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CHEMOTHERAPY TREATMENT SCHEDULES

John M. Harrold, PhD

University of Pittsburgh, 2005

Cancer is the name given to a class of diseases characterized by an imbalance in cell

proliferation and apoptosis, or programmed cell death. Once cancer has reached detectable

sizes (106 cells or 1 mm3), it is assumed to have spread throughout the body, and a systemic

form of treatment is needed. Chemotherapy is commonly used, and it affects both healthy

and diseased tissue. This creates a dichotomy for clinicians who need to develop treatment

schedules which balance toxic side effects with treatment efficacy. The optimal treatment

schedule — where schedule is defined as the amount and frequency of drug delivered —

is the most efficacious schedule evaluated during clinical trials. In this work, a model–

based approach for drug treatment schedule design was developed. Cancer chemother-

apy modeling is typically segregated into drug pharmacokinetics (PK), describing drug

absorption, distribution throughout an organism, and metabolism and pharmacodynamics

(PD), which delineates cellular proliferation, and drug effects on the organism. This work

considers two case studies: (i) a preclinical study of the oral administration of the antitumor

agent 9-nitrocamptothecin (9NC) to severe combined immunodeficient (SCID) mice bearing

subcutaneously implanted HT29 human colon xenografts; and (ii) a theoretical study of

intravenous chemotherapy from the engineering literature.

Metabolism of 9NC yields the active metabolite 9-aminocamptothecin (9AC). Four dif-

ferent PK model structures were constructed to describe the plasma concentration versus

time profiles of 9NC and 9AC: three linear models at a single dose level (0.67 mg/kg 9NC);

and a nonlinear model for the dosing range 0.44 – 1.0 mg/kg 9NC. Untreated tumor growth
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was modeled using two approaches: (i) exponential growth; and (ii) a switched exponential

model transitioning between two different rates of exponential growth at a critical size.

All of the PK/PD models considered here have bilinear kill terms which decrease tumor

sizes at rates proportional to the effective drug concentration and the current tumor size.

The PK/PD model combining the best linear PK model with exponential tumor growth

accurately characterized tumor responses in ten experimental mice administered 0.67 mg/kg

of 9NC QD×5×2 (Monday-Friday for two weeks) repeated every four weeks. The nonlinear

PK model of 9NC coupled to the switched exponential PD model accurately captured the

tumor response data at multiple dose levels. Each dosing problem was formulated as a mixed–

integer linear programming problem (MILP), which guarantees globally optimal solutions.

When minimizing the tumor volume at a specified final time, the MILP algorithm delivered

as much drug as possible at the end of the treatment window (up to the cumulative toxicity

constraint). While numerically optimal, it was found that an exponentially growing tumor,

with bilinear kill driven by linear PK, would experience the same decrease in tumor volume

at a final time regardless of when the drug was administered as long as the same amount

was administered. An alternate objective function was selected to minimize tumor volume

along a trajectory. This is more clinically relevant in that it better represents the objective

of the clinician (eliminate the diseased tissue as rapidly as possible). This resulted in a

treatment schedule which eliminated the tumor burden more rapidly, and this schedule can

be evaluated recursively at the end of each cycle for efficacy and toxicity, as per current

clinical practice.

The second case study consists of an intravenously administered drug with first order

elimination treating a tumor under Gompertzian growth. This system was also formulated

as a MILP, and the different objectives were considered. The first objective was minimizing

the tumor volume at a final time — the objective the original authors considered. The

MILP solution was qualitatively similar to the solutions originally found using control vector

parameterization techniques; as much drug as possible was administered at the end of the

treatment interval. The problem was then reposed as a receding horizon trajectory tracking

problem. Once again, a more clinically relevant objective returned promising results; the
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tumor burden was rapidly decreased. This technique could be generalized to arbitrary

drug/tumor concentrations provided a PK/PD model exists or could be derived.
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1.0 INTRODUCTION

1.1 BACKGROUND

In the United States, cancer is currently the leading cause of death for persons under 85 and

accounts for ten percent of the monetary resources devoted to disease treatment [1]. There

are over 1.3 million new cases and 570,000 deaths predicted in 2005, and the economic cost

to the United States was approximately $189 billion in 2004 [1]. This result is a societal

dilemma in terms of human mortality and financial burden.

Cancer refers to a class of diseases characterized by an imbalance in apoptosis, or

programmed cell death, and the rate of cellular proliferation [2]. As the tumor mass increases,

cancer cells will induce secretion of metallo–proteases which will degrade the extracellular

matrix and encourage the creation of new vascular growth through angiogenesis [3]. While

competing with the host organism and surrounding tissues for resources, cancer cells may

invade local tissue or move about the host via the circulatory system. A tumor is said to

have metastasized when cells have successfully relocated to new tissues within the host [3, 4].

The invasive nature of cancer will eventually lead to organ failure and the death of the host

organism if left untreated.

Cancerous masses which can be reached through surgery are removed. There are several

forms of cancer in which surgery is not an option because of the location of the cancer (e.g.,

some brain tumors) or because the disease is not localized (e.g., hematological malignancies

like leukemia). Radiation therapy, which can target specific tissues, is an option for inoper-

able forms of cancer. However, once cancer has reached detectable levels it is probable that

metastases exist. For this reason a more systemic method of treatment may provide more

efficacious results.
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Cancer cells proliferate more rapidly than cells from healthy tissues and spend more time

actively cycling in the cell–cycle (growth, DNA synthesis, mitosis, etc.) [2]. Chemotherapy

is a commonly employed systemic form of treatment which attempts to take advantage of the

rapidly proliferating nature of cancer cells. While selectivity of treatment toward diseased

over healthy tissues is desired, this objective is not always achieved. Healthy tissues, such

as white blood cells and the cells of the intestinal mucosa, also proliferate rapidly and are

affected by chemotherapeutic treatment. This creates a dichotomy for clinicians who must

balance the need to eliminate the disease with the toxic side effects of treatment. The

treatment schedule, defined as dose amount and frequency, used clinically is derived from an

empirical process which begins with preclinical evidence found during the drug development

process. Later refinement of the treatment schedule takes place throughout clinical testing

and patient treatment.

1.2 DRUG DEVELOPMENT PROCESS

The development of chemotherapeutic drug schedules is an empirical process. Information

from preclinical research as well as clinical trials in humans is used to determine drug dosing

schedules. Possible anticancer compounds are first tested in vitro in cell culture. Promising

results lead to in vivo preclinical trials, which are performed in species expected to respond

similarly to humans. Preclinical trials are used to establish optimal dosing route (e.g.,

intravenous, oral, etc.), and metrics for evaluating toxicity. This is followed by animal

studies that establish the efficacy of the drug against different forms of cancer. Efficacious

drugs with manageable toxic effects in animal models are then tested in clinical trials.

Phase I clinical trials are used to establish toxicity constraints for humans. A common

approach is to consider the species most sensitive to the drug in preclinical testing. Adminis-

tration of the drug to humans begins at one tenth the lethal dose in 10% of the most sensitive

species
(

1
10

LD10

)
. Dose levels are then escalated until the dose–limiting toxicity (DLT) is

reached. One level below the DLT dose is set as the maximum tolerated dose (MTD). A

common method is to increase the dose levels according to a modified Fibonacci series [5].
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Phase II studies are then performed to establish efficacy of the anticancer compound

against specific types of cancer — most often those cancers identified as being susceptible in

preclinical trials. One third of the dose causing DLT is used as a basis for initial dose

levels, and empirical evidence is used to guide the efficacy evaluation. Since it is not

possible to evaluate every conceivable administration schedule, previous knowledge of similar

compounds, known toxicities, and logistical issues are used to establish when the drug should

be administered. The objective is to find the drug schedule which will yield the maximum

response, typically measured in terms of exposure, without violating the above constraints [6].

Statistically significant responses, such as increased survival times, are used as indications

that the compound is clinically effective.

Based on the toxicity limits from Phase I trials and demonstrable efficacy from Phase

II trials, a successful compound will then enter Phase III trials. The purpose of Phase

III trials is to evaluate a drug and corresponding schedule against the current standard of

practice for treating specific forms of cancer. This can involve a single new agent or, more

often, the new agent in combination with an approved form of chemotherapy. A successful

drug/schedule combination will be statistically more efficacious (based on disease response,

toxicity reduction, etc.) than the current gold standard.

Ultimately, the schedule on which anticancer drugs are administered is the schedule from

Phase II and Phase III trials which yields the most statistically significant results. These

schedules, derived from empirical evidence and heuristics, are considered optimal because

they were more efficacious than the others considered. However, it may be possible to employ

the data generated during the drug development process to more rigorously define an optimal

drug schedule.

1.3 MODEL–BASED CONTROL

Model–based control is currently considered the state–of–the–art in the field of process

control [7, 8, 9]. This form of control makes explicit use of system model predictions in order

to determine how manipulated variables should be changed to achieve a desired objective.
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Control
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(drug conc.,
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Input
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˙̂x = Ft(x̂, u)

ŷ = Fo(x̂, u)

Figure 1: Model–based control algorithm which determines input changes, u, based on

estimates of internal states, x̂ described by Ft(x̂, u), output estimates, ŷ, given Fo(x̂, u),

and actual output measurements y.
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This methodology is illustrated in Figure 1 for the treatment of experimental or simulated

mice. Data collected during an experiment, either real or simulated, provide the current

state of the mouse system. These measurements can include the current drug concentration,

information about toxicity (e.g., reductions in white blood cell count or body weight), the

current size of the tumor, etc. The desired response may include reductions in tumor volume

or a target body weight. The system state and desired response are provided to the controller

which utilizes a model of the system to determine the manipulated variable changes required

to obtain the desired response. When considering cancer treatment, manipulated variables

can include dose levels and the times at which the treatment should be applied. This process

operates in a closed–loop fashion, where feedback is used for altering drug administration.

Classical feedback control relies on frequent measurements to control the process in real

time. However, chemotherapy is given in cycles with periodic updates (every two weeks to

two months) with treatment alterations based on evaluations of toxicity and patient response.

The current standard of practice or gold standard of treatment is based on empirical evidence

gathered from preclinical and clinical trials carried out during the drug development process.

1.4 OVERVIEW OF MODELING APPROACHES

In the context of model–based control, useful models must be both descriptive and predictive.

However, a balance must generally be made between model complexity and predictive

accuracy. Simple models (linear relationships, cubic splines, etc.) can be developed which

characterize the current dataset but have limited predictive capacity. Depending on the

measurements available, detailed models can be constructed that offer excellent predictive

capacity [10]. For many processes, physiologically based model structures contain many

differential equations often with complex nonlinearities. Such models can prove to be

prohibitively complex from a computational perspective when the desired result is the

development of an optimal control algorithm. The goal of the present work was to develop

models of drug pharmacokinetics (PK) and pharmacodynamics (PD) which are predictive

and at the same time suitable for controller synthesis.

5



1.4.1 Tumor Growth Models

Modeling for cancer systems requires two components. The first is an understanding of the

system in the absence of treatment and the second is a description of the effects of treatment.

A nominal understanding of how cancer progresses is necessary for model construction in

the case of the untreated system. Initially, cancer cells typically proliferate in an exponential

fashion. The size of the cancerous mass is measured experimentally as a volume, though

this mass is often referred to in terms of the number of cells (106cells ≈ 1mm3) [11].

As the cancerous mass increases in size, stochastic recruitment of blood vessels leads to

scarcity in nutrients [3]. In response to decreased availability of nutrients, the rate of

proliferation slows, and the population of cancer cells asymptotically approach a plateau

population [4]. Cancerous masses reaching this stage of growth are typically considered to be

under Gompertzian growth [11]. Other models have been developed in order to incorporate

reductions in proliferation rates as tumor sizes increase. These include the saturating Logistic

model [12] and the Verhulst–Perl equation [13]. Simeoni et al. demonstrated a model which

grows exponentially when tumor volumes are low and linearly as tumor volumes increase

[14].

Cell–cycle models have also been proposed [15, 16] to characterize the proliferative nature

of cancer. A schematic is shown in Figure 2. These models explicitly represent the transition

of cells between the different phases of the cell–cycle [2]. Many anticancer drugs are cycle–

specific, which means their primary effect occurs during a specific phase of the cell–cycle.

While understanding cellular proliferation at this level is ideal, acquiring data characterizing

the fraction of cells in the different phases is nontrivial. In order to determine the fraction

of cells at different phases of the cell–cycle, samples must be obtained and stained for DNA

and RNA content at different points in time [17]. Based on the amount of DNA or RNA

in different cells, the fraction of cells in a specific phase can be determined [17]. However,

using only macroscopic volumes to identify parameters in a cell–cycle model can lead to

identifiability problems. For example, consider the transition rates kS and kG1. Estimating

these parameters from tumor volume measurements could lead to two different sets of

parameters such that kS > kG1 or kS < kG1 that predict the same macroscopic behavior
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Figure 2: Typical five phase representation of the cell–cycle [2]. Cell–cycle phases are:

growth (G1), DNA synthesis (S), secondary growth (G2), mitosis (M), and quiescent (G0).

Transition rates between phases are given by ki.
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[18]. However the former would predict fewer cells in S than the latter. This can lead

to problems when considering a drug which is S–phase specific. Because the macroscopic

preclinical experimental data used in this work does not adequately inform a cell–cycle

description of tumor growth, macroscopic growth models were used exclusively.

1.4.2 Pharmacokinetic Modeling

PK models describe the effects organisms have on the drug. These effects typically include

the absorption, distribution, metabolism, and elimination of the compound [19, 20]. The

study of drug PK was first introduced by Teorell where he suggested that the major tissues

in the body could be modeled such that chemical substances were distributed throughout the

body based on the physiological construction of the organism [19, 20]. Models of this nature

are now commonly called physiologically–based pharmacokinetic (PB/PK) models [21]. This

is illustrated in the left half of Figure 3. The individual organs are treated as well–mixed

compartments where a drug is distributed homogeneously throughout the organ. Organs

with nonuniform drug distribution can be better described by partitioning the tissue into

subcompartments. Construction of these types of models can prove problematic as the data

requirements are extensive and tissue–specific data may be very difficult or impossible to

obtain clinically. For example, to obtain the average drug concentration in the kidneys of an

experimental animal, the animal is euthanized, the kidneys are removed and homogenized,

and the concentration is determined using analytical techniques (e.g., HPLC). Performing

this type of analysis is expensive and time consuming and it is simply not possible to analyze

human patients in this fashion. To reduce model complexity and better represent available

data, Teorell suggested using a more simplified model structure [19, 20]. This resulted in the

traditional compartmental model, an example of which is shown on the right side of Figure 3.

This simplified representation is used because plasma concentrations can be obtained more

easily than organ tissue concentrations. A remote compartment here is shown to account for

any higher–ordered dynamics that are observed experimentally.

The model structure of compartmental models — number of compartments, connectivity,

and the rate of transition between compartments — will depend primarily on the dynamics of
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the data being fit. It is common to assign physiological significance to parameters in compart-

mental models. For example, a pharmacokineticist might model an orally administered drug

by adding a compartment between the “Drug” input and “Plasma” compartment on the right

side of Figure 3. The rate of drug leaving this new compartment and entering the “Plasma”

compartment might be taken as the rate of absorption from the gut into the plasma. This

may or may not be the case and cannot be established without a measurement of drug

concentration in the gut. Hence, physiological interpretations of simplified compartmental

model parameters are more often a psychological construct than a rigorous understanding of

the underlying physiology. Regardless, the class of compartmental models is widely accepted

and employed in drug development [22, 23, 24].

The necessary complexity of compartmental models is largely dictated by the PK re-

sponse found in experimental data. Linear PK models, models in which each of the rates

of transition between compartments is linear in the system state, can be used to describe

many systems. The volume of work done in this area is too numerous to enumerate here,

using the query ‘cancer PK PD’ in pubmed returns 19,162 results, but a number of software

packages provide modeling and simulation capability for a variety of model structures (e.g.

ADAPT II [25], NONMEM [23], etc.). From a control perspective, linear PK models are

typically preferred because they are more easily implemented in controller synthesis [26, 27].

However, many biological systems exhibit nonlinear behavior [21]. Modified compartmental

model structures have been developed to account for many types of nonlinearities, such as

saturable pathways. Cyclophosphamide, for example, exhibits saturable elimination, and

Michaelis–Menten kinetics have been employed to describe these effects [28]. This and other

nonlinear effects are commonly accounted for by incorporating nonlinear functionality into

transition rates between compartments. These structure selections can be simple if the data

exhibit easily identifiable characteristics (e.g., first–order response). Otherwise, there exist

few methods for rigorous determination of PK model structure. One empirical method is the

use of genetic algorithms to determine the optimal model structure based on a set of possible

structures [29]. Stepwise forward model construction begins with a simple model structure.

Elements are randomly added to the model and tested to determine if they improve accuracy.

Model contributions that improve accuracy are retained. Addition of terms is halted when
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a stopping criterion specific by the user is met (e.g. upper bound on model complexity,

fit accuracy, etc). Stepwise term elimination often follows the model construction step.

The element whose removal has the least effect on the quality of fit is removed completely

if changes in the quality of fit are below a specified threshold. This process is repeated

iteratively until no further improvement in the quality of fit can be obtained.

Compartmental models are common because they are intuitive to construct and many

tools have been developed to aid in estimation of their parameters [21, 23, 25]. They are also

popular because they answer many of the questions which concern clinicians. These include

determining the exposure of a drug, quantified as the area under the plasma concentration

versus time curve. The rate of drug clearance is another characteristic important to clinicians

because it provides an indirect measure of drug exposure. Clearance and exposure are

parameters which can be used to characterize individuals, which is important given the

disparate nature of the patent population. In this regard, individual behavior can be iden-

tified (patient–specific parameters) while also explicitly accounting for the interindividual

variability (population parameter distribution). This is accomplished by performing a pop-

ulation analysis provided measurements are available from a statistically significant number

of individuals. A population analysis provides an average PK response as well as an estimate

for the variability found in the population. Classically, statistical parameter information has

been determined in one of two ways. The first method obtains parameter estimates for all

of the data simultaneously. This is referred to as the näıve pooled data approach [23]. The

other option evaluates individual parameter estimates for each data set. Individual estimates

are then used to calculate average parameter estimates. This is referred to as the two–stage

approach [23]. The näıve pooled data approach is known to give poor estimates, and the two-

stage approach is considered to introduce bias [23]. A relatively new development combines

the two aforementioned methods to eliminate some of the shortcomings related to bias and

estimation. This is referred to as mixed effects modeling [30, 31] and is most commonly

associated with the Nonlinear Mixed–Effects Modeling (NONMEM) software package [23].
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1.4.3 Pharmacodynamic Modeling

1.4.3.1 General PD Modeling While PK models describe the action of the body on

the drug, PD models describe the effect of the drug on the body. In the field of oncology,

these effects can be positive (elimination of disease) or negative (elimination of the white

blood cells or other toxicity). Since the effects of drugs on organisms are being studied,

one approach uses PK models to drive a PD model [12, 32]. This means that predictions of

drug concentrations from PK models are used within the PD model. The precise use of PK

predictions will depend on how well the mechanism of drug action has been characterized

and the relationship between that mechanism and the PK predictions available.

Due to the complexity of biological systems, detailed mechanistic models can become

prohibitively complex for the same reasons found when dealing with PK models [19, 20].

For this reason, a more simplified approach assumes a causal relationship between the

concentration of a drug in the plasma, or another compartment, and the PD effect [12].

When correlating drug PK with PD, the presence of the drug as predicted by the PK

model occurs over a specified interval of time, and the duration of the effect can be similar.

Alternatively, the PD effect may occur for a fraction of the time the drug is present or can

persist for a duration much longer than that which the PK alone would predict. PD effects

can also be characterized as responding somewhat immediately to drug PK or an appreciable

time after the drug is assumed to have been eliminated. These two aspects of correlative

drug effects are shown in Figure 4.

Drugs effects occurring on the same timescale as drug PK with an immediate response

to modeled drug concentrations are the easiest to characterize. For example, intravenous

injection of insulin has a rapid effect on the level of glucose in the blood [33]. The simplest

model effect is one which is directly proportional to the concentration of the drug/plasma

concentration and can be addressed by most simulation packages capable of performing

numerical integration.

Another PD effect is one which begins at drug administration but persists for an appre-

ciable time after the drug has been eliminated. For example, this can occur when a small

amount of drug binds tightly to and saturates a receptor. Some drug can still be bound
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to the receptor even though the remaining unbound drug circulating through the body has

been eliminated. This can be accounted for by adding additional dynamics between the PK

prediction of plasma concentration and the PD effect. This leads to a prolonged exposure

at the site of action with respect to the concentration in the plasma. This adds to model

complexity, but does not affect the simulation techniques.

On the other end of the spectrum, the time between administration and effect can be

quite disparate. Consider the effects of smoking, where an individual can be exposed to

chemicals (tar, nicotine, etc.) for many years before exhibiting the more extreme negative

side effects such as cancer and emphysema. While the effects are not strictly quantifiable, few

people would dispute the correlation between smoking and the negative effects on the health

of individuals [34]. These effects could occur for the duration of exposure shifted in time

or at a different rate all together. This is an extreme example of what the pharmacological

community refers to as indirect response models [35], and one method for capturing these

effects is to place several compartments in series between the PK and PD models. An

alternative method to model such lagged effects is to account for them directly as time

delays [26].

1.4.3.2 Chemotherapeutic Effects Modeling the PD effects of chemotherapy repre-

sents a deviation from the normal growth pattern of cancer. At the most detailed level, the

interaction between the drug and the diseased tissue can be accounted for by understanding

the transport properties of the drug and it’s mechanism of action (i.e., inhibition of signal

pathways [36], anti–angiogenic effects [37], etc.). Cancer cells, like other cells, are robust

complex systems which are capable of compensating for many molecular changes introduced

by chemotherapy. Consequently, modeling a system at the intracellular level requires large

amounts of data and a clear understanding of the pathways, interactions and molecular

targets that are being affected.

Detailed physiologically–based models of chemotherapy lie on one end of a continuum.

On the other end is a correlative approach which utilizes statistical inference to associate

causal relationships between drug administration and effect. This may seem like a simplistic

approach, but it may be the only credible means of evaluating data when lacking a more
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detailed understanding of chemotherapeutic effects is unavailable. This approach focuses on

using the available data to develop mathematical descriptions of chemotherapy.

In the engineering literature, mathematical descriptions typically begin with a PK model.

To account for drug effects, plasma drug concentration predictions are usually used as

approximations for drug concentrations at the site of the tumor. This is based on the

rationale that tumors are well–perfused and have permeable capillaries [3]. The PD response

is then represented mathematically by incorporating a bilinear term proportional to both

the current size of the tumor and the concentration of the drug [12, 15, 38].

1.4.4 Camptothecin Analogs

In this work we consider the anticancer effects of 9-nitrocamptothecin (9NC). 9NC is a

member of the camptothecin family, a class of drugs derived from the camptotheca tree [39].

9NC exists in both the active lactone and inactive carboxylate forms shown in Figure 5

[39, 40]. After passing through the liver, 9NC readily converts to 9-aminocamptothecin

(9AC) which also exists in the same active and inactive forms in plasma. The camptothecin

family is characterized by the five ring structure shown in Figure 5. Camptothecins have

been investigated because of their ability to inhibit topoisomerase-I [41], thereby blocking

DNA synthesis and inhibiting tumor growth in the S phase of the cell–cycle.

Purified camptothecin is not water soluble, so it was initially given in a salt form. This

resulted in most of the drug being converted into the inactive carboxylate form and little

exposure of the active lactone form to the diseased tissues. As a result, different analogs and

delivery methods were sought to maintain stability of the lactone ring as long as possible

in plasma. Common analogs include topotecan, and irinotecan. A search of pubmed for

‘camptothecin PK PD’ returns 697 results. Several are discussed below to highlight the

types of information obtained from PK/PD analysis of camptothecins.

Topotecan was one of the first approved camptothecin analogs. This water–soluble

derivative has a lactone ring with a 2.9 hour half life in plasma after intravenous infusion [39].

Topotecan plasma concentration versus time data was modeled using a two–compartment

structure [39, 42]. More recently, Gallo et al. developed a PK model to describe the
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disposition of topotecan in plasma and tumor [43]. They developed a hybrid model which

used a compartmental model of plasma PK to drive a compartmental model of the tumor

PK. The plasma portion of the model was a standard two compartment model [25] —

drug input into a central compartment which has exchange with a peripheral compartment.

The plasma PK predictions were then used as inputs into the tumor PK model which was

three subcompartments in series: a vascular compartment, connected to an interestitial

compartment, in contact with an intracellular compartment [43]. This model to characterized

drug disposition in tumors and aided Gallo et al. in drug regimen design.

Simeoni and coworkers recently presented a series of PK driven PD models [14]. The

drugs under consideration included irinotecan, paclitaxel, and 5-florouracil. Compartmental

PK models were developed for each compound (two compartment model with a central

plasma and remote peripheral compartment was used for irinotecan) and used to drive the

PD model. Both A2780 human ovarian carcinoma and HCT116 colon carcinoma xenografts

were studied in female, athymic nude mice. The PD model consisted of a growth term which

slowed as the tumor volume increased; a bilinear kill term was added that decreased the

rate of proliferation in response to the presence of the drug as predicted by the PK model.

The cells exiting the proliferating phase in response to the drug entered subsequent damaged

cell compartments (three in series) eventually leading to the death of the cells. The authors

accurately predicted both untreated and treated tumor growth in animals. They further

presented this as a tool which could be used in preclinical and clinical trials.

The study of drug disposition (PK) and effects (PD) are common in the field of oncology

(over 19,000 results when searching for ‘cancer PK PD’ in pubmed) . These studies are

not generic; most focus on specific drug/tumor combinations. These combinations are

dealt with individually because the PK and PD can vary significantly depending on the

chemotherapeutic agent(s), tumor line, and host organism. Examples presented here dealt

specifically with camptothecin analogs. As suggested by Simeoni [14] and Gallo [43], PK

and PD models can be exploited to inform clinical decisions and to aid in the development

of dose schedules.
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Figure 6: Drug continuum for treatment efficacy and toxicity indicating the location of most

current anticancer agents (dashed region).
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1.5 CONTROL: DOSE SCHEDULING

Anticancer drugs can be conceptually thought to lie on the two continua shown in Figure 6.

One continuum characterizes the efficacy of the drug while the other describes toxicity.

Ideally, drugs would be found which reside in the upper left quadrant of Figure 6 (target).

However, existing drugs are more often located in the quadrant containing the dashed circle.

Consequently, the objective of a clinician in prescribing chemotherapy is to determine the

amount and frequency of drug administration that balance the competing drug effects of

efficacy and toxicity. The methods currently used to determine such schedules are well

established in the clinic, and they are also highly empirical. While these methods currently

yield positive results, it is appropriate to inquire if a more rigorous method could be applied,

not as a substitute for, but in tandem with, the current process.

1.5.1 Literature Approaches

The dose scheduling problem has been considered by several authors in the literature [12,

13, 16, 18, 38, 38, 44, 45, 46, 47, 48]. Like many problems in process control, this was

formulated as a constrained optimization. An objective function is constructed such that

the changes in the input which yield the minimum possible objective function value are

considered the optimum set of inputs. The objective is to minimize the number of cancerous

cells, or the volume of a tumor, at a final time. This is accomplished while satisfying the

dynamic constraints defined by the PK and PD of the drug [38, 45]. Also, inequality and

equality constraints could be included to limit toxicity and account for logistical concerns.

One of the first mathematical approaches applied to optimizing cancer chemotherapy was

described by Swan [13]. A logistic growth model was used to describe macroscopic tumor

proliferation, and chemotherapeutic effects were considered to be bilinear (proportional to

drug concentration and tumor size) and saturable with respect to drug concentration. The

objective was to achieve homeostasis by continuously delivering an intravenous drug. While

this type of treatment is possible, it can lead to toxicity and become prohibitively expensive.

Hence, most drugs are developed to be delivered intravenously over short periods of time (e.g.,
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one hour infusions) or more ideally to be administered orally. The methodology developed

in this document can readily deal with these constraints.

A chemotherapy dosing problem was posed in 1990 by Pereira et al. [16] where a cell–

cycle model was used to describe the proliferation of cancer in the presence of multi–drug

chemotherapy. The PK of the drugs were described generically as linear ODEs. An algorithm

utilizing a gradient based approach to solve the nonlinear programming problem for generic

drug/tumor combinations. This method of solution provides no guarantee of optimality and

ignores the fact that most drug/tumor combinations require specific consideration.

Panetta considered a similar theoretical problem using a simplified cell–cycle model [15],

represented by two populations of cells, resting and proliferating. The chemotherapeutic

effect occurred in the proliferation phase. The effects of pulsed chemotherapy were analyzed

to categorize the regimens between those that would and would not eliminate tumor masses.

Panetta identified the optimal treatment period and dose in the absence of constraints

addressing toxicity. By ignoring toxicity, Panetta ignores one of the primary concerns of

clinicians [49, 50] and thus a critical aspect of the dosing problem.

In 1990, Martin et al. studied an intravenously administered drug with first–order

elimination acting on a tumor undergoing Gompertzian growth [51]. In contrast to the

work by Swan, the drug here was considered to be administered weekly — a more relevant

treatment methodology based on current clinical practice. The objective was to determine

the amount of drug to administer on a weekly basis over a treatment horizon of one year to

minimize the final tumor volume without violating toxicity constraints. This is a topic

that Martin detailed in 1992 [45] and eventually expanded into a book with Teo [12].

The dosing problem was formulated as a utilized optimal control and used control vector

parameterization to determine the solutions. The “parameters” here refer to the magnitude

of the doses given weekly. The solutions developed by Martin were mathematically optimal,

however clinically irrelevant, as the algorithm suggested withholding treatment until the

last half of the treatment window for highly effective drugs. At this point, as much drug as

possible would be given such that toxicity constraints were not violated. Manipulation of the

manipulated variable at the end of the prediction horizon is a common characteristic found

in optimal control problems when optimizing states at the end of the horizon [52]. This
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type of solution completely ignores clinical practice where toxicity and efficacy are what

drive treatment. In the absence of further compelling evidence, it would be unethical for

a clinician to withhold treatment for six months based on the suggestion of an engineering

algorithm. One of the primary focuses of this dissertation is to develop methodologies which

can address clinical concerns.

Costa et al. considered a deviation of the final time problem previously mentioned [53].

PD models were altered to contain a population of both drug susceptible and a uniform

population of drug resistant cells. Drug effect was described by a bilinear kill term, and the

objective was a variant of the final time objective considered by Martin and Teo [12]. This

work utilized optimal control as a solution methodology and found optimal dosing profiles

when considering cells in the rapidly proliferating phase of growth. However, the dosing

profiles found by Costa et al. for cells at slower rates of proliferation were suboptimal.

Similar to the work by Costa et al. [53], Swierniak et al. also considered a PD model in

which cancer cells were segregated into both drug susceptible and drug resistant cells [46].

The drug resistant cells contained a range of drug resistances. A gradient–based approach

was utilized to find solutions dosing solutions The final time selected was short and solved

for successively to develop a periodic treatment. Toxicity was not explicitly considered. A

maximum value was placed on each dose and the total amount of drug administered was

included as a term in the objective function. While the solutions found were mathematically

suboptimal, their periodic nature is more realistic in a clinical sense.

Afenya considered a minimum time problem [47]; using an optimal control formulation.

This methodology places the control variable at one extreme (maximum possible dose) and

the objective is to determine the optimum time to switch to the other extreme (no drug

administered) such that the objective is achieved in the minimum possible time. The PD

model selected consisted of two cell populations: abnormal, or cancerous, tissues comprised

one population while healthy cells were modeled with the second. While the minimum time

analysis may apply to other engineering processes, it is an inherently poor choice for the

development of cancer chemotherapy schedules. It results in applying the maximum possible

dose of drug for an extended duration. In a clinical setting, this would likely lead to fatal
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drug–induced toxicity. Constraints to prevent this type of toxicity are easily implemented

using the framework discussed in this dissertation.

Ledzewicz and Schättler also approached cancer treatment as a final time problem

[38, 44]. A cell–cycle model of cancer proliferation was used in conjunction with cycle specific

drugs. The PK of the drug was ignored; it was assumed that drug administration directly

inhibited proliferation. In order to achieve solution optimality, bang-bang solutions were con-

sidered. This involves determining the times to switch between the maximum value of drug

input and the minimum amount of drug input. The objective consisted of two components:

the amount of diseased tissue at a final time and the total amount of drug administered.

Again, no explicit consideration of toxicity was made. These solutions are mathematically

optimal; however, they are myopic in that continuous infusion of chemotherapeutics at their

maximum tolerable level is not clinically realizable.

1.5.2 Toward Clinical Relevance

The clinical final treatment time (as employed by Martin and Teo) is not generally defined

a priori. Toxicity and efficacy drive treatment decisions [49, 50], and endpoints such as

disease remission are not easily predicted. High variability in patient response can make it

difficult for clinicians to predict treatment outcomes in terms of efficacy and toxicity. For this

reason, treatment is typically given in cycles which allow clinicians to evaluate the response

of patients and use information feedback to alter treatment accordingly.

The studies discussed in subsection 1.5.1 drug dosing for cancer treatment in the ab-

stract as a single problem with a generic drug/tumor combination. While there are many

situations in engineering where such abstraction is possible, the problem of determining

cancer chemotherapy dosing schedules does not allow such generalizations. Unlike many

chemical processes, biological systems are very complex. It is not uncommon for organisms

to exhibit significant variability in response to disease treatment [54]. As a result, drug/tumor

combinations may have to be treated independently from a modeling perspective and patient

specific parameters may have to be derived when trying to obtain an optimal treatment

schedule.

22



1.6 DISSERTATION OVERVIEW

It should be possible to determine a clinically relevant chemotherapy schedule that optimizes

the trade-off between treatment efficacy and patient quality of life based on a prescribed ob-

jective and a mathematical characterization of drug pharmacokinetics, efficacy, and toxicity.

It is proposed that a method for developing optimal cancer chemotherapy schedules can be

accomplished in two steps: (1) model development and (2) control algorithm synthesis and

analysis.

Chapter 2 develops a linear PK model of 9-nitrocamptothecin (9NC), and its major active

metabolite 9-aminocamptothecin (9AC), in the plasma of severe combined immunodeficient

(SCID) mice at a single dose level. A revised model is then developed based on additional

PK data to describe the nonlinear plasma disposition of 9NC and 9AC over a range of dose

levels. The PK models are then used in chapter 3 to derive PD models that characterize

the effects of 9NC administration on HT29 human colon carcinoma xenografts implanted

subcutaneously in SCID mice. Two PK/PD models are presented: the first is driven by the

linear PK model and the second forced by the nonlinear PK model.

Chapter 4 focuses on step 2, the synthesis of model–based control algorithms. Instead

of employing optimal control techniques, this chapter addresses these control problems from

a mathematical programming perspective. Optimal dosing problems for the linearly driven

PK/PD model from chapters 2 and 3 and the system studied by Martin [12] are addressed.

These problems are transformed and the dosing profiles are determined by solving a mixed–

integer linear programming problems (MILP). The optimal dosing profile for the nonlinear

PK/PD system from Chapters 2 and 3 is also determined using an MILP. Finally, in Chapter

5, conclusions drawn from the modeling and treatment design studies, and recommendations

for extending and improving upon the results are provided.
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2.0 PHARMACOKINETIC MODELING

After administration, a drug will distribute throughout an organism. At different locations

within the organism, the drug can also be metabolized or eliminated. PK models are

utilized to describe these processes and provide researchers with an in silico means of

estimating physiological phenomena such as drug clearance and exposure. To facilitate model

construction of tools such as ADAPT II r© [25] and NONMEM r©[23] have been employed

by the medical and pharmacological communities. Novel model structures can also be

developed in simulation packages such as MATLAB ( c© 2005, The Mathworks, Nantick,

MA). In addition to describing drug concentrations as a function of time, PK models in this

work are used to drive the PD models developed in Chapter 3.

2.1 9-NITROCAMPTOTHECIN

The drug 9-nitrocamptothecin (9NC) is an orally administered camptothecin analog that is

being evaluated in clinical trials [55]. Preclinical PK data were obtained from SCID mice

(some bearing subcutaneously implanted human HT29 colon carcinoma xenografts) after oral

9NC administration. Following oral administration, 9NC is absorbed into the bloodstream

through the gastrointestinal tract. In plasma, 9NC quickly equilibrates between its active

lactone and inactive carboxylate forms [55]. Further, the nitro group on 9NC is readily

reduced to form the active primary metabolite 9-aminocamptothecin (9AC) [56]. 9AC also

exists in both the active lactone and inactive carboxylate forms [55] (see Figure 5). The

parent, 9NC, and metabolites then distribute to the tumor and normal tissues [40].
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Figure 7: Two state compartmental model of intravenous drug disposition: (a) compartmen-

tal description, (b) equivalent Laplace domain representation. L{·} is the Laplace transform

operation and L−1 {·} is the inverse Laplace transform.
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2.2 MODELING METHODOLOGIES

2.2.1 Compartmental Models

Figure 7(a) shows an example of a compartmental model which could be used to represent

the intravenous administration of a drug, D(t), to a central compartment (e.g. plasma) with

drug mass x1(t) and volume of distribution v1(t). This model assumes that the drug is being

eliminated from the central compartment at a rate k1e and can be distributed to and released

from a peripheral tissue at rates k12 and k21, respectively. The peripheral tissue contains

a mass of drug x2(t) distributed homogeneously throughout the volume v2(t). The system

shown in Figure 7(a) can be represented mathematically by performing mass balances over

each compartment:

ẋ1(t) = D(t)− k12x1(t)− k1ex1(t) + k21x2(t)

ẋ2(t) = k12x1(t)− k21x2(t)

C(t) = x1(t)
v1

(2.1)

Here C(t) is the concentration of the drug with respect to time and the dot operator (˙)

indicates a rate of change—the first derivative with respect to time.

2.2.2 Laplace Domain Representation

The system from equation (2.1) is referred to as a time domain representation. Another

common way to conceptualize this system is in the Laplace domain. The Laplace domain

provides a useful framework for dynamic analysis of linear systems. Equation (2.1) is

comprised of linear ODEs, and it is possible to transform equation (2.1) into the Laplace

domain. Assuming both the the initial concentration of the drug (x1(t = 0)) and that the

amount of drug administered before time zero (D(t = 0−)) are zero, the individual elements
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for the state equation describing x1 are transformed in the following way:

L{ẋ1(t)} = sX1(s)

L{D(t)} = d(s)

L{−k12x1(t)} = −k12X1(s)

L{−k1ex1(t)} = −k1eX1(s)

L{k21x2(t)} = k21X2(s)

(2.2)

Where L{·} is the Laplace transform operator and the variable s is the independent variable

in the Laplace domain. For clarity, states in the Laplace domain are identified by capital

letters as a function of s with the exception of dose which is represented in the Laplace

domain by d(s). The state equations from (2.1) can be transformed and solved for their

respective states in the Laplace domain to yield:

X1(s) =

1
(k12+k1e)

1
(k12+k1e)

s + 1
d(s) +

(k21)
(k12+k1e)

1
(k12+k1e)

s + 1
X2(s) (2.3a)

= (d(s) + k21X2(s))

1
(k12+k1e)

1
(k12+k1e)

s + 1︸ ︷︷ ︸
GD(s)

(2.3b)

X2(s) =
k12

k21

1
k21

s + 1︸ ︷︷ ︸
G21(s)

X1(s) (2.3c)

The functions GD and G21 are first–order transfer functions. The term transfer function

is used because it translates, or transforms, effects of changes in one state or input onto

another. For example, G21 translates changes in X1 on to X2. The order of the transfer

function refers to the highest power of s in the denominator. A transfer function is said to

be in standard form when the coefficients of s0 are equal to one in both the numerator and

denominator. Transforming the system into the Laplace domain and placing it in standard

form provides a system of equations which are unique from an analysis standpoint. Consider

G21(s): the coefficient k12

k21
is referred to as the system gain and the coefficient of s in the

denominator, 1
k21

, is the time constant of the system. These are typically referred to by

the symbols Ki and τi, respectively, and the index i is used to distinguish between transfer

functions. The gain translates the magnitude of changes in X1 in to proportional magnitude
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changes in X2, and the time constant determines the rate at which this occurs. This form is

unique because it effectively decouples steady–state and dynamic effects into two separate

parameters.

The system of equations from equation (2.3) can be represented in block diagram from

as shown in Figure 7(b). Arrows represent the values of the states and the blocks contain

the transfer functions. The operators shown in Figure 7, L{·} and L−1{·}, represent the

Laplace transform and inverse Laplace transform operations, respectively.

The method of transforming linear ODEs into the Laplace domain was shown in equa-

tion (2.2). This example encompasses some important concepts in discussing dynamic

systems. However, it does not address the concept of delayed systems. This issue was

introduced in subsection 1.4.3 when delayed PD effects were discussed. Delay systems are

common in both chemical processes and biological systems. Mathematically, delayed states

are represented by the Heaviside function, H(·), in the time domain. The Heaviside function

acts as a switch and is defined in the following way:

H(t) =

 0 t < 0

1 t ≥ 0

A state, x, delayed by 5 time units would be represented by x(t − 5)H(t − 5) in the time

domain. The Laplace domain representation would be given by:

L{x(t− 5)H(t− 5)} = X(s)e−5s

A natural question arises: if both domains (i.e., time and Laplace) describe the same

phenomenon, why should one be selected over the other? The distinction between the two

methods becomes important when trying to regress model parameters.
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2.2.3 Parameter Estimation

The objective of parameter estimation is to determine the set of parameters which will best

fit the data—this presupposes that a model structure has been selected. The parameter

estimation problem from a given model structure is formulated as an optimization problem

where values for the set of parameters, P , are determined such that the prediction error

— the difference between the actual values, Y(k), and the predicted values, Ŷ(k,P) — is

minimized. Mathematically, this is written as follows:

min
P

SSE =

ndata∑
k=1

Γ2
Y(k, k)

(
Y(k)− Ŷ(k,P)

)2

=
∣∣∣∣∣∣ΓY (Y(k)− Ŷ(k,P)

) ∣∣∣∣∣∣2
2

(2.4)

Equation (2.4) minimizes the sum squared error, SSE, between actual and predicted. This is

commonly referred to using the notation at the far right of equation 2.4, called the squared

two–norm. This increases the penalty for prediction errors as the deviation from experimental

data increases. One side effect of this optimization is that parameters which satisfy (2.4)

are assumed to be part of a Gaussian distribution [57]. The parameter, ΓY , is a weighting

parameter to increase or decrease the penalty associated with individual data points. One

possible weighting uses the inverse of the variability associated with individual measurement

points; this increases the importance of fitting data points associated with smaller standard

deviations.

All of the parameter estimation techniques previously mentioned require an optimization

of some kind. While the models may consist of linear ordinary differential equations (ODEs),

meaning they are linear in the states, x, the optimization may not be linear with respect to

the parameters. It can be advantageous to transform the system such that nonlinearities are

eliminated, the number of parameters are reduced, or nonlinear structures more amenable

to regression are used. However, it can be difficult to eliminate all of the nonlinearities and

parameter couplings when estimating parameters.

Hence, it is often necessary to solve nonlinear programming problems (NLP) [58, 59].

While efficient algorithms exist for specific types of nonlinearities [60], gradient-based meth-

ods provide a general technique for solving a NLP [59]. Gradient-based minimization utilizes

the partial derivatives of the objective function with respect to the parameters to determine
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the parameter adjustments necessary to minimize the objective function. This is an iterative

process that depends on initial guesses for parameter estimates; based on the quality of the

initial guess, the algorithm may converge to either a local or global minimum [58]. In order to

reduce the probability of finding a local minimum, the algorithm may be started at different

points in the parameter space. Parameter estimates in this work were determined using

the fmincon function from the optimization toolbox in MATLAB r© Release 14 ( c©2005, The

MathWorks, Natick, MA) on x86-based computers.

2.2.4 Selecting from Competing Model Structures

Situations arise where different model structures can be developed to describe the same

system. The intended use of a model may contribute to structure selection decisions (e.g.,

linear structures are typically more amenable to controller synthesis than nonlinear models).

When no a priori preference or justification for a particular model structure exists, other

metrics are considered. Since the purpose of a model is to act as a surrogate for an actual

system, it is necessary to determine which model structure best estimates the data. One

method of comparing different model structures is to employ Akaike’s Information Criterion

(AIC) [61]:

AIC = (number of points) ln

(
SSE

(number of points)

)
+ 2(number of parameters) (2.5)

The AIC is a metric that balances between adding parameters and improving model quality

(lowering SSE). The model structure which provides the lowest AIC is preferred based on

the parsimony principle.

2.3 LINEAR PK MODELING OF 9NC AND 9AC LACTONE

2.3.1 Five Compartment Model

The first step in modeling this system was to characterize the PK of 9NC. Since an orally

administered drug with a metabolite of interest was being considered, the compartmental
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Figure 8: Five compartment pharmacokinetic model for the disposition of 9NC and 9AC

lactone after oral dosing of 9NC.
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model shown in Figure 8 was used. Compartments x2 and x4 were included to capture

the dynamics (in this case slowed elimination) of 9NC and 9AC in compartments x1 and

x3 respectively. Parallels can be drawn between the underlying physiology and the model

structure, given in differential form in equation (2.6):

ẋ0(t) = D(t)− k01x0(t) (2.6a)

ẋ1(t) = k01x0(t) + k21x2(t)− (k12 + k13 + k1e)x1(t) (2.6b)

ẋ2(t) = k12x1(t)− k21x2(t) (2.6c)

ẋ3(t) = k13x1(t) + k43x4(t)− (k34 + k3e)x3(t) (2.6d)

ẋ4(t) = k34x3(t)− k43x4(t) (2.6e)

C9NCL =
x1(t)

v1

(2.6f)

C9ACL =
x3(t)

v3

(2.6g)

Here the states are represented by xi and parameters are given by ki and vi. The mass of

the drug, D, enters the compartment x0 as a bolus. This compartment can be interpreted as

describing the kinetics of drug absorption and first-pass liver effects after oral administration.

The drug is absorbed from the gut into the plasma at a rate k01. Transport from the plasma

central compartment (x1) to the remote peripheral compartment (x2), and vice versa, takes

place at the respective rates k12 and k21. The lactone form of 9NC is either eliminated

from the plasma at a rate of k1e or metabolized to 9AC lactone at a rate of k13. Similar

interaction with the peripheral tissues (x4) is possible for 9AC lactone at the rates of k34

and k43, respectively. Lastly, 9AC lactone is eliminated at a rate of k3e.

Major shifts in the equilibrium between the active lactone and inactive carboxylate forms

of 9NC and 9AC occur in the presence of binding proteins [55, 62]. While these are commonly

found in humans, they do not affect 9NC or 9AC dynamics in mice (i.e., no human serum

albumin is present) [62]. It was assumed that equilibrium between lactone and carboxylate

forms of 9NC and 9AC in the plasma was achieved rapidly [55], and no attempt was made

to model equilibrium shifts because 9NC lactone was measured, albeit indirectly.

For parameter estimation purposes, the ten parameters for this model were all estimated

independently. Two sets of parameters were found for two separate sets of 9NC and 9AC
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Table 1: Mean, standard deviation, and individual estimates for the compartmental model

parameters.

Mean Std. Dev. tumor–bearing non–tumor–bearing

k01 2.15× 10−2 6.97× 10−3 1.656 ×10−3 2.642 ×10−3 min−1

k12 3.11 3.01 0.984 5.242 min−1

k13 0.643 8.22× 10−2 0.585 0.701 min−1

k1e 1.016 0.301 0.803 1.229 min−1

k21 0.471 0.248 0.295 0.646 min−1

k34 2.030 1.012 2.746 1.314 min−1

k3e 2.575 1.023 1.856 3.298 min−1

k43 0.966 0.227 0.806 1.127 min−1

v1 3.888 0.169 3.768 4.008 ml

v3 9.639 0.462 9.966 9.313 ml
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Figure 9: Experimental 9NC lactone (top pane) and 9AC lactone (bottom pane) concentra-

tions from two studies: (—) - tumor-bearing animals and (›) - non-tumor-bearing animals.

Data shown ± are 1 standard deviation. Compartmental model predictions using the model

from Figure 8 (· · ·) and mean PK parameter values.
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plasma data: one experiment used tumor-bearing animals and the other using non-tumor-

bearing animals. These parameters are shown in Table 1. These parameters will be discussed

in detail in section 2.3.3. These data are shown in Figure 9 along with one standard deviation

in the measurement, for each experimental point in time—each datum point represents the

average value for three mice. From these data it can be seen that there is no statistical

difference between the two studies. The two sets of parameters were averaged and the

“average” model was simulated in response to the same 0.67 mg/kg dose to produce the

model prediction shown in Figure 9. The data shown in Figure 9 exhibit a quick increase in

9NC concentration followed by a slow decrease. Consider the 9NC lactone concentrations.

The compartmental model underestimates the peak concentration to better approximate

the data points which follow. In fact, this model does a poor job of capturing the dynamic

behavior seen in the data. This is particularly true between t = 15 min and t = 60 min.

2.3.2 Two Timescale Model

To better capture the dynamic response, an alternative PK model for 9NC and 9AC lactone

dynamics is shown in the Laplace domain in Figure 10. This model is referred to as a two

timescale model because the dynamics are governed by two distinctly different pathways.

This model is governed by the following equations:

ẋ1(t) = H(t− θ)D(t− θ)
β1

τ1

− x1(t)

τ1

(2.7a)

ẋ2(t) =
α1

τ2

D(t)− x4(t)

τ4

(2.7b)

ẋ3(t) =
x1(t) + x2(t)

τ3

− x2(t)

τ3

(2.7c)

ẋ4(t) =
α2

τ4

x3(t)−
x4(t)

τ4

(2.7d)

C9NCL = K1x3(t) (2.7e)

C9ACL = K2(x3(t) + x4(t)) (2.7f)

A fraction, α1, of the dose D enters the system as a mass through the right pathway in

Figure 10 and experiences the dynamics governed by G2. The remainder of the dose, β1,

takes the left pathway and is delayed by θ time units before passing through G1. The states
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Figure 10: Two timescale pharmacokinetic model for the disposition of 9NC and 9AC lactone

after oral dosing shown in the Laplace Domain. Transfer functions, Gi, have unity gain and

βi and αi are complementary fractions. The gains, K1 and K2, convert the respective signals

representing the masses of 9NC and 9AC lactone to concentrations, and θ is a time delay.
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Table 2: Mean, standard deviation, and individual estimates for the two time scale model

parameters.

Mean Std. Dev. tumor–bearing non–tumor–bearing

τ1 389 469.5 57.06 721.0 min

τ2 11.87 0.134 11.97 11.776 min

τ3 11.65 6.252× 10−2 11.70 11.609 min

τ4 38.07 44.97 6.275 69.865 min

K1 0.327 0.177 0.201 .45187e-01 ml−1

K2 3.84× 10−2 2.33× 10−2 2.192×10−2 5.48 ×10−2 ml−1

α1 0.343 0.208 .489 .19581e-01 —

α2 0.442 0.166 .325 .55939e-01 —

θ 29.97 3.812× 10−3 29.98 29.97 min

x1 and x2 are combined to form the input into G3 whose output x3 represents the mass of

9NC lactone in the plasma. The two pathways can be biologically interpreted as different

areas of adsorption in the digestive tract of the mouse. A fraction, β2, of the 9NC lactone

in plasma is converted directly into 9AC, and the remaining 9NC, α2, is converted to 9AC

after passing through G4.

This model contains nine parameters, and these were regressed independently to the

tumor–bearing and non–tumor–bearing mouse data sets. For each dataset, parameters were

estimated by first finding the parameters describing 9NC dynamics. These parameters (α1,

θ, τ1, τ2, τ3, and K1) were fixed, and the parameters associated with 9AC (α2, τ4 and K2)

were regressed. The parameter estimates are given in Table 2 and will be discussed in

detail later. The mean parameter values for the two studies were used to develop the model

predictions shown in Figure 11. These model predictions are plotted along with those of the

compartmental model previously discussed. By comparing the two model predictions from

Figure 11, the two timescale model appears to be superior to the compartmental model.

The two timescale model is able to capture the rapid increase in 9NC plasma concentrations
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Table 3: AIC and SSE results for compartmental, and two timescale (indicated by the

subscripts c, and t, respectively) for both tumor–bearing and non-tumor-bearing animals.

Mean values represent AIC and SSE calculated by considering deviations of mean model

predictions from both datasets.

tumor-bearing non-tumor-bearing mean parameters

AICc 62.4 64.7 105.8

AICt 33.4 45.2 106.1

SSEc 225.9 262 529.7

SSEt 41.9 87.6 503.2
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Figure 11: Experimental 9NC lactone (top pane) and 9AC lactone (bottom pane)

concentrations from two studies: (—) - tumor–bearing animals and (›) - non–tumor–bearing

animals. Data shown are ± 1 standard deviation. Model predictions use the compartmental

from Figure 8 (· · ·) and the two timescale model from Figure 10 (-·-) with mean PK parameter

values.
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as well as the slowed elimination seen at later times. Similar dynamics are seen for 9AC

as well. To quantitatively compare the compartmental and two timescale model structures,

the AIC was calculated and is shown in Table 3. The AICs for the individual data sets are

significantly lower for the two timescale model. To determine an average AIC, sum-squared

errors were calculated based on the differences between the average model predictions and

the individual data points — this doubled the number of data points in the AIC calculation.

While the average AIC for the two timescale model is still lower, the effect is less dramatic.

The two timescale model provides better predictions for the individual data sets, but this

improvement is not as apparent when all of the data is considered simultaneously.

2.3.3 Recycle Model

An alternative PK model for 9NC and 9AC lactone dynamics is shown in the Laplace domain

in Figure 12 and has the following differential equation representation:

ẋ0(t) = −x0(t)

τ0

+
D(t)

τ0

(2.8a)

ẋ1(t) =
x0(t)

τ1

− x1(t)

τ1

+
x3(t)

τ1

(2.8b)

ẋ2(t) =
β1α2

τ2

x1(t)−
x2(t)

τ2

+
x4(t)

τ2

(2.8c)

ẋ3(t) = H(t− θ)x1(t− θ)
α1

τr

− x3(t)

τr

(2.8d)

ẋ4(t) = H(t− θ)x2(t− θ)
α1

τr

− x4(t)

τr

(2.8e)

C9NCL = β1Kpx1(t) (2.8f)

C9ACL = β1Kpx2(t) (2.8g)

The recycle structure model given by equation (2.8) also captures plateau dynamics observed

in the experimental PK data, around t = 35 min. The dose, D, enters as a bolus (in

mass units) and undergoes first-order dynamics described by equation (2.8a). This can be

physiologically interpreted as absorption from the gastrointestinal tract. Next, the rate of

appearance of 9NC lactone is dictated by equation (2.8b). A fraction, β1, of the mass of 9NC

lactone appears in the plasma with the remainder, α1, recycled. Recycling can be loosely
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e−θs

β1 β1

α1α1

α2

β2

where:

elimination

+ +

+ +

e−θs

X2

C9NCL C9ACL

G0(s)

G2(s)

Gr(s)

Kp

Gr(s)

Kp

X0

X1

X3 X4

G1(s)

Gi(s) = 1
τis+1

βi = 1 − αi

0 ≤ αi ≤ 1

Dose d

Figure 12: Recycle-based pharmacokinetic model for the disposition of 9NC lactone and

9AC lactone after oral dosing shown in the Laplace domain. The transfer functions, Gi,

have unity gain, β1 and α1 are complementary fractions, the gain, Kp, converts the signals

representing the masses of 9NC lactone and 9AC lactone to concentrations, and θ is a time

delay.
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Table 4: Mean, standard deviation, and individual estimates for the recycle model

parameters.

Mean Std. Dev. tumor–bearing non–tumor–bearing

τ0 11.4 0.465 11.05 11.71 min

τ1 12.5 1.49 13.52 11.42 min

τ2 0.492 0.681 1.0×10−2 0.974 min

τr 16.1 6.92 11.169 20.95 min

Kp 0.173 1.82× 10−2 0.186 0.160 ml−1

α1 0.447 1.74× 10−2 0.434 0.460 —

α2 0.157 3.76× 10−4 0.156 0.157 —

θ 28 8.81 21.76 34.22 min

interpreted as representing the sluggish dynamics associated with storage in a remote non-

plasma tissue, for eventual return to the plasma; this is similar in concept to Figure 8. The

recycled mass, α1x1, is then delayed by θ minutes and undergoes the dynamics described by

equation (2.8e) before being recombined with x0 (the mass leaving G0 from Figure 12). A

fraction, β2, of the 9NC lactone mass found in the plasma, β1x1, is eliminated; the remainder,

α2, appears as 9AC lactone. The dynamics of conversion of 9NC lactone to 9AC lactone are

described by equation (2.8c). A fraction of 9AC lactone, β1x2, appears immediately in the

plasma and the remainder, α1x2, is recycled in a manner similar to the 9NC lactone recycle

loop.

All eight parameters (τ0, τ1, τ2, τr, Kp, α1, α2, andθ) for the recycle model were estimated

simultaneously for each dataset: tumor–bearing and non–tumor–bearing and are given in

Table 4. Using the average parameters, the recycle model predictions shown in Figure 13

were simulated. The quick initial increase in plasma concentrations of 9NC lactone and 9AC

lactone, as well as the relatively slow elimination at later times are captured well by the

recycle model structure. The AIC and quality of fit criteria for all three linear PK models

are shown in Table 5. When the individual studies were modeled, the two timescale model
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Table 5: AIC and SSE results for compartmental, two timescale, and recycle models

(indicated by the subscripts c, t, and r, respectively) for both tumor–bearing and non-

tumor-bearing animals. Mean values represent AIC and SSE calculated from deviations of

mean model predictions from both datasets combined.

tumor-bearing non-tumor-bearing mean

AICc 62.4 64.7 105.8

AICt 33.4 45.2 106.1

AICr 42.1 46.6 80.19

SSEc 225.9 262 529.7

SSEt 41.9 87.6 503.2

SSEr 81.5 108.3 237.84

had lower AIC values. However when the AIC was calculated using the data and the average

model predictions, the recycle model was shown to better represent the average behavior.

Parameter estimates for each model structure were obtained for each of the two studies,

and the average values of the parameters for the two model structures along with parameter

standard deviations, are shown in Table 6.
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Figure 13: Experimental 9NC lactone (top pane) and 9AC lactone (bottom pane)

concentrations from two studies: (—) - tumor–bearing animals and (›) - non–tumor–bearing

animals. Data shown are ± 1 standard deviation. Model predictions use the compartmental

from Figure 8 (· · ·), the two timescale model from Figure 10 (-·-), and the recycle model

from Figure 12 (—) with mean PK parameter values.
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Table 6: Average PK parameters for linear models.

5-Compartment Two Timescale Recycle

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

k̄01 2.15× 10−2 6.97× 10−3 min−1 τ̄1 389 469.5 min τ̄0 11.4 0.465 min

k̄12 3.11 3.01 min−1 τ̄2 11.87 0.134 min τ̄1 12.5 1.49 min

k̄13 0.643 8.22× 10−2 min−1 τ̄3 11.65 6.252× 10−2 min τ̄2 0.492 0.681 min

k̄1e 1.016 0.301 min−1 τ̄4 38.07 44.97 min τ̄r 16.1 6.92 min

k̄21 0.471 0.248 min−1 K̄1 0.327 0.177 ml−1 K̄p 0.173 1.82× 10−2 ml−1

k̄34 2.030 1.012 min−1 K̄2 3.84× 10−2 2.33× 10−2 ml−1 ᾱ1 0.447 1.74× 10−2 —

k̄3e 2.575 1.023 min−1 ᾱ1 0.343 0.208 — ᾱ2 0.157 3.76× 10−4 —

k̄43 0.966 0.227 min−1 ᾱ2 0.442 0.166 — θ̄ 28 8.81 min

v̄1 3.888 0.169 ml θ̄ 29.97 3.812× 10−3 min

v̄3 9.639 0.462 ml
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To evaluate model confidence, the variability in the parameters was considered. A

lower overall variability in model parameters would indicate that the model structure is

more amenable to representing the experimental data. Many of the parameters in both

the compartmental and two timescale models exhibited significant variability (standard

deviations greater than half of the mean). Values such as k12 from the compartmental model

and τ1 and τ4 from the two timescale model would be cause for concern — τ1 and τ4 have

standard deviations greater than the mean. However, this is not so for the majority of the

recycle model parameters. There is significant variability (standard deviating greater than

the mean) for the parameter τ2 in the recycle model which is a direct result of the variability

observed in the mean values in the 9AC data. Referring specifically to the variance in the

mean values in the third and fourth time points for 9AC lactone in Figure 13, the parameter

τ2 is the only adjustable parameter which affects only the 9AC lactone concentration profile.

This would lead to an expectation of high variability in τ2.

Of the three models presented here, the recycle model provides the best fit of the

overall system response. The average AIC values are lower, and this is related to decreased

parametric variability. More robust model predictions can be made when the bounds on

parameter variability are tighter. The recycle model had fewer parameters than the other

two models; this reduces parameter identifiability problems which may be encountered in

the nonlinear optimization.

The model structures studied above assume that the PK of 9NC lactone and 9AC lactone

are linear with respect to dose. A series of experiments were carried out to determine the

disposition of 9NC and 9AC total (lactone + carboxylate) at 0.44, 0.67 and 1.0 mg/kg to

support or invalidate the claim of linear PK.

2.4 NONLINEAR PK MODEL OF TOTAL DRUG

The experiments investigating nonlinearity of 9NC and 9AC PK utilized the analysis method

described in subsection B.5 of Appendix B. Because all 9NC and 9AC present in plasma

was converted to their respective lactone forms prior to analysis only total 9NC and 9AC
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Figure 14: Total plasma concentrations measurements/model predictions of 9NC (top) and

9AC (bottom) in response to oral administration of 9NC at dose levels of 0.44 (A/· · ·),

0.67 (—/-·-), and 1.0 (›/—) mg/kg. Error bars indicate ± one standard deviation in the

measured data.
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levels were modeled. The plasma PK data after oral administration of 0.44, 0.67, and 1.0

mg/kg 9NC are shown in Figure 14. The data obtained after a dose of 0.44 mg/kg are

characteristically different than those data obtained in response to doses of 0.67 and 1.0

mg/kg. The peak plasma concentration after a 0.44 mg/kg dose occurs at the second time

point (5 min), whereas the peak plasma concentration for the higher dose levels appears to

occur at the third time point (15 min). In the context of linear systems, changing peak time

indicates a nonlinear in the time constant. Furthermore, the ratio of peak 9NC concentrations

after doses of 1.0 to 0.67 mg/kg is 1.24 whereas for a linear system it should be 1.49. This

violation of the scaling property of linear systems indicates a nonlinearity in the gain of the

system. The model structure shown in Figure 15 was developed to address these issues.

Because of the characteristic difference between plasm a concentration versus time profiles

after a low doses (0.44 mg/kg) and after higher doses (0.67 and 1.0 mg/kg), a two pathway

approach was considered. The drug mass below a threshold takes one pathway and the

mass of drug above that threshold takes another. The portion of the model in Figure 15

bounded by the dotted line was developed in order to characterize the response after a dose

of 0.44 mg/kg. The mass of 9NC administered below the Threshold, dl, pases through two

identical first order systems characterized by τl. A fraction, β1, of the mass in X3 is recycled

as an input to Gr. The remainder, α1, of X3 is present in the plasma. This portion of the

model is linear and characterized by four parameters (τl, α1, τr, and Kl). These parameters

were estimated and fixed, and the portion of the model bounded by the dashed line was

added. This additional model contribution characterized the disposition of 9NC after higher

doses (0.67 and 1.0 mg/kg). The mass of 9NC above the threshold, du, undergoes dynamics

governed by two first order systems in series. These systems, Gu, were characterized by

τu, and the mass X1 was converted into concentration using Ku. There was one nonlinear

component in this portion of the model — the inverse relationship between the gain, Ku,

and the most recent dose administered, Dlast. The nonlinear gain was defined as:

Knl =
Ku

Dlast

The two portions of the model discussed above represent the dynamics of 9NC. The

remainder of the model characterized the dynamics of 9AC. The total mass of 9NC, α1X3
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where:

Gi(s) = 1
τis+1

βi = 1 − αi

0 ≤ αi ≤ 1

τnl = τa
Dlast

Threshold

+
+

+

+
+

+

e−θ2s

C9NC

+

+

C9AC

X5

Gnl(s)

X1 X3

X4X2

Dose d

dldu

Gu(s) Gl(s)

Gu(s) Gl(s)

Gr(s)

X6

Knl = Ku
Dlast

β1

α2

α1

Kl

Ka

Knl

β2

Figure 15: Nonlinear PK model for the total forms of 9NC and 9AC. Both the gain Knl and

time constant τnl are nonlinear in the most recent dose applied Dlast.
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and X1 resulting from dose masses below and above the threshold, respectively, is split into

two pathways. A fraction of 9NC, β2, is converted directly to 9AC. The remaining fraction,

α2, experienced a time delay of length θ2 and the dynamics Gnl before being converted to

9AC. The portion of the model which describes the conversion of 9NC to 9AC is linear with

the exception of the nonlinear time constant, τnl, which is inversely proportional to the dose.

This was done to account for the more rapid elimination of 9AC observed at higher doses

(Figure 14). The ODE representation of Figure 15 is given as:

ẋ1(t) =
x2(t)

τu

− x1(t)

τu

(2.9a)

ẋ2(t) =
Du(t)

τu

− x2(t)

τu

(2.9b)

ẋ3(t) =
x4(t)

τl

− x3(t)

τl

(2.9c)

ẋ4(t) =
Dl(t) + x5(t)

τl

− x4(t)

τl

(2.9d)

ẋ5(t) = β1
x3(t)

τr

− x5(t)

τr

(2.9e)

ẋ6(t) = α2(x1(t− θ2) + α1x3(t− θ2))H(t− θ2)
Dlast

τnl

− x6(t)
Dlast

τnl

(2.9f)

CNC = x1(t)
Ku

Dlast

+ Klα1x3(t) (2.9g)

CAC = (x1(t) + x3(t)α1)β2Ka + x6(t)Ka (2.9h)

Here Dlast is the value of the last nonzero dose in mg/kg. The values of Dl(t) and Du(t) are

defined in terms of D(t) and the Threshold as follows:

Dl(t) =

 D(t) D(t) ≤ Threshold

Threshold D(t) > Threshold
(2.10)

Du(t) =

 0 D(t) ≤ Threshold

D(t)− Threshold D(t) > Threshold
(2.11)

Here D(t), Dl(t), Du(t) and Threshold are all defined in terms of drug mass. The parameters

for the model (2.9) are shown in Table 7. The predicted responses from the model are also

shown in Figure 14 for each of the three dose levels. The model captures the characteristic

shape of the 9NC responses well. The 9AC responses for 1.0 and 0.44 mg/kg are also also
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Table 7: PK parameters for the nonlinear model of the total forms of 9NC and 9AC.

Threshold 9.078 ×103 ng–9NC

τu 12.36 min

τl 1.482 min

τr 0.184 min

τnl 107.98 min

α1 0.64 —

α2 0.468 —

Knl 0.216 ml−1

Kl 0.162 ml−1

Ka 0.0491 ml−1

θ2 49.20 min

described by the model. The 9AC data for 0.67 mg/kg at 15 and 30 min exhibit behavior

which this model structure is unable to capture. The key shortcoming of the nonlinear PK

model is its inability to capture the dynamics of the delayed peak in 9AC (15 ≤ t ≤ 30 min)

for a dose of 0.67 mg/kg. The analytical methods used to determine the total concentrations

of 9NC and 9AC in response to 0.44 and 1.0 mg/kg are considered to be more reliable.

Consequently, greater importance was placed on these data for modeling purposes. Given

the relative concentrations of 9NC and 9AC, however, the overall performance is quite good.

2.5 SUMMARY OF PK MODELS

In this chapter several different model structures were presented to describe the PK of

9NC in SCID mice. Linear models were developed using two datasets of plasma lactone

concentrations of 9NC and 9AC obtained from tumor–bearing and normal SCID mice after

oral administration of 0.67 mg/kg of 9NC. The compartmental model structure lacked
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predictive accuracy A two timescale model was developed which reduced the number of

parameters from ten to nine and improved the model fit of the individual datasets. A

recycle model was developed which further reduced the number of parameters to eight.

Although the two timescale model better represented the individual data sets, the recycle

model provided superior fit to the combined data as measured by AIC. Experimental data

were obtained for the total concentrations of 9NC and 9AC after oral administration of 9NC

at 0.44, 0.67 and 1.0 mg/kg. Analysis of the average response of these data showed the

existence of nonlinear behavior dependent on the dose levels. A nonlinear PK model was

developed to capture the nonlinear dynamics. Both the lactone and total PK models exhibit

novel structures. By developing these models in the Laplace domain, structures were selected

such that parameters were associated with specific behavior. Using this methodology, time

points associated with significant variability could be associated with specific parameters.

This was demonstrated in the description of the parametric variability of the recycle model.

The objective of this work is to utilize mathematical descriptions of cancer chemotherapy

to derive treatment schedules. The PK models developed in this chapter were constructed

to drive PD models of toxicity and efficacy. Much effort was made to accurately describe the

dynamic PK response under the assumption that model quality limits achievable controller

performance [8]. The structures were also selected with the objective of controller synthesis

in mind. Linear PK models were selected because control methodologies for linear systems

are well understood. Of the linear PK models presented, the recycle model structure was

found to be superior based on AIC values as well as being the model structure with the

fewest parameters. However, if the linear descriptions are unable to achieve desired results

(in a control sense), the nonlinear PK model can be utilized. The nonlinear PK model was

found to accurately describe the plasma concentrations of 9NC and 9AC total in response

to a range of doses. From a PK/PD modeling perspective, linear PK models will first be

considered and nonlinear models will be investigated for their ability to predict a broader

range of PK responses.
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3.0 PHARMACODYNAMIC MODELING

Drugs are administered to elicit an effect; however, side effects are common. In cancer

chemotherapy, the desired effect is the reduction of tumor burden. Chemotherapy is a

systemic form of treatment with side effects including the reduction of the patient’s immune

system performance, neurotoxicity, and loss of body weight, among others. PD models

are mathematical representations of the various effects of the drug. In this chapter the

progression of the disease in the absence of treatment is characterized first. For the SCID

mouse case study, growth of the HT29 human colon carcinoma xenografts is modeled in the

absence of treatment. The untreated tumor growth model is then combined with an average

PK model and data from mice treated with 9NC is used to develop a PK/PD description of

drug effect. This combined PK/PD representation was further used to develop a model of

drug toxicity using body weight reductions as an indicator since mice receiving 9NC develop

diarrhea leading to loss of body weight.

3.1 TUMOR GROWTH MODELING

3.1.1 Cell–Cycle

Figure 2 in Chapter 1 shows the five phases of the cell–cycle with the rate of transition

between states given by the various ki parameters. The quiescent, or resting, state of a

cell is given by G0. When cells are actively proliferating, they readily move through the

other phases of the cell–cycle. The S and M phases represent the phases in which DNA is

synthesized and mitosis occurs, respectively, and they are separated by the growth phases
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G1 and G2 [2]. Most cells of healthy tissues in adults spend a majority of their time in the

quiescent G0 phase [2]. However, this is not so for cancer cells. Conceptually, cancerous cells

can be thought of to have a combination of higher values of k’s within the cell–cycle and

a higher ratio of kG01 to kG10 than normal tissues. Treating the phases of the cell–cycle as

compartments, the cell–cycle can be modeled in the following manner:

Ġ0(t) = kG10G1(t)− kG01G0(t) (3.1a)

Ġ1(t) = kG01G0(t)− kG10G1(t) +2kMM(t) − kG1G1(t) (3.1b)

Ṡ(t) = kG1G1(t)− kSS(t) (3.1c)

Ġ2(t) = kSS(t)− kG2G2(t) (3.1d)

Ṁ(t) = kG2G2(t) −kMM(t) (3.1e)

N(t) = G0(t) + G1(t) + S(t) + G2(t) + M(t) (3.1f)

The total number of cancer cells is given by N . Tumor size can be either a volume

(as measured experimentally) or a total number of cancerous cells as mentioned above.

The volume of a tumor is considered to be proportional to the number of tumor cells. The

constant of proportionality is 1000π µm3, which assumes cells of spherical shape and a radius

of 10 µm. The description in equation (3.1) is linear and mitotic proliferation is highlighted

by the boxed terms in (3.1b) and (3.1e) — for every cell leaving M two cells enter G1. While

the transition rates in (3.1) are written as constants, they can just as easily be functions of

time, average cell age, or the number of cells in a particular phase. Using transition rates

which are not constants will result in a set of nonlinear equations. A major drawback of

cell–cycle models is that identification of the parameters in (3.1) requires measurements of

the different phases of the cell–cycle at different points in time. At present this is not an

obtainable measurement for solid tumors in a clinical setting.

3.1.2 Macroscopic Growth Models

HT29 tumor growth data, like much experimental data, was macroscopic in nature. Detailed

tumor growth models, like the cell–cycle model above, become over–parameterized in the
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context of available preclinical data. Hence, lumped-parameter growth models were used in

this work.

3.1.3 Exponential Growth Model

Exponential growth is described in terms of a doubling time, τe, and the following first–order

linear ODE [63]:

Ṅe =
ln(2)

τe

Ne (3.2)

Here Ne represents the size of the tumor. Well–nourished tumor cells will proliferate ex-

ponentially, and empirical evidence suggests that tumors initially undergo an exponential

growth phase [11].

3.1.4 Gompertz Growth Model

As tumor size increases, the tumor growth slows as the mass approaches a plateau population

[11]. This type of growth is normally described using the Gompertz equation [12, 32]:

Ṅg =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
Ng ln

(
ρg

Ng

)
(3.3)

Here ρg is the plateau population, N0 is the initial number of tumor cells, and τg is the

doubling time of the tumor during exponential growth [12].

3.1.5 Switched Exponential Growth Model

To characterize the Gompertz equation (3.3), data from the plateau region of growth must

be obtained. However, many animals would succumb to the tumor burden and die before

entering this region of growth [32]. In the xenograft model evaluated here, the tumor-

bearing animals were euthanized for ethical reasons before their tumors approached the

plateau population. Hence, data from these animals encompasses the exponential phase of

growth and a portion of the transition from exponential to Gompertzian growth, but ρg is not
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uniquely identifiable. To fit the data in the transition between exponential and Gompertzian

growth, a modification was made to the exponential growth model (3.2):

Ṅs =
ln 2

τe(Ns)
Ns (3.4a)

τe(Ns) =

 τe,f , Ns < Nth

τe,s, Ns > Nth

(3.4b)

Equation (3.4) is referred to as a switched exponential model, and it is a modification of the

model presented by Simeoni et al. which used a nonlinear continuous function to describe the

transition from exponential to Gompertzian growth [14]. In the present study, a piecewise

continuous function was used here because the discontinuity is more amenable to controller

design in a mixed–integer programming framework. The model in (3.4) is structurally similar

to the exponential model (3.2); however, τe is dependent on the current size of the tumor.

The cancerous mass increases at a rate τe,f until the tumor size reaches the threshold size,

Nth. At this point, the rate of proliferation slows to τe,s.

3.1.6 Model Comparison

The models from equations (3.2),(3.3), and (3.4) assume a homogeneous population of cells.

Each of these model structures are shown for comparison in Figure 16. All model predictions

are essentially identical for the first doubling time (τ time units). At this point the cells under

Gompertzian growth begin to proliferate less rapidly due to the nonlinear growth dynamics.

The switched exponential model is capable of tracking the Gompertzian growth curve over

a longer period of time when compared to the exponential model — approximately 3.5τ and

1τ , respectively. Hence, the switched exponential model is expected to provide a superior fit

to tumor growth data that grows sub–exponentially but cannot fully inform a Gompertzian

plateau population estimate.
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Figure 16: Normalized (N0 = 1) predictions for exponential (—), Gompertzian (−−), and

switched exponential (-·-) tumor growth models of untreated cancer growth. Here, τ is τe for

the exponential model, τg for the Gompertzian model, and τe,s for the switched exponential

model. Parameter values used: τe = τg = τe,f = 2, τe,s = 3.8, ρg = 17, and Nth = 3

57



3.2 UNTREATED TUMOR GROWTH MODELING RESULTS

3.2.1 Exponential Growth Model

Untreated tumor growth was modeled for twenty control mice using equation (3.2). The

tumor doubling time, τe, was estimated for each of the twenty mice, and the average, τ̄e,

was taken to represent the population. The results are shown in Figure 17. These tumor

volumes were from separate two studies, and the symbols represent the mean values at each

time point normalized to the corresponding initial volumes. The model prediction shown is

for the average doubling time, τ̄e ≈ 11 days. One standard deviation in τe, approximately 2.3

days, characterizes the observed inter-subject variability in growth rate. The mean model

successfully captures the growth dynamics in the experimental data, although slight model

underprediction is observed early in the growth trajectory. The doubling time was held

constant at τ̄e for subsequent modeling of PD drug effect.

3.2.2 Switched Exponential Growth Model

To better characterize untreated tumor growth, the switched exponential model (3.4) was

used. Individual parameter estimates were obtained for the same twenty mice. The model

prediction is shown with the data from twenty mice in Figure 18. To calculate the lower

standard deviation and upper standard deviation used in Figure 18, the largest possible

bounds were used (N̄th − std., τ̄e,f + std., and τ̄e,s + std.) and (N̄th + std., τ̄e,f − std., and

τ̄e,s − std.), respectively. The parameter values and their standard deviations are shown in

Table 8.

3.2.3 Untreated Growth Model Comparison

To compare the exponential and switched exponential models, the AIC values for the indi-

vidual animals were calculated and are given in Table 9. The model with two distinct regions

of growth consistently outperforms the exponential model. To quantify the effects of using

mean parameter estimates, mean AIC values were calculated for each study and for both
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Figure 17: Mean exponential growth model prediction, (—), and one standard deviation

in growth rate, (−−), based on individual estimates of τe from twenty mice in two studies.

The average values of control mice from the first (—) and second (›) studies are also shown

normalized to their initial tumor volumes.
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Figure 18: Mean switched exponential growth model prediction, (—), and one standard

deviation in growth rate, (−−), based on individual estimates of Nth, τe,f , and τe,s from

twenty mice in two studies (markers connected by · · ·). Initial time points were shifted such

that the initial volumes (›) would lie on the average model prediction.
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Table 8: Mean parameter estimates for switched exponential model of tumor growth

calculated from twenty untreated mice.

Mean Std. Dev.

N̄th 477.36 183.10 mm3

τ̄e,f 9.56 3.94 days

τ̄e,s 13.49 7.17 days

studies combined. To calculate the AIC for multiple data sets, sum squared error between all

of the data points in each study and the average model prediction were added together and

used as the SSE in the AIC calculation (2.5). All of the points used in the SSE calculation

were added together as the “number of points”. The “number of model parameters” were

one and three for the exponential and switched exponential models, respectively. The mean

values for each study are also shown in Table 9. For the first study, AIC values favor the

switched exponential model based on parameter estimates for both the individuals and the

mean. The mean parameters would suggest the exponential model is better at representing

the data in study two. These results are not surprising and can be explained by considering

Figure 17. The data for study two stop on day 30 because this efficacy trial was halted

due to toxicity. No information is available at later time points; hence, τe,s and Nth cannot

be adequately estimated. To better quantify this statement, consider N̄th from Table 8 and

Figure 18. The average model predicts N̄th to occur between 35 and 40 days (based on tumor

volume predictions), so only a small fraction of the data (10-14%) from study two occurs

during the portion of the model where τe,s would be active.

3.3 EFFECT MODELING

PD models relate the administration of drugs to observable effects. The effects considered

here focus primarily on reductions in both tumor volume (efficacy) and body weight (toxic-
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Table 9: AIC for the exponential (3.2) and switched exponential (3.4) models applied to two

studies of untreated tumor growth.

Mouse Exponential Switched Exponential

Study 1 Study 2 Study 1 Study 2

1 92.92 108.65 84.32 77.72

2 80.28 122.97 79.20 120.53

3 78.55 105.30 72.22 100.59

4 70.82 109.85 67.70 106.20

5 102.93 114.83 90.83 111.15

6 87.15 111.76 85.86 106.02

7 81.91 116.23 78.79 93.83

8 84.44 128.80 65.70 123.88

9 90.50 127.63 77.96 125.75

10 100.41 123.25 98.67 103.23

Mean 1036.55 1343.07 1030.06 1358.95

2401.07 2397.14
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ity). PD effect models can be a simple correlation between an amount of drug administered

and decreased mortality rates after a period of time (e.g., 6 months). Alternatively, a more

mechanistic approach can be used to relate the drug PK directly to the PD effects. The

tumor growth models developed in sections 3.1.3, 3.1.5, and 3.1.6 for the growth of HT29

xenografts in SCID mice establish a nominal description of tumor growth. The presence

of the drug, in this case 9NC and 9AC, can be considered a perturbation of this nominal

description.

The circulatory system is the primary method for transporting systemically delivered

drugs to cancerous tissues is. PK models which relate drug delivery to drug plasma concentra-

tion, which can be further coupled to PD effect. Plasma drug concentration predictions can

be used to approximate drug concentrations at the site of the tumor based on the rationale

that tumors have highly permeable capillaries and are well perfused. The therapeutic effect

of the drug on the tumor is then represented mathematically by adding a bilinear kill term

to the nominal tumor growth equation. The added nonlinear term is proportional to both

the current size of the tumor and the concentration of the drug [12]. The motivation for this

functionality is that larger tumors will have more susceptible cells, and higher drug plasma

concentrations will more effectively kill tumor cells. Because 9NC inhibits topoisomerase-

I, DNA synthesis cannot be completed and tumor cells are stopped in the S phase of the

cell–cycle. To incorporate this effect, equation (3.1c) would be modified in the following

manner:

Ṡ(t) = kG1G1(t)− kSS(t)− keffCeff (t)S(t) (3.5)

Here, Ceff (t) is the drug concentration at the site of action. This could be the plasma drug

concentration as predicted from a PK model; alternatively, additional functionality, such as

delays, nonlinear dynamics, etc., specific to the problem could be included. For example,

a drug with effects proportional to the amount of drug above a therapeutic concentration,

Cth, would define Ceff in terms of the plasma concentration of the drug, C(t), as:

Ceff (t) = (C(t)− Cth)H(C(t)− Cth)
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The proportionality constant for drug effectiveness is keff . The exponential and Gompertz

models can be augmented with similar PK/PD functionality as follows:

Ṅe =
ln(2)

τe

Ne(t)− keffCeff (t)Ne(t) (3.6a)

Ṅg =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
Ng(t) ln

[
ρg

Ng(t)

]
− keffCeff (t)Ng(t) (3.6b)

Since equations (3.6a) and (3.6b) are lumped approximations, they lack the cycle–specificity

of the cell–cycle model. Therefore, the effect term is proportional to the total tumor volume.

3.4 PD DRIVEN BY LINEAR PK MODEL

The complexity associated with control algorithm synthesis scales with the complexity of

the system models. For the models presented here, a PK/PD model can be derived by

combining linear PK with exponential tumor growth. To characterize the anticancer effects

of 9NC, the nominal tumor growth model (3.2), developed in section 3.2.1, was combined

with the recycle PK model of 9NC lactone and 9AC lactone (2.8) from subsection 2.3.3 in

the following manner:

Ṅ(t) =
ln(2)

τ̄e

N(t)− k
eff,NCLC

eff,NCL(t)N(t)− k
eff,ACLC

eff,ACL(t)N(t) (3.7a)

C
eff,NCL(t) = C̄NCL(t− θeff )H(t− θeff ) (3.7b)

C
eff,ACL(t) = C̄ACL(t− θeff )H(t− θeff ) (3.7c)

In the absence of treatment, the tumor proliferates according to the average exponential

growth rate, τ̄e. The average parameter values for the recycle model, found in Table 6,

are used to predict C̄NCL(t) and C̄ACL(t), the lactone concentrations of 9NC and 9AC,

respectively, after 9NC oral administration. The effect terms k
eff,NCL and k

eff,NCL rep-

resent the effectiveness of 9NC lactone and 9AC lactone, respectively. To improve the fit

to experimental observations, the drug concentrations were delayed by θeff time units. The

effective concentrations of 9NC lactone and 9AC lactone were then defined in terms of

C̄NCL(t), C̄ACL(t), and θeff by C̄
eff,NCL(t), and C̄

eff,ACL(t), respectively. This model
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Table 10: Mean PD parameters for the effect of the lactone forms of 9NC and 9AC.

k̄
eff,NCL

(
ml

day–ng9NC

)
k̄

eff,ACL

(
ml

day–ng9AC

)
θ̄eff (days)

Mean 2.42× 10−5 3.19× 10−5 0.7840

Std. Dev. 8.08× 10−6 2.54× 10−5 0.3778

was fit to the tumor growth data from the ten mice administered 0.67 mg/kg of 9NC

on a QD×5×2 schedule. The average values for the PD parameters are given in Table

10. The values of k̄
eff,NCL and k̄

eff,ACL from Table 10 are similar given the observed

variability in k̄
eff,NCL. One interpretation would be that the two compounds have similar

activity. This is consistent with in vitro studies [64]. Further analysis is complicated by the

drug concentration differences (9NC lactone concentration is an order of magnitude higher

than 9AC lactone). Furthermore, parameter variances indicate that a significant statement

about the relative efficacy of 9NC and 9AC cannot be made. Finally, from a mathematical

perspective, reducing kac while simultaneously increasing knc might result in essentially the

same PD model prediction; hence a categorical statement of parent/metabolite activity (9NC

versus 9AC) based on present data would be premature. Model fit to ten individual mice

are shown in Figure 19. While the intersubject variability seen in the data cannot be fully

captured by a model of mean behavior, the model was capable of predicting decreases in

tumor volume in response to treatment, which is necessary for developing useful treatment

algorithms.

By combining a linear PK model (2.8) with a linear growth model (3.2) a PD structure

(3.7) has been developed which will be shown to be quite amenable to control algorithm

synthesis in Chapter 4. However, this efficacy model was developed using data obtained at

a single dose level. To improve the predictive capacity of the PK/PD model over a range of

dose levels, a more complex structure was investigated.
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Figure 19: PK/PD model response using average PK predictions from the linear recycle

model (2.8) with the PD model shown in equation (3.7). Tumor volume measurements are

given by (·) with the drug administered at 0.67 mg/kg on days indicated by (+), and the

model prediction is represented by (—).
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3.5 PD DRIVEN BY NONLINEAR PK MODEL

To characterize the PD effect over a range of doses, the nonlinear PK model given in equation

(2.9) was combined with the switched exponential growth model for untreated cancer (3.4)

to provide the following PK/PD model:

Ṅs(t) =
ln(2)

τ̄e(Ns(t))
Ns(t)− keffCeff (t)Ns(t) (3.8a)

τ̄e(Ns(t)) =

 τ̄e,f , Ns(t) < N̄th

τ̄e,s, Ns(t) > N̄th

(3.8b)

Ceff (t) = CNC(t) + CAC(t) (3.8c)

The rate of proliferation is governed by the switched exponential growth model in the absence

of drug. When drug is administered, proliferation decreases at a rate proportional to the size

of the tumor and Ceff (t). The total plasma concentration of 9NC and 9AC was used here

based on the rationale that they have similar activities [64]. The concentrations of 9NC and

9AC total, CNC and CAC, respectively, were calculated using the parameters from Table 7.

To describe nominal tumor growth, the average values for the switched exponential model

parameters given in Table 8 were used. The PK/PD model has a single free parameter, keff ,

which was fit individually to thirty mice — three sets of ten mice administered 0.44, 0.67

and 1.0 mg/kg of 9NC QD×5×2. The results for the three different dose levels are shown in

Figures 20, 21, and 22, respectively. There are instances where the proposed model structure

does not accurately fit the data (e.g. Figure 20(i)). In general, however, the model structure

(3.8) captures the tumor growth response to 9NC treatment at the three different dose levels.

At higher dose levels (Figure 22), the model predicts tumor volume decreases consistent with

the experimental data. This ability to predict responses across dose levels is important for

the development of treatment algorithms. Figure 23 presents the parameter distribution

for keff . he average value of keff for the 0.44 mg/kg dose of 9NC was slightly higher than

keff for 9NC doses of 0.67 and 1.0 mg/kg. However, given the parameter distributions at

each dose level, the parameter values are not statistically different between dose levels. The

time profiles for the product of keff and the sum of camptothecin concentration and the
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Figure 20: PK/PD model response using predictions from the nonlinear PK model (2.9)

with the PD model shown in equation (3.8). Tumor volume measurements are given by (·).

Drug was administered at 0.44 mg/kg QD×5×2 on days indicated by (+), and the model

prediction is represented by (—). Data for mouse (i) after day 42 lies outside of the plot

range.
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Figure 21: PK/PD model response using predictions from the nonlinear PK model (2.9)

with the PD model shown in equation (3.8). Tumor volume measurements are given by (·).

Drug was administered at 0.67 mg/kg QD×5×2 on days indicated by (+), and the model

prediction is represented by (—).
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Figure 22: PK/PD model using predictions from the nonlinear PK model (2.9) with the PD

model shown in equation (3.8). Tumor volume measurements are given by (·). Drug was

administered at 1.0 mg/kg QD×5×2 on days indicated by (+), and the model prediction is

represented by (—).
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Figure 23: PD parameter analysis — PK/PD parameter distribution (mean ± one standard

deviation) for 0.44, 0.67, and 1.0 mg/kg administration of 9NC QD×5×2 (bottom pane);

product of keff and sum of camptothecin concentrations (middle pane), and AUC of

kd(CNC + CAC) versus time curve (top pane).
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area under the concentration versus time curve (AUC) — calculated based on the simulated

concentrations using trapezoidal rule — of this product are given in the middle and top

panes of Figure 23, respectively. The latter would indicate that the exposure (as measured

by AUC) predicted by the nonlinear PK model is approximately linear with dose.

3.5.1 Toxicity Modeling

A common toxicity constraint is an upper bound on drug exposure [12]. Because of inter–

patient, or in this case inter–mouse, variability, large variations can occur across a population,

and consequently average exposure as a metric for approximating toxicity may provide little

utility. As a more quantitative and experimentally accessible metric for assessing toxicity,

reductions in body weight were considered. By modeling body weight, a constraint specifying

the minimum allowable body weight can be included in the control algorithm formulation.

The experimental protocol specifies that animals with body weight below a prescribed value

will have treatment withheld until the animal recovers. Therefore, it is advantageous to

quantify the effects of 9NC administration on bodyweight. The body weight, B, of a mouse

undergoing treatment with 9NC was modeled in the following manner:

Ḃ(t) = kgB(t)− kc(CNC(t) + CAC(t)) (3.9)

Here CNC and CAC are the total plasma plasma concentrations from the nonlinear PK

model using the parameters from Table 7 for 9NC and 9AC, respectively. The body mass is

assumed to grow at a rate kg, and the rate of decrease in body mass is first order with respect

to the total concentration of camptothecins (CNC and CAC) with a rate constant kc. The

parameters for this model were regressed using PD data for mice which were administered

1.0 mg/kg of 9NC QD×5×2. The mean body weights of ten animals after normalization

to their initial conditions are shown in Figure 24 along with the average model prediction.

The model is capable of qualitatively capturing body weight reductions in response to drug

administration and the subsequent increases at the end of treatment cycles. However, the

model does not quantitatively capture the body weight dynamics observed. Furthermore, the

bodyweight predicted by the model will continue to increase exponentially when no drug is

72



��� � �����	


��



��
��

�
�
���
��
�


���
��
��
��
���
���

� �� �� ��  � !� "�
�#$"

�#$%

�

�#��

�#� 

�#�"

�#�%

�#�

Figure 24: Average normalized body weights of ten animals given 1.0 mg/kg of 9NC p.o.

QD×5×2 every four weeks.
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administered; this is not seen in the control group. This can be accounted for by reinitializing

the bodyweight model as measurements become available or at the end of treatment cycles.

Another option would be to use standardized growth curves to bound normal body weight

changes over the course of the experiment.

The body weight, B, is the total mass of the animal which includes the mass of the tumor.

The body weight for toxicity purposes, Btox, is calculated using the following equation:

Btox(t) = B(t)− N(t)

1000

This corrects (reduces) body weight as the tumor burden changes by removing the mass from

that of the animal. The tumor volume, N , is divided by 1000 to convert the volume into

a mass — this assumes the density of a tumor is approximately that of water. To provide

conservative estimates, a slow body growth rate and a high value of kc could be used.

3.6 SUMMARY

Two different models were presented to describe untreated growth of HT29 human colon

carcinoma xenografts implanted subcutaneously in SCID mice: an exponential model and

a switched exponential model. The exponential model was coupled with the linear recycle

model of 9NC PK to provide a model of drug efficacy at a dose level of 0.67 mg/kg adminis-

tered QD×5×2. The PK/PD model driven by linear PK provided the least complex of the

two PK/PD representations presented here. The linear PK modeling also indicated which

time points (around 30 min) would be important for further development of a dynamic model.

To better describe the range of possible doses, a second PK/PD model was constructed. This

model combined the nominal growth described by the switched exponential model with the

nonlinear model of 9NC PK. By calculating the PK/PD response over a range of doses, it

was found that the exposure, as measured by AUC, was linear with respect to dose. A PD

model of body weight reductions in response to 9NC administration was also developed using

predictions from the nonlinear PK model of 9NC. By constructing a model of body weight

changes in response to treatment, a means for determining the recovery time in response to
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treatment was developed. The next chapter will focus on (the synthesis of chemotherapy

treatment schedules) using the PK/PD models developed in this chapter.
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4.0 CLINICALLY–RELEVANT DESIGN OF CANCER CHEMOTHERAPY

SCHEDULES

The ultimate objective of chemotherapy is to extend the life of the cancer patient. For

clinicians, chemotherapy represents a set of competing objectives: maximize treatment

efficacy while maintaining tolerable levels of drug–induced toxicity. Oncologists administer

chemotherapeutic drugs following standard regimens; often these are cycles of 21 or 28

days in length. Toxicity is evaluated formally after the first cycle. Based on the toxicity

encountered by the patient during the first cycle, the drug dose may be altered or treatment

my be withheld until the patient recovers from the effect of the first cycle. Following a

second cycle of treatment, the patient is evaluated for efficacy in addition to toxicity. Several

cycles of treatment may be given if the patient shows some form of clinical response. When

treatment is no longer effecting the tumor burden, or unacceptable toxicity occurs, dosing is

terminated.

The drug schedules administered by clinicians are obtained from empirical evidence

resulting from preclinical and clinical trials. Engineers have attempted to provide more

rigorous methods for determining drug schedules [12, 38, 46, 53]. However, there is a

disconnect between recommended engineering approaches and clinical implementation. In

order to help bridge this gap, this chapter focuses on the development of solution techniques

for clinically applicable problems. These solution methodologies will be shown to solve

problems as they are currently posed in the engineering literature. Furthermore, problem

extensions that provide dose schedules of greater clinical relevance are formulated and solved.

The term clinical relevance refers to the fact that toxicity and efficacy are the primary drivers

of treatment, and clinical objectives must be considered. In addition clinicians administer

drugs in cycles, so the problem formulation and underlying mathematical models must
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incorporate periodic and discrete effects. Finally, the information gained from the periodic

evaluation of efficacy and toxicity should be able to be used to update treatment.

4.1 GENERAL PROBLEM FORMULATION

Control of cancer chemotherapy systems with linear PK and macroscopic PD descriptions

having bilinear nonlinearities has been considered by several authors [38, 45, 65]. The most

common approach has been to consider the fixed final time problem:

min
D(t)

J = FJ(x(tf ,D(t))) (4.1a)

s.t. ẋ = Ft(x(t),D(t))) (4.1b)

Fi(x(t),D(t)) ≤ 0 (4.1c)

Fe(x(t),D(t)) = 0 (4.1d)

The functions FJ , Ft, Fi, and Fe, represent arbitrary functions of their respective arguments

which may or may not contain nonlinearities. The internal states and dose levels are given by

x(t) and D(t), respectively. The objective is to minimize a function, J , typically the number

of cancerous cells or the volume of a tumor, at a final time, t = tf . This is accomplished

while satisfying the dynamic constraints (4.1b) defined by the PK and PD of the drug

[38, 45]. Also, inequality (4.1c) and equality (4.1d) constraints can be included to limit

toxicity and account for logistical concerns. Due to the dynamic constraints, optimal control

theory provides a convenient solution structure, and it has been applied previously by several

groups [12, 13, 16, 18, 38, 38, 44, 45, 46, 47, 48].

When considering the objectives and constraints clinicians face, the above formulation

(4.1) and its solution may not provide practically applicable results — mathematically

optimal may not be the same as clinically optimal (or even clinically relevant). It is possible to

formulate mathematical problems which can provide clinically relevant results [66]. Model–

based controllers for the continuous infusion of insulin have been developed which provide

implementable results. The ability to implement cancer chemotherapy schedules predicted
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by dosing algorithms is dependent on the formulation used. The remainder of this chapter

will focus on the analysis of case studies which are representative of the class of scheduled

chemotherapy problems. The objective is to determine optimal, but clinically relevant, drug

administration schedules for anticancer drugs described by macroscopic PK and PD models.

Before addressing the specific case studies, the complexity of the problem will be reduced

with a variable transformation, and the types of constraints considered will be motivated

and formulated based on clinical and mathematical grounds.

4.1.1 Continuous–Time Constraint Formulation

The constraints from the general problem statement (4.1) come from a variety of sources.

The dynamic constraints (4.1b) represent the PK/PD models of drug distribution and

host response. The inequality and equality constraints, (4.1c) and (4.1d), respectively, are

derived primarily from three areas of concern: financial limitations, logistical restrictions,

and toxicity constraints. Foregoing such restrictions, an algorithm to determine the optimal

dosing regimen would deliver as much drug as possible as frequently as possible, thereby

leading to tumor eradication. Toxicity and logistics will be considered explicitly below;

financial considerations are not addressed in the course of this dissertation.

Logistical constraints can be thought of as restrictions associated with managing treat-

ment. For example, inconsistent drug administration times may lead to a patients who forget

to take their medication [67]; likewise, varying dose levels in a non periodic manner may lead

to patients taking the wrong dose. Treatment requiring the direct attention of hospital staff,

e.g. intravenous infusions, are fundamentally limited by the working schedules of the medical

professionals. Similarly, drugs delivered in pill form are administered in discrete amounts —

e.g., three pills every other day. Problem formulation and solution methodologies should be

able to account for the discrete nature and limitations imposed by logistical constraints (e.g.,

bounding administration times based on work schedules, selecting from discrete treatment

options, etc.). Let a set of l drug levels, 1 ≤ l ≤ ml, represent the treatment options at a

given time t (e.g., one pill, two pills, etc.). This constraint would be formulated as a discrete
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variable:

D(t) = Qdose(1), or Qdose(2), · · · , Qdose(ml) (4.2)

Here, Qdose(l) is the vector of possible dosing values.

Toxicity constraints vary widely by drug class and are physically manifested as reductions

in the patient’s immune system function, fatigue, nausea, loss of body weight, and pain

experienced by the patient, among other factors. It is common to characterize toxicity

constraints in terms of both the drug PK and measurable PD effects [12]. Some PK–derived

constraints are illustrated in Figure 25. Placing a limit on exposure is a common toxicity

constraint. Total exposure, AUCexp, is commonly calculated by integrating drug plasma

concentration over the treatment interval:

AUCexp =

∫ tf

0

C(t)dt ≤ Ccum (4.3)

Equation (4.3) limits the cumulative toxicity of the drug, as measured by the total area

under the solid line in Figure 25, which cannot exceed Ccum. Alternatively, drugs may not

become effective until a therapeutic plasma concentration is reached (Cth). Once Cth has

been reached, the effective drug concentration (Ceff ) is that concentration above Cth. For

such drugs, the effective exposure, AUCeff , is represented by the shaded region of the PK

profile in Figure 25. An effective drug concentration (Ceff ) can then be defined in terms of

the therapeutic drug concentration (Cth) in a piecewise fashion:

Ceff (t) =

 0 C(t) ≤ Cth

C(t)− Cth C(t) > Cth

(4.4)

Therefore, drug administration which does not increase the plasma concentration to at least

Cth is ineffective and undesirable. The dose applied at time t3 shown in Figure 25 contributes

to the total exposure but not the effective exposure; this may add to toxicity via (4.3), but

will not contribute to treatment effect. Acute toxicity is reached when the drug plasma

concentration exceeds some maximum, Cmax. This is a state constraint given by:

C(t) ≤ Cmax ∀t ∈ [0, tf ] (4.5)
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Figure 25: Plasma PK profile for a drug delivered intravenously as a bolus having first

order elimination illustrating the minimum therapeutic drug concentration, Cth (−−), the

maximum tolerable drug concentration, Cmax (· · ·), and the exposure (total exposure: area

under the concentration versus time curve, AUCexp; effective exposure: shaded area, AUCeff )

over the dosing interval, (t0 ≤ ti ≤ tf , ∀i ∈ I
+ ≤ f).
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Since this is an intravenously administered drug, Cmax can be defined in terms of Dmax. In

Figure 25, this constraint is violated by the dose at t1. Depending on the drug, this could

result in death or some form of irreversible harm. Non-intravenously administered drugs,

those delivered orally for example, will have peak values described by their PK. In this case,

relationships between Cmax and Dmax can be constructed using the PK model.

It is also possible to restrict the amount of drug which can be administered at any given

point in time. This can be a result of discrete dosing quantities (e.g., pills) or because the

drug was found to be effective only over a particular range of doses. In the latter case,

considered here, a semicontinuous variable is encountered at each dosing opportunity, as

follows:

Dlb ≤ D(ti) ≤ Dmax

or D(ti) = 0 ∀i ∈ [1, · · · , mq] (4.6)

Here Dlb and Dmax are the lower and upper bounds of the continuous portion of the

therapeutic dosing range, respectively, and mq is the final dosing point. The upper bound is

typically based on the MTD, or the amount of drug which will produce chronic side effects.

The lowest amount of drug which can be administered and have an observable effect defines

the lower bound. Also, q is the set of all possible times in which drugs may be administered

during treatment, thereby making ti the ith dosing time for the set of values in mq. For an

intravenously administered drug, Cmax may relate directly to Dmax.

4.1.2 Discrete–Time Constraint Formulation

In order to cast the problem in the mixed–integer programming framework, the constraints

must be discretized. For the discrete formulations, k will denote the current time step with

a system step size of h. Hence k exists on the range [1, mk], and the final time point, mk,

is defined as mk =
tf
h
. The subscript d will be used to indicate the discrete variants of

continuous variables. For example, continuous states, x(t), and outputs such as plasma drug

concentration, C(t), or logarithmically transformed tumor size, P (t), would have the discrete

variable counterparts xd(k), Cd(k) and Pd(k), respectively.
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Given systems with PK described by linear ODEs, the state equations relating to drug

PK can be written in matrix form:

ẋ(t) = A x(t) + B u(t) (4.7)

Where A is the state transition matrix and B is the input coefficient matrix. The PK

equations can then be discretized exactly for any step size h yielding [68]:

xd(k + 1) = A
d
xd(k) + B

d
ud(k) (4.8)

The coefficients A
d

and B
d

are the discrete–time forms of the state transition and input

coefficient matrices, respectively, and can be written in terms of their continuous counterparts

[68]:

A
d

= eAh, B
d

= A−1(A
d
− I)B (4.9)

To force a system to choose from a discrete set of possibilities, such as the magnitude of

a dose from a set of possible doses, Qdose(l), as shown in (4.2), the binary variable bd,dose(q, l)

is introduced. The constraint (4.2) is replaced in discrete–time with:

Dd(q) =

ml∑
i=1

bd,dose(q, i)Qdose(i) ∀q ∈ [1, mq] (4.10a)

1 =

ml∑
i=1

bd,dose(q, i) ∀q ∈ [1, mq] (4.10b)

At each dosing opportunity, q, equation (4.10b) ensures that only one dosing value is selected.

The cumulative toxicity constraint (4.3) contains an integral term which can be approx-

imated using the trapezoidal rule [69]:

AUCd,exp =
h

2
Cd(1) + h

mk−1∑
j=2

Cd(j) +
h

2
Cd(mk) ≤ Ccum (4.11)

This yields the discretized total exposure AUCd,exp.
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Discrete counterparts of linear state inequality constraints, such as the acute toxicity

constraint found in (4.5), are formulated by replacing the continuous variables with their

discrete counterparts. Therefore, (4.5) can be replaced with:

Cd(k) ≤ Cmax ∀k ∈ [1, mk] (4.12)

One issue which can arise from discretization is that the plasma concentration might be

greater than Cmax between discretization points. This is not a problem for intravenously

administered drugs described by first order kinetics when administered as either a bolus or

a rectangular wave in which the initial and final dosing times lie on time steps. In this

situation the peak associated with any given drug administration occurs during the time

of administration, and on a discretization point. In general, however, the maximum of a

continuous system in response to an input may occur between discretization points. This

can be overcome by choosing suitably small values for h, knowing the time of a peak, or by

mapping a dose level to a peak drug concentration (e.g., through an existing PK model).

The requirement that the effective drug concentration is nonzero only when the plasma

concentration is greater than the therapeutic concentration creates a semicontinuous variable.

This is written in a piecewise fashion in equation (4.4). In discrete time this can be written as

linear inequalities by introducing the binary variable bd,th(k) at each time step, and requiring

that the following inequalities be satisfied [70]:

Cd(k)− Cth ≤ (Cmax − Cth)(1− bd,th(k)) (4.13a)

0 ≤ Cd,eff (k) (4.13b)

(Cmax − Cth)(1− bd,th(k)) ≥ Cd,eff (k) (4.13c)

Cth − Cd(k) ≤ Cthbd,th(k) (4.13d)

0 ≤ Cd,eff (k)− (Cd(k)− Cth) (4.13e)

Cthbd,th(k) ≥ Cd,eff (k)− (Cd(k)− Cth) (4.13f)

Consider the situation when the drug plasma concentration is below the therapeutic value

(Cd(k) ≤ Cth). In this case, the left hand side of (4.13d) will be greater than zero which

requires bd,th(k) to be one. This forces the left hand side of (4.13c) to be zero, resulting in
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Cd,eff (k) being zero also. The left hand side of (4.13a) will be negative, so this constraint

will be satisfied. The right hand side of constraints (4.13e) and (4.13f) will be positive on

the range [0, Cth], so these constraints will also be satisfied.

Alternatively, consider the case where the drug is having an effect (Cd(k) > Cth). This

forces bd,th(k) to be zero for the constraint (4.13a) to be satisfied. Thus, Cd,eff (k) will be

forced to take on the value Cd(k)−Cth because the left hand side of constraints (4.13e) and

(4.13f) will be zero. Furthermore Cd,eff (k) will exist on the range [0, (Cmax−Cth)] satisfying

the constraints (4.13b) and (4.13c). Finally the the constraint (4.13d) will always be satisfied

because the left hand side will have a maximum value of zero.

Similarly, the constraint requires that drugs only be administered in the therapeutic

range (4.6) can also be transformed into a set of linear inequalities by the introduction of a

binary variable.

Dlbbd,u(k) ≤ D(k) ≤ Dmaxbd,u(k) ∀k ∈ [1, mk] (4.14)

When bd,u(k) is zero, D(k) must be zero. When the drug is to be administered, bd,u(k) must

be one, and D(k) must lie between Dlb and Dmax.

4.2 CASE STUDY I: INTRAVENOUSLY ADMINISTERED DRUG WITH

GOMPERTZIAN PROLIFERATION

The first case study considered was taken from the engineering literature. This system,

originally studied by Martin and Teo, consists of a tumor proliferating in a Gompertzian
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fashion (3.3) and an intravenously administered drug [12]. The following system was analyzed

using optimal control and control vector parameterization techniques [12]:

Ċ(t) = D(t)− γC(t) (4.15a)

Ṅg(t) =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
Ng(t) ln

[
ρg

Ng(t)

]
− keffCeff (t)Ng(t) (4.15b)

Ceff (t) = (C(t)− Cth)H(C(t)− Cth) (4.15c)

C(0) = C0 (4.15d)

Ng(0) = N0 (4.15e)

The PK of the drug is described by equation (4.15a) where the plasma drug concentration,

C(t), increases with intravenous infusions of the drug, D(t), and decreases according to

first–order elimination kinetics at a rate γ. The change in the number of cancer cells is

described by equation (4.15b). The cancerous cells proliferate in a Gompertzian fashion

described by τg, ρg, and N0, as discussed in section 3.1. The drug effect is proportional,

with constant of proportionality keff , to the number of cancer cells, Ng(t), and the effective

drug plasma concentration, Ceff ; Ceff (t) is the drug concentration above the minimum

therapeutic concentration, Cth. The initial drug concentration and number of cancer cells

are given by C0 and N0, respectively.

The parameters considered for this case study [12] are provided in Table 11, and a time

step of h = 1 day was used. The rate of elimination for the drug, D, is slow enough that a

timestep of one day will not lead to a significant loss of information. Three values of keff

were considered representing different levels of drug efficacy [12]. Highly effective, marginally

effective, and ineffective drugs were represented by keff,1, keff,2 and keff,3, respectively.

4.2.1 Constraint Formulation

It was assumed that the drug could be administered weekly with a final time, tf , of 52

weeks [12]. The maximum allowable plasma concentration was Cmax; this bounded the

amount of drug that could be administered at any point in time leading to the constraint [12]:

C(t) ≤ Cmax ∀t ≤ tf (4.16)
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A cumulative toxicity constraint (4.17) was placed on the system for the treatment period

[12], as follows:

∫ tf

0

C(t)dt ≤ Ccum (4.17)

The final constraint placed on the system dealt with efficacy. Since it was undesirable for

the status of a patient to decrease (e.g., tumor burden to increase), the number of cancer

cells was not allowed to increase to a number larger than the initial condition.

Ng(t) ≤ N0 ∀ t (4.18)

4.2.2 Optimal Control Problem

The optimal control problem considered by Martin and Teo [12] was given as:

minD(t) Ng(tf ) (4.19)

s.t. (4.15), (4.17), (4.16), (4.18)

The objective here is to minimize the tumor volume at a final time while satisfying the

dynamic constraints (4.15), the cumulative toxicity constraints (4.17), the maximum plasma

drug concentration (4.16) and the efficacy constraint (4.18) This equation had nonlinear

growth and death terms as well as the discontinuity associated with the therapeutic drug

concentration (Cth).
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4.3 MILP PROBLEM REFORMULATION

4.3.1 PD Variable Transform

Because of the bilinear term from the drug PD (either (3.6a) or (3.6b)), the optimization

from (4.1) is a nonlinear programming (NLP) problem. Nonlinear optimizations can possess

local minima, and efforts to eliminate nonlinearities can improve the likelihood of achieving

the global optimum. The effect of the bilinear kill term can be included, and the explicit

nonlinearity removed, by performing the following logarithmic transformation [47]:

P (t) = ln(N(t)) ⇔ N(t) = eP (t) ⇔ Ṅ(t) = Ṗ (t)eP (t) (4.20)

Notice that ln(N(t)) increases monotonically with N(t) such that the value of drug admin-

istration which minimizes N(tf ) will also minimize P (tf ). The transform in (4.20) can be

applied to cancerous masses under both exponential and Gompertzian growth resulting in:

Ṗ (t) =
ln(2)

τe

− keffCeff (t) (4.21a)

Ṗ (t) =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
(ln ρg − P (t))− keffCeff (t) (4.21b)

By logarithmically transforming the PD equations (3.6a) and (3.6b), cancer proliferating

exponentially can be described by an ODE (4.21a) which is linear in effective drug concen-

tration (Ceff (t)). Also, PD models with bilinear kill terms in which cancer proliferates in

a Gompertzian fashion can be reduced to an ODE (4.21b) which is linear in both effective

drug concentration (Ceff (t)) and transformed tumor size (P (t)). Each transformed model

has a positive constant term which accounts for proliferation and a negative term accounting

for the presence of the drug.

The first step in the reformulation involved the logarithmic transformation from equation

(4.20). By performing this transformation on the PD equation (4.15b) the nonlinear growth

and bilinear kill nonlinearities were eliminated yielding:

Ṗ (t) =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
(ln ρg − P (t))− keff (C(t)− Cth)H(C(t)− Cth) (4.22)
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The discontinuous drug effect was accounted for during discretization. In discretizing the

system, the dynamic constraints were converted into algebraic constraints. The plasma drug

concentration was discretized at a time step h [68] and resulted in a piecewise continuous

function (4.23):

Cd(k + 1) =

 − 1
γ

(
e−γh − 1

) u(q)
h

+ e−γhCd(k) when k = hq

e−γhCd(k) otherwise
(4.23)

The input is present along with a decay term at time steps which coincide with drug

administration times. When no drug can be administered, the plasma concentration simply

decays at the rate γ. The discontinuous effective drug concentration, Ceff (t), from equation

(4.15c) was accounted for using the methodology discussed in section 4.1.2. By applying

the binary variable bd,th(k), and enforcing the constraints found in equation (4.13) at each

timestep, k, the discontinuous effective drug concentration was reduced to linear inequalities.

The logarithmically transformed PD (4.22) was discretized using Euler’s method [69]:

Pd(k + 1) = Pd(k) + hFd(Pd(k), Cd,eff (k)) (4.24)

Fd(k) =
1

τg

ln

[
ln(ρg/N0)

ln(ρg/2N0)

]
(ln ρg − P (t))

−keff (C(t)− Cth)H(C(t)− Cth) (4.25)

Note that Fd is the discretized right hand side of equation (4.22). The discrete–time form of

the acute toxicity constraint (4.16) was represented with the following state constraint:

Cd(k) ≤ Cmax ∀k ∈ [1, mk] (4.26)

Cumulative toxicity for this system (4.17) was replaced with equation (4.11), the trapezoidal

rule approximation of the integration (4.17). The efficacy constraint (4.18) was incorporated

in the following manner:

Pd(k) ≤ ln(N0); ∀k ∈ [3, mk] (4.27)

It is important to notice that the efficacy constraint was not enforced for the first two time

steps. The nature of discrete–time systems without direct feedthrough dictates that the

effects of an input change on states not manifest until subsequent time steps. In this case,
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manipulated variable changes at time step one induce plasma drug concentration changes

at time step two. These manipulated variable changes then indirectly affect the number of

cancer cells at time step three. Since the cells are continuously proliferating, the continuous–

time efficacy constraint cannot be satisfied until the third time step.

Based on the discretization results above, the continuous problem (4.19) was recast as

the following MILP:

minDd(q) Pd(mk) (4.28)

s.t. (4.11), (4.13), (4.23), (4.24), (4.26), (4.27)

4.3.2 MILP Results

Solutions for each value of keff case were found using the optimization software CPLEX in

the General Algebraic Modeling System (GAMS) and are shown in Figure 26. The objective

function values (N(tf )) for both the MILP and optimal control solutions are shown for each

value of keff in Table 12. Problem formulations contained approximately 4106 equations,

1873 continuous variables and 364 discrete variables, and solution required less than a second

to solve on a dual AMD Athlon 1.8 GHz machine with one GB of RAM.

The solutions shown in Figure 26 are qualitatively similar to those presented by Martin

and Teo [12]. An initial dose was administered at the first time step in all instances. This

was done to accommodate the efficacy constraint (4.27) and drives the number of cancer cells

down initially. As the cancer population approached the initial number of cells, more drug

was administered to satisfy the efficacy constraint. This was most evident for drug efficacies

keff,3 and keff,2. At the end of the treatment cycle, the drug was administered in large

amounts to reduce the final time tumor volume (the objective) such that the cumulative

toxicity constraint (4.11) was met and the acute toxicity constraint (4.26) was not violated.

When considering the highly effective drug, (keff,1), the optimal control solution found

by Martin [12] and MILP solution achieved essentially the same result. For the moderately

effective drug (keff,2) the MILP solution was clinically indistinguishable (within measure-

ment error) from the optimal control solution. However, there were quantifiable differences

between the two methodologies when considering the ineffective drug (keff,3). This can be

89



Table 11: PK/PD parameters taken from the Martin and Teo case study [12]. Here [D] are

the units of drug concentration/mass of drug delivered.

parameter value units

τg 150 days

ρg 1012 cells

N0 1010 cells

keff,1 2.7×10−2 1

days·[D]

keff,2 8.4×10−3 1

days·[D]

keff,3 1.5×10−3 1

days·[D]

γ .27 1

days

Cth 10 [D]

Cmax 50 [D]

Ccum 4.1×103 [D]·days

tf 364 days

Table 12: Objective function values, N(tf ), for the MILP and optimal control (OC) solutions

[12].

keff,1 keff,2 keff,3

MILP < 1 333 1.9× 109

OC < 1 1.2× 103 1.8× 109
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Figure 26: Case study I response to treatment. Top pane: tumor volume predictions for the

three drug types: keff,1 (—), keff,2 (-·-) and keff,3 (· · ·). Remaining panes: dose schedule

(bar/shaded region) and concentration (—) for drugs keff,1 (2nd pane), keff,2 (3rd pane) and

keff,3 (bottom pane); Cth (−−) and Cmax (· · ·) in panes 2-4.
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resolved by decreasing the stepsize, h. However, there is a compromise. Extremely small

values for h leads to more mathematical operations. Consequently, roundoff errors associated

with floating point mathematics begin to dominate. On the other end of the continuum,

extremely large values for h lead to discretization error. Hence, the value for h must be

selected to balance these effects. A more accurate discretization scheme, such as Runga–

Kutta, could be employed, but this leads to a significant increase in the number of algebraic

constraints associated with the PK/PD model.

4.3.3 Clinical Relevance

Clinicians make use of periodic feedback to evaluate the efficacy of treatment and to adjust

treatment as necessary to mitigate side effects. To approach the cancer chemotherapy

dosing problem from a more practical perspective, the problem from equation (4.28) was

reformulated as a receding horizon problem:

minDd(q)

mp∑
i=1

(Pd(i)− Td(i))
2 + Γu

mq∑
i=1

Dd(i) (4.29)

s.t. (4.11), (4.13), (4.23), (4.24), (4.26), (4.27)

This mixed–integer quadratic programming problem (MIQP) minimizes the deviations be-

tween the transformed tumor volume, Pd(i), and a specified target, Td(i), over a horizon of

wp points (two weeks per point). The input penalty term, weighted by Γu, was added to

penalize small drug doses. This formulation assumes the patient returns every eight weeks

for evaluation and the prediction horizon (wp) for optimization purposes is initially 26 (one

trajectory point every two weeks), and decreases by 4 times the number of treatment periods

preceding the current period (a receding horizon formulation [71, 72]).

The problem in (4.29) was modeled in GAMS and solved using CPLEX. This resulted in

a series of 6 optimizations. Each optimization contained approximately 1894 equations, 865

continuous variables, 168 discrete variables and the solution was found in less than a second.

The calculations were performed on a dual AMD Athlon 1.8 GHz machine with one GB of

memory.
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Figure 27: Case study I receding horizon solution for keff,1. Top pane: predicted tumor

response profile, Pd, and desired response, Td, (×) for Γu = 0 (—) and Γu = 1 (· · ·). Other

panes: drug administration levels (bar/shaded region) and plasma concentrations (—) for

Γu = 0 (middle pane) and Γu = 1 (bottom pane); Cth (−−) and Cmax (· · ·) in the middle

and bottom panes.
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Table 13: Total exposure, AUCexp, and effective exposure, AUCeff , for solutions to (4.29)

and the given input weights, Γu.

Γu = 0 Γu = 1 units

AUCexp 3438 2069 [d]·days

AUCeff 1110 1061 [d]·days

AUCeff

AUCexp
0.32 0.54 —

The results for the most efficacious drug, keff,1, are shown in Figure 27. The trajectory

specified in Figure 27 represents the desire to decrease the tumor burden as quickly as

possible. For the two cases presented here, a large amount of drug is administered during the

first cycle. This rapidly eliminates a large number of the cancerous cells. With Γu = 0, the

focus was on adhering to the trajectory and resulted in many small doses being administered.

While dose levels were predicted which led to immediate plasma levels at or below the

therapeutic level, Cth, these administrations did combine with subsequent administrations

to increase the effective exposure.

While this result is mathematically optimal, it is suboptimal from a clinical perspective.

A significant amount of drug was being administered at variable small doses that contributed

to the cumulative exposure, without contributing significantly to the efficacy of the treat-

ment. Furthermore, the use of variable small doses is a dose preparation concern in the

clinic. By increasing the penalty for drug administration to Γu = 1, the administration

profile in the bottom pane of Figure 27 was obtained. This tracked the trajectory well, as

indicated by the dotted line in the top pane of Figure 27, with a greater fraction of the drug

exposure above Cth. Table 13 contains the total exposure, AUCexp, the effective exposure,

AUCCeff , and the ratio of the effective to total exposure. By changing Γu from zero to one

the fraction of the effective drug exposure increases from a third to over one half. This is

desirable because all drug administered contributes to toxicity but not necessarily efficacy.
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4.4 CASE STUDY II: LINEAR PK/BILINEAR PD EFFECT

The second case study considers the effects of the lactone forms of 9NC and 9AC modeled

in equation (3.7). The tumor volume increases exponentially, and bilinear kill terms employ

PK concentration predictions after oral administration. The state and output equations are

as follows:

ẋ0(t) = − x0(t)

τ0

+
D(t)

τ0

(4.30a)

ẋ1(t) =
x0(t)

τ1

− x1(t)

τ1

+
x3(t)

τ1

(4.30b)

ẋ2(t) =
β1α2

τ2

x1(t)−
x2(t)

τ2

+
x4(t)

τ2

(4.30c)

ẋ3(t) = H(t− θ)x1(t− θ)
α1

τr

− x3(t)

τr

(4.30d)

ẋ4(t) = H(t− θ)x2(t− θ)
α1

τr

− x4(t)

τr

(4.30e)

ẋ5(t) =
ln(2)

τe

x5(t)− k
eff,NCLC

eff,NCL(t)x5(t)− k
eff,ACLC

eff,ACL(t)x5(t)

(4.30f)

CNCL(t) = β1kpx1(t) (4.30g)

C
eff,NCL(t) = CNCL(t− θeff )H(t− θeff ) (4.30h)

CACL(t) = β1kpx2(t) (4.30i)

C
eff,ACL(t) = CACL(t− θeff )H(t− θeff ) (4.30j)

Ne(t) = x5(t) (4.30k)

The details of this model, including parametric descriptions, were discussed in Chapters 2 and

3. Briefly, equations (4.30a)-(4.30e) represent the PK of the lactone forms of 9NC and 9AC.

The concentrations of 9NC and 9AC in the plasma are given by the outputs CNCL(t) and

CACL(t), respectively. Equation (4.30f) accounts for the drug PD, and the tumor volume

is given by Ne(t). The effective concentrations of the drug and metabolite are the plasma

concentrations delayed by θeff . The initial state of the system is x(0) = [0, 0, 0, 0, 0, N0]
>,

where no drug is present and the tumor volume is initially N0.
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4.4.1 Continuous Constraint Formulation

Based on the mathematical representation in equation (4.30), the optimal dosing regimen

was determined for a treatment interval of four weeks (tf = 33600 minutes). For this system,

logistical constraints associated with drug dosing were considered as well. Based on work

schedules, drugs could be administered no more often than once every weekday (i.e., no

weekends). For a cycle of treatment, four weeks in this case, there were twenty possible

dosing times q.

To bound the amount of drug that can be administered, a cumulative exposure constraint

was placed on the system for each treatment period. Currently, 9NC is administered once

daily, Monday–Friday, at 0.67 mg/kg, for two weeks, followed by two weeks with no drug

being administered (QD×5×2) [55]. This schedule is then repeated at four week intervals.

It was assumed that the cumulative toxicity should not exceed that encountered when

administering 9NC using the current standard of practice (0.67 mg/kg QD×5×2 = 6.7

mg/kg, per four weeks). Typically this would be a bound on the integrated drug plasma

concentration versus time curve; however, the result of this integral for systems modeled by

linear PK is proportional to the amount of drug administered. As such, a limit was placed

on the total mass of drug delivered:

∫ tf

0

D(t) ≤ 6.7
mg

kg
(4.31)

After administration of 9NC, the plasma levels are below the detectable limit by the end of

a day. Since the period between administrations is at least a day, there are no combinatorial

effects between doses. The amount of drug delivered on any given day was bounded above

by the MTD of 1 mg/kg and bounded below by the minimum effective dose of 0.44 mg/kg:

0.44
mg

kg
≤ D(ti) ≤ 1.0

mg

kg
or D(ti) = 0 ∀i ∈ [1, · · · , mq] (4.32)
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4.4.2 Continuous Problem Formulation

With an understanding of the constraints imposed on the system, the continuous problem

was formulated as:

minD(q) Ne(tf ) (4.33)

s.t. (4.30), (4.31), (4.32)

The discontinuities in the manipulated variable D(t) and the bilinear kill term from equation

(4.30f) indicate that this is a nonlinear programming problem (NLP) with dynamic con-

straints. Solutions to this optimization would include local minima. Martin has shown that

control vector parameterization can be used to guarantee a global optimum for this problem

is found [12]. However, including alternate constraints or altering the current constraints

could supplant the ability of optimal control theory to determine the global optimum (i.e. the

introduction of path or state constraints). To guarantee optimality, options were explored

to eliminate nonlinearities and restate the problem such that a global optimum could be

guaranteed in the current form and the problem could be easily extended as well.

4.4.3 MILP Problem Reformulation

By substituting the values from equation (4.20) into equation (4.30f), the tumor growth

equation becomes:

Ṗ (t) =
ln(2)

τe

− k
eff,NCLC

eff,NCL(t)− k
eff,ACLC

eff,ACL(t) (4.34)

The discontinuity in the range of drug administration was reformulated as in (4.14), thereby

introducing the binary decision variable bd,u(q). The constraints in equation (4.32) were

replaced with:

0.44bd,u(q)
mg
kg

≤ Dd(q) ≤ 1.0bd,u(q)
mg
kg

bd,u(q) ∈ {0, 1}∀d (4.35)
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When bd,u(q) is zero, then Dd(q) must be zero, and when bd,u(q) is one then Dd(q) must lie

within the therapeutic range. The cumulative toxicity limit (4.31) was replaced with the

following summation:

20∑
q=1

Dd(q) ≤ 6.7 (4.36)

Finally, the PK equations (4.30a) through (4.30e) were written in the matrix form:

ẋ0

ẋ1

ẋ2

ẋ3

ẋ4


︸ ︷︷ ︸

ẋ(t)

=



− 1
τ0

1
τ1

− 1
τ1

− 1
τ1

−α2β1

τ1
− 1

τ2
1
τ2

− 1
τr

− 1
τr


︸ ︷︷ ︸

A



x0

x1

x2

x3

x4


︸ ︷︷ ︸

x(t)

+



1 0 0

0 0 0

0 0 0

0 α1

τr
0

0 0 α1

τr


︸ ︷︷ ︸

B


D(t)

x1(t− θ)H(t− θ)

x2(t− θ)H(t− θ)


︸ ︷︷ ︸

u(t)

(4.37)

The delayed states in equations (4.30d) and (4.30e) have been transformed into inputs u1(t)

and u2(t), respectively, to facilitate simulation. The state equations from (4.37) can be

discretized for any step size h in terms of A and B as shown in equations (4.8) and (4.9).

The logarithmically transformed PD from equation (4.34) was also discretized using Euler’s

method [69]. The continuous dynamic constraints from equations (4.30) and (4.34) were

recast in discrete–time form as follows:

xd(k + 1) = A
d
xd(k) + B

d
ud(k) (4.38a)

Pd(k + 1) = Pd(k) + h
( ln 2

τe

− k
eff,NCLC

d,eff,NCL(k)− k
eff,ACLC

d,eff,ACL(k)
)

(4.38b)

C
d,NCL(k) = β1kpx1,d(k) (4.38c)
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C
d,eff,NCL = C

d,NCL(k − θd,eff )H(k − θd,eff ) (4.38d)

C
d,ACL(k) = β1kpx2,d(k) (4.38e)

C
d,eff,ACL = C

d,ACL(k − θd,eff )H(k − θd,eff ) (4.38f)

xd(1) = [0, 0, 0, 0, 0, ln(N0)]
> (4.38g)

Where θd,eff = bθeff/hc, or θeff/h rounded down to the nearest integer. By utilizing the

binary variables introduced in equation (4.35), the nonlinear transform from (4.20), and the

discretization (4.38), the dose regimen determination problem can be restated as follows:

minDd(q) Pd(mk) (4.39)

s.t. (4.35), (4.36), (4.38)

The resulting optimization is a MILP which can be solved to optimality given a reasonable

step size h, which is selected such that the fastest dynamics are adequately captured.

defined by the fastest dynamic equation.

4.4.4 MILP Results

The parameters used in this case study were given in Table 6. The initial tumor volume was

assumed to be N0 = 40 mm3 and a discretization step size of h = 20 min was used. The

system was modeled in the General Algebraic Modeling System (GAMS) using the bdmlp

solver. For a four week treatment window, the resulting problem had m = 2016 steps,

20202 equations, 20201 continuous variables and 20 discrete variables. The optimal solution

was found in 109 seconds and is shown in Figure 28 along with the current standard of

preclinical practice. In this case study, the final tumor volumes using both dosing regimens

are not experimentally differentiable. While the MILP–derived regimen is mathematically

optimal (the final tumor volume from the QD×5×2 was −3.2× 10−9 mm3 larger than that

found using the optimal dosing regimen), the results suggest that an exponentially growing

tumor affected in a bilinear fashion by a drug with linear PK has a final tumor volume

determined solely by the amount of drug administered and is independent of the dosing

schedule.

99



��
��
��
��

��	 
 ��
���

��
��
���

� � �� �� �� ���

��

���

���

�

���

�

Figure 28: Case study II response to treatment. Top pane: optimal dosing profile (—), as

suggested by the MILP (4.39), and current standard of practice (›). Bottom pane: tumor

volume in response to the optimal dosing profile (—) and the current standard of practice

(−−).
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The independence of outcome to dose schedule can be shown using a simple example.

Consider the following simple model of exponential growth in response to an intravenously

administered drug:

PK: ẋ0(t) = −x0(t)
τ0

+ u(t)
τ0

PD: ẋ1(t) = − ln(2)
τe

x1(t)− keffx1(t)x0(t)

N(t) = x1(t)

(4.40)

Let the input be a bolus, u(t) = Mδ(t), occurring at some time (t = ti). The objective

is to evaluate the effect of this input on tumor size, x1(t), at some final time (t = tf ).

The transformation in equation (4.20) was carried out and applied to (4.40) to provide the

following dynamic linear system:

ẋ0(t) = −x0(t)
τ0

+ u(t)
τ0

x0(0) = 0

ẋt(t) = ln(2)
τe

− keffx0(t) xt(0) = ln(x1(0)) = K

Nt(t) = xt(t)

(4.41)

Now consider the input profile u(t) = Mδ(t− θ)H(t− θ) — a bolus of magnitude M applied

at an arbitrary time θ. Based on this input, equation (4.41) can be transformed into the

Laplace domain and solved analytically to provide the following time domain representation

for Nt(t):

Nt(t) =
ln(2)

τe

1

K

(
eKt − 1

)
︸ ︷︷ ︸

growth

− keffM

(
1

τ0K + 1
eK(t−θ) − 1

τ0

1
1
τ0

+ K
e
− (t−θ)

τ0

)
H(t− θ)︸ ︷︷ ︸

death

(4.42)

The time domain result (4.42) can be segregated into growth and death terms as shown.

In the absence of drug administration, the tumor will continue to increase exponentially.

The presence of an input will decrease the tumor volume according to the death term. By

increasing or decreasing θ the dynamic response will change. However, the point of interest

for final time problems is the state of the system after the influence of drug administration

has passed. For a first order linear system this occurs approximately at the time tf > θ+5τ0

[26]. At tf , the overall decrease in tumor size (i.e., Nt(tf )) will be the same regardless of when

the drug is administered provided it is not given within 5τ0 of tf . This is a straightforward

application of the superposition principle [68].
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4.5 CASE STUDY III: NONLINEAR PK/SWITCHED EXPONENTIAL

GROWTH

The final case study considered utilizes the nonlinear PK/PD model of 9NC and 9AC efficacy,

(2.9), and the linear model of toxicity (3.9). The state and output equations are given by:

ẋ1(t) =
x2(t)

τu

− x1(t)

τu

(4.43a)

ẋ2(t) =
Du(t)

τu

− x2(t)

τu

(4.43b)

ẋ3(t) =
x4(t)

τl

− x3(t)

τl

(4.43c)

ẋ4(t) =
Dl(t) + x5(t)

τl

− x4(t)

τl

(4.43d)

ẋ5(t) = β1
x3(t)

τr

− x5(t)

τr

(4.43e)

ẋ6(t) = α2(x1(t− θ2) + α1x3(t− θ2))H(t− θ2)
Dlast

τnl

− x6(t)
Dlast

τnl

(4.43f)

ẋ7(t) =
ln(2)

τ̄e(x7(t))
x7(t)− keffCeff (t)x7(t) (4.43g)

ẋ8(t) = kgx9(t)− kcCeff (t) (4.43h)

Ceff (t) = CNC(t) + CAC(t) (4.43i)

CNC(t) = x1(t)
Ku

Dlast

+ Klα1x3(t) (4.43j)

CAC(t) = (x1(t) + x3(t)α1)β2Ka + x6(t)Ka (4.43k)

Ns(t) = x7(t) (4.43l)

B(t) = x8(t) (4.43m)

Btox(t) = x8(t)−
x7(t)

1000
(4.43n)

τ̄e(x7(t)) =

 τ̄e,f , x7(t) < N̄th

τ̄e,s, x7(t) > N̄th

(4.43o)

The methodology behind the construction of this model was covered in Chapters 2 and 3.

Equations (4.43a) through (4.43f) represent the PK of 9NC and 9AC after oral adminis-

tration of 9NC. Tumor proliferation and PD response (efficacy) to 9NC administration is

characterized by equation (4.43g). Toxicity, in terms of body weight reduction, is described
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by equation (4.43h). The outputs CNC(t) and CAC(t) represent the plasma concentrations

of 9NC and 9AC total, respectively. Tumor volume, mouse body weight and the corrected

body weight are given by the outputs Ns, B, and Btox, respectively. The initial state of the

system is x(0) = [0, 0, 0, 0, 0, 0, N0, B0]
>, where no drug is present, the tumor volume is

initially N0, and the initial body weight is B0.

4.5.1 Continuous Constraint Formulation

Based on the mathematical representation in equation (4.30), the optimal dosing regimen was

determined for a treatment interval of Nweeks (tf = Nweeks×7(days/week)×1440(minutes/day)).

The same logistical constraints apply as those from section 4.4. Work schedules dictate

that drugs could only be delivered once each weekday. For Nweeks of treatment, there are

q = Nweeks × 5 possible dosing times.

The semicontinuous dosing constraint from section 4.4, equation (4.32), is still valid. The

amount of drug administered at any dosing opportunity is either zero or must lie somewhere

between an upper and lower bound, 1.0 and 0.44 mg/kg, respectively. In section 4.4, a

toxicity bound was placed on total exposure. In this case study, a lower bound on Btox is

considered:

Btox(t) ≥ Bmin (4.44)

4.5.2 Continuous Problem Formulation

The continuous problem can be formulated as

minD(q) Ns(tf ) (4.45)

s.t. (4.32), (4.43), (4.44)

The optimization in (4.32) is a NLP because of the nonlinear PK, discontinuities in D(t),

and the bilinear kill term. This problem can be reformulated as a MILP which can be solved

to global optimality.
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4.5.3 MILP Problem Reformulation

4.5.3.1 Parameterized PK Nonlinearities such as those found in the nonlinear 9NC

PK model (4.43a)–(4.43f) can make optimizations quite complicated. To eliminate these

nonlinearities, we make use of the fact that both 9NC and 9AC are cleared at a rate such

that any drug from a dose on a given day is below the level of detection by the following

day. While the range of doses is continuous (0.44 – 1.0 mg/kg), realistically there are a set

of doses, l = [1, ml], which can be distinguished from each other. For each of these doses, a

PK profile can be calculated a priori such that 9NC and 9AC concentrations at all the times

after a given dose are parameterized by dose magnitude. The set of steps per day is given

by z = [1, mz]. The algorithm then selects from the set of profiles each dosing opportunity.

This is achieved by introducing the binary variable bd,dose(q, l) at each dosing opportunity for

each possible dose level. The dynamic PK equations can then be replaced with the following

constraints:

C
d,NC(k) =


∑ml

i=1 bd,dose(q, i)QNC(j, i), k = Qmap(q)− 1 + j, ∀j ∈ [1, · · · , mz]

0, otherwise

(4.46a)

C
d,AC(k) =


∑ml

i=1 bd,dose(q, i)QAC(j, i), k = Qmap(q)− 1 + j, ∀j ∈ [1, · · · , mz]

0, otherwise

(4.46b)

1 =
l∑

i=m1

bd,dose(j, i) ∀j ∈ [1, · · · , mq] (4.46c)

Cd,eff (k) = C
d,AC(k) + C

d,NC(k) (4.46d)

Where QNC(z, l) and QAC(z, l) are matrices of precalculated concentrations of 9NC and

9AC, respectively. The parameter Qmap(q) is a map between the dosing opportunity (q) and

the timestep (k) in which it occurs. For example, the second dosing opportunity, q = 2, with

a time step of one minute occurs at k = 2881, so Qmap(2) = 2881. The constraint (4.46c)

ensures that only one dose level is selected at any given dosing opportunity.
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4.5.3.2 PD Variable Transform The tumor growth equation (4.43g) is transformed

using the method found in (4.20) such that the tumor growth model becomes:

Ṗ (t) = Fs(P (t))− keffCeff (t) (4.47a)

Fs(P (t)) =


ln(2)
τ̄e,f

, P (t) < ln
(
N̄th

)
ln(2)
τ̄e,s

, P (t) > ln
(
N̄th

) (4.47b)

The discontinuity in the rate of proliferation is a piecewise continuous function of P (t).

As shown in equation (4.13), this behavior can be accounted for by adding a binary variable

bd,P (k) and replacing (4.47) with the following constraints [70]:

Pd(k)− ln N̄th ≤ (ln(Nmax)− ln(N̄th))(1− bd,P (k)) (4.48a)

(1− bd,P (k))

(
ln(2)

τ̄e,s

− ln(2)

τ̄e,f

)
≤ Fd,s(k)− ln(2)

τ̄e,f

(4.48b)

(1− bd,P (k))

(
ln(2)

τ̄e,s

− ln(2)

τ̄e,f

)
≥ Fd,s(k)− ln(2)

τ̄e,f

(4.48c)

ln N̄th − Pd(k) ≤ ln(N̄th)bd,P (k) (4.48d)

bd,P (k)

(
ln(2)

τ̄e,f

− ln(2)

τ̄e,s

)
≤ Fd,s(k)− ln(2)

τ̄e,s

(4.48e)

bd,P (k)

(
ln(2)

τ̄e,f

− ln(2)

τ̄e,s

)
≥ Fd,s(k)− ln(2)

τ̄e,s

(4.48f)

Where Fd,s(k) is the discrete–time form of Fs(P (t)). The values Nmin and Nmax are smallest

and largest possible tumor volume, respectively. The lower bound is represented by zero,

and the upper bound is represented at each timestep by the predicted size of the tumor at

that timestep in the absence of treatment.
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4.5.3.3 Effect of Transform on Body Weight Calculations By performing the PD

transform (4.20) as employed in (4.47), the body weight calculation becomes:

Bd,tox(k) = Bd(k)− ePd(k)

1000

To avoid the nonlinearity associated with the exponential term, a conservative estimate was

made. The transformed tumor volume, Pd(k), was replaced with the value it would take if

no drug were administered, QPnom(k):

Bd,tox(k) = Bd(k)− eQPnom(k)

1000
(4.49)

And the bound on body weight is given by:

Btox(t) ≥ Bmin (4.50)

It is possible for the tumor size to increase at the nominal rate which would yield large values

of QPnom at the end of treatment cycles. This could lead to conservative dose schedules being

returned by the controller for the cycle. Two options that address this problem are: (i) a less

conservative value for Bmin could be used, or (ii) the duration of treatment cycles could be

reduced to allow the clinician more frequent feedback and model correction. Shorter cycles

would be preferred from the perspective of patient safety.

4.5.3.4 Dynamic Equations The remaining dynamic equations (4.43h) and (4.47b)

can now be discretized for a stepsize h using the Euler’s method [69]:

Pd(k + 1) = Pd(k) + h (Fd,s(k)− keffCd,eff (k)) (4.51a)

Bd(k + 1) = Bd(k) + h (kgBd(k)− kcCd,eff (k)) (4.51b)
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Table 14: Parameters used in Case Study III.

parameter value units

B0 20 g

Bmin 0.98B0 g

N0 40 mm3

h 5 min

tf 8 weeks
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Figure 29: Mesh plot of concentration profiles of 9NC (top pane) and 9AC (bottom pane)

total for dose levels ranging from 0.44 to 1.0 mg/kg 9NC in 0.01 mg/kg increments.
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until the latter portion of treatment when a maximum amount of drug was administered

such that the toxicity constraint (4.50) was not violated.

4.5.5 MILP Results: Shrinking Horizon Problem

As before, a more clinically relevant reference trajectory for the tumor volumes to follow was

specified. This was done by minimizing the tumor volumes at the end of each week. This

can be stated mathematically as:

minbd,dose(q,l)

mp∑
i

Pd(i) ∀i ∈ [2016, 4032, 6048, · · · , 16128] (4.53)

s.t. (4.46), (4.48), (4.49), (4.50), (4.51),

Here i is the index corresponding to 1 week (1 week = 100080 min/h min). The same set

of parameters and possible dose levels used in the final time problem, Table 14 (section ??),

were used here. The problem (4.53) was modeled in GAMS and solved using CPLEX. The

same number of equations and variables were generated, and the optimal solution was found

in approximately 11 hours. The dosing profile and corresponding body weights and tumor

volumes are shown in Figure 31. By modifying the objective function, a more clinically

relevant treatment regimen was developed. The body weight satisfied the constraint while

the tumor volume was gradually reduced over the treatment window.

Next the amount of drug administered was constrained to be either the maximum possible

value (1.0 mg/kg) or none at all. This is similar to the clinical case where a pill will either

be administered or not at each dosing opportunity. All of the parameters from (4.53) were

the same with the exception of the possible dose levels, which were 0 and 1.0 mg/kg. Once

formulated, this problem had mk = 16, 128 time steps, 193,575 equations, 112,977 continuous

variables, 16,208 discrete variables, and a solution time of 22 minutes. The solution is shown

in Figure 32. When considering the solutions provided in Figures 31 or 32, the first four weeks

of drug administration would be implemented. At the end of four weeks, measurements of

body weight and tumor volume would be made. New dosing profiles would then be calculated

for the next eight weeks and the first four weeks implemented. This process would then be
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repeated until tumor progression occurred, unacceptable toxicity resulted, or clinical response

was obtained.

To place the controller results into perspective, they will be compared to the current

standard of practice, QD×5×2 every four weeks, shown in Figure 33. Table 15 summarizes

the results presented in this section. Minimizing tumor volumes at a final time has already

been established to be of little clinical relevance. The results presented in Figure 31 de-

livered a total of 25.76 mg/kg of 9NC and have minimum and maximum tumor volumes

of 7.9 and 42.1 mm3 respectively. The solution to the more constrained problem shown in

Figure 32 delivered slightly more drug, 27 mg/kg of 9NC. The binary dosing option also had

a wider range of tumor volumes 6.7 and 44.2 mm3 for the minimum and maximum values,

respectively. Both of the solutions had body weight values above the 98% level specified.

The finely graded dosing option had a minimum normalized corrected body weight of 0.982,

while the the binary dosing option had a minimum normalized corrected body weight of

0.98, both satisfying the toxicity constraint. The standard of practice delivers 20 mg/kg

over the eight week window with a minimum normalized corrected body weight of 0.972.

The maximum tumor volume is lower than the two solutions previously discussed at 40 mm3

while the minimum tumor volume is higher at 10.5 mm3.

Each of the dosing profiles have their positives aspects. Considering the clinically relevant

aspects of the problem, the solution to the trajectory tracking problem which constrained

the dosing to be either 0 or 1.0 mg/kg, shown in Figure 32, would be considered optimal.

While allowing the controller to select from more possible doses yields a more mathematically

optimal solution, clinicians would find little difference between the two trajectory tracking

solutions in terms of efficacy. However, the binary dosing option is preferred for two reasons.

The first is that it eventually becomes periodic. Regular, or periodic, administration is

preferred over the more erratic schedule shown in Figure 31. The chance for error is

significantly reduced by constraining the dose levels to fixed discrete values. This is highly

relevant when considering oral drugs prescribed in pill form.
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Table 15: Summary of relevant statistic for different dosing profiles: (i) minimizing tumor

volume at a final time, (ii) trajectory tracking using a near continuous dosing profile, (iii)

trajectory tracking allowing dose levels of 0 or 1.0 mg/kg of 9NC, and (iv) the current

standard of practice (QD×5×2 every four weeks).

Dosing Profile: max(N(t)) min(N(t)) min
(

Btox(t)
B0

) ∑mq

i=1 D(q)

(mm3) (mm3) (–) (mg/kg)

(i) Minimize N(tf ), Figure 30 86.5 5.2 0.980 28.48

(ii) Trajectory, Figure 31 42.1 7.9 0.982 25.76

(iii) Trajectory, Figure 32 44.3 6.7 0.981 27.0

(iv) QD×5×2, Figure 33 40.0 10.5 0.972 20.0
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Figure 30: Case study III response to treatment — Minimizing tumor burden at a final time

(eight weeks). Top pane: optimal dosing profile (—), as suggested by the MILP (??). Middle

pane: corrected body weight (—) and lower bound on corrected body weight (−−). Bottom

pane: tumor volume in response to the optimal dosing profile (—).
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Figure 31: Case study III response to treatment — Trajectory tracking of zero tumor volume

every week. Top pane: optimal dosing profile (—), as suggested by the MILP (4.53). Middle

pane: corrected body weight (—) and lower bound on corrected body weight (−−). Bottom

pane: tumor volume in response to the optimal dosing profile (—) and desired trajectory

(×). Possible dose levels 0 to 1.0 mg/kg in 0.01 mg/kg increments
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Figure 32: Case study III response to treatment — Trajectory tracking of zero tumor volume

every week. Top pane: optimal dosing profile (—), as suggested by the MILP (4.53). Middle

pane: corrected body weight (—) and lower bound on corrected body weight (−−). Bottom

pane: tumor volume in response to the optimal dosing profile (—) and desired trajectory

(×). Possible dose values: 0 and 1.0 mg/kg
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Figure 33: Case study III response to treatment — standard of practice dosing. Top pane:

QD×5×2 every four weeks (—), representing the current standard of practice (4.53). Middle

pane: corrected body weight (—) and lower bound on corrected body weight (-·-). Bottom

pane: tumor volume in response to the dosing profile (—) and desired trajectory (×).

Possible dose values: 0 and 1.0 mg/kg
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4.6 SUMMARY

In this chapter three case studies in chemotherapy control were presented. The first, studied

previously by Martin and Teo [12], was reformulated as a MILP and a solution similar to

that of the original authors was calculated. This resulted in treatment being withheld for a

significant period of time and large amounts of drug being administered over the last half of

the treatment cycle. This mathematically optimal solution would be ethically questionable

for a clinician to implement due to the long window in which no treatment would be delivered.

It is neither intuitive nor desirable from a clinical perspective to withhold treatment for long

periods of time when no complications due to toxicity or other extenuating circumstances

have been encountered. In an effort to develop a more pragmatic solution, a shrinking tumor

objective was considered. A trajectory specifying a rapid reduction in tumor volumes over

time was used as the objective, and the result was a more clinically acceptable treatment

regimen.

The remaining two case studies focused on the 9NC treatment of SCID mice bearing

HT29 human colon carcinoma xenografts as modeled in chapters 2 and 3. The second case

study considered exponentially growing tumors with PD driven by linear PK and cumulative

toxicity constraints. Cumulative toxicity constraints were shown to be inadequate because

tumors under exponential growth with bilinear PD driven by linear PK gain no benefit by

altering the dosing schedule due to the principle of superposition. The third case study

consisted of a switched exponential tumor model coupled with a nonlinear PK model and a

model of body weight reductions in response to treatment. When attempting to minimize

the final tumor volume, a solution which applied as much drug as possible at the end of the

treatment cycle was obtained. As in case study I, the objective function was modified to yield

a more clinically amenable treatment strategy. The receding horizon framework makes use of

periodic feedback and addresses the fact that endpoints are not clearly defined. In the event

that measurements vary significantly from the predictions, new parameter estimates could

be obtained and the dosing schedule recalculated (although the parameter update step was

not address in the present work). In theory, treatment would continue along this path until
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the subject no longer responded to treatment or the tumor volume fell below measurable

levels.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONTRIBUTIONS

The work discussed here has focused on modeling and control of cancer chemotherapy with a

primary focus on developing control methodologies that could be clinically applicable. The

methodologies used are based on those used to optimize and control industrial processes.

Novel modeling and control approaches to cancer therapy problems were developed which

provide a basis for the design of clinically relevant drug schedules.

5.1.1 PK/PD Modeling

The models developed here are empirical data–driven models of drug PK and PD. Two novel

models were introduced to describe the PK of 9NC. A linear model of the plasma disposition

of 9NC lactone and 9AC lactone in response to oral administration of 9NC at 0.67 mg/kg to

SCID mice was developed. Based on experimental data for total concentrations of 9NC and

9AC at 9NC dosing levels of 0.44, 0.67, and 1.0 mg/kg, a nonlinear PK model was developed

to capture the observed nonlinear dynamics.

Untreated tumor growth was characterized for twenty mice using two different macro-

scopic models. A simple model characterized the exponential growth of the implanted

tumors. A more complicated model structure was investigated which segregated tumor

growth into two regimes. Initially the tumor grew quickly, and after reaching a threshold

size, the rate of proliferation decreased. This was referred to as a switched exponential model

and was capable of accurately predicting tumor volumes over a wider range of times and

eliminated the underpredictions found in the exponential model at early time points.
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Based on the PK and untreated tumor growth models, two PK–driven PD models were

developed. The first PK/PD model coupled the linear PK of 9NC lactone and 9AC lactone

with the exponential growth model. This resulted in a description of drug distribution and

efficacy having a single nonlinear (bilinear) term. An alternative structure combined the

nonlinear PK model with the switched exponential growth model to develop a more complex

PK/PD model that captured treatment response across a range of dose levels. The nonlinear

PK model was also used to drive a toxicity model which predicted body weight changes in

response to drug administration.

The models developed here were designed to balance predictive accuracy with model

complexity. Predictive accuracy is important because model accuracy limits the theoretically

achievable performance of a controller [8]. The importance of model complexity can be seen

when trying to develop control algorithms. As the number of states and nonlinearities

increase and the nonlinear character becomes more complicated [73, 74, 75, 76, 77], control

algorithm synthesis may become markedly harder. More information could be used to

improve the accuracy of the model. Since 9NC and 9AC are cycle–specific compounds,

a model capable of predicting the population of cells in the cell–cycle would lead to a better

predictions of exposure. More complicated models, such as PBPK models, will provide

more information about specific tissues. Model reduction techniques may be necessary when

implementing these models in control algorithms.

5.1.2 Cancer Control

Engineering approaches to chemotherapy dose scheduling have typically focused on elegant

mathematical solutions using optimal control theory. While these solutions are appealing in

theory, they are not generally relevant in the clinic. A different approach was developed in

this work, where tools common to plant scheduling and operations research were utilized.

Any chemotherapy scheduling algorithms should embrace the concept that toxicity and

efficacy are the primary drives of treatment. In mathematical terms, a dose scheduling

algorithm should meet clinically relevant objectives in terms of efficacy, without violating

toxicity constraints.
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A mixed–integer programming methodology was employed because it is flexible when

considering constraints, especially those encountered in the clinic. Constraints such as semi-

continuous or discrete dosing ranges, therapeutic thresholds, and categorical classification

of toxicities lend themselves well to (mixed–)integer programming representations. Different

variants of the final time problem — minimizing tumor volume at some final time — have

been considered by engineers [12, 44, 53, 46]. However, final times in a clinical setting are

not well defined a priori. The goal of a clinician is to eliminate the tumor burden while

maintaining patient quality of life; speed of elimination is a secondary objective. This can

be stated mathematically as a trajectory tracking problem. While trajectory tracking can

be encumbering from an optimal control perspective, it is easily implemented by posing the

problem as a MIQP.

To demonstrate the utility of this methodology, a theoretical drug/tumor system pre-

viously studied by Martin and Teo was considered [12]. By reformulating the problem

and eliminating certain nonlinearities by variable transformation, a MILP solution strategy

was developed that solved the problem as originally posed. The solution to minimizing

the tumor burden at a final time yielded results which postponed treatment until the end

of the treatment interval. From a treatment perspective, it would be unethical to withhold

treatment for such an extended period of time. The theoretical system was then considered in

a more clinically relevant framework. By altering the objective function in the reformulation,

it was specified that the tumor burden be eliminated rapidly by establishing a trajectory

of small tumor volumes for treatment to follow. While this resulted in a numerically larger

tumor population at the end of the treatment horizon, the final tumor populations were less

than one for both the optimal control and the MINLP solutions. The rapid elimination led to

a more clinically acceptable method of treatment. The suggested dosing schedule delivered

a large amount of drug initially which drove the tumor volume down, and the remainder of

treatment consisted of a maintenance doses which tracked the trajectory well.

Next a preclinical system was considered. The effects of 9NC on HT29 tumor–bearing

SCID mice was studied. Two different case studies were developed around this system. The

first consisted of an exponential tumor growth PD model driven by a linear PK model of

9NC lactone and 9AC lactone. This was the least complicated model constructed from this
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system. To constrain the toxicity of this system, cumulative drug exposure was used. The

maximum allowable exposure was set to that experienced under the current standard of

practice (0.67 mg/kg QD×5×2). Because linear PK results in a direct link between drug

administration and exposure (AUC), an upper bound was placed on the total amount of

drug which could be administered. A mathematical analysis found that the overall effect

of drug administration on a tumor burden — described with linear PK, exponential tumor

growth, and a bilinear kill term — was the same provided the effect of all doses was observed

by the end of treatment.

The same preclinical system was reconsidered except this time it was described by

nonlinear PK, a switched exponential tumor growth model, and toxicity quantified in terms

of body weight. This problem was treated similarly to the Martin and Teo problem. To

account for the nonlinear PK, concentrations of 9NC and 9AC total were precalculated

for a range of dose levels. The algorithm was then allowed to select from this range of

precalculated dose levels. This eliminated the nonlinearity associated with the 9NC PK. A

lower bound was placed on the corrected body weight to bound the toxic effects of treatment.

The objective was specified to reduce tumor volumes over an eight week period. Solutions

were found to lie on toxicity boundaries and a cyclical treatment methodology eventually

evolved. This resulted in a treatment schedule with consistent reductions in tumor volumes

along a trajectory which was better, in terms of efficacy, than the standard QD×5×2 every

four weeks.

5.2 FUTURE WORK

Clinical oncologists and pharmacologists design experiments to answer specific questions. It

is possible for engineers and mathematicians to pick through the literature and find data

to drive their modeling and control efforts. However, to truly make an impact on the field

of oncology, strong interdisciplinary collaboration is required. All of the modeling work

discussed above will require additional experimental data to validate, and model and control

studies will drive new experiments. This will be a cyclical process where experiments drive
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models and modeling results drive experiments may bring new treatment methodologies to

the clinic that would otherwise be unavailable due to the data on theoretical shortcomings.

5.2.1 Detailed Modeling

Under the premise that model accuracy limits achievable controller performance [8], a better

understanding of tumor progression, drug distribution, and PD effects would enhance the

ability of control algorithms to aid clinicians in their dosing decisions. While detailed models

can lead to difficulties in controller synthesis, they can provide insight into the underlying

mechanisms of cancer progression and treatment. This insight could then be used to inform

more control–relevant models in an iterative fashion.

5.2.1.1 Cancer Progression Models There are several different areas in which mod-

eling of cancer progression could be improved. Many chemotherapeutics are cycle specific,

and they have their greatest effect on cells in certain phases of the cell–cycle. The models

presented in this work treated cancer as a lumped mass, and no distinction was made between

cancer cells. Population models are one method which can account for the heterogeneity

found between the states of cancer cells. Cell–cycle dynamics have been addressed by

considering purely theoretical systems [15, 16]. More recently, cell–cycle representations have

been applied actual experimental systems to characterize to characterize the transition rates

between the different phases of the cell–cycle [78, 79, 80]. These can lead to improvements

in chemotherapy scheduling by determining the population of cells susceptible to treatment

and how chemotherapy effects these phase transition rates (i.e. when cells will defensively

enter the quiescent phase to avoid treatment effects).

Proliferation can also be considered on a more detailed level. Cells communicate and

regulate their own intracellular process through complicated chemical signals. In the last

decade much effort has been devoted to mapping out and isolating these pathways [81, 82, 83,

84]. Often, research focuses on correlating the presence or absence of chemical signals with

specific cellular events [85, 86, 87]. Cellular dynamics are robust and result in redundant

pathways [88]. Isolated identification of signal pathways ignores these redundancies. A
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systemic approach is required to identify the interactions between the different signaling

mechanisms.

5.2.1.2 Detailed PK Models The PK models presented in this work attempted only

to account for plasma drug concentrations. Chemotherapy is a systemic form of treatment,

and drugs distribute throughout an organism after administration. Understanding where

the drug distributes may provide more accurate information for PD modeling. By obtaining

local tissue concentrations, a more direct relationship between drug administration and the

amount of exposure experienced by diseased tissues can be found. Drug disposition also

provides a metric for bounding exposure to both diseased and healthy tissues. This can be

accomplished with the development of PB/PK models [21] and using such models to drive

PD models.

5.2.1.3 Constraint Formulation Most constrained optimization routines result in so-

lutions which lie on the boundary of constraints. With the understanding that efficacy and

toxicity drive treatment, the predominate toxicities associated with any given chemother-

apeutic drug needs to be quantified and modeled. Two primary complications arise here:

available measurements and mechanisms of action. A drug known to have neurotoxicity can

be difficult or impossible to measure at the site of toxicity, the brain. The specific mechanism

of action (e.g. duration of exposure, cumulative exposure, etc.) which results in toxicity will

guide treatment. In the absence of direct measurements and a clear understanding of toxicity

mechanics, indirect measurements may need to be developed to inform models which can

predict toxicity within a reasonable range.

5.2.2 Multi-drug Chemotherapy

The focus of this work has been to study the effects of a single compound on a solid tumor

in an animal model. Methods for assessing the effects of combining drugs to better treat

cancer are currently under development [89, 90, 91, 92, 93]. Considering efficacy, there

are three different outcomes which can result from combining drugs. The combination can
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create a synergistic effect and enhance the overall effectiveness of treatment. It could be that

combining drugs decreases the effectiveness of treatment and creates an antagonistic effect.

Finally, the effects of the individual compounds may simply combine in an additive manner.

The efficacy of combined chemotherapy may be affected by the order in which drugs are

administered ??. Consider two drugs, A and B, which attack the S and M phases of the

cell–cycle, respectively. These drugs should be administered such that A is administered

when cells are most likely to be in the synthesis phase. Similarly, when most cells are in

the mitosis phase, drug B should be administered. Administering large amounts of B could

eliminate the population of cells in M . One response might be that more nutrients are

now available and cells in the quiescent G0 phase may enter the proliferating portion of

the cell–cycle. Drug A could then be administered as more cells enter the S phase. An

alternative response to large amounts of B being administered might be that many cells

enter the quiescent phase in response to the toxicity of their micro–environment. In this

case, most treatment would be ineffective because quiescent cells are not affected by most

chemotherapeutics. An accurate model of cell–cycle dynamics would provide more insight

into the problem and aid in scheduling combination chemotherapy.

5.2.3 Patient Variability

It is common for patients to respond quite differently to anticancer drugs [94]. Response

variations could be attributed to different rates of drug elimination, reduced liver function,

variations in body weight, the presence or absence of specific genes, etc [94]. Because of

the toxic nature of chemotherapy, it is important to account for such variability. From a

model–based control perspective, this can be characterized by estimating patient–specific

parameters.

Models can be developed initially in animals, and then adapted to humans based on

data from clinical trials. Clinical trials can provide a population mean behavior. Population

averages provide a starting point for treatment. For well–tolerated compounds, population

means can be used to design the first cycle of treatment. For particularly toxic substances,

conservative estimates for model parameters could be used to schedule the first cycle of
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treatment. After the first cycle of treatment has been delivered and responses collected,

deviations from the expected response can be used to reestimate patient specific parameters.

This update is not limited to the first cycle; at any point where a patient response deviates

significantly from the expected, a parameter update could be performed. Reestimation of

parameters would start with the current set of parameters as the initial guess and least

squares estimate would then be performed to obtain the new set of parameters. If data

suggests the PK parameters are incorrect (e.g. blood samples suggest reduced liver function

which may be reducing the rate of drug metabolism), then it may be necessary to obtain

another set of PK data to reestimate the PK parameters.

This seems very straightforward, however there are complicating factors. Detailed animal

models can be developed because different tissue measurements are more readily available.

This may not be the case in humans. Consider obtaining patient–specific parameters for drug

disposition in the kidney. Direct measurement of drug concentration in the kidney may not

be clinically feasible. In this regard, it may be necessary to develop indirect measurements

based in part on the concentration of the drug in the urine. Also, heuristics may be used

when indirect measures are not available. These methodologies would be most useful for

drugs which are know to have toxic effects on specific organs.

5.3 IMPLEMENTATION

The focus of this work was the development of treatment schedules in mice. However, the

ultimate goal is to apply these methodologies in a clinical setting. To implement these

concepts clinically, PK/PD models are necessary. Ideally, an individual specializing in

modeling would work in tandem with clinicians and animal pharmacologists during the drug

discovery process. Models for specific drug/tumor combinations could then be developed and

modified as more information becomes available. This process is ideal because the modeler

can help inform experiments. As new compounds enter clinical trials, model parameters

representing the most conservative estimates can be used initially in humans. Parameters

can be reestimated as human data becomes available. The data from clinical trials can be
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used to create population estimates for model parameters. Eventually, drugs approved for

clinical use could then have patient specific schedules developed. A patient would enter the

clinic and be given a drug. Blood would be draw at specified times based on the PK model

structure and the dynamics of the drug. This would provide patient specific PK parameters.

Conservative estimates of population PD parameters would then be used to predict schedules

for the first two cycles of treatment. This would then provide data for patient specific PD

parameters. These parameters could then be updated at the end of each treatment cycle.
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APPENDIX A

NOMENCLATURE

Abbreviations

AIC Akaike’s information criterion

AUC area under the curve

9NC 9-nitrocamptothecin

9AC 9-aminocamptothecin

DLT dose limiting toxicity

GAMS general algebraic modeling system

LD lethal dose

PK pharmacokinetic (s)

PB/PK physiologically–based pharmacokinetic(s)

PD pharmacodynamic (s)

MAP murine antibody profile

MILP mixed–integer linear programming problem

MINLP mixed–integer nonlinear programming problem

MIQP mixed–integer quadratic programming problem

MTD maximum tolerated dose

NLP nonlinear programming problem

NONMEM nonlinear mixed–effects modeling
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OC optimal control

ODE ordinary differential equation(s)

QD×5×2 five days/week for two weeks every four weeks

SCID severe combined immunodeficient

SSE sum squared error

Std. Dev. standard deviation

Notation

A state transition matrix

b binary decision variable

bth(k) binary variable used to switch the therapeutic drug level on and

off

bu binary variable used to enable semicontinuous dose ranges

bdose binary variable used to switch between acceptable dose levels

B body weight

B input coefficient matrix

B0 initial body weight

Bmin lower bound on Btox

Btox body weight corrected for tumor volume (B −N/1000)

C, C(t) drug concentration

Cmax maximum allowable plasma drug concentration

Cth minimum plasma drug concentration for therapeutic effect

D amount of drug administered (total mass)

Dlast the most recent amount of drug delivered (concentration in

mg/kg)

Dl the amount of drug given which falls below Threshold

Dlb minimum effective dose

Du the amount of drug given which falls above Threshold
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Dmax maximum tolerable dose

F (·) generic function of (·)

Gi number of cells in ith phase of the cell cycle

G, G(s) Laplace domain transfer function

h stepsize for discrete systems

i index variable

j index variable

d subscript indicating the current variable is in the discrete time

J objective function

K process gain

k discrete timestep

ki & kij rate constants

keff efficacy proportionality constant

l set of possible dosing levels

` length of a tumor during measurement

M number of cells in the mitosis phase of the cell cycle

m final element in a set

mk final time step

ml final dosing level

mp final trajectory point

mq final dosing opportunity

mz final timestep in a day

N0 initial tumor volume

N tumor size (number of cells or volume)

Ne tumor size described by exponential growth

Ng tumor size described by Gompertzian growth

Ns tumor size described by switched exponential growth
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Nth threshold tumor size for switching between fast (τe,f ) and slow

(τe,s) growth rates in the switched exponential model

Nweeks treatment window in weeks/treatment horizon

p set of points in the trajectory tracking problems

Q parameters (vector or matrix) which are constants for optimiza-

tion purposes

Qdose(l) matrix of drug concentrations at different dose levels, l

QAC(z, l) matrix of 9NC concentrations at different timesteps of the day,

z,for different dose levels, l

QNC(z, l) matrix of 9NC concentrations at different timesteps of the day,

z,for different dose levels, l

Qmap(q) mapping dosing opportunities q to their corresponding timesteps

k

QPnom(k) vector of nominal tumor growth in the absence of treatment

S number of cells in the DNA synthesis of the cell cycle

p prediction horizon used in the receding horizon problem

P log transformed tumor growth

q discrete dosing opportunities

s Laplace domain variable

S number of cells in the DNA synthesis phase of the cell–cycle

t time

tf final time of treatment window

u input to a system

v compartmental volume

w width of a tumor during measurement or week in which a

measurement is taken

x internal state variable

X internal state variable in the Laplace domain
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y outputs

z set of timesteps in a day

Threshold switch used in nonlinear PK model of 9NC representing the

maximum amount of 9NC which will take a particular pathway

Greek Letters

α fraction of a state

β complementary fraction of a state (β = 1− α)

Γ weight of the importance of a term in the objective function

γ rate of elimination of drug in Martin and Teo case study [12]

ρg plateau population in Gompertzian growth

τ system time constant, unless specified otherwise

τe doubling time for tumor volumes in exponential growth

τe,s doubling time active during larger tumor volumes in the

switched exponential model

τe,f doubling time active during smaller tumor volumes in the

switched exponential model

τg doubling time for tumor volumes in exponential growth phase

of Gompertzian growth

θ time delays

θeff delay between plasma concentration and drug effect on tumor

Calligraphic Letters

F(·) used to describe generic functions of (·)

D(t) generic drug dose

H(·) Heaviside/step function

L{·} Laplace transform operator

P generic model parameters
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Y(t) generic system outputs

Ŷ(t) generic model predictions of system outputs
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APPENDIX B

EXPERIMENTAL METHODS

B.1 PK EXPERIMENTAL METHODS

All experimental data presented here (PK and PD) were obtained from studies carried out by

our collaborators at the University of Pittsburgh Cancer Institute. The analytical methods

used in the present work are based on the experiments conducted by Zamboni and coworkers

[95]. In order to eliminate redundancies, only differences between the present methods and

those presented in [95] will be highlighted.

B.1.1 Reagents

All chemicals for HPLC analysis were HPLC grade and purchased from Fisher Scientific

(Pittsburgh, PA). N,N-Dimethylacetamide (DMA) was purchased from Sigma-Aldrich (Mil-

waukee, WI); polyethylene glycol 400, liquid (PEG 400) was purchased from Baker (Phillips-

burg, NJ). Camptothecin, N,N-dimethylformamide and carbonyl iron (pentacarbonyl iron)

were purchased from Sigma-Aldrich, (St. Louis, MO). 9NC and 9AC were provided by

SuperGen (Dublin, CA). 5-fluorouracil was purchased as the clinical formulation, Adrucil

(Pharmacia & Upjohn, Kalamazoo, MI)
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B.1.2 Drug Formulations

9NC was prepared at concentrations of 0.1, 0.067 or 0.044 mg/ml in vehicle (2% DMA in 1

mM phosphoric acid:PEG 400(49:51, v/v)). 9NC doses and vehicle were administered orally

(p.o.) at a volume of 0.01 ml/g body weight using a 20-gauge oral gavage needle and 1 ml

syringe. Two different PK studies were conducted. In the first, a single dose of 0.67 mg/kg

9NC was administered, and doses of either 0.44, 0.67, or 1.0 mg/kg were administered in the

second study.

B.1.3 Mice

Female C.B-17 SCID mice (4-6 weeks of age, specific-pathogen-free) were obtained from

the National Cancer Institute (NCI) Animal Production Program (Frederick, MD) and

were allowed to acclimate to the University of Pittsburgh Central Animal Facility for 1

week prior to initiation of study. Mice were housed in autoclaved microisolator caging and

were given Prolab ISOPRO RMH 3000 Irradiated Lab Diet (PMI Nutrition International,

Brentwood, MO) and autoclaved water ad libitum. Animal rooms were maintained on a

12-hour light/dark cycle with at least 12 air changes/hour, and temperature was maintained

at 72 ± 2 ◦F. All animals were handled in accordance with the Guide to the Care and Use

of Laboratory Animals [96] and on a protocol approved by the Institutional Animal Care

and Use Committee of the University of Pittsburgh. Analysis of sentinel mice housed in 1/5

dirty bedding every three months confirmed that the study mice remained MAP (murine

antibody profile) test-negative throughout the study.

B.2 TUMOR LINE, IMPLANTATION, MEASUREMENTS, AND

CALCULATIONS

HT29 human colon xenografts were obtained from the NCI Tumor Repository (Frederick,

MD) and were MAP test-negative. HT29 tumors were passaged in C.B-17 SCID female

mice as approximately 25 mg fragments implanted subcutaneously on the right flank by
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aseptic techniques. Fragments of tumor (approximately 25 mg) harvested from passage

mice were subsequently implanted subcutaneously into study mice. Mice were observed

twice daily. Both tumor volumes and body weights were recorded twice weekly. Tumor

volumes were measured using a digital caliper. Tumor volumes, V , were calculated from

the formula: V = `×w2

2
where ` was the longest tumor diameter, and w was the shortest

diameter perpendicular to the direction of `.

B.3 PHARMACOKINETIC STUDIES

Pharmacokinetic studies were performed in non-tumor-bearing female C.B-17 SCID mice

and in female C.B-17 SCID mice bearing HT29 tumors at 27 days post tumor implantation.

Mice were stratified into groups of three such that the mean and median body weight and

tumor volumes in the tumor-bearing cohorts were similar across groups. Animals were fasted

overnight prior to dosing, and a dose of 0.44, 0.67 or 1.0 mg/kg 9NC was administered by oral

gavage to the mice as a single bolus based on fasted body weight. After 9NC administration,

groups of three mice were euthanized by CO2 inhalation, and blood was collected by cardiac

puncture, using heparinized syringes and needles, at each of the following times: 5, 15, 30,

60, 90, 120, 240, 360, 420, 960, 1440 and 2880 min. Three additional mice were euthanized

at five minutes after dosing with vehicle. Blood was transferred to microcentrifuge tubes

and stored on ice for less than three minutes before plasma was obtained by centrifugation

of whole blood at 13,000×g for 4 minutes.
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B.4 DETERMINATION OF 9NC AND 9AC LACTONE

CONCENTRATIONS

B.4.1 Plasma Sample Preparation for HPLC Analysis

The sample preparation methods were modified from those developed for human trials

[95]. Deionized, distilled water was used for conditioning the solid phase extraction (SPE)

cartridges. Mouse plasma sample volumes of 200 µl were used instead of the 1 ml volumes

used in the human studies.

The plasma for the determination of both 9NC and 9AC lactone forms was processed as

soon as it was obtained. Plasma samples (200 µl) were mixed with 2.5 µl of internal standard

(2 µg/ml camptothecin in acetone) and loaded onto preconditioned solid phase extraction

(SPE) cartridges (Waters OASISTM HLB 1 ml, 30 mg, Waters Associates, Millford, MA)

conditioned with 1 ml of methanol and equilibrated with 1 ml of distilled deionized water.

After application of the plasma, the cartridges were washed with 1 ml of 5% methanol in

water, which eluted the carboxylate forms of the camptothecins from the column. The

lactone forms of 9NC, 9AC, and camptothecin were eluted from the columns with 0.5 ml of

methanol and these aliquots were stored frozen at -70 ◦C until analysis. Thus these SPE

eluates contained only the lactone forms of the compounds of interest. This method was

evaluated in the laboratory of our collaborators for 9NC to demonstrate that only the lactone

form is retained on the SPE column and the carboxylate form is not retained. This method

has previously been published for 9AC lactone by Takimoto and coworkers [39].

B.4.2 HPLC Analysis

The HPLC analysis used in the present study was also used in the human studies presented

in [95], with adjustments as follows. For the reduction, 12 µl of the reducing reagent (25

mg reduced pentacarbonyl iron/ml H2O) and 6 µl of 12 N HCl were added to 120 µl of

each eluate or methanolic plasma supernatant. These samples were vortexed for 1 min

and sonicated for 30 min at 70 ◦C. The samples were then centrifuged (10,000×g for 4

min). Reduction of 9NC to 9AC by reduced pentacarbonyl iron is 54% efficient. Prior to
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placing these supernatants in siliconized (3% surfasil in toluene) HPLC autosampler vials,

the reduced methanolic supernatants (150 µl) were mixed with 75 µl of 0.5 M ammonium

acetate in water, pH 5.5, while the supernatants from the reduced eluates (150 µl) were

diluted with 100 µl of 0.5 M ammonium acetate in water, pH 5.5. The mobile phase used

here was isocratic (9% methanol, 23% acetonitrile and 68% 0.1M ammonium acetate, pH

5.5), at a flowrate of 1.0 ml/min.

B.5 DETERMINATION OF 9NC AND 9AC TOTAL CONCENTRATIONS

In order to more directly quantify the concentration of 9NC and 9AC in plasma, a more direct

analytical method was used. While the method above provided lactone concentrations of

9NC and 9AC, this method only provides the total concentrations of each substance because

all 9AC and 9NC in plasma were converted to lactone forms. A liquid chromatography-

quadrupole mass spectrometer (LC-MS/MS) was first used to obtain the total concentration

of 9AC in the plasma samples (CAC). The plasma samples were then reduced to convert

all of the 9NC to 9AC. After reduction, the plasma samples were analyzed again with the

LC-MS/MS to determine the total concentration of 9AC (CAC+NC). The original total

concentration of 9NC was then calculated by subtracting CAC from CAC+NC.

B.6 PD EXPERIMENTAL METHODS

Tumor implantation was described in section B.2. Mice bearing HT29 tumors were stratified

to treatment groups of 10 mice on day 19 post implantation (three days prior to treatment)

such that mean and median body weight and tumor volumes for the groups of mice were not

statistically different. Tumor volumes on day 19 were between 26 and 71 mm3. Treatment

groups were as follows: control; vehicle-treated control; positive control (5-fluorouracil, 20

mg/kg); 9NC 1.0 mg/kg/day; 9NC 0.67 mg/kg/day; and 9NC 0.44 mg/kg/day. Treatment

began on day 21, and this was defined as study day zero. Mice on the efficacy study received
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daily doses by oral gavage for 5 days/week for two weeks followed by a two week period

of no treatment before the treatment regimen was repeated (QD×5×2) every four weeks.

The positive control group received doses intraperitoneally (i.p.) on the same schedule. At

the completion of the efficacy study, mice were euthanized, and complete necropsies were

performed.
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APPENDIX C

GENERATING DOSING PROFILES

Several files are utilized when generating the optimal dosing profile. As an example, the

trajectory tracking problem with only two dosing options (0 and 1.0 mg/kg) will be discussed.

The file gen minlp results.m is called and sets the optimization specific parameters and calls

the file run gams nonlinear.m. The file, run gams nonlinear.m, then generates the following

input files:

• input-dose to acconc.inc

• input-dose to ncconc.inc

• input-objective function.inc

• input-parameters.inc

• input-sets.inc

These correspond to the parameterized concentrations of 9AC, the parameterized concen-

trations of 9NC, the objective function, model parameters, and the sets used in tams. After

dumping these input files, run gams nonlinear.m executes the gams optimal dose profile.gms.

When executing optimal dose profile.gms, the input files a previously listed and the following

files are generated:

• output-dose levels-min max.txt

• output-state values-min max.txt

The first file contains three columns. The first column corresponds to the index of the

dosing opportunity, the second column corresponds to the time step, and the third column
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corresponds to the the dosing level in mg/kg. The second output file contains relevant states

of the system. The first column corresponds to the time in minutes, the second and third

columns correspond to the concentrations of 9NC and 9AC, respectively. The tumor volume,

body weight, and corrected body weight are given by the fourth, fifth, and sixth columns,

respectively. The second output file (state values) contains several thousand rows, and was

truncated to accommodate inclusion into this document.

C.1 SOURCECODE FILES

Begin file: gen minlp results.m

f unc t i on [ ] = g en m in l p r e s u l t s ( )

c f g . a n a l y s i s . t imestep = 5 ; % minutes
c f g . a n a l y s i s . f i na lweek = 8 ; % pr ed i c t i on hor izon
c f g . a n a l y s i s . s tepsperday = f l o o r (1440/ c f g . a n a l y s i s . t imestep ) ;
c f g . a n a l y s i s . dose2mass = 10ˆ6/1000∗20 .75 ;
c f g . a n a l y s i s . f i n a l t im e s t e p = . . .

c f g . a n a l y s i s . s tepsperday ∗7∗ c f g . a n a l y s i s . f i na lweek ;
c f g . a n a l y s i s . s im s t ep s i z e = 0 . 1 ;
c f g . a n a l y s i s . e f f e c t i v e i n f = 80∗1440; % in minutes
c f g . a n a l y s i s .N0 = 40 ; % i n i t i a l tumor vo l mm3
c fg . a n a l y s i s . B0 = 20 ; % i n i t i a l body weight g

%−− beg inning o f treatment
c f g . a n a l y s i s .B0CYCLE = 20 ; % i n i t i a l body weight g

%−− beg inning o f c y c l e
c f g . a n a l y s i s .BMIN = .98;% bound body weight

%( f r a c t i o n o f body weight
% which must remain a f t e r
% treatment

c f g . a n a l y s i s .DLB = 0 . 4 4 ;
c f g . a n a l y s i s .DUB = 1 . 0 ;
c f g . a n a l y s i s .DMIN = 0 . 0 0 ;
c f g . a n a l y s i s .DMAX = 1 . 0 ;
c f g . a n a l y s i s . p lo t range = [0 1 4 40 ] ;
c f g . a n a l y s i s . dose range = . 4 4 : . 0 1 : 1 . 0 ;
c f g . a n a l y s i s . s imonly = 0 ;
c f g . a n a l y s i s . rungams = 1;% 1 −−− execute the

% opt imiza t i on
% 0 −−− read old r e s u l t s

c f g . a n a l y s i s . g ams f i l e = ’ o p t ima l d o s e p r o f i l e . gms ’ ;
c f g . g en e r i c . gams binary = ’/ misc/opt/bin /gams ’ ;
c f g . g en e r i c . gams d i rec tory = s p r i n t f ( ’% s /GAMS/MINLP’ , pwd ) ;
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% days to minimize tumor volume
c f g . a n a l y s i s . Ntimes = ( 1 : 1 : 8 ) ∗ 7 ;
% vecto r o f p o s s i b l e doses
c f g . a n a l y s i s . dose range = [ 1 . 0 ] ;
% p r e f i x used f o r wr i t i ng parameters
c f g . a n a l y s i s . p r e f i x = ’min max ’ ;

r e s u l t s . min max = run gams nonl inear ( c f g ) ;

End file: gen minlp results.m

Begin file: run gams nonlinear.m

f unc t i on [ r e s u l t s ]= run gams nonl inear ( c f g )
% func t i on [ ]= run gams nonl inear ( c f g )
%
% c fg −− c on f i g u r a t i on var i ab l e , a s t r u c tu r e r e a l l y .
%
% the ana l y s i s f i e l d i s used to s p e c i f y d i f f e r e n t
% parameters o f the ana l y s i s
%
%
%c fg . a n a l y s i s . t imestep = 5 ; % minutes
%c fg . a n a l y s i s . f i na lweek = 12 ; % pr ed i c t i on hor izon
%c fg . a n a l y s i s . s tepsperday = . . .
% f l o o r (1440/ c f g . a n a l y s i s . t imestep ) ;
%c f g . a n a l y s i s . dose2mass = 10ˆ6/1000∗20 .75 ;
% ng o f drug ;
%c fg . a n a l y s i s . f i n a l t im e s t e p = . . .
% c f g . a n a l y s i s . s tepsperday ∗7∗ c f g . a n a l y s i s . f i na lweek ;
%c fg . a n a l y s i s . s im s t ep s i z e = 0 . 1 ;
%c fg . a n a l y s i s . e f f e c t i v e i n f = 80∗1440; % in minutes
% i n i t i a l tumor volume in cubic mm
%c fg . a n a l y s i s .N0 = 40 ;
% i n i t i a l uncorrec ted body weight in grams
% −− beg inning o f treatment
% i n i t i a l uncorrec ted body weight in grams
% −− beg inning o f c y c l e
%c fg . a n a l y s i s . B0 = 20 ;
%c fg . a n a l y s i s .B0CYCLE = 20 ;
% bound body weight ( f r a c t i o n o f body weight which
% must remain a f t e r treatment )
%c fg . a n a l y s i s .BMIN = . 9 7 ;
% days to minimize tumor volume
%c fg . a n a l y s i s . Ntimes = ( 1 : 1 : 8 ) ∗ 7 ;
% days to minimize tumor volume
%c fg . a n a l y s i s . Ntimes = 7∗ c f g . a n a l y s i s . f i na lweek ;
%c fg . a n a l y s i s .DLB = 0 . 4 4 ;
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%cfg . a n a l y s i s .DUB = 1 . 0 ;
%c fg . a n a l y s i s .DMIN = 0 . 0 0 ;
%c fg . a n a l y s i s .DMAX = 1 . 0 ;
%c fg . a n a l y s i s . p l o t range = [0 1 440 ] ;
%c f g . a n a l y s i s . dose range = [ 0 . 4 4 0 .67 1 . 0 ] ;
%c f g . a n a l y s i s . dose range = . 4 4 : . 0 1 : 1 . 0 ;
% 1 −−− execute the opt imiza t i on
% 0 −−− read old r e s u l t s
%c fg . a n a l y s i s . rungams = 1 ;
%
% p r e f i x used f o r wr i t i ng parameters
%c fg . a n a l y s i s . p r e f i x = ’ f i n a l t ime ’ ;
%c f g . a n a l y s i s . g ams f i l e = ’ o p t ima l d o s e p r o f i l e . gms ’ ;
%c f g . g en e r i c . gams binary = ’/ misc/opt/bin /gams ’ ;
%c f g . g en e r i c . gams d i rec tory = s p r i n t f ( ’% s /GAMS/MINLP 002 ’ , pwd ) ;
% 1 − only run s imu la t i on f o r dose l e v e l s ;
%c f g . a n a l y s i s . s imonly = 0 ;

%
% i n i t i a l i z i n g the re turn va r i ab l e
%
r e s u l t s = [ ] ;

%
% cr e a t i ng dose t imes vec to r
%
c fg . a n a l y s i s . dose t imes = [ ] ;
cnt r = 1 ;
f o r week=0:( c f g . a n a l y s i s . f i na lweek − 1)

f o r day=0:6
% only dos in monday−−f r i d ay
i f day <5

c f g . a n a l y s i s . dose t imes = . . .
[ c f g . a n a l y s i s . dose t imes
cntr week∗7+day ] ;

cnt r = cntr +1;
end

end
end
c f g . a n a l y s i s . dose t imes ( : , 2 )= . . .

c f g . a n a l y s i s . dose t imes ( : , 2 ) ∗ c f g . a n a l y s i s . s tepsperday + 1 ;

%
% i n i t i a l i n g c f g va r i ab l e
%

%c fg . g en e r i c = i n i t c o n f i g ;

%
% load ing var i ous parameters (PK, tumor growth , PD)
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%

% tumor growth parameters
c f g . params . tumor growth = fetch parameters tumor growth ;

% conver t ing tumor growth parameters from days to minutes :
c f g . params . tumor growth . average . t aue f = . . .
c f g . params . tumor growth . average . taues ∗1440 ;
c f g . params . tumor growth . average . taues = . . .
c f g . params . tumor growth . average . taues ∗1440 ;

% load ing non l in ea r pk parameters
c f g . params . non l inea r pk = f e t ch pa ramet e r s non l i n ea r pk ;

% load ing non l in ea r pd parameters
c f g . params . non l inear pd = fe t ch pa ramet e r s pd non l i n ea r ;

% load ing non l in ea r t o x i c i t y parameters
c f g . params . body weight = fe tch paramete r s body we ight ;

%
% genera t ing pk p r o f i l e s f o r p o s s i b l e dos ing l e v e l s
%
%i f c f g . a n a l y s i s . rungams

di sp ( ’ c a l c u l a t i n g pk p r o f i l e s ’ ) ;
c f g . a n a l y s i s . p r o f i l e s . t ime range = . . .
0 : c f g . a n a l y s i s . t imestep : 1 4 4 0 ;
f o r i =1:max( s i z e ( c f g . a n a l y s i s . dose range ) )

d l e v e l s = [ 0 , c f g . a n a l y s i s . dose range ( i ) ] ;
[ t , x , y ] = runsim ( cfg , d l e v e l s ) ;
% resampl ing at time s t ep s

c f g . a n a l y s i s . p r o f i l e s . nc ( : , i ) = . . .
resample data ( c f g . a n a l y s i s . p r o f i l e s . t ime range , t , y ( : , 9 ) ) ;
c f g . a n a l y s i s . p r o f i l e s . ac ( : , i ) = . . .
resample data ( c f g . a n a l y s i s . p r o f i l e s . t ime range , t , y ( : , 1 0 ) ) ;

end

d i sp ( ’ c a l c u l a t i n g va r i ab l e bounds ’ ) ;
c f g . bounds = fetch bounds ( c f g ) ;

%end

%
% dumping the in fo rmat ion f o r gams
%
i f c f g . a n a l y s i s . rungams

dump gams( c f g )
end

%
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% execut ing gams
%

i f c f g . a n a l y s i s . rungams
exec gams ( c f g ) ;

end

%
% read ing r e s u l t s
%

[ r e s u l t s ] = r ead gams r e su l t s ( c f g ) ;

f unc t i on [ bounds ]= fetch bounds ( c f g ) ;
% c a l c u l a t i n g the bounds on PK s t a t e s

bounds = [ ] ;
d l e v e l s = [ 0 , c f g . a n a l y s i s .DUB] ;
c f g . a n a l y s i s . p lo t range = [0 2∗1440 ] ;

% running s imu la t i on in re sponse to maximum
% al l owab l e dose
[ t , x , y ] = runsim ( cfg , d l e v e l s ) ;

% upper bound here
y = max(y , [ ] , 1 ) ;

% lower bounds are a l l z e ro
bounds . x1 . ub = y ( 1 ) ; bounds . x1 . lb = 0 ;
bounds . x2 . ub = y ( 2 ) ; bounds . x2 . lb = 0 ;
bounds . x3 . ub = y ( 3 ) ; bounds . x3 . lb = 0 ;
bounds . x4 . ub = y ( 4 ) ; bounds . x4 . lb = 0 ;
bounds . x5 . ub = y ( 5 ) ; bounds . x5 . lb = 0 ;
bounds . x6 . ub = y ( 6 ) ; bounds . x6 . lb = 0 ;
bounds .CNC. ub = y ( 9 ) ; bounds .CNC. lb = 0 ;
bounds .CAC. ub = y ( 1 0 ) ; bounds .CAC. lb = 0 ;

func t i on [ t , x , y]=runsim ( cfg , d l e v e l s ) ;
%
% the f i r s t 7 outputs are the s t a t e s
% the next two are the concent ra t i on
% of 9nc and 9ac r e s p e c t i v e l y
%

% i n i t i a l i z i n g v a r i a b l e s
t = 0 ; x = 0 ; y = 0 ;

de l t a = c fg . a n a l y s i s . s im s t ep s i z e ∗5 ;
drug = [0 0 ] ;
l a s t d o s e = [0 0 ] ;
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[ ndoses , tmp ] = s i z e ( d l e v e l s ) ;

f o r i =1: ndoses
drug = [ drug

d l e v e l s ( i , 1 ) 0
d l e v e l s ( i ,1)+ de l t a d l e v e l s ( i , 2 ) / ( 2∗ de l t a )
d l e v e l s ( i ,1)+2∗ de l t a d l e v e l s ( i , 2 ) / ( 2∗ de l t a )
d l e v e l s ( i ,1)+3∗ de l t a 0 ] ;

l a s t d o s e = [ l a s t d o s e
d l e v e l s ( i , 1 ) d l e v e l s ( i , 2 )
d l e v e l s ( i ,1)+1440− de l t a d l e v e l s ( i , 2 ) ] ;

end

drug = [ drug
c f g . a n a l y s i s . e f f e c t i v e i n f 0 ] ;

i n l cond = [0 0 0 0 0 0 0 c f g . a n a l y s i s .N0 c f g . a n a l y s i s . B0 ] ;
opt ions = s imset ( . . .

’ I n i t i a l S t a t e ’ , in lcond , . . .
’ s o l v e r ’ , ’ ode4 ’ , . . .
’ FixedStep ’ , c f g . a n a l y s i s . s ims t ep s i z e , . . .
’ SrcWorkspace ’ , ’ current ’ . . .
) ;

warning o f f ;
[ t , x , y ] = sim ( ’ pkpd non l i n e a r f u l l ’ , . . .

c f g . a n a l y s i s . p lotrange , . . .
opt ions ) ;

warning on ;

%
% dumping the in fo rmat ion f o r gams
%

func t i on [ ]=dump gams( c f g )

%
% dumping s e t s
%
[ numdoses , tmp]= s i z e ( c f g . a n a l y s i s . dose t imes ) ;
[ doseopts . nt imesteps , doseopts . ndoses ] = . . .
s i z e ( c f g . a n a l y s i s . p r o f i l e s . nc ) ;

FID = fopen ( s p r i n t f ( ’% s / input−s e t s . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;

f p r i n t f (FID , ’ k d i s c r e t e time /1∗%d/ \n ’ , . . .
c f g . a n a l y s i s . f i n a l t im e s t e p ) ;

f p r i n t f (FID , ’ q dos ing time /1∗%d/ \n ’ , . . .
numdoses ) ;

f p r i n t f (FID , ’ spd s t ep s per day /1∗%d/\n ’ , . . .
doseopts . nt imesteps ) ;
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f p r i n t f (FID , . . .
’ d l v l s number o f p o s s i b l e dose l e v e l s /1∗%d/\n ’ , . . .
doseopts . ndoses + 1 ) ;

f c l o s e (FID ) ;

%
% dumping s c a l a r s
%
FID = fopen ( s p r i n t f ( ’% s / input−parameters . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;
d i s c r e t e t h e t a = . . .
f l o o r ( c f g . params . non l inea r pk . theta / c f g . a n a l y s i s . t imestep ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’∗ ana l y s i s s p e c i f i c \n ’ ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’ t imestep d i s c r e t i z a t o i n s tep s i z e /%.8e/\n ’ , . . .
c f g . a n a l y s i s . t imestep ) ;
f p r i n t f (FID , ’ numsteps number o f time s t ep s /%d/ \n ’ , . . .
c f g . a n a l y s i s . f i n a l t im e s t e p ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’∗ tumor growth parameters \n ’ ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’ t aue f f a s t growth ra t e /%.8e /\n ’ , . . .
c f g . params . tumor growth . average . t aue f ) ;
f p r i n t f (FID , ’ taues slow growth ra t e /%.8e /\n ’ , . . .
c f g . params . tumor growth . average . taues ) ;
f p r i n t f (FID , ’ nth sw i tch ing s i z e /%.8e/\n ’ , . . .
c f g . params . tumor growth . average . nth ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’∗ non l inea r pd parameters \n ’ ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’ k e f f r a t e o f c e l l k i l l /%.8e /\n ’ , . . .
c f g . params . non l inear pd . summary . average ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’∗ body weight model parameters \n ’ ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’ tauw ra t e o f mouse doubl ing /%.8e/\n ’ , . .
c f g . params . body weight . d10 . nave . tauw ) ;
f p r i n t f (FID , ’ kd e f f e c t o f drug on bodyweight /%.8e/\n ’ , . . .
c f g . params . body weight . d10 . nave . kd ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’∗ misca l l eneous parameters \n ’ ) ;
f p r i n t f (FID , ’∗ \n ’ ) ;
f p r i n t f (FID , ’N0 i n i t i a l cond i t i on /%.8e /\n ’ , . . .
c f g . a n a l y s i s .N0 ) ;
f p r i n t f (FID , ’B0 i n i t i a l body weight ( treatment ) /%.8e /\n ’ , . . .
c f g . a n a l y s i s . B0 ) ;
f p r i n t f (FID , ’B0CYCLE i n i t i a l body weight ( c y c l e ) /%.8e /\n ’ , . . .
c f g . a n a l y s i s .B0CYCLE) ;
f p r i n t f (FID , ’BMIN minimum body weight ( f r a c t i o n ) /%.8e /\n ’ , . . .
c f g . a n a l y s i s .BMIN) ;

f p r i n t f (FID , ’ dose t imes (q ) p o s s i b l e dose t imes /\n ’ ) ;
f o r i =1:numdoses
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f p r i n t f (FID , ’ %2d %5d \n ’ , . . .
c f g . a n a l y s i s . dose t imes ( i , 1 ) , . . .
c f g . a n a l y s i s . dose t imes ( i , 2 ) ) ;

end
f p r i n t f (FID , ’ / \n ’ ) ;

f p r i n t f (FID , ’ d o s e l e v e l s ( d l v l s ) p o s s i b l e dose l e v e l s /\n ’ ) ;
f o r i =1:max( s i z e ( c f g . a n a l y s i s . dose range ) )

f p r i n t f (FID , ’ %2d %5e \n ’ , i , . . .
c f g . a n a l y s i s . dose range ( i ) ) ;

end
f p r i n t f (FID , ’ / \n ’ ) ;
f c l o s e (FID ) ;

%
% dumping ob j e c t i v e func t i on
%

FID = fopen ( s p r i n t f ( ’% s / input−ob j e c t i v e f u n c t i o n . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;
f p r i n t f (FID , ’ obj . . z =e= ’ ) ;
f o r i =1:max( s i z e ( c f g . a n a l y s i s . Ntimes ) )

% igno r i ng anything a f t e r the f i n a l week
i f c f g . a n a l y s i s . Ntimes ( i ) >= c fg . a n a l y s i s . f i na lweek

i f i > 1
f p r i n t f (FID , ’ + ’ ) ;

end
f p r i n t f (FID , ’ TUMOR( ’ ’%d ’ ’ ) ’ , . . .
c f g . a n a l y s i s . Ntimes ( i )∗ c f g . a n a l y s i s . s tepsperday ) ;

end
end
f p r i n t f (FID , ’ ; \n ’ , c f g . a n a l y s i s . f i n a l t im e s t e p ) ;

f c l o s e (FID ) ;

%
% dumping pk p r o f i l e s
%
FIDNC = fopen ( s p r i n t f ( ’% s / input−dose to ncconc . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;
FIDAC = fopen ( s p r i n t f ( ’% s / input−dose to acconc . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;

%
% pr i n t i ng headers
%
f p r i n t f (FIDNC, . . .
’ TABLE ALLNCCONC( spd , d l v l s ) ” Concentrat ions o f

9NC at d i f f e r e n t dose l e v e l s ”\n ’ ) ;
f p r i n t f (FIDAC, . . .
’ TABLE ALLACCONC( spd , d l v l s ) ” Concentrat ions

o f 9AC at d i f f e r e n t dose l e v e l s ”\n ’ ) ;

%
% pr i n t i ng the column headings
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%
f p r i n t f (FIDNC, ’ ’ ) ;
f p r i n t f (FIDAC, ’ ’ ) ;
f o r j =1: doseopts . ndoses + 1 % gotta get the zero column

f p r i n t f (FIDNC, ’%15d ’ , j ) ;
f p r i n t f (FIDAC, ’%15d ’ , j ) ;

end
f p r i n t f (FIDNC, ’\n ’ ) ;
f p r i n t f (FIDAC, ’\n ’ ) ;
f o r i =1: doseopts . nt imesteps

f p r i n t f (FIDNC, ’ %7d ’ , i ) ;
f p r i n t f (FIDNC, ’%15.4 e ’ , 0 ) ;

f p r i n t f (FIDAC, ’ %7d ’ , i ) ;
f p r i n t f (FIDAC, ’%15.4 e ’ , 0 ) ;

f o r j =1: doseopts . ndoses
f p r i n t f (FIDNC, ’%15.4 e ’ , c f g . a n a l y s i s . p r o f i l e s . nc ( i , j ) ) ;
f p r i n t f (FIDAC, ’%15.4 e ’ , c f g . a n a l y s i s . p r o f i l e s . ac ( i , j ) ) ;
end

i f i==doseopts . nt imesteps
f p r i n t f (FIDNC, ’ ;\n ’ ) ;
f p r i n t f (FIDAC, ’ ;\n ’ ) ;
end
f p r i n t f (FIDNC, ’\n ’ ) ;
f p r i n t f (FIDAC, ’\n ’ ) ;

end

f c l o s e (FIDNC) ;
f c l o s e (FIDAC) ;

%
%
% dumping user de f ined s o l u t i o n
%
%
i f c f g . a n a l y s i s . s imonly

i f (max( s i z e ( c f g . a n a l y s i s . s p e c i f i e d d o s e l e v e l s ) ) . . .
== numdoses )

FID = fopen ( s p r i n t f ( ’% s / input−s p e c i f i e d d o s e l e v e l s . inc ’ , . . .
c f g . g en e r i c . gams d i rec tory ) , ’W’ ) ;
f p r i n t f (FID , . . .
’ s p e c i f i e d d o s e l e v e l s ( q ) user s p e c i f i e d dose l e v e l s /\n ’ ) ;
f o r i =1:numdoses

f p r i n t f (FID , ’ %2d %d \n ’ , i , . . .
c f g . a n a l y s i s . s p e c i f i e d d o s e l e v e l s ( i ) ) ;

end
f p r i n t f (FID , ’ / \n ’ ) ;
f c l o s e (FID ) ;
e l s e
end

end
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f unc t i on [ g en e r i c ]= i n i t c o n f i g ;
g en e r i c . gams binary = ’/ misc/opt/bin /gams ’ ;
g en e r i c . gams d i rec tory = s p r i n t f ( ’% s /GAMS/MINLP 002 ’ , pwd ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ ]= exec gams ( c f g ) ;

% a s s i gn i ng d i r e c t o r i e s
wd . matlab = pwd ;
wd . gams = c fg . g en e r i c . gams d i rec tory ;

% execut ing gams
e x e c s t r i n g = s p r i n t f ( ’% s %s ’ , . . .

c f g . g en e r i c . gams binary , . . .
c f g . a n a l y s i s . g ams f i l e ) ;

cd (wd . gams ) ;

d i sp ( s p r i n t f ( ’GAMS working d i r e c t o r y : %s ’ , pwd) )
%save /tmp/goat . mat ;

system ( e x e c s t r i n g ) ;

% backing up the s o l u t i o n s
e x e c s t r i n g = . . .
s p r i n t f ( . . .
’ cp output−d o s e l e v e l s . txt output−do s e l e v e l s−%s . txt ’ , . . .

c f g . a n a l y s i s . p r e f i x ) ;
system ( e x e c s t r i n g ) ;

e x e c s t r i n g = s p r i n t f ( . . .
’ cp output−s t a t e v a l u e s . txt output−s t a t e va l u e s−%s . txt ’ , . . .

c f g . a n a l y s i s . p r e f i x ) ;
system ( e x e c s t r i n g ) ;

% r e tu r i n g to the matlab d i r e c t o r y
cd (wd . matlab ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ r e s u l t s ]= r ead gams r e su l t s ( c f g ) ;
r e s u l t s = [ ] ;

l o a d s t r = s p r i n t f ( ’ load %s/output−do s e l e v e l s−%s . txt ’ , . . .
c f g . g en e r i c . gams directory , . . .
c f g . a n a l y s i s . p r e f i x ) ;

eva l ( l o a d s t r ) ;
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l o a d s t r = s p r i n t f ( ’ load %s/output−s t a t e va l u e s−%s . txt ’ , . . .
c f g . g en e r i c . gams directory , . . .
c f g . a n a l y s i s . p r e f i x ) ;

eva l ( l o a d s t r ) ;

tmp str = s p r i n t f ( ’ d l = ou t pu t d o s e l e v e l s %s ; ’ , . . .
c f g . a n a l y s i s . p r e f i x ) ;
eva l ( tmp str ) ;
tmp str = s p r i n t f ( ’ sv = ou tpu t s t a t e v a l u e s %s ; ’ , . . .
c f g . a n a l y s i s . p r e f i x ) ;
eva l ( tmp str ) ;

r e s u l t s . doses . dose t ime = dl ( : , 2 ) ;
r e s u l t s . doses . d o s e l e v e l = dl ( : , 3 ) ;

r e s u l t s . s t a t e s . s im time = sv ( : , 1 ) ;
r e s u l t s . s t a t e s .CNC = sv ( : , 2 ) ;
r e s u l t s . s t a t e s .CAC = sv ( : , 3 ) ;
r e s u l t s . s t a t e s .TUMOR = sv ( : , 4 ) ;
r e s u l t s . s t a t e s .BW = sv ( : , 5 ) ;
r e s u l t s . s t a t e s .BWc = sv ( : , 6 ) ;

r e s u l t s . p r o f i l e s = c f g . a n a l y s i s . p r o f i l e s ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

End file: run gams nonlinear.m

Begin file: input-dose to acconc.inc

TABLE ALLACCONC( spd , d l v l s ) ” Concentrat ions o f 9AC”
1 2

1 0 .0000 e+00 0.0000 e+00
2 0 .0000 e+00 1.0515 e+01
3 0 .0000 e+00 1.2084 e+01
4 0 .0000 e+00 1.1757 e+01
5 0 .0000 e+00 1.0598 e+01
6 0 .0000 e+00 9.1688 e+00
7 0 .0000 e+00 7.7520 e+00
8 0 .0000 e+00 6.4745 e+00
9 0 .0000 e+00 5.3796 e+00

10 0.0000 e+00 4.4685 e+00
11 0.0000 e+00 3.7260 e+00
12 0.0000 e+00 3.4499 e+00
13 0.0000 e+00 3.4149 e+00
14 0.0000 e+00 3.4610 e+00
15 0.0000 e+00 3.5240 e+00
16 0.0000 e+00 3.5737 e+00
17 0.0000 e+00 3.5980 e+00
18 0.0000 e+00 3.5946 e+00
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19 0 .0000 e+00 3.5658 e+00
20 0.0000 e+00 3.5156 e+00
21 0.0000 e+00 3.4484 e+00
22 0.0000 e+00 3.3683 e+00
23 0.0000 e+00 3.2790 e+00
24 0.0000 e+00 3.1832 e+00
25 0.0000 e+00 3.0834 e+00
26 0.0000 e+00 2.9814 e+00
27 0.0000 e+00 2.8785 e+00
28 0.0000 e+00 2.7759 e+00
29 0.0000 e+00 2.6742 e+00
30 0.0000 e+00 2.5741 e+00
31 0.0000 e+00 2.4760 e+00
32 0.0000 e+00 2.3801 e+00
33 0.0000 e+00 2.2868 e+00
34 0.0000 e+00 2.1961 e+00
35 0.0000 e+00 2.1081 e+00
36 0.0000 e+00 2.0229 e+00
37 0.0000 e+00 1.9405 e+00
38 0.0000 e+00 1.8608 e+00
39 0.0000 e+00 1.7840 e+00
40 0.0000 e+00 1.7098 e+00
41 0.0000 e+00 1.6384 e+00
42 0.0000 e+00 1.5696 e+00
43 0.0000 e+00 1.5034 e+00
44 0.0000 e+00 1.4397 e+00
45 0.0000 e+00 1.3784 e+00
46 0.0000 e+00 1.3196 e+00
47 0.0000 e+00 1.2630 e+00
48 0.0000 e+00 1.2087 e+00
49 0.0000 e+00 1.1566 e+00
50 0.0000 e+00 1.1066 e+00
51 0.0000 e+00 1.0586 e+00
52 0.0000 e+00 1.0126 e+00
53 0.0000 e+00 9.6846 e−01
54 0 .0000 e+00 9.2617 e−01
55 0 .0000 e+00 8.8564 e−01
56 0 .0000 e+00 8.4681 e−01
57 0 .0000 e+00 8.0961 e−01
58 0 .0000 e+00 7.7398 e−01
59 0 .0000 e+00 7.3987 e−01
60 0 .0000 e+00 7.0721 e−01
61 0 .0000 e+00 6.7595 e−01
62 0 .0000 e+00 6.4603 e−01
63 0 .0000 e+00 6.1740 e−01
64 0 .0000 e+00 5.9001 e−01
65 0 .0000 e+00 5.6380 e−01
66 0 .0000 e+00 5.3873 e−01
67 0 .0000 e+00 5.1475 e−01
68 0 .0000 e+00 4.9181 e−01
69 0 .0000 e+00 4.6988 e−01
70 0 .0000 e+00 4.4891 e−01
71 0 .0000 e+00 4.2886 e−01
72 0 .0000 e+00 4.0969 e−01
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73 0 .0000 e+00 3.9137 e−01
74 0 .0000 e+00 3.7385 e−01
75 0 .0000 e+00 3.5711 e−01
76 0 .0000 e+00 3.4110 e−01
77 0 .0000 e+00 3.2581 e−01
78 0 .0000 e+00 3.1119 e−01
79 0 .0000 e+00 2.9723 e−01
80 0 .0000 e+00 2.8388 e−01
81 0 .0000 e+00 2.7113 e−01
82 0 .0000 e+00 2.5894 e−01
83 0 .0000 e+00 2.4730 e−01
84 0 .0000 e+00 2.3618 e−01
85 0 .0000 e+00 2.2555 e−01
86 0 .0000 e+00 2.1540 e−01
87 0 .0000 e+00 2.0571 e−01
88 0 .0000 e+00 1.9644 e−01
89 0 .0000 e+00 1.8759 e−01
90 0 .0000 e+00 1.7914 e−01
91 0 .0000 e+00 1.7107 e−01
92 0 .0000 e+00 1.6336 e−01
93 0 .0000 e+00 1.5599 e−01
94 0 .0000 e+00 1.4896 e−01
95 0 .0000 e+00 1.4224 e−01
96 0 .0000 e+00 1.3582 e−01
97 0 .0000 e+00 1.2969 e−01
98 0 .0000 e+00 1.2384 e−01
99 0 .0000 e+00 1.1825 e−01

100 0 .0000 e+00 1.1291 e−01
101 0 .0000 e+00 1.0782 e−01
102 0 .0000 e+00 1.0295 e−01
103 0 .0000 e+00 9.8299 e−02
104 0 .0000 e+00 9.3860 e−02
105 0 .0000 e+00 8.9620 e−02
106 0 .0000 e+00 8.5572 e−02
107 0 .0000 e+00 8.1706 e−02
108 0 .0000 e+00 7.8015 e−02
109 0 .0000 e+00 7.4489 e−02
110 0 .0000 e+00 7.1123 e−02
111 0 .0000 e+00 6.7909 e−02
112 0 .0000 e+00 6.4840 e−02
113 0 .0000 e+00 6.1909 e−02
114 0 .0000 e+00 5.9111 e−02
115 0 .0000 e+00 5.6439 e−02
116 0 .0000 e+00 5.3888 e−02
117 0 .0000 e+00 5.1451 e−02
118 0 .0000 e+00 4.9125 e−02
119 0 .0000 e+00 4.6904 e−02
120 0 .0000 e+00 4.4783 e−02
121 0 .0000 e+00 4.2758 e−02
122 0 .0000 e+00 4.0825 e−02
123 0 .0000 e+00 3.8979 e−02
124 0 .0000 e+00 3.7216 e−02
125 0 .0000 e+00 3.5533 e−02
126 0 .0000 e+00 3.3926 e−02
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127 0 .0000 e+00 3.2391 e−02
128 0 .0000 e+00 3.0926 e−02
129 0 .0000 e+00 2.9528 e−02
130 0 .0000 e+00 2.8192 e−02
131 0 .0000 e+00 2.6917 e−02
132 0 .0000 e+00 2.5699 e−02
133 0 .0000 e+00 2.4537 e−02
134 0 .0000 e+00 2.3427 e−02
135 0 .0000 e+00 2.2367 e−02
136 0 .0000 e+00 2.1355 e−02
137 0 .0000 e+00 2.0389 e−02
138 0 .0000 e+00 1.9467 e−02
139 0 .0000 e+00 1.8586 e−02
140 0 .0000 e+00 1.7745 e−02
141 0 .0000 e+00 1.6943 e−02
142 0 .0000 e+00 1.6176 e−02
143 0 .0000 e+00 1.5444 e−02
144 0 .0000 e+00 1.4746 e−02
145 0 .0000 e+00 1.4078 e−02
146 0 .0000 e+00 1.3442 e−02
147 0 .0000 e+00 1.2833 e−02
148 0 .0000 e+00 1.2253 e−02
149 0 .0000 e+00 1.1698 e−02
150 0 .0000 e+00 1.1169 e−02
151 0 .0000 e+00 1.0664 e−02
152 0 .0000 e+00 1.0181 e−02
153 0 .0000 e+00 9.7206 e−03
154 0 .0000 e+00 9.2808 e−03
155 0 .0000 e+00 8.8609 e−03
156 0 .0000 e+00 8.4600 e−03
157 0 .0000 e+00 8.0772 e−03
158 0 .0000 e+00 7.7117 e−03
159 0 .0000 e+00 7.3628 e−03
160 0 .0000 e+00 7.0297 e−03
161 0 .0000 e+00 6.7116 e−03
162 0 .0000 e+00 6.4079 e−03
163 0 .0000 e+00 6.1180 e−03
164 0 .0000 e+00 5.8411 e−03
165 0 .0000 e+00 5.5768 e−03
166 0 .0000 e+00 5.3245 e−03
167 0 .0000 e+00 5.0836 e−03
168 0 .0000 e+00 4.8535 e−03
169 0 .0000 e+00 4.6339 e−03
170 0 .0000 e+00 4.4243 e−03
171 0 .0000 e+00 4.2241 e−03
172 0 .0000 e+00 4.0329 e−03
173 0 .0000 e+00 3.8504 e−03
174 0 .0000 e+00 3.6762 e−03
175 0 .0000 e+00 3.5099 e−03
176 0 .0000 e+00 3.3511 e−03
177 0 .0000 e+00 3.1994 e−03
178 0 .0000 e+00 3.0546 e−03
179 0 .0000 e+00 2.9164 e−03
180 0 .0000 e+00 2.7845 e−03
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181 0 .0000 e+00 2.6585 e−03
182 0 .0000 e+00 2.5382 e−03
183 0 .0000 e+00 2.4233 e−03
184 0 .0000 e+00 2.3137 e−03
185 0 .0000 e+00 2.2090 e−03
186 0 .0000 e+00 2.1090 e−03
187 0 .0000 e+00 2.0136 e−03
188 0 .0000 e+00 1.9225 e−03
189 0 .0000 e+00 1.8355 e−03
190 0 .0000 e+00 1.7524 e−03
191 0 .0000 e+00 1.6731 e−03
192 0 .0000 e+00 1.5974 e−03
193 0 .0000 e+00 1.5251 e−03
194 0 .0000 e+00 1.4561 e−03
195 0 .0000 e+00 1.3902 e−03
196 0 .0000 e+00 1.3273 e−03
197 0 .0000 e+00 1.2673 e−03
198 0 .0000 e+00 1.2099 e−03
199 0 .0000 e+00 1.1552 e−03
200 0 .0000 e+00 1.1029 e−03
201 0 .0000 e+00 1.0530 e−03
202 0 .0000 e+00 1.0053 e−03
203 0 .0000 e+00 9.5985 e−04
204 0 .0000 e+00 9.1642 e−04
205 0 .0000 e+00 8.7495 e−04
206 0 .0000 e+00 8.3536 e−04
207 0 .0000 e+00 7.9756 e−04
208 0 .0000 e+00 7.6147 e−04
209 0 .0000 e+00 7.2701 e−04
210 0 .0000 e+00 6.9411 e−04
211 0 .0000 e+00 6.6271 e−04
212 0 .0000 e+00 6.3272 e−04
213 0 .0000 e+00 6.0409 e−04
214 0 .0000 e+00 5.7675 e−04
215 0 .0000 e+00 5.5065 e−04
216 0 .0000 e+00 5.2574 e−04
217 0 .0000 e+00 5.0195 e−04
218 0 .0000 e+00 4.7923 e−04
219 0 .0000 e+00 4.5755 e−04
220 0 .0000 e+00 4.3684 e−04
221 0 .0000 e+00 4.1708 e−04
222 0 .0000 e+00 3.9820 e−04
223 0 .0000 e+00 3.8018 e−04
224 0 .0000 e+00 3.6298 e−04
225 0 .0000 e+00 3.4656 e−04
226 0 .0000 e+00 3.3087 e−04
227 0 .0000 e+00 3.1590 e−04
228 0 .0000 e+00 3.0161 e−04
229 0 .0000 e+00 2.8796 e−04
230 0 .0000 e+00 2.7493 e−04
231 0 .0000 e+00 2.6249 e−04
232 0 .0000 e+00 2.5061 e−04
233 0 .0000 e+00 2.3927 e−04
234 0 .0000 e+00 2.2844 e−04
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235 0 .0000 e+00 2.1811 e−04
236 0 .0000 e+00 2.0824 e−04
237 0 .0000 e+00 1.9881 e−04
238 0 .0000 e+00 1.8982 e−04
239 0 .0000 e+00 1.8123 e−04
240 0 .0000 e+00 1.7303 e−04
241 0 .0000 e+00 1.6520 e−04
242 0 .0000 e+00 1.5772 e−04
243 0 .0000 e+00 1.5059 e−04
244 0 .0000 e+00 1.4377 e−04
245 0 .0000 e+00 1.3727 e−04
246 0 .0000 e+00 1.3105 e−04
247 0 .0000 e+00 1.2512 e−04
248 0 .0000 e+00 1.1946 e−04
249 0 .0000 e+00 1.1406 e−04
250 0 .0000 e+00 1.0890 e−04
251 0 .0000 e+00 1.0397 e−04
252 0 .0000 e+00 9.9263 e−05
253 0 .0000 e+00 9.4771 e−05
254 0 .0000 e+00 9.0483 e−05
255 0 .0000 e+00 8.6389 e−05
256 0 .0000 e+00 8.2479 e−05
257 0 .0000 e+00 7.8747 e−05
258 0 .0000 e+00 7.5184 e−05
259 0 .0000 e+00 7.1782 e−05
260 0 .0000 e+00 6.8534 e−05
261 0 .0000 e+00 6.5432 e−05
262 0 .0000 e+00 6.2472 e−05
263 0 .0000 e+00 5.9645 e−05
264 0 .0000 e+00 5.6946 e−05
265 0 .0000 e+00 5.4369 e−05
266 0 .0000 e+00 5.1909 e−05
267 0 .0000 e+00 4.9560 e−05
268 0 .0000 e+00 4.7317 e−05
269 0 .0000 e+00 4.5176 e−05
270 0 .0000 e+00 4.3132 e−05
271 0 .0000 e+00 4.1180 e−05
272 0 .0000 e+00 3.9317 e−05
273 0 .0000 e+00 3.7538 e−05
274 0 .0000 e+00 3.5839 e−05
275 0 .0000 e+00 3.4217 e−05
276 0 .0000 e+00 3.2669 e−05
277 0 .0000 e+00 3.1191 e−05
278 0 .0000 e+00 2.9779 e−05
279 0 .0000 e+00 2.8432 e−05
280 0 .0000 e+00 2.7145 e−05
281 0 .0000 e+00 2.5917 e−05
282 0 .0000 e+00 2.4744 e−05
283 0 .0000 e+00 2.3624 e−05
284 0 .0000 e+00 2.2555 e−05
285 0 .0000 e+00 2.1535 e−05
286 0 .0000 e+00 2.0560 e−05
287 0 .0000 e+00 1.9630 e−05
288 0 .0000 e+00 1.8742 e−05
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289 0 .0000 e+00 1.7894 e−05;

End file: input-dose to acconc.inc

Begin file: input-dose to ncconc.inc

TABLE ALLNCCONC( spd , d l v l s ) ” Concentrat ions o f 9NC”
1 2

1 0 .0000 e+00 0.0000 e+00
2 0 .0000 e+00 7.5032 e+01
3 0 .0000 e+00 8.9186 e+01
4 0 .0000 e+00 8.7552 e+01
5 0 .0000 e+00 7.8922 e+01
6 0 .0000 e+00 6.7957 e+01
7 0 .0000 e+00 5.7007 e+01
8 0 .0000 e+00 4.7134 e+01
9 0 .0000 e+00 3.8703 e+01

10 0.0000 e+00 3.1733 e+01
11 0.0000 e+00 2.6079 e+01
12 0.0000 e+00 2.1542 e+01
13 0.0000 e+00 1.7920 e+01
14 0.0000 e+00 1.5029 e+01
15 0.0000 e+00 1.2714 e+01
16 0.0000 e+00 1.0849 e+01
17 0.0000 e+00 9.3345 e+00
18 0.0000 e+00 8.0930 e+00
19 0.0000 e+00 7.0645 e+00
20 0.0000 e+00 6.2034 e+00
21 0.0000 e+00 5.4748 e+00
22 0.0000 e+00 4.8522 e+00
23 0.0000 e+00 4.3155 e+00
24 0.0000 e+00 3.8491 e+00
25 0.0000 e+00 3.4409 e+00
26 0.0000 e+00 3.0817 e+00
27 0.0000 e+00 2.7640 e+00
28 0.0000 e+00 2.4820 e+00
29 0.0000 e+00 2.2307 e+00
30 0.0000 e+00 2.0062 e+00
31 0.0000 e+00 1.8054 e+00
32 0.0000 e+00 1.6253 e+00
33 0.0000 e+00 1.4637 e+00
34 0.0000 e+00 1.3185 e+00
35 0.0000 e+00 1.1879 e+00
36 0.0000 e+00 1.0705 e+00
37 0.0000 e+00 9.6471 e−01
38 0 .0000 e+00 8.6949 e−01
39 0 .0000 e+00 7.8372 e−01
40 0 .0000 e+00 7.0644 e−01
41 0 .0000 e+00 6.3681 e−01
42 0 .0000 e+00 5.7406 e−01
43 0 .0000 e+00 5.1751 e−01
44 0 .0000 e+00 4.6654 e−01
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45 0 .0000 e+00 4.2059 e−01
46 0 .0000 e+00 3.7917 e−01
47 0 .0000 e+00 3.4183 e−01
48 0 .0000 e+00 3.0818 e−01
49 0 .0000 e+00 2.7783 e−01
50 0 .0000 e+00 2.5048 e−01
51 0 .0000 e+00 2.2582 e−01
52 0 .0000 e+00 2.0358 e−01
53 0 .0000 e+00 1.8354 e−01
54 0 .0000 e+00 1.6547 e−01
55 0 .0000 e+00 1.4918 e−01
56 0 .0000 e+00 1.3449 e−01
57 0 .0000 e+00 1.2125 e−01
58 0 .0000 e+00 1.0932 e−01
59 0 .0000 e+00 9.8554 e−02
60 0 .0000 e+00 8.8851 e−02
61 0 .0000 e+00 8.0104 e−02
62 0 .0000 e+00 7.2218 e−02
63 0 .0000 e+00 6.5108 e−02
64 0 .0000 e+00 5.8698 e−02
65 0 .0000 e+00 5.2920 e−02
66 0 .0000 e+00 4.7710 e−02
67 0 .0000 e+00 4.3013 e−02
68 0 .0000 e+00 3.8778 e−02
69 0 .0000 e+00 3.4961 e−02
70 0 .0000 e+00 3.1519 e−02
71 0 .0000 e+00 2.8416 e−02
72 0 .0000 e+00 2.5618 e−02
73 0 .0000 e+00 2.3096 e−02
74 0 .0000 e+00 2.0823 e−02
75 0 .0000 e+00 1.8773 e−02
76 0 .0000 e+00 1.6924 e−02
77 0 .0000 e+00 1.5258 e−02
78 0 .0000 e+00 1.3756 e−02
79 0 .0000 e+00 1.2402 e−02
80 0 .0000 e+00 1.1181 e−02
81 0 .0000 e+00 1.0080 e−02
82 0 .0000 e+00 9.0878 e−03
83 0 .0000 e+00 8.1932 e−03
84 0 .0000 e+00 7.3866 e−03
85 0 .0000 e+00 6.6594 e−03
86 0 .0000 e+00 6.0038 e−03
87 0 .0000 e+00 5.4127 e−03
88 0 .0000 e+00 4.8798 e−03
89 0 .0000 e+00 4.3994 e−03
90 0 .0000 e+00 3.9663 e−03
91 0 .0000 e+00 3.5758 e−03
92 0 .0000 e+00 3.2238 e−03
93 0 .0000 e+00 2.9064 e−03
94 0 .0000 e+00 2.6203 e−03
95 0 .0000 e+00 2.3623 e−03
96 0 .0000 e+00 2.1298 e−03
97 0 .0000 e+00 1.9201 e−03
98 0 .0000 e+00 1.7311 e−03
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99 0 .0000 e+00 1.5606 e−03
100 0 .0000 e+00 1.4070 e−03
101 0 .0000 e+00 1.2685 e−03
102 0 .0000 e+00 1.1436 e−03
103 0 .0000 e+00 1.0310 e−03
104 0 .0000 e+00 9.2952 e−04
105 0 .0000 e+00 8.3801 e−04
106 0 .0000 e+00 7.5551 e−04
107 0 .0000 e+00 6.8113 e−04
108 0 .0000 e+00 6.1407 e−04
109 0 .0000 e+00 5.5362 e−04
110 0 .0000 e+00 4.9912 e−04
111 0 .0000 e+00 4.4998 e−04
112 0 .0000 e+00 4.0568 e−04
113 0 .0000 e+00 3.6574 e−04
114 0 .0000 e+00 3.2974 e−04
115 0 .0000 e+00 2.9727 e−04
116 0 .0000 e+00 2.6801 e−04
117 0 .0000 e+00 2.4162 e−04
118 0 .0000 e+00 2.1784 e−04
119 0 .0000 e+00 1.9639 e−04
120 0 .0000 e+00 1.7706 e−04
121 0 .0000 e+00 1.5963 e−04
122 0 .0000 e+00 1.4391 e−04
123 0 .0000 e+00 1.2974 e−04
124 0 .0000 e+00 1.1697 e−04
125 0 .0000 e+00 1.0545 e−04
126 0 .0000 e+00 9.5073 e−05
127 0 .0000 e+00 8.5713 e−05
128 0 .0000 e+00 7.7275 e−05
129 0 .0000 e+00 6.9667 e−05
130 0 .0000 e+00 6.2809 e−05
131 0 .0000 e+00 5.6625 e−05
132 0 .0000 e+00 5.1051 e−05
133 0 .0000 e+00 4.6025 e−05
134 0 .0000 e+00 4.1494 e−05
135 0 .0000 e+00 3.7409 e−05
136 0 .0000 e+00 3.3726 e−05
137 0 .0000 e+00 3.0406 e−05
138 0 .0000 e+00 2.7412 e−05
139 0 .0000 e+00 2.4714 e−05
140 0 .0000 e+00 2.2281 e−05
141 0 .0000 e+00 2.0087 e−05
142 0 .0000 e+00 1.8110 e−05
143 0 .0000 e+00 1.6327 e−05
144 0 .0000 e+00 1.4719 e−05
145 0 .0000 e+00 1.3270 e−05
146 0 .0000 e+00 1.1964 e−05
147 0 .0000 e+00 1.0786 e−05
148 0 .0000 e+00 9.7242 e−06
149 0 .0000 e+00 8.7669 e−06
150 0 .0000 e+00 7.9038 e−06
151 0 .0000 e+00 7.1257 e−06
152 0 .0000 e+00 6.4242 e−06

158



153 0 .0000 e+00 5.7917 e−06
154 0 .0000 e+00 5.2215 e−06
155 0 .0000 e+00 4.7075 e−06
156 0 .0000 e+00 4.2440 e−06
157 0 .0000 e+00 3.8262 e−06
158 0 .0000 e+00 3.4495 e−06
159 0 .0000 e+00 3.1099 e−06
160 0 .0000 e+00 2.8038 e−06
161 0 .0000 e+00 2.5277 e−06
162 0 .0000 e+00 2.2789 e−06
163 0 .0000 e+00 2.0545 e−06
164 0 .0000 e+00 1.8523 e−06
165 0 .0000 e+00 1.6699 e−06
166 0 .0000 e+00 1.5055 e−06
167 0 .0000 e+00 1.3573 e−06
168 0 .0000 e+00 1.2237 e−06
169 0 .0000 e+00 1.1032 e−06
170 0 .0000 e+00 9.9460 e−07
171 0 .0000 e+00 8.9669 e−07
172 0 .0000 e+00 8.0841 e−07
173 0 .0000 e+00 7.2882 e−07
174 0 .0000 e+00 6.5707 e−07
175 0 .0000 e+00 5.9239 e−07
176 0 .0000 e+00 5.3407 e−07
177 0 .0000 e+00 4.8149 e−07
178 0 .0000 e+00 4.3409 e−07
179 0 .0000 e+00 3.9135 e−07
180 0 .0000 e+00 3.5282 e−07
181 0 .0000 e+00 3.1809 e−07
182 0 .0000 e+00 2.8677 e−07
183 0 .0000 e+00 2.5854 e−07
184 0 .0000 e+00 2.3309 e−07
185 0 .0000 e+00 2.1014 e−07
186 0 .0000 e+00 1.8945 e−07
187 0 .0000 e+00 1.7080 e−07
188 0 .0000 e+00 1.5399 e−07
189 0 .0000 e+00 1.3883 e−07
190 0 .0000 e+00 1.2516 e−07
191 0 .0000 e+00 1.1284 e−07
192 0 .0000 e+00 1.0173 e−07
193 0 .0000 e+00 9.1715 e−08
194 0 .0000 e+00 8.2686 e−08
195 0 .0000 e+00 7.4545 e−08
196 0 .0000 e+00 6.7207 e−08
197 0 .0000 e+00 6.0590 e−08
198 0 .0000 e+00 5.4625 e−08
199 0 .0000 e+00 4.9247 e−08
200 0 .0000 e+00 4.4399 e−08
201 0 .0000 e+00 4.0028 e−08
202 0 .0000 e+00 3.6087 e−08
203 0 .0000 e+00 3.2535 e−08
204 0 .0000 e+00 2.9332 e−08
205 0 .0000 e+00 2.6444 e−08
206 0 .0000 e+00 2.3841 e−08
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207 0 .0000 e+00 2.1494 e−08
208 0 .0000 e+00 1.9378 e−08
209 0 .0000 e+00 1.7470 e−08
210 0 .0000 e+00 1.5750 e−08
211 0 .0000 e+00 1.4200 e−08
212 0 .0000 e+00 1.2802 e−08
213 0 .0000 e+00 1.1541 e−08
214 0 .0000 e+00 1.0405 e−08
215 0 .0000 e+00 9.3807 e−09
216 0 .0000 e+00 8.4572 e−09
217 0 .0000 e+00 7.6246 e−09
218 0 .0000 e+00 6.8740 e−09
219 0 .0000 e+00 6.1973 e−09
220 0 .0000 e+00 5.5872 e−09
221 0 .0000 e+00 5.0371 e−09
222 0 .0000 e+00 4.5412 e−09
223 0 .0000 e+00 4.0941 e−09
224 0 .0000 e+00 3.6911 e−09
225 0 .0000 e+00 3.3277 e−09
226 0 .0000 e+00 3.0001 e−09
227 0 .0000 e+00 2.7047 e−09
228 0 .0000 e+00 2.4385 e−09
229 0 .0000 e+00 2.1984 e−09
230 0 .0000 e+00 1.9820 e−09
231 0 .0000 e+00 1.7869 e−09
232 0 .0000 e+00 1.6109 e−09
233 0 .0000 e+00 1.4523 e−09
234 0 .0000 e+00 1.3094 e−09
235 0 .0000 e+00 1.1805 e−09
236 0 .0000 e+00 1.0642 e−09
237 0 .0000 e+00 9.5948 e−10
238 0 .0000 e+00 8.6502 e−10
239 0 .0000 e+00 7.7986 e−10
240 0 .0000 e+00 7.0308 e−10
241 0 .0000 e+00 6.3387 e−10
242 0 .0000 e+00 5.7146 e−10
243 0 .0000 e+00 5.1520 e−10
244 0 .0000 e+00 4.6448 e−10
245 0 .0000 e+00 4.1876 e−10
246 0 .0000 e+00 3.7753 e−10
247 0 .0000 e+00 3.4036 e−10
248 0 .0000 e+00 3.0685 e−10
249 0 .0000 e+00 2.7665 e−10
250 0 .0000 e+00 2.4941 e−10
251 0 .0000 e+00 2.2486 e−10
252 0 .0000 e+00 2.0272 e−10
253 0 .0000 e+00 1.8276 e−10
254 0 .0000 e+00 1.6477 e−10
255 0 .0000 e+00 1.4855 e−10
256 0 .0000 e+00 1.3392 e−10
257 0 .0000 e+00 1.2074 e−10
258 0 .0000 e+00 1.0885 e−10
259 0 .0000 e+00 9.8137 e−11
260 0 .0000 e+00 8.8475 e−11
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261 0 .0000 e+00 7.9765 e−11
262 0 .0000 e+00 7.1912 e−11
263 0 .0000 e+00 6.4833 e−11
264 0 .0000 e+00 5.8450 e−11
265 0 .0000 e+00 5.2696 e−11
266 0 .0000 e+00 4.7508 e−11
267 0 .0000 e+00 4.2831 e−11
268 0 .0000 e+00 3.8614 e−11
269 0 .0000 e+00 3.4813 e−11
270 0 .0000 e+00 3.1386 e−11
271 0 .0000 e+00 2.8296 e−11
272 0 .0000 e+00 2.5510 e−11
273 0 .0000 e+00 2.2999 e−11
274 0 .0000 e+00 2.0734 e−11
275 0 .0000 e+00 1.8693 e−11
276 0 .0000 e+00 1.6853 e−11
277 0 .0000 e+00 1.5194 e−11
278 0 .0000 e+00 1.3698 e−11
279 0 .0000 e+00 1.2349 e−11
280 0 .0000 e+00 1.1134 e−11
281 0 .0000 e+00 1.0038 e−11
282 0 .0000 e+00 9.0494 e−12
283 0 .0000 e+00 8.1585 e−12
284 0 .0000 e+00 7.3553 e−12
285 0 .0000 e+00 6.6312 e−12
286 0 .0000 e+00 5.9784 e−12
287 0 .0000 e+00 5.3898 e−12
288 0 .0000 e+00 4.8592 e−12
289 0 .0000 e+00 4.3808 e−12;

End file: input-dose to ncconc.inc

Begin file: input-objective function.inc

obj . . z =e= + TUMOR( ’4032 ’ )
+ TUMOR( ’6048 ’ )
+ TUMOR( ’8064 ’ )
+ TUMOR( ’10080 ’ )
+ TUMOR( ’12096 ’ )
+ TUMOR( ’14112 ’ )
+ TUMOR( ’16128 ’ ) ;

End file: input-objective function.inc

Begin file: input-parameters.inc

∗
∗ ana l y s i s s p e c i f i c
∗
t imestep d i s c r e t i z a t o i n s tep s i z e /5.00000000 e+00/
numsteps number o f time s t ep s /16128/
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∗
∗ tumor growth parameters
∗
t aue f f a s t growth ra t e /1.94186187 e+04/
taues slow growth ra t e /1.94186187 e+04/
nth swi tch ing s i z e /4.77363886 e+02/
∗
∗ non l inea r pd parameters
∗
k e f f r a t e o f c e l l k i l l /3 .48501281 e−05/
∗
∗ body weight model parameters
∗
tauw ra t e o f mouse doubl ing /2.60497755 e−06/
kd e f f e c t o f drug on bodyweight /2.85795338 e−05/
∗
∗ misca l l eneous parameters
∗
N0 i n i t i a l c ond i t i on /4.00000000 e+01/
B0 i n i t i a l body weight ( treatment ) /2.00000000 e+01/
B0CYCLE i n i t i a l body weight ( cy c l e ) /2.00000000 e+01/
BMIN minimum body weight ( f r a c t i o n ) /9.80000000 e−01/
dose t imes (q ) p o s s i b l e dose t imes /

1 1
2 289
3 577
4 865
5 1153
6 2017
7 2305
8 2593
9 2881

10 3169
11 4033
12 4321
13 4609
14 4897
15 5185
16 6049
17 6337
18 6625
19 6913
20 7201
21 8065
22 8353
23 8641
24 8929
25 9217
26 10081
27 10369
28 10657
29 10945
30 11233
31 12097
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32 12385
33 12673
34 12961
35 13249
36 14113
37 14401
38 14689
39 14977
40 15265

/
d o s e l e v e l s ( d l v l s ) p o s s i b l e dose l e v e l s /

1 1.000000 e+00
/

End file: input-parameters.inc

Begin file: input-sets.inc

k d i s c r e t e time /1∗16128/
q dos ing time /1∗40/
spd s t ep s per day /1∗289/
d l v l s number o f p o s s i b l e dose l e v e l s /1∗2/

End file: input-sets.inc

Begin file: optimal dose profile.gms

∗
∗ SETS
∗
SETS
$ inc lude ” input−s e t s . i nc ”
;

∗
∗ PARAMETERS
∗
PARAMETERS
NMIN lb on tumor volume
NMAX ub on tumor volume
LNS lb on slow tumor growth
UNS ub on slow tumor growth
LNF lb on f a s t tumor growth
UNF ub on f a s t tumor growth
$ inc lude ” input−parameters . i nc ”
;

$ inc lude ” input−dose to ncconc . inc ”

$ inc lude ” input−dose to acconc . inc ”
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NMIN = . 1 ;
NMAX = 20000 ;
LNS = log (2)/ taue f − l og (2)/ taues ;
UNS = log (2)/ taue f − l og (2)/ taues ;
LNF = log (2)/ taues − l og (2)/ taue f ;
UNF = log (2)/ taues − l og (2)/ taue f ;

∗
∗ VARIABLES
∗
va r i a b l e s

TUMOR(k) tumor growth
BW(k) body weight
BWc(k ) co r r e c t ed body weight
CNC(k ) concent ra t i on o f 9NC
CAC(k ) concent ra t i on o f 9NC
G(k ) d i s cont inuous tumor growth term
BT(k ) sw i t ch ing va r i ab l e f o r tumor growth
BD(q , d l v l s ) binary va r i ab l e to turn on d i f f e r e n t
z ob j e c t i v e func t i on value
;
f r e e v a r i a b l e TUMOR

∗ p o s i t i v e va r i ab l e BW
po s i t i v e va r i ab l e CNC
po s i t i v e va r i ab l e CAC
po s i t i v e va r i ab l e G
po s i t i v e va r i ab l e Du
po s i t i v e va r i ab l e Dl
binary va r i ab l e BT
binary va r i ab l e BD
f r e e va r i a b l e z
;

∗
∗ bounding v a r i a b l e s
∗

TUMOR. up(k ) = log (NMAX) ;
∗∗BW. up(k ) = 2 ;

∗
∗ s e t t i n g i n i t i a l va lue s
∗

TUMOR. fx ( ’ 1 ’ ) = log (N0 ) ;
BW. fx ( ’ 1 ’ ) = B0CYCLE;

∗
∗ i n i t i a l guess f o r v a r i a b l e s
∗
∗ −− no treatment
∗

CNC. l ( k ) = 0 ;
CAC. l ( k ) = 0 ;
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BT. l ( k ) = 0 ;
BD. l (q , d l v l s ) = 0 ;
BD. l (q , ’ 1 ’ ) = 1 ;

TUMOR. l ( ’ 1 ’ ) = log (N0 ) ;
loop (k ,

BT. l ( k ) = (1) $ (TUMOR. l ( k ) l t l og ( nth ) ) ;
G. l ( k ) = ( log (2)/ taue f ) $ (TUMOR. l ( k ) l t l og ( nth ) )

+ ( log (2)/ taues ) $ (TUMOR. l ( k ) ge l og ( nth ) ) ;
TUMOR. l ( k+1) = TUMOR. l ( k ) + t imestep ∗G. l ( k ) ;

∗ s e t t i n g the upper bound on tumor s i z e as the s i z e
∗ o f the tumor at any step ’k ’ i f no drug were admin i s te red

TUMOR. up(k ) = TUMOR. l ( k ) ;
) ;

∗
∗ EQUATIONS
∗
EQUATIONS

dBW(k) ”PD bodyweight”
BWcdef ( k ) ” co r r e c t ed body weight ”
BWcmin(k ) ”minimum on bodyweight”
odpd (q ) ”one dose per day”
CNCdef( k ) ” d e f i n i n g CNC”
CACdef( k ) ” d e f i n i n g CAC”
dTUMOR(k) ”PD tumor volume”
swNS(k ) ” a c t i v e when N > nth”
swNF(k ) ” a c t i v e when N < nth”
swNLS(k ) ” a c t i v e when N < nth”
swNUS(k ) ” a c t i v e when N < nth”
swNLF(k ) ” a c t i v e when N > nth”
swNUF(k ) ” a c t i v e when N > nth”
obj ” ob j e c t i v e func t i on ”
;

∗
∗ Def in ing CNC and CAC
∗

∗
∗ ensur ing that only one dose i s s e l e c t e d per dos ing day
∗
odpd (q ) . . sum( d lv l s , BD(q , d l v l s ) ) =e= 1 ;

CACdef( k ) . . CAC(k ) =e= sum( ( spd , q ) ,
sum( d lv l s ,

BD(q , d l v l s )∗ALLACCONC( spd , d l v l s )
$ ( ord (k ) eq ( dose t imes (q)−1+ord ( spd ) ) )

)
) ;
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CNCdef( k ) . . CNC(k ) =e= sum( ( spd , q ) ,
sum( d lv l s ,

BD(q , d l v l s )∗ALLNCCONC( spd , d l v l s )
$ ( ord (k ) eq ( dose t imes (q)−1+ord ( spd ) ) )

)
) ;

∗
∗ handl ing the d i s c on t i nu i t y in N at nth
∗
swNS(k ) . . TUMOR(k ) − l og ( nth ) =l=

( log (NMAX) − l og ( nth ))∗(1−BT(k ) ) ;
swNF(k ) . . l og ( nth ) − TUMOR(k ) =l=

( log ( nth ) − l og (NMIN))∗BT(k ) ;
swNLS(k ) . . LNS∗BT(k ) =l=

G(k ) − l og (2)/ taues ;
swNUS(k ) . . G(k ) − l og (2)/ taues =l=

UNS∗BT(k ) ;
swNLF(k ) . . LNF∗(1−BT(k ) ) =l=

G(k ) − l og (2)/ taue f ;
swNUF(k ) . . G(k ) − l og (2)/ taue f =l=

UNF∗(1−BT(k ) ) ;

∗
∗ growth
∗

dTUMOR(k) $ ( ord (k ) l t numsteps ) . . TUMOR(k+1) =e=
TUMOR(k ) + t imestep ∗(G(k ) − k e f f ∗(CNC(k ) + CAC(k ) ) ) ;

dBW(k) $ ( ord (k ) l t numsteps ) . . BW(k+1) =e=
BW(k) + t imestep ∗( tauw∗BW(k) − kd∗(CNC(k ) + CAC(k ) ) ) ;

BWcdef ( k ) . . BWc(k ) =e=
BW(k)/B0 − exp (TUMOR. l ( k ) ) / (B0∗1000) ;
BWcmin(k ) . . BWc(k ) =g= BMIN;

$ inc lude ” input−ob j e c t i v e f u n c t i o n . inc ”

z . l = TUMOR. l ( ’ 8 0 6 4 ’ ) ;

opt ion LIMROW = 400000;
opt ion r e s l im = 200000;
opt ion i t e r l im = 200000;

Model dose / a l l / ;

SOLVE dose minimizing z USING MIP;
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d i sp l ay TUMOR. l ;
d i sp l ay BW. l ;
d i sp l ay BWc. l ;
d i sp l ay CNC. l ;
d i sp l ay CAC. l ;
d i sp l ay G. l ;
d i sp l ay BT. l ;
d i sp l ay BD. l ;
d i sp l ay z . l ;

FILE fhd l /output−d o s e l e v e l s . txt / ;
put f hd l ;
f hd l . nd=10;
loop ( ( q , d l v l s ) ,

i f (1 = BD. l (q , d l v l s ) ,
i f ( ord ( d l v l s ) > 1 ,

put ord (q ) , @20 , dose t imes (q ) , @40 ,
d o s e l e v e l s ( d l v l s −1) / ;

e l s e
put ord (q ) , @20 , dose t imes (q ) , @40 , 0 / ;

) ;
) ;

) ;

FILE fhsv /output−s t a t e v a l u e s . txt / ;
put fhsv ;
fhsv . nd=10;
loop (k ,

put ( ord (k )∗ t imestep ) ,
@20 , CNC. l ( k ) ,
@40 , CAC. l ( k ) ,
@60 , exp (TUMOR. l ( k ) ) ,
@80 , BW. l ( k ) ,
@100 , BWc. l ( k ) / ;

) ;

End file: optimal dose profile.gms

Begin file: output-dose levels-min max.txt

1.0000000000 1.0000000000 0.0000000000
2.0000000000 2.8900000E+2 0.0000000000
3.0000000000 5.7700000E+2 1.0000000000
4.0000000000 8.6500000E+2 1.0000000000
5.0000000000 1.1530000E+3 1.0000000000
6.0000000000 2.0170000E+3 1.0000000000
7.0000000000 2.3050000E+3 1.0000000000
8.0000000000 2.5930000E+3 1.0000000000
9.0000000000 2.8810000E+3 1.0000000000
1.0000000E+1 3.1690000E+3 1.0000000000
1.1000000E+1 4.0330000E+3 0.0000000000
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1.2000000E+1 4.3210000E+3 1.0000000000
1.3000000E+1 4.6090000E+3 1.0000000000
1.4000000E+1 4.8970000E+3 1.0000000000
1.5000000E+1 5.1850000E+3 1.0000000000
1.6000000E+1 6.0490000E+3 0.0000000000
1.7000000E+1 6.3370000E+3 0.0000000000
1.8000000E+1 6.6250000E+3 1.0000000000
1.9000000E+1 6.9130000E+3 1.0000000000
2.0000000E+1 7.2010000E+3 1.0000000000
2.1000000E+1 8.0650000E+3 0.0000000000
2.2000000E+1 8.3530000E+3 0.0000000000
2.3000000E+1 8.6410000E+3 1.0000000000
2.4000000E+1 8.9290000E+3 1.0000000000
2.5000000E+1 9.2170000E+3 1.0000000000
2.6000000E+1 1.0081000E+4 0.0000000000
2.7000000E+1 1.0369000E+4 0.0000000000
2.8000000E+1 1.0657000E+4 1.0000000000
2.9000000E+1 1.0945000E+4 1.0000000000
3.0000000E+1 1.1233000E+4 1.0000000000
3.1000000E+1 1.2097000E+4 0.0000000000
3.2000000E+1 1.2385000E+4 0.0000000000
3.3000000E+1 1.2673000E+4 1.0000000000
3.4000000E+1 1.2961000E+4 1.0000000000
3.5000000E+1 1.3249000E+4 1.0000000000
3.6000000E+1 1.4113000E+4 0.0000000000
3.7000000E+1 1.4401000E+4 0.0000000000
3.8000000E+1 1.4689000E+4 1.0000000000
3.9000000E+1 1.4977000E+4 1.0000000000
4.0000000E+1 1.5265000E+4 1.0000000000

End file: output-dose levels-min max.txt

Begin file: output-state values-min max.txt

5.0000000000 0.0000000000 0.0000000000 4.0000000E+1 2.0000000E+1 0.9980000000
1.0000000E+1 0.0000000000 0.0000000000 4.0007140E+1 2.0000260E+1 0.9980126679

. . . . . .

. . . . . .

. . . . . .
8 .0630000E+4 0.0000000000 0.0000000000 7.6661703042 2.0503050E+1 0.9895984014
8.0635000E+4 0.0000000000 0.0000000000 7.6675386452 2.0503317E+1 0.9896054078
8.0640000E+4 0.0000000000 0.0000000000 7.6689072305 2.0503584E+1 0.9896124133

End file: output-state values-min max.txt
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