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 Potent anti-retroviral therapy has transformed HIV infection from an acute to a chronic disease.  

Consequently, diseases previously not prevalent in HIV+ persons have emerged.  For example, 

HIV-infected persons are at increased risk for developing COPD.  Pneumocystis (Pc), a fungal 

opportunistic pathogen, has been associated with HIV and COPD.  Pc colonization- the presence 

of Pc in subjects without clinical symptoms of Pneumocystis pneumonia- is increased in COPD 

patients.  Furthermore, HIV+ individuals are at elevated risk for both Pc colonization and 

emphysema.  Together, these observations suggest that COPD in HIV+ individuals involves Pc 

colonization.  We used a simian/human immunodeficiency virus (SHIV) model of HIV infection 

to study pulmonary effects of Pc colonization.    

SHIV-infected/Pc-colonized monkeys developed obstructive pulmonary disease 

characterized by increased emphysematous tissue and bronchial-associated lymphoid tissue. 

Elevated Th2 cytokines and pro-inflammatory mediators in bronchoalveolar lavage fluid 

coincided with Pc colonization and pulmonary function decline. These results indicate that Pc 

colonization may be a risk factor for development of HIV-associated COPD. 

Gene expression profiles in the lung tissue of these animals evaluated by microarray 

analysis revealed differential expression of 243 genes in the obstructed SHIV/Pc monkeys 

compared to SHIV-only monkeys with normal lung function.  Potentially relevant differentially 

expressed genes included genes involved in inflammation, protease/antiprotease balance, redox 
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balance and tissue homeostasis, thus indentifying factors and pathways involved in early 

development of SHIV-associated COPD and revealing several novel, possible therapeutic 

targets. 

In a second cohort of animals, airway obstruction development associated with Pc 

colonization was recapitulated.  To directly correlate pulmonary function decline with presence 

of Pc, a subset of the Pc-colonized monkeys was treated with the anti-Pc drug, TMP-SMX, after 

significant airway obstruction had occurred.  No further pulmonary function decline was 

observed in either the treated or untreated animals up to a year after initiating TMP-SMX 

treatment.  These results indicate that Pc-associated induction of airway obstruction takes place 

early after onset of colonization followed by an extended period of containment of the effects of 

Pc. 

These results demonstrate a key role for Pc in the early development of SHIV-associated 

COPD.  Furthermore, they reveal multiple potential mediators of Pc-induced airway obstruction. 
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1.0  INTRODUCTION 

With the outbreak of the AIDS epidemic in the 1980s, the opportunistic fungal pathogen, 

Pneumocystis jirovecii, gained significant prominence as the causative agent of Pneumocystis 

pneumonia (PcP), the most prevalent opportunistic infection in patients who have acquired 

immune deficiency syndrome (AIDS) (1).  Even with the widespread implementation of potent 

antiretroviral drug cocktail therapies and prophylactic drug use against Pneumocystis (Pc), PcP 

continues to be a serious but common affliction in AIDS patients (174, 243).  The mortality 

associated with developing the disease is as high as 63% in individuals not on antiretroviral 

therapy but can still be as high as 33% in patients who are on antiretroviral therapy (159, 247). 

Other immunosuppressed groups are also at risk of contracting PcP.  These include 

individuals on immunosuppressive medications, patients with malignancies that are either 

hematological or solid, transplant recipients and individuals with genetic immunodeficiencies 

(314, 359).   

These data clearly indicate that a fulminant infection with Pc can be extremely serious.  

What is not as well understood are the consequences of a subclinical infection with Pc wherein 

no clinical symptoms of PcP are apparent and the organism cannot be detected microscopically 

in respiratory samples but, rather, by the highly sensitive method of polymerase chain reaction 

(PCR) (colonization).  In the population infected with the human immunodeficiency virus (HIV), 

rates of colonization as high as 69% have been observed (147).  This is significant because it has 
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been shown in the HIV+ population, which is predisposed to high rates of chronic obstructive 

pulmonary disease (COPD) (66) and accelerated emphysema (80), that PcP can result in COPD-

like changes in pulmonary function after resolution of the pneumonia (248).  The association 

between Pc colonization and COPD warrants further investigation. 

In short, more studies are required to enhance our current level of understanding of Pc in 

order to stem morbidity and mortality rates associated with acquiring this organism. 

1.1 A HISTORICAL LOOK AT PNEUMOCYSTIS 

Pc was first described by Carlos Chagas in 1909 in a guinea pig model of Trypanosome cruzi 

infection (46).  At the time, Chagas thought he had identified a new form of trypanosome.  

Shortly thereafter, Antonio Carinii arrived at the same conclusion when he discovered similar 

organisms in infected rat lung tissue (44).  It was not until two years later that the organism 

identified by the two researchers was recognized as a separate species (74).  At this time, the 

organism was called Pneumocystis carinii after Antonio Carinii and highlighting its tropism for 

the lungs. 

Histological evidence demonstrating the Pc lifecycle to consist of a small trophic form 

and a larger cyst form, similar to protozoans, led to its classification as a trypanosome.  

However, in 1988, Pc was placed in the fungal kingdom because sequencing of its small 

ribosomal RNA subunit indicated a greater familial link to fungi (85). 

In addition to its change in taxonomic status, the nomenclature for the organism has also 

evolved significantly.  The reason for this stems from observations of Pc organisms in nearly 

every mammalian species.  Analysis of the major surface glycoprotein gene, which is expressed 
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on the surface of Pc, has led to the conclusion that a genetically distinct variety of the organism 

with stringent host specificity is harbored by each mammalian species (342).  This has led to the 

naming convention in which each form of P. carinii received a forma specialis (f.sp.) designation 

indicating the host species that it infects.  For example, Pneumocystis carinii f.sp. hominis and 

Pneumocystis carinii f.sp. murina were the names given to the forms that infect humans and 

mice, respectively.  Recently, though, the form that infects humans was renamed Pneumocystis 

jirovecii after Jirovec who first described Pc in humans (341). 

1.2 BIOLOGY OF PNEUMOCYSTIS 

1.2.1 Lifecycle of Pc 

Descriptions of the lifecycle of Pc come solely from microscopic examination of infected lung 

tissue because it cannot be purely cultured in vitro.  In the lungs Pc principally occurs in two 

forms: the trophic form and the cyst.  The smaller trophic form is 1-4 µm in diameter and 

outnumbers the larger mature cyst form, which is 8-10 µm, by about 10 to one (358).  Pc 

infection is established by tight adherence of these trophic forms with type I alveolar epithelial 

cells by interdigitating its membranes with that of the host cell (371).  However, structure and 

barrier functions of the alveolar cells do not appear to be disrupted by this interaction (21). 

There are three intermediate cyst stages (early, intermediate and late) called “precysts” 

containing two, four and eight nuclei, respectively (229).  It is believed that the mature cyst form, 

which also has eight nuclei, gives rise to the trophic form which can reproduce either sexually by 

vegetative growth or conjugation to reform the cyst, or asexually by binary fission (358).  
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1.2.2 Surface molecules of Pc 

The binding of Pc to host cells is largely mediated by conjugation of glycoprotein A (gpA or 

major surface glycoprotein (MSG)), the major surface protein on Pc, with the host proteins, 

fibronectin and vitronectin (208).  This 120 kDa protein complex is heavily glycosylated 

containing multiple carbohydrates including galactose, mannose and glucose (69, 113).  Alveolar 

macrophages (AM), which are ultimately responsible for clearing Pc from the lungs, have 

mannose receptors that recognize gpA to take up the organism (262).  However, Pc has 

developed mechanisms to evade this arm of host innate immunity.  Pc can shed or secrete gpA 

molecules in order to block phagocytosis by AM (196).  Moreover, Pc can induce AM to secrete 

mannose receptors which consequently blocks gpA-mediated uptake by AM (97).  Glycoprotein 

A also plays a role in escaping recognition by the adaptive arm of the immune system.  Even 

though only a single form of gpA is expressed on the Pc surface at one time, gpA is encoded by 

approximately 100 genes resulting in extensive surface variability which may be instrumental in 

evading adaptive immune responses (342, 359). 

 One study in mice deficient for the mannose receptor showed that clearance of Pc can 

still take place in the absence of this important Pc recognition receptor despite being CD4+ T cell 

depleted (348).  The reason for this is that AM can also recognize Pc via the beta-1,3-glucan 

molecule, another major component of the Pc cell wall (228).  Although a number of potential 

receptors for beta glucans exist, the main receptor on AM is the Dectin-1 receptor and has been 

shown to mediate killing of Pc (335). 
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1.3 EPIDEMIOLOGY OF PNEUMOCYSTIS INFECTION 

Due to the fact that Pc cannot be continuously cultured in vitro, the precise epidemiology 

surrounding transmission of the organism remains in question.  However, there are three 

prevailing theories to explain how Pc infection takes place. 

1.3.1 Reactivation of a latent infection 

It has been suggested that children act as the reservoir for Pc as reports have shown that the 

majority of children have antibodies to the organism.  In one such study, two thirds of normal, 

immunocompetent children were positive for serum antibodies against Pc by four years of age 

(274).  However, in a second more recent study examining both Pc colonization and 

seropositivity to Pc in normal subjects up to two years of age, a colonization rate of 32% and a 

seroconversion rate of 85% was observed (367).  Data such as these form the foundation for the 

hypothesis wherein individuals who acquire Pc at a very young age develop pneumonia if their 

immune system fails in subsequent years.  Nevertheless, there are a number of reports that refute 

this hypothesis.  For example, Chen, et al showed that severe combined immunodeficiency 

(SCID) mice, which lack an adaptive immune system, that have recovered from a Pc infection 

through spleen cell reconstitution failed to reactivate the infection after depletion of CD4+ T 

cells.  Furthermore, neither Pc organisms or Pc DNA was detected in lungs of these mice three 

weeks after spleen cell reconstitution (50).  Another study evaluating the genotypes of Pc in 

patients with repeated PcP identified a different variant of Pc from the one in the original 

infection in 50% of the cases indicating that reactivation of a previously encountered strain of Pc 

is not the sole source of Pc infections that develop later in life (179).   
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1.3.2 Acquisition via environmental exposure 

Another reservoir that has been proposed is the environment.  The discovery of Pc DNA from 

both rat and human in air filters supports this hypothesis (370).  Environmental transmission of 

the organism is further upheld by the finding of Pc in pond water (45).  Finally, despite a lack of 

direct evidence, it has been inferred that Pc also exists in soil (253).  In this study, HIV+ 

individuals who gardened and/or hiked were found to be at higher risk for contracting PcP. 

1.3.3 Person-to-person transmission 

Currently, the method of Pc transmission that is most widely accepted is that of person-to person 

transmission.  There is an abundance of evidence to support this theory such as the report by 

Singer, et al showing clustering of PcP cases in patients residing in an oncology ward at a single 

hospital (329).  In another clustering event, five kidney transplant patients who attended a clinic 

shared by AIDS patients all developed PcP within a 22 month period where no cases had been 

reported in over five years for 114 other transplant patients who had been treated with the same 

immunosuppressive protocol (48).  There are also a number of animal studies that support lateral 

transmission of Pc.  In mice immunosuppressed with dexamethasone, Pc transmission in multiple 

strains of mice was accomplished simply by cohousing healthy immunosuppressed mice with 

mice that have PcP(277).  A high incidence rate of PcP in a regional primate center colony of 

simian immunodeficiency virus (SIV)-infected rhesus macaques provided further evidence of 

horizontal transmission (369).  In this report, 51% of terminally ill monkeys that were housed 

together developed PcP.  In contrast, none of the SIV-infected monkeys that were isolated 

contracted the disease.  Lastly, Gigliotti and colleagues showed that immunosuppressed mice 
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with PcP can transmit Pc to healthy, immunocompetent mice via brief periods of cohousing that 

in turn were able to transmit the organism to other normal mice (117).  These data strongly 

suggest a means whereby Pc can be maintained in the environment.  

1.4 AT-RISK POPULATIONS FOR PNEUMOCYSTIS INFECTION 

1.4.1 Pc infections in non-HIV infected individuals 

The first reports of clinical disease caused by Pc were in the 1940s in orphanages right after 

World War II (102).  In the reports, malnourishment of many of the children in the orphanages 

was associated with pneumonia accompanied by infection with Pc.  Since that time, Pc infections 

have been noticed with increasing frequency in patients who are immunocompromised for a 

variety of reasons.  For example, transplant patients are generally susceptible because of the need 

for lifelong immunosuppresive therapies to prevent rejection.  Still other individuals have genetic 

disorders, such as chronic granulomatous disease (CGD) or Wiscott-Aldrich Syndrome (WAS), 

which adversely affect their immune systems resulting in predisposition to Pc infections.  

Patients with cancer are also prone to Pc infections.  In particular, those with hematologic 

malignancies such as non-Hodgkins lymphoma, acute lymphoblastic and myeloid leukemias and 

chronic lymphocytic leukemia suffer from a 33% mortality rate due to PcP (291).  The 

requirement for effective management of Pc infections in these patients is vital because, 

collectively, the mortality rate for PcP in non-AIDS patients is 30-60% (359). 
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1.4.2 Pc infections in HIV+ individuals in the era of antiretroviral therapy (ART) and 

anti-Pc prophylaxis 

It was the AIDS epidemic that led to Pc becoming a widely recognized serious threat as a lethal, 

opportunistic fungal infection.  The primary reason for this is that PcP became the leading AIDS-

defining illness in the HIV+ population due to severe immunosuppression arising from extensive 

destruction of host CD4+ T cells which results in extreme susceptibility to microbial infections 

and illnesses that are not typically seen in healthy individuals.  However, the combination of 

ART, which directs a potent cocktail of drugs against HIV, and trimethoprim-sulfamethoxazole 

(TMP-SMX, aka bactrim), the drug of choice for treatment and prophylaxis of Pc, has driven 

PcP incident rates in the HIV+ population down from approximately 75% to 3-4% (243).  Yet, 

increased usage of PCR as a highly sensitive detection technique has revealed that Pc still occurs 

in asymptomatic HIV+ subjects at rates as high as 46% (246).  Even higher rates (69%) have 

been observed in patients presenting with respiratory symptoms but who were not diagnosed as 

having PcP (147).  These studies showing carriage of Pc in the absence of PcP development call 

in to question the long-term effects of colonization in host lungs by the organism. 

1.5 INFLAMMATORY RESPONSES TO PNEUMOCYSTIS INFECTION 

1.5.1 Innate immune responses in Pc infection 

Structural epithelial cells may play a vital role in Pc infection.  Indeed, as the substrate to which 

Pc organisms attach, epithelial cells are likely to initiate host immune responses that are to 
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follow.  In vitro studies in which either Pc or its surface molecules, gpA or beta-glucans, are 

incubated with epithelial cells supports this reasoning as these cells were observed to secrete 

chemokines that attract or stimulate neutrophils (interleukin (IL)-8 and CXCL2 (23, 131) and 

monocytes or macrophages (CCL2 and IL-6) (276, 374). 

Natural killer (NK) cells have not been extensively studied in the context of Pc infection.  

One study indicating NK cell involvement was performed in CD4+ T cell-depleted mice that 

received interferon (IFN)-γ-expressing adenoviral vector just before challenge with Pc (186).  

Mice that upregulated IFN-γ by gene transfer were able to resolve the Pc infection which 

correlated with significant increases of CD8+ T cells and NK cells in the lungs. 

Like NK cells, studies on dendritic cell (DC) involvement in immunity against Pc are 

limited.  One study showed that neonatal mice challenged with Pc exhibit delayed clearance of 

the organism compared to adults due, in part, to reduced recruitment of CD11c+ immature DC to 

the lungs (105).  In another study, DC genetically modified to express CD40 ligand (CD40L) and 

pulsed with Pc antigen were administered to CD4+ T cell-depleted mice as a CD4+ T cell-

independent vaccine (386).  Significant protection conferred on these mice from subsequent 

challenge with Pc was associated with Pc-specific IgG antibody response. 

It is widely believed that lung damage arising from Pc infections is mediated by host 

responses to the organism rather than a result of harm induced by Pc itself.  In support of this 

theory, studies of neutrophils in Pc infections almost universally point to these cells as playing a 

negative role.  Evaluation of neutrophil numbers and levels of the chemokine largely responsible 

for neutrophil attraction, IL-8, in bronchoalveolar lavage (BAL) fluid of patients with PcP 

reveals a strong correlation between these two elements of innate immunity and impairment of 

pulmonary function and/or clinical severity of disease (24, 300, 330).  These observations in 
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humans have been recapitulated in rodent and monkey models of Pc infection (22, 29, 54, 65).  

Due to conflicting reports, the effector function responsible for the increased morbidity 

associated with neutrophils has yet to be elucidated.  It has been suggested that increased 

superoxide production may be responsible since neutrophils cultured with Pc upregulate 

production of this potentially damaging reactive oxygen species (ROS) (200).  However, 

neutrophils from HIV+ patients show decreased production of superoxide when cultured with Pc 

making this a less likely scenario (201).  Hence, a mechanism for neutrophil-mediated 

pulmonary damage associated with Pc infection requires further investigation.  Even if 

neutrophil-associated ROS are found not to mediate tissue damage, neutrophils can express a 

variety of other products such as proteinases and cationic peptides that can potentially cause lung 

damage (240).  Despite frequent correlations made between neutrophils and Pc-associated lung 

damage, there are schools of thought that suggest that this link is more associative rather than 

causative (225).  In fact, using a series of knockout (KO) mice and mice depleted of neutrophils, 

one study showed that neither neutrophils nor reactive oxygen species contribute to lung damage 

in PcP (349).  Thus, other immune mediators and cell types must be considered in Pc-related 

tissue damage scenarios. 

Of all of the immune system components discussed thus far, AM have been the most 

extensively studied in conjunction with Pc infection.  As stated above, the multiple receptors 

available to AM for uptake of the organism make them a likely key player in the clearance of Pc 

from host lungs.  Their importance seems to be underscored by observations that they increase in 

numbers and level of activation in response to Pc infection (206).  In conflicting reports, 

macrophage numbers were observed to be decreased, rather than increased, in both human and 

rat PcP (94, 194, 383).  Further investigation indicated that these decreases in AM were due to 
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increased apoptosis (197), and that blockage of the apoptosis with caspase inhibitors could 

enhance AM activity against Pc in rats and mice with PcP, thus prolonging their survival (195).  

Either way, the critical role of AM was convincingly shown by Limper et al. in a study in which 

rats were treated with liposomal dichlormethylene diphosphonate to selectively deplete AM 

(207).  In the rats that received this compound, AM were depleted by more than 85%.  Twenty 

four hours after a subsequent Pc challenge, the AM-depleted rats had significantly higher 

numbers of Pc organisms in their lungs than control rats.  The mechanism by which AM kill Pc 

after phagocytosis appears to be mediated by ROS as studies have shown both superoxide and 

hydrogen peroxide production to be increased in AM cultured with Pc (139, 199).  In a follow-up 

study, Steele et al. showed that in vitro incubation of Pc with physiologic concentrations of 

hydrogen peroxide can kill the organism (335). 

1.5.2 Adaptive immune responses to Pc infection 

The involvement of γδ T cells in Pc infection has not been studied extensively, although it has 

been shown that AIDS patients with PcP have elevated numbers of the cells in both blood and 

BAL fluid (167).  Moreover, increased γδ T cell numbers were observed in the lungs of normal 

mice that had received inocula of Pc (336).  It was further observed in this study that mice 

lacking γδ T cells had accelerated clearance of Pc compared to wild type controls, which 

correlated with increases in CD8+ T cell numbers and IFN-γ levels in the lungs, suggesting that 

γδ T cells impose some sort of regulation of CD8+ T cell recruitment into the lungs in the 

context of a Pc infection.  

Immune response orchestration largely depends on the activity of CD4+ T helper cells 

which modify both innate and adaptive immunity.  In innate immunity, they maximize the 
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activity of phagocytes such as macrophages.  In adaptive immunity, their activity influences B 

cell antibody class switching and leads to activation of cytotoxic T cells.  It, therefore, comes as 

no surprise that these cells are critical in the host defense against Pc infection.  Furthermore, 

since CD4+ T cell destruction is the hallmark of HIV infection, it follows that Pc infections are 

often associated with individuals who are infected with this virus.  This is also true of animal 

models of Pc infection which are typically designed around exploiting low or non-existent CD4+ 

T cell levels such as in nude mice, which do not have any T cells due to the absence of a thymus 

(373), and SCID mice, which lack the ability to make B or T cells (372), or by inducing 

susceptibility Pc infection by driving down CD4+ T cell levels through the use of monoclonal 

antibodies (324), corticosteroids (47) or a lentivirus (84).  Underscoring the importance of CD4+ 

T cells, animals in most of these models can develop severe Pc infections despite having 

functional neutrophils and macrophages.  In trying to gain a clearer understanding of the role 

CD4+ T cells play in immune responses against Pc, Shellito et al. attempted to determine 

whether T-helper type 1 (Th1) responses, which involve cytokines such as IFN-γ and lead to 

induction of cell-mediated immunity and phagocyte activation, or T-helper type 2 (Th2) 

responses, which involve cytokines such as IL-4 and IL-13 and promote humoral responses, are 

important (325).  In their analysis of CD4+ T cell responses to Pc infection in lymph node and 

lung tissue, they found that the overall CD4+ T cell response involved both subsets of CD4+ T 

cells but was predominately Th2-skewed.  In support of the importance of a Th2-skewed 

response, Zheng and colleagues introduced Pc-pulsed DCs that had been transduced with 

CD40L, which is normally found on CD4+ T cells and is key in inducing B cells to generate IgG 

antibodies, into CD4+ T cell-depleted mice (386).  After Pc challenge, the DC-vaccinated mice 

mounted high titers to Pc and were protected from infection. 
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Although it has not been shown that CD8+ T cells specifically interact with and kill Pc, 

there is evidence that these cells do play a significant role in Pc infections.  For example, in a 

study using mice depleted of CD4+ T cells and mice depleted of both CD4+ and CD8+ T cells, it 

was observed that the mice depleted of both T cell subsets developed a more severe Pc infection 

than those depleted of only CD4+ T cells suggesting that the CD8+ T cells provide some form of 

support in immune responses against Pc (20).  Additionally, as mentioned previously, mice 

deficient in γδ T cells clear Pc infection more rapidly than wild type mice, a finding that 

correlated with increases in levels of CD8+ T cells and IFN-γ into the lungs (336).  In another 

study, an IFN-γ expressing adenovirus introduced into the lungs of mice led to recruitment of 

CD8+ T cells to the lungs accompanied by induction of the chemokine CXCL10.  When these 

CD8+ T cells were purified from the lungs and incubated in vitro with macrophages, enhanced 

killing of Pc by the macrophages was observed (231).  The in vivo activity of the activated CD8+ 

T cells was then assessed by adoptively transferring them into Pc-infected SCID mice which 

were found to have significantly lower Pc burdens compared to SCID mice that received a mock 

adoptive transfer of cells (231).  Although these studies indicate that CD8+ T cells augment 

immune responses against Pc infections, there is evidence indicating that they also contribute to 

tissue damage associated with Pc infection.  In a study designed to identify specific cellular 

involvement in lung damage, researchers depleted mice of both CD4+ and CD8+ T cells which 

went on to develop PcP upon Pc challenge but maintained normal lung function and 

demonstrated no evidence of lung injury.  On the other hand, mice depleted of CD4+ T cells only 

followed by challenge with Pc developed severe lung inflammation and exhibited substantial 

lung damage suggesting that CD8+ T cells, at least in part, mediate Pc infection-associated lung 

damage (379). 
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B cells and antibodies play a significant role in host defenses against Pc infection.  

Multiple studies have shown that passive transfer of IgM antibodies specific for Pc is, at least, 

partially protective against Pc infection (114, 118).  It has also been shown by Harmsen and 

colleagues that Pc-specific IgG antibodies generated in immunocompetent mice through repeated 

exposure to Pc are protective against Pc challenge in the context of CD4+ T depletion (133).  

Furthermore, Garvy et al. showed that immunization of mice deficient in either IFN-γ or IL-4 

could both mount protective Pc-specific antibody responses after CD4+ T cell depletion even 

though different subclasses of IgG were generated by each group demonstrating that induction of 

a specific antibody subclass is not critical for protection against Pc (106).  Reports of decreased 

Pc-specific antibody titers in HIV+ subjects also suggest that anti-Pc antibodies may be 

important in protection against Pc infections (143, 299).  The importance of having existing high 

antibody titers against Pc prior to a period of susceptibility was upheld by nonhuman primate 

studies in our lab showing correlation between high anti-Pc antibodies and protection against Pc 

colonization after immunosuppression by lentivirus (Kling, Shipley et al. (submitted)).  

These studies clearly show the importance of antibodies in host responses against Pc but 

fail to demonstrate whether protection was a product of only the antibody activity or if B cells 

play a role beyond secretion of antibodies.  One study investigating CD4+ T cell-B cell 

interactions blocked CD40L with monoclonal antibodies in mice which resulted in reduced 

clearance of Pc that correlated with decreased Pc-specific IgG and decreased CD4+ T cell 

activation (377).  Though it was clear that the CD40-CD40L interaction was important in Pc 

clearance, the question of whether B cell-mediated antibody production or activation of CD4+ T 

cells or both were impaired was not answered.  In an attempt to answer this question, SCID mice 

received splenocytes depleted of immunoglobulin secreting cells, and it was found that the mice 
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could not clear their Pc infection (134).  Another study probing the same question found that 

mice deficient of B cells are extremely susceptible to PcP (223).  However, neither of these 

studies showed whether host susceptibility to Pc in these studies was a consequence of decreased 

B cell-mediated antibody production or decreased B cell-mediated CD4+ T cell activation.  

Through performance of a series of experiments, one study showed that: 1) Pc-specific IgM 

produced by CD40- (which is normally expressed by B cells) deficient mice is not sufficient to 

clear a Pc infection; 2) mice lacking CD40 only on B cells were not able to produce Pc-specific 

IgG but were able to resolve Pc infections albeit at a greatly reduced rate compared to wild type 

mice and 3)  mice deficient for both B cells and CD40 had reduced numbers of activated CD4+ T 

cells in the lungs (214).  These results strongly suggest a role for B cells (that of activating CD4+ 

T cells) in host defenses against Pc infections. 

Pc presence in the lungs of a host elicits secretion of a cascade of cytokines and 

chemokines, several of which have already been discussed.  Generally, the types of cytokines 

induced in response to Pc presence are proinflammatory.  Heightened expression of IFN-γ, tumor 

necrosis factor (TNF)-α, IL-1, IL-6 and granulocyte macrophage-colony stimulating factor (GM-

CSF) have all been observed to be upregulated either in in vitro or in vivo studies upon 

introduction of Pc into the various models (51, 53, 153, 265, 355).  The proinflammatory 

environment created by expression of these cytokines seems to serve a useful purpose as rodent 

studies have shown that upon depletion of some of these (TNF-α, IL-1 and GM-CSF), impaired 

clearance of Pc is the result (52, 53, 187, 265).  In fact, in some cases augmenting the host’s 

expression of some of these cytokines resulted in enhanced protection from or clearance of Pc 

without exacerbating inflammatory responses.  Kolls et al. demonstrated that gene transfer by an 

IFN-γ-expressing adenovirus could protect CD4+ T cell-depleted mice from Pc infection (186).  
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Similarly, Mandujano and colleagues showed that subcutaneous administration of GM-CSF to 

CD4+ T cell-depleted/Pc-infected mice resulted in decreased Pc burden (221).  Interestingly, 

these same two cytokines were also observed to dampen overly exuberant inflammatory 

responses.  Neutralization of IFN-γ in the context of a Pc infection led to exacerbation of 

inflammatory responses wherein infiltrates consisting of multinucleated giant cell, neutrophils 

and eosinophils were observed in the lungs of IFN-γ-depleted mice compared to controls (104).  

GM-CSF neutralization led to a similar outcome in Pc-infected GM-CSF KO mice that exhibited 

increased lung infiltration of macrophages, neutrophils and lymphocytes (265).  In light of the 

proinflammatory response induced by Pc, investigators have examined the effects of an anti-

inflammatory cytokine, IL-10, in the context of a Pc infection.  For instance, pre-treating CD4+ 

T cell-depleted mice with an IL-10-expressing adenovirus vector did not increase Pc clearance 

rates but did reduce associated inflammation (295).  In another study involving IL-10-deficient 

mice, it was observed these mice were able to clear Pc infection more rapidly than wild type 

mice, which correlated with increased CD4+ and CD8+ T cell responses and earlier influx of 

neutrophils into the lungs (284).  However, when CD4+ T cells were depleted in these mice, they 

no longer exhibited enhanced Pc clearance.  In humans, when a limited panel of proinflammatory 

cytokine levels were assessed in BAL fluid from HIV+ patients with acute PcP, only IL-1 

showed up as significantly increased in these subjects compared to HIV+ subjects who were 

asymptomatic (271).  This same group of investigators also looked at proinflammatory cytokines 

in the BAL fluid of patients with acute PcP but who were HIV-.  In these subjects, TNF-α was 

significantly elevated compared to healthy control subjects (272).  With respect to studies in 

humans, it has been observed that HIV infection of macrophages results in the inability to secrete 
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either TNF-α or IL-1 suggesting a possible mechanism that could explain the increased 

susceptibility of the HIV+ population to Pc infections (172). 

1.6 RELATIONSHIP BETWEEN PNEUMOCYSTIS AND CHRONIC OBSTRUCTIVE 

PULMONARY DISEASE 

1.6.1 COPD 

The GOLD (Global Initiative for Chronic Obstructive Lung Disease) Global Strategy has 

formally defined chronic obstructive pulmonary disease (COPD) as a typically progressive 

disease state characterized by poorly reversible airflow that is accompanied by an abnormal 

inflammatory response in the lungs (www.goldcopd.com/workshop/index/htmt).  COPD includes 

the two main sub-phenotypes of chronic bronchitis and emphysema and the lesser recognized 

sub-phenotype, obstructive bronchiolitis.  Chronic bronchitis is characterized by clinical 

symptoms that include persistent cough and phlegm production over a three month period 

recurring in at least two consecutive years and cannot be attributed to another condition (3).  

Emphysema is defined anatomically as permanent enlargement of airspaces distal to the terminal 

bronchioles and is associated with destruction of alveolar walls (3).  Other pathological 

hallmarks of emphysema are: increased lung compliance, and loss of alveolar-capillary units due 

to destruction of parenchymal tissue.  Obstructive bronchiolitis is typically recognized clinically 

as chronic bronchitis; however, examination of surgically resected tissue reveals involvement of 

small and peripheral pulmonary airways (< 2 cm in diameter) that are collapsed and often 

contain mucosal and inflammatory exudates (350).  COPD has become a global concern as it is 
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predicted to become the third leading cause of death worldwide by the year 2020 (251).  The 

morbidity and mortality associated with COPD are tremendous.  Approximately 2.7 million 

people died of the disease worldwide in the year 2000 (268).  Furthermore, according to statistics 

from the year 2000 in the United States alone, an estimated 24 million adults have evidence of 

impaired lung function and COPD was responsible for 8 million physician office and hospital 

outpatient visits, 1.5 million emergency room visits, 726,000 hospitalizations and 119,000 deaths 

(222).  Despite the relative ease of diagnosis, little progress has been made toward stemming this 

enormous health burden as current knowledge of the disease does not provide for a curative 

treatment.  Moreover, although smoking is known to be the primary risk factor for development 

of COPD, only about 15% of smokers develop the disease prompting questions as to the actual 

cause of the disease (93).  Therefore, roles played by genetic and environmental factors, such as 

infectious agents, must be considered in disease pathogenesis. 

1.6.2 HIV and COPD 

HIV infection has historically been associated with pulmonary complications.  Although 

widespread use of ART and PcP prophylaxis in HIV+ patients has resulted in greatly decreased 

rates of infectious pathogen-associated pulmonary problems, it has been reported that respiratory 

symptoms such as cough, phlegm production, dyspnea, and wheezing remain prominent in these 

individuals compared to control subjects (83).  In addition, evidence shows that HIV+ 

individuals are at increased risk of developing COPD earlier and at a greater frequency than the 

HIV- population (66, 79, 81).  Diaz et al. reported on a small group of HIV+ patients aged 32-55 

years that exhibited radiographic evidence of emphysema and pulmonary function test data 

revealing prominent air trapping, hyperinflation and decreased carbon monoxide diffusing 
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capacities (Dlco) (79).  Since the abnormal pulmonary function results were not proportional to 

the amount of reported tobacco use, it was concluded that HIV infection led to heightened 

susceptibility to cigarette smoke damage.  The observation of reduced Dlco in this study is 

supported by other reports of HIV+ individuals being at increased risk of having impaired Dlco, 

even in the absence of overt pulmonary disease (82, 99, 254).  This may be due to reduction in 

overall capillary volume in the lungs which, in turn, can lead to parenchymal lung destruction 

(82, 309).  This phenomenon may provide some explanation for studies that have drawn 

correlations between HIV infection and increased risk for COPD development even when 

controlling for tobacco use and adjusting for age, pack years of smoking, IV drug use and 

alcohol abuse (66, 81). 

1.6.3 Infections and COPD 

Multiple studies have reported on the potential involvement of infectious agents in COPD 

development (33, 144, 224, 318).  In support of pathogenic involvement in COPD pathogenesis 

are observations of bronchus-associated lymphoid tissue (BALT), small concentrations of 

lymphoid tissue typically associated with regional infections, in the lungs of smokers (32, 145, 

289).  These studies suggest the existence of a continuum wherein BALT is rarely observed in 

healthy non-smokers (145), is found in about 5% of smokers who have normal lung function 

(GOLD-0) and those with mild to moderate airway obstruction (GOLD-1 and GOLD-2, 

respectively) (32, 145, 289), and spikes in frequency (~27-33%) in severe and very severe airway 

obstruction (GOLD-3 and GOLD-4, respectively) (145). 

 In contrast to healthy airways which are sterile, a variety of pathogens including bacteria, 

atypical bacteria, viruses and fungi are often found in the airways of COPD patients (319).  
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Infectious agents can contribute to COPD pathogenesis in two different ways.  In one hypothesis, 

they play a role in the development of COPD by upregulating inflammatory mediators in the 

lungs that act in concert with other insults, such as cigarette smoking, to promote lung pathology.  

A second hypothesis states that microbial pathogens cause acute symptoms associated with 

infections in the context of COPD known as exacerbations.   These exacerbations are associated 

with vigorous host inflammatory responses that may be chronic and dysregulated resulting in 

significant structural lung damage and progression of airway obstruction.  It is believed that the 

damage caused by these infections impairs the lungs’ ability to clear infections making further 

infections and subsequent damage likely.  This is known as the Vicious Circle Hypothesis of 

infection and inflammation in COPD (317). 

1.6.3.1 Viruses and COPD 

Multiple studies have shown associations between viral infections and COPD development or 

exacerbation.  For example, adenovirus has been implicated in COPD pathogenesis in both an 

animal model (233) and in humans (288).  In the former study, guinea pigs with a latent 

adenoviral infection that were exposed to cigarette smoke developed a more severe form of 

emphysema than those exposed to cigarette smoke alone, which correlated with a greater influx 

of inflammatory cells (233).  In the human study, resected lung tissue from subjects was 

evaluated for inflammatory cell infiltrates and computed tomography (CT) scans were performed 

to assess extent of emphysematous damage.  Absolute numbers of inflammatory cells in lung 

tissues correlated with number of alveolar epithelial cell expressing adenovirus E1A protein 

which, in turn, correlated with severity of emphysema suggesting that latent adenovirus infection 

amplifies inflammation associated with cigarette smoking which then accelerates emphysema 

pathogenesis (288). 
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Other viruses have been linked to exacerbations of COPD which is significant because 

exacerbations are associated with increased progression of COPD.  These include rhinovirus, 

respiratory syncytial virus (RSV) influenza viruses A and B (311) and human metapneumovirus 

(226).  Studies show that the exacerbations are typically associated with increased inflammation 

(227, 385). 

1.6.3.2 Bacteria and COPD 

Bacteria have also been implicated in COPD pathogenesis.  Bacteria that have been identified in 

COPD patients include Haemophilus influenzae, Moraxella catarrhalis, Streptococcus 

pneumoniae, Pseudomonas aeruginosa (315).  Chlamydia spp. has also been associated with 

development of airway obstruction in humans as well as calves (158, 320).  Although bacteria 

were often detected by standard culturing techniques and during exacerbations in the human 

subjects, in many cases for both humans and the animal model, bacteria could only be detected 

by PCR on respiratory samples, thus emphasizing how subclinical lung infections can result in 

destructive inflammatory processes (158, 315).  Bacterial colonization is typically associated 

with inflammation involving cellular infiltrates, cytokines, chemokines and various proteinases 

(158, 266, 339). 

1.6.3.3 Parasites and COPD 

Although much more limited in scope, parasites have also been linked to COPD development.  

One report showed that experimental infection of rodents with the hookworm Nippostrongylus 

brasiliensis led to emphysema that was accompanied by an increase in the lungs of the numbers 

of alternatively activated macrophages producing MMP-12 (224).   
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1.6.3.4 Pc and COPD 

One of the earliest studies linking Pc to COPD is attributed to Calderon and colleagues who 

reported an infection frequency of about 10% in COPD patients (40).  Since that time, as 

detection techniques have become more sensitive, Pc has been identified in a disproportionate 

number of COPD patients compared to patients with other types of lung disorders.  For example, 

in both cystic fibrosis and lung cancer, a Pc colonization rate of 7% has been reported (279, 327).  

In contrast, 41% of COPD patients were reported to be colonized with Pc (279).  Another study 

evaluating HIV-negative subjects admitted to the hospital for suspected bacterial pneumonia 

found that 4.4% of the patients were colonized with Pc (137).  Of these Pc-colonized patients, 

63% were determined to have COPD compared to 20% of non-colonized patients.  In support of 

a higher Pc colonization frequency in COPD patients versus patients who have other types of 

severe lung diseases, Morris et al. compared subjects with severe COPD (GOLD stage IV) to 

other patients with severe lung diseases (control group), all of whom underwent lung transplants 

(245).  Pc colonization rates of 37% and 9% were observed in the COPD and control groups, 

respectively.  Moreover, they discovered that Pc occurrence was linked to COPD progression as 

severity of COPD was correlated with Pc colonization, with 37% of subjects with severe airway 

obstruction (GOLD stage IV) colonized with Pc compared to only 5.3% of subjects with less 

severe obstruction (GOLD stages 0-III).  Statistical analyses ruled out a number of clinical 

variables such as age, immunosuppressive therapy, use of TMP-SMX, other comorbid conditions 

and even smoking history as Pc colonization risk factors. 

 As previously discussed, the HIV+ population is at increased risk for development of 

COPD (66, 80).  It is possible that latent infections might be involved in the pathogenesis of 

COPD given the immunocompromised state of many of these individuals.  Morris and colleagues 
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investigated whether Pc might play this role and found that in otherwise healthy HIV+ 

individuals with no acute respiratory symptoms, subjects who were colonized with Pc were 

significantly more likely to have clinical airway obstruction, independent of smoking history 

(241). 

Other evidence in support of an association between Pc and COPD is found in a report by 

Morris et al. wherein an undetectable or low antibody titer against Pc was found to be an 

independent predictor of more severe airway obstruction (244).  This finding indicates a potential 

role for Pc colonization in COPD progression and suggests that anti-Pc antibodies may be 

important for protection against colonization. 

Finally, striking similarities in host responses to COPD and Pc infection have been 

reported.  In particular, lung inflammatory responses characterized by marked elevations in 

CD8+ T cells, macrophages and neutrophils that are commonly observed in COPD (77, 178, 

303, 346) have also been observed during acute PcP in humans (300, 330), as well as, rodent 

models (22, 206, 349).  While these observations apply to acute PcP infections, similar findings 

have been reported in nonhuman primate models of AIDS in which animals are inoculated with 

Pc (29, 267).   

In addition to the similarities between the inflammatory responses, development of PcP 

in humans has also been shown to result in COPD-like changes in pulmonary function.  For 

example, one small study of 10 HIV+ patients with acute PcP found a high incidence of small 

airways dysfunction characterized by significant decreases in maximum midexpiratory flow 

(MMEF), a commonly used measurement of COPD (92).  Another study examining 169 HIV+ 

patients with acute PcP in addition to a variety of other AIDS-related diseases including AIDS 

patients who had resolved their PcP infections found that Dlco, forced expiratory volume in one 
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second (FEV1) and peak expiratory flow (PEF), which are all measurements of COPD, were 

significantly reduced in patients with acute PCP and those who had resolved the disease (323).  

Moreover, these declines in pulmonary function appear to be permanent as revealed in a study by 

Morris et al. that monitored pulmonary function in 1149 HIV+ subjects for a median of four 

years (248).  They found that declines in pulmonary function persisted for years after resolution 

of acute PcP and that the declines were indistinguishable from those associated with COPD. 

Proposed mechanisms of lung damage for the two diseases also show similarities.  The 

prevailing theory of COPD pathogenesis is that damage to lung parenchyma is the result of 

excessive proteolytic activity due to an imbalance of proteases and anti-proteases in the lungs 

(357).  Evidence of excessive proteolytic activity has also been observed in PcP.  In one report, 

detection of cysteine protease (cathepsin) enzymatic activity was evaluated in lung homegenates 

from rats that developed PcP resulting from steroid-mediated immunosuppression (136).  In this 

study, it was found that Pc infection resulted in increased cathepsin B, H and L activity.  Others 

have found that levels of matrix metalloproteinase- (MMP) 2 and/or 9 activity, both of which are 

type IV collagenases that have elastinolytic activity, were increased in response to Pc infections 

in immunosuppressed rats and correlated with lung injury and/or pulmonary inflammation (282, 

345).   In addition to these host-derived sources of proteases, Pc itself can express proteases 

capable of degrading components of host extracellular matrix (ECM) (12).  Furthermore, Pc also 

expresses kexin, a serine protease with undefined function in the organism, which may also play 

a role in lung tissue destruction  (191, 213). 

Although these studies do not prove the existence of a causal relationship between Pc 

colonization and COPD development, the strong association warrants further investigation. 
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1.7 COPD PATHOGENESIS 

It is likely that multiple pathogenic mechanisms contribute to the development of COPD.  This 

section outlines the current prevailing schools of thought on the basis for disease development. 

1.7.1 Inflammation 

Since it is generally accepted that smoking is the main risk factor for COPD development and it 

is known that all smokers have some evidence of lung inflammation (255), it is believed that an 

amplified inflammatory response is largely responsible for inducing disease in the minority of 

smokers who advance to serious COPD. 

Inflammation in COPD is characterized by an influx of several cell types that progresses 

as airway obstruction worsens.  For example, macrophages, which are the most abundant cells 

found in the lungs of COPD patients as well as healthy individuals, are increased in the 

bronchioles and the alveoli of COPD patients (89, 263).  Numbers of macrophages have been 

correlated with severity of airway obstruction (77).  Additionally, a positive association has been 

observed between the numbers of macrophages in the alveolar walls and the presence of 

emphysema (89).  The primary mechanism by which macrophages are believed to cause lung 

damage is through expression of proteases that can break down collagen and elastin, major 

components of the ECM.  Studies using macrophages from COPD patients have shown increased 

production of these enzymes compared to macrophages from control subjects (90, 264), and 

animal studies support their role in COPD development (135, 313).  Macrophages can also 

express several other mediators such as cytokines, chemokines and ROS which all have the 

potential to contribute to COPD pathogenesis.  
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Neutrophils are also thought to play a significant role in COPD development.  The reason 

for this is that studies have shown correlations between extent of airway obstruction and numbers 

of neutrophils in bronchial tissue (77), sputum (270, 333) and airways (61, 360).  Furthermore, 

studies have demonstrated that many of the enzymes secreted by neutrophils can produce the 

type of tissue damage encountered in smoking-related COPD (173, 204, 211). 

Evidence of mast cell involvement in COPD pathogenesis has also been suggested in 

studies showing increased mast cell numbers in the airway walls of COPD patients (123).  In 

addition, mast cells have also been implicated in a less direct manner in COPD development 

through the finding of elevated mast cell mediators in the airways of smokers (168).  The precise 

manner in which they contribute to COPD is unknown.  However, they can express many 

potential mediators including a number of proteases that can degrade lung tissue directly, several 

different cytokines, and chemokines which could possibly recruit other inflammatory cells such 

as neutrophils (18). 

A role for eosinophils in COPD pathogenesis has also been suggested as multiple reports 

have identified these cells in various respiratory specimens of COPD patients (192, 298).  While 

eosinophils are not known for eliciting tissue damage, their secondary granules store proteins 

that are toxic to bronchial epithelial cells such as eosinophilic cationic protein (ECP), eosinophil 

peroxidase (EPO) and eosinophilic-derived neurotoxin and they are able to secrete a diverse 

range of cytokines (304). 

In healthy individuals, very few lymphocytes are typically recovered from the airways 

(7).  However, in COPD, lymphocytes, especially CD8+ T cells, accumulate in the airways 

(263), alveolar structures (301), pulmonary vessels (301) and the lymph nodes (302).  Production 

of mediators such as perforin, granzyme B or cytokines by these cells could provide potential 
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mechanisms for disease development, but it is not known if any or all of these play a role.  

Although the mechanism through which they cause tissue damage is not understood, their 

numbers in the lungs have been directly correlated to degree of airflow limitation (89, 263, 288, 

303).   

CD4+ T cells typically infiltrate the lungs less extensively than CD8+ T cells in COPD.  

Nevertheless, increased numbers have been observed in both the air spaces and the parenchymal 

walls of the lungs of COPD patients (219, 288).  CD4+ T cells are largely responsible, through 

secretion of an array of cytokines, for orchestrating and amplifying inflammatory responses of 

both adaptive and innate effector cells.  For example, they are critical in priming CD8+ T cells 

for cytotoxic activity as well as maintaining memory CD8+ T cells.  They also play a significant 

role in activating macrophages.  Hence, their activity can be indirectly linked to tissue damage 

via their effects on other effector cells, and directly by the release of damaging cytokines. 

There are dozens of soluble inflammatory mediators that have been implicated in COPD 

pathogenesis.  Chemokines act to recruit inflammatory cells from the circulation into the lungs, 

proinflammatory cytokines amplify and perpetuate inflammation, T cell-secreted lymphokines 

are responsible for determining the pattern of inflammation, and growth factors maintain 

inflammation that leads to remodeling of lung tissue.   

Though many chemokines have been identified as being elevated in various respiratory 

specimens from COPD patients, one that is consistently observed is CCL2 which has been found 

in sputum and BAL fluid (70, 361).  This chemokine is a potent chemoattractant of monocytes 

which may, in part, explain the accumulation of macrophages in the lungs of COPD patients. 

Other chemokines that can also recruit macrophages, as well as T cells and eosinophils, and are 

frequently observed in COPD patients, are CCL3, CCL4 and CCL5 (43, 63, 98).  These 
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chemokines have been particularly associated with exacerbations in COPD patients (389).  

Elevated IL-8, which is highly chemotactic for neutrophils, has also been commonly observed in 

COPD patients and seems to be especially important as it can serve as a marker of disease 

severity (96, 178, 380).  Another group of chemokines receiving increased attention recently 

include CXCL9, CXCL10 and CXCL11, all of which are induced by IFN-γ and act to recruit T 

helper type 1 (Th1) cells.  All of these chemokines appear to play important roles in COPD as 

they have been found to be elevated in sputum samples of COPD patients and correlated with 

disease severity (63). 

Increased proinflammatory cytokine levels are also frequently observed in COPD and 

appear to play important roles in disease development.  These cytokines act through activation of 

the transcription factor, nuclear factor (NF)-κB, leading to increased expression of inflammatory 

genes and subsequent amplification of inflammation.  TNF-α, which has been reported to be 

elevated in sputum from COPD patients, especially during exacerbations (5, 178), is one 

example.  When overexpressed in mice, TNF-α, which induces expression of IL-8 and MMPs, 

leads to classic pathologic features of emphysema (100).  Additionally, another study 

demonstrated that TNF-α receptor knockout mice exposed to cigarette smoke developed a less 

severe form of emphysema than control mice (59).  IL-1β, which is functionally similar to TNF-

α, elicits production of multiple proinflammatory mediators including IL-2, IL-6, IL-8, CCL5, 

GM-CSF, IFN-γ and TNF-α (56).  This cytokine can also stimulate elastolytic activity, especially 

that of MMP-9 (162, 203), which may be important in emphysema development.  Similar to 

TNF-α, increased levels of it can be found in sputum from COPD patients and has been 

correlated with disease severity (307).  IL-6, which has been found to be increased in sputum and 

BAL fluid from COPD patients (28, 331), is another cytokine with a wide array of 
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proinflammatory effects and likely plays a role in COPD development which, to date,  is still 

unclear.  Two other lesser studied cytokines have also been associated with COPD pathogenesis.  

Recently described, IL-32, was shown to be increased in expression by epithelial cells, 

macrophages and CD8+ T cells of COPD patients which was correlated with disease severity 

(37).  Thymic stromal lymphopoietin (TSLP) is a member of the IL-7 family of cytokines and 

has also been shown to be elevated in the airway epithelium of COPD patients (381).  This 

cytokine plays a dual role of mediating both Th1 and Th2 cells, albeit by different mechanisms 

(209). 

Most literature describing cytokine secretion patterns in COPD indicate a predominantly 

Th1-skewed response (141, 220).  However, Th2-biased responses have also been described in 

COPD (16, 17).  The disparities among these studies may be due to heterogeneity in clinical 

samples arising from differences in disease severity.  Given the complexity of COPD, it seems 

unlikely that a single pattern of cytokine secretion is involved but, rather, an overlap between 

Th1 and Th2 cytokines. 

IFN-γ, a key Th1 cytokine that is a potent stimulator of macrophages, has been frequently 

implicated in COPD development.  It is believed to play a major role in COPD development due 

to reports of increased expression of IFN-γ in T cells isolated from emphysematous lung tissue 

(127), BAL fluid (141) and peripheral blood (220), as well as, higher numbers of IFN-γ-secreting 

CD8+ T cells in the sputum of COPD patients (365).  The importance of IFN-γ in COPD 

indicated by these clinical reports is supported by animal studies.  For example, overexpression 

of IFN-γ in the lungs of mice was shown to lead to emphysema (375). 

Th2 cytokines are receiving increased attention by investigators because of reports 

showing elevated levels of Th2 cytokines in COPD.  IL-4, the archetypal Th2 cytokine, has been 
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shown to be increased in cytotoxic T (Tc) type 2 (Tc2) cells recovered from BAL fluid of 

patients with COPD (17).  Similarly, Barcelό et al. also observed a higher frequency of IL-4-

secreting Tc2 cells in BAL fluid of COPD patients in addition to Tc2 cells secreting IL-13, 

another Th2 cytokine, both of which inversely correlated to degree of airflow obstruction (16).  

Plasma levels of IL-13 have also been shown to be inversely related to airway obstruction (202).  

Recent evidence gleaned from animal models also supports a role for IL-13 in COPD 

development.  Zheng and colleagues demonstrated development of MMP- and cathepsin-

dependent emphysema in the lungs of mice where IL-13 was overexpressed (387).  IL-13 was 

also associated with development of emphysema in a parasite infection mouse model 

(Nippostrongylus brasiliensis) in which alternatively activated macrophages (AAM) secreting 

MMP-12 appeared to play a role in disease pathogenesis (224), and in a virus infection mouse 

model (Sendai virus) in which  invariant natural killer T (NKT) cells induce macrophages to 

secrete IL-13 consequently driving disease development. 

Another proinflammatory cytokine that has been associated with COPD is IL-18.  

Increases in IL-18 that correlate with disease severity have been observed in alveolar 

macrophages and CD8+ T cells from the airways(151), as well as, sputum (294) from COPD 

patients.  In an animal model supporting these data, overproduction of IL-18 in the lungs of a 

mice mediated increased production of IL-13 and inflammatory cell influx into the lungs 

ultimately leading to development of emphysema (146). 

A subset of CD4+ T cells that has been receiving increased attention in recent COPD 

research are the Th17 cells which play an important role in inflammatory processes.  Their role 

and regulation in COPD is not well understood, but IL-17A, the predominant product of these 

cells, has been found to be elevated in sputum from COPD patients (362).  Furthermore, IL-17-
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expressing cells, as well as cells expressing IL-22 and IL-23 (other members of the IL-17 family 

of cytokines) have been identified in bronchial biopsies from COPD patients (78).   

Many of the cytokines implicated in COPD pathogenesis act as growth factors that can 

support differentiation and survival of inflammatory cells, or promote airway remodeling 

through activation and proliferation of structural cells.  One such cytokine is GM-CSF which 

governs these functions for neutrophils, macrophages and eosinophils.  In COPD patients, 

elevated levels of GM-CSF that coincided with increased numbers of neutrophils have been 

observed in BAL fluid, particularly during exacerbations (14) and sputum (305). 

Transforming growth factor (TGF)-β is a fibrogenic growth factor (188) that has been 

linked to COPD.  TGF-β can induce proliferation of airway smooth muscle cells and fibroblasts 

in addition to stimulation of ECM deposition and epithelial repair.  Its immunological role is 

usually that of immune regulation via the activity of regulatory T cells which results in the 

suppression of Th1, Th2 and Th17 cells.  Increases observed in this growth factor in airway 

epithelial cells and macrophages of COPD patients (71, 354) may reflect a compensatory 

mechanism to inflammation associated with the disease.  Perhaps even more relevant to disease 

development are the fibrotic effects caused by TGF-β which are mediated by increases in 

connective tissue growth factor (CTGF) which has been shown to be upregulated in microarray 

analyses of COPD patient lungs (256).  Animal models showing this type of COPD development 

do not currently exist; however, Morris et al. demonstrated development of MMP-12-mediated 

emphysema in mice lacking the αvβ6 integrin which activates latent TGF-β (249). 

Epidermal growth factor (EGF) is another fibrogenic growth factor (190), perhaps to a 

lesser extent than TGF-β, that has been found to be increased in the airway epithelium of COPD 

patients (368).  It has been speculated to play a role in the pathophysiological mucous plugging 
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of small airways aspect of COPD development by its ability to induce mucin expression (353).  

The importance of this is supported by findings of Hogg et al. who showed that degree of airway 

obstruction was associated with the extent of small airways plugging by mucous (145).  It has 

also been hypothesized that COPD pathogenesis might also occur through the activity of 

neutrophils recruited in response to increased IL-8 expression induced by EGF (343). 

Another growth factor implicated in COPD development is vascular endothelial growth 

factor (VEGF).  This growth factor is necessary for growth of new vessels and regulation of 

vascular leakage.  Containing the highest concentration of all body tissues (25, 239), the lungs 

require VEGF to maintain homeostasis  through enhanced cell proliferation (34).  Therefore, it is 

significant that reduced levels of VEGF have been observed in the airways (347) and sputum 

(170), where levels were inversely correlated to extent of airway obstruction, of emphysema 

patients.  In support of these clinical data, it has been shown that blockage of VEGF uptake in a 

rat model led to enlargement of airspaces indicative of emphysema (177).  Interestingly, in 

contrast to emphysema patients, increased levels of VEGF, that inversely correlated to severity 

of airway obstruction, have been observed in sputum from chronic bronchitis patients (170).   

1.7.2 Protease-Antiprotease Imbalance 

The prevailing theory for emphysema development since the early 1960s is the protease-

antiprotease imbalance theory.  This hypothesis states that the proteolytic balance maintained in 

healthy lungs shifts towards a proteolytic phenotype when an excess of protease activity prevails 

due to an imbalance between local proteases and their respective antiproteases resulting in the 

breakdown of connective tissue components in the lung parenchyma.  This theory first took hold 

when two discoveries about a specific enzyme inhibitor were made.  The first is description of 
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the finding that the band for the protein, α1-antitrypsin, an inhibitor of the elastin degrading 

serine proteases secreted by neutrophils (neutrophil elastase (NE), cathepsin G and Proteinase 3 

(Pr3)) was missing from a protein electrophoresis of serum from a patient in a respiratory 

hospital (198).  The second discovery is the observation that patients deficient for this protein 

developed early onset emphysema (87).  The still young protease-antiprotease hypothesis was 

subsequently reinforced by the use of experimental animal models wherein proteases such as the 

cysteine protease, papain (126), porcine pancreatic elastase (161) and NE (175) were instilled 

into the lungs resulting in emphysema-like disease.  Since then, focus has shifted from NE being 

the sole mediator of emphysema when Janoff and colleagues pointed out that approximately 50% 

of the elastase activity in the lungs of smokers was actually from MMPs (160).  This was 

supported by the finding that numbers of macrophages, which can secrete many MMPs, 

correlated with severity of emphysema (86).  Further work in this arena has introduced the 

concept that enzymes other than elastases can participate in the connective tissue destruction of 

the lung parenchyma.  Indeed, mounting evidence indicates that it is unlikely that a single 

protease, or even a single type of protease, is responsible for the matrix destruction in 

emphysema. 

As mentioned, the original formulation of the protease-antiprotease hypothesis involved 

only the neutrophil-secreted serine proteases, particularly NE, as mediators of emphysema.  This 

is because of correlations between extent of airway obstruction and neutrophil numbers in 

airways (360), sputum (333) and bronchial tissue (77), as well as studies demonstrating 

emphysema development in the lungs of animals instilled with human NE (211), cathepsin G 

(211) or Pr3 (173).  However, because α1-antitrypsin therapy clinical trials have failed to provide 

protection against development of emphysema in humans deficient for this protein (338), and 
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because some investigators have reported the absence of a correlation between neutrophil 

numbers and severity of lung destruction (86, 89), the role for neutrophils and the serine 

proteases is currently in question. 

Lysosomal cysteine proteases (cathepsins) are another type of protease that has been 

implicated in COPD pathogenesis.  Although they are normally restricted to intracellular activity, 

they have the ability to degrade several ECM components including elastin and collagen.  

Macrophages (281), mast cells (378), smooth muscle cells (344) and fibroblasts (363) have all 

been observed to release cathepsins.  Since the report showing that intratracheal instillation of 

cathepsin B in hamsters led to emphysema-like disease (204), other studies have been performed 

to elucidate the role of these enzymes in COPD development.  For example, studies have shown 

that cathepsin L is significantly increased in alveolar macrophages and BAL fluid of smokers 

(351, 352).  Furthermore, macrophages incubated with BAL fluid from COPD patients showed 

increased expression of cathepsin S (108).  While these clinical studies hint at the importance of 

cathepsins in COPD development, seminal studies that clearly demonstrate their importance in 

disease development were performed in transgenic mice that employed inducible lung expression 

of either IFN-γ (375) or IL-13 (387) expression.  In both of these studies, overexpression of the 

cytokines in the lungs led to emphysema-like disease that was mediated in part by multiple 

cathepsins which was demonstrated by administration of a cysteine protease inhibitor (E64) that 

significantly attenuated emphysematous changes (387). 

A great deal of research investigating a proteolytic cause of emphysema has focused on 

the abnormal expression of MMPs, a family of 24 matrix-degrading enzymes required for 

development, tissue remodeling and repair.  The MMPs of particular interest in COPD 

pathogenesis can be simplistically grouped, by substrate specificity, into the collagenases (MMP-
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1 and -8 which cleave collagen types I, II and III), the stromelysins (MMP-3, -10 and -11 which 

are specific for laminin), the gelatinases (MMP-2 and -9 which most efficiently cleave type IV 

collagen but can also cleave elastin fibers and gelatin) and the elastases (MMP-7 and -12 which 

are specific for elastin).  It should be noted that all of these MMPs can cleave substrates other 

than those listed but those that are listed are the ones for which they appear to be most specific. 

Evidence pointing to a role for MMPs in COPD development includes observations of 

increased levels of collagenases in the BAL fluid of emphysema patients (91).  Although this 

study did not identify the precise source of the collagenase activity in the BAL fluid, they 

speculated that it was from MMP-8 based on the rate of activity they observed.  Using lung 

tissue specimens to quantify RNA expression and detect gene expression via in situ hybridization 

(ISH), Imai el al. also observed an increase of collagenase that was localized to type II 

pneumocytes in emphysema patients (149).  In this case, the collagenase was identified as MMP-

1.  Other groups have also examined RNA expression in lung tissue of COPD patients to identify 

increased expression of gelatinases (MMP-2 and -9), as well as, collagenases (MMP-1 and -8) 

(264, 312).  Both of these studies confirmed their RNA findings by evaluating enzymatic activity 

of respiratory specimens in zymographic assays.  Due to their tremendous proteolytic potential 

over a broad range of substrates, considerable attention has centered on the role of macrophages 

in COPD development.  Multiple studies have shown that macrophages from COPD patients 

upregulate MMP-1 and/or MMP-9 (90, 296), thus, enhancing elastolytic activity in the lungs of 

these patients (90, 297).  Because of the vital nature of elastin in the lungs (125, 334), of 

particular interest among the MMPs is MMP-12 due to its potent elastolytic properties.  

Increased levels of MMP-12 have been found in sputum (75) as well as BAL fluid, BAL cells 

and tissue biopsies (238) of COPD patients.  In a two-pronged study, Qu and colleagues showed 
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that MMP-12 mRNA expression was upregulated in biopsy tissue obtained from human 

cancerous and emphysematous lungs corroborating data generated in a murine study wherein 

overexpression of MMP-12 in mouse lungs resulted in development of cancer and emphysema 

(283).  Underscoring a critical role for MMP-12 is the finding that an allele of the human MMP-

12 gene containing single nucleotide polymorphism in the promoter was associated with reduced 

risk of COPD development in smokers (148).   

Animal studies have given weight to these findings in humans.  For example, mouse 

models have shed light on the possible mediators of MMP expression.  One study found that 

overexpression of IL-1β in the lungs of mice led to emphysema mediated by inflammatory cell 

infiltrates and increased expression of MMP-9 and 12 (193).  Prause and colleagues showed that 

intranasal instillation of IL-17 resulted in elevated MMP-9 that coincided with increased 

numbers of neutrophils in the BAL fluid of mice (278).  Highlighting a potentially pivotal role of 

IL-13, Zheng et al. showed that overexpression of this cytokine in the lungs of mice led to 

enhanced inflammation and induction of MMP-2, -9, 12, 13 and -14 resulting in emphysema 

development (387).  Inhibition of these MMPs resulted in reduced emphysema demonstrating 

that these enzymes, at least in part, mediate disease development.  In a similar fashion, Wang et 

al. demonstrated that overexpression of IFN-γ in mouse lungs resulted in emphysema mediated 

in part by MMP-9 and -12 (375).  In yet another transgenic mouse model in which lung 

macrophages expressed human MMP-9, adult mice developed emphysema characterized by 

significant airspace enlargement and decreased alveolar wall elastin (95).  The importance of 

MMP-12 was clearly demonstrated in MMP-12 knockout mice that were exposed to cigarette 

smoke (135).  While their wild type littermates developed emphysema that coincided with 

macrophage influx into the lungs, the knockout mice did not develop any signs of the disease nor 
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did they have increased numbers of macrophages in their lungs.  Furthermore, instillation of 

CCL2 into the lungs of the knockout mice led to heightened levels of macrophages in their lungs, 

but they still did not develop disease demonstrating that MMP-12 is sufficient to induce 

smoking-induced emphysema. 

 As the overwhelming majority of studies on protease-antiprotease imbalance in COPD 

pathogenesis have focused on the protease side of the balance, there is very little literature on 

antiprotease levels in the disease.  What is known is that all of these proteases are typically 

counteracted by an excess of antiproteases.  The serine proteases are kept in check primarily by 

α1-antitrypsin in the lung parenchyma and secretory leukocyte protease inhibitor (SLPI) in the 

airways, both of which have been shown to ameliorate neutrophil-induced emphysema in an 

animal model (212, 340).  Furthermore, in their mouse model of emphysema wherein induction 

of disease was effected by overexpression of IFN-γ in the lungs, Wang and colleagues observed 

that SLPI was downregulated (375).  In addition, α1-antitrypsin was found to be downregulated 

in an IL-13 induction of emphysema mouse model (387).  Four tissue inhibitors of MMPs 

(TIMP-1, -2, -3 and -4) along with α-macroglobulins counteract the activities of the MMPs.  

Levels of TIMP-1, which is known to inhibit MMP-9 activity,  have been observed to be 

decreased in the plasma (321) and sputum (232) of COPD patients.  Furthermore, TIMP-1 

expression by alveolar macrophages obtained from BAL of COPD patients has been reported to 

be reduced compared to controls (275).  Sputum levels of TIMP-2, the inhibitor of MMP-2, from 

COPD patients has been negatively correlated with airway obstruction (390).  Additionally, 

Hirano et al. observed an association between COPD development and polymorphisms in the 

TIMP-2 sequence (140).  In smoke exposed mice that developed emphysema, 
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immunohistochemical staining of lung tissue demonstrated that TIMP-2 levels were significantly 

lower than in control mice (366). 

1.7.3 Oxidative stress 

Smoking is the leading risk factor for development of COPD which largely explains why 

oxidative stress is thought to play an important role in disease pathogenesis as the chemical 

make-up of cigarette smoke contains more than 4700 compounds, including high concentrations 

of free radicals and oxidants (58).  For this reason, an oxidant-antioxidant hypothesis, analogous 

to the protease-antiprotease hypothesis, for COPD development has been proposed in which 

oxidative stress caused by an imbalance of oxidants and antioxidants in favor of oxidants results 

in lung injury (217).  The importance of this theory to COPD development lies in the potential of 

the oxidants to oxidize proteins, DNA or lipids which can directly result in lung injury or induce 

a variety of signaling cascades that may initiate the cell death process (130).  In addition to 

cigarette smoke, there are also multiple cellular sources of oxidants.  Therefore, since the work 

being expounded in this document centers on pathogenically-induced development of COPD, 

this section will focus on cell-derived oxidants.  

As previously discussed, inflammation is a common feature of COPD characterized by 

recruitment and activation of a variety of different immune cell types.  Immune cell activation 

can lead to secretion of proinflammatory cytokines that, in turn, can induce both phagocytic and 

nonphagocytic cells to generate reactive nitrogen species (RNS) and reactive oxygen species 

(ROS).  For example, IFN-γ, TNF-α, GM-CSF, IL-1 and IL-6 can all induce macrophage 

expression of the RNS, nitric oxide (NO), by either the nitric oxide synthase 2 (NOS2) gene or 

the inducible nitric oxide synthase (iNOS) gene (76, 216).  Additionally, IL-17 has also been 
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shown to stimulate NO production via the iNOS pathway by a number of structural cells, but not 

by macrophages.  Interestingly, in addition to the proinflammatory IFN-γ, IL-4 has been reported 

to stimulate production of NO via the iNOS gene in airway epithelial cells (129).  These data 

support observations of increased NO in the exhaled breath condensate of COPD patients (62, 

230).  Proinflammatory cytokines, especially IFN-γ and TNF-α (122), also mediate expression of 

ROS such as the superoxide ion (O2
-) and hydrogen peroxide (H2O2) in processes that include 

mitochondrial respiration, the xanthine/xanthine oxidase (X/XO) reaction and the respiratory or 

oxidative burst, which is the major ROS generating system.  The respiratory burst is most 

commonly associated with immune cells such as neutrophils, monocytes and macrophages, but 

airway epithelial cells are also known to generate ROS via the respiratory burst (292).  In COPD 

patients, particularly during exacerbations, increased ROS release by neutrophils in peripheral 

blood has been reported (250).  In addition, H2O2 levels in breath condensate of COPD patients 

was found to be higher than in normal subjects which, again, was especially true during 

exacerbation episodes (260, 261). 

While inflammatory processes can induce expression of oxidants, these resulting oxidants 

can, in turn, elicit further inflammation resulting in a vicious circle type of amplification that can 

result in tissue destruction.  For example, oxidants can initiate signal transduction pathways via 

the transcription factor NF-κB (310).  Once activated, this molecule is known to induce 

expression of several proinflammatory cytokines including IL-2 (138), IL-6 (13, 15), IL-8 (337), 

GM-CSF (13, 15), IFN-γ (185) and TNF-α (322).  Oxidants can also amplify inflammation by 

inactivation of histone deacetylase 2 (HDAC2) which suppresses gene transcription of 

inflammatory genes by removing acetyl groups from histones, thus ensuring that chromatin 

remains tightly wound around histones (154-156).   
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1.7.4 Apoptosis 

One other mechanism that may be at play in COPD pathogenesis is apoptosis.  Similar to the 

previous “imbalance” models, it is believed by some that the balance between apoptosis taking 

place in the lungs and a reciprocal increase in proliferation of cells to replace the dying cells is 

shifted toward an excessive apoptosis phenotype.  Reports of elevated apoptosis in the alveolar 

walls of the lungs of patients with emphysema (38, 142, 176) lend credibility to this theory.  

These findings led researchers to revisit a theory posited by Liebow stemming from his 

observations that alveolar septa in lung tissue from emphysema patients were extremely thin and 

almost avascular.  Consequently, he hypothesized that alveolar septa disappearance characteristic 

of the disease may be the result of decreased blood supply to the small precapillary blood vessels 

(205).  This, in turn, prompted researchers to speculate that VEGF, a potent angiogenic factor 

that promotes endothelial cell proliferation and vessel formation (88), might play a role in 

emphysema development.  One reason is that the lungs contain the highest concentrations of 

VEGF of all of the body tissues (25, 239).  Furthermore, both in vitro (109, 110) and in vivo (8) 

studies have shown that withdrawal of VEGF results in endothelial cell apoptosis.  Assessments 

of VEGF levels in COPD patients have revealed decreased expression of VEGF and its receptors 

in lung tissue (176) and airway tissue (347).  In a more comprehensive study evaluating the 

pathobiological link between oxidative stress and VEGF levels, severity of COPD correlated 

with NO levels and inversely correlated with VEGF levels in the sputum of COPD patients 

(171). 

Animal studies largely support the findings in human disease.  For example, Aoshiba and 

colleagues demonstrated that introduction of active caspase-3, an important mediator of cellular 

apoptosis, into the lungs of mice resulted in emphysema without excessive inflammation (10), 
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thus providing direct evidence that apoptosis of alveolar walls leads to emphysematous changes.  

Moreover, Suzuki et al. reported that VEGF levels were decreased in the airways of mice with 

smoke-induced emphysema (347), and Kasahara et al. showed in rats that blocking the effects of 

VEGF with an inhibitor of the VEGF receptor kinase leads to emphysema that developed in the 

absence of an inflammatory response (177).  Similar development of emphysema without 

inflammation that was accompanied by upregulation of caspase-3 was reported by Tang and 

colleagues in a mouse model of lung-targeted ablation of the VEGF gene (356).  In another study 

investigating the connection between oxidative stress and apoptosis-mediated emphysema, 

researchers discovered that the emphysematous effects of VEGF receptor blockade could be 

prevented by administration of a superoxide dismutase (SOD) mimetic, an antioxidant that 

removes superoxide anions (364).  Treatment with the SOD mimetic was characterized by 

increased septal cell proliferation and enhanced activation of the anti-apoptotic protein, Akt.  

They went on to further show that apoptotic areas in the lungs, where activated caspase-3 was 

detected, were co-localized to the areas of antioxidant stress. 

1.7.5 Use of microarray for the study of COPD pathogenesis 

In aggregate, the many mechanisms and mediators discussed highlight the fact that COPD 

pathogenesis is a highly complex process.  Furthermore, it likely involves multiple mediators and 

mechanisms that work in tandem.  Given this complexity, the variable susceptibility of the 

general population to disease development and the fact that patients typically are not diagnosed 

until the late stages of the disease when therapies may be most effective, it is important to be 

able to identify biomarkers and/or susceptibility and progression factors. 
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DNA microarray is one such technology that can be used for this purpose.  For example, 

Spira et al. used microarrays in order to evaluate gene expression patterns associated with 

emphysema in the lung tissue of patients who had undergone lung reduction surgery (332).  In a 

study utilizing a similar approach, Golpon and colleagues also employed microarrays to analyze 

severely emphysematous lung tissue samples from patients with “usual” emphysema and patients 

with α1-antitrypsin-related emphysema (121).  Ning and coworkers used microarrays in 

combination with serial analysis of gene expression (SAGE) to compare gene expression patterns 

of at-risk control smokers and COPD patients with moderate airway obstruction (GOLD-2) and 

discovered previously unreported candidate genes that could serve as molecular targets of the 

disease (256).  In another study, microarray technology was used to assess gene expression of 

“normal” lung tissue (grossly uninvolved with simultaneously resected nodular tissue suspected 

of being cancerous) removed from patients with varying degrees of airflow obstruction (27).  

Gene expression biomarkers unique to COPD were distinguished from which a subset was 

identified that the investigators then used to reliably predict (97% accuracy) occurrence of 

disease in a separate and distinct data set independently obtained from a different population of 

COPD patients.  Hence, microarray technology represents a powerful tool that can be used in the 

study of COPD pathogenesis. 

1.8 STUDY OF PNEUMOCYSTIS-RELATED COPD DEVELOPMENT 

Because Pc cannot be cultured continuously in vitro, animal models are required for molecular 

characterizations of the organism, as well as, the study of host immune responses to it. 
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1.8.1 Rodent models for the study of Pc-host interactions 

The principal animal models that have been most widely used, and continue to be used, in the 

study of Pc are rodent models in which sustained Pc infection is achieved in mice that have 

immune deficiencies such as SCID, nude or genetically altered mice, or it is facilitated by 

immunosuppression mediated by the use of corticosteroids or selective depletion of specific 

immune cells (73, 132). 

While these models have provided a wealth of information about Pc-host interactions, 

there are limitations inherent in their use.  For example, broad suppression of immune responses 

with corticosteroids may compromise study of the various host immune mechanisms that may be 

of interest in Pc infections.  Use of models wherein antibodies are employed to deplete CD4+ T 

cells goes to the opposite extreme of corticosteroid use.  In targeting only the CD4+ T cells to 

mimic the immune deficiency of AIDS, the constellation of immune dysfunctions that 

accompanies the disease is circumvented.  These dysfunctions may be relevant to the study of 

host responses to Pc in the context of AIDS-associated immunosuppression.  In addition, some 

experimental procedures such as BAL washes cannot be repeatedly performed in mice which 

limits serial analyses of cell populations, biochemical composition and organism burden in the 

lungs during the course of infection.  Moreover, since Pc exhibits exquisite host specificity (112, 

115, 116), translation of data gleaned from rodent models of Pc infection to clinical Pc infections 

may not be optimal. 
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1.8.2 Nonhuman primate models for the study of Pc-host interactions 

As an alternative to rodent models for the study of Pc-host interactions, the Norris lab has 

developed two nonhuman primate models of Pc infection in the context of AIDS-like 

immunosuppression.  Infection of monkeys with simian immunodeficiency virus (SIV) results in 

AIDS-like disease with development of opportunistic infections, including PcP (19).  Studies in 

SIV-infected nonhuman primates that are co-infected with Pc revealed extensive CD8+ T cell 

and neutrophil infiltration (29, 65, 267), as well as, rises in IL-8 and TNF-α in the lungs of 

animals with Pc (267)  mirroring clinical reports of Pc infection, thus making this a useful model 

in the study of AIDS-related Pc infections.  Another finding was that many of these animals 

experience a protracted, asymptomatic colonization period before developing PcP (29, 267). 

The second model utilizes simian/human immunodeficiency virus (SHIV) instead of SIV 

to induce immunosuppression.  SHIV is a chimeric SIV that expresses HIV envelope and other 

accessory proteins from HIV such as tat, rev and vpu and, like SIV, CD4+ T cell lymphopenia 

accompanied by wasting and susceptibility to opportunistic infections develop in monkeys 

infected with this virus paralleling the virulence of an acute HIV infection (84, 286).  The main 

advantage to using SHIV is that immunosuppression after infection occurs much more quickly 

(2-3 weeks) compared to SIV infection (6-12 months), thus inducing earlier susceptibility to Pc 

colonization or infection. 

These studies support the use of nonhuman primate AIDS models as an alternative to 

rodent models for studying host immune responses to Pc.  They have greater relevance to 

humans in that the immune deficits experienced by animals infected with SIV or SHIV that 

become immunosuppressed are similar to those that develop in HIV+ individuals who develop 

AIDS.  In addition, Pc derived from monkey is evolutionarily closer to Pc derived from humans 
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compared to rodent-derived Pc making it more relevant for understanding Pc infections in 

humans (259).  Another benefit is the opportunity provided by these models to study the effects 

of inflammatory cells and mediators during the colonization phase.  Finally, these nonhuman 

primate models are particularly well suited to longitudinal studies because serial samples that are 

difficult to obtain from humans or rodents are easily harvested.  

1.9 SUMMARY 

Despite the availability of antiretroviral therapy and prophylactic drugs for Pc infections, as the 

cause of PcP, this fungal pathogen remains one of the most serious opportunistic infection in the 

HIV+ population resulting in extensive morbidity and mortality.  Moreover, Pc infections and 

the associated health problems are common in non-HIV-infected populations such as transplant 

and cancer patients.   

However, the extent of the health burden attributed to this pathogen may be grossly 

underestimated as colonization with Pc without any overt clinical symptoms, which appears to be 

highly prevalent in both HIV+ and HIV- populations, may act as a contributing factor in the 

pathogenesis of COPD, a far more pervasive disease that is a leading cause of death worldwide.  

Mounting evidence implicating Pc in COPD development is found in reports documenting high 

rates of emphysema and Pc colonization in HIV+ smokers, as well as, increased rates of Pc 

colonization in COPD patients that corresponds with severity of the disease.  Furthermore, 

COPD-like changes that have been observed after resolution of PcP and the similarities in the 

host immune responses in COPD and Pc infection add further support to the existence of an 
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association between Pc colonization and COPD.  Despite these many lines of evidence, a causal 

link has still not been demonstrated. 

How COPD development occurs is poorly understood.  Although there are multiple 

hypotheses for mechanisms of COPD pathogenesis, efforts to pinpoint which, if any, are correct 

have been hindered by the wide variability in severity and expression patterns of the disease.  To 

this end, the simian model of Pc infection is an excellent tool in the study of Pc-host interactions.  

It is highly relevant because the species of Pc that infects nonhuman primates is closely related to 

the species that infects humans, and study of the effects of Pc colonization can be evaluated 

longitudinally in the context of AIDS-like immunosuppression.  Furthermore, samples used for 

assessment of disease severity and progression are easily obtained throughout the duration of the 

disease. 

In sum, use of the nonhuman primate model of Pc infection offers a unique opportunity to 

study acute and chronic effects of Pc colonization and elucidate possible mechanisms involved in 

HIV-related emphysema development.  Information gained may be valuable in prevention and 

treatment of obstructive airway disease. 

1.10 CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

1.10.1 Central Hypothesis 

Chronic subclinical infection (colonization) with Pc in the context of HIV infection results in a 

persistent inflammatory response that contributes to the acceleration and progression of COPD. 
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1.10.2 Specific Aim 1. To test the hypothesis that Pc colonization in a primate model of 

AIDS leads to progressive airway obstruction and development of COPD.  

We anticipated that animals will break out into SHIV-infected and SHIV-infected/Pc-colonized 

groups based on differences in baseline anti-Pc titers.  We monitored obstruction by performing 

pulmonary function tests (PFTs) on SHIV-infected monkeys by whole body plethysmography to 

collect spirometric, lung volume and lung compliance measurements.  The nature of the 

obstruction was characterized by correlating Pc colonization and decreased lung function to 

COPD-associated changes in lung tissue by performance of computed tomography (CT) scans 

and histologic morphometry. 

1.10.3 Specific Aim 2. To identify key immune mediators of SHIV/Pc-associated 

obstructive lung disease. 

RNA was isolated from necropsied lung tissue samples.  Using microarray technology, gene 

expression profiles were developed that distinguish responses associated with SHIV 

infection/Pc-colonization and responses associated with SHIV infection only.  These studies 

generated a comprehensive molecular network of the inflammatory pathways associated with the 

progression of COPD in AIDS and identify key candidates for therapeutic intervention. 
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1.10.4 Specific Aim 3. To test the effect of treatment with trimethoprim-sulfamethoxazole 

on progression of pulmonary function decline in SHIV-infected monkeys colonized with Pc. 

As in specific aim 1, animal groups included SHIV-infected and SHIV-infected/Pc-colonized 

monkeys.  After significant obstruction became apparent in Pc-colonized animals, this group was 

be divided into subgroups in which one received TMP-SMX to eradicate Pc colonization, and the 

other group did not receive any treatment and was allowed to continue the normal course of 

disease induced by Pc colonization.  PFTs, CT scans and histologic morphometry were 

performed to determine if pulmonary function had been stabilized and that further obstruction 

had been arrested. 
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2.1 ABSTRACT 

HIV-infected patients are at increased risk for development of pulmonary complications, 

including chronic obstructive pulmonary disease (COPD).  Inflammation associated with sub-

clinical infection has been postulated to promote COPD.   Persistence of Pneumocystis (Pc) is 

associated with HIV and COPD, although a causal relationship has not been established.  We 

used a simian/human immunodeficiency virus (SHIV) model of HIV infection to study 

pulmonary effects of Pc colonization.   SHIV-infected/Pc-colonized monkeys developed 

progressive obstructive pulmonary disease characterized by increased emphysematous tissue and 

bronchial-associated lymphoid tissue. Elevated Th2 cytokines and pro-inflammatory mediators 

in bronchoalveolar lavage fluid coincided with Pc colonization and pulmonary function decline. 

These results support the concept that an infectious agent contributes to development of HIV-

associated lung disease and suggests that Pc colonization may be a risk factor for the 

development of HIV-associated COPD.   Furthermore, this model allows examination of early 

host responses important to disease progression thus identifying potential therapeutic targets for 

COPD. 
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2.2 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of 

death worldwide by 2020 (251).  COPD is characterized by development of irreversible airflow 

limitation and destruction of alveolar septa resulting in alveolar enlargement and airway 

obstruction.  Although smoking is the primary risk factor for COPD, only 15-20% of smokers 

develop the disease suggesting other factors contribute to disease susceptibility. 

COPD occurs earlier and more frequently in HIV-infected subjects compared to HIV-

negative subjects (66, 81).  How these complications develop is not understood, but sub-clinical 

or latent infections might be involved (144, 246).  Evidence exists linking Pneumocystis 

jirovecii, a fungal opportunistic pathogen, to COPD development in HIV-negative smokers.  

Subjects with COPD tend to be colonized with Pneumocystis (Pc) more frequently than those 

with other chronic lung diseases, and Pc colonization is associated with severity of airflow 

obstruction (41, 245).  HIV-infected persons are also at risk for Pc colonization, with 

colonization prevalence up to 69% (147, 242).  Although these studies demonstrate association 

between Pc and COPD, a causal relationship has not been shown.  

To examine whether persistent Pc colonization is a co-factor in HIV-related COPD 

pathogenesis, we developed a Pc colonization model using chimeric simian-human 

immunodeficiency virus (SHIV) in macaques.  Excellent rationale exists for use of this model as 

studies have shown that Pc derived from humans and non-human primates to be phylogenetically 

most closely related (128, 259).  We performed longitudinal studies to determine association 

between Pc colonization and progression of airway obstruction and emphysema in the context of 

an AIDS model. 
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2.3 METHODS 

2.3.1 Animals 

Twelve adult, Chinese-origin, cynomolgus macaques (Macaca fasicularis) obtained from 

National Primate Centers or vendors approved by the Department of Laboratory Animal 

Research, University of Pittsburgh were individually housed and maintained in a BSL2+ primate 

facility at the University of Pittsburgh.  Before purchase, all animals were screened and found 

negative for simian retroviral infections.  Animal experiments were approved by the University 

of Pittsburgh Institutional Animal Care and Use Committee.  Clinical evaluations were 

conducted monthly or as needed (29). 

2.3.2 Virus Infection 

Monkeys were infected as described (269) with SHIV89.6P (gift of Dr. Opendra Narayan, 

University of Kansas), which induces CD4+ T cell lymphopenia and AIDS-like disease with 

wasting and opportunistic infections(269, 286).  Inoculations were repeated one month later to 

ensure infection in all animals.  Viral loads were determined as described for blood and 

bronchoalveolar lavage samples (269). 

2.3.3 Bronchoalveolar lavage (BAL) 

Monkeys underwent BAL at baseline and at monthly intervals post-SHIV infection (29).  

Unfractionated BAL fluid (BALF) aliquots were used for bacterial, fungal and viral culture 
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(Antech Diagnostics, Pittsburgh, PA) and nested-PCR detection of Pc DNA(29).  The remainder 

was filtered through a 40-micron cell strainer after which cell counts were performed and 

supernatants were used for cytokine analysis and quantitation of SHIV (269) .  1 x 105 cells were 

removed and stained with modified Giemsa stain (Dade Behring, Newark, DE) and differential 

counts performed manually (65).  Recovered cells were prepared for flow cytometry as described 

(29). 

2.3.4 Pc colonization of SHIV-infected macaques 

To promote natural transmission of Pc, SHIV-infected macaques were continuously exposed by 

co-housing in the same room with 10-20 SIV- or SHIV-immunosuppressed macaques which 

served as a Pc source.  None of the macaques (source or recipients) contracted fulminate 

Pneumocystis pneumonia (PcP) during the study.  Determination of Pc colonization status was 

performed by detection of Pc DNA in BAL samples by nested PCR and by anti-Pc serology (29, 

184).  Pc colonization was defined as a positive nested PCR of BAL fluid and >3 fold change in 

plasma anti-Pc KEX1 titers (184).  Additionally, BAL samples were stained for organisms by 

modified Giemsa and silver staining (29). 

2.3.5 Peripheral blood collection 

Peripheral blood was collected and processed as described (269).  T cells were analyzed  as 

described (184). 
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2.3.6 Cytokine and chemokine analysis 

Quantitative analysis of cytokines and chemokines in BALF was performed with Beadlyte 

Human Multi-Cytokine Flex Kit (Upstate, Temecula, CA) according to manufacturer’s 

instructions.  Thirteen of the analytes shown in Table 2-3 were chosen based on cross-reactivity 

with non-human primate proteins(111).  IL-10 and IL-13 levels were analyzed using monkey-

specific ELISA kits (BioSource, Camarillo, CA and Cell Sciences, Canton, MA respectively).  

Dilution effect of BALF samples was normalized based on plasma urea concentrations (287). 

2.3.7 Gelatin zymography 

Detection of matrix metalloproteinase activity in BALF was performed by identifying proteins 

with gelatinolytic activity as previously described (312).  Before performing zymography, 500 

µL of each BALF sample was concentrated using Microcon Centrifugal filter devices with a 

50,000 MW cutoff (Millipore, Billerica, MA) according to manufacturer’s instructions.  Final 

concentration factor was determined by the sample that could be concentrated the least due to 

inability to pass any more sample through the concentration device.  This resulted in a final 

concentration factor of 3.3 fold.  Samples that concentrated to a larger degree were diluted 

appropriately with sterile 0.9% sodium chloride (Sigma, St. Louis, MO) which was used for the 

initial BAL procedure.  After concentration, 23 µL of BALF was added to non-denaturing 

loading buffer (40% glycerol, 200mM Tris/HCl pH 6.8, 8% SDS, 0.04% bromophenol blue) and 

separated by electrophoresis on 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel 

containing 0.1% gelatin.  SDS was then removed by two 30 minute washes with 2.5% Triton X-

100 (Sigma, St. Louis, MO) followed by incubation for 24 hours at 37°C in developing buffer 
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(50 mM Tris-HCl pH7.5, 5 mM CaCl2, 1 µM ZnCl2).  Gels were then stained with Coomassie 

blue followed by destaining with destaining buffer (7.5% acetic acid, 5% methanol).  MMP-2 

and MMP-9 activity appeared as clear bands against a blue background that were quantitated by 

densitometry. 

2.3.8 Pulmonary function testing 

Pulmonary function tests (PFT) were performed at baseline and every other month after SHIV 

infection using whole body plethysmography and forced deflation technique.  Monkeys were 

anesthetized with intravenous propofol and the oropharynx desensitized with 2% lidocaine 

followed by intubation.  Endotracheal tube placement was verified by chest X-ray and monitored 

using a CO2 detector (Nellcor Pedi-cap, Boulder, CO).  PFTs were performed using a Buxco 

whole body plethysmograph (Buxco Electronics, Inc., Sharon, CT), and BioSystems for 

Maneuvers Software (Buxco Electronics, Inc.) was used to collect data on flow rates and flow 

volumes. Tests were considered valid when three measurements for forced vital capacity were 

within 10% of each other. 

 For bronchodilator challenge, standard PFTs were performed, followed by administration 

of one pediatric dosette of nebulized albuterol (3 ml of 0.083% albuterol) (Nephron 

Pharmaceuticals Corp., Orlando, FL).  Fifteen minutes after administration, PFTs were repeated 

and compared to baseline values. 
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2.3.9 Quantitative computed tomography (CT) 

Conventional, non-contrast CT scans were performed on 10 of the 12 animals in a GE 9800 

Highlight Advantage CT scanner (General Electric Medical Systems, Milwaukee, WI).  

Anesthetized, intubated animals were mechanically ventilated to 20 cm H2O to fully inflate the 

lung to ensure scan-to-scan volume uniformity.  Axial slices (1.25 mm) were acquired during 

end-inspiratory breath-hold. Calculation of densities used for determination of lung properties in 

Table 2 was performed for animals at baseline and repeated post-SHIV infection as described 

(64).  Briefly, mean CT scan attenuations of the lung were calculated and converted to density 

measurements (mg/mL) which was then multiplied by lung volume to obtain lung mass 

approximation.   Actual lung weights were measured at necropsy.  These weights correlated with 

lung weights calculated from endpoint scans by Pearson correlation analysis (p = 0.01).  CT scan 

analysis was performed in a blinded manner using custom software (Emphylx: Department of 

Radiology/iCAPTURE Laboratory, University of British Columbia, Vancouver, BC, Canada) 

(273).  Small airway dimensions were calculated using the PV-Wave software package (Visual 

Numerics, Boulder, CO) (252). 

2.3.10 Lung tissue preparation and morphometry 

Right lungs removed at necropsy were inflated to 25 cm H2O with 10% buffered formalin.  

Paraffin-embedded, serial mid-sagittal sections from each lobe were then stained. Modified 

Harris hematoxylin-stained (Sigma) tissue was used to estimate alveolar size by determination of 

mean chord lengths (387).  H&E-stained tissue sections were examined for the presence of 
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bronchial-associated lymphoid tissue, defined by the presence of non-encapsulated lymphoid 

tissue within outer airway walls.  At least 100 airways per monkey were examined.  

2.3.11 Statistical analysis 

Pulmonary function data analysis was performed using the R environment for statistical analysis 

and graphics in which mixed linear models were used to estimate and test the relationship among 

pulmonary function profiles (dependent variable), Pc colonization (independent variable), and 

time (independent variable).  Differences in profiles over time were tested using restricted 

maximum likelihood.  All other data were analyzed using Prism software, (GraphPad, La Jolla, 

CA) using paired or unpaired, two-tailed Student’s t test, where appropriate.   A p value less than 

0.05 was considered statistically significant. 

2.4 RESULTS 

2.4.1 Pc colonization of SHIV-infected macaques results in pulmonary obstruction 

Twelve cynomolgus were infected with SHIV89.6P (286) and exposed to Pc via co-housing with 

Pc-infected macaques (184). Peripheral blood CD4+ T cell levels declined to ≤ 50% of baseline 

values by four weeks post-SHIV infection in all monkeys and remained depressed throughout the 

study (Figure 2-1).  Peak viremia ranged from 3.4 x 106 to 2.3 x 108 RNA copies/ml by week two  
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Figure 2-1 Peripheral blood CD4+ T cell levels are not different for SHIV/Pc+ animals 

versus SHIV/Pc- animals.  Peripheral blood mononuclear cells isolated from whole blood were 

stained with anti-CD4 antibody and analyzed by flow cytometry.   Open circles represent 

SHIV/Pc+ animals and closed squares represent SHIV/Pc- animals.  p = 0.79 by two-way 

repeated measures ANOVA for SHIV/Pc+ (n = 8) versus SHIV/Pc- group (n = 4). 

 

post-infection (not shown).  Serial bacterial and fungal cultures of BALF were negative 

throughout the study.  Eight of 12 monkeys became colonized with Pc by nine weeks post-SHIV 

infection (SHIV/Pc+), as determined by nested-PCR of bronchoalveolar lavage fluid and Pc 

serology (184), while four remained Pc-negative throughout the study (SHIV/Pc-). After initial 

exposure to Pc, anti-Pc titers in the SHIV/Pc+ animals remained above baseline throughout the 

study (not shown).  None of the monkeys tested positively by PCR at every time point which was 

most likely due to low level organism burden and sampling of different areas of the lung at each 

time point.  Among these animals, two to nine time points were positive by PCR during the 
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period studied.  Modified Giemsa and silver staining were also performed on BAL samples but 

were not found to be positive for organisms at any time point.  There was no significant 

difference in peak viral titers (mean peak viral titers (viral RNA copies/ml plasma): SHIV/Pc+: 

4.42 x 107 ± 7.50 x 107, SHIV/Pc-: 3.19 x 107 ± 2.88 x 107; p = 0.76) or peripheral blood CD4+ 

T cells levels at any time post-SHIV infection between the groups (Figure 2-1). 

To assess airway obstruction, pulmonary maneuvers using whole body plethysmography 

(280) were performed at baseline and every other month after SHIV infection.  Peak expiratory 

flow (PEF), forced expiratory volume in 0.4 seconds (FEV0.4) and maximum mid-expiratory 

flow (MMEF) are the pulmonary function parameters chosen to evaluate obstructive disease.  

PEF is a measurement of the greatest rate of air flow during forced expiration, FEV0.4 is the 

volume of air expired in 0.4 seconds during forced expiration and MMEF is the average 

expiratory flow over the middle half of the forced vital capacity (FVC).  No significant 

differences in baseline physical characteristics and pulmonary function parameters between 

groups were observed (Table 2-1).   
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Table 2-1 

Baseline values for height, weight and pulmonary function parameters in SHIV/Pc- and 

SHIV/Pc+ animals. 

 

 
Parameter Pc negative* Pc positive p value 

Height, cm 58.4 (53.3 – 61.0) 61.0 (45.7 – 63.5) 0.94 

Weight, kg 4.7 (3.3 – 5.8) 5.8 (3.8 – 7.6) 0.19 

Pulmonary Function Parameters†   

  FEV0.1, ml 39.1 (36.6 – 42.6) 37.3 (32.9 - 44.8) 0.66 

  FEV0.2, ml 89.4 (86.2 – 96.7) 88.4 (77.3 - 101.2) 0.80 

  FEV0.4, ml 187.2 (168.4-197.9) 186.2 (163.6 - 204.4) 0.97 

  FVC, ml 396.7 (223.8 - 454.6) 415.9 (227.8 - 527.8) 0.61 

  FEV0.1/FVC, % 10.4 (8.0 - 17.2) 8.4 (7.2 - 19.7) 0.74 

  FEV0.2/FVC, % 23.8 (19.0 - 38.6) 19.9 (16.8 - 44.4) 0.77 

  FEV0.4/FVC, % 49.3 (39.8 - 75.3) 42.0 (35.3 - 85.4) 0.78 

  FEF25%, ml/s 504.7 (483.6 - 527.5) 497.3 (438.6 - 572.6) 0.95 

  FEF50%, ml/s 453.9 (430.6 - 483.0) 456.2 (404.1 - 542.7) 0.72 

  FEF75%, ml/s 382.2 (349.8 - 430.6) 391.7 (367.3 - 477.0) 0.36 

  FEF90%, ml/s 230.8 (180.7 - 376.2) 299.1 (170.8 - 370.5) 0.53 

  FEF25-75%, ml/s (MMEF) 450.5 (423.3 - 480.6) 450.6 (402.3 - 535.6) 0.71 

  PEF, ml/s 517.7 (492.9 - 546.8) 512.7 (447.1 - 576.2) 0.89 

 

 

*Comparison of baseline values of animals that were subsequently infected with SHIV89.6P and 

were colonized with Pc (SHIV/Pc+, n = 8) or remained uncolonized (SHIV/Pc-, n = 4).  No 

significant differences were observed in any of the parameters by unpaired t test. 
†FEV0.1, FEV0.2, FEV0.4, forced expiratory volume in 0.1, 0.2 and 0.4 seconds respectively; FVC, 

forced vital capacity; FEF25%, FEF50%, FEF75%, FEF90%, forced expiratory flow through 25%, 

50%, 75% and 90% of forced vital capacity respectively; FEF25-75% (MMEF), forced expiratory 

flow from 25% to 75% of forced vital capacity or maximum mid-expiratory flow; PEF, peak 

expiratory flow.   

Values are medians with ranges shown in parentheses. 
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Six of eight SHIV/Pc+ animals developed airway obstruction as determined by decreased 

pulmonary function.  All parameters evaluated decreased significantly in these animals compared 

to SHIV/Pc- monkeys (Figure 2-2A-C).  Median change in peak expiratory flow from baseline to 

10 months post-SHIV infection was -58.5 ml/sec and +2.5 ml/sec for SHIV/Pc+ and SHIV/Pc- 

animals, respectively (p=0.004).  Median change from baseline forced expiratory volume in 0.4 

seconds in SHIV/Pc+ animals was -16.0 ml versus +4.0 ml for SHIV/Pc- animals (p=0.001). For 

maximum mid-expiratory flow, median change from baseline for SHIV/Pc+ animals was -47.5 

ml/sec versus +24.5 ml/sec for SHIV/Pc- monkeys. (p=0.001).  Although the forced expiratory 

volume in 0.4 seconds to forced vital capacity ratio, another measure of COPD, declined in 

SHIV/Pc+ animals, the change was not significant by 10 months post-infection (Figure 2-2D). 
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Figure 2-2 Pneumocystis colonization results in progressive pulmonary function decline.   

Whole body plethysmography was used to evaluate serial measurements of: (A) Peak expiratory 

flow, *p = 0.003. (B) Forced expiratory volume in 0.4 seconds, *p = 0.003. (C) Maximum mid-

expiratory flow, *p = 0.002. (D) Forced expiratory volume in 0.4 seconds to forced vital capacity 

ratio, p = 0.32.  For all graphs, SHIV/Pc+ animals are represented by dashed lines and SHIV/Pc- 

animals are represented by solid lines.  Each p value is for the interaction between time and 

group (Pc-colonized (n = 8) versus non-colonized (n = 4)). 

 

 

 Since airflow limitation in COPD is poorly reversible in response to bronchodilator 

treatment, we tested the effect of administration of the bronchodilator, albuterol.  No significant 

differences were observed post-treatment (not shown). 
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2.4.2 Pneumocystis colonization results in radiographic and pulmonary emphysema but 

not small airway thickening in SHIV-infected monkeys 

Emphysema is associated with increased lung and airspace volumes, usually coupled with 

decreased lung weight.  Quantitative computed tomography (CT) morphometry has been used to 

evaluate extent of emphysema in humans (64).  We applied this technique to evaluate baseline 

and post-infection lung CT scans by performing tissue density analysis based on a density mask 

cut-off of ≤ -910 Hounsfield units (HU), which is similarly used to identify emphysema in 

humans (64).   There was a significant increase compared to baseline values in lung percent at ≤ 

-910 HU in SHIV/Pc+ monkeys compared to SHIV/Pc- monkeys (Figure 2-3A).  Lobe by lobe 

comparison of percent change in ≤ -910 HU during the course of infection revealed significant 

increases in upper and middle lobes of SHIV/Pc+ monkeys but not in lower lobes.  No 

significant changes were observed in individual lobes of SHIV/Pc- monkeys (Figure 2-3B). 
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Figure 2-3 Pneumocystis colonization leads to an increase in the proportion of 

emphysematous tissue in the lungs.   Quantitative computed tomography (CT) scans were 

D. C. 

A. 

B. 
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performed at 20 cm H2O lung inflation pressure at baseline (BL) and post- SHIV infection.  The 

cutoff mask of ≤ -910 Hounsfield units (HU) was used to assess amount of emphysematous lung 

tissue present at each scan.  Boxes represent the range of values for the specified group with the 

median value represented by the line within the box.  (A) Change in the proportion of 

emphysematous lung tissue for the animal groups; * p = 0.04 for SHIV/Pc- (n = 4) versus 

SHIV/Pc+ (n = 6†) animals by unpaired t test.  (B) Comparison of the proportion of 

emphysematous lung tissue present at baseline and endpoint scan by lobe.  For SHIV/Pc+ 

animals†: * p = 0.04 by paired t test, for the proportion of lung tissue that is emphysematous in 

both the upper and middle lobes for baseline versus endpoint scans; p = 0.78 by paired t test for 

proportion of lung tissue that is emphysematous in the lower lobe for baseline versus endpoint 

scans (n = 6).  For SHIV/Pc- animals: p = 0.55, 0.80 and 0.11 by paired t test for proportion of 

lung tissue that is emphysematous in the upper, middle and lower lobes respectively for baseline 

versus endpoint scans (n = 4).  (C) Representative hematoxylin-stained lung tissue sections from 

SHIV-infected monkeys; left: SHIV/Pc- and right: SHIV/Pc+.  (D) Chord length analysis (mean 

± SEM) of airspaces for animals exhibiting clinical type (≥ 12% decline in pulmonary function 

from baseline level) obstruction (COPD+, n = 5) versus non-obstructed animals (COPD-, n = 7), 

*p = 0.0001.   
†Two SHIV/Pc+ animals were not included in either the pre- or post-infection analyses because 

baseline scans were not performed.  Both of these animals developed airway obstruction based 

on pulmonary function testing. 

 

 

Consistent with an increase in percentage of emphysematous tissue, total tissue volume 

and lung weight were significantly decreased from baseline in SHIV/Pc+ monkeys (Table 2-2), 

but not in SHIV/Pc- monkeys.  No significant changes in small airway wall dimensions, 

including thickness, were observed for either group (not shown). 

Airspace enlargement was also evaluated in lung tissue sections by determination of 

mean chord length, the average distance between opposing walls of a single alveolus.  Figure 2-
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3C shows representative lung tissue sections from both groups.  In support of our radiologic 

findings, mean chord length was significantly larger in obstructed versus non-obstructed 

monkeys (Figure 2-3D). 

 

 

Table 2-2 

Quantitative CT analysis of the lungs pre- and post-infection 

 

 SHIV/Pc+‡ SHIV/Pc- 
 Baseline* Endpoint Baseline Endpoint 

Total Lung volume, ml 352 ± 40 358 ± 49 372 ± 22 371 ± 34 
Airspace volume, ml 300 ± 36 309 ± 44 321 ± 18 322 ± 28 
Tissue volume, ml 52 ± 5 49 ± 5§ 51 ± 6 49 ± 7 
Lung weight, g 55 ± 5 52 ± 5§ 54 ± 6 52 ± 7 
% Voxels > -910 HU† 82 ± 6 74 ± 6§ 68 ± 13 71 ± 12 
% Voxels ≤ -910 HU 18 ± 6 26 ± 6§ 32 ± 13 29 ± 12 

 

 

*Values (mean ± SEM) were calculated in monkeys before SHIV infection (baseline) and 

following SHIV infection in SHIV/Pc+ (n = 6) and SHIV/Pc- (n = 4) animals at the termination 

of the experiment (10-12 months post-SHIV infection). 
†HU: Hounsfield units 
§Different from baseline (p = 0.04 by paired t test analysis) 
‡Two SHIV/Pc+ animals were not included in either the pre- or post-infection analyses because 

baseline scans were not performed.  Both of these animals developed airway obstruction based 

on pulmonary function testing. 
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2.4.3 Pneumocystis colonization results in increased bronchial-associated lymphoid tissue 

in SHIV-infected monkeys 

As an indicator of inflammation due to increased pathogen burden, lung tissue was examined for 

presence of bronchial-associated lymphoid tissue.  SHIV/Pc+ monkeys had significantly higher 

bronchial-associated lymphoid tissue frequency compared to SHIV/Pc- monkeys, indicating 

persistent pulmonary inflammation in these animals (Figure 2-4A, B). 
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Figure 2-4 Pneumocystis colonization results in increased bronchial-associated lymphoid 

tissue formation.  (A) Representative hematoxylin and eosin-stained lung tissue section from a 

SHIV/Pc+ animal showing an airway associated with lymphoid follicles (indicated by arrows).  

(B) Analysis of percent of airways with bronchial-associated lymphoid tissue in SHIV/Pc- versus 

SHIV/Pc+ monkeys.  For SHIV/Pc- (n = 4) and SHIV/Pc+ (n = 8) animals, an average of 114 ± 

43 and 103 ± 17 airways per animal were evaluated respectively, p = 0.04 by unpaired t test. 

 

A. B. 
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2.4.4 Pneumocystis colonization induces inflammatory and Th2-associated cytokines in 

the bronchoalveolar lavage fluid of SHIV-infected monkeys 

Because COPD and PcP have been associated with vigorous inflammatory responses (119, 308), 

we evaluated inflammation indicators in serial BALF samples following SHIV infection and Pc 

colonization.  Interestingly, there were no significant changes in absolute number or percentage 

of T cells, macrophages, neutrophils, or CD4+/CD8+ T cell ratios, in BALF of infected monkeys 

regardless of Pc status (up to 12 months post-SHIV infection) (not shown). Serial cytokine and 

chemokine analysis of BALF revealed changes from baseline in SHIV/Pc+, but not SHIV/Pc-, 

monkeys (Table 2-3).  Assays were performed at baseline, four weeks post-SHIV infection (after 

significant CD4+ T cell decline, but prior to detectable Pc colonization), and weeks 16 and 35 

(after detection of persistent Pc colonization).  Increases at weeks 16 and 35 in interleukin (IL)-4, 

IL-5, IL-6, granulocyte macrophage-colony stimulating factor (GM-CSF) and lymphotoxin-α 

and transient increases in IL-8, IL-13, interferon (IFN)-γ, CCL3 and tumor necrosis factor 

(TNF)-α were observed in SHIV/Pc+ monkeys.  Conversely, SHIV/Pc- animals did not exhibit 

increases in cytokine levels, except for TNF-α at 35 weeks.  These results demonstrate that SHIV 

infection alone had little effect on induction of inflammatory mediators in alveolar spaces, while 

Pc colonization induced a pro-inflammatory and Th2-skewed cytokine response, which was 

coincident with declining pulmonary function (Figure 2-2). 
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Table 2-3 

Serial analyses of BAL cytokines and chemokines in SHIV-infected monkeys 

 
Cytokine/ Weeks After SHIV/Pc+ SHIV/Pc- 
Chemokine SHIV Infection Mean (pg/mL) Std Dev p (vs BL) Mean (pg/mL) Std Dev p (vs BL) 

IL-4 

BL 71.25 30.7   70.21 28.9  
4 78.7 30.5 0.549 96.07 39.7 0.310 
16 146.8 42.9 0.004 72.13 33.8 0.230 
35 134.3 40.6 0.026 94.74 61.2 0.390 

IL-5 

BL 65.72 26.2  64.3 31.5  
4 68.44 25.4 0.774 77.83 31.4 0.642 
16 143.5 40 0.003 66.41 27.5 0.343 
35 153.6 48.5 0.007 83.51 48.8 0.221 

IL-13 

BL 11.8 4.4  12.6 6.1  
4 11.0 7.3 0.797 18.3 4.8 0.148 
16 21.6 4.8 0.005 10.7 4.0 0.595 
35 15.0 6.4 0.247 8.5 1.0 0.213 

IL-10 

BL 583.5 303.6  573.3 442.6  
4 774.4 357.2 0.193 718.5 283.7 0.507 
16 752.7 279.1 0.150 474.1 298.9 0.309 
35 442.8 155.6 0.312 384.8 410.8 0.652 

IFN-γ 

BL 62.5 34.5  53.1 28.5  
4 59.7 43.3 0.881 104.4 72.3 0.346 
16 179.2 71.8 0.005 53.9 45.6 0.528 
35 106.6 58.3 0.176 70.5 27.2 0.067 

IL-12 (p40) 

BL 23.0 52.3  82.6 131.0  
4 9.4 22.6 0.266 8.5 17.0 0.351 
16 305.3 388.8 0.058 78.2 81.6 0.367 
35 241.0 462.6 0.239 80.2 96.0 0.982 

Lymphotoxin 

BL 117.0 43.5  124.0 68.1  
4 128.1 61.5 0.579 137.9 39.8 0.782 
16 241.6 56.5 0.002 98.7 27.4 0.793 
35 248.9 93.9 0.019 152.3 84.2 0.241 

TNF-α 

BL 85.9 45.7  36.5 31.1  
4 109.2 51.9 0.309 78.4 36.4 0.204 
16 232.6 89.2 0.006 83.7 37.2 0.115 
35 153.2 61.4 0.079 66.4 30.7 0.013 

IL-1β 

BL 81.3 31.2  83.2 43.9  
4 93.0 49.5 0.476 100.2 17.9 0.508 
16 160.9 46.4 0.006 86.0 25.0 0.325 
35 192.0 81.4 0.018 120.7 76.2 0.177 
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IL-6 

BL 113.7 43.7  114.5 54.1  
4 120.8 58.5 0.776 144.6 28.9 0.499 
16 221 50.7 0.004 95.53 36.1 0.865 
35 196.4 69 0.04 137.4 71.4 0.296 

IL-8 

BL 161.1 83.4  185.4 141.0  
4 251.3 258.2 0.327 174.2 45.7 0.893 
16 304.5 105.8 0.013 142.8 66.3 0.464 
35 385.8 248.4 0.059 400.2 416.2 0.224 

GM-CSF 

BL 82.0 51.1  72.2 44.4  
4 80.8 22.6 0.951 76.9 40.0 0.909 
16 198.1 73.0 0.007 66.8 26.9 0.584 
35 173.2 70.8 0.040 121.7 55.9 0.096 

CCL3 

BL 148.8 172.3  0.0 0.0  
4 109.1 144.0 0.541 155.9 192.8 0.204 
16 579.7 300.0 0.010 214.4 196.4 0.199 
35 307.1 219.1 0.181 1068 1931 0.350 

CCL2 

BL 2006.0 1695.0  1951.0 2249.0  
4 1549.0 1222.0 0.508 2736.0 2414.0 0.427 
16 3905.0 6292.0 0.325 725.4 184.7 0.607 
35 4947.0 5785.0 0.177 13150.0 22628.0 0.352 

CCL5 

BL 91.2 86.8  176.4 136.2  
4 55.5 32.2 0.318 70.8 25.5 0.248 
16 124.3 55.2 0.151 67.8 40.2 0.203 
35 438.4 471.9 0.060 122.5 36.1 0.528 

 

 

BL: baseline 

Pc colonization was detected by 8 weeks post-SHIV infection. 

p values, analyzed by paired t test, are for baseline measurements versus measurements for the 

indicated week post-SHIV infection in SHIV/Pc+ (n = 8) and SHIV/Pc- (n = 4) animals.  

Timepoints where significant changes in cytokine levels were detected are shaded light gray. 

 

 

Table 2-3 (continued) 
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2.4.5 Matrix metalloproteinase (MMP) activity increases early after Pc colonization and 

rapidly falls off 

Since one of the prevailing theories of emphysema pathogenesis is a protease/anti-protease 

imbalance in the lungs skewed toward excessive proteolytic activity, we performed zymographic 

analysis of BALF at time points corresponding approximately to those used to evaluate cytokine 

secretion (weeks 12, 20, 29 post-SHIV infection).  Our analysis showed that there was an early 

spike in MMP-9 activity at 12 weeks post-SHIV infection while MMP-2 activity remained 

relatively stable (Figure 2-5).  Subsequent time points revealed that this increase in activity had 

declined to baseline levels by week 20 post-SHIV infection (not shown). 
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Figure 2-5 MMP-9 activity increases early after Pc colonization.  (A) Inverted image of 

zymographic gelatin gel showing MMP-2 and MMP-9 activity in BALF harvested 12 weeks 

post-SHIV infection; BL=baseline, 12=12 weeks post-SHIV infection (B) Densitometric 

analyses of zymograms.  

B. 

A. 
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2.5 DISCUSSION 

The results presented here support the concept that Pc colonization contributes to the 

development of COPD in a non-human primate model of HIV infection.  SHIV-infected 

monkeys that became naturally colonized with Pc developed progressive pulmonary obstruction 

that was unresponsive to bronchodilator treatment.  Additionally, Pc colonization correlated with 

anatomic evidence of emphysema, increased bronchial-associated lymphoid tissue frequency, 

and increased levels of pro-inflammatory mediators and Th2-type cytokines in BALF.  In 

contrast, SHIV infection alone did not exert such effects. These data support the hypothesis that 

in HIV-associated COPD, persistent Pc carriage, common among HIV+ subjects (147, 242), 

induces lung inflammation, possibly promoting tissue damage and COPD development.   

COPD is a complex disorder resulting from a combination of genetic and environmental 

factors associated with persistent lung inflammation (308).  While cigarette smoking is the main 

risk factor, other factors likely influence disease progression, as only ~25% of smokers develop 

COPD (210).  HIV infection is also associated with increased COPD risk, particularly in 

smokers.  Diaz et al. reported 37% of HIV- infected smokers had emphysema by pulmonary 

function or chest CT scan, in contrast to no demonstrable emphysema in HIV-negative controls 

(81).  Crothers et al. showed that HIV+ subjects are more likely to have a COPD diagnosis 

compared with HIV-negative controls, and that HIV infection was an independent predictor of 

COPD (66).  Reports of high Pc colonization frequency in HIV-infected subjects and HIV-

negative COPD patients (245, 279), suggests persistent Pc carriage may promote  pulmonary 

function decline and COPD development.  The primate model of HIV infection described here 

supports these clinical findings and enables longitudinal characterization of factors associated 

with development of COPD pathogenesis.  
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Simian immunodeficiency virus (SIV) and SHIV have been used extensively in rhesus 

and cynomolgus macaques as models of HIV (9).  As in HIV infection, PcP is common in SIV- 

and SHIV-infected macaques and susceptibility correlates with peripheral blood CD4+ T cell 

decline (65, 164).  In contrast to SIV, SHIV produces rapid decline in blood CD4+ T cells, 

facilitating long-term studies of persistent infection.  We previously described SIV infection/Pc 

colonization in macaques using both intrabronchial inoculation and airborne transmission of Pc 

(29, 184).  Airborne transmission is more likely representative of natural Pc transmission, and 

eliminates potential transient inflammatory responses associated with intrabronchial inoculations 

(29), allowing examination of inflammatory responses associated with persistent colonization.   

In serial pulmonary function studies, we found significant obstruction in six of eight Pc-

colonized monkeys, but not in monkeys infected with SHIV alone.  These data suggest that viral 

infection is insufficient to induce emphysema in this timeframe, but SHIV-induced 

immunosuppression may increase Pc carriage susceptibility, which may result in obstructive 

changes.  Interestingly, one SHIV/Pc+ monkey without measurable pulmonary function decline 

showed evidence of emphysema based on increased lung volume and percentage of lung tissue ≤ 

-910 HU (not shown).   This suggests that SHIV infection and Pc colonization may result in 

emphysema without airflow obstruction, a COPD phenotype described in humans (107).  No 

significant changes between baseline and endpoint small airway wall dimensions were observed 

in either group, suggesting the observed pulmonary obstruction was an emphysema-dominant 

phenotype with minimal small airway involvement (182). 

Several studies have examined inflammatory responses in COPD patients, with 

conflicting results likely due to disease heterogeneity, variability in disease severity, and lung 

region sampling differences (57, 181).  Neutrophils have been implicated in COPD pathogenesis.  
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Severe COPD patients have neutrophilic infiltration of airway walls, and increased neutrophil 

counts in BALF and sputum samples that correlate with disease severity (145, 333).  In contrast, 

mild emphysema is not commonly associated with BAL neutrophilia (26).  Similarly, studies 

have shown T cell infiltration in small airway walls and alveolar spaces of COPD patients with 

general increases in CD8+ T cell proportions though their role in COPD-associated inflammatory 

damage is unknown.  CD4+ and CD8+ T cells can elaborate pro-inflammatory cytokines that 

may contribute to lung damage.  Th1-skewed cytokine production has been reported in COPD 

patients in several studies (68), although a mixed or Th2-dominant response has also been 

reported (16). 

We detected inflammatory changes in airspaces only after Pc colonization was evident, 

with little evidence of inflammation due to persistent SHIV infection.  Increases in IL-4, IL-5, 

and IL-13 with minimal increases in IFN-γ and no detectable IL-12 in SHIV/Pc+ monkeys 

suggested a Th2-skewed response.  Although Th2 cytokines are more commonly associated with 

asthma (290), these results support reports of increased IL-4 in emphysematous human lung 

tissue (388).  Additionally, Ma et al. demonstrated that in mice genetically predisposed toward a 

Th1 response, over-expression of IL-4 resulted in emphysematous pulmonary destruction and 

reduced protease inhibitor levels in the lung (215).   

Increased IL-13 observed in Pc-colonized monkeys is interesting in light of reports that 

emphysema was associated with IL-13 expression in a transgenic mouse model (146), and in 

murine models of Nippostrongylus brasiliensis (224) and persistent viral infection (180).  

Although its role in alveolar destruction progression is unclear, increased IL-13 in transgenic 

mice correlated with increased matrix metalloprotease and cathepsin production in lung tissue 

(387), which may promote lung tissue degradation in emphysema (60).  In light of this report, it 
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is interesting to note that the increase in IL-13 roughly correlated with the increased MMP-9 

activity which has been implicated in COPD pathogenesis in both murine (6, 95) and human (36, 

312) studies. Additionally, the increases in both MMP-9 activity and IL-13 dropped off rapidly.  

This observation reinforces a key role for IL-13 in mediating COPD pathogenesis by the 

induction of an imbalance between proteases and anti-proteases in the lungs.  

IL-1β, IL-6 and GM-CSF, pro-inflammatory cytokines associated with macrophage 

activation, were also increased in BALF of SHIV/Pc+ monkeys.  These results are consistent 

with reports of increased levels of these cytokines in pulmonary and plasma samples from COPD 

patients (103) and in animal models of emphysema (193), indicating a key role for macrophage 

activation in the early process of lung damage in this model.  

Contrary to studies reporting inflammatory cellular infiltration associated with human 

and animal COPD, we found no significant changes in absolute numbers or proportions of T 

cells or neutrophils in BALF of either monkey group, even after significant pulmonary function 

decline was evident.  This may be due to the fact that in human studies, patients have had clinical 

disease for years whereas the primate model is capturing early events in disease progression.  

Unlike our previous study showing infiltration of CD8+ T cells and neutrophils in 

intrabronchially infected macaques (29), the Pc doses associated with natural colonization 

reported here were likely much lower.  It is likely that as Pc burden increases, a CD8+ T cell- 

and neutrophil-dominant response may develop and amplify inflammation-mediated pulmonary 

damage.  

 Innate inflammatory responses initiated by alveolar macrophages or other cells such as 

mast cells, NK or NKT cells are likely activated early in response to Pc colonization thus 

elaborating pro-inflammatory cytokines prior to detectable activation of adaptive responses and 
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subsequent cellular infiltration.  This hypothesis is consistent with studies suggesting 

macrophages and NKT cells are key effectors in murine models demonstrating IL-13-mediated 

emphysematous destruction (180, 224).  Additionally, a role for mast cells in human COPD has 

been suggested (120), possibly via IL-4 upregulation (17).  We further postulate that persistent 

Pc colonization is associated with an adaptive immune response, as indicated by increased 

frequency of bronchial-associated lymphoid tissue in Pc-colonized monkeys with COPD.  These 

results are consistent with the finding of an increased frequency of bronchial-associated 

lymphoid tissue in COPD patients, and support the concept that persistent infection and host 

immune response is associated with COPD development (144, 145). 

 This study establishes a novel model for HIV-associated COPD and provides evidence 

supporting a role for Pc colonization in obstructive disease development.  These results support 

the paradigm that infectious agents, directly or indirectly, can promote COPD pathogenesis (144, 

224).  A detrimental inflammatory response may be amplified by continuous or repeated 

colonization by various pulmonary pathogens leading to disease progression, as has been 

clinically shown (319).  As in human COPD pathogenesis, it is likely that COPD development in 

SHIV-infected macaques is multifactorial and that genetic and environmental factors contribute 

to susceptibility.  This study supports the concept that Pc colonization contributes to COPD 

pathogenesis in SHIV-infected macaques, but does not exclude a role for other factors.  The non-

human primate model allows for serial examination of various parameters associated with 

development of obstructive changes and should help define host responses that promote tissue 

destruction at early disease stages.  Additionally, these results identify Pc as a potentially 

treatable risk factor for COPD development in HIV-infected and non-infected individuals. 
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3.0  PULMONARY GENE EXPRESSION ANALYSIS IN A PRIMATE MODEL OF 

HIV-RELATED COPD REVEALS NOVEL GENES ASSOCIATED WITH EARLY 

DISEASE PATHOGENESIS 

A version of this chapter is being prepared for submission to the American Journal of 

Respiratory Cell and Molecular Biology.  The authors are Timothy W. Shipley, Heather M. 

Kling, Alison Morris, and Karen A. Norris. 
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3.1 ABSTRACT 

HIV-infected persons are at increased risk for developing pulmonary diseases including chronic 

obstructive pulmonary disease (COPD), and the fungal opportunistic pathogen, Pneumocystis 

jirovecii (Pc) has been implicated in the pathogenesis of HIV-related COPD.  We previously 

developed a non-human primate model of HIV-related COPD using simian-human 

immunodeficiency virus (SHIV) and Pc co-infection in cynomolgus macaques.  In the present 

study we examined gene expression profiles in lung tissue from SHIV/Pc co-infected monkeys 

with COPD and compared them to SHIV-infected monkeys infected with normal lung function.  

Microarray technology was used to develop gene profiles, and differential gene expression was 

determined by a comparative evaluation of competing normalization methods applied to our 

expression data set followed by validation using quantitative real-time polymerase chain reaction 

analysis for select genes.  Of over 52,000 transcripts representing more than 20,000 genes 

analyzed, the SHIV/Pc infected macaques with COPD exhibited 243 differentially expressed 

(DE) genes compared to SHIV-infected monkeys with normal lung function.  DE genes fell into 

a number of functional categories which may be important in COPD development including: 

inflammation (pulmonary surfactants A2, B, C, D, upregulated; alternative macrophage 

activation-associated CC chemokine, upregulated), protease/antiprotease balance (cathepsin H, 

upregulated; alpha-1-chymotrypsin and secretory leukocyte peptidase inhibitor, downregulated), 

redox balance (glutathione peroxidase 4 and mitochondrial aldehyde dehydrogenase 2, 

upregulated) and tissue homeostasis (connective tissue growth factor, downregulated; ornithine 

decarboxylase antizyme, upregulated).  Furthermore, analysis of impacted molecular pathways 

revealed that the apoptosis-relevant VEGF signaling pathway was significantly affected.  These 
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results identify factors and pathways involved in early development of Pneumocystis and SHIV-

associated COPD and reveal several novel, potential therapeutic targets. 

3.2 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a disease of global importance and is 

predicted to become the third leading cause of death worldwide by the year 2020 (251).  

Although smoking is the primary risk factor for development of COPD, only about 15% of 

smokers develop the disease (93), suggesting that other factors are important in disease 

development and progression.  Evidence has emerged supporting the concept that microbial 

colonization of the lower airways contributes to the pathogenesis of COPD, either directly or 

indirectly, through the induction of a persistent and detrimental inflammatory response.  It has 

been suggested that a dysregulated inflammatory response results in structural damage in the 

lungs and promotes disease progression, but fails to clear the inciting pathogen (319).  Several 

infectious agents have been associated with progression or exacerbations of COPD, including 

Haemophilus influenza and adenovirus (144, 320).   

 The role of pathogen-related COPD may be particularly important in HIV infection, 

where HIV-infected individuals are at increased risk for an accelerated form of emphysema (80, 

81) and a high prevalence of COPD (66).  Of particular interest is the fungal opportunistic 

pathogen, Pneumocystis jirovecii (Pc), which has been implicated in the pathogenesis of HIV-

related COPD (241) and in non-HIV infected patients with COPD (244, 245).  Animal models 

have also demonstrated an association between Pc colonization and the development of 

emphysema and COPD (55, 246, 258, 326).  In a nonhuman primate model of HIV infection, 
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macaques infected with simian immunodeficiency virus-HIV (SHIV) and colonized with Pc 

develop significant airway obstruction and emphysematous lung tissue destruction, while 

animals infected with virus alone do not, but the exact mechanism by which Pc colonization 

contributes to COPD development is unknown (258, 326). To identify potential pathways 

important in COPD in this model, we compared gene expression profiles from lung tissue of 

SHIV-infected/Pc-colonized macaques with COPD to monkeys with normal lung function that 

were infected with SHIV alone.  We identified a comprehensive profile of gene expression 

patterns by microarray analysis, with confirmation of gene expression by quantitative real time-

polymerase chain reaction (qRT-PCR).  From these results, several possible mediators of lung 

tissue destruction associated early stages of Pc and SHIV-related COPD were identified. 

3.3 METHODS 

3.3.1 Animals 

Twelve adult, Chinese origin cynomolgus macaques (Macacca fasicularis), weighing 

between 5-8 kg, were used.   All animals were purchased from National Primate Centers or 

vendors approved by the University of Pittsburgh, Department of Laboratory Animal Research.  

Prior to admission study entry, all animals underwent complete physical examination (pulmonary 

and cardiac auscultation, thoracic radiographs, computer tomography scanning, tuberculin skin 

testing, complete blood count, chemistry panel, urinalysis, and flow cytometric analysis of 

peripheral blood mononuclear and BAL cells) and were screened for simian retroviruses (simian 

immunodeficiency virus (SIV), simian retrovirus (SRV), and simian T-cell leukemia virus 
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(STLV)) to verify that they were free of any pre-existing disease that may confound the study. 

There were no significant differences in age, height or weight or pulmonary function of the 

monkeys prior to the start of the study.  The animals were housed in an American Association for 

Accreditation of Laboratory Animal Care-accredited, biosafety level 2+ primate facility at the 

University of Pittsburgh.  Animal husbandry and experimental procedures were conducted in 

accordance with standards set forth by the Guide for the Care and Use of Laboratory Animals

3.3.2 SHIV and Pc infection and development of COPD in cynomolgus macaques 

 (2) 

and the Provisions of the Animal Welfare Act.  Prior to the initiation of this study, all animal 

experiments were approved by the Institutional Animal Care and Use Committee of the 

University of Pittsburgh. 

SHIV inoculation and Pc infection were performed as previously described (326).  Briefly, 

monkeys were intravenously inoculated with 1x104.9 TCID50 (50% tissue culture infectious 

doses) of SHIV89.6P (gift of Dr. Opendra Narayan, University of Kansas), which induces CD4+ T 

cell lymphopenia and AIDS-like disease with wasting and opportunistic infections (269, 286).  

Monkeys were monitored for disease progression by monthly quantitation of viral load (29) and 

by analysis of peripheral blood CD4+ T cell levels by flow cytometry (65).  

To facilitate natural transmission of Pc, immediately following SHIV-inoculation, 

monkeys were co-housed with other SIV or SHIV/Pc co-infected macaques (184).   Monthly 

evaluations for Pc colonization were performed by nested-PCR on DNA extracted from BAL 

samples and by increases in Pc-kexin-specific plasma antibodies (29, 184). 

Spirometry, quantitative high resolution computed tomography (HRCT) scanning, and tissue 

morphometry were used to evaluate the progression of obstructive changes in SHIV and 
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SHIV/Pc monkeys, as previously described (326).  Pulmonary function was evaluated at baseline 

and every other month after SHIV infection using whole body plethysmography and forced 

deflation technique (326).  The forced expiratory volume in 0.4 seconds (FEV0.4), peak 

expiratory flow (PEF), and mid-maximal expiratory flow (MMEF) was determined at baseline 

(uninfected monkeys) and then every other month up to 12 months post-infection.  By 

termination of the experimental infection, 8 of 12 monkeys were colonized with Pc and had 

evidence of COPD (Pc+/COPD+).  In contrast, 4 monkeys remained Pc-negative and had normal 

lung function throughout the study (Pc-/COPD-). 

3.3.3 RNA isolation 

Non-perfused lung tissue was recovered at necropsy, 10-12 months post-SHIV infection.  Tissue 

was immediately immersed in RNAlater (Qiagen, Germantown, MD) and stored at -80° C until 

processing.  For RNA isolation, 30-45 mg of left upper lobe was immersed in liquid nitrogen 

followed by pulverization with a pestle.  The pulverized material was homogenized with a 

QIAshredder spin column (Qiagen) and total RNA was isolated using an RNeasy Mini Kit 

(Qiagen) according to manufacturer’s instructions. RNA was submitted to the University of 

Pittsburgh Genomics and Proteomics Core Laboratory (GPCL) for assessment of RNA quality 

and concentration by Agilent Bioanlyzer (Agilent Technologies, Santa Clara, CA) and 

spectroscopy, respectively. 
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3.3.4 Preparation of biotinylated cRNA 

One sample of biotinylated cRNA for each animal was prepared from total RNA according to the 

GeneChip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA).  Briefly, the 

One-Cycle cDNA Synthesis Kit (Affymetrix) was used to reverse transcribe one microgram of 

total RNA to single-stranded cDNA containing a T7 RNA polymerase promoter sequence that 

was then converted to double-stranded cDNA.  After clean up of the double-stranded cDNA 

using the Sample Cleanup Module (Affymetrix), the entire amount was converted to biotinylated 

RNA with a GeneChip IVT Labeling Kit (Affymetrix).  The biotin-labeled RNA was purified 

with the Sample Cleanup Module (Affymetrix) and quality of the product was assessed by the 

GPCL with an Agilent Bioanalyzer (Agilent Technologies). 

3.3.5 Microarray assay and chip analysis 

The GeneChip Expression Analysis Technical Manual was used for microarray assay and chip 

analysis.  Briefly, 20 μg of biotinylated cRNA was fragmented into segments of 35 to 200 bases 

(confirmed by Agilent Bioanalyzer).  Fifteen micrograms of the fragmented RNA was added to 

hybridization cocktail and applied to the GeneChip Rhesus Macaque Genome Array 

(Affymetrix) followed by overnight incubation at 45ºC with rotation.  The Affymetix 450 

Fluidics Station was then used for subsequent washing and staining with streptavidin-

phycoerythrin.  A GeneArray 3000 scanner with 7G upgrade (Affymetrix) was used to scan the 

developed chip.  Basic absolute analysis was performed using Microarray Analysis Suite (MAS) 

5.0 (Affymetrix) with each chip scaled to a median signal intensity of 150.  MAS 5.0 calculates a 

detection p-value providing a measure of the probability that the gene is present in the 
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transcriptome of the sample and therefore a measure of the reliability of the calculated signal 

value.  Comparative measures between chips were performed by analyzing the signal log ratios 

reflecting the level of change in gene expression between samples, and a change in p-value thus 

estimated the likelihood that the expression levels were truly different between the samples. 

3.3.6 Gene expression analysis 

Gene expression data analysis was performed at the University of Pittsburgh’s GPCL 

Bioinformatics Analysis Core.   Alternative tests for identifying differentially expressed (DE) 

genes are known to exhibit different amounts of internal consistency, and alternative methods for 

normalization and transformation are also known to influence the reproducibility of various tests 

for differential expression (166).  Therefore, various combinations of tests, normalization and 

transformation methods were performed on the raw gene expression profile data using caGEDA 

(cancer gene expression data analyzer) (http://bioinformatics2.pitt.edu/GE2/GEDA.html).  

Efficiency analysis of these competing normalization methods and tests was subsequently 

performed as previously described (166).  Efficiency analysis compares the internal 

reproducibility of gene lists for various methods of analysis by comparing the percentage of 

overlapping genes found at various test thresholds in independently analyzed random splits 

(subsamples) of the datasets.  Efficiency analysis was used to identify the optimal test, 

normalization method + threshold of differential expression for our study using 30 splits. 

Pathways analysis was performed with Ingenuity Pathway Analysis software (Ingenuity, 

Mountain View, CA). 
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3.3.7 Quantitative RT-PCR (qRT-PCR) 

To validate microarray results, RNA isolated from lung tissue was first reverse transcribed to 

produce cDNA using a QuantiTect Reverse Transcription Kit (Qiagen, Germantown, MD) 

according to manufacturer’s instructions.  Twenty five nanograms of cDNA were then used for 

qRT-PCR in triplicate reactions for each primer set in the QuantiTect SYBR Green PCR kit 

(Qiagen) according to manufacturer’s instructions.  Reproducibility of the assay was further 

confirmed by performing a second assay with separate RNA preparations.  Primers were 

designed using Primer-BLAST found on the National Center for Biotechnology Information 

(NCBI) website (www.ncbi.nlm.nih.gov).  The primers (Table 3-3) were selected from NCBI 

database entries for individual Macaca mulatta genes.  Amplicon specificity was confirmed by 

performance of a post-PCR melt curve analysis.  Primer efficiency was validated by performing 

the assay for individual targets with serial dilutions of cDNA template.  Efficiency was 

confirmed by correlation of increasing threshold cycle (CT) (the first cycle number with 

detectable fluorescence above background) values with decreasing concentrations of template.    

Relative quantitation of gene expression levels obtained by qRT-PCR was performed 

using the delta (Δ) CT method. CT values of the Pc+/COPD+ group and the Pc-/COPD- group 

were both normalized to the endogenous housekeeping gene, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) followed by determination of relative expression according to the 

following equations: 

  

Normalization: -ΔCT=(mean CT(GAPDH)-mean CT(x)) 

Relative Expression

 

: 2(-ΔΔC
T

) 
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where mean CT(GAPDH) is the mean GAPDH CT value for a group of animals (Pc+/COPD+ or 

Pc-/COPD-) and mean CT(x) is the mean CT value for the gene of interest for the same group of 

animals. 

Fold increase or decrease of the Pc+/COPD+ animals relative to the Pc-/COPD- animals was 

then calculated by dividing the relative expression of the Pc+/COPD+ group by that of the Pc-

/COPD- group. 

3.3.8 Statistical analyses 

Differences in gene expression profiles over time were tested using restricted maximum 

likelihood. 

Linear correlation analysis of the microarray and qRT-PCR data was performed using 

Prism software (GraphPad, La Jolla, CA).   

Changes in cytokine levels in the bronchoalveolar lavage fluid (BALF) were compared 

between baseline and various time points after SHIV infection by Student’s paired t test 

(GraphPad). 

Tests for pulmonary function were performed using the R environment for statistical 

analysis and graphics in which mixed linear models were used to estimate and test the 

relationship among pulmonary function profiles (dependent variable), Pc colonization 

(independent variable), and time (independent variable). 

Significance in pathway analysis was calculated by Fisher’s exact test.  In this method, 

user-specified genes of interest (all of the differentially expressed genes) were entered into the 

Ingenuity Pathway Analysis database (www.ingenuity.com).  A p value associated with a 

particular canonical pathway was determined by comparing the number of genes of interest that 
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occur in the pathway to the total number of genes in the pathway.  Pathways containing more 

genes of interest than expected by chance were considered significantly affected.   

In all analyses, a p value less than 0.05 was considered statistically significant. 

3.4 RESULTS 

3.4.1 Differentially expressed genes between COPD and non-COPD macaques as revealed 

by microarray analysis 

We previously developed a nonhuman primate model of HIV-related COPD using SHIV and Pc 

co-infection in cynomolgus macaques (326).  In the present study, we used these same animals to 

examine gene expression profiles in lung tissue from SHIV/Pc co-infected monkeys with COPD 

(Pc+/COPD+) and compared them to monkeys infected with SHIV alone (Pc-/COPD-), which 

had normal lung function. Table 3-1 shows pulmonary function data from before and after SHIV 

infection grouped by those that became colonized with Pc and those that did not.  
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Table 3-1 

Pulmonary function measurements in monkeys pre- and post-SHIV infection 
 
 

Parameter Baseline Endpoint p value 

Pulmonary Function*    

PEF, mL/s (SHIV/Pc+) 526.8 ± 19.0 452.9 ± 13.5 0.02 

PEF, mL/s (SHIV/Pc-) 518.8 ± 13.2 522.0 ± 3.6 0.85 

FEV0.4, mL (SHIV/Pc+) 188.6 ± 5.9 165.8 ± 5.7 0.02 

FEV0.4, mL (SHIV/Pc-) 185.0 ± 6.7 185.3 ± 6.4 0.98 

FEF25–75%, mL/s (MMEF) (SHIV/Pc+) 471.9 ± 18.8 405.5 ± 14.1 0.04 

FEF25–75%, mL/s (MMEF) (SHIV/Pc-) 451.3 ± 15.5 470.3 ± 8.3 0.29 

    

 
*PEF, Peak expiratory flow; FEV0.4, forced expiratory volume in 0.4 seconds; FEF25-75% 

(MMEF), forced expiratory flow from 25% to 75% of forced vital capacity or maximum mid-

expiratory flow.  Values are means ± SEM followed by the p value for comparison of baseline 

(before SHIV infection) and endpoint values (study termination) for animals that became 

colonized with Pneumocystis (SHIV/Pc+) and those that remained non-colonized (SHIV/Pc-). 
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Microarray analysis was performed on cRNA prepared at the termination of SHIV infection.  

The array employed for this study contained 52,024 probe sets representing >20,000 genes.  The 

microarray hybridization initially generated four non-normalized data sets: Probe Logarithmic 

Intensity Error (PLIER) Workflow Perfect Match (PM)-Mismatch (MM), PLIER Workflow PM-

only, Robust Multi-array Analysis (RMA) PM-only and PM-only.  These raw data were 

subjected to an efficiency analysis comparing the degree of overlap of DE genes between 

random subsets of the Pc+/COPD+ and Pc-/COPD- data sets over a range of testing methods to 

determine the normalization/feature selection combination that yielded the most internally 

consistent gene set (gene set identified to be differentially expressed by the greatest number of 

testing methods) (166).  In the analyses of each of the raw data sets, the PM-only data yielded the 

most internally consistent results.  Figure 3-1A shows plots of the various efficiency curves 

resulting from the 252 methods applied to the PM-only data.  From these plots, we determined 

that the optimal method (i.e. the one demonstrating the highest internal consistency) was the one 

in which quantile 95 transformation and the J5 test were applied to the data without any 

normalization (Figure 3-1B).  The optimal threshold for the J5 test was found to be 23.9.  

Consequently, when the absolute value of 23.9 was used as a minimum cutoff point, 243 genes 

in the Pc+/COPD+ animals were differentially expressed (DE) as compared to the Pc-/COPD- 

animals (Appendix B). 
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Figure 3-1 Efficiency analysis curves used to determine the most internally consistent test method 

for identifying differentially expressed genes between SHIV/Pc+ and SHIV/Pc-.    Raw PM-only data 

obtained from microarray hybridization were subjected to all possible permutations of nine different 

normalizations, seven different transformations and four different tests for differential expression for a 

total of 252 possible methods.  (A) Plot of all the methods for percent of overlap versus number of 

overlapping genes.  (B) Plot of the maximum percent of overlap for the range 0-100 overlapping genes 

versus the number overlapping genes occurring at maximum overlap.  

 

A. 

B. 
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3.4.2 Immune response genes 

Transcripts that may be associated with Pc infection or COPD pathogenesis were selected from 

the 243 DE genes for further analysis.  These included transcripts encoding proteins associated 

with antigen presentation, β-2-microglobulin (β2m), a component of all major histocompatibility 

complex I molecules, and the invariant chain (CD74), a marker for MHC II molecules, which 

were both found to be upregulated in the Pc+/COPD+ macaques.  These results are consistent 

with the fact that although both groups of monkeys were infected with SHIV, only the COPD+ 

monkeys had detectable lung colonization with Pc that might be expected to activate the acquired 

immune response in the local environment of the lung.  Additionally, genes associated with 

inflammation and innate immunity were upregulated in Pc+/COPD+ macaques, including 

alternative macrophage activation-associated CC chemokine (AMAC-1, aka CCL18 or PARC) 

and surfactants, A2, B, C and D. 

3.4.3 Protease/Anti-protease genes 

A protease/anti-protease imbalance in lung tissue has been proposed to play a role in COPD lung 

injury (218).  Microarray analysis revealed upregulation of the cysteine protease, cathepsin H 

(CatH), in the Pc+/COPD+ tissues and downregulation of protease inhibitors, alpha-1 

antichymotrypsin (α1-ACT) and secretory leukocyte protease inhibitor (SLPI). 
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3.4.4 Tissue Homeostasis and oxidative stress genes 

Repeated cycles of tissue destruction and repair and dysregulated apoptosis have been postulated 

to promote COPD pathology (382).  Several genes associated with tissue homeostasis were 

differentially expressed in Pc+/COPD+ vs. Pc-/COPD- lung tissue, including upregulation of 

ornithine decarboxylase antizyme (ODC-Az), and downregulation of connective tissue growth 

factor (CTGF).  Both of these molecules play key roles in tissue maintenance.  Additionally, 

although it did not appear as differentially expressed by microarray analysis, pathways analysis 

using DE genes as input indicated that VEGF expression was significantly affected.   

Oxidative stress has also been reported to contribute to COPD pathogenesis.  Glutathione 

peroxidase 4 (GPX4), which has a role in protection from oxidative damage was upregulated as 

was expression of mitochondrial aldehyde dehydrogenase 2 (ALDH2), an enzyme important for 

aldehyde oxidation, in Pc+/COPD+ lung tissue. 

3.4.5 Confirmation of microarray results by qRT-PCR 

Independent analyses of expression levels of a subset of DE genes identified by microarray were 

performed using quantitative real time-PCR (qRT-PCR).  Gene expression levels obtained by 

qRT-PCR were normalized to the GAPDH gene and expressed as fold increase or decrease 

relative to the COPD- group of animals.  When microarray and qRT-PCR measurements were 

compared, the patterns of gene expression (up- or down-regulation) were similar for all the genes 

listed in Table 3-2 (Figures 3-2, 3-3). 
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Table 3-2 

Differentially expressed genes between Pc+/COPD+ and Pc-/COPD- macaques 

 

Category Description J5 Score Expression Ratio 
(SHIV/Pc+:SHIV/Pc-) 

Microarray             qRT-PCR 
Antigen Presentation major histocompatibility 

complex I (MHC I) 
β-2-microglobulin (β2m) 

 

+55.5 1.17           1.05 

 major histocompatibility 
complex II (MHC II) 

invariant chain (CD74) 
 

+33.7 1.29           1.13 

     
Inflammation pulmonary surfactant A2 

 
+85.1 

 
1.42           2.69 

 pulmonary surfactant B +83.6 
 

1.27           1.90 

 pulmonary surfactant C 
 

+110.9 
 

1.46           1.99 

 pulmonary surfactant D 
 

+62.2 
 

1.32           2.20 

 alternative macrophage 
activation-associated CC 

chemokine (AMAC-1, 
aka PARC or CCL18) 

 

+32.0 2.62           2.51 

Protease cathepsin H (CatH) +25.0 1.19           2.19 
     

Anti-protease α1-antichymotrypsin 
(α1-ACT) 

 

-35.8 
 

0.35           0.29 

 secretory leukocyte 
protease inhibitor (SLPI) 

-39.5 0.41           0.86 

     
Redox Balance glutathione peroxidase 4 

(GPX4) 
 

+29.3 1.33           1.90 

     
Apoptosis ornithine decarboxylase 

antizyme (ODC-Az) 
+54.1 

 
1.25           1.28 

     
 connective tissue growth 

factor (CTGF) 
 

-55.1 0.47           0.35 

 vascular endothelial 
growth factor (VEGF) 

*ND *ND           0.36 

 

*ND, not significantly different 
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Table 3-3 

Genes and primers used in qRT-PCR 

 

Gene Amplicon (bp) Primer Sequence 

α1-antichymotrypsin (α1-ACT) 209 Forward   5’-gtctgaggagggcacagaag-3’ 

  Reverse   5’-tactgagagccccactgctt-3’ 

cathepsin H (catH) 222 Forward   5’-ctttgccttcgaggtgactc-3’ 

  Reverse   5’-aggccacacatgttctttcc-3’ 

connective tissue growth factor (CTGF) 239 Forward   5’-atccgtacccccaaaatctc-3’ 

  Reverse   5’-aagatgtcattgtctcccgg-3’ 

glutathione peroxidase 4 (GPX4) 219 Forward   5’-gtaaccagttcgggaagcag-3’ 

  Reverse   5’-agccgttcttgtcaatgagg-3’ 

β2-microglobulin (β2m) 200 Forward   5’-tggaggtttgaagatgccgcatttgg-3’ 

  Reverse   5’-gccctcctaaagctagctgccca-3’ 

invariant chain (CD74) 238 Forward   5’-aagcactccttggagcaaaa-3’ 

  Reverse   5’-taccactgcagttctggtgc-3’ 

secretory leukocyte protease inhibitor (SLPI) 243 Forward   5’-cttcaaagccggagtctgtc-3’ 

  Reverse   5’-tggccatccatctcacagta-3’ 

pulmonary surfactant A2 (SPA2) 201 Forward   5’-gcctaggcctctagggaaga-3’ 

  Reverse   5’-atcctaagacctggcacacg-3’ 

pulmonary surfactant B (SPB) 203 Forward   5’-gacactgcacactctggcat-3’ 

  Reverse   5’-agctgggctttgagcagata-3’ 

pulmonary surfactant C (SPC) 218 Forward   5’-ccgcagtgcctacctctaag-3’ 

  Reverse   5’-tctgcaaaagctgcaaaaga-3’ 

pulmonary surfactant D (SPD) 219 Forward   5’-ttgcaacagctggtcatagc-3’ 

  Reverse   5’-gaccacgagacgcttttctc-3’ 

ornithine decarboxylase antizyme (ODC-Az) 177 Forward   5’-tcacccacccctgaagcccc-3’ 

  Reverse   5’-ctgtgagcccggactggaggt-3’ 

alternative macrophage activation-associated 
CC chemokine (AMAC1, aka CCL18 or 
PARC) 

161 Forward   5’-gccttgcagctgccctcctt-3’ 

  Reverse   5’-tggtttggtgcactgggggc-3’ 
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vascular endothelial growth factor (VEGF) 157 Forward   5’-tgcatgccacgggaggtgtg-3’ 

  Reverse   5’-tgctgaggtagctcgtgctggt-3’ 

glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) 

233 Forward   5’-gaaggtgaaggtcggagtcaa-3’ 

  Reverse   5’-gctcctggaagatggtgatg-3’ 

 

 

  

Table 3-3 (continued) 
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Figure 3-2 Quantitative real time-PCR of select genes validates microarray results.  Fold 

change expression ratios with background subtracted for microarray (gray bars) and qRT-PCR 

(black bars) are shown aligned next to one another for the indicated genes.  Fold change is 

expressed as the ratio of expression in the SHIV/Pc+ animals to expression in the SHIV/Pc- 

animals minus one (background) for ratios greater than one.  For ratios less than one (gene is 

underexpressed in SHIV/Pc+ compared to SHIV/Pc- animals), one is subtracted from the 

reciprocal value and expressed as negative. 
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Figure 3-3 Linear regression analysis of expression ratios reveals correlation between the 

two data sets.  Correlation between expression ratios derived from microarray analysis and qRT-

PCR were analyzed by Pearson correlation test (p= 0.0013).  The boxed area demarcates genes 

that were downregulated. 

3.5 DISCUSSION 

In this study, we used a nonhuman primate model of HIV infection to compare pulmonary gene 

expression in SHIV-infected, Pc-colonized monkeys with COPD to gene expression in SHIV-

infected monkeys with normal lung function in order to determine DE genes important in COPD 

pathogenesis in this model.  Analyses revealed 243 DE genes (Appendix B), of which a subset 

was further analyzed by qRT-PCR.  Several classes of genes were differentially expressed in 
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Pc+/COPD+ vs non-COPD lung tissue, including several not previously associated with COPD.  

These gene classes included those related to host immune response, protease/antiprotease 

balance, tissue homeostasis and redox balance. 

3.5.1 Immune response genes 

Upregulation of the major antigen presenting gene complexes, MHC I and MHC II, was 

observed in lung tissue of the Pc+/COPD+ animals compared to the Pc-/COPD- animals.  

Previous histologic and morphometric analyses of airways of this SHIV-infected cohort revealed 

a significant increase in bronchus-associated lymphoid tissue (BALT) in the Pc+/COPD+ 

monkeys compared to Pc-/COPD- monkeys (326).  The upregulation of genes associated with 

antigen presentation and the increased development of BALT in the Pc+/COPD+ tissue suggests 

the development of an adaptive immune response likely driven by persistent or repeated 

colonization with Pc or other infectious agents.  These results are consistent with the findings of 

increased BALT associated with advanced COPD in humans (145) and the hypothesis that 

persistent microbial colonization may contribute to COPD pathogenesis or exacerbations (224, 

288, 316, 326). 

Multiple studies have shown an important link between inflammation and COPD (145, 

178, 288, 360).  While the pathogenesis of immune-mediated damage in COPD is generally 

associated with T helper (Th) 1-type effector mechanisms (127, 141, 220), evidence in 

experimental models of infection-associated COPD (180, 224) and in human COPD patients 

(180, 235, 388) implicate Th2-skewed responses, with increased levels of interleukin (IL)-4 and 

IL-13.  These cytokines, induced as a consequence of persistent pulmonary infection, may 

contribute to the pathogenesis of COPD via induction of alternatively activated macrophages, 
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which express products associated with small airway remodeling (180).  Consistent with these 

studies, our results show that the alternatively activated macrophage marker (AMAC-1, aka 

CCL18 or PARC) is upregulated in Pc+/COPD+ lung tissue.  Furthermore, cytokine analysis of 

BAL fluid previously performed in the cohort described here demonstrated increased levels of 

IL-4, IL-5 and IL-13 in Pc+/COPD+ macaques compared to Pc-/COPD- monkeys (326). 

The complex interplay between the surfactant system and Pc colonization in a SHIV-

infected host likely influences multiple aspects of the host-pathogen interaction including 

immune responses necessary for clearance of the pathogen and modulation of inflammatory-

mediated tissue damage.  In an immunocompetent host, attachment of Pc to type I alveolar 

epithelial cells induces cell damage, leads to upregulation of surfactant proteins A and D, and an 

increase in production of inflammatory mediators (11, 51, 53, 153, 265, 355).  These events 

promote macrophage activation and cytokine production leading to enhanced uptake and killing 

of the organisms, and balanced pro- and anti-inflammatory effects of surfactants A and D on 

alveolar macrophages and lymphocytes (30, 31, 67, 189, 293).  In the SHIV immunosuppressed 

host, failure to clear colonizing Pc (or repeated Pc colonization) may promote persistent 

upregulation of surfactant proteins, potentially leading to dysregulated proinflammatory events 

and host tissue damage. 

 

3.5.2 Protease/Anti-protease genes 

A disruption in the normal balance between proteases and their inhibitors has been proposed as a 

key pathway in the breakdown of lung parenchyma resulting in emphysema (218).  Much 

evidence has accumulated implicating neutrophil elastase (NE), other serine proteases and matrix 
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metalloproteases in COPD-related tissue destruction (211, 264, 312).  The role of cathepsins in 

COPD is less clear; however, Zheng et al. have shown that IL-13-dependent induction of 

cathepsins (B, S, L, H and K) was associated with emphysema in an experimental murine model 

(387).  The observation of increased expression of cathepsin H in Pc+/COPD+ tissue in the 

present study, along with evidence of IL-13 induction and Th2 skewing in this model (326) is 

consistent with the IL-13-dependent sub-type of emphysema (180, 224, 387).  This sub-type may 

be particularly important in emphysema described in HIV-infected individuals (81), as changes 

from a Th1- to Th2-skewed response have been associated with progression to AIDS in HIV-

infected individuals (183). 

 Consistent with a shift in protease/anti-protease balance in promotion of lung tissue 

destruction, we also observed downregulated expression of the serine protease inhibitors, SLPI 

and α1-ACT.  In addition to its role in the inhibition of NE-mediated tissue destruction, SLPI has 

anti-microbial and anti-inflammatory properties (163, 384).  Reduction in expression level of 

SLPI may not only promote increased proteolytic damage in the lung, but also impede Pc 

clearance and further disrupt the pro-/anti-inflammatory balance.  While α1-antitrypsin is a major 

inhibitor of lung serine proteases and genetic variants are associated with early-onset emphysema 

(306), less is known about the role of α1-ACT in COPD.  Alpha1-ACT may have a similar role 

as α1-antitrypsin in controlling protease-mediated lung tissue destruction as allelic variants are 

associated with increased frequency of COPD (152). 

3.5.3 Tissue homeostasis and oxidative stress genes 

Oxidative stress is caused by an imbalance in the generation of reactive oxygen species (ROS) 

and antioxidant mechanisms, leading to cellular damage.  Increasing evidence suggests that 



 104 

oxidative stress is an important contributor to the progression of COPD (217).  While cigarette 

smoke is a key source of ROS (58), microbial interaction with inflammatory cells leads to 

activation and increased production of ROS (169, 285).  The present analysis revealed 

differential expression of two genes associated with oxidative stress responses in Pc+/COPD+ 

vs. non-COPD tissue. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) was modestly 

upregulated in Pc+/COPD+ tissues based on microarray analysis. ALDH2 is an enzyme involved 

in aldehyde oxidation and whose activation was recently shown to correlate with reduced 

ischemic heart damage in rodent models (49).  Although primarily involved in alcohol 

detoxification, ALDH2 is emerging as an important cryoprotectant that is upregulated in 

response to oxidative damage (35).  GPX4 was also upregulated in Pc+/COPD+ lung tissue.  

Upregulation of this molecule, which acts to protect cells from oxidative damage, may represent 

a response to oxidative stress highlighting a potential role for ROS-mediated tissue damage in 

early emphysema pathogenesis in Pc+/COPD+ monkeys.   

 Repeated cycles of tissue destruction and repair and a dysregulated apoptotic 

response have been postulated to promote COPD pathology (142, 150, 382). Several genes 

associated with tissue homeostasis and apoptosis were differentially expressed in Pc+/COPD+ 

vs. Pc-/COPD- lung tissue, including ornithine decarboxylase antizyme (ODC-Az), which 

inactivates ornithine decarboxylase (ODC) leading to its degradation in a ubiquitin-independent 

manner.  ODC is the rate-limiting enzyme in the biosynthetic pathway for polyamines, which are 

required for cell growth and proliferation, and depletion of polyamines results in increased 

apoptosis (257).  Thus, increased levels of ODC-Az may indirectly promote increased apoptosis 

in the Pc+/COPD+ lung.  In addition, Pc+/COPD+ tissue had reduced expression of the gene 
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encoding CTGF, a key molecule associated with extracellular matrix (ECM) production and 

maintenance of lung architecture (72, 157). 

Interestingly, decreased CTGF has been linked to decreased expression of vascular 

endothelial growth factor (VEGF) (157), a molecule implicated in apoptosis-mediated COPD 

pathogenesis (347).  Although VEGF was not differentially expressed by microarray analysis, 

qRT-PCR showed decreased expression of VEGF in Pc+/COPD+ tissue.  Additionally, 

biosynthetic pathways analysis showed that the VEGF pathway was significantly affected in 

expression of upstream molecules in Pc+/COPD+ tissue.  These results are consistent with 

findings of decreased VEGF levels in the lung tissue of emphysema patients (347) and that 

blockage of VEGF leads to emphysema via apoptosis (176, 177). 

3.5.4 Proposed model of early emphysema pathogenesis 

In totality, these findings suggest a series of events that lead to the initial stages of emphysema.  

We, therefore, propose the following model for early stage COPD pathogenesis in 

immunocompromised individuals who become Pc-colonized (Figure 3-4).   
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Initially, a cascade of innate immune responses is set in motion as a result of Pc invasion of the 

lungs including upregulation of pulmonary surfactant expression by alveolar type II epithelial 

cells and downregulation of VEGF, CTGF, α1-ACT and SLPI by general structural lung cells, 

such as smooth muscle and endothelial cells.  These same cells also upregulate ODC-Az.  These 

events result in an immediate tilt of the balances involving apoptosis/proliferation and 

Figure 3-4 Early COPD pathogenesis model 
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protease/anti-protease activity.  As the resident dendritic cells and ubiquitous macrophages 

encounter Pc and ingest/process it, they upregulate expression of MHC I and MHC II antigen 

presenting molecules and secrete several cytokines including: GM-CSF, IL-1β, IL-4, IL-5, IL-6, 

and IL-13.  Exposure to these cytokines leads the macrophages to assume an alternatively 

activated phenotype leading to upregulation of MMPs and/or ROS.  The presence of ROS results 

in increased apoptotic activity which structural cells attempt to counterbalance by upregulating 

GPX4.  However, this event is overwhelmed by simultaneous overexpression of ODC-Az which 

further stimulates cellular apoptosis of lung tissue.  The increased apoptosis combined with 

tissue degradation from the enhanced MMP secretion consequently result in early COPD 

development. 

3.5.5 Concluding remarks 

A number of studies have examined differentially expressed genes associated with COPD (27, 

121, 256), but the present study is the first to characterize global pulmonary gene expression in a 

model of HIV-associated COPD.  Thus, a number of previously unreported pathways emerged, 

most notably immune response genes associated with innate and acquired immune responses. 

There is a growing body of literature implicating Pc colonization with the development of COPD 

in human studies and animal models (55, 245, 258, 279), and the results of this study support the 

concept that amplification of the host innate and acquired immune responses to persistent Pc 

colonization likely promotes dysregulation of inflammatory responses, disruption of tissue 

homeostasis, and protease/anti-protease imbalance, ultimately leading to tissue destruction and 

altered lung mechanics.   Although this study does not capture the initial stages of the Pc/SHIV-

associated COPD, the primate model allows for future longitudinal genomic and proteomic 
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studies that will address the dynamic process of COPD pathogenesis and identify specific, novel 

therapeutic targets. 
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4.0  KINETICS OF EARLY PULMONARY FUNCTION DECLINE AND COPD 

ASSOCIATED WITH PNEUMOCYTSIS COLONIZATION IN A SIMIAN MODEL OF 

HIV INFECTION 

4.1 INTRODUCTION 

There is a vital need for effective treatment regimens for chronic obstructive pulmonary disease 

(COPD) as it is on course to become the third leading cause of death worldwide by the year 2020 

(251).  Despite enormous efforts directed to this end, beneficial therapies remain elusive due to 

the complexity of the disease (42, 57).  Smoking is widely accepted as the primary risk factor for 

development of COPD, but only about 15% of smokers develop the disease (93) suggesting 

involvement of other factors that may be genetic or environmental.  In particular, mounting 

evidence points to a role for infectious agents in development of COPD.  For example, 

Haemophilus influenzae and adenovirus have both been implicated in exacerbations and/or 

COPD development (144, 320).  

The contribution of infectious pathogens may be especially relevant in HIV+ subjects 

who are at increased risk for development of COPD and an accelerated form of emphysema (66, 

80).  Pneumocystis jirovecii, the causative agent of Pneumocystis pneumonia (PcP), is an 

opportunistic fungal lung pathogen that has been linked to the development of COPD in HIV+ 

patients when present in the lungs at subclinical levels (colonization) (241).  Even with the 
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introduction of powerful antiretroviral drugs and anti-Pneumocystis prophylaxis, colonization 

can still be detected in the HIV+ population at rates as high as 69% (147).  Furthermore, Pc 

colonization has been associated with COPD in non-HIV-infected patients (245).  Animal 

models of Pneumocystis (hereafter, “Pc”) infection and colonization also support a role for Pc in 

development of obstructive lung disease (55, 258).   

In a simian model of HIV infection, we previously showed development of airway 

obstruction and radiologic and histologic evidence of emphysema in cynomolgus macaques 

infected with a chimeric simian/human immunodeficiency virus (SHIV) that became naturally 

colonized with Pc (326).  These results identify Pc as a potentially treatable risk factor in COPD 

pathogenesis.  Therefore, in the current study, we used this model to evaluate the kinetics of 

pulmonary function decline and determine whether clearance of Pc colonization by treatment 

with trimethoprim-sulfamethoxazole (TMP-SMX) altered the progression of disease. 

4.2 METHODS 

4.2.1 Animals 

Seventeen adult, Chinese origin cynomolgus macaques (Macacca fasicularis), weighing between 

5-8 kg, were used in this study.   All animals were purchased from National Primate Centers or 

vendors approved by the University of Pittsburgh, Department of Laboratory Animal Research.  

Prior to admission to the study, all animals underwent complete physical examination 

(pulmonary and cardiac auscultation, thoracic radiographs, computer tomography scanning, 

tuberculin skin testing, complete blood count, chemistry panel, urinalysis, and flow cytometric 
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analysis of peripheral blood mononuclear and BAL cells) and were screened for simian 

retroviruses; SIV, SRV, and STLV to verify that they are free of any pre-existing disease that 

may confound the study. There were no significant differences in age, height or weight or 

pulmonary function of the monkeys prior to the start of the study.  The animals were housed in 

an American Association for Accreditation of Laboratory Animal Care-accredited, biosafety 

level 2+ primate facility at the University of Pittsburgh.  Animal husbandry and experimental 

procedures were conducted in accordance with standards set forth by the Guide for the Care and 

Use of Laboratory Animals

4.2.2 SHIV and Pc infection and development of COPD in cynomolgus macaques 

 (2) and the Provisions of the Animal Welfare Act.  Prior to the 

initiation of this study, all animal experiments were approved by the Institutional Animal Care 

and Use Committee of the University of Pittsburgh. 

SHIV and Pc infection of the monkeys used in this study was previously described (326).  

Briefly, monkeys were intravenously inoculated with 1x104.9 TCID50 (50% tissue culture 

infectious doses) of SHIV89.6P (gift of Dr. Opendra Narayan, University of Kansas), which 

induces CD4+ T cell lymphopenia and AIDS-like disease with wasting and opportunistic 

infections (269, 286).  Monkeys were monitored for disease progression by monthly quantitation 

of viral load (269)  and by analysis of peripheral blood CD4+ T cell levels by flow cytometry 

(184).  

To facilitate natural transmission of Pc, immediately following SHIV-inoculation, 

monkeys were co-housed with other SIV or SHIV/Pc co-infected macaques (184).   Monthly 

evaluations for Pc colonization were performed by nested-PCR on DNA extracted from BAL 

samples and by increases in Pc-kexin-specific plasma antibodies (29, 184). 
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Whole body plethysmography and forced deflation technique were used to evaluate 

progression of obstructive changes in SHIV/Pc+ and SHIV/Pc- monkeys, as previously 

described (326).  As a readout for airway obstruction, the forced expiratory volume in 0.4 

seconds (FEV0.4) and peak expiratory flow (PEF) were determined at baseline (uninfected 

monkeys) and at monthly intervals up to 18 months post-infection. 

4.2.3 TMP-SMX treatment 

To eradicate Pc, TMP-SMX was administered daily (TMP: 20 mg/kg, SMX: 100 mg/kg SMX) 

for the duration of the study to a subset of the monkeys that had exhibited significant airway 

obstruction due to Pc colonization.  Additionally, the group of animals that did not become 

colonized with Pc also received TMP-SMX treatments for the remainder of the study. 

4.2.4 Statistical analyses 

All analyses were performed using Prism software (GraphPad, La Jolla, CA).  For all analyses, a 

p value less than 0.05 was considered statistically significant. 

4.3 RESULTS 

4.3.1 Baseline characteristics were not different between groups 

Once animals’ colonization statuses and dispositions regarding TMP-SMX treatment were 

known, we were able to perform statistical analyses to determine if there were differences 
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between physical characteristics or pulmonary function in the groups at the onset of the study 

that might factor into experimental differences that may arise during the course of the study.  We 

found no differences in weight, height or pulmonary function between the animals that became 

colonized with Pc and those that remained non-colonized, nor did we discover any differences 

between the Pc+ macaques that were treated with TMP-SMX versus those that received no 

treatment (Tables 4-1, 4-2). 

 

 

Table 4-1 

Physical characteristics and pulmonary function of SHIV/Pc- and SHIVPc+ groups at baseline 

 
Parameter Pc negative* Pc positive p value 

Height, cm 66.0 (63.5 – 76.2) 63.5 (61.0 – 78.7) 0.49 

Weight, kg 7.3 (6.3 – 8.9) 7.0 (5.5 – 10.4) 0.94 

Pulmonary Function Parameters†   

  FEV0.4, ml 195.5 (157.7 – 214.9) 201.1 (164.7 - 214.9) 0.47 

  PEF, ml/s 530.4 (436.8 – 563.8) 563.4 (455.7 – 604.8) 0.11 

 

*Comparison of baseline values of animals that were subsequently infected with SHIV89.6P and 

remained uncolonized (Pc negative) or became colonized with Pc (Pc positive).  All comparisons 

were by unpaired t test. 
†FEV0.4, forced expiratory volume in 0.4 seconds; PEF, peak expiratory flow.   

Values are medians with ranges shown in parentheses. 
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Table 4-2 

Baseline physical characteristics and pulmonary function of Pc-colonized animals divided into 

TMP-SMX treatment and no TMP-SMX treatment groups. 

 
Parameter TMP-SMX negative* TMP-SMX positive p value 

Height, cm 64.8 (61.0 – 66.0) 63.5 (61.0 – 78.7) 0.49 

Weight, kg 7.4 (6.8 – 9.5) 7.0 (5.5 – 10.4) 0.53 

Pulmonary Function Parameters†   

  FEV0.4, ml 204.2 (189.4 – 214.9) 201.1 (164.7 – 213.4) 0.41 

  PEF, ml/s 571.8 (527.7 – 604.8) 563.4 (455.7 – 596.4) 0.44 

 

*Comparison of baseline values of animals subsequently infected with SHIV89.6P that became 

colonized with Pc and divided into no TMP-SMX treatment (TMP-SMX negative) and TMP-

SMX treatment (TMP-SMX positive) groups.  All comparisons were by unpaired t test. 
†FEV0.4, forced expiratory volume in 0.4 seconds; PEF, peak expiratory flow.   

Values are medians with ranges shown in parentheses. 

4.3.2 SHIV disease was not different between Pc-colonized and non-colonized monkeys 

In order to confirm that immune deficiencies arising as a result of SHIV infection were not 

different between animals that became colonized with Pc and those that did not become 

colonized, we evaluated parameters relevant to SHIV disease.  To do this, we assessed peak viral 

loads and peripheral blood CD4+ T cell counts (Figure 4-1). 
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Figure 4-1 Disease progression between groups is not different.  Peak plasma viral load and 

CD4+ T cell counts were monitored to evaluate disease progression.  Up to initiation of TMP-

SMX treatment (A) There were no differences between groups separated by Pc colonization 

status in peak plasma viral loads (p=0.59 by unpaired t test) or peripheral blood CD4+ T cell 

counts (p=0.89 by two-way repeated measures ANOVA).  After TMP-SMX treatment began for 

the Pc-colonized animals (B) There were no differences between TMP-SMX groups in peak 

plasma viral loads (p=0.12 by unpaired t test) or peripheral blood CD4+ T cell counts for the 

duration of the study (p=0.78 by two-way repeated measures ANOVA). 

4.3.3 Pc colonization in SHIV-immunosuppressed macaques results in airway obstruction 

Recapitulating results from our previous study, animals that became colonized with Pc 

demonstrated airway obstruction (326) (Figure 4-2).  By 25 weeks post-SHIV infection, 
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significant declines in pulmonary function were observed in the monkeys that had become 

colonized with Pc, but not the non-colonized animals. 
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Figure 4-2 Pneumocystis colonization results in pulmonary function decline.  Whole body 

plethysmography was used to evaluate peak expiratory flow (top) and forced expiratory volume 

in 0.4 seconds (bottom) in cynomolgus macaques that became colonized with Pc (left) or 

remained non-colonized (right) after SHIV infection.  Displayed p values were obtained by 

performing paired t test on baseline data versus week 25 post-SHIV infection data for each of the 

shown parameters for each group (SHIV/Pc+ or SHIV/Pc-).   
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4.3.4 TMP-SMX treatment results in clearance of Pc colonization 

To determine whether antibiotic clearance of Pc affected pulmonary function decline, TMP-

SMX was administered to a subset of the SHIV/Pc+ monkeys and the SHIV/Pc- control group.  

Figure 4-3 shows IgG antibody profiles and PCR results of one representative animal each from 

the TMP-SMX treatment group (left) and the untreated group (right).  The decline in anti-KEX1 

antibody titers combined with the absence of positive Pc DNA PCR results after the start of 

TMP-SMX treatment indicate that the drug therapy was effective in clearing the Pc (184). 
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Figure 4-3 TMP-SMX treatment clears Pc colonization in SHIV-infected macaques.  To 

arrest pulmonary function decline, a subset of the SHIV/Pc+ animals received TMP-SMX.  Anti-

KEX1 IgG antibody profiles and PCR data are shown for representative animals from the TMP-

SMX treatment group (left) and the untreated group (right). 

TMP-SMX 



 119 

4.3.5 Administration of TMP-SMX 25 weeks post-SHIV infection does not arrest further 

pulmonary function decline 

As expected, neither the originally non-colonized animals on TMP-SMX nor the previously Pc-

colonized animals on TMP-SMX demonstrated any further development of airway obstruction 

up to 12 months after initiation of TMP-SMX (Figure 4-4).   
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Figure 4-4 Eradication of Pneumocystis colonization results in leveling off of pulmonary 

function.  Whole body plethysmography was used to evaluate PEF (top) and FEV0.4 (bottom) in 

cynomolgus macaques that became colonized with Pc and then treated with TMP-SMX (left) or 

remained non-colonized (right) after SHIV infection.  Displayed p values were obtained by 

performing paired t test on week 25 post-SHIV infection (TMP-SMX treatment initiated) data 

versus week 72 post-SHIV infection data for each of the pulmonary function parameters for each 

group (SHIV/Pc+ or SHIV/Pc-). 
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Unexpectedly, the group of animals not on TMP-SMX but that was Pc-colonized also did not 

develop any further airway obstruction (Figure 4-5). 
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Figure 4-5 Pneumocystis colonization has no further effect on pulmonary function after 

initial induction of pulmonary function declines.  Whole body plethysmography was used to 

evaluate PEF (left) and FEV0.4 (right) in cynomolgus macaques that became colonized with Pc 

and allowed to continue in Pc-associated airways disease progression.  Displayed p values were 

obtained by performing paired t test on week 25 post-SHIV infection data versus week 72 post-

SHIV infection data for each of the pulmonary function parameters. 

4.4 DISCUSSION 

To establish a definitive link between Pc colonization and development of airway obstruction, 

we infected cynomolgus macaques with SHIV to induce immunosuppression and susceptibility 

to Pc colonization.  As in our previous study (326), animals that became colonized with Pc, but 

not those that remained uncolonized, showed significant declines in pulmonary function by week 

25 post-SHIV infection.  Treatment of a subset of the SHIV/Pc+ macaques eradicated Pc in these 
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animals.  However, no effect was noted because Pc-associated pulmonary function decline 

appears to only take place early after colonization followed by a plateau in function as evidenced 

by the lack of continued progression in airway obstruction in the untreated Pc-colonized animals. 

The possibility that infectious agents may play a role in the development of airway 

obstruction has been explored (144, 316).  It has been hypothesized that their persistence in the 

lungs results in chronic inflammation and lung destruction in COPD (316).  In particular, Pc has 

been linked to COPD pathogenesis in both human and animal studies (55, 241, 245, 258).   

Development of COPD resulting from pulmonary infection represents a highly treatable 

condition for this disease which is the cause of significant morbidity and mortality throughout 

the world.  We, therefore, aimed to determine if pulmonary function decline could be arrested 

after significant obstruction had already occurred due to Pc colonization.  To do this, we 

administered TMP-SMX therapy to immunosuppressed nonhuman primates that were colonized 

with Pc and had already exhibited significant airway obstruction.  When Pc-colonized animals 

were treated with TMP-SMX starting at 25 weeks post-SHIV infection after animals had been 

colonized an average of 8 weeks, we observed that Pc colonization-associated damage appeared 

to be self-limiting taking place very rapidly after first detection of colonization and then ceased 

to progress.  This was evidenced by the unexpected lack of further pulmonary function decline in 

the untreated SHIV/Pc+ macaques.  We, therefore, conclude that Pc induces airway obstruction 

very early after colonization in the context of immunosuppresion followed by an extended period 

of relative inactivity in the absence of some other insult. 

Our observation is not entirely without precedent.  Multiple studies on the acute effects of 

Pc infections have suggested that declines in pulmonary function observed after PcP may not 

return to baseline (236, 237, 323).  However, Morris and coworkers reported significant declines 



 122 

in pulmonary function in patients who had PcP only one month earlier that persisted for years 

(248).  These studies demonstrate that Pc infection can result in permanent airway damage after a 

very short period of time of exposure to the pathogen. 

The reason damage resulting in further decline in pulmonary function does not continue 

is not known.  It is conceivable that host immune responses are able to gain some control over 

the pathogen and the damage it causes via antibody-mediated mechanisms.  Two observations 

indicate that this may be true.  First, despite immunosuppression, monkeys are able to mount a 

Pc-specific antibody response (184).  Second, screening of monkeys for anti-Pc IgG titers before 

SHIV infection revealed that animals with higher titers against Pc were protected from Pc 

colonization and associated airway obstruction (Kling, unpublished results, manuscript 

submitted).  These observations suggest that humoral responses against Pc, even when generated 

in an immunocompromised state, can be protective.  This is further supported by the report 

showing that undetectable anti-Pc antibody titers was an independent predictor of more severe 

airway obstruction (244).  The higher rate of emphysema reported in HIV patients (81) may be 

the result of loss of this control as patients’ immune systems deteriorate and progress towards 

AIDS.  It is also possible that prevalence of smoking among HIV+ individuals, which is at least 

2-3 times higher than the 19.8% smoking rate of the general population (4, 124, 234, 376), plays 

a role in their increased risk for emphysema by amplifying the inflammatory response in patients 

colonized with Pc. 

This study confirms previous results that Pc colonization results in airway obstruction in 

a simian model of AIDS.  When drug treatment was administered to arrest pulmonary function 

decline, no effect was observed because lung damage associated with Pc colonization occurred 

early after the onset of colonization and plateaued quickly thereafter.  For this reason, use of 
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TMP-SMX to control the progression of COPD is not appropriate for the prevention of 

pulmonary decline.   
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5.0  SUMMARY AND CONCLUSIONS 

As the causative agent of PcP, the leading AIDS-defining illness (165), Pc has held a prominent 

position in modern medicine since the outbreak of the AIDS epidemic in the 1980s.  Even with 

the advent of ART to aid in maintaining CD4+ T cell counts combined with the use of anti-Pc 

prophylaxis to prevent Pc infections, subclinical levels of this pathogen can still be detected at 

rates as high as 69% in HIV+ populations (147).  The consequences of long-term carriage of Pc 

at levels too low to cause PcP (colonization) have not been well studied, but mounting evidence 

implicates this organism in the pathogenesis of chronic obstructive pulmonary disease (COPD).  

First, multiple studies have reported increased incidence of emphysema and COPD among HIV+ 

individuals (66, 79, 80).  Other reports have shown declines in pulmonary function after PcP 

episodes (236, 237, 323).  Moreover, these declines have been shown to last for years after 

resolution of the pneumonia (248) mimicking the permanent nature of airway obstruction in 

COPD.  Still more evidence is found in epidemiological studies reporting high rates of Pc 

colonization in COPD patients as compared to healthy subjects or patients with other types of 

lung disorders (39, 279, 328).  Additionally, increased Pc colonization that correlates with 

severity of COPD has been reported (245).  Finally, there are many similarities in the 

inflammatory responses observed in COPD and Pc colonization.  These similarities involve 

influx of the same types of cells into the lungs of COPD and PcP patients (77, 300, 330, 346).  

Closely associated with this inflammation is excessive proteolytic activity which has been 
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hypothesized to be at the root of COPD pathogenesis (357).  Evidence of excessive proteolytic 

activity has also been observed in both COPD and Pc infections (136, 238, 264, 282, 345, 352).  

Although these studies do not prove the existence of a causal relationship between Pc 

colonization and COPD development, the strong association warrants further investigation. 

The central goal of this research was to assess the role of sub-clinical infection with Pc in 

the context of HIV co-infection on the development of COPD.  To this end, the first aim was to 

test the hypothesis that Pc colonization in a primate model of AIDS leads to progressive loss of 

pulmonary function and development of COPD.  In fulfillment of this aim, cynomolgus 

macaques were infected with SHIV in order to induce immunosuppression that would allow 

natural Pc colonization.  The macaques that became colonized with Pc exhibited significant 

airway obstruction accompanied by anatomic changes indicative of emphysema development 

including increased lung and airspace volumes in the upper lung lobes and decreases in total lung 

tissue and weight.  We also observed histologic evidence of emphysema in the form of a greater 

mean chord length in the lung tissue of SHIV/Pc+ versus the SHIV/Pc- monkeys.  Another 

histologic finding of significance was that the Pc-colonized monkeys had a higher frequency of 

BALT in their lungs than the non-colonized animals lending weight to a role for infectious 

agents in COPD development.  Evaluation of cytokine levels in the BALF of the animals 

suggested that a Th2 response and macrophage activation are important in the development of 

emphysema in the simian model of AIDS.  These results identify Pc as a potentially treatable risk 

factor for COPD development in HIV-infected and non-infected individuals. 

The second aim of this research was to identify key immune mediators of SHIV/Pc-

associated obstructive lung disease.  To accomplish this, RNA was isolated from lung tissue 

taken at necropsy from the monkeys used in aim 1 and used for microarray analysis.  Of over 
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52,000 transcripts analyzed, 243 genes were found to be differentially expressed in the 

SHIV/Pc+ animals as compared to the SHIV/Pc- animals.  The differentially expressed genes 

that may be important to COPD pathogenesis spanned a wide array of categories.  In support of 

infectious agent involvement, antigen presentation genes were upregulated.  As expected in 

COPD, several genes associated with lung inflammation were also found to be differentially 

expressed.  There was a combination of over- and underexpression of genes involved in 

protease-antiprotease balance in the lungs that could result in a net proteolytic phenotype.  We 

also observed upregulation of one antioxidant gene which could indicate host response to 

oxidative stress elicited by Pc colonization.  Up- and downregulation of a number of tissue 

homeostasis genes provided evidence that excessive apoptosis may also be playing a role in 

emphysema development.  This was supported by a pathways analysis of the differentially 

expressed genes that indicated that VEGF gene expression, a protein that appears to be central in 

maintenance of lung tissue (177, 347, 356), was significantly affected.  Although all of the gene 

groups that showed differential expression in our model have surfaced in other microarray 

studies of COPD, they have never all appeared simultaneously as possible mediators of the 

disease suggesting that the simian model of AIDS/COPD pathogenesis provides an excellent 

resource in the study of mechanisms and mediators important to COPD development. 

The third aim of this research was to test the hypothesis that pulmonary function decline 

can be arrested by administering therapeutic doses of TMP-SMX in order to eliminate Pc 

colonization, thus directly correlating pulmonary function decline with the presence of Pc.  

Recapitulating the results of aim 1, we observed the development of significant airway 

obstruction in the new cohort of animals that became colonized with Pc.  The animals that were 

Pc-colonized were then divided into TMP-SMX treatment/no treatment groups to show that 
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pulmonary function decline could be arrested in Pc-colonized animals.  However, the drug 

therapy had no effect on further pulmonary function decline as was evidenced by the observation 

that the untreated group of animals did not demonstrate any further development of airway 

obstruction despite remaining colonized with Pc.  This led us to conclude that Pc colonization-

induced airway obstruction happens very rapidly and early after the onset of colonization 

followed by a plateau that can last for an extended period in the absence of some other inciting 

factor. 

The research described here suggests a number of new directions in elucidating the role 

of Pc in COPD pathogenesis.  For example, the microarray study performed in fulfillment of aim 

2 utilized terminal lung tissue samples for identification of mediators involved in development of 

airway obstruction.  However, the MMP assay showing increased activity at week 12  followed 

by a steep dropoff, and the pulmonary function data generated from the studies fulfilling aims 1 

and 3, respectively, suggest that Pc colonization-induced lung damage happens rapidly after Pc 

colonization first takes place followed by a period of control over further impairment of 

pulmonary function despite continued Pc colonization.  Therefore, microarray analysis of interim 

samples may shed light on other mediators involved in emphysema pathogenesis and 

development of airway obstruction.  Since multiple surgeries to remove lung tissue samples is 

not reasonable, this work can be performed on RNA isolated from BAL cells harvested serially 

which were collected during the aim 3 study.  If MMPs do play a significant role as expected, 

microarray of BAL cells will likely reveal this because the majority of these cells are 

macrophages which express a wide array of these proteases.  Serial microarray data can then be 

correlated to data generated from cytokine/chemokine analysis of BALF and pulmonary function 

data. 
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To address the importance of alternatively activated macrophages in COPD pathogenesis 

as was implicated in the aims 1 and 2 studies, flow cytometry to detect markers for cells of this 

phenotype can be performed.  We evaluated both alternatively and classically activated 

macrophages in the aim 3 study, but found no differences for either one of the macrophage types 

in the magnitude of the response between the SHIV/Pc+ and SHIV/Pc- groups for the period in 

which Pc-mediated declines in pulmonary function occurred (Appendix C).  Further work is 

required to elucidate the role of macrophages in development of COPD. 

 Since the damage induced by Pc appears to be self-limiting and takes place early after 

onset of colonization of the lungs in the simian model of HIV infection (as shown in the aim 3 

study), and since the HIV+ population has a considerably higher rate of smoking than the general 

population (4, 124, 234, 376), introduction of the effect of smoking to the model may allow us to 

gain a better understanding of why smokers who develop COPD experience enormous 

pulmonary function declines that continue over many years.  Addition of this further insult 

would allow us to uncover other mediators of COPD pathogenesis.  Furthermore, since it is 

plausible that the combined damaging effects of Pc and smoking may be longer lasting than what 

we observed in the simian AIDS/Pc model, TMP-SMX therapy administered well after the onset 

of Pc colonization may still provide some benefit.  Thus, highly relevant and potentially far-

reaching information can still be gleaned from the simian model by modifying how it is currently 

used through the addition of smoking, the leading risk factor for COPD development.  

These studies establish a novel model for HIV-associated COPD and provide evidence 

supporting a role for Pc colonization in obstructive disease development.  Nevertheless, a direct 

pathogenic link between Pc and COPD still remains to be demonstrated.  Conventionally, 

establishment of etiology of disease has been by application of Koch’s postulates which include: 
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1) isolating an organism from diseased hosts and growing it in culture, 2) re-introducing the 

cultured organism into healthy hosts to cause the same disease and 3) re-isolating the organism 

from diseased hosts that received the originally isolated organism and identifying it to be 

identical to the original causative agent.   

There are limitations to fulfilling Koch’s postulates in order to definitively establish Pc as 

the causative agent of COPD.  For example, Pc cannot be cultured continuously.  This precludes 

fulfillment of the second postulate of re-introducing the cultured organism into healthy hosts to 

cause disease that, in turn, makes fulfillment of the third postulate problematic.  However, use of 

the simian AIDS/Pc model has allowed us to show multiple times that there is a link between Pc 

colonization and COPD development, consequently, providing a preponderance of evidence that 

may circumvent the necessity of applying Koch’s postulates.  First, Pc has been detected by the 

combination of a rise in anti-Pc serum antibody titers and PCR in every diseased (obstructed) 

host.  As a caveat, due to the host specificity of the pathogen (101, 115) the Pc in the monkey 

model is specific for simian hosts and does not cause disease in humans.  Notwithstanding, it has 

been shown that monkey Pc is evolutionarily close to human Pc compared to that used in other 

animals models (259).  In the model used in the current research, organisms were not manually 

introduced into healthy hosts but, rather, natural colonization was allowed to take place after 

inducing immunosuppression through the introduction of an immunodeficiency virus.  Once 

again, since Pc cannot be cultured, this was the only option available.  As a second caveat, the 

opportunistic nature of Pc requires that the host be immunosuppressed, thus precluding the 

possibility of using “healthy” hosts. 

Many organisms accepted to be the etiologic agents of various diseases do not fulfill 

Koch’s postulates.  For example, Treponema pallidum, Mycobacterium leprae, Rickettsia sp. and 
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Chlamydia trachomatis are accepted as causative agents for syphilis, leprosy, Rocky Mountain 

spotted fever and trachoma, respectively.  However, these organisms do not fulfill Koch’s 

postulates because they cannot be purely cultured in vitro.  Other exceptions to Koch’s postulates 

include pathogens for which an adequate animal model is unavailable because they only cause 

disease in humans.  HIV is an example of such an exception.  Yet, all of these pathogens have 

been accepted by the scientific and lay community alike as causative agents of disease due to 

evidence consistently linking them to their respective disease.  In a like manner, we predict that 

Pc will also come to be accepted as an etiologic agent in COPD. 
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APPENDIX B 

Once published, this table will appear as an online supplement to the data contained in the third 

chapter of this thesis. 

 

Table 1 

Differentially expressed lung tissue genes due to Pc colonization 
Rank Gene Title J5 Probe Set ID Gene 

Symbol 
Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

1    surfactant, 
pulmonary-
associated 
protein C 

110.94 MmugDNA.26420.1.S1_a
t 

SFTPC 707696 0007585 // 
respiratory 
gaseous 
exchange // 
inferred 
from 
electronic 
annotation 
/// 0050828 
// regulation 
of liquid 
surface 
tension // 
inferred 
from 
electronic 
annotation 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005578 // 
proteinaceou
s 
extracellular 
matrix // 
inferred from 
electronic 
annotation 

--- 

2    --- 102.37 MmuSTS.3295.1.S1_at --- --- --- --- --- 

3    surfactant, 
pulmonary-
associated 
protein C 

95.996 MmugDNA.32454.1.S1_s
_at 

SFTPC 707696 0007585 // 
respiratory 
gaseous 
exchange // 
inferred 
from 
electronic 
annotation 
/// 0050828 
// regulation 
of liquid 
surface 
tension // 
inferred 
from 
electronic 
annotation 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005578 // 
proteinaceou
s 
extracellular 
matrix // 
inferred from 
electronic 
annotation 

--- 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

4    Similar to beta 
globin 

94.837 MmugDNA.2571.1.S1_at LOC71555
9 

715559 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding  

5    similar to 
Uteroglobin-
related protein 
2 precursor 
(Cytokine 
HIN-1) (High 
in normal-1) 
(Secretoglobin 
family 3A 
member 1) 
(Pneumo 
secretory 
protein 2) 
(PnSP-2) 

-88.43 MmugDNA.18903.1.S1_a
t 

LOC71633
1 

716331 --- --- --- 

6    surfactant, 
pulmonary-
associated 
protein A2 

85.101 MmugDNA.10271.1.S1_a
t 

SFTPA2 701715 0006817 // 
phosphate 
transport // 
inferred 
from 
electronic 
annotation 
/// 0007585 
// respiratory 
gaseous 
exchange // 
inferred 
from 
electronic 
annotation 
/// 0050828 
// regulation 
of liquid 
surface 
tension  

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005578 // 
proteinaceou
s 
extracellular 
matrix // 
inferred from 
electronic 
annotation /// 
0005737 // 
cytoplasm // 
inferred from 
electronic 
annotation 

0005488 // 
binding // 
inferred from 
electronic 
annotation /// 
0005509 // 
calcium ion 
binding // 
inferred from 
electronic 
annotation /// 
0005529 // 
sugar binding 
// inferred 
from 
electronic 
annotation 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

7    Similar to beta 
globin 

84.526 MmugDNA.2571.1.S1_x_
at 

LOC71555
9 

715559 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding  

8    Surfactant, 
pulmonary-
associated 
protein B 

83.637 MmuSTS.3296.1.S1_at SFTPB 696477 --- --- --- 

9    hemoglobin, 
theta 1 

75.841 MmugDNA.32562.1.S1_s
_at 

HBQ1 693930 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

10    similar to 
ribosomal 
protein S18 

73.284 MmugDNA.43260.1.S1_a
t 

LOC70641
4 

706414 --- --- --- 

11    Transcribed 
locus, strongly 
similar to 
NP_990439.1 
ribosomal 
protein S4 
[Gallus gallus] 

70.272 Mmu.5392.1.S1_at --- --- --- --- --- 

12    Eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

68.043 AFFX-Mmu-ef1a-3_x_at EEF1A1 716010 --- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
inferred from 
electronic 
annotation /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 

13    similar to 
Translationally
-controlled 
tumor protein 
(TCTP) (p23) 
(Histamine-
releasing 
factor) (HRF) 
(Fortilin) /// 
tumor protein, 
translationally-
controlled 1 

67.383 MmugDNA.35111.1.S1_s
_at 

LOC69637
6 /// TPT1 

696376 /// 
702155 /// 
703941 /// 
711798 

--- --- --- 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

14    --- 66.868 MmugDNA.5184.1.S1_s_
at 

--- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation 

15    Similar to beta 
globin 

66.841 MmuAffx.949.1.S1_x_at LOC71555
9 

715559 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation 



 137 

Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

16    Eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

66.755 AFFX-Mmu-ef1a-M_s_at EEF1A1 716010 --- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
inferred from 
electronic 
annotation /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 

17    --- 65.983 AFFX-r2-P1-cre-3_at --- --- 0006310 // 
DNA 
recombinatio
n // inferred 
from 
electronic 
annotation 
/// 0015074 
// DNA 
integration // 
inferred 
from 
electronic 
annotation 
/// 0032196 
// 
transposition 
// inferred 
from 
electronic 
annotation 

--- 0003677 // 
DNA binding 
// inferred 
from 
electronic 
annotation 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

18    Eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

64.135 AFFX-Mmu-ef1a-M_x_at EEF1A1 716010 --- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
inferred from 
electronic 
annotation /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 

19    --- -64.13 Mmu.6867.3.S1_s_at --- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0009060 
// aerobic 
respiration // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005743 // 
mitochondria
l inner 
membrane // 
inferred from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation 

0004129 // 
cytochrome-c 
oxidase 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0005507 // 
copper ion 
binding // 
inferred from 
electronic 
annotation /// 
0009055 // 
electron 
carrier 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

20    similar to 
eukaryotic 
translation 
elongation 
factor 1 alpha 
2 /// eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

63.958 Mmu.12098.2.S1_x_at EEF1A1 
/// 
LOC70280
9 

702809 /// 
716010 

--- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
inferred from 
electronic 
annotation /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 

21    similar to 
ribosomal 
protein S3a /// 
similar to 40S 
ribosomal 
protein S3a 
(V-fos 
transformation 
effector 
protein) 

63.136 MmugDNA.9700.1.S1_s_
at 

LOC69358
4 /// 
LOC70129
2 /// 
LOC70345
5 /// 
LOC70924
1 /// 
LOC71104
3 /// 
LOC71263
0 /// 
LOC71480
1 

693584 /// 
701292 /// 
703455 /// 
709241 /// 
711043 /// 
712630 /// 
714801 

--- --- --- 

22    --- -63.02 MmugDNA.35103.1.S1_a
t 

--- --- --- --- --- 
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Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

23    --- -62.53 Mmu.11314.1.S1_x_at --- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0009060 
// aerobic 
respiration // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005743 // 
mitochondria
l inner 
membrane // 
inferred from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation 

0004129 // 
cytochrome-c 
oxidase 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0005507 // 
copper ion 
binding // 
inferred from 
electronic 
annotation /// 
0009055 // 
electron 
carrier 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation 

24    surfactant, 
pulmonary-
associated 
protein D 

62.272 MmuSTS.2751.1.S1_at SFTPD 678657 0006817 // 
phosphate 
transport // 
inferred 
from 
electronic 
annotation 
/// 0007585 
// respiratory 
gaseous 
exchange // 
inferred 
from 
electronic 
annotation 
/// 0050828 
// regulation 
of liquid 
surface 
tension // 
inferred 
from 
electronic 
annotation 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005578 // 
proteinaceou
s 
extracellular 
matrix // 
inferred from 
electronic 
annotation /// 
0005737 // 
cytoplasm // 
inferred from 
electronic 
annotation 

0005488 // 
binding // 
inferred from 
electronic 
annotation /// 
0005509 // 
calcium ion 
binding // 
inferred from 
electronic 
annotation /// 
0005529 // 
sugar binding 
// inferred 
from 
electronic 
annotation 

25    --- 60.928 AFFX-Mmu-r2-P1-cre-
3_s_at 

--- --- --- --- --- 
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26    MHC class I 
antigen /// 
hypothetical 
protein 
LOC720369 

59.698 Mmu.6085.1.S1_x_at LOC72036
9 /// 
MAMU-B 

700391 /// 
720369 

0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation  

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

27    similar to 
ribosomal 
protein S14 

57.59 MmugDNA.3842.1.S1_s_
at 

LOC69773
4 /// 
LOC71090
1 

697734 /// 
710901 

--- --- --- 

28    --- -57.17 Mmu.6867.1.S1_s_at --- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0009060 
// aerobic 
respiration // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005743 // 
mitochondria
l inner 
membrane // 
inferred from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation 

0004129 // 
cytochrome-c 
oxidase 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0005507 // 
copper ion 
binding // 
inferred from 
electronic 
annotation /// 
0009055 // 
electron 
carrier 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 

29    --- 57.108 AFFX-Mmu-r2-P1-cre-
5_s_at 

--- --- --- --- --- 



 142 

Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

30    major 
histocompatibi
lity complex, 
class I, B 

57.05 Mmu.2177.1.S1_x_at MAMU-
B18 

10014139
4 

0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

31    --- 56.295 AFFX-r2-P1-cre-5_at --- --- 0006310 // 
DNA 
recombinatio
n // inferred 
from 
electronic 
annotation 
/// 0015074 
// DNA 
integration // 
inferred 
from 
electronic 
annotation 
/// 0032196 
// 
transposition 
// inferred 
from 
electronic 
annotation 

--- 0003677 // 
DNA binding 
// inferred 
from 
electronic 
annotation 

32    similar to 
Epididymal 
secretory 
protein E1 
precursor 
(Niemann-Pick 
disease type 
C2 protein) 
(hE1) 

56.258 MmugDNA.19377.1.S1_a
t 

LOC69988
1 

699881 --- --- --- 
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33    beta-2-
microglobulin 

55.518 MmugDNA.20334.1.S1_a
t 

B2M 712428 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation 

34    Similar to 
HLA class I 
histocompatibi
lity antigen, 
Cw-14 alpha 
chain 
precursor 
(MHC class I 
antigen 
Cw*14) /// 
MHC class I 
antigen 
(Mamu-B 
gene), Mamu-
B*28 allele /// 
Hypothetical 
protein 
LOC703106 

55.369 Mmu.12385.4.S1_x_at LOC70310
6 /// 
LOC72037
5 

703106 /// 
720375 

0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

35    connective 
tissue growth 
factor 

-55.16 MmugDNA.27267.1.S1_a
t 

CTGF 714520 --- --- --- 
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36    --- 54.879 Mmu.15402.10.S1_s_at --- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0022900 
// electron 
transport 
chain // 
inferred 
from 
electronic 
annotation 
/// 0022904 
// respiratory 
electron 
transport 
chain // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005739 // 
mitochondrio
n // inferred 
from 
sequence or 
structural 
similarity /// 
0005743 // 
mitochondria
l inner 
membrane // 
inferred from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation 

0004129 // 
cytochrome-c 
oxidase 
activity // 
inferred from 
electronic 
annotation /// 
0005507 // 
copper ion 
binding // 
inferred from 
electronic 
annotation /// 
0009055 // 
electron 
carrier 
activity // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation 

37    similar to 
Ornithine 
decarboxylase 
antizyme 
(ODC-Az) 

54.069 MmugDNA.278.1.S1_at LOC72147
7 

721477 --- --- --- 

38    S100 calcium 
binding protein 
A6 

53.245 MmugDNA.17370.1.S1_s
_at 

S100A6 715169 --- --- --- 

39    similar to 
Translationally
-controlled 
tumor protein 
(TCTP) (p23) 
(Histamine-
releasing 
factor) (HRF) 
(Fortilin) /// 
tumor protein, 
translationally-
controlled 1 

52.813 MmugDNA.27184.1.S1_s
_at 

LOC70200
1 /// TPT1 

702001 /// 
702155 /// 
706952 /// 
711798 

--- --- --- 
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40    similar to 40S 
ribosomal 
protein S29 

52.51 Mmu.6263.1.S1_s_at LOC69382
0 /// 
LOC70039
2 /// 
LOC70228
9 /// 
LOC71067
4 

693820 /// 
700392 /// 
702289 /// 
710674 

--- --- --- 

41    similar to 
thymosin, beta 
4 

51.566 MmunewRS.557.1.S1_s_a
t 

LOC71095
9 

710959 --- --- --- 

42    beta-2-
microglobulin 

51.258 MmugDNA.5628.1.S1_at B2M 712428 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation 
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43    --- 51.221 MmugDNA.2478.1.S1_at --- --- 0001516 // 
prostaglandi
n 
biosynthetic 
process // 
inferred 
from direct 
assay /// 
0006461 // 
protein 
complex 
assembly // 
inferred 
from 
sequence or 
structural 
similarity /// 
0006886 // 
intracellular 
protein 
transport // 
inferred 
from 
electronic 
annotation 
/// 0006886 
// 
intracellular 
protein 
transport // 
inferred 
from 
sequence or 
structural 
similarity /// 
0006955 // 
immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0007165 
// signal 
transduction 
// inferred 
from direct 
assay /// 
0008283 // 
cell 
proliferation 
// inferred 
from direct 
assay /// 
0016064 // 
immunoglob
ulin 
mediated 
immune 
response // 
inferred 
from 
sequence or 
structural 
similarity /// 
0019882 // 
antigen 
processing 
and 
presentation 

0005622 // 
intracellular 
// traceable 
author 
statement /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
traceable 
author 
statement 

0019955 // 
cytokine 
binding // 
inferred from 
physical 
interaction /// 
0042289 // 
MHC class II 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0042289 // 
MHC class II 
protein 
binding // 
non-traceable 
author 
statement /// 
0042802 // 
identical 
protein 
binding // 
traceable 
author 
statement 
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// inferred 
from 
electronic 
annotation 
/// 0019883 
// antigen 
processing 
and 
presentation 
of 
endogenous 
antigen // 
non-
traceable 
author 
statement /// 
0043030 // 
regulation of 
macrophage 
activation // 
non-
traceable 
author 
statement /// 
0043066 // 
negative 
regulation of 
apoptosis // 
inferred 
from direct 
assay /// 
0045058 // T 
cell selection 
// non-
traceable 
author 
statement 
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44    similar to 
ribosomal 
protein S19 

51.103 MmugDNA.28319.1.S1_s
_at 

LOC70377
4 

703774 --- --- --- 

45    similar to 40S 
ribosomal 
protein S16 

50.911 MmugDNA.24445.1.S1_s
_at 

LOC69721
9 /// 
LOC70815
4 

697219 /// 
708154 

--- --- --- 

46    transgelin -50.67 MmugDNA.30842.1.S1_s
_at 

TAGLN 697440 --- --- --- 

47    S100 calcium 
binding protein 
A6 

50.419 MmugDNA.17370.1.S1_a
t 

S100A6 715169 --- --- --- 

48    similar to 
ribosomal 
protein S11 

50.331 Mmu.13450.1.S1_s_at LOC71884
4 

718844 0006412 // 
translation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

49    putative 
ISG12(c) 
protein 

-49.87 MmunewRS.254.1.S1_at IFI27 700513 --- --- --- 

50    similar to 60S 
ribosomal 
protein L32 

48.964 MmugDNA.25831.1.S1_s
_at 

LOC69419
6 /// 
LOC69512
2 /// 
LOC69934
4 /// 
LOC69937
5 /// 
LOC70287
5 

694196 /// 
695122 /// 
699344 /// 
699375 /// 
702875 

--- --- --- 

51    --- -48.78 MmugDNA.12088.1.S1_a
t 

--- --- --- --- --- 

52    similar to 
Apolipoprotein 
D precursor 
(Apo-D) 
(ApoD) 

-48.4 Mmu.8637.1.S1_at LOC70922
3 

709223 --- --- --- 

53    fatty acid 
binding protein 
4, adipocyte 

48.187 MmugDNA.19691.1.S1_a
t 

FABP4 701365 --- --- --- 

54    similar to 
ribosomal 
protein L27a 

48.028 MmugDNA.15562.1.S1_s
_at 

LOC70886
3 /// 
LOC70976
9 

708863 /// 
709769 

--- --- --- 

55    S100 calcium 
binding protein 
A4 

47.999 MmugDNA.17365.1.S1_a
t 

S100A4 715115 --- --- --- 

56    similar to 60S 
ribosomal 
protein L17 
(L23) 

47.837 MmunewRS.398.1.S1_at LOC69896
7 

698967 --- --- --- 

57    hypothetical 
protein 
LOC708858 

47.306 Mmu.1278.1.S1_s_at LOC70885
8 

708858 --- --- --- 
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58    --- 46.572 AFFX-CreX-3_at --- --- 0006310 // 
DNA 
recombinatio
n // inferred 
from 
electronic 
annotation 
/// 0015074 
// DNA 
integration // 
inferred 
from 
electronic 
annotation 
/// 0032196 
// 
transposition 
// inferred 
from 
electronic 
annotation 

--- 0003677 // 
DNA binding 
// inferred 
from 
electronic 
annotation 

59    similar to 40S 
ribosomal 
protein S28 

44.811 MmugDNA.4116.1.S1_at LOC70713
3 

707133 --- --- --- 

60    similar to 
ribosomal 
protein S24 

44.551 MmugDNA.6998.1.S1_at LOC70147
7 /// 
LOC70296
1 /// 
LOC70405
4 /// 
LOC70559
6 /// 
LOC70708
5 /// 
LOC70896
5 /// 
LOC71114
5 /// 
LOC71566
8 /// 
LOC71780
1 

701477 /// 
702961 /// 
704054 /// 
705596 /// 
707085 /// 
708965 /// 
711145 /// 
715668 /// 
717801 

--- --- --- 

61    similar to 
ribosomal 
protein L21 /// 
similar to 60S 
ribosomal 
protein L21 

44.504 MmugDNA.25790.1.S1_s
_at 

LOC69986
7 /// 
LOC71030
6 /// 
LOC71117
4 /// 
LOC71298
7 /// 
LOC71366
2 

699867 /// 
710306 /// 
711174 /// 
712987 /// 
713662 

--- --- --- 
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62    --- -44.4 MmuMitochon.6.1.S1_s_a
t 

--- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0006811 
// ion 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015986 
// ATP 
synthesis 
coupled 
proton 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015992 
// proton 
transport // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0016469 // 
proton-
transporting 
two-sector 
ATPase 
complex // 
inferred from 
electronic 
annotation /// 
0031966 // 
mitochondria
l membrane 
// inferred 
from 
electronic 
annotation /// 
0045263 // 
proton-
transporting 
ATP 
synthase 
complex, 
coupling 
factor F(o) // 
inferred from 
electronic 
annotation 

0015078 // 
hydrogen ion 
transmembra
ne transporter 
activity // 
inferred from 
electronic 
annotation /// 
0046933 // 
hydrogen ion 
transporting 
ATP 
synthase 
activity, 
rotational 
mechanism // 
inferred from 
electronic 
annotation /// 
0046961 // 
hydrogen ion 
transporting 
ATPase 
activity, 
rotational 
mechanism // 
inferred from 
electronic 
annotation 

63    LPLUNC1 
protein 

-44.32 MmugDNA.11702.1.S1_a
t 

LOC71001
4 

710014 --- --- --- 

64    similar to 
Vitelline 
membrane 
outer layer 
protein 1 
homolog 
precursor 

-43.86 MmugDNA.2066.1.S1_s_
at 

LOC70995
0 

709950 --- --- --- 

65    similar to 60S 
acidic 
ribosomal 
protein P1 

43.529 MmugDNA.25908.1.S1_a
t 

LOC69544
2 

695442 --- --- --- 
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66    --- 43.23 AFFX-CreX-5_at --- --- 0006310 // 
DNA 
recombinatio
n // inferred 
from 
electronic 
annotation 
/// 0015074 
// DNA 
integration // 
inferred 
from 
electronic 
annotation // 
0032196 // 
transposition  

--- 0003677 // 
DNA binding 
// inferred 
from 
electronic 
annotation 

67    similar to 
ribosomal 
protein L35a 

43.204 MmugDNA.23506.1.S1_s
_at 

LOC71101
1 /// 
LOC71485
8 

711011 /// 
714858 

--- --- --- 

68    similar to 
eukaryotic 
translation 
elongation 
factor 1 alpha 
2 /// eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

43.13 Mmu.12098.1.S1_x_at EEF1A1 
/// 
LOC70280
9 

702809 /// 
716010 

--- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
inferred from 
electronic 
annotation /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding  

69    Eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

43.125 AFFX-Mmu-ef1a-5_s_at EEF1A1 716010 --- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity // 
0003924 // 
GTPase 
activity // / 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 

70    similar to 60S 
ribosomal 
protein L23 

42.991 Mmu.5328.1.S1_x_at LOC69471
9 

694719 --- --- --- 



 153 

Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

71    similar to 
ribosomal 
protein L5 

42.925 MmugDNA.25868.1.S1_a
t 

LOC70406
7 /// 
LOC70689
6 /// 
LOC70711
7 

704067 /// 
706896 /// 
707117 

--- --- --- 

72    --- 42.74 Mmu.7883.1.S1_x_at --- --- --- --- --- 

73    similar to 
ribosomal 
protein S3a /// 
similar to 40S 
ribosomal 
protein S3a /// 
similar to 40S 
ribosomal 
protein S3a 
(V-fos 
transformation 
effector 
protein) /// 
hypothetical 
protein 
LOC713060 /// 
hypothetical 
protein 
LOC721887 

42.581 MmugDNA.26529.1.S1_a
t 

LOC69358
4 /// 
LOC69384
4 /// 
LOC69447
1 /// 
LOC69830
1 /// 
LOC70129
2 /// 
LOC70289
2 /// 
LOC70691
0 /// 
LOC70924
1 /// 
LOC71104
3 /// 
LOC71113
5 /// 
LOC71263
0 /// 
LOC71306
0 /// 
LOC71480
1 /// 
LOC72188
7 

693584 /// 
693844 /// 
694471 /// 
698301 /// 
701292 /// 
702892 /// 
706910 /// 
709241 /// 
711043 /// 
711135 /// 
712630 /// 
713060 /// 
714801 /// 
721887 

--- --- --- 

74    similar to 
annexin A2 
isoform 1 

42.553 MmugDNA.4914.1.S1_s_
at 

LOC70624
0 

706240 --- --- --- 

75    similar to 
smooth muscle 
myosin heavy 
chain 11 
isoform SM1A 

-42.49 MmugDNA.33337.1.S1_s
_at 

LOC71388
2 

713882 --- --- --- 

76    similar to 
ribosomal 
protein S15a 

42.433 MmugDNA.25955.1.S1_a
t 

LOC70217
4 

702174 --- --- --- 

77    similar to Ig 
kappa chain V-
III region 
HAH 
precursor 

-42.43 MmugDNA.23504.1.S1_s
_at 

LOC70150
4 

701504 --- --- --- 
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78    similar to 
ribosomal 
protein L10 

42.335 MmugDNA.19468.1.S1_s
_at 

LOC69479
9 /// 
LOC70079
5 /// 
LOC70741
4 

694799 /// 
700795 /// 
707414 

--- --- --- 

79    similar to 
ribosomal 
protein S3 

41.919 MmugDNA.32744.1.S1_a
t 

LOC69574
8 

695748 --- --- --- 

80    similar to 40S 
ribosomal 
protein S16 /// 
hypothetical 
protein 
LOC710034 

41.66 MmugDNA.25971.1.S1_a
t 

LOC69721
9 /// 
LOC70815
4 /// 
LOC71003
4 

697219 /// 
708154 /// 
710034 

--- --- --- 

81    Similar to beta 
globin 

41.629 MmugDNA.2571.1.S1_s_
at 

LOC71555
9 

715559 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0015671 
// oxygen 
transport // 
inferred 
from 
electronic 
annotation 

0005833 // 
hemoglobin 
complex // 
inferred from 
electronic 
annotation 

0005344 // 
oxygen 
transporter 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0019825 // 
oxygen 
binding // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation 

82    similar to 
ribosomal 
protein S27 

41.165 MmunewRS.940.1.S1_s_a
t 

LOC69496
7 

694967 --- --- --- 

83    similar to 60S 
ribosomal 
protein L11 

40.95 Mmu.4594.1.S1_s_at LOC70540
0 

705400 --- --- --- 
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84    hypothetical 
protein 
LOC693576 /// 
similar to 60S 
ribosomal 
protein L23a 
/// hypothetical 
protein 
LOC703315 /// 
hypothetical 
protein 
LOC704139 /// 
hypothetical 
protein 
LOC705849 /// 
hypothetical 
protein 
LOC709043 /// 
hypothetical 
protein 
LOC710889 /// 
hypothetical 
protein 
LOC713902 /// 
hypothetical 
protein 
LOC716039 

40.736 MmugDNA.14184.1.S1_x
_at 

LOC69357
6 /// 
LOC69585
0 /// 
LOC70229
7 /// 
LOC70331
5 /// 
LOC70401
2 /// 
LOC70413
9 /// 
LOC70423
8 /// 
LOC70570
3 /// 
LOC70584
9 /// 
LOC70660
6 /// 
LOC70679
8 /// 
LOC70899
5 /// 
LOC70904
3 /// 
LOC70968
1 /// 
LOC71049
0 /// 
LOC71088
9 /// 
LOC71390
2 /// 
LOC71445
8 /// 
LOC71603
9 /// 
LOC71873
7 /// 
LOC72175
1 

693576 /// 
695850 /// 
702297 /// 
703315 /// 
704012 /// 
704139 /// 
704238 /// 
705703 /// 
705849 /// 
706606 /// 
706798 /// 
708995 /// 
709043 /// 
709681 /// 
710490 /// 
710889 /// 
713902 /// 
714458 /// 
716039 /// 
718737 /// 
721751 

--- --- --- 

85    --- -40.44 Mmu.15443.1.S1_x_at --- --- --- --- --- 

86    dicarbonyl/L-
xylulose 
reductase 

40.303 MmugDNA.38889.1.S1_a
t 

DCXR 715513 --- --- --- 

87    S100 calcium 
binding protein 
A10 

39.871 MmuSTS.1770.1.S1_at S100A10 574374 --- --- 0005509 // 
calcium ion 
binding // 
inferred from 
electronic 
annotation 

88    --- -39.54 MmugDNA.41975.1.S1_a
t 

--- --- --- --- --- 

89    secretory 
leukocyte 
peptidase 
inhibitor 

-39.02 MmugDNA.2108.1.S1_s_
at 

SLPI 711156 --- --- --- 
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90    similar to 60S 
ribosomal 
protein L38 

39.016 Mmu.1015.1.S1_s_at LOC71066
5 

710665 --- --- --- 

91    similar to 60S 
acidic 
ribosomal 
protein P2 

38.879 MmugDNA.25921.1.S1_a
t 

LOC70069
8 

700698 --- --- --- 

92    similar to 
ribosomal 
protein S13 

38.854 MmugDNA.25950.1.S1_a
t 

LOC69751
3 

697513 --- --- --- 

93    fatty acid 
binding protein 
5 (psoriasis-
associated) 

38.647 MmunewRS.500.1.S1_at FABP5 701009 --- --- --- 

94    similar to 
ribosomal 
protein S23 

38.588 MmugDNA.26481.1.S1_a
t 

LOC69394
7 

693947 --- --- --- 

95    caveolin 1, 
caveolae 
protein, 22kDa 

38.363 MmugDNA.19983.1.S1_s
_at 

CAV1 704449 --- --- --- 

96    similar to 
WAP four-
disulfide core 
domain protein 
2 precursor 
(Major 
epididymis-
specific 
protein E4) 
(Epididymal 
secretory 
protein E4) 
(Putative 
protease 
inhibitor 
WAP5) 

38.324 MmugDNA.36467.1.S1_s
_at 

LOC71046
9 

710469 --- --- --- 

97    hypothetical 
protein 
LOC699632 

38.019 MmunewRS.356.1.S1_s_a
t 

LOC69963
2 

699632 --- --- --- 

98    similar to HLA 
class I 
histocompatibi
lity antigen, A-
2 alpha chain 
precursor 
(MHC class I 
antigen A*2) 

37.348 Mmu.12385.2.S1_x_at LOC69682
4 

696824 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation  

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 
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99    similar to 
Phospholipase 
A2 precursor 
(Phosphatidylc
holine 2-
acylhydrolase) 
(Group IB 
phospholipase 
A2) 

37.139 MmugDNA.2316.1.S1_s_
at 

LOC69671
2 

696712 --- --- --- 

100    metallothionei
n 2A 

-36.97 MmugDNA.5794.1.S1_at MT2A 700719 --- --- --- 

101    similar to 
ribosomal 
protein L24 /// 
hypothetical 
protein 
LOC699643 

36.96 MmugDNA.26107.1.S1_s
_at 

LOC69894
2 /// 
LOC69964
3 

698942 /// 
699643 

--- --- --- 

102    similar to 
caldesmon 1 
isoform 4 

-36.71 MmugDNA.39129.1.S1_a
t 

LOC70705
0 

707050 --- --- --- 

103    --- -36.59 MmugDNA.38698.1.S1_a
t 

--- --- 0006909 // 
phagocytosis 
// non-
traceable 
author 
statement /// 
0007155 // 
cell adhesion 
// inferred 
from 
electronic 
annotation 
/// 0007596 
// blood 
coagulation 
// inferred 
from 
electronic 
annotation 
/// 0016337 
// cell-cell 
adhesion // 
inferred 
from direct 
assay /// 
0042116 // 
macrophage 
activation // 
non-
traceable 
author 
statement 

0005886 // 
plasma 
membrane // 
inferred from 
direct assay 
/// 0005886 // 
plasma 
membrane // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred by 
curator /// 
0016023 // 
cytoplasmic 
membrane-
bounded 
vesicle // 
inferred from 
electronic 
annotation 

0001849 // 
complement 
component 
C1q binding 
// inferred 
from direct 
assay /// 
0004872 // 
receptor 
activity // 
inferred from 
electronic 
annotation /// 
0004872 // 
receptor 
activity // 
non-traceable 
author 
statement /// 
0005488 // 
binding /// 
0005509 // 
calcium ion 
binding // 
0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0005515 // 
protein 
binding // 
inferred from 
physical 
interaction /// 
0005529 // 
sugar binding 
// inferred 
from 
electronic 
annotation 
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104    similar to 
ribosomal 
protein S2 

36.422 MmunewRS.522.1.S1_s_a
t 

LOC70095
5 

700955 --- --- --- 

105    similar to 60S 
ribosomal 
protein L32 

36.261 MmugDNA.25831.1.S1_a
t 

LOC69419
6 /// 
LOC69512
2 /// 
LOC69937
5 /// 
LOC70287
5 

694196 /// 
695122 /// 
699375 /// 
702875 

--- --- --- 

106    similar to HLA 
class II 
histocompatibi
lity antigen, 
DR alpha 
chain 
precursor 
(MHC class II 
antigen DRA) 

36.069 MmugDNA.1028.1.S1_at LOC72053
9 

720539 0002504 // 
antigen 
processing 
and 
presentation 
of peptide or 
polysacchari
de antigen 
via MHC 
class II // 
inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042613 // 
MHC class II 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

107    alpha-1-
antichymotryp
sin 

-35.81 MmuSTS.2150.1.S1_at LOC57410
6 

574106 --- --- --- 

108    leukotriene A4 
hydrolase 

35.759 MmugDNA.19725.1.S1_a
t 

LTA4H 713038 --- --- --- 

109    similar to 60S 
ribosomal 
protein L26 
(Silica-induced 
gene 20 
protein) (SIG-
20) 

35.62 MmunewRS.849.1.S1_at LOC69613
4 

696134 --- --- --- 

110    similar to 
ribosomal 
protein L10 

35.441 MmugDNA.19468.1.S1_a
t 

LOC70079
5 

700795 --- --- --- 
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111    --- -35.06 MmugDNA.34285.1.S1_a
t 

--- --- 0001558 // 
regulation of 
cell growth 
// inferred 
from 
electronic 
annotation 
/// 0007399 
// nervous 
system 
development 
// traceable 
author 
statement 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005624 // 
membrane 
fraction // 
not recorded 
/// 0005886 // 
plasma 
membrane // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
traceable 
author 
statement 

0004857 // 
enzyme 
inhibitor 
activity // 
inferred from 
electronic 
annotation /// 
0004867 // 
serine-type 
endopeptidas
e inhibitor 
activity // 
inferred from 
electronic 
annotation /// 
0005010 // 
insulin-like 
growth factor 
receptor 
activity // 
traceable 
author 
statement /// 
0005520 // 
insulin-like 
growth factor 
binding // 
inferred from 
electronic 
annotation 

112    similar to HLA 
class II 
histocompatibi
lity antigen, 
DR alpha 
chain 
precursor 
(MHC class II 
antigen DRA) 

35.026 MmugDNA.1046.1.S1_s_
at 

LOC72053
9 

720539 0002504 // 
antigen 
processing 
and 
presentation 
of peptide or 
polysacchari
de antigen 
via MHC 
class II // 
inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response /// 
0019882 // 
antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042613 // 
MHC class II 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

113    hypothetical 
protein 
LOC718964 

35.011 MmugDNA.39913.1.S1_a
t 

LOC71896
4 

718964 --- --- --- 
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114    similar to 
Immunoglobul
in lambda-like 
polypeptide 1 
precursor 
(Immunoglobu
lin-related 
protein 14.1) 
(Immunoglobu
lin omega 
polypeptide) 
(Ig lambda-5) 
(CD179b 
antigen) 

-34.92 MmugDNA.11907.1.S1_s
_at 

LOC70854
7 /// 
LOC70866
5 

708547 /// 
708665 

--- --- --- 

115    similar to 
ribosomal 
protein L9 

34.785 MmugDNA.25903.1.S1_s
_at 

LOC69936
2 

699362 --- --- --- 

116    similar to 
ribosomal 
protein S12 /// 
ribosomal 
protein S12 

34.746 MmugDNA.9537.1.S1_s_
at 

LOC70025
7 /// 
LOC70080
7 /// 
LOC70608
7 /// 
RPS12 

700257 /// 
700807 /// 
706087 /// 
708419 

0006412 // 
translation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation /// 
0030529 // 
ribonucleopr
otein 
complex // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

117    similar to 40S 
ribosomal 
protein S6 

34.682 MmugDNA.33829.1.S1_s
_at 

LOC71227
4 /// 
LOC71855
6 

712274 /// 
718556 

--- --- --- 

118    mitochondrial 
aldehyde 
dehydrogenase 
2 

34.664 MmuSTS.3435.1.S1_at ALDH2 713451 --- --- --- 

119    --- 34.565 MmuAffx.78.1.S1_s_at --- --- --- --- --- 
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120    similar to 
ubiquitin and 
ribosomal 
protein S27a 
precursor 

34.309 MmugDNA.26506.1.S1_a
t 

LOC70914
3 

709143 --- --- --- 

121    MHC class I 
antigen heavy 
chain 

33.8 Mmu.10195.2.S1_x_at MAMU-B 720372 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

122    similar to 
advanced 
glycosylation 
end product-
specific 
receptor 
isoform 1 
precursor 

33.745 MmugDNA.30962.1.S1_a
t 

LOC71729
6 

717296 --- --- --- 

123    CD74 
molecule, 
major 
histocompatibi
lity complex, 
class II 
invariant chain 

33.666 Mmu.9241.2.S1_at CD74 710820 --- --- --- 

124    similar to 40S 
ribosomal 
protein S26 

33.648 MmugDNA.26485.1.S1_s
_at 

LOC69916
6 /// 
LOC71131
9 /// 
LOC71537
0 /// 
LOC71858
8 

699166 /// 
711319 /// 
715370 /// 
718588 

--- --- --- 
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125    similar to 
ribosomal 
protein L13a 

33.54 MmugDNA.16774.1.S1_s
_at 

LOC69871
3 

698713 0006412 // 
translation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation /// 
0015934 // 
large 
ribosomal 
subunit // 
inferred from 
electronic 
annotation /// 
0030529 // 
ribonucleopr
otein 
complex // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

126    similar to 
ribosomal 
protein L19 

33.433 MmugDNA.25770.1.S1_a
t 

LOC69534
0 

695340 --- --- --- 

127    similar to 
ribosomal 
protein L34 

33.376 MmugDNA.25833.1.S1_s
_at 

LOC69663
6 /// 
LOC70267
7 /// 
LOC70436
5 /// 
LOC70811
8 /// 
LOC70967
8 /// 
LOC71659
3 

696636 /// 
702677 /// 
704365 /// 
708118 /// 
709678 /// 
716593 

--- --- --- 

128    similar to 60S 
ribosomal 
protein L12 

33.289 MmugDNA.7346.1.S1_s_
at 

LOC70750
4 

707504 --- --- --- 

129    similar to 
ribosomal 
protein L4 

33.256 Mmu.8980.1.S1_at LOC71059
0 

710590 --- --- --- 

130    similar to 60S 
ribosomal 
protein L14 
(CAG-ISL 7) 

32.981 MmunewRS.1027.1.S1_at LOC69747
6 

697476 --- --- --- 
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131    --- 32.97 Mmu.3064.4.S1_s_at --- --- 0006120 // 
mitochondri
al electron 
transport, 
NADH to 
ubiquinone 
// inferred 
from 
electronic 
annotation 
/// 0006810 
// transport // 
inferred 
from 
electronic 
annotation 
/// 0042773 
// ATP 
synthesis 
coupled 
electron 
transport // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation 

0008137 // 
NADH 
dehydrogena
se 
(ubiquinone) 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation 

132    similar to 
ribosomal 
protein L30 

32.866 MmugDNA.27693.1.S1_a
t 

LOC70312
0 

703120 --- --- --- 

133    ferritin H chain 
/// similar to 
ferritin H chain 
/// similar to 
Ferritin heavy 
chain (Ferritin 
H subunit) 
(Proliferation-
inducing gene 
15 protein) /// 
ferritin, heavy 
polypeptide 1 

32.694 MmunewRS.750.1.S1_at FTH1 /// 
LOC57411
8 /// 
LOC69905
3 /// 
LOC70680
2 /// 
LOC70825
4 

574118 /// 
699053 /// 
706802 /// 
707011 /// 
708254 /// 
714576 

0006826 // 
iron ion 
transport // 
inferred 
from 
electronic 
annotation 
/// 0006879 
// cellular 
iron ion 
homeostasis 
// inferred 
from 
electronic 
annotation 

--- 0005488 // 
binding // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0008199 // 
ferric iron 
binding // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation /// 
0046872 // 
metal ion 
binding // 
inferred from 
electronic 
annotation /// 
0046914 // 
transition 
metal ion 
binding  
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134    acidic 
ribosomal 
phosphoprotei
n PO /// similar 
to acidic 
ribosomal 
phosphoprotei
n P0 /// similar 
to 60S acidic 
ribosomal 
protein P0 
(L10E) 

32.597 MmugDNA.12980.1.S1_s
_at 

LOC57436
3 /// 
LOC70550
1 /// 
LOC71897
9 

574363 /// 
705501 /// 
718979 

0006414 // 
translational 
elongation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

135    similar to 60S 
ribosomal 
protein L26 
(Silica-induced 
gene 20 
protein) (SIG-
20) 

32.451 MmunewRS.849.1.S1_s_a
t 

LOC71737
8 

717378 --- --- --- 

136    similar to 60S 
ribosomal 
protein L8 

32.305 Mmu.1393.1.S1_s_at LOC70853
5 

708535 --- --- --- 

137    similar to 
cytoplasmic 
polyadenylatio
n element 
binding protein 
1 /// similar to 
40S ribosomal 
protein S17 

32.117 MmugDNA.39039.1.S1_s
_at 

LOC69435
7 /// 
LOC69442
4 /// 
LOC70084
8 /// 
LOC70142
9 /// 
LOC70190
9 /// 
LOC70638
9 /// 
LOC70883
3 /// 
LOC71398
6 

694357 /// 
694424 /// 
700848 /// 
701429 /// 
701909 /// 
706389 /// 
708833 /// 
713986 

--- --- --- 

138    similar to 
ribosomal 
protein S21 

32.073 MmunewRS.307.1.S1_at LOC69956
5 

699565 --- --- --- 

139    chemokine 
CCL18/PARC 

32.029 MmugDNA.616.1.S1_at LOC57418
1 

574181 0006935 // 
chemotaxis 
// inferred 
from 
electronic 
annotation 
/// 0006954 
// 
inflammator
y response // 
inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response  

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005615 // 
extracellular 
space // 
inferred from 
electronic 
annotation 

0005125 // 
cytokine 
activity // 
inferred from 
electronic 
annotation /// 
0008009 // 
chemokine 
activity // 
inferred from 
electronic 
annotation 
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140    similar to 
ribosomal 
protein L27 

31.904 MmugDNA.25812.1.S1_s
_at 

LOC71235
2 /// 
LOC71705
3 

712352 /// 
717053 

--- --- --- 

141    MHC class II 
antigen, 
Mamu-DRB5 
/// MHC class 
II antigen /// 
similar to HLA 
class II 
histocompatibi
lity antigen, 
DRB1-4 beta 
chain 
precursor 
(MHC class I 
antigen 
DRB1*4) 
(DR-4) (DR4) 
/// similar to 
HLA class II 
histocompatibi
lity antigen, 
DRB1-1 beta 
chain 
precursor 
(MHC class I 
antigen 
DRB1*1) 
(DR-1) (DR1) 

31.527 MmunewRS.436.1.S1_s_a
t 

LOC70558
8 /// 
LOC71668
5 /// 
MAMU-
DRB /// 
MAMU-
DRB5 

677701 /// 
692100 /// 
705588 /// 
716685 

0002504 // 
antigen 
processing 
and 
presentation 
of peptide or 
polysacchari
de antigen 
via MHC 
class II // 
inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042613 // 
MHC class II 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

142    DEAD (Asp-
Glu-Ala-Asp) 
box 
polypeptide 5 

-31.49 MmugDNA.16478.1.S1_a
t 

DDX5 677694 --- --- --- 

143    similar to HLA 
class I 
histocompatibi
lity antigen, B-
37 alpha chain 
precursor 
(MHC class I 
antigen B*37) 

31.229 Mmu.6085.2.S1_x_at LOC72030
9 

720309 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation  

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

144    alpha-1-
antichymotryp
sin 

-31.13 Mmu.10083.1.S1_s_at LOC57410
6 

574106 --- --- --- 
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145    similar to 
solute carrier 
family 39 (zinc 
transporter), 
member 8 

31.112 MmugDNA.19008.1.S1_a
t 

LOC71014
2 

710142 --- --- --- 

146    similar to 
caldesmon 1 
isoform 4 

-31.11 MmugDNA.27788.1.S1_a
t 

LOC70705
0 

707050 --- --- --- 

147    small EDRK-
rich factor 2 

31.028 MmugDNA.39687.1.S1_s
_at 

SERF2 711580 --- --- --- 

148    similar to 40S 
ribosomal 
protein S20 

30.539 MmugDNA.28095.1.S1_s
_at 

LOC70464
0 

704640 --- --- --- 

149    transgelin -30.31 Mmu.15501.1.S1_s_at TAGLN 697440 --- --- --- 

150    similar to 
Guanine 
nucleotide-
binding protein 
beta subunit 2-
like 1 
(Receptor of 
activated 
protein kinase 
C 1) (RACK1) 
(Receptor for 
activated C 
kinase) 

30.205 MmugDNA.36451.1.S1_a
t 

LOC70852
6 

708526 --- --- --- 

151    similar to 
ribosomal 
protein L34 

30.137 MmugDNA.25833.1.S1_a
t 

LOC69663
6 /// 
LOC70267
7 /// 
LOC70436
5 /// 
LOC71659
3 

696636 /// 
702677 /// 
704365 /// 
716593 

--- --- --- 

152    similar to 
Thioredoxin 
(ATL-derived 
factor) (ADF) 
(Surface-
associated 
sulphydryl 
protein) 
(SASP) /// 
thioredoxin 

30.123 MmugDNA.4158.1.S1_at TXN 693422 /// 
693792 /// 
712587 

0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0045454 
// cell redox 
homeostasis 
// inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005737 // 
cytoplasm // 
inferred from 
electronic 
annotation 

--- 

153    similar to 
ribosomal 
protein L18 

29.949 MmugDNA.25768.1.S1_a
t 

LOC71813
6 

718136 --- --- --- 
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154    MHC class I 
antigen Mamu 
B*07 

29.882 Mmu.1700.1.S1_x_at --- --- 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

155    similar to 
ribosomal 
protein L35a 

29.872 MmugDNA.42687.1.S1_a
t 

LOC71485
8 

714858 --- --- --- 

156    similar to 
ribosomal 
protein L18a 

29.761 Mmu.7476.1.S1_s_at LOC71924
2 

719242 --- --- --- 

157    hypothetical 
protein 
LOC718964 

29.711 MmugDNA.36274.1.S1_a
t 

LOC71896
4 

718964 --- --- --- 

158    transcription 
elongation 
factor B (SIII), 
polypeptide 3 
(110kDa, 
elongin A) 

29.681 Mmu.3361.2.S1_s_at TCEB3 710467 --- --- --- 

159    similar to 
cytoplasmic 
beta-actin 

29.622 MmugDNA.28776.1.S1_s
_at 

LOC71196
4 

711964 --- --- 0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0005524 // 
ATP binding 
// inferred 
from 
electronic 
annotation 
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160    similar to 60S 
ribosomal 
protein L23a 
/// hypothetical 
protein 
LOC703315 /// 
hypothetical 
protein 
LOC704139 /// 
hypothetical 
protein 
LOC709043 

29.603 MmugDNA.25793.1.S1_x
_at 

LOC70229
7 /// 
LOC70331
5 /// 
LOC70401
2 /// 
LOC70413
9 /// 
LOC70660
6 /// 
LOC70679
8 /// 
LOC70899
5 /// 
LOC70904
3 /// 
LOC71873
7 /// 
LOC72175
1 

702297 /// 
703315 /// 
704012 /// 
704139 /// 
706606 /// 
706798 /// 
708995 /// 
709043 /// 
718737 /// 
721751 

--- --- --- 

161    similar to 
ribosomal 
protein S8 /// 
hypothetical 
protein 
LOC708603 

29.517 MmugDNA.26577.1.S1_s
_at 

LOC69567
0 /// 
LOC69601
5 /// 
LOC69829
7 /// 
LOC70026
2 /// 
LOC70395
7 /// 
LOC70860
3 

695670 /// 
696015 /// 
698297 /// 
700262 /// 
703957 /// 
708603 

--- --- --- 

162    similar to 60S 
ribosomal 
protein L35 

29.478 MmugDNA.2923.1.S1_at LOC70284
7 

702847 --- --- --- 
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163    ribosomal 
protein SA /// 
similar to 
laminin 
receptor 1 
(ribosomal 
protein SA) /// 
similar to 40S 
ribosomal 
protein SA 
(p40) (34/67 
kDa laminin 
receptor) 
(Colon 
carcinoma 
laminin-
binding 
protein) 
(NEM/1CHD4
) (Multidrug 
resistance-
associated 
protein MGr1-
Ag) /// similar 
to 40S 
ribosomal 
protein SA 
(p40) (34/67 
kDa laminin 
receptor) 

29.361 MmuSTS.1434.1.S1_s_at LAMR1 /// 
LOC69575
1 /// 
LOC69706
5 /// 
LOC69756
1 /// 
LOC69876
8 /// 
LOC70050
2 /// 
LOC70142
1 /// 
LOC70169
1 /// 
LOC70814
0 /// 
LOC71047
7 /// 
LOC71673
5 /// 
LOC71773
9 

693293 /// 
695751 /// 
697065 /// 
697561 /// 
698768 /// 
700502 /// 
701421 /// 
701691 /// 
708140 /// 
710477 /// 
716735 /// 
717739 

0006412 // 
translation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation /// 
0015935 // 
small 
ribosomal 
subunit // 
inferred from 
electronic 
annotation /// 
0030529 // 
ribonucleopr
otein 
complex // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

164    --- -29.36 Mmu.6048.1.S1_s_at --- --- 0006120 // 
mitochondri
al electron 
transport, 
NADH to 
ubiquinone 
// inferred 
from 
electronic 
annotation 
/// 0006810 
// transport // 
inferred 
from 
electronic 
annotation 
/// 0042773 
// ATP 
synthesis 
coupled 
electron 
transport // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation 

0008137 // 
NADH 
dehydrogena
se 
(ubiquinone) 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation 
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165    glutathione 
peroxidase 4 

29.263 MmugDNA.16268.1.S1_s
_at 

GPX4 705333 --- --- --- 

166    similar to 
Uteroglobin 
precursor 
(Secretoglobin 
family 1A 
member 1) 
(Clara cell 
phospholipid-
binding 
protein) 
(CCPBP) 
(Clara cells 10 
kDa secretory 
protein) 
(CC10) 
(Urinary 
protein 1) 
(Urine protein 
1) (UP1) 

-29.25 MmugDNA.8056.1.S1_at LOC71885
7 

718857 --- --- --- 

167    similar to 
ubiquitin B 
precursor 

29.151 MmugDNA.35404.1.S1_a
t 

LOC69611
0 

696110 --- --- --- 

168    --- 29.121 MmuSTS.87.1.S1_at --- --- --- --- --- 

169    Actin, beta 28.958 AFFX-Mmu-actin-3_s_at ACTB 574285 --- --- 0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0005524 // 
ATP binding 
// inferred 
from 
electronic 
annotation 

170    similar to 
Eukaryotic 
translation 
initiation 
factor 1 (eIF1) 
(Protein 
translation 
factor SUI1 
homolog) 
(Sui1iso1) 
(A121) /// 
eukaryotic 
translation 
initiation 
factor 1 

28.941 MmugDNA.3378.1.S1_s_
at 

EIF1 /// 
LOC70460
6 

704606 /// 
718407 

--- --- --- 

171    similar to 
thioredoxin 
interacting 
protein 

-28.91 MmugDNA.40204.1.S1_a
t 

LOC69868
3 

698683 --- --- --- 

172    similar to 
smooth muscle 
myosin heavy 
chain 11 
isoform SM1A 

-28.72 MmugDNA.33337.1.S1_a
t 

LOC71388
2 

713882 --- --- --- 
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173    --- 28.663 MmugDNA.31036.1.S1_a
t 

--- --- 0006629 // 
lipid 
metabolic 
process // 
inferred 
from 
electronic 
annotation 
/// 0006665 
// 
sphingolipid 
metabolic 
process // 
inferred 
from 
electronic 
annotation 
/// 0007585 
// respiratory 
gaseous 
exchange // 
inferred 
from 
electronic 
annotation 
/// 0007585 
// respiratory 
gaseous 
exchange // 
traceable 
author 
statement /// 
0009887 // 
organ 
morphogene
sis // 
traceable 
author 
statement /// 
0050828 // 
regulation of 
liquid 
surface 
tension  

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005578 // 
proteinaceou
s 
extracellular 
matrix // 
inferred from 
electronic 
annotation /// 
0005615 // 
extracellular 
space // 
inferred from 
electronic 
annotation /// 
0005615 // 
extracellular 
space // not 
recorded /// 
0005764 // 
lysosome // 
inferred from 
electronic 
annotation 

--- 

174    heat shock 
70kDa protein 
8 

28.659 MmugDNA.2144.1.S1_s_
at 

HSPA8 707989 --- --- --- 

175    myosin light 
chain kinase 

-28.47 MmugDNA.37873.1.S1_a
t 

MYLK 715422 --- --- --- 

176    actin, beta 28.466 MmunewRS.624.1.S1_s_a
t 

ACTB 574285 --- --- 0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0005524 // 
ATP binding 
// inferred 
from 
electronic 
annotation 
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177    similar to 40S 
ribosomal 
protein S10 /// 
hypothetical 
protein 
LOC715171 

28.41 MmugDNA.1196.1.S1_s_
at 

LOC69468
7 /// 
LOC69692
1 /// 
LOC70853
9 /// 
LOC71517
1 

694687 /// 
696921 /// 
708539 /// 
715171 

--- --- --- 

178    selenoprotein 
W, 1 

28.35 MmugDNA.17715.1.S1_a
t 

SEPW1 718370 0045454 // 
cell redox 
homeostasis 
// inferred 
from 
electronic 
annotation 

0005737 // 
cytoplasm // 
inferred from 
electronic 
annotation /// 
0005739 // 
mitochondrio
n // non-
traceable 
author 
statement 

0003954 // 
NADH 
dehydrogena
se activity // 
non-traceable 
author 
statement /// 
0008430 // 
selenium 
binding // 
inferred from 
electronic 
annotation 

179    Similar to 
HLA class I 
histocompatibi
lity antigen, A-
74 alpha chain 
precursor 
(MHC class I 
antigen A*74) 
(Aw-74) (Aw-
19) 

-28.26 MmugDNA.2178.1.S1_s_
at 

LOC69924
3 

699243 0002474 // 
antigen 
processing 
and 
presentation 
of peptide 
antigen via 
MHC class I 
// inferred 
from 
electronic 
annotation 
/// 0006955 
// immune 
response // 
inferred 
from 
electronic 
annotation 
/// 0019882 
// antigen 
processing 
and 
presentation 
// inferred 
from 
electronic 
annotation 

0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation /// 
0042612 // 
MHC class I 
protein 
complex // 
inferred from 
electronic 
annotation 

--- 

180    hydroxyprosta
glandin 
dehydrogenase 
15-(NAD) 

28.235 MmugDNA.18778.1.S1_a
t 

HPGD 697864 --- --- --- 

181    similar to 
prosaposin 

28.219 MmugDNA.11365.1.S1_a
t 

LOC70951
0 

709510 --- --- --- 

182    similar to 
Apolipoprotein 
D precursor 
(Apo-D) 
(ApoD) 

-28.05 MmugDNA.10643.1.S1_s
_at 

LOC70922
3 

709223 --- --- --- 

183    hypothetical 
protein 
LOC711872 

-27.9 MmuSTS.4350.1.S1_at LOC71187
2 

711872 --- --- --- 
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184    --- -27.88 MmugDNA.3680.1.S1_at --- --- --- --- --- 

185    --- 27.85 MmugDNA.37382.1.S1_s
_at 

--- --- 0006629 // 
lipid 
metabolic 
process // 
traceable 
author 
statement /// 
0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0006869 
// lipid 
transport // 
inferred 
from 
electronic 
annotation 
/// 0033344 
// cholesterol 
efflux // 
inferred 
from direct 
assay /// 
0033700 // 
phospholipid 
efflux // 
inferred 
from direct 
assay /// 
0042157 // 
lipoprotein 
metabolic 
process 

0005576 // 
extracellular 
region // 
inferred from 
electronic 
annotation /// 
0005783 // 
endoplasmic 
reticulum // 
inferred from 
direct assay 

0005319 // 
lipid 
transporter 
activity // 
inferred from 
electronic 
annotation 

186    SPARC-like 1 -27.72 MmugDNA.28367.1.S1_a
t 

SPARCL1 701468 --- --- --- 

187    similar to 
eukaryotic 
translation 
elongation 
factor 1 alpha 
2 /// similar to 
eukaryotic 
translation 
elongation 
factor 1 alpha 
1 /// eukaryotic 
translation 
elongation 
factor 1 alpha 
1 

27.716 MmugDNA.37793.1.S1_x
_at 

EEF1A1 
/// 
LOC70280
9 /// 
LOC70371
5 /// 
LOC70419
9 /// 
LOC70443
8 /// 
LOC70901
7 /// 
LOC71535
1 /// 
LOC71700
3 

702809 /// 
703715 /// 
704199 /// 
704438 /// 
709017 /// 
715351 /// 
716010 /// 
717003 

--- --- 0000166 // 
nucleotide 
binding // 
inferred from 
electronic 
annotation /// 
0003746 // 
translation 
elongation 
factor 
activity /// 
0003924 // 
GTPase 
activity // 
inferred from 
electronic 
annotation /// 
0005525 // 
GTP binding 
// inferred 
from 
electronic 
annotation 
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188    similar to ATP 
synthase, H+ 
transporting, 
mitochondrial 
F0 complex, 
subunit G 

27.573 MmugDNA.13288.1.S1_s
_at 

LOC69995
0 

699950 --- --- --- 

189    similar to 60S 
ribosomal 
protein L21 /// 
similar to 
ribosomal 
protein L21 /// 
hypothetical 
protein 
LOC698492 /// 
hypothetical 
protein 
LOC699376 

27.561 MmugDNA.25790.1.S1_a
t 

LOC69376
7 /// 
LOC69837
7 /// 
LOC69849
2 /// 
LOC69937
6 /// 
LOC69939
8 /// 
LOC69986
7 /// 
LOC70027
1 /// 
LOC70171
0 /// 
LOC70387
6 /// 
LOC70453
8 /// 
LOC70904
5 /// 
LOC70914
4 /// 
LOC71030
6 /// 
LOC71117
4 /// 
LOC71176
0 /// 
LOC71298
7 /// 
LOC71329
4 /// 
LOC71366
2 /// 
LOC71658
8 /// 
LOC71813
4 

693767 /// 
698377 /// 
698492 /// 
699376 /// 
699398 /// 
699867 /// 
700271 /// 
701710 /// 
703876 /// 
704538 /// 
709045 /// 
709144 /// 
710306 /// 
711174 /// 
711760 /// 
712987 /// 
713294 /// 
713662 /// 
716588 /// 
718134 

--- --- --- 

190    similar to High 
affinity 
immunoglobuli
n epsilon 
receptor 
gamma-
subunit 
precursor 
(FceRI 
gamma) (IgE 
Fc receptor 
gamma-
subunit) (Fc-
epsilon RI-
gamma) 

27.531 MmugDNA.26925.1.S1_s
_at 

LOC72029
1 

720291 --- --- --- 
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191    thrombomodul
in 

-27.48 MmuSTS.4002.1.S1_at THBD 702132 --- --- --- 

192    similar to 
acidic 
ribosomal 
phosphoprotei
n P0 /// similar 
to 60S acidic 
ribosomal 
protein P0 
(L10E) 

27.302 Mmu.13435.1.S1_at LOC70550
1 /// 
LOC71897
9 /// 
LOC71911
2 /// 
LOC72047
0 

705501 /// 
718979 /// 
719112 /// 
720470 

0006414 // 
translational 
elongation // 
inferred 
from 
electronic 
annotation 

0005622 // 
intracellular 
// inferred 
from 
electronic 
annotation /// 
0005840 // 
ribosome // 
inferred from 
electronic 
annotation 

0003735 // 
structural 
constituent of 
ribosome // 
inferred from 
electronic 
annotation 

193    similar to 60S 
ribosomal 
protein L29 
(P23) /// 
similar to 60S 
ribosomal 
protein L29 
(Cell surface 
heparin-
binding protein 
HIP) 

27.249 MmuSTS.2357.1.S1_s_at LOC69813
0 /// 
LOC69860
2 /// 
LOC70451
0 /// 
LOC71632
0 

698130 /// 
698602 /// 
704510 /// 
716320 

--- --- --- 

194    similar to 
ribosomal 
protein L15 

27.124 MmugDNA.31525.1.S1_s
_at 

LOC70125
5 /// 
LOC71688
8 

701255 /// 
716888 

--- --- --- 

195    similar to 
Actin, gamma-
enteric smooth 
muscle 
(Smooth 
muscle gamma 
actin) (Alpha-
actin-3) 

-27.07 MmugDNA.30998.1.S1_a
t 

LOC70744
7 

707447 --- --- --- 

196    similar to 60S 
ribosomal 
protein L29 
(Cell surface 
heparin-
binding protein 
HIP) 

26.992 MmuSTS.2357.1.S1_x_at LOC69860
2 

698602 --- --- --- 

197    similar to 
proteasome 
(prosome, 
macropain) 
subunit, alpha 
type 7 

26.904 MmugDNA.22347.1.S1_a
t 

LOC72017
5 

720175 --- --- --- 

198    similar to 60S 
ribosomal 
protein L23 

26.9 Mmu.4110.1.S1_s_at LOC69471
9 

694719 --- --- --- 

199    --- 26.864 MmugDNA.23648.1.S1_a
t 

--- --- --- --- --- 

200    similar to 
secretoglobin, 
family 3A, 
member 2 

26.756 MmugDNA.13874.1.S1_a
t 

LOC70913
8 

709138 --- --- --- 
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201    similar to 
ribosomal 
protein L24 /// 
hypothetical 
protein 
LOC699643 

26.725 MmugDNA.25796.1.S1_s
_at 

LOC69571
5 /// 
LOC69894
2 /// 
LOC69964
3 /// 
LOC70238
1 /// 
LOC71050
2 

695715 /// 
698942 /// 
699643 /// 
702381 /// 
710502 

--- --- --- 

202    similar to 
dynein, 
cytoplasmic, 
light peptide 

26.72 MmugDNA.2252.1.S1_at LOC70236
0 

702360 --- --- --- 

203    similar to 
Vitelline 
membrane 
outer layer 
protein 1 
homolog 
precursor 

-26.63 MmugDNA.2066.1.S1_at LOC70995
0 

709950 --- --- --- 

204    similar to Rho-
GTPase-
activating 
protein 6 (Rho-
type GTPase-
activating 
protein 
RhoGAPX-1) 

26.558 MmugDNA.10026.1.S1_a
t 

LOC70565
0 

705650 --- --- --- 

205    --- 26.524 MmugDNA.34186.1.S1_a
t 

--- --- --- --- --- 

206    similar to 
diazepam 
binding 
inhibitor 

26.518 MmugDNA.11287.1.S1_s
_at 

LOC69865
2 

698652 --- --- 0000062 // 
acyl-CoA 
binding // 
inferred from 
electronic 
annotation /// 
0005488 // 
binding // 
inferred from 
electronic 
annotation 

207    --- 26.467 MmugDNA.35612.1.S1_x
_at 

--- --- 0006281 // 
DNA repair 
// inferred 
from 
electronic 
annotation 
/// 0006974 
// response 
to DNA 
damage 
stimulus /// 
0007049 // 
cell cycle // 
inferred 
from 
electronic 
annotation 

0005634 // 
nucleus // 
inferred from 
electronic 
annotation /// 
0005694 // 
chromosome 
// inferred 
from 
electronic 
annotation 

0003677 // 
DNA binding 
// inferred 
from 
electronic 
annotation /// 
0005515 // 
protein 
binding // 
inferred from 
physical 
interaction /// 
0005515 // 
protein 
binding // 
non-traceable 
author 
statement 
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208    --- 26.384 MmugDNA.13186.1.S1_a
t 

--- --- 0006511 // 
ubiquitin-
dependent 
protein 
catabolic 
process // 
inferred 
from 
electronic 
annotation 
/// 0006512 
// ubiquitin 
cycle // 
inferred 
from 
electronic 
annotation 
/// 0007283 
// 
spermatogen
esis // 
traceable 
author 
statement 

--- 0004221 // 
ubiquitin 
thiolesterase 
activity // 
inferred from 
electronic 
annotation /// 
0004843 // 
ubiquitin-
specific 
protease 
activity // 
traceable 
author 
statement /// 
0008233 // 
peptidase 
activity // 
inferred from 
electronic 
annotation /// 
0008234 // 
cysteine-type 
peptidase 
activity // 
inferred from 
electronic 
annotation /// 
0008234 // 
cysteine-type 
peptidase 
activity // 
traceable 
author 
statement /// 
0016787 // 
hydrolase 
activity // 
inferred from 
electronic 
annotation 

209    --- -26.24 MmuMitochon.10.1.S1_s_
at 

--- --- 0006120 // 
mitochondri
al electron 
transport, 
NADH to 
ubiquinone 
// inferred 
from 
electronic 
annotation 
/// 0006810 
// transport // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation 

0008137 // 
NADH 
dehydrogena
se 
(ubiquinone) 
activity // 
inferred from 
electronic 
annotation /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation 
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210    similar to 60S 
acidic 
ribosomal 
protein P0 
(L10E) 

26.142 MmugDNA.32039.1.S1_x
_at 

LOC72047
0 

720470 --- --- --- 

211    similar to N-
acylsphingosin
e 
amidohydrolas
e (acid 
ceramidase) 1 
preproprotein 
isoform a 

26.13 MmugDNA.21971.1.S1_a
t 

LOC70369
9 

703699 --- --- --- 

212    similar to 
transgelin 2 

26.124 MmugDNA.22158.1.S1_a
t 

LOC71952
7 

719527 --- --- --- 

213    similar to 40S 
ribosomal 
protein S15 
(RIG protein) 

26.086 MmugDNA.25954.1.S1_a
t 

LOC70724
1 

707241 --- --- --- 

214    tumor necrosis 
factor (ligand) 
superfamily, 
member 10 

-26.08 MmugDNA.30129.1.S1_a
t 

TNFSF10 694451 --- --- --- 

215    --- 26.069 AFFX-Mmu-r2-Ec-bioD-
3_at 

--- --- --- --- --- 

216    similar to 
ribosomal 
protein L18a 

25.943 Mmu.8777.1.S1_s_at LOC71924
2 

719242 --- --- --- 

217    glutathione 
peroxidase 4 

25.893 MmugDNA.16268.1.S1_a
t 

GPX4 705333 --- --- --- 

218    similar to 
troponin C, 
cardiac/slow 
skeletal 

25.872 MmugDNA.6849.1.S1_at LOC69704
7 

697047 --- --- --- 

219    similar to 40S 
ribosomal 
protein S7 (S8) 

25.831 MmugDNA.28023.1.S1_a
t 

LOC72190
0 

721900 --- --- --- 
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220    putative 6-16 
protein 

-25.81 MmuSTS.4428.1.S1_at 16-Jun 716339 0001836 // 
release of 
cytochrome 
c from 
mitochondri
a // inferred 
from 
sequence or 
structural 
similarity /// 
0006916 // 
anti-
apoptosis // 
inferred 
from 
sequence or 
structural 
similarity /// 
0043154 // 
negative 
regulation of 
caspase 
activity // 
inferred 
from 
sequence or 
structural 
similarity /// 
0051902 // 
negative 
regulation of 
mitochondri
al 
depolarizatio
n  

0005739 // 
mitochondrio
n // inferred 
from 
sequence or 
structural 
similarity 

0005515 // 
protein 
binding // 
inferred from 
sequence or 
structural 
similarity 

221    similar to 
ribosomal 
protein L5 

25.787 Mmu.11049.1.S1_s_at LOC70406
7 /// 
LOC70711
7 

704067 /// 
707117 

--- --- --- 

222    similar to 
ribosomal 
protein L13 

25.565 MmugDNA.42536.1.S1_s
_at 

LOC70060
3 

700603 --- --- --- 

223    similar to 40S 
ribosomal 
protein S6 

25.493 MmugDNA.7002.1.S1_s_
at 

LOC71227
4 /// 
LOC71855
6 /// 
LOC72260
8 

712274 /// 
718556 /// 
722608 

--- --- --- 

224    similar to 15 
kDa 
selenoprotein 
isoform 1 
precursor 

25.32 MmugDNA.5517.1.S1_at LOC71246
9 

712469 --- --- --- 

225    similar to 
ribosomal 
protein S5 

25.233 MmugDNA.26535.1.S1_a
t 

LOC71125
9 

711259 --- --- --- 

226    similar to 
reticuloendoth
eliosis viral 
oncogene 
homolog B 

25.198 MmuAffx.161.1.S1_at LOC71467
7 

714677 --- --- --- 
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227    deleted in 
malignant 
brain tumors 1 

-25.09 MmugDNA.25527.1.S1_a
t 

DMBT1 574192 --- 0016020 // 
membrane // 
inferred from 
electronic 
annotation 

0005044 // 
scavenger 
receptor 
activity // 
inferred from 
electronic 
annotation 

228    similar to 
Galectin-3 
(Galactose-
specific lectin 
3) (Mac-2 
antigen) (IgE-
binding 
protein) (35 
kDa lectin) 
(Carbohydrate-
binding protein 
35) (CBP 35) 
(Laminin-
binding 
protein) 
(Lectin L-29) 
(L-31) 
(Galactoside-
binding 
protein) 
(GALBP)... 

25.06 MmugDNA.32094.1.S1_a
t 

LOC69729
0 

697290 --- --- --- 

229    cathepsin H 25.014 MmuSTS.4176.1.S1_at CTSH 711437 --- --- --- 

230    --- -25 MmuMitochon.4.1.S1_at --- --- 0006810 // 
transport // 
inferred 
from 
electronic 
annotation 
/// 0009060 
// aerobic 
respiration // 
inferred 
from 
electronic 
annotation 
/// 0055114 
// oxidation 
reduction // 
inferred 
from 
electronic 
annotation 

0005739 // 
mitochondrio
n // inferred 
from 
electronic 
annotation /// 
0005743 // 
mitochondria
l inner 
membrane // 
inferred from 
electronic 
annotation /// 
0005746 // 
mitochondria
l respiratory 
chain // 
inferred from 
electronic 
annotation /// 
0016020 // 
membrane // 
inferred from 
electronic 
annotation /// 
0016021 // 
integral to 
membrane // 
inferred from 
electronic 
annotation 

0004129 // 
cytochrome-c 
oxidase 
activity // 
inferred from 
electronic 
annotation /// 
0005506 // 
iron ion 
binding // 
inferred from 
electronic 
annotation /// 
0005507 // 
copper ion 
binding // 
inferred from 
electronic 
annotation /// 
0009055 // 
electron 
carrier 
activity /// 
0016491 // 
oxidoreducta
se activity // 
inferred from 
electronic 
annotation /// 
0020037 // 
heme binding 
// inferred 
from 
electronic 
annotation 
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231    similar to 
Myosin 
regulatory 
light chain 2, 
smooth muscle 
isoform 
(Myosin RLC) 
(LC20) 
(Myosin 
regulatory 
light chain 9) 

-24.76 MmunewRS.1055.1.S1_at LOC70978
4 

709784 --- --- --- 

232    --- 24.682 Mmu.6730.1.S1_at --- --- --- --- --- 

233    tropomyosin 2 
(beta) 

-24.64 MmugDNA.6549.1.S1_at TPM2 696604 --- --- --- 

234    similar to 
Finkel-Biskis-
Reilly murine 
sarcoma 
virusubiquitou
sly expressed 

24.597 MmugDNA.39247.1.S1_a
t 

LOC71676
1 

716761 --- --- --- 

235    similar to 
ribosomal 
protein L13 

24.558 MmugDNA.37060.1.S1_a
t 

LOC70060
3 

700603 --- --- --- 

236    placenta-
specific 8 

24.443 MmugDNA.13757.1.S1_a
t 

PLAC8 693310 --- --- --- 

237    similar to N-
acylsphingosin
e 
amidohydrolas
e (acid 
ceramidase) 1 
preproprotein 
isoform a 

24.292 MmugDNA.13035.1.S1_s
_at 

LOC70369
9 

703699 --- --- --- 

238    caveolin 1, 
caveolae 
protein, 22kDa 

24.266 MmugDNA.13156.1.S1_a
t 

CAV1 704449 --- --- --- 

239    Actin, beta 24.223 AFFX-Mmu-actin-M_at ACTB 574285 --- --- 0005515 // 
protein 
binding // 
inferred from 
electronic 
annotation /// 
0005524 // 
ATP binding 
// inferred 
from 
electronic 
annotation 

240    similar to 
Cytochrome c 
oxidase 
polypeptide 
VIIa-
liver/heart, 
mitochondrial 
precursor 
(Cytochrome c 
oxidase 
subunit VIIa-
L) (VIIaL) 

24.163 MmugDNA.16710.1.S1_a
t 

LOC70389
6 

703896 --- --- --- 

241    similar to 40S 
ribosomal 
protein S29 

24.129 MmugDNA.26508.1.S1_a
t 

LOC70228
9 

702289 --- --- --- 



 182 

Rank Gene Title J5 Probe Set ID Gene 
Symbol 

Entrez 
Gene 

Gene 
Ontology 
Biological 
Process 

Gene 
Ontology 
Cellular 
Component 

Gene 
Ontology 
Molecular 
Function 

242    similar to 
diazepam 
binding 
inhibitor 

24.044 MmugDNA.8184.1.S1_s_
at 

LOC69865
2 

698652 --- --- 0000062 // 
acyl-CoA 
binding // 
inferred from 
electronic 
annotation /// 
0005488 // 
binding // 
inferred from 
electronic 
annotation 

243    similar to 40S 
ribosomal 
protein S25 

23.963 MmugDNA.41046.1.S1_s
_at 

LOC70259
3 

702593 --- --- --- 
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APPENDIX C 

Method:  Stained, fixed cells from BAL fluid were analyzed by flow cytometry (65).  The 

following antibodies were used: mouse anti-human CD206- allophycocyanin (clone 19.2) 

(alternative activation (M2) marker) (BD Pharmingen, San Diego, CA), mouse anti-human 

CCR7 (CD197)-phycoerythrin (clone 150503) (classical activation (M1) marker) (R&D 

Systems, Minneapolis, MN).  Acquisition was performed on BD LSRII flow cytometer using BD 

FacsDiva software.  Forward/side scatter dot plot was used to gate the live macrophage 

population.  All analyses were performed using FlowJo flow cytometry analysis software (Tree 

Star Inc., Ashland, OR). 
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There are no differences in frequency of BAL macrophages that are alternatively or 

classically activated between Pc-colonized versus non-colonized monkeys.  Flow cytometry 

was used to examine frequency of CD206 to evaluate M2 (alternatively activated) 

macrophages (top row) and CCR7 to evaluate M1 macrophages (bottom row).  No differences 

were found.  Asterisks indicate significant differences for both populations from baseline 

levels. 
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