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Studies have shown that transient speech, which is associated with consonants, transitions 

between consonants and vowels, and transitions within some vowels, is an important cue for 

identifying and discriminating speech sounds. However, compared to the relatively steady-state 

vowel segments of speech, transient speech has much lower energy and thus is easily masked by 

background noise. Emphasis of transient speech can improve the intelligibility of speech in 

background noise, but methods to demonstrate this improvement have either identified transient 

speech manually or proposed algorithms that cannot be implemented to run in real-time. 

We have developed an algorithm to automatically extract transient speech in real-time. 

The algorithm involves the use of a function, which we term the transitivity function, to 

characterize the rate of change of wavelet coefficients of a wavelet packet transform 

representation of a speech signal. The transitivity function is large and positive when a signal is 

changing rapidly and small when a signal is in steady state. Two different definitions of the 

transitivity function, one based on the short-time energy and the other on Mel-frequency cepstral 

coefficients, were evaluated experimentally, and the MFCC-based transitivity function produced 

better results. The extracted transient speech signal is used to create modified speech by 

combining it with original speech. 

To facilitate comparison of our transient and modified speech to speech processed using 

methods proposed by other researcher to emphasize transients, we developed three indices. The 
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indices are used to characterize the extent to which a speech modification/processing method 

emphasizes (1) a particular region of speech, (2) consonants relative to vowels, and (3) onsets 

and offsets of formants compared to steady formant. These indices are very useful because they 

quantify differences in speech signals that are difficult to show using spectrograms, spectra and 

time-domain waveforms. 

The transient extraction algorithm includes parameters which when varied influence the 

intelligibility of the extracted transient speech. The best values for these parameters were 

selected using psycho-acoustic testing. Measurements of speech intelligibility in background 

noise using psycho-acoustic testing showed that modified speech was more intelligible than 

original speech, especially at high noise levels (-20 and -15 dB). The incorporation of a method 

that automatically identifies and boosts unvoiced speech into the algorithm was evaluated, 

showing that this process does not result in additional speech intelligibility improvements. 
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1.0  INTRODUCTION 

The aim of speech enhancement, discussed in Chapter 2, is to improve the intelligibility and/or 

quality of speech in order to facilitate better communication in noisy environments. 

Conventional speech enhancement techniques try to remove noise from a noisy speech signal 

with minimal impact on the speech itself. Another approach to speech enhancement, which has 

not received as much attention, is to modify the speech signal itself, by emphasizing certain 

acoustical cues, in order to make it more intelligible in noisy environments. 

Several studies, also discussed in Chapter 2, have shown that speech transients are 

important acoustical cues for identifying and discriminating speech sounds. Speech transients are 

associated with consonants, transitions between consonants and vowels, and transitions within 

some vowels. Compared to the relatively steady-state vowel segments of speech, these transients 

have much lower energy and thus are easily masked by background noise. 

Yoo et al.. and Tantibundhit et al.., in our research laboratory, identified speech 

transients and showed that selective amplification of speech transients is effective in improving 

the intelligibility of speech in background noise at moderate (SNR -10 dB) and severe (SNR of -

25 to -15 dB) noise levels [1] [2] [3] [4]. However, because of their complexity, the algorithms 

of Yoo et al.. and Tantibundhit et al.. are computationally intense and have not been 

implemented to run in real time.  
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An algorithm proposed by Skowronski et al., which modifies speech by increasing the 

energy of transitional regions and unvoiced speech, was implemented to run in real-time by 

Raghavan et al. [5] [6]. However, this algorithm was only evaluated at a moderate noise level 

(SNR of -6 dB). Another real-time algorithm that improves speech intelligibility by increasing 

the duration and intensity of transient speech was described by Jayan et al. [7]. However, they 

presented psycho-acoustic testing results for only one subject. 

The goal of this study is to develop and evaluate an algorithm to automatically extract 

and enhance transient speech in real-time. The algorithm involves the use of a function, which 

we termed the transitivity function, to characterize the rate of change of wavelet coefficients of a 

wavelet packet transform representation of a speech signal. The transitivity function is large and 

positive when a signal is changing rapidly and small when a signal is in steady state. The 

extracted transient speech signal is used to create modified speech, for speech enhancement, by 

combining the amplified transient speech with original speech and adjusting the modified speech 

so that its energy is equal to that of original speech. The intelligibility of modified speech, 

relative to that of original speech, is evaluated using psycho-acoustic testing. 

This thesis is organized as follows. Chapter 2, which is divided into two main parts, 

begins with a description of the nature of speech and methods that have been proposed for 

speech enhancement. Conventional speech enhancement methods, which we will refer to as 

noise reduction methods, are reviewed. These methods include spectral subtraction and Wiener 

filtering. Our speech enhancement method is based on modification of the original noise-free 

speech to emphasize transient speech to improve intelligibility, and several studies that have 

shown that transient speech is important for speech perception are discussed. This is followed by 

a review of works that have modified or processed speech to improve intelligibility. The second 
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part of Chapter 2 describes established tools and techniques that we will be using in the 

development and evaluation of our algorithm. These include the modified rhyme test, the short-

time energy, the short-time zero-crossing rate, the short-time autocorrelation function, Mel-

frequency cepstral coefficients and wavelet packets. 

In Chapter 3, two alternate definitions of the transitivity function are presented and 

validated using a synthetic signal that models specific transient events that occur in speech. The 

transient extraction algorithm is then described. In the algorithm, speech is decomposed using 

the wavelet packet transform, and a transitivity function is computed for each sequence of 

wavelet packet coefficients. The wavelet packet coefficients are modified based on the 

transitivity functions and recombined to create transient speech. A method to boost unvoiced 

speech, which will be evaluated for incorporation into the transient extraction algorithm, is 

described.  

In order to compare our transient and modified speech signals to transient, modified and 

processed speech signals obtained using methods proposed by other researchers, we developed 

three indices for characterizing and quantifying the extent to which transient speech is 

emphasized by a given method. These indices are described in Chapter 4. Chapter 4 follows with 

illustrations of transient and modified speech signals and comparison, using the three indices, of 

our transient and modified speech signals to transient, modified and processed speech signals 

obtained by other researchers. 

The transient extraction algorithm includes parameters that influence the intelligibility of 

transient and modified speech signals. Use of the best values for these parameters will result in 

the most intelligible transient and modified speech. Chapter 5 describes psycho-acoustic 

experiments that were used to select these parameters and to evaluate the intelligibility of 
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modified speech. Results of these experiments are presented in Chapter 5. The findings of this 

study are discussed in Chapter 6, concluding remarks are given in Chapter 7 and future research 

areas are discussed in Chapter 8. 
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2.0  BACKGROUND 

This Chapter is divided into two parts. The first part, which includes Sections 2.1 and 2.2, 

presents literature reviews on the nature of speech and speech enhancement techniques. The 

review on the nature of speech is used to describe parts of speech that constitute transient speech 

– the speech component that we are developing an algorithm to extract. As will be described, the 

aim of speech enhancement techniques is to improve the quality and/or intelligibility of speech. 

Conventional speech enhancement techniques try to improve the quality of speech by reducing 

the amount of noise in a noisy speech signal. An alternative approach to speech enhancement, 

which has not received as much attention, is to modify the speech signal itself before it is 

corrupted by noise to make it more intelligible in the presence of background noise. Both 

approaches are reviewed. The algorithm we are developing takes the latter approach. 

The second part of Chapter 2, from Section 2.3 to 2.6, describes established tools and 

techniques that we will be using in the development and evaluation of our algorithm. These 

include the modified rhyme test, the short-time energy, the short-time zero-crossing rate, the 

short-time autocorrelation function, Mel-frequency cepstral coefficients and wavelet packets. 
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2.1 THE NATURE OF SPEECH 

In speech production, the lungs begin the process by pushing air upwards [8]. The vocal folds 

may vibrate, causing the air that flows between them to vibrate. The vibration of the vocal folds 

is known as voicing, and speech sounds that are produced with the vocal folds vibrating are 

called voiced sounds. Sounds that are produced with no vibration of the vocal folds and turbulent 

airstream are called unvoiced sounds. The vibrating or turbulent air stream is then modified 

according to the vocal tract – the throat, mouth and nasal cavity. Movement of the tongue and 

lips produces a large number of modifications of the vibrating air stream and thus a wide variety 

of speech sounds. 

Speech sounds can be classified as consonants or vowels. Vowels (which are voiced) are 

made with no major obstruction in the vocal tract so that the air passes through fairly easily. For 

a given speaker, vowels can be completely characterized by their formants [9]. Formants are 

resonant frequencies of the vocal tract and depend upon its shape and length. Consonants involve 

some type of obstruction or constriction in the vocal tract. In addition to being classified as 

voiced or voiceless, consonants can further be classified using the place of articulation, which 

describes where the obstruction occurs in the vocal tract, and the manner of articulation, which 

describes the nature (partial or total) of the obstruction. 

Since vowels are produced during a vocal tract configuration that allows air to flow 

easily, vowels predominately include approximately constant frequency activity, which we will 

refer to as quasi-steady-state activity. Consonants and onset and offsets of vowel formants, 

which are produced during transitions of the vocal tract shape, are characterized by abrupt 

changes in frequency content. Vowels that are characterized by a shift in formant frequency may 

be considered as including transient activity, and consonants that include sustained segments, 
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called hubs, may be considered as including quasi-steady-state activity. In this study, we will 

refer to the collection of transitions into and out of vowel formants, the onset and offset of 

consonants, and rapidly frequency shifting vowel formants as transient speech. 

2.2 SPEECH ENHANCEMENT 

In a communication system where either the speaker or listener is in a noisy environment, or the 

transmission channel is noisy, the intelligibility and quality of speech may be severely degraded, 

making communication difficult if not impossible. This may also fatigue the communicators as 

the speaker may have to raise his/her voice while the listener may have to concentrate more. The 

aim of speech enhancement systems is to improve the quality and/or intelligibility of speech and 

to reduce communicator fatigue in order to facilitate better communication in noisy 

environments. Examples of applications where speech enhancement has provided substantial 

benefits include wireless communication, aircraft-to-control tower communication, within-

aircraft communication, speech recognition, and speech coding [10]. There are two basic 

approaches to speech enhancement: noise reduction and speech modification.  

Noise reduction techniques, such as spectral subtraction, optimum filtering, comb 

filtering, noise cancellation and subspace approaches, try to remove noise from a noisy speech 

signal with minimal impact on the speech itself. Most noise reduction techniques use an assumed 

model of the interfering signal (noise or competing speaker) in an attempt to reduce its effect. 

Although some of these speech enhancement techniques may provide improved speech 

intelligibility, their main focus is to provide improved speech quality. Consequently, evaluations 

of noise reduction techniques typically include objective measures, such as improvements in 
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signal-to-noise ratio and subjective assessments of speech quality, such as the mean opinion 

score (MOS). In a MOS test, subjects listen to speech samples and then rate on a scale of 1 to 5, 

where 1 = unsatisfactory, 2 = poor, 3 = fair, 4 = good and 5 = excellent [11]. Rarely have 

subjective measures of speech intelligibility been included in the evaluation of noise reduction 

techniques. Speech quality and intelligibility are different and should not be confused. Speech 

quality relates to how comfortable it is for a listener to listen to a speech utterance. The utterance 

does not necessarily have to convey meaning. Intelligibility relates to the ability of a speech 

utterance to convey meaning, that is, whether the listener can correctly identify words being 

spoken. 

Speech modification techniques try to enhance features of speech that have been shown 

to be important for speech perception before speech is corrupted by noise. The goal is to produce 

modified speech with higher intelligibility in noisy environments. As the main focus is improved 

speech intelligibility, speech modification techniques have typically been evaluated using 

subjective measures of intelligibility like the modified rhyme test (MRT) [12] [13] [14]. 

Objective measures of intelligibility, like the articulation index (AI), have also been used to 

predict speech intelligibility [15] [16].  

Section 2.2.1 provides an overview of noise reduction-based speech enhancement 

techniques that have been proposed over the years. To understand speech modification-based 

speech enhancement, an understanding of features of speech that are important for speech 

perception is necessary. Section 2.2.2 reviews studies of the importance of certain speech 

features for speech perception. Section 2.2.3 discusses speech enhancement by speech 

modification, including techniques that apply fixed filtering and techniques that identify and 

enhance specific speech cues, such as transient components. 
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2.2.1 Speech Enhancement By Noise Reduction 

This Section reviews several noise reduction techniques, including spectral subtraction, Wiener 

filtering and the minimum mean-square error short-time spectral amplitude estimator, based in 

part on the review by Lim and Oppenheim [10]. 

Spectral subtraction is a noise reduction technique that tries to estimate the short-time 

spectrum of an additive noise that is corrupting a speech signal. The estimated short-time 

spectrum of noise is subtracted from the short-time spectrum of noisy speech to obtain an 

estimate of the short-time spectrum of original speech, and the estimated spectrum is combined 

with the phase of noisy speech to estimate the original speech. These operations can be viewed 

as an attempt to enhance the speech-to-noise ratio by attenuating the short-time spectrum when 

the speech-to-noise ratio is relatively low and not attenuating the short-time spectrum when the 

speech-to-noise ratio is relatively high. Various spectral subtraction methods differ on how the 

estimate of the short-time spectrum of the additive noise is obtained. 

In the original spectral subtraction method, Weiss utilized the difference between the 

autocorrelation functions of voiced speech and noise to reduce noise in noisy speech [17] [10]. 

He described a method that includes a pseudo-cepstrum transform, which when used to 

transform noisy speech, moves most of the noise towards the origin. The noise is then removed 

by setting samples of the pseudo-cepstrum that are close to the origin to zero, and then reversing 

the transform. Boll [18] used the average value of the noise taken during nonspeech activity to 

estimate the noise spectrum. When the estimate of the short-time spectrum of noise was greater 

than the short-time spectrum of noisy speech, Boll set the estimate of the short-time spectrum of 

the clean speech to zero to avoid a negative value. Lim showed that Weiss's method is equivalent 

to that of Boll and is a generalization of spectral subtraction [10]. 
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The spectral subtraction methods of Boll and Weiss result in a distortion called 'musical' 

noise. Musical noise can be described as ringing, warbling, or introducing a tonal quality into 

speech [18]. To reduce the musical noise, Berouti et al. reformulated spectral subtraction by 

multiplying the estimate of the short-time spectrum of noise by a factor α (greater than 1) before 

subtracting it from the short-time spectrum of the noisy speech [19]. Additionally, instead of 

setting the estimate of the short-time spectrum of clean speech to zero when the estimate of the 

short-time spectrum of noise was greater than the short-time spectrum of noisy speech, Berouti et 

al. set it to a non-zero value. Using 1>α  results in an over-estimate of the average noise 

spectrum, which in addition to reducing the musical noise, further reduces the background noise. 

α  was adaptively varied from frame to frame as a function of the frame speech-to-noise ratio.  

Recently, Hu and Yu proposed an adaptive method for estimating the short-time noise 

spectrum that further reduces the 'musical' noise in the enhanced speech [20]. In their method, a 

weighted sum of the average value of the noise taken during nonspeech activity and the ratio of 

the noisy speech to the average value of the noise was used to obtain an estimate of the short-

time spectrum of the noise. 

Another noise reduction technique that has been widely used in speech enhancement is 

Wiener filtering. The Wiener filtering problem is to design a filter to recover a signal ( )nd  from 

noisy observations , where ( ) ( ) ( )nvndnx += ( )nv  is the noise signal. Assuming that both ( )nd  

and  are wide sense stationary and uncorrelated, Wiener considered the problem of 

obtaining coefficients for a filter that produces the minimum mean-squared error estimate of 

 [21].  

( )nv

( )nd

A Wiener filter may be used for noise reduction and noise cancellation. In noise 

reduction, a signal  is estimated from a noise-corrupted observation ( )nd ( ) ( ) ( )nvndnx += . To 
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obtain the coefficients of the Wiener filter, the autocorrelation of the noise must be determined 

from known properties or actual measurements of the noise signal. 

As in the noise reduction problem, the goal of noise cancellation is to estimate a signal 

 from the noise-corrupted observation ( )nd ( ) ( ) ( )nvndnx += . However, unlike noise reduction 

which requires the autocorrelation function of the noise, noise cancellation uses the 

autocorrelation of a secondary signal ( )nv′  that is highly correlated with  but not correlated 

with . The secondary signal  may be obtained by placing a sensor (microphone in the 

case of speech) in the noise field near the signal source. An estimate of the speech signal,

( )nv

( )nd ( )nv′

( )nd̂ , is 

obtained by first obtaining an estimate of the noise signal ( )nv  from the secondary signal ( )nv′  

using a Wiener filter and then subtracting ( )nv  from ( )nx  [21]. 

Related to Wiener filtering and spectral subtraction is an enhancement technique 

proposed by Ephraim and Malah [22]. This method uses a minimum mean-square error (MMSE) 

short-time spectral amplitude (STSA) estimator, which is a function of the clean speech-to-noise 

ratio, referred to as the a priori SNR in their study. The error of this estimator depends on the 

estimate of the a priori SNR given the noisy speech signal. When applied to speech 

enhancement, the MMSE STSA estimator results in colorless residual noise, and thus a 

perceived higher quality and intelligibility of the enhanced speech. 

Ding et al. proposed a speech enhancement method that is related to spectral subtraction 

and Ephraim and Malah's MMSE STSA estimator [23]. In their method, the magnitude squared 

spectra of speech are modeled as the exponential distribution and the estimation is performed in 

the power spectral domain under the MMSE criterion. Ding et al. compared the ability of their 

speech enhancement method to estimate the spectra of clean speech to that of spectral subtraction 

and to the method of Ephraim and Malah using a spectral distortion measure and found that their 

 11 



method outperformed the latter two when the additive noise was white noise or traffic noise at 

SNRs of 0 to 20 dB. 

Spectral subtraction and Wiener filtering can provide substantial improvements in speech 

quality. However, their performance tends to diminish as noise levels approach and fall below 0 

dB. Evans et al. showed that the performance of spectral subtraction, as a pre-processor in 

automatic speech recognition, fell from 97 % to 17 % word recognition as the noise level of 

speech increased from clean speech to an SNR of -5 dB [24]. 

 Also, the primary focus of noise reduction-based speech enhancement techniques is 

improved speech quality and not improved speech intelligibility. In fact, these techniques rarely 

improve speech intelligibility as was shown by Hu and Loizou [25]. Hu and Loizou evaluated the 

intelligibility enhancement of eight speech enhancement techniques: the generalized Karhunen-

Loeve Transform (KLT) approach [26], the perceptual KLT approach [27], the Log Minimum 

Mean Square Error (logMMSE) algorithm [28], the logMMSE algorithm with speech presence 

uncertainty [29], the spectral subtraction algorithm based on reduced delay convolution [30], the 

multiband spectral subtraction algorithm [31], the Wiener filtering algorithm based on wavelet-

thresholded multitaper spectra [32], and the Wiener algorithm based on a-priori SNR estimation 

[33]. They corrupted clean speech with four different types of noise: babble, car, street and train, 

processed the noisy speech using the speech enhancement techniques and then measured the 

intelligibility of the processed speech using formal listening tests. They found that most of the 

speech enhancement techniques were only able to maintain speech intelligibility at the same 

level as that of noisy speech, but not improve it. 
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2.2.2 Speech Perception and Transient Speech 

As mentioned earlier, an alternative approach to speech enhancement is to modify the speech 

signal itself before it is corrupted by noise to make it more intelligible in the presence of 

background noise. Efforts in the speech community to enhance speech in this manner are 

reviewed after the discussion on the acoustical cues that influence speech perception.  

The first task to study perception of speech is to find the cues - the physical stimuli - that 

control perception [34]. Since the invention of the spectrogram at AT&T Bell Laboratories, 

hundreds of articles on acoustical cues that influence the perceived phoneme have been 

published. A few of these articles that influenced the current study are reviewed here. 

Potter et al., in a study of the transitions between stop consonants and vowels using 

spectrograms, found that there are different movements of the second formant of the start of a 

vowel for stops with different places of articulation [35]. Joos also noted that formant transitions 

are characteristically different for various stop consonant-vowel syllables [36]. Liberman 

characterized the formant transitions between stop consonant-vowel syllables and concluded that 

(1) the second formant transition can be an important cue for distinguishing place of articulation 

among either the voiceless stops /p, t, k/ or the voiced stops /b, d, g/ and (2) the perception of the 

different consonants depends on the direction and size of the formant transition and on the vowel 

[37]. In the same study, Liberman determined that the same transitions of the second formant 

observed for stop consonants can be used to distinguish the place of articulation of nasal 

consonants /m, n, ŋ/. Characteristics of the spectrum during the release of the consonant as well 

as formant transitions between consonants and vowels are important cues for identifying the 

place of articulation [38].  
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Third formants of vowels as compared to the first two formants typically carry much 

lower energy and have little or no effect on the phonetic identity of vowels [39]. This has led to 

fewer studies on the effect of third formant transitions on perception. However, a study by 

Liberman found that, when frequencies of the first and second formants and the transitions into 

these formants for the vowels /ae/ and /i/ are fixed, the transition of the third formant influenced 

the perceived place of articulation for voiced stop consonants /b, d, g/ [34].  

These studies relate the place of articulation of stop consonants to the patterns in 

transitions of formants observed on spectrograms. It was noted, however, that spectrographic 

patterns for a particular phoneme typically look very different in different contexts. For example, 

Liberman noted that /d/ in the syllable /di/ has a transition that rises into the second formant of 

/i/, while /d/ in /du/ has a transition that falls into the second formant of /u/ [40]. The most 

important cues are sometimes among the least prominent parts of the acoustic signal [34]. The 

studies cited above also accentuate the importance of formant transitions as acoustic cues for 

identifying and distinguishing some phonemes. Although these studies were conducted in noise-

free environments, we expect the same acoustic cues to be important for identifying and 

differentiating phonemes in noisy environments. 

2.2.3 Speech Enhancement by Speech Modification 

Modified speech that emphasizes speech transitions can be created by applying time-, frequency- 

or time-frequency-domain processes to original speech. Thomas and Niederjohn processed 

speech by highpass filtering with a cutoff of 1100 Hz and an asymptotic attenuation slope of +12 

dB/octave followed by infinite amplitude clipping [41] [42]. The clipper output waveform was 

strictly binary and its axis crossings represented those of the filtered signal in timing and polarity 
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[42].  Psycho-acoustic testing showed that their filtered/clipped speech was more intelligible in 

band-limited (frequency range of 250 to 6800 Hz) white noise than unmodified speech when 

both speech signals are presented at the same SNR. The filter cutoff frequency and asymptotic 

attenuation slope were determined by psycho-acoustic testing of a range of values. In a related 

study, Thomas and Ohley showed that highpass filtering alone improves the intelligibility of 

speech over unmodified speech when both are presented in band-limited (frequency range of 250 

to 6800 Hz) white noise at the same SNR [43]. The filter cutoff frequency and asymptotic 

attenuation slope, determined after psycho-acoustic testing of a range of values, were 1500 Hz 

and +18 dB/octave. Later, Niederjohn and Grotelueschen processed speech by highpass filtering 

followed by amplitude compression to maintain the output signal at a constant amplitude 

independent of the input amplitude [44]. Again the parameters for the highpass filter (cutoff 

frequency of 2000 Hz and asymptotic attenuation slope of +6 dB/octave) were optimized using 

psychoacoustic testing. The filtered/amplitude-compressed speech was more intelligible than 

both filtered/clipped speech and unmodified speech when all were presented in band-limited 

white noise at the same SNR. Niederjohn and Grotelueschen suggested that filtered/amplitude-

compressed speech was more intelligible than filtered/clipped speech because clipping adds 

distortion. Niederjohn and Grotelueschen also evaluated the intelligibility of filtered/amplitude-

compressed speech in noise recorded at a power generating plant and observed intelligibility 

improvements over original speech [45]. 

Thomas and Ravindran showed that the speech modification method of Thomas and 

Niederjohn [42] can improve the intelligibility of speech in which noise is added prior to filtering 

and clipping [46].  
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Villchur proposed a system for multiband speech amplitude compression [47]. He argued 

that without multiband compression, only amplitude ratios between successive speech elements 

can be changed and not that between elements that occur simultaneously. Villchur's system split 

a speech signal into low and high frequency channels, amplitude-compressed and then equalized 

the channel signals before combining them. Equalization was performed to ensure that the 

compressed speech signal was above the threshold of hearing. Psychoacoustic evaluations in 

band-limited random noise showed that speech modified by amplitude compression and 

equalization was more intelligible than unmodified speech. Ramasubramanian et al. 

implemented Villchur's 2-channel amplitude compression scheme using the discrete wavelet 

transform and achieved marginal improvements in intelligibility over Villchur's method [48]. 

Harris and Skowronski proposed an algorithm that moves energy from spectrally 

stationary regions to spectrally transitional regions of speech. The algorithm, which they termed 

energy redistribution spectral transition (ERST), used a normalized energy difference between 

adjacent frames of windowed speech to compute a spectral transition measure. Psycho-acoustic 

testing showed that speech processed using ERST was more intelligible than original speech 

[49].  

Skowronski and Harris also proposed an algorithm that increases the energy of 

consonants relative to the energy of adjacent vowels. The algorithm, which they termed energy 

redistribution voiced/unvoiced (ERVU), used voicing detection based on a spectral flatness 

measure to discriminate between consonants and vowels. Psycho-acoustic testing showed that 

speech modified using ERVU was more intelligible than original speech [5]. The ERVU 

algorithm was later implemented to run in real-time by Raghavan et al. [6]. 
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Chanda and Park described and implemented in real-time a method that applies a tunable 

bandpass filter to enhance consonants relative to vowels [50]. Their method highpass filtered 

consonants at a higher cut-off frequency than vowels, and then enhanced their intensity. 

Simulation showed that speech modified with their method had higher speech intelligibility 

index (SII) scores, especially for male speakers. SII is a measure that is highly correlated with 

speech intelligibility that is a function of the speech-to-noise ratio in different frequency bands 

[51]. 

Jayan et al. described a method to automatically detect regions of speech characterized by 

spectral transitions (referred to as landmark regions in their paper), and enhanced these regions 

by intensity and time-scale modification, without increasing the overall speaking rate [7]. They 

located the landmark regions using the rate of variation in energy and centroid frequency in five 

non-overlapping frequency bands. Listening tests conducted using non-sense syllables showed 

improvements in speech recognition especially at high noise levels (SNR = -9 and -12 dB). 

Gordon-Salant visually segmented consonant-vowel nonsense syllable stimuli into 

consonant and vowel portions and then investigated the effects of (1) increasing the consonant 

duration by 100 %, (2) increasing the consonant-vowel ratio by 10 dB and (3) a combination of 

(1) and (2) [52]. Through psycho-acoustic testing performed using a 12-talker speech babble as 

the background noise, she showed that modifying speech in this manner improves speech 

intelligibility and reduces consonant confusion. Increases in the consonant-vowel amplitude ratio 

produced better performance than the other speech modification methods. In a similar study, 

Hazan and Simpson identified consonantal regions and transitional regions at vowel onsets and 

offsets of vowel-consonant-vowel (VCV) nonsense syllable stimuli and sentence material and 

then evaluated various degrees of enhancements of these regions on speech intelligibility [53]. 
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Filtering these amplified regions to make them more discriminable was also investigated. 

Different enhancement strategies were applied to consonant categories (plosives, fricatives and 

nasals) based on the knowledge of consonant confusions of these consonant categories. Psycho-

acoustic testing in speech-weighted noise showed that speech processed by this method yielded 

statistically higher intelligibility scores. The improvement in speech intelligibility was higher 

when a combination of increase in the consonant intensity and increase in the intensity of 

transitional regions was applied than when just one of the two was applied. The improvements in 

intelligibility were higher for VCV material than sentence material. 

Speech modified by amplifying transients may also help in language comprehension. 

Tallal, having shown that language difficulties of language-learning impaired (LLI) children may 

result from a deficit in processing rapidly changing sensory input, investigated the effect of 

training LLI children with speech modified by increasing the duration of the speech signal while 

preserving the spectral content and naturality and by enhancing transitional elements [54] [55]. 

Evaluation of the same group of LLI children showed significant improvements in speech 

discrimination and language comprehension after daily training using modified. 

In these studies, highpass filtering removed most of the energy associated with the first 

formant and voicing and increased the relative energy of the second formant, suggesting that the 

second formant is more important to speech perception than the first formant, as suggested 

earlier by [56]. Amplitude clipping, amplitude compression, and increasing the consonant-vowel 

ratio emphasizes consonants and transitional regions, i.e. transient speech, re-enforcing the 

suggestion that transient speech provides important cues for the identification and discrimination 

of speech sounds. 
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Speech intelligibility may also be enhanced by direct identification of transient speech, 

followed by amplification of this transient speech. Yoo et al. high pass filtered speech at a cutoff 

of 700 Hz and then applied three time-varying band-pass filters, based on a formant tracking 

algorithm by Rao and Kumaresan, to track and remove a quasi-steady-state component of speech 

[1], [2], [57]. Highpass filtering removed most of the voicing energy and first formant energy. 

The formant tracking algorithm applied multiple dynamic tracking filters (DTF), adaptive all-

zero filters (AZF), and linear prediction in spectral domain (LPSD) to estimate the frequency 

modulation (FM) information and the envelope information. The FM information was then used 

to determine the center frequencies of the DTF and to update the pole and zero locations of the 

DTF and the AZF. The envelope information was used to estimate the bandwidth of the time-

varying band-pass filters. The output of each time-varying band pass filter was considered to be 

an estimate of the corresponding formant. The sum of the outputs of the filters was defined as the 

quasi-steady-state (QSS) speech component, and a transient component was estimated by 

subtracting the quasi-steady-state component from the original speech signal. The quasi-steady-

state component was considered to contain most of the steady-state information of the input 

speech signal and the transient component to contain most of the transient information of the 

input speech signal. A block diagram of the formant tracking speech decomposition scheme is 

shown in Figure 1. Yoo et al. modified speech by combining the amplified transient component 

with the original speech and adjusting the energy of the modified speech to be equal to that of the 

original speech. Psycho-acoustic testing results showed that the modified speech was more 

intelligible than original speech at low signal-to-noise ratios. 
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Figure 1: Block diagram of Yoo et al.'s speech signal decomposition method (From [2]) 

 

Another method that modified speech by identifying and emphasizing transient speech 

was proposed by Tantibundhit et al. [4]. Tantibundhit et al. expanded original speech using the 

modified cosine transform (MDCT) and then used a hidden Markov chain model to describe 

statistical dependencies of the MDCT coefficients and identify the most significant MDCT 

coefficients. Tonal speech was obtained as the inverse MDCT of the most significant 

coefficients. Tonal speech was subtracted from the original speech to obtain nontonal speech. 

Tantibundhit et al. expanded the nontonal speech using the discrete wavelet transform (DWT) 

and then used a hidden Markov tree to model statistical dependencies of the DWT coefficients 

and identify the most significant DWT coefficients. The inverse DWT of the most significant 
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DWT coefficients gave the transient speech signal. Tantibundhit et al. modified speech by 

combining the amplified transient component with the original speech and adjusting the energy 

of the modified speech to be equal to that of the original speech. Psycho-acoustic testing results 

showed that the modified speech was more intelligible than the original speech at severe signal-

to-noise ratios. 

The importance of speech transients as acoustical cues has also been used to improve the 

computational efficiency of automatic speech recognition systems. An example is a technique 

known as variable frame rate (VFR) analysis, where instead of using a fixed window step size 

when computing Mel-frequency cepstral coefficients (MFCC) or linear prediction coefficients 

(LPC) speech feature vectors for automatic speech recognition, the window step size is varied 

dynamically, using a small window step size when the speech signal is changing rapidly 

(retaining most of the frames) and a large window step size when the speech signal is changing 

slowly (discarding many frames). This reduces the computational load of speech recognizers 

without performance loss. The following are variants of variable frame rate analysis. 

Ponting and Peeling proposed a VFR technique where the Euclidean distance between 

speech feature vectors of the current frame and the last retained frame was used in the frame 

picking decision [58]. A frame was picked if the Euclidean distance between that frame and the 

last retained frame was greater than a set threshold.  Zhu and Alwan improved on the VFR 

technique of Ponting and Peeling by weighting the Euclidean distance between speech feature 

vectors with the log energy of the current frame [59]. They also proposed a new frame picking 

method where a frame was picked if the accumulated weighted Euclidean distance was greater 

than a set threshold. Le Cerf and Van Compernolle proposed a VFR method where the Euclidean 

norm of the first derivatives of MFCC feature vectors were used as the decision criteria for frame 
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picking [60] [61]. Their method discards a frame if the derivative measure of that frame is less 

than a threshold.  

Brown and Algazi identified spectral transitions in speech using the Karhunen-Loeve 

transform and utilized them for sub-word segmentation and automatic speech recognition, 

improving recognition rates [62]. 

The two approaches to speech enhancement – noise reduction and speech modification – 

can be combined. Quatieri and Dunn described an adaptive Wiener filter whereby when the 

spectrum of noisy speech is changing rapidly, i.e. transient speech, little smoothing of the short-

time spectrum is applied and when the spectrum is stationary, increased smoothing of the 

spectrum is applied [63]. Adapting the Wiener filter to transient speech helped to avoid the 

blurring of temporal fine structure in transient speech and resulted in enhanced speech that is of 

higher quality and intelligibility. 

 Speech may also be enhanced by emphasizing vowel activity. Cheng and O’Shaughnessy 

emphasized spectral peaks, which they suggested represented vowel activity, and de-emphasized 

spectral valleys of noisy speech improving the quality of speech [64]. 

2.3 EVALUATION OF SPEECH INTELLIGIBILITY 

Speech intelligibility enhancement provided by speech enhancement methods can be evaluated 

using psycho-acoustic procedures such as the modified rhyme test [13] [14]. Generally, in a 

psycho-acoustic test, stimulus sounds are delivered to the ear of a subject, and behavioral 

responses elicited by these sounds are measured. The modified rhyme test (MRT), which was 

used for the psycho-acoustic experiments, is described below. The MRT is an attractive test 
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because it has been shown that repeated exposure to its material does not affect the levels of the 

responses, it can be automated and it is sensitive to consonant sounds. 

 The modified rhyme test (MRT), as its name suggests, is a modification of the rhyme test 

that was originally formulated by Fairbanks [65]. The MRT was proposed by House et al., who 

used it to evaluate the ability of voice communication systems to transmit intelligible speech [12] 

[13]. The modified rhyme test draws stimuli from 50 sets of 6 rhyming monosyllable words, 

mostly of the form consonant-vowel-consonant (CVC), although a few CV and VC words are 

included. The 50 sets of rhyming words include 25 words in which the initial consonant is 

constant (e.g. pus-pup-pun-puff-puck-pub) and 25 words in which the final consonant is constant 

(e.g. lick-pick-tick-wick-sick-kick). The subject was provided with a response form showing 50 

sets of 6 alternatives from which he/she was required to select his/her identification of the 

message. Fifty words, one from each set of rhyming words, were presented at different speech-

to-noise ratios in the order shown in the subject's response form and the subject was instructed to 

draw a line through the item heard. At the end of the test, mean percentage correct scores at each 

speech-to-noise were calculated. 

The modified rhyme test of House et al. is a closed-set test in that the response 

alternatives are available to the subject and the task of the subject is to identify the word heard 

from the set of possible answers. Mackersie et al. designed a word-monitoring modified rhyme 

test procedure using the word list of House et al. [14]. In a word-monitoring test, subjects are 

asked to listen to lists of words and to indicate when a target word has been heard. In Mackersie's 

test, which was completely computerized, a target word appeared on the computer monitor at the 

beginning of each trial and remained displayed as each of the six alternatives for the test item 

was presented auditorily. The subjects were required to push a button as soon as they heard the 
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target word. The subjects heard each of the six alternatives only once and did not have a second 

chance to hear the words. Also, if a subject did not indicate that any of the six words presented 

was the target word seen on the screen, the next target word appeared. As soon as the button was 

pushed, the trial was terminated and the response time, measured as the amount of time that 

elapsed between the end of the stimulus presentation and the subject response, was saved. The 

stimulus words were presented at six different SNRs with the SNR randomly selected for each 

trial. At the end of the test, percent correct score were calculated. 

The modified rhyme test has the advantage that they do not require prior training of 

subjects and have minimal practice effects. House et al. showed that repeated testing of the same 

subjects results in similar percent correct scores [12] [13]. Mackersie's modified rhyme test is 

used in this study. A detailed description of this test is given in Section 5.1. 

2.4 TIME-DOMAIN SPEECH PROCESSING METHODS 

A major goal of much research on speech processing methods is to obtain a more convenient or 

more useful representation of the information carried by the speech signal. Time-domain speech 

processing methods allow for the extraction of features as a function of time. Examples of 

features that can be extracted in the time-domain are energy, zero-crossing rate and the 

autocorrelation function. 

Over a short time segment, properties of the speech signal may be assumed to change 

relatively slowly with time. This assumption leads to a variety of short-time processing methods 

in which short segments of the speech signal are isolated and processed as if they were sustained 

sound with fixed properties. The processing of these short segments is often done at fixed 
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intervals with the segments, sometimes called analysis frames, overlapping. The results of the 

processing of each segment may be either a single number or a set of numbers.  

This section, based on [66], discusses the short-time energy, the short-time average zero-

crossing and the short-time autocorrelation function – time-domain speech processing methods 

used in this study. The application of these methods to voiced/unvoiced detection is also 

discussed. Voiced/unvoiced detection is used in phoneme identification and speech recognition 

to identify phones (speech sounds). In speech intelligibility enhancement, different segments of 

speech may be processed differently depending on whether they are voiced or not. 

2.4.1 Short-time Energy 

The amplitude of the speech signal is generally much lower for unvoiced segments than for 

voiced segments. The short-time energy of the speech signal provides a convenient 

representation that reflects these amplitude variations. In general, the short-time energy is 

defined as [66, pp. 120], 
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where . The signal power is filtered by a linear filter with impulse 

response .  

( ) ( )nwnh 2=

( ) ( )nwnh 2=

The choice of the filter or window function determines the nature of the short-time 

energy representation. If the window duration is too small, i.e. on the order of a pitch period or 

less (2 ms for a high pitch female or a child, 25 ms for a very low pitch male) [66],  will 

fluctuate very rapidly depending on the exact details of the waveform. If the window duration is 

too long, i.e. on the order of tens of pitch periods,  will change very slowly and thus will not 

reflect the changing properties of the speech signal. Clearly there is no single value for the 

window duration that is entirely satisfactory, especially considering the differences in pitch 

period between female/child and male. However a suitable practical choice is a window duration 

of 10-30 ms.  

nE

nE

Another consideration in the selection of a window function is the type of window. For 

example, although both a rectangular window and a Hamming window are lowpass linear filters, 

a Hamming window produces more attenuation in the high frequencies and thus a smoother 

short-time energy representation than a rectangular window of the same duration. A rectangular 

window may also produce edge effects since it is not tapered at the edges. 

2.4.2 Short-time Average Zero-Crossing Rate Function 

A zero-crossing is said to have occurred if successive samples of a signal have different 

algebraic signs. For a sinusoidal signal the zero-crossing rate is proportional to the frequency of 

the sinusoid. The rate at which zero-crossings occur for a non-sinusoidal signal like speech is a 

simple measure of the frequency content. The zero-crossing rate is defined as [66, pp. 128], 
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 with N the number of samples 

of the window function. All that is required to compute  is to check samples in pairs to 

determine whether a zero-crossing has occurred and then compute the average over N 

consecutive samples. 

nZ

Generally, voiced speech has most of its energy in the low frequencies (below 3 kHz) and 

unvoiced speech has most of the energy in the high frequencies. This implies that the short-time 

average zero-crossing rate, which is high for high frequency signals and low for low frequency 

signals, may be used to determine voicing. However, the determination of voicing using the 

short-time average zero-crossing rate is imprecise as there is no average zero-crossing rate to 

discriminate perfectly between voiced and unvoiced speech. 

A more reliable determination of voicing uses a combination of the short-time average 

zero-crossing rate and the short-time energy. A combination of low short-time average zero-

crossing rate and high short-time energy corresponds to voiced speech and a combination of high 

short-time average zero-crossing rate and low short-time energy corresponds to unvoiced speech. 

A combination of high short-time average zero-crossing rate and high short-time energy rarely 

occurs and is unclassified, while a combination of low short-time average zero-crossing rate and 

low short-time energy corresponds to silence. The correspondence of short-time average zero-

crossing rate and short-time energy to voicing is summarized in Figure 2. 
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Figure 2: Use of the short-time average zero-crossing rate and the short-time energy to 

determine voicing. 

 

Although there is no single threshold pair for the short-time average zero-crossing rate 

and the short-time energy for determining voicing for all speakers, use of two time-domain 

processing methods instead of a single method produces more reliable results. 

2.4.3 Short-time Autocorrelation Function 

The autocorrelation function of a deterministic signal ( )mx  is defined as 
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The autocorrelation function representation of the signal is a convenient way to display 

certain properties of the signal. For example, if the signal is periodic with period P samples, then 

the autocorrelation function is also periodic with the same period, i.e. ( ) ( Pkk += )φφ . Also ( )0φ  

is equal to the energy of the signal. 
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The short-time autocorrelation function is defined as [66, pp. 141], 

 

     (5) ( ) ( ) ( ) ( ) ( )∑
∞

−∞=

−−+−=
m

n mknwkmxmnwmxkR

 

It can be shown that . Define ( ) ( )kRkR nn −= ( ) ( ) ( )knwnwnhk += , then using ( ) ( )kRkR nn −= , 

the short-time autocorrelation function can be written as 

 

       (6) ( ) ( ) ( ) ( )∑
∞

−∞=

−−=
m

kn mnhkmxmxkR

 

That is, the value at time n of the  autocorrelation “lag” is obtained by filtering the sequence 

 with a filter with impulse response

thk

( ) ( )knxnx − ( )nhk . 

The short-time autocorrelation function is different from the true autocorrelation 

function. If  is periodic, the true autocorrelation is periodic. However  is not periodic 

but displays large peaks with decaying amplitude at the period of

( )nx ( )kRn

( )nx . The reduction in the 

amplitude of the peaks of  as  increases is due to having less data involved in the 

computation as k increases.  

( )kRn k

Although voiced speech is not truly periodic, its short-time autocorrelation exhibits large 

peaks located approximately at multiples of the “period” of the speech signal. Parts (a) and (b) of 

Figure 3 illustrates the near periodicity of the short-time autocorrelation functions of voiced 

speech. The autocorrelation functions, which are for two voiced segments from the same speech 

utterance, were computed using a rectangular window with a duration of 40 ms. The reduction in 
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the amplitude of the peaks of ( )kRn as increases is clearly visible. The short-time 

autocorrelation of unvoiced speech, also shown in Figure 3, has no periodicity peaks and looks 

like high frequency noise. Consequently voicing/unvoicing may be determined for a segment of 

speech by evaluating whether  for that segment exhibits periodic peaks or looks like high 

frequency noise. Additionally, the exact position of the peaks of 

k

( )kRn

( )kRn  may be used to determine 

the pitch of the speech signal. 

 

 

Figure 3: Short-time autocorrelation functions of voiced speech parts (a) and (b) and of 

unvoiced speech (c). The autocorrelation functions were computed using a rectangular window 

with a duration of 40 ms (From [66]). 
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To eliminate the attenuation and accentuate the peaks of the short-time autocorrelation 

function at the “period” of the signal, the modified short-time autocorrelation function may be 

used. The modified short-time autocorrelation function is defined as 

 

      (7) ( ) ( ) ( ) KkkmnxmnxkR
N

m
n ≤≤+++= ∑

=

0ˆ
0

 

( )kRn
ˆ  is always computed over samples, and samples from outside the interval n  to 

are included in the computation. 

N

1−+ Nn

An alternate procedure for emphasizing the peaks of the short-time autocorrelation 

function at multiples of the “period” of the speech signal is to apply a technique called center-

clipping to the speech signal before computing the short-time autocorrelation function. In center-

clipping, speech is passed through a non-linear transformation ( ) ( )[ ]nxCny =  where [ ]C  is as 

shown in Figure 4. For speech samples above , the clipping level, the output is the input minus 

the clipping level. For speech samples below , the output is zero. Figure 5 compares the short-

time autocorrelation function computed with no clipping and with clipping. Clearly the peaks at 

multiples of the “period” of the speech signal are easier to identify when center-clipping is used.  

LC

LC
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Figure 4: Center clipping (From [66]). 

 

 

Figure 5: Short-time autocorrelation function computed with no clipping (top) and with clipping 

(bottom). The x-axis is the autocorrelation lag  (From [66]). k
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2.5 MEL-FREQUENCY CEPSTRAL COEFFICIENTS 

Today, most automatic speech recognizers use Mel-frequency cepstral coefficients (MFCC), 

which have proven to be effective and robust under various conditions [67]. MFCC capture and 

preserve significant acoustic information better than linear prediction coefficients (LPC) [68]. 

MFCC have become the dominant features used for speech recognition and the following 

discussion of MFCC will follow the description of [69]. Our proposed transient speech extraction 

algorithm uses MFCC to compute a transitivity function that is used to characterize and 

emphasize transient activity in wavelet packet coefficients. 

Figure 6 shows the process for creating MFCC features from a speech signal ( )ns . The 

first step is to convert the speech into frames by applying a windowing function  of length ( )nw

M  samples to obtain  

 

   ( ) ( ) ( )
1

0

M

i
m

s m s m w i m
−

=

= −∑      (8) 

 

Frames are typically 20 to 30 ms in duration with a frame overlap of 2.5 to 10 ms. The 

window function, typically a Hamming window, removes edge effects at the start and end of the 

frame. A cepstral feature vector is generated for each frame. Subscript i  indicates frame number. 
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Figure 6: Process to create MFCC feature vectors from a speech waveform 

 

The next step is to compute the discrete Fourier transform (DFT), ( )ωj
i eS  for each frame 

   i

 

        (9) ( ) ( )∑
−

=

−=
1

0

M

m

mjj
i emseS ωω

 

Using the notation ( ) ( ) 2ωω j
ii eSS = , the log spectrum is represented as 
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   ( ) ( ) 2
loglog ωω j

ii eSS =      (10) 

    

For a power spectrum that is periodic for a sampled data sequence and symmetric with respect to 

0=ω , the Fourier series representation of ( )ωiSlog   can be expressed as [70] 

    

    ( )      (11) ∑
∞

−∞=

−=
n

nj
ni ecS ωωlog

 

where  are the real cepstral coefficients. The spectrum nn cc −= ( )ωiS  discards the phase 

information but retains the amplitude information, which is regarded as the most important 

property for speech perception [69].   

The Mel-scale is a scale that is based on a mapping between actual frequencies and pitch 

as perceived by the human auditory system. This scale is approximately linear up to 1000 Hz and 

logarithmic thereafter. In the next step of the computation, the Fourier spectrum ( )ωiS  is Mel-

scaled by warping the frequency using a filter bank where each filter's spacing and bandwidth is 

determined by a constant mel frequency interval. The spacing of this filter bank, with filters as 

shown in Figure 7, is approximately 150 mels and the width is 300 mels.  Mel-scale filter banks, 

like critical bands, are arranged such that each frequency band contributes about equally to 

speech intelligibility, which emphasizes perceptually meaningful frequencies. 

Denoting the log-energy output of the  filter as , thp p
iS~ Pp ,...,2,1= , the Mel-frequency 

cepstral coefficients are computed as [70] 
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  ( ) ( )
1

1log cos 1,2,...,
2

P
p

i i
p

c n S n k n L
P
π

=

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ %% =    (12) 

 

where L  is the desired length of the spectrum. Equation (12) includes the last step in Figure 6 – 

the computation of the discrete cosine transform (DCT). The discrete cosine transform, which is 

used here as an approximation of the Karhunen-Loeve (KL) transform, has the effect of 

decorrelating the log filter-bank coefficients and compressing the spectral information into the 

lower-order coefficients. 
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Figure 7: Mel-scaled filter bank. The spacing and bandwidth of each filter is determined by a 

constant mel frequency interval (spacing = 150 mels and bandwidth = 300 mels). 
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2.6 WAVELETS PACKETS 

In subband signal processing, a signal is split into a number of subsignals. The subsignals may 

help emphasize specific aspects of the original signal or may be easier to work with than the 

original signal. The subsignals are sometimes called subband signals. The subband signals are 

often downsampled so that the data rates are the same in the subbands as in the original signal. 

The subband signals have to be sufficient to reconstruct the original signal. Wavelet transforms 

can be used for subband signal processing. This section describes wavelet packets – the subband 

signal processing method that was used in the transient speech extraction algorithm. For 

completeness, the continuous wavelet transform, multiresolution analysis, the discrete wavelet 

transform, signal decomposition and reconstruction using wavelets and factors considered in 

choosing a wavelet function are reviewed in Appendix A. The descriptions here and in Appendix 

A are based on [71] [72] [73] [74] [75] [76] [77] [78] [79] and [80]. 

The discrete wavelet transform (DWT) results in a logarithmic frequency resolution; high 

frequencies have wide bandwidths whereas low frequencies have narrow bandwidth [71]. The 

logarithmic frequency resolution of the DWT is not appropriate for some signals, and wavelet 

packets (WP) provide a method to segment the higher frequencies into narrower bands. This 

section discusses the full wavelet packet decomposition. 

In the DWT decomposition, to obtain the next level coefficients, scaling coefficients 

(lowpass branch in the binary tree) of the current level are split by filtering and downsampling. 

With the wavelet packet decomposition, the wavelet coefficients (highpass branch in the binary 

tree) are also split by filtering and downsampling. The splitting of the low and high frequency 

spectra results in the full binary tree shown in Figure 8 and a completely evenly spaced 

 37 



frequency resolution illustrated in Figure 9. In the DWT analysis, the high frequency band is not 

split into smaller bands. 

 

2↓

2↓

( )ng~

( )nh~

)0,0(

)0,1(

2↓

2↓

( )ng~

( )nh~

)1,1(

)1,2(

)0,2(

2↓

2↓

( )ng~

( )nh~

)3,2(

)2,2(

2↓

2↓

( )ng~

( )nh~

2↓

2↓

( )ng~

( )nh~

2↓

2↓

( )ng~

( )nh~

2↓

2↓

( )ng~

( )nh~

)0,3(

)1,3(

)2,3(

)3,3(

)4,3(

)5,3(

)6,3(

)7,3(

 

Figure 8: Three-stage full wavelet packet decomposition scheme 
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Figure 9: Ideal frequency response for the wavelet packet transform 
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In the structure of Figure 8, each subspace is indexed by its depth and the number of 

subspaces below it at the same depth. The original signal is designated depth zero.  

The wavelet packet reconstruction scheme is achieved by upsampling, filtering with 

appropriate filters and adding coefficients. This scheme is shown in Figure 10. This WP 

reconstruction tree structure is labeled the same as the WP decomposition structure. 
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Figure 10: Three-stage full wavelet packet reconstruction scheme 

 

The filters ( )nh~  and  are lowpass whereas filters ( )nh ( )ng~  and  are highpass and 

satisfy the following properties [75] [79]; 

( )ng

1.   and ( ) ( )nhnh −=
~ ( ) ( )ngng −=~ .  

2. , i.e. ( ) ( ) ( )nhng n −−= − 11 1 H  and G  are quadrature mirror filters.  
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3. ( ) 10 ==ωH | and ( ) ( )2~ −= nOnh  at infinity, i.e. the asymptotic upper bound of ( )nh  at 

infinity is . 2−n

( ) ( ) 122 =++ πωω HH  
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3.0  ALGORITHM FOR EXTRACTION OF TRANSIENT SPEECH 

We have been investigating the use of wavelet packets for extraction and emphasis of transient 

speech for real-time speech intelligibility enhancement. The investigations involve the 

development of an algorithm that decomposes a speech signal into several sequences of wavelet 

coefficients using the forward wavelet packet transform, characterizes the rate of change and 

adjusts the wavelet coefficients based on how fast they are changing and synthesizes a transient 

speech signal using the inverse wavelet packet transform. Transient speech is used to create 

modified speech by amplifying and adding it to the original speech and then adjusting the energy 

of the modified speech signal so that it equals that of original speech. For the characterization of 

the rate of change of wavelet coefficients, a function that we called the transitivity function was 

developed. This function is large and positive when the wavelet coefficients have a rapidly 

changing frequency or amplitude and near zero when the wavelet coefficients are in steady-state. 

Wavelet packets are attractive for our application because they provide subband 

decomposition, which allows the detection of transients occurring at different times in different 

frequency bands, and can be implemented in real-time. 

Two alternate definitions for the transitivity function, one based on the short-time energy 

(STE) of wavelet packet coefficients and the other on Mel-frequency cepstral coefficients 

(MFCC) of wavelet packet coefficients, were formulated. The STE-based approach was initially 

given more attention and evaluated experimentally because this approach de-emphasized quasi-

 41 



steady-state activity more than the other approach and our initial goal was to maximize transient 

activity. The two methods for computing the transitivity function are both reasonable ways to 

detect transient speech. However, in informal listening tests, transient speech extracted using the 

MFCC-transitivity function had less 'garbling' artifact noise, a better speech quality and was 

more intelligible than transient speech extracted using the STE-transitivity function. Informal 

listening tests were conducted by listening to original, transient and modified speech of isolated 

words and sentences in noise at various SNRs and making judgments on their intelligibility.  

In this chapter, STE and MFCC transitivity functions are defined. The transient extraction 

method, which can utilize either transitivity function to characterize the rate of change of the 

wavelet coefficients, is described. The creation of modified speech by combining amplified 

transient speech with original speech and adjusting the energy of modified speech so that its 

energy equals that of original speech is described. The incorporation of an unvoiced speech 

booster, which automatically detects and amplifies unvoiced speech segments, to the transient 

extraction algorithm is also described. 

Demonstrations of the transitivity function and transient signals are presented using a 

synthetic signal. 

3.1 THE TRANSITIVITY FUNCTION 

As mentioned earlier two methods to compute a transitivity function were formulated; STE-

transitivity function and MFCC-transitivity function. These functions are described here. 
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3.1.1 The Short-time Energy Transitivity Function 

The short-time energy (STE) transitivity function of a sequence of wavelet packet coefficients 

, for packet  of the decomposition of a speech signal can be computed as 

shown in Figure 11.  is the number of packets in the decomposition and  is the 

decomposition level. The short-time energy (STE) of 

[ ] 10, −≤≤ Kknvk k

LK 2= L

[ ]nvk  is computed using a window 

function [ ]w n  of length M  as 

 

        (13) [ ] [ ](
1 2

,
0

M

k i k
m

E v m w i m
−

=
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A Hamming window with M = 276 samples (25 ms at sampling frequency of 11025 Hz) 

and a window step size of 55 samples (5 ms) were used. A smoothed first derivative of the 

logarithm of the short-time energy is defined as the transitivity function and is computed as 

 

         (14) (
4

,
4

logk i l k n
l

f a E
=−
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where the coefficients  are given by la
60l

la −
=  [81]. The logarithm of the short-time energy 

emphasizes low energy regions compared to high energy regions. The subscripts denote that  

is the value of the transitivity function for the time interval included in the  window segment 

of the  wavelet packet. For a given frame, the transitivity function is large and positive when 

ikf ,

thi

thk
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the wavelet coefficients  of that frame have a rapidly changing amplitude. The transitivity 

function that is computed using the short-time energy will be referred to as STE-transitivity 

function. 

[ ]nvk

 

( )
dt
d

[ ]nvk

ikf ,  

Figure 11: Computation of the transitivity function using short-time energy. 

3.1.2 The Mel-Frequency Cepstral Coefficients-Based Transitivity Function 

To reduce the computational load of automatic speech recognizers, Le Cerf and Van 

Compernolle proposed a variable frame rate method whereby the Euclidean norm of the first 

derivatives of Mel-frequency cepstral coefficients (MFCC) feature vectors was used as a 

decision criterion for frame picking [60] [61]. Frames whose value of this function was higher 

than a threshold were considered more relevant to speech perception as they included transient 

regions and were retained. 
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We expand their idea and apply it to formulate a method for computing the transitivity 

function of a sequence of wavelet coefficients [ ]nvk , 10 −≤≤ Kk  as shown in Figure 12. 

 is the number of packets in the decomposition and  is the decomposition level.  LK 2= L

First, 12 MFCC are computed using a 25 ms. Hamming window function and a window 

step size of 5 ms. The MFCC of each window segment of the wavelet coefficients are computed 

as  
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where ( )ωp
ikV ,

~ ,  is the frequency warped spectrum of Pp ,...,2,1= [ ],k iv n  obtained from the 

magnitude-squared spectrum  ( ) ( ) ( )
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= = ∑ [ of ],k iv n  by filtering  

( )ωikV ,   using mel-scaled filter banks with P  filters as described in Section 2.5. 
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= −∑ thi [ ]kv n  obtained by windowing with window 

function [ ]w n .  12 MFCC were used because L = ( ),k ic n ≈%  0 when  12. The first derivatives 

of the MFCC coefficients   are computed and smoothed to obtain 

L >

( ),k ic n%
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where the coefficients  are given by la
60l

la −
=  [81]. The Euclidean norm of the derivatives  
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is defined as the transitivity function . The subscripts denote that  is the value of the 

transitivity function for the time interval included in the  window segment of the  wavelet 

packet. For a given frame, the norm and hence the transitivity function is large and positive when 

the wavelet packet coefficients  have a rapidly changing amplitude or frequency. 

ikf , ikf ,

thi thk

[ ]nvk

 

First Derivative

Norm()

Smoothing

[ ]nvk

Mel-frequency cepstral coefficients

ikf ,  

Figure 12: Computation of transitivity function using Mel-frequency cepstral coefficients. 

 46 



3.2 ALGORITHM FOR EXTRACTION OF TRANSIENT SPEECH 

A diagram of the method for extraction of transient speech is shown in Figure 13. The algorithm 

includes steps for pre-processing, wavelet decomposition, computation of transitivity functions 

and emphasis of speech transitions and wavelet reconstruction.  
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Figure 13: Transient speech extraction method. 

3.2.1 Pre-processing 

Pre-processing involves passing the speech signal [ ]nx  through a system that reduces the amount 

of energy of the first formant of speech. Without pre-processing, the transient speech signal 

obtained is dominated by low frequency transitions and does not contribute maximally to speech 

intelligibility enhancement [1]. Initially, pre-processing was performed using a 50th order finite 

impulse response (FIR) highpass filter with a cutoff of 700 Hz. The magnitude frequency 

response of this filter, which we will refer to as HPF0 hereafter, is shown in Figure 14. HPF0 

 47 



does not reduce the intelligibility of the speech signal, as was shown by [1], and highpass 

filtering alone can improve speech intelligibility [44] [5]. An experiment performed to select the 

best pre-processing filter is described in Chapter 5. 
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Figure 14: Magnitude frequency response of HPF0 – a 50th order FIR filter with a cutoff 

frequency of 700 Hz. This filter was initially selected for pre-processing. 

3.2.2 Wavelet Decomposition 

In the wavelet decomposition stage, the pre-processed speech [ ]nx′  was decomposed at scale 

level 4 ( =L 4) using the forward wavelet packet transform, resulting in  16 packets 

,  each with a sequence of wavelet coefficients. Splitting the speech signal 

into 

== LK 2

[ ]nvk 10 −≤≤ Kk

K = 16 packets results in wavelet coefficients with good frequency resolution and with 

enough coefficients for a reliable computation of the transitivity function. The wavelet packet 
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transform utilized a Daubechies-18 wavelet function, which was found to have good frequency 

selectivity. Wavelet functions with shorter support size were less frequency selective while 

wavelet functions with longer support size increased the computation time of the algorithm. The 

wavelet and scaling functions and lowpass and highpass decomposition and reconstruction filters 

for the Daubechies-18 wavelet are described in Appendix B. 

3.2.3 Emphasis of Speech Transients 

The next stage is the emphasis of speech transients using the transitivity function. The steps 

involved in this stage are depicted in Figure 15. For each packet, a transitivity function  that 

characterizes the rate of change of the wavelet coefficients 

ikf ,

[ ]nvk  of that packet was computed. 

Subscript  indicates frame number. The transitivity function is used as a weighting function for 

the wavelet coefficients from which the transient speech signal is synthesized.  

i

The transitivity function was computed using the two definitions, resulting in two distinct 

transient speech signals. The transitivity function produces one value per window segment of 

wavelet coefficients. To allow direct multiplication of the wavelet coefficients by the transitivity 

function, the transitivity function  was linearly interpolated to have as many samples as there 

are wavelet coefficients in a packet, obtaining 

ikf ,

[ ]nfk . 
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Figure 15: Emphasis of transients 

 

Steady vowel segments of speech (quasi-steady-state components) have high energy 

compared to transition segments. Even if the relative rate of change during these regions is small, 

the value of the transitivity function may be significant compared to the values during speech 

transitions. To control the amount of quasi-steady-state energy that is included in the transient 

speech signal, a thresholding operation (labeled Thresholding in Figure 15) using a weight 

parameter α  is applied to the transitivity function [ ]nfk  producing . A sample of the 

computed transitivity function for packet , 

[ ]nf t
k

k [ ]nfk  is set to zero when the value of the log short-

time energy corresponding to that sample is greater than a packet threshold , chosen as: ( )kT

 

  [ ]minmaxmin )(log)(log)(log)( kEkEkEkT −+= α    (18) 

 

where ,  are the minimum and maximum values of the short-time energy of the 

wavelet coefficients in packet  over the word or analysis interval, and 0<

min)(kE max)(kE

k α <1 is the weight 

parameter. A sample of the transitivity function whose corresponding value of the log short-time 

energy is less than the packet threshold is left unchanged.  
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When 0.1=α ,  and no samples of the transitivity function are set to 

zero, i.e. . In this case a large amount of quasi-steady-state activity is included in 

transient speech. When

max( ) log ( )T k E k=

[ ] [ ]nfnf k
t

k =

0=α , min( ) log ( )T k E k=  and all samples of the transitivity function are 

set to zero, i.e. . In this case, the entire speech signal is considered quasi-steady-state 

and excluded from the transient speech signal. 

[ ] 0=nf t
k

Equation (18) generates a packet specific threshold ( )kT  that is a function of the short-

time energy of the coefficients of packet  and the weight parameter k α . A single threshold for 

all wavelet packets is not effective because the energy in different packets varies greatly. After 

thresholding, abrupt changes from non-zero-valued samples to zero-valued samples of the 

transitivity function are smoothed by replacing the seven zero-valued samples of the transitivity 

function following or preceding a non-zero-valued sample by a half period of the cosine 

function. 

3.2.4 Wavelet Reconstruction 

The wavelet coefficients were multiplied by the thresholded transitivity function  obtained 

for that packet, enhancing coefficients that correspond to transient speech. The resulting 

thresholded wavelet coefficients 

[ ]nf t
k

[ ]nvk
′  were used to synthesize a signal  that we call the 

transient speech signal. 

[ ]ny
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3.2.5 Unvoiced Speech Booster 

The transitivity function has larger peaks for transitions into and out of high energy formants 

than for transitions associated with low energy events such as unvoiced consonants. The 

incorporation of an unvoiced speech booster to the transient extraction method to increase the 

peaks of the transitivity function that correspond to unvoiced consonants was investigated. A 

diagram of the transient extraction method with unvoiced speech booster is shown in Figure 16. 

In addition to the transient extraction method, this version of the algorithm also includes a 

voiced/unvoiced detection method and an extension method. The output of the voiced/unvoiced 

detection process  is a voiced/unvoiced decision signal that has a value of one when a 

window segment of speech is voiced and a value of zero when it is unvoiced. The extension 

method extends , which has as many samples as there are windowed segments used for 

computing it, to have as many samples as the packet wavelet coefficients giving .  

iVUV

iVUV

[ ]nVUV

 Using the signal , the unvoiced speech booster processes each packet and sets 

samples of the transitivity function that occur when speech is unvoiced to the maximum value of 

the transitivity function for the packet. Samples of the transitivity function that occur when 

speech is voiced or silent unchanged are computed as described in the previous section.   

[ ]nVUV

The two voiced/unvoiced detection methods described in Chapter 2, were considered for 

use with the unvoiced speech booster method – a short-time energy/short-time average zero-

crossing rate-based method and a short-time autocorrelation function-based method. The short-

time autocorrelation function-based method produced better voiced/unvoiced detection results as 

described in Appendix C and its incorporation into the transient extraction algorithm was 

evaluated experimentally. 
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Figure 16: Transient speech extraction method with unvoiced speech booster. Compared 

to the transient extraction method of Figure 13, this version additionally includes a 

voiced/unvoiced detection method and the unvoiced speech booster. 

3.2.6 Speech Modification 

Modified speech  that emphasizes transient speech was formed by combining the transient 

speech signal  amplified by an enhancement factor 

[ ]nz

[ ]ny β  with the original speech , i.e. [ ]nx
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   [ ] [ ] [ ]( )nynxnz βρ +=       (19) 

 

ρ  is a scaling factor used to adjust modified speech so that its energy is equal to that of original 

speech. Including original speech gives the modified speech more voicing than transient speech 

and causes it to sound more natural. Modified speech (not transient speech) is the final speech 

intelligibility enhancing signal that would be presented to a listener in a communication system. 

3.3 ILLUSTRATIONS OF TRANSITIVITY FUNCTIONS AND TRANSIENT 

SIGNALS 

Transitions in a speech signal can manifest as change in amplitude, change in frequency, or 

change in both amplitude and frequency. To show that the transitivity function can identify these 

transitions, transitivity functions and the transient component of a synthetic signal are presented. 

The synthetic signal, with schematic shown in Figure 17, consists of two components. The first 

component, referred to as , is a steady tone of frequency 0.5 kHz with 50 ms. zero-padding at 

the beginning and end. The second component, beginning 50 ms. after and ending 50 ms. before 

the first, includes a tone of frequency  and a transition via a linear chirp of duration  to 

another tone of frequency . The first and the second tones of the second component will be 

referred to as  and , respectively. The duration of the two tones of the second 

component is 200 ms. The duration of component  is equal to the duration  + duration 

of  + duration of chirp + 100 ms. Both components were multiplied by a Tukey window 

to create gradual onsets and offsets. In the synthetic signal, the steady tones are intended to 

1C

1F chirpt

2F

12 −C 22 −C

1C 12−C

22−C
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model quasi-steady-state activity. The onset and offset of the tones and the chirp are intended to 

model transient activity. 

 

Time (s)

0.5
F1

F2

tchirp

C2-2

C2-1
C1

 

Figure 17: Schematic of synthetic signal used to evaluate and compare the transitivity 

functions. 

 

To demonstrate the transitivity function and its use in identifying transients, Figure 18 

shows the time-domain plot and spectrogram for the synthetic signal with  = 1200 Hz,   = 

2600 Hz and  = 80 ms, and Figure 19 shows wavelet coefficients and transitivity functions 

for packets 1, 3, 5, 6, and 7 ( , 

1F 2F

chirpt

[ ]nv1 [ ]nv3 , [ ]nv5  [ ]nv6  and [ ]nv7  in Figure 13) of the scale level 4 

decomposition of this synthetic signal. The spectrogram was computed using a Hamming 

window of length 40 ms, a window step size of 0.1 ms. The spectrogram intensity values (z-axis) 

are logarithmic. The transitivity functions were computed using the MFCC-based method. 

Similar results but with less emphasis of the chirp were obtained using the STE-based method 

transitivity function. Wavelet coefficients [ ]nv1  include 97 % of the energy of  ,  include 

67 % of the energy of ,  and 

1C [ ]nv3

2 1C − [ ]nv5 [ ]nv6  include 50 % of the energy of the chirp, and [ ]nv7  
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include 45 % of the energy of . We expect the transitivity functions to have peaks at times 

that correspond to the onsets and offset of components , 

22 −C

1C 12 −C  and , and during the 

chirp. We also expect the thresholded wavelet coefficients, which are obtained by multiplying 

the wavelet coefficients by their corresponding transitivity functions, to be non-zero when the 

transitivity functions have peaks.  

22 −C
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Figure 18: Time-domain plot and spectrogram for synthetic signal with  = 1200 Hz,  

  = 2600 Hz and  = 80 ms. 

1F

2F chirpt
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Figure 19: Demonstration of transitivity function and its use in identifying transients. Left 

column shows wavelet packet coefficients for packet 1, 3, 5, 6 and 7. The middle column shown 

transitivity functions computed from these coefficients. The right column shows thresholded 

wavelet packets coefficients. 
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The transitivity functions of [ ]nv1 , [ ]nv3 , [ ]nv5  [ ]nv6  and [ ]nv7  have peaks at times that 

correspond to onset and offset of the components , 1C 12 −C  and  and the chirp, as 

expected. The thresholded coefficients for packets 1, 3, 5, 6 and 7 (

22 −C

[ ]nv ′1 , , , [ ]nv ′
3 [ ]nv ′

5 [ ]nv ′
6  

and  in Figure 13), are also shown in Figure 19. These coefficients are non-zero at times 

that correspond to onsets and offsets of the components and the chirp, as expected. The 

thresholded wavelet coefficients are used to synthesize the transient component of this signal. 

Although the transitivity function of packet 7 has a peak when the coefficients of the packet are 

in steady-state, (peak centered at t = 0.088 s), this does not affect the thresholded coefficients of 

this packet because the amplitude of the coefficients during this steady-state segment is very 

small. 

[ ]nv ′
7

To illustrate the transient signal, Figure 20 show a time-domain plot and spectrogram for 

the transient signal extracted from the synthetic signal of Figure 18. The transient signal 

emphasizes the onsets of components  and 1C 12 −C , the chirp and the offsets of component  

and . 

1C

22 −C
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Figure 20: Time-domain plot and spectrogram for transient signal extracted from the synthetic 

signal of Figure 18. The onset, offset of the tones, as well as the chirp, are emphasized. 

3.4 SUMMARY 

A method for extracting transient speech from an original speech signal was described. The 

method involves decomposing a speech signal into 16 packets using the wavelet packet 

transform and computing a transitivity function to characterize the rate of change of the wavelet 

coefficients. The transitivity function, which is computed from Mel-frequency cepstral 

coefficients (MFCC) or from the short-time energy (STE), is used to emphasize the wavelet 

packet coefficients when they are changing rapidly. The inverse wavelet packet transform of the 
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transient-emphasized wavelet coefficients give a transient signal that emphasizes the onset and 

offset of vowel formants and unvoiced consonants. The transient extraction method includes a 

weight parameter, which when varied controls the amount of quasi-steady-state vowel activity 

that is included in the transient speech signal. 

Although MFCCs are not traditionally applied to wavelet coefficients, their application in 

this case is reasonable as will be discussed in Chapter 6. 

Synthetic signals, which model specific transient activities, were used to illustrate the 

transitivity function. The transitivity function has peaks during time segments when the 

frequency or amplitude of a signal is changing rapidly. 
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4.0  COMPARISONS OF TRANSIENT AND MODIFIED SPEECH 

The transient extraction method has been applied to a wide range of speech material, including 

monosyllable consonant-vowel-consonant (CVC) words and sentences. This chapter presents 

results to illustrate transient and modified speech and the effect of different parameter 

values/options on transient speech. Comparisons of our transient and modified speech to 

transient, modified and processed speech obtained by other researchers are also presented. To 

facilitate these comparisons, indices that we developed and use to compare speech signals are 

first described. 

4.1 INDICES FOR COMPARING SPEECH 

In order to compare our transient speech signals extracted using different parameter values to 

each other and to transient speech signals extracted using methods of Yoo et al. and Tantibundhit 

et al., some measure of a speech signal’s "transient-ness" compared to original speech was 

needed. This same measure is required to compare our modified speech to modified or processed 

speech signals that have been proposed by other researchers for enhancement of speech 

intelligibility. This section describes three indices that were developed for this purpose. An index 

P  was developed to compare the effect of a speech modification/processing method on a 

particular region of speech. 
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Important characterizations of transient speech are the extent to which onsets and offsets 

of formants are emphasized relative to steady-state regions of formants and the extent to which 

consonants are emphasized relative to vowels. Two indices were developed for these 

characterizations. Index  was developed to characterize the extent to which consonants are 

emphasized relative to vowels in a speech signal and index Q  was developed to characterize the 

extent to which the onsets and offsets of formants are emphasized compared to steady segments 

in a speech signal [82]. These indices quantify differences in speech signals that are difficult to 

show using spectrograms, spectra or time-domain waveforms. 

R

A common step in the computation of the three indices involves the placement of a time-

frequency mask, rectangular blocks specified by a time interval ( )21, tt  and a frequency interval 

( 1 2, )f f , on a spectrogram of a test word and the calculation of the energy within this mask. An 

example of a time-frequency mask superimposed on a spectrogram is shown in Figure 21. The 

word is ‘pack’ (phonetically transcribed as /pæk/) spoken by a male. This phonetic transcription 

and subsequent transcriptions were obtained from http://dictionary.reference.com/. The word was 

sampled at 11025 Hz and the spectrogram was computed using a 5 ms Hamming window and a 1 

ms window step size. The spectrogram intensity values (z-axis) are logarithmic. The figure also 

identifies parameters , ,  and .  In the example, the time-frequency mask is 

superimposed on the first formant of /æ/ and  =  0.100 s.,  = 0.305 s.,  = 350 Hz and  = 

1200 Hz.  

1t 2t 1f 2f

1t 2t 1f 2f
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Figure 21: Demonstration of time-frequency mask and parameters  , ,  and , 

which are used in the computation of the energy within the time-frequency mask. 

1t 2t 1f 2f

 

The energy within the time-frequency mask ( )2121 ,,, ffttE  can be computed as  

 

   ( ) ( )∑∑
= =

=
2

1

2

1

2
2121 ,,,,

t

tt

f

ff
ftSffttE     (20) 

 

where  is the short-time Fourier transform used to compute the spectrogram. ( ftS , )

4.1.1 Index P 

Index P  was used to compare speech signals. P  is used to compare the effect of a speech 

modification/processing method on a particular region of speech. Specifically, P  is used in 

Section 4.2 to show that transient speech extracted using the MFCC transitivity function retains 
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more energy of diphthongs than transient speech extracted using the STE transitivity function. 

Diphthongs are characterized by formants whose frequency changes with time. 

To compute P , the energy of particular region of interest is computed for transient, 

modified or processed speech Equation (20). The energy for the same region is also computed 

for original speech. If we represent the energy in the region of interest in transient, modified or 

processed speech as  and the energy in the same region in original speech as 

, then index 

( 2121 ,,, ffttEy )

)( 2121 ,,, ffttEx P  is the ratio of the value of ( )2121 ,,, ffttEy  to the value of 

, i.e.  ( )2121 ,,, ffttEx

 

   ( ) ( )
( )2121

2121

,,,
,,,

,
ffttE
ffttE

yxP
x

y=      (21) 

 

P  will typically be expressed as a percentage. A large value of P  indicates an increased 

emphasis of the particular region of interest of speech by a given speech modification/processing 

method. 

4.1.2 Index R 

Index  was developed to characterize the extent to which consonants are emphasized relative 

to vowels in a speech signal. Index 

R

R  is used to quantify the difference in modified and 

processed speech signals and to compare these speech signals. In the computation of index , 

time-frequency masks are manually placed on the initial consonant, vowel and final consonant of 

original and transient/modified/processed speech of a test word. Eighteen words, listed in Table 

R
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1, of the form consonant-vowel-consonant (CVC) obtained from a recording (male speaker) of 

the modified rhyme test (MRT) word list [13] were used as the test words.  

 

Table 1: List of the 18 CVC words that were used for computation of index . These words 

were obtained from the MRT word list 

R

Mat 

Man 

Mad 

Mass 

Sass 

Sat 

Sap 

Sack 

Pad 

Pass 

Pat 

Pack 

Pane 

Back 

Bath 

Tap 

Tack 

Tab 
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Figure 22 demonstrates the placement of time-frequency masks for the computation of R  

for the word pack /pæk/ spoken by a male. The spectrogram intensity values (z-axis) are 

logarithmic. The time-frequency mask on the left, with time and frequency intervals  = (0,    

0.095) s. and 

( 21, tt )

)( 1 2,f f , includes the initial consonant /p/, the mask in the middle, with time and 

frequency intervals (  = (0.100, 0.305) s. and )43 ,tt ( )1 2,f f , includes the vowel /æ/ and the mask 

on the right, with time and frequency intervals ( )65 ,tt  = (0.430, 0.535) s. and ( )1 2,f f , includes 

the final consonant /k/. A single frequency interval of ( )21, ff  = ( )Hz5.55122/,0 =Sf  was used 

for all three time-frequency masks. 
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Figure 22: Demonstration of the placement of time-frequency masks on a spectrogram for 

computation of the index R . Time and frequency intervals for the masks involved in the 

computation of index R  are shown. The word is 'pack' spoken by a male. 
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To compute R , first the energies in the time-frequency masks that include the initial 

consonant, vowel and final consonant are computed for both original and 

transient/modified/processed using Equation (20). That is, separate energy values are computed 

for the initial consonant , vowel ( 2121 ,,, ffttE ) ( )2143 ,,, ffttE  and final consonant 

. The ratio ( ) of the sum of the energy in the consonants (  and 

) to the energy in vowel (

( 2165 ,,, ffttE )

)

VC / ( )2121 ,,, ffttE

( 2165 ,,, ffttE ( )2143 ,,, ffttE ) is then computed  

 

   
( ) ( )

( )2143

21652121

,,,
,,,,,,/

ffttE
ffttEffttEVC +

=    (22) 

 

R  is the logarithm of the value of  for modified/processed speech normalized by the value 

of  for original speech, i.e. 

VC /

VC /

 

   mod/
log

/
ified

original

C V
R

C V
⎛ ⎞

= ⎜⎜
⎝ ⎠

⎟⎟       (23) 

 

The range of the ratio mod/
/

ified

original

C V
C V

 is large and a logarithmic transformation was used to reduce 

the range. If a particular speech processing method emphasizes consonants relative to vowels, R  

> 0 and if it de-emphasizes consonants, R  < 0. Two modified/processed speech signals are 

considered to provide similar emphasis of consonants if they have approximately equal values of 

R . A larger R  value indicates an increased emphasis of consonants. 
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4.1.3 Index Q 

Index Q  was developed to characterize the extent to which the onsets and offsets of formants are 

emphasized compared to steady segments in a speech signal. This index was previously 

described in [82], where it was referred to as the ‘transient index’. In the computation of index 

, time-frequency masks are manually placed on the onsets, steady-state segments and offsets 

of the 2

Q

nd, 3rd and 4th formants of test words. The eighteen test words listed in Table 1 were also 

used to compute Q . Words with relatively steady vowel segments and with 2nd, 3rd and 4th 

formants that were roughly coincident in time were used to provide a relatively unambiguous 

identification of onsets, offsets and steady-state segments of formants. The 1st formant was not 

included because it makes a limited contribution to intelligibility, as was shown in  [1], [83]. 

Time intervals were selected such that a single interval captured the onsets, steady-state 

segments or offsets of formants 2 to 4 for each test word. The minimum width of the intervals for 

onsets and offsets was 0.05 s. The gap between onset or offset and steady-state segment was 

selected to be at least 0.01 s. The frequency intervals for each formant were selected such that 

the intervals of adjacent formants did not overlap. 

Figure 23 demonstrates the placement of time-frequency masks on a spectrogram for the 

computation of index Q . The word is 'pack' (phonetically transcribed as /pæk/) spoken by a 

male. The spectrogram intensity values (z-axis) are logarithmic. The three time-frequency masks 

on the left, occurring during the time interval ( )21,tt  = (0.07, 0.12) s., includes the onset of the 

formants of /æ/. The three time-frequency masks in the middle, occurring during the time 

interval  = (0.13, 0.25) s., include the steady-state segment of the formants of /æ/ and the 

three time-frequency masks, occurring during the time-interval 

( 43 ,tt )

( )65 ,tt  = (0.26, 0.31) s., include 
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the offset of the formants. The frequency intervals are: 2nd formant,  ( )21, ff  = (1200, 2150) Hz, 

3rd formant,  = (2250, 3100) Hz and 4( 43 , ff ) th formant, ( )65 , ff  = (3200, 4300) Hz. 
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Figure 23: Demonstration of the placement of time-frequency masks on a spectrogram for 

computation of index . The word is 'pack' spoken by a male Q

 

To compute index , the energy in each of the nine time-frequency masks are computed using 

Equation (20). Using the mask energies, the ratio of energy in onset/offset to steady-state 

segments was defined for each formant. As an example, the ratio for the third formant is 

Q

  

   
( ) ( )

( )4343

43654321
3 ,,,

,,,,,,
ffttE

ffttEffttEQ +
=   (24) 

 

where ,  and ( )4321 ,,, ffttE ( )4343 ,,, ffttE ( )4365 ,,, ffttE  are the energies of time-frequency 

masks that include the onset, steady-state segment and offset, respectively. Similar ratios  and 

 were computed for the second and fourth formants.  

2Q

4Q
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Index  for a transient, modified or processed speech signal is the logarithm of the sum 

of , 2 to 4, for the 3 formants of transient speech normalized by the sum of  for the 3 

formants of original speech, 

Q

iQ =i iQ

  

   
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝
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=

∑

∑

=

=
4

2
,

4

2
,

log

i
originali

i
transienti

Q

Q
Q     (25) 

  

The range of the ratio ∑∑
==

4

2
,

4

2
,

i
originali

i
transienti QQ  is large and a logarithmic transformation 

was used to reduce the range. If a particular transient speech signal emphasizes onsets and offsets 

relative to steady segment of formants, Q  > 0. If it de-emphasizes onsets and offsets,  < 0. 

Two transient speech signals are considered to provide similar emphasis of onsets and offsets of 

formants if they have approximately equal values of Q . A larger value of Q  indicates increased 

emphasis of onsets and offsets of formants. This index can be applied to any transient speech 

signal without regard to how it was derived. 

Q

4.2 ILLUSTRATION OF TRANSIENT AND MODIFIED SPEECH 

Results, using the word 'pack' from the modified rhyme test list, are presented here to illustrate 

transient speech and the effects of different weight parameter values and the unvoiced speech 

booster on the transient speech. The results are representative of results obtained for all the 

words in the list. The word 'pack', phonetically transcribed as /pæk/, includes a unvoiced bilabial 
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stop consonant /p/, a vowel /æ/, and an unvoiced velar stop consonant /k/. The word was spoken 

by a male and was sampled at 11025 Hz.  

 Quasi-steady state speech, obtained by subtracting transient speech from original speech, 

is also illustrated. Indices Q  and ( )yxP ,  are used to make comparisons between different 

transient speech signals. 

Transient speech extracted using the MFCC and the STE transitivity functions are also 

presented to illustrate the difference between the two. For this illustration, a sentence with 

several diphthongs is used, instead of the word 'pack'. Diphthongs are characterized by formants 

whose frequencies change with time. Using words with diphthongs for this illustration provides a 

clearer demonstration that the MFCC-transitivity function can capture changes in frequency 

better than the STE-transitivity function. 

The time-domain waveform and spectrogram for the word 'pack' are shown in Figure 24. 

This spectrogram and spectrograms presented later were computed using a Hamming window of 

length 5 ms and a window shift of 1 sample (0.1 ms). The spectrogram intensity values (z-axis) 

are logarithmic. 
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Figure 24: (a) Time-domain waveform and (b) spectrogram for the word ‘pack’. 

 

To demonstrate the transient and quasi-steady state speech signals, Figures 25 and 26 

show time-domain waveforms and spectrograms, respectively, for the transient and quasi-steady 

state components of the word 'pack' obtained without and with thresholding. In both figures, the 

left column shows transient speech and the right column shows quasi-steady-state speech. 

Figures 25 and 26 also demonstrate the effect of thresholding by comparing transient speech 

signals extracted using weight parameter values of =α 0.9 and =α 1.0. In both figures, the top 

row shows results for =α 1.0, which is equivalent to extracting transient speech without 

thresholding and the bottom row show results for =α 0.9. A weight parameter value of =α 0.9 
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suppresses most of the quasi-steady state activity in the transient speech from 0.1 to 0.24 s. as 

can be seen in by comparing Figure 25 (a) to Figure 25 (b), and Figure 26 (a) to Figure 26 (b). 
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Figure 25: Time-domain waveforms for transient speech signals extracted (a) without 

thresholding ( =α 1) and (b) with thresholding using =α 0.9. (c) and (d) show quasi-steady state 

speech signals obtained by subtracting (a) and (b) from original speech, respectively. The word is 

'pack' spoken by a male. 
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Figure 26: Spectrograms for transient speech signals extracted (a) without thresholding 

( =α 1) and (b) with thresholding using =α 0.9. (c) and (d) show quasi-steady state speech 

signals obtained by subtracting (a) and (b) from original speech, respectively. The word is 'pack' 

spoken by a male. 

 

In both transient speech signals, the pre-processing highpass filter removed most of the 

energy of the first formant. The transient speech signals emphasize the onset, occurring at 0.09 

s., and the offset, occurring at 0.26 s., of formants of the vowel /æ/. Also, the velar stop 

consonant /k/, from 0.44 s., is emphasized in the transient speech signals particularly at its 

beginning and ending.  

The transient speech signals obtained without thresholding retain more vowel activity. 

The values of index  for transient speech signals for the word ‘pack’ obtained without and with Q
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thresholding are Q  = 0.53 and  = 3.86, respectively. The higher Q  value for the transient 

speech signal obtained with thresholding shows that this signal emphasizes transient speech more 

than the transient speech signal obtained without thresholding. These results show that the 

amount of quasi-steady state energy in a transient speech signal can be controlled by varying the 

weight parameter, 

Q

α . 

Both quasi-steady-state speech signals de-emphasize onset and offset of formants. 

Although the quasi-steady state speech signals appear to be similar to the original, their values of 

index  are less than zero (Q  = -1.49 and Q  = -1.29 without and with thresholding, 

respectively), which indicates de-emphasis of onset and offset of formants.   

Q

During informal listening tests, as weight parameter α  for the thresholding operation 

decreased from one towards zero, there was an increase in a 'garble-like' artifact noise and an 

associated decrease in speech quality. However, transient speech was perceived to be more 

emphasized as α  decreased.    

To demonstrate the effect of the unvoiced speech booster (USB), Figure 27 shows 

spectrograms for transient speech signals for the word 'pack', obtained without and with the use 

of the unvoiced speech booster. Figure 27 (a) is a repeat of Figure 26 (a). The index P  equals 

116% without USB and 299% with USB, showing that the transient speech signal extracted with 

incorporation of the unvoiced speech booster includes more energy of the unvoiced consonant 

/k/. Index P  can have values greater than 100% because the transitivity function is allowed to 

have values greater than 1 which result in boosting of energy by the extracted transient speech. 

The transient speech extracted without USB does not emphasize the energy of the consonant /k/ 

between frequencies of 1 and 2 kHz and above a frequency 3 kHz, as can be seen in Figure 27 
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(a). In informal listening tests, consonants were slightly more intelligible in noise and sounded 

more natural when the unvoiced speech booster was used.  
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Figure 27: Demonstration of the effect of unvoiced speech booster. Spectrograms for 

MFCC-based transient speech signals obtained (a) without and (b) with utilization of unvoiced 

speech booster. The word is ‘pack’ spoken by a male. 

 

A second example is presented to illustrate the difference between transient speech 

signals extracted using the MFCC-transitivity function and transient speech signals extracted 

with the STE-transitivity function. The sentence 'Here-is-a-nice-quiet-place-to-rest,' phonetically 
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transcribed as /hɪər-ɪz-eɪ-naɪz-‘kwaɪɪt-pleɪs-tu-rɛst/, spoken by a male is used for this example. 

This sentence was obtained from the CDROM that accompanies [84]. The sentence includes 

diphthongs, which demonstrate more clearly the differences between the two transient speech 

signals. The spectrograms for the original speech signal and the two transient speech signals are 

shown in Figure 28. The two transient speech signals were adjusted to have equal energy. The 

frequencies of the second formants of the vowels /ɪə/ in 'here' between 0.03 and 0.19 s., /aɪ/ in 

'nice' between t = 0.40 and t = 0.56 s., /aɪɪ/ in 'quiet' between t = 0.78 and t = 0.9 s. and /eɪ/ in 

'place' between t = 1.1 and t = 1.24 s are changing with time. Time-frequency masks were 

superimposed on these vowels and used to compute values of index ( )yxP ,   for comparing the 

transient speech signals. These values are presented in Table 2.  

The two transient speech signals are similar in that they both emphasize onset and offset 

of vowel formants and consonants. However transient speech extracted using the STE-

transitivity function does not include as much of the energy of second vowel formants that are 

changing in frequency as does the transient speech extracted using the MFCC-transitivity 

function. In informal listening tests, the MFCC-based transient speech had less 'garble-like' 

artifact noise and was more intelligible. 
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Figure 28: Spectrograms for (a) original speech and transient speech signals extracted 

using (b) STE-based transient speech signal (c) MFCC-based transient speech signal for the 

sentence 'Here-is-a-nice-quiet-place-to-rest,' spoken by a male. The rectangles superimposed on 

the spectrograms are time-frequency masks used to compute index P . 
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Table 2: Values for P  for the time-frequency masks that include the second vowel 

formants of the vowels /ɪə/ in 'here', /aɪ/ in 'nice', /aɪɪ/ in 'quiet' and /eɪ/ in 'place'. 

P  

Vowel STE-based transient 

speech 

MFCC-based transient 

speech 

/ɪə/ in 'here' 5.97 % 10.9 % 

/aɪ/ in 'nice' 0.571 % 1.04 % 

/aɪɪ/ in 'quiet' 14.6 % 31.4 % 

/eɪ/ in 'place 7.15 % 9.11 % 

4.3 COMPARISON TO OTHER SPEECH MODIFICATION METHODS 

Indices  and Q R  and spectrograms were used to compare our transient and modified speech to 

transient, modified and processed speech obtained by other researchers. In particular, the 

following three sets of comparisons were made  

Our transient speech was compared to transient speech obtained using the algorithms of 

Yoo et al. [2] and Tantibundhit et al. [4] to show that, like their transient speech, our transient 

speech emphasizes onsets and offsets of vowel formants relative to steady formant activity. 

Additionally, we demonstrate that our algorithm can extract transient speech signals that are 
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similar to those identified by Yoo et al. and Tantibundhit et al., by adjusting the weight 

parameter. 

In the second set of comparisons, our modified speech is compared to modified speech 

obtained using the algorithms of Yoo et al. [2] and Tantibundhit et al. [4] and to processed 

speech obtained using the algorithm of Villchur [47], Skowronski et al.  [5] and Gordon-Salant 

[52] to evaluate the emphasis of onsets and offsets of vowel formants provided by our modified 

speech signal relative to these other modified/processed speech signals. Index Q  and 

spectrograms are used for these comparisons. Villchur processed speech by splitting it into low 

and high frequency channels using filters, amplitude-compressing and equalizing each channel 

and then combining the signals from each channel [47]. Skowronski et al. processed speech by 

increasing the energy of unvoiced consonants relative to the energy of adjacent vowels [5]. 

Unvoiced segments were automatically identified using a spectral flatness measure to 

discriminate between consonants and vowels. Gordon-Salant processed speech by increasing the 

energy of manually identified consonants [52]. 

In the last set of comparisons, we evaluate the extent to which our modified speech 

emphasizes consonants relative to vowels. This emphasis of consonants is compared to that 

obtained by the algorithms of Yoo et al., Tantibundhit et al., Villchur, Skowronski et al. and 

Gordon-Salant [2] [4] [47] [5] [52]. Index R  and spectrograms are used for these comparisons. 

Indices  and Q R  were computed following the methods described in Section 4.1. 

Our transient speech was created using the MFCC-based algorithm without the unvoiced 

speech booster and our modified speech was created using this transient speech with, like Yoo et 

al. and Tantibundhit et al., an enhancement factor of =β 12. Similar results were observed when 

using modified speech created with the STE-based transient speech.  
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The modified speech signals of Yoo et al. and Tantibundhit et al. were obtained directly 

from them. Skowronski and Harris' processed speech, which emphasizes unvoiced consonants, 

was created using their software implementation of their method (available at 

http://www.cnel.ufl.edu/~markskow/). Gordon-Salant's processed speech was created by 

identifying consonant and vowel segments in CVC words manually, computing the root-mean-

square energy of these consonants and vowels, and then adjusting the amplitude of the 

consonants to achieve an increase in the consonant-to-vowel ratio of 10 dB. Villchur's modified 

speech was created using our software implementation of his method. The amplitudes of all 

modified speech signals were adjusted so that their energies equal that of original speech. 

4.3.1 Comparison of Transient Speech 

4.3.1.1 Identification of Weight Parameter 

To identify weight parameter values for our algorithm that are required to extract 

transient speech signals that match transient speech of Yoo et al. and Tantibundhit et al., 

transient speech for the 18 test words was extracted for a range of weight parameter (α ) values 

from α  = 0.7 to α  = 1, and values of Q  computed. The transitivity function, and hence the 

transient component, was essentially zero for α  < 0.7. Figure 29 shows Q  averaged over the 18 

words as a function of α . As α  decreases ( ( )iT  decreases, Equation (18)), the value of Q  

increases, indicating that steady formant segments in the transient speech signal are increasingly 

de-emphasized. The range of average  values was (1.2, 18.01) and the minimum was obtained 

at 

Q

α  = 1.0. 
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Values of  for the 18 test words (Table 1) were then averaged over the test words  for 

transient speech of Yoo et al. and Tantibundhit et al., and the average values were  = 0.60 

and  = 4.53, respectively. Values of 

Q

YQ

TQ α  that result in our transient speech that are estimates of 

Yoo's and Tantibundhit's transient speech were then obtained from Figure 29, yielding α  = 1.0 

(  = 1.2) for Yoo's transient speech and 0.1=αQ α  = 0.875 (  = 4.60) for Tantibundhit's 

transient speech. Since the minimum value of  obtained using our method (1.2 at 

875.0=αQ

Q α  = 1.0) is 

greater than  for Yoo's method, setting Q α  = 1 provided the best estimate of Yoo's transient 

speech that we could obtain. A closer match was obtained for Tantibundhit's method because the 

average value of Q  for his transient speech is within the range (1.12, 18.01) of values of Q  

obtained with our method.  
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Figure 29: Q  vs. α  for our transient speech. Filled circle shows value of α  that 

produces a value of Q  that matches the value of Q  obtained for Tantibundhit's transient speech. 

4.3.1.2 Comparison of Transient Speech 

Similarities and differences in transient speech components obtained with the three 

methods can be illustrated using the word 'pack', which is phonetically transcribed as /pæk/ and 

includes an unvoiced bilabial stop consonant /p/, a vowel /æ/ and an unvoiced velar stop 

consonant /k/. Figure 30 shows the spectrogram of 'pack' with the time-frequency masks used to 

compute the index  superimposed. The word 'pack' is from the list of 18 test words of Table 1 

which were used to compute the indices  and Q .  

Q

R
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Figure 30: Spectrogram for the word 'pack', phonetically transcribed as /pæk/. The dashed 

rectangles are the time-frequency mask used to compute the index . Q

 

Figure 31 shows Yoo's and Tantibundhit's transient speech signals and our transient 

speech signals that are estimates of their signals. Our transient speech signals were extracted 

using α  = 1.0 to match Yoo's transient speech and α  = 0.875 to match Tantibundhit's transient 

speech. The top two panels of Figure 31 compare Yoo's transient speech to our transient speech 

extracted using α  = 1.0, and the bottom two panels compare Tantibundhit's transient speech to 

our transient speech extracted using α  = 0.875. All transient signals deemphasize the steady 

state segment of the vowel /æ/ and emphasize the onsets and offsets of formants of this vowel. 

The bilabial stop consonant /p/, occurring between 0 and 0.1 s and the velar stop consonant /k/, 

starting at 0.44 s, are emphasized by all four transient speech signals. Tantibundhit's transient 

speech retains more low frequency energy than the other transient speech because Tantibundhit 

did not apply highpass filtering. 

The transient speech signals extracted using Yoo's method (Figure 31(a)) and our method 

with α  = 1.0 (Figure 31(b)) are similar in that both retain some of the steady state vowel 

activity. The transient speech signals extracted using Tantibundhit's method (Figure 31(c)) and 

our method with α  = 0.875 (Figure 31(d)) are similar in that both strongly de-emphasize steady-
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state vowel activity. A difference between Tantibundhit's transient speech and our transient 

speech (α  = 0.875) is that the former more completely removed energy associated with the 

steady-state segment of the 3rd formant, while our transient speech retained some of this energy. 
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Figure 31: Transient speech extracted using (a) Yoo's method, (b) our method withα  = 

1.0, (c) Tantibundhit's method, and (d) our method with α  = 0.875. The word is 'pack' /pæk/ 

spoken by a male. 
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For this word, values of the index Q  are  = 1.26,   = 1.12,  = 4.52 and 

 = 4.51. All four values are greater than zero, indicating that all four transient speech 

signals emphasize onsets and offsets of formants, relative to steady formant segments.  is 

close to  indicating that our transient speech to match Yoo's transient speech emphasizes 

onset and offset of formants to a similar extent as Yoo's transient speech.  is close to , 

indicating that our transient speech to match Tantibundhit's transient speech emphasizes onset 

and offset of formants to a similar extent as Tantibundhit's transient speech. 

YQ 0.1=αQ TQ

875.0=αQ

0.1=αQ

YQ

875.0=αQ TQ

The average values of  obtained for the 18 test words were  = 0.60,  = 1.12, 

 = 4.53 and  = 4.60. All these values are greater than zero, indicating that our method, 

like the methods of Yoo et al. and Tantibundhit et al., emphasizes formant onsets and offsets 

relative to steady-state segments of formants.  is greater than , which indicates that 

Tantibundhit's method de-emphasizes steady formant activity more than Yoo's method. 

Q YQ 0.1=αQ

TQ 875.0=αQ

TQ YQ

4.3.2 Comparison of Modified Speech to Illustrate Emphasis of Formant Onset and 

Offset 

Index  was applied to modified speech obtained using Yoo's method, Tantibundhit's method, 

our method with 

Q

α  = 1.0 (to match Yoo's modified speech), our method with α  = 0.875 (to 

match Tantibundhit's modified speech) and processed speech obtained using the methods of 

Villchur, Skowronski and Gordon-Salant. Following Yoo et al. and Tantibundhit et al., an 

enhancement factor value of β  = 12 was used for both our modified speech signals. Creation of 

modified speech by adding amplified transient speech to original speech results in modified 
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speech that includes steady-state vowel segments and low frequency energy like original speech 

but also emphasizes onset and offset of formants and consonants.  

The bar chart of Figure 32 shows the average values of index Q  and standard error bars 

for the different versions of modified and processed speech for the 18 test words. Values of Q  

for all modified/processed speech are greater than zero, indicating that all methods emphasize the 

onset and offset of formants. Tantibundhit's modified speech and our modified speech to match 

his modified speech have the highest average values of Q , which was expected because both 

speech signals are created using transient speech that strongly emphasizes onset and offset of 

formants. The processed speech of Skowronski and Gordon-Salant have the lowest average 

values of Q , which was also expected because these processed speech signals were intended to 

specifically emphasize consonants and not formant onsets and offsets. 
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Figure 32: Average values and standard error of index  for (a) Yoo's modified speech, (b) Our 

modified speech that is an estimate of Yoo's (

Q

α  = 1.000), (c) Tantibundhit's modified speech, (d) 

Our modified speech that is an estimate of Tantibundhit's (α  = 0.875), (e) Skowronski’s 

processed speech, (f) Villchur's processed speech, and (g) Gordon-Salant's processed speech. 

Index Q  is used to compare the relative emphasis of onset and offset of formants obtained with 

the different methods. 

 

4.3.3 Comparison of Modified/Processed Speech to Illustrate Emphasis of Consonants 

To evaluate the extent to which our algorithm emphasizes consonants relative to vowels and to 

compare this emphasis to that obtained using the methods of Yoo et al., Tantibundhit et al., 
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Skowronski et al., Villchur and Gordon-Salant, index R  was applied to these speech signals. 

The bar chart of Figure 33 show average values and the standard error bars of index R  for the 

different versions of modified and processed speech. 

The average value of R  for our modified speech that is an estimate of Tantibundhit's 

modified speech, like the latter, is greater than zero, indicating that both modified speech signals 

emphasize consonants relative to vowels. Our modified speech to match Yoo's modified speech, 

together with Yoo's modified speech, showed a de-emphasis of consonants ( R  < 0). Speech 

processed using the methods of Skowronski et al., Villchur and Gordon-Salant also showed 

emphasis of consonants ( R  > 0), with the greatest emphasis obtained by Gordon-Salant. The 

high average value of R  and the narrow standard error interval for speech processed using the 

method of Gordon-Salant are due to the fact that the consonant-vowel boundaries used for her 

method and boundaries used for the computation of index R  are matched very closely, since 

they are both manual processes performed by one person (the author). 
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Figure 33: Average values and standard error bars of index R  for (a) Yoo's modified speech, (b) 

our modified speech that is an estimate of Yoo's, (c) Tantibundhit's modified speech, (d) Our 

modified speech that is an estimate of Tantibundhit's, (e) Skowronski's processed speech, (f) 

Villchur's processed speech and (g) Gordon-Salant's processed speech. Index R  is used to 

compare the relative emphasis of consonants obtained with the different methods. 

4.4 SUMMARY 

Three indices that can be used to compare speech signals processed using different methods were 

described. Index  is used to evaluate a single region of speech. A large value of index ( yxP , )
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( yxP , )  indicates an increased emphasis of the particular region of interest by a speech 

modification/processing method. Index R  was used to characterize the extent to which a 

processed/modified speech signal emphasizes consonants relative to vowels. If a processed 

speech signal emphasizes consonants, R  > 0 and if it de-emphasizes consonants, R  < 0. Index  

 was used to characterize the extent to which a processed/modified speech signal emphasizes 

onsets and offsets of formants relative to steady-state segments of formants. If a processed 

speech signal emphasizes onsets and offsets of formants, Q  > 0 and if it de-emphasizes onsets 

and offsets of formants,  < 0.  

Q

Q

Examples of transient speech signals were presented to illustrate transient speech itself 

and to illustrate the effects of different weight parameter values and the unvoiced speech booster 

on the transient speech. Examples of transient speech were also presented to demonstrate the 

difference between transient speech signals obtained using the MFCC transitivity function and 

the STE transitivity function. For this demonstration a sentence with several diphthongs was 

used instead of a word because the differences between the two transient signals are more 

evident in speech material with diphthongs. The transient speech extracted using the MFCC-

transitivity function is sensitive to changes in frequency that are not accompanied by changes in 

energy or amplitude. Transient speech extracted using the MFCC-transitivity function is also 

more intelligible than transient speech extracted using the STE-transitivity function. 

We showed that our algorithm can extract transient speech signals that are similar to both 

Yoo's and Tantibundhit's transient speech components by adjusting the weight parameter. We 

also compared our modified speech to the modified speech signals of Yoo et al. and Tantibundhit 

et al., and the processed speech signals of Skowronski et al., Villchur and Gordon-Salant [2], [4], 
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[5], [47], [52] and showed that the relative emphasis of consonants provided by our modified 

speech can be increased by use of the unvoiced speech booster. 
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5.0  PSYCHOACOUSTIC EVALUATIONS AND SELECTION OF ALGORITHM 

PARAMETERS 

This chapter describes procedures used to select parameters for the MFCC-based transient 

extraction and speech modification algorithm and presents results for the evaluation of this 

algorithm. The transient extraction algorithm includes a pre-processing stage to reduce the 

energy of the first formant and a weight parameter α  to control the amount of quasi-steady-state 

energy in the transient speech signal. The creation of modified speech using the extracted 

transient speech involves use of an enhancement factor β . All of these parameters (pre-

processing filter, α  and β ) influence the intelligibility of the modified speech signal. The 

algorithm also includes an unvoiced speech booster for increasing the energy of unvoiced 

speech. Psycho-acoustic experiments with the modified rhyme test (MRT) were used to select 

these parameters and to evaluate the intelligibility of modified speech with and without the 

unvoiced speech booster. 

The best value for the parameters were selected one at a time using experiments in the 

order pre-processing filter, weight parameter, enhancement factor, with the later experiments 

using the best parameter values from the earlier experiments. The differences between parameter 

values that were observed in these experiments were small, and selection decisions were based 

on the highest percent correct values. Standard errors are presented with the data to show 

variability of the data. 
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5.1 METHODS FOR PSYCHOACOUSTIC EVALUATIONS 

The modified rhyme test protocol software used by Yoo et al. [1] [2], developed from House et 

al. [12] [13] and Mackersie and Levitt [14], was used to measure the intelligibilities of original 

and modified speech. This test has been constructed to support twelve stimulus conditions, where 

a condition is a stimulus treatment (e.g. original speech, highpass filtered speech, modified 

speech) delivered at a given signal-to-noise ratio (SNR). Different stimulus conditions were used 

for the selection of each algorithm parameter and for the evaluation of the algorithm, as will be 

explained. A description of the modified rhyme test protocol follows. 

Volunteer subjects with negative otological histories and hearing sensitivity of 15 dB HL 

or better by conventional audiometry (250-8000 Hz) were tested following an experimental 

protocol approved by the University of Pittsburgh Institutional Review Board. The modified 

rhyme test list includes 50 sets of monosyllabic rhyming words, 25 of which differ in the initial 

consonant and 25 differ in the final consonant. Each set consisted of six rhyming words with an 

interval between words of 0.25 s.  

Subjects sat in a sound-attenuated booth and listened to sets of test words delivered 

monaurally in background noise through TDH-39 supra-aural headphones. The background 

noise used for all experiments conducted for this study was speech-weighted noise. The sound 

pressure spectrum level of speech-weighted noise is constant from 100 Hz to 1000 Hz and 

decreases at a rate of 12 dB/octave from 1000 to 5513 Hz [85]. Speech-weighted noise is 

effective at interfering with the recognition of speech sounds because it approximates the long-

term sound pressure spectrum level of speech.  

At the beginning of each trial, a target word appeared on the computer monitor and 

remained until all six rhyming words in the set were presented. Subjects were asked to identify 
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the target word from the set by pressing a mouse button as soon as they heard the target word. 

The subjects did not have a chance to hear the test words again or change their answer. 

The test procedure included a training session and a testing session. The training session 

was used to familiarize the test subjects with the test and the test stimuli. The training session 

included 12 trials. The first 6 trials were presented without noise and the last 6 trials were 

presented at various noise levels. All the different speech stimuli for a given experiment were 

presented in randomized order, with and without noise. 

The testing session included 300 trials – 25 trials at each of 12 stimulus conditions. The 

target words were randomly chosen from the modified rhyme test list. Each word appeared only 

once as a target word. The noise was presented for 1.83 sec. and windowed using a Tukey 

window to create a smooth onset and offset. The window rise and fall times were 0.25 sec. The 

orders of presentation of the speech stimuli and noise levels were randomized, but the noise level 

was kept the same for a given trial.  

Test administration was computerized using MATLAB software (MathWorks, Inc.). 

Subject responses were recorded by the computer, test results were saved, and mean recognition 

scores for each subject and each noise condition were computed. The test procedures were 

monitored by a skilled examiner under supervision of a certified clinical audiologist. 

5.2 SELECTION OF ALGORITHM PARAMETERS 

Experiments performed to select the best parameters values for the transient extraction method 

are described here. Results of these experiments are also presented. 

 96 



5.2.1 Selection of Pre-Processing Filter 

In the development of the version of the algorithm that utilized the STE-transitivity function, we 

used a 50th order FIR highpass filter with a cutoff frequency of 700 Hz, hereafter referred to as 

HPF0, for pre-processing. This filter removed most of the energy associated with first formant. 

Without pre-processing, the extracted transient speech is dominated by low energy transitions 

and appeared not to contribute to speech intelligibility improvement during informal listening 

tests. Although HPF0 provided additional speech intelligibility improvement to our modified 

speech, its parameters were not selected to maximize the intelligibility of modified speech. Yoo 

selected parameter for HPF0 to eliminate the first formant and increase the processing efficiency 

of his algorithm. A different approach to reducing the low frequency energy of speech would be 

to use a filter, which will be referred to as HPFS, that approximates the inverse of the long-term 

average spectrum of speech. HPFS would act as an equalizer and distribute the energy of the 

speech approximately equally across the entire frequency range for most speech material. Byrne 

et al. measured the long-term average speech spectrum for 13 languages including English [86]. 

The combined speech spectrum for male and female speakers is shown in Figure 34. The 

magnitude response of filters HPFS and HPF0 are also shown in Figure 34. HPFS was formed by 

inverting the long-term average spectrum of speech and then replacing the magnitude response 

below a frequency of 400 Hz with a linear polynomial to create a gradual magnitude increase 

from 0 to 400 Hz. 
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Figure 34: (a) Long-term average speech spectrum [86] (b) magnitude response of HPFS 

and (c) magnitude response of HPF0.  
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Use of HPFS for pre-processing was compared to use of HPF0 using measurements of the 

intelligibility of modified speech. In addition, these two pre-processing filters were compared to 

the condition where a pre-processing filter is not applied. The weight parameter and 

enhancement factor values used for this experiment were α  = 0.9 and β  = 12. These parameters 

values were selected based on informal listening tests. The 4 stimulus treatments evaluated, 

using the MRT at SNRs of -25, -15 and -5 dB, are  

• Original speech 

• Modified speech without pre-processing 

• Modified speech with pre-processing using HPF0 

• Modified speech with pre-processing using HPFS 

The average percent correct scores for nine subjects for the experiment are shown in 

Figure 35 and the standard errors are presented in Table 3. Of the two pre-processing filters, 

HPF0 results in the most intelligible modified speech at all three SNRs, while the condition with 

no pre-processing filter results in the least intelligible modified speech. HPFS provides about the 

same intelligibility improvement over original speech as HPF0 at -25 dB SNR, but provides less 

improvement at -15 and -5 dB SNR. Based on these results, HPF0 was selected as the best pre-

processing filter for the transient extraction algorithm. 
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Figure 35:  Modified rhyme test average percent correct scores for original speech and speech 

modified using no pre-filter, HPF0 and HPFS for pre-processing. 
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Table 3: Average percent correct scores and standard error original speech and speech 

modified using no pre-filter, HPF0 and HPFS for pre-processing 

Speech type SNR (dB) 
Average percent 

correct 
Standard error 

-25 8.89 5.07 

-15 44.89 2.38 Original 

-5 78.22 3.20 

-25 7.56 2.35 

-15 42.22 2.99 
Modified speech, no 

prefilter 
-5 64.44 3.68 

-25 30.67 7.15 

-15 57.78 4.58 
Modified speech, 

HPF0 prefilter 
-5 76.44 2.53 

-25 26.67 4.99 

-15 48.44 2.53 
Modified speech, 

HPFS prefilter 
-5 67.56 2.44 

 

5.2.2 Selection of Weight Parameter 

The best weight parameter for the algorithm that utilizes HPF0 for pre-processing was selected 

using the MRT. Weight parameter values of α  = 0.85, 0.95 and 1.0 were evaluated with low (β  

= 18) and high ( β  = 36) enhancement factor values at SNRs of -20 and -5 dB. An enhancement 
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factor of 18 adds the same amount of energy of transient speech to original speech that Yoo et al. 

added when they formed their modified speech [2]. Values of 85.0<α  were not evaluated 

because they result in a transient speech signal with greatly diminished speech quality. The 6 

weight parameter/enhancement factor pairs (stimulus treatments) that were evaluated, at SNRs of 

-20 and -5, for modified speech in this experiment are: 

• α = 0.85, β  = 18 

• α = 0.85, β  = 36 

• α = 0.95, β  = 18 

• α = 0.95, β  = 36 

• α = 1.0, β  = 18 

• α = 1.0, β  = 35 

The bar chart of Figure 36 shows the average percent correct word scores and standard 

error bars at -5 dB and -20 dB SNR and two values of β  as a function of the weight parameter, 

α . The percent correct scores increase with increasing α  at both -5 and -20 dB SNR. Based on 

these results, a weight parameter of α  = 1.0 was selected for use in the transient extraction 

algorithm. As mentioned earlier, a weight parameter of α  = 1.0 is equivalent to not applying 

thresholding to the transitivity function in the transient extraction algorithm. An enhancement 

factor value of β  = 18 consistently resulted in higher percent correct scores than an 

enhancement factor of β  = 36.  
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Figure 36: Average percent correct word scores and standard error bars for the modified rhyme 

test experiment to select the best weight parameter, α  at (a) -20 dB and (b) -5 dB SNR. 

5.2.3 Selection of Enhancement Factor 

Having selected the best pre-processing filter and weight parameter, the best enhancement factor 

was selected in this experiment. Five values of  β  {β  = 6, 12, 18, 24 and 30} were evaluated at 

SNRs of -20 and -5 dB using the MRT. Intelligibility measurements for original speech were 

also obtained in this experiment. 
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The bar chart of Figure 37 shows the mean percent word correct scores and standard error 

bar at -5 and -20 dB SNR as a function of β . A weight parameter of α  = 1.0 was used to extract 

transient speech. At both SNRs, the highest percent correct responses were obtained with 

enhancement factors of β  = 12 and β  = 24. These two values produced nearly identical percent 

correct responses. A value of β  = 24 was selected for use with the algorithm because it provides 

greater emphasis of transient activity and our objective was to improve intelligibility by 

emphasizing transient speech. 
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Figure 37:  Mean percent word correct scores and standard error for experiment to select the best 

enhancement factor (β ). 
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5.3 EVALUATION OF ALGORITHM 

Having selected the pre-processing filter (HPF0), weight parameter (α  = 1.0) and enhancement 

factor (β  = 24) for the MFCC-based algorithm, the intelligibility of modified speech created 

using these parameters with and without the unvoiced speech booster (USB) was measured. The 

intelligibility of original speech was also measured to provide a baseline for comparison. The 

three stimulus treatments evaluated, at SNRs of -20, -15, -10 and -5 dB in this experiment are: 

• Original speech 

• Speech modified by transient emphasis 

• Speech modified by transient emphasis and unvoiced speech booster 

  

Figure 38 shows mean percent word correct scores and the standard error bars for original 

speech and modified speech created with and without the unvoiced speech booster. The 

intelligibility of both modified speech (with and without the unvoiced speech booster) is higher 

than the intelligibility of original speech at all noise levels evaluated (-20 to -5 dB SNR) with the 

largest improvements occurring at lower SNRs (-20 and -15 dB). The standard error intervals of 

both modified speech forms do not overlap with the standard error intervals of original speech at 

-20 and -15 dB, suggesting that the differences in scores at these noise levels are significant. The 

standard error bars of the two forms of modified speech signals overlap at all SNRs evaluated, 

suggesting that the scores for modified speech signals are not different. Based on these results, 

the algorithm with the unvoiced speech booster does not provide additional speech intelligibility 

enhancement over the algorithm without the unvoiced speech booster. 
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Figure 38: Mean percent word correct scores and standard error for original and modified 

speech created with and without the unvoiced speech booster (USB). 

 

In Figure 39, the differences in mean percent correct word scores (percent correct scores 

for modified speech minus percent correct scores for original speech) obtained using the MFCC-

based algorithm without USB are compared to improvement in intelligibility obtained using the 

STE-based method. The standard errors for these differences are presented in Table 4. The scores 

presented were obtained from two different experiments and are for SNRs (-15 and -5 dB) that 

were common in the two experiments conducted to evaluate the STE- and MFCC-based 

algorithms. Differences in percent word correct scores, while small, suggest that modified speech 

created using the MFCC-transitivity function is more intelligible than transient speech created 

using the STE-transitivity function. 
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Figure 39: Comparison of intelligibility improvements obtained with MFCC-based algorithm to 

improvements obtained with STE-based algorithm. 
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Table 4: Differences in mean percent correct word scores and standard errors for the 

differences for MFCC-based algorithm and STE-based algorithm. 

Method SNR (dB) Mean difference Standard error 

-15 23.5500 5.0100 
MFCC-based 

-5  8.8900  3.7000 

-15 11.20   8.6178 
STE-based  

-5 5.20  7.0883 

 

5.4 SUMMARY 

Psycho-acoustic experiments to select the best parameters (pre-processing filter, weight 

parameter and enhancement factor) and to evaluate the speech intelligibility enhancement 

algorithm using these parameters were described. Pre-processing using HPF0, a 50th order 

highpass filter with a cutoff frequency of 700 Hz, resulted in modified speech with the highest 

intelligibility and as such HPF0 was selected as the best pre-processing filter. In the experiment 

to select the best weight parameter, speech intelligibility increased with increase of the weight 

parameter and the highest intelligibility was obtained with a weight parameter of α = 1.0 (the 

largest effective value α  can have). Consequently, a values of α = 1.0 was considered the best. 

In the experiment to select the best enhancement factor, values of β = 12 and β = 24 

resulted in the highest intelligibility. There was an unexpected dip in intelligibility at both -5 and 

-20 dB SNR when β = 18. The consistency of the dip at both SNR levels suggests that the effect 
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is not just a statistical anomaly and is discussed further in Chapter 6. We selected β = 24 to use 

for the final comparisons because that value results in a greater emphasis of the transient 

component. 

Results for the experiment to evaluate the algorithm showed that modified speech created 

using the algorithm with the MFCC-transitivity function was more intelligible in noise than 

original speech, especially at high noise levels (-20 and -15 dB SNR) where intelligibility 

improvement is needed. The results also showed that modified speech created using the 

algorithm with the MFCC-transitivity function was more intelligible than modified speech 

created using the algorithm with the STE-transitivity function.  

In Figure 40, the differences in mean percent correct word scores obtained with the 

MFCC-based algorithm are compared to results obtained by Yoo et al. and Tantibundhit et al., 

who also modified speech using transient speech and evaluated intelligibility using the MRT [2] 

[4]. The standard errors for the differences in mean percent correct word scores for the different 

versions of modified speech are presented in Table 5. The differences in percent word correct 

scores show that the intelligibility of modified speech created using the MFCC-transitivity 

function closely matches the intelligibility of Yoo's modified speech and are better than the 

intelligibility of Tantibundhit's modified speech.  Additionally, our method can be implemented 

to run in real-time while the methods of Yoo et al. and Tantibundhit et al. cannot. These factors 

make our method attractive for applications that require enhancement of speech intelligibility in 

noisy environment, like mobile communication. 
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Figure 40: Comparison of intelligibility improvements. 
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Table 5: Mean difference in percent correct word scores and standard errors for the 

differences for our MFCC-based modified speech, Yoo’s modified speech and Tantibundhit’s 

modified speech.  

Method SNR (dB) Mean difference Standard error 

-20  22.6690    6.8300 

-15    23.5500     5.0100 

-10     4.8900     3.9900 

Our MFCC-based 

method 

-5     8.8900     3.7000 

-20    25.5000   2.2312 

-15    17.8000     3.6784 

-10    10.5000     5.6081 
Yoo’s method 

-5    -2.5000     1.8995 

-20    13.8200    6.2986 

-15     7.6400     3.3890 

-10     3.6400     4.8091 

Tantibundhit’s 

method 

-5    -0.7300     4.3749 
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6.0  DISCUSSION 

We introduced an algorithm for extraction of transient speech that can be implemented to run in 

real-time. The algorithm decomposes a speech signal into several sequences of wavelet 

coefficients using the forward wavelet packet transform, characterizes the rate of change and 

adjusts the wavelet coefficients based on how fast they are changing and synthesizes a transient 

speech signal using the inverse wavelet packet transform. Transient speech was used to create 

modified speech by amplifying and adding it to the original speech and then adjusting the energy 

of the modified speech signal so that it equals that of original speech. Wavelets provides subband 

decomposition that allows the detection of transients occurring at different times in different 

frequency bands and reduces the amount of quasi-steady-state activity that would be identified as 

transient. For the characterization of the rate of change of wavelet coefficients, a function that we 

called the transitivity function was developed. This function is large and positive when the 

wavelet coefficients have a rapidly changing frequency or amplitude and near zero when the 

wavelet coefficients are in steady-state. 

Two definitions for the transitivity function, one based on the short-time energy (STE) of 

wavelet packet coefficients and the other on Mel-frequency cepstral coefficients (MFCC) of 

wavelet packet coefficients, were formulated. Although MFCCs are traditionally applied directly 

to speech, applying them to wavelet coefficients is reasonable because the wavelet filters of most 

packets are not strictly narrowband as they have side lopes with significant amplitudes. The side 
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lopes are required to satisfy the perfect reconstruction property of wavelets. As examples, Figure 

41 shows the magnitude frequency response of the wavelet function for 6 of the 16 packets 

(packets 2, 5, 6, 9, 10 and 13) for the Daubechies-18 mother wavelet. The differences in 

magnitude between the main lope and the biggest side lope for these packets are 23.5 dB for 

packet 2, 23.5 dB for packet 5, 10.7 dB for packet 6, 10.7 dB for packet 9, 25.6 dB for packet 10 

and 21.1 dB for packet 13. These side lopes pass enough energy of speech for the wavelet 

coefficients to be considered not strictly narrowband. The side lopes result in wavelet 

coefficients that retain some speech-like character and are readily recognized as speech. 

Applying MFCCs to wavelet coefficients is also reasonable because use of MFCC results in 

transient and modified speech signals with higher intelligibility than use of the short-time energy. 
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Figure 41: Illustration of wavelet filters (frequency magnitude response of packet wavelet 

function) for 6 of 16 packets for the Daubechies-18 mother wavelet. 
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The transient extraction method was applied to a wide range of speech material, and 

transient and modified speech obtained using the algorithm were compared to transient and 

modified speech obtained using the algorithms of Yoo et al. and Tantibundhit et al. and to 

processed speech obtained using the methods of Villchur, Skowronski et al. and Gordon-Salant. 

To facilitate the comparisons, three indices ( P ,  and ) were developed. Index R Q P  was used 

to compare the effect of a speech modification/processing method on a particular region of 

speech. Index  was developed to characterize the extent to which consonants are emphasized 

relative to vowels in a speech signal. Index  was developed to characterize the extent to which 

the onsets and offsets of formants are emphasized compared to steady segments in a speech 

signal. These indices were very useful in the comparisons because they quantify differences in 

speech signals that are difficult to show using spectrograms, spectra and time-domain 

waveforms. 

R

Q

A disadvantage of these indices, especially  and Q , is that manual placement of time-

frequency masks is required for their computation. Also, only words with relatively steady vowel 

segments and with 2

R

nd, 3rd and 4th formants that were roughly coincident in time were used in the 

computation of index . The placement of masks is time-consuming and the restriction on 

choice of words limits the material that can be used. However, using an automated method to 

place the masks and using words that may produce ambiguous identification of formant onsets 

and offsets could introduce errors to a method (computation of 

Q

P ,  and ) that is intended to 

evaluate another method (the transient extraction algorithm). Manual placement of masks was 

used to minimize these errors. 

R Q

Comparison of transient speech extracted using our algorithm to transient speech 

components of Yoo et al. and Tantibundhit et al. showed that our algorithm can extract transient 
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speech signals that are similar to both Yoo's and Tantibundhit's transient speech components by 

adjusting the weight parameter. The comparisons also showed that our transient speech 

emphasizes onsets and offsets of formants similar to the transient components of Yoo et al. and 

Tantibundhit et al..  

Comparison of our modified speech to the modified speech signals of Yoo et al. and 

Tantibundhit et al., and the processed speech signals of Skowronski et al., Villchur and Gordon-

Salant showed that the relative emphasis of consonants provided by our modified speech can be 

increased by use of the unvoiced speech booster. 

The transient extraction algorithm includes a pre-processing stage to reduce the energy of 

the first formant and a weight parameter α  to control the amount of quasi-steady-state energy in 

the transient speech signal. The creation of modified speech using the extracted transient speech 

involves use of an enhancement factor β . All these parameters (pre-processing filter, α  and β ) 

influence the intelligibility of the modified speech signal. The algorithm can also include an 

unvoiced speech booster for increasing the energy of unvoiced speech. Psycho-acoustic 

experiments with the modified rhyme test (MRT) were used to select these parameters and to 

evaluate the intelligibility of modified speech with and without the unvoiced speech booster. The 

major purpose of these experiments was to evaluate the sensitivity of the algorithm to these 

parameters and to be sure that particularly disadvantageous parameter values were not used.  

The best value for the parameters were selected one at a time using experiments in the 

order pre-processing filter, weight parameter, enhancement factor, with the later experiments 

using the best parameter values from the earlier experiments. This design of experiments 

assumes that the selection of the best value for one parameter has minimal influence on of the 

selection of the best value for another parameter and does not identify globally optimal 
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parameter values. Without this assumption, selection of the best parameters would have required 

testing a very large combination of parameters. Since the MRT protocol supports testing of only 

12 stimulus conditions for each subject, the time required to test each subject is 1.5 hours, and 

there was limited availability of subjects and time, conducting such an extensive range of 

experiments would be prohibitive. Also, the algorithm performance did not seem to depend 

critically on parameter values, i.e. changes in performance with parameter values were gradual 

and extreme precision in selecting values does not appear to be necessary. The parameters values 

determined as the best (a 50th order highpass filter with a cutoff frequency of 700 Hz for pre-

processing (HPF0), weight parameter of α = 1.0 and an enhancement factor of β = 24), while 

not optimal, are good and we do not expect a major improvement in intelligibility (of say > 10 

%) with different values. Some fine tuning may provide a few percent improvements in speech 

intelligibility, but we would be surprised to see much more. 

Incorporation of the unvoiced speech booster to the algorithm was evaluated. Although 

emphasis of consonants can alone improve speech intelligibility as was shown by [9] [10] [21], 

this process does not result in further intelligibility improvements over emphasis of transient 

speech. 

Intelligibility improvements over original speech obtained with the MFCC transitivity 

function were greater than the improvements obtained with the STE-transitivity function. This 

suggests that the ability of MFCC transitivity function to capture frequency changes with 

constant energy (e.g. diphthongs) is important for transient extraction and for enhancement of 

speech intelligibility. 

Evaluation of the final form of the algorithm, which uses the best parameter values, 

showed that the intelligibility of modified speech was greater than the intelligibility of original 
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speech, especially at high noise levels (-20 and -15 dB SNR) where intelligibility improvement is 

needed. This suggests that emphasis of transient speech can enhance speech in noise. This 

enhancement method can be applied to any speech communication system where the speaker is 

in a noise free environment and the listener is in a noisy environment. Such scenarios are 

encountered during communication between control tower and ground support at an airport, 

during battle field communications between command center and soldiers, in public address 

systems, while listening to AM/FM radio in a car, during cellular phone communications in a 

loud restaurant, etc. 

Index , which can be interpreted as representing the amount of transient speech in a 

speech signal, can be related to speech intelligibility. In the experiment to select the best 

enhancement factor 

Q

β , modified speech was obtained by adding transient speech to original 

speech (Equation (20)). When original speech [ ]nx  is considered as a combination of quasi-

steady-state  and transient speech [ ]nw [ ]ny , i.e. 

 

   [ ] [ ] [ ]nynwnx +=        (26) 

 

Equation (20) can be written as 

 

   [ ] [ ] [ ] [ ]( nynynwnz )βρ ++=       (27) 

 

   [ ] [ ] [ ]( nynwnz )μρ +=        (28) 
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where 1+= βμ . In this form,  can be interpreted as a combination of quasi-stead-state and 

transient speech. 

[ ]nz

When 0=μ ,  (modified speech) is composed entirely of quasi-steady-state speech 

and when 

[ ]nz

∞=μ ,  is composed entirely of transient speech. When [ ]nz 1=μ ,  is composed 

of a balance of transient and quasi-steady-state speech that produces original speech, i.e. 

[ ]nz

[ ]nz  is 

original speech. This interpretation of the formation of modified speech can be used to evaluate 

the role of transient speech on speech intelligibility and to relate index  to intelligibility. We 

expect intelligibility to grow with the amount of transient speech until an “optimal” amount is 

reached and then to decrease, as the artifact noise reduces its quality, with further increase in the 

amount of transient speech. Pure transient speech has lower quality than both original and 

modified speech which reduces its intelligibility. 

Q

Using index Q  to quantify the amount of transient speech in a signal, the increase in the 

amount of transient speech in a speech signal (using the list of test words described in Chapter 4) 

as μ  increases is shown in Figure 42.  
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Figure 42: Index  as a function of Q μ . 

 

Figure 43 shows the relationship between intelligibility and the amount of transient 

speech in a speech signal (represented by Q ) at -20 and -5 dB SNR. Speech intelligibility is low 

when the amount of transient speech in a speech signal is very low (μ = 7) and when it is very 

high (μ  = 31). When the amount of transient speech in a signal is low, the benefit of transient 

emphasis is too small to affect speech intelligibility positively and when the amount of transient 

is high, artifact noise is introduced to modified speech, which reduces speech intelligibility. 

Values of μ  greater than 31 seemed to reduce speech intelligibility during informal listening 

test. There was an unexpected dip in intelligibility at both -5 and -20 dB SNR when Q  = 1.12 

( μ  = 19). The consistency of the dip at both SNR levels and the fact that the scores obtained 

with this experiment (45.6 % at -20 dB and 82.8 % at -5 dB) match the scores obtained in the 
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prior experiment to select the best weight parameter (48.9 % at -20 dB and 84.4 % at -5 dB) 

using the same values of weight parameter and enhancement factor (α  = 1, 1−= μβ =18) 

suggests that the effect is not just a statistical anomaly.  

 

0.9 0.95 1 1.05 1.1 1.15
40

50

60

70

80

90

100

In
te

lli
gi

bi
lit

y 
(%

 c
or

re
ct

)

Q

 

 
SNR = -20 dB
SNR = -5 dB

 

Figure 43: Speech intelligibility as a function of the amount of transient speech in a 

speech signal ( ) Q

 

 Transient speech includes onset and offset of formants and consonants. The average 

value of index  for our modified speech was greater than zero (  = 0.98) while the average 

value of index 

Q Q

R  was less than zero ( R  = -0.2), indicating that our algorithm emphasizes onset 

and offset of formants relative to steady-state segments of formants and slightly de-emphasizes 

consonants relative to vowels. This suggests that emphasis of onsets and offsets of formants is 
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more important to enhancement of speech intelligibility than emphasis of consonants. This 

suggestion is consistent with average values of indices Q  and  for the modified speech of Yoo 

et al.  and Tantibundhit et al.. Yoo’s modified speech emphasizes onset and offset of formants 

(Q  = 0.59) and de-emphasizes consonant (  = -0.49) similar to our method. Tantibundhit’s 

modified speech emphasizes both onset and offset of formants (Q  = 1.93,  = 1.88), however, it 

provides less enhancement of speech intelligibility than both our modified speech and Yoo’s 

modified speech. Further understanding of the importance of the emphasis of the different parts 

of speech on intelligibility may be useful in the design of speech enhancement systems and 

hearing aids. 

R

R

R
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7.0  CONCLUSION 

Studies have shown that emphasis of transient speech can improve the intelligibility of speech in 

background noise, but methods to demonstrate this improvement have either identified transient 

speech manually or proposed algorithms that cannot be implemented to run in real-time. An 

algorithm for extraction of transient speech that can be implemented to run in real-time has been 

described. The algorithm decomposes a speech signal into several sequences of wavelet 

coefficients using the forward wavelet packet transform, characterizes the rate of change and 

adjusts the wavelet coefficients based on how fast they are changing and synthesizes a transient 

speech signal using the inverse wavelet packet transform. Transient speech was used to create 

modified speech by amplifying and adding it to the original speech and then adjusting the energy 

of the modified speech signal so that it equals that of original speech. Wavelets provides subband 

decomposition that allows the detection of transients occurring at different times in different 

frequency bands and reduces the amount of quasi-steady-state activity that would be identified as 

transient. For the characterization of the rate of change of wavelet coefficients, a function that we 

called the transitivity function was developed. This function is large and positive when the 

wavelet coefficients have a rapidly changing frequency or amplitude and near zero when the 

wavelet coefficients are in steady-state. Two definitions for the transitivity function, one based 

on the short-time energy (STE) of wavelet packet coefficients and the other on Mel-frequency 

cepstral coefficients (MFCC) of wavelet packet coefficients, were formulated and evaluated 
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experimentally. The MFCC-based transitivity function resulted in transient and modified speech 

with higher intelligibility than the STE-transitivity function. 

To facilitate comparison of our transient and modified speech to speech processed using 

methods proposed by other researchers to emphasize transients, we developed three indices. The 

indices are used to characterize the extent to which a speech modification/processing method 

emphasizes (1) a particular region of speech, (2) consonants relative to, and (3) onsets and 

offsets of formants compared to steady formant. These indices are very useful because they 

quantify differences in speech signals that are difficult to show using spectrograms, spectra and 

time-domain waveforms. 

The algorithm includes parameters (pre-processing filter, weight parameter and 

enhancement factor) which when varied influence the intelligibility of the extracted transient 

speech. The best values for these parameters were selected using psycho-acoustic testing. The 

incorporation of a method that automatically identifies and boosts unvoiced speech into the 

algorithm was evaluated and showed that this method does not result in additional speech 

intelligibility improvements. Measurement of speech intelligibility in background noise using 

psycho-acoustic experiments showed that the intelligibility of speech modified with the 

algorithm that utilizes any of the transitivity functions is higher than the intelligibility of original 

speech, especially at high noise levels (-20 and -15 dB SNR) where enhancement of 

intelligibility is needed. This suggests that emphasis of transient speech can enhance speech in 

noise. Additionally, unlike previously proposed algorithms, our algorithm extracts transient 

speech much more efficiently and can be implemented to run in real-time. 
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8.0  FUTURE RESEARCH WORK 

The design of the transient extraction algorithm assumed that we had access to the original 

speech signal before noise was added to it. The algorithm also focuses on enhancing speech 

intelligibility without degrading speech quality. It is important to note that speech quality and 

intelligibility are different. Speech quality relates to how comfortable it is for a listener to listen 

to a speech utterance. The utterance does not necessarily have to convey meaning. Intelligibility 

relates to the ability of a speech utterance to convey meaning, that is, whether the listener can 

correctly identify words being spoken. The extension of the algorithm for extraction of transient 

speech from noisy speech and for enhancement of both speech intelligibility and speech quality 

should be evaluated. A possible extension that may improve speech quality is the incorporation 

of a method that improves speech quality such as spectral subtraction or active noise reduction to 

our algorithm. 

Three indices were developed to facilitate the comparisons of speech signals modified or 

processed using different methods. Index  was developed to characterize the extent to which 

consonants are emphasized relative to vowels in a speech signal. Index Q  was developed to 

characterize the extent to which the onsets and offsets of formants are emphasized compared to 

steady segments in a speech signal. Incorporating the two indices into one index for measuring 

the “transient-ness” of speech and automatic placement of time-frequency masks are interesting 

topic to investigate. A measure of “transient-ness” of speech can be used to provide a better 

R
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understanding of the role of transient speech in speech intelligibility. This understanding may be 

beneficial to the design of speech enhancement algorithms and hearing aids. 

 Recent studies in auditory research suggest that the outer hair cells (OHCs) implement a 

nonlinear active process that may play a role in the processing of noisy speech. It has been 

suggested that this role may be related to the processing of transient speech. Measurement of 

otoacoustic emissions (OAE), acoustic energy that is generally considered to be produced by 

OHC, provides a non-invasive method to probe OHC function. Comparison of the response of 

OHC to transient speech to the response to quasi-steady-state speech could give a better 

understanding of OHC function. A better understanding of OHC may be used to improve 

algorithms for extraction of transient speech for enhancement of speech intelligibility for people 

with normal hearing and for the design of better hearing aids for the hearing impaired. An 

adaptation of the ILO88 OHC probing system (David Kemp-1989), which uses clicks as stimuli, 

to a system that can use short duration speech for OHC probing can be useful for studying OHC 

responses of transient, quasi-steady-state speech and modified speech. A study of response of 

OHC to different speech stimuli (transient, quasi-steady-state, modified) in order to gain a better 

understanding of OHC could be conducted. 

The transitivity function used to characterize the rate of change of wavelet coefficients, 

has peaks during transitions between speech sounds and hence it could be useful in phoneme 

(speech sound) segmentation - an important pre-processing stage in automatic speech 

recognition. The application of the transitivity function to phoneme segmentation could be 

evaluated. 

Previously, we used automatic speech recognition (ASR) to evaluate the transient 

extraction algorithm by comparing the recognition rates of modified speech to those of original 
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speech. The results showed that emphasis of transient speech does not work for ASR. Emphasis 

of quasi-steady-state speech (instead of transient speech) may provide robust ASR in noisy 

environments since ASR models are heavily based on vowels (quasi-steady-state speech). An 

investigation of the effect of speech modification to emphasize quasi-steady-state speech on ASR 

should be conducted. 

 127 



APPENDIX A 

 

WAVELETS 

This appendix supplements the description of wavelet packets in Chapter 2 by describing the 

continuous wavelet transform, multiresolution analysis, the discrete wavelet transform, signal 

decomposition and reconstruction using wavelets and factors considered in choosing a wavelet 

function. The descriptions are based on [71] [72] [73] [74] [75] [76] [77] [78] [79] and [80]. 

 

A.1 THE CONTINUOUS WAVELET TRANSFORM 

A function ( )RLt 2)( ∈ψ  is a continuous wavelet if the set of functions 
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   ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bt
a

tab ψψ 1)(,      (29) 

 

is an orthonormal basis in the Hilbert space ( )RL2 , where , and b  are real.  a 2L refers to the 

space of square-integrable signals. The set of functions )(, tabψ  are generated by translating and 

dilating the function )(tψ . Parameter  is a scaling parameter. Varying it changes the center 

frequency and the bandwidth of 

a

)(tψ . The time and frequency resolution of the wavelet 

transform also depend on . Small values of the scaling parameter  provide good time 

localization and poor frequency resolution, and the reverse is true for large . The time delay 

parameter  produces a translation in time (movement along the time axis). Dividing 

a a

a

b )(tψ  by 

a  insures that all members of the set { )(, tabψ } have unity Euclidean norm ( norm) i.e. −2L

1
22, == ψψ ab  for all integers  and . The function a b )(tψ  from which the set of functions 

)(, tabψ are generated is called the mother or analyzing wavelet. 

The function )(tψ  has to satisfy the following properties for it to be a wavelet: 

• )(tψ  integrates to zero and it’s Fourier transform ( )ωΨ  evaluates to zero at ω = 0 [77] 

 

        (30) ( ) ( )∫
∞

∞−

===Ψ 00 dttψω

 

• )(tψ  has finite energy, i.e. most of the energy of )(tψ  has to be confined to a finite 

duration 
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• )(tψ  has to meet the admissibility condition, [77] i.e.   

 

   
( )

∫
∞

∞−

∞<=
Ψ

ψω
ω
ω

Cd
2

     (32) 

 

where ( )ωΨ  is the Fourier transform of )(tψ . The admissibility condition ensures perfect 

reconstruction of a signal from its wavelet representation and will be discussed further later in 

this section. 

The wavelet function )(tψ  may be complex. In fact, a complex wavelet function is 

required to analyze the phase information of signals [75]. 

The continuous wavelet transform (CWT) ( )abWx ,  of a continuous-time signal  is 

defined as [77] 

)(tx

 

( ) ( )∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

bttx
a

abWx
*1, ψ     (33) 

 

where ,  are real. The CWT is the inner product of  and the complex conjugate of the 

translated and scaled version of the wavelet,

a b )(tx

)(tψ , i.e. ( ) ( ) ( )ttxabW abx ,
*,, ψ= . Equation (39) 

shows that the wavelet transform ( )abWx ,  of a one dimensional signal  is two dimensional. 

The CWT can be expressed as a convolution by [78] 

)(tx
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   ( ) ( ) ( ) ( ) ( )ttxttxabW ababx −∗== ,
*

,
*,, ψψ    (34) 

 

The CWT expressed as a convolution may be interpreted as the output of an infinite bank 

of linear filters described by the impulse response ( )tab,ψ  over the continuous range of scales a  

[78].  

To recover  from , the mother wavelet )(tx ( abWx , ) )(tψ  has to satisfy the admissibility 

condition given in Equation (39). If the admissibility condition is satisfied,  can be perfectly 

reconstructed from  as 

)(tx

( abWx , )

 

   ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

= dadbtabW
aC

tx abx ,,11 ψ
ψ

    (35) 

 

The constant  is the admissibility constant and is defined in Equation (39). ψC

A.2 MULTIRESOLUTION ANALYSIS AND SCALING FUNCTION 

In this Section, the scaling function )(tϕ  will be introduced via a multiresolution analysis. The 

relationship between the scaling function )(tϕ  and the wavelet function )(tψ  will be discussed. 

This discussion follows [78].  

Multiresolution analysis involves the approximation of functions in a sequence of nested 

linear vector spaces  in  that satisfy the following 6 properties: kV 2L
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(a) Ladder property: ...  ...V V V V V− −⊂ ⊂ ⊂ ⊂2 1 0 1 2

(b) . { }0=
∞

−∞=
I
j

jV

(c) Closure of is equal to  U
∞

−∞=j
jV 2L

(d) Scaling property:  if and only ifjVtx ∈)( 1)2( +∈ jVtx . Because this implies that “ 0)( Vtx ∈  

if and only if ”, all the spaces  are scaled versions of the space . 

For ,  is a coarser space than .  

j
j Vtx ∈− )2( jV 0V

0>j jV 0V

(e) Translation invariance: If 0)( Vtx ∈ , then 0)( Vktx ∈− ; i.e. the space  is invariant to 

translation by integers. The scaling property implies that  is invariant to translation 

by .  

0V

jV

kj−2

(f) Special Orthonormal basis: A function ( ) 0Vt ∈φ  exists such that the integer shifted 

version ({ kt − )}φ  forms an orthonormal basis for . Using the scaling property means 

that 

0V

(
⎭
⎬
⎫

⎩
⎨
⎧

−−−
ktj

j

22 2φ )  is an orthonormal basis of . The function jV ( )tφ  is called the 

scaling function of multiresolution analysis. 

The scaling function ( ) ( ktt j
j

kj −= −−
22 2

, φφ ) spans the space . To better describe and 

parameterize signals in this space, a function that spans the difference between the spaces 

spanned by various scales of the scaling function is needed. Wavelets are these functions. The 

space  spanned by the wavelet function has the following properties [80]; 

jV

jW
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(a) ({ kt − )}ψ  is an orthonormal basis of , given by the orthogonal complement of  in 

, i.e. , where  is the initial space spanned by 

0W 0V

1V 001 WVV ⊕= 0V )(tϕ . 

(b) If ( ) 0Wt ∈ψ  exists, then ( ) ( ktt j
j

kj −= −−
22 2

, ψ )ψ  is an orthonormal basis of the space . jW

jW  is the orthogonal complement of  in , i.e. jV 1+jV

mmmm WWWVWVV ⊕⊕⊕⊕=⊕=+ L1001 . 

(c)  ...100
2 ⊕⊕⊕= WWVL

Using the scaling function )(tϕ and the wavelet function )(tψ , a set of functions that span 

all of  can be constructed. A function  can be written as a series expansion in terms 

of these two functions as [71] 

2L 2)( Ltx ∈

 

      (36) ( ) ( ) ( ) ( ) ( )∑ ∑ ∑
∞

−∞=

∞

=

∞

−∞=

+=
k j k

kjkJ tkjdtkjctx
0

,, ,, ψφ

 

Here  is the coarsest scale. In the above expression, the first summation gives an 

approximation to the function  and the second summation adds the details. The coefficients 

 and  are the discrete scaling coefficients and the discrete wavelet coefficients of 

 respectively [71]. 

J

)(tx

),( kjc ),( kjd

)(tx
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A.3 THE DISCRETE WAVELET TRANSFORM 

The CWT does not offer a practical representation of the continuous-time signal . For some 

signals, the coordinates (  may cover the entire time-scale plane, giving a redundant 

representation of . The calculation of the CWT is also not efficient because the CWT is 

defined continuously over the time-scale plane [78].  

)(tx

)ba,

)(tx

The discrete wavelet transform (DWT) is obtained, in general, by sampling the 

corresponding continuous wavelet transform [78]. To discretize the CWT, an analyzing wavelet 

function that generates an orthonormal (or biorthonormal) basis for the space of interest is 

required. An analyzing wavelet function with this property allows for the use of finite impulse 

response (FIR) filters in the DWT implementation. There are many possible discretizations of the 

CWT, but the most common DWT uses a dyadic sampling lattice. Dyadic sampling and 

restricting the analyzing wavelets to ones that generates orthonormal bases allows the use of an 

efficient algorithm known as the Mallat algorithm [75] or fast wavelet transform in the DWT 

implementation. The Mallat algorithm will be discussed in the next Section. 

Sampling the CWT using a dyadic sampling lattice results in the discrete wavelet given 

by 

 

   ( ) ( ktt j
j

kj −= −−
22 2

, ψ )ψ      (37) 

 

where j  and k  take on integer values only. Parameters j  and k  are related to parameters  and 

 of the continuous wavelet by , and . 

a

b ja 2= bk j−= 2
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A.4 SIGNAL DECOMPOSITION AND RECONSTRUCTION USING WAVELETS 

Equation (42) can be expanded as [71] 

 

  ( ) ( ) ( ) ( ) (∑ ∑ −+−= −−−−

k k

j
j

j
j

ktkjdktkjctx 22,22, 22 ψφ )  (38) 

 

In this and subsequent equations, scale 1+j is coarser than scale . If the wavelet 

function is orthonormal to the scaling function, the level  scaling coefficients  and 

wavelet coefficients  can be obtained as: 

j

j ),( kjc

),( kjd

 

  ( ) ( ) ( ) ( )∫ −== −−
dtkttxtxkjc j

j

kj 22,, 2
, φφ     (39) 

  ( ) ( ) ( ) ( )∫ −== −−
dtkttxtxkjd j

j

kj 22,, 2
, ψψ     (40) 

 

The level  scaling and detail coefficients can be obtained from the level 1+j j scaling 

coefficients as [71] 

 

   ( ) ( ) ( )∑ −=+
m

mjckmhkjc ,2~,1     (41) 

   ( ) ( ) ( )∑ −=+
m

mjckmgkjd ,2~,1     (42) 
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Using these equations, level 1+j  scaling and wavelet coefficients can be obtained from 

the level j  scaling coefficients by filtering with finite impulse response (FIR) filters ( )nh~  

and ( )ng~ , then downsampling the result. This technique is known as the Mallat decomposition 

algorithm [75] and is illustrated in Figure 45. The partial binary tree of Figure 44 is sometimes 

referred to as a Mallat tree. 

 

2↓

2↓

( )ng~

( )nh~

jc
2↓

2↓

( )ng~

( )nh~

1+jd

2+jd

2↓

2↓

( )ng~

( )nh~

3+jd1+jc

2+jc
3+jc

 

Figure 44: A three-stage Mallat signal decomposition scheme 

 

In the decomposition scheme, the first stage splits the spectrum into two equal bands: one 

highpass and the other lowpass. In the second stage, a pair of filters splits the lowpass spectrum 

into lower lowpass and bandpass spectra. This splitting results in a logarithmic set of bandwidth 

shown in Figure 45. 
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Figure 45: Frequency response for the discrete wavelet transform 

 

As expected, the reconstruction of the level j  scaling coefficients from the level 1+j  

wavelet and scaling coefficients is possible. The reconstruction can be achieved by 

 

  ( ) ( ) ( ) ( ) ( )∑∑ −++−+=
mm

mkgmjdmkhmjckjc 2,12,1,   (43) 

 

In words, the level  scaling coefficients are obtained from the level j+1 scaling and 

wavelet coefficients by upsampling the level 

j

1+j  wavelet and scaling coefficients, filtering the 

outputs from the upsamplers using filters ( )nh  and ( )ng , and then adding the filter outputs. The 

signal reconstruction scheme is illustrated in Figure 46. 
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Figure 46: A three-stage Mallat signal reconstruction scheme 

 

Filters ( )nh~  and  are low-pass whereas filters ( )nh ( )ng~  and ( )ng  are high-pass. The 

impulse responses of these filters satisfy the following properties [75]; 

( ) ( )nhnh −=
~   and ( ) ( )ngng −=~ .  

( ) ( ) ( )nhng n −−= − 11 1 , i.e. H  and G  are quadrature mirror filters.  

( ) 10 ==ωH | and ( ) ( 2 )~ −= nOnh  at infinity, i.e. the asymptotic upper bound of ( )nh  at 

infinity is . 2−n

( ) ( ) 122 =++ πωω HH . 

A.5 CHOOSING A WAVELET 

The Haar wavelet is the first known and the simplest wavelet function and was proposed by 

Alfred Haar in 1909. Since then, many wavelets have been formulated. The paper ‘Where do 

wavelets come from?-a personal point of view’ by Daubechies presents a good historical 
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perspective on wavelets [73]. This paper, among others, discusses the works of Morlet, 

Grossmann, Meyer, Mallat and Lemarié that led to the development of wavelet bases and the 

wavelet transforms. 

 A well chosen wavelet basis will result in most wavelet coefficients being close to zero 

[75]. The ability of the wavelet analysis to produce a large number of non-significant wavelet 

coefficients depends on the regularity of the analyzed signal  and the number of vanishing 

moments and support size of

)(tx

)(tψ .  Mallat related the number of vanishing moments and the 

support size to the wavelet coefficients amplitudes. His results are summarized in this Section. 

A.5.1 Vanishing Moments 

)(tψ  has p  vanishing moments if  

 

       (44) ( ) pkfordttt k <≤=∫
∞

∞−

00ψ

 

If  is regular and )(tx )(tψ  has enough vanishing moments, then the wavelets coefficients 

( ) ( ) kjtxkjd ,,, ψ=  are small at fine scale. 

A.5.2 Size of Support 

If  has an isolated singularity (a point at which the derivative does not exist although 

it exists everywhere else) at  and if  is inside the support of 

)(tx

0t 0t ( )tkj ,ψ , then 
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( ) ( ) kjtxkjd ,,, ψ=  may have large amplitudes. If )(tψ  has a compact support of size K , then 

there are K  wavelets ( )tkj ,ψ  at each scale  whose support includes . The number of large 

amplitude coefficients may be minimized by reducing the support size of

j2 0t

)(tψ . 

 If )(tψ  has p  vanishing moments, then its support size is at least  [75]. A 

reduction in the support size of 

12 −p

)(tψ  unfortunately means a reduction in the number of vanishing 

moments of )(tψ . There is a trade off in the choice of )(tψ ; a high number of vanishing 

moments is preferred if the analyzed signal  has few singularities. But if the number of 

singularities of is large, a 

)(tx

)(tx )(tψ  with a short support size is a better choice. 
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APPENDIX B 

ILLUSTRATION OF DAUBECHIES-18 WAVELET 

This appendix illustrates, for a Daubechies-18 wavelet, the following function 

(a) Scaling function 

(b) Wavelet function 

(c) Impulse response and magnitude frequency response of lowpass and highpass 

decomposition filters associated with the Daubechies-18 wavelet function. The 

decomposition lowpass and highpass filters are used as a prototype type filters from 

which the filters , ( )zH k 10 −≤≤ Kk , are derived in the wavelet decomposition 

structure of Figure 13. 

(d) Impulse response and magnitude frequency response of lowpass and highpass 

reconstruction filters associated with the Daubechies-18 wavelet function. The 

reconstruction lowpass and highpass filters are used as a prototype type filters from 

which the filters , ( )zGk 10 −≤≤ Kk , are derived in the wavelet reconstruction structure 

of Figure 13. 
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The Daubechies-18 wavelet was used for wavelet packet decomposition in the transient 

extraction algorithm because it offers a good balance of frequency selectivity and computation 

efficiency. 
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Figure 47: Scaling ( )nφ  and wavelet function ( )nψ  for Daubechies-18 wavelet 
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Figure 48: Impulse responses for (a) lowpass decomposition filter, (b) highpass 

decomposition filter, (c) lowpass reconstruction filter and (d) highpass reconstruction filter for 

Daubechies-18 wavelet. 
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Figure 49: Magnitude frequency responses for (a) lowpass and highpass decomposition filters 

and (b) lowpass and highpass reconstruction filters. 
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APPENDIX C 

SELECTION OF A VOICED/UNVOICED METHOD FOR THE UNVOICED SPEECH 

BOOSTER 

The transitivity function has larger peaks for transitions into and out of high energy formants 

than for transitions associated with low energy events such as unvoiced consonants. The 

incorporation of an unvoiced speech booster to the transient extraction method, to increase the 

peaks of the transitivity function that correspond to unvoiced consonants, was investigated. Two 

voiced/unvoiced detection methods, described in Chapter 2, were considered for use with the 

unvoiced speech booster method – a short-time energy/short-time average zero-crossing rate–

based method and a short-time autocorrelation function–based method. The selection of the 

voiced/unvoiced detection methods and its parameters are described in here. 

For the short-time energy/short-time average zero-crossing rate–based method, the short-

time energy and the short-time average zero-crossing rate were both computed using a window 

duration of 25 ms and a window overlap of 10 ms and were normalized to have a maximum 

value of one. The short-time autocorrelation function–based method was computed using a 

window duration of 20 ms with no window overlap, and the autocorrelation was normalized so 

that .    ( ) 10 ==kRn
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To evaluate the two methods, voiced and unvoiced segments of ten words from the 

modified rhyme test list [12] [13] were identified manually by the author using listening tests and 

an International Phonetic Alphabet (IPA) chart for English [87], shown in Figure 50. Then the 

two methods were used to automatically identify voiced and unvoiced segments. The thresholds 

for discriminating between voiced and unvoiced segments and the window duration and overlap 

for the two voiced/unvoiced detection methods were adjusted to obtain the best results for each 

method. For the short-time energy/short-time average zero-crossing rate–based method, a 

windowed segment of speech was considered voiced if the short-time energy was greater than 

0.4 and the short-time average zero-crossing rate was less than 0.5. For the short-time 

autocorrelation function–based method, a windowed speech segment was considered to be 

voiced speech if it included an autocorrelation function peak with a value greater than 0.3 at k > 

0. 

 

 

Figure 50: The international phonetic alphabet (IPA) chart for English consonants [87]. 
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Figure 51 shows time-domain plots of the 10 words, the manually made voiced/unvoiced 

decision and the automatically made voiced/unvoiced decision by the two methods. The short-

time autocorrelation-based voiced/unvoiced detection method is correct more often and was 

selected for evaluation. 
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Figure 51: Selection of a voiced/unvoiced detection method. Each plot compares manually 

identified voiced segment to voiced segments automatically identified using the short-time 

autocorrelation (STAC) function-based method and the short-time energy/zero-crossing rate 

(STE/ZCR)-based method. High indicates voiced and low indicates unvoiced. 
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