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Inhaled antibiotics are frequently used for treating infections associated with cystic 

fibrosis (CF) and are under development for other uses including hospital-acquired pneumonias.  

However, the long-term efficacy of inhaled anti-infectives depends largely on the uniformity of 

pulmonary drug deposition, which is variable in diseased lungs.  In surfactant replacement 

therapy (SRT), premature infants who lack adequate levels of surfactant receive a bolus of 

exogenous surfactant through an endotracheal tube.  The success of this therapy is due to the 

pulmonary dispersion of surfactant from convective flows generated by surface tension gradients 

along the airway surface.  Based on this same mechanism, aerosolized surfactant drug carriers 

have been proposed as a potential means of augmenting drug distribution in diseased lungs.  

However, little experimental evidence exists to support this.  The goal of this study was to assess 

the potential for aerosolized surfactant drug carriers to improve the dispersion of medications in 

the lungs following aerosol deposition.  This study included the design of an aerosol delivery 

system that produced an aerosol of respirable size that was delivered onto two realistic in vitro 

models of the airway surface.  The first model incorporated porcine gastric mucin (PGM) and the 

second utilized human bronchial epithelial (HBE) cell cultures, including CF and non-CF cells.  

Differences in the dispersion of various surfactants (cationic, anionic, and non-ionic) vs. saline 

(control) were quantified using fluorescence microscopy and different sized fluorescent tags 

acting as drug analogs.  The tags spanned a size range from the molecular level to a 1.0 micron 

polystyrene sphere.  On the PGM model, surfactants enhanced dispersion by 2-20 fold vs. saline 

with fairly uniform dispersion for all sized tags.  When sufficiently hydrated, the HBE cell 

cultures, both CF and non-CF, also demonstrated significant surfactant spreading compared to 

saline, with similar areas and patterns for all sized tags.  This study demonstrates the potential for 

aerosolized surfactant carriers to improve the uniformity of pulmonary drug distribution 
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following deposition.  Further studies are required to demonstrate their efficacy in these in vitro 

models and for in vivo drug applications. 
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1.0  INTRODUCTION 

In many cases, inhaled aerosol drugs can deliver substantial doses of medication directly to the 

lungs, while minimizing the systemic concentrations that are often associated with side effects 

such as nephrotoxicity.  Antibiotics are regularly administered through this route for the 

treatment of pulmonary infections associated with cystic fibrosis (CF).  These infections are the 

leading cause of morbidity and mortality in this population.  For an aerosol anti-infective to fully 

eradicate an infection, it must be delivered in sufficient dose to all portions of the lung.  The 

airway obstructions associated with CF lead to altered ventilation patterns and may cause inhaled 

drugs to deposit non-uniformly.  Some lung regions may receive high local doses of medication 

while others go untreated.  Infections may be suppressed by aerosol antibiotics, but are rarely 

eradicated due to the reservoirs of infection that are never effectively treated by the therapy. 

One approach to improving the non-uniformities of aerosol delivery is to augment the 

distribution of drug beyond aerosol transport itself.  Exogenous surfactants are widely 

administered to premature babies who lack sufficient amounts of endogenous pulmonary 

surfactant to sustain proper lung function.  A surfactant bolus is usually delivered through an 

endotracheal tube and is transported through the lungs by gravity and surface tension gradients 

that generate convective flows, called Marangoni flows.  The success of this treatment has led to 

the proposed use of surfactants in the delivery of aerosol medications; however little 

experimental evidence has been produced to support this.  Most aerosol medications are 

dissolved in saline, with a relatively high known surface tension.  Aerosol medications dissolved 

in surfactants (significantly lower surface tensions) or surfactant components may distribute 

more uniformly over the airway surfaces after deposition, because of convective flows caused by 

surface tension gradients.  Aerosolized surfactant drug carriers have the potential to improve the 

uniformity of drug distribution in the lungs and to increase antibiotic drug concentrations in lung 

areas affected by altered ventilation, increasing the probability of eradicating infection.  This 
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would also have the potential to improve the overall efficacy of many aerosol medications used 

to deliver drugs to the airways for lung conditions such as asthma, chronic bronchitis, and 

pneumonia. 

The purpose of the present study was to evaluate the potential for surfactant driven flows 

within the lungs following aerosol deposition of a surfactant carrier liquid.  A novel aerosol 

delivery system was developed to quantify distribution following aerosol deposition onto in vitro 

models of the airway surface.  The range in dispersion following aerosol deposition of several 

surfactant carrier liquids vs. saline was quantified and the future role of surfactant carriers in the 

delivery of aerosol medications is discussed. 
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2.0  BACKGROUND 

2.1 AIRWAY PHYSIOLOGY 

The primary function of the lungs is to exchange oxygen and carbon dioxide between an 

organism and the external environment.  Inspired air passes through either the nose or the mouth 

into the pharynx, and then the larynx, which contains the vocal folds.  The trachea connects these 

upper airways to the large central airways of the lung.  The airways of the lungs form an 

asymmetrical branching system that begins at the trachea and bifurcates successively into tubes 

of decreasing diameter and increasing number from the central airways towards the peripheral 

lung.  The first bifurcation occurs at the base of the trachea forming the carina and the left and 

right mainstem bronchi.  These bronchi further bifurcate into the bronchioles, terminal 

bronchioles, respiratory bronchioles, eventually terminating at the gas exchange units, the 

alveoli.  The airways beyond the larynx are divided into two zones: 1) the conducting zone, 

which extends from the trachea to the bronchioles, that leads inspired air to the gas exchange 

region; and 2) the respiratory zone, extending from the respiratory bronchioles on down to the 

alveoli, that is the region of the lung where gas exchange occurs [1]. 

2.1.1 Airway Epithelium 

A continuous layer of epithelial cells lines the luminal surface of the airways.  Tight gap 

junctions between these cells may allow for limited passage of materials across the epithelium, 

which is otherwise relatively much less permeable than the respiratory surfaces of the alveoli.  

Several cells types that perform a variety of functions are found along the airway epithelium (see 

Table 1). 
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Table 1: Selected cells of the airway epithelium [2]. 

 
 

Cell Type Function 

Ciliated columnar Mucus movement 

Mucous (goblet) Mucus secretion 

Serous Periciliary fluid; mucus secretion 

Clara (non-ciliated epithelial) Xenophobic metabolism; surfactant stem cell 

Basal Progenitor for ciliated epithelial and goblet cells 

Lymphocytes Immunoregulation 

 
 
 

Ciliated columnar cells are usually 20µm in height, 10 µm in width, with approximately 

100-200 cilia/cell [3].  Cilia are tiny hair-like structures that line the apical surface of the airways 

from the trachea to the bronchioles.  These cells are attached to the basal lamina and extend to 

the luminal surface.  Mucous, clara, and serous cells are considered the major secretory cells in 

the airways because they contain membrane bound, fluid-filled secretory granules.  Clara cells 

are non-ciliated columnar cells found mostly in the terminal and respiratory bronchioles 

replacing the mucous cells in the smaller airways.  They secrete several proteins, including some 

surfactant proteins.  Clara cells also secrete enzymes for detoxification of inhaled substances and 

may also act as stem cells for the epithelium [4].  Basal cells are found on the basement 

membrane between the ciliated epithelial and secretory cells.  It has been suggested one of the 

basal cells’ function is to anchor the columnar cells to the basement membrane [3].  

Lymphocytes are also present in normal airways and sometimes form aggregates referred to as 

bronchial-associated lymphoid tissue (BALT).  Increases in the number of lymphocytes in the 

airway lumen and airway wall have been associated with several disease states such as asthma, 

bronchitis, and pneumonia [3]. 
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2.1.2 Airway Surface Liquid Layer (ASL) 

When fully extended, cilia reach a height of approximately 7 µm [5].  The cilia are surrounded 

by a watery layer called the periciliary liquid (PCL) (Figure 1).  Above the PCL lies a 

viscoelastic mucus layer, composed of 95% water, 2% glycoproteins, 1% proteins, 1% lipids, 

and 1% inorganic salts [6].  Mucin composition has been estimated to range from 50-90% 

carbohydrate by weight.  Although the mucus is often referred to as a “layer”, it is suggested that 

this may be a tangled network of mucins [7] linked by linear or branched disulfide bridges [8-

10].  Mucins are heavily glycosylated proteins that represent a family of large (1 - 50 MDa) 

glycoproteins with a peptide backbone and oligosaccharide side chain that when dissolved form 

an entangled mucus hydrogel.  They also have regions containing both neutral and acidic, 

branched and linear saccharides [11] and a net negative charge due to the presence of sialic acid 

residues [12].  The mucus network is unable to penetrate between the cilia because the pore size 

of the the gel (100nm) is less than the diameter of cilia (200nm) [13].  Mucins are secreted 

mostly from goblet cells and submucosal glands in the large airways and by clara cells and 

serous cells in the small airways.  The mucus serves two functions: 1) to trap inhaled particles 

and bacteria to be removed from the airways, and 2) to act as a liquid reservoir for the PCL [5].  

The PCL hydrates the cell layer below it and its low viscosity facilitates the ciliary beating that 

propels the mucus layer toward the mouth to be cleared from the airways.  This action is a 

primary defense mechanism in the conduction zone known as mucociliary clearance.   

Collectively the PCL and the mucus layer are known as the airway surface liquid (ASL).  

This model two-compartment system has been generally accepted; however its exact 

composition and structure is not fully understood due to the difficulties of ASL preservation in 

vitro.  The ASL is estimated to range in depth from 10-30 µm [5], with a volume of 

approximately 1µl per cm2 of mucosal surface [13].  It has also been suggested that a continuous 

surfactant-like film is present at the air liquid interface from the central airways to the alveoli 

[14]. 
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Figure 1: Model of two epithelial cells joined by a gap junction with the above airway surface liquid (ASL). 

2.2 CYSTIC FIBROSIS 

2.2.1 Pathogenesis 

Cystic Fibrosis (CF) is an autosomal recessive disease affecting the pancreaticobiliary, intestinal, 

and reproductive systems, amongst others.  The primary morbidity and mortality in CF is 

associated with the respiratory system.  Over 30,000 Americans suffer from this disease and 

approximately 10 million are carriers of the defective CF gene.  The median survival age is 

currently 36.8 years [15].  People with CF are born with normally functioning lungs but typically 

begin to manifest patterns of bacterial colonization and inflammation early in life.  Repeated 

instances of acute and chronic infection and inflammation can lead to permanent lung damage in 

the form of bronchiectasis, airway dilation, and airway wall thickening.  This lung damage is 

permanent and often fatal. 

A key component of the pathogenesis of CF is the abnormal ion transport across the 

airway epithelium which is believed to be caused by the lack of a functional apical epithelial 

chloride channel called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) 

protein (blue channel shown in Figure 2).  The CFTR gene has >1000 identified mutations that 

disrupt the ion balance that exists between the ASL and epithelium [5].  The mutant phenotypes 

expressed may include: lack of CFTR expression at the cell membrane caused by early 

termination of translation or protein processing errors; CFTR expression at the membrane with 
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little or no chloride conduction due to either inactivated or altered channels; or reduction in the 

total number of functional CFTR channels due to improper mRNA splicing [7].  Studies of ion 

and fluid transport [16, 17] and patch clamp studies of membrane channels [18] in both excised 

tissue and cultured airway cells have suggested that CFTR functions not only as a chloride ion 

pathway, but also to regulate the sodium channel, ENaC.  A nonfunctional CFTR results in 

overactivity of these Na+ channels yielding sodium hyper-absorption and decreased Cl- secretion, 

which results in water absorption across the epithelium.  This absorption dehydrates and 

ultimately depletes the volume of the ASL (Figure 2) which is the major source of the problems 

associated with CF.  Some Cl- is still transported via other chloride channel pathways.  When the 

ASL is depleted, normal mucociliary clearance can be greatly reduced as illustrated in Figure 3. 
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Figure 2: The balance of Na+ absorption and Cl- secretion is maintained when a functional CFTR is present in 
normal airway epithelia.  The lack of a functional CFTR channel (right) results in Na+ hyper-absorption and 
decreased Cl- secretion via other pathways, resulting in ASL dehydration and volume depletion [7, 19]. 
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2.2.2 ASL Volume Regulation 

ASL volume regulation is crucial for maintaining normal mucociliary clearance [20].  The 

regulation of fluid between the mucus and PCL is complex and still poorly understood.  It is 

suggested that there is a system of sensors that monitor the ASL volume and regulate the fluid 

absorption and secretion [7].  Individuals with fully extended cilia and normal PCL volume are 

able to maintain normal clearance and therefore little mucus accumulates in the airways (Figure 

3, left).  The center illustration shows that a depleted PCL volume prevents cilia from fully 

extending, delaying mucociliary clearance, and resulting in mucus accumulation.  The right most 

illustration has even greater PCL depletion resulting in thickened mucus that is no longer 

transportable from the airways by cilia.  A decrease in mucociliary clearance can lead to the 

accumulation of infected mucus plugs causing inflammation that may lead to bronchiectasis and 

peribronchial thickening. 

 
 
 

 
 

 
 
 

Figure 3: ASL depletion leading to delayed mucociliary clearance. 
 
 

    Normal Clearance   Delayed Clearance           Mucus Thickened 
                    and non-transportable 

2.2.3 In Vitro Study 

One of the greatest challenges in studying CF is the lack of a realistic animal or cellular model.  

The CF mouse, which over expresses the sodium absorbing channel ENaC, may provide a means 

to test interventions, but provides little use in evaluating the consequences of CFTR mutations 
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[21].  Human bronchial epithelial (HBE) cells cultured from excised lung specimens are 

currently the best in vitro model available.  When properly cultured at an air-liquid interface, 

these cells differentiate and develop cilia, mimicking most aspects of the airways epithelium 

including membrane electrophysiology.  Mucus transport rates similar to in vivo conditions have 

been demonstrated with these cultures [5].  Some difficultires associated with the HBE cultures 

are the limited number of lung specimens available and maintaining a consistent level of 

hydration during experimentation.  Another cell culture often used for in vitro studies of the 

epithelium is an adenocarcinoma cell line known as Calu3.  Calu3’s form a monolayer of cells 

connected via gap junctions and exhibit high CFTR expression.  However, no cilia nor ASL is 

present, and these cells more closely resemble serous cells [22]. 

2.3 AEROSOL DELIVERY  

Aerosols are defined as suspensions of liquid or solid particles dispersed in a gas [23].  Inhaled 

aerosol medications are a favorable choice for the treatment of lung disease.  Through this route 

substantial drug dose can be delivered directly to the lung providing rapid drug dosing with 

minimized systemic effects in many cases.  Liquid aerosols are generated using a nebulizer, a 

device that uses compressed air or another source of atomization energy to produce a mist, or 

metered dose inhalers (pMDIs), which use pressurized propellants to create an aerosol.  Dry 

power inhalers (DPIs) use different methods to disperse powder aerosols for inhalation.  The 

quick access to the bloodstream available through the lungs also provides an attractive route for 

systemic drug delivery, which is targeted to the alveoli based on the large total available surface 

area available in the respiratory zones.  Recent research has been conducted on inhaled insulin 

for diabetes [24] and opiates for pain control [25]. 

Three specific mechanisms usually result in aerosol deposition in the lungs: inertial 

impaction, sedimentation, and diffusion.  The involvement of each mechanism depends on 

several factors such as physical aerosol characteristics, ventilation patterns, and the airway 

anatomy.  Aerosol size is a major factor in determining the location of aerosol deposition within 

the respiratory tract.  This size is usually expressed as an aerodynamic diameter (Dae), defined as 

the spherical diameter of a particle of unit density (1 g/cm3) having the same terminal velocity as 
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the particle of interest [26].  Most nebulizers are designed to generate aerosols in the respirable 

range of Dae=1-5µm [2].  Inertial impaction occurs when a particle follows a straight-line path 

instead of the streamlines of the bulk air flow (Figure 4).  A particle or droplet may continue 

along this inertial path if its momentum exceeds the drag force of the conducting air, resulting in 

deposition.  Large aerosols usually deposit by this mechanism in the upper airways, often where 

flows rapidly change direction or speed and at airway bifurcations.  This mechanism is especially 

important in obstructive lung diseases such as CF, asthma, and chronic obstructive pulmonary 

disease (COPD), where obstructive disease elements will contribute to increased impaction. 
 
 
 

 
 
 
Figure 4: Inertial impaction of an aerosol in a normal airway (left) and obstructed airway (right). 

 
 
 

Several investigators have performed deposition experiments using airway casts to model aerosol 

deposition.  Schlesinger and Lippmann [27] modeled inertial impaction using an impaction 

parameter: 

 

Qd 2ρ=impaction       (1)  

 

where ρ is the particle density, d is the particle diameter, and Q in the inhalation flow rate.  The 

Stokes number is a parameter often used to predict the likelihood of deposition due to impaction: 

 

D
Vd

µ
ρ
18

2

=Stokes       (2) 
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where V is the conducting air velocity, µ is the viscosity of air, and D is a geometric parameter of 

the airways.  An increase in aerosol density or size, or an increase in conducting air velocity will 

yield a higher Stokes number indicating that the aerosol is more likely to deposit through 

impaction.  The high gas velocities in the upper respiratory tract contribute to increased aerosol 

impaction in the upper airways, decreasing the total dose of medication that reaches the lung 

periphery. 

Aerosol deposition is governed by gravitational forces in the alveolar portion of the lung 

due to the decreased flow velocities in this region.  This deposition mechanism is typically 

referred to as sedimentation.  A particle with diameter d descending through air with a viscosity 

µ will reach a terminal velocity v when the gravitational forces equal the drag forces.  Assuming 

only gravity and a vertical Stokesian drag force acting on the particle, the net forces can be 

described as follows (assuming the Reynolds (Re) number <<1): 

 

   terminaldragF vdµπ3=       (3) 

   
            

Using the force of gravity (equation 4) and the volume of a sphere (Volume = 4πr3/3), we can 

equate equations 3 and 4 to obtain a terminal velocity, v.  A faster terminal velocity for the 

aerosol will increase the likelihood of deposition prior to exhalation. 

 

Vgmg ρ=       (4) 

 

µ
ρ
18

2gd
v =terminal      (5) 

 

Based on the above it can be seen that the probability of sedimentation increases with aerosol 

size and density [28].  Since these variables are also important to inertial deposition, an aerosol 

size range accommodating both mechanisms must be found to deliver aerosols to the deep lung.  

The aerosol must be small enough to avoid the inertial filters of the upper airways and yet still 

large enough to deposit in the deep lung before being exhaled.  The probability of deposition in 
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the deep lung will also increase with a slower breathing pattern that allows for more time for 

deposition. 

Very small aerosols can deposit in the lungs through a mechanism typically referred to as 

diffusion.  Diffusion applies to extremely small particles, those <0.5 µm in diameter [29].  

Aerosols of this size are affected by the random Brownian motion of gas molecules causing them 

to deposit.  To assess the contribution of diffusion in aerosol deposition, the time interval and 

breathing patterns must be considered along with the specific size of the aerosol [23].  This 

mechanism is very efficient for the smallest of aerosols (~1nm) causing them to deposit as soon 

as they enter the respiratory tract.  The formulation of drug aerosols in this size range is not 

routinely performed based on manufacturing considerations.  Aerosol size distribution has the 

potential to vary during transport in the airways due to a number of mechanisms: particle 

aggregation, droplet evaporation, hygroscopic growth (a condensation of liquid onto the aerosol), 

and charge related effects. 

2.3.1 Aerosol Delivery to the Diseased Lung 

Aerosols naturally follow air flows away from regions of high resistance and obstruction, 

resulting in non-uniform drug deposition.  Lung diseases such as CF, asthma, bronchitis, and 

chronic obstructive pulmonary disease (COPD) exhibit different degrees of airway obstruction 

resulting in non-uniform ventilation and correspondingly non-uniform aerosol delivery. As 

previously mentioned obstructions may also contribute directly to deposition.  Studies have 

found that asthma patients with airway obstructions tend to have greater deposition in the central 

airways vs. the peripheral regions [30], likely due to increased impaction and altered ventilation.  

This pattern is illustrated by the gamma images in Figure 5.  The image on the left demonstrates 

the non-uniform deposition radiolabeled drug in a single lung transplant recipient suffering from 

a respiratory infection.  The white and red concentrated areas demonstrate that the drug is 

deposited mainly in the central airways.  The image on the right was taken of the same patient 

after inhalation of a radioactive gas (Xenon) demonstrating that the peripheral regions of the lung 

were not completely obstructed.  The aerosols were not reaching those same areas, most likely 

due to increased resistance and increased impaction associated with partial obstruction.  
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Figure 5: Radioscintigraphy images of aerosol drug deposition (left) and xenon gas ventilation (right) in the lungs. 
 
 

2.3.2 Aerosol Antibiotics 

Despite the non-uniformities of aerosol administration in diseased lungs, inhalation is still a 

favorable route for treating lung infections, due to the high drug concentrations that can be 

achieved in many cases with only minimal associated systemic concentrations and similarly 

reduced systemic side effects.  A convincing example to consider is the inhaled antibiotic, 

Tobramycin (TOBI®, Chiron Corp, Emeryville, CA).  TOBI is administered using a jet nebulizer 

to treat the most common infection seen in CF patients, the gram-negative bacterial pathogen 

Pseudomonas aeruginosa (PA).  PA is found in approximately 70% of CF patients by the age of 

17 and found in over 90% of CF patients at some point in their life [31].  The IV form of 

tobramycin has significant side effects, including potential kidney failure.  For the aerosol form 

however, studies have demonstrated peak sputum concentrations of >25 times the minimum 

inhibitory concentration (MIC) in approximately 95% of CF subjects tested, with one hour serum 

concentrations of only 0.95 µg/ml [32], compared to IV serum levels of 4-6 µg/ml [33]. 

Ramsey et al. conducted a short-term study to evaluate the efficacy of inhaled tobramycin 

in decreasing the density of PA and improving pulmonary function in CF patients [34].  Seventy-

one patients received one of two regimens: 28 days of inhaled tobramycin followed by 2, 28-day 

periods of inhaled saline (placebo) or 28 days of saline first followed by 2, 28-day periods of 
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tobramycin.  The greatest improvement in lung function and largest decrease in PA density was 

seen during the first 28 days of tobramycin treatment for both groups. 

A longer-term study of inhaled tobramycin demonstrated its ability to improve 

pulmonary function and decrease hospitalization days in a larger sample of the CF population 

(n=258) [35].  Intermittent TOBI administration was assessed in CF patients with known 

infections of PA.  TOBI or placebo were administered in three on-off cycles, 4 weeks of drug 

followed by 4 weeks of no drug, for a total of 24 weeks.  Patients receiving tobramycin 

demonstrated improved pulmonary function that was sustained throughout the on-off drug cycle, 

while the placebo group had a decline in lung function.  The group receiving tobramycin was 

found to be 26% less likely to be hospitalized and 36% less likely to need intravenous antibiotics 

than the placebo group.  TOBI subjects also experienced >100-fold decreases in colony forming 

units (CFU’s) of PA during each 4 week treatment.  However, when the drug administration was 

suspended, the bacterial levels increased within 10 fold of the levels observed at week 0.  

Collectively, these TOBI trials suggest effective suppression of infection, but not eradication.  

One potential cause of the resurgence of infection in these subjects is a failure of the aerosol to 

reach all of the infected regions. 

TOBI is the only inhaled antibiotic currently approved for CF or non-CF use.  Several 

antibiotics available in other forms are being developed as aerosols and some others have long 

histories of off-label inhaled use.  Examples include: nebulized colistin [36, 37]; a sustained 

release liposomal formulation of  the antibiotic amikacin (SLITTM Amikacin) [38, 39]; nebulized 

aztreonam [40]; nebulized gentamicin [41]; a dry power formulation of ciprofloxacin [42]; and a 

dry power formulation of tobramycin [43, 44].  The high pulmonary doses associated with 

aerosol administration may offer a means of overcoming bacterial resistance. 

Aerosol antibiotics also provide an alternative to systemic antibiotics in the intensive care 

setting.  Mechanically ventilated patients have an increased risk of ventilator associated 

pneumonia (VAP).  A reported 350,000 cases occur per year with a mortality risk of 20-70% 

[45].  As mentioned, the aerosol route may decrease systemic toxic effects by localizing 

medication in the lungs.  One study found that in mechanically ventilated patients with 

nosocomial pneumonia, ceftazidime (antibiotic) concentration in tracheal aspirates was 

approximately 100 times higher with aerosol administration than with IV, while peak plasma 

concentrations were approximately 25 times lower [46].  Aerosol antibiotics have never been 
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widely applied in this setting, which is likely due to the difficulty of delivering aerosols to 

intubated patients and a perceived risk of developing bacterial resistance.  In vitro models are 

being development to address these concerns [45]. 

Uniform distribution of an antibiotic aerosol is essential to whole-lung eradication of 

pathogens.  Attaining this wide spread distribution is made more difficult by the obstructions that 

would be expected with profound infection.  Currently, most aerosolized medications are 

dissolved in saline and drug distribution is determined by aerosol transport only.  An alternative 

approach is to dissolve these medications in surfactant or surfactant components to enhance 

distribution following aerosol deposition.  Drug distribution may be enhanced by surface tension 

gradients generating convective flows that distribute drugs in addition to the aerosol transport 

mechanisms.  The development of a self-spreading carrier liquid would have the potential to 

improve the efficacy of almost every aerosol drug designed to act within the airways. 

2.4 DRUG DISTRIBUTION FOLLOWING DEPOSITION  

2.4.1 Diffusion 

Once an aerosol deposits on the luminal airway surface its distribution depends primarily on the 

diffusion of drug over or through the ASL.  The rate of diffusion of several antibiotics has been 

modeled in both water (Daq) and a bacterial biofilm (De) [47].  A diffusion time scale through 

these materials can be estimated using a specified length scale and the diffusivity, 
D
L

aq

2  or
D
L

ae

2 .  In 

the airways, if the ASL is assumed to be 10 µm thick (L), using the diffusivity value for 

tobramycin [48], the estimated time scale for diffusion through water is ~0.2s.  However, when 

this is applied to the larger length scale of the airway tree, diffusion along 1mm of airway would 

be ~1800s.  Therefore, the overall distribution of drug is not significantly affected by diffusion 

following aerosol deposition.  This is also demonstrated by examining images similar to those in 

Figure 5.  Little change in drug distribution is observed immediately following an aerosol dose.  

This is not observed until mucociliary or cough clearance removes drug from the lungs. 
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2.4.2 Surface Tension Driven Flows  

2.4.2.1 Surface tension 

Surface tension (γ) is a cohesive force that acts tangentially at an air-liquid interface to minimize 

the interfacial area [49].  Molecules at the surface of a liquid are not surrounded by all like 

molecules and therefore experience a force perpendicular to and inward from the surface of the 

liquid.  This force causes the molecules to arrange along the boundary with the fewest number of 

molecules at the surface, minimizing the interfacial area as shown in Figure 6.  The surface 

tension is the cohesive tangential force between the molecules at the surface, measured in 

dynes/cm or mN/m, as a force per unit length: 

 

     
l

F
2

=γ       (4) 

 
 
 
 
 
 
 
 
 
 
Figure 6: Forces experienced by molecules at a boundary surface.  The resultant tangential force (right) represents 

the surface tension force. 
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2.4.2.2 Marangoni flow 

Surfactants are wetting agents that lower the surface tension of liquids.  Most surfactants are 

amphipathic molecules; they contain a hydrophilic polar head group and a non-polar 

hydrophobic tail.  These are surface active molecules that tend to adsorb at surfaces and form a 

monolayer that minimizes molecule interaction with water [50].  At an air-liquid interface, the 

surface tension depends on the local concentration of surfactant.  If a concentration gradient of 

surfactant is present, convective flows (Marangoni flows) are generated that drive both the liquid 

and the surfactant from an area of high to low surfactant concentration [51].  The spreading of 
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one liquid on the surface of another can be predicted with the spreading coefficient described in 

equation 8, where γ1 and γ2 are the surface tension values of two liquids, γ12 is the interfacial 

tension between the two liquids, and S is the spreading coefficient of liquid 2 on liquid 1: 

 

12212/1 γγγ −−=S       (5) 

 

Spreading will generally occur when a low surface tension liquid is place on a liquid of higher 

surface tension, which yields a positive S1/2 [51].  A simple example of this is soap (a surfactant 

with low surface tension) forming a thin film over a layer of water (liquid with high surface 

tension).  This motion is demonstrated in Figure 7, the “soap boat”.  The boat contains a small 

volume of soap.  As the soap is released from the boat, the local surfactant concentration rises, 

propelling the boat across the water surface visible by the white streak parting the water surface 

labeled with blue dye. 

 
 
 

 
 
 

Figure 7: The “soap boat” is a simple example of the surface tension driven Marangoni flows (reprinted with 
permission, from the Annual Review of Fluid Mechanics, Volume 38 © 2006 by Annual Reviews 

www.annualreviews.org) 
 
 
 

Figure 8 illustrates this idea applied to the airways.  If an aerosol surfactant drug carrier is 

delivered to the airway surface, Marangoni flows may enhance drug distribution by propelling 

surfactant and drug over the PCL and/or mucus layers increasing the area over which the drug 
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will diffuse.  Since these flows would be driven by surfactant concentration gradients, the 

endogenous surfactant present in the lung must be considered. 

 
 
 

Figure 8: Aerosol drug deposition upon the ASL using a surfactant carrier. 
 
 

2.4.3 Pulmonary Surfactant 

2.4.3.1 Alveolar  

Pulmonary surfactant is largely produced in the alveoli by alveolar Type II cells and is composed 

of approximately 80% phospholipid, 10% protein, and 10% neutral lipids.  The four major 

surfactant proteins, SP-A, SP-D (hydrophilic) and SP-B, SP-C (hydrophobic) have been found to 

have host defense and surface tension lowering properties [52].  The presence of surfactant in the 

alveoli is essential for stabilizing these structures during respiration cycles and maximizing the 

surface area available for gas exchange.  Pulmonary surfactant reduces the surface tension by a 

forming a thin film monolayer at the air-liquid interface (Figure 9).  Without it, the surface 

tension in the alveoli would be similar to that of water (72 mN/m); but in the presence of the 

surfactant the alveolar surface tension values are <5 mN/m. 
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Figure 9: Alveolus lined with surfactant monolayer at the air-liquid interface (reprinted with permission from [53]). 
 
 

2.4.3.2 Airway Surfactant 

Because most surfactant studies have focused on its presence in the alveoli, the source and 

function of surfactant in the airways has not been extensively studied.  Although there is a lower 

surfactant concentration in the airways than in the alveoli, the presence of any surfactant 

components will greatly affect the ASL interaction with exogenous surfactants.  It has been 

established that a surface tension gradient exists from the trachea to the alveoli indicating the 

presence of surfactants or surfactant components in the central airways (Table 2). 

 
 
 
Table 2: Approximate surface tension values along the surface of the airway lumen from the trachea to alveoli [54-

56]. 
 
 

Location in Lungs Surface Tension  
(mN/m) 

Trachea  62 

Central Airway  32 

Alveolus  <5 
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Gehr and co-workers have performed in vivo and in vitro measurements of surface 

tension in the airways of several animals, typically measuring a surface tension of the order of 32 

mN/m [55, 57].  In addition, they have noted in cell culture electronmicrographs, an electron-

dense line at the air-liquid interface that they claim is a surface tension lowering, surfactant-like 

layer [58].  Tarran et al also noted this electron dense line in similar cultures and found that the 

electron dense line remained intact while the surface tension was increased during washings of 

the mucus from the cultures using a reducing agent.  However, they did not conclude that the 

electron dense line was a surfactant-like layer [59]. 

Other evidence of surfactants in the airways includes phospholipids found bound to 

mucins in sputum samples, suggesting the mucus layer as a source for surface active materials 

[60].  Studies have found local synthesis of surfactant components in the airways.  The 

hydrophobic surfactant proteins SP-B and SP-C were found to have mRNA expression and 

protein expression in the bronchi and bronchioles [61].  SP-A and SP-D (hydrophilic surfactant 

proteins) synthesis has been found in Clara cells, but these cells do not produce phospholipids 

[62].  Local phospholipid synthesis has been found in cells in the trachea as well [63].  Bernhard 

et al compared the composition and surface tension lowering properties of airway surface 

material in porcine lungs at the alveolar and tracheal levels.  They concluded that a similar 

phospholipid composition was found in both, but the amount of surfactant proteins and the 

degree of surface tension lowering properties were diminished in the samples from the trachea, 

indicating the important role that surfactant proteins are believed to play in lowering surface 

tension [64]. 

2.4.3.3 Other Considerations 

Local surfactant concentrations vary with the breathing cycle.  The internal surface area of the 

lungs changes during inhalation and exhalation, causing dynamic changes in local surfactant 

concentrations.  In the alveoli, at small lung volumes, surface tension reaches values as low as 

5mN/m.  As lung volume increases upon inhalation, the surfactant is spread out over a larger 

area, decreasing local concentrations, and increasing the alveolar surface tension to values as 

high as 30mN/m [65].  Airway length and diameter also change during respiration, but to a lesser 

degree than in the alveoli.  The smallest airways experience the largest changes in area during 

inhalation from 50-100% total lung capacity (small ~50%, medium: ~33%, large: ~19%) [66].  
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This cycling of local surfactant concentration may cause gradients that further increase the 

circulation of surfactant-drug mixtures, resulting in better overall distribution. 

2.5 PREVIOUS WORK 

The spreading of exogenous surfactant along the airway surface has been extensively studied 

both theoretically and clinically because of its role in Surfactant Replacement Therapy (SRT).  

SRT is used to treat premature newborns with Respiratory Distress Syndrome (RDS) which is 

characterized by a lack of adequate surfactant to stabilize alveoli.  A bolus of surfactant is 

instilled at the trachea and reaches the alveoli through a combination of gravity and surface-

tension driven flows [67].  Several investigators have speculated that the same forces would 

apply when using an aerosolized surfactant drug carrier [68, 69]; however, little experimental 

evidence exists on this topic.  Studies that have tested the use of a surfactant drug carrier have 

been limited to the bolus instillation technique.  Other research has been conducted on the use of 

aerosolized surfactants to treat surfactant deficient lung diseases such as Acute Respiratory 

Distress Syndrome (ARDS) [70, 71].  Recent studies have noted deficiencies in surfactant 

protein D in association with cystic fibrosis.  Surfactant deficiencies might be associated with 

depressed clearance and immune function.  A pilot study was conducted to determine whether 

aerosolized surfactant would improve lung function in CF patients [72].  No substantial benefits 

were demonstrated from the therapy. 

2.5.1 Surfactant Bolus: Surfactant Replacement Therapy 

In SRT, a bolus of surfactant is administered directly though a catheter placed into an 

endotracheal tube.  Both synthetic and natural surfactants are FDA approved and available for 

treatment, as listed in Table 3.  The natural surfactants are from animal derived products 

containing phospholipids (usually the majority of which is 1,2-dipalmitoylphosphatidylcholine, 

DPPC) and some form of the surfactant proteins, SP-A, B, C, and D.  The synthetic surfactant, 

Exosurf®, is a protein-free suspension containing dipalmitoylphosphatidylcholine (DPPC), cetyl 
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alcohol (DPPC spreading agent), tyloxapol (a non-ionic surfactant) and saline, in the ratio 

13.5:1.5:1.0:5.8 [73].  The absence of the surfactant proteins may be the cause of the higher 

minimum surface tension noted with this preparation. 
 
 
 

Table 3: Current FDA approved exogenous surfactant formulations for treating RDS and the corresponding 
measured minimum surface tensions [74-77]. 

 
 

Surfactant Type Minimum Surface Tension
(mN/m) 

Beractant 
(Survanta®) Natural - bovine <8 

Calfactant 
(Infasurf ®) Natural - calf ≤3 

Poractant alfa 
(Curosurf ®) Natural - porcine ≤4 

DPPC, Cetyl alcohol, and 
Tyloxapol (Exosurf 

Neonatal®) 
Synthetic ~22 

 
 
 

Extensive theoretical modeling of the spreading of a surfactant bolus has been performed.  

Espinosa et al. used a model that incorporates the properties of the ASL, such as thickness, 

viscosity, and endogenous surfactant, as well as airway radius, bolus volume and surfactant 

content, and gravity.  They estimate that a bolus of instilled surfactant travels from the trachea to 

the lung periphery in ~12 seconds, assuming a 5cm transit distance.  They describe gravity and 

surface tension driven flows as the cause of this transit [78].  Grotberg and co-workers have 

further investigated this surfactant spreading both theoretically and experimentally.  They have 

tested the effect of instillation technique and ventilation patterns on the propagation distance of 

the liquid bolus through the airways.  Much of their study has focused on the dynamics of bolus 

propagation and film rupture [79-81]. 

Anderson et al. recently developed an imaging technique to monitor surfactant transport 

in the lungs in real-time.  They assessed the effect of ventilation rate on the degree of liquid 

spreading in excised rat lungs.  The study revealed that at 20 breaths/min, surfactant was 

localized to the central airways with the distribution being dominated by gravity forces, while at 
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60 breaths/min, surfactant coated the airways with a more uniform pattern of deposition, 

suggesting the contribution of surface tension driven flows [79]. 

2.5.2 Surfactant Bolus: Drug Delivery Vehicle 

Instilled surfactant delivery has been considered as a drug delivery technique based on the 

success of bolus surfactant instillation in SRT.  Kharasch et al. tested beractant or saline mixed 

with technetium sulfur colloid and pentamidine, delivered to hamster lungs by tracheal 

instillation.  Spontaneous respiration was sustained for 4 hours.  The lungs were then excised, 

inflated, dried, and sliced into 3 mm sections.  Using radioscintigraphy, it was determined that 

the surfactant drug mixture reached 93% of the slices while the saline drug mixture reached 72% 

(p=0.02).  The fraction of the individual lung slices containing radioactivity was also considered.  

The surfactant drug mixture reached an average of 41% of each slice considered vs. 21% for the 

saline mixture (p=0.02) [82]. 

A similar study was conducted by Van’t Veen et al using a tracheal instillation of 

tobramycin in mice infected with Klebsiella pneumonia.  The measured outcome variable was 

survival.  Following the first day of infection, mice received surfactant mixed with tobramycin, 

surfactant alone or tobramycin alone.  The study revealed there was a significant increase in 

survival when tobramycin was administered with the surfactant carrier, vs. just tobramycin or 

surfactant alone [83]. 

Nimmo et al tested in rats, a tracheal instillation of radiolabeled glucocorticoids mixed 

with beractant.  Studies were performed to evaluate the possibility of delivering corticosteroids 

intratracheally using a surfactant carrier.  Following instillation, the trachea and lungs were 

excised and radioactivity measured in tissue samples taken from the root, middle, peripheral 

regions of lobe of the lungs.  The surfactant vehicle demonstrated more consistent levels of 

peripheral delivery when compared to saline, which was found deposited more centrally.  The 

addition of the corticosteroids did not appreciably alter the surface tension of the surfactant [84]. 

Fajardo et al conducted a similar study, however they did not find a significant difference 

between a surfactant (beractant) and saline vehicle for the instilled delivery of corticosteroids to 

rabbit lungs [85].  3H Budesonide was used to track drug distribution.  The study found that both 

vehicles delivered drug with a similar distribution.  This result may have been affected by 
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methodology.  A larger volume of the drug mixture (1.25ml/kg) was administered vs. the study 

performed by Kharasch et al (0.25ml/kg).  The larger volume may have resulted in a more 

uniform distribution in the lungs. 

Beractant has also been tested for the delivery of an adenoviral vector in rat lungs.  Gene 

expression varied with volume and carrier type (beractant or saline).  The adenovirus-beractant 

treated group exhibited more uniform transgenic expression of the virus than the adenovirus-

saline treated group.  At low volumes (0.5ml, 1.3ml/kg) the beractant group exhibited more 

pulmonary tissue activity and at high volumes (1.2ml, 4ml/kg) both groups had similar activity 

[86]. 
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3.0  SPECIFIC AIMS 

The general aim of these studies was to use a surfactant aerosol carrier in a series of in vitro 

models to determine whether these carriers could improve the distribution of aerosol drugs in the 

lungs. 

 

Aim 1: To design a testing apparatus for aerosol delivery onto mucus samples and epithelial cell 

cultures and an imaging method for tracking the delivered material after deposition. 

• Select a nebulizer and determine an optimal flow rate and aerosol dose time interval 

• Determine aerosol size and ensure that it matches typical values for respiratory 

aerosols 

• Select optimal anionic, cationic, and nonionic surfactants for testing 

• Establish imaging protocol to assess spreading using dye and polystyrene spheres 

 

Aim 2: To evaluate the potential for surface tension driven flows on a model mucus surface. 

• Assess spreading of aerosolized surfactants vs. saline control using three different 

sized fluorophores 

 

Aim 3: To evaluate the potential for surface tension driven flows on model epithelial cell culture 

surfaces. 

• Assess spreading of two selected aerosolized surfactants vs. saline using Calu3, CF-

human bronchial epithelial cell cultures (HBE’s), and non CF-HBE models, with 

three different sized fluorophores 

• Assess spreading of an aerosolized liposomal drug formulation in surfactant vs. water 

using both CF and non-CF HBE models 
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4.0  METHODS 

4.1.1 Aerosol Delivery System  

A micropump nebulizer (the Aerogen Pro, Nektar/Aerogen, Sunnyvale, CA) was used to 

produce a 4-5 micron median diameter aerosol and tubing of decreasing diameter was assembled 

to deliver aerosol through a 2mm cannula tip (Figure 10).  The aerosol was driven through the 

tubing system using a compressor (Pulmoaide, Sunrise Medical, Somerset, PA).  The air was 

humidified and heated to 37ºC using the MR850 Humidification system (Fisher & Paykel 

Healthcare, Laguna Hills, CA).  A flow meter placed upstream of the nebulizer was used to 

monitor and control the flow rate.  The cannula tip was placed through a hole drilled in the cell 

culture plate lid that fixed its position 1mm above the delivery surface. 
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Figure 10: Aerosol delivery system.  100% Humidified air at 37°c was used to deliver aerosol to a porcine gastric 
mucus (PGM) or epithelial cell culture surface.   A micropump nebulizer was used to produce an aerosol.  The 
diameters of the tubing and connectors gradually decrease in size: 1- 22mm , 2 - 16, 12mm, 3 -  4mm, 4 - 3.5 mm, 5 
- 3mm, 6 - 2mm.  The aerosol exiting the end of tubing section 6 ranges from 1-4 microns in median diameter. 
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Laser diffraction aerosol size measurements were made using a Malvern Mastersizer S 

(Malvern Instruments, Worcestershire, UK).  The aerosol size was measured with a standard 

mouth piece attached to the cannula tip (#6 in the aerosol system).  Measurements for all 

surfactants, drug, and saline solutions were collected. 

4.1.2 Surfactants 

Several surfactants were selected with differing minimum surface tensions and ionic character.  

The control selected for all experiments was a 0.9% NaCl solution.  Calfactant (provided by Dr. 

Edmund Egan of ONY Inc., Amherst, NY) is a natural lung extract that contains DPPC, fatty 

acids, and the low-molecular-weight hydrophobic surfactant-associated proteins SP-B and SP-C.  

Calfactant was selected for these studies due to its low surface tension and approved use for 

SRT.  Tyloxapol (obtained from Sigma-Aldrich, St. Louis, MO) is a nonionic liquid polymer of 

the alkyl aryl polyether alcohol type and was selected because of its use as a spreading agent in a 

synthetic surfactant used for SRT, Exosurf ® [73].  Its concentration in Exosurf is 1mg/ml in 

0.9% NaCl.  sodium dodecyl sulfate (SDS), an anionic surfactant and cetyl trimethyl ammonium 

bromide (CTAB), a cationic surfactant, were both dissolved in distilled water at their critical 

micelle concentrations (CMC), as shown in Table 4. 
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Table 4: The minimum surface tensions and concentrations used for saline (control) and the surfactants selected for 
experimentation [73, 74, 77, 87] 

 
 

Solution 
Minimum 

Surface Tension
(mN/m) 

Concentration 

Saline 72 Isotonic 

Calfactant 4 35mg/ml of phospholipid in 
0.9% saline 

Tyloxapol 22 1 mg/ml 
(0.22mM = 12 x CMC) 

SDS 32  2.39 mg/ml (aq) 
(8.3mM = 1 x CMC) 

CTAB 35 0.364mg/ml (aq)  
(1mM = 1 x CMC) 

 
 
 

4.1.3 Microscopy  

All imaging was performed at the Center for Biological Imaging, University of Pittsburgh.  

Images were captured using a Macro zoom fluorescence dissecting microscope (MVX10 

MacroView, Olympus, Center Valley, PA) and Coolsnap K4 camera (Photometrics, Tucson, 

AZ).  Images were processed using Metamorph software (Molecular Devices, Sunnyvale, CA).  

Three fluorescent tags were selected to act as a drug analog when mixed with the surfactant and 

saline solutions.  Texas red dye conjugated to a 10kDa dextran (dextrans are hydrophilic 

saccharides) was selected due to its neutral charge, high molecular weight, and relative 

impermeability to the airway epithelium.  Texas red dextran (Molecular Probes, Carlsbad, CA) 

was provided as a pure lyophilized powder and dissolved in phosphate-buffered saline (PBS) to a 

concentration of 2mg/ml.  The other fluorophores selected were polystyrene (PS) fluorescent 

microspheres (FluoSpheres®, Molecular Probes, Carlsbad, CA) in 0.1 micron (red fluorescence) 

and 1.0 (green fluorescence) diameters.  The spheres are available as a suspension in water plus 

2mM sodium azide and have a carboxylate surface group yielding a net negative charge.  All 

surfactant and control solutions were labeled with Texas red (1% by volume) or the microsphere 

suspensions (0.1% by volume) and vortexed immediately prior to the aerosol delivery. 
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4.1.4 

4.1.5 

Mucus Model Surface 

Porcine gastric mucin (PGM) was selected as a preliminary model of airway mucus (Type III 

mucin, partially purified, ~1% bound sialic acids, Sigma-Aldrich, St. Louis, MO).  The 

lyophilized mucus was reconstituted using 0.9% NaCl at varying concentrations ranging from 

90-95% saline.  Preliminary experiments were performed to assess spreading of two selected 

surfactants, Tyloxapol and Tween20.  Tween20 is another nonionic surfactant; however it was 

not used beyond these preliminary experiments.  PGM at a concentration of 100 mg/ml (90% 

saline) with a depth of approximately 5 mm was placed in a transwell culture dish with a 

diameter of 35 mm.  The two surfactants and saline were labeled with blue dye and ~1 µl 

droplets were pipetted onto a PGM surface.  Images were captured using a digital camera. 

All following experiments with PGM involved solutions delivered to the surface via 

aerosol.  PGM was loaded into 12mm diameter filter inserts (Corning-Costar Transwell Collagen 

T-cols, Acton, MA),  mixed to a concentration of 50 mg/ml (95% saline) and a depth of 4mm. 

Each filter was placed into a 12-well cell culture dish, and only the surrounding 11 wells were 

filled with 1ml of PBS, to maintain as close to 100% humidity as possible.  The well containing 

the PGM filter was not filled with PBS.  The cannula was placed though a small hole drilled in 

the cell culture dish lid and it remained approximately 1mm above the PGM surface.  Aerosol 

was delivered at 0.3 LPM for 10 seconds.  The five solutions listed in Table 4 were tested for 

five trials each, using three fluorescent markers: texas red dextran, 0.1 and 1.0 micron 

polystyrene spheres. 

Epithelial Cell Culture Model 

4.1.5.1 Cell culture preparation 

All cell cultures used in this study were provided by Dr. Pilewski’s cell culture facility.  The first 

cell line tested was the Calu3 cell line, derived from cancer cells.  These cells developed a 

monolayer and secreted mucins, but no cilia or ASL was present.  Calu3 cells were obtained 

frozen, then thawed and suspended in a 1:1 mixture of Dulbecco’s modified Eagle’s media 

(DMEM) and Ham’s F-12 medium (F-12) with 10% fetal bovine serum (FBS).  The cells were 

initially seeded onto 75 cm2 tissue culture flasks.  Upon reaching 100% confluence, the cells 
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were seeded on 12 mm diameter transwell polycarbonate inserts (0.4 µm pore size, Corning-

Costar Transwell Collagen T-cols, Acton, MA), pre-coated with human placental collagen at 

106cells/cm2.  Figure 11 shows a single filter with both the basolateral and apical surfaces in 

contact with the media.  Upon reaching 100% confluence, the media on the apical surface was 

removed and the cells were maintained at an air-liquid interface in a 100% humidified incubator.  

The cells were fed on the basolateral side of the filter twice per week with DMEM/F-12 and 10% 

FBS and were fully differentiated in approximately 5 days. 

The HBEs (CF and non-CF) were prepared from airway specimens excised from fresh 

explanted or unused donor lung tissue following surgical transplantation.  The airway sections 

were digested in a protease solution overnight to detach the epithelial cells from the tissue.  The 

cells were then resuspended in 1:1 bronchial epithelial growth media/keratinocyte-serum free 

medium (BEGM/K-SFM) and initially seeded onto sterile tissue culture flasks pre-coated with 

human placental collagen.  After 5-6 days, the cells were seeded onto collagen-coated 12 mm 

transwell filter inserts at confluence.  Similar to the Calu3 cells, the HBEs were maintained at an 

air-liquid interface and fed twice per week on the basolateral side, but with DMEM/F12 and 2% 

Ultroser G (USG), a bovine serum substitute.  The cells were fully differentiated after 

approximately 2-3 weeks and the appearance of cilia occurred anywhere from 4 weeks and 

beyond, although not all cultures developed cilia.  For both the Calu3 and HBE cultures, the 

apical surface was washed once per week to remove excess mucus and cell debris using 2mM 

dithiothreitol (DTT), which is a reducing agent.  The surface was also washed 24 hours prior to 

an aerosol experiment. 
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Figure 11: A single 12mm transwell filter insert with cells seeded on a microporous membrane.  The microporous 
membrane lies 1mm above the culture dish bottom and contains 0.4 micron pores to allow the passage of media 
from the lower compartment to the cells.  Once confluent, the media on the apical surface is removed and the cells 
remain at an air-liquid interface with only the basolateral side in contact with media. 
 
 

4.1.5.2 Calu3 Model 

The Calu3 cell line was chosen for initial testing due to its relative availability and shorter time 

to differentiation when compared to HBE cultures.  The Calu3 cultures were used in preliminary 

experiments for adjusting methodology, such as optimal flow rate, dose-time interval, and dye 

concentration.  Their utility in the model is limited by their lack of a realistic ASL layer.  The 

HBE cell cultures provide the closest available in vivo representation of realistic airway 

conditions. 

For all aerosol experiments, a single filter was placed on a 12-well cell culture plate and 

1ml of sterile PBS was placed in the surrounding wells to help maintain 100% humidified 

conditions.  Tyloxapol and calfactant were used with both the Calu3 and HBE cultures.  The 

same three fluorophores used in the PGM experiments were also used for the cell experiments at 

the same concentrations.  The apical surface of both the Calu3 and HBE cells was washed 24 

hours prior to the experiment to remove excess mucus and cell debris.  All cells were maintained 

in a 100% humidified incubator until immediately before use.  For all cell culture experiments, 

aerosol was delivered from the cannula tip at approximately 1mm above the cell surface at 0.3 

LPM for 5 seconds. 
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4.1.5.3 HBE Model (CF and non-CF)  

Several different HBE cell lines including CF and non CF were used from explanted or unused 

donor lungs.  The HBE cell experiments were divided into two groups based on their preparation 

prior to aerosol delivery.  During our initial studies, the cells were tested using the same methods 

described for the Calu3 cells.  These experiments are reported as Group 1. 

A different hydration protocol was utilized for Group 2 based on day to day variability in 

our initial experiments that we attributed to effects of evaporation.  The HBE cultures used here 

are very similar to those used by Tarran et al.  In imaging experiments performed by this group 

and others, an organic solvent perfluorocarbon (PFC) is added to the mucosal surface to prevent 

the evaporation of the ASL when taking measurements [59].  This could not be done in the 

current experiments because of the need for realistic surface conditions and access for aerosol 

delivery.  In the absence of PFC, water from the ASL evaporates quickly when the cultures are 

taken from the incubator.  This is even more of a factor in the CF cultures since the ASL is likely 

depleted at baseline conditions.  We devised a different hydration protocol for group 2 in order to 

more effectively diminish the effects of evaporation.  The group 2 cells were washed 24 hours 

prior to aerosol delivery similarly to group 1.  However, immediately before the aerosol dose, the 

apical surface of the cells was hydrated with 100uL of PBS that was then suctioned off, 

providing a more consistent level of hydration.  Table 5 shows the cells lines used, their 

corresponding disease states, and experimental test group(s).  

 
 
 

Table 5: Cell lines used with corresponding disease state and group number (Group 1 – washed only 24 
hours prior to experiment, Group 2 - cells hydrated with PBS immediately prior to experiment). 

 
 

Cell Line Disease State Group 

HBE 439 Scleroderma 1 
HBE 456 Chronic fibrosing lung disease 1 and 2 
HBE 457 Right heart failure 1 and 2 
CF 101 Cystic Fibrosis 1 
CF 102 Cystic Fibrosis 2 
CF 103 Cystic Fibrosis 2 
CF 105 Cystic Fibrosis 1 and 2 
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4.1.5.4 Liposome delivery to HBEs 

Lastly, Ambisome ®, a liposomal formulation of Amphotericin B (Amp B) for injection was 

mixed with Calfactant and delivered to cell lines HBE 456, 457, and CF 102.  Ambisome 

contains liposomes that are less than 100 nm in diameter.  One vial of Ambisome contains 50mg 

of Amp B [88], which is a potent anti-fungal medication.  In the control group, Ambisome was 

reconstituted with 12mL of distilled water and in the experimental group Ambisome was 

reconstituted with 6mL of calfactant and 6mL of distilled water.  These formulations were both 

sized and administered to the cell cultures using the same methods used for group 2.  The 

fluorophore selected was the 0.1 micron PS spheres.  

4.1.6 Image Analysis 

All images were analyzed using Metamorph software. Using the threshold tool in Metamorph, an 

image threshold was selected that best optimized the image resolution with the level of image 

noise.  This threshold was applied to all images analyzed for each specific fluorescent tag.  

Fluorescent regions were selected manually based on sharp gradients in fluorescent light 

intensity.  The Metamorph tracing tool was used to carefully outline these regions and the pixel 

area within them was determined using the region measurements tools.  The pixel area was then 

scaled to mm2 using the total area of the filter (113.4mm2).  Tests of statistical significance were 

performed to compare the areas reached by all surfactants vs. saline for the three fluorescent tags 

(student’s t-test.). 
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5.0  RESULTS 

5.1 PRELIMINARY MUCUS EXPERIMENTS 

Porcine gastric mucus (PGM) was mixed to 100mg/ml in 0.9% NaCl solution and filled into a 6-

well cell culture dish (35mm diameter) to a depth of approximately 5mm.  Saline (control), 

tyloxapol, and tween20 were labeled with blue dye and pipetted onto the PGM (1µl droplets).  

Figure 12 includes an image taken of the three solutions on the PGM surface.  Increased 

distribution of the tyloxapol and tween20 compared to the saline was noted as the surfactants 

spread with specific branching patterns within the first second.  This image was taken within two 

minutes of droplet placement.  The blue dye did not reach the bottom of the well after five 

minutes.  A phase separation experiment on the PGM was also conducted.  At concentrations 

≥20mg/ml, a dense phase developed at the bottom of the vials after approximately 7-10 days 

(Figure 13).  This concentration is similar to phase separation results found by other groups 

testing similar PGM [89]. 
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Figure 12: PGM with saline (left), tyloxapol (center) and tween20 (right) pipetted on surface, labeled with blue dye. 
 
 
 

 

 

 

 

 

 

 
 
 
Figure 13: PGM phase separation.  Phase separation line appears at concentrations of 20 mg/ml and above.  No 
separation occurred for the 10mg/ml. 

Concentration  
mg/ml       10       20       30       40       50       60 
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5.2 AEROSOL SIZING 

Aerosol size measurements were made at the end of the cannula tip (see Figure 10) and a 

summary of the average mass median diameters (MMD) is presented in Table 6.  By definition, 

half of the aerosol volume is in sizes larger than the MMD and half is in sizes smaller than the 

MMD.  Saline, several surfactants, and a surfactant drug formulation were tested.  Each average 

includes 5 or 10 size measurements. 

Volume histograms for the saline and four surfactants tested, calfactant, tyloxapol, SDS, 

and CTAB, are presented in Figures 15 and 16.  Volume histograms of Ambisome reconstituted 

with distilled water (control) and Ambisome with calfactant are shown in Figure17.  These 

histograms represent an average of 10 sizing measurements.  The histogram itself depicts the 

relative aerosol volume in each of a series of aerosol size ranges.  In this case a 0.5 micron size 

interval is utilized. 

 
 
 
Table 6: Aerosol size measurements taken at the cannula tip of the aerosol delivery system expressed as the average 

MMD. 
 
 

Aerosol Average MMD 
(microns) 

Saline (n=10) 1.4 ± 0.1 
Tyloxapol  (n=10) 1.9 ± 0.1 
Calfactant  (n=10) 1.6 ± 0.1 

SDS  (n=5) 2.8 ± 0.4 
CTAB  (n=5) 4.0 ± 0.2 

Ambisome + dH2O  (n=10) 2.6 ± 0.2 
Ambisome + Calfactant  (n=10) 2.6 ± 0.6 
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Figure 14:  Volume histograms for saline (top), calfactant (middle) and tyloxapol (bottom).  Measurements were 
performed using a laser diffraction instrument and the average MMD was calculated from 10 measurements.  The 
histogram represents the relative volume of aerosol with in each size range.  Half micron bins were used. 
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Figure 15: Volume histograms (continued) for SDS (top) and CTAB (bottom).  Measurements were performed 
using a laser diffraction instrument and the average MMD was calculated from 5 measurements. The histogram 
represents the relative volume of aerosol with in each size range.  Half micron bins were used. 
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Figure 16: Volume histograms for Ambisome dissolved in distilled water only (top) and Ambisome dissolved in 
Calfactant (bottom).  Measurements were performed using a laser diffraction instrument and the average MMD was 
calculated from 10 measurements. The histogram represents the relative volume of aerosol with in each size range.  
Half micron bins were used. 
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The aerosol size of calfactant was also measured in a series of medical nebulizers in order 

to determine whether it would be respirable if used in future clinical trials.  Since aerosol size 

will affect where these aerosols will deposit in the lungs, a well controlled trial would include an 

aerosol size that matches closely to that of a saline control.  Therefore, saline aerosols were 

considered in the same devices.  Three different nebulizers were used: the Aeroneb Pro the 

micropump nebulizer (same as in Figure 10), (Nektar/Aerogen, San Carlos, CA), the AeroTech 

II jet nebulizer (CIS-US, Bedford, MA), and the AeroEclipse breath actuated nebulizer 

(Monaghan Medical Corp, Plattsburgh, NY).  Table 7 contains the MMDs averaged from 5 

measurements for each nebulizer and Figure 17 contains the corresponding volume histograms of 

saline and calfactant for each nebulizer.  

 
 
 

Table 7: MMD of saline and calfactant measured from three different medical nebulizers. 
 
 

Nebulizer 
(n=5) 

MMD 
Saline 
(µm) 

MMD 
Calfactant

(µm) 
Aeroneb Pro 5.2 ± 0.1 5.1 ± 0.1 
Aerotech II 4.7 ± 0.1 5.2 ± 0.1 
AeroEclipse 3.8 ± 0.02 3.7 ± 0.2 
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Figure 17: Volume histograms of saline (pink) and calfactant (blue) generated by three medical nebulizers: Aerogen 
Pro (top), AeroTech II (middle), and AeroEclipse (bottom).  The histograms represent the relative volume of aerosol 

within each size range. 
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5.3  AEROSOL DELIVERY 

5.3.1 Mucus Model Surface 

Representative images comparing the post aerosol deposition distribution on PGM (50mg/ml, 

~95% saline) of four different surfactant carriers vs. saline with three different indicators (texas 

red dextran, 0.1 and 1.0 micron PS spheres) are included in Figures 18 and 19.  A qualitative 

comparison of the images indicates an improved distribution of all three fluorescent markers 

with each surfactant. 
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Figure 18: Images captured post aerosol deposition on PGM surface.  Saline (top row), calfactant (center row), 
tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 1.0 micron PS 

spheres (right column). 

Saline 

 

 

 

 

 

 

 

Calfactant 

 

 

 

 

 

 

 

Tyloxapol 

 43



Texas red dextran    0.1 micron spheres      1.0 micron spheres 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

SDS

CTAB
   
 
 
Figure 19: Images captured post aerosol deposition on PGM surface.  SDS (top row) and CTAB (bottom row) were 

labeled with texas red dextran (left column), 0.1 (center column) and 1.0 micron PS spheres (right column). 
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The saline and surfactant areas of distribution were measured and averaged over 5 trials 

for the three fluorescent tags.  The area of distribution was measured using the Metamorph 

software program and the previously described techniques.  Table 8 shows a comparison of the 

average distribution areas for surfactants vs. saline.  The data is expressed as the factor by which 

the surfactant area exceeded the saline area. 

 
 
 
Table 8: Factor by which the average surfactant area exceeds the average saline area post aerosol deposition on the 

PGM. 
 
 

Surfactant Texas red 
dextran 

0.1 micron 
spheres 

1.0 micron 
spheres 

Calfactant 17 16 20 
Tyloxapol 16 20 20 

SDS 6 4 5 
CTAB 3 2 2 

 
 
 

It was also noted during the PGM studies that the behavior of the cationic and anionic 

surfactants changed over several minutes following deposition.  Saline diffused slightly over 

time, while CTAB and SDS both retracted in the minutes following deposition.  Figure 20 

illustrates this retraction of the CTAB and SDS labeled with 0.1 micron PS spheres compared 

with saline.  This retraction behavior did not occur for tyloxapol and calfactant. 
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Figure 20: Images captured at 2 and 8 minutes post aerosol deposition on the PGM surface demonstrate retraction 
behavior of ionic surfactants.  Saline (top row), SDS (center row) and CTAB (bottom row) are shown labeled with 

0.1 micron PS spheres. 
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5.3.2 Calu3 Model 

Selected images of saline, calfactant, and tyloxapol distribution (labeled with texas red dextran) 

following aerosol deposition on the Calu3 cell cultures are shown in Figure 21.  It was noted that 

in each case, a droplet formed on the surface of the culture just below the cannula tip.  As 

demonstrated by the high concentration of dye remaining in the center of cultures and little or no 

spreading occurred after aerosol deposition for either surfactant.  There studies did not include 

any further hydration steps that were included in only Group 2 experiments.   

 
 
 

Saline           Calfactant   Tyloxapol 

   
 
 
Figure 21: Images captured post aerosol deposition on the Calu3 cell cultures.  Saline (left), calfactant (center), and 
tyloxapol (right) were labeled with texas red dextran.  A droplet formed on the surface and little to no spreading of 

surfactants was observed.  No further hydration protocol was used.   
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Figure 22 shows results from the same experiment on another set of calu3 cells.  In this 

case however, tyloxapol had a larger distribution on the culture following aerosol deposition than 

the saline.  As previously described, we believe this variability is associated with hydration level. 

 
 
 

       Saline      Tyloxapol 

  
 
 

Figure 22: Images captured post aerosol deposition on the Calu3 cell cultures.  Saline (left) and tyloxapol (right) 
were labeled with texas red dextran.  In this case, a larger degree of spreading occurred when tyloxapol was dosed 

on the surface of the culture. Because no further hydration protocol was used, we believe this variability is 
associated with the hydration level. 
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5.3.3 HBE Model – Group 1 

Images captured following an aerosol dose on two different cystic fibrosis cell lines (CF 101 and 

103) are included in Figure 23.  Both the saline and tyloxapol deposited aerosols formed droplets 

on the surface of the cultures and little to no spreading was observed for tyloxapol during these 

initial experiments. 

 
 
 

      Saline        Tyloxapol   

  

  
 
 

Figure 23: Images captured post aerosol deposition on cystic fibrosis cell cultures, CF 101 (top row) and CF 103 
(bottom row).  Saline (left column) and tyloxapol (right column) were labeled with texas red dextran.  A droplet 

formed on the surface and little to no spreading of surfactant was observed.  These group 1 studies did not include 
the added hydration steps included in group 2 experiments. 
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The results from a similar experiment using a third CF cell line, CF 105, are shown in 

Figure 24.  Saline, calfactant and tyloxapol were labeled with 0.1 micron PS spheres.  As 

indicated by the high dye concentration localized to the center of the cultures, neither surfactant 

spread following aerosol deposition and droplets formed on the surface of the cultures. 

 
 
 

Saline           Calfactant     Tyloxapol   

   
 
 

Figure 24: Images captured post aerosol deposition on CF 105 cell cultures.  Saline (left), calfactant (center), and 
tyloxapol (right) were labeled 0.1 micron PS spheres.   Droplets formed on the surface and little to no spreading of 

surfactants was observed.  These group 1 studies did not include the added hydration steps included in group 2 
experiments. 
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These same methods were used testing HBE, non-CF cultures.  Images obtained 

following aerosol deposition of saline and calfactant onto HBE 439 cultures (donor lung – 

scleroderma) are included in Figure 25.  The high dye concentrations localized to the center of 

the culture indicating that the surfactant did not distribute following aerosol deposition. 

 
 
 

      Saline                 Calfactant    

  
 
 
Figure 25: Images captured post aerosol deposition onto HBE 439 cell cultures.  Saline (left) and calfactant (right) 
were labeled with texas red dextran.  A droplet formed on the surface and little to no spreading of surfactant was 

observed.  These group 1 studies did not include the added hydration steps included in group 2 experiments. 
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Images obtained following aerosol deposition of saline, calfactant, and tyloxapol labeled with 0.1 

micron PS spheres onto HBE 456 (donor lungs - chronic aspiration) cultures are included in 

Figure 26.  The images demonstrate some of the variability noted during group 1 studies, 

especially in surfactant cases.  In general the majority of the fluorescent maker was localized to 

the center during these studies. 

 
 
 

Saline    Calfactant   Tyloxapol   

   

   
 
 

Figure 26: Images captured post aerosol deposition on HBE 456 cell cultures.  Saline (left column), calfactant 
(center column), and tyloxapol (right) were labeled with 0.1 micron PS spheres. These group 1 studies did not 

include the added hydration steps included in group 2 experiments 
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Figure 27 includes images of saline, calfactant, and tyloxapol distribution (labeled with 

0.1 micron PS spheres) post aerosol deposition on HBE 457 cultures (donor lungs – right heart 

failure).  Variability in distribution is again noted with little or no significant spreading 

demonstrated by the surfactants.  Collectively, Figures 21-27, from studies of Calu3’s and the 

cell lines in Group 1 demonstrate the degree of variability in the level of surfactant spreading 

observed between and among different cell lines when additional hydration steps were not 

utilized. 

 
 
 

Saline              Calfactant   Tyloxapol 

   

   
 
 

Figure 27: Images captured post aerosol deposition on HBE 457 cell cultures.  Saline (left column), calfactant 
(center column), and tyloxapol (right) were labeled with 0.1 micron PS spheres.  These group 1 studies did not 

include the added hydration steps included in group 2 experiments. 
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5.3.4 HBE Model – Group 2 

To correct the dehydration that we believed to be occurring in the Calu3 studies and the cell lines 

in Group 1, 100 µl of PBS was added to the apical surface of the cells tested in Group 2 shortly 

before the experiment and then aspirated off immediately prior to aerosol delivery.  Figure 28 

shows representative images obtained post aerosol deposition on CF cultured cells (CF 102).  

Qualitatively, both calfactant and tyloxapol demonstrated substantially higher degrees of 

spreading for all three fluorescent markers, than the corresponding saline cases.  A high 

dextran/sphere concentration localized to the center of the culture for the saline cases is notable 

vs. the surfactant cases.  Figure 29 shows the aerosol experiment repeated on CF 102 cultures to 

illustrate the relative repeatability within this CF cell line.  Figures 30 and 31 contain images 

obtained following aerosol deposition on CF 103 and CF 105 cultures, respectively.  Only one 

run for each surfactant and fluorescent maker was performed on these two cell lines due to the 

limited number of cells available for each line.  Similar to the results on CF 102, a high degree of 

spreading was associated with both calfactant and tyloxapol for all three tags compared to the 

corresponding saline cases.  One difference to note between these three CF cell lines was the 

degree of cilia present.  CF 103 and CF 105 both developed cilia; however, CF 102 did not. 

Figures 32-33 and Figures 34-35 contain images of saline and surfactant distribution 

following aerosol deposition on two non-CF cell lines, HBE 456 and HBE 457, respectively.  

Both cell lines developed cilia.  Similar surfactant and saline distributions were found compared 

to the CF cells lines tested. 
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CF 102 (run 1): 

 

Texas red dextran    0.1 micron spheres     1.0 micron spheres 

   

   

   
 
 

Figure 28: Images captured post aerosol deposition onto CF 102 cell cultures (run 1).  Saline (top row), calfactant 
(center row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 
1.0 micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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CF 102 (run 2): 
 

Texas red dextran    0.1 micron spheres      1.0 micron spheres   

    

   

   
 
 

Figure 29: Images captured post aerosol deposition onto CF 102 cell cultures (run 2).  Saline (top row), calfactant 
(center row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 
1.0 micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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CF 103: 

 

Texas red dextran    0.1 micron spheres      1.0 micron spheres    

   

    

   
 
 

Figure 30: Images captured post aerosol deposition onto CF 103 cell cultures.  Saline (top row), calfactant (center 
row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 1.0 
micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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CF 105: 
 

Texas red dextran    0.1 micron spheres      1.0 micron spheres    

   

   

   
 
 

Figure 31: Images captured post aerosol deposition onto CF 105 cell cultures.  Saline (top row), calfactant (center 
row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 1.0 

micron PS spheres (right column). These group 2 studies included additional hydration steps not performed in group 
1. 
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HBE 456 (run 1): 

 

Texas red dextran    0.1 micron spheres      1.0 micron spheres    

   

   

   
 
 
Figure 32: Images captured post aerosol deposition onto HBE 456 cell cultures.  Saline (top row), calfactant (center 

row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 1.0 
micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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HBE 456 (run 2): 

 

Texas red dextran     0.1 micron spheres      1.0 micron spheres 

     

   

   
 
 
Figure 33: Images captured post aerosol deposition onto HBE 456 cell cultures (run 2).  Saline (top row), calfactant 
(center row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 
1.0 micron PS spheres (right column). These group 2 studies included additional hydration steps not performed in 

group 1. 

Saline 

 

 

 

 

 

 

 

Calfactant 

 

 

 

 

 

 

 

Tyloxapol 

  

 60



HBE 457 (run 1): 

 

Texas red dextran    0.1 micron spheres      1.0 micron spheres    

   

   

    
 
 
Figure 34: Images captured post aerosol deposition onto HBE 457 cell cultures (run 1).  Saline (top row), calfactant 
(center row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 
1.0 micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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HBE 457 (run 2): 

 

Texas red dextran    0.1 micron spheres      1.0 micron spheres   

   

   

   
 
 
Figure 35: Images captured post aerosol deposition onto HBE 457 cell cultures (run 2).  Saline (top row), calfactant 
(center row) and tyloxapol (bottom row) were labeled with texas red dextran (left column), 0.1 (center column) and 
1.0 micron PS spheres (right column).  These group 2 studies included additional hydration steps not performed in 

group 1. 
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Similar to the CF cell lines of Group 2, an increased degree of spreading was associated 

with the calfactant on the non-CF HBEs for all three tags.  However, the degree to which 

tyloxapol spread on HBE 456 and 457 appeared to be slightly decreased vs. the CF cases, and 

this pattern was fairly consistent between and among both HBE 456 and 457. 

5.3.5 Drug Formulation 

The final experimental group tested was the liposomal formulation of Amphotericin-B- 

Ambisome ®.  Ambisome in distilled water (Amb+dH2O), the control group, and Ambisome 

reconstituted with a mixture of 50% calfactant and 50% distilled water (Amb+Calf+dH2O), were 

labeled with 0.1 micron PS spheres and delivered to HBE 456, 457, and CF 102 cell cultures 

(n=2).  The group 2 hydration protocol was used.  Figure 36 shows the images obtained post 

aerosol deposition of Amb + dH2O (left column) and Amb+Calf+dH2O (right column) on HBE 

456.  Figures 37 and 38 show the same experiment, delivering aerosol to HBE 457 and CF 102 

cell cultures, respectively.  By qualitative comparison, an increased degree of spreading and 

branching was associated with the Ambisome formulation containing calfactant for all three cell 

lines. 
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HBE 456: 
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igure 36: Images captured post aerosol deposition onto HBE 456 cell cultures.  Ambisome in sterile water (left 
olumn) and Ambisome in calfactant/sterile water (right) were labeled with 0.1 micron PS spheres to trace drug 

movement on the cultures.  The Group 2 hydration protocol was utilized. 
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HBE 457: 

 

Amb + dH2O                 Amb+Calf+dH2O  

  

  
 
 
Figure 37: Images captured post aerosol deposition onto HBE 457 cell cultures.  Ambisome in distilled water (left 

column) and Ambisome in calfactant/ water (right) were labeled with 0.1 micron PS spheres to trace drug movement 
on the cultures.  The Group 2 hydration protocol was utilized. 
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CF 102: 
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igure 38: Images captured post aerosol deposition onto CF 102 cell cultures.  Ambisome in distilled water (left 
umn) and Ambisome in calfactant/ water (right) were labeled with 0.1 micron spheres to trace drug movement on 

the cultures.  The Group 2 hydration protocol was utilized. 
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5.4 QUANTITATIVE ANALYSIS 

Quantitative comparisons of saline and the four surfactants delivered to the PGM are 

summarized in Figure 39.  The areas (mm2) of five trials performed for each surfactant/saline 

solution is plotted for the three different fluorescent tags, texas red dextran (TR), and PS spheres 

(0.1 and 1.0 micron).  The data is presented as means ± the standard deviation.  Tests of 

statistical significance were performed using an unpaired t-test, with p<0.05 being significant.  

All four surfactants spread on the PGM post aerosol deposition to a significantly larger area than 

the saline for all three fluorescent tags.  The t-test yielded the following p values for each PGM 

case:  p≥0.01: CTAB (0.1 PS spheres); 0.001≤p<0.01: CTAB (1.0 PS spheres), SDS (1.0 PS 

spheres); and p<0.001: CTAB (TR), SDS (TR, 0.1 PS spheres), tyloxapol (TR, 0.1, 1.0), 

calfactant (TR, 0.1, 1.0).  A single factor ANOVA was also used and yielded a value of p<0.001. 

Figures 40-46 show similar quantitative comparisons between selected surfactants 

(calfactant and tyloxapol) and saline tested on each cell line in Group 2: CF 102 (Figure 40), CF 

103 (Figure 41), CF 105 (Figure 42), HBE 456 (Figure 43), HBE 457 (Figure 44), all CF cell 

lines combined (Figure 45), and both HBE non-CF cell lines combined (Figure 46).  Tests of 

statistical significance were performed using an unpaired t-test with p<0.05 being significant, for 

the individual cell lines when n≥2 and the corresponding p-values are indicated in each figure.  

An single factor ANOVA was used for each individual cell line and the combined CF and non-

CF cell lines.  The corresponding p-values are listed in Table 9 and in figures 40-46. 
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Table 9: ANOVA p-values obtained for each individual cell line and the combined CF and non-CF cell lines. 

 
 

Cell line p-value 
CF 102 0.003 
CF 103 0.001 
CF 105 0.02 
HBE 456 0.08 
HBE 457 0.10 
CF ALL 0.02 
HBE ALL 0.10 
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Figure 39: Average area of saline (red) or surfactant (CTAB-blue, SDS-green, tyloxapol - yellow, calfactant - gray) 
distribution on PGM post aerosol deposition (n=5).  Each solution was labeled with texas red dextran, 0.1 and 1.0 

micron PS spheres.  A t-test and ANOVA were performed to obtain the corresponding p-values. 

ANOVA: p < 0.001 
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Figure 40: Average area of saline/surfactant distribution on CF 102 cell cultures post aerosol deposition.  Saline 
(red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 1.0 micron PS spheres.  

The Group 2 hydration protocol was used.  A t-test and single factor ANOVA were used obtain the corresponding p-
values.  

ANOVA: p = 0.003 
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Figure 41: Average area of saline/surfactant distribution on CF 103 cell cultures post aerosol deposition.  Saline 
(red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 1.0 micron PS spheres 

(n=1).  The Group 2 hydration protocol was used.  A single factor ANOVA was used.  
 

ANOVA: p = 0.001 
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Figure 42: Average area of saline/surfactant distribution on CF 105 cell cultures post aerosol deposition.  Saline 
(red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 1.0 micron PS spheres 

(n=1).  The Group 2 hydration protocol was used.  A single factor ANOVA was used. 
 

ANOVA: p = 0.02 
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Figure 43: Average area of saline/surfactant distribution on HBE 456 cell cultures post aerosol deposition.  Saline 
(red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 1.0 micron PS spheres 

(n=2).  The Group 2 hydration protocol was used. A t-test and single factor ANOVA were used to obtain the 
corresponding p-values.  

 

ANOVA: p = 0.08 
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Figure 44: Average area of saline/surfactant distribution on HBE 457 cell cultures post aerosol deposition.  Saline 
(red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 1.0 micron PS spheres (n 
varies for each case).   The Group 2 hydration protocol was used. A t-test and single factor ANOVA were used to 

obtain the corresponding p-values. 

ANOVA: p = 0.10 

 73



Texas red dextran        0.1 µm spheres             1.0 µm spheres

A
ve

ra
ge

 A
re

a 
(m

m
2 )

0

10

20

30

40

50

p=0.02

p<0.001

p<0.001

p<0.001

p=0.001

p=0.002

Saline
Tyloxapol
Calfactant

n = 5

n = 5

n = 6

n = 5

n = 4

n = 6

n = 4

n = 5

n = 4

 
 
 

Figure 45: Average area of saline/surfactant distribution on all three CF cell lines combined, CF 102, CF 103, CF 
105, post aerosol deposition.  Saline (red), tyloxapol (blue), and calfactant (green) were labeled with texas red 

dextran, 0.1 and 1.0 micron PS spheres (n varies for each case).   The Group 2 hydration protocol was used. A t-test 
and single factor ANOVA were used to obtain the corresponding p-values. 

 

ANOVA: p = 0.02 
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Figure 46: Average area of saline/surfactant distribution on HBE 456 and HBE 457 cell cultures combined, post 
aerosol deposition.  Saline (red), tyloxapol (blue), and calfactant (green) were labeled with texas red dextran, 0.1 and 
1.0 micron PS spheres (n varies for each case).  The Group 2 hydration protocol was used. A t-test and single factor 

ANOVA were used to obtain the corresponding p-values. 
 

ANOVA: p = 0.10 
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A quantitative comparison of Ambisome in water only and Ambisome in calfactant and 

water for three different cell lines is included in Figure 47.  A t-test was performed for each cell 

line. 
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Figure 47: Average area of Ambisome+dH2O (red) and Ambisome+calfactant+dH2O distribution on HBE 456 
(left), HBE 457 (center), and CF 102 (right) cultures, post aerosol deposition (n=2).  The tag selected was the 0.1 
micron PS spheres.  The Group 2 hydration protocol was used. A t-test was used to obtain the corresponding p-

values. 
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6.0  DISCUSSION 

6.1 MUCUS MODEL 

Porcine gastric mucin (PGM) was selected for these studies based on its similarity to pulmonary 

mucin.  It has been reported that PGM and pulmonary bronchial mucins are similar in 

carbohydrate, amino acid, and sulfate ester composition [90, 91].  In general, mucins are 

characterized by a large peptide backbone with heavily glycosylated regions, both neutral and 

acidic, with linear and disulfide-branching [11].  They carry a net negative charge due to the 

presence of many sialic acid residues.  The bare peptide regions tend to be somewhat 

hydrophobic and make mucins highly surface active [92, 93] and subject to strong interactions 

with the hydrophobic tails of surfactants [93, 94].  A simple phase separation experiment was 

performed as a function of concentration and revealed that a separation formed at concentrations 

~20mg/ml and above, which agrees with phase behavior results obtained by other investigators 

using the PGM model [95, 96]. 

The upper most layer of the airway surface liquid includes mucus in thin layers or in 

larger plaques.  Because of this, and because mucus secretions are typically elevated in diseased 

states (especially in CF) an understanding of mucin and surfactant interaction and the transport 

mechanisms associated with them must be considered.  The imaging results shown in Figures 18 

and 19 indicate that the four aerosolized surfactants significantly enhanced the transport of 

material in the plane of the mucus surface, up to ~1cm distances, after delivery of a 10 second 

aerosol dose.  The surfactant carriers provided 2-20 fold increases in distributed area vs. saline 

(Table 8).  The spreading patterns observed in the aerosol experiments were similar to the 

patterns observed in preliminary mucus experiments where single microliter droplets were 

placed on the PGM (Figure 12).  A quantitative comparison indicated statistically significant 

(p<0.05) increases in distribution area for every surfactant-tag combination, vs. saline (Figure 
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39).  As expected based on their low surface tension values, nonionic tyloxapol and calfactant 

provided the greatest spreading enhancement of all surfactants tested.  The CTAB and SDS did 

not enhance spreading to the extent of the other surfactants, although they still increased 

dispersion vs. saline.  These mucus studies indicate that the marangoni flows associated with a 

surfactant carrier can enhance the spreading of a simulated drug on the PGM surface, when the 

drug-surfactant combination is delivered via aerosol. 

Insights on the mechanism of transport (convection vs. diffusion) can be discerned based 

on the time scale of the spreading.  Both experiments indicated that the enhanced spreading was 

rapid when it occurred, confirming that the transport was convective, as these time scales would 

correspond to an impossibly large lateral diffusion coefficient on the order of 10-4 cm2/s.  The 

size of the three fluorescent tags used ranged from the molecular level (texas red dextran) to 0.1 

and 1.0 micron diameter polystyrene spheres.  All three tags were transported across similar 

distances and with similar distribution patterns, further supporting the assertion that transport is 

convective and not diffusive. 

Although we believe that surfactant spreading was driven primarily by surface tension 

gradients on the PGM, several factors such as surfactant chemistry and the yield stress of the 

mucus might impact spreading.  On PGM, saline, CTAB (cationic) and SDS (anionic) were 

observed over an extended period after deposition as shown in Figure 20.  Saline slowly diffused 

outward during that time period, however both SDS and CTAB slowly retracted, suggesting the 

role of electrostatic charge in the spreading behavior.  This retraction behavior was not observed 

for the tyloxapol and calfactant cases.  Based on studies of the phase transitions of mucus gels, 

swelling/deswelling is dictated by the balance between attractive (hydrogen bonding, 

hydrophobic attraction, van der Waals forces) and repulsive (mainly electrostatic) interactions 

[97-106].  The CTAB may have bound to the negatively charged mucins in response to the 

electrostatic attraction.  At low concentrations, charge neutralization leads to mucin collapse and 

precipitation of a mucin/surfactant complex and the gel may, or may not, reswell as additional 

surfactant binding continues beyond the point of charge reversal, depending on the 

microstructure of the surfactant/mucin complex [107].  This may offer an explanation for the 

retraction behavior observed for CTAB.  In addition, studies on solid oxide surfaces have also 

demonstrated that cationic surfactants can cause the retraction of a spreading droplet [108-110].  

Despite the net electrostatic repulsion, anionic surfactants are known to associate strongly with 
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mucins above a critical aggregation concentration, primarily by associating their hydrophobic 

tails with the bare peptide regions of mucins [93, 94].  On solid oxide surfaces, anionic 

surfactants also enhanced spreading by a marangoni driven flows [111].  This evidence supports 

the initial spreading of the SDS; however, the electrostatic interaction may have affected the 

structure post deposition causing the eventual retraction of SDS.  There may have been little 

interaction between the other surfactants and the mucin, and therefore surface tension gradients 

may have solely affected the transport since no retraction was observed with tyloxapol and 

calfactant.  Studies have indicated that nonionic surfactants interact weakly with mucins [93].   

Airway mucus yield stress has been investigated theoretically by Craster et al [112] and 

its effect on marangoni stresses to induce convective flows.  If the surfactant reduces the surface 

yield stress of the mucus so as to be overcome by the marangoni stress, then flows similar to 

those discussed in the models of SRT for soluble surfactants on viscoelastic layers may be 

established [112].  However, if marangoni stresses remain below the surface yield stress of the 

mucus, the mucus will act like a solid surface with respect to surfactant spreading. 

Our experiments demonstrate that surfactant carriers can improve the distribution of a 

simulated drug over a mucus surface.  However, the more complex potential interactions 

between surfactants and mucus speak to the need for more basic studies that might provide a 

better understanding of the specific interactions between these molecules.  During the 

preliminary experiments, visual observations on thinner mucus layers (<4mm) indicated that the 

surfactant solutions actually induced transport of the mucus itself, thinning the layer slightly.  

The saline solution did not appear to thin the layer.  Infections and biofilms within the mucus 

might be more reachable based on this mode of transport.  Studies on mucin-surfactant 

interaction would allow for the selection of the optimal surfactants for improving drug 

distribution and might also allow for the exploitation of other effects to improve drug efficacy 

(such as mucolytic effects). 
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6.2 CELL CULTURE MODEL 

The HBE portion of the study revealed that when the apical surface of the culture was 

sufficiently hydrated, almost all tested surfactants significantly enhanced spreading vs. saline, on 

both CF and non-CF cells surfaces.  Based on the variability found in the Group 1 HBE studies 

and the calu3 cells, the level of hydration was the key element that affected the degree of 

spreading that occurred on the epithelial surface in the presence of surfactant.  The Group 2 

studies, which included a more aggressive protocol for hydration, yielded more consistent results 

that we believe to be the most physiologically realistic.  However, this could not be definitively 

verified. 

The Calu3 cell line was a useful preliminary model, however due to the absence of a 

native ASL they provided a less physiologically accurate representation of the airway surface.  

Despite measures to limit evaporation during testing, the hydration level of these cells varied day 

to day as demonstrated in Figures 21 and 22.  When saline, calfactant, and tyloxapol were 

delivered to the surface of the Calu3s, a droplet formed on the surface for all three indicating 

there was not a sufficient degree of hydration on the surface to induce a convective marangoni 

flow (Figure 21).  However, the spreading of tyloxapol was found on the calu3s in Figure 22 

with a larger branching out area following deposition, indicating the surface was hydrated 

enough for a surfactant to enhance some spreading.  These cell cultures also produce a high level 

of mucus, which may have also contributed to the varied hydration levels. 

In HBE groups 1 and 2, several cell lines were obtained with varying disease states, 

including both CF and non-CF samples.  On the three CF cell lines in HBE Group 1, tyloxapol 

and calfactant did not enhance spreading (Figures 23 and 24).  This was not surprising since the 

CF cells have a higher probability of exhibiting a depleted ASL, which is a main characteristic of 

the disease.  However, the same variability was found for three HBE (non-CF) cell lines (Figures 

25-27) in the which the ASL volume has been established to be approximately ~7 µm [113] at 

baseline conditions.  There is no reason to believe that the disease states of these HBE’s 

(scleroderma, aspiration/infection, and heart failure) would result in specifically depleted ASL.  

We speculate that the variability in Group 1 was likely caused by different levels of hydration.  
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Other investigators have acknowledged this same hydration problem and have established a 

protocol for preventing ASL evaporation.  Tarran et al prevent ASL evaporation through the 

addition of 100 µl of PFC to the apical surface of the cultures [59].  However, this PFC protocol 

could not be used in the current experiments because of the need for realistic surface conditions 

and immediate access to the surface for aerosol delivery.  We instead devised an alternative 

protocol that included the addition and immediate removal of 100 µl of PBS solution for our 

group 2 studies. 

A factor that may have affected the ASL baseline height and the level of hydration in 

Group1 was the chosen media used to feed the cell cultures.  Several groups studying similar cell 

cultures produce fully differentiated cells using a different range of base medium supplemented 

with various additives.  Specifically, the media used for the cells in this study was DMEM/F-12 

base media supplemented with several additives including epidermal growth factor (EPG) and 

USG, a bovine serum.  The cultures used by Tarran and Matsui et al. are grown in base media, 

laboratory of human carcinogenesis basal medium #9 (LHC-9) and DMEM, with a relatively 

lower level of EPG and the addition of bovine pituitary extract (BPE), but no USG [113].  Sachs 

et al. [114] conducted a study in which these two media protocols were compared to quantify the 

level of differentiation.  Although both medium produced fully differentiated cells, the 

electrophysiological measurements of salt transport varied.  The USG cells (similar to ones used 

in this study) had slightly higher baseline ENaC activity and lower Cl- channel activity compared 

to the media used by Matsui.  Elevated sodium movement across the epithelium would also 

increase the flow of water across the epithelium, depleting the ASL volume, like that of CF cells.  

Sachs’ observations suggest that the differences may have been media dependent and that non-

CF HBEs in USG have electrophysiological characteristics similar to CF cell cultures, a depleted 

PCL and dehydrated mucus layer.  We speculate that this idea provides evidence to support the 

results from Group 1 with the similarities found between the results of the CF and non-CF cell 

lines and the dehydrated surfaces found.  The otherwise “normal” cells may have been ASL 

volume depleted at baseline conditions, again reinforcing the need for the hydration protocol 

used in Group 2. 

Two aspects of the hydration protocol used in Group 2 should be considered.  First, the 

hydration technique may increase the volume of the native ASL beyond physiological levels.  

Tarran et al. [59] measured the surface tension of similar cultures before and after an addition of 
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20µl of PBS to the apical surface and found no significant difference, indicating that the added 

PBS did not dilute the surfactant components present in the culture.  We therefore speculate that 

small volume additions above physiologic norms would not alter the experimental results.  

Also, the possible removal of any surfactant components present on the culture surface 

when the PBS was removed should be considered.  Tarran et al. [59] found that only after 

vigorous washing of the apical surface of similar cultures with the reducing agent DTT in PBS 

did the surface tension finally return to the level of water, at ~72 mN/m.  This indicates that a 

large degree of flushing of the cells would be needed to fully remove the surfactant components 

from the apical surface.  Also, we would also have expected less consistency in our Group 2 

results if surfactant was being removed during the hydration protocol.   

By qualitative comparison of cell lines CF 102, 103, and 105 in Group 2, both tyloxapol 

and calfactant enhanced spreading of all three tags compared to saline; calfactant to a larger 

degree than tyloxapol.  A quantitative summary of all three cell lines combined in Figure 45 

demonstrates that both surfactants exhibited significantly increased dispersion of all three tags 

compared to saline.  Similar results were obtained for HBE 456 and 457 using the hydration 

protocol and are summarized in Figure 46.  The results of Group 2 indicate that in the presence 

of a sufficient ASL volume on both CF and non-CF cells, surfactants enhance spreading of dye 

following aerosol deposition vs. saline.  The final experiment conducted with the liposomal 

formulation demonstrated that Ambisome in calfactant consistently enhanced spreading on both 

CF and non-CF cells lines vs. Ambisome in water.  This further supports the notion that 

surfactant will have a larger distribution on an epithelial surface than a high surface tension fluid 

such as saline or water. 

The degree of spreading of tyloxapol varied somewhat between CF and non CF HBE’s.  

Calfactant spread to a similar distance and with a similar pattern on both of these cultures.  

However, the difference between the area of tyloxapol and saline distribution was consistently 

larger on the CF cultures.  The average difference between saline and tyloxapol distribution on 

the CF cultures was ~2 times greater than on the non-CF cultures, while the average difference 

between the saline and calfactant was between 1-2 times greater on the CF versus non-CF 

cultures.  Potentially this could suggest that the initial level of surfactant present in the non-CF 

cultures may have been higher than the CF cultures and only the lower surface tension surfactant 

(calfactant) was able to enhance spreading.  Studies of CF sputum samples have found decreased 
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levels of surfactant components, specifically surfactant protein D, suggesting surfactant depletion 

to be associated with CF; however, studies have not considered this in the HBE’s.  Additional 

studies of a larger number of CF and non-CF HBE’s would ultimately be necessary to determine 

whether these spreading behaviors are actually different.  Measurements of surface tension in 

these HBE’s and measurements of the concentration of surfactant components would be 

necessary to further speculate on this mechanism. 

6.3 CONCLUSIONS 

In this study, we evaluated the potential for an aerosolized surfactant carrier to enhance 

spreading on two in vitro airway surfaces.  The results demonstrate that a surfactant aerosol 

delivered to either a hydrated mucus surface or a hydrated epithelial cell culture surface enhances 

spreading compared to saline.  Basic studies of mucus-surfactant interaction would offer a better 

understanding of the transport mechanisms observed and provide a basis for selecting optimal 

surfactants.  Future experiments are needed to validate the alternative hydration protocol used in 

Group 2 and to develop similar techniques that provide the most physiologically realistic 

conditions possible.  HBE models are being investigated for many other applications, and will no 

doubt evolve into even more realistic models in the future.  Surface tension measurements of the 

cultures used in this study and detailed studies of their surfactant components would further 

validate these models and provide valuable information on the exact mechanism of dispersion.  

Our results demonstrate the potential for surfactant aerosol carriers to improve the uniformity of 

drug distribution in the lungs.  Further development is needed to demonstrate their efficacy in 

this capacity and their ultimate clinical efficacy with specific drugs. 
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