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ACUTE EFFECTS OF UPPER EXTREMITY STATIC STRETCHING AND DYNAMIC 
WARM-UP PROTOCOLS ON RANGE OF MOTION, STRENGTH, AND POWER OUTPUT 

 

DOUGLAS A. ZARUTA 

UNIVERSITY OF PITTSBURGH, 2008 

 

 INTRODUCTION: Overhead throwing athletes develop muscular and capsular tightness 

of the posterior shoulder and an altered arc of motion in their dominant shoulder due to repetitive 

overhead throwing. Stretching has been suggested as a way to improve soft tissue flexibility and 

reduce the risk of shoulder pathology associated with posterior shoulder tightness (PST). 

Baseball players commonly perform upper extremity acute static stretching exercises during 

warm-up to increase glenohumeral (GH) range of motion (ROM), prevent injury, and enhance 

performance. However, previous literature has demonstrated that acute static stretching may be 

detrimental to performance. The purpose of this study was (1) to compare upper extremity static 

stretching and dynamic warm-up protocols and (2) determine the most appropriate protocol to 

increase GH ROM, decrease PST, and maintain GH strength and power.  

  

 METHODS: Upper extremity static and dynamic protocols were compared in 15 healthy 

and physically active males using a within-subject, repeated measures, and counterbalanced 

design. GH internal rotation (IR) and external rotation (ER) ROM, PST, and GH isokinetic 

concentric strength and power were measured before and after each protocol. Post-test 

assessments occurred over four time intervals (post-0, post-5, post-15, and post-30 minutes). 
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 RESULTS: The results of this study demonstrated no significant test x time interactions 

between the static and dynamic protocols at any time interval for any of the dependent variables. 

However, a significant main effect occurred where GH IR ROM group mean significantly 

increased at the post-0 (p=<0.001), post-5 (p=0.004), post-15 (p=0.017), and post-30 (p=0.050) 

time intervals compared to the pre-test measurement. GH ER ROM group mean also 

significantly increased at the post-5 (p=0.003), post-15 (p=0.003), and post-30 (p=0.017) time 

intervals compared to the pre-test measurement.  

  

 CONCLUSIONS: This study did not identify a stretching or warm-up protocol that 

increased or decreased muscular force output. However, both protocols acutely increased GH IR 

and ER ROM for up to 30 minutes, suggesting that static stretching and dynamic warm-up may 

be similarly effective at increasing ROM. Clinicians and researchers must continue to work 

together to guide future research and determine the most effective stretching or warm-up 

protocol to maximize upper extremity performance.  
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1.0  INTRODUCTION 

Flexibility is an important objective of athletic conditioning to promote safe and effective 

movements in sports.1, 2 Athletes commonly perform stretching exercises to improve soft tissue 

flexibility and joint ROM.3 Stretching has received anecdotal support from coaches, clinicians, 

and athletes for many years and has become a universal component of the athletic warm-up 

preceding physical activity.4-7 Moreover, stretching is frequently incorporated into the athletic 

warm-up of overhead throwing athletes. Baseball players perform upper body acute stretching 

exercises for reasons of increasing shoulder ROM,8-11 preventing injury,2, 8, 12 and improving 

throwing performance.2, 11-13 Recently, acute stretching has been under extensive investigation by 

researchers attempting to validate its reported benefits and overall effectiveness. 

The importance of flexibility has been suggested to be greater in sports requiring large, 

functional ranges of motion and may therefore have additional significance in the sport of 

baseball.6, 14 The overhead throwing motion in baseball is a highly dynamic skill requiring a 

delicate balance of strength and flexibility for optimal performance, particularly at the shoulder 

complex.15, 16 The shoulder acts as a catapult during overhead delivery and utilizes large ranges 

of motion to generate explosive forces to propel the baseball forward.17, 18 Elite pitchers can 

generate humeral angular velocities in excess of 7,000° · sec-1 during acceleration, translating to 

ball speeds of 90 miles per hour or higher.18, 19 During overhead delivery, elite pitchers may 
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reach approximately 180° of maximal ER.16, 17 Stretching exercises may promote soft tissue 

flexibility to allow the large shoulder ranges of motion essential for overhead throwing. 

Shoulder mobility has previously been associated with throwing performance.18, 20 

Optimal throwing performance requires plentiful mobility at the shoulder without sacrificing 

stability, a concept identified as the “thrower’s paradox.”21 In theory, increased GH flexibility 

may enhance overhead throwing speed and accuracy by promoting muscular synchrony and 

allowing mechanical efficiency.16, 20, 22 Moreover, impaired throwing performance and increased 

injury risk have been associated with muscular and capsular tightness of the posterior shoulder.16, 

18 Russek et al23 suggested that the appropriate amount of flexibility to promote optimal 

performance and decreased injury risk occurs on a continuum between the pathologic extremes 

of ankylosis and hypermobility.23 

Baseball players are part of a unique population of overhead athletes often presenting 

with soft tissue adaptations and flexibility imbalances in the throwing shoulder.24 Large volumes 

of high velocity throwing challenge the physiological limits of the GH joint and greatly stress its 

supporting structures, including the rotator cuff musculature, GH ligaments, glenoid labrum, and 

joint capsules.16, 25, 26 Repetitive overhead throwing and subsequent microtrauma to the GH static 

and dynamic supporting structures are thought to play a role in several physiological adaptations 

seen in overhead athletes.27-29 Upon clinical examination, overhead throwing athletes present 

with several GH soft tissue adaptations in the dominant (throwing) arm.27, 30 

The most evident and consistent adaptation in the throwing athlete is an altered arc of 

motion in the dominant arm compared to the non-dominant (non-throwing) arm.30 It is clearly 

demonstrated in the literature22, 27, 29-38 that baseball pitchers and position players at many levels 

of competition display an increase in GH joint ER ROM, identified in the literature as an 
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external rotation gain (ERG), and a subsequent decrease in GH joint internal rotation (IR) ROM, 

identified in the literature as a glenohumeral internal rotation deficit (GIRD). Brown et al30 found 

as much as a 9° increase and a 15° decrease in ER and IR, respectively, when comparing 

dominant and non-dominant arms of professional baseball pitchers. 

Relative laxity developed between the anterior and posterior capsules in response to 

subtle, repetitive microtrauma may contribute to the appearance of an altered arc of GH joint 

ROM.17 Attenuation of the anterior capsule and anterior-inferior GH ligamentous complex from 

tensile loads during late cocking may contribute to an ERG.39 The throwing arm can be 

externally rotated as much as 160° to 180° during late cocking, placing excessive tensile stresses 

on the anterior capsuloligamentous complex and thereby contributing to increased ER ROM over 

time.16, 31, 39 Attenuation and acquired laxity of the anterior capsule has been observed in veteran 

pitchers.25 

Adaptive tightening and contracture of the posteroinferior capsule from cumulative 

microtraumas during deceleration may be responsible for the loss of IR seen in the dominant arm 

of throwing athletes.16, 25, 27, 40, 41 Deceleration is the most demanding phase of overhead throwing 

because the dynamic stabilizers must withstand extreme joint distraction forces created during 

acceleration to dissipate residual energy not transferred to the baseball.16, 17 Violent eccentric 

contractions of the posterior rotator cuff musculature generate joint compression forces in excess 

of 1,000 N during deceleration, which may cause scarring and thickening of the posterior 

shoulder, and ultimately leading to a decrease in posterior shoulder flexibility and loss of IR 

ROM.17, 25, 27 The adaptive tightening of the muscular and capsular tissues of the posterior 

shoulder associated with repetitive overhead throwing has been identified in the literature as 

posterior shoulder tightness (PST).27 
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It is theorized that a relative laxity between the anterior and posterior capsules may be the 

adaptive response of the body to balance the need for greater mobility as well as provide the 

stability needed to withstand anterior shear joint forces during throwing.35 Still, some authors 

believe true anterior instability occurs only in the most veteran pitchers, and furthermore an ERG 

occurs with or without anterior capsular laxity.25 Burkhart et al25 concluded that PST is the 

ultimate culprit and is the first adaptation in a cascading series of events leading to the “dead 

arm.” They defined this as any degree of shoulder pathology causing an inability to throw at 

previous levels of speed or accuracy.25 It was proposed that PST causes hyperexternal rotation 

(ERG) by creating a “tethering effect” shifting the humeral-glenoid contact point 

posterosuperiorly, thus allowing additional clearance of the greater tuberosity before it contacts 

the glenoid.25 The posterosuperior shift of the contact point secondarily creates a functional 

pseudolaxity and “cam effect” of the anterioinferior capsule allowing an increase in ER ROM.25 

The relationship between PST and GIRD has also been established, wherein a loss of IR ROM is 

the result of a tightened posterior capsule.25, 27, 41 

 Some empirical evidence also suggests that bony adaptations may co-exist with soft 

tissue adaptations and contribute to an altered arc of GH joint ROM.31, 35, 36 One study 

demonstrated that baseball players exhibited increased humeral retroversion of 10° of the 

throwing arm upon radiographic examination.36 Increased humeral retroversion was not apparent 

in the non-dominant arm.31 Humeral retroversion has been defined in the literature as the acute 

angle, in a medial and posterior direction, between the axis of the elbow joint and the axis 

through the center of the humeral head.36 Osseous changes have been thought to develop only 

during skeletal growth prior to epiphyseal closure, and may be caused by opposing muscular 

forces repeatedly occurring about the proximal humerus during overhead throwing.31 Increased 
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humeral retroversion may contribute to an altered arc of motion by allowing the articulating 

surfaces between the humeral head and glenoid to remain in contact for a longer period of time 

before becoming restrained by the anterior capsule.36 

Several studies reported consistency in the total arc of motion in the dominant arm 

compared to the non-dominant arm despite a clear alteration in the arc of motion.29, 31, 35, 36 The 

total arc of motion is measured as the arc from maximum IR to maximum ER, and is 

approximately 180°.29 It has been suggested that only a posterior shift in ROM occurs in an 

adaptive physiological response to the high demands placed on the shoulder during repetitive 

overhead activity.31 Recent studies31, 35, 36 attributing increased humeral retroversion as the cause 

of an altered arc of motion have demonstrated consistent total arcs of motion between the 

dominant and non-dominant limbs in baseball pitchers. The authors of these studies believed an 

altered arc of motion is due largely to increased humeral retroversion and is simply a 

physiological response to repetitive overhead activity.31, 35, 36 

The proposed cam effect theory may also explain an altered arc of motion, but this theory 

has been associated with PST and the dead arm syndrome.25 The total arc of motion can be 

disrupted when excessive PST develops and total losses in IR ROM exceed total gains in ER 

ROM.25, 27 Impaired throwing performance and injury have been associated with excessive PST 

and GIRD.25, 27, 40, 41 Arthroscopic examination of a group of disabled throwers with excessive 

GIRD demonstrated significant contractures and thickenings of the posterior band of the inferior 

GH ligament. Based on published findings, a linear relationship is thought to exist in that 

approximately 4° of GIRD is acquired for every 1 cm of PST.41 This ratio has been observed in 

baseball players diagnosed with pathologic internal impingement27 and subacromial 

impingement.41 
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Despite the lack of evidence in prospective clinical studies, PST may lead to shoulder and 

elbow pathologies in overhead athletes such as subacromial impingement,41-44 ulnar collateral 

ligament sprains, SLAP lesions,25 and pathologic internal impingement.27 The posterior capsular 

structures play an important role in allowing and controlling normal arthrokinematics of the 

shoulder during functional activities.40, 44, 45 The static GH ligaments and joint capsules prevent 

excessive humeral translation, while the rotator cuff acts dynamically to compress the humeral 

head and keep it centered on the glenoid.21 Contracture of the posterior shoulder creates 

abnormal arthrokinematics during shoulder elevation by causing an anterior and superior 

migration of the humeral head, possibly contributing to subacromial impingement.40 Tyler et al41 

also proposed that asymmetrical PST causes anterior-superior migration of the humeral head 

during shoulder elevation. Abnormal arthrokinematics from a contracted posterior capsule may 

cause impingement as the humeral head is pinched into the coracoacromial arch.40 

Arthrokinematics have been theorized to return to normal if GIRD is less than or equal to 

ERG.25 Ticker et al40 reported a 37° decrease of GIRD and a subsequent return to normal 

arthrokinematics following posterior capsular release and post-operative rehabilitation in patients 

with chronic GIRD and impingement syndrome. Maintaining shoulder flexibility may also 

promote normal arthrokinematics and decrease PST and GIRD.25, 27, 41, 46 Daily stretching of the 

posteroinferior capsule has been shown to decrease GIRD and decrease the incidence of injury in 

major league baseball pitchers.25 

Maintaining a balanced total arc of motion between the throwing and non-throwing arms 

may reduce injury risk in baseball players.25, 27 Therefore, 1° of IR ROM may be lost for every 

degree of ER ROM gained without imposing a predisposition for injury.27 GIRD, in fact, 

becomes problematic when a disruption in the total arc of motion occurs and the IR loss far 
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exceeds the gain in ER.25, 46 Lintner et al33 found that IR stretching restores the total arc of the 

dominant arm by decreasing the level of GIRD. Results from this study indicated that GIRD is 

neither mandatory nor permanent, and individuals will respond to stretching. 33 Furthermore, 

Burkhart et al25 stated that 90% of all throwers with symptomatic GIRD would be successful in 

restoring IR to an acceptable level following a posteroinferior capsular stretching program. An 

‘acceptable level’ has been defined as exhibiting either less than 20° of GIRD or having an IR 

loss less than 10% of the total arc of motion of the non-throwing shoulder.25 

Based on overwhelming evidence22, 27, 29-38 that baseball players will inevitably develop 

physiological adaptations from repetitive throwing, several authors26, 27, 31, 33, 41 support the 

intervention of a prophylactic stretching program to prevent upper extremity injury. Previous 

authors have validated and recommended the use of daily stretching for baseball players to 

manage posterior shoulder flexibility and prevent injury. Major league baseball pitchers restored 

a total arc of motion and decreased the incidence of injury following a daily posteroinferior 

capsular stretching program over a one-year period.25 Pain relief was also a reported benefit of 

posterior shoulder stretching.27 

While the effects of acute stretching on reducing injury rates are not completely agreed 

upon, several authors have reported that acute stretching may also help reduce the incidence of 

musculoskeletal injury by allowing normal kinematics and joint mechanics.7, 14, 47, 48 Similar 

increases in flexibility occur following both acute and daily stretching programs.6 Acute 

stretching may decrease the onset of injury in throwing athletes if it can help maintain posterior 

shoulder flexibility and restore a total arc of motion. Acute stretching may also be important in 

promoting muscular synchrony, increasing throwing efficiency, and allowing better throwing 
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mechanics.18-20 Baseball players may therefore decrease injury risk and improve throwing 

performance by performing acute stretching exercises prior to competition or practice. 

Stretching is a common practice among athletes of all ages, sports, and competitive levels for 

reasons of increasing flexibility and joint ROM, enhancing performance, and preventing injury.6, 

14, 49-51 Static stretching is one of the safest and most commonly performed stretching methods to 

improve flexibility.10 Static stretching involves moving a limb to the end range of its motion and 

holding the limb in the stretched position for a period of time, usually between 10 and 60 

seconds per set.6 

Research has demonstrated significant improvements in short-term flexibility and ROM 

following acute static stretching exercises.6, 52 A 2007 systematic review6 identified 27 published 

reports demonstrating significant increases in joint flexibility following acute stretching at the 

knee, hip, trunk, shoulder, and ankle joints. Also, the authors found that a single 15 to 30 second 

static stretch of a muscle group was enough to significantly increase short-term flexibility.6 

Duration of increased flexibility may last anywhere from 6 up to 90 minutes following acute 

stretching, due to the large variations in stretching protocols studied.9, 53 The literature supports 

the use of acute static stretching to produce increases in tissue flexibility and joint ROM.6 

The increased ROM associated with acute stretching is attributed to decreases in the 

viscoelastic properties of the musculotendinous unit (MTU), decreases in muscle activity, and 

increases in stretch tolerance.6, 54, 55 Viscoelasticity is an intrinsic mechanical property of tissues 

giving them the ability to undergo elastic and plastic deformation when a stretch torque is 

applied.1, 4 Stretching is believed to decrease the stiffness of the MTU through decreases in tissue 

viscoelasticity.56 
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Acute stretching is also believed to enhance muscular performance and has been widely 

incorporated in the athletic warm-up for many years based on the intuition that increased tissue 

flexibility will allow skeletal musculature to work more efficiently.2, 12, 48, 50, 57 Current literature 

has recently demonstrated that acute bouts of prolonged static stretching may actually decrease 

athletic performance in lower extremity activities.58, 59 Numerous reports have shown that static 

stretching performed prior to activity temporarily decreased lower extremity strength8, 12, 58-65 and 

power.51, 62, 66-69 Fowles et al59 reported a 28% decrease in maximum voluntary isometric 

contraction in the plantarflexors following a 30 minute passive stretch, with negative effects 

lasting up to an hour following stretching. Other studies have demonstrated that acute static 

stretching decreased vertical jump performance,67-69 increased sprint time,70 and reduced lower 

extremity agility, balance, and reaction time.47 

Two underlying physiological mechanisms thought to be responsible for decreases in the 

force generating capability of skeletal muscle have been identified in previous studies.47, 52, 59, 71 

Acute reductions in the maximal force-generating capability of skeletal muscle have been 

attributed to both mechanical and neural factors.55, 59 Increases in muscle length following 

prolonged stretching may decrease the neural activation and reflex sensitivity of skeletal muscle 

due to changes in proprioceptive feedback of specialized stretch receptors found throughout the 

MTU.8, 58-60, 65 Stretching has also been shown to reduce muscle stiffness and increase 

compliance of the MTU.8, 12, 55, 56, 60, 63, 66, 71, 72  Increased compliance may decrease rate of force 

development by increasing the time required to take up slack within the tendon.4, 59 

Fowles et al59 found significantly decreased muscle activation and significant decreases 

in muscle stiffness following passive stretching of the plantarflexors for 30 minutes. Maximum 

voluntary isometric strength of the plantarflexors was also significantly reduced up to one hour 
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following stretching.59 Yet, many studies reporting performance deficits from acute static 

stretching were criticized to have limited applicability to sports due to the large volumes and 

durations of stretching protocols used.58, 59 A single muscle group was stretched anywhere 

between 100 seconds and 30 minutes, which is unlikely to be performed during an athletic warm-

up.50 Sports stretching has been defined by one group of authors54 as that in which is typical of 

athletes to perform before participation in sporting events, or about 5 to 10 minutes of stretching. 

Studies using static stretching protocols with a 30-second stretch of a single muscle group 

reported no difference in leg extension power compared to a control group.50 Several other 

authors found that a 5-10 minute static stretching protocol did not decrease lower extremity 

strength47, 56, 65, 73 or power.7, 48, 57, 65, 73 In one study,71 changes in viscoelastic properties and 

neurological activation of skeletal muscle did occur during a single 30-second static stretch, but 

were restored immediately after stretching. Static-stretching induced deficits in force generation 

may therefore be intimately related the volume, duration, and intensity of the stretching protocol 

performed.50, 65 

Based on current research there is inconclusive evidence to neither endorse nor 

discontinue the use of acute static stretching to achieve its believed benefits despite its 

commonality in the athletic warm-up.6 Modest bouts of static stretching may not be as harmful to 

performance as first thought.50 One group still suggested athletes should not consider even 30 

seconds of static stretching.50 Likewise, no studies have reported improvements in muscular 

performance following acute static stretching, which is a primary reason for performing acute 

stretching.74 

Recently dynamic warm-ups have been gaining interest in the literature for their potential 

performance benefits.14 Dynamic warm-ups have been shown to significantly increase power and 
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agility when compared to static stretching.5, 14, 50, 70, 75, 76 Several studies have provided support 

for dynamic warm-ups for their ability to produce acute increases in muscular performance in 

lower extremity activities including vertical jumping,76 sprinting,70 leg extension power,50 and 

agility drills.14 

Dynamic warm-ups consist of functional sports-specific movements with increasing 

intensities and these may enhance muscular performance through several physiological 

mechanisms.14 Dynamic activities may improve neuromuscular function due to an increase in 

core temperature, muscle temperature, and blood flow to the muscles.14, 77 Increased muscle 

temperature can decrease muscle and joint stiffness, increase nerve impulse transmission, alter 

the force/velocity relationship, and increase glycogenolysis, glycolysis, and high-energy 

phosphate degradation.78 Other reports of the physiological benefits of dynamic warm-ups which 

may contribute to enhanced performance include increased proprioception and joint position 

sense, neuromuscular stimulation of sport-specific motor units, and increased oxygen uptake.14 

The implications of these findings suggest that prior to activity, dynamic warm-ups may 

be more beneficial than static stretching at enhancing lower extremity performance, and thus 

more research is needed to confirm this in upper extremity activities.5, 14, 50, 70, 75, 76 Short-term 

increases in flexibility following dynamic warm-up have not been clearly demonstrated, but one 

study79 suggested that passive stretching is more effective than dynamic stretching of the 

hamstring. 

The current clinical justification for many stretching routines are based largely on 

individual experiences of clinicians, coaches and athletes rather than based on scientific 

evidence.14 For years individuals have been performing static stretching in the athletic warm-up 

based on the intuition that it will help enhance muscular performance and reduce the risk of 
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injury.2, 12 Currently, the literature is inconclusive about the acute effects of stretching on sports 

performance and injury prevention.6, 74 Stretching has been shown to be successful at restoring 

IR ROM and decreasing the risk of injury in elite baseball players.25, 33 However, a simultaneous 

decrease in muscular performance following acute stretching would contradict the goals of sports 

medicine professionals and athletes to promote maximal performance. Thus, identifying an 

appropriate acute warm-up protocol that improves flexibility while still maintaining ball velocity 

is vital. 

This will be the first study to examine and compare the acute effects of static stretching 

and dynamic warm-up on strength and power output in the upper extremity. This study will 

determine the most effective warm-up to increase GH ROM, decrease PST, and maintain 

strength and power. Our hypothesis is that the static stretching and dynamic warm-up protocols 

in this study will each generate differences in GH ROM, PST, strength, and power 

measurements. The results of this study will provide valuable information for athletic trainers, 

strength and conditioning professionals, coaches, and athletes relative to designing the most 

effective warm-up for baseball players. 

Clinically, the lack of research in this area may lead to inappropriate stretching 

techniques that result in decreased athletic performance and the potential for injury. Empirical 

validation will aid clinicians and respective sports medicine professionals in selecting the most 

appropriate parameters for the athletic warm-up. The effects of static stretching and dynamic 

warm-up protocols on GH ROM and force output undoubtedly needs to be evaluated to ensure 

that baseball players are maximizing their abilities and minimizing their risk of injury. In a 

growing trend towards teaching evidence-based sports medicine, there exists a need for a general 

consensus on warm-up protocols in baseball players. 
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Specific Aim 1: To examine the acute effects of upper extremity static stretching and 

dynamic warm-up protocols in 15 healthy and physically active individuals on GH IR and ER 

ROM. This will be accomplished by taking measurements with a digital inclinometer on the 

throwing shoulder before and after each stretching protocol. 

Hypothesis 1a: GH IR and ER ROM will increase following both the static stretching 

and dynamic warm-up protocols. 

Hypothesis 1b: A static stretching protocol will cause the most change in GH IR and ER 

ROM. 

 

Specific Aim 2: To examine the acute effects of upper extremity static stretching and 

dynamic warm-up protocols in 15 healthy and physically active individuals on PST. This will be 

accomplished by taking measurements with a digital inclinometer on the throwing shoulder 

before and after each stretching protocol. 

Hypothesis 2a: PST will decrease following both the static stretching and dynamic 

warm-up protocols. 

Hypothesis 2b: A static stretching protocol will cause the most change in PST. 

 

Specific Aim 3: To examine the acute effects of upper extremity static stretching and 

dynamic warm-up protocols in 15 healthy and physically active individuals on GH IR and ER 

strength (measured as peak torque/body weight [PT/BW]). This will be accomplished by taking 

measurements with an isokinetic dynamometer at a speed of 60 deg/sec before and after each 

stretching protocol. 
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Hypothesis 3a: No significant decreases in GH IR and ER strength will occur following 

the static stretching protocol used in this study. 

Hypothesis 3b: A significant increase in GH IR and ER strength will be found following 

the dynamic warm-up protocol. 

 

Specific Aim 4: To examine the acute effects of upper extremity static stretching and 

dynamic warm-up protocols in 15 healthy and physically active individuals on GH IR and ER 

power output (measured as average power [AP]). This will be accomplished by taking 

measurements with an isokinetic dynamometer at a speed of 60 deg/sec before and after each 

stretching protocol. 

Hypothesis 4a: No significant decreases in GH IR and ER power output will occur 

following the static stretching protocol used in this study. 

Hypothesis 4b: A significant increase in GH IR and ER power output will be found 

following the dynamic warm-up protocol. 

 

Specific Aim 5: To examine the duration of the acute stretching effects of upper 

extremity static stretching and dynamic warm-up protocols in 15 healthy and physically active 

individuals. This will be accomplished by measuring the changes in ROM, PST, PT/BW, and AP 

over four time intervals to determine the lasting effects of each protocol. The dependent 

variables (ROM, PST, PT/BW, and AP) will be assessed immediately, 5-, 15-, and 30-minutes 

following the static stretching and dynamic warm-up protocols. 

Hypothesis 5: All dependent variables will return to at least 75% of that of pre-testing 

measurements 30 minutes after completion of both protocols. 
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TABLE 1: Dependent Variables 
Type of 
Test Dependent Variable 
ROM Internal Rotation Humeral ROM (deg) 
 External Rotation Humeral ROM (deg) 
  
PST Supine cross-body horizontal adduction test (deg) 
  
Power Internal Rotation Average Power (W) 
 External Rotation Average Power (W) 
  
Strength Internal Rotation Peak Torque/Body Weight 
  External Rotation Peak Torque/Body Weight 

 

 

TABLE 2: Independent Variables 
Protocol Time Interval (minutes) 
 Pre-test 0 5 15 30 

Static      

Dynamic           
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2.0  MATERIALS & METHODS 

2.1 SUBJECTS 

Data were collected on a sample population of fifteen healthy and physically active 

males. “Active” was defined as currently participating in physical activity three sessions per 

week with a minimum of 30 minutes per session or a total of 90 minutes per week. Age, height, 

and mass for all subjects is summarized in TABLE 3. 

 

TABLE 3: Subject Demographics 
  Mean SD 
Age (yrs) 21.67 1.58 
Height (cm) 176.07 6.11 
Mass (kg) 83.07 9.07 

2.2 INSTRUMENTATION 

All ROM measurements were performed on a standard examination plinth. A digital 

inclinometer (Saunders Group, Chaska, MN) was used to assess GH IR ROM, GH ER ROM, 

and PST. A calibrated Biodex System 3 Isokinetic Dynamometer (Biodex Medical, Shirley, NY) 

was used to measure GH IR and ER concentric strength and power. Yellow (extralight) 

Theraband tubing  (Hygenic Corporation, Akron, OH) was used during the dynamic protocol to 
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provide light resistance throughout the exercise. A digital metronome was used to control the 

tempo of repetitions during the dynamic warm-up exercises between subjects.  

2.3 PROCEDURE 

All testing took place in the University of Pittsburgh’s Neuromuscular Research 

Laboratory. Each subject read and signed an informed consent form approved by the University 

of Pittsburgh Institutional Review Board upon arrival to the laboratory and before any testing 

was performed.  

The study was a repeated-measures, within-subject research design. Each subject reported 

to the laboratory on two non-consecutive days to complete testing. Subjects performed either the 

static stretching or dynamic warm-up protocol on their first visit to the laboratory. Testing was 

counterbalanced to assure every subject performed each protocol over two sessions. Each testing 

session lasted approximately one hour. A minimum of 48 hours was enforced between each 

testing session to control for potential stretching carry-over effects, fatigue, or muscle soreness. 

Subjects were told not to perform any strenuous upper body activity during the testing window. 

All subjects completed both testing sessions within one week of each other. 

The procedure was thoroughly explained prior to testing, and each subject was given the 

opportunity to ask questions before and throughout the procedure. A schematic of the testing 

procedure is shown in FIGURE 1. The experimental protocol was performed following a brief 

jog and baseline measurements of all dependent variables listed in TABLE 1. Upon completion 

of the protocol, the same dependent variables were reassessed at the four time intervals— 0, 5, 

15, and 30 minutes.  
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 The same two examiners performed all measurements throughout data collection to 

ensure consistency. One examiner was strictly assigned to be the positioning/testing examiner 

and the other was assigned as the measuring/recording examiner. Intrasession and intersession 

reliability data were previously collected in the University of Pittsburgh’s Neuromuscular 

Research Laboratory and are shown in TABLE 4.   

 

TABLE 4: Intrasession & Intersession Reliability     
  Intrasession Intersession 
    ICC SEM ICC SEM 
Internal Rotation ROM 0.973 2.068 0.983 1.678 
External Rotation ROM 0.978 1.706 0.932 3.161 
Supine PST   0.957 2.212 0.766 4.972 

 

 

FIGURE 1: Testing Procedure 
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2.3.1 Sub-maximal Aerobic Warm-up 

A five-minute sub-maximal aerobic warm-up was performed on a treadmill to prepare 

each participant for activity. Subjects were asked to select a self-preferred jogging speed which 

they could comfortably maintain for the five minute duration.  

2.3.2 Glenohumeral Internal & External Rotation Range of Motion Assessment 

GH IR and ER ROM assessments are illustrated in FIGURE 2 and FIGURE 3, 

respectively. Subjects were asked to remove their shirts during testing to allow accessibility to 

the shoulder bony anatomy. Using a surgical pen, the measuring examiner placed marks on the 

olecranon process of the elbow and the ulnar styloid process of the wrist to properly align the 

digital inclinometer during measurement. All measurements were taken with the participant 

positioned supine on the plinth with the arm at 90º of GH abduction and 90º of elbow flexion. A 

small towel roll was placed under the humerus to maintain its position in the frontal plane. One 

examiner positioned the arm and stabilized the scapula while the other examiner measured and 

recorded the angle of GH ROM with a digital inclinometer. Scapular stabilization was achieved 

by applying a posteriorly directed force against the subject’s coracoid process and clavicle with 

the heel of the hand.80  

The testing examiner passively rotated the limb to end range of rotation while the 

measuring examiner aligned the digital inclinometer with the forearm to record the humeral 

rotation angles. ROM endpoints were based on descriptions by Awan et al,80 which were defined 

by subject comfort and by capsular end-feel. A total of three measurements were taken for each 
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position on the dominant arm. The mean value for GH IR and ER ROM were recorded for 

statistical analysis. 

 

FIGURE 2: Glenohumeral Internal Rotation Range of Motion Assessment  
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FIGURE 3: Glenohumeral External Rotation Range of Motion Assessment  

 

 

2.3.3 Posterior Shoulder Tightness Assessment 

PST was assessed using the supine method (FIGURE 4) previously described by Myers 

et al27 which is known to have good reliability and validity.28 Each subject was positioned supine 

on the plinth with the shirt removed. The measuring examiner placed marks using a surgical pen 

on the deltoid tuberosity of the humerus and the lateral epicondyle of the elbow to properly align 

the inclinometer during measurement. The testing examiner stood on the side of the shoulder 

being tested and asked the subject to lift the tested shoulder off the table. The testing examiner 

pressed his hand against the lateral border of the scapula to stabilize it in a retracted position. The 

humerus was elevated to 90º of abduction in neutral rotation and was passively horizontally 
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adducted while the scapula remained fully retracted. Similar endpoints were used as described 

previously in ROM assessment. At the end ROM the recording examiner recorded the angle 

formed between the humerus and the horizontal plane from the superior aspect of the shoulder 

with the digital inclinometer. A total of three measurements were taken and the average value 

was recorded for statistical analysis. 

 

FIGURE 4: Posterior Shoulder Tightness Assessment  

 

2.3.4 Glenohumeral Internal & External Rotation Strength & Power Assessment 

Concentric strength and power output of the shoulder internal and external rotators was 

measured using an isokinetic dynamometer (FIGURE 5). The Biodex was calibrated prior to 

testing and proper set up and testing procedures were performed as previously described by 
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Perrin et al.81 Participants were tested in a seated modified neutral position in the scapular plane 

(10º abduction and 30º flexion) and standardized to the active ROM of each subject. Subjects 

were allowed to perform sub-maximal repetitions prior to testing for appropriate familiarization 

with isokinetic testing. During testing, each subject performed five maximal repetitions at a 

velocity of 60° · sec-1. Peak torque normalized to body weight (PT/BW) and average power (AP) 

were collected from the Biodex software and used for statistical analysis. 

 

FIGURE 5: Glenohumeral Isokinetic Strength & Power Assessment 
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2.3.5 Static Stretching Protocol 

The static stretching protocol consisted of six active stretches, which globally targeted the 

soft tissues surrounding the shoulder, and is shown in FIGURE 6. The stretches selected for this 

protocol were based on the recommendations from several athletic trainers who worked with the 

sport of baseball. This protocol attempted to accurately resemble the on-the-field stretches 

currently being performed by baseball players prior to practices or games. The static stretches 

selected for this study have been previously described in the literature.15, 82 Using a stopwatch, 

two 20-second sets were performed for each of the six stretching exercises. A rest period of 15 

seconds followed each stretch. The total stretch protocol lasted six minutes, three minutes of 

which was active stretching. Subjects were instructed to increase the stretch to a point of 

discomfort, but not pain, and hold for the full 20-second duration. 
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FIGURE 6: Static Stretching Protocol   

Deltoid / Posterior Shoulder Stretch: The stretch began with the subject standing with the 
dominant shoulder and lateral border of their scapula against a wall. The dominant shoulder was 
flexed to 80-90° and a passive horizontal adduction force was applied by the non-dominant arm to 
the dominant elbow. The end position was flexion of the dominant elbow and the dominant hand 
reaching behind the opposite shoulder. By leaning against the wall, the lateral border of the scapula 
remained against the wall to prevent the scapula from following the humerus across the body.82   

Pec Major / Anterior Capsule Stretch: The stretch began with the subject standing and facing a 
wall support. With the dominant shoulder flexed to 90° and the dominant elbow in full extension, the 
palm of the dominant hand made contact against the wall. The patient then rotated their trunk away 
from their dominant limb while maintaining shoulder and elbow joint angles.82  

Standing Sleeper Stretch: The stretch began with the subject standing with their dominant shoulder 
against a wall support and flexed at 90° and elbow also in 90° of flexion. The subject then leaned 
against the wall applying pressure to the lateral border of their scapula. The head and neck remained 
in neutral position, looking straight ahead. The scapula remained pressed against the wall while the 
dominant shoulder was moved into IR by slowly pressing the forearm down with the non-dominant 
hand.15  

Rhomboid / Posterior Shoulder Stretch: The stretch began with the subject facing the edge of a 
door. The feet were placed on each side of the door, the hands on the doorknobs, and the knees in 
full extension. The subject then proceeded to let the hips drop downward and backward. The elbows 
remained fully extended with the shoulders flexed at 90° as the body moved backward. Subjects 
were told to relax the arms so that the body weight stretched the rhomboids.82   

Supraspinatus / Superior Capsule Stretch: The stretch began with the subject standing with the 
dominant arm behind the body with the elbow flexed to 90°. The subject then grasped the dominant 
hand with the non-dominant hand and pulled the dominant arm toward the non-dominant side.82   

Triceps / Inferior Capsule Stretch: The stretch began with the subject standing with the dominant 
arm overhead. The subject then flexed the elbow so that the forearm was placed behind the head 
perpendicular to the ground. The subject then pulled downward on the elbow of the dominant arm 
with the hand of the non-dominant arm.82   
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2.3.6 Dynamic Warm-up Protocol 

The dynamic warm-up protocol consisted of six exercises (FIGURE 7) previously 

described by Myers et al.83 They evaluated several on-the-field warm-up exercises for throwing 

athletes using resistance tubing.83 The current protocol utilized yellow Theraband tubing to 

provide light resistance continuously through a dynamic ROM. Each subject performed 

continuous movements throughout the duration of each exercise with no visible slack in the 

band. The metronome standardized the tempo of each exercise to two seconds per repetition for a 

total of 10 repetitions. The duration and rest periods of the dynamic protocol were identical to 

the static stretching protocol described previously. 
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FIGURE 7: Dynamic Warm-up Protocol  

Shoulder Extension: Standing facing towards the stable base with the elbow extended and the 
forearm in a neutral position (thumb pointing upward), the exercise began with the subject's 
shoulder at 90° of forward flexion. The exercise consisted of moving the shoulder toward maximum 
extension and then returning to the starting position while maintaining both elbow extension and the 
forearm-neutral position. The rubber tubing was secured to a stable base at a height equal to the 
height of each subject’s fingertips with the arm fully flexed in a standing position (high fixation 
position).83 

Shoulder Flexion: Standing facing away from the stable base with the elbow extended and the 
forearm in a neutral position (thumb pointing upward), the exercise began with the shoulder fully 
extended. The exercise consisted of moving the shoulder toward maximum flexion and then 
returning to the starting position, while maintaining both elbow extension and the forearm-neutral 
position. The rubber tubing was secured to a stable base at a height equal to the height of each 
subject’s fingertips from the ground while standing in anatomical position (low fixation position).83 

Scapular Punch: Standing facing away from the stable base the starting position for this exercise 
was with the elbow fully flexed, forearm in neutral position, and the scapula fully retracted. The 
exercise consisted of flexing the shoulder to approximately 100°, extending the elbow, and fully 
protracting the scapula while punching forward and then returning to the starting position. The 
rubber tubing was secured to a stable base at a height equal to the height of each subject’s elbow 
from the ground when standing in anatomical position (middle fixation position).83 

Throwing Acceleration: Standing facing away from the stable base with the shoulder abducted and 
the elbow flexed to 90°, the exercise began with the subject’s shoulder in full external rotation. The 
exercise consisted of moving the arm across the body (similar to the acceleration phase of throwing 
[D2 flexion pattern]) and then returning to the starting position. The rubber tubing was secured to a 
stable base at a height equal to the height of each subject’s fingertips with the arm fully flexed in a 
standing position (high fixation position).83 

Throwing Deceleration: Standing facing towards the stable base the exercise began with each 
subject’s shoulder at 30° of flexion. The exercise consisted of pulling the tubing back so the 
shoulder moved into full extension and scapular retraction. At full shoulder extension, the shoulder 
was moved to 90° each of shoulder external rotation, shoulder abduction, and elbow flexion. The 
exercise was finished with the subject eccentrically controlling the tubing as the arm returned to the 
starting position of 30° of shoulder flexion. The rubber tubing was secured to a stable base at a 
height equal to the height of each subject’s fingertips from the ground while standing in anatomical 
position (low fixation position).83 

 
ER @ 90° of Abduction: Standing facing towards the stable base with both the shoulder abducted 
and elbow flexed to 90°, the exercise began with the subject’s shoulder in full internal rotation. The 
exercise consisted of moving the shoulder into full external rotation and then returning to the 
starting position while maintaining the shoulder-abduction and elbow-flexion positions. The rubber 
tubing was secured to a stable base at a height equal to the height of each subject’s fingertips from 
the ground while standing in anatomical position (low fixation position).83 
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2.4 DATA REDUCTION 

SPSS version 16.0 was used for statistical analysis. Statistical analysis comparisons were 

made between experimental protocols and intervals of dependent variable assessments using 

repeated-measure ANOVA models. Two within-subjects, repeated-measure ANOVAs were 

performed on the IR ROM, ER ROM, PST, PT, and AP data to determine acute effects of each 

protocol. A Bonferroni post-hoc test was also performed on variables with significant 

differences. Statistical significance was determined using a 0.05 alpha level. 
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3.0  RESULTS 

3.1 ACUTE EFFECTS OF INTERNAL ROTATION RANGE OF MOTION 

IR ROM data for the static and dynamic protocols are presented in TABLE 5. No 

significant test x time interaction for IR ROM was found between the static and dynamic 

protocols at any time interval (FIGURE 8). However, a significant main effect was found where 

the GH IR ROM group means significantly increased at the post-0, post-5, post-15, and post-30 

time intervals compared to the pre-test measurement. (FIGURE 9). No differences existed 

between the post-test measurements. 

 

TABLE 5: Glenohumeral Joint Internal Rotation Range of Motion Measurements 
  Pre-test Post-0 Post-5 Post-15 Post-30 
  Mean SD Mean SD Mean SD Mean SD Mean SD 
IR (deg)           
Static 60.2 10.5 66.4 10.4 65.1 10.4 65.7 10.7 64.2 11.5 
Dynamic 59.3 8.8 63.3 9.1 64.0 9.4 62.1 10.1 62.4 9.6 
           
Group 
Mean 59.8 9.7 64.8 9.8 64.5 9.9 63.9 10.4 63.3 10.5 
Difference   +5.0  +4.7  +4.1  +3.4  

p-value     <0.001*   0.004*   0.017*   0.050*   
           
*Significant main effect of protocols 
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FIGURE 8: Glenohumeral Joint Internal Rotation Range of Motion Measurements 

 

 

FIGURE 9: Glenohumeral Joint Internal Rotation Range of Motion Group Mean 
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3.2 ACUTE EFFECTS OF EXTERNAL ROTATION RANGE OF MOTION 

ER ROM data for the static and dynamic protocols are presented in TABLE 6. No 

significant test x time interaction for ER ROM was found between the static and dynamic 

protocols at any time interval (FIGURE 10). However, a significant main effect occurred where 

the GH ER ROM group mean was significantly increased at the post-5, post-15, and post-30 time 

intervals compared to the pre-test measurement. (FIGURE 11). No differences existed between 

the post-test measurements. 

 

TABLE 6: Glenohumeral Joint External Rotation Range of Motion Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 
  Mean SD Mean SD Mean SD Mean SD Mean SD 
ER (deg)           
Static 121.4 14.9 124.2 13.1 126.2 12.2 126.9 12.1 123.8 12.6
Dynamic 120.5 10.7 124.8 11.5 127.1 11.4 125.5 11.8 126.0 12.6
           
Group 
Mean 121.0 12.8 124.5 12.3 126.7 11.8 126.2 11.9 124.9 12.6
Difference   +3.5  +5.6  +5.2  +3.9  

p-value     0.115   0.003*   0.003*   0.017*   
           
*Significant main effect of protocols 
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FIGURE 10: Glenohumeral Joint External Rotation Range of Motion Measurements 

 

 
 

FIGURE 11: Glenohumeral Joint External Rotation Range of Motion Group Mean 
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3.3 ACUTE EFFECTS OF POSTERIOR SHOULDER TIGHTNESS 

PST data for the static and dynamic protocols are presented in TABLE 7. No significant 

test x time interaction for PST was found between the static and dynamic protocols (FIGURE 

12). However, PST was significantly increased at the post-5 time interval compared to the pre-

test measurement. 

 

TABLE 7: Posterior Shoulder Tightness Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 
  Mean SD Mean SD Mean SD Mean SD Mean SD
PST (deg)           
Static 23.2 6.5 24.0 7.6 25.8 8.4 24.3 7.8 24.7 8.3 
Dynamic 22.4 7.2 23.8 8.3 25.7 7.5 25.2 7.1 24.6 7.6 
           
Group Mean 22.8 6.8 23.9 8.0 25.8 8.0 24.7 7.4 24.7 8.0 

Difference   +1.1  +2.9  +1.9  +1.8  
p-value     1.000   0.016*   0.097   0.172   

           
*Significant main effect of protocols 
 

 
FIGURE 12: Posterior Shoulder Tightness Measurements 
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3.4 ACUTE EFFECTS OF INTERNAL & EXTERNAL ROTATION STRENGTH 

GH IR and ER isokinetic concentric strength data for the protocols are presented in 

TABLE 8 and TABLE 9, respectively. No significant test x time interaction for IR or ER 

isokinetic strength was found between the static and dynamic protocols (FIGURES 13 and 14). 

Isokinetic strength was not significantly different at any time interval following the protocols. 

 

TABLE 8: Glenohumeral Internal Rotation Isokinetic Concentric Strength Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 

  Mean SD Mean SD Mean SD Mean SD Mean SD 
IR (PT/BW)           

Static 67.55 11.98 69.27 11.14 70.81 11.33 70.72 12.39 73.03 12.31
Dynamic 68.76 10.77 67.52 10.31 69.37 9.43 71.03 10.77 71.91 11.25

           
Group Mean 68.16 11.38 68.40 10.73 70.09 10.38 70.87 11.58 72.47 11.78

Difference   +0.24  +0.1.93  +0.27  +0.43  
P-value     1.000   1.000   1.000   0.123   

 
 

TABLE 9: Glenohumeral External Rotation Isokinetic Concentric Strength Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 

  Mean SD Mean SD Mean SD Mean SD Mean SD 
ER (PT/BW)           
Static  48.21 5.91 48.30 6.41 47.78 6.38 47.77 5.16 47.85 5.48 
Dynamic 48.75 7.59 46.71 5.76 46.30 5.06 45.99 5.37 44.89 5.29 
           
Group Mean 48.48 6.75 47.51 6.09 47.04 5.72 46.88 5.26 46.37 5.38 

Difference   -0.97  -1.43  -1.60  -2.10  
P-value     1.000   0.319   0.672   0.185   
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FIGURE 13: Glenohumeral Internal Rotation Isokinetic Concentric Strength Measurements 

 

 
FIGURE 14: Glenohumeral External Rotation Isokinetic Concentric Strength Measurements 
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3.5 ACUTE EFFECTS OF INTERNAL & EXTERNAL ROTATION POWER 

GH isokinetic IR and ER concentric power data for the protocols are presented in 

TABLE 10 and TABLE 11, respectively. No significant test x time interaction for IR or ER 

isokinetic power was found between the static and dynamic protocols (FIGURES 15 and 16). 

However, ER isokinetic power was significantly decreased at the post-30 time interval compared 

to the pre-test measurement.  

 

TABLE 10: Glenohumeral Internal Rotation Isokinetic Concentric Power Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 

  Mean SD Mean SD Mean SD Mean SD Mean SD 
IR (AP)           

Static  41.05 11.02 41.89 11.71 42.34 11.17 43.19 12.24 44.47 12.80 
Dynamic 40.18 8.49 39.67 7.34 39.75 6.22 40.04 6.74 40.16 7.13 
           
Group Mean 40.62 9.76 40.78 9.53 41.05 8.69 41.62 9.49 42.32 9.96 

Difference   +0.16  +0.43  +1.00  +1.70  
P-value     1.000   1.000   1.000   1.000   
 

TABLE 11: Glenohumeral External Rotation Isokinetic Concentric Power Measurements 
 Pre-test Post-0 Post-5 Post-15 Post-30 

  Mean SD Mean SD Mean SD Mean SD Mean SD 
IR (AP)           

Static  30.84 7.41 30.41 6.59 30.31 6.95 30.01 6.54 30.00 7.26 
Dynamic 30.29 4.45 29.60 4.09 28.45 3.52 28.45 3.04 27.14 3.04 
           
Group Mean 30.57 5.93 30.00 5.34 29.38 5.24 29.23 4.79 28.57 5.15 

Difference   -0.56  -1.18  -1.33  -1.99  
P-value     1.000   0.425   0.597   0.049*   

           
*Significant main effect of protocols 
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FIGURE 15: Internal Rotation Isokinetic Concentric Power 

 

 
FIGURE 16: External Rotation Isokinetic Concentric Power 
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3.6 DURATIONAL EFFECTS OF PROTOCOLS 

Percent return to baseline (%RTB) for all dependent variables is presented in TABLE 12. 

All dependent variables returned to at least 75% of baseline values at 30 minutes following the 

protocols.  

 

TABLE 12: Dependent Variable Percent Return to Baseline (%RTB) 
 Pre-test Post-30 %RTB 
  Mean SD Mean SD   
Dependent Variable      
IR ROM (deg) 59.8 9.7 63.3 10.5 105.8% 
ER ROM (deg) 121.0 12.8 124.9 12.6 103.3% 
PST (deg) 22.8 6.8 24.7 8.0 108.2% 
IR Strength (PT/BW) 68.2 11.4 72.5 11.8 106.3% 
ER Strength (PT/BW) 48.5 6.7 46.4 5.4 95.7% 
IR Power (AP) 40.6 9.8 42.3 10.0 104.2% 
ER Power (AP) 30.6 5.9 28.6 5.1 93.5% 
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4.0  DISCUSSION 

The purpose of this study was to evaluate upper body static stretching and dynamic 

warm-up protocols and determine the most effective intervention to acutely increase 

glenohumeral ROM, decrease PST, and maintain strength and power. While traditional methods 

of acute static stretching are effective at increasing soft tissue flexibility, they may be detrimental 

to muscular performance by decreasing the force-generating capability of skeletal muscle. For 

the overhead throwing athlete, decreased force output and throwing velocity might outweigh the 

potential injury prevention benefits of static stretching associated with decreases in PST and 

GIRD and restoration of a total arc of motion at the shoulder. Dynamic warm-up was 

hypothesized to be a more appropriate method to enhance muscular performance by stimulating 

a physiological response of the active tissues. The static stretching and dynamic warm-up 

protocols in this study were therefore expected to generate differences in ROM, PST, and force 

output. However, this study demonstrated no significant differences between the static and 

dynamic protocols. Neither protocol enhanced nor diminished muscular performance, but both 

protocols were similarly effective at producing significant acute increases in glenohumeral IR 

and ER ROM for at least 30 minutes following stretching. 
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4.1 ACUTE CHANGES IN FLEXIBILITY 

 The results of this study demonstrated significant increases in GH IR and ER ROM 

following the static stretching and dynamic warm-up protocols, but no significant differences 

were found between the protocols. It was hypothesized that GH IR and ER ROM would 

significantly increase following both protocols, and that the static stretching would produce the 

greatest increase in ROM. 

 Static stretching may increase flexibility through facilitated decreases in tissue 

viscoelasticity, decreases in muscle stiffness, decreases in muscle activation, and increases in 

stretch tolerance.6, 54, 55 Viscoelasticity is an intrinsic property of biological tissues giving 

characteristics of elasticity and viscosity when a stretch torque is applied.1 Stress relaxation 

occurs when a passive force is applied to soft tissues, producing a variation in the load-

deformation curve.56, 84 Tissue stiffness is defined mathematically as the change in force per 

change in length of a tissue, and allows tissues to resist a change in length.85 Tissue stiffness is 

reduced when the force required to change the length of that tissue is reduced.85  

Specialized stretch receptors located throughout the MTU also contribute to muscle 

relaxation and increased muscle length following stretching.84 In addition to intrinsic collagenous 

make-up of soft tissues, reflexive neural control also contributes to muscle stiffness. Muscle 

spindles function as part of a continual feedback loop known as the stretch reflex and act to 

prevent excessive stretching of the MTU.84, 86 Stretching may decrease neural feedback and 

promote increased muscle length by inhibiting the stretch reflex and activating the golgi tendon 

organs located within the tendon. Electromyographical studies have quantified decreases in 

muscle activation following acute stretching exercises in which the muscle was placed in a 

lengthened position.59, 62 
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 The results of the current study confirm previous reports that acute static stretching is 

effective at producing transient increases in joint range of motion. Previous studies demonstrated 

that a single 15- or 30-second stretch significantly improves range of motion at any major joint.3, 

6 Shorter duration stretches were as effective as longer duration stretches at improving range of 

motion and the acute ROM effects of static stretching may last between 6 and 90 minutes.6 The 

results of this study demonstrated significant increases in IR and ER ROM up to 30 minutes after 

the initial stretch period. The static stretching protocol used in the current study consisted of six 

upper extremity stretching exercises aimed at globally stretching the shoulder. Each exercise was 

performed twice for a period of 20 seconds and for a total of three minutes of active stretching.  

 Interestingly, the dynamic warm-up protocol used in this study resulted in similar 

increases in ROM as the static stretching protocol, and thus our hypothesis was not confirmed. 

Limited research has quantified comparisons between static and dynamic protocols on acute 

flexibility, but one study found that passive stretching was more effective than dynamic 

stretching to improve hamstring flexibility.79 The dynamic warm-up used in this study consisted 

of active movements performed throughout the full range of motion using light resistance tubing. 

These exercises were unlikely to have reached the plastic threshold of the stress-strain curve, but 

the dynamic warm-up may have increased muscle temperature and blood flow to the active 

tissues producing increased elasticity and decreased muscle stiffness.14 Previous studies have 

suggested muscle temperature is directly correlated to tissue flexibility.87 While not directly 

measured in this study, increased local tissue temperature and blood flow may have contributed 

to the increased flexibility following the dynamic warm-up protocol.14  

The results of this study demonstrated no significant decreases in PST between the static 

stretching or dynamic warm-up protocols, but PST was significantly reduced at the 5 minute 
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time interval following stretching. It was hypothesized that PST would significantly decrease 

following both protocols, and moreover that the static stretching protocol would create the 

greatest decrease in PST. 

 In this study, significance did not occur immediately after stretching, but a significant 

decrease in PST occurred at the 5-minute time interval. Our hypothesis was not supported, thus, 

it seems logical in retrospect that the protocols in this study were not effective in greatly 

reducing PST. The static stretching protocol was designed to globally stretch and activate 

important shoulder musculature and did not solely focus on the posterior shoulder as previous 

studies have. One study demonstrated a significant mean decrease in PST (3.39° ± 3.99) 

following three sets of 30-second static stretches of the posterior shoulder.15 

4.2 ACUTE CHANGES IN FORCE OUTPUT 

 The results of this study demonstrated no significant changes in GH IR and ER strength 

and power following the static stretching or dynamic warm-up protocols. We hypothesized there 

would be no changes in strength or power following the static stretching protocol, but it was 

thought strength and power would significantly increase following the dynamic warm-up 

protocol. 

Previous studies have demonstrated that various static stretching routines can cause 

decreases in the force-generating capability of skeletal muscle.58, 59 Static stretching increases 

MTU compliance which may decrease tissue stiffness and allow for increased tissue flexibility.56 

Tissue stiffness is defined as ratio of change in force to change in length.87 Decreased muscle 

stiffness may increase tissue length, but subsequently decrease the force available for 
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contraction.59 Increases in muscle length may also decrease neural activation of muscles through 

altered proprioceptive feedback of specialized mechanoreceptors found in the MTU.47, 87 

Mechanical and neurological mechanisms are both attributed to decreased force output following 

acute static stretching. 

Strength and power deficits have ranged from 5 to 30% in previous studies and negative 

effects have lasted up to an hour.58, 59, 61 Vertical jump and sprint performance were impaired 

following acute static stretching.69, 70 In some studies, stretches were held for periods ranging 

from 90 seconds per muscle group up to one hour per muscle group.50, 58, 59 In terms of 

practicality to sport, stretching a single muscle group for 15-30 seconds is more realistic, and 

also produces similar flexibility increases as longer duration stretches.3, 50 

 Yamaguchi et al3, 50 demonstrated that static stretching for 30 seconds neither improves 

nor reduces leg extension power. The results of this study supported the hypothesis that our static 

stretching protocol would not cause changes in shoulder strength and power. Each stretching 

exercise in the current study intentionally targeted different tissues about the shoulder to globally 

stretch the shoulder. Additionally, each stretch was only held for 20 seconds, compared to 

previous studies using longer duration stretches.58, 59  

The dynamic warm-up protocol in this study was not sufficient to improve internal 

rotation strength or power. Several studies have found improvements in muscular power 

following dynamic warm-up exercises.14, 50, 76 Increased core and muscle temperature, increased 

blood flow to active tissues, increased firing and activation of motor units, and other 

physiological mechanisms have been proposed to explain the positive benefits of dynamic warm-

ups.14 The design of the current study did not allow measurement of any physiological factors, 

but the rubber tubing exercises used in this study may not have stimulated a significant 
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physiological response necessary to enhance muscular performance. It is also possible that the 

rubber tubing exercises in this study produced a fatigue effect significant enough to outweigh the 

performance benefits of a physiological response but not enough to significantly decrease 

muscular performance beyond baseline measurements. 

4.3 CLINICAL SIGNIFICANCE 

Our data suggests that either the static or dynamic protocol used in this study is sufficient 

to provide a short-term increase in GH joint ROM for at least 30 minutes. This may be important 

to overhead throwing athletes to allow a temporary increase in total arc of motion before 

performing in a game or practice. Clinicians must be aware that baseball athletes may need to 

stretch between innings to sustain increases in joint ROM because practices and games generally 

last longer than 30 minutes. While our results did not directly demonstrate increases in strength 

or power following stretching or warm-up, a larger arc of motion may be biomechanically 

advantageous to overhead throwing performance. A larger arc of motion at the shoulder 

increases the time over which muscular forces are applied to the baseball prior to ball release. 

The subsequent increase in the baseball’s impulse results in a greater change in momentum of 

the ball and ultimately a greater ball velocity. Static stretching should therefore continue to be 

included in the daily habits of throwing athletes to maintain a large arc of motion, but should be 

performed after activity during the cool-down to avoid any potential performance impairments. 

Daily stretching is also important to manage GIRD and PST and prevent injuries associated with 

decreased flexibility of the posterior shoulder. Meanwhile, clinicians and researchers must 
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continue to work together to develop upper extremity dynamic warm-up protocols to enhance 

muscular performance.  

4.4 LIMITATIONS 

One limitation of this study is the generalizability of functional testing performance (i.e. 

isokinetic dynamometry) to actual sport performance. Although we did not observe any strength 

or power deficits using isokinetic dynamometry, there is a limitation in direct applicability to 

throwing performance. Elite pitchers can generate humeral angular velocities in excess of 7,000° 

· sec-1 during acceleration. Isokinetic dynamometry is limited in this sense because it cannot 

recreate the extreme velocities reached during overhead throwing. The most appropriate measure 

to assess true throwing performance would be to measure ball velocity or throwing distance. 

However, careful consideration must also be given to control for confounding variables that may 

occur in non-laboratory settings. 

Another limitation of this study is the potential interaction of confounding factors due to 

a repeated-measures design. Subjects may have been introduced to a repeated dynamic 

mechanism during testing as a result of performing alternating measurements of IR and ER 

isokinetic strength and range of motion assessments. Strength testing may have contributed to 

elevated levels of GH joint ROM observed immediately and up to 30 minutes following 

stretching.  
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4.5 FUTURE DIRECTIONS 

Future research is still needed to determine the most effective stretching or warm-up 

protocol to maximize throwing performance. This was the first study to compare static stretching 

and dynamic warm-up on ROM and force output in the upper extremity. The majority of the 

research evaluating stretching and warm-up protocols has been performed on the lower 

extremity. While the dynamic warm-up protocol in this study was not effective at increasing 

upper extremity strength and power, previous studies have shown dynamic warm-up to be 

effective at enhancing lower extremity muscular performance, including vertical jumping and 

sprinting. Future studies should continue to evaluate upper extremity dynamic warm-up 

protocols and explore physiological responses that have been theorized to enhance performance. 

Once physiological mechanisms are better understood, researchers can then develop more 

effective warm-up protocols capable of enhancing athletic performance. Future research may 

also choose to include overhead throwing athletes who exhibit PST and GIRD to examine if any 

differences arise in response to stretching and warm-up compared to non-overhead athletes. 

4.6 CONCLUSIONS 

 This study did not identify a stretching or warm-up protocol that increased muscular 

force output, but it did demonstrate that both protocols acutely increased GH IR ROM and ER 

ROM up to 30 minutes. The static stretching and dynamic warm-up protocols in this study are 

easily performed on-the-field and still may be beneficial to baseball athletes to reduce the risk of 

throwing-related injury.  
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