
Nw2)(G2

NW1)
δ2

W3dx

and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2,W2)〉 = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .

The following properties of the trilinear form B0 hold (see [JLL69, ST83, Gris80, Furs00])

B0((w1,W1), (w2,W2), (Aδ1G
1
Nw2, SAδ2G

2
NW2)) = 0,

B0((w1,W1), (w2,W2), (Aδ1G
1
Nw3, SAδ2G

2
NW3))

= −B0((w1,W1), (w3,W3), (Aδ1G
1
Nw2, SAδ2G

2
NW2)),

(7.2.4)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2,W2), (w3,W3))| (7.2.5)

≤ C‖(G1
Nw1, G

2
NW1)‖m1‖(G1

Nw2, G
2
NW2)‖m2+1‖(w3

δ1 ,W3
δ2

)‖m3

for all (w1,W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3,W3) ∈ Hm3(Ω) and

m1 + m2 + m3 ≥ d

2
, if mi 6= d

2
for all i = 1, . . . , d,

m1 + m2 + m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V, H, A , B(·) we can rewrite (7.1.5) as

d

dt
(w, W ) + A (w, W )(t) + B((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (uδ1
0 , B

δ2
0 ),

(7.2.6)

where (f , curl g) = P (f, curl g), and P : L2(Ω) → H is the Hodge projection.
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Theorem 7.1. For any (u0
δ1 , B0

δ2
) ∈ V and (f

δ1
, curl gδ2) ∈ L2(0, T ; H) there exists a

unique strong solution to (7.1.5) (w,W ) ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)) and wt,Wt ∈
L2((0, T )× Ω). Moreover, the following energy equality holds:

E (t) +

∫ t

0

ε(τ)dτ = E (0) +

∫ t

0

P(τ)dτ, t ∈ [0, T ], (7.2.7)

where

E (t)=
δ1

2

2
‖∇w(t, ·)‖2

G1
N

+
1

2
‖w(t, ·)‖2

G1
N

+
δ2

2S

2
‖∇W (t, ·)‖2

G2
N

+
S

2
‖W (t, ·)‖2

G2
N
,

ε(t)=
δ1

2

Re
‖∆w(t, ·)‖2

G1
N

+
1

Re
‖∇w(t, ·)‖2

G1
N

+
δ2

2S

Rem

‖∆W (t, ·)‖2
G2

N
+

S

Rem

‖∇W (t, ·)‖2
G2

N
, (7.2.8)

P(t)=(f(t), G1
Nw(t)) + S(curl g(t), G2

NW (t)).

Proof. (Sketch) The proof follows from [LaTr07], using a semigroup approach and the ma-

chinery of nonlinear differential equations of accretive type in Banach spaces. The key to

the model, as in MHD, is to make the nonlinear terms to vanish by an appropriate choice of

test function. We observe that by (7.2.4)

B0((w,W ), (w, W ), (Aδ1G
1
Nw, SAδ2G

2
NW )) = 0,

thus taking the inner product of (7.2.6) with (Aδ1G
1
Nw, SAδ2G

2
NW ) and integrating by parts

we get

1

2

d

dt

(
‖w‖2

G1
N

+ δ2
1‖∇w‖2

G1
N

+ S‖W‖2
G2

N
+ δ2

2S‖∇W‖2
G2

N

)

+
1

Re

(
‖∇w‖2

G1
N

+ δ2
1‖∆w‖2

G1
N

)
+

S

Rem

(
‖∇W‖2

G2
N

+ δ2
2S‖∆W‖2

G2
N

)

= (f, G1
Nw) + S(curl g, G2

NW ).

The pressure is recovered from the weak solution via the classical DeRham theorem (see

[Lera34]).
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Theorem 7.2. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ; Hm−1(Ω)).

Then there exists a unique solution w,W, q to the equation (7.1.5) such that

(w,W ) ∈ L∞(0, T ; Hm+1(Ω)) ∩ L2(0, T ; Hm+2(Ω)),

q ∈ L2(0, T ; Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 7.1. For any m ∈ N∗, we assume

that

(w, W ) ∈ L∞(0, T ; Hm(Ω)) ∩ L2(0, T ; Hm+1(Ω)) (7.2.9)

so it remains to prove

(Dmw, DmW ) ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the mth derivative of

(7.1.5) and have

Dmwt− 1

Re
∆Dmw+Dm(G1

Nw·∇G1
Nw)

δ1−SDm(G2
NW ·∇G2

NW )
δ1
+∇Dmq=Dmf

δ1
,

DmWt +
1

Rem

∇×∇×DmW + Dm(G1
Nw · ∇G2

NW )
δ2 −Dm(G2

NW · ∇G1
Nw)

δ2

= ∇×Dmgδ2 ,

∇ ·Dmw = 0,∇ ·DmW = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,

with periodic boundary conditions and zero mean, and the initial conditions with zero di-

vergence and mean. Taking Aδ1D
mw, Aδ2D

mW as test functions we obtain

1

2

d

dt

(‖Dmw‖2
0 + δ1

2‖∇Dmw‖2
0 + S‖DmW‖2

0 + Sδ2
2‖∇DmW‖2

0

)
(7.2.10)

+
1

Re

(‖∇Dmw‖2
0 + δ2

1‖∆Dmw‖2
0

)
+

1

Rem

(‖∇DmW‖2
0 + δ2

2‖∆DmW‖2
0

)

=

∫

Ω

(DmfDmw +∇×DmgDmW ) dx−X ,
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where

X =

∫

Ω

(
Dm(G1

Nw ·∇G1
Nw)−SDm(G2

NW ·∇G2
NW )

)
Dmw

+
(
Dm(G1

Nw ·∇G2
NW )−Dm(G2

NW ·∇G1
Nw)

)
DmWdx.

Now we apply (7.2.5) and use the induction assumption (7.2.9)

X =
∑

|α|≤m


m

α




3∑
i,j=1

∫

Ω

(
DαG1

NwiD
m−αDiG

1
Nwj−SDαG2

NWiD
m−αDiG

2
NWj

)
Dmwj

+
(
DαG1

NwiD
m−αDiG

2
NWj −DαG2

NWiD
m−αDiG

1
Nwj

)
DmWj dx

≤ C(m)
(
‖G1

Nw‖3/2
m ‖G1

Nw‖1/2
m+1 + ‖G2

NW‖3/2
m ‖G2

NW‖1/2
m+1

)
‖w‖m

+
(
‖G1

Nw‖m‖G2
NW‖1/2

m ‖G2
NW‖1/2

m+1 + ‖G2
NW‖m‖G1

Nw‖1/2
m ‖G1

Nw‖1/2
m+1

)
‖W‖m.

Integrating (7.2.10) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, Lemma

7.1, 7.2 and the assumption (7.2.9) we obtain the desired result for w,W . We conclude the

proof mentioning that the regularity of the pressure term q is obtained via classical methods,

see e.g. [Tart78, AmGi94].

7.3 ACCURACY OF THE MODEL

We address first the question of consistency, i.e., we show that the solution of the closed

model (7.1.5) converges to a solution of the MHD equations (7.1.1) when δ1, δ2 tend zero.

Let τu, τB, τBu denote

τu =G1
Nuδ1G1

Nuδ1−uu, τB =G2
NB

δ2
G2

NB
δ2−BB, τBu =G2

NB
δ2

G1
Nuδ1−Bu, (7.3.1)

where u,B is a solution of the MHD equations obtained as a limit of a subsequence of the

sequence wδ1 ,Wδ2 .

Weprove in Theorem 7.4 that the model’s consistency errors ‖uδ1−w‖L∞(0,T ;L2(Q)), ‖Bδ2 −
W‖L∞(0,T ;L2(Q)) are bounded by ‖τu‖L2(QT ), ‖τB‖L2(QT ), ‖τBu‖L2(QT ).
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7.3.1 Limit consistency of the model

Theorem 7.3. There exist two sequences δn
1 , δn

2 → 0 as n → 0 such that

(wδn
1
,Wδn

2
, qδn

1
) → (u,B, p) as δn

1 , δn
2 → 0,

where (u,B, p) ∈ L∞(0, T ; H)∩L2(0, T ; V )×L
4
3 (0, T ; L2(Ω)) is a solution of the MHD equa-

tions (7.1.1). The sequences {wδn
1
}n∈N, {Wδn

2
}n∈N converge strongly to u,B in L

4
3 (0, T ; L2(Ω))

and weakly in L2(0, T ; H1(Ω)), respectively, while {qδn
1
}n∈N converges weakly to p in

L
4
3 (0, T ; L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [LaTr07], and is an easy consequence of

Theorem 7.4 and Proposition 7.1.

7.3.2 Verifiability of the model

Theorem 7.4. Suppose that the true solution of (7.1.1) satisfies the regularity condition

(u,B) ∈ L4(0, T ; V ). Then the consistency errors e = uδ1 − w, E = B
δ2 −W satisfy

‖e(t)‖2
0 + S‖E(t)‖2

0 +

∫ t

0

( 1

Re
‖∇e(s)‖2

0 +
S

Rem

‖curlE(s)‖2
0

)
ds

≤ CΦ(t)

∫ t

0

(
Re‖τu(s) + SτB(s)‖2

0 + Rem‖τBu(s)− τBu(s)‖2
0

)
ds,

(7.3.2)

where Φ(t) = exp
{

Re3
∫ t

0
‖∇u‖4

0ds, Rem
3
∫ t

0
‖∇u‖4

0ds + RemRe2
∫ t

0
‖∇B‖4

0

}
.

Proof. The errors e = uδ1 − w,E = B
δ2 −W satisfy in variational sense

et+∇·(G1
Nuδ1G1

Nuδ1−G1
NwG1

Nw
δ1

)− 1

Re
∆e+S∇·(G2

NB
δ2

G2
NB

δ2−G2
NWG2

NW
δ1

)

+∇(pδ1 − q) = ∇ · (τ δ1
u + Sτ δ1

B ),

Et+
1

Rem

∇×∇×E+∇·G2
NB

δ2
G1

Nuδ1−G2
NWG1

Nw
δ2

−∇·G1
Nuδ1G2

NB
δ2−G1

NwG2
NW

δ2

= ∇ · (τ δ2
Bu − τ δ2

uB ),
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and ∇ · e=∇ · E =0, e(0)=E(0)=0. Taking the inner product with (Aδ1G
1
Ne, SAδ2G

2
NE)

we get as for (7.2.7) the following

1

2

d

dt

(
‖e‖2

G1
N

+ S‖E‖2
G2

N
+ δ2

1‖∇e‖2
G1

N
+ δ2

2S‖curlE‖2
G2

N

)

+
1

Re
‖∇e‖2

G1
N

+
S

Rem

‖curl E‖2
G2

N
+

δ2
1

Re
‖∆e‖2

G1
N

+
δ2
2S

Rem

‖curl curlE‖2
G2

N

+

∫

Ω

(
∇·(G1

Nuδ1G1
Nuδ1−G1

NwG1
Nw)G1

Ne+S∇·(G2
NB

δ2
G2

NB
δ2−G2

NWG2
NW )G1

Ne

+S∇·(G2
NB

δ2
G1

Nuδ1−G2
NWG1

Nw)G2
NE−S∇·(G1

Nuδ1G2
NB

δ2−G1
NwG2

NW )G2
NE

)
dx

= −
∫

Ω

(
(τu + SτB) · ∇G1

Ne + S(τBu − τuB ) · ∇G2
NE

)
dx

≤ 1

2Re
‖∇e‖2

0 +
S

2Rem

‖curlE‖2
0 +

Re

2
‖τu + SτB‖2

0 +
Rem

2S
‖τBu − τuB‖2

0.

Using the identity G1
Nuδ1G1

Nuδ1−G1
NwG1

Nw = G1
NeG1

Nuδ1 +G1
NwG1

Ne, Lemmas 7.1, 7.2, the

divergence free condition and (7.2.5) we have

d

dt

(‖e‖2
0 + S‖E‖2

0 + δ2
1‖∇e‖2

0 + Sδ2
2‖curlE‖2

0

)

+
1

Re
‖∇e‖2

0 +
S

Rem

‖curl E‖2
0 +

δ2
1

Re
‖∆e‖2

0 +
δ2
2S

Rem

‖curl curlE‖2
0

≤
∫

Ω

(
−G1

Ne · ∇G1
Nuδ1G1

Ne− S∇ · (G2
NEG2

NB
δ2

)G1
Ne− S∇ · (G2

NEG1
Nuδ1)G2

NE

+ SG1
Ne · ∇G2

NB
δ2

G2
NE

)
dx + Re‖τu + SτB‖2

0 + Rem‖τBu − τuB‖2
0

≤ C
(
‖∇e‖3/2

0 ‖e‖1/2
0 ‖∇uδ1‖0 + 2S‖E‖1/2

0 ‖∇E‖1/2
0 ‖∇B

δ2‖0‖∇e‖0

+ S‖E‖1/2
0 ‖∇E‖3/2

0 ‖∇uδ1‖0

)
+ Re‖τu + SτB‖2

0 + Rem‖τBu − τuB‖2
0.

Using ab ≤ εa4/3 + Cε−3b4 we obtain

d

dt

(‖e‖2
0 + S‖E‖2

0 + δ2
1‖∇e‖2

0 + Sδ2
2‖curlE‖2

0

)

+
1

Re
‖∇e‖2

0 +
S

Rem

‖curl E‖2
0 +

δ2
1

Re
‖∆e‖2

0 +
δ2
2S

Rem

‖curl curlE‖2
0

≤ C
(
Re3‖e‖2

0‖∇uδ1‖4
0 + RemRe2‖E‖2

0‖∇B
δ2‖4

0 + Rem
3‖E‖2

0‖∇uδ1‖4
0

)

+ Re‖τu + SτB‖2
0 + Rem‖τBu − τuB‖2

0
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and by the Gronwall inequality we deduce

‖e(t)‖2
0 + S‖E(t)‖2

0 +

∫ t

0

( 1

Re
‖∇e(s)‖2

0 +
S

Rem

‖curlE(s)‖2
0

)
ds

≤ CΨ(t)

∫ t

0

(
Re‖τu(s) + SτB(s)‖2

0 + Rem‖τBu(s)− τuB (s)‖2
0

)
ds,

where

Ψ(t) = exp

{
Re3

∫ t

0

‖∇uδ1‖4
0ds, Rem

3

∫ t

0

‖∇uδ1‖4
0ds + RemRe2

∫ t

0

‖∇B
δ2‖4

0ds

}
.

Using the stability bounds ‖∇uδ1‖0 ≤ ‖∇u‖0, ‖∇B
δ2‖0 ≤ ‖∇B‖0 we conclude the proof.

7.3.3 Consistency error estimate

The bounds on the errors (7.3.1) are given in the following proposition.

Proposition 7.1. Let

(u,B) ∈ L4((0, T )× Ω) ∩ L4(0, T ; H2N+2(Ω)), N ≥ 0.

Then

‖τu‖L2(Q) ≤ Cδ2N+2
1 ,

‖τB‖L2(Q) ≤ Cδ2N+2
2 ,

‖τBu‖L2(Q) ≤ C(δ2N+2
1 + δ2N+2

2 ),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L4(0,T ;H2N+2(Ω))).

The proof uses Lemma 7.1 and follows the outline of the proofs in Section 3.3 of [LaTr07].
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7.4 CONSERVATION LAWS

As our model is some sort of a regularizing numerical scheme, we would like to make sure

that the model inherits some of the original properties of the 3D MHD equations.

It is well known that kinetic energy and helicity are critical in the organization of the

flow.

The energy E = 1
2

∫
Ω
(v(x) · v(x) + B(x) · B(x))dx, the cross helicity HC = 1

2

∫
Ω
(v(x) ·

B(x))dx and the magnetic helicity HM = 1
2

∫
Ω
(A(x)·B(x))dx (where A is the vector potential,

B = ∇×A) are the three invariants of the MHD equations (7.1.1) in the absence of kinematic

viscosity and magnetic diffusivity ( 1
Re

= 1
Rem

= 0).

Introduce the characteristic quantities of the model (7.1.5)

EADM =
1

2
[(Aδ1w, w)G1

N
+ (Aδ2W,W )G2

N
],

HC,ADM =
1

2
(Aδ1w, Aδ2W ), and

HM,ADM =
1

2
(Aδ2W,Aδ2

)G2
N
, where Aδ2

= A−1
δ2
A.

This section is devoted to proving that these quantities are conserved by (7.1.5) with the

periodic boundary conditions and 1
Re

= 1
Rem

= 0. Also, note that

EADM → E, HC,ADM → HC , HM,ADM → HM , as δ1,2 → 0.

Theorem 7.5. The following conservation laws hold, ∀T > 0

EADM(T ) = EADM(0), (7.4.1)

HC,ADM(T ) = HC,ADM(0) + C(T ) max
i=1,2

δ2N+2
i , (7.4.2)

and

HM,ADM(T ) = HM,ADM(0). (7.4.3)
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Remark 7.1. Note that the cross helicity HC,ADM of the model is not conserved exactly, but

it possesses two important properties:

HC,ADM → HC as δ1,2 → 0,

and

HC,ADM(T ) → HC,ADM(0) as N increases.

In the case of equal radii, δ1 = δ2, the following cross helicity is exactly conserved:

H×,ADM(w, W )(t) =
1

2

(
(w, W )N + δ2(∇w,∇W )N

)
.

Proof. The proof follows the outline of the corresponding proof in [LaTr07]. Consider (7.1.5)

with 1
Re

= 1
Rem

= 0.

Start by proving (7.4.1). Multiply (7.1.5a) by Aδ1G
1
Nw, and multiply (7.1.5b) by Aδ2G

2
NW .

Integrating both equations over Ω gives

1

2

d

dt
(Aδ1w, w)G1

N
= ((∇×G2

NW )×G2
NW,w)G1

N
, (7.4.4)

1

2

d

dt
(Aδ2W,W )G2

N
− (G2

NW · ∇G1
Nw,W )G2

N
= 0. (7.4.5)

Adding (7.4.4)-(7.4.5) and using the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u) (7.4.6)

we obtain

1

2

d

dt

[
(Aδ1w, w)G1

N
+ (Aδ2W,W )G2

N

]

= (G2
NW · ∇G2

NW,G1
Nw)− (G1

Nw · ∇G2
NW,G2

NW ) + (G2
NW · ∇G1

Nw, G2
NW ) = 0,

which yields (7.4.1).

To prove (7.4.2), multiply (7.1.5a)-(7.1.5b) by Aδ1G
2
NW and Aδ2G

1
Nw, respectively, and

integrate over Ω to get

(
∂Aδ1w

∂t
,W )G2

N
+ (G1

Nw · ∇G1
Nw,W )G2

N
= 0, (7.4.7)

(
∂Aδ2W

∂t
, w)G1

N
+ (G1

Nw · ∇G2
NW,w)G1

N
= 0. (7.4.8)
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Adding (7.4.7) and (7.4.8), we obtain

(
∂Aδ1w

∂t
,G2

NW ) + (
∂Aδ2W

∂t
,G1

Nw) = 0. (7.4.9)

From Corollary 7.1 it follows that

G1
Nw = Aδ1w + (−1)Nδ2N+2

1 ∆N+1A−N
δ1

w, (7.4.10)

G2
NW = Aδ2W + (−1)Nδ2N+2

2 ∆N+1A−N
δ2

W.

Then (7.4.9) gives

d

dt
(Aδ1w,Aδ2W ) = (

∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) (7.4.11)

= (
∂Aδ1w

∂t
, (−1)N+1δ2N+2

2 ∆N+1A−N
δ2

W ) + (
∂Aδ2W

∂t
, (−1)N+1δ2N+2

1 ∆N+1A−N
δ1

w).

= (−1)N+1δ2N+2
2 (

∂Aδ1w

∂t
, ∆N+1A−N

δ2
W ) + (−1)N+1δ2N+2

1 (
∂Aδ2W

∂t
, ∆N+1A−N

δ1
w),

which proves (7.4.2).

Next, we prove (7.4.3). By multiplying (7.1.5b) by Aδ2G
2
NA

δ2
, and integrating over Ω we

get

1

2

d

dt
(∇× Aδ2A

δ2
, G2

NA
δ2

) (7.4.12)

+ (G1
Nw · ∇G2

NW,G2
NA

δ2
)− (G2

NW · ∇G1
Nw,G2

NA
δ2

) = 0.

Since the cross-product of two vectors is orthogonal to each of them

((∇×G2
NA

δ2
)×G1

Nw,∇×G2
NA

δ2
) = 0, (7.4.13)

it follows from (7.4.13) and (7.4.6) that

(G1
Nw · ∇G2

NA
δ2

,∇×G2
NA

δ2
) = ((∇×G2

NA
δ2

) · ∇G2
NA

δ2
, G1

Nw). (7.4.14)

Since G2
NW = ∇×G2

NA
δ2

, we obtain from (7.4.12) and (7.4.14) that (7.4.3) holds.
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7.5 ALFVÉN WAVES

In this section we prove that our model possesses a very important property of the MHD:

the ability of the magnetic field to transmit transverse inertial waves - Alfvén waves. We

follow the argument typically used to prove the existence of Alfvén waves in MHD, see, e.g.,

[Davi01].

Using the density ρ and permeability µ, we write the equations of the model (7.1.5) in

the form

wt+∇·((G1
Nw)(G1

Nw)
δ1

)+∇pδ1 =
1

ρµ
(∇×G2

NW )×G2
NW

δ1− ν∇×(∇×w), (7.5.1a)

∂W

∂t
= ∇× ((G1

Nw)× (G2
NW ))

δ2 − η∇× (∇×W ), (7.5.1b)

∇ · w = 0, ∇ ·W = 0, (7.5.1c)

where ν = 1
Re

, η = 1
Rem

.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field w. We

denote the perturbations in current density and magnetic field by jmodel and Wp, with

∇×Wp = µjmodel. (7.5.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (7.5.3)

Since G1
Nw · ∇G1

Nw is quadratic in the small quantity w, it can be neglected in the

Navier-Stokes equation (7.5.1a), and therefore

∂w

∂t
+∇pδ1 =

1

ρµ
(∇×G2

NWp)×G2
NW0

δ1 − ν∇× (∇× w). (7.5.4)

The leading order terms in the induction equation (7.5.1b) are

∂Wp

∂t
= ∇× (G1

Nw ×G2
NW0)

δ2 − η∇× (∇×Wp). (7.5.5)
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Following the argument of [LaTr07] and using the approximating result of Corollary 7.1,

we obtain that in the case of a perfect fluid (ν = η = 0) and in the case ν = 0, η À 1 a

transverse wave is recovered. The group velocity of the wave is equal to

ṽa = va + O(δ2N+2
1 + δ2N+2

2 ),

where va is the Alfvén velocity W0/
√

ρµ.

We conclude that our model (7.1.5) preserves the Alfvén waves and the group velocity

of the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.

7.6 COMPUTATIONAL RESULTS

In this section we present computational results for the ADM models of zeroth, first and

second order. The convergence rates are presented and the fidelity of the models is verified by

comparing the quantities, which are conserved in the ideal inviscid case. The computations

are made for the two-dimensional problem, where the energy and enstrophy of the models

are compared to those of the averaged MHD.

Consider the MHD flow in Ω = (0.5, 1.5)×(0.5, 1.5). The Reynolds number and magnetic

Reynolds number are Re = 105, Rem = 105, the final time is T = 1/4, and the averaging

radii are δ1 = δ2 = h.

Take

f =




1
2
π sin(2πx)e−4π2t/Re − xe2t

1
2
π sin(2πy)e−4π2t/Re − ye2t


 ,

∇×g=


et(x−(cos πx sin πy+πx sin πx sin πy+πy cos πx cos πy)e−2π2t/Re)

et(−y−(sin πx cos πy+πx cos πx cos πy+πy sin πx sin πy)e−2π2t/Re)


.
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The solution to this problem is

u =


− cos(πx) sin(πy)e−2π2t/Re

sin(πx) cos(πy)e−2π2t/Re


 ,

p = −1

2
(cos(2πx) + cos(2πy))e−4π2t/Re,

B =


 xe

−ye


 .

Hence, although the theoretical results were obtained only for the periodic boundary

conditions, we apply the family of ADMs to the problem with Dirichlet boundary conditions.

The results presented in the following tables are obtained by using the software FreeFEM+

+. The velocity and magnetic field are sought in the finite element space of piecewise

quadratic polynomials, and the pressure in the space of piecewise linears. In order to draw

conclusions about the convergence rate, we take the time step k = h2. We compare the

solutions (w,W ), obtained by the ADM models, to the true solution (u,B) and the average

of the true solution (ū, B̄). The second order accuracy in approximating the true solution

(u,B) is expected for ADM models of any order, whereas the accuracy in approximating the

averaged solution (ū, B̄) should increase as the order of the model increases.

The solution, computed by the zeroth order ADM, approximates both the true solution

(u,B) and the average of the true solution (ū = (−δ2
1∆ + I)−1u, B̄ = (−δ2

2∆ + I)−1B with

the second order accuracy. The accuracy in approximating the averaged solution increases

as the order of the model is increased.

Hence, the computational results verify the claimed accuracy of the model.

Since the flow is not ideal (nonzero power input, nonzero viscosity/magnetic diffusivity,

non-periodic boundary conditions), the energy and enstrophy are not conserved. But we

expect the energy and enstrophy of the models to approximate the energy and enstrophy of

the averaged MHD.

The enstrophy of the first and second order models approximates the enstrophy of the

averaged MHD better than the zeroth order model’s enstrophy, see Figure 10.

Figure 11 shows that the graph of the models energy is hardly distinguishable from that

of the averaged MHD.
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Table 13: Approximating the true solution, Re = 105, Rem = 105, Zeroth Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate

1/4 0.0862904 0.0253257

1/8 0.0515562 0.7431 0.0268628 -0.085

1/16 0.0204763 1.3322 0.0132399 1.0207

1/32 0.00611337 1.7439 0.00412013 1.6841

1/64 0.00163356 1.9039 0.001116 1.8844

Table 14: Approximating the true solution, Re = 105, Rem = 105, First Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate

1/4 0.086748 0.0219869

1/8 0.0504853 0.781 0.0146218 0.5885

1/16 0.0196045 1.3647 0.00401043 1.8663

1/32 0.00589278 1.7342 0.00078723 2.3489

1/64 0.00159084 1.8892 0.000170555 2.2065

Zooming in at the final time t = 0.25 we verify that the ADM energy approximates the

averaged MHD energy better as the model’s order increases, see Figure 12.
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Table 15: Approximating the true solution, Re = 105, Rem = 105, Second Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate

1/4 0.0854318 0.0229699

1/8 0.0500093 0.7726 0.0170217 0.4324

1/16 0.0194169 1.3649 0.00472331 1.8495

1/32 0.00587995 1.7234 0.000856363 2.4635

1/64 0.00159835 1.8792 0.000167472 2.3543

Table 16: Approximating the average solution, Re = 105, Rem = 105, Zeroth Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate

1/4 0.0247837 0.0253257

1/8 0.0245241 0.0152 0.0268628 -0.085

1/16 0.0131042 0.9042 0.0132399 1.0207

1/32 0.00434599 1.5923 0.00412013 1.6841

1/64 0.00120907 1.8458 0.001116 1.8844

Table 17: Approximating the average solution, Re = 105, Rem = 105, First Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate

1/4 0.0228254 0.0219869

1/8 0.015202 0.5864 0.0146218 0.5885

1/16 0.0043297 1.8119 0.00401043 1.8663

1/32 0.000867986 2.3185 0.00078723 2.3489

1/64 0.000192121 2.1757 0.000170555 2.2065
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Table 18: Approximating the average solution, Re = 105, Rem = 105, Second Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate

1/4 0.0236209 0.0229699

1/8 0.0172027 0.4574 0.0170217 0.4324

1/16 0.00506669 1.7635 0.00472331 1.8495

1/32 0.000956194 2.4057 0.000856363 2.4635

1/64 0.000194768 2.2955 0.000167472 2.3543
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Figure 10: ADM Enstrophy vs. averaged MHD
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Figure 11: ADM Energy vs. averaged MHD
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Figure 12: ADM Energy vs. averaged MHD: zoom in
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8.0 CONCLUSIONS AND FUTURE RESEARCH

8.1 CONCLUSIONS

We have considered three numerical methods (Chapters 2, 3 and 4) for Navier Stokes equa-

tions, aiming at higher Reynolds number. Many iterative methods fail when applied to this

type of problems. Often ”failure” means that the iterative method used to solve the linear

and/or nonlinear system for the approximate solution at the new time level failed to converge

within the time constraints of the problem or the resulting approximation had poor solution

quality. However, all three of the methods introduced in this work have been shown to

overcome both of these types of failure. We proved their stability, performed full numerical

analysis of these methods and discussed their physical fidelity. The results of computational

tests were provided, proving the effectiveness of these methods.

A Large Eddy Simulation approach to the MagnetoHydroDynamic Turbulence was con-

sidered in Chapters 6 and 7. The Approximate Deconvolution Models were introduced for

the incompressible MHD equations, and this family of models was analyzed. We proved the

existence and uniqueness of solutions, and their convergence in the weak sense to a solution

of the MHD equations, as the filtering widths are decreased to zero. We proved the accuracy

of the model both theoretically (by establishing an á priori bound on the model’s consistency

error) and numerically.

Also, all models in the family of the ADMs were proven to possess the physical properties

of the MHD - the energy and helicity of the models are conserved, and the models were also

proven to preserve the Alfvén waves, a unique feature of the MHD equations. The physical

fidelity of the models was also verified computationally. The test results prove that both

the solution and the energy of the averaged MHD equations are approximated better, as

172



one increases the models’ order N (from zeroth ADM to the first ADM, and from the first

to the second ADM). This gives a freedom of choosing the model’s order N, based on the

desired accuracy of approximation and the available computational power. Finally, the

tests demonstrate that in the situations when the direct numerical simulation is no longer

available (flows with high Reynolds and magnetic Reynolds numbers), the solution can still

be obtained by the ADM approach.

8.2 FUTURE RESEARCH

This thesis can be extended into the following projects.

Defect Correction:

• Extend this idea to turbulent flows. Does the DCM have to be combined with any

turbulent models?

• If it is combined, does it improve the results obtained by that turbulence model? Should

the DCm be used as a preconditioner?

• DCM near boundaries? Can the higher nonlinearity be embedded into the DCMs so that

the boundary layer oscillations could be controlled?

Convection diffusion coupled with porous media:

• Consider the idea of natural convection: coupling the Navier-Stokes equations with con-

vection diffusion.

Turbulence modeling:

• Perform full numerical analysis of the MHD ADMs - fully discrete methods, stability

and error analysis. Verify the convergence rates computationally - using either the test

space of higher order polynomials, or a spectral (Fourier) code.

• Investigate (theoretically and numerically) the possibility of choosing the averaging radii

so that the consistency error of the model is minimized. In any given application we are

provided with the empirical data, and our goal is to choose the filtering widths for velocity
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and magnetic fields so that the balance is kept between approximating the empirical data

and reducing the computational cost.

• Explore the cascades of the conserved quantities - model’s energy and magnetic helicity.

First we should restrict ourselves to a given application. For instance, one can consider

the case of isotropic magnetic field.

• Investigate the pressure in the ADMs. This is related to an idea of drag reduction by the

means of magnetic field. It is known (and proven by experiment) that applying the same

magnetic field could reduce drag in one region of the flow and at the same time increase

the drag in another region. There is a theory that this is related to the pressure.

• Models for compressible turbulence (HD flows). Time relaxation; Large Eddy Simulation.

VAst variety of applications are concerned with compressible turbulent flows. There are

lots of open questions in this area: how should the turbulence be modeled? Will the

LES approach work? Is it going to be dissipative enough? How should the models be

modified in order to be applicable in the compressible case? One starting point could be

an idea of time relaxation - addition of a lower order term, that drives the fluctuations

to zero exponentially fast.
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