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IN SITU BIOENGINEERING OF ARTERIAL VEIN GRAFTS 

Mohammed S. El-Kurdi, Ph.D. 

University of Pittsburgh, 2008

 

The autogenous saphenous vein remains the graft of choice for both coronary (500,000 annually 

in the US) and peripheral (80,000 annually) arterial bypass procedures.  Failure of arterial vein 

grafts (AVGs) remains a major problem, and patients with failed grafts will die or require re-

operation.   Intimal hyperplasia (IH) accounts for 20% to 40% of all AVG failures.  It is believed 

that this adverse pathological response by AVGs is largely due to their abrupt exposure to the 

significantly elevated circumferential wall stress (CWS) associated with the arterial system.  We 

believe that if an AVG is given an ample opportunity to adapt and remodel to the stresses of its 

new environment, cellular injury may be reduced, thus limiting the initiating mechanisms of IH.  

The goal of this work was to develop a new mechanical conditioning paradigm, in the form of a 

peri-adventitially placed, biodegradable polymer wrap, to safely and functionally “arterialize” 

AVGs in situ.  The polymer wrap was tuned so that as it degraded over a desired period of time, 

the mechanical support offered by it was reduced and the vein was exposed to gradually 

increasing levels of CWS in situ.  

 To investigate the effects of mechanical conditioning on AVGs, we utilized both our well 

established, validated ex vivo vascular perfusion system (EVPS) as well as an appropriate 

preclinical animal model.  The “engineering” component of this bioengineering study was to 

enhance our EVPS capabilities.  Enhancements were made in the form of rigorous mathematical 

modeling, via subspace system identification, and automatic feedback control, via proportional 
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integral and derivative control, of the arterial CWS and shear stress waveform generation 

capabilities of the EVPS.  Pairs of freshly harvested porcine internal jugular veins (PIJVs) were 

perfused ex vivo under several biomechanical conditions.  The acute hyperplastic response of 

PIJVs abruptly exposed to arterial hemodynamic conditions was compared to PIJVs perfused 

under normal venous conditions.  In an attempt to attenuate this acute hyperplastic response, an 

ex vivo mechanical conditioning paradigm was imposed onto the PIJVs both via manual 

adjustment of EVPS parameters and via an adventitially placed tuned electrospun biodegradable 

polymer wrap.  Early markers of IH were evaluated post-perfusion, and they included vascular 

smooth muscle cell apoptosis, proliferation, and phenotypic modulation.  Quantification of these 

markers via immunohistochemical techniques provided the foundation for the final stage of this 

work.  To assess the efficacy of the tuned electrospun biodegradable polymer wrap in attenuating 

the development of intimal hyperplasia in AVGs, a series of preclinical studies was performed in 

a pig model. 

    PIJVs abruptly exposed to arterial levels of CWS showed a significant increase in 

apoptosis and in the number of synthetic smooth muscle cells, as well as a decrease in 

proliferation.  Mechanical conditioning, via both manual adjustment of the EVPS parameters and 

placement of the biodegradable adventitial wrap, appeared to have beneficial effects on the acute 

hyperplastic response of PIJVs perfused ex vivo.  The beneficial effects of the adventitially 

placed polymer wrap was also observed in vivo, however the results did not achieve significance 

over unwrapped controls.   

Future work should be aimed at enhancing the beneficial effects of the electrospun 

biodegradable polymer wrap by incorporating the delivery of drugs and/or stem cells in addition 

to the delivery of structural support to AVGs.  
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1.0  INTRODUCTION 

Coronary artery disease, leading to myocardial infarction and ischemia, is currently the number 

one cause of morbidity and mortality worldwide.  Current treatment alternatives consist of 

percutaneous transluminal angioplasty, stenting, and coronary artery bypass grafting (CABG). 

CABG can be carried out using either arterial or venous conduits and is the most effective and 

most widely used treatment to combat coronary arterial stenosis, with nearly 500,000 procedures 

being performed annually in the United States alone [5].   In addition there are approximately 

80,000 lower extremity bypass surgeries performed annually [6].  The venous conduit used for 

bypass procedures is most frequently the autogenous saphenous vein and remains the graft of 

choice for 95% of surgeons performing these bypass procedures [7,8].  According to the 

American Heart Association, in 2006 there were 427,000 bypass procedures performed in 

249,000 patients [5].  The long term outcome of these procedures is limited due to occlusion of 

the graft vessel or anastomotic site as a result of intimal hyperplasia (IH), which can occur over a 

timeframe of months to years (Table 1.1).   

Development of successful small diameter synthetic or tissue engineered vascular grafts 

has yet to be accomplished and use of arterial grafts (internal mammary, radial, or gastroepiploic 

arteries, for example) is limited by the short size, small diameter and availability of these vessels.  

Therefore, vein segments, such as the saphenous vein, are widely used as arterial grafts.  Despite 

their wide use, failure of arterial vein grafts (AVGs) remains a major problem [9]: 12% to 27% 

of AVGs become occluded in the first year with a subsequent annual occlusive rate of 2% to 4% 

[6,10-12].  Patients with failed AVGs will die or require re-operation. 
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Table 1.1 The chronological events leading to vein graft intimal hyperplasia adapted from Mitra et al. [1] .  Please 
note: ECM, extracellular matrix; SMC, smooth muscle cell. 

 

 

 

 

 

IH accounts for 20% to 40% of all AVG failures within the first 5 years [13-17].  Several 

studies have determined that IH develops, to some extent, in all mature AVGs and this is 
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regarded by many as an unavoidable response of the vein to grafting [18-26].  IH is characterized 

by phenotypic modulation, followed by de-adhesion and migration of medial and adventitial 

smooth muscle cells (SMCs) and myofibroblasts into the intima where they proliferate.  In many 

cases, this response can lead to stenosis and diminished blood flow through the graft.  It is 

thought that IH may be initiated by the abrupt exposure of the veins to the dynamic mechanical 

environment of the arterial circulation [27-37]. 

Vein segments transposed to the arterial circulation for use as bypass grafts are exposed 

to increased blood flow and intraluminal pressure [38], and as shown previously by our 

laboratory, cyclic wall motion (including bending, twisting and stretching) due to their 

attachment to the beating heart in the case of CABGs [39].  Since veins are much thinner walled 

and more fragile than arteries, they experience significantly greater stresses in the arterial circuit 

than those to which they are accustomed in the venous circuit.  Indeed, Liu and Fung showed 

that the average circumferential wall stress (CWS) in an AVG immediately upon reestablishing 

arterial flow could be 140-fold that in a vein under normal circumstances [30].  This dramatic 

increase in CWS is due to the AVG being distended to its maximum diameter under arterial 

pressure.  The tissue responds to this perceived injury by thickening, which is thought to be an 

attempt to return the stress to venous levels.  However, this response is uncontrolled and can 

over-compensate, leading to stenosis instead of the desired thickening or “arterialization” of the 

vein segment.   

It has been suggested that the hyperplastic response by AVGs is a direct result of a 

“cellular shock” that occurs as a result of their abrupt exposure to the arterial biomechanical 

environment [27-37].  Preventing acute distension of AVGs by adding an external structural 

support (or sheath) has seemingly improved the patency of vein grafts [26,31,40-55], for 
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example.  However, due to one or more fundamental limitations, these previous approaches have 

not resulted in a clinically viable means for improving AVG patency.  All of these previous 

approaches utilized adventitially placed wraps/sheaths that were biodurable, and/or loose-fitting.  

The methodology presented here improves upon previous work in an effort to make such a 

treatment alternative more clinically viable by addressing these limitations.  It is our belief that 

the adverse hyperplastic response by AVGs may instead be reduced or eliminated by more 

gradually exposing them to the arterial biomechanical environment.  That is, if a vein is given an 

ample opportunity to adapt and remodel to the stresses of its new environment, cellular injury 

may be reduced, thus limiting the initiating mechanisms of IH.  Attempts to inhibit or counter-act 

AVG failure mechanisms may be facilitated by the placement of a biodegradable polymer wrap 

on the adventitial surface.  Such a wrap could be used as a means to gradually impose arterial 

levels of CWS to the AVG, thus avoiding the “cellular shock” associated with IH.  Such a wrap 

would require the following characteristics: 

i) The biodegradation rate of the wrap must be tunable 

ii) The wrap must be tight-fitting in order to prevent distension under arterial pressure 

iii) The wrap must not affect tissue viability or functionality 

One possible means to achieve the placement of a biodegradable polymer wrap onto an 

AVG is through electrospinning immediately following harvest and just prior to implantation.  

The process of electrospinning involves the delivery of an electrically charged polymer solution 

through a nozzle onto an oppositely charged mandrel [56].  The fibrous polymer accumulates 

and aligns depending on the shape and movement of the mandrel.  To our knowledge there have 

been no previous reports of electrospinning a polymer onto living tubular tissues. 
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Clearly, developing a reliable means to prevent the early events of the IH process would 

contribute to improvements in the outcome of arterial bypass procedures.  Therefore, the long-

term goal of this work is to develop a new paradigm that would utilize mechanical conditioning, 

in the form of an adventitially-placed electrospun biodegradable polymer wrap, to enable an 

AVG to arterialize after implantation by attenuating the hyperplastic response.  The 

biodegradable polymer wrap, which acts essentially as a temporary “girdle”, is tunable so that 

the degradation rate can be controlled and thus the mechanical support to the vein manipulated as 

desired [57].  That is, as the polymer degrades over a desired period of time the mechanical 

support offered by it is reduced over that period and the AVG would be exposed to gradually 

increasing levels of CWS.  This new approach could be used as a peri-surgical tool for the 

modification of vein segments intended for use as AVGs.  In its perceived ultimate form, this 

“adaptive modification” would be performed by treating the vein at bedside, immediately after 

saphenectomy and just prior to the arterial bypass surgery.  For example, after the saphenous 

vein is harvested, and while the surgeon is exposing the surgical site, the polymer wrap would be 

electrospun onto the vein just prior to it being used for the bypass procedure. 

Another potential application for the electrospun biodegradable polymer wrap is a vehicle 

for the delivery of other modes of support to AVGs.  While modification of the mechanical 

environment of an AVG over time could itself improve patency, the proposed work could also 

result in a paradigm shift in the delivery of not only mechanical but also molecular (genes), 

biochemical (drugs), and/or biological (cellular) support to AVGs.  By tuning an electrospun 

polymer wrap to degrade at a desired rate, the rate of delivery of these support modalities could 

be tuned.  We believe that mechanical, biochemical, and biological conditioning, via the tunable 
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electrospun biodegradable polymer wrap used here, could enhance AVG patency.  By providing 

this support to an AVG, we may be able to facilitate arterialization.  

1.1 THE ROLE OF BIOMECHANICS IN THE DEVELOPMENT OF INTIMAL 

HYPERPLASIA 

IH is defined by an increase in the thickness of the inner layer of a blood vessel, typically as a 

result of an increased number and/or size of cells in the intima, followed by deposition of 

massive amounts of ECM by these cells.  The cells contributing to this response are 

predominantly SMCs of medial and adventitial origin.  IH occurs both physiologically during 

development as in the closure of the ductus arteriosus [58], and pathologically as a result of 

vascular injury [8,22,24,26,48,53,54,59-79]. It is thought that AVG IH may be initiated by the 

abrupt exposure of the veins to the dynamic mechanical environment of the arterial circulation 

[80].  However, while increased levels of CWS has been shown to promote IH formation 

[31,81], increased levels of shear stress tend to modulate it [31,77,81-85].  These two 

biomechanical factors, seemingly causing opposing hyperplastic responses by AVGs, were 

carefully explored by Dobrin et al., who showed that the increased circumferential stretch plays a 

more significant role in promoting intimal thickening than the increased shear stress does in 

preventing it [80].  In another study that motivates this work, Zwolak et al. suggested a 

regulatory role for biomechanical wall stress in the arterialization of AVGs [37].  Jiang et al. 

demonstrated that increased wall shear stress, in the absence of an increase in wall tension, 

reduced the hyperplastic response in AVGs [84].  The in vivo work by Liu et al. has shown that 
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by reducing the level of CWS in AVGs, via placement of a permanent polytetrafluoroethylene 

sheath, the hyperplastic response can be reduced [40,47,48].   

It is clear from these previous studies that the biomechanical environment of an AVG 

plays a significant role in the development of IH.  In particular, CWS appears to regulate the 

formation of IH, and controlling this was the focus of the approach described in this study.   

1.2 MOLECULAR AND CELLULAR PROCESSES ASSOCIATED WITH INTIMAL 

HYPERPLASIA 

Once injury is perceived by a vein, the hyperplastic response is set into motion and can be 

described by five distinct but interrelated cell processes: 1) Phenotypic modulation of adventitial 

and medial SMCs from a contractile and quiescent state with low proliferative potential to a 

synthetic state with high proliferative potential [71,86-99]; 2) De-adhesion of SMCs or alteration 

of focal adhesions with other cells and the ECM; 3) Migration of SMCs from the outer layers 

through the basement membrane to the intima, which requires selective reassembling of focal 

adhesions that allow the cell to “walk” along the ECM [1,100-111]; 4) Proliferation [98,112-

125]; and 5) Remodeling of the tissue, reflecting the changes in ECM composition caused by the 

synthetic SMCs secreting collagen, elastin, fibronectin, etc. [24,107,113,126-131], as well as 

matrix degrading enzymes such as the various matrix metalloproteinases (MMPs) [24,105,132-

146].  In order to inhibit the initiating events of AVG IH, it is probable that one must take into 

account each of these five processes.  A schematic depicting the chain of events associated with 

IH is shown in Figure 1.1.   
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1.2.1 Phenotypic Modulation 

Modulation of SMC phenotype is a prominent feature in the pathogenesis of IH 

[71,92,94,97,147-149].  Plaques abundant with modified SMCs have been found in the intima as 

early as the second week after grafting [150].  Fully differentiated adult SMCs demonstrate low 

turnover as demonstrated by low proliferation and apoptosis rates [93,151]. However, 48 hours 

after arterial injury, 15-40% of SMCs are mitotic [152].  This abrupt shift in functionality is 

 

  

 
 

 

 

Figure 1.1 Schematic of intimal hyperplasia progression.  Please note: IEL, internal elastic lamina; SMCs, smooth 
muscle cells.  Image adapted from Robbins Pathologic Basis of Disease, 1999 [2]. 
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related to the fact that SMCs can exist in a spectrum of phenotypes, spanning from fully 

synthetic to fully contractile.  Synthetic SMCs respond to regulatory signals and cytokines, and 

are capable of ECM turnover as well as growth factor production [95,153-155]. On the other 

hand, contractile SMCs respond to vasomotor signals and control vessel tone [95,130,156-160].  

AVGs exhibit neointimal formation within the first two months by the migration and 

proliferation of synthetic SMCs [131] and by subsequent, sustained ECM accumulation, 

including type I collagen production, in the prolonged presence of the de-differentiated type 

SMCs. 

 The phenotypic state of SMCs is regulated at least in part by mechanical forces, as 

demonstrated by the observation that cyclic stretch induces a substrate-dependent modulation of 

proliferation and h-caldesmon expression in vitro [161].  In vivo studies have also shown the 

importance of mechanical injury on the phenotype of SMCs.  Balloon inflation injury to the 

media was shown to promote ECM synthesis by SMCs as well as to decrease alpha actin content 

[162].  Several reports have shown that neointimal SMCs of veins transposed to the arterial 

circulation are phenotypically altered [71,131,163], supporting the notion that the change from 

the venous to the arterial environment triggers phenotypic alteration.  Further evidence comes 

from ex vivo organ culture studies where, for example, cyclic stretch was found to be necessary 

to maintain the contractile function of SMCs in cultured rat portal veins [164].  Goldman et al. 

exposed rat vena cava to arterial pressures [165], which led to a large increase in medial 

circumferential strain and a concomitant reduction in the SMC filamentous actin coverage. 

Clearly, the changes in the mechanical environment related to vein grafting can lead to 

phenotypic alterations of the mural SMCs, possibly contributing to the development of IH. 
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 Indicators of a synthetic phenotype include the presence of increased quantities of Golgi 

complex and rough endoplasmic reticulum (ER) [156,166,167], and decreased quantities of 

filamentous actin [165].  A contractile phenotype is demonstrated by the presence of an intact 

contractile apparatus indicated by the expression of contractile proteins such as smoothelin, h-

caldesmon, smooth muscle myosin heavy chain, and large quantities of filamentous actin 

[165,167-169].   

 The Golgi complex is found in the cytoplasmic matrix of both plant and animal cells.  It 

consists of intertwining vesicles continuous with the ER.  The membranes forming this organelle 

are always smooth.  The Golgi complex is also sometimes termed the dictyosome.  The two main 

functions of the Golgi complex within eukaryotic cells are the in secretory activities of the cell, 

as well as in the synthesis of glycoproteins.  Larger quantities of Golgi complex have been 

observed in phenotypically altered neointimal vascular smooth muscle cells [97,170]. 

1.2.2 De-adhesion and Migration 

Cellular de-adhesion is one of the earliest responses in the IH cascade.  This process refers to an 

alteration in a cell’s adhesion to the ECM from a state of strong adherence, with focal adhesions 

and stress fibers, to a state of weaker adherence, characterized by a restructuring of focal 

adhesions and stress fibers while maintaining a spread cell shape [151].  SMC de-adhesion will 

of course allow SMC migration and proliferation which will contribute to neointima formation 

[171]. 

 While there are many important proteins involved in the regulation of cellular adhesion, 

we focused our attention on matricellular proteins, which function as adaptors and modulators of 

cell matrix interactions [172,173], and intracellular adhesion proteins, which have been shown to 
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localize to cellular focal adhesion sites [174,175].  Tenascin C (TN-C), thrombospondin 1,2 

(TSP), and secreted protein acidic and rich in cysteine (SPARC) are matricellular proteins that 

exhibit highly regulated expression during development and cellular injury [176].  Mitogen 

inducible gene 2 (Mig-2) and integrin linked kinase (ILK) are intracellular proteins involved in 

cellular shape modulation [174,175] and integrin mediated signal transduction [177], 

respectively.  The actions of TN-C, TSP, and SPARC on the cytoskeleton and focal adhesions 

are basically indistinguishable [178,179].  However, these three proteins each have unique 

receptors and have similar but separate signaling pathways to produce a state of intermediate 

adhesion, which is a precursor to cell migration [176].  Mig-2 and ILK have also been implicated 

in cellular adhesion [174,175].  Specifically, Mig-2 has been shown to participate in the 

connection between cell matrix adhesions and the actin cytoskeleton as well as to modulate cell 

shape [175].  Recent studies have indicated that ILK serves as a mediator in integrin mediated 

signal transduction [180].  Furthermore, both Mig-2 and ILK are required for maintaining focal 

adhesions [174,175].  By examining the changes in the levels of TN-C, TSP, SPARC, Mig-2, 

and ILK, we believe that we will be able to make conclusions about the state of adhesion of 

SMCs within the vein segments.  A schematic showing the intracellular localization of TN-C, 

TSP, SPARC, Mig-2 and ILK is shown in Figure 1.2. 
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Figure 1.2 Schematic showing the localization of Tenascin-C (TN-C), thrombospondin-1,2 (TSP), secreted protein 
acidic and rich in cysteine (SPARC), Mitogen inducible gene 2 (Mig-2) and integrin linked kinase (ILK).  Please 
note: ECM, extracellular matrix; α and β, integrins.  Image adapted from 
www.cellmigration.org/res_resource_misc.htm. 
 
 

 

A prerequisite for SMC migration in vivo is degradation of surrounding matrix proteins.  

Matrix metalloproteinases (specifically, MMP-1, MMP-2, and MMP-9) can selectively degrade 

various components of the vascular ECM [137,181-183].  MMPs have been shown to be critical 

for the development of arterial lesions by regulating SMC migration.  The balance between 

MMPs, their activator (MT-1 MMP) [184], and their inhibitors (specifically, TIMP-1, TIMP-2, 

TIMP-3, and TIMP-4) determines the level of ECM degradation [143].  Numerous studies have 

shown that MMPs and TIMPs play a significant role in the early stages of IH in response to 

  12

http://www.cellmigration.org/res_resource_misc.htm


altered hemodynamics and vascular injury [185-187].  For example, after 6 hours of ex vivo 

perfusion with arterial hemodynamics, expression of MMP-2 and MMP-9 was increased in 

human saphenous veins [142].  Other organ culture studies of human saphenous vein have shown 

increased production of MMP-9 and increased activation of MMP-2 [145,182,188] under arterial 

conditions.  Broad spectrum MMP inhibitors such as simvastatin have been shown to inhibit 

neointima formation in this model [182,189]. 

Mechanical forces can influence SMC de-adhesion and migration by directly regulating 

the above factors.  For example, MMP-1 expression is increased in venous SMCs exposed to 

pulse pressure compared to static controls [190], while MMP-2 mRNA levels are increased in 

mouse SMCs exposed to cyclic stretch [191].  In cultured SMCs from human saphenous vein, 

MMP-2 and MMP-9 transcript and protein levels increased when exposed to uniaxial stationary 

strain, but decreased when exposed to uniaxial cyclic strain [192].  Cyclic strain of fibroblasts 

has been shown to increase MT-1 MMP levels [193] and decrease TIMP-1 levels [194].  In 

addition, SMC migration was shown to be regulated by shear stress induced EC signaling [195-

198].  Mechanical forces can influence SMC de-adhesion and migration by directly regulating 

the above factors.  In this study, we provide novel preliminary data that demonstrates for the first 

time that Mig-2 and ILK are mechanically regulated in veins that are subjected to arterial 

conditions, suggesting that these molecules affecting SMC de-adhesion and subsequent 

migration can be mechanically influenced.  In addition, SMC migration was shown to be 

regulated by shear stress induced EC signaling [103,195-199]. 
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1.2.3 Proliferation 

IH has been shown to be associated with increases in SMC proliferation 

[15,37,62,76,98,112,122,123,200-202] and both increases and decreases in apoptosis 

[24,108,124,203-208].  It may seem counter-intuitive that an increase in intimal apoptosis is 

associated with IH, a condition associated with increased cell numbers.  However, it must be 

kept in mind that increases in cell number is but a singular event in the balance that regulates IH.  

That is, though there may be an absolute increase in apoptosis, a greater increase in cell 

proliferation would result in a net increase in cell number.  For these reasons, it is important to 

evaluate both sides of the balance (i.e., both promoting and inhibiting factors) when assessing 

proliferation. 

Proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-

mediated dUTP-biotin in situ nick end labeling (TUNEL) have been used to label proliferating 

and apoptotic cells, respectively, within intact AVGs, both in vivo [209], and in vitro [210].  Cell 

proliferation and apoptosis are simultaneous processes that occur within the adventitia and media 

of the vein during the first week following grafting, however this balance is thereafter disrupted 

with proliferation rates increasing over rates of apoptosis [209].  The level of proliferation within 

the media and neointima of stenosed aortocoronary bypass grafts excised upon re-operation has 

been shown to be significantly higher than non-stenosed controls [211].   

Increased wall stress has been associated with AVG IH [37,145,205,212], and this may 

be a direct result of a mechanical regulation of SMC proliferation, and apoptosis.  For example, 

venous SMCs have been shown to increase their proliferation compared to arterial SMCs when 

exposed to arterial levels of cyclic stretch [212,213].  Liu et al. showed via bromodeoxyuridine 

staining and TUNEL analysis that mechanical stretch due to arterial hemodynamics induces cell 
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death, which possibly mediates subsequent cell proliferation in a rat AVG model [108].  Predel 

et al. showed that pulsatile stretch stimulates SMC proliferation in saphenous veins, but not 

internal mammary arteries, and may contribute to venous bypass graft disease [212].  When 

veins are transposed to the arterial circulation they undergo an increase of luminal shear stress in 

addition to intramural stress. Indeed it has been shown that a combination of increased shear 

stress and cyclic stretch imposed on cultured SMCs activates PDGF receptor alpha [214]. 

Several growth factors have been implicated as key components in the hyperplastic 

response of vein grafts.  Transforming growth factor beta (TGF-β) appears to be of particular 

importance [121-125].  For example, Wolf et al. demonstrated that systemic administration of 

antibodies against TGF-β significantly reduced the development of IH in a rat model [215].  

Platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) also appear to 

be primary factors involved in IH associated SMC proliferation [216,217].  For example, PDGF 

causes a dose dependent proliferation response in cultured SMCs [218], while TGF-β inhibits 

proliferation [219].  bFGF released from dead and damaged cells of autologous vein grafts 

promotes SMC proliferation [220].  mRNA levels of PDGF transcripts as well as numbers of 

proliferating cells were found to be highest in the neointima of porcine vein grafts [221].  While 

growth factors clearly play a role in IH, MMPs have also been shown to be critical for the 

development of arterial lesions by regulating SMC proliferation [183,222], while TIMPs have 

been shown to promote apoptosis of SMC [223]. 

1.2.4 Remodeling 

Vascular remodeling typically refers to a change in the morphology or microstructure of a blood 

vessel in response to changes in the biomechanical environment [80,224].  It is believed that this 
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occurs as an attempt by the tissue to restore biomechanical homeostasis (i.e., to return to normal 

levels of shear and wall stress).  In the case of AVGs, IH is a pathological form of remodeling 

that includes increased intimal thickness caused by SMC migration and proliferation [15,37,200], 

increased intimal apoptosis [24,203,204,207,208], sclerosis of the intima and media due to 

increased ECM deposition, and hypertrophy of the medial and adventitial SMCs [30]. 

Vascular cells produce the ECM components such as collagen and elastin.  The 

phenotypic modulation of SMCs associated with vein grafting has been shown to alter ECM 

synthesis characterized by increasing collagen type I and elastin production [130,131].  Veins 

used as arterial bypass grafts undergo an alteration of their ECM components [225], which can 

result in a loss of lumenal area and eventual occlusion [15,226].  An alteration in matrix 

synthesis directly leads to increased collagen content in the hyperplastic neointima during the 

first week after injury resulting from balloon angioplasty [227].  In addition, AVGs that undergo 

this hyperplastic remodeling exhibit decreased compliance as compared to fresh veins [228], 

which can contribute to their failure [229,230].   

1.3 CHANGES IN MECHANICAL PROPERTIES OF VEIN GRAFTS DUE TO 

ARTERIALIZATION 

When grafted into an arterial environment in vivo, veins remodel in response to the new 

mechanical environment, thereby changing their mechanical properties and potentially impacting 

their patency as bypass grafts.  Gusic et al. suggested that the mechanical environment effects 

changes in vessel size, as well as the nature of the remodeling, which contribute to altering vein 

mechanical properties [231]. 
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The degree of AVG distension is directly related to its mechanical properties, which, in 

turn, is related to patency rates according to Davies et al. [229,230], who reported lower patency 

rates of less compliant AVGs in peripheral bypass surgery.  This reduced patency has been 

largely attributed to compliance mismatch between the AVG and the native artery to which it is 

grafted [18,232,233].  Veins are inherently less compliant than arteries [234] and become even 

less compliant upon abruptly exposed arterialization [235].  It appears as though change in AVG 

compliance is an important predictor of AVG failure. 

In the arterial pressure range an AVG is essentially a rigid tube due to the degree of its 

over distension [236].  To confirm this we performed a pressure ramping experiment on a freshly 

excised PIJV segment.  The results of this experiment are shown in Figure 1.3.  It can be seen 

that the vein reaches maximum distension at approximately 30 mmHg.  Consequently, at arterial 

levels of pressure a vein is very stiff and behaves like a rigid tube with no radial excursions in 

response to pulsatile arterial pressure.  We hope to counteract this phenomenon by providing 

temporary external structural support with an elastic biodegradable adventitial wrap. 

 

 

  17



 

 

 

Figure 1.3 Pressure vs. diameter response of a porcine internal jugular vein segment. 

1.4 PREVIOUS ATTEMPTS TO WRAP ARTERIAL VEIN GRAFTS 

The concept of perivascular placement of a wrap to deliver support to AVGs is not new.  

However, we believe that all the previous approaches had rate-limiting barriers to clinical 

translation, and that our approach using an electrospun biodegradable polymer addresses these 

limitations.  

The use of an external sheath around vein grafts was first described by Parsonnet et al. 

[50].  They showed that the sheath prevented dilatation, that it was well accepted by the host 

tissue, and that there was no difference in the tensile strength between supported and non-

supported vessels [50].  Karayannacos et al. showed reduced thrombosis and sub-endothelial 
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proliferation in AVGs with both loose and tight fitting Dacron mesh sheaths compared with 

unsupported control grafts [44].  Mehta et al. demonstrated that placement of an external, 

macroporous, nonrestrictive, polyester stent reduces neointima formation in porcine vein grafts 

[49].  More recently, polytetrafluoroethylene sheaths were used to permanently restrict AVGs 

from expansion under arterial pressure and this led to reduced IH formation in a pig model [47].  

Clinical translation of permanent mechanical support to AVGs has not yet been reported, most 

likely due to the unfavorable inflammatory response to biodurable synthetic materials in vascular 

applications [237,238].  This limitation motivated Vijayan et al. and Jeremy et al. to use a 

polyglactin based biodegradable sheath to reduce IH in AVGs [43,51,52].  The noted beneficial 

effects included enhanced neo-vasa-vasorum development over unwrapped controls [51].  

However, these biodegradable sheaths were loose-fitting and allowed the AVGs to expand to 

their maximum diameters under arterial pressure, and thus did not offer mechanical support 

against the increased level of CWS.  Prior to the approach used by Vijayan et al. [51,52] and 

Jeremy et al. [43], Huynh et al. used a temporary external collagen tube support to reduce IH 

formation in rabbit vein grafts [42].  These collagen tubes were also non-restrictive, and no 

mention of the degradation kinetics was reported [42].  It has been reported, however, that 

electrospun cross-linked collagen degrades very rapidly in an aqueous solution [239] and hence 

the structural support offered to AVGs by sheaths made of collagen alone may be too temporary 

to be effective over the long-term.  An external AVG sheath developed by Liao et al. was 

designed to degrade at a desired rate in order to transfer CWS to an AVG gradually over time 

[55].  Poly lactic-co glycolic acid sheets were prefabricated into tubes by wrapping around a 

Teflon rod, and therefore are not customizable to each AVG [55].  That is, as with previous 

approaches the Liao et al. approach allows expansion of an AVG under arterial pressure before 
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delivering any mechanical support.  The degradation kinetics and resulting CWS vs. time profile 

in the sheaths, not in the mid-AVG-wall as described here, were reported [55].  Our approach 

addresses the two major limitations associated with the previous work described above, 

specifically with respect to biodurable and/or non-restrictive external sheaths.   

Delivery of mechanical support to AVGs is but one possibility for an adventitial wrap.  

Other applications could be as a vehicle for the local delivery of biochemicals, drugs, genes, or 

cells.  Kanjickal et al. used a poly(ethylene glycol) hydrogel for sustained local delivery of 

cyclosporine to AVGs, and successfully reduced anastomotic IH development [240].  In another 

study, Cagiannos et al. used a polytetrafluoroethylene sheath to locally deliver rapamycin 

(sirolimus) to AVGs, and effectively reduced anastomotic IH in a pig model [241].  More 

recently, Kohler et al. used a biodegradable mesh to deliver paclitaxel to effectively reduce IH at 

the graft-vein anastomosis in a sheep model of dialysis access [46].  Such activities could 

theoretically be incorporated using the electrospun polymer wrap technique, with the potential to 

control the delivery rate to some extent by tuning the degradation rate of the electrospun polymer 

wrap. 

To our knowledge, delivery of cells via a biodegradable AVG wrap/sheath has not been 

previously reported and hence this possible future application of the adventitial wrap would be 

novel. The polymer that was used here has been characterized [57], and successfully micro-

integrated with viable SMCs [242], and would lend itself to this potential future application.    
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1.5 SUMMARY 

The autogenous saphenous vein remains the graft of choice for both coronary (500,000 annually) 

and peripheral (80,000 annually) arterial bypass procedures.  Failure of AVGs remains a major 

problem, and patients with failed grafts will die or require re-operation.  IH accounts for 20% to 

40% of all AVG failures.  It is believed that IH is triggered by abrupt exposure of AVGs to the 

harsh new biomechanical environment of the arterial circulation and the elevated levels of CWS 

associated with the arterial system (140-fold increase compared to native venous conditions).  

The working hypothesis of the current study is that the IH response may be reduced or 

eliminated by more gradually exposing AVGs to arterial levels of CWS.  That is, if an AVG is 

given an ample opportunity to adapt and remodel to the stresses of its new environment, cellular 

injury may be reduced, thus limiting the initiating mechanisms of IH. Clearly, developing a 

reliable means to prevent the early events of the IH process would contribute significantly to 

improvements in the clinical outcome of arterial bypass procedures.  Therefore, the long-term 

goal of this work is to develop a new mechanical conditioning paradigm, in the form of a peri-

adventitially placed, biodegradable polymer wrap, to safely and functionally “arterialize” AVGs 

in situ.     

Several of the molecular signals outlined in Section 1.2, and the rationale for selecting 

them as endpoints for this study, are summarized in Table 1.2. 
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Table 1.2 Summary of and rationale for the chosen endpoints in this study.  

 

 

Proposed 
endpoints in this study Role in IH Rationale supported by the literature 

Golgi Complex Phenotypic modulation 
Protein Synthesis 

Increased quantities in synthetic vs. 
contractile SMCs [156,166,167] 

PCNA Proliferation 
Increased cell proliferation in abruptly-
exposed AVGs [209,210].   
 

TUNEL Apoptosis Altered apoptosis in abruptly-exposed 
AVGs [206,243] 

Compliance Clinical Performance 

Important predictor of AVG patency 
[229]. Compliance decreases in abruptly 
exposed arterialized AVGs, thereby 
increasing compliance mismatch [235] 

Stiffness Clinical Performance 

Important predictor of AVG patency 
[229].  Stiffness increases in abruptly 
exposed arterialized AVGs and could 
contribute to reduced clinical 
performance [234,235] 

 

1.6 SPECIFIC AIMS 

The research described above characterizing the mechanopathobiology of IH in AVGs led to the 

formation of the following two hypotheses: 

Hypothesis 1: Compared to an acute, abrupt exposure of veins to pulsatile arterial levels of 

CWS, a gradual exposure results in a reduced hyperplastic response. 
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Hypothesis 2: A biodegradable polymer wrap can be placed peri-adventitially on AVGs and 

tuned to provide, in situ, the mid-AVG-wall CWS vs. time profile (henceforth referred to as 

“CWS profile”) necessary to achieve a reduced hyperplastic response in preclinical models. 

To address these hypotheses, both our laboratory’s well established, validated ex vivo 

vascular perfusion system (EVPS) as well as appropriate animal models were utilized.  

Specifically, our aims were as follows: 

Specific Aim 1: Design and construct a closed-loop paired EVPS with the capacity to simulate 

and maintain, using feedback control, either physiologic arterial CWS or shear 

stress waveforms.  Related to this: 

Specific Aim 1.i: Develop the optimum state-space (SS) and transfer function 

(TF) representations of the pressure and flowrate generation capabilities within 

our EVPS using subspace system identification (SYSID).   

Specific Aim 1.ii: Develop a proportional, integral and derivative (PID) control 

system for regulating the physiologic CWS or shear stress waveforms imposed 

on vessels implanted into our EVPS. 

Specific Aim 2: Establish a CWS profile necessary to achieve a reduced acute hyperplastic 

response by freshly-excised vein segments perfused ex vivo under 

incrementally-imposed compared to abruptly-exposed arterial conditions.  

Specific Aim 3: Tune the biodegradation rate of an electrospun polymer adventitial wrap so as to 

achieve a desired CWS profile in wrapped AVGs exposed to arterial conditions. 

Specific Aim 4: Evaluate the mitigating effect of the adventitial wrap from Specific Aim 3 on 

the hyperplasic response of AVGs implanted as carotid interposition grafts in a 

preclinical model.   
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The research project detailed in this dissertation was derived from four distinct ongoing 

areas of research in Dr. Vorp’s laboratory:  i) development of a well-controlled EVPS; ii) 

investigation of the mechanopathobiological response of intact vascular tissue to well controlled 

biomechanical stimuli; iii) histological studies of vascular tissues; and iv) in vivo vein grafting 

experiments to study IH.  The portion of the work devoted to development of a new generation 

EVPS (Specific Aim 1) consisted of first re-designing the old bench-top system so that it could 

be placed into a laminar flow hood in order to maximize sterility for longer term experiments. 

Next, accurate modeling of the pressure and flowrate generation capabilities within the EVPS 

(Specific Aim 1.i) was achieved.  Once the mathematical models of the EVPS were obtained, 

individual PID controllers for CWS and lumenal shear stress were developed (Specific Aim 1.ii).  

The development of the new generation EVPS was performed in tandem with the ex vivo 

vascular perfusion experiments of Specific Aims 2 and 3.  These ex vivo perfusion experiments 

were performed using the previous generation EVPS.  Manual adjustment of the EVPS 

parameters allowed us to generate two CWS profiles.  These two profiles were used in an 

attempt to determine the beneficial effects, in relation to the acute hyperplastic response by 

AVGs, of gradual vs. abrupt exposure to arterial biomechanical conditions (Specific Aim 2).  

The next step was to try and mimic the CWS profile, achieved manually in Specific Aim 2, via 

tuning the biodegradation rate of an adventitially placed electrospun polymer wrap (Specific 

Aim 3).  The final stage of the work presented in this dissertation was to evaluate the beneficial 

effects, vis á vis IH development, of a tuned biodegradable electrospun polymer wrap using a pig 

model of peripheral arterial bypass grafting (Specific Aim 4). 

The goal of this study was to show that gradual vs. abrupt exposure of AVGs to arterial 

levels of CWS attenuates their hyperplastic response.  A major hurdle to overcome in this work 
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was to find a means to achieve this “conditioning” paradigm in situ.  The answer to this need was 

to use a tunable electrospun biodegradable polymer wrap to provide temporary mechanical 

support to veins intended for use as AVGs.  Although the in vivo vein grafting experiments, 

performed as part of this study, were purely “proof of concept” in nature, our results provide a 

framework to build upon in developing this approach.  We used the tunability of the wrap 

degradation rate to provide temporary mechanical support to AVGs, however, delivery of 

biochemical (drugs) and biological (cellular) support are two additional applications that could 

be achieved using the same approach.  Delivery of these modes of support to AVGs may 

facilitate arterialization instead of the inevitable stenosis due to IH.   

While the original research plan included a rigorous evaluation of all the IH related 

endpoints listed in this section, quantification of the protein and gene expression levels for 

filamentous actin, smoothelin, h-caldesmon, smooth muscle myosin heavy chain, TN-C, TSP, 

SPARC, Mig-2, ILK, Golgi complex, MMPs, TIMPs, TGF-β, PDGF, bFGF, collagen, and 

elastin proved to be experimentally difficult and troubleshooting those experimental techniques 

was beyond the scope of this work.  A description of the experimental difficulties, the 

preliminary findings, and recommendations to overcome those obstacles can be found in 

Appendix D.  The rest of the dissertation will focus specifically on the endpoints outlined in 

Table 1.2. 
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2.0  EX VIVO VASCULAR PERFUSION SYSTEM 

Most of what is known about vascular mechanopathobiological responses has been derived from 

either cell culture or in vivo models.  However, two-dimensional cell culture models may not be 

effective for extending predictions on cell behavior to more physiologic three-dimensional 

cellular environments.  Similarly, animal models introduce unpredictable biomechanical stresses.  

For example, deformations of a vein graft due to an animals’ natural movement may influence 

the cellular responses of interest within the tissue.  Another disadvantage of in vivo vein graft 

models is the effects caused by unpredictable neurohormonal stimuli.  For these reasons we 

believe that a precisely controlled EVPS offers the advantage of being able to measure intact 

vascular tissue responses without concern for confounding experimental conditions. 

2.1 HISTORY OF EX VIVO VASCULAR PERFUSION 

The precise simulation of arterial biomechanical conditions is of great importance in the field of 

vascular research.  Our laboratory’s well established, validated EVPS has been used for over two 

decades to study the mechanopathobiological responses of intact blood vessel segments to 

accurately simulated physiologic biomechanical signals [3,39,244-249].  The EVPS used in this 

study has gone through several iterations to improve its functionality and is described in detail 

below. 
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The concept of ex vivo perfusion was originally investigated in the 1930s by aviator 

Charles Lindbergh in collaboration with vascular surgeon and Nobel laureate Dr. Alexis Carrel.  

Their system was designed to examine whether or not, and for how long, organs (including blood 

vessels) could be maintained outside the in vivo environment [250].  The EVPS used in this 

study has gone through several design iterations to improve its functionality and diversity 

[3,39,244-247]. The previous generation EVPS, upon which the current design was based, is 

shown schematically in Figure 2.1. 

 

 

 
 

 

Figure 2.1 Schematic of the closed-loop perfusion/organ culture system.  The loop is composed of a Biomedicus 
centrifugal pump that provides pulsatile pressure and flow (A), a heat exchanger (D), a tissue-housing chamber (C), 
proximal (B1) and distal (B2) pressure transducers, a variable resistance valve (E), flow probe (F), collection 
reservoir (G), and vessel bypass (H).  Components not shown include, adventitial bath loop, He-Ne laser 
micrometer, and data acquisition system. See Labadie (1996) et al. for more detail [3].   
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Several other groups have designed specialized EVPSs for studying biochemical 

responses of blood vessel segments to imposed biomechanical stresses.  One of the earliest 

systems was one designed by Badimon et al. [251].  Their system could generate physiologic 

arterial levels of shear stress and shear rate and was used to assess thrombogenicity related 

endpoints [251-255].  Other systems have been reported which were designed without the ability 

to accurately simulate the higher frequency content of the physiologic arterial pressure or 

flowrate waveforms.  They instead were designed to generate certain desired static [256-260] or 

oscillatory [81,142,261-270] signals for the purpose of estimating the biomechanical properties 

of blood vessel segments. 

2.2 LIMITATIONS OF PREVIOUS SYSTEM DESIGNS 

This study will address the limitations identified by our laboratory through years of experience in 

using the previous generation EVPS designed by Labadie et al. [3]. First and foremost, the 

system existed in a “bench-top” configuration, which meant that when the tissue housing 

chamber or perfusate reservoir were opened, the culture media inside was exposed to room air.  

We found that this was the major source of contamination for long-term perfusion experiments 

since both the tissue chamber and reservoir quite often were opened in order to add media to the 

bathing and perfusate loops, respectively, to fix leaks that developed from an implanted blood 

vessel, to take media samples for blood gas measurements and to make temperature 

measurements.  Secondly, a catastrophic event that necessitated supervised perfusion 

experiments was the development of a leak within an implanted blood vessel.  This has occurred 
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several hours into an experiment and without warning.  Response to a leak had to be immediate 

since the finite volume of perfusate rapidly emptied into the tissue housing chamber.  

2.3 TECHNICAL IMPROVEMENTS TO CURRENT EVPS 

Four significant modifications were implemented within the latest generation of our EVPS:  1) 

Miniaturization for placement within a class II biosafety cabinet; 2) implementation of safety 

precautions that allowed the EVPS to be left unattended for short periods of time; 3)  

implementation of self-sealing sampling ports and inline thermistors for measuring the blood 

gasses and temperature, respectively, of both the perfusate and bathing media;  and 4) 

development of a PID algorithm to achieve feedback control over the CWS or luminal shear 

stress waveforms imposed on implanted vascular segments.  Having precise control over the 

CWS and shear stress generation by our EVPS could help to facilitate the measurement of 

pathobiological-related molecular responses to physiologic vascular biomechanical stimuli. 

2.3.1 Detailed Description of EVPS Flow Circuit Components 

The EVPS consisted of two separate perfusion circuits to facilitate paired experiments.  A 

schematic of one of the perfusion circuits can be seen in  

 

Figure 2.2 and a photograph of both circuits is shown in Figure 2.4. Also, certain 

components are shown in Figure 2.5.  Improvements were made to the previous generation 

EVPS (seen in Figure 2.3) in order to create a self-contained bioreactor to minimize user 
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intervention (and hence reduce chances of contamination).  This included development of online 

control of physiologic arterial pressure and flowrate within the system.  The bulk flow was 

generated using a Masterflex L/S computerized roller pump (Model 7550-30, Cole Parmer 

Instrument Co., Bunker CT;  

 

Figure 2.2(3) and Figure 2.5(a)).  A pulse dampener (Cole Parmer Instrument Co., 

Bunker CT;  

 

Figure 2.2(4) and Figure 2.5(b)) was added downstream to remove the high frequency 

perturbations generated by the roller pump.  Higher frequency components of the physiologic 

arterial pressure and flowrate waveforms were generated using a custom-built piston/cylinder 

device (Figure 2.5(c)).  Figure 2.6 is a close-up photograph of this device the components of 

which are held together with a custom-built frame (Figure A. 1 to Figure A. 5 in Appendix A 

and Figure 2.6(a)).  A voice coil (Model LA25-42-000A, BEI Kimco Magnetics Division Co., 

Vista, CA; Figure 2.6(b)) acted as a linear actuator and was coupled to a custom built stainless 

steel shaft (Figure A.6 in Appendix A and Figure 2.6(c)).  The shaft was supported by a linear 

bearing (Model NP-4, Nook Industries, Cleveland, OH; Figure 2.6(d)).  At the end of the shaft, a 

small black disk was attached and acted as the piston head (Figure A. 7 in Appendix A and 

Figure 2.6(e)).  The piston head was then attached to a rolling diaphragm (Model 4-100-(81)-81-

C-B-J, Bellofram Co., Newell, WV; Figure 2.6(f)) that provided a water-tight seal as well as 

facilitated frictionless motion of the piston head within the cylinder (Figure A. 8 in Appendix A 

and Figure 2.6(g)). 
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A one-way valve (Model V24300VG, Star Micronics Inc.; Figure 2.5(d)), was placed 

between the pulse dampener and the piston to inhibit the flow or pressure from the piston to be 

dissipated by the pulse dampener.  Based on the accepted standard equation [271] relating 

entrance length, diameter, and Reynolds number (length/diameter = 0.06*Reynolds number , 

using physiologic Reynolds number < 200), stainless steel cannulae were designed 30 cm in 

length (Figure A. 9 to Figure A. 11 in Appendix A and Figure 2.4) to ensure fully developed 

flow to the implanted blood vessel segments.  Previous calculations by Brant et al. have 

demonstrated that this length is sufficient to achieve fully developed flow in a previous 

generation EVPS [244].  Ports mounted on the cannulae allow for proximal and distal 

measurement of perfusate pressure.  The mean systemic resistance was adjusted using an inline 

needle valve flow resistor (Model EW-06393-80, Cole Parmer Instrument Co., Bunker, CT) 

placed downstream of the distal cannula just before the fluid reservoir (Figure 2.5(e)) which 

completed the closed-loop system. 
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Figure 2.2 Schematic of one loop of the paired perfusion system.  Note that there are two separate closed loops: the 
perfusate loop and the adventitial bathing loop.  The components comprising both loops are: (1) perfusate reservoir; 
(2) metal heat exchanger tubes inside water baths; (3) roller pumps; (4) pulse dampener; (5) one-way valve; (6) 
piston-cylinder device; (7) vessel cannulae; (8) pressure transducers; (9) tissue housing chamber; (10) inline 
thermistors; (11) self-sealing media sampling ports; (12) ultrasonic flow transducer; (13) needle-valve flow resistor; 
and (14) overflow recirculation line. 

2.3.2 Custom Designed EVPS Components 

Several components of the EVPS were custom designed and machined.  This section will 

describe the design of these components.  Technical drawings of all custom built parts are 

provided in Appendix A.  
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Figure 2.3 Earlier generation paired ex vivo vascular perfusion system. 

 

  33



 

 

 
Figure 2.4 Modifications made to render our earlier generation ex vivo vascular perfusion system more compact so 
that it fits within a laminar flow hood.  Note the stacked vessel housing chambers and single laser micrometer, 
reducing the size of the two independent flow loops. 
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Figure 2.5 Photograph of the components within the closed loop ex vivo perfusion system.  The bulk flow was 
generated using a Masterflex L/S computerized roller pump (a).  A pulse-dampener (b) was added downstream to 
remove the very high frequency perturbations generated by the roller pump.  Higher frequency components of the 
physiologic arterial pressure and flowrate waveforms were generated using a custom built piston/cylinder device (c). 
A one way valve (d), was placed between the pulse dampener and the piston to inhibit the flow or pressure from the 
piston to be dissipated by the pulse dampener.  A fluid reservoir (e) completes the closed loop system.  
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Figure 2.6 A close-up photograph of the piston/cylinder assembly. The components are held together with a custom 
built frame (a).  The voice-coil (b) is coupled to a shaft (c) that translates linearly within the bearing (d).  At the end 
of the shaft, a piston head (e) is connected to a water tight rolling diaphragm (f) that allows the piston head to have 
frictionless motion within the cylinder (g).  The voice-coil is driven by analog signals sent to its own servo- 
amplifier (h).  Also seen are the pressure monitor (i) and the tubing flowmeter (j) used to process and transmit the 
pressure and flow transducer signals, respectively, to the data acquisition system. 
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2.3.2.1 Perfusate Reservoirs 

A standard media reservoir, used in our laboratory with previous generations of the EVPS 

[3,39,248,249,272-274], was employed in each loop of the current paired EVPS design – the 

perfusate reservoir is shown schematically in  

 

Figure 2.2(1), and pictorially in Figure 2.4 and Figure 2.5(e).  Each reservoir consists of a 

plexiglass cylinder (height = 6”, outside diameter = 3.5”, and inside diameter = 2.5”), with 

detachable lids.  Barbed, ¼” normal pipe thread ports were drilled into this generic design.  The 

reservoirs have ports at the following locations: (1) bottom center to allow for perfusate outflow; 

(2) halfway (approximately 3.5”) up from the bottom on either side of the cylinder to allow for 

perfusate inflow and bypass circuit return; (3) approximately 4.5” up from the bottom and on 

either side of the cylinder – one for purging of physiologic gasses and one for media overflow 

return from the tissue housing chamber; and (4) in the center of the lid to allow for gas to escape 

to the atmosphere. 

2.3.2.2 Tissue Housing Chambers 

Two identical tissue housing chambers were designed for the paired EVPS.  These are 

shown schematically in  

 

Figure 2.2, pictorially in Figure 2.4, and in technical drawings in Figure A. 12 to Figure A. 26 

in Appendix A.  A plexiglass frame was used with side-mounted glass viewing panels.  A 

detachable lid allowed easy access for implantation of blood vessels into the mounting fixture.  

The mounting fixture for the stainless steel cannulae facilitates positioning to accommodate 

blood vessels ranging from 1 to 20 cm in length.  The glass viewing panels allow visualization of 
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the specimen and scanning with a helium-neon laser micrometer, described below. The panels 

are offset at an angle of 5◦ to prevent reflection of the incident laser beam.  To secure a blood 

vessel to the mounting fixture, the lid is opened and the cannulated (using duck billed vessel 

cannulae) vessel segment is slid onto the proximal and distal stainless steel cannulae. 

2.3.3 EVPS Instrumentation 

2.3.3.1 Maintaining Biophysical Homeostasis 

To eliminate the need for opening the perfusate reservoir and tissue housing chamber for 

sampling media or making temperature measurements, we incorporated the use of self-sealing 

sampling ports (Model IN4000, B. Braun Medical Inc., Bethlehem, PA) and inline Luer-

thermistors (Model CXTL, Terumo Co., Tokyo, Japan), respectively. 

A handheld thermistor logger (Model 93210-50, Cole-Parmer Instrument Co., Bunker, 

CT) was used to read and record the temperature of the perfusate and bathing media.  

Temperature was maintained in each loop by using “heat-exchangers” formed by a 30 cm long 

stainless steel tube placed into a standard water bath (Model 51221052, Thermo Electron Co., 

Marietta, OH) just downstream of the pumps.  The water bath was set so that the media in 

contact with the tissue was at physiologic temperature (37±1.5 oC). 

A 21 gauge needle was used to sample the media for subsequent blood gas analysis (pH, 

pO2 and pCO2).  Blood gasses were maintained at physiologic levels by mixing 5% CO2 with 

room air.  This gas mixture was then humidified using a clinically approved humidifier (Model 

002620, Allegiance Healthcare Co., Salt Lake City, UT.).  The humidified gas then passed 

through a sterile 0.2 μm filter (Model 4251, PALL Co., East Hills, NY.) before being purged 

over the media.  The flowrate of each gas was controlled with a ball-float type gas flow meter 
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(Model S28A, Dwyer Instruments Inc., Michigan City, IN).  Blood gas content (pO2, pCO2, and 

pH) was measured using a blood gas analyzer (Model ABL5, Radiometer Copenhagen, West 

Sussex, UK). 

Control of both the blood gas content and temperature of the perfusate and bathing media 

was essential for maintaining tissue viability.  The recordings of pH, pO2, pCO2 and temperature 

for several (N=18) 24 hour ex vivo perfusion experiments are shown in  

Figure 2.7.  The panels on the left represent perfusate measurements, and the panels on 

the right represent adventitial bath media measurements.   
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Figure 2.7 Blood gas and temperature control measurements made within our EVPS for several (N=18) 24 hour ex 
vivo perfusion experiments.  The panels on the left are perfusate measurements and the panels on the right are 
bathing media measurements.  Please note that measurements were recorded hourly. 
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2.3.3.2 Pressure Measurement 

We utilized two pressure transducers (Model TJE, Honeywell – Sensotec Co., Morristown, NJ), 

placed equidistant upstream and downstream of the vessel center in order to measure 

intraluminal pressure.  The pressure in the center of the vessel was then calculated as the average 

between the proximal and distal pressure transducer measurements as has been done previously 

[3,39,248,249,273,275].  The pressure transducers sent signals to a pressure monitor (Model 

SC2000, Honeywell – Sensotec Co., Morristown, NJ) that supplied an analog signal to the data 

acquisition (DAQ) system. 

2.3.3.3 Flow Measurement 

Flow within the closed-loop was measured by an ultrasonic flow transducer (Model 4N32, 

Transonic Systems, Ithaca, NY) and flow meter (Model T110, Transonic Systems, Ithaca, NY).  

The flow meter generated an analog output signal which was sent to the DAQ system. 

2.3.3.4 Blood Vessel Outer Diameter Measurement 

Another significant component of the EVPS was the helium-neon laser micrometer (Model 162-

100, Beta Lasermike Co., Dayton, OH), which was used to make non-contacting, continuous 

outer diameter measurements of implanted blood vessel segments while they were being 

perfused.  The laser was powered and controlled by an “Intellipak” processor (Model 83744, 

Beta Lasermike Co., Dayton, OH) which also provided an analog signal to the DAQ system. 

2.3.3.5 Analog Input and Output Capabilities 

The DAQ system consisted of a Pentium III personal computer that was equipped with a DAQ 

card (Model PCI-MIO-16XE-10, National Instruments Co., Austin, TX) that had both high 
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frequency analog input and analog output capability.  The DAQ card was connected to a shielded 

connector block (Model 776844-01, National Instruments Co., Austin, TX) via a 68 pin shielded 

cable (Model 184749-01, National Instruments Co., Austin, TX).  All analog input and output 

signals were received and transmitted from the system via the shielded connector block. 

2.4 SUBSPACE SYSTEM IDENTIFICATION OF EVPS 

To achieve precise simulation of physiologic arterial hemodynamic waveforms from an EVPS, 

one must first select pumping components with a bandwidth capable of reproducing all the 

harmonics contained in these waveforms.  Secondly, the most accurate mathematical 

representation of a system will facilitate the design of the most accurate controller for that 

system.  EVPSs described to date have not achieved the ability to generate hemodynamic 

waveforms containing all the frequencies that are known to makeup physiologic hemodynamic 

waveforms.  The selection and rigorous mathematical modeling of our pumping components has 

provided us with an EVPS that has a bandwidth capable of generating physiologic hemodynamic 

signals.  

An application such as an EVPS is no different than most engineering applications in that 

one must “trade-off” model complexity versus accuracy.  A complex model will lead to a 

complex design, while a simplistic model will deteriorate the overall performance and stability of 

the final implementation.  The best model for simulation (for example, a set of partial differential 

equations which accurately model the system behavior) is not typically the best one for control 

of an EVPS since the complexity of a controller and the degree of difficulty associated with its 

implementation are directly proportional to the model complexity.  Analytical models rarely 
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match well with physical systems and usually require a considerable amount of “tweaking” to 

work properly when used with control systems.  A more empirical approach is required to 

generate accurate simulation models for control system design [276].  All approaches to model 

building require that one have in mind a model order, which is usually increased for stability.  A 

more robust alternative to classical techniques, such as frequency and transient response 

methods, is to use system identification to build linear simulation models of linear-time-invariant 

systems. 

The concept of “system identification” was introduced in 1962 by Zadeh [277].   To 

paraphrase, “identification is the determination, on the basis of input and output, of a system 

within a specified class of systems, to which the system under test is equivalent”.   In the early 

1990s a new method for mathematically modeling dynamical systems, directly from input and 

output data, known as subspace state space system identification (SYSID), originated by 

combining concepts from the fields of system theory, geometry and numerical linear algebra 

[278]. 

The output of the Numerical algorithm for Subspace State Space System IDentification 

(N4SID) is a state space (SS) model of a dynamic system based on input and output data, 

requiring only specification of the system order [279,280].  An advantage of this technique is 

that the system order can be estimated by examining the singular values of a matrix that is 

calculated during the identification process as the product of the extended observability matrix 

and the state sequence [278-280].     

The specific purpose of the work described in this section was to use N4SID to generate 

SS models of the flowrate and pressure generation capabilities within our EVPS for 

implementation into a feedback controller design. 
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2.4.1 SYSID Experiments 

An important aspect of the theory behind the SYSID algorithm is for the exciting signals to be 

spectrally dense [277-282].  Ideally, one would like to excite the system to be identified with a 

zero-mean white noise signal.  In practicality, however, such signals may not be feasible to 

implement as was the case with our EVPS.  For the SYSID experiments described in this study, 

physiologic arterial pressure and flowrate waveforms each containing ten harmonics were used 

to excite the system.  These waveforms can be seen in Figure 2.8.  Spectral analysis of the 

measured waveforms indicated power content up to 10 harmonics.   

 

 

 

 

 
Figure 2.8 Physiologic arterial pressure (A) and flowrate (B) waveforms recorded from the aorta of a 45 Kg pig 
using a 150 Hz sampling frequency. 
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Separate sets of SYSID experiments were performed to identify the SS models 

representing the pressure and flowrate generating capabilities of the EVPS.  For both sets of 

experiments the sampling frequency (Fs) was set to 150 Hz.  The duration of each experiment 

was 60 seconds (60 waveforms), yielding a total of 9000 measured data points.  Additionally, 

both sets of experiments were repeated five times (N=5) to demonstrate the reproducibility (via 

calculation of the standard deviation) of the model fit results.  In order to better understand the 

interrelated dynamics of the pumping components within the EVPS, both the pressure and 

flowrate SYSID experiment sets were further subdivided into the SYSID of the roller pump 

alone and the SYSID of the series combination of the roller pump and piston.  Two simple 

programs (simultaneous analog input and output) were written in MATLAB® to drive the roller 

pump and/or piston and to acquire and filter the measured pressure and flowrate signals. These 

MATLAB® scripts can be found in Appendix B.  

All SYSID algorithms consist of two steps [278-280,282,283].  The first step makes an 

orthogonal projection, onto a prescribed plane, of the subspaces generated via the data block 

Hankel matrices.  This is followed by a singular value decomposition to find an estimate of the 

extended observability matrix and an estimate of the states of the unknown system [278-280], 

which completes the first step.  The second step then retrieves the system matrices from either 

the extended observability matrix or the estimated states using a least-squares approach [278-

280].  The different SYSID algorithms have been automated and included as part of the SYSID 

toolbox in MATLAB®.  SS models were estimated directly from our input and output data. 

To generate the discrete time SS model of the pressure generated by the roller pump, a 

step voltage input was used, and the resulting pressure in the system was measured.  After being 
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imported, the data were preprocessed by selecting the first one third of the data for estimation 

and the remaining two thirds for validation.   

The N4SID algorithm was chosen because it provided the best results after comparing the 

model fits.  Other algorithms that were tried include the Multivariable Output-Error State sPace 

(MOESP) [282] and Canonical Variate Analysis (CVA) [283] algorithms.  All of these 

algorithms output SS models of the form: 
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Models of up to 10th order were considered, and the focus of the identification was to 

minimize prediction errors.  The resulting SS model was then converted into a discrete-time 

transfer function (TF) using a zero-order-hold transformation.  The TFs were then factored into a 

“Zero-Pole-Gain” (ZPK) model.  The model then had the form: 
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where H  is the system output divided by the input (as with a TF), z and p are the vectors of real- 

or complex-valued zeros and poles, and k is the real- or complex-valued scalar gain.  Note that a 

ZPK model is a factored TF. 

The zeros, poles and gains from the five SYSID models were then averaged to yield an 

average ZPK model.  This average ZPK model was then converted back into TF form: 
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where and are the numerator and denominator polynomial coefficients, respectively, of the 

discrete-time TF.  This is an averaged TF, representing the pressure generated by the roller pump 

divided by its input, and will henceforth be referred to as HRP,p. 

a b

The same procedure was performed for the series combination of the roller pump and 

piston pump except that a step voltage input was sent to the roller pump and a 1 Hz (60 beats per 

minute) physiologic arterial pressure waveform (seen in Figure 2.8(A)) input was sent to the 

piston pump.  The resulting average TF will henceforth be referred to as HRPP,p.  Please note that 

the input combination used to generate HRPP,p, yielded the optimum TF representing the pressure 

generation capabilities of the roller pump and piston in series.  The same is also true for the other 

identified TFs.  That is, the different input signals that were ultimately used to drive the pump(s) 

yielded the optimum respective TFs.  

To generate the SS model of the flowrate generated by the roller pump, a 1 Hz (60 beat 

per minute) physiologic arterial flowrate waveform (seen in Figure 2.8(B)) was input and the 

flowrate in the closed-loop system was measured.  The resulting average TF will henceforth be 

referred to as HRP,f.  The process was repeated for the series combination of the roller pump and 

piston pump using a 1 Hz physiologic arterial flowrate waveform (seen in Figure 2.8(B)) input 
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to both the roller pump and piston.  The resulting average TF will henceforth be referred to as 

HRPP,f. 

The open loop step, impulse and frequency responses of HRP,p, HRPP,p, HRP,f and HRPP,f 

were generated for analysis. 

2.4.2 Statistical Analysis 

The SS model fit, computed as the percentage of the output variation that is reproduced by the 

model to a prescribed input, was calculated using the following equation: 

 

5 

where y  is the measured output,  is the simulated model output and  is the mean measured 

output.  The 
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 symbol is the 2-norm operator that yields the Euclidean length of a vector which 

is defined as the square-root of the sum of the elements of a vector.  The model fit results for 

each identified system are reported as the mean ± the standard deviation of the model fit (of five 

SYSID experiments). 
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2.4.3 Results 

The mean model fits were 94.93±1.05% for HRP,p, 81.29±0.20% for HRPP,p, 94.45 ± 

0.73% for HRP,f and 77.12 ± 0.36% for HRPP,f.  A summary of these results can be seen in  

 

Table 2.1. 
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The step, impulse, and frequency responses for HRP,p, HRPP,p, HRP,f, and HRPP,f can be seen in 

Figure 2.9 and Figure 2.10.  From the step and impulse responses shown in Figure 2.9(A), it 

can be seen that HRP,p has very slow, over-damped and open-loop-stable poles.  The frequency 

response (Figure 2.9(B)) suggests that HRP,p is low frequency and has a bandwidth of 

approximately 0.1 Hz.  Based on the step and impulse responses shown in Figure 2.9(C), HRPP,p 

appears to have much faster, slightly under-damped, but open-loop-stable poles.  The frequency 

response seen in Figure 2.9(D) suggests that HRPP,p has a band pass filter centered at 

approximately 37.5 Hz.  The combination of the roller pump and piston appeared to respond best 

from 10-75 Hz, with respect to pressure generation, making the two components complimentary.  

The piston pump clearly provides the high-frequency content necessary to create the physiologic 

pressure waveform, while the roller pump is necessary for the mean pressure and flow in the 

system. 

Similarly, from the step and impulse responses seen in Figure 2.10(A), it can be seen that 

HRP,f has over-damped and open-loop-stable poles.  The frequency response (Figure 2.10(B)) 

 

 

Table 2.1 Summary of SYSID model fit results. 
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suggests that HRP,f has a bandwidth of approximately 2 Hz but also responds well from 18-30 Hz.  

Based on the step and impulse responses shown in Figure 2.10(C), HRPP,f appears to have 

slightly under-damped, but open-loop-stable poles.  The frequency response seen in Figure 

2.10(D) suggests that HRPP,f has a bandwidth of approximately 15 Hz that is centered about 22 

Hz, with good response also observed at around 70 Hz. Again, the responses of the roller pump 

and piston were complimentary, with respect to flowrate generation, and provided reasonable 

gain from 0-75 Hz.  With a heart rate of 1 to 1.5 Hz the first 10 harmonics would require a 

bandwidth of 10 to 15 Hz, meaning that the system greatly exceeds the bandwidth considered 

necessary for good reproduction of the waveforms. 
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Figure 2.9  (A) The step and impulse responses suggest that HRP,p has very slow, over-damped and open-loop-stable 
poles.  (B) The frequency response suggests that HRP,p is low frequency and has a bandwidth of approximately 0.1 
Hz.  (C) The step and impulse responses suggest that HRPP,p appears to have much faster, slightly under-damped, but 
open-loop-stable poles.  (D) The frequency response suggests that HRPP,p has a band pass filter centered at 
approximately 37.5 Hz. 
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Figure 2.10 (A) The step and impulse responses show that HRP,f has over-damped and open-loop-stable poles.  (B) 
The frequency response  suggests that HRP,f has a bandwidth of approximately 2 Hz but also responds well from 18-
30 Hz.  (C) The step and impulse responses show that HRPP,f appears to have slightly under-damped, but open-loop-
stable poles.  (D) The frequency response suggests that HRPP,f has a bandwidth of approximately 15 Hz that is 
centered about 22 Hz, with good response also observed in the vicinity of 70 Hz. 
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2.4.4 Discussion 

The combined deterministic-stochastic SYSID approach used in this section, in the form of the 

N4SID, yielded accurate mathematical models of our EVPS.  Such models are often used by 

engineers for industrial plants, especially for designing model-based controllers.  We chose the 

N4SID approach since better accuracy was achieved than with any other available approach.   

A precisely controlled EVPS with the capability of imposing and maintaining desired 

hemodynamic conditions can be an important tool for pathobiological studies using intact blood 

vessel segments.  Although several EVPSs with pulsatile pressure and flow generating 

capabilities have previously been described, none to date have shown the ability to accurately 

mimic both physiologic arterial pressure and flowrate waveforms [256,262,265,284-286].  The 

system recently developed by Bergh et al. (2005) reported robust capabilities in that they were 

able to control pressure or flowrate, and they validated their control algorithm with disturbances 

[262].  However, the higher frequency harmonic content of neither the physiologic pressure nor 

the flowrate signals could be generated using the components of their system.  Instead, their 

system was able to generate and control oscillatory, but not physiologically accurate, pressure or 

flowrate signals.  That is, the harmonic content of physiologic pressure or flowrate signals can 

not be generated with their EVPS. 

The implication of the results presented in this study, with respect to controller design, is 

that the system configuration we have chosen will allow us to generate both arterial pressure and 

flowrate waveforms containing all the necessary frequency components of the physiologic 

arterial pressure and flowrate signals.  To our knowledge, SYSID has never been used to identify 

an EVPS or any other type of electromechanical biomedical device.  However, earlier system 

identification methods have been employed over the years for biomedical applications in which 
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this modeling framework has been useful in extracting information from cellular and physiologic 

measurements.  Most recently, applications were in the areas of modeling molecular input and 

output processes within cells [287], predicting clinical parameters from physiologic 

measurements [288], and modeling physiologic systems [289].   

The N4SID approach to SYSID allowed us to obtain the best possible mathematical 

representations of our EVPS.  We feel it was necessary to perform this rigorous analysis of the 

EVPS dynamics in order to ensure that we had indeed designed and built a system capable of 

producing signals with a spectral density equal to or greater than the spectral density of 

physiologic hemodynamic signals.  The ease and accuracy with which the N4SID algorithm was 

able to identify our EVPS lends to the robustness and applicability of this true “black box” 

approach for mathematically modeling dynamical systems.  The models generated in this study 

can now be used for designing either a SS controller, by directly using the models output from 

the N4SID algorithm, or a proportional, integral and derivative controller using the TF model 

representations.   

2.4.5 Conclusions 

Use of the N4SID approach for mathematically modeling our EVPS was a better choice than any 

other available approach.  This may perhaps be the case for other biomedical devices.  The 

complexity of these devices, due to the complexity of the biological systems with which they 

interface, requires that an accurate mathematical representation be used for control system 

design.  This could result in a more precisely controlled and hence more reliable device. 
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2.5 PROPORTIONAL INTEGRAL AND DERIVATIVE CONTROL OF 

CIRCUMFERENTIAL WALL STRESS AND LUMENAL SHEAR STRESS WITHIN 

VEINS IMPLANTED INTO THE EVPS 

2.5.1 Rationale for Control System Architecture 

This section will describe the remaining modifications to the previous generation EVPS, and 

they include: 1) Implementation of safety precautions that allowed the EVPS to be left 

unattended for short periods of time; and 2) development of a PID algorithm to achieve feedback 

control over the CWS or luminal shear stress waveforms imposed on implanted vascular 

segments.  Having precise control over the CWS and shear stress generation by our EVPS will 

help to facilitate the measurement of pathobiological related molecular responses to physiologic 

vascular biomechanical stimuli.   

The PID control algorithm is used for the control of almost all feedback loops in the 

process industries, and is also the basis for many advanced control algorithms and strategies.  In 

order for control loops to work properly, the PID loop must be properly tuned.  For a complete 

description of the PID algorithm and the standard methods for tuning it, the book by Shaw 

(2005) is a comprehensive reference [290]. 

The PID algorithm continues to move the output in the direction that should move the 

process toward the set point until the process reaches the set point. The algorithm must have 

feedback (process measurement) in order to perform properly.  To be able to tune a PID loop, 

each of the terms of the PID equation must be understood.  The tuning is based on the dynamics 

of the process response and will be discussed below. 
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2.5.2 PID Control Algorithm 

The PID control algorithm is made of three basic responses, proportional (or gain), integral (or 

reset) and derivative.  The most basic response is the proportional, or gain, response.  In its pure 

form, the output of the controller is the error times the gain added to a constant known as 

“manual reset”.  The output is calculated as: 

 

Output = E x G + K     6  

 

where: 

Output = the signal to be sent to the process  

E = error (difference between the measurement and the set point) 

G = gain, and  

K = manual reset, the value of the output when the measurement equals the set point. 

The output is equal to the error times the gain plus the manual reset.  A change in the process 

measurement, the set point, or the manual reset will cause a change in the output.  If the process 

measurement, set point, and manual reset are held constant the output will be constant. 

 If we look only at the reset (or integral) contribution from a more mathematical point of 

view, the reset contribution is:  

 

Output = G × Kr × ∫E dt        7 
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where: 

G = gain  

Kr = reset, and 

E = error. 

At any time the rate of change of the output is the gain times the reset rate times the error.  If the 

error is zero the output does not change; if the error is positive the output increases. 

Derivative is the third and final element of PID control.  Derivative responds to the rate 

of change of the process (or error).  The derivative contribution can be expressed mathematically 

as:  

 

Output = G × Kd × dE/dt      8 

 

where: 

G =gain 

Kd =is the derivative setting, and  

E = the error. 

The amount of time that the derivative action advances the output is known as the “derivative 

time”. 

The PID control algorithm used in this study was adapted from the book by Shaw [290].  

The PID equation is: 
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Output = (KrKd+1) ×G × (E+Kr/(KrKd+1) × ∫E dt + Kd/(KrKd+1) × dE/dt)  9 

 

where:  

Kr = the reset rate  

Kd = the derivative setting 

G = gain, and 

E = error. 

Equation 9 was implemented in the MATLAB® programming language and was the core design 

element of the PID control algorithms. 

2.5.3 Transfer Functions 

Rigorous mathematical modeling of our EVPS was performed and is described in detail in 

Section 2.4.  In short, four TFs were estimated, two for a flowrate controller (HRP,f & HRPP,f) and 

two for a pressure controller (HRP,p & HRPP,p), with outputs of pressure (p) and flowrate (f).  In 

each controller, one TF represents a roller-pump (HRP,f & HRP,p), and the second TF represents a 

roller-pump and piston in series (HRPP,f & HRPP,p).  Using the outer diameter and intraluminal 

pressure transducer measurements in combination with HRP,p and HRPP,p, a CWS controller was 

designed.  Similarly, using the outer diameter and flowrate transducer measurements in 

combination with HRP,f and HRPP,f, a shear stress controller was designed. 
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2.5.4 Mid-vein-wall CWS Calculation for Controller 

The specific intent of the EVPS described in this study was for the investigation of 

mechanopathobiological responses of vascular segments perfused ex vivo.  In order to most 

accurately control the stresses imposed onto vascular segments, analytical models were derived 

to calculate the CWS and shear stress within the wall from intraluminal pressure, flowrate, and 

outer diameter measurements.  

The classic Lamé solution (see for example Chandran, 1992 [291]) was employed for an 

open-ended, thick-walled cylinder under internal pressure i  and external pressure .  The 

circumferential stress,

P oP

θσ , at any radius, r, is: 
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We estimated R  the outer diameter ( oR ) laser micrometer measurements.  In order 

to do this, we assumed that blood vessels were incompressible materials and cylindrical in shape.  

For an incompressible material, 

 

=       11 

 

where Vu and Vp refer to the unpressurized and pressurized states, respectively.  For a circular 

cylinder, equation 11  becomes: 
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where  and are the outer and inner radii, respectively, and L is the cylinder length.  So we 

obtained: 
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By substituting equation 13 into equation 10, and assuming that 0=oP  (atmospheric pressure), 

we were able to calculate the CWS in the vascular wall.  It should be noted that equation 10 was 

used to calculate the mid-vein-wall CWS.  That is, the CWS was calculated at 
2

oi RR
r

+
= . 

2.5.5 Lumenal Shear Stress Calculation for Controller 

To calculate the shear stress acting on the vessel lumen we used the Hagen-Poiseuille (see for 

example Nichols et al., 1990 [292]) equation: 
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where μ  is the viscosity of the flowing media (assumed to be equal to water), Q  is the measured 

flowrate and  is the inner radius of the vessel (calculated using equation iR 13 as with the CWS 

calculation). 

2.5.6 CWS and Shear Stress Control Signal Calculations 

We determined the setpoint mid-wall CWS and wall shear stress waveforms in a segment of 

porcine carotid artery (PCA) exposed to a precisely controlled physiologic arterial pressure 

(Figure 2.11(A)) and flowrate (Figure 2.11(C)) waveforms, respectively, within our EVPS.  

Using equations 10 and 13, in combination with the intraluminal pressure and outer diameter 

measurements, the target arterial CWS waveform was calculated.  Similarly, using equations 13 

and 14 in combination with the flowrate and outer diameter measurements, the target lumenal 

shear stress waveform was calculated.  The unpressurized dimensions were measured from rings 

which had been cut, at the time of harvest, proximally and distally to the PCA segment that was 

implanted into the EVPS.  The rings were individually placed into a custom built holder [245] 

that allowed the unpressurized thickness, as well as the unpressurized inner and outer diameters 

to be measured via a helium-neon laser micrometer.  A linear variation in dimensions was 

assumed along the longitudinal axis of the implanted PCA segment so that the dimensions could 

be estimated at any point along the length.  The target waveforms that were calculated (from 

measured porcine pressure and flowrate waveforms) are shown in Figure 2.11. 
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Figure 2.11 (A) Arterial pressure waveform that was used to calculate the circumferential wall stress profile (B).  
(C) Arterial flowrate waveform that was used to calculate the shear stress profile (D). 

 

2.5.7 PID Controller Performance Experiments 

Two separate PID control algorithms were developed using MATLAB®, one for mid-wall CWS 

control and the second for lumenal shear stress control within vascular segments implanted into 

the EVPS.  The MATLAB® scripts for both controllers can be seen in Appendix C.  Using 
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equation 15, the performance of each controller was assessed by calculating the root mean 

square of the error (RMSE) between the desired and measured process variables (CWS or shear 

stress) as:     
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where  is the desired value of CWS or shear stress,  is the calculated value of CWS or 

shear stress, n is the number of data points, and np is the number of parameters.  These 

experiments were run for 60 seconds each and repeated 10 times (N=10).  An average RMSE 

was reported for each PID controller and standard deviations were calculated to demonstrate the 

reproducibility of the results. 

dy my

2.5.8 Implemented Safety Precautions 

As mentioned, the EVPS designed by Labadie et al. [3] could not be left unmanned for more 

than several minutes thus making perfusion experiments very labor intensive.  If a leak 

developed from an implanted blood vessel, the perfusate would empty into the tissue housing 

chamber very quickly.  In order to prevent this from happening, a safety feature was built into 

the EVPS.  In the event of a leak, the system resistance, defined as pressure divided by the 

flowrate, decreased.  The system was made to respond to this drop in resistance by stopping the 

piston pump and slowing the roller pump so that it supplied a minimal flowrate of 20 ml/min 

through the implanted blood vessel segment.  An overflow port was put in place on the tissue 

housing chamber and was connected back to the perfusate reservoir (see dotted line in  
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Figure 2.2) ensuring that the perfusate reservoir never ran dry.  Media that leaked from the 

vessel into the tissue box flowed, via gravity, back to the reservoir.  This did not eliminate the 

need for human interaction to correct a leak.  However, it facilitated leaving the EVPS unmanned 

for short periods of time thus making the perfusion experiments less labor intensive and less 

costly in the event of a leak.  We feel that this safety measure was of extreme importance since it 

also allowed us to respond to a leak with much less trauma to the implanted tissue.  That is, no 

manual adjustments had to be made to the EVPS and the leak could be immediately addressed.   

An experiment was performed to validate the implemented safety precautions.  Briefly, 

the EVPS was set to operate under PID controlled arterial CWS conditions.  To simulate a leak, a 

21 gauge needle was used to create a hole through the wall of an implanted vein segment, which 

triggered the safety precautions to be initiated.  The systemic pressure and flowrate were 

measured, and the total resistance of the system was calculated (as mean pressure divided by 

mean flowrate) during the entire simulation. 

2.5.9 Biological Validation of EVPS 

In order to futher validate our ex vivo vascular perfusion capabilities, we performed preliminary 

tissue viability analysis of vein segments perfused under VEN vs. ART conditions, as described 

in Section 3.1.3.1,  and compared the results to baseline level of tissue viability.  Scanning 

electron microscopy (SEM), hematoxylin and eosin (H&E), Live/Dead™, and TUNEL analyses 

(as described in Section 3.2.6) were performed after 48 hours of ex vivo perfusion.   
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2.5.10 Results 

Figure 2.12 shows several representative waveforms from both the CWS and shear stress 

controller performance experiments.  The “set” CWS and shear stress waveforms are those 

shown in Figure 2.11(B) and Figure 2.11(D), respectively, which were used as control signals 

for the EVPS performance experiments.  The “measured” CWS and shear tress waveforms were 

recorded from the PID controlled EVPS in response to the input control signals.  RMSE values 

for CWS control (0.427±0.027 KPa) indicated that the system was able to generate a physiologic 

CWS waveform within 0.5% error of the peak desired CWS (~100 KPa) over each “cardiac” 

cycle.  RMSE values for shear stress control (0.05±0.0007 dynes/cm2) indicated that the system 

was able to generate a physiologic shear stress waveform within 0.3% error of the peak desired 

shear stress (~18 dynes/cm2) over each “cardiac” cycle. 
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Figure 2.12 Several representative waveforms from the controller performance experiments. The left panel shows 
the measured and set CWS waveforms, and the right panel shows the measured and set shear stress waveforms. 
 
 

 

The plots in Figure 2.13 show the pressure and flowrate measurements, as well as the 

calculated resistance, recorded during an experiment to validate the implemented safety 

precautions.  It can be seen that, in the event of a leak, the piston stopped and the roller pump 

slowed to provide a minimal flowrate of approximately 20 ml/min. 
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Figure 2.13 Leak simulation experiment results.  As desired, in the event of a leak the piston stops and the roller 
pump slows to supply a minimal flowrate of approximately 20 ml/min. 
 
 

 

SEM and H&E staining (Figure 2.14) indicated that the morphologic integrity of the 

tissue was intact after harvesting and after 48 hours of perfusion.  Live/Dead™ and TUNEL 

(Figure 2.14) analyses showed no significant necrosis or apoptosis, respectively, in either the 

VEN or ART conditions when compared to baseline at 48 hours.  This experiment laid the 

groundwork for the rest of the ex vivo vascular perfusion experiments described in this 

dissertation and demonstrated our ability to perform the ex vivo porcine internal jugular vein 

(PIJV) perfusions, with maintenance of sterile conditions and tissue viability. 
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Figure 2.14 The top three panels show representative SEM images of the lumen of baseline control (BASE), 
“venous” 48 hour perfused control (VEN), and “arterial” 48 hour perfused (ART) PIJV segments. Note the 
cobblestone appearance of an intact endothelial cell layer. The second row of panels show representative 
microstructure and live nuclei via H&E staining of each group (200x magnification). The third row of panels show 
representative live (green) and dead (red) cells within each tissue group (200x magnification). Note that there does 
not appear to be an increased level of necrosis in perfused tissue when compared to BASE control tissue. The 
bottom three panels show representative TUNEL assay images of tissue from the same 48 hour perfusion 
experiment (400x magnification under immersion oil). Note that there does not appear to be an increased level of 
apoptosis in perfused tissue when compared to BASE. In all panels the arrow designates the vessel lumen. 
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2.5.11 Discussion 

The purpose of this work was to improve upon the EVPS developed by Labadie et al. [3] by 

addressing some of its limitations.  Maintenance of sterile culture conditions has been achieved 

for durations up to 14 days using a similar EVPS to the one described in this study [275].  These 

capabilities may allow the observation of vascular pathologies such as neointima formation in 

blood vessels perfused ex vivo.  This has been reported to occur within 4 days in an in vivo model 

[171].  Our ability to successfully and reliably (see Figure 2.14) perfuse tissue for long-term 

experiments can be attributed to the improvements made to the previous generation EVPS [3].  

Long-term (e.g., 4 weeks) ex vivo perfusion of intact vascular segments was reported recently in 

the literature [293].  Based on the previous work by Ligush et al., and based on preliminary 

experience with the new EVPS, we feel that our system will meet the challenge when used for ex 

vivo perfusions of extended duration, and will simply require regular media changes to maintain 

antibiotic and nutrient levels within the system.   

Although several EVPSs with pulsatile pressure and flow generating capabilities have 

previously been described, none to date have shown the ability to accurately mimic both 

physiologic arterial pressure and flowrate waveforms [256,262,265,270,284-286].  A system 

described by Bergh et al. (2005) should be noted due to its robust capabilities [262].  They 

reported the ability to precisely control pressure, flowrate, pH, pO2 and temperature within their 

EVPS, and validated their control algorithm with prescribed perturbations to systemic 

conditions.  However, the higher frequency harmonic content of neither the physiologic pressure 

nor the flowrate signals could be generated using the components of their system.  Instead, their 

system was able to generate and control oscillatory, but not physiologically accurate, pressure or 

flowrate signals.  That is, the harmonic content of physiologic pressure or flowrate signals can 
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not be generated with their EVPS.  Our EVPS improves upon other EVPS designs in that we are 

able to generate CWS and shear stress (possibly more pertinent than pressure and flowrate) 

signals that closely mimic physiologic signals.  This was made possible with the custom-

designed high-fidelity piston-cylinder device described in Section 2.3.2.  Secondly, we believe 

that feedback control over blood gases and temperature would have been an engineering 

improvement for the current generation of our EVPS, however, the stability with which we 

maintained these parameters was sufficient and did not warrant it.  The methods used to maintain 

physiologic blood gases and temperature are similar to those used by Labadie et al. [3].  

However, placement of media sampling ports and inline thermistors was helpful in maintaining 

sterility within the EVPS.  Humidification of the gas prior to purging over the media helped to 

prevent evaporation making all system parameters (including CWS, shear stress, pH, pO2, pCO2 

and temperature) much more stable. 

A limitation of our current EVPS is that when a leak occurred there was mixing of 

perfusate and bath media.  It should be noted that two different media types were used, M199 

was used as perfusate and DMEM was used as bath media.  Even with successful 

implementation of the safety precautions described in this report, when major leaks occurred, the 

media had to be drained and the system refilled once the leak was fixed.  Another limitation 

comes as a result of the notion that simultaneous control of the CWS, shear stress, and the phase 

angle between them would be ideal.  However, it is expected that this type of control system 

requires a multivariable SS controller.  That is, the PID control architecture used in this study is 

insufficient for controlling multi-input-multi-output systems.  Instead PID control is limited to 

single-input-single output control systems.   Efforts to achieve this capability were beyond the 

scope of the current work. 
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In order to most accurately assess molecular changes occurring within the vasculature in 

response to biomechanical signals, a precisely controlled EVPS is the optimum model to use.  

This model eliminates the confounding conditions associated with both cell culture and in vivo 

models by providing an isolated system in which desired stimuli can be imposed on intact 

vascular segments.  The observed molecular changes can then be directly correlated to the 

imposed stimulus.   

2.5.12 Conclusions 

The PID controllers to achieve CWS and shear stress control make the EVPS described in 

this chapter unique.  That is, stress control within the EVPS may be more pertinent to 

understanding the molecular responses of vascular tissue to the biomechanical environment than 

is control of simply pressure and flowrate.  The analytical models that were derived make the 

EVPS control systems even more robust by incorporating tissue-specific geometry.  Of course, 

any stress model could be substituted depending on the geometry of the implanted tissue.  Based 

on the EVPS controller performance results we believe that the choice of using a PID algorithm 

to achieve these capabilities was justified. 
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3.0  EX VIVO PERFUSION EXPERIMENTS 

Specific Aims 2 and 3 were accomplished by performing several sets of ex vivo vascular 

perfusion experiments.  Initially, one set of experiments (see Section 3.1.3.1) was performed to 

establish the acute hyperplastic response of PIJVs abruptly exposed to arterial biomechanical 

conditions, and to compare this response to PIJVs exposed to native venous conditions.  We then 

attempted to attenuate this acute hyperplastic response by gradually exposing PIJVs to desired 

CWS profiles via manual adjustment of EVPS pressure (see Section 3.1.3.2).  These experiments 

were directly related to Specific Aim 2.  In Specific Aim 3 we wanted to tune the degradation 

rate of an adventitial biodegradable polymer wrap so as to achieve the same CWS profiles as in 

Specific Aim 2, and then to use this wrap to attenuate the acute hyperplastic response in PIJVs 

compared to unwrapped controls (see Section 3.1.3.3).  

Each of these experiments was “paired” to account for animal-to-animal variability, and 

generally, proceeded as follows.  Bilateral PIJVs were surgically harvested from juvenile pigs 

(see Section 3.1.1) and tied into separate, independent EVPSs (see Section 2.1).  Vascular 

perfusion experiments were carried out for 24 or 72 hours since the majority of the endpoints 

under investigation have been successfully detected within a few hours of these time points (see 

references in Table 1.2).  At the conclusion of each experiment, the tissue was processed (see 

Section 3.1.6) for biological assays to asses the endpoints outlined in Table 1.2.   
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This chapter will describe in detail the methods used and the results obtained from these 

ex vivo experiments.  It will conclude with a discussion of the implication of the results. 

3.1 METHODS 

3.1.1 Tissue Harvest and Transport 

All animal procedures were performed under a protocol approved by the Institutional Animal 

Care and Use Committee of the University of Pittsburgh.  The porcine internal jugular vein 

(PIJV) was chosen as a model because of its similarity in inner diameter and wall thickness to 

the human greater saphenous vein, and because this tissue has previously been used to 

investigate the pathologic response of veins exposed to arterial hemodynamic conditions 

[43,49,51,81,163,221,248,273,294-296].  The surgical harvest procedure was performed in the 

manner of a saphenectomy for bypass.  Briefly, the anesthetized animal was placed in supine 

position, cervical incisions were made bilaterally, and dissection was done in layers to the 

vascular fascia of the neck.  Each PIJV was identified and dissected proximal to the jugular 

confluence and distal to the jugular foramen.  All tributaries were identified and carefully ligated 

to avoid leakage.  After the desired length (6-8 cm) was exposed, the segment was cannulated on 

each end with duck billed vessel cannulae.  Just prior to explant, a custom-designed vascular 

clamp [275] (see technical drawings in Figure A. 27 to Figure A. 32 in Appendix A) was 

attached onto the ends of the cannulae to maintain the in vivo length of the vessel following 

removal.  The vessel was then cut on either side between the clamped cannulae and the ligations.  

Immediately after removal, the vessels were placed in a sterile transport box (containing lactated 
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ringers solution supplemented with heparin (500 units/liter), papaverine (60 mg/liter), and 

Cefoxitin (1.0 g/liter).  Technical drawings of the transport box are given in Figure A. 33 to 

Figure A. 51 Appendix A.  Figure 3.1 shows a PIJV segment within the clamp which is 

immersed in media within the transport box.  The time between tissue harvest and mounting into 

the perfusion system described below was always less than one hour.  The animal was 

euthanized upon completion of surgery according to university guidelines. 

 

 

 

 

 
 
Figure 3.1 Harvested PIJV segment within custom designed in vivo-length clamp and immersed in media within the 
transport box. 
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3.1.2 Perivascular Placement of Electrospun Biodegradable Polymer Wrap 

The biodegradable polymer composite used to form the adventitial wrap was based on the 

poly(ester urethane)urea (PEUU) material developed by Guan et al. [297] and further 

characterized in electrospun format by Stankus et al. [57,242].  This polymer undergoes 

hydrolytic degradation in vitro into non-cytotoxic degradation products and has been shown to 

degrade to near completion in vivo at approximately 3 months [298,299].  To control the 

degradation rate of the wrap, a composite of PEUU, collagen, and elastin proteins was utilized, 

with protein addition used to hasten mass loss. 

PEUU was synthesized from poly(ε-caprolactone )diol and 1,4-diisocyanatobutane with 

putrescine chain extension.   PEUU, collagen, and elastin were combined in solution in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and then electrospun onto a PIJV segment using a 

procedure explained in detail elsewhere [57].  Briefly, electrospinning conditions included a 

mixture solution volumetric flowrate of 0.28 μL/s, a distance between nozzle and target of 17 

cm, and electrical charges of +12 kV to the nozzle and -3 kV to the target.  The target used for 

fabrication of spun AVGs for implantation was a Type 316 stainless steel mandrel of 3 mm 

diameter that was carefully inserted into the AVG lumen to avoid endothelial injury.  The 

mandrel and coaxial vein were rotated together at 250 rpm, and translated axially on a linear 

stage at a speed of approximately 8 cm/sec over 10 cm to produce a more uniform coating 

thickness. 

There were three parameters used to tune the mechanical properties and degradation rate 

of the polymer:  1) the final polymer concentration in a mixture solution; 2) the 

PEUU:collagen:elastin ratio in the mixture solution; and 3) the wrap thickness, which was 

proportional to electrospinning time.  In our first attempt (combination D, Table 3.1), we used a 
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50:50 PEUU:collagen ratio with a final concentration of 12% that was electrospun onto a PIJV 

segment for 20 minutes.  This combination was chosen based on the mechanical properties, 

being somewhat similar to arterial mechanical properties, reported by Stankis et al. for this 

polymer [57].  This provided a starting point for us to tune the polymer wrap in order to achieve 

mechanical properties that were similar to arterial tissue.  In order to show that we could tune the 

polymer wrap to biodegrade in a short a time period, we decided to use 24 hours as the desired 

biodegradation timeframe.  Several combinations were attempted in order to achieve this 

biodegradation rate and a summary of all tested parameter combinations is shown in Table 3.1.  

Combination “C” was our second attempt, where we shortened the electrospinning time and 

reduced the final polymer concentration in an effort to increase the biodegradation rate.  

Combination “B” was the third attempt, where we increased the proportion of collagen in order 

to hasten mass loss in an effort to further increase the rate of biodegradation.  Combination “A” 

was the final choice where we incorporated elastin into the wrap, as well as slightly increased the 

electrospinning time.  This combination satisfied our design requirements and was chosen for 

both the ex vivo and in vivo experiments described in the rest of this dissertation.  

 

 

Table 3.1 Summary of polymer tuning parameter combinations. 
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 Following electrospinning, the PIJV segments were placed back into the vascular clamps, 

again maintaining the in vivo length of the tissue [275].  The clamp was then placed back into the 

transport box (Figure 3.1) so the spun PIJV could be taken to he laboratory and implanted into 

the EVPS as described in Section 3.1.3.3.  

3.1.3 Ex vivo Perfusion Conditions 

Vein segments with and without the wrap were mounted in our well established, validated earlier 

version EVPS (not the version described in Chapter 2.0) [3,39,245,246,248,249,273,275].  

Briefly, the closed loop perfusion design allows the circulation of sterile perfusate (tissue culture 

Media 199 supplemented with 1% fetal bovine serum and 1.0 g/liter cefoxitin) through the 

vascular segment as well as circulation of an adventitial bath (DMEM with 1% fetal bovine 

serum and 1.0 g/liter cefoxitin) within a sealed chamber.  Both the perfusate and bathing media 

were maintained at 37 ◦C and physiologic levels of dissolved gasses.  The first set of experiments 

utilized one of two simulated hemodynamic conditions [248,273] – either native venous (VEN) 

or arterial (ART) conditions.  To simulate VEN hemodynamics the perfusion loop was set to 

provide nonpulsatile flow of 20 ml/min and pressure of 20 mmHg.  To simulate ART 

hemodynamics, the system was set to provide a pulsatile pressure waveform of 120/80 mmHg 

with a mean perfusate flow of 100 ml/min.  The second set of experiments involved the manual 

ramping of hemodynamic conditions from VEN to ART over 24 or 72 hours.  These mechanical 

conditioning regimens were termed cART hemodynamic conditions, and PIJVs perfused under 

cART conditions were compared to ART controls.  Finally, experiments were performed to 

examine unwrapped PIJVs under ART conditions, which were compared to wrapped PIJVs 

under ART conditions (wART).  Each of the VEN vs. ART and ART vs. wART perfusion 
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experiments lasted for 24 hours.  Using our DAQ system, the intraluminal pressure, flowrate, and 

outer diameter were recorded hourly over a 5 second duration with a sampling frequency of 150 

Hz as described in Section 2.3.3.  pO2, pCO2, pH, perfusate temperature, and bathing media 

temperature were measured within each loop of the paired EVPS every hour.  After each 

perfusion experiment, the unpressurized vessel dimensions were measured from rings cut from 

the proximal and distal ends of the PIJV sengments using a custom-designed “chuck” as 

described in Brant et al. [240].  The values obtained from each ring were then averaged, and 

these measurements were then used with the pressurized outer diameter and intraluminal 

pressure measurements to calculate the CWS as described in Section 2.5.4.  Vein segments were 

then analyzed either histologically or via immunohistochemistry as described in Section 3.1.7.  

Table 3.2 lists all of the ex vivo experiments performed in this study and the respective endpoints 

analyzed for each experiment. 

3.1.3.1 VEN vs. ART Experiments 

Figure 3.2 is a schematic depicting the first set of ex vivo experiments that were 

performed related to Specific Aim 2.  In these experiments we evaluated the acute hyperplastic 

response of PIJVs abruptly exposed to ART conditions vs. PIJVs exposed to VEN conditions for 

24 hours.  The endpoints and timepoints that were chosen for these experiments are based on the 

information outlined in Table 1.1 and Table 1.2.  All pairs of PIJVs used in these experiments 

were harvested and transported to the laboratory as described in Section 3.1.1.  For the duration 

of these experiments hourly recordings were made of many EVPS experimental parameters. 

These recordings were made manually and are included in Table D. 1 to Table D. 6 in Appendix 

D. 
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Table 3.2 Summary of all ex vivo vascular perfusion experiments that were performed and the respective endpoints 
that were analyzed.  Note that VMC: vasomotor challenge; PCNA: proliferating cell nuclear antigen; TUNEL: 
terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling; GOLGI: Golgi Complex; 
H&E: hematoxylin and eosin; MTC: Masson’s trichrome; MPC: Movat’s pentachrome; PSR: picrosirius red; SEM: 
scanning electron microscopy; and TEM: transmission electron microscopy.  An “X” indicates that the analysis was 
performed. 
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Figure 3.2 Schematic depicting the paired VEN vs. ART ex vivo perfusion experiments.  

 
 
 

3.1.3.2 ART vs. cART Experiments 

Figure 3.3 is a schematic depicting the second set of ex vivo experiments that were performed 

related to Specific Aim 2.  In these experiments we evaluated the acute hyperplastic response of 

PIJVs in response to a mechanical arterial conditioning paradigm (cART conditions) vs. PIJVs 

abruptly exposed to ART conditions for 24 and 72 hours.  The endpoints and timepoints that 

were chosen for these experiments are based on the information outlined in Table 1.1 and Table 

1.2.   
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All pairs of PIJVs used in these experiments were harvested and transported to the 

laboratory as described in Section 3.1.1.  In the first set of paired experiments one PIJV segment 

was abruptly exposed to ART conditions (control) and the other to cART (test) conditions for 24 

hours.  For the cART conditions, the test PIJV was implanted into the EVPS, exposed initially to 

VEN conditions, and then the pressure and flow were manually, and linearly, increased over 24 

hours until ART conditions were attained.  Specifically, the mean pressure and flowrate were 

incrementally increased by 10 mmHg (from 20 to 100 mmHg) and 10 ml/min (from 20 to 100 

ml/min), respectively, every 3 hours.  As the mean pressure and flowrate were increased, 

pulsatility was also increased.  The pressure “pulse” was incrementally increased from 0 to 40 

mmHg, and the flowrate “pulse” was incrementally increased from approximately 0 to 80 ml/min 

over 24 hours by manual adjustment of the centrifugal pump.   

In the second set of paired ART vs. cART experiments the test PIJV was implanted into 

VEN conditions and then the pressure and flow were manually, and linearly, increased over 72 

hours upto ART conditions.  The mean pressure and flowrate were incrementally increased by 10 

mmHg (from 20 to 100 mmHg) and 10 ml/min (from 20 to 100 ml/min), respectively, every 9 

hours.  As the mean pressure and flowrate were increased, pulsatility was also increased.  The 

pressure “pulse” was incrementally increased from 0 to 40 mmHg, and the flowrate “pulse” was 

incrementally increased from approximately 0 to 80 ml/min over 72 hours.   
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Figure 3.3 Schematic depicting the paired ART vs. cART ex vivo perfusion experiments. 

 

3.1.3.3 ART vs. wART Experiments 

Figure 3.4 is a schematic depicting the third set of ex vivo experiments that were performed.  

These experiments were related to Specific Aim 3.  We evaluated the beneficial effects of a 

tuned biodegradable polymer wrap on the hyperplastic response of PIJVs exposed to ART 

conditions (wART conditions) vs. unwrapped PIJVs exposed to ART conditions for 24 hours.  

The endpoints and timepoints that were chosen for these experiments are based on the 

information outlined in Table 1.1 and Table 1.2.   

All pairs of PIJVs used in these experiments were harvested and transported to the 

laboratory as described in Section 3.1.1.  One of the PIJVs was then electrospun, using polymer 

wrap “combination A” from Table 3.1, (as described in Section 3.1.2) and then implanted into 
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the EVPS and exposed to ART conditions for 24 hours.  We chose to use “combination A”, over 

the other tested combinations, for the vein wrap based on the CWS profile that was achieved 

with this polymer.  The other PIJV was treated exactly the same as the wrapped PIJV except that 

no wrap was applied. This included placement of the mandrel through the cannulated vein, and 

exposure to the electrical field of the electrospinning device. The PIJVs were then implanted into 

the EVPS and exposed to ART conditions for 24 hours.     

 

 

 

 

 

Figure 3.4 Schematic depicting the paired ART vs. wART ex vivo perfusion experiments. 
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3.1.3.3.1 CWS Calculation in a Compound Cylinder 

Since it is believed that an abrupt exposure of AVGs to arterial levels of CWS may contribute to 

their failure modalities [27-37], we believe that one potential application of the electrospun 

biodegradable polymer wrap would be to gradually expose AVGs to arterial levels of CWS.  

Previous attempts to limit CWS using an external sheath have not been fully successful because 

they were either biodurable and/or loose fitting [31,40-52,54,300].  To demonstrate how the 

wrap may modulate CWS, and how the wrap may be tuned to achieve desired results, we 

examined the CWS-over-time profile for each of the wrap combinations given in Table 3.1 and 

compared these to unwrapped vein segments exposed to venous or arterial conditions.  This was 

achieved using the data collected from ex vivo perfusion experiments and a mathematical model 

for CWS.   

For biomechanical modeling purposes, consider the schematic in Figure 3.5 showing an 

idealized cross section of the vein/wrap complex.  The outer layer of the bi-layer compound tube 

is taken as the electrospun polymer wrap and the concentric inner layer is the vein segment. 
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Figure 3.5 Schematic showing a cross-sectional view of the vein /wrap complex.  Note W: electrospun polymer 
wrap; V: vein segment; Pi: intraluminal pressure; P2: interfacial pressure; Po: atmospheric pressure. 
 

 

The following assumptions were then made [301]:  

i) There is no slipping or detachment between layers 

ii) Compatibility of deformation across the interface is maintained 

iii) There is only a small deformation under mean arterial pressure  

iv) The system is under a state of plane stress 

v) Both layers are incompressible, isotropic, homogeneous and linearly elastic materials 

vi) Each separate layer may be generalized as a single, thick-walled cylinder subjected to 

internal and external pressure 
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The mathematical model developed by Vorp et al. [301] was adapted for the model 

represented by Figure 3.5.  In short, we used the classic Lamé solution for radial and 

circumferential wall stresses ( rσ  and θσ , respectively), and radial deformation (ur) at any 

radius, r, in an open-ended, thick-walled cylinder under the action of internal and external 

pressures [301].  For the inner (vein) layer shown in Figure 3.5, we obtain [301]: 
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where the “V” subscript refers to quantities with respect to the vein, and  and  are the inner 

and outer radii, respectively, of the vein layer.  is the internal pressure, and  is the interfacial 

pressure acting between the two layers of the concentric cylinder resulting from their difference 

in mechanical properties.  

a b

iP 2P

ν  is the Poisson’s ratio and E is the Young’s modulus of elasticity.  

For the outer (wrap) layer shown in Figure 3.5, we have: 
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the inner and outer radii, respectively, of the wrap layer.  oP  is the external pressure.  With 

compatibility of deformations across the interface between the layers, it must be that: 

 

br =                                                     22 

 

Substituting (16) and (18) into (19), letting νW = νV = ν = 0.5 (both materials assumed to 

be incompressible), setting  (i.e., atmospheric pressure), and solving for  we obtain: 
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here  and  are the outer and inner radii, respectively, and L is the length of each cylinder, 

nd the subscripts u and p refer to the unpressurized and pressurized states, respectively.  
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herefore for any measured cp and Lp, a value of bp can be calculated.  Similarly, 

considering only the “vein” cylinder in Figure 3.5 and utilizing equation 25 for bp, we find: 
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incompressible materials, which requires the volume of each cylinder to be c ant at any state 

of deformation, it must be that:  
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Substituting equations 23, 25 and 26 into equation 20, and evaluating at the mean 

arterial pressure and at the mid-wall radius of the vein (i.e., 
2

pp ba
r

+
= ), we can calculate the 

mid-wall CWS in the polymer wrapped vein.  We assumed th Pa [57], and EV = 600 

KPa [228] in our calculations.  The modulus used for the wrap represents a value that was 

measured using a similar mixture of PEUU and collagen as was used in combination A in 

at EW = 7.5 M

3.1.4 Vasomotor Challenge Experiments 

We performed several experiments that were dedicated to ensure that the functional viability of 

Table 

3.1.  The modulus used for the vein represents a value that was measured in a dog jugular vein 

[228]. 

the tissue was maintained in PIJVs perfused within our EVPS, and to assess the effects of the 

electrospinning process on tissue functionality.  Tissue functionality was assessed using an ex 

vivo vasomotor challenge as previously described [3,275].  In short, vessel segments were 

cannulated, placed under a constant intraluminal pressure of 20 mmHg, and exposed to 

incremental doses of epinephrine (EPI).  Throughout the experiment, outer vessel diameter (D) 

was continuously measured with a laser micrometer [3,245,275].  The baseline diameter 

(Dbaseline) was measured before injection of the first dose of EPI.  EPI was subsequently injected 

to final concentrations of 2x10-5, 2x10-4, and 2x10-3 mg/ml at 1, 4.5, and 10 minutes, 

respectively.  Following observation of maximal vasoconstriction with each dose, each 

subsequent dose was administered.  After administration of the maximal dose of EPI, and 

observation of maximal level of constriction (Dconstricted), a 2 ml bolus of 25 mg/ml sodium 

nitroprusside (SNP) was injected to give a final concentration of 0.125 mg/ml.  When full 
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dilation was observed, Ddilated was recorded.  The level of constriction in response to EPI was 

calculated as: 
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imilarly, the level of dilation in response to SNP was calculated as: 
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3.1.5 Compliance and β-stiffness Measurements 

Hourly measurements of outer diameter (OD) and intraluminal pulsatile pressure (P) were made 

29 

S

 

during the ART vs. wART 24-hour perfusion experiments (N=6) described in Section 3.1.3.3.  

These measurements were used to calculate the compliance (C) and β-stiffness (β) of both spun 

and sham control PIJVs.  Using a sampling frequency of 150 Hz, the hourly measurements were 

made for 5 seconds so that approximately 5 complete “cardiac cycles” of data were collected.  

The acquired signals were then filtered and plotted.  Using the maximum (ODs and Ps) and 

minimum (ODd and Pd) values for each cycle.  The 5 values were averaged and single values of 

C and β were calculated every hour.  The compliance was calculated as: 
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Similarly, the β-stiffness was calculated as [302]: 
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3.1.6 Post-perfusion Tissue Processing 

In Specific Aims 2 and 3, the hyperplastic response of the PIJVs was quantified by measuring 
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the various carefully-chosen endpoints summarized in Section 1.2. These endpoints were 

grouped into three categories based on the required tissue processing: i) histology (including 

micro/ultrastructure); ii) RNA analysis; and iii) protein analysis.  All PIJV segments from the ex 

vivo experiments were segmented and processed according to Figure 3.6.  After segmentation 

the samples were immediately placed into separate containers and snap frozen in liquid nitrogen. 

The frozen samples were then stored in a -80 oC freezer. 

 

 

 

 

igure 3.6 Schematic of post perfusion PIJV segment processing for endpoint analysis.  Lengths given represent 
unloaded vessel resting lengths.   
 

F
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3.1.7 Biological Analyses 

The biological endpoints related to Specific Aims 2 and 3 were characterized as either 

histological or molecular-based with respect to the type of assay required.  The histological 

al 

Scienc

Some representative PIJVs (see Table 3.2 for details) were examined under SEM.  In short, 

tissue segments designated for SEM were fixed in ultrapure 2.5 % gluteraldehyde, dehydrated 

through a graded series of ethanol solutions (30–100%), critical point dried (Emscope, CPD 750, 

endpoints included evaluation of microstructure, apoptosis, proliferation, and a SMC phenotype 

marker.  The endpoints related to de-adhesion/migration of SMCs were attempted but could not 

be reliably evaluated due to difficulty in troubleshooting both the histological and molecular-

based assays for these endpoints.  The protein and gene expression endpoints required isolation 

of protein and RNA and are thus classified as molecular.   As stated in Section 1.6, some of the 

histological and molecular endpoints considered were experimentally difficult to obtain.  Further 

description of the methods, experimental difficulties, preliminary results, and recommendations 

for future investigation with regards to the molecular endpoints can be found in Appendix H.   

The samples dedicated for histological analysis (Figure 3.6) were taken from the -80oC 

freezer and immediately embedded in Tissue Freezing Medium™ (Triangle Biomedic

es, Durham, NC) and frozen at -65˚C.  Five-micron cross-sections were cut using a 

cryotome and placed on positively charged, glass microscope slides.  Slides were stored at -80˚C 

until they could be processed for histological or immunohistochemical assays.  The detailed 

protocols for each endpoint are provided in Appendix E. 

3.1.7.1 Scanning Electron Microscopy 

  92



Ashford, Kent, UK), then overcoated with vaporized carbon (Cressington Freeze Fracture 

Device, Cressington, Cranberry, PA, USA).  A detailed protocol for sample preparation is 

th PBS, embedded in Tissue Freezing 

Medium™ (Triangle Biomedical Sciences, Durham, NC), and cut into 5 μm sections.  The tissue 

er stained with H&E, Masson’s trichrome (MTC), picrosirius red (PSR), or 

ad™ staining (Molecular Probes, Carlsbad, CA, USA) of cryosections, 

according to manufacturer’s instructions.  Each segment (control, sham control and spun) 

/Dead™ staining was cut in half and placed in static culture within a Petri-dish 

provided on in Appendix E (Protocol E.1).  The tissue was visualized using a JEOL JEM-6335F 

field emission gun SEM (JEOL, Peabody, MA, USA). 

3.1.7.2 Histology 

The PIJV segment dedicated for histology (Figure 3.6) was taken from the -80oC freezer and 

then fixed in 4% paraformaldehyde for 4 hours at 4°C followed by 30% sucrose at 4°C 

overnight.  5mm tissue rings were cut, washed wi

sections were eith

Movat’s pentachrome stains (MPC).  The detailed protocols for H&E, MTC, PSR, and MPC 

staining are provided in Appendix E (Protocols E.2 to E.5).  Stained tissue sections were then 

visualized using an Olympus Provis light microscope (Olympus, Center Valley, PA, USA) and 

compared qualitatively. 

3.1.7.3 Necrosis 

To assess the effects of the electrospinning process on tissue viability we examined spun and 

sham PIJV segments, as well as untreated freshly excised (“control”) tissue.  Tissue necrosis was 

examined using Live/De

intended for Live

under standard incubator conditions.  One-half of each segment was assessed after 18 hours of 

culture, the other after 92 hours.  5 mm rings were cut from each sample and embedded in 

  93



cryomatrix (TBS, Durham, NC) then frozen.  Five 8 μm sections were cut from each ring and 

imaged under 20x magnification using an epifluorescent microscope (Nikon, Model E800, 

Melville, NY, USA).  Two images were taken per section so that a total of 10 fields of view were 

quantified per PIJV segment.  Scion Image (Version Beta 4.02, NIH, Bethesda, MD) was used to 

count the total number of cells in a field of view.  To determine the percentage of live cells in a 

field of view, dead cells were counted manually, divided by the total number of cells, and 

multiplied by 100%.  The percentage of dead cells was subtracted from 100% to calculate the 

percentage of live cells. 

3.1.7.4 Apoptosis 

Apoptosis was assessed using the In Situ Cell Death Kit, fluorescein (TUNEL) (Roche Applied 

Science, Indianapolis, IN).  This assay uses the TUNEL technology which identifies the genomic 

DNA cleavage component of apoptosis.  Briefly, cross-sections were dried at 37˚C for 20 

minutes, fixed in 4% paraformaldehyde for 20 minutes, and rehydrated in phosphate buffered 

 minutes.  Samples were then incubated at room temperature for 10 minutes saline (PBS) for 30

each in 10μg/ml Proteinase K followed by a freshly prepared solution of 0.1% Triton X-100 and 

0.1% sodium citrate for permeabilization of membranes.  DNA strand breaks were identified by 

incubation at 37˚C for one hour with Terminal deoxynucleotidyl transferase and fluorescein 

labeled dUTP (both provided in the kit from Roche).  Nuclei were counterstained with Hoechst 

33258.  A small set of samples was treated with 100U/ml of DNase I to serve as positive controls 

each time the assay was performed to ensure efficacy.  All sample preparation parameters 

including incubation times, temperatures, and reagent concentrations were optimized using 

DNase I treated positive controls.  Negative controls were incubated with labeled dUTP without 
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the transferase enzyme.  The detailed protocol for TUNEL staining is provided in Appendix E 

(Protocol E.6). 

Quantification of the percent of TUNEL positive cells was performed using a manual 

counting procedure. Numbers of positive cells from each of 5 FOVs (field of views) from a 

given 5 μm cross-section were averaged to define the mean percent TUNEL positive cells for a 

PIJV segment (see Figure 3.6). 

mistry.  Five-micron cross-sections were dried, fixed, and 

permeabilized as described for the TUNEL assay in Section 3.1.7.4.  Nonspecific binding of 

d by incubating the samples for 30 minutes with 1% horse serum in PBS.  

3.1.7.5 Proliferation 

Proliferation was assessed by the expression of proliferating cell nuclear antigen (PCNA) 

determined by immunohistoche

antibodies was blocke

Following this, the samples were incubated with a primary mouse monoclonal antibody against 

human PCNA (Dako Cytomation, Clone PC10, Denmark) overnight at 4 oC in a moist chamber 

to prevent sample drying.  Unbound primary antibody was removed by subsequent washes in 

PBS.  The detailed protocol for primary PCNA antibody incubation is provided in Appendix E 

(Protocol E.7).  Next, cross-sections were incubated with a universal (anti-mouse and anti-

rabbit) biotinylated secondary antibody which was part of the Vectastain Elite™ horse-radish 

peroxidase and avidin-biotin-complex (HRP/ABC) detection system (Vector Labs, Cat.# PK-

6200, Burlingame, CA) for 60 minutes at 37 oC in a moist chamber and then rinsed 3 times with 

PBS.  Incubation with the Vectastain™ reagent was then performed for 30 minutes at room 

temperature.  To detect positively stained cells, a diaminobenzidine (DAB) substrate (Vector 

Labs, Cat.# SK-4100, Burlingame, CA) was used.  The enzymatic reaction caused PCNA 

positive cells to stain brown which was visualized via microscope (100x magnification) until the 

  95



desired level of staining was achieved.  The reaction was then stopped by placing the slides into 

deionized water.  The detailed protocol for the HRP/ABC detection system is given in Appendix 

E (Protocol E.8).  For nuclear visualization, cells were counter-stained with Hematoxylin 

(Vector Labs, Cat.# H-3401, Burlingame, CA) according to manufacturer’s instructions.  

Quantification of the percent PCNA positive cells was performed using the same methodology as 

for TUNEL as described in Section 3.1.7.4. 

3.1.7.6 SMC Phenotype 

To detect a synthetic SMC phenotype, we used a mouse monoclonal antibody raised against 

human Golgi complex (Abcam, Cat.# ab14487, Cambridge, MA).  The detailed protocol for 

Golgi complex primary antibody incubation is given in Appendix E (Protocol E.9).  Essentially 

e as described in Section 3.1.7.5 (PCNA) was used to detect the 

 would provide more easily quantifiable results. 

 

eries of ethanol solutions 

0–100%), then cured and embedded in epon.  A detailed protocol for TEM sample preparation 

the exact same procedur

expression of, and subsequently to quantify the mean percentage of Golgi complex positive cells 

per segment of PIJV. 

Initially we attempted to visualize changes in Golgi complex and rough endoplasmic 

reticulum expression, as markers of synthetic SMCs, via transmission electron microscopy 

(TEM) as described in the following sub-section.  However it was determined that 

immunohistochemistry

3.1.7.6.1 Transmission Electron Microscopy 

Tissue from several experiments (see Table 3.2) was devoted for TEM analysis.  Briefly, tissue 

rings were fixed in 2.5% gluteraldehyde, dehydrated through a graded s

(3
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is provided in Appendix E (Protocol E.10).  The tissue was visualized using a JEOL 1011CX 

TEM  (JEOL, Peabody, MA, USA).     

3.1.8 Statistics 

For the vasomotor challenge data, and the immunohistochemistry image quantification data a 

t-test for means was performed, and P<0.05 was considered statistically 

significant.  Unless otherwise stated all data is presented as mean ± standard error of the mean. 

3.2.1 Ex vivo Biomechanical Conditioning Perfusion Experiments 

Figure 3.7 shows representative mean intraluminal pressure vs. time, outer diameter vs. time, 

. cART experiment, and 

Figure 3.8 shows the same from a representative 72 hour ART vs. cART experiment.  Similar 

paired student’s 

3.2 RESULTS 

and mean CWS vs. time profiles from a representative 24 hour ART vs

data for all other experiments are shown in Figure D. 1 to Figure D. 9 in Appendix D. 
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Figure 3.7 Representative mean pressure, outer diameter, and CWS vs. time profiles from a 24 hour ART vs. cART 
experiment. 
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Figure 3.8 Representative mean pressure, outer diameter, and CWS vs. time profiles from a 72 hour ART vs. cART 
experiment. 

 
 
 

3.2.2 ART vs. wART Diameter Profiles 

The structural support offered to a vein by the wrap is evident when we examine the outer 

diameter profiles in Figure 3.9.  It was shown that a vein with a wrap does not expand to the 

same degree under ART conditions as a vein without a wrap.   
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3.2.3 CWS Profiles 

The CWS-over time profile for the polymer solution combinations of Table 3.1 were quite 

variable (Figure 3.10).  In one case (combination B), the wrap degraded too quickly and resulted 

in a rapid increase in CWS under ART conditions.  Other combinations (C and D) did not 

degrade quickly enough and resulted in no appreciable increase in CWS over a 24-hour period.  

Combination A degraded at a rate which resulted in a nearly linear variation over the 24-hour 

period between VEN and ART levels of CWS.  This combination was repeated (N=7) and the 

effect was found to be repeatable. 
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Figure 3.9 Normalized outer diameter response profiles of PIJVs for both sham and spun PIJVs.  Both spun 
(wART) and sham control PIJVs were perfused under ART conditions of 120/80 mmHg pressure and 100 ml/min 
mean flowrate.  Note that the normalized diameter of the spun veins (N=7) is dramatically reduced when compared 
to sham controls (N=5).  Pressurized outer diameter (ODp) was normalized to unpressurized outer diameter (ODup) 
and data is shown as mean ± standard error of the mean. 

 

 

3.2.4 Vasomotor Challenge Results 

The results of a typical vasomotor challenge experiment are shown in Figure 3.11.  The sham 

PIJV segment responded in a predictable dose-dependent manner to stimulation with EPI, while 

the spun PIJV exhibited a single contraction commencing with the lowest dose of EPI.  
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Vasodilation in response to SNP was similar for both the control and spun PIJVs, each resulting 

in a larger outer diameter than that at baseline, suggesting a certain level of basal tone in both the 

sham and spun PIJVs.  All of the vasomotor challenge experiment results are provided in Figure 

D. 10 to Figure D. 13 in Appendix D.  Overall, there was no significant difference in the level of 

contraction (Figure 3.12(A)) or dilation (Figure 3.12(B)) between sham and spun PIJV 

segments.  The individual percent constriction and dilation values for each experiment are 

provided in Table D. 7 and Table D. 9, respectively, in Appendix D.  The Microsoft Excel 

student’s t-test output tables for the percent constriction and percent dilation data are provided in 

Table D. 8 and Table D. 10, respectively, in Appendix D.   
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Figure 3.10 CWS vs. time results from 24 hour ex vivo perfusions of electrospun polymer wrapped PIJV segments 
for each combination in Table 3.1.  The lower dashed horizontal line indicates the mean CWS level measured in an 
unwrapped vein under venous conditions (CWSo ~25 KPa), and the middle dashed horizontal line indicates the 
mean CWS in a coronary artery (~120 KPa) [4].  The upper dashed line represents the mean CWS measured in an 
unwrapped vein (sham control) under ART conditions.  In the legend, ET stands for electrospinning time.  All CWS 
values were normalized to CWSo.  The data are presented as mean ± standard error of the mean. 
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Figure 3.11 Representative vasomotor challenge results obtained using epinephrine (EPI) and sodium nitroprusside 
(SNP) to stimulate both a spun and a sham control PIJV segment.  Please note that SNP was administered 
immediately upon observing a natural relaxation of the tissue post-stimulation with EPI.  That is, SNP was 
administered at different times for the sham and spun PIJVs, depending on when the natural relaxation of the tissue 
(post stimulation with EPI) was observed. Outer diameter measurements of each PIJV segment over the duration of 
the experiments were normalized to the baseline outer diameter which was measured prior to administration of the 
first dose of EPI. 
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Figure 3.12 Results from vasomotor challenge experiments (N=4). There appears to be no significant difference in 
the level of contraction or dilation between the sham control and spun PIJVs.  The data are presented as mean ± 
standard error of the mean. 
 
 
 

3.2.5 Compliance and β-stiffness 

In Figure 3.13(A) and (C), we see that PIJVs are very stiff (and hence much less compliant) 

when exposed to arterial levels of pressure.  Under the same hemodynamic conditions, the tuned 

polymer wrap that was spun onto the adventitial surface of the PIJVs offered structural support 

which is evident by the decreased stiffness (Figure 3.13(B)) and increased compliance (Figure 

3.13(D)).  Please note that due to technical issues, the pressure and diameter measurements for 

one of the sham controls were not possible and thus there was one less data set (N=5) than in the 

spun group (N=6).  
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Figure 3.13 Results from the compliance and β-stiffness calculations for both sham (A & C) and spun (B & D) 
PIJVs over 24 hours.  The data are presented as mean ± standard error of the mean. 
 
 
 

3.2.6 Biological Analyses 

3.2.6.1 Scanning Electron Microscopy 

SEM analysis was performed on tissue samples from a representative ex vivo ART vs. wART 

experiment (see Table 3.2).  The electrospun adventitial wrap exhibited high porosity and tight 

adherence to the adventitial surface of the veins (Figure 3.14(A)-(C)), which suggests that the 

wrap would provide structural support to an AVG without inhibiting adventitial nutrient and gas 
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diffusion into the tissue.  Another important observation was that the electrospinning process did 

not appear to damage the endothelial layer, which remained continuous (Figure 3.14(D)). 

 

 

 
 
 

 
 
Figure 3.14 (A) shows a low magnification SEM image of the PIJV segment with the electrospun polymer 
deposited onto its adventitial surface.  (B) is an SEM image (taken at 500x magnification) of the adventitial surface 
of the PIJV after the polymer wrap was applied.  Note the high porosity of the polymer wrap.   (C) is an SEM image 
(taken at 500x magnification) showing the attachment of the polymer wrap to the vein.  (D) is an SEM image (taken 
at 500x magnification of the luminal surface of the vein and shows a continuous endothelium layer which appears to 
have remained intact. 
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3.2.6.2 Histology 

Histological analysis was performed on tissue samples from representative ex vivo experiments 

(see Table 3.2).  H&E and MTC images were consistent with the SEM images in that they also 

showed the polymer wrap to be well attached to the adventitial surface of the vein and that it can 

be electrospun with an approximately uniform thickness (Figure 3.15(A) and (C)).  Further, the 

polymer degraded nearly completely following the 24 hour perfusion period (Figure 3.15(B) and 

(D)). 
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Figure 3.15 Representative hematoxylin and eosin (A,B) and Masson’s trichrome images (C,D) for both before 
perfusion and after wrapping procedure (A,C) and after 24 hours of ex vivo perfusion (B,D).  Note the uniform 
thickness of the polymer wrap prior to perfusion, and the absence of the polymer wrap in the post-perfusion images. 
The single-headed arrow indicates the vessel lumen.  The double-headed arrow in (A) and (C) indicates the 
thickness of the polymer wrap, which was not detectable in (B) or (D). 

 

 

Figure 3.16 shows birefringence images of vein sections stained with PSR.  In each 

image, the color range from red to green indicates a range of collagen fiber organization with red 

being most organized and green being less organized.  The granulated appearance of the staining 

indicates the natural crimped collagen fiber state, whereas stretched fibers appear striated rather 

than granulated.  These results suggest that the polymer wrap reduces the level of collagen fiber 
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stretching (including greater organization and reduced crimping) when compared to a control 

PIJV segment perfused ex vivo under ART conditions for 24 hours. 

 

 

 
 

 

 
Figure 3.16 Representative birefringence images of vein sections stained with picrosirius red.  The experimental 
conditions are defined as: Venous (VEN) conditions of 20 mmHg pressure and 20 ml/min flowrate; pulsatile arterial 
(ART) conditions of 120/80 mmHg pressure and 100 ml/min mean flowrate; and wrapped arterial (wART) 
conditions where the wrapped vein segments were perfused under ART conditions for 24 hours ex vivo.  The arrow 
indicates the vessel lumen. 
 
 
 
 

Images of MPC stained tissue sections are shown in Figure 3.17.  The internal elastic 

lamina appears disrupted in the PIJVs perfused under ART conditions when compared to both 

VEN and wART conditions.  As with the PSR staining, this data suggests that the polymer wrap 
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was successful in reducing the level of stretch within the vein wall when exposed to ART 

conditions. 

 

 

 
 

 
 
Figure 3.17 Representative Movat’s pentachrome staining of vein tissue sections.  In each image collagen stains 
yellow, elastin and nuclei stain black, and muscle stains red.  The red staining in the adventitial side of the wART 
sections is unspecific staining of culture media proteins that become entrapped within the polymer during ex vivo 
perfusion experiments. The arrow indicates the vessel lumen. 
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3.2.6.3 Necrosis 

Figure 3.18 (left panel) shows a representative image of a Live/Dead™ stained tissue section.  

There was no significant difference in tissue necrosis between each experimental group for each 

timepoint (Figure 3.18 right panel).  Representative images from each condition (control, sham 

and spun) from the 92 hour timepoint are provided in Figure F. 1 in Appendix F.  

 

 

 
 

 

Figure 3.18 Left: Representative image of Live/Dead™ stained tissue section from a spun PIJV.  Right: Quantified 
Live/Dead™ results to assess the level of necrosis in PIJVs after electrospinning, and after 18 and 92 hours of post-
electrospinning static culture.  The data shown was for a single experiment, and the error bars result from the 10 
fields of view that were analyzed per PIJV segment.  The data are presented as mean ± standard error of the mean. 
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3.2.6.4 Apoptosis 

Figure 3.19 shows representative paired fluorescent immunohistochemistry images of TUNEL 

staining from all four ex vivo vascular perfusion experiments described in Section 3.1.3.  Figure 

3.20 shows the quantified TUNEL analysis results from these experiments.  It can be seen that 

there is a statistically significant increase in apoptotic cells within PIJVs abruptly exposed to 

ART conditions vs. VEN controls.  However, the mechanical conditioning paradigm imposed via 

cART conditions (for both 24 and 72 hours) and via the biodegradable electrospun polymer wrap 

(wART conditions) statistically significantly reduced the number of apoptotic cells within PIJVs 

vs. ART control conditions.  Representative TUNEL staining images from all ex vivo perfusion 

experiments are provided in Figure F. 2 to Figure F. 23 in Appendix F.  The mean percent 

values of TUNEL positive cells, from all experiments, are provided in Table F. 1 in Appendix F.  

The Microsoft Excel student’s t-test output tables for the mean percent TUNEL positive cells, for 

each comparison shown in Figure 3.20, are provided in Table F. 2 to Table F. 5 in Appendix F. 
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Figure 3.19 Representative immunohistochemistry images from the fluorescent based TUNEL analysis.   The top 
two panels are from a 24-hour VEN (A)  vs. ART (B) experiment.  The next two panels are from a 24-hour ART (C) 
vs. cART (D) experiment.  The third row of panels are from a 72-hour ART (E) vs. cART (F) experiment.  The 
bottom two panels are from a 24-hour ART (G) vs. wART (H) experiment.  The arrows indicate apoptotic cells.  L 
indicates the PIJV lumen. 
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Figure 3.20 Quantified immunohistochemistry results from fluorescent based TUNEL analysis to assess the 
percentage of apoptotic cells within PIJVs from all the ex vivo vascular perfusion experiments.  The data are 
presented as mean ± standard error of the mean. 

 

 

3.2.6.5 Proliferation 

Figure 3.21 shows representative paired HRP/ABC based immunohistochemistry images of 

PCNA staining from all four ex vivo vascular perfusion experiments described in Section 3.1.3.  

Figure 3.22 shows the quantified PCNA analysis results from these experiments.  It can be seen 

that there is a statistically significant decrease in proliferating cells within PIJVs abruptly 

exposed to ART conditions vs. VEN controls.  However, the mechanical conditioning paradigm 

imposed via cART conditions (24 hours) and via the biodegradable electrospun polymer wrap 

(wART conditions) statistically significantly inhibited the decrease in the number of proliferating 

cells within PIJVs vs. ART control conditions.  The number of proliferating cells within PIJVs 
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exposed to cART conditions for 72 hours was not statistically significantly different than ART 

controls.  Representative PCNA staining images from all ex vivo perfusion experiments are 

provided in Figure F. 24 to Figure F. 45 in Appendix F.  The mean percent values of PCNA 

positive cells, from all experiments, are provided in Table F. 6 in Appendix F.  The Microsoft 

Excel student’s t-test output tables for the mean percent PCNA positive cells, for each 

comparison shown in Figure 3.22, are provided in Table F. 7 to Table F. 10 in Appendix F. 
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Figure 3.21 Representative immunohistochemistry images from the HRP/ABC based PCNA analysis.   The top two 
panels are from a 24-hour VEN (A)  vs. ART (B) experiment.  The next two panels are from a 24-hour ART (C) vs. 
cART (D) experiment.  The third row of panels are from a 72-hour ART (E) vs. cART (F) experiment.  The bottom 
two panels are from a 24-hour ART (G) vs. wART (H) experiment.  The arrows indicate proliferating cells.  L 
indicates the PIJV lumen. 

 

  117



 
 

 

Figure 3.22 Quantified immunohistochemistry results from HRP/ABC based PCNA expression analysis to assess 
the percentage of proliferating cells within PIJVs from all the ex vivo vascular perfusion experiments.  The data are 
presented as mean ± standard error of the mean. 
 
 

3.2.6.6 SMC Phenotype 

Figure 3.23 shows representative paired HRP/ABC based immunohistochemistry images of 

Golgi complex staining from all four ex vivo vascular perfusion experiments described in 

Section 3.1.3.  Figure 3.24 shows the quantified Golgi complex analysis results from these 

experiments.  It can be seen that there is a statistically significant increase in the number of cells 

staining positive for Golgi complex within PIJVs abruptly exposed to ART conditions vs. VEN 

controls.  The mechanical conditioning paradigm imposed via cART conditions (for both 24 and 

72 hours) and via the biodegradable electrospun polymer wrap (wART conditions) suggests only 

a trend towards statistically significantly inhibiting the increase in the number of cells positively 

stained for Golgi complex within PIJVs vs. ART control conditions.  Representative Golgi 
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complex staining images from all ex vivo perfusion experiments are provided in Figure F. 46 to 

Figure F. 67 in Appendix F.  The mean percent values of Golgi complex positive cells, from all 

experiments, are provided in Table F. 11 in Appendix F.  The Microsoft Excel student’s t-test 

output tables for the mean percent PCNA positive cells, for each comparison shown in Figure 

3.24, are provided in Table F. 12 to Table F. 15 in Appendix F.  
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Figure 3.23 Representative immunohistochemistry images from the HRP/ABC based Golgi complex analysis.   The 
top two panels are from a 24-hour VEN (A)  vs. ART (B) experiment.  The next two panels are from a 24-hour ART 
(C) vs. cART (D) experiment.  The third row of panels are from a 72-hour ART (E) vs. cART (F) experiment.  The 
bottom two panels are from a 24-hour ART (G) vs. wART (H) experiment.  The arrows indicate positively stained 
cells.  L indicates the PIJV lumen. 
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Figure 3.24 Quantified immunohistochemistry results from HRP/ABC based Golgi complex expression analysis to 
assess the percentage cells staining positive for Golgi complex within PIJVs from all the ex vivo vascular perfusion 
experiments.  The data are presented as mean ± standard error of the mean. 
 
 

 

3.2.6.6.1 Transmission Electron Microscopy 

The level of Golgi complex and rough endoplasmic reticulum expression could not be quantified 

from the TEM images.  However, the representative TEM images seen in Figure 3.25 show that 

the SMCs within the PIJVs perfused under VEN and cART conditions (Figure 3.25(A) and 

Figure 3.25(C), respectively) have a very randomly oriented actin cytoskeleton in contrast to 

ART conditions (Figure 3.25(B)) which shows very aligned and more dense actin fibers.  It 

should be noted that the alignment is parallel to the direction of the CWS.  All other TEM 

images are provided in Figure H. 11 to Figure H. 13 in Appendix H. 
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Figure 3.25 Transmission electron microscopy (TEM) images of sections prepared from vein segments perfused, ex 
vivo, for 24 hours under (A) venous (VEN) conditions of 20 mmHg pressure and 20 ml/min flowrate, (B) pulsatile 
arterial (ART) conditions of 120/80 mmHg pressure and 100 ml/min mean flowrate, and (C) conditioned arterial 
(cART) conditions where the pressure and flowrate were ramped in equal increments, gradually over 24 hours, from 
VEN to ART conditions.  Note the random orientation of the actin cytoskeleton in (A) and (C) and the aligned 
orientation of the fibers in (B).  Images were taken at a magnification of 60,000x. 
     

3.3 DISCUSSION 

The work presented in this chapter shows that a biodegradable electrospun polymer wrap can be 

uniformly (Figure 3.15) and safely (Figure 3.11, Figure 3.12, and Figure 3.18) electrospun 

onto vein segments, and that the wrap can be tuned to completely degrade (Figure 3.15) such 

that CWS is applied to an AVG at a desired rate (Figure 3.10).  Having control over the 

biodegradation rate of an adventitially placed electrospun polymer wrap could lend itself to three 

potentially beneficial support modalities for attenuating IH in AVGs.  As shown here, 

biomechanical support can be delivered at a desired rate.  Consequently, delivery of both 

biochemical (drugs), and biological (cellular) support might theoretically be achieved using the 
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same approach [242,303].  The potentially beneficial effects of the polymer wrap on AVG 

microstructure were observed from the PSR and MPC staining (Figure 3.12 and Figure 3.13, 

respectively).  The polymer wrap seems to provide structural support to AVGs resulting in a 

more naturally crimped configuration of the collagen fibers (Figure 3.16), as well as less damage 

to the internal elastic lamina (Figure 3.17).  Maintaining integrity of the structural proteins that 

comprise the AVG wall may help to minimize the detrimental mechanical triggers received by 

the vascular ECs and SMCs and hence could help to attenuate IH in AVGs.  We also assessed 

the level of necrosis via Live/Dead™ staining in the electrospun PIJVs and showed no 

appreciable increase in necrosis due to electrospinning over sham and static controls (Figure 

3.18).  This data in addition to the vasomotor challenge data (Figure 3.11 and Figure 3.12) is 

more evidence to show that tissue viability is not affected by electropsinning. 

The immunohistochemistry results suggest that gradual vs. abrupt exposure of AVGs to 

arterial levels of CWS may be beneficial.  The balance between apoptosis and proliferation, as 

seen in Figure 3.20 and Figure 3.22 respectively, was shown to be disrupted due to abrupt 

exposure of PIJVs to ART conditions over VEN controls.  The observed increase in apoptosis 

and reduction in proliferation in PIJVs perfused under ART conditions suggests that there is an 

immediate shift in cellular function due to the altered biomechanical environment of the vein.  

This shift in cellular function within veins was shown to be inhibited by more gradual imposition 

of arterial levels of CWS via cART and wART ex vivo perfusion conditions.  In addition, the 

level of Golgi complex expression in PIJVs exposed to ART conditions was increased over VEN 

controls (Figure 3.24), suggesting a modulation in SMC phenotype to a more synthetic state.  

This observed shift in cellular function was not significantly inhibited by gradual exposure to 

ART levels of CWS via cART or wART conditions.  However, a trend towards inhibition of this 
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shift was shown (see Figure 3.24).  Additional experiments are required to determine if this 

trend becomes statistically significant. 

The observed alteration in SMC phenotype that resulted from exposing PIJVs to ART 

conditions agrees with previously reported data [71,131,163].  The concept of more gradual 

imposition of arterial levels of CWS to AVGs has not previously been reported but could result 

in a means to slow down or inhibit SMC phenotypic modulation which could consequently 

attenuate the hyperplastic response.  The reduction in apoptosis in PIJVs exposed to ART vs. 

VEN conditions also agrees with published results [108,124,203-206].  However, the reduction 

in proliferation in ART perfused PIJVs vs. VEN, cART, and wART groups was inconsistent 

with some published data [209,212,213].  Liu et al. suggested however that mechanical stretch 

due to arterial hemodynamics induces cell death, which possibly mediates subsequent cell 

proliferation [108].  The short-term timepoints studied in this dissertation may not have been 

long enough to see a rise in proliferation after the initial increase in apoptosis in the ART 

perfused PIJVs. 

Several limitations of the work presented in this chapter should be noted.  Although the 

Live/Dead™ assay is widely used to evaluate necrosis in living cells and tissues, it arguably was 

not ideally suited for our application.  This was due to the limited distance the reagents were able 

to diffuse through the thickness of vascular tissue.  It was observed that the staining occurred 

predominantly in the intimal and adventitial layers of the vein wall, while the media was much 

less intensely stained.  It is true that the adverse effect of the electrospinning process would be in 

the area of contact between the polymer wrap and the vein wall (i.e., the adventitia), as well as in 

the area of contact between the mandrel and the vein wall (i.e., the lumen).  The Live/Dead™ 

assay appeared to work well in both of these areas and showed no appreciable increase in the 
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level of necrosis when compared to control tissue.  Additionally, the vasomotor challenge data 

indicated that the spun PIJV was able to contract with the same intensity as the sham control 

which demonstrated the viability of the SMCs comprising the medial layer of the tissue.  Finally, 

we would have ideally compared the vasomotor responses of the sham and spun PIJVs to a 

baseline control response – that is, with a freshly excised PIJV segment.  However, obtaining a 

third segment of PIJV for immediate testing was not feasible since we could only harvest two 

PIJV segments per animal.  We feel that the choice of a sham control over a baseline control was 

acceptable in that we wanted to assess the differences associated only with electrospinning. 

3.4 CONCLUSION 

We showed here that a tunable polymer wrap can be applied to vein segments without 

compromising viability or function, and demonstrated one potential application; i.e., gradually 

imposing the mid-wall CWS in wrapped veins exposed to arterial levels of pressure.  The gradual 

imposition of arterial levels of CWS, rather than abrupt exposure, may be an important new 

means to reduce the hyperplastic response of AVGs, promoting instead safe arterialization. 

Incorporation of either pharmaceuticals or biologicals into an adventitial polymer wrap 

represents a possible future application, and may further enhance the patency of AVGs.  To our 

knowledge, controlled delivery of cellular support via a biodegradable AVG wrap/sheath has not 

been previously reported and hence this possible future application of the adventitial wrap would 

be novel.  The polymer that was used in this study has been characterized [57,297,304], and 

successfully micro-integrated with viable SMCs [242], and would lend itself to this possible 

future application. 
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4.0  IN VIVO ARTERIAL VEIN GRAFTING 

Figure 4.1 is a schematic depicting the set of in vivo experiments that were performed related to 

Specific Aim 4.  In order to evaluate the mitigating effect of the electrospun PEUU adventitial 

wrap on the acute and chronic hyperplasic response of vein segments implanted as carotid 

interposition grafts in a preclinical model, “proof of concept” carotid interposition vein graft 

experiments were performed in a pig model.  For this, we utilized a unilateral autologous carotid 

interposition internal jugular vein graft.  This model was chosen because PIJVs are similar in 

both size and anatomy to the human saphenous vein, and the physiology and pathobiology of the 

pig’s cardiovascular system is known to closely approximate that of humans [305].  This model 

of AVG IH has previously been used extensively by others [27,41,43,49,51,294-296,306]. 

4.1 METHODS 

Pigs were divided into two groups: a “spun” AVG group and a “sham control” AVG group.  

Each animal served as its own vein graft donor.  In brief, PIJVs were harvested according to 

Section 3.1.1 and were either spun with the a same wrap composition and thickness as in 

Specific Aim 3 using the electrospinning process described in Section 3.1.2, or designated as 

sham controls.  The AVGs were then implanted as carotid interposition grafts (as described in 

Section 4.1.1) for 30 days (or upon observing irreversible complications), an implant duration 
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sufficient to allow IH to be grossly apparent in the sham control group [27,43,48,49,51,241,294-

296] to which the spun group was compared.  In addition to evaluating patency via angiography, 

the explanted AVGs were processed for histological evaluation of IH, and for SEM as described 

in Section 3.2.6.   

Table 4.1 summarizes the in vivo experiments performed in this study and the respective 

endpoints analyzed for each experiment.  Please note that the quantified endpoints of the in vivo 

studies were strictly histological in nature.   

 

 

 

 

 

Figure 4.1 Schematic depicting the un-paired spun vs. sham AVG in vivo experiments. 
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Table 4.1 Summary of all in vivo AVG experiments that were performed and the respective endpoints that were 

 

analyzed.  Note that H&E: hematoxylin and eosin; MPC: Movat’s pentachrome; and SEM: scanning electron 
microscopy.  An “X” indicates that the analysis was performed. 
 

   

 

 

4.1.1 Unilateral Porcine Carotid Interposition Grafting 

All pig surgeries were performed either in the Preclinical Testing facilities of the McGowan 

Institute for Regenerative Medicine, which has a suite of operating rooms (small and large) and 

extensive core support facilities, or within the animal facility on the 9  floor of the Biomedical 

Science Tower.  

th

Figure 4.2 shows some pictures taken within the facilities.  Animals were 

brought into the facility 7-10 days prior to the day of the experiment, and kept NPO 12 hours 

prior to surgery.  Prior to surgery, animals were anesthetized with Acepromazine (0.15 mg/kg 

IM) and Ketamine (15.0 mg/kg, IM combination), intubated and maintained at a surgical plane 

of anesthesia with Isoflurane (1-3% in oxygen).  Once each animal was clipped and prepped for 
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the procedures it was moved into the surgical suite, placed on positive pressure ventilation and 

instrumented with monitoring equipment (ECG).  Pulse oximetry and blood pressure were 

monitored throughout the surgical procedure.  After the induction of anesthesia, aseptic surgery 

was performed.   

 

 

 

 

 

Figure 4.2 Photographs taken within the animal facility.  A) Hand-washing “scrub” area.  B) Operating room 
equipped for two surgeries.  C) Alejandro Nieponice, MD (left) and I performing one of the AVG implants. 
 

 

  129



The surgical procedure was as follows.  Animals were placed in the supine position and a 

unilateral cervical incision was made to expose the PIJV and common carotid artery.  A fresh 

unilateral PIJV harvest was performed on the pig according to Section 3.1.1.  A picture of a 

cannulated PIJV within the custom “in vivo length” clamp is shown in Figure 4.3.  The 

harvested PIJV was then either spun (as described in Section 3.1.2 and in Stankus et al. [57]) or 

designated as the sham control.  A picture showing a cannulated PIJV segment within the 

electrospinning device, and within the clamp immediately post-electrospinning are shown in 

Figure 4.4(A) and (B), respectively.  The animal was then heparinized (300 UI/Kg), and the 

carotid artery clamped proximally and distally using atraumatic vascular clamps.  The segment 

between clamps was excised (~6 cm).  The vein segments were then implanted as unilateral 

carotid interposition grafts (end to end) using interrupted 7-0 prolene sutures.  A picture of the 

spun AVG just prior to implantation is shown in Figure 4.5. 

 

 

 

 

 
Figure 4.3 Photograph showing a cannulated PIJV segment within the custom clamp immediately upon harvest. 
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Figure 4.4 Photograph showing a cannulated PIJV segment within (A) the electrospinning device and (B) within the 
custom clamp immediately post-electrospinning. 
 

 

 

 

 

Figure 4.5 Photograph showing a spun cannulated PIJV segment just prior to being implanted as an AVG. 
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Post-operatively, animals were recovered and housed in the MIRM intensive care unit.  

Following the surgical procedure and cessation of inhalation anesthesia, the animals were 

extubated when it exhibited a swallowing reflex and the protective cough reflexes were 

functional.  The animals were continually monitored for 24 hours, and the following parameters 

were recorded every hour: pulse rate, strength of pulse, capillary refill time, respiratory rate, 

urinary output, and defecation.  Body temperature was determined and recorded every 2 hours.  

The animal was kept warm and dry to prevent hypothermia.  Buprenorphine hydrochloride 

(0.005-0.01 mg/kg, IM, q12h) was administered at regular intervals for 4 days for pain and 

continued to be administered for pain management if signs of pain were exhibited.  Acute pain in 

animals is expressed by guarding, vocalization, mutilation, restlessness, recumbency for an 

unusual length of time, depression (reluctance to move or difficulty in rising), or abnormal 

appearance (head down, tucked abdomen, hunched).  Animals exhibiting any of these behaviors 

were treated with pain medication.  Skin staples/sutures were removed 10 days post-op.  All 

animals were monitored daily by a trained staff of veterinarians, registered veterinary 

technicians, and animal care personnel.  

An anti-coagulation regimen was used to battle acute AVG failure via thrombosis.  Oral 

doses of aspirin (325 mg/day) and Plavix (75 mg/day) were both started 3 days pre-operatively.  

The aspirin was administered daily for the entire 30 day post-operative period, and Plavix was 

administered daily for only 14 days post-operatively. 

 After a 30-day survival time (or upon observing irreversible complications), the animals 

were euthanized.  The pigs were deeply anesthetized with Acepromazine (0.15 mg/kg IM) and 

Ketamine (30.0 mg/kg, IM combination), then euthanized by injection of an overdose of 

intravenous potassium chloride to induce cardiac arrest.  Vital signs were monitored to effect.   
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4.1.2 Fluoroscopic Angiography 

After euthanasia and just prior to graft explant, fluoroscopic angiography was performed to 

assess graft patency.  The carotid artery was clamped approximately 3 cm upstream of the 

proximal graft anastomosis, and contrast medium was infused into the carotid artery between the 

clamp and proximal anastomosis.  Angiograms were recorded (Model OEC 9800 Plus, General 

Electric Inc.) to verify flow through the entire graft segment.  If flow could not be established 

through a graft (i.e., due to occlusion), angiography was not performed. 

4.1.3 Post-explant Tissue Processing 

The grafts (including 1 cm of carotid artery proximal and distal to graft) were extracted and cut 

in half so that each half included one anasotomosis and a segment from the mid-graft region.  

One half of the tissue was immediately fixed in 4% paraformaldehyde and analyzed 

histologically as described below.  The other half of the tissue was fixed in ultrapure 2.5% 

gluteraldehyde for SEM analysis as described in Section 3.1.7.1.  

4.1.4 Histological Measurements of IH 

Morphometric analysis was performed on sections from the central region of all of the explanted 

AVGs, except from the two animals that expired prematurely.  Five 5 μm tissue sections from 

each AVG segment were stained with MPC as described in protocol E.4 in Appendix E.  The 

intimal thickness was defined as the thickness measured from the internal elastic lamina to the 

vessel lumen, and the medial thickness was defined as the thickness measured from the external 
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elastic lamina to the internal elastic lamina.  Intimal (TI) and medial (TM) thicknesses were 

measured from the MPC images, and the intimal-to-medial (TI/TM) thickness ratios were 

calculated from these measurements.  Measurements were made from 4 fields of view per 

section yielding a total of 20 measurements that were then averaged to yield a single value for 

each AVG segment.  

4.1.5 Scanning Electron Microscopy 

The same procedure as described in Section 3.1.7.1 was used to process and image the explanted 

AVGs from the in vivo experiments.  The SEM sample was filleted longitudinally so that the 

luminal surface was visible and both the anastomotic interface and mid-graft region could be 

imaged.  A low magnification SEM image was taken for some (see Table 4.1) of the AVGs post 

explant. 

4.1.6 Statistics 

An unpaired student’s t-test was performed on the intimal-to-medial thickness ratio data, and 

P<0.05 was considered statistically significant.  Unless otherwise indicated, data are presented as 

mean ± standard error of the mean. 
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4.2 RESULTS 

The adventitial polymer wrap had an immediately apparent effect of maintaining the AVG at a 

diameter consistent with that for the native vein (see Figure 4.6) under arterial pressure.  Images 

from the implanted AVGs, immediately upon re-establishing flow, for the last 4 experiments are 

provided in Figure G. 1 to Figure G. 4 in Appendix G.  In addition, the wrapped AVGs 

exhibited pulsatile radial excursions (i.e., compliance) similar to the native carotid artery, 

whereas the distended un-wrapped AVG appeared to be a rigid tube with no detectable 

pulsations.  That is, upon establishing flow through the control grafts, it was observed that unlike 

the native carotid arteries and spun veins, the sham control veins did not change in diameter in 

response to the pulsatile pressure.   
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Figure 4.6 A) Wrapped PIJV segment during the electrospinning process. B) Wrapped PIJV implanted as a carotid 
interposition graft. C) Unwrapped PIJV graft. Note that the wrapped PIJV (B) does not expand under arterial 
pressure as does the unwrapped vein (C). 
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Out of the 7 in vivo experiments that were performed, only 1 experiment (spun: N=1; 

sham: N=1) was completely successful.  That is, the AVGs from both the spun and sham pigs 

were 100 % patent after 30 days.  Angiography images of these AVGs can be seen in Figure 4.7.  

The rest of the experiments were deemed unsuccessful due to one of 3 reasons: 1) total occlusion 

of either the spun (N=1) or sham (N=1) AVGs due to IH or thrombosis; 2) post-operative 

(respiratory related) complications leading to the death of an animal in the spun (N=1) group; 

and 3) infection resulting in the need to euthanize an animal in the spun (N=1) group after 1 

week post-op.  Two of the AVGs (1 sham and 1 spun) were 100% patent, and 8 of the AVGs (5 

sham and 3 spun) were only partially occluded.  We performed morphometric measurements to 

assess IH development for comparison between the two groups (sham, N=6; spun, N=4).  The 

AVGs from the two animals in the spun group that died prematurely were not included in the 

morphometric analysis.  Representative images of MPC staining that were used in the 

morphometric analysis are shown in Figure 4.8.  The other MPC images (see Table 4.1) are 

provided in Figure G. 5 to Figure G. 10 in Appendix G.  The quantified results can be seen in 

Figure 4.9.  Though not quite statistically significant, there was a trend (P=0.086) of the intimal-

to-medial thickness ratios for the spun group to be less than that for the sham controls.  The 

Microsoft Excel student’s t-test output table for the comparison shown in Figure 4.9, is provided 

in Table G. 1 in Appendix G. 
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Figure 4.7 Fluoroscopic angiography images from both spun and sham AVGs.   

 

 

After the first three in vivo experiments were performed, it was decided to include SEM 

analysis in the following four experiments. SEM images were taken of the AVGs from one 

completely successful experiment (Figure 4.10(A) and (B)) as well as from another experiment 

where the AVGs were stenotic, but not completely occluded (Figure 4.10(C) and (D)).  The 

anastomotic interface between the vein graft and artery, evidenced by the suture line, can be seen 

in each image.  Also, a portion of the mid-AVG region can be seen in each SEM image.  The 

other SEM images (see Table 4.1) are provided in Figure G. 11 to Figure G. 15 in Appendix G.  

Please note that one sham AVG was not imaged via SEM because it was too difficult to visualize 

a continuous lumen.  The AVGs from the two animals in the spun group that died prematurely 

were also not imaged via SEM. 
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Figure 4.8 Representative MPC staining images that were used for morphometric measurements of IH.  Note: TI = 
intimal thickness; TM = medial thickness. 
 
 

 

   

 

 

 

Figure 4.9 Summary of quantified results from morphometric measurements of IH.  P<0.05 was considered 
statistically significant.  Note only a trend towards statistical significance was observed. 
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Figure 4.10 Low magnification (30x) SEM images from two in vivo experiments where the AVGs were not 
occluded.  A and B were from an experiment where the grafts were fully patent.  C and D are from an experiment 
where the grafts were only partially occluded.  These images show the anastomotic interface between the vein graft 
and the carotid artery. 
  
 

4.3 DISCUSSION 

A trend towards a significant reduction in the intimal-to-medial thickness ratios in the spun vs. 

sham groups was observed (Figure 4.9).  It is likely that this difference would become 

statistically significant if the number of experiments was increased.  These results, as well as the 
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qualitative SEM results (Figure 4.10), suggest that the electrospun biodegradable polymer wrap 

was beneficial in reducing IH in AVGs over sham controls.  However, further investigation is 

necessary to determine if these effects are in fact persistently beneficial.  In addition to the 

inherent variability associated with mechanopathobiological data, there was also variability 

introduced into our results by having 3 different surgeons, of varying experience, perform the 

surgeries.  It is also true that there is a “learning curve” associated with creating anastomoses 

using a two layered AVG (spun group) instead of the normal one layered AVG (sham group).  

As with any new surgical procedure, as the comfort level of the surgeon performing the surgery 

increas

ronounced and could lead to a statistically significant reduction in AVG 

IH ove

es, the success rate of the surgery will consequently increase.        

Section 3.3 provides a summary of the previous studies that have showed similar results 

to ours by using an external sheath to reduce AVG IH [42-44,46,47,49-52,55,240,241].  These 

studies focused on the delivery of mechanical (as described in this dissertation) and biochemical 

support to AVGs in various animal models.  The previous in vivo animal studies performed by 

Huynh et al. [31,42], Jeremy et al. [43], Vijayan et al. [51,52], and Liao et al. [55] showed a 

significant reduction in IH development within AVGs that were supported by biodegradable 

wraps over unwrapped controls.  The in vivo results presented in this dissertation are supportive 

of these previous studies, however, our results did not reach statistical significance but showed a 

definite trend (see Figure 4.9) towards reducing AVG IH.  Additional experiments would likely 

make our results more p

r sham controls.  

Clinical translation of these previous approaches was not achieved due to two main 

limitations. Specifically, they all used either loose-fitting/biodegradable or loose-

fitting/biodurable sheaths.  In this work, we desired to address these limitations by developing a 
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means to safely “wrap” an AVG with a tight-fitting and biodegradable polymer.  The AVG wrap 

used in this study to provide transient structural support is superior to any previous design 

because it has the following distinguishing characteristics: 1) it is custom-fit to each AVG; 2) it 

has tunable biodegradation kinetics; 3) it is a peri-surgical tool; 4) it can be used to deliver 

structural, pharmacological, and biological support either individually or in any desired 

combin

pact on the mortality and/or re-operation rates in patients 

ation; and 5) it is rapidly manufactured.   

As in this study, AVGs have previously been shown to develop IH within 4 weeks in a 

pig model [43,48,49,51,241,294,296].  Although we observed IH development in AVGs at 4 

weeks, it is yet unclear if the beneficial effects of our polymer wrap would also be apparent at 

longer timepoints.   Longer term experiments (upto 6 months) are required to more fully assess 

whether or not the spun AVGs would perform better than sham controls over a longer time 

period.  The study by Vijayan et al., included both 1 and 6 month timepoints, and reported that 

the beneficial effect of external structural support to AVGs was preserved at 6 months [51].  Any 

reduction in the rate of development of IH, which is essentially the current focus of this field of 

research, could have a considerable im

undergoing arterial bypass grafting.   

 Of course there are limitations to the work presented here.  The fact that the sham 

controls were not paired to the spun AVGs (i.e., from the same pig) provides us with less 

statistical power in the study.  However, the unpaired experimental design that we used was 

deemed necessary in order to avoid post-operative complications in the animals.  We felt it was 

safer to perform unilateral surgeries instead of bilateral so that the venous blood return from the 

brain would not be excessively altered.  Another limitation stems from the varying experience of 

the surgeons who performed the procedures.  It is likely that the results would be more 
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statistically significant if the patency rate of the AVGs was increased.  That is, if the procedures 

were all performed by the most experienced surgeon, the electrospun biodegradable polymer 

wrap may have significantly reduced IH in the AVGs over sham controls.  A third limitation is 

that the 30-day implant duration may not have been long enough.  Longer term experiments, 

perhaps as long as 6 months, are required to determine if the efficacy of our approach in reducing 

VG I

e feel this will enhance the beneficial effects with 

respect to IH development in AVGs. 

4.4 CONCLUSIONS 

what has previously been reported in the literature, we feel that our preliminary findings fit well 

A H is sustained over time. 

 The delivery of the aforementioned “3 modes of support” (see Section 1.4) to AVGs via 

a peri-adventitially placed biodegradable polymer wrap may lead to improved AVG patency 

which could consequently reduce both mortality and the rate of re-operation associated with 

arterial bypass grafting.  The technique described in this study lends itself to delivery of all 3 

modes of support to AVGs.  Future work for this ongoing project should focus on combining the 

delivery of the other two modes of support (pharmacological and biological, described in Section 

1.4) to the delivery of structural support.  W

The in vivo experiments reported in this dissertation were “proof-of-concept” in nature.  That is, 

we desired to assess the feasibility of safely applying an adventitial biodegradable polymer wrap 

onto a vein segment via electrospinning and then implanting the spun vein as an AVG in a pre-

clinical model.  This goal was achieved and we feel that the reported results warrant further 

investigation of this approach as a treatment alternative to improve AVG patency.  Based on 
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within the context of this field of research.  Our novel approach could provide a unique and 

effective means to safely and functionally arterialize AVGs in situ.           
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5.0  STUDY SUMMARY 

To summarize the work presented in this dissertation, a description of the results related to each 

Specific Aim is provided.  Also, some recommendations for future directions are made. 

5.1 SUMMARY OF PERTINENT FINDINGS 

5.1.1 Specific Aim 1 

The paired ex vivo vascular perfusion system described here has improved on any previously 

existing apparatus in that we were able to precisely control imposed physiologic arterial CWS 

and shear stress waveforms.  The use of the N4SID algorithm yielded the most rigorous 

mathematical models of the system which were subsequently used to develop the PID 

controllers.  This novel approach allowed us to reproduce the arterial biomechanical environment 

with great accuracy. 

5.1.2 Specific Aim 2 

We have shown that SMC apoptosis, proliferation, and Golgi complex expression was altered in 

PIJVs exposed to ART vs. VEN conditions, and that mechanical conditioning (cART conditions) 
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modulated this altered protein expression.  Specifically, apoptosis was increased in PIJVs 

exposed to ART conditions for 24 hours vs. VEN controls.  This abrupt increase was attenuated 

in PIJVs perfused under cART conditions (both for 24 and 72 hours) vs. ART controls.  

Proliferation was observed to be reduced in PIJVs perfused for 24 hours under ART conditions 

vs. VEN controls, and this reduction was subsequently shown to be attenuated in PIJVs perfused 

under cART conditions (24 hours only) vs. ART controls.  Finally, the expression of Golgi 

complex was increased in PIJVs perfused under ART conditions for 24 hours vs. VEN controls.  

However, only a trend towards inhibition of this increase was observed for both 24 and 72 hour 

cART perfused PIJVs vs. ART controls.  These results are all in support of our hypothesis that a 

biodegradable polymer wrap can be placed peri-adventitially on AVGs and tuned to provide, in 

situ, the CWS profile necessary to achieve a reduced hyperplastic response, and thus warrant 

further investigation.   

5.1.3 Specific Aim 3 

By varying the composition, electrospinning time, and final polymer solution concentration we 

were able to tune the degradation rate of the wrap so as to gradually expose PIJVs to arterial 

levels of CWS at a desired rate (wART conditions).  Several combinations were attempted until 

we achieved a wrap that resulted in an approximately linear increase in CWS, from venous to 

arterial levels, within PIJVs implanted into our ex vivo vascular perfusion system over a 24-hour 

period.  As desired, the effect of the wrap on the acute hyperplastic response was similar to the 

results observed using cART conditions in Specific Aim 2.  wART conditions significantly 

reduced the number of apoptotic cells, and inhibited the decrease in the number of proliferating 

cells within PIJVs vs. ART control conditions.  However, only a trend towards significance was 
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observed for wART conditions inhibiting the increase in the number of cells positively stained 

for Golgi complex. vs. ART control conditions.  These results are in support of our hypothesis.  

5.1.4 Specific Aim 4 

The biodegradable electrospun polymer wrap developed in Specific Aim 3 was used to create the 

spun AVGs for the in vivo preclinical experiments.  A trend towards a statistically significant 

reduction in AVG IH was observed in the spun vs. sham control group.  Although the efficacy of 

the wrap in reducing AVG IH appeared to be favorable, additional experiments of longer 

timepoints must be performed to determine if the results are persistently beneficial. 

5.2 SUMMARY OF ACCOMPLISHMENTS 

The work presented in this dissertation has produced the following patent applications and 

manuscripts: 

1. Provisional Patent Application: 

• El-Kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA, Filed 

January 30, 2007, “Bioerodible Wraps and Uses Therefor”.  

Serial Number: 60/898,356. 

2. Utility Patent Application: 

• El-Kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA, Filed 

January 30, 2008, “Bioerodible Wraps and Uses Therefor”. 

 Serial Number: 12/022430. 
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3. PCT Patent Application: 

• El-Kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA, Filed 

January 30, 2008, “Bioerodible Wraps and Uses Therefor”.  

Serial Number: PCT/US08/52408. 

4. El-Kurdi MS, Vipperman JS, Vorp DA, “Proportional Integral and Derivative Control of 

Arterial Circumferential Wall Stress and Shear Stress Waveform Generation within an Ex 

vivo Vascular Perfusion System”, J Biomech Eng, In press. 
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5.3 FUTURE DIRECTIONS 

The purpose of this work was to further our understanding of the influence of arterial 

biomechanical signals on the progression of AVG IH.  The specific biomechanical signal that we 

chose to focus our attention on controlling was mid-vein CWS.  There is significant evidence 

that the severe and abrupt increase in CWS that occurs when flow is re-established in AVGs may 

lead to the eventual failure of a large percentage due to IH.  To counteract the likely development 

of AVG IH, we desired to develop a peri-surgical tool that would facilitate the in situ 

bioengineering of AVGs.  That is, we wanted to develop a safe means that allows AVGs time to 

adapt to the arterial biomechanical environment.  The custom-fit biodegradable polymer wrap 
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that we used to gradually impose arterial levels of CWS showed promising results in reducing 

the level of IH development in AVGs vs. sham controls in a pre-clinical model.  The delivery of 

mechanical support to AVGs in an effort to battle IH is but one approach under investigation by 

us and others.  The use of electropsinning offers a wide range of possibilities for the delivery of 

biomechanical, biochemical, and biological support, individually or in any combination, to 

AVGs.  The controlled delivery of both drugs and stem cells to AVGs via an adventitially placed 

electrospun biodegradable polymer wrap is currently under investigation by our laboratory. 

 The advancements made to our ex vivo vascular perfusion capabilities was the second 

major area of focus in this dissertation.  The single-input-single-output PID controllers that were 

developed to individually modulate the imposed CWS and shear stress waveforms within the 

system were the best that could be achieved with the available hardware.  The development of a 

multi-input-multi-output state space controller to simultaneously control CWS and shear stress 

would be the natural next step in the advancement of our system.  This capability requires more 

complex hardware and is currently under investigation. 
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APPENDIX A 

CUSTOM BUILT EVPS COMPONENT DRAWINGS 

Several of the EVPS components were custom designed and built.  The machine drawings for all 

these components are included in this Appendix. 
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Figure A. 1 Solidworks technical drawing of vertical plate for piston/cylinder device frame. 
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Figure A. 2 Solidworks technical drawing of horizontal plate for piston/cylinder device frame. 
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Figure A. 3 Solidworks technical drawing of isometric view of horizontal plate for piston/cylinder device frame. 
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Figure A. 4 Solidworks technical drawing of pillow cushion support for piston/cylinder device frame. 
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Figure A. 5 Solidworks technical drawing of piston plate for piston/cylinder device frame. 
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Figure A. 6 Solidworks technical drawing of piston rod for piston/cylinder device. 
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Figure A. 7 Solidworks technical drawing of piston head for piston/cylinder device. 
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Figure A. 8 Solidworks technical drawing of the piston cylinder mount for piston/cylinder device. 
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Figure A. 9 Solidworks technical drawing of right side view of vessel tee assembly. 
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Figure A. 10 Solidworks technical drawing of top view of vessel tee assembly. 
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Figure A. 11 Solidworks technical drawing of vessel tee assembly. 
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Figure A. 12 Solidworks technical drawing of isometric view of tissue housing chamber assembly. 
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Figure A. 13 Solidworks technical drawing of exploded isometric view of tissue housing chamber assembly. 
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Figure A. 14 Solidworks technical drawing of right side view of tissue housing chamber assembly. 
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Figure A. 15 Solidworks technical drawing of top view of tissue housing chamber assembly. 
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Figure A. 16 Solidworks technical drawing of right side view (window) of tissue housing chamber assembly. 
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Figure A. 17 Solidworks technical drawing of top view (window) of tissue housing chamber assembly. 
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Figure A. 18 Solidworks technical drawing of back view of tissue housing chamber assembly. 
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Figure A. 19 Solidworks technical drawing of isometric view of tissue housing chamber assembly. 
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Figure A. 20 Solidworks technical drawing of lid for tissue housing chamber assembly. 
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Figure A. 21 Solidworks technical drawing of lid for tissue housing chamber assembly. 
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Figure A. 22 Solidworks technical drawing of spool-block for tissue housing chamber assembly. 
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Figure A. 23 Solidworks technical drawing of peg for tissue housing chamber assembly. 
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Figure A. 24 Solidworks technical drawing of spool-block nut for tissue housing chamber assembly. 
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Figure A. 25 Solidworks technical drawing of front spool for tissue housing chamber assembly. 
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Figure A. 26 Solidworks technical drawing of spool-rod for tissue housing chamber assembly. 
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Figure A. 27 Solidworks technical drawing of right side view of in vivo length blood vessel clamp assembly. 
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Figure A. 28 Solidworks technical drawing of right side view (detail) of in vivo length blood vessel clamp 
assembly. 
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Figure A. 29 Solidworks technical drawing of front view of in vivo length blood vessel clamp assembly. 
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Figure A. 30 Solidworks technical drawing of top view of in vivo length blood vessel clamp assembly. 
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Figure A. 31 Solidworks technical drawing of back view of in vivo length blood vessel clamp assembly. 
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Figure A. 32 Solidworks technical drawing of isometric view of in vivo length blood vessel clamp assembly. 

  182



 

 

 

Figure A. 33 Solidworks technical drawing of front view of slider for in vivo length blood vessel clamp assembly. 
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Figure A. 34 Solidworks technical drawing of top view of slider for in vivo length blood vessel clamp assembly. 
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Figure A. 35 Solidworks technical drawing of isometric view of slider for in vivo length blood vessel clamp 
assembly. 
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Figure A. 36 Solidworks technical drawing of right side view of guide-rail for transport box assembly. 
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Figure A. 37 Solidworks technical drawing of front view of guide-rail for transport box assembly. 
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Figure A. 38 Solidworks technical drawing of top view of guide-rail for transport box assembly. 
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Figure A. 39 Solidworks technical drawing of isometric view of guide-rail for transport box assembly. 
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Figure A. 40 Solidworks technical drawing of isometric view of transport box assembly. 
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Figure A. 41 Solidworks technical drawing of right side view of lid for transport box assembly. 
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Figure A. 42 Solidworks technical drawing of top view of lid for transport box assembly. 
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Figure A. 43 Solidworks technical drawing of isometric view of lid for transport box assembly. 
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Figure A. 44 Solidworks technical drawing of right side view of top for transport box assembly. 
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Figure A. 45 Solidworks technical drawing of top view of top for transport box assembly. 
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Figure A. 46 Solidworks technical drawing of isometric view of top for transport box assembly. 
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Figure A. 47 Solidworks technical drawing of top view of middle for transport box assembly. 
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Figure A. 48 Solidworks technical drawing of isometric view of middle for transport box assembly. 
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Figure A. 49 Solidworks technical drawing of right side view of bottom for transport box assembly. 
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Figure A. 50 Solidworks technical drawing of top view of bottom for transport box assembly. 
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Figure A. 51 Solidworks technical drawing of isometric view of bottom for transport box assembly.     
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APPENDIX B 

SYSID MATLAB® CODE 

The Matlab® programs that were used to generate the input/output data used in the SYSID 

algorithm are presented in this Appendix.  Also, the program that was used to convert the SYSID 

generated state-space models into transfer functions is provided.   

 

%%%************************************************************ 
%%% Title: SYSID Data Generation Program for N4SID Algorithm                  * 
%%%           Implementation via IDENT GUI                                                       * 
%%%           Roller Pump Only - Flowrate I/O                                                      * 
%%%                                                                                                                      * 
%%% Author: Mohammed S. El-Kurdi                                                                 * 
%%%                                                                                                                      * 
%%% Version: 09/06/06                                                                                        * 
%%%                                                                                                                      * 
%%%************************************************************ 
 
%%% initialize program and load input data file 
clear all 
close all 
load C:\MATLAB7\work\controller\q_in.mat;  
 
%%% Declare input vectors 
rate=length(q1);  % set the i/o rate equal to the length of the input flowrate vector 
Q=q1;    % rename the input flowrate vector for calculations 
Qp(1:rate)=0;   % turn off the output to the piston  
SetP1=Q;    % rename the input flowrate vector for output 
SetP2=Qp.';    % rename the input flowrate vector for output and transpose 
%%% define the i/o hardware 
adaptor='nidaq'; % load driver 
id=1;     % DAQ device ID 
ch1o=0;    % output ch to roller pump 
ch2o=1;    % output ch to piston 
ch1i=0;    % input ch from flow meter 
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ch2i=1;    % input ch from P1 
ch3i=2;    % input ch from P2 
ch4i=4;    % input ch from laser 
noc=2;    % # of output channels 
nic=4;     % # of input channels 
tnc=noc+nic;    % total # of input and output channels 
 
%%% counters and timers 
cs=60;     % set the “heart-rate” or the number of cardiac cycles per min 
n=5;     % set inner loop terminator 
i=1;     % for loop index 
j=1;     % for loop index 
spt=rate/n;    % samples per trigger  
dt=1/rate;    % time increment for plotting 
T=(0:dt:cs);    % time vector for plotting 
 
%%% Perform i/o 
for j=1:cs, 
    for l=1:n, 
        SP1=SetP1((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
        SP2=SetP2((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');   % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
         
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
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        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,1).'; 
        pressure1((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,2).'; 
        pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,3).'; 
        OutP((1+((l-1)*spt)):(((l-1)*spt)+spt))=(pressure1((1+((l-1)*spt)):(((l-
1)*spt)+spt))+pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt)))./2; 
        OuterDiameter((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;      % order of filters for all raw data 
    m1=71;      % frame size of filter for raw pressure data 
    m2=31;      % frame size of filter for raw flowrate data 
    m3=13;      % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);   % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);   % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3);  % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m1);   % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);   % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);   % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((j-1)*rate)):(((j-1)*rate)+rate))=q1(:); 
    MFlow((1+((j-1)*rate)):(((j-1)*rate)+rate))=Flowf(:).*400; 
    MP((1+((j-1)*rate)):(((j-1)*rate)+rate))=OutPf(:).*56.76; 
    MOD((1+((j-1)*rate)):(((j-1)*rate)+rate))=ODf(:); 
    j=j+1; 
    looper=j 
end 
 
%%% eliminate skewness of data 
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i=1; 
z=3;       % shifts input z pts to the right 
for i=1:length(SetPMasterPlot)-z, 
    SetPMasterPlot(i)=SetPMasterPlot(i+z);     
end 
 
 
%%% Create IDDATA object for importation into IDENT GUI 
y=MFlow.'; 
u=SetPMasterPlot.'; 
dat=iddata(y,u,dt) 
 
%%% stop pump and piston 
waveform1a=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'immediate'); 
putdata(ao, [waveform1a waveform1a]); 
start(ao); 
stop(ao); 
delete(ao); 
 
%%% Plot i/o data 
T=T(1:length(MFlow)); 
figure; 
plot(T,MFlow,'b-'); 
hold on 
plot(T,SetPMasterPlot,'r-'); 
axis([0 T(length(MFlow)) 0 1.05*(max(SetPMasterPlot))]); 
title('Measured vs Set Flowrate') 
xlabel('Time (s)'); 
ylabel('Flowrate (cc/min)'); 
legend('Measured', 'SetPoint'); 
hold off 
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%%%************************************************************ 
%%% Title: SYSID Data Generation Program for N4SID Algorithm                 * 
%%%           Implementation via IDENT GUI                                                      * 
%%%           Roller Pump and Piston Combination - Flowrate I/O                       * 
%%%                                                                                                                      * 
%%% Author: Mohammed S. El-Kurdi                                                                 * 
%%%                                                                                                                      * 
%%% Version: 09/06/06                                                                                        * 
%%%                                                                                                                      * 
%%%************************************************************ 
 
%%% initialize program and load input data file 
clear all 
close all 
load C:\MATLAB7\work\controller\q_in.mat; 
 
%%% Declare input vectors 
rate=length(q1);   % set the i/o rate equal to the length of the input flowrate vector 
Q=q1/80;    % rename and resize the input flowrate vector for RP V range 
Qp=q1/750;   % rename and resize the input flowrate vector for piston V range 
SetP1=Q;    % rename the input flowrate vector for output 
SetP2=Qp;   % rename the input flowrate vector for output and transpose  
 
%%% define the i/o hardware 
adaptor='nidaq'; % load driver 
id=1;     % DAQ device ID 
ch1o=0;    % output ch to roller pump 
ch2o=1;    % output ch to piston 
ch1i=0;    % input ch from flowmeter 
ch2i=1;    % input ch from P1 
ch3i=2;    % input ch from P2 
ch4i=4;    % input ch from laser 
noc=2;    % # of output channels 
nic=4;     % # of input channels 
tnc=noc+nic;    % total # of input and output channels 
 
%%% counters and timers 
cs=60;     % set the “heart-rate” or the number of cardiac cycles per min 
n=5;     % set inner loop terminator 
i=1;     % for loop index 
j=1;     % for loop index 
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spt=rate/n;    % samples per trigger  
dt=1/rate;    % time increment for plotting 
T=(0:dt:cs);    % time vector for plotting 
 
 
%%% Perform i/o 
for j=1:cs, 
    for l=1:n, 
        SP1=SetP1((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
        SP2=SetP2((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');   % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt); % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,1).'; 
        pressure1((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,2).'; 
        pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,3).'; 
        OutP((1+((l-1)*spt)):(((l-1)*spt)+spt))=(pressure1((1+((l-1)*spt)):(((l-
1)*spt)+spt))+pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt)))./2; 
        OuterDiameter((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
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        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;      % order of filters for all raw data 
    m1=71;      % frame size of filter for raw pressure data 
    m2=31;      % frame size of filter for raw flowrate data 
    m3=13;      % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);   % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);   % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3);  % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m1);   % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);   % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);   % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((j-1)*rate)):(((j-1)*rate)+rate))=q1(:); 
    MFlow((1+((j-1)*rate)):(((j-1)*rate)+rate))=Flowf(:).*400; 
    MP((1+((j-1)*rate)):(((j-1)*rate)+rate))=OutPf(:).*56.76; 
    MOD((1+((j-1)*rate)):(((j-1)*rate)+rate))=ODf(:); 
    j=j+1; 
    looper=j 
end 
 
%%% eliminate skewness of data 
i=1; 
z=3;       % shifts input z pts to the right 
for i=1:length(SetPMasterPlot)-z, 
    SetPMasterPlot(i)=SetPMasterPlot(i+z);     
end 
 
%%% Create IDDATA object for importation into IDENT GUI 
y=MFlow.'; 
u=SetPMasterPlot.'; 
dat=iddata(y,u,dt) 
 
%%% stop pump and piston 
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waveform1a=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'immediate'); 
putdata(ao, [waveform1a waveform1a]); 
start(ao); 
stop(ao); 
delete(ao); 
 
%%% Plot i/o data 
T=T(1:length(MFlow)); 
figure; 
plot(T,MFlow,'b-'); 
hold on 
plot(T,SetPMasterPlot,'r-'); 
axis([0 T(length(MFlow)) 0 1.05*(max(SetPMasterPlot))]); 
title('Measured vs Set Flowrate') 
xlabel('Time (s)'); 
ylabel('Flowrate (cc/min)'); 
legend('Measured', 'SetPoint'); 
hold off 
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%%%************************************************************ 
%%% Title: SYSID Data Generation Program for N4SID Algorithm                 * 
%%%           Implementation via IDENT GUI                                                      * 
%%%           Roller Pump Only - Pressure I/O                                                      * 
%%%                                                                                                                      * 
%%% Author: Mohammed S. El-Kurdi                                                                 * 
%%%                                                                                                                      * 
%%% Version: 09/06/06                                                                                        * 
%%%                                                                                                                      * 
%%%************************************************************ 
 
%%% initialize program and load input data file 
clear all 
close all 
load C:\MATLAB7\work\controller\p_in.mat; 
 
%%% Declare input vectors 
rate=length(p1); % set the i/o rate equal to the length of the input pressure vector 
P(1:rate)=1;  % step input voltage to RP  
Pp(1:rate)=0;  % turn off pitson  
SetP1=P.';   % rename and transpose RP output voltage 
SetP2=Pp.';   % rename and transpose piston voltage 
 
%%% define the i/o hardware 
adaptor='nidaq';  % load driver 
id=1;    % DAQ device ID 
ch1o=0;   % output ch to roller pump 
ch2o=1;   % output ch to piston 
ch1i=0;   % input ch from flowmeter 
ch2i=1;   % input ch from P1 
ch3i=2;   % input ch from P2 
ch4i=4;   % input ch from laser 
noc=2;   % # of output channels 
nic=4;    % # of input channels 
tnc=noc+nic;   % total # of input and output channels 
 
%%% counters and timers 
cs=60;   % set the “heart-rate” or the number of cardiac cycles per min  
n=5;    % set inner loop terminator 
i=1;    % for loop index 
j=1;    % for loop index 
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spt=rate/n;   % samples per trigger  
dt=1/rate;   % time increment for plotting 
T=(0:dt:cs);   % time vector for plotting 
 
 
%%% Perform i/o 
for j=1:cs, 
    for l=1:n, 
        SP1=SetP1((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
        SP2=SetP2((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');  % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
         
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,1).'; 
        pressure1((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,2).'; 
        pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,3).'; 
        OutP((1+((l-1)*spt)):(((l-1)*spt)+spt))=(pressure1((1+((l-1)*spt)):(((l-

1)*spt)+spt))+pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt)))./2; 
        OuterDiameter((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
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        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;     % order of filters for all raw data 
    m1=71;     % frame size of filter for raw pressure data 
    m2=31;     % frame size of filter for raw flowrate data 
    m3=13;     % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);  % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);  % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3); % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m1);  % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);  % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);  % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((j-1)*rate)):(((j-1)*rate)+rate))=P(:).*80; 
    MFlow((1+((j-1)*rate)):(((j-1)*rate)+rate))=Flowf(:).*400; 
    MP((1+((j-1)*rate)):(((j-1)*rate)+rate))=OutPf(:).*56.76; 
    MOD((1+((j-1)*rate)):(((j-1)*rate)+rate))=ODf(:); 
    j=j+1; 
    looper=j 
end 
 

 %%% eliminate skewness of data 
i=1; 
z=3;      % shifts input z pts to the right 
for i=1:length(SetPMasterPlot)-z, 
    SetPMasterPlot(i)=SetPMasterPlot(i+z);     
end 
 
%%% Create IDDATA object for importation into IDENT GUI 
y=MP.'; 
u=SetPMasterPlot.'; 
dat=iddata(y,u,dt) 
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%%% stop pump and piston 
waveform1a=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'immediate'); 
putdata(ao, [waveform1a waveform1a]); 
start(ao); 
stop(ao); 
delete(ao); 
 
%%% Plot i/o data 
T=T(1:length(MP)); 
figure; 
plot(T,MP,'b-'); 
hold on 
plot(T,SetPMasterPlot,'r-'); 
axis([0 T(length(MP)) 0 1.05*(max(SetPMasterPlot))]); 
title('Measured vs Set Pressure') 
xlabel('Time (s)'); 
ylabel('Pressure (mmHg)'); 
legend('Measured', 'SetPoint'); 
hold off 
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%%%************************************************************ 
%%% Title: SYSID Data Generation Program for N4SID Algorithm                  * 
%%%           Implementation via IDENT GUI                                                      * 
%%%           Roller Pump Plus Piston Combination - Pressure I/O                      * 
%%%                                                                                                                      * 
%%% Author: Mohammed S. El-Kurdi                                                                 * 
%%%                                                                                                                      * 
%%% Version: 09/06/06                                                                                        * 
%%%                                                                                                                      * 
%%%************************************************************ 
 
%%% initialize program and load input data file 
clear all 
close all 
load C:\MATLAB7\work\controller\p_in.mat; 
 
%%% Declare input vectors 
rate=length(p1);  % set the i/o rate equal to the length of the input pressure vector 
P(1:rate)=1;   % step input voltage to RP 
Pp=p1./357.5;   % scale input to piston to proper voltage range 
SetP1=P.';   % rename and transpose RP output voltage 
SetP2=Pp;   % rename and transpose piston voltage 
 
%%% define the i/o hardware 
adaptor='nidaq';  % load driver 
id=1;    % DAQ device ID 
ch1o=0;   % output ch to roller pump 
ch2o=1;   % output ch to piston 
ch1i=0;   % input ch from flowmeter 
ch2i=1;   % input ch from P1 
ch3i=2;   % input ch from P2 
ch4i=4;   % input ch from laser 
noc=2;   % # of output channels 
nic=4;    % # of input channels 
tnc=noc+nic;   % total # of input and output channels 
 
%%% counters and timers 
cs=60;    % set the “heart-rate” or the number of cardiac cycles per min 
n=5;    % set inner loop terminator 
i=1;    % for loop index 
j=1;    % for loop index 
spt=rate/n;   % samples per trigger  
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dt=1/rate;   % time increment for plotting 
T=(0:dt:cs);   % time vector for plotting 
 
 
%%% Perform i/o 
for j=1:cs, 
    for l=1:n, 
        SP1=SetP1((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
        SP2=SetP2((1+((l-1)*spt)):(((l-1)*spt)+spt)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');   % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
         
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,1).'; 
        pressure1((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,2).'; 
        pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,3).'; 
        OutP((1+((l-1)*spt)):(((l-1)*spt)+spt))=(pressure1((1+((l-1)*spt)):(((l-

1)*spt)+spt))+pressure2((1+((l-1)*spt)):(((l-1)*spt)+spt)))./2; 
        OuterDiameter((1+((l-1)*spt)):(((l-1)*spt)+spt))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
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        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;     % order of filters for all raw data 
    m1=9;     % frame size of filter for raw pressure data 
    m2=31;     % frame size of filter for raw flowrate data 
    m3=13;     % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);  % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);  % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3);  % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m1);  % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);  % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);  % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((j-1)*rate)):(((j-1)*rate)+rate))=p1(:); 
    MFlow((1+((j-1)*rate)):(((j-1)*rate)+rate))=Flowf(:).*400; 
    MP((1+((j-1)*rate)):(((j-1)*rate)+rate))=OutPf(:).*56.76; 
    MOD((1+((j-1)*rate)):(((j-1)*rate)+rate))=ODf(:); 
    j=j+1; 
    looper=j 
end 
 
%%% eliminate skewness in data 
i=1; 
z=3;      % shifts input z pts to the right 
for i=1:length(SetPMasterPlot)-z, 
    SetPMasterPlot(i)=SetPMasterPlot(i+z);     
end 
 
%%% Create IDDATA object for importation into IDENT GUI 
y=MP.'; 
u=SetPMasterPlot.'; 
dat=iddata(y,u,dt) 
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%%% stop pump and piston 
waveform1a=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'immediate'); 
putdata(ao, [waveform1a waveform1a]); 
start(ao); 
stop(ao); 
delete(ao); 
 
%%% Plot i/o data 
T=T(1:length(MP)); 
figure; 
plot(T,MP,'b-'); 
hold on 
plot(T,SetPMasterPlot,'r-'); 
axis([0 T(length(MP)) 0 1.05*(max(MP))]); 
title('Measured vs Set Pressure') 
xlabel('Time (s)'); 
ylabel('Pressure (mmHg)'); 
legend('Measured', 'SetPoint'); 
hold off 
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%%%**************************************************************** 
%%% Title: Create average transfer function from IDENT SS model                          * 
%%% Author: Mohammed S. El-Kurdi                                                                         * 
%%% Version: 09/06/06                                                                                                * 
%%%**************************************************************** 
 
%%% transfer function from ss model 
format long     % format numbers 
dt=1/150;     % set discrete time interval 
sys1=n4s2e3;     % rename IDENT SS model output 
a1=sys1.a;     % create variable for the state matrix 
b1=sys1.b;     % create variable for the input matrix 
c1=sys1.c;     % create variable for the output matrix 
d1=sys1.d;     % create variable for the feedthrough matrix 
[num1, den1]=ss2tf(a1,b1,c1,d1);  % create TF from SS model 
sys1a=tf(num1,den1,dt);   % rename TF 
[z1,p1,k1]=tf2zpk(num1,den1);  % create ZPK model from TF 
sys1b=zpk(z1,p1,k1); 
sys2=n4s2e4; 
a2=sys2.a; 
b2=sys2.b; 
c2=sys2.c; 
d2=sys2.d; 
[num2, den2]=ss2tf(a2,b2,c2,d2); 
sys2a=tf(num2,den2,dt); 
[z2,p2,k2]=tf2zpk(num2,den2); 
sys3=n4s2e5; 
a3=sys3.a; 
b3=sys3.b; 
c3=sys3.c; 
d3=sys3.d; 
[num3, den3]=ss2tf(a3,b3,c3,d3); 
sys3a=tf(num1,den1,dt); 
[z3,p3,k3]=tf2zpk(num3,den3); 
sys4=n4s2e6; 
a4=sys4.a; 
b4=sys4.b; 
c4=sys4.c; 
d4=sys4.d; 
[num4, den4]=ss2tf(a4,b4,c4,d4); 
sys4a=tf(num4,den4,dt); 
[z4,p4,k4]=tf2zpk(num4,den4); 
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sys5=n4s2e7; 
a5=sys5.a; 
b5=sys5.b; 
c5=sys5.c; 
d5=sys5.d; 
[num5, den5]=ss2tf(a5,b5,c5,d5); 
sys5a=tf(num1,den1,dt); 
[z5,p5,k5]=tf2zpk(num5,den5); 
zTOT=[z1 z2 z3 z4 z5];    
pTOT=[p1 p2 p3 p4 p5]; 
kTOT=[k1 k2 k3 k4 k5]; 
zMEAN=mean(zTOT,2);    % calculate mean “real” poles 
pMEAN=mean(pTOT,2);    % calculate mean “complex” poles 
kMEAN=mean(kTOT);    % calculate mean gain 
[num,den]=zp2tf(zMEAN,pMEAN,kMEAN); % crean mean ZPK model 
SYS1pA=zpk(zMEAN,pMEAN,kMEAN)  % rename mean ZPK model 
SYS1p=tf(num,den,dt)    % create mean TF from mean ZPK 
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APPENDIX C 

PID CONTROLLER MATLAB® CODE 

The Matlab® programs that were used to separately control the CWS and shear stress waveforms 

within our EVPS are presented in this Appendix.    

%%%************************************************************* 
%%% Title: Program for PID Control of the Wall Shear Stress                              * 
%%%           in a Polymer-Wrapped Vein Segment Implanted                                *  
%%%           Into a Pulsatile Perfusion Bioreactor and exposed                              * 
%%%           to Arterial Flowrate                                                                             * 
%%%                                                                                                                        * 
%%% Author: Mohammed S. El-Kurdi                                                                   * 
%%%                                                                                                                        * 
%%% Version: 09/05/06                                                                                          * 
%%%                                                                                                                        * 
%%%************************************************************* 
 
clear all; 
close all; 
 
%%% load setpoint vector and identified systems for RP and RP/piston  
load C:\MATLAB7\work\controller\p_in.mat; 
load C:\MATLAB7\work\controller\q_in.mat; 
load C:\MATLAB7\work\controller\controller_final\control_signals_CWS_SS.mat; 
rate=length(p1); 
dt=1/rate; 
 
%%% Convert TF coefficients (from SYSID) into TFs for PID controller 
num1=[0 0.96249 -4.15534 7.49592 -6.82585 2.31632 1.40271 -1.88924 0.8561 -0.16275]; 
den1=[1 -3.95373 6.47077 -4.83435 -0.2817 3.98593 -3.72557 1.59997 -0.20581 -0.05527 
94.445]; 
num2=[0 3.26133 -8.37951 7.72548 -0.47908 -5.87618 6.36844 -3.6274 1.36418 -0.32672]; 
den2=[1 -2.25039 1.84854 0.44257 -2.4029 2.21618 -0.66051 -0.48507 0.59074 -0.21827 
77.124]; 
sys1=tf(num1,den1,dt); 
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sys2=tf(num2,den2,dt); 
 
%%% declare and initialize setpoints for OL priming cycles 
SetP1(1:rate)=0.25; 
SetP1=SetP1.'; 
SetP2a(1:rate)=0; 
SetP2a=SetP2a.';    % transpose to column vector 
 
%%% Define the i/o hardware 
adaptor='nidaq';    % load driver 
id=1;      % DAQ device ID 
ch1o=0;     % output ch to roller pump 
ch2o=1;     % output ch to piston 
ch1i=0;     % input ch from flowmeter 
ch2i=1;     % input ch from P1 
ch3i=2;     % input ch from P2 
ch4i=4;     % input ch from laser 
noc=2;     % # of output channels 
nic=4;      % # of input channels 
tnc=noc+nic;     % total # of input and output channels 
 
%%% Counters and timers 
cs=10;      % # of open loop priming cycles to execute 
n=10;      % # of controlled cycles to execute (at 1 Hz, n=sec) 
i=1;      % for loop index 
j=1;      % for loop index 
k=1;      % for loop index 
l=1;      % for loop index 
e=1;      % for loop index 
p=1;      % for loop index 
m=10;      % loop terminator for OL cycles 
o=10;      % loop terminator for CL cycles 
q=149;     % loop increment for CL cycles 
N=10;      % time in sec for simulation 
spt=rate/m;     % samples per trigger for open loop cycles 
spt2=rate/o;     % sampls per trigger for closed loop cycles 
dt=1/rate;     % time increment for simulation and plotting 
T=(0:dt:n);     % time vector for plotting 
Time=(0:dt:N);    % time vector for simulation 
 
%%% Open loop priming cycles 
for j=1:cs, 
  for i=1:m, 
     SetPone=SetP1((1+((i-1)*spt)):(((i-1)*spt)+spt)); 
     SetPtwo=SetP2a((1+((i-1)*spt)):(((i-1)*spt)+spt)); 
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     %%% Analog output object configuration. 
     ao = analogoutput(adaptor, id); 
     ch = addchannel(ao, [ch1o ch2o]); 
     set(ao, 'SampleRate', 0.25*rate);   % samples to output per sec 
     set(ao, 'TriggerType', 'immediate');  % triggers when trigger(ao) given 
     putdata(ao, [SetPone SetPtwo]);   % write data  
     start(ao); 
     stop(ao); 
     delete(ao);      
     i=i+1; 
  end 
  j=j+1; 
  looper1=j 
end 
 
%%% Declare setpoint vectors 
Q=q1./75;     % convert from ml/min to voltage range of RP 
Qp=q1./1000;     % convert from ml/min to voltage range of piston 
SetP1=Q;     % SP for RP: updated by controller 
SetP1Master(1:rate)=Q;   % SP for RP: held constant for error calculation 
SetP1Master=SetP1Master.';   % transpose to a column vector 
SetP2=Qp;     % SP for piston: updated by controller 
SetP2Master=Qp;    % SP for piston: held constant for error calculation 
SetP=q1;     % SP for plotting 
 
%%% PID controller calculation  
for k=1:n, 
    for l=1:o, 
        SP1=SetP1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
        SP2=SetP2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');   % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
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        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt2);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,1).'; 
        pressure1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,2).'; 
        pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,3).'; 
        OutP((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=(pressure1((1+((l-1)*spt2)):(((l-
1)*spt2)+spt2))+pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)))./2; 
        OuterDiameter((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;      % order of filters for all raw data 
    m1=9;      % frame size of filter for raw pressure data 
    m2=31;      % frame size of filter for raw flowrate data 
    m3=13;      % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);   % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);   % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3);  % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m3);   % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);   % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);  % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Mean circumferential wall stress calculation variables 
    wtP1=0.0131*25.4; % proximal thickness #1 of wrap in mm from histology measurements  
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    widP=0.1086*25.4; % proximal unpressurized inner diameter of wrap in mm from histology 
measurements 
    wtP2=0.0133*25.4; % proximal thickness #2 of wrap in mm from histology measurements 
    wtD1=0.0131*25.4; % distal thickness #1 in of wrap mm from histology measurements  
    widD=0.1086*25.4; % distal unpressurized inner diameter of wrap in mm from histology 
measurements 
    wtD2=0.0133*25.4; % distal thickness #2 of wrap in mm from histology measurements 
    wtP=(wtP1+wtP2)/2; % proximnal thickness of wrap in mm 
    wtD=(wtD1+wtD2)/2; % distal thickness of wrap in mm 
    wtu=(wtP+wtD)/2; % unpressurized thickness of wrap in mm 
    wIDu=(widP+widD)/2; % unpressurized inner diameter of wrap in mm 
    bu=wIDu/2; % unpressurized inner radius of wrap in mm 
    cu=bu+wtu;  
    vtP1=0.0131*25.4; % proximal thickness #1 of vein in mm from histology measurements  
    vidP=0.1086*25.4; % proximal unpressurized inner diameter of vein in mm from histology 
measurements 
    vtP2=0.0133*25.4; % proximal thickness #2 of vein in mm from histology measurements 
    vtD1=0.0131*25.4; % distal thickness #1 in of vein mm from histology measurements  
    vidD=0.1086*25.4; % distal unpressurized inner diameter of vein in mm from histology 
measurements 
    vtD2=0.0133*25.4; % distal thickness #2 of vein in mm from histology measurements 
    vtP=(vtP1+vtP2)/2; % proximnal thickness of vein in mm 
    vtD=(vtD1+vtD2)/2; % distal thickness of vein in mm 
    vtu=(vtP+vtD)/2; % unpressurized thickness of vein in mm 
    vIDu=(vidP+vidD)/2; % unpressurized inner diameter of vein in mm 
    au=vIDu/2; % unpressurized inner radius of vein in mm 
    Lu=50; % unstretched length of vessel segment in mm 
    Lp=1.3*Lu; % in-vivo length of vessel segment in mm 
    ODp=ODf; % pressurized outer diameter in mm 
    cp=ODp./2; % pressurized outer radius in mm 
        
    %%% calculate pressurized inner radius assuming incompressibility 
    IRp=zeros(150,1); 
    TEMPVAR1=zeros(150,1); 
    TEMPVAR2=zeros(150,1); 
    TEMPVAR1=(((cp.^2).*Lp.*(cu^2-bu^2)*Lu)./Lp; 
        v=1; 
        for v=1:rate, 
          bp(v)=sqrt(TEMPVAR1(v)); 
        end        
    bp=bp.' % pressurized interfacial radius in mm 
    TEMPVAR2=(((cp.^2).*Lp.*(cu^2-bu^2)*Lu/Lp)-(bu^2-au^2)*Lu)./Lp; 
        v=1; 
        for v=1:rate, 
          ap(v)=sqrt(TEMPVAR2(v)); 
        end        
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    ap=ap.' % pressurized inner radius in mm        
              
    %%% Interfacial pressure calculation 
    P=1.333224.*(OutPf.*46.76)./1e3; % Convert intraluminal pressure from mmHg to KPa 
    Nu=0.5; % Poisson's ratio of wrap and vein 
    Ew=7500; % Young's modulus of wrap in KPa 
    Ev=600; % Young's modulus of vein in KPa 
    P_int_num=(ap.^2.*P.*(1-Nu).*Ew.*bp.*(cp.^2-bp.^2)+(1+Nu).*Ew.*(cp.^2-
bp.^2).*bp.*ap.^2.*P)./(bp.^2.*(1-Nu).*Ew.*bp.*(cp.^2-bp.^2)+(1-Nu).*ap.^3.*Ev.*(bp.^2-
ap.^2)+(1+Nu).*(cp.^2-bp.^2).*bp.*ap.^2+cp.^2.*Ev.*bp.*(bp.^2-ap.^2)); 
     
     
%%% Mid-vein-wall circumferential wall stress calculation 
    rho=(bp-ap)./2; % prescribes midwall cws calc 
    hoop_stress=((ap.^2.*P-bp.^2.*P_int)./(bp.^2-ap,^2))+((P-P_int).*ap.^2.*bp.^2)./((bp.^2-
ap.^2)./rho); 
     
    %%% Lumenal shear stress calculation 
    Mu=1.02; % viscosity of perfusate in dynes*s/cm^2 
    shear_stress=(4*Mu.*Flowf)./(pi.*ap.^3); 
     
    %%% Prescribe size of and calculate error vectors 
    Err1=zeros(rate,1); 
    Err2=Err1; 
    Err1(1:rate)= mean(shear_stress)-mean(SSc); % err1 calc for direct action   
    lag=1; 
    for e=1:rate-lag, 
        Err2(e)=shear_stress(e)-SSc(e+lag); % err2 calc for direct action 
    end 
         
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((k-1)*rate)):(((k-1)*rate)+rate))=p1(:); 
    SetSSMasterPlot((1+((k-1)*rate)):(((k-1)*rate)+rate))=SSc(:); 
    MFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=Flowf(:).*330; 
    MP((1+((k-1)*rate)):(((k-1)*rate)+rate))=OutPf(:).*46.76; 
    MMP((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MP((1+((k-1)*rate)):(((k-1)*rate)+rate))); 
    MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MFlow((1+((k-1)*rate)):(((k-
1)*rate)+rate))); 
    MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))=MMP((1+((k-1)*rate)):(((k-
1)*rate)+rate))./MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate)); 
    MOD((1+((k-1)*rate)):(((k-1)*rate)+rate))=ODf(:); 
    MCWS((1+((k-1)*rate)):(((k-1)*rate)+rate))=hoop_stress(:); 
    MSS((1+((k-1)*rate)):(((k-1)*rate)+rate))=shear_stress(:); 
    Error1((1+((k-1)*rate)):(((k-1)*rate)+rate))=Err1(:); 
    Error2((1+((k-1)*rate)):(((k-1)*rate)+rate))=Err2(:); 
     

  225



    %%% Initialize variables for PID algorithm 
    ErrLast1=Err1; 
    ErrLast2=Err2; 
    ErrLastLast1=ErrLast1; 
    ErrLastLast2=ErrLast2; 
    Input1a=75.*SetP1; % input signal for simulation #1 
    Input2a=Input1a+1000.*SetP2; % input signal for simulation #2 
     
    %%% PID control variables for simulation #1 
    kd1=0;     % derivative gain 
    kp1=0;     % proportional gain 
    ki1=0;     % integral gain 
    numPID1=[kd1 kp1 ki1]; 
    denPID1=[1 0]; 
    numc1=conv(num1,denPID1); 
    denc1=polyadd(conv(denPID1,den1),conv(numPID1,num1)); 
    sys1a=tf(numc1,denc1,dt); 
 
    %%% PID control variables for simulation #2 
    kd2=0;     % derivative gain 
    kp2=0;     % proportional gain 
    ki2=0;     % integral gain 
    numPID2=[kd2 kp2 ki2]; 
    denPID2=[1 0]; 
    numc2=conv(num2,denPID2); 
    denc2=polyadd(conv(denPID2,den2),conv(numPID2,num2)); 
    sys2a=tf(numc2,denc2,dt); 
     
    %%% Declare variables for PID control algorithm 
    Kp=1;     % gain 
    Ki=20;    % reset rate in repeats per minutes 
    Kd=1;     % derivative time in minites 
     
    %%% Set controller tolerances 
    iteration=0; 
    iteration_max=20; 
    Err_tol=zeros(rate,1); 
    Err_tol(1:rate)=0.05;   % tolerance in dynes/cm^2 
         
    for p=1:rate-q, 
        if ((0-Err2(p:p+q))>Err_tol(p:p+q))|((0-Err1(p:p+q))>Err_tol(p:p+q)), 
            Message1='Error is -' 
            While ((0-Err2(p:p+q))>Err_tol(p:p+q))&((0-
Err1(p:p+q))>Err_tol(p:p+q))&(iteration<=iteration_max), 
                %%% simulate the system response to previous input 
                Input1_i=interp(Input1a(p:p+q),N); % resize input for siumulation 
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                Input2_i=interp(Input2a(p:p+q),N); % resize input for siumulation 
                IRp=interp(IRp(p:p+q),N); % resize input for siumulation 
                ORp=interp(ORp(p:p+q),N); % resize input for siumulation                 
                OutPS1a=lsim(sys1a,Input1_i,Time(1:length(Input1_i))); 
                OutPS2a=lsim(sys2a,Input2_i,Time(1:length(Input2_i))); 
                 
                 

    %%% calculate the SS from the simulated pressure output 
                OutPS1b=(4*Mu.*OutPS1a)./(pi.*IRp.^3); 
                OutPS2b=(4*Mu.*OutPS2a)./(pi.*IRp.^3); 
                OutPS1(p:p+q)=resample(OutPS1b,1,N); % resisize input to system 
                OutPS2(p:p+q)=resample(OutPS2b,1,N); % resisize input to system 
                IRp=resample(IRp,1,N); % resize input for siumulation 
                ORp=resample(ORp,1,N); % resize input for siumulation  
                 
                %%% calculate the change in output using the derivative  of the 
                %%% PID algorithm then add to the previous output 
                Err1(p:p+q)=mean(OutPS1(p:p+q))-mean(SSc(p:p+q)); 
                Err2(p:p+q)=OutPS2(p:p+q)-SSc(p:p+q); 
                dOutP1(p:p+q)=Kp.*(Err1(p:p+q)-
ErrLast1(p:p+q)+Ki.*Err1(p:p+q)./rate+Kd.*(Err1(p:p+q)-
2.*ErrLast1(p:p+q)+ErrLastLast1(p:p+q))); 
                dOutP2(p:p+q)=Kp.*(Err2(p:p+q)-
ErrLast2(p:p+q)+Ki.*Err2(p:p+q)./rate+Kd.*(Err2(p:p+q)-
2.*ErrLast2(p:p+q)+ErrLastLast2(p:p+q))); 
                 
                %%% Update input - recaclculate flowrate from simulated 
                %%% stress calcs 
                Input1(p:p+q)=OutPS1(p:p+q)+dOutP1(p:p+q); 
                Input1a(p:p+q)=(Input1(p:p+q).'.*IRp.^3.*pi)./(4*Mu); 
                Input2(p:p+q)=OutPS2(p:p+q)+dOutP2(p:p+q); 
                Input2a(p:p+q)=(Input2(p:p+q).'.*IRp.^3.*pi)./(4*Mu); 
                 
                %%% Update variables for PID algorithm 
                ErrLastLast1(p:p+q)=ErrLast1(p:p+q); 
                ErrLastLast2(p:p+q)=ErrLast2(p:p+q); 
                ErrLast1(p:p+q)=Err1(p:p+q); 
                ErrLast2(p:p+q)=Err2(p:p+q); 
                iteration=iteration+1; 
            end 
            %%% Update setpoints 
            SetP1(p:p+q)=Input1a(p:p+q)./75; 
            SetP2(p:p+q)=(Input2a(p:p+q)./75)-SetP1(p:p+q); 
         
        elseif (Err2(p:p+q)>Err_tol(p:p+q))|(Err1(p:p+q)>Err_tol(p:p+q)), 
            Message1='Error is +' 
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            while 
(Err2(p:p+q)>Err_tol(p:p+q))&(Err1(p:p+q)>Err_tol(p:p+q))&(iteration<=iteration_max), 
                %%% simulate the system response to previous input 
                Input1_i=interp(Input1a(p:p+q),N); % resize input for siumulation 
                Input2_i=interp(Input2a(p:p+q),N); % resize input for siumulation 
                IRp=interp(IRp(p:p+q),N); % resize input for siumulation 
                ORp=interp(ORp(p:p+q),N); % resize input for siumulation                 
                OutPS1a=lsim(sys1a,Input1_i,Time(1:length(Input1_i))); 
                OutPS2a=lsim(sys2a,Input2_i,Time(1:length(Input2_i))); 
                 
                %%% calculate the SS from the simulated pressure output 
                OutPS1b=(4*Mu.*OutPS1a)./(pi.*IRp.^3); 
                OutPS2b=(4*Mu.*OutPS2a)./(pi.*IRp.^3); 
                OutPS1(p:p+q)=resample(OutPS1b,1,N); % resisize input to system 
                OutPS2(p:p+q)=resample(OutPS2b,1,N); % resisize input to system 
                IRp=resample(IRp,1,N); % resize input for siumulation 
                ORp=resample(ORp,1,N); % resize input for siumulation  
                 
                %%% calculate the change in output using the derivative  of the 
                %%% PID algorithm then add to the previous output 
                Err1(p:p+q)=mean(OutPS1(p:p+q))-mean(SSc(p:p+q)); 
                Err2(p:p+q)=OutPS2(p:p+q)-SSc(p:p+q); 
                dOutP1(p:p+q)=Kp.*(Err1(p:p+q)-
ErrLast1(p:p+q)+Ki.*Err1(p:p+q)./rate+Kd.*(Err1(p:p+q)-
2.*ErrLast1(p:p+q)+ErrLastLast1(p:p+q))); 
                dOutP2(p:p+q)=Kp.*(Err2(p:p+q)-
ErrLast2(p:p+q)+Ki.*Err2(p:p+q)./rate+Kd.*(Err2(p:p+q)-
2.*ErrLast2(p:p+q)+ErrLastLast2(p:p+q))); 
                 
                %%% Update input - recaclculate flowrate from simulated 
                %%% stress calcs 
                Input1(p:p+q)=OutPS1(p:p+q)+dOutP1(p:p+q); 
                Input1a(p:p+q)=(Input1(p:p+q).'.*IRp.^3.*pi)./(4*Mu); 
                Input2(p:p+q)=OutPS2(p:p+q)+dOutP2(p:p+q); 
                Input2a(p:p+q)=(Input2(p:p+q).'.*IRp.^3.*pi)./(4*Mu); 
                 
                %%% Update variables for PID algorithm 
                ErrLastLast1(p:p+q)=ErrLast1(p:p+q); 
                ErrLastLast2(p:p+q)=ErrLast2(p:p+q); 
                ErrLast1(p:p+q)=Err1(p:p+q); 
                ErrLast2(p:p+q)=Err2(p:p+q); 
                iteration=iteration+1; 
            end 
            %%% Update setpoints 
            SetP1(p:p+q)=Input1a(p:p+q)./75; 
            SetP2(p:p+q)=(Input2a(p:p+q)./75)-SetP1(p:p+q); 

  228



 
        else 
            Message3='Error is ~=0' 
            %%% Update setpoints 
            SetP1(p:p+q)=Input1a(p:p+q)./75; 
            SetP2(p:p+q)=(Input2a(p:p+q)./75)-SetP1(p:p+q); 
        end 
    p=p+q; 
    end 
 
    %% Set output limits 
    for i=1:rate, 
        if SetP1(i)>2.5*SetP1Master(i), 
           SetP1(i)=2.5*SetP1Master(i); 
        elseif SetP1(i)<SetP1Master(i), 
            SetP1(i)=SetP1Master(i); 
        end 
    i=i+1; 
    end 
    for i=1:rate, 
        if SetP2(i)>2.5*SetP2Master(i), 
           SetP2(i)=2.5*SetP2Master(i); 
        elseif SetP2(i)<SetP2Master(i), 
           SetP2(i)=SetP2Master(i); 
        end 
    i=i+1; 
    end 
     
    %%% safety measures 
    if MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))<0.8, 
        SetP1(1:rate)=0.25; 
        SetP2(1:rate)=0; 
        l=1; 
        for l=1:o, 
        SP1=SetP1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
        SP2=SetP2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate); % set output rate 
        set(ao, 'TriggerType', 'manual'); % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]); % write data 
        start(ao); 
        trigger(ao); 
        %%% Wait until output is done     
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        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
         
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate); % set input rate 
        set(ai, 'TriggerType', 'manual'); % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt2); % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        FlowS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,1).'; 
        pressure1S((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,2).'; 
        pressure2S((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,3).'; 
        OutPS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=(pressure1((1+((l-1)*spt2)):(((l-
1)*spt2)+spt2))+pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)))./2; 
        OuterDiameterS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,4).'; 
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
        end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;      % order of filters for all raw data 
    m1=9;      % frame size of filter for raw pressure data 
    m2=31;      % frame size of filter for raw flowrate data 
    m3=13;      % frame size of filter for raw outer diameter data 
    OutPSf=sgolayfilt(OutPS,n1,m1);   % filter pressure data 
    FlowSf=sgolayfilt(FlowS,n1,m2);   % filter flowrate data     
    ODSf=sgolayfilt(OuterDiameterS,n1,m3); % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPSf=sgolayfilt(OutPSf,n1,m3);  % filter pressure data 
    FlowSf=sgolayfilt(FlowSf,n1,m2);  % filter flowrate data 
    ODSf=sgolayfilt(ODSf,n1,m3);   % filter outer diameter data 
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    %%% Transpose acquired data to column vectors 
    OutPSf=OutPSf.'; 
    FlowSf=FlowSf.'; 
    ODSf=ODSf.'; 
    MP((1+((k-1)*rate)):(((k-1)*rate)+rate))=OutPSf(:).*46.76; 
    MFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=FlowSf(:).*330; 
    MMP((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MP((1+((k-1)*rate)):(((k-1)*rate)+rate))); 
    MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MFlow((1+((k-1)*rate)):(((k-
1)*rate)+rate))); 
    MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))=MMP((1+((k-1)*rate)):(((k-
1)*rate)+rate))./MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate));     
    else 
    end 
k=k+1; 
looper2=k 
end 
 
%%% stop pump and piston 
adaptor = 'nidaq'; 
id = 1; 
output=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'manual'); 
putdata(ao, [output output]); 
start(ao); 
trigger(ao); 
stop(ao); 
delete(ao); 
 
%%% Eliminate phase shift b/w input and output CWS vectors 
i=1; 
for i=1:length(SetCWSMasterPlot)-lag, 
    SetCWSMasterPlot(i)=SetCWSMasterPlot(i+lag);     
end 
 
%%% Calculate Performance Metrics  
RSSp=zeros(n*rate,1); % set size of Residual Sum of Squares vector 
npar=2; % # of parameters 
np=rate; % size of input vector 
j=10; % for loop index 
h=2; % for loop index 
for k=j:n, 
    for i=h:np, 
    RSSp(i)=RSSp(i-1)+((SetSSMasterPlot(i)-MSS(i)))^2; 
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    end 
    RSSc(k)=mean(RSSp); 
end 
RSS=mean(RSSc(j:n)) 
 
% root mean square error calculation 
RMSE=sqrt(RSS/((np*n-j*rate)-npar)) 
 
%%% Plot results 
T=T(1:length(MSS)); 
figure; 
subplot(2,2,1); 
plot(T,MP,'b-'); 
axis([0 T(length(MFlow)) 0.95*(min(MFlow)) 1.05*(max(MFlow))]); 
title('Measured Flowrate vs Time') 
xlabel('Time (s)'); 
ylabel('Flowrate (ml/min)'); 
subplot(2,2,2); 
plot(T,MOD,'b-'); 
axis([0 T(length(MOD)) 0.95*(min(MOD)) 1.05*(max(MOD))]); 
title('Outer Diameter vs Time') 
xlabel('Time (s)'); 
ylabel('Outer Diameter (mm)'); 
subplot(2,2,3); 
plot(T,MSS,'b-'); 
hold on 
plot(T,SetSSMasterPlot,'r-'); 
axis([0 T(length(MSS)) 0.95*(min(SetSSMasterPlot)) 1.05*(max(SetSSMasterPlot))]); 
title('Measured & Set Lumenal Shear Stress') 
xlabel('Time (s)'); 
ylabel('SS (dynes/cm^2)'); 
legend('Measured', 'SetPoint'); 
hold off 
subplot(2,2,4); 
plot(T,MCWS,'b-'); 
axis([0 T(length(MCWS)) 0.95*(min(MCWS)) 1.05*(max(MCWS))]); 
title('Circumferential Wall Stress vs Time') 
xlabel('Time (s)'); 
ylabel('CWS (KPa)'); 
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%%%************************************************************ 
%%% Title: Program for PID Control of the Mid-Vein-Wall CWS                     * 
%%%           in a Polymer-Wrapped Vein Segment Implanted                              * 
%%%           Into a Pulsatile Perfusion Bioreactor and exposed                            * 
%%%           to Arterial Pressure                                                                            * 
%%%                                                                                                                      * 
%%% Author: Mohammed S. El-Kurdi                                                                 * 
%%%                                                                                                                      * 
%%% Version: 09/01/06                                                                                        * 
%%%                                                                                                                      * 
%%%************************************************************ 
 
clear all; 
close all; 
 
%%% load setpoint vector and identified systems for RP and RP/piston  
load C:\MATLAB7\work\controller\p_in.mat; 
load C:\MATLAB7\work\controller\q_in.mat; 
load C:\MATLAB7\work\controller\controller_final\control_signals_CWS_SS.mat; 
rate=length(p1); 
dt=1/rate; 
 
%%% Convert TF coefficients (from SYSID) into TFs for PID controller 
num1=[0 0.004026 -0.00396]; 
den1=[1 -1.975 0.9748]; 
num2=[0 3.856 -18.6974 37.4395 -36.5325 10.0376 15.9971 -19.6840 9.2775 -1.6962]; 
den2=[1 -4.6338 9.7837 -12.3849 10.2425 -5.4993 1.5696 0.1798 -0.3723 0.1152]; 
sys1=tf(num1,den1,dt); 
sys2=tf(num2,den2,dt); 
 
%%% declare and initialize setpoints for OL priming cycles 
SetP1(1:rate)=1; 
SetP1=SetP1.'; 
SetP2a(1:rate)=0; 
SetP2a=SetP2a.'; 
 
%%% Define the i/o hardware 
adaptor='nidaq';    % load driver 
id=1;      % DAQ device ID 
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ch1o=0;     % output ch to roller pump 
ch2o=1;     % output ch to piston 
ch1i=0;     % input ch from flowmeter 
ch2i=1;     % input ch from P1 
ch3i=2;     % input ch from P2 
ch4i=4;     % input ch from laser 
noc=2;     % # of output channels 
nic=4;      % # of input channels 
tnc=noc+nic;     % total # of input and output channels 
 
%%% Counters and timers 
cs=10;      % # of open loop priming cycles to execute 
n=60;      % # of controlled cycles to execute (at 1 Hz, n=sec) 
i=1;      % for loop index 
j=1;      % for loop index 
k=1;      % for loop index 
l=1;      % for loop index 
e=1;      % for loop index 
p=1;      % for loop index 
m=10;     % loop terminator for OL cycles 
o=10;      % loop terminator for CL cycles 
q=149;     % loop increment for CL cycles 
N=10;      % time in sec for simulation 
spt=rate/m;     % samples per trigger for open loop cycles 
spt2=rate/o;     % sampls per trigger for closed loop cycles 
dt=1/rate;     % time increment for simulation and plotting 
T=(0:dt:n);     % time vector for plotting 
Time=(0:dt:N);    % time vector for simulation 
 
%%% Open loop priming cycles 
for j=1:cs, 
  for i=1:m, 
     SetPone=SetP1((1+((i-1)*spt)):(((i-1)*spt)+spt)); 
     SetPtwo=SetP2a((1+((i-1)*spt)):(((i-1)*spt)+spt)); 
      
     %%% Analog output object configuration. 
     ao = analogoutput(adaptor, id); 
     ch = addchannel(ao, [ch1o ch2o]); 
     set(ao, 'SampleRate', 0.25*rate);   % samples to output per sec 
     set(ao, 'TriggerType', 'immediate');  % triggers when trigger(ao) given 
     putdata(ao, [SetPone SetPtwo]);   % write data  
     start(ao); 
     stop(ao); 
     delete(ao);      
     i=i+1; 
  end 
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  j=j+1; 
  looper1=j 
end 
 
%%% Declare input vectors 
P=zeros(150,1); 
P(1:rate)=0.9; % voltage input to RP 
Pp=p1./330;     % convert from ml/min to voltage range of piston 
SetP1=P;     % SP for RP: updated by controller 
SetP1Master=P.'; 
SetP2=Pp;     % SP for piston: updated by controller 
SetP2Master=Pp.'; 
 
%%% PID controller calculation  
for k=1:n, 
    for l=1:o, 
        SP1=SetP1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
        SP2=SetP2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
         
        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate);   % set output rate 
        set(ao, 'TriggerType', 'manual');   % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]);    % write data 
        start(ao); 
        trigger(ao); 
         
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt2);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        Flow((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,1).'; 

  235



        pressure1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,2).'; 
        pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,3).'; 
        OutP((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=(pressure1((1+((l-1)*spt2)):(((l-

1)*spt2)+spt2))+pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)))./2; 
        OuterDiameter((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,4).'; 
         
 
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
    end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;     % order of filters for all raw data 
    m1=9;     % frame size of filter for raw pressure data 
    m2=31;     % frame size of filter for raw flowrate data 
    m3=13;     % frame size of filter for raw outer diameter data 
    OutPf=sgolayfilt(OutP,n1,m1);  % filter pressure data 
    Flowf=sgolayfilt(Flow,n1,m2);  % filter flowrate data     
    ODf=sgolayfilt(OuterDiameter,n1,m3); % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPf=sgolayfilt(OutPf,n1,m3);  % filter pressure data 
    Flowf=sgolayfilt(Flowf,n1,m2);  % filter flowrate data 
    ODf=sgolayfilt(ODf,n1,m3);  % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPf=OutPf.'; 
    Flowf=Flowf.'; 
    ODf=ODf.'; 
     
    %%% Mean circumferential wall stress calculation variables 
    wtP1=0.0131*25.4; % proximal thickness #1 of wrap in mm from histology 

measurements  
    widP=0.1086*25.4; % proximal unpressurized inner diameter of wrap in mm from 

histology measurements 
    wtP2=0.0133*25.4; % proximal thickness #2 of wrap in mm from histology 

measurements 
    wtD1=0.0131*25.4; % distal thickness #1 in of wrap mm from histology 

measurements  
    widD=0.1086*25.4; % distal unpressurized inner diameter of wrap in mm from 

histology measurements 
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    wtD2=0.0133*25.4; % distal thickness #2 of wrap in mm from histology 
measurements 

    wtP=(wtP1+wtP2)/2; % proximnal thickness of wrap in mm 
    wtD=(wtD1+wtD2)/2; % distal thickness of wrap in mm 
    wtu=(wtP+wtD)/2; % unpressurized thickness of wrap in mm 
    wIDu=(widP+widD)/2; % unpressurized inner diameter of wrap in mm 
    bu=wIDu/2; % unpressurized inner radius of wrap in mm 
    cu=bu+wtu;  
    vtP1=0.0131*25.4; % proximal thickness #1 of vein in mm from histology 

measurements  
    vidP=0.1086*25.4; % proximal unpressurized inner diameter of vein in mm from 

histology measurements 
    vtP2=0.0133*25.4; % proximal thickness #2 of vein in mm from histology 

measurements 
    vtD1=0.0131*25.4; % distal thickness #1 in of vein mm from histology measurements  
    vidD=0.1086*25.4; % distal unpressurized inner diameter of vein in mm from 

histology measurements 
    vtD2=0.0133*25.4; % distal thickness #2 of vein in mm from histology measurements 
    vtP=(vtP1+vtP2)/2; % proximnal thickness of vein in mm 
    vtD=(vtD1+vtD2)/2; % distal thickness of vein in mm 
    vtu=(vtP+vtD)/2; % unpressurized thickness of vein in mm 
    vIDu=(vidP+vidD)/2; % unpressurized inner diameter of vein in mm 
    au=vIDu/2; % unpressurized inner radius of vein in mm 
    Lu=50; % unstretched length of vessel segment in mm 
    Lp=1.3*Lu; % in-vivo length of vessel segment in mm 
    ODp=ODf; % pressurized outer diameter in mm 
    cp=ODp./2; % pressurized outer radius in mm 
        
    %%% calculate pressurized inner radius assuming incompressibility 
    IRp=zeros(150,1); 
    TEMPVAR1=zeros(150,1); 
    TEMPVAR2=zeros(150,1); 
    TEMPVAR1=(((cp.^2).*Lp.*(cu^2-bu^2)*Lu)./Lp; 
        v=1; 
        for v=1:rate, 
          bp(v)=sqrt(TEMPVAR1(v)); 
        end        
    bp=bp.' % pressurized interfacial radius in mm 
    TEMPVAR2=(((cp.^2).*Lp.*(cu^2-bu^2)*Lu/Lp)-(bu^2-au^2)*Lu)./Lp; 
        v=1; 
        for v=1:rate, 
          ap(v)=sqrt(TEMPVAR2(v)); 
        end        
    ap=ap.' % pressurized inner radius in mm 
     
    %%% Interfacial pressure calculation 
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    P=1.333224.*(OutPf.*46.76)./1e3; % Convert intraluminal pressure from mmHg to 
KPa 

     Nu=0.5; % Poisson's ratio of wrap and vein 
    Ew=7500; % Young's modulus of wrap in KPa 
    Ev=600; % Young's modulus of vein in KPa 
    P_int_num=(ap.^2.*P.*(1-Nu).*Ew.*bp.*(cp.^2-bp.^2)+(1+Nu).*Ew.*(cp.^2-

bp.^2).*bp.*ap.^2.*P)./(bp.^2.*(1-Nu).*Ew.*bp.*(cp.^2-bp.^2)+(1-Nu).*ap.^3.*Ev.*(bp.^2-
ap.^2)+(1+Nu).*(cp.^2-bp.^2).*bp.*ap.^2+cp.^2.*Ev.*bp.*(bp.^2-ap.^2)); 

    %%% Mid-vein-wall circumferential wall stress calculation 
    rho=(bp-ap)./2; % prescribes midwall cws calc 
    hoop_stress=((ap.^2.*P-bp.^2.*P_int)./(bp.^2-ap,^2))+((P-

P_int).*ap.^2.*bp.^2)./((bp.^2-ap.^2)./rho); 
     
    %%% Lumenal shear stress calculation 
    Mu=1.02; % viscosity of perfusate in dynes*s/cm^2 
    shear_stress=(4*Mu.*Flowf)./(pi.*ap.^3); 
     
    %%% Prescribe size of and calculate error vectors 
    Err1=zeros(rate,1); 
    Err2=Err1; 
    Err1(1:rate)= mean(hoop_stress)-mean(CWSc); % err1 calc for direct action   
     
    %%% Eliminate phase shift b/w i/o vectors 
    lag=1; 
    for e=1:rate-lag, 
        Err2(e)=hoop_stress(e)-CWSc(e+lag); % err2 calc for direct action 
    end 
         
    %%% Append i/o vectors for plotting 
    SetPMasterPlot((1+((k-1)*rate)):(((k-1)*rate)+rate))=p1(:); 
    SetCWSMasterPlot((1+((k-1)*rate)):(((k-1)*rate)+rate))=CWSc(:); 
    MFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=Flowf(:).*330; 
    MP((1+((k-1)*rate)):(((k-1)*rate)+rate))=OutPf(:).*46.76; 
    MFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=Flowf(:).*330; 
    MMP((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MP((1+((k-1)*rate)):(((k-

1)*rate)+rate))); 
    MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MFlow((1+((k-1)*rate)):(((k-

1)*rate)+rate))); 
    MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))=MMP((1+((k-1)*rate)):(((k-

1)*rate)+rate))./MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate)); 
    MOD((1+((k-1)*rate)):(((k-1)*rate)+rate))=ODf(:); 
    MCWS((1+((k-1)*rate)):(((k-1)*rate)+rate))=hoop_stress(:); 
    MSS((1+((k-1)*rate)):(((k-1)*rate)+rate))=shear_stress(:); 
    Error1((1+((k-1)*rate)):(((k-1)*rate)+rate))=Err1(:); 
    Error2((1+((k-1)*rate)):(((k-1)*rate)+rate))=Err2(:); 
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    %%% Initialize variables for PID algorithm 
    ErrLast1=Err1; 
    ErrLast2=Err2; 
    ErrLastLast1=ErrLast1; 
    ErrLastLast2=ErrLast2; 
    Input1a=100.*SetP1; % input signal for simulation #1 
    Input2a=330.*SetP2; % input signal for simulation #2 
     
    %%% PID control variables for simulation #1 
    kd1=0;     % derivative gain 
    kp1=0;     % proportional gain 
    ki1=0;     % integral gain 
    numPID1=[kd1 kp1 ki1]; 
    denPID1=[1 0]; 
    numc1=conv(num1,denPID1); 
    denc1=polyadd(conv(denPID1,den1),conv(numPID1,num1)); 
    sys1a=tf(numc1,denc1,dt); 
 
    %%% PID control variables for simulation #2 
    kd2=0;     % derivative gain 
    kp2=0;     % proportional gain 
    ki2=0;     % integral gain 
    numPID2=[kd2 kp2 ki2]; 
    denPID2=[1 0]; 
    numc2=conv(num2,denPID2); 
    denc2=polyadd(conv(denPID2,den2),conv(numPID2,num2)); 
    sys2a=tf(numc2,denc2,dt); 
     
    %%% Declare variables for PID control algorithm 
    Kp=1;    % gain 
    Ki=20;     % reset rate in repeats per minutes 
    Kd=1;     % derivative time in minites 
     
    %%% Set controller tolerances 
    iteration=0; 
    iteration_max=20; 
    Err_tol=zeros(rate,1); 
    Err_tol(1:rate)=1; % tolerance in KPa 
         
    for p=1:rate-q, 
        if ((0-Err2(p:p+q))>Err_tol(p:p+q))|((0-Err1(p:p+q))>Err_tol(p:p+q)), 
            Message1='Error is -' 
            while ((0-Err2(p:p+q))>Err_tol(p:p+q))&((0-

Err1(p:p+q))>Err_tol(p:p+q))&(iteration<=iteration_max), 
                %%% simulate the system response to previous input 
                Input1_i=interp(Input1a(p:p+q),N); % resize input for siumulation 
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                Input2_i=interp(Input2a(p:p+q),N); % resize input for siumulation 
                IRp=interp(IRp(p:p+q),N); % resize input for siumulation 
                ORp=interp(ORp(p:p+q),N); % resize input for siumulation                 
                OutPS1a=lsim(sys1a,Input1_i,Time(1:length(Input1_i))); 
                OutPS2a=lsim(sys2a,Input2_i,Time(1:length(Input2_i))); 
                 
              
 
%%% calculate the CWS from the simulated pressure output 
                

OutPS1b=(OutPS1a.*(IRp.^2)+(((IRp.^2).*(ORp.^2))./(rho.^2)).*OutPS1a)./(ORp.^2-IRp.^2); 
                

OutPS2b=(OutPS2a.*(IRp.^2)+(((IRp.^2).*(ORp.^2))./(rho.^2)).*OutPS2a)./(ORp.^2-IRp.^2); 
                OutPS1(p:p+q)=resample(OutPS1b,1,N); % resisize input to system 
                OutPS2(p:p+q)=resample(OutPS2b,1,N); % resisize input to system 
                IRp=resample(IRp,1,N); % resize input for siumulation 
                ORp=resample(ORp,1,N); % resize input for siumulation  
                 
                %%% calculate the change in output using the derivative  of the 
                %%% PID algorithm then add to the previous output 
                Err1(p:p+q)=mean(OutPS1(p:p+q))-mean(CWSc(p:p+q)); 
                Err2(p:p+q)=OutPS2(p:p+q).'-CWSc(p:p+q); 
                dOutP1(p:p+q)=Kp.*(Err1(p:p+q)-

ErrLast1(p:p+q)+Ki.*Err1(p:p+q)./rate+Kd.*(Err1(p:p+q)-
2.*ErrLast1(p:p+q)+ErrLastLast1(p:p+q))); 

                dOutP2(p:p+q)=Kp.*(Err2(p:p+q)-
ErrLast2(p:p+q)+Ki.*Err2(p:p+q)./rate+Kd.*(Err2(p:p+q)-
2.*ErrLast2(p:p+q)+ErrLastLast2(p:p+q))); 

                 
                %%% Update input - recaclculate pressure from simulated 
                %%% stress calcs 
                Input1(p:p+q)=OutPS1(p:p+q)+dOutP1(p:p+q); 
                Input1a(p:p+q)=-Input1(p:p+q)./IRp.^2./(rho.^2+ORp.^2).*rho.^2.*(-
ORp.^2+IRp.^2); 
                Input2(p:p+q)=OutPS2(p:p+q)+dOutP2(p:p+q); 
                Input2a(p:p+q)=-Input2(p:p+q)./IRp.^2./(rho.^2+ORp.^2).*rho.^2.*(-

ORp.^2+IRp.^2); 
                 
                %%% Update variables for PID algorithm 
                ErrLastLast1(p:p+q)=ErrLast1(p:p+q); 
                ErrLastLast2(p:p+q)=ErrLast2(p:p+q); 
                ErrLast1(p:p+q)=Err1(p:p+q); 
                ErrLast2(p:p+q)=Err2(p:p+q); 
                iteration=iteration+1; 
            end 
            %%% Update setpoints 
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            SetP1(p:p+q)=Input1a(p:p+q)./100; 
            SetP2(p:p+q)=Input2a(p:p+q)./330; 
         
        elseif (Err2(p:p+q)>Err_tol(p:p+q))|(Err1(p:p+q)>Err_tol(p:p+q)), 
            Message1='Error is +' 
            while 

(Err2(p:p+q)>Err_tol(p:p+q))&(Err1(p:p+q)>Err_tol(p:p+q))&(iteration<=iteration_max), 
                %%% simulate the system response to previous input 
                Input1_i=interp(Input1a(p:p+q),N); % resize input for siumulation 
                Input2_i=interp(Input2a(p:p+q),N); % resize input for siumulation 
                IRp=interp(IRp(p:p+q),N); % resize input for siumulation 
                ORp=interp(ORp(p:p+q),N); % resize input for siumulation                 
                OutPS1a=lsim(sys1a,Input1_i,Time(1:length(Input1_i))); 
                OutPS2a=lsim(sys2a,Input2_i,Time(1:length(Input2_i))); 
                 
                %%% calculate the CWS from the simulated pressure output 
                

OutPS1b=(OutPS1a.*(IRp.^2)+(((IRp.^2).*(ORp.^2))./(rho.^2)).*OutPS1a)./(ORp.^2-IRp.^2); 
                

OutPS2b=(OutPS2a.*(IRp.^2)+(((IRp.^2).*(ORp.^2))./(rho.^2)).*OutPS2a)./(ORp.^2-IRp.^2); 
                OutPS1(p:p+q)=resample(OutPS1b,1,N); % resisize input to system 
                OutPS2(p:p+q)=resample(OutPS2b,1,N); % resisize input to system 
                IRp=resample(IRp,1,N); % resize input for siumulation 
                ORp=resample(ORp,1,N); % resize input for siumulation  
                                 
                %%% calculate the change in output using the derivative  of the 
                %%% PID algorithm then add to the previous output 
                Err1(p:p+q)=mean(OutPS1(p:p+q))-mean(CWSc(p:p+q)); 
                Err2(p:p+q)=OutPS2(p:p+q).'-CWSc(p:p+q); 
                dOutP1(p:p+q)=Kp.*(Err1(p:p+q)-

ErrLast1(p:p+q)+Ki.*Err1(p:p+q)./rate+Kd.*(Err1(p:p+q)-
2.*ErrLast1(p:p+q)+ErrLastLast1(p:p+q))); 

                dOutP2(p:p+q)=Kp.*(Err2(p:p+q)-
ErrLast2(p:p+q)+Ki.*Err2(p:p+q)./rate+Kd.*(Err2(p:p+q)-
2.*ErrLast2(p:p+q)+ErrLastLast2(p:p+q))); 

                 
                %%% Update input - recaclculate pressure from simulated 
                %%% stress calcs 
                Input1(p:p+q)=OutPS1(p:p+q)-dOutP1(p:p+q); 
                Input1a(p:p+q)=-Input1(p:p+q)./IRp.^2./(rho.^2+ORp.^2).*rho.^2.*(-

ORp.^2+IRp.^2); 
                Input2(p:p+q)=OutPS2(p:p+q)-dOutP2(p:p+q); 
                Input2a(p:p+q)=-Input2(p:p+q)./IRp.^2./(rho.^2+ORp.^2).*rho.^2.*(-

ORp.^2+IRp.^2); 
                 
                %%% Update variables for PID algorithm 
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                ErrLastLast1(p:p+q)=ErrLast1(p:p+q); 
                ErrLastLast2(p:p+q)=ErrLast2(p:p+q); 
                ErrLast1(p:p+q)=Err1(p:p+q); 
                ErrLast2(p:p+q)=Err2(p:p+q); 
                iteration=iteration+1; 
            end 
            %%% Update setpoints 
            SetP1(p:p+q)=Input1a(p:p+q)./100; 
            SetP2(p:p+q)=Input2a(p:p+q)./330; 
 
        else 
            Message3='Error is ~=0' 
            %%% Update setpoints 
            SetP1(p:p+q)=Input1a(p:p+q)./100; 
            SetP2(p:p+q)=Input2a(p:p+q)./330; 
        end 
    p=p+q; 
    end 
 
    %% Set output limits 
    for i=1:rate, 
        if SetP1(i)>1.5*SetP1Master(i), 
           SetP1(i)=1.5*SetP1Master(i); 
        elseif SetP1(i)<0.5*SetP1Master(i), 
            SetP1(i)=0.5*SetP1Master(i); 
        end 
    i=i+1; 
    end 
    for i=1:rate, 
        if SetP2(i)>1.5*SetP2Master(i), 
           SetP2(i)=1.5*SetP2Master(i); 
        elseif SetP2(i)<0.8*SetP2Master(i), 
           SetP2(i)=0.8*SetP2Master(i); 
        end 
    i=i+1; 
    end 
     
    %%% safety measures 
    if MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))<0.8, 
        SetP1(1:rate)=0.25; 
        SetP2(1:rate)=0; 
        l=1; 
        for l=1:o, 
        SP1=SetP1((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
        SP2=SetP2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)); 
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        %%% Analog output object configuration 
        ao = analogoutput(adaptor, id); 
        ch = addchannel(ao, [ch1o ch2o]); 
        set(ao, 'SampleRate', tnc*rate); % set output rate 
        set(ao, 'TriggerType', 'manual'); % triggers when start(ao) given 
        putdata(ao, [SP1 SP2]); % write data 
        start(ao); 
        trigger(ao); 
        %%% Wait until output is done     
        while strcmp(ao.Running, 'On') 
        end 
        stop(ao); 
        delete(ao); 
 
        %%% Analog input object configuration. 
        ai = analoginput(adaptor, id); 
        ch = addchannel(ai, [ch1i ch2i ch3i ch4i]); 
        set(ai, 'SampleRate', tnc*rate);   % set input rate 
        set(ai, 'TriggerType', 'manual');   % triggers when start(ai) given 
        set(ai, 'SamplesPerTrigger', spt2);  % # of samples to acq per trig 
        start(ai); 
        trigger(ai); 
         
        %%% Append acquired data 
        data=getdata(ai); 
        FlowS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,1).'; 
        pressure1S((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,2).'; 
        pressure2S((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,3).'; 
        OutPS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=(pressure1((1+((l-1)*spt2)):(((l-

1)*spt2)+spt2))+pressure2((1+((l-1)*spt2)):(((l-1)*spt2)+spt2)))./2; 
        OuterDiameterS((1+((l-1)*spt2)):(((l-1)*spt2)+spt2))=data(:,4).'; 
         
        %%% Wait until intput is done 
        while strcmp(ai.Running, 'On') 
        end 
        stop(ai); 
        delete(ai); 
        l=l+1; 
        end 
     
    %%% Filter output using a first order Savitzky-Golay filter 
    n1=1;     % order of filters for all raw data 
    m1=9;     % frame size of filter for raw pressure data 
    m2=31;     % frame size of filter for raw flowrate data 
    m3=13;     % frame size of filter for raw outer diameter data 
    OutPSf=sgolayfilt(OutPS,n1,m1); % filter pressure data 

  243



    FlowSf=sgolayfilt(FlowS,n1,m2); % filter flowrate data     
    ODSf=sgolayfilt(OuterDiameterS,n1,m3); % filter outer diameter data 
     
    %%% Filter output again using a first order Savitzky-Golay filter 
    OutPSf=sgolayfilt(OutPSf,n1,m3); % filter pressure data 
    FlowSf=sgolayfilt(FlowSf,n1,m2); % filter flowrate data 
    ODSf=sgolayfilt(ODSf,n1,m3); % filter outer diameter data 
     
    %%% Transpose acquired data to column vectors 
    OutPSf=OutPSf.'; 
    FlowSf=FlowSf.'; 
    ODSf=ODSf.'; 
    MP((1+((k-1)*rate)):(((k-1)*rate)+rate))=OutPSf(:).*46.76; 
    MFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=FlowSf(:).*330; 
    MMP((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MP((1+((k-1)*rate)):(((k-

1)*rate)+rate))); 
    MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate))=mean(MFlow((1+((k-1)*rate)):(((k-

1)*rate)+rate))); 
    MMR((1+((k-1)*rate)):(((k-1)*rate)+rate))=MMP((1+((k-1)*rate)):(((k-

1)*rate)+rate))./MMFlow((1+((k-1)*rate)):(((k-1)*rate)+rate));     
    else 
    end 
k=k+1; 
looper2=k 
end 
 
%%% stop pump and piston 
adaptor = 'nidaq'; 
id = 1; 
output=0; 
ao = analogoutput(adaptor, id); 
ch = addchannel(ao, [ch1o ch2o]); 
set(ao, 'SampleRate', rate);  
set(ao, 'TriggerType', 'manual'); 
putdata(ao, [output output]); 
start(ao); 
trigger(ao); 
stop(ao); 
delete(ao); 
 
%%% Eliminate phase shift b/w input and output CWS vectors 
i=1; 
for i=1:length(SetCWSMasterPlot)-lag, 
    SetCWSMasterPlot(i)=SetCWSMasterPlot(i+lag);     
end 
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%%% Calculate Performance Metrics  
RSSp=zeros(n*rate,1); % set size of Residual Sum of Squares vector 
npar=2; % # of parameters 
np=rate; % size of input vector 
j=10; % for loop index 
h=2; % for loop index 
for k=j:n, 
    for i=h:np, 
    RSSp(i)=RSSp(i-1)+((SetCWSMasterPlot(i)-MCWS(i)))^2; 
    end 
    RSSc(k)=mean(RSSp); 
end 
RSS=mean(RSSc(j:n)) 
% root mean square error calculation 
RMSE=sqrt(RSS/((np*n-j*rate)-npar)) 
%%% Plot results 
T=T(1:length(MCWS)); 
figure; 
subplot(2,2,1); 
plot(T,MP,'b-'); 
axis([0 T(length(MP)) 0.95*(min(MP)) 1.05*(max(MP))]); 
title('Measured Pressure vs Time') 
xlabel('Time (s)'); 
ylabel('Pressure (mmHg)'); 
subplot(2,2,2); 
plot(T,MOD,'b-'); 
axis([0 T(length(MOD)) 0.95*(min(MOD)) 1.05*(max(MOD))]); 
title('Outer Diameter vs Time') 
xlabel('Time (s)'); 
ylabel('Outer Diameter (mm)'); 
subplot(2,2,3); 
plot(T,MCWS,'b-'); 
hold on 
plot(T,SetCWSMasterPlot,'r-'); 
axis([0 T(length(MCWS)) 0.95*(min(SetCWSMasterPlot)) 1.05*(max(MCWS))]); 
title('Measured & Set Circumferential Wall Stress') 
xlabel('Time (s)'); 
ylabel('CWS (KPa)'); 
legend('Measured', 'SetPoint'); 
hold off 
subplot(2,2,4); 
plot(T,MSS,'b-'); 
axis([0 T(length(MSS)) 0.95*(min(MSS)) 1.05*(max(MSS))]); 
title('Shear Stress') 
xlabel('Time (s)'); 
ylabel('SS (dynes/cm^2)'); 
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APPENDIX D 

EX VIVO PERFUSION EXPERIMENTAL RECORDS 
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Table D. 1 Perfusion experiment record for VEN vs. ART experiment performed on 04/23/2003 
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Table D. 2 Perfusion experiment record for VEN vs. ART experiment performed on 05/07/2003. 
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Table D. 3 Perfusion experiment record for VEN vs. ART experiment performed on 05/24/2006. 

 

 

 

 

 

 

 

  249



Table D. 4 Perfusion experiment record for VEN vs. ART experiment performed on 09/14/2006. 
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Table D. 5 Perfusion experiment record for VEN vs. ART experiment performed on 10/09/2004. 
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Table D. 6 Perfusion experiment record for VEN vs. ART experiment performed on 10/16/2004. 
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Figure D. 1 Mean intraluminal pressure, outer diameter, and CWS profiles for 24 hour ART vs. cART experiment 
performed on 10/22/2004.  
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Figure D. 2 Mean intraluminal pressure, outer diameter, and CWS profiles for 24 hour ART vs. cART experiment 
performed on 11/01/2004. 
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Figure D. 3 Mean intraluminal pressure, outer diameter, and CWS profiles for 24 hour ART vs. cART experiment 
performed on 11/11/2004. 
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Figure D. 4 Mean intraluminal pressure, outer diameter, and CWS profiles for 24 hour ART vs. cART experiment 
performed on 09/21/2006. 
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Figure D. 5 Mean intraluminal pressure, outer diameter, and CWS profiles for 24 hour ART vs. cART experiment 
performed on 10/16/2006. 
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Figure D. 6 Mean intraluminal pressure, outer diameter, and CWS profiles for 72 hour ART vs. cART experiment 
performed on 02/16/2007. 
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Figure D. 7 Mean intraluminal pressure, outer diameter, and CWS profiles for 72 hour ART vs. cART experiment 
performed on 03/07/2007. 
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Figure D. 8 Mean intraluminal pressure, outer diameter, and CWS profiles for 72 hour ART vs. cART experiment 
performed on 03/15/2007. 
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Figure D. 9 Mean intraluminal pressure, outer diameter, and CWS profiles for 72 hour ART vs. cART experiment 
performed on 04/02/2007. 
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Figure D. 10 Vasomotor challenge outer diameter profiles for acute experiment performed on 03/22/2007. 
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Figure D. 11 Vasomotor challenge outer diameter profiles for acute experiment performed on 05/17/2007. 
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Figure D. 12 Vasomotor challenge outer diameter profiles for acute experiment performed on 05/23/2007. 
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Figure D. 13 Vasomotor challenge outer diameter profiles for acute experiment performed on 06/07/2007. 

 
 
 
 
Table D. 7 Mean values of percent constriction in response to epinephrine for all the acute ex vivo vasomotor 
challenge experiments. 
 
 
 
 % Constriction 
Expt # Sham spun 

1 9.814105203 11.04252293
2 29.52595014 77.34063745
3 35.2919708 39.29791271
4 70.991 10.238

Mean 36.40575654 34.47976827
SD 25.50703982 31.6082079

SEM 12.75351991 15.80410395
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Table D. 8 Microsoft Excel output for student’s t-test performed on the percent constriction data from the acute ex 
vivo vasomotor challenge experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  sham spun 
Mean 36.40576 34.47976827
Variance 650.6091 999.0788069
Observations 4 4
Pearson Correlation -0.2131  
Hypothesized Mean Difference 0  
Df 3  
t Stat 0.086278  
P(T<=t) one-tail 0.468341  
t Critical one-tail 2.353363  
P(T<=t) two-tail 0.936682  
t Critical two-tail 3.182446   

 
 
 
 
Table D. 9 Mean values of percent dilation in response to sodium nitroprusside for all the acute ex vivo vasomotor 
challenge experiments. 
 
 
 
 % Dilation 
Expt # sham spun 

1 16.8572062 15.44797 
2 24.7445852 83.19223 
3 33.5036496 68.95636 
4 48.42 17.063 

Mean 30.8813603 46.16489 
SD 13.5254968 35.0282 

SEM 6.7627484 17.5141 
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Table D. 10 Microsoft Excel output for student’s t-test performed on the percent dilation data from the acute ex vivo 
vasomotor challenge experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  sham spun 
Mean 30.88136 46.16489
Variance 182.9391 1226.975
Observations 4 4
Pearson Correlation -0.17385  
Hypothesized Mean Difference 0  
Df 3  
t Stat -0.77031  
P(T<=t) one-tail 0.24861  
t Critical one-tail 2.353363  
P(T<=t) two-tail 0.49722  
t Critical two-tail 3.182446   
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APPENDIX E 

BIOLOGICAL ANALYSES PROTOCOLS 

Protocol E.1: Scanning Electron Microscopy Sample Work-up Procedure 
 
Procedure: 
 
1. Fix tissue in 2.5% gluteraldehyde in 0.1 M PBS (pH 7.4) for 10 minutes.  
2. Cut up tissue into small blocks (8mm³) continue fixing for not more than 50 minutes.  
3. Wash thoroughly in 3 changes 0.1 M PBS for 15 minutes each.  
4. Fix tissue in 1% OsO4 in 0.1 M PBS for 60 minutes.  
5. Wash thoroughly in 3 changes 0.1 M PBS for 15 minutes each.  
6. Dehydrate in graded series of alcohol (in PBS) for 15 minutes each:  
1. 30% ethanol  
2. 50% ethanol  
3. 70% ethanol  
4. 90% ethanol  
5. 100% ethanol x 3  
7. Critical point dry specimen.  
8. Mount on studs.  
9. Sputter coat specimen.  
10. Store in desiccator. 
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Protocol E.2: Hematoxylin and Eosin Histological Staining Procedure 

 Equipment Required 
 

- Microscope slides 
- Conklin jars  
- Sink with small tubing/hose on faucet 
- Slide covers (24 mm x 50 mm) 
- VectaMount™ Permanent Mounting Medium (Vector Laboratories, 

Catalog# H-5000) 
 

 

 Reagents Required 
 
 
 95% Ethanol (Pharmco or equivalent) 
 100% Ethanol (Pharmco or equivalent) 
 Xylene (source: Thermo Electron Corporation Cat #9990501 or equivalent) 
 Harris’ Acidfied Hematoxylin (Thermo Electron Corporation Cat #6765004) 
 Alcoholic Eosin Y (Thermo Electron Corporation Cat #6766007) 
 Bluing Solution 
 Beibrich Scarlet (refer to Masson’s Trichrome Staining SOP) 

Aniline Blue 1% Acetic Acid Water Phosphotungstic/Phosphomolbdic Acid 
Solution (refer to Masson’s Trichrome Staining SOP) 

 Wiegert’s Hemetoxylin (refer to Masson’s Trichrome Staining SOP) 
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Solution Recipes  

Chemicals 
Required 

Bluing 
Solution 95% EtOH 

DI Water 89 mL 15 mL 
100% 

Ethanol 207 mL 285 mL 

30% 
NH4OH 4.5 mL  
Glacial 
Acetic 
Acid 

  

Final 
Volume 300mL 300mL 

 

 

Procedure: 

Step  Reagent              Conc.% Uses.    Time/ Limit     
  1   Dry Storage                         00:00 No Maximum        
  2   Heater Station                     20:00 No Maximum         
  3   Xylene                            03:00 No Maximum          
  4   Xylene                              03:00 No Maximum          
  5   Xylene                              03:00 No Maximum          
  6   Alcohol                 100%        01:00 No Maximum         
  7   Alcohol                  95%        01:00 No Maximum         
  8   Running Water Wash                 02:00 No Maximum          
  9   Harris Acidified                    07:00 Standard            
 10   Running Water Wash                 02:00 No Maximum          
 11   Running Water Wash                 01:00 No Maximum          
 12   Ammonia Water                       00:30 Standard            
 13   Running Water Wash                 01:00 No Maximum          
 14   Alcohol                  95%        00:30 Standard            
 15   Alcoholic Eosin                     00:30 Standard            
 16   Alcohol                  95%        00:30 Standard            
 17   Alcohol                  95%        00:30 Standard           
 18   Alcohol                 100%        00:30 Standard            
 19   Alcohol                 100%        00:30 No Maximum          
 20   Alcohol                 100%        00:30 No Maximum          
 21   Xylene                              00:30 No Maximum          
 22   Xylene                              00:30 No Maximum         
 23   Xylene                              00:30 No Maximum         
 24   Xylene                              00:00 No Maximum          
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Protocol E.3: Masson’s Trichrome Histological Staining Procedure 

 Equipment Required 
 

- Microscope slides 
- Conklin jars  
- Sink with small tubing/hose on faucet 
- Slide covers (24 mm x 50 mm) 
- VectaMount™ Permanent Mounting Medium(Vector Laboratories, Catalog# 

H-5000) 
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 Reagents Required 
 
1. Bouin’s Solution: (source-LabChem  order #LC111790-2 or equivalent) 
 
2. Weigert’s Iron Hematoxylin: 
  Solution A: 
   Hematoxylin crystals (source – Fisher Scientific H345-25 or equivalent)……………… .10.0 g 
   95% Ethanol (source – Pharmco or equivalent) (make up to total volume) ……………........1.0 L 
 
  Solution B: 
   29% Ferric Chloride, aqueous (source-Newcomer Supply 48206 or equivalent) ..............20.0 ml 
   Deionized water…………………………….. .............................................475.0 ml 
   Glacial acetic acid (source – JT Baker 9507-33 or equivalent)………………………… .5.0 ml 
   
 Mix equal of solutions A and B just prior to use. 
 
3. Biebrich Scarlet-Acid Fuchsin Solution: 
  1% Biebrich scarlet stock (source – VWR 34172-156 or equivalent) in 100 ml of dH2O.......1.0 g 
  Deionized water…………………………….....................................................100.0 ml 
 
  1% Acid fuchsin stock (source – EM Science 24172-024 or equivalent) .................................1.0 g 
  Deionized water…………………………….....................................................100.0 ml 
 
 Working solution: 
  1) 1% Biebrich scarlet stock .............................................................................90.0 ml 
  2) 1% Acid fuchsin stock..................................................................................10.0 ml 
  3) Glacial acetic acid ..........................................................................................1.0 ml 

 

  
4. Phosphomolybdic-Phosphotungstic Acid Solution: 
  Phosphomolybdic Acid (source – Fisher Scientific A237-100 or equivalent) ........................... 5.0 g 

  Phosphotungstic Acid  (source – Fisher Scientific A248-100 or equivalent) ........ 5.0 g 
  Deionized water ...............................................................................................200.0 ml 
 
5. Aniline Blue Solution: 
  Aniline blue (source – Spectrum Al-170 or equivalent)...................................................... 12.5 g 
  Glacial acetic acid (source-JT Baker 9507-33 or equivalent)............................................................10.0 ml 
  Deionized water ………………………………………………….................................................... 500.0 ml 
 
6. 1% Glacial Acetic Acid: 
  Glacial acetic acid (source-JT Baker 9507-33 or equivalent)… ......................................... 10.0 ml 
  Deionized water ...............................................................................................900.0 ml 
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Solution Recipes (if applicable) 

Chemicals 
Required 

Bluing 
Solution 95% EtOH 

DI Water 89 mL 15 mL 
100% 

Ethanol 207 mL 285 mL 

30% 
NH4OH 4.5 mL  
Glacial 
Acetic 
Acid 

  

Final 
Volume 300mL 300mL 

 

Procedure: 
1. Check expiration date on all reagents.  If expired, obtain or prepare new solution. 

 
2. Place slides on the Gemini Stainer to deparaffinize. 

 Protocol Name: DEWAX                                 
  Step  Reagent              Conc.%   Time  
   1   Dry Storage                       00:00  
   2   Heater Station                   20:00  
   3   Xylene                            05:00  
   4   Xylene                            05:00  
   5   Xylene                             05:00  
   6   Alcohol                 100%       01:00  
   7   Alcohol                  95%       01:00  
   8   Running Water Wash                02:00  
   9   Running Water Wash               02:00   
  10   Running Water Wash               02:00  
  11   Tap Water                         00:00  

3. Once the slides reach water, remove from the Gemini Stainer. 
 

4. Place the Bouin’s Solution in a general-purpose lab oven set @ 60°C for 15 minutes to 
preheat the solution. 

 
5. Place slides in the preheated Bouin’s Solution.  Incubate the slides for 1 hour at 60ºC. 
 

6. Filter the Aniline Blue and the Biebrich Scarlet-Acid Fuchsin Solutions before use. 
 

7. Remove the Bouin’s solution from the oven and place in the fume hood to cool 
(approximately 5-10 minutes). 

 
8. Once the slides are cooled, rinse in running tap water for 5 minutes. 
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9. Place slides into staining rack and return to the Gemini Stainer and use the trichrome staining 
program.   

 
  Step  Reagent              Conc.                              Time  
   1   Dry Storage              .......................................00:00  
   2   Running Water Wash                .......................................10:00  
 3   WEIGERT'S HEMATOXYLIN .....................................10:00  
 4   Running Water Wash                .......................................10:00  
  5   BIEBRICH                           .......................................02:00  
   6   Running Water Wash                .......................................00:30  
   7   P-P ACID                           .......................................15:00  
   8   ANILINE BLUE                       .......................................05:00  
   9   Running Water Wash                .......................................00:30  
 10   Acid Water                         .......................................01:00  
 11   Running Water Wash  .......................................00:30  
 12   Alcohol        95% ................................00:30  
 13   Alcohol                 100% ..............................00:30  
 14   Alcohol                 100% ..............................00:30  
 15   Xylene                             .......................................00:30  
 16   Xylene                             .......................................00:30  
 17   Xylene                             .......................................00:30  
 18   Xylene                             .......................................00:00  
 

10. When the staining is complete, coverslip.   
 
Expected Results: 
Nuclei ………………………………………...Black 
Collagen and mucus…………………………..Blue 
Cytoplasm, Keratin and Muscle Fibers……….Red 

 

 

Protocol E.4: Picro-Sirius Red (Puchtler’s version) 

 Equipment Required 
 

- Microscope slides 
- Conklin jars  
- Sink with small tubing/hose on faucet 
- Slide covers (24mm x 50 mm) 
- VectaMount™ Permanent Mounting Medium(Vector Laboratories, Catalog# 

H-5000)  
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Reagents Required 
1.    Weigert’s Iron Hematoxylin: 
 Solution A: 

  Hemotoxylin crystals……………………..  10 g 
  (source – Fisher Scientific H345-25) 
  95% Ethanol  (make up to total volume) …………… 1 L 
  (source - Pharmco)  
    
  Solution B: 
  29% Ferric Chloride, aqueous………………….. 20 ml 
  (source-Newcomeer Supply 48206) 
  Distilled H2O………………………………..  475 ml 
  Glacial acetic acid……………………………     5 ml 
  (source – JT Baker 9507-33)     
 
        Mix equal of solutions A and B just prior to use. 
 

2. Picro-Sirius Red Solution: 
  Sirius Red F3B………………………………. 0.1 g 
  (source: Spectrum Chemical S-1066) 
  Saturated Aqueous Picric Acid……………… 500 ml 
  (source: Spectrum Chemical P-201) 
      
3. Acetic Acid Water: 
  Glacial Acetic Acid………………………….. 35 ml 
  (source: JT Baker 9507-33) 
  Deionized water…………………………….  75 ml 
 

Procedure: 

1. Check expiration date on all reagents.  If expired, discard appropriately (refer to SOP# 
R0020, Disposal of Hazardous Chemical Waste in Bridgeside Point) and obtain or 
prepare new solution. 

2. Place slides on the Gemini Stainer to deparaffinize (refer to SOP#E2013, Use and Care of 
the Varistain Gemini Stainer). 

3. Once the slides reach water, remove from the Gemini Stainer (refer to SOP#2013, Use 
and Care of the Varistain Gemini Stainer). 

4. Stain slides in Weigert Iron Hematoxylin for 10 minutes. 
5. Rinse in running tap water for 10 minutes. 
6. Rinse in deionized water for 10 seconds. 
7. Stain in Picro-Sirius Red for 1 hour at room temperature. 
8. Decolorized in Acetic Acid water for 10 seconds. 
9. Quickly rinse in two changes of 95% ethanol. 
10. Quickly rinse in three changes of absolute alcohol. 
11. Clear in three changes of xylene. 
12. Coverslip. When the staining is complete, coverslip.  (Refer to SOP#E2007, Use and care 

of the Thermo Electron consul coverslipper). 
 
Expected Results: 
Nuclei-blue 
Muscle, cytoplasm-yellow 
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Collagen-red 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocol E.5: Movat’s Pentachrome Stain (Russell Modification) 

 Equipment Required 
 

- Microscope slides 
- Conklin jars  
- Sink with small tubing/hose on faucet 
- Slide covers (24mm x 50 mm) 
- VectaMount™ Permanent Mounting Medium(Vector Laboratories, Catalog# 

H-5000)  

1. 1% Alcian Blue 
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    Alcian blue-8GS (spectrum chemical AL-170 or equivalent)…………………..….1.0 g 
    Distilled water………………………………………..…………………………..100 ml 
    Glacial Acetic acid (JT Baker 9507-33 or equivalent)……………………………...1 ml 
 
2. Alkaline Alcohol 
    Ammonium Hydroxide 28-30% (Newcomer supply 1006A or equivalent)………10 ml 
    Alcohol, 95% (source: Pharmco or equivalent)……………………………………90 ml 
 
3.  Iodine-Iodide 
     Iodine (source: spectrum chemical I-1010 or equivalent)……………………….…..2 g 
     Potassium Iodide (source: spectrum chemical P-1335 or equivalent)……………….4 g 
     Distilled Water ………………………………...………………………………...100 ml 
 
4.  Absolute Alcoholic Hematoxylin, 10% 
     Hematoxylin (source: Spectrum Chemical HE115 or equivalent)............................10 g 
     Absolute Alcohol (source: Pharmco or equivalent)……………………………...100 ml 
 
5.  Ferric Chloride, 10% 
     Ferric Chloride (source: spectrum chemical F-1010 or equivalent)………..............10 g 
     Distilled water …………………………………………………………………...100 ml 
 
6.  Hematoxylin Solution 
     Absolute alcoholic Hematoxylin (solution #4)……………………………………25 ml 
     Absolute Alcohol (source: Pharmco) ……………………………………………..25 ml 
     Ferric Chloride, 10% aqueous (solution #5)……………………………………....25 ml 
     Iodine-Iodide (solution # 3)……………………………………………………….25 ml 
     Prepare just before use 
 
 7.   Ferric Chloride, 2%    (for differentiation) 

Ferric Chloride (solution # 5) ……………………………………………………10 ml 
Distilled water. …………………………………………………………………...40 ml 
Prepare just before use 
 

 
8.   Sodium Thiosulfate, 5% 

Sodium Thiosulfate (source: spectrum chemical S-1498 or equivalent)……………5 g 
Distilled water …………………………………………………………………..100 ml 

 
 
9.   Crocein Scarlet-Acid Fuchsin 

Solution A (stock) 
Crocein Scarlet (source: spectrum chemical C-3080 or equivalent)………………..1 g 
Distilled water…………………………………………. ……………………...99.5 ml 
Glacial Acetic Acid (source: JT Baker 9507-33 or equivalent)…………………0.5 ml 
 
Solution B (stock) 
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Acid Fuchsin (source: Spectrum Chemical AC-155 or equivalent)………………0.1 g 
Distilled water……………………………….………………………………….99.5 ml 
Glacial acetic acid (source: JT Baker 9507-33 or equivalent)…………………...0.5 ml 
 
Working solution 
Solution A………………………………………….……………………………..80 ml 
Solution B……………………………………….………………………………..20 ml 
Prepare just before use. 

 
10. Phosphotungstic Acid Solution, 5% 

Phosphotungstic Acid (source: Spectrum Chemical P1135 or equivalent)…………5 g 
Distilled water…………………………………………………………………...100 ml 
 

11. Alcoholic Safran 
Safran du Gatinais (source: spectrum chemical SA-110 or equivalent)…………….5 g 
Absolute alcohol (source: Pharmco or equivalent)……………………………..83.5 ml 

 
Procedure: 

 
1. Check expiration date on all reagents.  If expired, discard appropriately (refer to SOP# 

R0020 Disposal of Hazardous Chemical Waste in Bridgeside Point) and obtain or prepare 
new solution. 

2. Place slides on the Gemini Stainer to deparaffinize (refer to SOP#E2013, Use and Care of 
the Varistain Gemini Stainer). 

3. Once the slides reach water, remove from the Gemini Stainer (refer to SOP#2013 Use 
and Care of the Varistain Gemini Stainer). 

4. Place the slides in Alcian blue for 20 minutes at room temperature. 
5. Wash in running tap water 5 minutes. 
6. Place slides in alkaline alcohol for 1 hour. 
7. Wash in running tap water for 10 minutes. 
8. Rinse once in distilled water. 
9. Place the slides in Hematoxylin solution for 15 minutes. 
10. Rinse in 5 changes of distilled water. 
11. Place slides in 2% aqueous ferric chloride until the elastic fibers contrast sharply with the 

background. 
12. Rinse in distilled water. 
13. Place slides in sodium thiosulfate for 1 minute. 
14. Wash in running tap water for 5 minutes, rinse in distilled water. 
15. Place slides in crocein scarlet-acid fuchsin for 1 minute 30 seconds. 
16. Rinse in 5 changes of distilled water. 
17. Rinse in 0.5% Acetic Acid solution. 
18. Place slides in 5% phophotungstic acid solution, 2 changes five minutes each. 
19. Rinse in 0.5% acetic acid solution. 
20. Rinse in three changes of absolute alcohol. 
21. Place slides in alcoholic safran solution for 15 minutes. 
22. Rinse in three changes of absolute alcohol. 
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23. Clear in three changes of xylene. 
24. When the staining is complete, coverslip.  (Refer to SOP#E2007 Use and care of the 

Thermo Electron consul coverslipper). 
 
Expected Results: 
Nuclei and elastic fibers……….Black 
Collagen……………………….Yellow 
Ground substance and mucin….Blue 
Fibrinoid, fibrin……………..…Intense red 
Muscle…………………………Red  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Protocol E.6: Immunohistochemical TUNEL Analysis Procedure 
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 Equipment Required 
 

- 200uL Micropipette and tips 
- Disposable transfer pipettes 
- Vacuum 
- Microscope slides 
- Microscope slide covers 
- Mounding medium (Gelvatol) 
- Timer 
- 37°C humidified incubator 

 
 

 
 Reagents Required 

 
- Fixation solution (4% Paraformaldehyde) 
- 1xPBS 
- In Situ Cell Death Kit, Fluorescine (Roche Applied Sciences) 

- Label Solution (vial 2) 
- Enzyme solution (vial 1) 

- 3000 units/mL DNase I, Grade I in: 
- 75 mM Tris-HCl pH 7.5 
- 1mg/mL BSA 

- Permeabilization solution: 
- 0.1% sodium citrate 
- 0.1% Triton X-100 

- Protienase K solution: 
- [50ug/mL] Protienase K 

- Gelvatol mounting solution 
- Dapi nuclear stain 
 

 
 
 Solution Recipes (if applicable) 

Chemicals Permeabilization 
solution 

BSA/Tris-
HCl pH 7.5 
(1mg/mL)  

Required 

1xPBS BTV BTV 
Triton-X 100 10uL  

Sodium Citrate 0.01g  
Tris-HCl pH 7.4  750uL 

BSA  0.015g 

Final Volume 10mL 10mL 
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Procedure: 

1. Retrieve slides with samples attached.  If slides were frozen, warm on slide warmer before 

dehyde for 20 minutes at room temperature. 

lution for 10 minutes at room temp. 

low aliquot to thaw. Add 90 ml 
crofuge tube. Mix by pipetting.  

ol in 1xPBS until steps 

s-HCl across positive control slide only

use. 
2. Fix slides in 4% Paraformal
3. Rinse slides 3 times with 1xPBS for 10 minutes each. 
4. Incubate the slides in Proteinase-K so
5. Incubate slides in Permeabilization solution for 10 minutes at room temp. 
6. Acquire 0.010 ml aliquot of DNase (300 units).  Al

BSA/Tris-HCl solution to the mi
7. Rinse slides x3 with 1xPBS. Leave all samples and negative contr

10 and beyond. 
8. Apply DNase/BSA/Tri . Incubate at room 

temperature for 10 minutes. (~33 ml per section). 
. Wash positive control slide x3 with 1xPBS. 

10. Remove 100uL of Label solution (vial 2) and apply it to the negative control sections
9

 
only. (~50uL per section). 

11. Add 50uL of Enzyme solution (vial 1) to the remaining 450 uL Label solution (vial 2) to 
make the TUNEL Reaction Mixture. 

12. Add 50 uL TUNEL Reaction Mixture to each section except the negative control sections. 
Incubate for 25 minutes in 37°C humidified incubator.   

13. Rinse all sections 3x in 1xPBS. 
4. Apply one drop of DAPI nuclear stain for 1 minute to each sample. 

15. Rinse x3 with 1xPBS. 
6. Mount using Gelvatol. 

 

 

 

 

 

1

1
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Protocol E.7: Immunohistochemical PCNA Primary Antibody Incubation Procedure 
 
 Equipment Required 

 
- Vacuum 
- Microscope Slides 
- Disposable Transfer Pipettes 
- 200uL micropipette and tips 
- Slide Box 

 
 
 Reagents Required 

 
- 1xPBS 
- 99% ethanol 
- DI Water 
- 4% Paraformaldehyde 
- Permeabilization solution: 

- 0.1% sodium citrate 
- 0.1% Triton X-100 

- H2O2 Solution (0.3%) 
- Vectastain Kit 

- Normal Horse Serum 
- PCNA Primary Antibody (Dako, Clone PC-10) 

 
 

Solution Recipes (if applicable) 

Chemicals 
Required 

Permeabilizat
ion Solution 

H2O2 
Solution 

Normal/
Blocking 

Serum 

Primary 
Antibody 

1xPBS BTV  5mL  
DI H2O  9mL   

3% H O   1mL   2 2
Normal 
Horse   1 drop  
Serum 

Triton-X 10uL    100 
Sodium    Citrate 0.01g 

Final 10mL Volume 10 mL   

  

ples for 8 min.  
. Apply 99% Ethanol for 2 min. 
 Wash x3 with 1xPBS, leaving third wash on for 30 minutes. 

Procedure: 

1. Retrieve slides and place in 37ºC slide warmer for 30 min. 
2. Apply 4% Paraformaldehyde to all sam
3
4.
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5. Incubate in permeabilization solution for 15 minutes. 
6. Wash x2 in 1xPBS. 
. Quench for 30 min in 0.3% H2O2. 

8. Wash x2 with 1xPBS. 
. Block in Normal Serum for 30 min. 

10. Incubate in primary antibody solution for 60 min in humidified box at 37ºC. Be sure to 
leave Primary Delete samples (leftmost section on each slide), which should stay incubated 
in Normal Blocking Serum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

9
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Protocol E.8: VectaStain Elite ™ Horseradish Peroxidase/Avidin-Biotin-Complex Detection 
System for Immunohistochemistry Staining 

 Equipment Required 
 

- Microscope slides 
- Vacuum 
- 37ºC humidified incubator 
- Microscope 20x 
- Conklin jars 

 

 Reagents Required 
 

- 1xPBS 
- DI Water 
- Vectastain Elite™ Kit (Vector Laboratories, Catalog#PK-6200) 

- Normal Horse Serum 
- Solution A 
- Solution B 
- Biotinylated Universal Antibody 

- Diaminobenzidine (DAB) Substrate Kit (Vector Laboratories, Catalog#SK-4100) 
- Hydrogen Peroxide Substrate Reagent 
- DAB Substrate Reagent 
- Solution Buffer 

 

 
Solution Recipes (if applicable) 

Chemicals 
Required 2’ Antibody ABC 

Reagent 
DAB 

Substrate 
1xPBS 5mL 5mL  
Normal 
Horse 
Serum 

2 drops   

Universal 
antibody 2 drops   

Solution A  2 drops  
Solution B  2 drops  
DI Water   5 mL 
Solution  2 drops Buffer  

H2O2 
Solution   2 drops 

DAB   4 drops 
    

Final 
Volume 5mL 5mL 5mL 
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Procedure: 

. Wash away primary antibody with 1xPBS 2x. 
2. Incubate in secondary antibody for 60 minutes in 37ºC humidified incubator. 
. Wash x2 with 1xPBS. 

4. Incubate in Vectastain ABC solution for 30 minutes (ABC solution must sit for at least 30 
minutes prior to use). 

5. Wash x2 with 1xPBS. 
. Under microscope, apply DAB substrate to all samples on one slide.  Looking at one 

section, the DAB solution should be removed when the edges of the tissue begin to turn 
brown. Place the slide in DI water. 

 

 

 

 

 

1

3

6
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Protocol E.9: Immunohistochemistry Staining Protocol for Golgi complex Primary Antibody 
Incubation 

 Equipment Required 
 

- Vacuum 
- Microscope Slides 
- Disposable Transfer Pipettes 
- 200uL micropipette and tips 
- Slide Box 

 

 Reagents Required 
 

- 1xPBS 
- DI Water 
- 4% Paraformaldehyde 
- Permeabilization solution: 

- 0.1% sodium citrate 
- 0.1% Triton X-100 

- H2O2 Solution (0.3%) 
- Vectastain Elite™ Kit (Vector Laboratories, Catalog# PK-6200)  

- Normal Horse Serum 
- Golgi Complex Primary Antibody (Abcam, Catalog# ab14487) 
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Solution Recipes (if applicable) 

Chemicals Permeabiliz
Required ion Solution 

2 2
Solution 

at H O  Normal/
Blocking 

Serum 

Primary 
Antibody 

1xPBS BTV  5mL  
DI H2O  9mL   

3% H2O2  1mL   
Normal 
Horse 
Serum 

  1 drop  

Triton-X 
100 10uL    

Sodium 
Citrate 0.01g    

Final 
Volume 10 mL 10mL 5mL  

Ch
Re Serum 

emicals 
quired 

Permeabilizat
ion Solution 

H2O2 
Solution 

Normal/
Blocking Primary 

Antibody 

1 TV  5mL  xPBS B
H2O     

N al 
H e 
S  

orm
ors

m
  1 drop  

eru
Tr X iton-

100 10uL    

Sodium 
C te itra 0.01g    

Fina 10 mL    l 
V e olum

  

Procedure: 

1. Retrieve slides and place in 37º
2. A y 4%
3. W
4. In te
5. W
6. Q h f
7. W
8. Block in Normal Serum for 30 min. 
9. Incubate in primary antibody solution for 60 min in humidified box at 37ºC. Be sure to 

leave Primary Delete samples (leftmost section on each slide), which should stay incubated 
in Normal Blocking Serum. 

 

C slide warmer for 30 min. 
ppl  Paraformaldehyde to all samples for 30 min.  
as x3 with 1xPBS, leaving third wash on for 30 minutes. 

 cuba in permeabilization solution for 15 minutes. 
ash x2 in 1xPBS. 
uenc or 30 min in 0.3% H O . 2 2
ash x2 with 1xPBS. 
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Protocol E.10: Transmission Electron Microscopy Sample Work-up Procedure 

Procedure: 
 
1. Fix tissue in 2.5% glutaraldehyde in 0.1 M PBS (pH 7.4) for 10 minutes.  
2. Cut up tissue into small blocks (1mm³) and continue fixing for at least 50 minutes.  
3. Wash in 3 changes 0.1 M PBS for 15 minutes each.  
4. Post fix specimens in 1% Osmium tetroxide containing 1% potassium 

ferricyanide for 1 hr.  
5. Wash in 3 changes 0.1 M PBS for 15 minutes each.  
6. Dehydrate in graded series of alcohol (in PBS) for 15 minutes each:  
1. 30% ethanol  
2. 50% ethanol  
3. 70% ethanol  

5. 100% ethanol x 3  
7. Dehydrate further in two 10 minute changes of propylene oxide. *  
8. Infiltrate with a 1:1 mix of propylene oxide and epon for 1 – 3 hrs or overnight.  
9. Infiltrate with pure epon overnight at 4° C or 1 hour at room temperature.  
10. Continue infiltration with three 1 hour changes of epon.  
11. Embed in pure epon at 37° C for 24 hours.  
12. Cure for 48 hours at 60° C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. 90% ethanol  
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Protocol E.11: Tissue Homogenization And Protein Extraction 

 Equipment Required 
 

- -80ْ C 
- Analytical Balance w/ weigh boats 
- Homogenizer 
- 1 50ml conical tube 
- 1 5ml test tube per tissue section to be homogenized 
- Several 1.5ml microfuge tubes 
- Vortex genie fitted with microfuge tube rack 
- Microcentrifuge  

 Reagents Required 
 

 

− T-PER (Pierce Cat# 78510) 
− 0.1M PMSF 
− 5mM Leupeptin 
− 1mM Antipain 
− 2mM Pepstatin A 
− 2mM Chymostatin 

 Solution Recipes (if applicable) 
Ch
Requ tin Antipain Pepstatin A Chymost

atin 
emicals pepired T-PER PMSF Leu

(Amount)       
Extraction 20ml 240μl 10μl 10μl 2.5μl 10μl Solution† 

Final 20ml 240μl 10μl 10μl 2.5μl 10μl Volume 
†Volumes based on homogenization of 1gram of tissue 

 

1. Thaw samples from the –80C freezer on ice. 
2. Prepare Extraction Solution according to recipe above. 
3. Once thawed remove the samples from tubes, weigh them separately and place them in 

fresh 5ml test tubes. 
4. Add Extraction Solution based on the following ratio:  20mls per gram of tissue. 
5. If necessary cut tissue into smaller pieces so that a volume of less than 2.5mls is used in 

a single tube.  

Procedure: 
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6. Homogenize tissue on ice until well blended. 
7. Perform 3 cycles of freeze/thaw: 

a. 5 min freeze in –80C 
b. 20 min thaw on ice 

8. Transfer cell lysates to microfuge tubes. 
9. Place tubes on vortex genie and shake for 30min at 4C. 
10. Spin tubes at 12,000 RPM for 30min at 4C. 
11. Remove supernatant to separate microfuge tubes 
12. Store the pellets and supernatants in the –80C. 
13. Quantify protein using BCA protein concentration assay 
14. If insufficient protein is obtained resuspend pellets in Extraction Solution and repeat 

steps 6-13.   
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Protocol E.12: RNA/DNA/Protein Isolation 

 Equipment Required 
 

− Ice bucket w/ ice 
− Pipet aide 
− Homogenizer 
− 50ml VWR high speed centrifuge tubes (Sterile-RNase free) 
− 15ml conical tubes 
− Sterile pipets 

− 5ml 
− 10ml 
− 25ml 

− Sorvall Legend RT centrifuge w/ HIGHconic rotor 75003046/3057 rotor 
− Water bath 
− Kim wipes 
− Gloves (RNase free) 
− Vacuum apparatus: 

− 500 ml side arm flask 
− #8 Stopper w/ hole 
− Tubing 

− Micropipettors (RNA work only): 
− P1000 
− P200 

− Qiagen RNeasy mini kit: 
− 2ml collecting tubes 
− 1.5ml collecting tubes 
− RNeasy mini columns 

− 3ml sterile syringes 
− 1.5", 18 gauge sterile needles 
− Spectrafuge 16M 
− RNase free pipet tips: 

− P1000 
− P200 

− Vacuum desicator 
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 Reagents Required 
 

− Trizol 
− Cholorform 
− Ethanol - RNA Grade (EtOH) 
− Ethanol - Not RNA Grade 
− β-mercaptoethanol (β-Me) 
− RLT buffer (Qiagen) 
− RPE Buffer (Qiagen) 
− RNase free water (Qiagen) 
− RNASEZAPTM 
− Isopropanol 
− Guanadine hydrochloride 
− Sodium dodecyl sulfate (SDS) 
− Sarkosyl 
− Glycogen 
− Tris-HCl 

 
 
 Solution Recipes (if applicable) 

Chemicals 
Required 

Guanadine 
Hydrochloride Ethanol Tris-HCl SDS Sarkosyl 

Washing Solution 
QC 150mL 4.29g 142.5m

L    

Resuspension 
Solution            

QC 50mL 

 
 2.5mL 

pH8 0.050g 0.917g 

Final Volume 150mL 50mL 
 

 
 
 
Procedure: 

This procedure isolates RNA, DNA and protein from total lysate of tissue that has been 

embedded in OCT and then cut into section of thickness ≤60μm.  Since one of the goals is to 

isolate quality, intact RNA it is important to use excellent sterile molecular biology technique.  

Everything that comes into contact with the samples in anyway should be handled with RNase 
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free gloves.  All work surfaces should be treated with RNase ZAP and then covered with sterile 

RNase free blue pads.  Ensure that equipment that has not been treated with RNase ZAP does not 

come in contact with the prepared surfaces until proper decontamination procedures have been 

taken. All pipets, tubes, and tips should be sterile, fresh, and designated as RNA work only, to 

prevent contamination by RNase.  Do NOT perform this procedure until you have been 

properly instructed by Doug Chew on proper RNA handling technique! 

 

RNA Isolation: 

1. Prepare the work area for RNase free work by treating the bench top, pipet aides, pipettors, 
homogenzier, tube racks, and centrifuge with RNase ZAP then cover all work surfaces with 
blue pads to ensure an RNase free workspace.  Also, make sure the ice used is well packed to 
prevent contamination. 

2. Remove one sample from the -80°C freezer and place on ice.  Samples should be in VWR 
high speed centrifuge tubes. If they are not, or if you are not sure the samples MUST be 
transferred into high speed centrifuge tubes prior to continuing with this protocol. 
Immediately add 10mls of Trizol and homogenize the sample for 90sec then place back on 
ice for 90sec. Perform one more homogenize for 60sec ensuring homogenous solution.  

3. Clean the homogenization probe by preparing the following volumes and then rinsing with 
the following solutions in order: (prepare all volumes in 50mL centrifuge tubes) 
• Trizol (15mL) 
• Cholorform (50mL) 
• Ethanol (50mL) 

Then wipe the probe with RNase free Kim wipes. 

4. Repeat steps 2 and 3 for each sample to be fractionated. 
5. Centrifuge samples in Sorvall Legend RT with HIGHconic rotor 75003046/3057      

@11,500xg and 4°C for 30 min. 
6. Remove the supernatant to fresh VWR high speed 50ml centrifuge tubes.  Save the pellets 

for the Protein Isolation Protocol (see Fig. 1).  At this point the tubes can be frozen in the -
80°C for storage and then thawed in a 30°C water bath with gentle agitation every 3-4 min. 

7. Incubate all samples in a 30°C water bath for at least 20 minutes with gentle agitation every 
3-4 min. 

8. Remove samples from the water bath and wipe all condensation and water off of them with 
an RNase free Kim wipe.   

9. Add 3ml of chloroform to each tube using either glass or polypropylene pipets (Polystyrene 
reacts with the chloroform!). 

10. Shake samples by hand for 15 sec and incubate in a 30°C water bath for 10 minutes with 
gentle agitation every 3-4 minutes. 
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11. After the incubation centrifuge the samples according to step 6. 
12. When removing the samples from the centrifuge take care not to disturb the interface 

between the aqueous, interphase, and organic phases.  Transfer the aqueous phase (on top) to 
fresh 15ml conical tubes for subsequent RNA Cleanup. 

 

RNA Cleanup: 

This protocol is a minor variation on the Qiagen RNA Cleanup kit protocol. 

1. Connect a 500ml side arm flask fitted with a #8 stopper with 1 hole to the lab vacuum.  Use 
RNase ZAP to clean the flask, benchtop, stopper and tubing. 

2. Attach a sterile 1.5" 18 gauge needle to the outflow and a sterile 3ml syringe to the inflow of 
a Qiagen spin column.  NOTE:  It is important that the column stay RNase free - take extra 
care to use good sterile technique and not allow the column to touch any non-sterile or non-
RNase free surface (e.g. flask, stoppper, bench top, ungloved hands, etc). 

3. Place the entire needle, column, syringe construct into the hole of the stopper, needle side 
down. 

4. Add 17.5ml of RLT+β-Me and 12.5ml of EtOH to one sample, and pipet up and down 
several times to mix well. 

5. Add 3mls of sample to the syringe in the vacuum flask and then turn the vacuum on for 2sec 
and immediately turn off. 

6. As the sample is sucked onto the column continue to add sample from the tube to the syringe 
until the entire volume is loaded.  It should take between 3-5 minutes.   

7. Once the entire sample is loaded onto the column disassemble the needle, column, syringe 
construct and place the column in a fresh 2ml collecting tube. 

8. Repeat steps 18-23 for the remaining samples. 
9. Add 500μl of RPE+EtOH to each column and place each column-collecting tube pair in the 

Spectrafuge 16M.  Spin at max speed for 15sec. 
10. Remove the column collecting tube pairs and discard the flow-throughs.  This should be done 

using a micropipettor, NOT by pouring! 
11. Repeat steps 9 and 10 for a total of 3 times. 
12. Transfer the columns to 2ml fresh collecting tubes and centrifuge in the Spectrafuge 16M for 

1min at max speed. 
13.  Transfer the columns to fresh 1.5ml collecting tubes.   
14. Add 30μl of RNase free water to each column and centrifuge in the Spectrafuge 16M for 

1min at max speed. 
15. Repeat step 14. 
16. Discard the columns and cap the 1.5ml collecting tubes.  These samples should either be 

processed immediately or stored at -80°C. 
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DNA Isolation: 

1. Remove and discard remaining aqueous layer (top) from the tubes.  It is important to 
completely remove the aqueous layer to ensure quality DNA.   

2. Add 3ml of 100% ethanol to each sample and mix by inverting several times.   
3. Incubate the samples @ 30°C for 3 minutes. 
4. Centrifuge in Sorvall Legend RT with HIGHconic rotor 75003046/3057 no more than 

2000xg @ 4°C for 5 min. 
5. *Remove existing “solid” layer from the top of the sample into another 50ml centrifuge tube. 

This is the OCT layer, in order to accomplish this step the layer will need to be extracted by 
pipet or scooped off using some sort of spatula. 

6. Repeat centrifuge spin in Sorvall Legend RT with HIGHconic rotor 75003046/3057 no more 
than 2000xg @ 4°C for 5 min 

7. Remove any remaining layer from the top of the solution and repeat step 6. If no layer seems 
to be present continue with step 7. It is important to make sure there is absolutely no layer on 
top of the solution at this point. Any OCT left in the solution will effect your protein isolation 
in the next step of this protocol.    

8. Remove the phenol-ethanol supernatant to a fresh 50ml tube and save for the Protein 
Isolation Protocol.  Save the DNA pellet for the DNA Cleanup Protocol. 

 

Protein Isolation: 

1. Add 15ml of isopropanol and 20μg of glycogen to the freshly collected supernatant in step 7 
of the DNA Isoloation Protocol.   

2. Incubate samples @30°C for 10 minutes. 
3. Centrifuge samples in Sorvall Legend RT with HIGHconic rotor 75003046/3057      

@11,500xg and 4°C for 30 min. 
4. Discard the supernatant. (collect into 50mL centrifuge tube, Non high speed) 
5. Add 20ml of Wash Solution and incubate at 30°C for 20 minutes. 
6. Centrifuge in Sorvall Legend RT with HIGHconic rotor 75003046/3057 at 7500xg at 4°C for 

5 min.  
7. Repeat steps 4-6 for a total of 3 times, each time collecting the solution in a non high speed 

centrifuge tube to be evaluated and run in an electrophoresis gel at a later time.  
8. Discard the supernatant, add 2ml of 100% ethanol and incubate at 30°C for 20 minutes. 
9. Repeat step 6 
10. Vacuum dry the pellet for 5-10 minutes:  Poke a small hole in the top of the tube and place in 

a vacuum desicator under lab vacuum.   
11. Resuspend protein pellet in resuspension buffer at 50°C.   
12. Add this solution to the pellet saved in step 7 of the RNA Isolation Protocol.   
13. Resuspend that pellet as in step 11.     
14. Centrifuge in Sorvall Legend RT with HIGHconic rotor 75003046/3057 at 10000xg at 4°C 

for 10 min.  NOTE: This will change when we purchase a new rotor. 
15. Transfer the supernatant to a fresh tube.  This sample can be stored at -20°C for future 

analysis.  Save the pellet to make sure that all of the protein was resuspended from step 11. 
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Protocol E.13: SDS Page 

 Equipment Required 
 

- Mini-PROTEAN 3 cell (Figure E.1)  
- Spacer plate 
- Short plate 
- Casting frame 
- Casting stand 
- Gel cassette sandwich 
- Combs 
- Buffer dam 
- Electrode assembly 
- Clamping frame 
- Inner chanber 
- Mini Tank and Lid 
- Sample loading guide 

- Pipet Aide 
- 5ml disposable pipets 
- Micropippetors 

- P20 
- P200 
- P1000 

- 50ml Conical tubes 
- 0.5ml Microfuge tubes 
- Heating block, vortex genie, benchtop microcentrifuge.  

 Reagents Required 
 

- Acrylamide/Bis, 37.5:1 mixture 
- 1.5 M Tris-HCl, pH 8.8 
- 0.5M Tris-HCl, pH 6.8 
- 10% SDS solution 
- TEMED 
- 10% APS 
- Laemmli Buffer  
- 2-mercaptoethanol 
- 10x Tris/Glycine/SDS Buffer 
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Figure E. 1 Diagram of the Mini-PROTEAN 3 cell from Bio-Rad.  Image adapted from the Mini-PROTEAN 3 Cell 
Instruction Manual. 
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 Solution Recipes 
Chemicals 
Require

d 

10x 
Tris/Gl
ycine/S

DS 
Buffer 

Acrylami
de/Bis 

1.5M 
Tris-HCl 
pH 8.8 

0.5M 
Tris-HCl 
pH 6.8 

10% 
SDS 

10% 
APS TEMED Laemmli 

Buffer 

2-
Mercapt
oethanol 

Water 

Running 
buffer 

100
ml         900m

l 
Sample 
Buffer        950μl 50μl  
7.5% 

Resolving 
Gel 

 2.5ml 2.5ml  100μl 50μl 5μl   4.85m
l 

10% 
Resolving 

Gel 
 3.3ml 2.5ml  100μl 50μl 5μl   4.1ml 

12% 
.Resolving 

Gel 
 4ml 2.5ml  100μl 50μl 5μl   3.4ml 

15% 
Resolving 

Gel 
 5ml 2.5ml  100μl 50μl 5μl   2.5ml 

Stacking 
Gel  1.3ml  2.5ml 100μl 50μl 10μl   6.1ml 

  

Procedure: 
 
1. Place the casting frame on a flat surface with the pressure cams in the open position 

(level arms turned forward) and facing forward.   
2. Place a short plate on top of a spacer plate (there should be a space between the two 

plates).   
3. With the label on the spacer plate facing up and forward, slide the two glass plates into 

the casting frame.   
4. Make sure the bottom edges of the glass plates are level with the surface of the bench top 

and close the pressure cams by swinging the lever arms outward.      
5. On the casting stand engage the spring-loaded lever and place the gel cassette assembly 

onto the gray casting gasket.  Release the lever so the clamp is pushing spacer plate down 
into the casting gasket.   

6. If running two gels repeat steps 1-5 for the other gel.  The casting stand has two places 
for gel sandwich assemblies. 

7. To cast a gel place a comb completely into the assembled gel cassette and mark the glass 
plate 1 cm below the comb teeth.  After marking the level remove the comb. 

8. Prepare the Resolving Gel solution by combining all reagents except the APS and 
TEMED according to recipe above in a 50ml conical tube.  The percent gel depends on 
the molecular weight of the protein(s) of interest.  

9. Add the APS and TEMED and then immediately pour into the gel cassette using a 5ml 
pipette.  Fill to the line drawn in step 7. 

10. Overlay the monomer resolving solution with 2-propanol and allow the gel to polymerize 
for 45min – 1hour. 

11. Prepare the Stacking Gel solution by combining all reagents except the APS and TEMED 
according to the recipe above in a 50ml conical tube.   
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12. Before casting the stacking gel, use a piece of filter paper to dry the gel area b/w the glass 
plates above the resolving gel taking care not to touch the surface of the gel. 

13. Add the APS and TEMED and immediately pour on top of the resolving gel, completely 
filling the cassette.   

14. Insert the comb slowing to prevent trapping of bubbles in the gel.   
15. Allow the stacking gel to polymerize for 30-45min. 
16. Once polymerized the gel cassette sandwiches can be removed from the casting frames.  

The combs should then be carefully removed and the wells of the gel rinsed with 
deionized water.   

17. Place a gel cassette sandwich into the slots at the bottom of each side of the electrode 
assembly.  Be sure the short glass plate faces inward toward the green U-shaped gasket.  
If only use one gel add the buffer dam to the other side of the electrode assembly.   

18. While holding the gel cassette sandwiches to the electrode assembly place the assembly 
into the clamping frame and close the two cam levers to seal the inner chamber formed 
by the two gel cassettes or gel cassette and buffer dam. 

19. Lower the inner chamber assembly into the mini tank and fill the inner chamber with 
about 125 ml of Running buffer.  The level should be about half way between the top of 
the short glass plate and the top of the spacer plate.   

20. Add about 200 ml of Running buffer to the mini tank. 
21. Prepare protein samples in 0.5ml microfuge tubes according to the following subprotocol: 

a. Mix equal volumes of protein sample and sample buffer prepared according to recipe 
above.   

b. Vortex and pulse spin the samples. 
c. Place the sample in a 95C heat block for 10minutes. 
d.   Vortex and pulse spin the samples again 

22. Place sample loading guide on top of the inner chamber and load protein samples using a 
micropipettor (P20 or P200) and gel loading tips. 

23. After all samples have been loaded including molecular weight and other appropriate 
standards place the lid on the mini tank making sure the color coded bananna plugs on the 
electrode assembly match with the appropriate jacks on the lid.   

24. Run the gel at 180 constant volts for 45 minutes.  The dye front should run all the way to 
the bottle of the gel.  These parameters may need to be adjusted in order to optimize the 
separation achieved.   

25. When the electrophoresis is complete turn the power supply off, and disconnect all the 
leads.  Remove the lid and the inner chamber assembly.  Pour off the running buffer and 
discard. 

26. Open the cams on the clamping frame and remove the electrode assembly and gel 
cassette sandwiches.   

27. To remove the gel from the sandwich, separate the two plates (Spacer plate and Short 
plate).  The gel will usually stick to one of these plates.  If the gel sticks to the spacer 
plate you may have to release it by running a razor blade on the spacer edge.  The gel can 
be then floated off the plate by inverting the gel and plate under solution and gently 
agitating under the gel separates from the plate.  The solution used here depends on how 
the gel will be analyzed. 

28. To clean glass plates refer to SDS-PAGE plate cleaning protocol. 
29. All other components should be thoroughly rinsed in deionized water after each use.        
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Protocol E.14: Western Blot 
 

 Equipment Required 
 

- 2-Ready Gel Blotting Sandwiches 
- 2 Filter papers (Each) 
- 1 PVDF membrane (Each) 

- Mini Trans-Blot Electrophoretic Transfer Cell (Figures E.2 and E.3) 
- 2-Gel cassette holders 
- 4-Fiber pads 
- Electrode module 
- Bio-Ice cooling unit 
- Buffer tank 
- Lid 

- Small stir bar 
- Magnetic stir plate 
- Rocker table 
- Kapak pouches 
- Impulse sealer 
- Rotary platform 
 

  
 

 Reagents Required 
 

- 10x Tris/Glycine/SDS Buffer 
- 100% Methanol 
- 10x TBS 
- Tween 20 
- BSA (Blot-Qualified, Promega #W384A) 
- Promega anti-IgG AP conjugated antibody 
- Western Blue Stabilized Substrate for Alkaline Phosphatase (Promega, 

#S3841   
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Figure E. 2 Diagram of Mini Trans-Blot Electrophoretic Transfer Cell from Bio-Rad.  Image adapted from the 
Mini-PROTEAN 3 Cell Instruction Manual. 
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Figure E. 3 Diagram of the assembly of the gel transfer cassettes.  Image adapted from the Mini-PROTEAN 3 Cell 
Instruction Manual. 

 

 

 

  
Solution Recipes (if applicable) 

Chemicals 
Required 

10x 
Tris/Glycine/

SDS 

10x 
TBS BSA Tween 20 Methan

ol 

Total 
Volume 
(Balance 
Water) 

Transfer 
Buffer 100ml    200ml 1L 

TBST  100ml  750μl  1L 
Blocking 
Solution  10ml 1g   100ml 

TBS  100ml    1L 
 

 

Procedure: 

1. Run samples of protein extract from cell or tissue lysates on an SDS-PAGE gel 
appropriate for the molecular weight of the protein of interest.  Samples amounts 
should be between 10-20μg per lane, but this should be optimized for the particular cell 
or tissue.  (See SDS-PAGE and Tissue Homogenization And Protein Extraction 
protocols)     

2. At the conclusion of the electrophoresis remove the gels and incubate them in Transfer 
Buffer for at least 15minutes. 

3. Fill the Bio-Ice cooling unit with water and place in the –80C freezer. 
4. While gels are equilibrating in the Transfer Buffer take two Ready Gel Blotting 

Sandwiches (Bio-Rad 162-0218) and remove the PVDF membrane from each.  The 
membranes should be wetted in 100% methanol for 1 minute and then equilibrated in 

  302



Transfer Buffer for 15minutes.  The filter papers can be placed directly into the 
Transfer Buffer and equilibrated for 15minutes also.  Take care to wear gloves so as to 
not contaminate the membrane. 

5. Once gels and membranes are equilibrated build gel transfer cassettes as follows 

 gel holder cassette. 
ffer and lay on top of the black side of the holder. 

he 

 the gel on top of the filter paper making sure there are no bubbles 

VDF membrane on top of the gel again making sure there are no 

e again eliminating any bubbles. 

he locking mechanism facing up 

ttes into the buffer tank so the electrodes are in 

etic stir plate in 

onnect it to the power source. 
derate stirring. 

 transfer sandwiches and 

 rocker table for at least 1 hour.  May need 

uches using Kapak pouches and 

mbranes have been blocked for at least 1 hour transfer the membranes to the 

dy diluted into 
TBST. 

uches and 

p 14.  At the 
conclusion of step 16, transfer the membranes to the antibody incubation pouches.  Add 
2.5ml of secondary antibody solution to the pouch, seal, and place on a rotary platform. 

(Figure 2).   
a. Open
b. Dip fiber pad in transfer bu
c. Center one of the filter papers from the Ready Gel Blotting Sandwiches on t

fiber pad. 
d. Next layer

between the filter paper and the gel.  The gel should be square with no uneven 
stretching. 

e. Place the P
bubbles between the membrane and the gel. 

f. Place the second filter paper on the membran
g. Finally dip the second fiber pad in Transfer Buffer and add that to the top. 
h. Fold the white side of the cassette holder over and close and lock it.   
i. Repeat this for the steps a-h for the second gel. 

6. Place gel transfer cassettes into electrode module with t
and the black sides facing the black side of the electrode module. 

7. Add a small stir bar to the buffer tank. 
8. Place the electrode module with casse

the middle of the tank.  Add the Bio-Ice cooling unit from the freezer. 
9. Fill the tank with Transfer Buffer and place the whole unit on a magn

the refrigerator. 
10. Add the lid and c
11. Transfer for 18-22 hours at 90mA/30V with mo
12. When the transfer is complete disassemble transfer cell and gel

place the membranes in Blocking Solution.   
13. Incubate membranes in Blocking Solution on

to increase the blocking time to reduce background. 
14. While incubating prepare antibody incubation po

impulse sealer.  The pouches should be just big enough for the membrane plus 2-3ml of 
solution. 

15. When me
antibody incubation pouches.  Add 2.5ml of primary antibody solution to the pouch, 
seal, and place on a rotary platform.  Primary antibody incubation should be for at least 
1 hour at room temperature but can also be performed overnight at 4oC. 

Note:  Primary antibody solution is composed of the primary antibo
 The appropriate dilution depends on the specific antibody and the tissue sample 

being analyzed.  The dilution should be optimized for each experimental setup.   
16. After incubation in primary antibody remove the membranes from the po

wash them three times in TBST for 10 minutes on rocker table per wash. 
17. During the washing steps prepare antibody incubation pouches as in ste
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Note: Secondary antibody solution consists of Promega anti-IgG AP conjugated 
antibody diluted 1:5000 in TBST. 
18. Incubate the membranes in secondary antibody for 30-60 minutes.   
19. Rem

 table per wash. 
s per wash. 

llow bands to appear.  Development of 
inutes.  

 upon drying.  The original intensity will return upon rewetting in methanol 

 

 

 
rotocol E.15:

ove the membranes from the incubation pouches and wash them three times in 
TBST for 10 minutes on rocker

20. Rinse the membranes in TBS (w/o Tween) three times for 10 minute
21. Add 15ml of Western Blue Stabilized Substrate for Alkaline Phosphatase to the 

membranes and agitate on the rocker table to a
bands can take 1 minute to several hours.  Most take place in less than 15 m
Development times will vary depending on the protein, tissue, and antibodies of 
interest. 

22. Once desired band intensity is reached exchanging the substrate for deionized water can 
stop the reaction.  Membranes should be visualized wet since bands and background 
will fade
first…then deionized water.     

 

P  RNA Isolation 
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 Equipment Required 
 

− Ice bucket w/ ice 
− Pipet aide 
− Homogenizer 
− 50ml conical tubes (Sterile-RNase free) 
− Sterile pipets 

− 5ml 
− 10ml 
− 25ml 

− Sorvall Legend RT centrifuge w/ Sorvall 75006466 rotor 
− Water bath 
− Kim wipes 
− Gloves (RNase free) 
− Vacuum apparatus: 

− 500 ml side arm flask 
− #8 Stopper w/ hole 
− Tubing 

− Micropipettors (RNA work only): 
− P1000 
− P200 

− Qiagen RNeasy mini kit 
− 2ml collecting tubes 
− 1.5ml collecting tubes 
− RNeasy mini columns 

− 3ml sterile syringes 
− 1.5", 18 gauge sterile needles 
− Spectrafuge 16M 
− RNase free pipet tips: 

− P1000 
− P200 
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 Reagents Required 
 

− 180ml Trizol 
− 54ml Cholorform 
− 250ml Ethanol - RNA Grade (EtOH 
− 4ml β-mercaptoethanol (β-Me) 
− 400 ml RLT buffer (Qiagen) 
− 10ml RPE Buffer (Qiagen) 
− 1.2ml RNase free water (Qiagen) 
− RNase ZAP 

 
 
 Solution Recipes (if applicable) 

Chemicals 
Required RLT β-Me EtOH RPE   

(Amount)       
RLT+β-Me 400ml 4ml     
RPE+EtOH   44ml 10ml   

Final 
Volume 400 4 44 10   

 
 

 
Procedure: 

This procedure isolates RNA from tissue that has been embedded in OCT and then 

cut into section of thickness ≤60μm.  It is written for a batch of 18 samples, the maximum 

allowed by this laboratory's resources.  Since the goal is to isolate quality, intact RNA it is 

important to use excellent sterile molecular biology technique.  Everything that comes into 

contact with the samples in anyway should be handled with RNase free gloves.  All work 

surfaces should be treated with RNase ZAP.  All pipettes, tubes, and tips should be sterile, 

fresh, and designated as RNA work only, to prevent contamination by RNase.   

1. Prepare the work area for RNase free work by treating the bench top, pipette aides, 
pipettors, homogenizer, tube racks, and centrifuge with RNase ZAP.  Also, make sure 
the ice used is well backed to prevent contamination. 

2. Remove one (of 18) sample from the -80°C freezer and place on ice.  Immediately add 
10mls of Trizol and homogenize the sample for 90sec on ice. 

3. Clean the homogenization probe by rinsing with the following solutions in order: 
• Trizol 
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• Chloroform 
• Ethanol 

Then wipe the probe with RNase free Kim wipes. 

4. Repeat steps 2 and 3 for a total of 10 samples. 
5. Homogenize each sample again for 90 sec on ice. 
6. Centrifuge those samples in Sorvall Legend RT with Sorvall rotor 75006446 at 3000xg 

at 2°C for 45 min. 
7. While those 10 samples are spinning repeat steps 2 - 5 for the remaining 8 samples. 
8. Remove the first 10 samples from the centrifuge and replace with the remaining 8.  

Repeat step 6 for the those samples. 
9. For the samples just removed from the centrifuge remove the supernatant to fresh 50 ml 

conical tubes.  At this point the tubes can be frozen in the -80°C for storage and then 
thawed in a 30°C water bath with gentle agitation every 3-4 min. 

10. Repeat step 9 for the remaining 8 samples when the centrifuge spin is finished. 
11. Incubate all samples in a 30°C water bath for at least 20 minutes. 
12. Remove samples from the water bath and wipe all condensation and water off of them 

with an RNase free Kim wipe.   
13. Add 3ml of chloroform to each tube using either glass or polypropylene pipettes 

(Polystyrene reacts with the chloroform!). 
14. Shake samples by hand for 15 sec and incubate in a 30°C water bath for 10 minutes 

with gentle agitation every 3-4 minutes. 
15. After the incubation centrifuge the samples according to step 6. 
16. When removing the samples from the centrifuge take care not to disturb the interface 

between the aqueous and organic phases.  Transfer the aqueous phase (on top) to fresh 
50ml conical tubes. 

17. The remaining steps are a minor variation on the Qiagen RNA Cleanup kit protocol.  
Connect a 500ml side arm flask fitted with a #8 stopper with 1 hole to the lab vacuum.  
Use RNase ZAP to clean the flask, bench top, stopper and tubing. 

18. Attach a sterile 1.5" 18 gauge needle to the outflow and a sterile 3ml syringe to the 
inflow of a Qiagen spin column.  NOTE:  It is important that the column stay RNase 
free - take extra care to use good sterile technique and not allow the column to touch 
any non-sterile or RNase free surface (e.g. flask, stopper, bench top, ungloved hands, 
etc). 

19. Place the entire needle, column, syringe construct into the hole of the stopper, needle 
side down. 

20. Add 17.5ml of RLT+β-Me and 12.5ml of EtOH to one sample, and pipette up and 
down several times to mix well. 

21. Add 3mls of sample to the syringe in the vacuum flask and then turn on the vacuum on 
for 2sec and immediately turn off. 

22. As the sample is sucked onto the column continue to add sample from the tube to the 
syringe until the entire volume is loaded.  It should take between 3-5 minutes.   

23. Once the entire sample is loaded onto the column disassemble the needle, column, 
syringe construct and place the column in a fresh 2ml collecting tube. 

24. Repeat steps 18-23 for the remaining samples (18 total). 
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25. Add 500μl of RPE+EtOH to each column and place each column-collecting tube pair in 
the Spectrafuge 16M.  Spin at max speed for 15sec. 

26. Remove the column collecting tube pairs and discard the flow-throughs.  This should 
be done using a micropipettor, NOT by pouring! 

27. Repeat steps 25 and 26 for a total of 3 times. 
28. Transfer the columns to 2ml fresh collecting tubes and centrifuge in the Spectrafuge 

16M for 1min at max speed. 
29.  Transfer the columns to fresh 1.5ml collecting tubes.   
30. Add 30μl of RNase free water to each column and centrifuge in the Spectrafuge 16M 

for 1min at max speed. 
31. Repeat step 30. 
32. Discard the columns cap the 1.5ml collecting tubes.  These samples should either be 

processed immediately for stored at -80°C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  308



APPENDIX F 

IMMUNOHISTOCHEMISTRY DATA 

Figure F. 1 shows representative Live/Dead™ images from each experimental group from the 

92 hour timepoint of the single (N=1) experiment performed to assess tissue necrosis within 

electrospun PIJV segments.  There were three IH related endpoints that were quantified for the 

PIJVs from the ex vivo perfusion experiments.  Figure F. 2 to Figure F. 67 show representative 

images for each endpoint for each PIJV segment from all the ex vivo perfusion experiments.  

Following each set of images, the values for the mean percent positive cells for each PIJV 

segment are tabulated.  The corresponding statistical software output tables are also provided for 

each student’s t-test that was performed. 
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Figure F. 1 Representative Live/Dead™ images from all three conditions (92 hour timepoint) of the experiment to 
assess tissue necrosis in electrospun PIJVs.  Note: blue, nuclei; green, live cells; red, necrotic cells. All images were 
taken at 100x magnification. 
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Figure F. 2Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 04/23/2003. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 

 
Figure F. 3 Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 05/07/2003. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 4 Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 10/09/2004. 
Nuclei are stained blue and TUNEL positive cells are stained red. 

 
 

 
 

 
 

 
Figure F. 5 Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 10/16/2004. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 6 Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 05/24/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 
 
Figure F. 7 Representative TUNEL images from 24 hour VEN vs. ART experiment performed on 09/14/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 8 Representative TUNEL images from 24 hour ART vs. cART experiment performed on 10/22/2004. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 

 
Figure F. 9 Representative TUNEL images from 24 hour ART vs. cART experiment performed on 11/01/2004. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 10 Representative TUNEL images from 24 hour ART vs. cART experiment performed on 11/11/2004. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 

 
Figure F. 11 Representative TUNEL images from 24 hour ART vs. cART experiment performed on 09/21/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 12 Representative TUNEL images from 24 hour ART vs. cART experiment performed on 10/16/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 

 

 
 

 
Figure F. 13 Representative TUNEL images from 72 hour ART vs. cART experiment performed on 02/16/2007. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 14 Representative TUNEL images from 72 hour ART vs. cART experiment performed on 03/07/2007. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 
 
Figure F. 15 Representative TUNEL images from 72 hour ART vs. cART experiment performed on 03/15/2007. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 16 Representative TUNEL images from 72 hour ART vs. cART experiment performed on 04/02/2007. 
Nuclei are stained blue and TUNEL positive cells are stained red. 

 
 
 

 
 

 
Figure F. 17 Representative TUNEL images from 72 hour ART vs. cART experiment performed on 04/26/2007. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 18 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 10/23/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 
 
 

 
 
 
Figure F. 19 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 10/30/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 20 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 11/06/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 

 
 
 

 
 

 
Figure F. 21 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 11/13/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Figure F. 22 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 11/20/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
 

 
 

 
 
 
Figure F. 23 Representative TUNEL images from 24 hour ART vs. wART experiment performed on 11/27/2006. 
Nuclei are stained blue and TUNEL positive cells are stained red. 
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Table F. 1 Mean values of percent TUNEL positive cells for all ex vivo experiments. 

 
 
 

 VEN vs. ART 24 hrs ART vs. cART 24 hrs ART vs. cART 72 hrs ART vs. wART 24 hrs 
Expt # VEN ART ART cART ART cART ART wART 

1 0.3756 0.1639 4.2805 0.0287 55.67992 26.82632 7.7482 5.5986 
2 0 1.1875 8.3637 1.443 20.65321 6.5384 17.0628 3.8261 
3 8.0367 17.1644 25.273 3.0815 7.6482 2.6909 21.1093 4.0694 
4 3.3966 25.4254 30.8913 3.3698 17.6988 1.629 10.2532 5.6982 
5 0 8.3566 10.8214 3.6655 2.1423 0.3762 0 0 
6 1.9673 6.7687 - - - - 0 0 

         
mean 2.296033 9.844417 15.92598 2.3177 20.76449 7.612163 9.36225 3.198717

SE 1.271563 3.986132 5.148736 0.689619 9.346981 4.912804 3.540217 1.058649
 

 
 
Table F. 2 Microsoft Excel output for student’s t-test performed on the mean percent TUNEL positive cells from 24 
hour VEN vs. ART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  VEN ART 
Mean 2.296033 9.844417
Variance 9.701234 95.33549
Observations 6 6
Pearson Correlation 0.671215  
Hypothesized Mean Difference 0  
df 5  
t Stat -2.30741  
P(T<=t) one-tail 0.034565  
t Critical one-tail 2.015048  
P(T<=t) two-tail 0.06913  
t Critical two-tail 2.570582   
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Table F. 3 Microsoft Excel output for student’s t-test performed on the mean percent TUNEL positive cells from 24 
hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 15.92598 2.3177
Variance 132.5474 2.377873
Observations 5 5
Pearson Correlation 0.693891  
Hypothesized Mean Difference 0  
df 4  
t Stat 2.897511  
P(T<=t) one-tail 0.022114  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.044228  
t Critical two-tail 2.776445   

 
 
 
Table F. 4 Microsoft Excel output for student’s t-test performed on the mean percent TUNEL positive cells from 72 
hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 20.76449 7.612163
Variance 436.8303 120.6782
Observations 5 5
Pearson Correlation 0.967588  
Hypothesized Mean Difference 0  
df 4  
t Stat 2.76425  
P(T<=t) one-tail 0.025314  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.050628  
t Critical two-tail 2.776445   
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Table F. 5 Microsoft Excel output for student’s t-test performed on the mean percent TUNEL positive cells from 24 
hour ART vs. wART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means 

  

  ART wART 
Mean 9.36225 3.198717
Variance 75.19881 6.724427
Observations 6 6
Pearson Correlation 0.651991  
Hypothesized Mean Difference 0  
df 5  
t Stat 2.081664  
P(T<=t) one-tail 0.045934  
t Critical one-tail 2.015048  
P(T<=t) two-tail 0.091868  
t Critical two-tail 2.570582   
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Figure F. 24 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 04/23/2003. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 
 

 

 
 

 
 
Figure F. 25 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 05/07/2003. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 26 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 10/09/2004. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 

 
 
 
Figure F. 27 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 10/16/2004. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 28 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 05/24/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 
 

 
 
 
Figure F. 29 Representative PCNA images from 24 hour VEN vs. ART experiment performed on 09/14/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 30 Representative PCNA images from 24 hour ART vs. cART experiment performed on 10/22/2004. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 31 Representative PCNA images from 24 hour ART vs. cART experiment performed on 11/01/2004. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 
 

  328



 
 
 
Figure F. 32 Representative PCNA images from 24 hour ART vs. cART experiment performed on 11/11/2004. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 
 

 
 
 
Figure F. 33 Representative PCNA images from 24 hour ART vs. cART experiment performed on 09/21/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 34 Representative PCNA images from 24 hour ART vs. cART experiment performed on 10/16/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 
 
 

 
 
 
 
Figure F. 35 Representative PCNA images from 72 hour ART vs. cART experiment performed on 02/16/2007. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 36 Representative PCNA images from 72 hour ART vs. cART experiment performed on 03/07/2007. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 

 

 
 
 
 
Figure F. 37 Representative PCNA images from 72 hour ART vs. cART experiment performed on 03/15/2007. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 38 Representative PCNA images from 72 hour ART vs. cART experiment performed on 04/02/2007. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 39 Representative PCNA images from 72 hour ART vs. cART experiment performed on 04/26/2007. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 40 Representative PCNA images from 24 hour ART vs. wART experiment performed on 10/23/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 
 
 

 
 
 
Figure F. 41 Representative PCNA images from 24 hour ART vs. wART experiment performed on 10/30/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 42 Representative PCNA images from 24 hour ART vs. wART experiment performed on 11/06/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
 
 
 

 

 
 
 
Figure F. 43 Representative PCNA images from 24 hour ART vs. wART experiment performed on 11/13/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Figure F. 44 Representative PCNA images from 24 hour ART vs. wART experiment performed on 11/20/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 

 
 
 
 

 
 

 
Figure F. 45 Representative PCNA images from 24 hour ART vs. wART experiment performed on 11/27/2006. 
Nuclei are stained blue and PCNA positive cells are stained brown. 
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Table F. 6 Mean values of percent PCNA positive cells for all ex vivo experiments. 

 

 VEN vs. ART 24 hrs ART vs. cART 24 hrs ART vs. cART 72 hrs ART vs. wART 24 hrs 
Expt # VEN ART ART cART ART cART ART wART 

1 57.5622 46.6891 29.1187 61.2948 27.8515 43.9677 17.135 46.6065 
2 72.3643 46.3175 31.104 41.1294 45.2836 41.8688 30.6972 59.596 
3 70.6504 46.9431 20.5876 37.788 47.7593 46.0034 26.1277 26.0411 
4 59.7265 47.1527 17.2865 42.9652 40.7072 41.4621 20.8188 71.5858 
5 68.5151 26.0892 22.4641 41.9854 31.8016 44.9698 17.3281 64.3445 
6 - - - - - - 14.9008 41.953 

         
mean 65.7637 42.63832 24.5242 45.79435 38.68064 43.65436 21.16793 51.68782

SE 2.989401 4.139621 3.320195 5.276769 3.838747 0.875808 2.488734 6.82398
 
 
 
Table F. 7 Microsoft Excel output for student’s t-test performed on the mean percent PCNA positive cells from 24 
hour VEN vs. ART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  VEN ART 
Mean 65.7637 42.63832
Variance 44.68259 85.68233
Observations 5 5
Pearson Correlation -0.24521  
Hypothesized Mean Difference 0  
df 4  
t Stat 4.078996  
P(T<=t) one-tail 0.007555  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.015111  
t Critical two-tail 2.776445   
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Table F. 8 Microsoft Excel output for student’s t-test performed on the mean percent PCNA positive cells from 24 
hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 24.5242 45.79435
Variance 44.09477 111.3771
Observations 5 5
Pearson Correlation 0.440055  
Hypothesized Mean Difference 0  
df 3  
t Stat -4.39251  
P(T<=t) one-tail 0.010931  
t Critical one-tail 2.353363  
P(T<=t) two-tail 0.021863  
t Critical two-tail 3.182446   

 

 
Table F. 9 Microsoft Excel output for student’s t-test performed on the mean percent PCNA positive cells from 72 
hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 38.68064 43.65436
Variance 73.67989 3.835195
Observations 5 5
Pearson Correlation -0.10929  
Hypothesized Mean Difference 0  
df 4  
t Stat -1.23429  
P(T<=t) one-tail 0.142326  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.284653  
t Critical two-tail 2.776445   
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Table F. 10 Microsoft Excel output for student’s t-test performed on the mean percent PCNA positive cells from 24 
hour ART vs. wART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART wART 
Mean 21.16793 51.68782
Variance 37.16279 279.4002
Observations 6 6
Pearson Correlation -0.05081  
Hypothesized Mean Difference 0  
df 5  
t Stat -4.13465  
P(T<=t) one-tail 0.004522  
t Critical one-tail 2.015048  
P(T<=t) two-tail 0.009044  
t Critical two-tail 2.570582   
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Figure F. 46 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
04/23/2003. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 

 
 

 
 
 
Figure F. 47 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
05/07/2003. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 48 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
10/09/2004. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 

 
 

 
 
 

Figure F. 49 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
10/16/2004. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 50 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
05/24/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 
 
 

Figure F. 51 Representative Golgi complex images from 24 hour VEN vs. ART experiment performed on 
09/14/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

  341



 
 

 
Figure F. 52 Representative Golgi complex images from 24 hour ART vs. cART experiment performed on 
10/22/2004. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 53 Representative Golgi complex images from 24 hour ART vs. cART experiment performed on 
11/01/2004. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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igure F. 54 Representative Golgi complex images from 24 hour ART vs. cART experiment performed on 
 
F
11/11/2004. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 
 

 
igure F. 55 Representative Golgi complex images from 24 hour ART vs. cART experiment performed on F

09/21/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 56 Representative Golgi complex images from 24 hour ART vs. cART experiment performed on 
10/16/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 57 Representative Golgi complex images from 72 hour ART vs. cART experiment performed on 
02/16/2007. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 58 Representative Golgi complex images from 72 hour ART vs. cART experiment performed on 
03/07/2007. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 

 

 
 
 
Figure F. 59 Representative Golgi complex images from 72 hour ART vs. cART experiment performed on 
03/15/2007. Nuclei are stained blue and Golgi complex positive cells are stained brown.  
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Figure F. 60 Representative Golgi complex images from 72 hour ART vs. cART experiment performed on 
04/02/2007. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 61 Representative Golgi complex images from 72 hour ART vs. cART experiment performed on 
04/26/2007. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 62 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
10/23/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 63 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
10/30/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 64 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
11/06/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 

 
 
 
Figure F. 65 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
11/13/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Figure F. 66 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
11/20/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
 
 
 
 

 
 
 
Figure F. 67 Representative Golgi complex images from 24 hour ART vs. wART experiment performed on 
11/27/2006. Nuclei are stained blue and Golgi complex positive cells are stained brown. 
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Table F. 11 Mean values of percent Golgi complex positive cells for all ex vivo experiments. 

 
 

 VEN vs. ART 24 hrs ART vs. cART 24 hrs ART vs. cART 72 hrs ART vs. wART 24 hrs 
Expt # VEN ART ART cART ART cART ART wART 

1 51.4446 40.8359 40.9899 25 47 41.0011 47.8893 47.1086 
2 21.81 43.2144 28.1056 20.6703 51.4639 40.5604 46.2221 32 
3 19.8375 78.6002 33.4402 29.5534 54.7943 43.9356 28.715 24.176 
4 27.2568 55.8537 23.5913 30.6032 50 42.4608 36.7115 37.3016 
5 11.121 39.5646 51.1614 39.3182 45.4987 53.0201 31.8049 26.6867 
6 - - - - - - 33.1479 37.1068 

         
mean 26.29398 51.61376 35.45768 29.02902 49.75138 44.1956 37.41512 34.0632833

SE 6.802545 7.3421346 4.879275 3.120268 1.644399 2.28438658 3.230801 3.39783984
  
 
 
Table F. 12 Microsoft Excel output for student’s t-test performed on the mean percent Golgi complex positive cells 
from 24 hour VEN vs. ART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  VEN ART 
Mean 26.29398 51.61376
Variance 231.3731 269.5347
Observations 5 5
Pearson Correlation -0.22098  
Hypothesized Mean Difference 0  
df 4  
t Stat -2.28995  
P(T<=t) one-tail 0.041931  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.083862  
t Critical two-tail 2.776445   
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Table F. 13 Microsoft Excel output for student’s t-test performed on the mean percent Golgi complex positive cells 
from 24 hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 35.45768 29.02902
Variance 119.0366 48.68036
Observations 5 5
Pearson Correlation 0.594448  
Hypothesized Mean Difference 0  
df 4  
t Stat 1.635898  
P(T<=t) one-tail 0.088601  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.177201  
t Critical two-tail 2.776445   

 
 
 
Table F. 14 Microsoft Excel output for student’s t-test performed on the mean percent Golgi complex positive cells 
from 72 hour ART vs. cART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART cART 
Mean 49.75138 44.1956
Variance 13.52024 26.09211
Observations 5 5
Pearson Correlation -0.48858  
Hypothesized Mean Difference 0  
df 4  
t Stat 1.631718  
P(T<=t) one-tail 0.089037  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.178075  
t Critical two-tail 2.776445   
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Table F. 15 Microsoft Excel output for student’s t-test performed on the mean percent Golgi complex positive cells 
from 24 hour ART vs. wART ex vivo experiments. 
 
 
t-Test: Paired Two Sample for 
Means   

  ART wART 
Mean 37.41512 34.06328
Variance 62.62845 69.27189
Observations 6 6
Pearson Correlation 0.700225  
Hypothesized Mean Difference 0  
df 5  
t Stat 1.30375  
P(T<=t) one-tail 0.124557  
t Critical one-tail 2.015048  
P(T<=t) two-tail 0.249115  
t Critical two-tail 2.570582   
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APPENDIX G 

IN VIVO EXPERIMENTAL DATA 

In this Appendix an image is provided for each implanted AVG from the last 4 (see Table 4.1) in 

vivo experiments.  These images were taken immediately upon re-establishing flow in the AVG 

after implantation.  A representative MPC staining image for each of the AVGs included in the 

morphometric analysis (sham: N=6; spun: N=4) is also provided in this Appendix.  Following 

the MPC images, the measured intimal-to-medial thickness ratios are tabulated.  The 

corresponding statistical software output table is also provided for the student’s t-test that was 

performed. 
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Figure G. 1 Image of both sham and spun AVGs implanted as carotid interposition grafts on 06/11/2007.  Scale bar 
is 1 cm. 
 

 
 
 
 
 

 

 
 
 
Figure G. 2 Image of both sham and spun AVGs implanted as carotid interposition grafts on 06/26/2007.  Scale bar 
is 1 cm. 
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Figure G. 3 Image of both sham and spun AVGs implanted as carotid interposition grafts on 06/27/2007. Scale bar 
is 1 cm. 
 

 
 
 
 

 

 
 
 
Figure G. 4 Image of both sham and spun AVGs implanted as carotid interposition grafts on 06/28/2007. Scale bar 
is 1 cm. 
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Figure G. 5 Representative image of MPC stained section from sham AVG implanted as carotid interposition graft 
on 12/04/2006. 
 
 

 
 
Figure G. 6 Representative images of MPC stained sections from both sham and spun AVGs implanted as carotid 
interposition grafts on 12/05/2006. 
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Figure G. 7 Representative images of MPC stained sections from both sham and spun AVGs implanted as carotid 
interposition grafts on 12/06/2006. 
 
 

 
 
 
Figure G. 8 Representative images of MPC stained sections from both sham and spun AVGs implanted as carotid 
interposition grafts on 06/11/2007. 
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Figure G. 9 Representative image of MPC stained sections from sham AVG implanted as carotid interposition graft 
on 06/26/2007. 
 
 

 
 

Figure G. 10 Representative images of MPC stained sections from both sham and spun AVGs implanted as carotid 
interposition grafts on 06/27/2007. 
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Table G. 1 Mean intimal-to-medial thickness ratios from morphometric analysis of MPC stained sections from in 
vivo experiments. 

 

 
Expt # Sham Spun 

1 2.5625 2.8951 
2 3.0476 2.4086 
3 4.2222 3.4722 
4 3.5417 2.2458 
5 3.2083  
6 3.1667  

Mean 3.2915 2.755425 
SEM 0.555379 0.551749 

 
 
 
Table G. 2 Microsoft Excel output for student’s t-test performed on the mean intimal-to-medial thickness ratio data 
from the in vivo experiments. 
 
 
t-Test: Two-Sample Assuming Equal 
Variances   

  sham spun 
Mean 3.2915 2.755425
Variance 0.308446 0.304426909
Observations 6 4
Pooled Variance 0.306939  
Hypothesized Mean Difference 0  
df 8  
t Stat 1.499013  
P(T<=t) one-tail 0.086127  
t Critical one-tail 1.859548  
P(T<=t) two-tail 0.172254  
t Critical two-tail 2.306004   
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Figure G. 11 Low magnification SEM image of sham AVG implanted as a carotid interposition graft on 
06/11/2007. 
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Figure G. 12 Low magnification SEM image of spun AVG implanted as a carotid interposition graft on 06/11/2007. 
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Figure G. 13 Low magnification SEM image of sham AVG implanted as a carotid interposition graft on 
06/26/2007. 
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Figure G. 14 Low magnification SEM image of spun AVG implanted as a carotid interposition graft on 06/26/2007. 
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Figure G. 15 Low magnification SEM image of spun AVG implanted as a carotid interposition graft on 06/28/2007. 
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APPENDIX H 

TROUBLESHOOTING MOLECULAR BIOLOGICAL ANALYSES 

The endpoints originally proposed in Section 1.2 as early markers of IH included many proteins 

that we wished to quantitatively assess at the gene expression and the protein translation levels 

via quantitative polymerase chain reaction (Q-PCR) and western blotting techniques, 

respectively.  However, these assays were found to be extremely difficult and troubleshooting 

them was beyond the scope of this dissertation.  It was then decided, and agreed upon by all 

committee members, that immunohistochemistry (IHC) was an acceptable technique for 

detecting the expression of some of the proteins of interest.  In order to obtain quantifiable 

results via IHC, we chose only endpoints that were expressed intracellularly or matricellularly.  

That is, we chose only endpoints that would allow positively stained cells to be counted either 

manually or with an appropriate software application.  For this we focused our attention on 

detecting the expression of: TNC, TSP, SPARC, Mig-2, ILK, TUNEL, PCNA, and Golgi 

complex.  Figure H. 1 shows a flowchart of the techniques that were attempted in order to 

troubleshoot the IHC, western blotting, and Q-PCR techniques for these endpoints.  The analyses 

that were successful, as well as the rationale for terminating the methods that were not successful 

are also outlined in Figure H. 1. 

The first major hurdle that was encountered with the fluorescent IHC analysis stems from 

the fact that vascular tissue is inherently very auto-fluorescent, mainly due to the high elastin 

content.  Auto-fluorescence prevented the detection of most proteins of interest because they 
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were expressed in very small levels.  In fact the only endpoint that was successfully evaluated 

with fluorescent IHC techniques was TUNEL.  This was because the signal generated by the 

commercially available kit was stronger than the auto-fluorescent signal which allowed the 

exposure time to be reduced to the point that the auto-fluorescence was no longer visible.  

Fluorescent IHC images from several of the proteins that we attempted to detect are shown in 

Figure H. 2 to Figure H. 6.  The very diffuse fluorescent signal seen in these images was not 

what we expected to see.  Instead the positive signal should only co-localize with the nuclear 

staining.  This was not the case, so this technique was abandoned for all other endpoints except 

TUNEL. 

 
 
 
 
Figure H. 1 Flowchart depicting the molecular biological analyses that were either successfully evaluated, or 
attempted but discontinued because troubleshooting them was beyond the scope of this dissertation. 
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Figure H. 2 Representative immunohistochemistry images taken from a VEN vs. ART 24 hour experiment. In all 
images, red represents positive staining, and the nuclei label blue.  Images were taken at 400x magnification under 
immersion oil. In all panels the white arrow designates the vessel lumen, and the red arrow indicates the observed 
autofluorescence. 
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Figure H. 3 Fluorescent microscopy images of PIJV tissue perfused ex vivo under ART conditions for 24 hours 
stained with two dilutions of mouse-anti-human primary PCNA antibody.  Note: PD, primary delete; DAPI, nuclear 
stain; Alexa-488, donkey-anti-mouse secondary antibody. The red arrow indicates the observed autofluorescence. 
 
 
 

 

 

 
 
Figure H. 4 Fluorescent microscopy images of PIJV tissue perfused ex vivo under cART conditions for 24 hours 
stained with two dilutions of mouse-anti-human primary PCNA antibody.  Note: PD, primary delete; DAPI, nuclear 
stain; Alexa-488, donkey-anti-mouse secondary antibody. The red arrow indicates the observed autofluorescence. 
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Figure H. 5 Fluorescent microscopy images of PIJV tissue: PFA Baseline, porcine femoral artery fixed immediately 
after harvest; PIJV Baseline, fixed immediately after harvest; and either perfused ex vivo under ART or cART 
conditions for 24 hours stained with mouse-anti-human primary ILK antibody.  Note: PD, primary delete; DAPI, 
nuclear stain; 488, donkey-anti-mouse secondary antibody. The red arrow indicates the observed autofluorescence. 
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Figure H. 6 Fluorescent microscopy images of PIJV tissue: PFA Baseline, porcine femoral artery fixed immediately 
after harvest; PIJV Baseline, fixed immediately after harvest; and either perfused ex vivo under ART or cART 
conditions for 24 hours stained with mouse-anti-human primary Mig-2 antibody.  Note: PD, primary delete; DAPI, 
nuclear stain; 488, donkey-anti-mouse secondary antibody. The red arrow indicates the observed autofluorescence. 
 

 

The next major hurdle that was encountered with these proposed endpoints was with 

troubleshooting the HRP/ABC based IHC detection techniques.  A point of major difficulty with 

molecular analysis of porcine tissue is the lack of availability of pig antibodies.  No pig 

antibodies were available for any of our proteins of interest.  Most of the primary antibodies that 

are available for these proteins are raised in a mouse or rabbit host against the human gene.  
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Several primary and secondary antibody combinations were attempted while troubleshooting 

these IHC endpoints.  Some of the results obtained with mouse primary antibodies for SPARC 

(rabbit anti-human: Santa Cruz Biotechnology, Inc.), ILK and Mig-2 (Lab of Dr. Chuanyue Wu, 

Deptartment of Pathology, University of Pittsburgh) are shown in Figure H. 7 and Figure H. 8.  

Note the un-specific binding of the primary antibodies which can be the only explanation when 

we consider the very clear primary delete images. 

 

 

 
 
Figure H. 7 HRP/ABC based IHC images of PIJV tissue perfused ex vivo for 24 hours either under ART or cART 
conditions and stained with ILK and Mig-2 mouse-anti-human primary antibodies.  Unspecific binding of primary 
antibodies results in diffuse brown staining throughout the tissue. 
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Figure H. 8 HRP/ABC based IHC images of PIJV tissue perfused ex vivo for 24 hours either under VEN or ART 
conditions and stained with a SPARC rabbit-anti-human primary antibody.  The panels on the left are primary 
deletes.  Unspecific binding of primary antibodies results in diffuse brown staining throughout the tissue. 
 

 

 The next molecular analysis technique we attempted unsuccessfully to perform was 

western blotting.  Specifically, in all blots that were run there were always bands detected above 

and/or below the correct molecular weight for all proposed proteins.  Western blots were run 

using total protein isolated from tissue homogenates.  The two separate protocols that were used 

for protein isolation are provided in Appendix E (protocols E.11 and E.12).  The standard 

protocols that were used for protein separation (SDS PAGE) and western blotting are also 

provided in Appendix E (protocols E.13 and E.14, respectively)   It was determined that the 
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“extra” bands were detected due to unspecific binding of the primary antibodies.  The 

consistency with which this was observed between many different proteins that we attempted to 

evaluate led us to believe that there was some intrinsic property of pig vascular tissue that caused 

the extra bands in all our gels.  The culprit was hypothesized to be “sticky” proteins that are 

constitutively expressed within blood vessels perhaps as part of the immune response.  The 

vasculature being one of the first lines of defense against infection may express proteins that 

have a high affinity for binding to foreign antigens that are presented via the circulation.  Several 

different secondary detection systems, primary and secondary antibody concentrations, and 

blotting conditions were attempted.  Also two different protein isolation techniques were 

attempted and compared.  Trizol (Invitrogen) and T-PER (Pierce) were both used and yielded 

similar results.  At this point, all western blot trouble shooting was ceased and focus was placed 

on detection of the expression of intracellular proteins via immunohistochemistry techniques.   

Some western blots that were attempted for a few of the proposed endpoints in Section 

1.2 are shown in Figure H. 9.  Blots for ILK (Figure H. 9(A)), Mig-2 (Figure H. 9(B)), SPARC 

(Figure H. 9(C)), and TN-C (Figure H. 9(D)) are shown and it can be seen that in all cases, 

there were nonspecific bands detected.  In each case the unspecific bands are both above and 

below the actual molecular weight of the protein of interest which is indicated by the arrow in 

each panel. 
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Figure H. 9 Representative western blots performed on total protein isolates from various ex vivo vascular perfusion 
experiments.  The western blots shown were probed for ILK (A), Mig-2 (B), SPARC (C), and TN-C (D).  Both 
chemiluminescent (A & C) and alkaline-phosphatase (B & D) detection techniques were attempted.  Note the extra 
bands, both above and below the correct respective molecular weights, detected in each blot for each protein of 
interest.  
 

 

In order to perform the mRNA analysis as originally proposed, the homologies between 

the human and porcine gene sequences of interest were compared.  It was decided that all the 

porcine primer-probe sets for RT-PCR would have to be designed since none were readily 

commercially available.  Applied Biosystems, Inc. suggested that they would design and 

manufacture custom primer-probe sets for any known gene sequence.  The problem is that they 
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could not guarantee that their probes would work in our hands since they would not perform all 

of the quality assurance checks (to ensure the primers amplify the single gene of interest) on the 

custom primers.  In addition, the porcine genome is so poorly characterized that they could not 

be as confident in the quality of custom porcine primers as they are for other species where the 

genome is more fully annotated.  Since we were not equipped to perform the genomics studies 

and quality control analyses to ensure reliable, accurate results, we felt it was beyond the scope 

of this dissertation to pursue the mRNA analysis.  However in preparation to perform the RT-

PCR analysis, total RNA was isolated from all the ex vivo experimental tissue as follows:  Tissue 

samples were ground to a fine powder with a mortar and pestle in liquid nitrogen.  The powder 

was transferred to 3 mLs of Trizol (Invitrogen, Carlsbad, CA) isolated as directed by Invitrogen.  

The isolation was followed by Qiagen clean-up (Qiagen, Valencia, CA).  After washing away the 

undesired macromolecules from the column, the RNA was eluted into water.  The specific 

protocol that was used is provided in Appendix E (protocol E.15).  The samples were then taken 

to the Genomic and Proteomics Core Laboratory at the University of Pittsburgh to determine the 

quantity and purity of the mRNA.  A sample gel is shown in Figure H. 10. 

 

 

Figure H. 10 Gel representation of capillary electrophoresis result from a representative sample.  The two major 
bands represent the 28s and 18s ribosomal subunits.  Note the clean bands with little or no degradation. 
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As mentioned in Section 3.2.6.6.1, TEM was performed in order to visualize Golgi 

comple

 

x and rough endoplasmic reticulum as markers of a synthetic SMC phenotype.  However, 

we realized that quantification of the relative amounts of these organelles was not feasible via 

TEM imaging due to the extremely high magnification that was required to visualize them. 

Figure H. 11 to Figure H. 13 show representative TEM images from some ex vivo perfusion 

experiments (see Table 3.2). 
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Figure H. 11 Transmission electron microscopy (TEM) images of sections prepared from vein segments perfused, 
ex vivo, for 24 hours under venous VEN vs. ART conditions.  The top two panels are from an experiment performed 
on 05/07/2003.  The bottom two panels are from an experiment performed on 10/09/2004.  Images were taken at a 
magnification of 30,000x.  
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Figure H. 12 Transmission electron microscopy (TEM) images of sections prepared from vein segments perfused, 
ex vivo, for 24 hours under venous VEN vs. ART conditions.  The images are from an experiment performed on 
10/16/2004.  Images were taken at a magnification of 30,000x.  
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Figure H. 13 Transmission electron microscopy (TEM) images of sections prepared from vein segments perfused, 
ex vivo, for 24 hours under venous ART vs. cART conditions.  The top two panels are from an experiment 
performed on 10/22/2004.  The bottom two panels are from an experiment performed on 11/11/2004.  Images were 
taken at a magnification of 30,000x.  
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