

CONSTRAINT-ENABLED DESIGN INFORMATION REPRESENTATION FOR

MECHANICAL PRODUCTS OVER THE INTERNET

by

Yan Wang

B.S. in E.E., Tsinghua University, 1996

M.S. in E.E., Chinese Academy of Sciences, 1998

Submitted to the Graduate Faculty of

School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2003

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Yan Wang

It was defended on

August 1, 2003

and approved by

Bopaya Bidanda, Professor, Department of Industrial Engineering

Michael R. Lovell, Associated Professor, Department of Mechanical Engineering

Ming-En Wang, Assistant Professor, Department of Industrial Engineering

Raymond R. Hoare, Assistant Professor, Department of Electrical Engineering

Dissertation Director: Bartholomew O. Nnaji, Professor, Department of Industrial Engineering

 ii

© Copyright by Yan Wang 2003
All Rights Reserved

 iii

ABSTRACT

CONSTRAINT-ENABLED DESIGN INFORMATION REPRESENTATION FOR

MECHANICAL PRODUCTS OVER THE INTERNET

Yan Wang, Ph.D.

University of Pittsburgh, 2003

Global economy has made manufacturing industry become more distributed than ever

before. Product design requires more involvement from various technical disciplines at different

locations. In such a geographically and temporally distributed environment, efficient and

effective collaboration on design is vital to maintain product quality and organizational

competency. Interoperability of design information is one of major barriers for collaborative

design. Current standard CAD data formats do not support design collaboration effectively in

terms of design information and knowledge capturing, exchange, and integration within the

design cycle. Multidisciplinary design constraints cannot be represented and transferred among

different groups, and design information cannot be integrated efficiently within a distributed

environment. Uncertainty of specification cannot be modeled at early design stages, while

constraints for optimization are not embedded in design data.

In this work, a design information model, Universal Linkage model, is developed to

represent design related information for mechanical products in a distributed form. It

incorporates geometric and non-geometric constraints with traditional geometry and topology

elements, thus allows more design knowledge sharing in collaborative design. Segments of

 iv

design data are linked and integrated into a complete product model, thus support lean design

information capturing, storage, and query. The model is represented by Directed Hyper Graph

and Product Markup Language to preserve extensibility and openness. Incorporating robustness

consideration, an Interval Geometric Modeling scheme is presented, in which numerical

parameters are represented by interval values. This scheme is able to capture uncertainty and

inexactness of design and reduces the chances of conflict in constraint imposition. It provides a

unified constraint representation for the process of conceptual design, detailed design, and design

optimization. Corresponding interval constraint solving methods are studied.

DESCRIPTORS

 Collaborative Design Computer-Aided Design

 Constraint Representation Data Model

 Design Extensible Markup Language

 Feature Representation Geometric Modeling

 Interoperability Interval Analysis

 Parametric Family Persistent Naming

 Product Markup Language Reliable Computation

 Robustness Semantic ID

 Uncertainty Universal Linkage

 Xlink XML Schema

 XPath

 v

ACKNOWLEDGEMENTS

Sincerely I wish to express my gratitude to my advisor Professor Bartholomew O. Nnaji for

his years of guidance and encouragement. His invaluable support and mentoring allow me to

keep research endeavor and are priceless contribution to this work.

Special thanks to the committee members, Professor Bopaya Bidanda, Professor Michael

R. Lovell, Professor Ming-En Wang, and Professor Raymond R. Hoare for their commitment

and insightful comments.

I would like to extend my thanks to the faculty and staff of Department of Industrial

Engineering for providing indispensable resources and maintaining the homely environment. I

also thank all old and new members of the Automation and Robotics Laboratory for the

enjoyable companionship and their help, particularly, Justin Kidder, Celestine Aguwa, Obinna

Muogboh, Kyoung-Yun Kim, Salil Desai, Adaeze Mbaezue, Pamela Ajoku, Amer Momani, and

David Manley.

Finally, I am grateful to my family members for their love and understanding.

 vi

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 Role of Internet in Product Design ... 3
1.2 Importance of Capturing Knowledge in Design ... 6
1.3 Research Objectives and Overview .. 7

2.0 DESIGN KNOWLEDGE REPRESENTATION FOR CAD ... 11

2.1 Current Standard Formats ... 12
2.1.1 The Initial Graphics Exchanges Specification (IGES) ... 13
2.1.2 The Standard for the Exchange of Product Model Data (STEP) 13

2.2 General Data Models .. 15
2.3 Design Knowledge Representation... 17

2.3.1 General Knowledge Representation Languages ... 19
2.3.2 Design Modeling Languages .. 21
2.3.3 Requirements for Design Information and Constraint Representation................. 23

3.0 UNIVERSAL LINKAGE MODEL.. 27

3.1 Information Elements of UL Model ... 28
3.2 Directed Hyper Graph... 30
3.3 Universal Linkage among Entities.. 35

4.0 SYNTAX AND SEMANTICS OF PRODUCT MARKUP LANGUAGE...................... 37

4.1 The Syntax of PML... 39
4.2 The Schema of PML ... 40
4.3 Graph Decomposition ... 44
4.4 Demonstration... 52

5.0 DESIGN FEATURE AND CONSTRAINT REPRESENTATION................................. 57

5.1 Design Feature Representation ... 61
5.1.1 Dual representation of features ... 64
5.1.2 Feature dependency .. 71

5.2 Geometric Constraint Representation ... 74
5.2.1 Robustness in Geometric Computation .. 76
5.2.2 Interval-value numerical constraints... 78

5.3 Non-geometric Constraint Representation.. 87
5.4 Entity ID Persistency .. 89

5.4.1 Parametric family.. 92
5.4.2 Semantic ID .. 97
5.4.3 Curve, Edge, and Point Mapping.. 107

 vii

6.0 INTERVAL GEOMETRIC MODELING.. 112

6.1 Preliminaries of Traditional Interval Analysis.. 114
6.2 Concepts of Interval Geometric Modeling (IGM) .. 115

6.2.1 Interval Definitions in IGM .. 117
6.2.2 Sampling Relation between Real Number and Interval Number........................ 119

6.3 Geometry Description in IGM.. 123
6.3.1 Modeling Uncertainty in IGM .. 123
6.3.2 Solving Under-constrained Problems ... 125
6.3.3 Solving Over-constrained Problems ... 126

6.4 Solving Equations in Interval Geometric Modeling ... 127
6.4.1 Interval Linear Equations.. 128
6.4.2 Interval Nonlinear Equations .. 129
6.4.3 Interval Inequalities .. 135
6.4.4 A Numerical Example... 136

6.5 Design Refinement.. 138
6.5.1 Interval Subdivision.. 139
6.5.2 Constraint Re-specification... 146

7.0 IMPLEMENTATIONS AND TESTS .. 149

7.1 Service Architecture of Pegasus ... 149
7.2 UL-PML Scheme in Collaborative Design... 156

7.2.1 PML Modeler.. 157
7.2.2 Lean Information Transfer Based on HTTP ... 159
7.2.3 Lean Information Transfer Based on CORBA ... 160
7.2.4 Distributed Design Information Integration.. 165
7.2.5 Mapping Between Native CAD Data Models and PML Model 168
7.2.6 Constraint Propagation and Management... 173

8.0 SUMMARY AND FUTURE WORK .. 177

APPENDIX I – XML SYNTAX .. 184

APPENDIX II – XML NAMESPACE SYNTAX.. 188

APPENDIX III – XLINK SYNTAX .. 189

APPENDIX IV – XPATH SYNTAX... 190

APENDIX V – XPOINTER SYNTAX .. 192

APPENDIX VI – EXAMPLES OF PML SCHEMA ... 193

BIBLIOGRAPHY... 202

 viii

LIST OF TABLES

Table 1: Examples of Entities ... 28

Table 2: Examples of Relations .. 29

Table 3: Examples of design features ... 66

Table 4: Categories of common geometric constraints... 75

Table 5: Coordinates of ending vertex with different radii... 79

Table 6: Numerical results of the bracket example .. 137

Table 7: Initial result of Section 6.4.4... 142

Table 8: Subdivision level 1 ... 142

Table 9: Subdivision level 2 ... 142

Table 10: Subdivision level 3 ... 143

Table 11: Service sequence in a client/server transaction .. 155

Table 12: Selective topology transferred to Mould2... 161

Table 13: Constraint examples in mold1.xml, mold2.xml, and constr.xml 166

Table 14: Research Summary ... 182

 ix

LIST OF FIGURES

Figure 1: Geometric entities and non-geometric entities in DHG .. 30

Figure 2: Static relations and dynamic relations in DHG... 31

Figure 3: An example of aggregation relation in DHG .. 32

Figure 4: An example of association relation in DHG ... 33

Figure 5: An example of generalization relation in DHG... 33

Figure 6: An example of geometric constraint in DHG.. 34

Figure 7: An example of non-geometric constraint in DHG .. 34

Figure 8: A triangle with dimensional constraints.. 34

Figure 9: DHG representation of the triangle with dimensional constraints in Figure 8.............. 35

Figure 10: Universal linkage between files .. 36

Figure 11: A point in PML.. 40

Figure 12: Schema of POINT referring to coordinates... 42

Figure 13: Schema of LINE.. 43

Figure 14: Syntax of reference ID .. 44

Figure 15: Graph decomposition algorithm.. 46

Figure 16: Assumed topological hierarchy... 47

Figure 17: Tree structure of entities in Figure 8 after graph decomposition 48

Figure 18: PML representation of the triangular part in Figure 8 and Figure 9 49

Figure 19: A tetrahedron... 50

Figure 20: DHG model of the tetrahedron in Figure 19 ... 50

Figure 21: PML model of the tetrahedron in Figure 19.. 51

Figure 22: A part to be designed by two groups... 53

Figure 23: The body section of the part .. 53

Figure 24: The head section of the part .. 54

Figure 25: Universal linkage by URI.. 54

Figure 26: Tree of geometric and non-geometric constraints... 60

 x

Figure 27: Priori feature of protrusion in DHG .. 67

Figure 28: Posteriori feature of protrusion in DHG.. 68

Figure 29: A solid feature example... 69

Figure 30: Feature definition procedure in Figure 29... 70

Figure 31: PML description of feature information of Figure 29... 71

Figure 32: Algorithm to list dependent features of a feature for reference dependency 73

Figure 33: Algorithm to list features that a feature depends on for reference dependency 73

Figure 34: An example of numerical errors .. 79

Figure 35: Constraint examples in a piston and its assembly ... 81

Figure 36: Piston features and geometric constraints in PML.. 85

Figure 37: Simple link geometric constraint... 86

Figure 38: Examples of non-geometric constraints .. 88

Figure 39: An example of naming persistency problem... 90

Figure 40: Example of intersect continuity... 94

Figure 41: An Example of face bounded by surfaces and edge bounded by surfaces................ 101

Figure 42: Examples of intersecting surfaces ... 102

Figure 43: Syntax of IDs for topological and geometric entities.. 106

Figure 44: Range of a point specified by interval numbers .. 117

Figure 45: Relations between intervals... 118

Figure 46: A 2D triangle geometry specified by intervals.. 124

Figure 47: Constraint-driven geometry in interval modeling ... 124

Figure 48: An example of under-constrained geometry in bracket design................................. 126

Figure 49: An example of over-constrained geometry in bracket design................................... 127

Figure 50: Algorithm of extended Gauss-Seidel method for solving linear equations (6.6) 129

Figure 51: Linear enclosure of nonlinear interval function .. 132

Figure 52: RootIsolation procedure based on Descartes’ rule of signs 133

Figure 53: Constraint equations of Figure 49 (b) in separable form... 136

Figure 54: Convergence of Interval calculation in the bracket example 137

Figure 55: Variation allowance of the bracket.. 138

Figure 56: The solution set represented as a 2D region.. 140

Figure 57: Two-dimensional interval vector subdivision ... 140

 xi

Figure 58: Subdivide procedure for power interval elevation... 141

Figure 59: Comparison of different levels of subdivisions... 145

Figure 60: Refined bracket design by subdivision.. 146

Figure 61: Relations of two constraint subsets ... 147

Figure 62: Service triangular relationship... 151

Figure 63: Pegasus system architecture .. 152

Figure 64: Services provided by Service Manager ... 153

Figure 65: Peer-to-peer relationship among service providers ... 155

Figure 66: Sequence diagram of a service .. 156

Figure 67: Architecture of PML modeler ... 158

Figure 68: Interface of PML modeler ... 158

Figure 69: Lean information transfer base on HTTP.. 159

Figure 70: A pair of moulds in collaborative design .. 161

Figure 71: The first mould designed at the server site.. 162

Figure 72: Design library for data sharing.. 162

Figure 73: The second mould designed at the client site .. 163

Figure 74: Updated design of the first mould ... 164

Figure 75: Updated second mould by translating corresponding references.............................. 164

Figure 76: Lean information transfer based on CORBA.. 165

Figure 77: Design constraints in mold1.xml ... 167

Figure 78: Design constraints in mold2.xml ... 167

Figure 79: Design constraints in constr.xml ... 168

Figure 80: PML model as a medium for selective information transfer between CAD systems 169

Figure 81: The architecture of the ACIS modeler .. 169

Figure 82: A jig model in SAT format in the ACIS modeler ... 171

Figure 83: The translated jig model in PML format in PML native modeler at server site........ 171

Figure 84: The jig model in PML format received at client site... 172

Figure 85: The translated jig model in the ACIS modeler.. 172

Figure 86: Process of constraint format query from constraint library....................................... 175

 xii

1.0 INTRODUCTION

The emergence of Internet technologies and their widespread proliferation has had a

tremendous impact on industry. The Internet provides a convenient medium for faster business

transactions. High-speed business information exchange over Internet shrinks the span of both

time and space. Free information flow facilitates a global free market. The global market has a

trend to shift its gravity to e-business. For example, US companies invested $9.5 billion on the

Internet over the first 10 months of 1999. European venture capitalists (VCs) invested $333.9

million in Internet companies over the same period [1]. With business-to-business e-commerce

expecting to top $1.3 trillion by 2003, the Internet is a key driving force in the new millennium

as manufacturers strive to optimize their supply chain [2]. Nevertheless, the Internet brings

challenges to manufacturers. Within the spectrum of product management activities, faster

discovery of customer needs, greater customization of the products to meet the customer needs,

faster new product testing, and shorter product life cycles are issues that manufacturers are

facing. One of the keys to improving the performances stated above is faster and better product

design. How to shorten product design cycle time is the major question to answer.

Computer-Aided Design (CAD) systems are crucial tools for engineers in various fields,

such as mechanical, electrical, software, chemical, architectural, and civil engineering. The birth

of interactive CAD tools can be traced back to 1960s [3]. In the past four decades, Mechanical

Computer-Aided Design (MCAD) systems have been evolving from 2-Dimensional models to 3-

Dimensional models, from wire frame modeling to surface and solid modeling. Some new

 1

techniques such as feature-based design and variational geometry have had computer play a

significant role in product development. In the current highly networked business and

engineering environment, network oriented collaborative design systems become a development

trend for future CAD systems to support faster and better product design.

Despite the advancements in computer technology, there are still some beleaguering

problems for CAD tools in terms of the efficiency and effectiveness of information exchange

between human being and computer, as well as computer to computer. The exchange channels

are far from engineers’ expectation about CAD tools. For example, special engineering skills are

required to use CAD tools for design. Currently the computer is incapable of walking the human

being through the design process. Furthermore, lack of common data format causes islands of

automation in Computer Integrated Manufacturing (CIM). Ease of communication between users

and computers as well as among computers is the ultimate goal of the future CAD systems,

which is the issue of interoperability.

The hub of the conventional mechanical CAD systems is the geometric modeler. The task

of computers focuses on manipulation of geometric information, whereas non-geometric

technical information (e.g., material properties, functional requirements, and manufacturing

methods) and administrative information (e.g., bill of materials, process planning and scheduling,

and cost estimation) are mostly neglected. Existing design information modeling methods

impede collaborative design. First, current CAD systems have high risks of degrading integration

during design. Mechanical design needs to extensively consider various issues of material

properties, tool selection, tolerance, and manufacturing/assembly process, etc. Computer-Aided

Drafting falls short in capturing these aspects. Second, current CAD systems do not support

direct constraint imposition. The raw data of geometric shape, dimensions, features, etc. are

 2

entered by specially trained CAD engineers. Other design partners cannot add constraints to the

design and integrate the non-geometric requirements and specifications in design data. Third, no

CAD tools exist to effectively aid the conceptual design and propagate specifications and data to

detailed design and downstream activities. The trial-and-error approach makes the design cycle

longer for new product conceptualization.

1.1 Role of Internet in Product Design

Global market calls for collaboration among designers and manufacturers. The number of

multi-national companies has increased from 7000 in 1969 to 24000 in 1995 [4]. In

manufacturing industries, product design and manufacturing process has been much more

distributed than ever before. The business pressure toward outsourcing forces corporations to

design complex products collaboratively. Ford Motor Company estimates that suppliers add 60%

of a vehicle’s value, and automotive companies are increasingly relying on these suppliers to

participate substantively in vehicle design. Defense Advanced Research Projects Agency

(DARPA) estimates that the supply chain accounts for more than 50% of weapon system and

major subsystem production costs [5]. In such a geographically and temporally distributed

environment, efficient and effective design collaboration should be guaranteed to maintain

product quality and organizational competency.

Customers, who are the driving force of manufacturing evolution, are continuously

increasing their expectations about lead-time, quality, and price. Mass customization is taking

over mass production. Diversity of products requires producers’ quick responses. Challenges

exist in cutting costs of design and manufacturing, while retaining high quality. Currently the

 3

cost of product design contributes to a significant proportion of its operation costs for a

manufacturing company. For example, General Electric’s GE90 engine for the Boeing 777

aircraft cost $2 billion to develop. Ford spends $3-6 billion on developing a new model

automobile [6]. There is tremendous cost leverage available through improved collaborative

design.

In spite of time and space restrictions, the Internet enables communication among design

team members, as well as with other teams such as material procurement, manufacturing,

assembly, quality control, and customer services. Customers can directly contact design

personnel and participate in remote design of products. Stakeholders of supply, manufacturing,

product test, maintenance, recycling, and others are able to contribute their expertise at early

product design stages so as to reduce the risk of failure and shorten the design cycle time.

Specifically, there are several interoperability issues to be considered in collaborative

design tools. First, collaborative design over Internet requires an industry standard for CAD data.

To complete effective information exchange, a CAD data exchange standard should be

established by the CAD industry. There are many CAD file formats currently used in industry,

such as IGES (Initial Graphics Exchange Specification), DWG, DXF (Data eXchange Format),

VDAIS (Vereinung Deutsche Automobilindustrie IGES Subset), SET (Standard d'Exchange et

de Transfert), STEP (STandard for the Exchange of Product model data), and VRML (Virtual

Reality Modeling Language). These commonly used standard CAD files in industry capture only

the static geometric information and part of the administrative information. Other information

that contains designer’s intent such as constraints and other dynamic relationships is lost during

CAD file translation. The use of pure visible geometric graphics, which is supported by standard

data translations, does not allow users to modify solid models that lack parameters or features,

 4

which represent the history of modeling. As a result, teams with different CAD packages cannot

work on design projects together efficiently. To exchange all useful product information, a more

powerful data format should be developed to integrate various design information.

Second, the information infrastructure that supports the Internet-based product

development should be established to assist the cooperation of various Computer Aided

Engineering (CAE) systems. Current CAD data formats were designed for standalone systems.

All information about components and assemblies has to be available locally in order to be

processed. Transferring CAD information among design collaborators requires large amounts of

data to be moved around, which is inefficient under the constraints and limits of communication

bandwidth. Furthermore, corporations do not wish to expose complete design data to customers

or suppliers for information security purpose. A collaborative design data model should support

lean information processing. It should be compliant with industry standards of programming,

communication, networking, system management, and interfaces between applications and

system services. It should also have good compatibility and interoperability with current CAE

systems.

In this dissertation, a new scheme for capturing design information within the context of

the Internet services and transactions is developed. To maximize the future CAD systems’

openness, flexibility and integrity with the Internet, this data scheme intends to be portable

across different Internet protocols, network configurations and operating systems. The

performance and throughput of collaborative design systems could vary based on the

requirements of application. This data scheme has a distributed style, which supports the

required scalability and extensibility of the systems.

 5

1.2 Importance of Capturing Knowledge in Design

In modern society, skill specialization creates domain experts, which makes the design

process less smooth than it was before. Designers are by no means merely exchanging graphical

and physical shapes, but are exchanging knowledge about design and design process, including

specifications, design rules, constraints, rationale, etc. As design becomes increasingly

knowledge-intensive and collaborative, the need for intelligent computational design tools to

support the representation, use, and integration of knowledge among distributed designers

becomes more critical. Design data should contain the knowledge that is used and generated in a

design project. It is essential to ensure that one can represent and reason with what is captured in

design.

Knowledge is defined as the fact or condition of knowing something with familiarity

gained through experience or association as quoted by the Merriam-Webster’s dictionary.

Information is the valuable data from the subject’s point of view and knowledge is organized

information. How to represent engineering design data and knowledge is one of the important

topics to address.

In general, design data includes [7]: (1) Product data, which covers the requirement

specification, functional diagram, sketches/drawings, calculations, graphs, etc., as well as

production plans, user manuals, maintenance instructions, etc. in the entire product life cycle; (2)

Process data, which includes the rationale behind product data such as the information to support

arguments and decisions related to the various stages of the product and alternatives, along with

various aspects of the business involved; (3) Process administration data, which includes the

planned and actually applied resources (who did what, when and how). Ideally, design

knowledge should be embedded in design data for storage, transfer, and reuse.

 6

Design knowledge covers a variety of mental powers, including laws, rules and formulas

pertaining to the function and behavior of human, material, object and physical space. Its broad

spectrum includes general laws such as Newton's laws of motion and Hook's law, specific rules

such as spatial relations for assembly, human related ergonomic issues, process and environment

related material properties, cost related durability and reliability, etc.

Though design knowledge is important, the current standard CAD file formats do not

capture it well. For example, STEP is only capable of modeling geometric and topological

elements, tolerance, a small portion of features, and administrative information. The dynamic

constraints concerning parameters, engineering relationships, functionality, etc. cannot be

represented, which hinders design knowledge transferring interoperably.

This dissertation focuses on the representation and manipulation of dynamic design

information, which includes product data and design rules that are used to capture the variant

information besides the static one. To a large extent, this type of information is added into design

data in terms of internal or external constraints. The data and knowledge in electronic format

should be recognizable to different parties within the computer supported collaborative design

environment for a successful design.

1.3 Research Objectives and Overview

Within the context of Internet-based collaborative design, there are special requirements for

interoperable design information representation. Information incompleteness, improccessability,

and inconsistency are major problems to solve. There are needs for representing more design

knowledge in CAD data, transferring selective design information among design collaborators,

 7

carrying design information in a network oriented data scheme, supporting consistent

interpretation for different systems, modeling uncertainty and inexactness of design, and

enabling multidisciplinary constraint imposition and integration.

The research objective of this dissertation is to develop a design information model,

Universal Linkage (UL) model, to tackle issues related to interoperability for collaborative

design systems. Research issues include collaborative design data scheme, lean design

information modeling, Dual-Rep design feature representation, geometric and non-geometric

constraints integration, semantic naming and linkage, and Interval Geometric Modeling.

(1) Collaborative design data scheme: An UL-PML scheme is developed to capture geometric

and non-geometric entities and relations among them. Unlike current CAD neutral formats and

models, the UL model is able to capture not only static geometric information, but more

importantly design constraints which reflect the dynamic relations among geometric entities,

thereby more design knowledge and rationale. This model captures both static and dynamic

relations among entities. Static relations represent structural and topological associations and

dynamic relations are constraints defined by designers. Graphically, Directed Hyper Graph

(DHG) symbolizes UL model. Computationally, Product Markup Language (PML) [8]

represents this model. PML has the format of Extensible Markup Language (XML) [9], which is

an emerging Internet information transferring standard. PML inherits XML’s good extensibility,

flexibility and portability. This research focuses on the feasibility of building information

interoperability (PML) based upon data interoperability (XML). It includes a new scheme for

design knowledge and Internet data exchange integration, PML semantics and schema in the

mechanical design domain, and extensible representation of geometric and non-geometric

constraints.

 8

(2) Lean design information modeling: To enable selective design information exchange and

sharing, a linkage reference structure is developed in the UL model that allows physically

distributed entities to be linked to build a logically integrated set of design information. Relations

of basic entities can be established across the boundary of data files, which overcomes the

shortcoming of current standalone CAD file formats in information transferring. This allows

design collaborators to share design information without transmitting large amounts of raw data,

thereby supporting intelligent information sharing. This introduces a new way of distributed

design data modeling, storage, and query with entity-level granularity.

(3) Dual-Rep design feature representation: To support implicit modeling and to enhance the

existing design feature representation methods, a Dual-Rep feature representation method is

developed in the UL model. This method models intentional and geometric feature

independently for both global and local features such that feature construction and evaluation are

both modeled.

(4) Geometric and non-geometric constraints integration: To capture more design intent,

constraints are modeled in the UL-PML scheme as dynamic relations in an extensible form.

Symbolic constraints are represented in descriptive ways, which eliminate ambiguity and

uncertainty. Numerical constraints are represented by interval values, which reduce

inconsistency due to numerical errors. From both symbolic and numerical aspects, CAD models’

completeness, reliability, and robustness are improved.

(5) Semantic naming and linkage: To maintain persistent reference and linkage among entities, a

geometry-based semantic ID method is developed such that topological entities are identified by

geometry and geometric entities are named based on surfaces. Hierarchical namespace is

introduced to reduce the interference between IDs. This method adds semantics of geometry and

 9

topology into IDs thereby increasing the stableness of entity reference. It builds the identification

framework for the distributed UL model, and can enhance the naming persistency of current

CAD systems.

(6) Interval Geometric Modeling (IGM): A new geometric modeling scheme based on interval

representation and analysis is developed to improve model’s robustness and represent design

uncertainty and inexactness. IGM allows all parameters of geometric modeling (coordinates as

well as parametric constraints) to be non-trivial-width interval values instead of fixed values.

Interval numerical constraints then can be used for the process of conceptual design, detailed

design, and design optimization. It models soft constraints, thus reducing the chance of conflicts

during constraint imposition. It releases the restriction of under-constrained and over-constrained

issues for variational geometry. Constraint-driven interval geometric modeling supports more

design interaction for optimization and decision-making. IGM establishes a generic approach for

interoperable numerical constraint representation and integration for the entire design cycle.

In this dissertation, Chapter 2 presents current different knowledge representation schemes

and data models for design. Based on the special requirements for design data models, Chapter 3

describes the new UL model and DHG representation. Chapter 4 describes the basic syntax and

semantics of PML, and the schema of PML in the context of mechanical design is defined. This

includes geometric and non-geometric entities and the relations among them. Chapter 5 describes

how features can be represented in the UL-PML scheme. Representation issues of intentional

features and geometric features, symbolic and numerical constraints, parametric families, and

naming persistency are discussed. Chapter 6 presents the IGM for numerical constraint model.

Chapter 7 shows the implementation and proof of the new concepts and the UL model.

 10

2.0 DESIGN KNOWLEDGE REPRESENTATION FOR CAD

Functional, material, manufacturing, maintenance, and other information about a product

need to be transferred among design stakeholders. An integrated product model is vital in

network-based collaborative design. Current CAD systems use different data structures and file

formats. Although some standard neutral formats have been developed to support file translation,

they cannot capture all original product-related information. Most of them only support static

geometric information, that is, the physical shape of a product. However, product design cannot

be completely captured by its geometric data. More importantly, design intent including

functionality, cost, materials, tolerances, etc. determines the actual shape of the product. From

this viewpoint, design is a decision-making process based on the designer's knowledge.

Sometimes it is practical to postpone a decision to a later stage of the design and planning

process [10].

Currently it is common in a collaborative design environment that members of a design

group use different kinds of modeling systems. Different design tools are used for different

stages of the design. Input and output information have several formats. To allow efficient

communication and collaboration, these pieces of design information should be logically

integrated and consistently represented for different CAD systems. Current CAD data formats

were designed for standalone CAD systems. Transferring a large amount of data by network

communication channels with limited bandwidth is inefficient and the quality of service for

remote geometric computation and manipulation cannot be guaranteed.

 11

Design is a process of knowledge reuse and generation for the designer. The designer's

intent is the reflection of his or her design knowledge. Attaching detailed product information

besides geometry and topology is essential for sound CAD model with explicit design

knowledge. The subsystem of Knowledge Representation (KR) for design is crucial in the

integrated design system. The responsibility of KR system is to select appropriate symbolic

structures to represent knowledge, and to select appropriate reasoning mechanisms both to

answer questions and to assimilate new information, in accordance with the truth theory of the

underlying representation language [11].

Generally there are two kinds of CAD modeling systems. One of them is explicit modeling,

in which only static geometric information is recorded at any time during the modeling process.

The other is procedural or implicit modeling, wherein the product is modeled in a sequence of

instructions, and the history of construction is embodied in the CAD file. Implicit modeling

requires less geometric computation involvement of human users and more design process

information than explicit modeling. Most of the CAD tools have migrated from explicit

modeling to implicit modeling. A good CAD data model should support implicit modeling and

capture design process information as much as possible.

2.1 Current Standard Formats

There are different commonly used formats for CAD models. To attain the objective of

product data sharing on different platforms, standard CAD file formats are required. Various

industries have embraced the effective implementation of the Standard for the Exchange of

Product Model Data (STEP) to achieve this objective. CAD file standardization was initiated in

 12

1979 by an industrial group led by Boeing, General Electric, and the National Bureau of

Standards (now the National Institute of Standards and Technology (NIST)). This work resulted

in the Initial Graphics Exchanges Specification (IGES) version 1 and was adopted by the

American National Standards Institute (ANSI) in 1981.

2.1.1 The Initial Graphics Exchanges Specification (IGES)

IGES is the precursor of product data exchange standards, similar to the French standard

SET and the German VDAFS for automobile surface data exchange. It is a U.S. ANSI standard

whose purpose is simply to exchange flat-file-structured CAD data between systems. IGES is

executed in a batch-like operation. It was developed using a bottom-up approach with a goal of

addressing as many entities as possible. That is, the format for elements (geometry, attributes,

etc.) was defined first, with an application for the data in mind. Software developers attempt to

match their own internal data element representations based on their interpretation of the IGES

data element specification. Users often face difficulties when these interpretations are not

accurate or an entity definition is ambiguous; therefore, conformance to IGES is sometimes

subjective [12].

Recognizing these limits, the U.S. IGES group initiated a project in 1984 called Product

Data Exchange Specification (PDES) to rectify the problems with IGES. International Standards

Organization (ISO) later embraced PDES as the basis for its international standard (ISO 10303),

which is commonly known as STEP.

2.1.2 The Standard for the Exchange of Product Model Data (STEP)

The objective of STEP is to provide a neutral mechanism capable of describing product

data throughout the life cycle of a product, independent of any particular system. This kind of

 13

system makes it suitable not only for neutral file exchange, but also as a basis for implementing

and sharing product databases and archiving.

The STEP (ISO 10303) parts can be grouped into the following five main categories:

description methods, implementation and conformance methodology, integrated-information

resources, abstract-test suites, and application protocols (AP): (1) The description methods group

forms the underpinning of the STEP standard. This includes overview, which contains

definitions that are universal to the STEP, and EXPRESS language, which is used to describe

data modes; (2) The implementation methods group describes the mapping from STEP formal

specifications to a representation used to implement STEP. The conformance testing

methodology framework provides information on methods to test software product conformance

to the standard. It also acts as guidance for creating abstract-test suites, and describes the

responsibilities of testing laboratories; (3) The integrated information resources group contains

the generic-STEP-data models. These data models can be considered the building blocks for

STEP, and they can help AP integration and interoperability; (4) The abstract-test suits consist of

test data and criteria that are used to assess the conformance of a STEP software product; (5) The

application protocols describe the more detailed and complex data models for specific product

applications. They not only describe what data is to be used, but also describe how the data is to

be used in the model.

In STEP applications, resource models, application protocols, and EXPRESS information

modeling language are to be implemented. The resource models contain the low-level entities

and features, such as geometry, topology, form features, product structure configuration

management, and tolerances. The application protocols describe the scope and information

requirements for a particular application of STEP, usually by commodity (such as machined

 14

parts, sheet metal, castings, composites, etc.). The APs break STEP into more manageable and

comprehensible "chunks" that can be more readily implemented within a computer environment.

AP development and implementation is a major distinguishing feature between IGES and STEP.

EXPRESS, a computer-interpretable data definition language, is built based on the Entity

Relationship (ER) model, which contains the relationships of generalization and specialization.

Though STEP is becoming standard in industries, it still cannot capture parametric and

variational information [13]. This kind of relationship information among geometric entities is an

important part of design constraints. To fully represent design data, current information models

for CAD should be expanded so as to contain more relations of design entities.

2.2 General Data Models

The objective of data and information models is to describe a Universe of Discourse (UoD)

in certain ways that the information of the UoD can be transferred. The task of information

modeling is to provide a sound basis for mapping between the portion of the world of interest

and a representation of it that can be used as a specification for defining a database and/or

application. Various product information models have been proposed and some have been used

in industry. For example, the ER model [14] and its extended version - Enhanced Entity

Relationship (EER) model [15] are the basic data models in relational database systems. ER/EER

views the world as consisting of entities with attributes and relationships among them, including

association, specialization, generalization, inheritance, and categories.

Integration DEFinition for Information Modeling (IDEF1X) is used to produce a logical

graphical information model, which represents the structure and semantics of information within

 15

an environment or system. IDEF1 was originally developed under the Integrated Computer

Aided Manufacturing (ICAM) program by Hughes Aircraft and D Appleton Company [16, 17],

built upon relational theory and entity-relationship modeling concepts. IDEF1X is the extended

version. Similar to the EER model, the relationships in IDEF1X include connection

(association), categorization, etc. But IDEF1X has more structural constraints to embed

semantics.

Nijssen's Information Analysis Method (NIAM) [18] is a binary-relationship approach,

based on the concept of information exchange between the user and the computer, using

elementary sentences (conceptual grammar). In NIAM, object and role correspond to entity and

relationship in ER. It attempts to build the semantics of the object into the syntax of the data

structure. Restricting rules such as uniqueness constraint, total constraint, equality constraint,

exclusion constraint, and subset constraint, are applied on objects.

The information models of EER, IDEF1X, and NIAM emphasize structural relationships,

thus connections of entities can be built. The restriction of these models for applications in CAD

systems is that the structural relations and constraints of these models are invariant [19], whereas

variant relations among geometric entities in CAD are widely applied to represent design

constraints. Therefore an information model, which accommodates variant relationship among

geometric entities, is needed to enable smooth interaction between CAD systems.

To find an appropriate way to model design data, we need to ruminate the nature of design.

Design is an information-processing activity that creates a description of an engineered artifact,

guided by some set of specifications and some set of constraints [20]. It is an intelligent process

of old knowledge application and new knowledge generation. The behavior of design performed

by a design engineer is essentially based on his/her knowledge. The sketches or drawings

 16

represent the design knowledge of the designer, which are constrained by design rationales. The

design data is the knowledge about the product, which is represented in a computer

comprehensible format. Design is a knowledge intensive activity.

2.3 Design Knowledge Representation

Knowledge can be divided into two categories: declarative knowledge and procedural

knowledge. Declarative knowledge is knowing something is the case. Such knowledge is

generally a matter of knowing facts, or laws, or terminology peculiar to the subject. Knowledge

about tasks, on the other hand, is often more procedural in character; that is, is knowing how to

do something [21].

The notion of the representation of knowledge is at heart an easy one to understand. It

simply has to do with writing down, in some language or communicative medium, description or

pictures that correspond in some salient way to the world or a state of the world [22]. Under the

assumption of knowledge representation hypothesis [23], any process capable of reasoning

intelligently about the world must consist in part of a field of structures, of a roughly linguistic

sort, which in some fashion represents knowledge and beliefs that process may be said to

possess. Moreover, these structural ingredients, independent of what external observers take

them to be, play an essential and causal role in engendering the behavior that shows the

knowledge. Any system, whether it be human or artificial, that manifests intelligent behavior, is

assumed to contain a substructure of knowledge base that encodes knowledge, and another

substructure of inference engine that manipulates the knowledge. Thus, one can presume from

 17

the hypothesis that any KR language contains two aspects, namely syntactic and inferential

aspects.

There are many research efforts on knowledge representation and interchange in the area of

Artificial Intelligence (AI). Generally speaking, there are five approaches in KR, that is, Logics,

Production Rules, Semantic Networks, Frames, and Artificial Neural Networks [24]. Because of

its declarative nature, a logical language has the advantage of natural semantics, expressive

power, economy of storage, generality, flexibility, and maintainability. But it has the

disadvantage on computational inefficiency, undecidability, default reasoning, and abduction.

Production rules have been used extensively in expert systems [25]. It has the similar pros and

cons as logic-based representation languages. In the above two kinds of representation,

knowledge is organized around relatively simple and independent elements (propositions in

logics and facts & rules in production rules). Different pieces of knowledge are stored

independently of each other with no strong interconnections between them. This is against the

intuition that information in human memory is highly interconnected. Though they have

attractive property of good expressiveness, computational untractability adds shadows on the

application prospect. Comparatively, semantic networks and frame-based representation

languages emphasize more on the structures of knowledge. The semantic network was initially

created to represent the semantics of English words [26]. Then It was used to represent

knowledge, including all sorts of non-semantic things (e.g., propositions, physical object

structure) [27,28]. Knowledge is expressed in terms of objects and the relationship among them,

graphically corresponding to nodes and arcs. Object-centered frame-based representation

languages [29, 30] organize knowledge in a more structured fashion for the chunks of knowledge

than it is in logic. At the same time, the declarative and procedural aspects of a given chunk are

 18

tightly connected. Hierarchically, class-frame and instance-frame build the structure of

knowledge. Inheritance is one of the major relations among objects. The frame is the predecessor

of the object in the object-oriented concept, which now has been widely used.

In AI field, KR has been studied for decades. Most of the researches consider how to model

and represent general knowledge rather than certain specific areas, In the next section, different

languages for general knowledge representation are introduced.

2.3.1 General Knowledge Representation Languages

KL-ONE [31,32] is based on semantic networks formalism. The primitive semantic

network was unable to distinguish assertional information and definitional information [33]. The

graphs in semantic networks were open to many possible interpretations. Beginning with the KL-

ONE, description logic (also called terminological logic, taxonomic logic, frame-based

[description] language, concept language, term subsumption language, KL-ONE-like language,

and structured inheritance networks) required a precise syntax and semantics for the

representation language. Assertions are made relative to a context, and they therefore do no

affect the concept structure. In addition, KL-ONE distinguishes two types of concepts, generic

and individual concepts. Generic concepts are descriptions of classes of individuals, whereas

individual concepts are descriptions of individual objects, attributes, relationships etc. From this

aspect, KL-ONE is similar to the hierarchical frame representations.

KRYPTON [34] is a mixed representation system which grew out of KL-ONE. It uses a

network/frame-style language for forming terms and a first-order predicate language for making

statements. Thus, KRYPTON separates definitional and assertional information by splitting the

operations into two components: a terminological one (TBox) and an assertional one (ABox).

 19

CLASSIC [35] is a description logic with an ancestry of extensive theoretical work tracing

back over to KL-ONE. It was intended to be built with a compact logic with a variety of

inferences, which are completion inferences, contradiction detection, classification, subsumption,

and rule application. CLASSIC can be envisioned as a deductive, object-oriented database

system. It has been implemented to aid conceptual modeling for configuration of

telecommunication equipment [36, 37].

In KRL [30], the formalism for declarative knowledge is based on structured conceptual

objects with associated descriptions. It was an attempt to integrate procedural knowledge with a

broad base of declarative forms. The control structure is based on multiprocessing with explicit

(user-provided) scheduling and resource control. The system is so complex that it finally

collapsed.

KODIAK [38] is a hybrid language of frames and semantic networks. Like KL-ONE, the

primary structure of KODIAK is the concept. However, there is no notion of role, slot, or case.

Instead, the idea of having a slot or role is replaced by a primitive epistemological relation ---

manifest.

RML-Telos family [39, 40, 41] includes an object-centered framework, which supports

aggregation generalization, and classification; a novel treatment of attributes; an explicit

representation of time; and facilities for specifying integrity constraints and deductive rules.

Due to domain and community dependency of knowledge, researches on knowledge

interchange are being conducted for knowledge sharing and reuse. Knowledge Interchange

Format (KIF) is a computer-oriented language for the interchange of knowledge among disparate

programs [42]. Ontolingua [43] and Knowledge Query and Manipulation Language (KQML)

[44] are developed for agent-based knowledge sharing and communication.

 20

EDDL+TDDL [45, 46, 47] is a framework for modeling and analyzing domain knowledge

at a conceptual abstraction level. Within this framework, domains are modeled using two

different representation levels, namely an epistemological one and a terminological one. The

epistemological level defines an external, user-oriented and domain-dependent representation

based on the EDDL language. The terminological level defines an internal, machine-oriented and

domain-independent representation based on the TDDL language, which is a decidable member

of the KL-ONE family. The two levels are linked by protoDL.

The problem of the representation schemes above is that they are designed for general

knowledge. In mechanical design, design knowledge is applied in the design process. Physically,

this knowledge is embedded in the process of the design and the design data. Design knowledge

representation requires a special format of hierarchical structure. It should be able to model

objects and relations, object properties, classes and instances, etc. [48]. Thus, a dedicated

representation mechanism is needed to model design knowledge and design data so as to

represent the information occurred in design efficiently and effectively.

2.3.2 Design Modeling Languages

Research on modeling languages for design has been carried out for years. The purpose is

to represent enough design knowledge in a computer-comprehensible way so that the knowledge

can be retrieved by computer and reapplied to new design, thereby leading to intelligent and

easy-to-use CAD tools.

IDDL [49, 50, 51, 52] is a hybrid language of predicates, frames and production rules. It

has the concepts of entities, relationships among entities, and attributes of entities and

relationships. These are represented by objects, first-order predicates, and functions,

respectively. Objects are denoted as constants and variables of first-order predicate logic.

 21

Predicates are used to express logical relationships among entities, and they construct the if-then

rule paradigm. A function can be defined over a set of both objects and predicates. Calling a

function corresponds to sending a message to a set of objects in the object-oriented programming

paradigm.

EDM [19, 53] is developed based on sets and predicate logic. It has three base forms:

domains (sets of values), aggregations (sets of named domains, e.g., variables) and constraints

(general relations that are defined as procedures). All constraints are fully specified and

executable.

DKSL [54] is implemented using a frame-based KR scheme. In addition to the features of

conventional frame systems, it supports the notion of context as a "dictionary" mapping from

terms to frames. Contexts may be created by the user, and may be nested. A System Context

contains basic definitions, and a User Context stores user-defined frames. There are no explicit

classes or "meta-frames" in DKSL. Rather, a prototype-based approach is used, wherein any

entity can be an exemplar with which other frames can be cloned. Without classes, inheritance

mechanism is done by clones.

CML [55] is a general-purpose declarative modeling language for representing physical

knowledge required for compositional modeling, which formulates a behavior model of a

physical system by composing descriptions of symbolic and mathematical properties of

individual components for early-stage design. It is translatable to the KIF [42].

The above languages inherit the AI approaches of KR. Though they have good

expressiveness of logic relations for general design knowledge, they still have limitations on

representing geometric and spatial relations among entities. And most importantly they lack the

ability to keep the relations persistent so that they can be transferred among CAD systems.

 22

There are two types of relations among geometric entities to be captured. One is the static

relation that exhibits the basic structural or topological information of entities, such as the

aggregation relation between a line and its two end points. Another is the dynamic relation that is

added by the designer as constraint, such as the distance between two points, or concentricity of

two holes. The dynamic relations can be changed without altering the topological information of

a part or an assembly. The mechanical design activity deals with both static and dynamic

relations at the same time. Design is the process of problem solving subject to various dynamic

constraints. Parametric design is an improvement of the CAD with dynamic constraints. But the

lack of interoperability for dynamic constraints among different 3D CAD packages reduces the

power of parametric design.

2.3.3 Requirements for Design Information and Constraint Representation

Spooner [56] has a list of requirements for object-oriented CAD data models. Data must be

modeled as objects organized into aggregation and generalization hierarchies. The data model

must support definition of object intentions as well as extensions. It must be possible to define

properties of objects. The data model must allow definition of operations (methods) for objects.

The data model must support inheritance of properties and operations. It must be possible to

represent relationships between objects. The data model must allow the intentions and extensions

of objects to be modified (dynamic schemas). It should possess the properties of support for

strong typing in the data model, full support for recursive object structures, equivalent support

for aggregation and generalization, efficient and flexible update capabilities for objects, multiple

inheritance, support for methods and procedures, and specification and enforcement of data

integrity constraints.

 23

Eastman and Fereshetian [19] proposed criteria to evaluate product models in CAD/CAM

development. Good models should provide full abstract data types that include object behaviors,

the ability for modeling multiple specialization, composite objects, relations within

compositions, relations on object structure, relations between variables, variant relations needed

for schema evolution and state of integrity. The models should also support integrity

management of external applications needed for applications management, management of

partial integrity needed for iterative design, and schema evolution needed for design evolution

and refinement.

From the viewpoint of interoperability, the ideal representation language for mechanical

design should have the following properties. It is declarative in nature and self-explanatory. It

should be able to capture the inherent properties and relations among objects explicitly. Those

relations include functional, structural, and performance relations, as well as parametric,

engineering and other constraints. Properties and relations should maintain good persistency

during information transferring. The language should be semantically comprehensive. The

engineering meaning of design can be clearly uttered. The language should be both modularly

self-contained and flexible so that various objects and their relations with partial integrity can be

captured, stored, and queried in an arbitrary manner. Additionally, the language should be

extensible. When new entities and relations are needed, it should be able to be extended. At last,

to encourage openness, this language should also be simple enough and comprehensible to both

humans and machines.

In the UoD of mechanical design, design knowledge mostly appears as constraints during

the design. Design for manufacturability, assemblability, profitability, quality, safety, and

recyclability, etc. (DFX) essentially are domain knowledge practice at the early design stage so

 24

as to reduce the time of product development. Within these domains, feature, functionality,

manufacturability, constraint, etc. are information elements, which consist of the domain model

of design. The information flow within a design team largely depends on the attachment of

different constraints. The design constraint is the adhesive in the whole design process. It models

the dynamic relations among geometric entities and captures designer’s intent explicitly.

Constraint representation is one of the most important aspects for design knowledge and

information models. Constraints consist of a wide spectrum of domains, including geometric and

topological relations among geometric objects and features, spatial relations among assembled

parts, restrictions on configurations because of manufacturability, assemblability, material

characteristics, ergonomics, reliability, etc.

Parametric design is an improvement of CAD with features and dynamic geometric

constraints. Geometric constraints are internally represented by different schemes (mathematical

equations, predictive logic, graphs, etc.), which capture dimensions and dependencies of

geometric entities and features. The physical shape of an object is determined by the results of

constraint solving. But the different internal constraint representations of parametric CAD

systems are not easily interchangeable. Besides geometric constraints, constraints concerning

other engineering issues such as material, tolerance, manufacturing, safety, and reliability cannot

be captured by these CAD systems.

Therefore, a more open model for design information is needed which will effectively and

thoroughly represent product data and design constraints. It should be able to model geometric

objects as well as dynamic constraints defined by designers such that all relevant product

information can be carried and exchanged seamlessly. Hence a Universal Linkage model is

 25

developed for this purpose to model geometric and non-geometric entities and constraints

explicitly.

 26

3.0 UNIVERSAL LINKAGE MODEL

As mentioned in Chapter 2, various relations are important in recording design information.

Besides the hierarchical structure of the geometric entities, which represent static relations,

dynamic relations among entities are important as well. This chapter will describe a Universal

Linkage (UL) model that captures both static and dynamic relations. Graphically this model can

be presented by Directed Hyper Graphs (DHG). In Chapter 4, a textual presentation of UL model

in Product Markup Language (PML) is specified in detail.

To build an information model for CAD, three fundamental questions should be answered.

(1) What kind of information elements are to be captured? (2) How would these elements be

represented? (3) How can information be retrieved from these elements? These three questions

are dealing with information abstraction, representation, and deduction. These three aspects

comprise the information structure of CAD systems.

Pure relational approach abstracts information objects in a structured manner, thus

information can be easily retrieved and modified using external operations. Object-oriented

approach categorizes information objects in a modular way, such that objects are self-contained

micro-systems whereas connections among objects are simplified. Object-oriented models can be

descriptive object-oriented in which only structures and relations of entities are captured, or

procedural object-oriented in which both objects’ structures and behaviors are modeled. Besides

modeling declarative knowledge similar to relational approach, object-oriented approach can

 27

also model procedural knowledge, in which information abstraction, representation, and

deduction are integrated.

Structurally procedural object-oriented models are much more complicated than declarative

ones. It is also difficult to achieve high portability and openness for procedural object-oriented

models. The new UL model does not take the procedural approach in order to ensure good

interoperability. To make the model simple but comprehensive enough, the UL model adopts a

hybrid approach of declarative object-oriented and relational modeling.

3.1 Information Elements of UL Model

The UL model has the fundamental elements of entities and relations. Entities are abstract

representation of any objects in the real world. They include geometric entities, topological

entities, entities of material, tolerance, mathematics etc. Examples are shown in Table 1.

Table 1: Examples of Entities

Non-Geometric Entities Geometric
Entities Topology Material Reliability Manufacturing
Point
Vector
Line
Curve
Plane
Sphere

Vertex
Edge
CoEdge
Face
Shell
Body

Density
Polythene
Yield Strength
Stress
Friction Coef
Specific Heat

MTBF
Hazard Rate
Safety Factor
S-N Ratio

Cutting speed
Feed rate

The information elements used in UL model are defined as follows.

Definition 3.1: An entity is an object that exists as a distinguishable unit in the Universe of

Discourse for design. It possesses unique attributes.

 28

Definition 3.2: An attribute is a characteristic property or feature that is associated with an entity

and identifies or modifies the entity.

Definition 3.3: A relation is a logical or natural association between two or more entities.

The relations among entities are categorized into two types: static relations and dynamic

relations. Static relations are basically the structural relations among entities within a part or

among different assembled parts. They represent static geometric and topological relations.

Static relations include aggregation, which transforms a relationship between objects into a

higher-level object [57, 58], and generalization, which refers to an abstraction in which a set of

similar objects is regarded as a generic object [59]. In CAD information models, geometry-

related relations mostly are aggregation relations while non-geometric (e.g., administration,

material) relations include both of aggregation and generalization. Dynamic relations are

specified operationally by designers, which appear as various kinds of constraints. Examples of

relations are shown in Table 2.

Table 2: Examples of Relations

Static Relations Dynamic Relations
Consist-of Distance between two planes
is-a-kind-of Parallel
associated-with Angle between two lines

Unlike ER model, which only captures static relations, the UL model differentiates static

and dynamic relations because dynamic relations are crucial for constraint representation.

 29

3.2 Directed Hyper Graph

Graphically, the UL model can be represented by Directed Hyper Graph (DHG), in which a

node denotes an entity and an arc stands for a relation. There are two categories of entities in UL

model, geometric entities and non-geometric entities.

Definition 3.4: A geometric entity is an entity that is geometrically perceptible and can form a

concrete shape in a 3-dimensional Euclidean space. It is represented by an elliptical node in

DHG, as shown in Figure 1-a.

Definition 3.5: A non-geometric entity is an entity that is not geometric and not geometrically

tangible in a 3-dimensional Euclidean space. It is represented by a rectangular node in DHG, as

shown in Figure 1-b.

 (a) geometric entities (b) non-geometric entities

POINT

CURVE

SURFACE

MATERIAL

EDGE

MTTF

Figure 1: Geometric entities and non-geometric entities in DHG

There are two categories of relations in the UL model, static relations and dynamic

relations.

Definition 3.6: A static relation is a relation that indicates the essential and inherent affiliation of

entities in order to form a physical object. It is represented by an arc with solid line in DHG.

Three types of static relations are aggregation, generalization, and general association.

 30

To distinguish aggregation and generalization from general association, the start head of

arc is a diamond for aggregation relation and is a triangle for generalization relation, which is

illustrated in Figure 2-a.

 Aggregation
 Geometric constraint

 Generalization

 Non-geometric constraint
 Association

 (a) static relations (b) dynamic relations

Figure 2: Static relations and dynamic relations in DHG

Definition 3.7: A dynamic relation is a relation that specifies the extrinsic affiliation among

entities that indicates additional connection or preference. It is represented by an arc with a dash

line in DHG. Two types of dynamic relations are the geometric dynamic relation and the non-

geometric dynamic relations.

Definition 3.8: A constraint is a relation of dependency, limitation, or restriction among entities,

which reflects a special requirement from designer.

Dynamic relations are constraints added externally by design participants. We use the

terms dynamic relation and constraint interchangeably. To differentiate two types of constraints,

a special kind of entities are defined as constraint entities. A constraint entity is drawn in dash

line and attached on the corresponding constraint arc graphically in DHG, shown as in Figure 2-

b.

Definition 3.9: An initial entity of a relation is the starting (source) entity of the directed arc

corresponding to the relation.

 31

Definition 3.10: A terminal entity of a relation is the ending (destination) entity of the directed

arc corresponding to the relation.

Definition 3.11: A constraint entity is a special entity which indicates the type and

characteristics of a dynamic relation.

The entities and relations have the following properties:

(1) All types of relations are antireflexive.

(2) Aggregation and generalization relations have transitive properties.

(3) The direction of an arc implies the asymmetric unitary relation. If an arc has both ends

arrowed, the relation has the symmetric binary property.

(4) A constraint entity can be associated with one, two, or more entities, that is, a relation of

constraint can be specified to one or more objects.

Figure 3 shows an example of aggregation static relation in DHG. line0 is an instance of a

LINE. It consists of two points, point0 and point1, i.e., line0 is referring to two points.

line0point0 point1

POINT:point0 POINT:point1

LINE:line0

Figure 3: An example of aggregation relation in DHG

Figure 4 shows an example of general association relation in DHG. vertex0 is a topological

entity and is referring to a geometric entity point0.

 32

POINT:point0

VERTEX:vertex0

Figure 4: An example of association relation in DHG

Figure 5 shows an example of generalization static relation in DHG. SURFACE is the

general entity of PLANE, or PLANE is a special kind of SURFACE. Unlike aggregation and

association, generalization is mostly used in the meta-level of product modeling. It defines the

relation between two abstract classes.

SURFACE

PLANE

PLANE

SURFACE

Figure 5: An example of generalization relation in DHG

Figure 6 shows an example of geometric dynamic relation in DHG. line2 is parallel to

line1, and the distance from line2 to line1 is d. Here line1 is the terminal entity. The directions of

constraint arcs are unitary.

 33

distance = d
LINE:line2LINE:line1

line1 line2

conPARALLEL:p1

conDISTANCE:d1
Figure 6: An example of geometric constraint in DHG

Figure 7 shows an example of non-geometric dynamic relation in DHG. The material of

part1 is aluminum. It is represented by a material constraint entity that is referring to the part.

alluminum

PART:part1

conMATERIAL:m1

part1
Figure 7: An example of non-geometric constraint in DHG

As a comprehensive example, Figure 8 shows a triangular sheet metal part with

dimensional constraints. Its geometric and topological information as well as constraints can be

modeled in DHG as in Figure 9.

d0

d1

p2

p1p0

t0
t1

t2

l0

l1l2

Figure 8: A triangle with dimensional constraints

 34

EDGE: e0

VERTEX: v0

EDGE: e1

VERTEX: v1

EDGE: e2

VERTEX: v2

WIRE: w0

BODY: b0

LINE: l0

POINT:p0 POINT:p1 POINT:p2

VECTOR:v0 VECTOR:v1 VECTOR:v2

LINE: l1 LINE: l2

conDISTANCE:d0

conDISTANCE:d1

SHELL: s0

Figure 9: DHG representation of the triangle with dimensional constraints in Figure 8

3.3 Universal Linkage among Entities

Current CAD file formats were designed for standalone computers by which all design

information about one part/assembly is stored in one file. Thus, they lack flexibility on design

information retrieving and reuse. They do not support partial data queries. If only part of design

data is needed, it cannot be retrieved without querying the whole file. Thus, fractions of design

data cannot be reused unless the whole CAD file is imported. In a collaborative design

environment, the design tasks of different parts or sections are usually completed by different

working groups. To enable the seamless composition of product from different groups, new

modeling technique is needed to support the integration of distributed design information.

 35

Besides differentiating the static and dynamic relations among entities, another key feature

of UL model is that the relations among entities are not restricted within one data file. The

relations of entities located in different files and domains can be created as well. Relations are

linkages among information elements. A simple linkage model allows physically distributed

entities to be linked, and a logically integrated set of design information thus can be built. This

feature solves the flexibility problem of current CAD data modeling for collaborative design.

In the UL model, the relation among entities can be extended across file boundaries so as to

increase flexibility and modularity of CAD models. Universal links of entities may be built to

support distributed CAD data. This model will take advantages of the Internet connection and

assist collaborative design in a distributed design environment. As illustrated in Figure 10,

relations of entities (both static and dynamic) in different domains and physical locations can be

linked together. One can easily refer to entities in other data files, either located on the same

computational machine or other locations through the Internet.

INTERNET

Figure 10: Universal linkage between files

Graphically, the UL model can be illustrated by DHG. Textually, UL models are

represented in Product Markup Language (PML) and processed by computers. Chapter 4

describes the syntax and semantics of PML.

 36

4.0 SYNTAX AND SEMANTICS OF PRODUCT MARKUP LANGUAGE

To encourage future information flow and CAD application over the Internet, a system

independent data format is vital. It will be advantageous if this ideal format is network-oriented

at the implementation level, i.e., compatible to the Internet protocols and standards. At the

semantic level, this format should be object-oriented, which extensively supports data abstraction

in a well-developed style that itself evolved from the frame representation of knowledge. This

format should also be able to model and represent geometric and non-geometric constraints

explicitly in comparison to the existing format.

With the emergence of Extensible Markup Language (XML), data exchange over Internet

can have a uniform format. XML is a simple, flexible, and structured text format derived from

Standard Generalized Markup Language (SGML) (ISO8879). Originally designed to meet the

challenges of large-scale electronic publishing, XML is playing an increasingly important role in

the exchange of wide varieties of data over the Internet, such as MathML [60] for mathematics,

CML [61] for molecules, SMIL [62] for multimedia, SVG [63] for graphics, ebXML [64] for

electronic business, OFX [65] for financial data exchange, and WML [66] for wireless

applications etc. There are more than 400 XML application areas in the world [67].

An XML-based modeling language, Product Markup Language (PML), is developed for

mechanical product information modeling, which is CAD and computer system independent.

Inherited from XML, PML has the following general characteristics: (1) Simplicity: the file is a

hierarchically tree-structured text. Each object is represented by a node in the tree in the format

 37

of characters and markup tags. This makes it easily readable and comprehensible by machines.

(2) Extensibility: By the nature of markup, PML can be extended for new information if

necessary. When new concepts or notations are to be used, a modeling system can extend its

language scope by adding new elements in. It provides good scalability for modeling systems.

(3) Portability and interoperability: The language tends to separate system-independent content

and system-dependent format of product information so that useful information about product

will not be lost during data exchange and translation. PML can include more information in

product files. It has the capability to include engineering information, such as materials, tools

selection, cutting path, and managerial information, such as order number, cost, as well as

geometric information from different levels. (4) Object-oriented: The inherent hierarchical tree

structure of the language enables good encapsulation such that modular transparency is

guaranteed for the top-down approach of design. Products are modeled by PML, which describes

the information about the product explicitly, such as geometries, functions, features, materials

and contexts. Theoretically all information about product can be modeled in PML. (5)

Compatible with Information Infrastructure: XML is regarded as the future of web technology.

PML is compatible to web standards. Compatibility is indispensable when building an open and

interoperable system.

Some research has been done on the application of XML in CAD/CAM area. Ratchev et al.

[68] developed a decision-making environment for distributed product and facility prototyping in

an extended enterprise. XML is used for conveying design and manufacture messages across

traditional technology boundaries. Kahn et al. [69] are working on a framework for transforming

EXPRESS into XML and viewing with standard WWW browsers. Burkett [70] proposed a

mapping between EXPRESS and XML Data Type Definition (DTD). NIST’s Design Repository

 38

project [71, 72] created XML mappings for the function and flow in order to support

representation of artifact function models in software systems.

The above research represents geometry based on existing neutral formats (STEP or

VRML). They do not consider that the relations among geometric entities represent the major

part of design knowledge. The problem of design information incompleteness is not resolved.

The major advancement of XML for information modeling is that it has standard syntax. Thus

the interoperability of semantics can be separated from the interoperability of syntax. Taking

advantage of XML to model design entities and relations is one of the promising directions for

solving CAD interoperability issues.

4.1 The Syntax of PML

The syntax of PML strictly follows that of XML to ensure the usability and

interoperability. The compliance to industrial computation and communication standard is the

premise of computational interoperability at the machine level. The syntax of XML in Extended

Backus-Naur Form is listed in Appendix I, which is specified at the World Wide Web

consortium [73].

Markup is text that is added to the data of a document in order to convey information about

it [74]. There are four kinds of markup in SGML: descriptive markup (tags), references, markup

declarations, and processing instructions. XML descriptive markup consists of tags and

attributes. Matching tags must mark the beginning and the end of each element. Attributes,

which are embedded in the start tag, must provide additional information about the element.

Unlike HTML, in which tag set is under the control of the creators of HTML browser, XML puts

 39

control of the tag set in the user’s hands. Users can create new tags as needed, which makes an

XML file extensible. Figure 3 shows an example of point modeled in PML following the syntax

of XML. It shows that Point1 is a point, where its x, y and z coordinate are 1.0, 1.0 and 0.0

respectively. Tag set <point> and </point> specifies the geometric meaning of symbol Point1

and its attributes of x, y and z.

<POINT id=”point1” x=”1.0”, y=”1.0”, z=”0.0”>
</POINT>

Figure 11: A point in PML

4.2 The Schema of PML

XML provides a type of syntax for modeling data. It offers a user-defined and extensible

format to model data and information for different application areas. To enable an XML-style

language to be used in a particular area, additional efforts should be carried out to define the

semantics of this language. Therefore, specifying what tags will be used in PML is one of the

major tasks in defining PML. This includes what kinds of elements to be used to model

geometric and non-geometric entities, what types of attributes to be specified for each entity,

how to capture the relations among entities, etc.

There are two ways to specify the structure of instance documents and the data type of each

element and attribute in XML, Data Type Definition (DTD) which is inherited from SGML, and

Schema which is developed recently. Some disadvantages of DTD make people turn to develop

 40

Schema. DTD has a different syntax from XML; thus, two processing systems are needed to

process XML and DTD separately. Furthermore, DTD supports a limited capability for

specifying data types. For example, DTD cannot add value range constraints on elements. DTD

does not support all current available data types in databases. Comparatively, Schema has

advantage over DTD. Schema uses the same syntax as XML. It is object-oriented and extensible

in nature. It has enhanced data type definition to specify element sets, multiple elements with the

same name but different contents, etc. It supports attribute grouping, user defined types,

namespace, etc. The PML Schema is defined according to W3C’s Schema working draft [75].

Figure 12 shows two examples of PML schemas used to define entities. The left-hand side

schema file defines geometric point. A geometric point should contain four attributes, which are

coordinate x, y, z, and an identification name. The coordinate attributes are defined in the right-

hand side schema file, which are referred by the schema of point. Reference between schema

files can be built to ensure modularity. Figure 13 is the schema of line entities, which shows that

a line is defined by either two points or a point and a vector. Appendix VI lists more examples of

PML schemas.

 41

 <?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "point.xsd"
 Define geometric entity - POINT.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="coordinate.xsd"/>
 <xsd:element name="POINT">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute ref="x" use="required"/>
 <xsd:attribute ref="y" use="required"/>
 <xsd:attribute ref="z" use="required"/>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<?xml version="1.0"?>
<xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "coordinate.xsd"
 Specify the coordinate attributes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="x" type="xsd:double"/>
 <xsd:attribute name="y" type="xsd:double"/>
 <xsd:attribute name="z" type="xsd:double"/>
</xsd:schema>

Figure 12: Schema of POINT referring to coordinates

 42

<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "line.xsd"
 Define geometric entity - LINE.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="refPoint.xsd"/>
 <xsd:include schemaLocation="refVector.xsd"/>
 <xsd:element name="LINE">
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refPOINT"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refVECTOR"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Figure 13: Schema of LINE

The relation of entities in UL model is symbolized by the protocols of XML Xlink [76].

There are two kinds of links in Xlink: simple and extended. Simple links offer shorthand syntax

for a common and outbound link with exactly two participating resources. Extended links offer

full Xlink functionality, such as inbound and third-party arcs, as well as links that have arbitrary

numbers of participating resources.

In PML, static relations are modeled by simple links and dynamic relations are modeled by

simple or extended links. Links can be local within one file, or remote between files. A reference

is constructed by a reference ID, which include a Uniform Resource Identifier (URI) specifying

 43

the name and the location of the referred data file and the referred entity ID. If no URI is

specified, the reference is a local one. The syntax of the reference ID is shown in Figure 14.

 <reference_id> ::= # <entity_id> | <URI> # <entitiy_id>
 <entity_id> ::= <part_id> | <assembly_id> | <topology_id> | <geometry_id> |
 <constraint_id>
 <topology_id> ::= <body_id> | <shell_id> | <wire_id> | <face_id> | <edge_id> |
 <coedge_id> | <vertex_id>
 <geometry_id> ::= <surface_id> | <curve_id> | <point_id> | <vector_id>

Figure 14: Syntax of reference ID

To model the data structure of DHG by a tree structure of PML, a mapping process is

needed. The mapping from DHG to PML tree is done under the guidance of graph

decomposition rules, which are described in the following section.

4.3 Graph Decomposition

In DHGs, entities have hierarchical structure of static relations, as well as other dynamic

relations. To model the hyper-graph structure with a tree-structured PML, the graph

decomposition procedure should be carried out. The purpose of graph decomposition is to

disintegrate the graph structure of the data model into a tree structure by introducing virtual

entities to mirror some geometric or non-geometric entities. Thus, the graph structure can be

mapped to the tree structure of PML.

Definition 4.1: A mirror of an entity is a virtual entity that reflects the referred entity, thereby

containing all the attributes of the original entity.

 44

The principles of graph decomposition are listed as follows:

(1) Entities are represented by elements/nodes in PML.

(2) Relations are represented by links in PML.

(3) The bondage of a mirror with its original entity is represented by a simple link that is from

the mirror to the original entity.

(4) An aggregate relation is represented in a parent-child relation of elements/nodes in PML in

which the parent is the initial entity and the child is the mirror of terminal entity.

(5) An association relation is represented in a parent-child relation of elements/nodes in PML in

which the parent is the initial entity and the child is the mirror of terminal entity.

(6) A dynamic relation (constraint) is represented by a simple link, which is from the constraint

entity to the constrained entity if only one entity is involved in the relation.

(7) A dynamic relation (constraint) is represented by an extended link whose children specify the

initial entities and terminal entities of the relation if two or more entities are involved in the

relation.

The graph decomposition algorithm is listed in Figure 15, assuming that the topological

hierarchy is as in Figure 16.

 45

INPUT: Directed Hyper Graph G = (V, E)
OUTPUT: PML Tree T

Add root node TR of T
TR add child TG (Geometry)
TR add child TT (Topology)
TR add child TC (Constraint)

Search the topological node ‘BODY’ in G
Add a node A corresponding to ‘BODY’ as a child of TT
Run the following procedure P with input <‘BODY’, A>
 P: On input node <M, I>
 START P
 Mark M in G
 FOR each unmarked node N with a path from M
 IF N is a topological entity
 Add a node J corresponding to N
 as a child of TT
 Add a mirror node of J as the child of I
 with a simple link referring to J
 Run P on input <N, J>
 ENDIF
 IF N is a geometric entity
 Add a node J corresponding to N
 as a child of TG
 Add a mirror node of J as the child of I
 with a simple link referring to J
 Run P on input <N, J>
 ENDIF
 IF N is a constraint entity
 Add a node J corresponding to N
 as a child of TC
 Add an extended link locator node LOC1
 referring to M as a child of J
 Add an extended link locator node LOC2
 referring to N as a child of J
 Add an extended link arc node starting
 from LOC1 to LOC2 as a child of J
 IF there is a path from N to M
 Add an extended link arc node starting
 from LOC2 to LOC1 as a child of J
 ENDIF
 ENDIF
 ENDFOR
 END P

Figure 15: Graph decomposition algorithm

 46

BODY

SHELL

WIRE FACE

EDGE

VERTEX

LOOP

COEDGE

Figure 16: Assumed topological hierarchy

Following the rules of graph decomposition, the DHG of the triangular sheet metal part

example in Figure 9 can be transformed to a tree structure, as shown in Figure 17. Thus the

design information is expressed in PML and can be easily parsed by computer systems, as shown

in Figure 18. Elements with a prefix of “con” are constraint entities. Elements with a prefix of

“ref” are mirror entities. For example, conDISTANCE is a distance constraint entity, and

refPOINT is the mirror of POINT. The tree structure of PML documents allows computers to do

geometric and non-geometric edition, operation, query, and other manipulation efficiently. All

relevant product information is stored in a PML tree. The PML file can be read into a CAD

system and the information can be translated into the system’s internal representation.

 47

 PML root

Geometry

Topology

Constraint

p0 p1 p2 l0 l1 l2 t0 t1 t2

p0 t0 p1 t1 p2 t2

v0 v1 v2 e0 e1 e2

p0 p1 v0 l0p2 v1 v1 l1v2 v2 l2v0

Loc1

Loc2

A
rc1

A
rc2

d0

Loc1

Loc2

A
rc1

d1

w0 s0

w0 e0 e2 e1

b0

s0

Figure 17: Tree structure of entities in Figure 8 after graph decomposition

 48

<?xml version="1.0"?>
<pml:PART id="part0" xmlns:pml="http://www.pitt.edu" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.pitt.edu/line.xsd">
 <pml:GEOMETRY>
 <pml:POINT id="p0" x="0.0" y="0.0" z="0.0"/>
 <pml:POINT id="p1" x="20.0" y="0.0" z="0.0"/>
 <pml:POINT id="p2" x="12.0" y="10.0" z="0.0"/>
 <pml:VECTOR id="t0" x="20.0" y="0.0" z="0.0"/>
 <pml:VECTOR id="t1" x="-8.0" y="10.0" z="0.0"/>
 <pml:VECTOR id="t2" x="-12.0" y="-10.0" z="0.0"/>
 <pml:LINE id="l0">
 <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l1">
 <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l2">
 <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 <pml:VERTEX id="v0">
 <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:VERTEX id="v1">
 <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:VERTEX id="v2">
 <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:EDGE id="e0" pml:startParam="0" pml:endParam="20">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="# l0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:EDGE id="e1" pml:startParam="0" pml:endParam="12.8062484748657">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="# l1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:EDGE id="e2" pml:startParam="0" pml:endParam="15.6204993518133">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="# l2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:WIRE id="w0">
 <pml:refEDGE xlink:type="simple" xlink:href="#e0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refEDGE xlink:type="simple" xlink:href="#e1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refEDGE xlink:type="simple" xlink:href="#e2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:WIRE>
 <pml:SHELL id="s0">
 <pml:refWIRE xlink:type="simple" xlink:href="#w0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:SHELL>
 <pml:BODY id="b0">
 <pml:refSHELL xlink:type="simple" xlink:href="#s0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:BODY>
 </pml:TOPOLOGY>
 <pml:CONSTRAINT>
 <pml:conDISTANCE xlink:type="extended" pml:lowerBound="19" pml:upperBound="21">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v1"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#v0"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/>
 <pml:ARC2 xlink:type="arc" xlink:from="end" xlink:to="start" xlink:actuate="onRequest"/> </pml:conDISTANCE>
 <pml:conDISTANCE xlink:type="extended" pml:lowerBound="9" pml:upperBound="11">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v2"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e0"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE>
 </pml:CONSTRAINT>
</pml:PART>
Figure 18: PML representation of the triangular part in Figure 8 and Figure 9

3D solid models can also be represented in the UL-PML scheme. For example, a

tetrahedron in Figure 19 is modeled in DHG as in Figure 20 and in PML in Figure 21.

 49

v0

v1v2

v3

e0

e1
e2

e3
e4 e5

f0

f1

f2

f3

Figure 19: A tetrahedron

EDGE: e0

EDGE: e1

EDGE: e2

LOOP: lp0

BODY: b0

LINE: l5 POINT:p3

POINT:p2

POINT:p1

VECTOR:v5

VECTOR:v4

VECTOR:v3

LINE: l4

LINE: l3

SHELL: s0
COEDGE:coe00
COEDGE:coe20
COEDGE:coe10

LOOP: lp1
COEDGE:coe21
COEDGE:coe30
COEDGE:coe40

LOOP: lp2
COEDGE:coe11
COEDGE:coe41
COEDGE:coe50

LOOP: lp3
COEDGE:coe01
COEDGE:coe31
COEDGE:coe51

FACE: f0

FACE: f1

FACE: f2

FACE: f3

EDGE: e3

EDGE: e4

EDGE: e5

VERTEX: v0

VERTEX: v1

VERTEX: v2

VERTEX: v3

POINT:p0 LINE: l2

LINE: l1

LINE: l0

VECTOR:v2

VECTOR:v1

VECTOR:v0

PLANE:pl3

PLANE:pl2

PLANE:pl1

PLANE:pl0

VECTOR:v9

VECTOR:v8

VECTOR:v7

VECTOR:v6

POINT:v7

POINT:v6

POINT:v5

POINT:v4

Figure 20: DHG model of the tetrahedron in Figure 19

 50

<?xml version="1.0"?>
<pml:PART id="part0" xmlns:pml="http://www.pitt.edu" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.pitt.edu/line.xsd">
 <pml:GEOMETRY>
 <pml:POINT id="p0" x="0.0" y="0.0" z="1.0"/>
 <pml:POINT id="p1" x="1.0" y="0.0" z="0.0"/>
 <pml:POINT id="p2" x="0.0" y="0.0" z="0.0"/>
 <pml:POINT id="p3" x="0.0" y="1.0" z="0.0"/>
 <pml:POINT id="p4" x="0.0" y="0.0" z="1.0"/>
 <pml:POINT id="p5" x="1.0" y="0.0" z="0.0"/>
 <pml:POINT id="p6" x="0.0" y="0.0" z="0.0"/>
 <pml:POINT id="p7" x="0.0" y="1.0" z="0.0"/>
 <pml:VECTOR id="t0" x="1.0" y="0.0" z="-1.0"/>
 <pml:VECTOR id="t1" x="-1.0" y="0.0" z="0.0"/>
 <pml:VECTOR id="t2" x="0.0" y="0.0" z="1.0"/>
 <pml:VECTOR id="t3" x="0.0" y="1.0" z="-1.0"/>
 <pml:VECTOR id="t4" x="0.0" y="-1.0" z="0.0"/>
 <pml:VECTOR id="t5" x="-1.0" y="1.0" z="0.0"/>
 <pml:VECTOR id="t6" x="0.0" y="-1.0" z="0.0"/>
 <pml:VECTOR id="t7" x="-1.0" y="0.0" z="0.0"/>
 <pml:VECTOR id="t8" x="0.0" y="0.0" z="-1.0"/>
 <pml:VECTOR id="t9" x="0.577350" y="0.577350" z="0.577350"/>
 <pml:LINE id="l0">
 <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l1">
 <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l2">
 <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l3">
 <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t3" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l4">
 <pml:refPOINT xlink:type="simple" xlink:href="#p3" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t4" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:LINE id="l5">
 <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t5" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE>
 <pml:PLANE id="pl0">
 <pml:refPOINT xlink:type="simple" xlink:href="#p4" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t6" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE>
 <pml:PLANE id="pl1">
 <pml:refPOINT xlink:type="simple" xlink:href="#p5" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t7" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE>
 <pml:PLANE id="pl2">
 <pml:refPOINT xlink:type="simple" xlink:href="#p6" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t8" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE>
 <pml:PLANE id="pl3">
 <pml:refPOINT xlink:type="simple" xlink:href="#p7" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t9" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE>
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 <pml:VERTEX id="v0">
 <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:VERTEX id="v1">
 <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:VERTEX id="v2">
 <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:VERTEX id="v3">
 <pml:refPOINT xlink:type="simple" xlink:href="#p3" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
 <pml:EDGE id="e0" pml:startParam="0" pml:endParam="20">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="# l0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:EDGE id="e1" pml:startParam="0" pml:endParam="12.8062484748657">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>

Figure 21: PML model of the tetrahedron in Figure 19

 51

4.4 Demonstration

UL-PML scheme models product information in a distributed fashion, thus it allows

physically dispersed CAD data in a collaborative design environment to be integrated logically.

It does not require all geometric and non-geometric data of a part or an assembly reside in one

CAD system. Within the limit of network and communication bandwidth, one can break the

traditional large CAD files into small pieces, thus partial data query and transferring are

supported by this scheme. Having a standard XML format, PML can be easily processed for

reading, writing, storing, query, and transferring based on current computational standards and

network protocols, which possibly makes it widely acceptable by different CAD systems.

Unlike current CAD files with the information granularity for transferring at the component

level, UL-PML scheme allows CAD data communication at the basic geometric and non-

geometric entity level. For example, a connector in Figure 22 is to be designed by two groups,

the head section by one group and the body section by another. While the body section is being

designed at one location (in Figure 23), the head section (in Figure 24) data file at another

location is referring to the top face of the body by linkage specified by URIs as in Figure 25. One

section of a part can be linked to another section during the component design. In a similar way,

an assembly file can also refer to the distributed files containing several components.

 52

head

body

Figure 22: A part to be designed by two groups

Figure 23: The body section of the part

 53

Figure 24: The head section of the part

 .
 .
 .
 <pml:FACE id="face16">
 <pml:refFACE xlink:type="simple" xlink:href="http://www.pitt.edu/~yawst4/pg/body.xml#face16"
 xlink:show="embed" xlink:actuate="onLoad"/>
 .
 .
 .

Figure 25: Universal linkage by URI

In summary, UL model captures geometric and non-geometric relations among entities by

uniform and explicit links in PML such that references between entities can be made across the

boundary of files and physical locations in a distributed design environment. To main syntax-

level interoperability, PML uses standard XML syntax. Schemas of PML are defined for entities

and relations. Tree-structured PML allows design information to be easily processed. Graph

decomposition method is developed to map graph-structured entities and relations to PML tree.

The properties of UL model include:

 54

(1) UL model does not require that one data file contain all information relevant to the designed

product. Supporting physical distribution, it makes partial design information storage and

retrieval easy to realize. This will increase the efficiency during design information query.

(2) The design information can be stored modularly without compromising the integrity of the

whole product. This eases the requirements on computational time and storage space. Thus it

provides good flexibility for scalable designer systems. It also encourages reuse of designed

components/sections, thus reuse of design knowledge.

(3) The linkage ensures product data’s logical integrity though it is physically distributed. Link

relations among entities in UL model create a distributed information framework, thus

collaborative design can be easily realized over the Internet.

 (4) The design data elements and constraints are connected within the model by links. The

linkage makes the design data model open and extensible. Information can be generated and

linked together in the network virtual space.

(5) With lean product information transferring, design collaborators can share necessary design

information without losing control of intellectual properties. This scheme thus enables easy

management of trust relation and design information security in a collaborative design

environment.

(6) The geometric and non-geometric constraint representation in UL model incorporates more

design knowledge in design data. It provides a more comprehensive support for optimization and

decision-making at different design stages.

(7) The explicit capturing of multidisciplinary constraints, especially non-geometric constraints,

allows a more complete information representation than current standard formats. Thus it

prevents design information loss and reduces the design cycle time.

 55

Based on this general UL-PML scheme, a high-level data model is developed to represent

features and constraints in order to support distributed feature-based parametric modeling, which

is described in the following chapter.

 56

5.0 DESIGN FEATURE AND CONSTRAINT REPRESENTATION

Feature-based parametric modeling is the new approach used in most of the modern CAD

systems to derive geometric forms. Features are used in geometry construction instead of low-

level geometric entities, such that shapes can be built with terminologies that are more intuitive

and meaningful for human designers and engineers, and faster for model reconstruction and

reuse. Features contain design information of model construction history besides the geometry

boundary. Parameter information is recorded for constraint and specification driven design, and

for ease of model re-evaluation in design variation. Geometry and form information is stored by

geometric and topological entities at the low level, whereas design intent is recorded at the high

level by features and parameters. Feature-based parametric modeling facilitates geometry

construction process. Nevertheless, it signifies the interoperability problem of design information

and knowledge capturing.

During the process of design, requirements from different stakeholders are imposed on

design as specifications or constraints, either geometric or non-geometric. As defined in Section

3.2, constraints represent dynamic relations among entities specified by users. A simple but

comprehensive enough scheme to represent constraints is vital for design knowledge and

information representation in a collaborative design environment.

Constraint should not only be looked as the complementary part of design. It is the result of

logic reasoning activity of engineers and other design participants during the design process. It is

 57

the specifications and constraints from different aspects that finalize the physical form of a

design.

Geometric constraints are the fundamental constraints to be captured in mechanical product

design. The study of geometric constraints representation can be traced back to the origin of

CAD research. Constrained geometries are sets of loci that satisfy certain constraints, thus they

can be constructed systematically by computer systems.

Different types of geometric constraint solving methods and associated representation

methods for CAD have been proposed. Generally there are four approaches. The numerical

approach [77, 78, 79, 80, 81, 82] translates geometric constraints into a system of mathematical

equations. These equations then can be solved numerically by Newton-Raphson or Homotopy

methods directly, or by minimizing the sum of squares for all equations indirectly. The artificial

intelligent approach [83, 84, 85, 86, 87, 88] represents geometric constraints by facts and rules.

Constraint problems are solved by the aid of geometric reasoning. The symbolic approach [89,

90, 91, 92] translates geometric constraints into a system of easily solvable nonlinear equations

with symbolic algebraic methods, such as Grobner’s bases or the Wu-Ritt method, before

numerically solving them. The constructive approach [93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105] represents constraints as graphs internally. Constraint system is solved either by

top-down decomposition or by bottom-up clustering of the constraint graphs along with degrees

of freedom analysis.

To support different constraint solving methods in various CAD systems, a neutral model

for feature and constraint representation should be included in enriched CAD data. Current

neutral CAD data formats utilize the explicit modeling method to represent geometric entities.

Implicit geometric relations (such as dimensions and constraints in parametric design tools)

 58

cannot be represented. Furthermore, features, which capture design process and history in

parametric design, cannot be represented in these neutral formats. To ensure various design

information and rationale is captured explicitly in CAD data, modification and extension of

neutral CAD data formats are needed.

Some research efforts have been granted to include parametric information in STEP. The

program of Enabling Next GENeration mechanical design (ENGEN) [106] was sponsored by

Defense Advanced Projects Research Agency (DARPA) and PDES, Inc., and National Institute

of Standards and Technology (NIST) Parametric Group [107]. Though some form features and

geometric constraints are modeled in the above research, the representation method is not generic

enough to consider both implicit and explicit modeling, and to include geometric and non-

geometric constraints. Design features represent the history of construction, which contains

design intent. To allow other design participants to understand the design intent behind the

shape, and to do modification directly on the same geometry in different CAD systems, design

features and the transition from implicit model to explicit model should be included in CAD

neutral formats to enhance interoperability.

Different disciplines have their own domain specifications or constraints. Design

constraints consist of specifications in both geometric aspect (e.g., dimensions, parallelism, and

concentricity) and non-geometric aspect (e.g., functionality, materials, process requirements, and

ergonomics). During the process of design, geometric constraints are imposed on the geometry to

find the loci and generate the desired physical shape, while non-geometric constraints are first

processed by designers based on design knowledge and interpreted to the corresponding

geometric constraints. The physical shape of a design is determined by geometric constraints

directly and non-geometric constraints indirectly. Based on different interests, constraints can be

 59

categorized in different ways. An example of constraint categorization is shown in Figure 26.

Geometric constraints are looked as low-level constraints and non-geometric constraints are

high-level constraints in design specifications.

It is important to capture non-geometric constraints explicitly in product data in order to

prevent information misinterpretation or loss. For example, the diameter of a shaft could be

determined by the limit of machining tools, the dimensions of mating parts, the level of bearable

load, or the strength of the material. The diameter alone cannot represent the actual specification.

The explicitly specified non-geometric constraints need to be modeled to retain the source of

geometric interpretation. There are also some other non-geometric constraints that cannot be

generally interpreted into geometric information, such as design related material properties,

manufacturing processes, and working environments.

Constraints

Geometric

Non-geometric

Intra-feature

DISTANCE

ANGLE

RADIUS

Inter-feature

OFFSET PARALLEL

CONCENTRIC PERPENDICULAR

TANGENT

Tolerance

STAIGHTNESS

ROUNDNESS

SQUARENESS

FLATNESS

ANGULARITY

CYLINDRICITY

FIXED

CLEARANCE

Material

DENSITY

YIELD STRENGTH

FRICTION COEF

THERMAL EXP COEF

SPECIFIC HEAT

Reliability

MTBF

HAZARD RATE

SAFETY FACT

s-N RATIO

Maintainability

MTBM

MTBR

Human Factors

ANTHROPOMETRY

SENSATION

PHYSIOLOGY

PSYCHOLOGY

Manufacturing

TOOLING

MATERIAL

TOLERANCE

Assembly

AUTOMATION

ORIENTATION

ERROR-PROOF

Environment

ENVIRONMENT
PROTECTION
RESOURCE

CONSERVATION
CHRONIC

RISK
ACCIDENT

PREVENTION

BIOMECHANICS

Figure 26: Tree of geometric and non-geometric constraints

 60

The UL-PML scheme developed in this research support features and constraints in

parametric design. It captures design features and their relations to low-level entities. It also

incorporates non-geometric constraints to preserve design information integrity.

5.1 Design Feature Representation

Features represent regions of interests for different application purposes. For example,

function realization and geometry definition are important during design. Material removal

methods, tool selection, and tolerances are the major concerns in manufacturing. Spatial and

kinematical relationships are of interest for assembly. The taxonomy of features is application

specific. Here, the design feature or form feature that is applied in CAD model construction is

the main domain of discussion.

Within a feature-based parametric modeling environment, geometric shapes or forms are

constructed by high-level units – design features. The feature-based construction procedure

represents design intent and variation information, which are useful for downstream activities,

such as design modification, model validation, and manufacturing. Feature-based design has

been widely used in current CAD systems. Features become indispensable tools to aid designers

to express ideas and histories of design. Information about features should be modeled as part of

transferable product data for heterogeneous CAD modeling systems.

In geometric modeling systems, design features or form features can be represented in two

levels. One is termed implicit or unevaluated, where features are defined by construct procedures

and parameters. Another is called explicit or evaluated, by which features are defined by low-

level geometric and topological elements.

 61

Most of research in form feature modeling uses implicit representation. For example, in

ASU Features Testbed Modeler [108, 109], features are defined in terms of various parameters

and rules about geometric shape. Interaction between features includes spatial relationship and

volume-based CSG tree and Boolean operations. This modeling scheme only uses predefined

geometric information, thus it makes feature classification not flexible enough.

E-REP [110, 111, 112, 113, 114] distinguishes generated features, datum features, and

modifying features and regards a CAD model as being built entirely by a sequence of feature

insertion, modification, and deletion description. This description then is translated to explicit

entity representation. This approach allows feature-based modeling to be independent of current

different CAD systems. But at the same time, features are isolated with entities. The

constructional procedures do not directly associate with entities.

Middleditch and Reade [115] proposed a hierarchical structure for feature composition and

emphasized the construct relationship of features, but failed to build the connection between

features and low-level entities.

Some research represents features explicitly. Based on current framework of STEP

standards, the ENGEN Data Model (EDM) [106, 116] extended STEP’s current explicit entity

representation by adding some predefined local features such as round and chamfer. EDM took a

bottom-up approach only and considered the low-level entity construction process, but did not

consider implicit modeling aspects in a parametric modeling environment.

The most commonly used CAD systems use a mixed representation of CSG and B-Rep. It

is vital that a widely acceptable CAD data model should be able to capture feature-level

information as well as geometric and topological entities and relations. Pratt and Anderson [117]

also advocate that the future CAD data modeling standard should support both explicit modeling

 62

and implicit modeling. A hybrid of descriptive and procedural representation will accommodate

requirements from different aspects.

PDES’s Form Feature Information Model (FFIM) [118, 119] adopted a dual representation

of explicit and implicit features. Explicit features are represented generally by face lists, while

implicit features are categorized into depression, protrusion, passage, deformation, transition,

and area features. The limitation of FFIM is that parameters and constraints are not supported,

and the relation between explicit features and low-level entities is not explicit modeled.

Some researchers used a hybrid CSG/B-Rep structure. Roy and Liu [120] constructed CSG

using form primitives and form features. A face-edge type data structure is used at the low-level

B-Rep. These two data structures are linked by reference faces. Wang and Ozsoy [121] used

primitive features and form features to build CSG structure. Dimension and orientation

information are represented as constraint nodes in CSG tree. A face-edge type data structure is

used for lower level entities. The connection between two structures is built by pointers from set

operator nodes in CSG to B-Rep data structure and from faces to feature faces. Gomes and

Teixeira [122] also developed a CSG/B-Rep scheme, in which CSG represents the high-level

relationships between features, and the B-Rep model describes the details. An additional Feature

Topological Structure in parallel with the B-Rep model defines volume form features.

The above hybrid representations build CSG trees using pre-defined features. Although

connections between features and low-level entities are built, these hybrid approaches are not

generic enough. Some local operations such as chamfer, fillet, and thread cannot be

implemented purely in CSG context. Feature identification and mapping procedures in different

modeling systems may not be easy if some systems do not contain a particular feature. Thus, the

definition of a feature itself needs to be captured.

 63

From a more general point of view, an intentional feature [123] captures the process of how

a feature is defined, and is more flexible than geometric features. An intentional feature is an

abstraction for accessing groups of geometric elements with certain attributes, while a geometric

feature is a physical collection of geometric elements. It is advantageous to model features in a

procedural way in terms of intentional features, which separates feature construction and

validation. The design feature representation scheme proposed here is a combination of

intentional and geometric aspects of features.

5.1.1 Dual representation of features

A definition of feature in terms of information representation for modeling procedures is

needed to delineate the scope of feature information elements. Kim and O’Grady [124] proposed

an abstract representation in which features are defined as building blocks of part with certain

operators, but did not show detailed relations between features and entities. Relations between

features and low-level entities are important to make a feature representation generally

acceptable by current CAD systems. We define that a design feature is a relation between priori

properties (profile, orientation, attributes, etc.) and posteriori properties (derived geometric and

topological entities and their relations). The collection of priori properties is called priori feature,

and the collection of posteriori properties is called posteriori feature. Priori features consist of

construction intents and procedures, while posteriori features have evaluated geometric shape

information.

If E is a set of low-level entities (geometry and topology), and R is a set of relations

between entities, a CAD model D can be defined as a set of points in the E-R space, denoted as

D = (E, R). Furthermore, E can be subdivided into spaces of topology and geometry, E = T ∪ G,

where T is the set of topological entities, and G is the set of geometric entities. R can be

 64

subdivided into spaces of static relation and constraint, R = S ∪ C, where S is the set of static or

structural relations (generalization, aggregation, association), and C is the set of constraints or

dynamic relations. Priori features and posteriori features are subspaces of D, and they contain

information of T, G, S, and C. If Fi is the set of priori features and Fo the set of posteriori

features, Fi ⊂ D, Fo ⊂ D, i.e., Fi ⊂ E × R, Fo ⊂ E × R. Feature evaluation is the mapping

function f: Fi → Fo. Design feature F is defined as the relation f. F can also be denoted as (Fi,

Fo). The relations between features and low-level entities thus are built, which can be

summarized as F = ([Ti, Gi]×[Ci, Si], [To, Go]×[Co, So]), where i and o respectively denote entities

or relations belonging to priori and posteriori features. Some examples of features are listed in

Table 3.

While the explicit modeling method builds models using elements of T, G, C, and S

directly, feature-based modeling composes models in a more structured way by using collections

of {T, G, C, S}. During the process of modeling, entity specifications for priori features are

independent of those for posterior features (i.e., Ti ∩ To = ∅ and Gi ∩ Go = ∅). Thus, feature

definition is separated with feature evaluation, which allows construction procedure, history, and

other design information be captured along with geometry.

In the UL model, priori features are modeled by introducing a new type of entities - feature

entities. Priori features (e.g., protrusion, cut, hole, sweep, chamfer, and fillet) are sets of low-

level entities and relations that express the construct procedures. The relation between feature

entities and topological and geometric entities in priori feature definition are defined as

aggregation. Similar to low-level entities, feature entities can be referred as both abstract class

and instance. Design feature entities are categorized as geometric entities, and can be represented

in DHG. For example, the priori feature of protrusion in Table 3 is represented as in Figure 27.

 65

Table 3: Examples of design features

 Priori Features Posteriori Features
Protrusion

Profile Trajectory

Ti: face loop, edge, vertex
Gi: surface line, curve, point, vector
Ci: profile dimension, sweep distance
Si: association, aggregation

To: face loop, edge, vertex
Go: surface line, curve, point, vector
Co: dimension / distance, parallelism
So: association, aggregation,

Cut Profile Trajectory

Ti: loop edge, vertex
Gi: line, curve point, vector
Ci: profile location, dimension,
 sweep distance
Si: association, aggregation

To: face loop, edge, vertex
Go: surface line, curve, point, vector
Co: dimension / distance, parallelism
So: association, aggregation

Fillet FilletEdge

Ti: edge vertex
Gi: line, curve point, vector
Ci: dimension (radii of fillet)
Si: association, aggregation

To: face loop, edge, vertex
Go: surface line, curve, point, vector
Co: dimension / distance, parallelism
So: association, aggregation

 66

EDGE: e0

VERTEX: v0

EDGE: e1

VERTEX: v1

EDGE: e2

VERTEX: v2

LOOP: l0

feaPROTRUSION: p0

LINE: l0

POINT:p0 POINT:p1 POINT:p2

VECTOR:v0 VECTOR:v1

VECTOR:v2

LINE: l1 ARC: a0

conDISTANCE:d0

FACE: f0

POINT:p3

PLANE: pl0

Figure 27: Priori feature of protrusion in DHG

Posteriori features are modeled in the form of collections of low-level entities and their

association with high-level feature entities. The boundary topological entities of the models are

the connections between geometry and feature. For example, in 3D solid models, a face entity is

the pivot of connection between evaluated entities and feature entities, thus priori feature and

posteriori feature. The relation between feature entities and face entities in posteriori feature

definition are defined as general association. Any new face generated in a feature evaluation is

associated with the feature. The posteriori feature of protrusion in Table 3 is illustrated in Figure

28. Through feature entities, two levels of feature representation (i.e., priori features and

posteriori features) are linked.

 67

FACE: f1 FACE: f2 FACE: f3

feaPROTRUSION: p0

PLANE: pl1 PLANE: pl2 PLANE: pl3 SURFACE: s5

SHELL: sh0

FACE: f5

BODY: bd0

FACE: f4

PLANE: pl4

Figure 28: Posteriori feature of protrusion in DHG

In this model, low-level entities of a priori feature are independent of those of the

corresponding posteriori feature. It is possible that two sets of entities represent one geometric

form. This dual representation scheme makes a priori feature separated from its posteriori

counterpart, therefore feature construction is independent of feature evaluation and validation.

For example, the solid part in Figure 29 is constructed by four features: protrusion,

extrusion cut, hole, and fillet. The construct procedure is illustrated in Figure 30. The priori

features are specified by some low-level entities, either independently defined or evaluated from

previous steps, with aggregation relations. Then the feature is evaluated. The generated low-level

entities are associated with the priori features, i.e., feaPROTRUSION, feaCUT, feaHOLE, and

feaFILLET. Some features are specified independent of evaluated entities, e.g., protrusion and

cut. In this case, two sets of entities are referring to the same geometry. For example, face f0

associated with plane pl0 and face f1 associated with plane pl1 in Figure 30 (a) are referring the

same surface, while edges of ring r0 and intersecting edges between face f2 and f7, f8 in Figure

30 (b) are referring the same curves. These redundancies are very necessary to preserve

information of design intentions. Some features are specified based on evaluated entities from

 68

previous steps, e.g., chamfer and fillet. In Figure 30 (d), edge e8 is generated at the protrusion

creation.

protrusion

cut

hole

fillet
Figure 29: A solid feature example

 69

(a) Protrusion

(b) Cut

(c) Hole

(d) Fillet

feaPROTRUSION: p0

PLANE: pl1

PLANE: pl2

PLANE: pl3

SHELL: sh0

FACE: f4

BODY: bd0

FACE: f3

FACE: f2

FACE: f1

FACE: f0

PLANE: pl4

PLANE: pl5

FACE: f6

FACE: f5

PLANE: pl6

PLANE: pl0

VECTOR:t0

f0, f1

f2
f3

f4 f5

f6

e8

feaCUT: cut0

PLANE: pl7

SURFACE: pl8

PLANE: pl9 FACE: f9

FACE: f8

FACE: f7

RING: r0

VECTOR:t14

r0

f2

f8

f7

f9

feaHOLE: hole0

SURFACE: pl10FACE: f10

VERTEX: v19

POINT: p19 VECTOR:t21

v19
f10

feaFILLET: fillet0

SURFACE: pl11 FACE: f11

EDGE: e8

LINE: l8

e8 f11

Figure 30: Feature definition procedure in Figure 29

 70

 <pml:GEOMETRY>
 ……
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 <pml:FACE id="f0">
 <pml:refLOOP xlink:type="simple" xlink:href="# lp0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refSURFACE xlink:type="simple" xlink:href="#pl0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE>
 <pml:RING id="r0">
 <pml:refEDGE xlink:type="simple" xlink:href="#e12" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refEDGE xlink:type="simple" xlink:href="#e13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:RING>
 ……
 </pml:TOPOLOGY>
 <pml:FEATURE>
 <pml:feaPROTRUSION id="p0" depth="40.0">
 <pml:PROFILE>
 <pml:refFACE xlink:type="simple" xlink:href="#f0" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE>
 <pml:TRAJECTORY>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t4" xlink:show="embed" xlink:actuate="onRequest"/> </pml:TRAJECTORY>
 </pml:feaPROTRUSION>
 <pml:feaCUT id="cut0" category="extrusion" type="blind" depth="12.0">
 <pml:PROFILE>
 <pml:refRING xlink:type="simple" xlink:href="r0" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE>
 <pml:TRAJECTORY>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t14" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY>
 </pml:feaCUT>
 <pml:feaHOLE id="hole0" type="through_to_next" diameter="16" depth="">
 <pml:PROFILE>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v19" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PROFILE>
 <pml:TRAJECTORY>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t15" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY>
 </pml:feaHOLE>
 <pml:feaFILLET id="fillet0" type="simple">
 <pml:FILLET_EDGE radius1="10" radius2="10">
 <pml:refEDGE xlink:type="simple" xlink:href="#e8" xlink:show="embed" xlink:actuate="onRequest"/> </pml:FILLET_EDGE>
 </pml:feaFILLET>
 </pml:FEATURE>
 <pml:CONSTRAINT>
 ……
 </pml:CONSTRAINT>

Figure 31: PML description of feature information of Figure 29

As seen before, dual representation scheme captures both intentional features and

geometric features. Though redundancy requires more storage space in CAD systems, it is

worthwhile in order to preserve the design procedure and construct history. Besides the

association between features and low-level entities the relation between features (i.e., feature

dependency) is also an important part of design history.

5.1.2 Feature dependency

There are two types of relations between features, chronicle dependency and reference

dependency. Chronicle dependency records the construction process and history of design. It

 71

captures feature operations in design step-by-step. In the example of Figure 30, cut feature cut0

is added after protrusion p0, while hole feature hole0 is built after cut cut0. The hierarchical

structure of PML trees provides a convenient way to model the chronicle aspect of modeling.

The sequence of child nodes of the PML tree node FEATURE shows the constructing sequence.

Reference dependency occurs when previous low-level entities of posteriori features are

referenced by new priori feature specification. Some local feature operations use entities

generated from previous evaluation as part of their specification, such as thread, chamfer, and

fillet. The reference dependency among features is captured in terms of the reference relation

between entities in priori features and posteriori features. In the example of Figure 30, edge e8

was generated by protrusion feature p0. When feature fillet0 is defined, e8 is part of the priori

specification. Fillet fillet0 is reference dependent on protrusion p0. Reference dependency can be

retrieved in a DHG model using the algorithms in Figure 32 and Figure 33.

 72

INPUT: Directed Hyper Graph G = (V, E)
 Feature node Nfeat
OUTPUT: NodeList L containing feature nodes that are
 dependent of Nfeat

FOR each unmarked face node Nface with
 an association path to Nfeat
 run TEST on input <Nface>
 mark Nface
 FOR each unmarked edge node Nedge with
 an aggregation path from Nface
 run TEST on input <Nedge>
 mark Nedge
 FOR each unmarked vertex node Nvertex with
 an aggregation path from Nedge
 run TEST on input <Nvertex>
 mark Nvertex
 ENDFOR
 ENDFOR
ENDFOR

TEST: on input <N>
START TEST
 FOR each unmarked feature Nfeat0 that has
 an aggregation path to N
 L.add(Nfeat0)
 Mark Nfeat0
 ENDFOR
END TEST

Figure 32: Algorithm to list dependent features of a feature for reference dependency

INPUT: Directed Hyper Graph G = (V, E)
 Feature node Nfeat
OUTPUT: NodeList L containing feature nodes that
 Nfeat depends on

FOR each topological node N with
 an aggregation path from Nfeat
 IF N has an association path to feature Nfeat0
 L.add(Nfeat0)
 ENDIF
ENDFOR

Figure 33: Algorithm to list features that a feature depends on for reference dependency

To summarize, features are important information about design intent and history, which

are widely used in feature-based design. The UL-PML scheme is capable of capturing feature

 73

information. The dual representation of priori and posteriori features allows global and local

feature operations to be modeled, thus the feature definition is separated from the feature

evaluation. Two dimensional dependency relations between features are captured as well to be

part of design intent information.

5.2 Geometric Constraint Representation

Geometric constraints are fundamental relations needed to construct geometric shapes in a

parametric or variational way. Current standard formats use the explicit modeling method,

therefore geometric relations among entities are not captured explicitly. Rather, these relations

are modeled implicitly. For example, if two lines are parallel, they have the same directional

vectors instead of explicitly constrained with “parallel”. It is impossible to differentiate

intentional parallel from accidental parallel. Further, if two directional vectors are (1.0, 0.0, 0.0)

and (1.00000001, 0.0, 0.0), the question whether they are equal or not is system dependent. The

small difference may be generated unintentionally because of numerical errors with floating-

point arithmetic, or it may be intentionally specified by the designer.

To preserve design intent and maintain information integrity, it is essential that product

data include geometric relations among entities, such as coincidence, concentric, parallelism,

coplanar, and perpendicularity, such that these specifications and constraints can be recorded and

transmitted. These relations should be modeled explicitly and included in current explicit

modeling scheme. EDM [106, 116] classified constraints into three classes: predefined

constraints which are common and well-known; free form constraints which are expressed by

 74

string; and construct constraints which capture the construction process. But it did not show how

constraints are modeled at entity level and relations are built to support parametric modeling.

Geometric constraints include a variety of types. The commonly used ones can be

categorized as in Table 4. Geometric constraints are not mutually exclusive, which means that

one constraint relation may be represented by another constraint. For example, perpendicularity

can be represented as an angle of 90 degrees. This implies that constraint representation scheme

should be flexible enough and extensible.

Table 4: Categories of common geometric constraints

Dimension Position Orientation Symmetry Tolerance
Distance
Radius
Diameter

Fixed
Coincidence
Concentric
Point on curve
Curve on surface
Curve tangent
Surface tangent

Angle
Horizontal
Vertical
Curve parallel
Surface parallel
Collinear
Coplanar
Perpendicular

Line symmetry
Plane symmetry

Dimension
Straightness
Flatness
Circularity
Cylindricity
Of a line
Of a surface
Angularity
Perpendicularity
Parallelism
Position
Concentricity
Circular runout
Total runout

In the UL-PML scheme, geometric constraints are only modeled at the topological and

geometric entity level, since form or shape is the major concern of geometric constraints. Each

instance of a constraint is defined as a constraint entity. The unidirectional relation between a

constraint and a topological or geometric entity is dynamic and represented as a path in DHG

model. A constraint entity can have relations with one, two, or more topological/geometric

entities.

 75

There are two types of geometric constraints. One is numerical constraint, such as distance

and angle, which gives numerical information; the other is symbolic constraint, such as

coincidence and parallel, which gives logical information. In many geometric operations, the

result of numerical computation must be used to infer symbolic facts. The geometric reasoning

process thus depends on the precision of numerical values, which in turn depends on the

system’s error tolerance and computational algorithms. Different systems have different

implementations, which causes errors during geometry interpretation.

Both symbolic and numerical constraints are modeled explicitly in the UL-PML scheme.

The inclusion of symbolic constraints eliminates ambiguity and uncertainty, which specifies

geometric relations semantically. For numerical constraints, an interval-value representation is

proposed to specify allowance of numerical values to avoid inconsistency. From both aspects,

the robustness of geometric computation can be improved.

5.2.1 Robustness in Geometric Computation

During geometric computation, numerical results about geometric entities are usually

tested against specified constraints for verification and validation purposes. Numerically,

0.99999999 and 1.00000000 may be same in some systems but not in others. Similarly, an angle

of 89.99999999 may be considered perpendicular in some systems but not so in others.

Conceptually, geometric objects are within a continuous Euclidean space, yet they are modeled

and computed within a discrete domain of computation. Representing an infinite number of real

numbers by a finite number of bits requires approximation. In geometric computation, some

geometric properties such as incidence, separation, tangency, and perpendicularity are derived

based on numerical calculation. Similar to other numerical computation based on floating-point

 76

arithmetic, geometric computation is not as accurate and reliable as we expect, especially when

irrational numbers are involved.

The precision of binary representation in floating-point computation always has limits. The

outcome of the computation thus might largely depend on the detailed algorithm implementation

and sequence of calculations, which are highly system-dependent. Uncertainty is associated with

approximate arithmetic computations, and different logical inferences may be made in different

systems. Consequently, robustness is one of the interoperability issues between CAD systems.

The numerical errors may come from rounding or cancellation [125]. Not all decimal

numbers can be represented in binary format exactly. For example, the decimal number 0.1

cannot be represented exactly but is approximately 1.10011001100110011001101×2-4 in

floating-point format. This results in rounding errors. Multiplication operations generally require

double number of bits for the arithmetic. After that, the results are rounded off to normal

precision. This may generate rounding errors as well. When subtracting nearly equal quantities,

the most significant digits in the operands match and cancel each other, which generates errors

due to the cancellation. There are two kinds of cancellation: catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding errors. For example,

consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 – 4ac is 0.0292. But b2 rounds to

11.2 and 4ac rounds to 11.1, hence the final answer 0.1 has a significant error, which is

introduced by earlier multiplication. Benign cancellation occurs when subtracting exactly known

quantities, which has small relative error.

The severity of the robustness problem in geometric computation has been studied by some

researchers [126, 127, 128, 129, 130]. Three strategies have been proposed to improve

robustness and consistency, which are exact arithmetic, symbolic reasoning, and reliable

 77

computation. The exact arithmetic approach [131, 132, 133, 134, 135] uses exact numbers (e.g.,

integers) as necessary numerical values and symbolic computation on algebraic geometry to

calculate other values with variable precision. The symbolic reasoning [136, 137] represents

geometric entities and infers geometric relations symbolically, and no numerical calculation is

involved; thus, consistency is maintained. The reliable computation [138, 139, 140, 141] uses

interval arithmetic such that the exact real result of an arithmetic calculation is enclosed within a

floating-point interval.

5.2.2 Interval-value numerical constraints

To improve the modeling robustness, an interval-value constraint scheme is proposed to

specify numerical values. A numerical constraint is given by a lower bound and an upper bound.

For instance, if a distance between two points are given in the format of lower and upper bound,

it will allows CAD systems to interpret and validate constraints within certain error range.

Figure 34 shows an example of numerical errors. A regular polygon of 360 sides is built to

inscribe a circle. Starting from vertex A, the coordinates of starting vertex and ending vertex of

each side are calculated sequentially based on the previous calculated vertex. The starting vertex

A of the first side is supposed to coincident with the ending vertex Z of the last side. But as the

radius of the circle increases, a gap between A and Z appears and the gap is increased as the size

of the circle increases. The coordinates of Z are listed in Table 5, where the coordinates of A are

(0.0, 0.0). If different systems have different error tolerances, inconsistent interpretation will be

derived.

 78

A

Z

Figure 34: An example of numerical errors

Table 5: Coordinates of ending vertex with different radii
Point Z Radius = 1 Radius = 100 Radius = 10000 Radius = 1000000
x= 0.000000 -0.000000 0.000000 0.000000
y= -0.000000 -0.000000 -0.000004 -0.000359

Numerical errors caused by rounding and cancellation are inevitable. Thus a real value

constraint, such as distance = 10.0, will not guarantee to be satisfied in different systems. To

ensure symbolic meanings to be derived consistently from numerical results, some flexible

allowances should be given as numerical constraints for consistent interpretation. In the previous

example, if a coincidence constraint is given by 001.0000.0 ≤−≤− ZA pp vv , i.e., an interval

value [-0.000, 0.001] is given in the distance constraint, the two vertices A and Z will be

coincident with different radii of the circle. Interval values for numerical constraints increase the

robustness of geometric computation.

Two types of intervals are considered in a numerical constraint. One is trivial-width

interval, and the other is non-trivial-width interval. A trivial-width interval gives a narrow

floating-point value bound to have the real value included within it. This interval gives an

approximation of the real value that cannot be represented by floating-point values. The width of

 79

the interval gives an estimate of floating-point precision. For example, real value 0.1 is

represented by floating-point interval [1.10011001100110011001100×2-4,

1.10011001100110011001110×2-4] that is equivalent to [0.099999994, 0.100000009] in decimal.

A non-trivial-width interval has a wide bound and gives more allowance to entities. If a

calculated value is within the interval, this constraint is satisfied. The interval value prevents

topological inconsistency due to error propagation. The width of the interval gives the tolerance

of errors. For example, in Figure 34, if the distance between A and Z is within the interval

[0.000, 0.001], coincidence can be derived. If the distance is not within the interval, the

constraint is not satisfied. Inconsistency error then occurs. Interval-value constraints increase the

robustness for constraint verification and validation.

There is a new issue generated during constraint verification and validation test when

interval values are used. That is how to choose the proper width of an interval value. In the

example of Figure 34, if the radius of the circle increases continuously, the distance value will go

beyond the interval [0.000, 0.001] and an inconsistency error will occur eventually. Choosing the

width of an interval thus is a tricky part of imposing numerical constraints. There are two types

of errors associated with choosing interval width. If the width of a constraint interval value is too

small, most of the tests will fail because of numerical approximation, which generates

unnecessary errors of inconsistency, which is called Type I error. If the width of a constraint

value is too big, some of the tests that were supposed to fail now will pass, which generates

unnecessary errors of inconsistency too, which is called Type II error. Choosing interval width of

constraint values will be influenced by the uncertainty of application type, accuracy requirement,

software system implementation, and computation hardware precision. It could largely depend

on users’ experiences.

 80

To summarize, it is advantageous that numerical constraints are represented by interval

values, which reduce the chances of inconsistency due to numerical errors, and symbolic

constraints are represented in descriptive ways, which eliminate ambiguity and uncertainty. In

the UL-PML scheme, specific constraint entities are defined using schema, thus geometric

constraints can be included in an integrated product model.

Figure 35 gives some examples of modeling symbolic and numerical geometric constraint

for a feature-based piston design. Geometric constraints include constraints in priori features

such as the radius r within the profile of revolve feature in Figure 35 (b), constraints in posteriori

features such as the distance d of the cut feature in Figure 35 (c), as well as inter-feature

constraints such as concentric of faces f1 and f2 for the assembly in Figure 35 (d).

 (a) (b)

 (c) (d)

r

e1 e2

concentric

f1 f2

d

Figure 35: Constraint examples in a piston and its assembly

 81

In the UL-PML scheme, this piston is modeled based on features including revolve, cut,

hole, pattern, etc., as shown in Figure 36 (a). The constraints in Figure 35 (b), (c), and (d) are

modeled in PML as in Figure 36 (b), (c), and (d) respectively. Symbolic constraints are

represented by constraint entities while numerical constraints have interval value allowances in

computation.

<pml:PART id="piston">
 <pml:GEOMETRY>
 ……
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 ……
 <pml:FACE id="f1">
 <pml:refLOOP xlink:type="simple" xlink:href="#lp0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refSURFACE xlink:type="simple" xlink:href="#pl0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE>
 <pml:EDGE id="e4">
 <pml:refCURVE xlink:type="simple" xlink:href="#l12" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:RING id="r2">
 <pml:refEDGE xlink:type="simple" xlink:href="#e13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:RING>
 ……
 </pml:TOPOLOGY>
 <pml:FEATURE>
 <pml:feaREVOLVE id="rev0" angle="360.0">
 <pml:PROFILE>
 <pml:refFACE xlink:type="simple" xlink:href="#f1" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE>
 <pml:AXIS>
 <pml:refEDGE xlink:type="simple" xlink:href="#e4" xlink:show="embed" xlink:actuate="onRequest"/> </pml:AXIS>
 </pml:feaREVOLVE>
 <pml:feaCUT id="cut0" category="extrusion" type="blind" depth="12.0">
 <pml:PROFILE>
 <pml:refRING xlink:type="simple" xlink:href="r2" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE>
 <pml:TRAJECTORY>
 <pml:refVECTOR xlink:type="simple" xlink:href="#t14" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY>
 </pml:feaCUT>
 ……
 </pml:FEATURE>
</pml:PART>

(a) features

 82

feaREVOLVE: rev0

PLANE: pl1

PLANE: pl2

SHELL: sh0

BODY: bd0

FACE: fac2

FACE: fac1
FACE: fac0

PLANE: pl0

LINE:axis0

EDGE: e1

EDGE: e2

conDISTANCE: r

<pml:PART id="piston">
 <pml:GEOMETRY>
 ……
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 ……
 <pml:EDGE id="e1">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="#line0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 <pml:EDGE id="e2">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v3" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="#line1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 ……
 </pml:TOPOLOGY>
 <pml:FEATURE>
 ……
 </pml:FEATURE>
</pml:PART>
<pml:CONSTRAINT>
 ……
 <pml:conDISTANCE id="r" xlink:type="extended" pml:lowerBound="49.99998720" pml:upperBound="50.00012210">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#e2"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e1"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE>
 ……
</pml:CONSTRAINT>

(b) distance constraint between edges

 83

 feaCUT: cut1

PLANE: pl10FACE: f10

RING: rin1

VECTOR:t14

feaCUT: cut2

PLANE: pl13FACE: f13

RING: rin2

VECTOR:t16

conDISTANCE: d

<pml:PART id="piston">
 <pml:GEOMETRY>
 ……
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 ……
 <pml:FACE id="f10">
 <pml:refLOOP xlink:type="simple" xlink:href="#lp10" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refSURFACE xlink:type="simple" xlink:href="#plane10" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE>
 ……
 <pml:FACE id="f13">
 <pml:refLOOP xlink:type="simple" xlink:href="#lp13" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refSURFACE xlink:type="simple" xlink:href="#plane13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE>
 ……
 </pml:TOPOLOGY>
 <pml:FEATURE>
 ……
 </pml:FEATURE>
</pml:PART>
<pml:CONSTRAINT>
 ……
 <pml:conDISTANCE id="d"xlink:type="extended" pml:lowerBound="3.99898720" pml:upperBound="4.00010210">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#f10"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#f13"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE>
 ……
</pml:CONSTRAINT>

(c) distance constraint between faces

 84

feaCUT: cut5

SURFACE: cyl5 FACE: f1

RING: rin5

VECTOR:t15

conCONCENTRIC: a

Piston.xml

feaREVOLVE: rev0

SURFACE: cyl1 FACE: f2

FACE: fac1

LINE: axis1

Piston_asm.xml

Rode.xml

<pml:ASSEMBLY id="piston_assembly">
 <pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/>
</pml:ASSEMBLY>
<pml:CONSTRAINT>
 ……
 <pml:conCONCENTRIC id="a" xlink:type="extended">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="Rode.xml#f2"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="Piston#f1"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conCONCENTRIC>
 ……
</pml:CONSTRAINT>

(d) concentric constraint between faces in assembly file

Figure 36: Piston features and geometric constraints in PML

The above constraints are associated with two entities, which are represented by extended

links in PML. Constraints can also be associated with one entity. They are represented by simple

 85

links in PML. For example, a vertical constraint of edge e1 in Figure 35 (b) can be modeled as in

Figure 37.

feaREVOLVE: rev0

PLANE: pl1

PLANE: pl2

SHELL: sh0

BODY: bd0

FACE: fac2

FACE: fac1
FACE: fac0

PLANE: pl0

LINE:axis0

EDGE: e1

conVERTICAL: v

<pml:PART id="piston">
 <pml:GEOMETRY>
 ……
 </pml:GEOMETRY>
 <pml:TOPOLOGY>
 ……
 <pml:EDGE id="e1">
 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="#line0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
 ……
 </pml:TOPOLOGY>
 <pml:FEATURE>
 ……
 </pml:FEATURE>
</pml:PART>
<pml:CONSTRAINT>
 ……
 <pml:conVERTICAL id="v">
 <pml:refEDGE xlink:type="simple" xlink:href="#e1" xlink:show="embed" xlink:actuate="onRequest"/> </pml:conVERTICAL>
 ……
</pml:CONSTRAINT>

Figure 37: Simple link geometric constraint

 86

5.3 Non-geometric Constraint Representation

Besides geometric constraints, there are a large number of constraints which have no

geometric meanings themselves, such as material types, mathematical relations, and

manufacturing process specification, as shown in Figure 26. These types of constraints may

come from specifications or requirements of different design stakeholders, and are as important

as geometric shape to maintain the quality of design. A large amount of design intent is

transmitted by these non-geometric constraints, which unfortunately are unable to be captured

and transferred along with the geometry by neutral format.

Some of the non-geometric constraints can be translated into geometric constraints. The

geometric constraints are the reasoning results from the non-geometric ones. For example, the

reliability constraint of a load-bearing shaft can be interpreted as the minimal diameter of the

shaft should be greater than certain value, thus resulting in a diameter constraint with certain

value. Nevertheless, it is still important to capture the reliability constraints, because some other

constraints such as an assembly constraint may end up referring to the same diameter constraint.

Therefore, it is critical that original non-geometric constraints be captured explicitly in the

product model.

In the UL-PML scheme, non-geometric constraint entities are associated with high-level

entities including feature, constraint, part, and assembly. To make it general, non-geometric

constraints can be represented symbolically, which means that character strings are attached to

entities of features, parts, and assemblies as supplemental information. Domain specific

interpreters are needed to assist design system to understand the constraints. The taxonomy of

non-geometric constraints is domain dependent. Constraint entities need to be defined for each

application domain.

 87

Based on the UL model, constraints can be associated with one or more entities. Some

examples of non-geometric constraints are shown in Figure 38. A constraint can be a specific

one, such as the material associated with the part piston and the math associated with three

distance constraints d, r, and l in this example. It can also be a general one, such as the op_temp

expressed in character string and associated with the part piston.

<pml:ASSEMBLY id="piston_assembly">
 <pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/>
</pml:ASSEMBLY>
<pml:CONSTRAINT>
 ……
 <pml:conMATERIAL id="material" value="Metal Matrix Composites">
 <pml:refPART xlink:type="simple" xlink:href="Pison.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/>
 </pml:conMATERIAL>
 <pml:conMATH id="math" xlink:type="extended" value=" ‘dim1’ = (‘dim2’ – ‘dim3’ – 2.0) * 2">
 <pml:LOC1 xlink:type="locator" xlink:label="dim1" xlink:href="Rode.xml#l"/>
 <pml:LOC2 xlink:type="locator" xlink:label="dim2" xlink:href="Piston.xml#r"/>
 <pml:LOC3 xlink:type="locator" xlink:label="dim3" xlink:href="Piston.xml#d"/>
 <pml:ARC1 xlink:type="arc" xlink:from="dim1" xlink:to="dim2" xlink:actuate="onRequest"/>
 <pml:ARC2 xlink:type="arc" xlink:from="dim1" xlink:to="dim3" xlink:actuate="onRequest"/>
 </pml:conMATH>
 <pml:conGENERAL id="op_temp" value="Maximum operating temperature is 300 C">
 <pml:refPART xlink:type="simple" xlink:href="Pisont.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/>
 </pml:conGENERAL>
 ……
</pml:CONSTRAINT>

r

d

l

material

op temp

math

Figure 38: Examples of non-geometric constraints

 88

5.4 Entity ID Persistency

One of the problems associated with feature-based parametric design is the naming

persistency of entities, which has not been solved systematically. Topological entities are used as

main references to trace geometry and other design information in most commonly used CAD

systems, which are largely based on boundary representation. The name of a newly created

topological entity is generated sequentially during the process of design. This new entity could

be a reference to the new feature of the next step. If parameters assigned in previous steps are

modified, or previous features are redefined, the parametric system needs to recreate the model.

The change of a feature will directly affect the features that have reference dependencies on it

during the model re-evaluation. As a result, some features at later steps may refer to a different

entity unexpectedly, or even cannot find the reference. This naming persistency problem exists in

current parametric solid modeling systems.

A typical example is shown in Figure 39 (a), where a part is constructed by a protrusion

and a circular cut feature, followed by a hole feature. The position of the hole is partly

determined by the distance s from the center of the hole to edge e1, which is generated by the

cut. If the distances from the center of the cut to its references are changed, by either from b to d

horizontally or from a to c vertically, as shown in Figure 39 (b) and (c) respectively, the distance

reference of the hole to e1 will jump to edge e2. This is because the ID of the edge e1 was

assigned to edge e2 after the Boolean operation of the cut, and the orientation information of

edges is also used in the re-evaluation process. The direct effect of the naming persistency

problem is that geometry re-evaluation generates an unexpected shape. It causes inconsistent and

unpredictable geometry. The naming persistency problem affects the process of shape

 89

construction within one modeling session. It can also affect the design process between modeling

sessions.

 (a) (b)

 (c)

s

a
b

e1

s

a
d

e2

s

c
b

e2

Figure 39: An example of naming persistency problem

In a PML-based distributed modeling environment, the persistency problem can easily

cause inconsistency and unpredictability of modeling. The identification of entities is crucial to

maintain the persistent and non-volatile linkage among different data files. Within a design

session, relations between entities in one file should be sustained. Among different design

sessions, linkages among files should be preserved as well. The issue of intra-session and inter-

 90

session persistency should be resolved to allow the UL model to apply in a distributed design

environment effectively.

Some heuristic solutions of the persistent naming issue have been proposed. In the research

of E-REP [142], a topology-based naming method is used. New topological entities are named

based on the referred old entities during the feature construction. For example, in an extrusion, a

new edge is named by reference to the sweeping vertex, whereas a new face is named by

reference to the sweeping edge. When model is re-evaluated, new entities should be identified

and matched to old entities. The matching of an entity is realized through a local comparison of

topological neighborhoods by a spectral graph isomorphism algorithm, as well as entities’

orientation information. However, graph isomorphism is known to be NP-complete [143] and

has combinatorial computational costs if a complex part is dealt with.

Comparatively, Kripac’s topological ID system [144, 145] names a face based on a step ID

(identifying the particular step that the face is created during the feature operations), a face index

within that particular step, and the type of corresponding surface. Edges and vertices are

identified by the names of adjacent faces. Each model maintains a face modeling history during

the construction. To map the new entities to the old ones if the topology of the model is changed,

this face modeling history is used during the comparison of the face graphs. Similarly, this

approach involves time-consuming graph isomorphism procedures in each model reevaluation

that is related to high cost of computation.

Wu et al. [146] identify faces by two names. The Original Name (ON) of a face records the

feature’s generating mode and the location of the face in the feature, while the Real Name (RN)

of the face contains its ON and the parametric space information. New faces generated by

Boolean operations will inherit the original faces’ ONs. Edges and vertices are named only by

 91

RNs, consisted of adjacent faces’ RNs and parametric space information. The authors had a good

observation to include parametric information of surfaces in topological IDs, but ended in the old

trap of enumeration method to identify parameter values.

In the Boundary Representation scheme, geometry represents unbounded boundary

information in Euclidean space, while topology is used to characterize coincidence and

adjacency relations of bounded geometric elements. The latest geometric modelers have

topology and geometry separately represented. In feature-based parametric modeling, topology is

rather unstable and volatile. Small adjustment of some parameters may cause topology to be

changed dramatically. This can be seen as the root of the naming persistency problem. The

approach of identifying new entities by simply matching old topology to a new one for each re-

evaluation is not a general solution from the computational efficiency point of view. A better

solution is to include information that is more stable during the model construction into the

identities of topological entities.

5.4.1 Parametric family

The basic technical problem of persistent naming is that a parametric solid model

corresponds to a class of solids, but there is no formal definition or standard for what this class is

[147]. While CSG models are globally parameterized, B-Rep models need extra boundary

evaluation steps to apply parametric modeling, which causes the complexity of parametric family

definition. In the work of Stewart [148] and Raghothama-Shapiro [149, 150], a parametric family

of solids is defined based on topological mapping between cell complexes, that is, if any cell of

B-Rep model K can be mapped to a cell of B-Rep model L, K belongs to the parametric family of

L. This approach provides a necessary condition for boundary representation variance (BR-

 92

variance) and parametric family classification. Nevertheless, sufficient conditions for BR-

variance in parametric modeling still remain unresolved.

To generally define the parametric family of a solid, one needs to study sufficient

conditions for BR-variance. A sufficient condition for BR-variance based on geometric

continuity is proposed for a general definition of parametric family. Here, continuity means:

throughout a valid parameter range, small changes in a solid’s parameter values result in small

changes in the geometry of B-rep (not “solid’s representation” as in reference [149]). It is

difficult, if not impossible, to organize variational / parametric families based on topology

continuity. While adjacency of bounded geometric elements (topology) is volatile in the family

of variational geometry, the unbounded geometric information (geometry) is more stable.

Poncelet’s continuity principle states that if, from the nature of a particular problem, a

certain number of solutions are expected, and if in any particular case this number of solutions is

found, then there will be the same number of solutions in all cases, although some solutions may

be imaginary [151, 152]. For instance, two circles intersect in two points, so it can be stated that

every two circles intersect in two points, although the points may be imaginary or may coincide,

as in Figure 40. If considered in a complex space instead of a real one, the loci of the two

intersection points of the circles are continuous with respect to the distance between the centers

of the circles.

 93

 (a) (b) (c) (d)

 (e) (f) (g)

-1 1 2
-1

1

-1 1 2 3
-1

1

-3 -2 -1 1
-1

1

-1 1
-1

1

-3 -2 -1 1
-1

1

-3 -2 -1 1
-1

1

)
2
5,

2
3(i±−

)0,1()
2
3,

2
1(±

)0,1(−

-1 1 2 3
-1

1

)
2
3,

2
1(±−)1,0(±

)
2
5,

2
3(i±

Figure 40: Example of intersect continuity

We extend Euclidean space to complex Euclidean space. In an even-dimensional Euclidean

space R2n, points are ordered sets of 2n real numbers (x1, … xn, y1, …, yn), where xk, yk ∈ R (k =

1, …, n). If a complex structure is introduced as zk = xk + iyk (k = 1, …, n), we shall call the space

whose points are ordered sets of n complex numbers

 Z = (z1, … zn) (5.1)

the n-dimensional complex Euclidean space, denoted by Cn.

For any point p, p ∈ Rn, there is an infinite number of points q’s, q ∈ Cn, such that there is

a mapping function f: Cn → Rn, f(q) = p. f is a function of orthogonal projection. The 3-

dimensional Euclidean space E3 is the projected real subspace of complex Euclidean space C3,

where f (q) = Re(q).

In the domain of parametric design, adding p more dimensions which represents real

parameter tj’s (tj ∈ R, j=1,…,p) to C3, we have a p×3 dimensional parametric complex Euclidean

 94

space denoted by PpC3, where PpC3 = Rp × C3. There are two types of parameters, shape

parameters (s-parameters) and relation parameters (r-parameter), associated with each geometric

object. For example, in a planar circle

 , (5.2)
⎩
⎨
⎧

+=
+=

θ
θ

sin
cos

rby
rax

θ is an s-parameter and a, b, r are r-parameters. A PpC3 space including m-dimensional s-

parametric subspace and n-dimensional r-parametric subspace can be further defined as Pm×nC3 =

Rm × Rn × C3. The BR-variance and continuity for parametric family are defined in PpC3.

Definition 5.1: A curve in C3 is a map γ : R → C3, denoted as)(tγ , where t (t ∈ R) is an s-

parameter of γ . In PpC3, a curve is a hyper-curve, γ : R → R(p-1)C3, where p ≥ 1.

Definition 5.2: A surface in C3 is a map σ : R2 → C3, denoted as),(vuσ , where u and v (u, v ∈

R) are s-parameters of σ . In PpC3, a surface is a hyper-surface, σ : R2 → R(p-2)C3, where p ≥ 2.

Definition 5.3: A curve)(tγ ∈ P(p-1)C3 (t ∈ R) is called C0 continuous with respect to t in the

neighborhood of t0 if and only if)()(lim 0
0

tt
tt

γγ =
→

.

Definition 5.4: A curve)(tγ ∈ P(p-1)C3 (t ∈ R) is called Ck continuous with respect to t in the

neighborhood of t0 if and only if
t
t

t
t

k

k

k

k

tt ∂
∂

=
∂

∂
→

)()(lim 0

0

γγ , and)(tγ is Ck-1 continuous.

Definition 5.5: A surface),(vuσ ∈ P(p-2)C3 (u, v ∈ R) is called C0 continuous with respect to u

and v in the neighborhood of (u0, v0) if and only if),(),(lim 00

0
0

vuvu
vv
uu

σσ =
→
→

.

Definition 5.6: A surface),(vuσ ∈ P(p-2)C3 (u, v ∈ R) is called Ck continuous with respect to u

and v in the neighborhood of (u0, v0) if and only if
u

vu
u

vu
k

k

k

k

uu ∂
∂

=
∂

∂
→

),(),(lim 0

0

σσ ,

 95

v
vu

v
vu

k

k

k

k

vv ∂
∂

=
∂

∂
→

),(),(lim 0

0

σσ ,
uv
vu

uv
vu

k

k

k

k

uu ∂∂
∂

=
∂∂

∂
−−→ 1

0
1

),(),(lim
0

σσ ,
vu
vu

vu
vu

k

k

k

k

vv ∂∂
∂

=
∂∂

∂
−−→ 1

0
1

),(),(lim
0

σσ , and

),(vuσ is Ck-1 continuous.

Definition 5.7: The set of bounding surfaces of a solid object o in space PpC3, bs(o), is a set of

surfaces, ∀σ ∈ bs(o), ∃p ∈ σ , such that ∃a, ∃b, a ∈ ε-neighborhood of p, b ∈ ε-neighborhood

of p, while a ∈ o, b ∉ o.

Definition 5.8: The set of bounding curves of a solid object o in space PpC3, bc(o), is the set of

curves, each of which is the intersection of two bounding surfaces, i.e., ∀γ , γ ∈ bc(o), such that

)(bs),(bs,, oo ∈∈∃∃ δσδσ , for γ∈∀ pp, , at the same time, δσ ∈∈ pp , .

In PpC3 space, two curves always intersect, either at real points, imaginary points, or

infinity. If two curves have an r-parameter r, the locus of intersection of the curves is a curve

with r as its s-parameter. Similarly, if two curves have r-parameters q and r, the locus of

intersection of the curves is a surface with q and r as its s-parameters.

Definition 5.9: An intersecting curve with respect to r (r ∈ R) of two curves)(sγ and)(tξ ,

)),(),((rts ξγχ , is a curve of r, where)),(),((, rtspp ξγχ∈∀ , at the same time, ξγ ∈∈ pp , .

Definition 5.10: An intersecting surface with respect to q and r (q, r ∈ R) of two curves)(sγ

and)(tξ ,),),(),((rqts ξγχ , is a surface of q and r, where),),(),((, rqtspp ξγχ∈∀ , at the same

time, ξγ ∈∈ pp , .

Definition 5.11: A solid object o is called C0 continuous with respect to an r-parameter r within

interval (a, b) in space PpC3, if ∀)(sγ , ∀)(tξ ,)(sγ ∈ bc(o), s ∈ R,)(tξ ∈ bc(o), t ∈ R, such

that)),(),((rts ξγχ (r ∈ R) is C0 continuous with respect to r on r ∈ (a, b).

 96

Definition 5.12: A solid object o is called C0 continuous with respect to r-parameters q and r

within interval (a1, b1) × (a2, b2) in space PpC3, if ∀)(sγ , ∀)(tξ ,)(sγ ∈ bc(o), s ∈ R,)(tξ ∈

bc(o), t ∈ R, such that),),(),((rqts ξγχ (q, r ∈ R) is C0 continuous with respect to q and r on q

∈ (a1, b1), r ∈ (a2, b2).

If a solid object o can be transformed to another solid object b with C0 continuity with

respect to an r-parameter r, b belongs to the parametric family of o with respect to r. Similarly, if

a solid object o can be transformed to another solid object b with C0 continuity with respect to r-

parameters q and r, b belongs to the parametric family of o with respect to q and r. High-order

parametric families can be defined in a similar way.

It is noted that a parametric family should be defined with respect to r-parameters.

Definition 5.11 and 5.12 give the sufficient condition of BR-variance. If a solid has the property

of C0 continuity on certain intervals of r-parameters, the variance of boundary representation can

be asserted.

In brief, if solid geometry is considered in parametric complex Euclidean space, the

parametric family of a solid can be defined based on the continuity of geometry. Rather than

topology, unbounded geometry possesses good properties of continuity. This leads to the ideal of

identifying topological entities with geometry, which is called the semantic ID method

introduced in the following section.

5.4.2 Semantic ID

To resolve the issue of naming persistency, a semantic ID scheme is proposed. The

intention is to include information of construct relation in geometric IDs and geometric meanings

of the identification in the topological IDs. The problem of simple enumeration of entity IDs is

 97

that entity identification is exposed globally for the whole product structure. The data structure

of enumeration is simply a link list. If one node is inserted or removed, all nodes following it

should be renumbered. Any change within the sequence will affect the identification of all

following entities. Therefore, it is more protective if ID assignments are localized.

The concept of namespace of an entity ID is introduced here. If a group of entities have

some common properties, these properties can form a boundary for their names, and a prefix

based on these properties can be attached on each of these entity IDs. In this way, the namespace

of entities is divided based on the prefix. Simply from the name of an entity, some characteristics

of the entity can be inferred. Re-evaluating some entities in one namespace does not affect the

names of entities in other namespaces. The namespace can be organized in a hierarchical

structure. One namespace can be divided further into multiple subspaces with an extra layer of

prefixes in the names so on and so forth, thus forming a tree structure of naming.

 A feature is a natural selection for the boundary of the namespaces. The ID of a newly

created geometric or topological entity will be prefixed with the ID of the feature during which

this feature operation is performed. The namespace of features categorizes entities based on

construct history, and is the first step to isolate entity creation and identification. For example,

each entity that is created during the constructing of the first protrusion will have Protrusion1::

at the beginning of the entity’s name.

The namespace of one feature could be partitioned further to differentiate priori and

posteriori features. A priori feature may have multiple steps to finish the feature definition. Each

step then can be assigned an independent sub-namespace. For example, a protrusion feature

operation needs two steps to finish. One is defining profile, and another is the trajectory

definition. Each entity generated at each step is prefixed by the feature step ID. The entities

 98

generated when the profile of the protrusion is defined will have Protrusion1::Profile:: as part of

the IDs. The entities created when the trajectory is defined will have a prefix

Protrusion1::Trajectory:: in their IDs. Since entities defined in priori features are independent

from entities generated in posteriori features, new entities created in priori features are free of

turmoil from feature re-evaluation. Thus, enumeration in priori features will not cause big

problems.

Major issues of naming persistency come from topological entities created in the domain of

posteriori features. For each of these entities, no feature steps are included in the entity names.

Within the namespace of each feature, entities should be named in a more meaningful and stable

way instead of simple enumeration. One consideration is to include stable geometric information

of the entities in their identification. The question is what kind of geometric information is to be

included in topological IDs. A general way is to include all geometric information of the entity.

For example, an edge is named by the combination of feature ID, feature step, curve type,

starting / ending directional vectors, starting / ending points, surfaces it belongs to, etc.; and a

vertex is named by the combination of feature ID, feature step, curves it belongs to, coordinates,

etc. However, this will be a cumbersome procedure to record each topological entity. If one

value of geometry attributes is changed, the ID should be updated in time. A more feasible

version is to name a topological entity by including the ID of the corresponding geometric entity,

thus references of geometric entities are embedded in topological entities’ IDs.

To improve geometric entities’ naming stability further, information of construct relations

of geometry is included in geometric IDs. Because surfaces are generally much more stable than

curves and points, curves and points are named by surfaces. For 2-manifold geometry, a curve is

formed by two intersecting surfaces, while a point is formed by three intersecting surfaces. Thus,

 99

a curve is named by the IDs of the two intersecting surfaces, and a point is named by the IDs of

the three intersecting surfaces. This naming method takes a general and passive approach to

identify curves and points, compared to enumeration that is a direct and active approach. This

general approach may require more computation for identification of curves and points.

Nevertheless, the ID contains extra construct information about face-based boundary, which is a

desirable property.

Besides the reference to its corresponding geometric entity, a topological entity should also

include boundary relations with other geometric entities in its ID. By including boundary

information in terms of geometry, the topological IDs contain the actual semantics of topology.

For example, in Figure 41, if a face is generated by a protrusion feature p1 and is referring a

surface s1 and bounded by planes s2, s3, s4, and s5, this face will have the name

FACE(PROTRUSION(p1)::SURFACE(s1) + SURFACE(s2)&SURFACE(s3)&SURFACE(s4)&

SURFACE(s5)). And the edge that is referring the line formed at the intersection of planes s1 and

s2 will have the name EDGE(PROTRUSION(p1)::CURVE(SURFACE(s1)&SURFACE(s2)) +

SURFACE(s3) + SURFACE(s5)). A face ID has the references of the feature namespace, the

corresponding surface, and the bounding surfaces if there are any. Similarly, an edge ID has the

references of the feature namespace, the corresponding curve, and the bounding surfaces if there

are any. There are some special geometry curves and surfaces that do not have intrinsic

boundaries in B-Rep, such as circles and spheres. In these cases, extra boundary entities shall be

introduced in order to identify topological entities. Features and surfaces can be named based on

enumeration because of their relative stableness.

Until now, we assume that two surfaces intersect at one curve. For polyhedrons, faces are

corresponding to planes, which is the simplest case. If some faces are corresponding to quadratic

 100

or higher order surfaces. The assumption is not always true. Figure 42 illustrates some examples

of intersecting surfaces. For linear surfaces intersection (plane-plane), a line (as in Figure 42-a) is

generated. For a linear surface intersecting with a quadratic surface, either one curve (as in

Figure 42-b, c, d, e, f) or two curves (as in Figure 42-g, h, i) will be generated. For higher-order

surface intersections, one or two curves (as in Figure 42-k, l, m, n, o) will be generated. One

exception is the special case that a plane intersects a cubic cylinder or even higher order at three

or more parallel lines (as in Figure 42-j).

 s1

s2

s3

s4

s5

 face

 edge

Figure 41: An Example of face bounded by surfaces and edge bounded by surfaces

The issue of how to distinguish curves and points if two surfaces intersect at two or more

curves thus arises. Further, even if only one intersecting curve is generated, boundary surfaces

may divide the curve into two or more edges. To identify curves and edges based on surfaces,

extra information is needed if ambiguity exists. For parametric surfaces, curves can be identified

based on the parameter ranges. But not all surfaces have parametric forms, whereas surfaces in

parametric forms can be transformed to implicit forms. A general method is needed for surfaces

in implicit forms.

 101

 (a)plane-plane (b)plane-ellipsoid (c)plane-elliptic paraboloid

 (d)plane-elliptic paraboloid (e)plane-parabolic cylinder (f)plane-hyperboloid

 (g)plane-hyperboloid (h)plane-parabolic cylinder (i)plane-cylinder

 (j)plane-cubic cylinder (k)plane-torus (l)elliptic cone-ellipsoid

 (m)cone-parabolic cylinder (n)cone-parabolic cylinder (o)cone-cubic cylinder

Figure 42: Examples of intersecting surfaces

One consideration is to add orientation information of curves, which is motivated by the

concept of edge identification for non-parametric curves [153]. If a kth gradient operator ∇k in

Cartesian coordinates is defined as

 102

T

k

k

k

k

k

k
k

zyx ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=∇ (k > 0), (5.3)

a kth gradient of the surface f(x, y, z)=0 at point p = (x, y, z) is

 (k > 0). (5.4)),,(),(zyxff kk ∇=pIσ

The orientation of the surface f(x, y, z)=0 at point p = (x, y, z) can be defined as the 1st gradient

),,(),(zyxff ∇=pIσ . (5.5)

Let f(x, y, z) = 0 and g(x, y, z) = 0 be two surfaces intersecting at c = {(x, y, z) | f(x, y, z) =

0, g(x, y, z) = 0}. And the orientation of the curve c at point p = (x, y, z) is defined as

),(),(),,(11 pIpIpI gfgf σσ ×= . (5.6)

If the orientations of the intersecting curves at some interior points are included, edges can

be identified. A simple way is to include the orientation information of bounding points of the

curves. For example, in Figure 42-g, plane y = 0 intersects hyperboloid x2 + y2 – z2 –1 = 0, and

two intersecting curves are bounded by planes z + 1 = 0 and z – 1 = 0. The orientations of two

ending points for the left curve are [22,0,2±]T, and [22,0,2 −±]T for the right curve, if the

orientation is defined as the cross product of normal vectors for the plane and the hyperboloid. In

Figure 42-h, plane z = 0 intersects with parabolic cylinder x2 + z – 1 = 0, and two intersecting

lines are bounded by planes y + 1 = 0 and y – 1 = 0. The orientation of two ending points for the

left line is [0,-2,0]T, and [0,2,0]T for the right line, if the orientation is defined as the cross

product of normal vectors for the plane and the hyperboloid. Here, the sequence of the vector

product is important in the definition of orientation. If the positions of f and g in (5.6) are

switched, the orientation will have opposite direction. If the orientations of the curves at two

ending points are the same, orientations at some other corresponding points on the curves should

 103

be derived to differentiate the two curves. If two surfaces are tangent at some points, the

orientations of intersection curves at these points are zero vectors.

Extra care should be given to the exceptional cases that have three or more intersecting

curves and two curves have same orientation information, such as in Figure 42-j. Plane z = 0

intersects with cubic cylinder x3 – x – z = 0. The orientation of the left line at any point and the

orientation of the right line at any point are always [0,2,0]T, and [0,-1,0]T for the middle line, if

the orientation is defined as the cross product of normal vectors for the plane and the cubic

cylinder. In this case, additional information besides orientation is needed to identify the left and

the right edge. One can include second-order gradients of surfaces or curves as the

supplementary information of curve orientation for edge identification.

The adaptation of the surface f(x, y, z)=0 at point p = (x, y, z) is the second-order gradient

 . (5.7))

)

)

)

,,(),(22 zyxff ∇=pIσ

The adaptation of the intersection curve by surfaces f and g can be defined as

 (5.8a) ,(),(),,(2
12 pIpIpI gfgf σσ ×=

 (5.8b) ,(),(),,(2
21 pIpIpI gfgf σσ ×=

 (5.8c) ,(),(),,(22
22 pIpIpI gfgf σσ ×=

When orientation of curve cannot differentiate the intersection curves, either adaptations of

surfaces or curves need to be included. In the previous example, the adaptation of the cubic

cylinder is [-6,0,0]T at any point on the left intersecting line and is [6,0,0]T at any point on the

right intersecting line. With the second-order gradients, these two curves can be identified even

though curve orientations are equal.

If the adaptations of surfaces or curves still cannot differentiate the curves (e.g., in higher-

degree surfaces), higher order gradients can be derived further to identify edges. This method can

 104

also be extended beyond surfaces in implicit format. If some surfaces cannot be represented in

closed form, they can be interpolated and approximated in polynomial forms, or in pragmatic

sample data forms. The gradients and orientations can be approximated, which makes this ID

format generally acceptable.

Similar to curve and edge identification, points or vertices are identified by the

orientation/adaptation/gradient information of the intersecting curve of the first two surfaces at

the particular positions if multiple curves or edges are generated by the same set of surfaces.

In summary, topological entities can be identified based on surfaces in evaluated solid

geometry. Faces are named by the IDs of corresponding surfaces with bounding surfaces. Edges

are named by the IDs of corresponding curves with bounding surfaces and extra orientation and

gradient information of curves at boundary points if necessary, because it is possible that several

edges are corresponding to one curve and same boundary surfaces. Curves are named by the IDs

of intersecting surfaces, as well as additional orientation and gradient information about the

involved surfaces at some points (e.g., the intersection points between a plane and the curves) if

necessary, because it is possible that several curves are generated by intersecting surfaces.

Vertices are named by the IDs of corresponding points, which in turn are named by the IDs of

intersecting three or more surfaces. The syntax of topological and geometric entities’ IDs is

shown in Figure 43. Note that the curve orientation and gradients for a curve name are derived

based on the sequence of surfaces shown in its surface list in the first segment.

 105

<feature_id> ::= <feature_type> (<feature_name>) |
 <feature_type> (<feature_name>) :: <feature_step_name>
<face_id> ::= <face_type> (<feature_id> :: <face_name>)
<edge_id> ::= <edge_type> (<feature_id> :: <edge_name>)
<vertex_id> ::= <vertex_type> (<feature_id> :: <vertex_name>)
<face_name> ::= <surface_id> | <surface_id> + <surface_list>
<edge_name> ::= <curve_id> | <curve_id> + <surface_list> |
 <curve_id> + <surface_list> - (<additional_curve_info>)
<additional_curve_info> ::= <curve_orientation> & <curve_orientation> |
 <curve_orientation> & <curve_orientation> -
 <curve_adaptation> & <curve_adaptation>
<vertex_name> ::= <point_id>
<surface_list> ::= <surface_id> | <surface_id> & <surface_list>
<surface_id> ::= <surface_type> (<surface_name>)
<curve_id> ::= <curve_type> (<curve_name>)
<point_id> ::= <point_type> (<point_name>)
<curve_name> ::= <surface_id> & <surface_list> |
 <surface_id> & <surface_list> - (<additional_surface_info>)
<additional_surface_info> ::= <surface_orientation> & <surface_orientation> |
 <surface_orientation> & <surface_orientation> -
 <surface_adaptation> & <surface_adaptation>
<point_name> ::= <surface_id> & <surface_id> & <surface_list> |
 <surface_id> & <surface_id> & <surface_list> -
 (<additional_point_info>)
<additional_point_info> ::= <curve_orientation> |
 <curve_orientation> - <curve_adaptation>
<feature_type> ::= <global_feature_type> | <local_feature_type>
<global_feature_type> ::= PROTRUSION | CUT | HOLE | LOFT | …
<local_feature_type> ::= FILLET | CHAMFER | THREAD | …
<face_type> ::= FACE
<edge_type> ::= EDGE
<vertex_type> ::= VERTEX
<surface_type> ::= PLANE | QUADRATIC_SURFACE | CUBIC_SURFACE |
 QUARTIC_SURFACE | FREE_FORM_SURFACE
<curve_type> ::= LINE | QUADRATIC_CURVE | CUBIC_CURVE |
 QUARTIC_CURVE | FREE_FORM_CURVE
<point_type> ::= POINT

Figure 43: Syntax of IDs for topological and geometric entities

 106

5.4.3 Curve, Edge, and Point Mapping

The IDs of curves, edges, and points may consist of two segments (i.e., surface segment

and orientation/adaptation/gradient segment). The first segment is rather stable because the

unbounded surface geometry is independent of topological faces. Even if a face is eliminated

from a solid, the geometry of a surface still exists in Euclidean space. The second segment,

which contains vector values, may be changed each time when geometry is altered. That is,

orientations, adaptations, and higher-order gradients of curves and surfaces at edges’ boundary

points and inner points may be changed if the geometry of some surfaces is modified. As a

result, curves, edges, and points of newly generated solids need to be mapped to entities of old

solids for each feature modification and re-evaluation.

The mapping here is based on geometric properties instead of topological correspondence

in references [142, 145]. We simply call the curve, edge, or point ID in the old solid before

modification old ID, and the ID of its counterpart in the new solid after modification new ID.

The surface (first) segment of the new ID is the same as that of the old one, which reduces the

complexity of mapping. The only difference between the old and new IDs is the

orientation/adaptation/gradient segment. If only one curve is generated at an intersection, or no

additional geometric information (orientation/adaptation/gradient) is included in either of the old

and new IDs, there is an exact match for IDs. If two or more curves are generated at the

intersection, and additional surface information is included in both old and new IDs, the mapping

is based on closeness of curves.

Suppose c1 is the intersection curve of surfaces f1 and g1, and c2 is the intersection curve of

surfaces f2 and g2. Points p1 and p2 are on curves c1 and c2 respectively. The k-closeness of curve

c1 and c2 at p1 and p2, k-close(f1, g1, f2, g2, p1, p2), is defined as

 107

∑∑
= =

−+−=
k

i

k

j
ijij gfgfgfgfclose

1 1
22211121212211),,(),,(),,,,,(-k pIpIpppp (k ≥ 0). (5.9)

0-closeness of curve c1 and c2 at p1 and p2 is the distance between p1 and p2.

Curve mapping can be done based on the values of k-closeness. If m curves (c1, c2, … , cm)

(m > 1) are generated by the intersection of surfaces f1 and g1 in the new solid, and n curves (d1,

d2, … , dn) (n > 1) were generated by the corresponding surfaces f2 and g2 in the old solid, there

is a point pi selected on each of the ci (i = 1, 2, …, m) and a point qj selected on each of the dj (j

= 1, 2, …, n), where pi and qj are the intersecting points between the curves and a plane x = a (or

y = b, or z = c). For each pair of ci and dj, k-close(f1, g1, f2, g2, pi, qj) is calculated. If only

orientation is included in curve IDs, k = 1. If adaptation information is included in curve IDs, k =

2. Generally, k is the highest order of surface gradient in the curve IDs. Then an m×n closeness

matrix R is generated by listing each of the new curves as row indices and each of the old curves

as column indices. In each row ri of R, the elements rij is the rank of closeness based on k-

close(f1, g1, f2, g2, pi, qj) for j=1, 2, …, n. The smallest k-closeness is ranked as 1, and the largest

k-closeness is ranked as n. If a tie appears in k-closeness, (k+1)-closeness (k > 0) of the curves is

calculated for the closeness matrix.

Once the closeness matrix is built, the mapping of curves can be done by selecting the

lowest rank values. Each new curve will be mapped to its corresponding old curve of rank 1. In

special cases, it is possible that one new curve is mapped to multiple old curves when a curve is

split into multiple curves (i.e., a old curve has the lowest rank value in multiple rows). For

example, plane z = 0 intersects with cubic cylinder x3 – x – z = 0 (as in Figure 42 (j)) and three

curves are generated. If the plane is changed to z = 0.25, three new curves need to be mapped to

old curves. The 2-closeness matrix is calculated at the intersection points with plane y = 0.

According to the matrix value

 108

 ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5924.1694.11775.13
455.112033.2004.8
442.159364.71682.2

curves can be identified.

After a curve is identified, it is possible that multiple edges are generated by bounding the

curve by the same set of boundary surfaces. Edge mapping then is needed based on k-closeness

of the curve at boundary points to identify the corresponding edges between new and old solids.

Suppose m edges (m > 1) are generated by the same set of boundary surfaces with the same

intersection curve of surfaces f1 and g1 after re-evaluation. Each edge ai was bounded by starting

point pis and ending point pie (i = 1, 2, …, m). Before re-evaluation, n edges (n > 1) are created

by corresponding surfaces f2 and g2. And each edges bj was bounded by starting point qjs and

ending point qje (j = 1, 2, …, n). For each pair of edges ai and bj, k-closeedge(ai, bj), can be

calculated as

),,,,,(-k),,,,,(-k),(-k 22112211 jeiejsisjiedge gfgfclosegfgfclosebaclose qpqp += . (5.10)

Similar to the closeness matrix of curves, a closeness matrix of edges can be derived with

each element as k-closeedge(ai, bj). The mapping of edges is based on the ranks of closeness

matrix. And the mapping of points is based on the closeness of curves.

In this surface-based semantic ID system, prefixing IDs with feature namespaces

transforms the original flat namespace to an organized logical naming hierarchy. The IDs

identify themselves descriptively by the procedure of feature operations. The inclusion of

geometric information and boundary association in topological IDs let a topological ID possess

geometric and topological semantics. The geometric IDs possess construct relations of surfaces,

curves, and points. Because of possible ambiguity if only surface IDs are included in topological

entities, necessary orientation and gradient information is included in IDs when multiple curves

 109

are formed by intersecting the same set of surfaces, or multiple edges are created by same curve

and boundary surfaces. Curve and edge mapping is needed if orientation and gradient

information is involved in IDs before and after geometry re-evaluation.

To summarize this chapter, feature and parametric information is indispensable part of

solid modeling in the UL-PML scheme. Features are represented in dual mode such that

intentional features and geometric features are combined. The redundancy ensures that design

intent is represented in the model. Constraints are captured in data model to reflect design

specifications, both geometric and non-geometric. While symbolic constraints are modeled

descriptively, numerical constraints are represented by interval values to improve the reliability

and quality of computational models. These relations are connected by virtual link. A semantic

ID method is proposed such that entities are named based on persistent geometry to solve the

problem of topology inconsistency in parametric modeling and broken link in the UL model. All

of the above aims to improve the interoperability of CAD data modeling in a distributed design

environment.

By now, several interoperability issues concerning geometry, features, and constraints for

collaborative design have been addressed. Yet there is one more problem of interoperability

during different stages of design, which is model interoperability in terms of time between

conceptual design and detailed design. Commonly used CAD data models are only for detailed

design. No applicable data model is available for the early conceptual design stage, during which

geometric information is incomplete and uncertainty exists. There is no generic data model that

represents geometric and non-geometric information both for conceptual design and detailed

 110

design. Lack of geometric models for conceptual design is one of the major hurdles for the

development of Computer-Aided Conceptual Design. Incorporating robustness consideration

mentioned in Section 5.2.2, an interval geometric modeling scheme is proposed to enable design

data to be modeled from conceptual design to detailed design and design optimization, which

improves CAD data interoperability for different time frames during design. The following

chapter describes this scheme.

 111

6.0 INTERVAL GEOMETRIC MODELING

During the process of design, various parameters are specified, which include geometric

parameters (e.g., dimension, coordinate, and tolerance) and non-geometric ones (e.g., material

characteristics, tooling speed, and expected life). Current CAD systems only allow geometric

parameters to have fixed values, such as the position of a point in 3D space, the direction of a

line, the distance between two axes. Instead of simply assigning one real value to a parameter, it

will be advantageous to give an interval value to each parameter in a CAD model, which means

that the parameter can take any valid value between the lower and upper bounds of the interval.

Fixed parameter values generate some problems.

First, fixed-value constraints bring up conflicts easily at later design stages. Specifying

determined parameter values implicitly adds rigid constraints on the geometry. The rigid

constraints reduce the freedom of geometric entities to the minimal levels. These predominant

constraints will be carried to other stages of design and most likely are the sources of conflicts.

To resolve the conflicts, some parameter values have to be changed. This trial-and-error cycle

will continue until no conflicts are found. If an interval is given to a parameter instead of a fixed

value such that any real value within the interval is valid, the degrees of freedom of geometric

entities are increased at the early design stages. As more constraints are imposed onto the

designed object during the process of design, the freedom of geometric entities will be restricted

gradually. The allowable intervals of parameter values are reduced by stages. There will be fewer

chances for conflicts to occur during design, and some cycles of modification will be saved.

 112

Second, the requirement of fixed parameter values makes the development of Computer-

Aided Conceptual Design (CACD) difficult. At the conceptual design stage, actual values of

parameters may not be known. Usually it is not important to specify fixed values of certain

parameters yet. Current CAD systems require that parameter values be fully specified and fixed,

thus are not effective tools for conceptual design. It is challenging to develop a practically usable

CACD tool based on the current scheme of fixed parameter values. Nevertheless, if a parameter

value is specified as a range, the problem of parameter partial integrity can be solved, i.e., it is

not necessary to fix all values of parameters. This increases the flexibility of the geometric shape

of the designed part.

Besides the ability of tackling problems of fixed parameter values, parameter intervals also

directly represent bounding information for design optimization. Current design optimization

process often occurs after parameters are specified at the detailed design stage, while the

intention of feasible ranges of parameters from upstream design activities is not transferable with

the fixed-value scheme. Parameter constraints of feasibility have to be added separately for

optimization. However, with the interval representation, the parameter information is directly

applicable for parameter optimization. Parameter intervals appropriately represent design intent

of feasibility, thus integrate the sketching and optimization of design. Parameter optimization can

be performed based on the inherent value bounds.

In real situations, there are some uncertainty factors in CAD modeling. Aided by computer,

the dimensions and shape of the designed product are calculated and stored digitally.

Computational errors from rounding are inevitable, which can become serious if the magnitudes

of numbers are very different. Uncertainty also comes from the measurement and tolerance of

human perception. The real value of measurement is the ideal situation that cannot be realized

 113

from statistical points of view. Further more, the precision of numbers in a computer depends on

the word size and floating-point representation of the computer. Different types of computers

may have different architectures and representations. Variation exists among different

computers. Thus, a computer-generated value can be looked as a sample from a range of values,

while the CAD data of a designed product is a sample from the population of models. Parameter

intervals capture the uncertainty characteristics, and properly model the process of design.

Intervals also can provide a uniform representation for geometric data and manufacturing

tolerances in CAD models. Both variational models and tolerance zone models can be

represented by interval methods. Tolerance propagation or transformation can be easily

performed by interval analysis.

6.1 Preliminaries of Traditional Interval Analysis

Traditional interval analysis began as a tool for bounding rounding errors in numerical

computation. Early researchers include Dwyer [154], Warmus [155, 156], Sunaga [157], Moore

[158], and Hansen [159], etc.

An interval number is defined as an ordered pair of real numbers, [a, b], with a ≤ b. That is,

it consists of the set {x: a ≤ x ≤ b}. Degenerated intervals [a, a] are equivalent to real numbers.

Interval mathematics is a generalization in which interval numbers replace real numbers, interval

arithmetic replaces real arithmetic, and interval analysis replaces real analysis.

Let],[][aaa = ,],[][bbb = be real intervals and o be one of the basic operations addition,

subtraction, multiplication and division respectively for real numbers, that is, { /,,, }⋅−+∈o . The

corresponding operations for interval [a] and [b] are defined by

 114

 {][],[][][byaxyxba ∈∈= oo }. (6.1)

Assuming in case of division, the arithmetic operations are defined as:][0 b∉

],[][][bababa ++=+ , (6.2)

],[][][bababa −−=− , (6.3)

 { } { }],,,max,,,,[min][][bababababababababa =⋅ , (6.4)

][

1][
][
][

b
a

b
a

⋅= , if
⎭
⎬
⎫

⎩
⎨
⎧

∈=][1
][

1 by
yb

, and][0 b∉ . (6.5)

Detailed information about interval arithmetic and analysis can be found in references [160, 161,

162, 163, 164, 165].

6.2 Concepts of Interval Geometric Modeling (IGM)

Computer graphics and surface modeling have started using methods of traditional interval

analysis. Research includes rasterizing parametric surfaces [166], ray tracing of parametric

surfaces [167] and implicit surfaces [168], collision detection of polyhedral objects [169] and

surfaces [170, 171, 172], error bounding and approximation in polyhedral [138] and curve-

surface modeling [139, 140, 173, 174]. In the above research, interval methods are employed

either as assistance and approximation tools for analysis of fixed value computation, in which

interval number provides a concise format for the bounding box or range commonly used in

computer graphics algorithms, or as approximation representation of geometry to embody errors

and improve robustness of geometric modeling. Based on trivial-width interval values, some

traditional interval arithmetic and analysis methods are used for the geometry approximation.

 115

Different from the above, Interval Geometric Modeling (IGM) presented here allows all

numerical values of parameters including coordinates, dimensions, and other values to be non-

trivial-width interval numbers. With this general representation scheme, issues of rigid

constraints and uncertainty will be solved in CACD. Numerical constraints can be represented in

a concise way such that design optimization and approximation can become an integrated part of

CAD. In addition, under-constrained and over-constrained problems in current parametric

modeling can be handled more elegantly.

In IGM, we define interval number X as X = [xL, xN, xU] which contains lower bound value

xL, nominal value xN, and upper bound value xU. The nominal value is usually corresponding to

the specified fixed value in current CAD systems, which should be between the lower and upper

bounds.

The introduction of the nominal value in an interval is necessary for CAD modeling, since

the nominal value represents the specification of the parameter if the parameter is fixed, thus

intervals can be easily integrated with current fixed-value system. It allows current CAD

modeling systems to adopt interval parameters such that current modeling schemes and computer

visualization can be used. For example, a 2D point P([1,2,3],[4,5,6]) has the specified nominal

position (2,5). The nominal values are allowed to be changed within the intervals of x and y

coordinates respectively. Within a CAD system, the point can be displayed at (2,5). When P is

fixed, its coordinates are ([2,2,2],[5,5,5]), where the intervals converge to the nominal values. To

simplify the notation, we can use a real number for a degenerated interval. For example, 0

represents [0,0,0] as well. Figure 44 shows the valid range of a point specified by intervals in 2D

and 3D spaces respectively.

 116

 2D Point: 3D Point:
 p(X, Y) = p([xL, xN, xU],[yL, yN, yU]) p(X, Y, Z) = p([xL, xN, xU],[yL, yN, yU],[zL, zN, zU])

zL

zU
zNyL

yN

yU

xL xUxN

yL

yN

yU

xL xUxN

Figure 44: Range of a point specified by interval numbers

6.2.1 Interval Definitions in IGM

An interval value is a set of real numbers. An n dimensional real number space is denoted

as Rn. An n dimensional interval number space is denoted as IRn.

Definition 6.1: { UNLULUNL xxxxxxxxxxX ≤≤≤≤== ,],,[}, where xL ∈ R, xN ∈ R, xU ∈ R,

and X ∈ IR.

Inclusion (⊂, ⊆, ⊄) and belong (∈, ∉) relations of sets are valid for interval values, as well

as union (∪), intersect (∩), and difference (\). Given that A = [aL, aN, aU], B = [bL, bN, bU], we

have the following relations:

Definition 6.2 (equivalence): () ()UULL babaBA =∧=⇔= .

The equivalence relation is reflexive, symmetric, and transitive.

Definition 6.3 (nominal equivalence): () () ()UUNNLL bababaBA =∧=∧=⇔=: .

Definition 6.4 (strictly greater than or equal to): UL baBA ≥⇔≥~ .

Definition 6.5 (strictly greater than): UL baBA >⇔>~ .

Definition 6.6 (strictly less than or equal to): LU baBA ≤⇔≤~ .

Definition 6.7 (strictly less than): LU baBA <⇔<~ .

 117

Definition 6.8 (inclusion): () ()LLUU babaBA ≥∧≤⇔⊆ ,

 () ()LLUU babaBA >∧<⇔⊂ .

Figure 45 illustrates the relations of intervals. 0 = [0,0,0] is also called zero interval. Interval A is

positive, if and only if A ~> 0. Interval A is negative, if and only if A ~< 0. If the nominal value

of A = [aL, aN, aU] is not concerned, it can simply be denoted as [aL, aU].

 A:
 B:
 A ~> B A ~≥ B A ~< B A ~≤ B

 A:
 B:
 A = B A := B A ⊂ B A ⊃ B

 A:
 B:
 A ⊃ B A ⊂ B A ⊇ B A ⊆ B

 *Notation:
 xL xN xU

Figure 45: Relations between intervals

Definition 6.9: Interval A = [aL, aN, aU] is empty, denoted as A = ∅, if and only if aL > aU.

A is called invalid when aN > aU, or aL > aN, or A is empty.

Definition 6.10 (intersect): },and|{ R∈∈∈=∩ xBxAxxBA , if A ∩ B ≠ ∅, it can be derived

by { } { } { } { }],min,2/),min,(max,,[max UUUULLLL babababaBA +=∩ .

Definition 6.11 (union): },or|{ R∈∈∈=∪ xBxAxxBA , if A ∩ B ≠ ∅, it can be derived by

{ } { } { } { }],max,2/),max,(min,,[min UUUULLLL babababaBA +=∪ .

Definition 6.12 (difference): },and|{\ R∈∉∈= xBxAxxBA .

Some basic arithmetic operations are defined.

Definition 6.13:],,[UUNNLL bababaBA +++=+ .

 118

Definition 6.14:],,[LUNNUL bababaBA −−−=− .

Definition 6.15: { } { }],,,max,,,,,[min UULUULLLNNUULUULLL bababababababababaBA =⋅ .

Definition 6.16:
⎭
⎬
⎫

⎩
⎨
⎧

∉∈= BBy
yB

0,11 .

Definition 6.17:

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

>=≥+∞

><≥+∞∪−∞

=<≥−∞

≥≤><+∞−∞

>=≤−∞

><≤+∞∪−∞

=<≤+∞

=+∞−∞

∉⋅

=

)0,0,0(],,[

)0,0,0(],,[],,[

)0,0,0(],,[

)0,0,0,0(],0,[

)0,0,0(],,[

)0,0,0(],,[],,[

)0,0,0(],,[

)0(],0,[

)0(1

ULL
U

L

U

L

ULL
U

L

U

L

L

L

L

L

ULL
L

L

L

L

ULUL

ULU
U

U

U

U

ULU
L

U

L

U

U

U

U

U

ULU
L

U

L

U

bba
b
a

b
a

bba
b
a

b
a

b
a

b
a

bba
b
a

b
a

bbaa

bba
b
a

b
a

bba
b
a

b
a

b
a

b
a

bba
b
a

b
a

B

B
B

A

B
A .

Note that A – A ≠ 0. During the processes of arithmetic operations, it is possible that an empty

interval occurs.

The width of an interval is a real number, defined as wid(A) = aU − aL. Specially, wid(∅) =

0. Some other notations are ub(A) = aU, lb(A) = aL, and nom(A) = aN.

6.2.2 Sampling Relation between Real Number and Interval Number

The intervals capture the uncertainty of design. The association of a real number with an

interval number is considered as a sampling relation. The value of a parameter, which is

generated by computer or selected by human designer, is a sample of the corresponding set of

values within the interval. Statistically, the interval is the sampling population of real numbers.

 119

Therefore, one CAD interval model is allowed to generate different shapes because of parameter

intervals. Implicitly, a CAD interval model defines a set of geometric shapes that automatically

accommodate geometry variation.

Definition 6.18: A real number x is a sample of interval X, if and only if x ∈ X.

Some strict relations exist between intervals, which are related to real number samples.

Definition 6.19: yxYyXxYX ℜ∈∀∈∀⇔ℜ ,, . XℜY denotes that X has a strict relation ℜ with

Y (X ∈ IR, Y ∈ IR).

That is, XℜY if and only if for any sample of X, any sample of Y has a relation with it. For

example, two intervals are strictly equal if and only if any two sampling real numbers from them

respectively are always equal.

Definition 6.20 (strict equivalence): yxByAxBA =∈∀∈∀⇔= ,,~ .

The definitions 6.4, 6.5, 6.6, and 6.7 implicitly define the strict unequal relations between

two intervals. These four definitions are equivalent to the following definitions 6.21, 6.22, 6.23,

and 6.24, respectively.

Definition 6.21 (strictly greater than or equal to): yxByAxBA ≥∈∀∈∀⇔≥ ,,~ .

Definition 6.22 (strictly greater than): yxByAxBA >∈∀∈∀⇔> ,,~ .

Definition 6.23 (strictly less than or equal to): yxByAxBA ≤∈∀∈∀⇔≤ ,,~ .

Definition 6.24 (strictly less than): yxByAxBA <∈∀∈∀⇔< ,,~ .

Besides strict relations, some global relations exist in interval arithmetic evaluation and

problem solving.

Definition 6.25: yxYyXxYX ℑ∈∃∈∀⇔ℑ ,, . XℑY denotes that X has a global relation ℑ with

Y (X ∈ IR, Y ∈ IR).

 120

That is, XℑY if and only if for any sample of X there exists a sample of Y that has a relation with

it. Global relations ensure the feasibility of interval arithmetic operations and solutions. The goal

of solving interval problems is to find a region that includes all feasible solutions. The

corresponding process is to eliminate certainly infeasible points from a given region so as to

make it as compact as possible. The global relations make global solution and optimization of

interval analysis possible. For example, the four basic arithmetic operations of intervals follow

the rule of global relation and generate the global solution with a compact bound. A global

equivalence can be defined as follows, which is used in systems of interval equations.

Definition 6.26 (global equivalence): yxByAxBA =∈∃∈∀⇔= ,, .

Note that global equivalence is asymmetric. The equivalence relation in definition 6.2 can

be looked as a special case of symmetric global equivalence. Similarly, some inequalities can be

defined as global relations that are used in systems of inequalities. For A = [aL, aN, aU], and B =

[bL, bN, bU], there are

Definition 6.27 (greater than or equal to): LL baBA ≥⇔≥ . Equivalently,

 yxByAxBA ≥∈∃∈∀⇔≥ ,, .

Definition 6.28 (greater than): LL baBA >⇔> . Equivalently, yxByAxBA >∈∃∈∀⇔> ,, .

Definition 6.29 (less than or equal to): UU baBA ≤⇔≤ . Equivalently,

 yxByAxBA ≤∈∃∈∀⇔≤ ,, .

Definition 6.30 (less than): UU baBA <⇔< , where A = [aL, aN, aU], and B = [bL, bN, bU].

Equivalently, yxByAxBA <∈∃∈∀⇔< ,, .

Note that it is possible that A ≤ B and A ≥ B at the same time. Some properties in real

analysis do not apply in interval analysis. Again, strict inequalities are special cases of global

 121

inequalities. Function evaluation and problem solving in interval analysis are normally based on

global relations.

In a multidimensional interval space, an interval vector can be defined in IRn with each

component as an interval value, and an interval matrix is defined in IRm × IRn with each element

as an interval value. Corresponding to a real function f: Rn → Rm, if fset(X) denotes {f(x) | x = (x1,

x2, …, xn), xi ∈ Xi (i = 1, ..., n), X = (X1, X2 …, Xn), X ∈ IRn}, a function F: IRn → IRm is called

an inclusion function for f at X if fset(X) ⊆ F(X). A natural inclusion function f(X) for f(x) is

obtained by replacing each occurrence of the variable xi by interval variable Xi. It is based on the

inclusion isotonicity of the interval operations [175] and the property of pre-declared inclusions

[176]. Generally, the natural inclusion function f(X) for f(x) is not tight enough, i.e., f(X) ⊂ f(x),

because of dependency between variables and wrapping effect [177].

Interval vectors with same dimensions can be ranked and sorted ascendantly.

Definition 6.31: Interval vector A and B are ascendantly ordered,

)()(and,),,,(),,,,(where, 112121 −− ≤→<¬≤⇔== iiiinnnn BABABABBBAAA LLp BABA

recursively apply starting from i = n.

Definition 6.32: Interval vector A and B are descendently ordered,

)()(and,),,,(),,,,(where, 112121 −− ≥→>¬≥⇔== iiiinnnn BABABABBBAAA LLf BABA

recursively apply starting from i = n.

Definition 6.33:).,,,(where)),(wid(max)(maxwid 21 nii
AAAA L== AA

Definition 6.34:).,,,(where)),(wid(min)(minwid 21 nii
AAAA L== AA

 122

6.3 Geometry Description in IGM

With the inherent capability of modeling variation, IGM has special properties that makes

it different from current geometric modeling schemes.

6.3.1 Modeling Uncertainty in IGM

The characteristics of variation and uncertainty are inherent in the process of design, during

which design knowledge and constraints from different aspects are applied to generate the shape

and configuration of the designed product. Good CAD systems should model geometry as well

as the design process, such that design can be easily modified at different design stages.

Compared to traditional variational / parametric design, in which geometry is determined by

parameters, IGM gives more flexibility to designers, because variation, inexactness, and

uncertainty of parameters are taken into consideration.

In an IGM system, all numerical values for coordinates, dimensions, geometric constraints,

and other properties are specified in the interval format. For example, a 2D model of a triangle is

illustrated in Figure 46. The numerical values of geometry, including coordinates of three points,

three vectors, and distances are specified with interval values. The interval format of parameters

in a geometric modeling system allows variation and uncertainty to be modeled explicitly,

especially at early design stages. This provides more leeway for designers to change the shape

during the design. The decisions to fix values of parameters are postponed until later design

stages.

 123

 Points:
 P0 ([-1, 0, 1], [-1, 0, 1])
 P1 ([9, 10, 11], [-1, 0, 1])
 P2 ([-1, 0, 1], [4, 5, 5])

 Vectors:
 V0 ([1, 1, 1], [-0.25, 0, 0.25])
 V1 ([-1, -1, -1], [0.25, 0.5, 0.75])
 V2 ([-0.6666, 0, 0.6666], [-1, -1, -1])

 Parameters:
 d0 ([8, 10, 12])

V0

V1

V2

P0 P1

P2

d0

Figure 46: A 2D triangle geometry specified by intervals

While the available ranges of parameters are narrowed down gradually, uncertainty is ruled

out and decisions are made throughout the design process until final design is generated.

Changing current constraints or adding extra constraints would lead to different geometries. As

illustrated in Figure 47, the shape of a 2D rectangular object may vary based on coordinates of

four corner points within their allowable intervals. Because of the overlapping of the interval

areas, the shape could be a rectangle, a triangle, or even a point. Adding or changing geometric

constraints may reduce the allowable regions for these corner points, thus finalizing shapes

eventually. This constraint-driven procedure reflects the nature that design is a process of

constraint imposition and decision making.

Figure 47: Constraint-driven geometry in interval modeling

 124

6.3.2 Solving Under-constrained Problems

At early design stages, design usually deals with product concepts and system-level

configuration. Values of detailed geometric parameters are not critical. Current CAD modeling

scheme, which requires fixed parameter values, is not good at modeling geometry for the concept

generation. At this stage, the geometric shape for each part is generated to implement functions

of the new product. The general geometry and configuration are specified in terms of

functionality, whereas precise values of parameters are not determined yet. In this case, geometry

has the properties of incompleteness, inexactness, and approximation. It is difficult to model

incomplete and inexact geometry in current fixed-value CAD systems, which require well-

constrained data and information.

For example, at the initial stage of designing a mounting bracket, the geometric shape of

this sheet-metal part is not decided yet, as illustrated in Figure 48a. The available constraints are

the distance between corner points P0 and P1, the perpendicularity between lines L0 and L1, and

lines L0 and L3, as listed in Figure 48b. Though the 2D plate is under-constrained in traditional

parametric CAD systems, the geometry still can be generated in IGM systems.

The difference of how under-constrained problems is handled in an IGM system is that

each numerical value has lower bound, upper bound, and nominal value, and the interval defines

the feasible region of the value implicitly. This type of soft constraints are applied to geometry

inherently at every step of value specifications. The effect of adding more constraints is to reduce

the allowable region of geometric entities systematically such that the final geometry can be

fixed. In modeling under-constrained geometries, the shape of entities is constrained by the

allowable value ranges, such as coordinate intervals and distance intervals. In the example of

Figure 48, points P2 and P3 are constrained within their coordinate intervals implicitly. Even

 125

though no other distance or angular constraints are added onto them, the geometry still can be

modeled with certain flexibility. Therefore, the concept of under-constrained geometry in

traditional parametric or variational design is not critical in IGM.

 (a) (b)

() ()
()() ()()
()() ()() 0

0

01120112

01300130

2
0

2
01

2
01

=−−+−−
=−−+−−

=−+−

yyyyxxxx
yyyyxxxx

dyyxx

P0 P1

P3 P2

d0

L3 L1

L2

L0

Figure 48: An example of under-constrained geometry in bracket design

6.3.3 Solving Over-constrained Problems

As design migrates from conceptual design to detailed design stages, more information is

available for decision making. In most cases, the information is more than enough to determine

the geometry, by which multidisciplinary specifications from different aspects are to be met.

There is a high possibility that conflicts of requirements occur, thus tradeoffs of constraints

should be made to resolve conflicts.

In current parametric CAD systems, only well-constrained geometry can be solved, thus

proper geometric constraints should be assigned to determine geometry. Either under-constrained

or over-constrained situation is not allowed. For instance, in the previous bracket design, if

geometric constraints are specified as: the position of P0; distances between P0 and P1, P1 and P2,

P2 and P3, and P3 and P0; L0 is perpendicular to L1 as well as to L3; and L0 is horizontal. Current

CAD systems will complain that this geometry is over-constrained, as illustrated in Figure 49.

 126

Traditional parametric modeling scheme has strict requirements on the number of constraints and

the way constraints are applied.

In IGM, the parameter values are all interval values, which means that all distance and

angle values in the previous example are interval values. Thus these interval value constraints are

not as rigid as fixed-value ones. Adding more constraints reduces the feasible regions of

geometric entities. Only those constraints which cause no feasible regions generate conflicts.

This approach thus loosens the current requirements on applying constraints. Some of the

previously over-constrained problems will no longer be over-constrained in IGM.

 (a) (b)

() ()
() ()
() ()
() ()
()() ()()
()() ()()

10

201120112

101300130

2
3

2
30

2
30

2
2

2
23

2
23

2
1

2
12

2
12

2
0

2
01

2
01

10

00

00

0

xx
oyyyyxxxx
oyyyyxxxx

dyyxx

dyyxx

dyyxx

dyyxx

yy
by
ax

≤
=−−+−−
=−−+−−

=−+−

=−+−

=−+−

=−+−

=−
=
=

P0 P1

P3 P2

d0

L3 L1

L2

L0

d3 d1

d2

h

Figure 49: An example of over-constrained geometry in bracket design

6.4 Solving Equations in Interval Geometric Modeling

To incorporate interval geometric modeling methodology into current CAD systems,

several fundamental issues related to geometric computation should be addressed. These include

linear and nonlinear equation representations and solutions, which are essential for

 127

transformation operation, surface intersection, and constraint solving, etc. The process of solving

systems of equations or inequalities is also called contraction. It starts with initial values of

intervals, which are rough estimates of variable values. Then subintervals which do not contain

the solutions are eliminated, and intervals are “contracted”. This process normally proceeds

iteratively until no further improvement. Since interval operations involve more steps and

procedures than regular arithmetic operations, time and space efficient algorithms are critical to

allow extensive interval computation to be accomplished with the available computational

resources.

6.4.1 Interval Linear Equations

Commonly used numerical methods for solving real-value linear equations can be extended

to solve interval-value linear equations, such as Gaussian elimination and triangular

factorization. But matrix-based methods do not solve under-constrained or over-constrained

questions. In contrast, iteration-based methods have no well-constrain requirement, such as

Jacobi iteration and Gauss-Seidel iteration. An algorithm for solving interval linear equations

presented here is extended from the Gauss-Seidel method, shown in Figure 50. Different from

methods of Alefeld and Herzberger [161], and Hansen and Sengupta [163], this algorithm allows

under-constrained and over-constrained linear systems to be solved.

To solve

 (6.6) miYXA i

n

j
jij ,...2,1

1
==∑

=

where X1, X2, …, Xn are interval variables, Aij is interval constant for each i and j, and Y1, Y2, …,

Ym are interval constants. Here, m is not necessary equal to n, which means the linear systems

 128

could be over-constrained (m > n) or under-constrained (m < n). If an empty interval is derived

during the process, there is no solution within the given initial intervals.

INPUT: Interval matrix A
 Interval vector Y
OUTPUT: Interval vector X

Interval V
int i, j, k
REPEAT until stop criterion is met
 FOR each 1 <= i <= m
 FOR each 1 <= j <= n
 IF Aij=0
 continue next j iteration
 ENDIF
 V = 0
 FOR each 1<=k<j
 V = V+Aik*Xk
 ENDFOR
 FOR each j+1<=k<=n
 V = V+Aik*Xk
 ENDFOR
 V = (Yi – V)/Aij
 Xj = Xj ∩ V
 ENDFOR
 ENDFOR

Figure 50: Algorithm of extended Gauss-Seidel method for solving linear equations (6.6)

6.4.2 Interval Nonlinear Equations

Nonlinear equation systems can be solved by the fix-point method, forward-backward

propagation, Newton’s method, and Krawczyk method, etc. Given that IGM requires a constraint

solving system be flexible for the number of constraints yet with fast convergence, a linear

enclosure method is presented here. Let us considering the interval nonlinear equation system

 () liCF ii ,...2,1==X , (6.7)

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval. The

following steps are needed to solve the system:

 129

STEP 1: Transform each equation of (6.7) to the separable form to eliminate dependency among

variables;

STEP 2: Find the linear enclosure of each of the univariate nonlinear functions and form a linear

equation system;

STEP 3: Solve the linear system by the algorithm of Section 6.4.1;

STEP 4: If the stopping criterion is met, stop. Otherwise, repeat from STEP 2 to STEP4.

STEP 1:

Function f(x1, x2, …, xn) is said to be separable if and only if f(x1, x2, …, xn) = f1(x1)+

f2(x2)+ …+ fn(xn). According to Yamamura’s algorithm [178], functions that are composed of

four basic arithmetic operations (+, −, ×, /), unary operations (sin, exp, log, sqrt, etc.), and the

power operation (^) can be transformed into the separable form by introducing necessary

functions. For example, f = f1 × f2 can be transformed to f = (y2− f1
2− f2

2)/2 and y = f1 + f2; f = f1 /

f2 can be transformed to f = (y2− f1
2−1/ f2

2)/2 and y = f1 + 1/f2; and f = (f1)f2 can be transformed to

f = exp(y1), y1= (y2
2− (log(f1))2− f2

2)/2, and y2 = log(f1) + f2. In geometric modeling, most of the

constraints/functions can be transformed into the separable form.

Thus equations (6.7) can be transformed into

 , (6.8) () miDXf
n

j
ijij ,...,2,1

0
==∑

=

where X1, X2, …, Xn are interval variables and D1, D2, …, Dm are interval constants.

STEP 2:

 130

The algorithm based on linear interval enclosure here is more general than Kolev’s method

[179, 180]. Kolev’s method only considers the degenerated case when Di = 0 for all i. The

evaluation based on linear enclosure has sharper bounds than the one based on the interval

Newton’s method if the widths of intervals are nontrivial or thick. Methods using coefficient

matrix inverse operation, such as Hansen and Greenberg’s [181], are not applicable here since

situations of under-constrained and over-constrained are considered.

Linear enclosure of fij(xj) is found within the initial interval of Xj
(0) for each i and j as

follows. Let Xj
(0) = [xL

j, xN
j, xU

j], we can have

 ()j
Lij

S
ij xff = , and (6.9)

 ()j
Uij

T
ij xff = . (6.10)

Let

 j
L

j
U

S
ij

T
ij

ij xx
ff

a
−

−
= . (6.11)

The linear enclosure of fij(xj) can be defined as

 , (6.12) ())0(
jijijij XxforxaBxE ∈+=

such that

 , (6.13) () ())0(
jijij XxforxExf ∈∀∈

as illustrated in Figure 51.

To find out a Bij with the minimum width with given aij, derivation of fij(x) is used if fij(x) is

continuous and differentiable within interval Xj
(0). The question then is reduced to solving real

value nonlinear equation

 , (6.14) ())0(
jijij Xxforaxf ∈=′

 131

fij(xj)

xj

Xj
(0)

Dij

fij
S

fij
T

Bij

Figure 51: Linear enclosure of nonlinear interval function

Given that fij(x) is continuous and differentiable for most of geometric relations, equation

(6.14) has at least one solution. The Secant method can be used to solve the equation efficiently.

Having been transformed to the separable form, f'ij(x) is a univariate polynomial function or a

function with unary operations (sin, cos, etc.) for most geometric constraints. For polynomial

functions, roots can be isolated within disjointed intervals individually based on Descartes’ rule

of signs before equations are solved numerically. Descartes’ bound gives the upper bound of the

number of positive roots of a polynomial. Once polynomial functions are solved, solutions to

unary functions such as sin and cos can be easily found.

Let P(x) be a polynomial with real coefficients, the following transformations are defined.

Definition 6.35 (Reverse transformation): where n is the degree of P.)/1()]([xPxxPR n=

Definition 6.36 (Translation transformation):)()]([txPxPTt += for t ∈ R.

Definition 6.37 (Homothetic transformation):)()]([cxPxPH c = for c ∈ R.

Based on the algorithm of Collins et al. [182, 183], Pij(x) for x ∈ Xj
(0) is transformed to Pij

0(x) for

x∈ [0, 1] by Pij
0(x) = Hb-a[Ta[Pij(x)]] where a is the lower bound of Xj

0 while b is the upper bound

 132

of Xj
0. The roots of Pij(x) for x ∈ Xj

0 have one-to-one correspondence with the roots of Pij
0(x) for

x ∈ [0, 1]. A list of root intervals or exact roots can be obtained by calling RootIsolation(Pij
0, 0,

0), wherein the algorithm listed in Figure 52. For each root interval or exact root with

information of (depth, index) in the list, there is an corresponding

]
2

)1)((,
2

)([aindexabaindexabx depthdepth +
+−

+
−

∈ for root intervals or aindexabx depth +
−

=
2

)(for exact

roots such that Pij(x)=0.

INPUT: Polynomial P with n degree
 int depth
 int index
OUTPUT: RootIntervalList

IF P(0) = 0
 RootIntervalList.addExactRoot(depth, index)
ENDIF
IF P(1) = 0
 RootIntervalList.addExactRoot(depth, index+1)
ENDIF
Polynomial Q = T1[R(P)]
IF DecartesBound(Q) = 1
 RootIntervalList.addRootInterval(depth, index)
ELSEIF DecartesBound(Q) >= 2
 Polynomial P1 = 2nH1/2[P]
 RootIsolation(P1, depth+1, 2*index)
 Polynomial P2 = T1[P1]
 RootIsolation(P2, depth+1, 2*index+1)
ENDIF

Figure 52: RootIsolation procedure based on Descartes’ rule of signs

Thus, interval Xj
(0) can be subdivided into small intervals containing an individual root. Let

. Solutions to (6.14) within interval X() ijij axfxg −′=)(j
(0) can be found by (6.15), which lists the

computation for each iteration n.

 ,...3,2,1)(
)()(1

1
1 =

−
−

−=
−

−
+ nxg

xgxg
xxxx n

nn

nn
nn (6.15)

 133

Suppose xjp (p=1, 2, …, P) is the pth solution of equation (6.14), and xj0 = xL
j. Let Bij = [bL

ij,

bN
ij, bU

ij], where

 (){ }Ppxaxfb jpijjpij
p

ij
U ,...,2,1,0,max =−= , (6.16a)

 () 00 jijjij
ij
N xaxfb −= , (6.16b)

 (){ }Ppxaxfb jpijjpij
p

ij
L ,...,2,1,0,min =−= . (6.16c)

From (6.13), we have

 () () miforXEXf jijjij ,...,2,1=⊆ , (6.17)

thus,

 . (6.18) () () () miforXaBXEXf
n

j
jijij

n

j
jij

n

j
jij ,...,2,1

111
=+=⊆ ∑∑∑

===

STEP 3:

Solving (6.8) thus is reduced to solving linear equations (6.19) iteratively.

 . (6.19) () miforDXaB i

n

j
jijij ,...,2,1

1
==+∑

=

This linear system can be solved using the algorithm described in Section 6.4.1. Because

the coefficient aij’s are degenerated intervals, only one iteration is needed to solve the linear

equations. Suppose Yj is the jth variable solution of (6.19) in the kth iteration. By (6.20), the

initial value of Xj in the (k+1)th iteration is calculated. If an empty interval is derived, the original

system has no solution within the given initial intervals (X1
(0), X2

(0), …, Xn
(0)).

 . (6.20) njforYXX j
k

j
k

j ,...,2,1)()1(=∩=+

 134

STEP 4:

When the stopping criterion, such as the width of intervals has no further improvement

(6.21a) or the intervals are sharp enough (6.21b), is met, the iteration is stopped. Otherwise, go

back to (6.8) to find out the new linear enclosures within the updated intervals and repeat the

procedure starting from STEP 2.

 1
1

)(

1

)1()(wid)(wid ε<−∑∑
==

+
n

j

k
j

n

j

k
j XX for iteration k. (6.21a)

 2
1

)()(wid ε<∑
=

n

j

k
jX for iteration k. (6.21b)

6.4.3 Interval Inequalities

Consider a set of linear or nonlinear inequalities

 () liCF ii ,...2,1=≤X , (6.22)

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval, inequalities

are transformed into equations

 () liCSF iii ,...2,1==+X , (6.23)

where Si is a slack variable with initial value of [0,0,+∞]. Similarly,

 () liCF ii ,...2,1=≥X , (6.24)

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval, can be

transformed into

 () liCSF iii ,...2,1==+X , (6.25)

where Si is a slack variable with initial value of [−∞,0,0]. Systems of inequalities can be changed

to systems of equalities, thus can be solved by methods in Sections 6.4.1 and 6.4.2.

 135

6.4.4 A Numerical Example

As an illustration of solving nonlinear equations using the algorithms described in the

above sections, constraints the bracket design in Figure 49 are used. The designer specifies the

nominal value, lower bound, and upper bound of each coordinate and parameter. For example,

the coordinates of P0 are ([0, 0.25, 0.5], [0, 0.25, 0.5]). The coordinates of P1 are ([0.5, 0.75, 1],

[0, 0.25, 0.5]). The distance between P0 and P1 is [0.49, 0.50, 0.51]. Geometric constraints are

assigned to generate the outline of the bracket, which is over-constrained in the sense of the

traditional parametric modeling. The interval geometric modeler then calculates the ranges of

geometric points based on the algorithms of solving interval linear and nonlinear equations.

Figure 53 lists the constraint equations in Figure 49 (b) which are transformed to separable

form. Based on the algorithm in Section 6.4.2, this over-constrained nonlinear equation system is

solved. The numerical results are listed in Table 6.

0

0
0

0
0

0

332

2
2

2
3

2
3

221

221

2
1

2
2

2
2

110

110

2
0

2
1

2
1

10

00

00

=+−
=+

=+−
=+−

=+

=+−
=+−

=+

=−
=
=

uxx
dvu

vyy
uxx
dvu

vyy
uxx
dvu

yy
by
ax

cxx
wvv
wuu

owwvuvu

wvv
wuu

owwvuvu

vyy
uxx

dvu

vyy

=+−
=+−−
=+−−

=−−+++

=+−−
=+−−

=−−+++

=++−
=++−

=+

=+−

10

421

321

2
2
4

2
3

2
2

2
2

2
1

2
1

241

141

1
2
2

2
1

2
4

2
4

2
1

2
1

430

430

2
3

2
4

2
4

332

0
0

222222

0
0

222222

0
0

0

Figure 53: Constraint equations of Figure 49 (b) in separable form

 136

Table 6: Numerical results of the bracket example
Initial values Final values (after 20 iterations) Descriptions
X0 = [0, 0.25, 0.5] X0 = [0, 0, 0] x coordinate of P0
Y0 = [0, 0.25, 0.5] Y0 = [0, 0, 0] y coordinate of P0
X1 = [0.5, 0.75, 1] X1 = [0.5, 0.505012, 0.510024] x coordinate of P1
Y1 = [0, 0.25, 0.5] Y1 = [0, 0, 0] y coordinate of P1
X2 = [0.5, 0.75, 1] X2 = [0.5, 0.516686, 0.533372] x coordinate of P2
Y2 = [0, 0.25, 0.5] Y2 = [0.23886, 0.249714, 0.260569] y coordinate of P2
X3 = [0, 0.25, 0.5] X3 = [0, 0.0116355, 0.0232709] x coordinate of P3

Variables

Y3 = [0, 0.25, 0.5] Y3 = [0.238869, 0.249677, 0.260485] y coordinate of P3
A0 = [0, 0, 0] fixed position of P0
B0 = [0, 0, 0] fixed position of P0
D0 = [0.49, 0.50, 0.51] distance d0
D1 = [0.24, 0.25, 0.26] distance d1
D2 = [0.49, 0.50, 0.51] distance d2
D3 = [0.24, 0.25, 0.26] distance d3
O1 = [-0.001, 0, 0.001] perpendicularity

Parameters

O2 = [-0.001, 0, 0.001] perpendicularity

Figure 54 shows the convergence of interval calculation in solving nonlinear equations is

reasonably fast. After about 15 iterations, the widths of intervals are not changed any more.

Convergence of intervals

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25Iterations

W
id

th
 /

W
id

th
(in

it) X0
Y0
X1
Y1
X2
Y2
X3
Y3

Figure 54: Convergence of Interval calculation in the bracket example

Figure 55 illustrates the variation allowance of the bracket profile. As more constraints are

added, the feasible range for each corner should be narrowed down further until the position is

fixed.

 137

Figure 55: Variation allowance of the bracket

6.5 Design Refinement

One important aspect related to interval representation of variance allowance is the over

estimation of allowances. An interval vector simply encloses the allowable region by a hyper

cube, which often includes infeasible region. During the function evaluation, inclusion functions

are likely to give a set that is larger than the actual solution set due to dependency or wrapping

effect. Thus, interval computation tends to over estimate parameter ranges. Design refinement is

needed to generate more delicate design if desirable details are not reached yet. There are two

ways to refine design: interval subdivision and constraint re-specification. Interval subdivision is

to divide existing interval regions into unions of subintervals to achieve the refined view of

 138

current design. Constraint re-specification is to modify some of constraints or to add extra valid

constraints to contract feasible regions.

6.5.1 Interval Subdivision

Interval subdivision (also called subpaving) substitutes an interval vector with multiple

interval vectors such that the corresponding real space region is subdivided into multiple smaller

regions to cover the actual solution set more compactly. For example, in equations

 ,
⎩
⎨
⎧

−=+
=+

]8,0,6[]2,5.1,1[]6,5,4[
]6,3,0[]3,5.2,2[]1,5.1,0[

21

21

xx
xx

the solution set can be derived in four quadrants of x1-x2 space respectively. Considering lower

and upper bounds only, we have the actual solution set that is illustrated by the region in Figure

56.

It is clear that even the best solvers that derive the most compact solution X = ([-4,8/3], [-

4/3,5]) will not represent the actual solution set in terms of interval vectors. Thus, in order to

approximate actual solution set well, interval vectors can be subdivided further to represent the

solution. As shown in Figure 57, the interval vector X = ([-4,8/3], [-4/3,5]) can be bisected

recursively and tested if the subintervals belong to the actual solution set. The actual solution set

thus is approximated by the union of subinterval regions.

 139

(8/3,-4/3)

(2,0)

(5/4,3)
(0,3)

(-4,5)

(-3/2,0)
(0,0)

x2

x1

Figure 56: The solution set represented as a 2D region

Figure 57: Two-dimensional interval vector subdivision

To represent subdivision of intervals concisely, a power interval can be used.

Definition 6.38: An n-dimensional power interval with degrees of m, denoted as P(m, n), is an

ordered list of m non-overlapped interval vectors of n-dimensional, i.e., P(m, n) = [X1, X2, …, Xm],

where Xi ∈ IRn (i = 1, …, m), minwid(Xi ∩ Xj) = 0 (i ≠ j), and Xi ∠ Xi+1 (i = 1, …, m−1).

 140

Consider a design problem f(X) = Y. The target is to find out the actual solution set S ⊆ X

with minimal size such that f(S) = Y. Interval arithmetic only gives a valid solution D with f(D)

⊇ Y. If the valid solution is represented by power intervals, refinement can be looked as degree

elevation of power intervals. If the original solution to a problem is found as an n-dimensional

vector X = [X1, X2, … , Xn,], the corresponding power interval is P(0)
(1,n) = [X]. One elevation

operation will bisect X, with each interval vector being deleted and inserted new subintervals.

Feasibility of each new subinterval then can be tested. The algorithm of subdivision is shown in

Figure 58.

INPUT: Power Interval P(m,n)
 Interval vector Y
 Mapping function f
OUTPUT: Power Interval P(k,n)

IF stop criterion is met
 Return P(m,n)
ELSE
 j = m*n
 Q(j,n) = Bisect(P(m,n))
 FOR 1 <= i <= m*n
 IF f(Q(j,n)(i))⊄ Y
 Delete(Q(j,n)(i))
 ENDIF
 ENDFOR
 Subdivide(Q(j,n),Y,f)
ENDIF

Figure 58: Subdivide procedure for power interval elevation

Power intervals can be implemented as linked lists. Deleting and adding interval vectors

during elevation operation can be completed easily. In the numerical example of Section 6.4.4,

the result is represented by a power interval with a degree of 8. The degree elevation operation is

done by subdividing elements 5 and 6 recursively. A refined design can be derived as shown

from Table 7 to Table 10, and compared in Figure 59.

 141

Table 7: Initial result of Section 6.4.4
Set P0 P1 P2 P3

init [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.516685, 0.533371]
[0.23886, 0.249714, 0.260569]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

Table 8: Subdivision level 1
Subset P0 P1 P2 P3

1 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.508343, 0.516685]
[0.23886, 0.244287, 0.249714]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

2 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.525028, 0.533371]
[0.23886, 0.244287, 0.249714]

[0.00658538,0.0149281,0.0232708]
[0.238869, 0.249677, 0.260485]

3 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.525028, 0.533371]
[0.249714, 0.255142, 0.260569]

[0.00658538,0.0149281,0.0232708]
[0.238869, 0.249677, 0.260485]

4 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.508343, 0.516685]
[0.249714, 0.255142, 0.260569]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

Table 9: Subdivision level 2
Subset P0 P1 P2 P3

11 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.504171, 0.508343]
[0.239791, 0.242039, 0.244287]

[0, 0.009388, 0.018776]
[0.239264, 0.249824, 0.260384]

12 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.512514, 0.516685]
[0.239563, 0.241925, 0.244287]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

13 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.512514, 0.516685]
[0.244287, 0.247001, 0.249714]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

14 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.504171, 0.508343]
[0.244287, 0.247001, 0.249714]

[0, 0.00941007, 0.0188201]
[0.238869, 0.249677, 0.260485]

21
22
23
24 [0, 0, 0]

[0, 0, 0]
[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.520857, 0.525028]
[0.244287, 0.247001, 0.249714]

[0.00658538,0.0148512,0.023117]
[0.238883, 0.249573, 0.260263]

31 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.520857, 0.525028]
[0.249714, 0.252428, 0.255142]

[0.00658538,0.0148512,0.023117]
[0.238883, 0.249573, 0.260263]

32
33
34
41 [0, 0, 0]

[0, 0, 0]
[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.504171, 0.508343]
[0.249714, 0.252428, 0.255142]

[0, 0.0094117, 0.0188234]
[0.238869, 0.249677, 0.260485]

42 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.512514, 0.516685]
[0.249714, 0.252428, 0.255142]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

43 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.512514, 0.516685]
[0.255142, 0.257639, 0.260137]

[0, 0.0116354, 0.0232708]
[0.238869, 0.249677, 0.260485]

44 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.504171, 0.508343]
[0.255142, 0.25759, 0.260039]

[0, 0.00940018, 0.0188004]
[0.239261, 0.249823, 0.260385]

 142

Table 10: Subdivision level 3
Subset P0 P1 P2 P3

111 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.239791, 0.240915, 0.242039]

[0, 0.00730215, 0.0146043]
[0.239264, 0.249824, 0.260384]

112 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.239791, 0.240915, 0.242039]

[0, 0.00938782, 0.0187756]
[0.239264, 0.249824, 0.260384]

113 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.242039, 0.243163, 0.244287]

[0, 0.00938782, 0.0187756]
[0.239264, 0.249824, 0.260384]

114 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.242039, 0.243163, 0.244287]

[0, 0.00730215, 0.0146043]
[0.239264, 0.249824, 0.260384]

121 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.239563, 0.240744, 0.241925]

[0, 0.0114805, 0.0229609]
[0.238869, 0.249677, 0.260485]

122 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.239563, 0.240744, 0.241925]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

123 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.241925, 0.243106, 0.244287]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

124 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.241925, 0.243106, 0.244287]

[0, 0.0114805, 0.0229609]
[0.238869, 0.249677, 0.260485]

131 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.244287, 0.245644, 0.247001]

[0, 0.011393, 0.0227861]
[0.238869, 0.249677, 0.260485]

132 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.244287, 0.245644, 0.247001]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

133 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.247001, 0.248358, 0.249714]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

134 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.247001, 0.248358, 0.249714]

[0, 0.011393,0.0227861]
[0.238869, 0.249677, 0.260485]

141 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.244287, 0.245644, 0.247001]

[0, 0.00722152, 0.014443]
[0.239244, 0.249818, 0.260391]

142 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.244287, 0.245644, 0.247001]

[0, 0.00930719, 0.0186144]
[0.239244, 0.249818, 0.260391]

143 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.247001, 0.248358, 0.249714]

[0, 0.00930719, 0.0186144]
[0.239244, 0.249818, 0.260391]

144 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.247001, 0.248358, 0.249714]

[0, 0.00722152, 0.014443]
[0.239244, 0.249818, 0.260391]

211
212
213
214
221
222
223
224
231
232
233
234
241 [0, 0, 0]

[0, 0, 0]
[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.518771, 0.520857]
[0.244287, 0.245644, 0.247001]

[0.00658538, 0.0148512, 0.023117]
[0.238884, 0.249574, 0.260263]

242
243 [0, 0, 0]

[0, 0, 0]
[0.503355, 0.506689, 0.510024]
[0, 0, 0]

[0.520857, 0.522942, 0.525028]
[0.247001, 0.248358, 0.249714]

[0.0107567, 0.0169369, 0.023117]
[0.238884, 0.249574, 0.260263]

244 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.516685, 0.518771, 0.520857]
[0.247001, 0.248358, 0.249714]

[0.00658538, 0.0148512, 0.023117]
[0.238884, 0.249574, 0.260263]

311
312
313
314 [0, 0, 0]

[0, 0, 0]
[0.502726, 0.505651, 0.508576]
[0, 0, 0]

[0.516685, 0.518771, 0.520857]
[0.252428, 0.253785, 0.255142]

[0.00658538, 0.0148512, 0.023117]
[0.238884, 0.249574, 0.260263]

321
322
323
324

 143

Table 10: Subdivision level 3 (continued)

Subset P0 P1 P2 P3

331
332
333
334
341
342
343
344
411 [0, 0, 0]

[0, 0, 0]
[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.249714, 0.251071, 0.252428]

[0, 0.00722277, 0.0144455]
[0.239244, 0.249817, 0.260391]

412 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.249714, 0.251071, 0.252428]

[0, 0.00930844, 0.0186169]
[0.239244, 0.249817, 0.260391]

413 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.252428, 0.253785, 0.255142]

[0, 0.00930844, 0.0186169]
[0.239244, 0.249817, 0.260391]

414 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.252428, 0.253785, 0.255142]

[0, 0.00722277, 0.0144455]
[0.239244, 0.249817, 0.260391]

421 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.249714, 0.251071, 0.252428]

[0, 0.0113943, 0.0227886]
[0.238869, 0.249677, 0.260485]

422 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.249714, 0.251071, 0.252428]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

423 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.252428, 0.253785, 0.255142]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

424 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.252428, 0.253785, 0.255142]

[0, 0.0113943, 0.0227886]
[0.238869, 0.249677, 0.260485]

431 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.255142, 0.25639, 0.257639]

[0, 0.0114879, 0.0229758]
[0.238869, 0.249677, 0.260485]

432 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.255142, 0.25639, 0.257639]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

433 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.512514, 0.5146, 0.516685]
[0.257639, 0.258888, 0.260137]

[0.00241403,0.0128424,0.0232708]
[0.238869, 0.249677, 0.260485]

434 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.508343, 0.510428, 0.512514]
[0.257639, 0.258888, 0.260137]

[0, 0.0114879, 0.0229758]
[0.238869, 0.249677, 0.260485]

441 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.255142, 0.256366, 0.25759]

[0, 0.00730655, 0.0146131]
[0.239262, 0.249823, 0.260384]

442 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.255142, 0.256366, 0.25759]

[0, 0.00939223, 0.0187845]
[0.239262, 0.249823, 0.260384]

443 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.504171, 0.506257, 0.508343]
[0.25759, 0.258815, 0.260039]

[0, 0.00939223, 0.0187845]
[0.239262, 0.249823, 0.260384]

444 [0, 0, 0]
[0, 0, 0]

[0.5, 0.505012, 0.510024]
[0, 0, 0]

[0.5, 0.502086, 0.504171]
[0.25759, 0.258815, 0.260039]

[0, 0.00730655, 0.0146131]
[0.239262, 0.249823, 0.260384]

 144

 (a) original solution (b) level 1 elevation

 (c) level 2 elevation (d) level 3 elevation

Figure 59: Comparison of different levels of subdivisions

It can be seen that the subdivision until level 3 leaves out some infeasible sub-regions that

are included in the initial result. Subdivision provides a more accurate design based on existing

constraints. Figure 60 shows the refined bracket design by interval subdivision.

 145

Figure 60: Refined bracket design by subdivision

6.5.2 Constraint Re-specification

Another way to contract a solution is to change or add valid constraints to narrow down

feasible regions. Feasibility and effectiveness should be considered simultaneously. Constraint

modification depends on sensitivity analysis, while adding constraints is largely dependent on

human users’ preferences. One basic question is to differentiate active and inactive constraints.

Active constraints scope the actual range of solution while inactive constraints have certain

levels of slackness. At the beginning of interval computation, all constraints are active if a

sufficiently large initial region is given. As the iteration proceeds, some constraints turn to be

inactive. The decision of which constraints to be modified is based on the selection of active

constraints.

Lemma: For a constraint set p = {f(X) = Y and g(X) = Z}, the subset f(X) = Y with respect to a

solution D ⊂ X is inactive if f(D) ⊂ Y and g(D) ⊇ Z.

 146

Proof:

Suppose S1 and S2 are actual solution sets of f and g respectively, and S is the actual

solution set of p. Given that f(S1) = Y and f(D) ⊂ Y, because of the property of inclusion

monotonic, S1 ⊃ D. Similarly, D ⊇ S2. Thus, S1 ⊃ S2. �

As illustrated by Figure 61, subset f is inactive and g is active in case (a); both f and g are

active in case (b); and f is active and g is inactive in case (c).

(a)

(b)

(c)

S1

S2

D1
S1 D2

D2
S2D1

x-space
f

Z Y

z-space y-space

g

D1
S1

x-space
f

Z Y

z-space y-space
gD2

S2

x-space
f

Z Y

z-space y-space

g

Figure 61: Relations of two constraint subsets

In the numerical example of Section 6.4.4, it can be proven that the last constraint is

inactive based on the above lemma.

 147

This chapter presents a new geometric modeling scheme, IGM, based on the interval

representation and analysis, in which all parameters of geometric modeling (coordinates as well

as parametric constraints) are non-trivial-width interval values instead of fixed values. It can be

used as a generic representation of numerical constraints during the process of conceptual design,

detailed design, and design optimization. It avoids rigid constraints and thus reduces the chance

of conflicts between constraints. It relaxes the restriction of under-constrained and over-

constrained situations for variational geometry. Constraint-driven interval geometric modeling

captures more information about constraints for optimization and decision making during the

design process. IGM provides a possible interoperable way of design data representation and

integration for different design stages.

 148

7.0 IMPLEMENTATIONS AND TESTS

The implementation and test of various concepts are conducted within the framework of a

distributed design environment – Pegasus [184]. Pegasus is a service-oriented concurrent

engineering system which aims to aid customers, designers, manufacturers, suppliers, and other

stakeholders to participate in the early stage of product design so as to reduce the new product

development cycle time. Since design is an interdisciplinary and complicated process, it requires

various contributions from all of the participants. This system integrates the services required

during the product development period, such as conceptual and detailed design, various analysis

and tests for assemblability, manufacturability, material, ergonomics, and logistics. Pegasus is an

open system that possesses good extensibility, portability, interoperability, scalability, and

transparency. If certain new services are required, the system can incorporate the new functional

units with no or little changes. Furthermore, heterogeneous service providers can work

collaboratively and harmoniously within the system over the Internet without compatibility

problems.

7.1 Service Architecture of Pegasus

Concurrent engineering requires the collaboration of various engineering and non-

engineering disciplines, such as aesthetics, drafting, materials, manufacturing processes, quality,

marketing, maintenance, and government regulations. There have been many computational

 149

tools in those different areas. These CAD/CAM/CAE tools can be plugged in Pegasus system to

form a distributed product development environment, which provides engineering services over

the Internet. An important approach to achieve transparent transaction is to define engineering

service protocols explicitly. Thus, the service information can be represented and interpreted

correspondingly by each individual tool according to these service protocols at the application

level.

Service is defined as a process that provides a functional use for a person, an application

program, or another service in the system. Services should be specified from the functional

aspect of service providers. To make an existing tool available online or to build a brand new

tool for such a system, services associated with this tool should be defined. The service

transaction among service providers, service consumers, and the service manager within Pegasus

system is illustrated in Figure 62. Once a service is registered at a central administrative

manager, called the Service Manager, it is then available within the whole system. This process

is service publication. When a service consumer within the system needs a service, it will request

a lookup service from the Service Manager. This process is service lookup. If the service is

available, the service consumer can request the service from the service provider by the aid of

Service Manager. Most importantly, this service triangular relationship should be built at run-

time. The service consumer (client) does not know the name, the location, or even the way to

invoke the service from the service provider (server) during the system and tools development

period.

 150

Service
Manager

Service
Consumer

Service
Provider

3. Service

2. Service Lookup 1. Service Publication

Figure 62: Service triangular relationship

The collaboration between engineering tools is established and executed based on the

characteristics of services that can be provided. For example, the relationship between a CAD

tool and a Finite Element Analysis (FEA) tool is based on the FEA service that the FEA tool can

provide for the CAD tool. The Service Manager, on the other hand, offers service publication

and lookup for service providers and consumers.

Service providers that provide different services such as drafting, assembly, manufacturing,

analysis, optimization, procurement, and ergonomics can be developed independently. As

showed in Figure 63, servers that provide different engineering services (which are represented

by nodes) are linked by the Internet. Each node in this network may require or provide certain

engineering services. Thus, it could be a client or a server for different services depending on

whether it is the recipient or the provider of such a service. The client/server relationship is

determined at run-time. The system is open for the future expansion and extension, in case that

more services are available. The notion of service-oriented collaboration lets the Pegasus system

have appropriate flexibility. Plug-and- Play (PnP) is an important consideration of this structure.

 151

INTERNET

Conceptual
Modeler

Detailed
Modeler

Assembly
Tool

Material
Selector

Manufacturing
Tool

Cognitive
Tool

Ergonomics
Tool

Supply Chain
Manager

Optimization
Engine

FEA
Tool

Function
Reasoning

Service
Manager

WWW
Browser

Figure 63: Pegasus system architecture

Service publication and lookup are the primary services provided by the Service Manager.

As depicted in Figure 64, service publication for service providers includes name publication,

catalog publication, and implementation publication. Name publication service is similar to the

white-page service provided by telephone companies, by which the name of the service provider

is published. Catalog publication service is similar to the yellow-page service: the name and the

functional description of the service are published. Implementation publication service is the

procedure by which the service provider makes its implementation and invocation of services

public so that clients can invoke the service at run-time. Service lookup for service consumers

includes name lookup, catalog lookup, and interface lookup. Name lookup service is provided so

that consumers can locate the service providers based on the service names. Catalog lookup

service is for those consumers who need certain services according to their needs and

specifications but do not know the names of the services. Interface lookup service is to provide a

way such that consumers can check the protocols of how to invoke the service. For example, if a

 152

consumer wants to do welding analysis but does not know the name of the service (e.g., thermo-

structural finite element analysis), it can use the catalog lookup service. To query the analysis

procedure of thermo-structural analysis from an interface repository, it may use interface lookup

service to find out input parameters, return type, etc., of this service.

Service Manager

Name Publication Catalog Publication Implementation
Publication

Interface LookupName Lookup Catalog Lookup

Figure 64: Services provided by Service Manager

Design data transfer and transaction among servers can be completed based upon various

distributed computing protocols, such as HTTP, CORBA, Distributed Component Object Model

(DCOM), and Simple Object Access Protocol (SOAP).

In today’s software engineering arena where heterogeneity is inevitable, openness is an

essential characteristic for a distributed computational architecture. It allows complex software

systems to be efficiently developed, deployed, and maintained. An open collaborative product

engineering system, such as CAD, CAM, and CAE, should incorporate the following features:

 153

(1) Compliance with industry standards of programming, communication, networking, system

management, and interfaces between applications and system services;

(2) Portability of applications across different computer operating systems so that the system can

be easily adopted by various service providers and end users;

(3) Scalability of application performance and throughput such that the system is applicable for

either large enterprises with large-scale projects or individuals with simple artifacts;

(4) Interoperability which is independent of hardware platforms, operating systems, network

protocols, and application formats such that service providers can be developed independently

with different programming languages;

(5) Extensibility which allows new functionalities for existing service providers or new service

providers to be added into the system such that the system is expandable in the future.

To ensure that Pegasus is an open system, the implementation should support the above

five features. In this work, CORBA is employed as basic computational protocol to achieve

openness. Data transfer and transaction are implemented by CORBA as illustrated in Figure 65.

The components in this distributed system have peer-to-peer relationships with each other.

CORBA serves as glue to integrate the whole system. It provides good features of transparency

for collaborative computation. Computationally intensive applications can be distributed across

the network. From the end user’s point of view, distributing application components between

clients and servers does not change the look and feel of one single application.

The time sequence diagram of service transaction in Pegasus is listed in Table 11 and

illustrated in Figure 66. It includes the processes of service binding (the service provider

publishes a service at the service manager), service resolution (the service consumer looks up a

 154

service from the service manager), and service execution (the service provider provides the

requested service).

Design Server

Network

ORB Core

Local Procedure

Assembly Server

ORB Core

Local Procedure

Manufacturing Server

ORB Core

Local Procedure

FEA Server

ORB Core

Local Procedure

Optimization Server

ORB Core

Local Procedure

Figure 65: Peer-to-peer relationship among service providers

Table 11: Service sequence in a client/server transaction

No. Service Transactions
1 Service provider requests service binding from service manager
2 Service manager provides service binding to service provider
3 Service consumer requests service resolution from service manager
4 Service manager provides service resolution to service consumer
5 Service consumer requests service from service provider
6 Service provider provides service to service consumer

 155

Service
Manager

ORB

Skel

Service
Provider

ORB

Stub

Service
Consumer

ORB

1. Request service binding

3. Request service resolution

2. Provide service binding

5. Request service

6. Provide service

4. Provide service resolution

Time

Figure 66: Sequence diagram of a service

7.2 UL-PML Scheme in Collaborative Design

UL-PML is a distributed CAD data scheme, which allows geometric and non-geometric

entities, structures, and constraints to be created, stored, and queried in a distributed fashion.

This allows information transfers at the basic entity level rather than the component level. It

provides a flexible way for information exchange intelligently and accumulatively without losing

logical integrity. In a top-down approach, a PML tree can provide different levels of detail. In a

bottom-up approach, loosely coupled linkage allows lean information transfer.

 156

PML can be applied in two approaches. One is to use PML as a part of the native data

structure in geometric modelers. The other is to translate design data from various formats of

existing CAD systems into PML models for information exchange. In this research, both of the

two approaches are implemented and tested. A prototype of geometric modeler using PML as the

native data structure is built. Mechanisms of lean information transfers based on protocols of

HTTP and CORBA are developed. Distributed geometry and constraint information can be

linked based on the UL-PML scheme. The translation mechanism between ACIS data structure

to PML model is developed and tested in an ACIS modeler prototype.

7.2.1 PML Modeler

A native PML modeler is developed completely based on PML data format. Figure 67

illustrates the architecture of the modeler and Figure 68 shows its user interface. Within the

modeler, geometry can be generated and processed in the form of a PML tree. Data is stored and

transferred in PML file format.

Users interact with the system in a regular design mode, while the Data Manager is

responsible for local PML tree processing and transparent remote data query. Compatibility to

computer and Internet standards is necessary to make an open system. The PML modeler uses

industry standards for file transfer and remote data access. Design information transfer in PML is

independent of network data transmission.

 157

PML Modeler

User Level: User Interface

Data Level:

Machine Level: System I/O

Network Level: HTTP CORBA

File
System

PML tree

DHG
Data

Manager

Internet

.xml

Figure 67: Architecture of PML modeler

Figure 68: Interface of PML modeler

 158

7.2.2 Lean Information Transfer Based on HTTP

PML information transfer can use a variety of network protocols such as HTTP. HTTP is a

widely used application protocol for web service. PML remote data access and selective

information transfer based on HTTP are developed in the PML modeler. In the example of

Figure 22, the process of face information transfer between the two groups is illustrated in Figure

69.

 Web Server

 request

HTTP
TCP
IP

SDLC / HDLC / PPP / SLIP / LAP / LLC / …
Figure 69: Lean information transfer base on HTTP

 159

7.2.3 Lean Information Transfer Based on CORBA

The PML modeler also supports lean information transfer based on protocols of CORBA.

Different from HTTP requests, ORB requests have fat-client architecture. The client/server data

transfer can be transparently completed through ORB brokers. Clients do not have to specify the

IP addresses of the target PML references.

For example, a pair of moulds (Figure 70) are designed separately by two groups. Some

contacting faces of the two parts must geometrically match each other. In the UL-PML scheme,

links between the faces in Mould2 and the corresponding ones in Mould1 can be built. Thus the

geometry and topology information about these faces in the Mould2 can be fetched from Mould1

to maintain the consistency. In this linkage relation, Mould1 (Figure 71) is at the server site.

Once it is published in the library (Figure 72) for data sharing, it is available for references.

In order to meet the surface match requirement, face504, face978, and face1004 in Mould2

are specified to refer to face3, face239, and face286 in Mould1 (Figure 73). Three faces and six

bounding edges in Table 12 as well as the corresponding geometry are transferred to the client

site through data sharing agents.

 160

 (a) mould1 (b) mould2

Figure 70: A pair of moulds in collaborative design

Table 12: Selective topology transferred to Mould2
Location Name Entity Type Reference Link Type

face504 Face mould1.xml#face3 simple
face978 Face mould1.xml#face229 simple
face1004 Face mould1.xml#face286 simple
edge508 Edge mould1.xml#edge13 simple
edge518 Edge mould1.xml#edge23 simple
edge593 Edge mould1.xml#edge55 simple
edge635 Edge mould1.xml#edge168 simple
edge588 Edge mould1.xml#edge60 simple

mould2.xml

edge640 Edge mould1.xml#edge163 simple

 161

face3 face239

face286

Figure 71: The first mould designed at the server site

Figure 72: Design library for data sharing

 162

face504

face978

face1004

Figure 73: The second mould designed at the client site

If there is any change about the three faces of the first mold (Figure 74), the update of the

second mold will be done automatically because of the linkage (Figure 75). Note that for each

update, only PML nodes of three faces and six edges are transferred across networks.

 163

Figure 74: Updated design of the first mould

Figure 75: Updated second mould by translating corresponding references

 164

 request

IIOP
TCP
IP

SDLC / HDLC / PPP / SLIP / LAP / LLC / …

GIOP

ORB Broker ORB Broker

Figure 76: Lean information transfer based on CORBA

7.2.4 Distributed Design Information Integration

The PML model provides a mechanism to link distributed design information. Elements of

entities, relations, and constraints can be located locally as well as remotely. As illustrated in

Figure 23 and Figure 24, geometry and topology can be distributed in different files. Similarly,

constraints can be linked either locally or remotely. As shown in Figure 77, Figure 78, and

Figure 79, constraints can be defined either in the same file or in different files. Some example

constraints are listed in Table 13.

 165

As a result, design can be created or modified without processing a large amount of data.

Design information is modeled in an extensible and uniform format. The efficiency of

collaborative design then can be improved by the UL-PML scheme.

Table 13: Constraint examples in mold1.xml, mold2.xml, and constr.xml
Location Name Type Source Target Direction

a1 angle (geometric) #face3 #face1 bi-directional
a2 angle (geometric) #face4 #face2 bi-directional
d1 distance (geometric) #face5 #face3 bi-directional
d2 distance (geometric) #face5 #face3 bi-directional
e1 Equation (non-geometric) #a2 #a1 unidirectional

mold1.xml

e2 Equation (non-geometric) #d2 #d1 unidirectional
a1 angle (geometric) #face3 #face1 bi-directional
a2 angle (geometric) #face4 #face2 bi-directional
d1 distance (geometric) #face5 #face3 bi-directional
d2 distance (geometric) #face5 #face3 bi-directional

mold2.xml

d3 distance (geometric) #face5 mold1.xml#face5 bi-directional
e1 Equation (non-geometric) mold2.xml#a1 mold1.xml#a1 unidirectional
e2 Equation (non-geometric) mold2.xml #a2 mold1.xml#a2 unidirectional
e3 Equation (non-geometric) mold2.xml #d1 mold1.xml#d1 unidirectional

constr.xml

e4 Equation (non-geometric) mold2.xml #d2 mold1.xml#d2 unidirectional

 166

face3

face1
face5

face4

face2

face6

a1
d1

a2

d2

e1

e2

Figure 77: Design constraints in mold1.xml

face4

face2

face6

face3

face1

face5

a2
d2

a1

d1

Figure 78: Design constraints in mold2.xml

 167

Figure 79: Design constraints in constr.xml

7.2.5 Mapping Between Native CAD Data Models and PML Model

PML model can be a medium of data transfer for distributed design. Different CAD

systems can exchange lean design information based on PML model. As illustrated in Figure 80,

CAD systems can map both geometric and non-geometric information to PML tree structure.

Selectively, a PML sub tree is transferred within a collaborative design environment. To

integrate PML model and existing CAD systems, translation is needed to map native data

structures of different CAD systems to the PML structure.

To demonstrate the possibility of integration between PML and current CAD systems, a

geometric modeler prototype based on ACIS® kernel is developed, and translation between PML

and ACIS model is implemented. Figure 81 shows the architecture of the ACIS modeler.

 168

PML tree

Internet

PML tree

Figure 80: PML model as a medium for selective information transfer between CAD systems

 GUI

ACIS
kernel

PML Data
Tools

Fu
nc

tio
n

A
PI

 C
lass
A

PI

Part M

anager

M
od

el
in

g
To

ol
s

M
FC

To

ol
s

ACIS-PML
Translator

PML-ACIS
Translator

Figure 81: The architecture of the ACIS modeler

 169

In the example shown in Figure 82, a jig model is in the ACIS modeler. It can be translated

into PML model by the ACIS-PML translator and read by the PML modeler, as in Figure 83.

Within a collaborative design system, geometric and non-geometric information in PML format

then can be transferred among groups. If any PML data is received from other parties, it can be

read and processed either by a PML modeler (as in Figure 84), or by the PML-ACIS translator

and an ACIS model can be built (as in Figure 85). Note that it is more efficient and secure to

transmit only partial data in PML across networks, while complete PML models reside in local

systems.

 170

Figure 82: A jig model in SAT format in the ACIS modeler

Figure 83: The translated jig model in PML format in PML native modeler at server site

 171

Figure 84: The jig model in PML format received at client site

Figure 85: The translated jig model in the ACIS modeler

 172

7.2.6 Constraint Propagation and Management

The UL-PML scheme has a determined format for constraint representation to support

design knowledge interoperability. Geometry constraints are attached to low-level topological

entities symbolically to eliminate ambiguity. Non-geometric constraints are attached to high-

level entities such as constraints, features, and parts. The generic and uniform constraint

representation allows constraints to be propagated effectively to support collaborative design.

To allow various constraints to be propagated within a collaborative design environment, a

central constraint management unit is needed to maintain a library of constraint standards.

Collaborators need to publish the format of new constraints in the library, thus other parties can

check the library and understand the usage. UL-PML scheme provides a uniform and extensible

constraint format so that interoperable constraint representation is possible. A Constraint Library

service provider is developed to preserve the constraint format standard in the Pegasus system. It

stores the syntax of multidisciplinary constraints such that format information of constraints is

available for lookup. The functionalities include: 1) provide constraint format lookup service; 2)

maintain the standards of constraints; 3) add, remove, and update constraint format.

The Constraint Library provides the constraint format query service. As demonstrated in

Figure 86, once the Constraint Library service provider is registered in the system (step 1),

constraint formats can be looked up. A client, which can be a geometric modeling system, needs

to find out how to represent material constraints in a standard way such that other parties can

understand the syntax and meaning. It requests a constraint format query lookup service through

a Service Manager (step 2). After getting the server information from the Service Manager (step

3), it sends query of constraint conMATERIAL to the Constraint Library (step 4). The Constraint

 173

Library looks in its database, finds out the format of constraint conMATERIAL, and sends the

format back to the client (step 5).

 174

Constraint Library

Service Manager

 Client requests constraint format lookup Constraint format query back to client

1. Service publication

2. Naming request 3. Server reference

4. Constraint
 query

5. Query
 result

Figure 86: Process of constraint format query from constraint library

 175

In summary, the UL-PML scheme provides a generic design information model for

collaborative design. It models geometric and non-geometric entities, relations, and constraints in

a uniform and extensible format. Based on the PML model, design information can be

transferred without transmitting large amounts of data, which increases the efficiency of

information sharing in a distributed environment.

Nevertheless, the flexibility of the PML model is achieved at the cost of computation in

applications. The major cost of lean product information transfers is the overhead related to

information interpretation and consistency maintenance. Partial data information, which is based

on linkage in PML, needs to be interpreted by referring to the source. In order to maintain data

consistency at the client site and the server site, a signal mechanism should be developed so that

server can notify clients when an information update is needed.

 176

8.0 SUMMARY AND FUTURE WORK

In this dissertation, incompleteness, improccessability, and inconsistency issues related to

design information interoperability for collaborative design are researched. Research topics

include network-conscious geometric information modeling, design knowledge and specification

capturing, and multidisciplinary constraint representation integration within geometric data. The

objective is to create new interoperability mechanisms and methodologies to enable the evolution

of CAD data modeling from current standalone CAD to Internet-based collaborative design.

To tackle the design information incompleteness and improccessability problems, a UL-

PML scheme is developed to capture geometric and non-geometric relations among entities by

explicit links in PML. These links allow references between entities to be built across the

boundary of files and physical locations. This model enables heterogeneous design information

to be distributed at different physical locations in a collaborative environment, and virtually

integrated through networks. This distributed format makes selective design information

transfers possible among design collaborators, which includes fundamental topology and

geometry elements, structural relations, as well as high-level design information such as design

features, geometric and non-geometric constraints, components, and assembly data. PML

utilizes standard XML syntax. Schemas of PML are defined for entities and relations. Graph

decomposition method is developed to map graph-structured entities and relations to tree-

structured PML. PML trees allow distributed design information elements to be processed,

stored, and queried easily. Geometry-based entity naming method is developed to maintain

 177

universal linkage among design entities such that relations within a file and among files are

stable and persistent for different design sessions at multiple locations.

The UL-PML scheme can be employed as a part of collaborative design information

infrastructure because of its simplicity, extensibility, system independence, and openness.

Commonly used CAD models can be mapped to PML models so that lean information exchange

and partial query can be performed through PML. Intelligent information sharing and design

reuse thus are supported. A prototype of the PML modeler is developed, which uses PML as the

native data structure. The PML data structure is independent of network protocols, which can

make it an open data protocol in a collaborative design environment. Remote data access and

query based on HTTP and lean information transfers based on CORBA are tested. PML is

intended to be a medium for heterogeneous CAD systems in design data exchange. Translation

between different native data structures and PML is needed to apply UL-PML scheme in current

CAD systems. A translation mechanism between ACIS data structure and PML for explicit

geometry is developed. And it is tested based on an ACIS modeler prototype.

To address the design information inconsistency and improve design reliability and quality,

a method of interval value numerical constraint representation is developed so that computational

errors and ambiguity can be reduced and robustness of geometric modeling can be improved.

Additionally, to model design uncertainty and inexactness, and to build the model

interoperability for different design stages, an IGM scheme is developed based on the non-

trivial-width interval representation and analysis. Soft constraints and preferences are integrated

in constraint-driven systems. Algorithms for solving IGM constraints are developed.

The IGM scheme aims to provide a generic numerical constraint representation for

conceptual design, detailed design, and design optimization. Preferences and constraints are

 178

embedded in data models as driving forces and decision-making aids. The IGM kernel for

interval representation, operation, and constraint solving is developed and constraint solving

algorithms are tested.

In summary, the major contributions of this dissertation are as follows:

• A new network-conscious UL model for geometric and non-geometric entities and

relations based on XML is proposed and developed. Design information interoperability

is accomplished based on general data interoperability. At the syntax level, the openness

of this model is guaranteed. Semantics interoperability is independent from syntax

interoperability. This independence provides an open scheme to solve CAD

interoperability issues.

• A new concept of distributed CAD information modeling is developed to integrate

multidisciplinary design information elements at multiple locations for seamless

synthesis and integration.

• A mechanism of lean design information modeling and intelligent information sharing at

the entity level is developed so that information with partial integrity can be transmitted

within the limited network bandwidth. This mechanism can have physically distributed

entities linked across the boundary of data files, thereby introduces a new way of

distributed design data modeling, storage, and query.

• Dual-Rep feature representation incorporates intentional and geometric features

independently for the improvement of design intent capturing and exchange among

collaborators.

 179

• Geometric and non-geometric constraints are represented in an extensible form.

Integrated with other design data, constraints eliminate inconsistency and ambiguity, and

improve CAD model’s completeness.

• A new concept of interval numerical constraint representation is presented, which reduces

model inconsistency due to numerical errors, and improves CAD models’ reliability and

robustness.

• A geometry-based semantic ID method is developed. This method adds semantics of

geometry and topology into IDs, therefore increasing the stableness of entity reference. It

builds the identification framework for the distributed UL model, and improves the

naming persistency of current CAD systems.

• A new IGM scheme based on interval representation and analysis is developed to

improve model robustness and capture design uncertainty and inexactness. Constraint-

driven interval geometric modeling supports more design interaction for optimization and

decision-making. IGM establishes a generic approach for interoperable numerical

constraint representation for the entire design cycle.

As extensions of this work, several research issues can be studied further. Application of

PML in heterogeneous systems is to be researched further, including feature-based and explicit

modeling systems. Research on meta-information about PML distributed data network is

necessary for information search and management. Compression and encryption of PML needs

to be studied. Feature and constraint schemas need to be defined and standardized. The method

of surface mapping for semantic ID is important to generalize the persistent ID system. In IGM,

methods for large-scale problem solving and algorithms improvement are essential for

 180

commercial application. Interval width selection and optimization for numerical constraint

imposition is necessary for interactive IGM.

The research of this dissertation is summarized in Table 14.

 181

Table 14: Research Summary

Problems Research Solutions
& Methodologies

Contributions Test / Validation Broader Impact Future Extensions

There are no open and
general solutions for
interoperability of
different proprietary
CAD file formats and
version control.

XML format is
employed to build
information
interoperability based
on data
interoperability, where
XML syntax is
standardized.

Advancement of
current CAD
translation methods by
separating semantics
interoperability from
syntax interoperability

As a data protocol,
PML is tested based
on HTTP and CORBA
protocols. Data
structure mapping
between ACIS and
PML for polyhedrons is
tested.

CAD data and
information
infrastructure for
collaborative design
will be established
based on computation
and Internet standards
to maximize the
openness and
interoperability.

Application of PML in
heterogeneous
systems

Design collaboration
needs to integrate
distributed design
information.

UL-PML scheme has a
distributed file format
that links elements of
design at multiple
locations.

New concept of
distributed CAD
information modeling
for collaborative
design

Geometry and
constraint files are
linked in PML.

Distributed design data
model will provide an
innovative data
network for seamless
synthesis and
integration.

Meta-information and
management

Standalone CAD file
formats do not support
collaborative design
because of inefficient
information transfer.

UL-PML scheme
models reference of
entities and relations
by explicit linkage at
the lowest level.

New concept to
support design data
creation, storage, and
query with partial
integrity and fine
granularity

PML modeler
transmits entity-level
information.

Flexible and loosely
coupled design data
elements at different
levels of detail will
allow lean information
sharing and real-time
collaboration.

Encryption and
compression of PML

Design feature is not
interoperable by
current translation
mechanism.

Dual-Rep feature
representation
captures intentional
and geometric features
independently.

Advancement of
current feature
representation
schemes in a general
approach

UL-PML models
incorporate global and
local features.

A generic feature
representation is
essential to capture
design intent with good
interoperability.

Feature schema
definition and
standardization

Multidisciplinary
design constraints
cannot be modeled
uniformly and design
information is
incomplete.

Explicit geometric and
non-geometric
constraints are
represented in an
extensible form.

Advancement of
current constraint
representation
schemes in a general
approach

UL-PML models
incorporate geometric
and non-geometric
constraints at different
entity levels.

Multidisciplinary
design constraint
representation allows
design knowledge
sharing, reuse, and
propagation.

Constraint schema
definition and
standardization

Numerical errors
generate inconsistent
and unreliable
geometry.

Interval value
numerical constraint
representation gives
allowance for
geometry
interpretation and
increases the model
robustness.

Advancement of
improving geometry
robustness by new
concept of constraint
representation

UL-PML models have
interval numerical
constraint values
embedded. IGM kernel
is tested.

Reliable geometry is
fundamental for design
intent capturing.

Optimal interval width
selection

Topological ID is not
persistent that causes
unstableness of
geometry.

Geometry-based
Semantic ID method is
developed to improve
naming persistency
within a session and
between sessions.

Advancement of
existing heuristic
naming methods for
stable modeling and
reference

Linear and quadratic
surfaces are tested.

Persistent reference
and model consistency
will maintain a reliable
distributed design data
infrastructure.

Surface mapping

There is no generic
data modeling to
support constraint
direct imposition at
different design
stages.

Interval Geometric
Modeling scheme is
developed to model
uncertainty and
preferences.

New concepts and
methodologies for
solving information
interoperability issues
for the entire design
cycle

IGM kernel is built and
constraint solving is
tested for ~10-
constraint problem.

Interoperable
conceptual design,
detailed design, and
design optimization
tools will use unified
data form to support
decision-making.

Large-scale problem
solving and efficiency
improvement

 182

APPENDICES

APPENDIX I – XML SYNTAX

[1] document ::= prolog element Misc* /*Document */
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | /*Character range */
 [#xE000-#xFFFD] | [#x10000-#x10FFFF]
[3] S ::= (#x20 | #x9 | #xD | #xA)+ /*White space */
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-‘ | ‘_’ | ‘:’ | CombiningChar | Extender
[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)* /*Names and tokens */
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*
[9] EntityValue ::= ‘ “ ‘ ([^%&”] | PEReference | Reference)* ‘ “ ‘ | /*Literals */
 “ ‘ “ ([^%&’] | PEReference | Refence)* “ ‘ “
[10] AttValue ::= ‘ “ ‘ ([^<&”] | Reference)* ‘ “ ‘ | “ ‘ “ ([^<&’] | Reference)* “ ‘ “
[11] SystemLiteral ::= (‘ “ ‘ [^”]* ‘ “ ‘) | (“ ‘ “ [^’]* “ ‘ “)
[12] PubidLiteral ::= ‘ “ ‘ PubidChar* ‘ “ ‘ | “ ‘ “ (PubidChar – “ ‘ “)* “ ‘ “
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-‘()+,./:=?;!*#@$_%]
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*) /*Character data */
[15] Comments ::= ‘<!—‘ ((Char – ‘ – ‘) | (‘ – ‘ (Char – ‘ – ‘)))* ‘-->’ /*Comments */
[16] PI ::= ‘<?’ PITarget (S (Char* - (Char* ‘?>’ Char*)))? ‘?>’ /*Processing Instructions*/
[17] PITarget ::= Name – ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))
[18] CDSect ::= CDStart CData CDEnd /*CDATA sections */
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)? /*Prolog */
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl? S? ‘?>’
[24] VersionInfo ::= S ‘version’ Eq (“ ‘ “ VersionNum “ ‘ “ | ‘ “ ‘ VersionNum ‘ “ ‘)
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘ – ‘)+
[27] Misc ::= Comment | PI | S
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S? /*Document Type Definition*/
 (‘ [‘ (markupdecl | DeclSep)* ‘] ‘ S?)? ‘>’
[28a] DeclSep ::= PEReference | S
[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotatoinDecl | PI | Comment
[30] extSubset ::= TextDecl? ExtSubsetDecl /*External subset */
[31] extSutsetDecl ::= (markupdecl | conditionalSect | DeclSep)*
[32] SDDecl ::= S ‘standalone’ Eq ((“ ‘ “ (‘yes’ | ‘no’) “ ‘ “) /*Standalone document declaration*/
 (‘ “ ‘ (‘yes’ | ‘no’) ‘ “ ‘))
[33] LanguageID ::= Langcode (‘ – ‘ Subcode)* /*Language Identification*/
[34] Langcode ::= ISO639Code | IanaCode | Usercode

 184

[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])
[36] IanaCode ::= (‘i’ | ‘I’) ‘ – ‘ ([a-z] | [A-Z])+
[37] UserCode ::= (‘x’ | ‘X’) ‘ – ‘ ([a-z] | [A-Z])+
[38] Subcode ::= ([a-z] | [A-Z])+
[39] element ::= EmptyElemTag | STag content Etag /*Element */
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’ /*Start tag */
[41] Attribute ::= Name Eq AttValue
[42] ETag ::= ‘</’ Name S? ‘>’ /*End tag */
[43] content ::= CharData? ((element | Reference | CDSect | PI | /*Content of elements */
 Comment) CharData?)*
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’ /*Empty element */
[45] elementdecl ::= ‘<!Element’ S Name S contentspec S? ‘>’ /*Element type declaration*/
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children
[47] children ::= (choice | seq)(‘?’ | ‘*’ | ‘+’)? /*Element content models*/
[48] cp ::= (Name | choice | seq)(‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘ | ’ S? cp)+ S? ‘)’
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘ | ‘ S? Name)* S? ‘)*’ /*Mixed content declaration*/
 | ‘(‘ S? ‘#PCDATA’ S? ‘)’
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’ /*Attribute list declaration*/
[53] AttDef ::= S Name S AttType S DefaultDecl
[54] AttType ::= StringType | TokenizedType | EnumeratedType /*Attribute types */
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’ |
 ‘ENTITIES’ | ‘NMTOKEN’ | ‘NMTOKENS’
[57] EnumeratedType ::= NotationType | Enumeration /*Enumerated attribute types*/
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘ | ‘ S? Name)* S? ‘)’
[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘ | ’ S? Nmtoken)* S? ‘)’
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’ /*Attribute defaults */
 | ((‘#FIXED’ S)? AttValue)
[61] conditionalSect ::= includeSect | ignoreSect /*Conditional section */
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘ extSubsetDecl ‘]]>’
[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘ ignoreSectContents* ‘]]>’
[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents ’]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’ /*Character reference */
[67] Reference ::= EntityRef | CharRef /*Entity reference */
[68] EntityRef ::= ‘&’ Name ‘;’
[69] PEReference ::= ‘%’ Name ‘;’
[70] EntityDecl ::= GEDecl | PEDecl /*Entity declaration */
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NdataDecl?)
[74] PEDef ::= EntityValue | ExternalID
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral /*External entity declaration*/
 | ‘PUBLIC’ S PuidLiteral S SystemLIteral
[76] NdataDecl ::= S ‘NDATA’ S Name

 185

[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’ /*Text declaration */
[78] extParsedEnt ::= TextDecl? content /*Well-formed external parsed entity*/
[79] extPE ::= TextDecl? extSubsetDecl
[80] EncodingDecl ::= S ‘encoding’ Eq (‘ “ ‘ EncName ‘ “ ‘ | “ ‘ “ /*Encoding declaration */
 EncName “ ‘ “)
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘ – ‘)*
[82] NotationDecl ::= ‘<!NOTATION’ S Name S /*Notation declarations */
 (ExternalID | PublicID) S? ‘>’
[83] PublicID ::= ‘PUBLIC’ S PubidLiteral
[84] Letter ::= BaseChar | Ideographic /*Characters */
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-
#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386
| [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC
| #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-
#x0481] | [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2]
| [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-
#x06D3] | #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-#x098C]
| [#x098F-#x0990] | [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-#x0A28] | [#x0A2A-
#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-
#x0A74] | [#x0A85-#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-
#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F]
| [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61]
| [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9]
| #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-
#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-
#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-
#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-#x0EB3]
| #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6]
| #x1100 | [#x1102-#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163
| #x1165 | #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB
| [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-
#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D]
| [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC]
| #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-
#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182]
| [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3]
[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670
| [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED]

 186

| [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-
#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7
| [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-
#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD]
| #x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-
#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-
#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31
| [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-
#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-
#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC]
| #x20E1 | [#x302A-#x302F] | #x3099 | #x309A
[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-#x096F] | [#x09E6-#x09EF]
| [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F]
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]
[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 | #x3005 | [#x3031-
#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

 187

APPENDIX II – XML NAMESPACE SYNTAX

[1] NSAttName ::= PrefixedAttName | DefaultAttName
[2] PrefixedAttName ::= ‘xmlns:’ NCName
[3] DefaultAttName ::= ‘xmlns’
[4] NCName ::= (Letter | ‘_’)(NCNameChar)*
[5] NCNameChar ::= Letter | Digit | ‘.’ | ‘-‘ | CombiningChar | Extender
[6] QName ::= (Prefix ‘:’)? LocalPart
[7] Prefix ::= NCName
[8] LocalPart ::= NCName
[9] Stag ::= ‘<’ QName (S Attribute)* S? ‘>’ [NSC:Prefix Declared]
[10] Etag ::= ‘</’ QName S? ‘>’ [NSC:Prefix Declared]
[11] EmptyElemTag ::= ‘<’ QName (S Attribute)* S? ‘/>’ [NSC:Prefix Declared]
[12] Attribute ::= NSAttName Eq AttValue | QName Eq AttValue [NSC:Prefix Declared]
[13] doctypedecl ::= ‘<!DOCTYPE’ S QName (S ExternalID)? S? (‘[‘
 (markupdecl | PEReference | S)* ‘]’ S?)? ‘>’
[14] elementdecl ::= ‘<!Element’ S QName S contentspec S> ‘>’
[15] cp ::= (QName | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[16] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? QName)* S? ‘)*’ | ‘(‘ S? ‘#PCDATA’ S? ‘)’
[17] AttlistDecl ::= ‘<!ATTLIST’ S QName AttDef* S? ‘>’
[18] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl

 188

APPENDIX III – XLINK SYNTAX

[1] Locator ::= URI | Connector (XPointer | Name) | URI Connector (XPointer | Name)
[2] Connector ::= ‘#’ | ‘|’
[3] URI ::= URIchar*
[4] Query ::= ‘XML-XPTR=’ (XPointer | Name)

 189

APPENDIX IV – XPATH SYNTAX

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
[2] AbsoluteLocationPath ::= ‘/’ RelativeLocationPath? | AbbreviatedAbsoluteLocationPath
[3] RelativeLocationPath ::= Step | RelativeLocationPath ‘/’ Step | AbbreviatedRelativeLocationPath
[4] Step ::= AxisSpecifier NodeTest Predicate* | AbreviatedStep
[5] AxisSpecifier ::= AxisName ‘::’ | AbbreviatedAxisSpecifier
[6] AxisName ::= ‘ancestor’ | ancestor-or-self’ | ‘attribute’ | ‘child’ | ‘descendant’
 | ‘descendant-or-self’ | ‘following’ | ‘following-sibling’ | ‘namespace’
 | ‘parent’ | ‘preceding’ | ‘preceding-sibling’ | ‘self’
[7] NodeTest ::= NameTest | NodeType ‘(‘ ‘)’ | ‘processing-instruction’ ‘(‘ Literal ‘)’
[8] Predicate ::= ‘[‘ PredicateExpr ‘]’
[9] PredicateExpr ::= Expr
[10] AbbreviatedAbsoluteLocationPath ::= ‘//’ RelativeLocationPath
[11] AbbreviatedRelativeLocationPath ::= RelativeLocationPath ‘//’ Step
[12] AbbreviatedStep ::= ‘.’ | ‘..’
[13] AbbreviatedAxisSpecifier ::= ‘@’?
[14] Expr ::= OrExpr
[15] PrimaryExpr :: VariableReference | ‘(‘ Expr ‘)’ | Literal | Number | FunctionCall
[16] FunctionCall ::= FunctionName ‘(‘ (Argument (‘,’ Argument)*)? ‘)’
[17] Argument ::= Expr
[18] UnionExpr ::= PathExpr | UnionExpr ‘|’ PathExpr
[19] PathExpr ::= LocationPath | FilterExpr | FilterExpr ‘/’
[20] FilterExpr ::= PrimaryExpr | FilterExpr Predicate
[21] OrExpr ::= AndExpr | OrExpr ‘or’ AndExpr
[22] AndExpr ::= EqualityExpr | AndExpr ‘and’ EqualityExpr
[23] EqualityExpr ::= RelationalExpr | EqualityExpr ‘=’ RelationalExpr |
 EqualityExpr ‘!=’ RelationalExpr
[24] RelationalExpr ::= AdditiveExpr | RelationalExpr ‘<’ AdditiveExpr |
 RelationalExpr ‘>’ AdditiveExpr | RelationalExpr ‘<=’ AdditiveExpr |
 RelationalExpr ‘>=’ AdditiveExpr
[25] AdditiveExpr ::= MultiplicativeExpr | AdditiveExpr ‘+’ MultiplicativeExpr |
 AdditiveExpr ‘-‘ MultiplicativeExpr
[26] MultiplicativeExpr ::= UnaryExpr | MultiplicativeExpr MultiplyOperator UnaryExpr
 | MultiplicativeExpr ‘div’ UnaryExpr | MultiplicativeExpr ‘mod’ UnaryExpr
[27] UnaryExpr ::= UnionExpr | ‘-‘ UnaryExpr
[28] ExprToken ::= ‘(‘ | ‘)’ ‘[‘ | ‘]’ | ‘.’ | ‘..’ | ‘@’ | ‘,’ | ‘::’ | NameTest | NodeType | Operator
 | FunctionName | AxisName | Literal | Number | VariableReference
[29] Literal ::= ‘”’ [^”]* ‘”’ | ‘”” [^’]* “”’
[30] Number ::= Digits (‘.’ Digits?)? | ‘.’ Digits
[31] Digits ::= [0-9]+

 190

[32] Operator ::= OperatorName | MultiplyOperator | ‘/’ | ‘//’ | ‘|’ | ‘+’ | ‘-‘ | ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’
[33] OperatorName ::= ‘and’ | ‘or’ | ‘mod’ | ‘div’
[34] MultiplyOperator ::= ‘*’
[35] FunctionName ::= QName – NodeType
[36] VariableReference ::= ‘$’ QName
[37] NameTest ::= ‘*’ NCName ‘:’ ‘*’ | QName
[38] NodeType ::= ‘comment’ | ‘text’ | ‘processing-instruction’ | ‘node’
[39] ExprWhitespace ::= S

 191

APENDIX V – XPOINTER SYNTAX

[1] XPointer ::= AbsTerm ‘.’ OtherTerms | AbsTerm | OtherTerms
[2] OtherTerms ::= OtherTerm | OtherTerm ‘.’ OtherTerm
[3] OtherTerm ::= RelTerm | SpanTerm | AttrTerm | StringTerm
[4] AbsTerm ::= ‘root()’ | ‘origin()’ | IdLoc | HTMLAddr
[5] IdLoc ::= ‘id(‘ Name ‘)’
[6] HTMLAddr ::= ‘html(‘ SkipLit ‘)’
[7] RelTerm ::= Keyword? Arguments
[8] Keyword ::= ‘child’ | ‘descendant’ | ‘ancestor’ | ‘preceding’ | ‘following’ | ‘psibling’ | ‘fsibling’
[9] Arguments ::= ‘(‘ InstanceOrAll (‘,’ NodeType (‘,’ Attr ‘,’ Val)*)? ‘)’
[10] InstanceOrAll ::= ‘all’ | Instance
[11] Instance ::= (‘+’ | ‘-‘)? [1-9] Digit*
[12] NodeType ::= Name | ‘#element’ | ‘#pi’ | ‘#comment’ | ‘#text’ | ‘#cdata’ | ‘#all’
[13] Attr ::= ‘*’ | Name <!-- any attribute type -->
[14] Value ::= ‘#IMPLIED’ <!-- no value specified, no default -->
 | ‘*’ <!-- any value, even defaulted -->
 | Name
 | SkipLit <!-- exact match -->

 192

APPENDIX VI – EXAMPLES OF PML SCHEMA

1. Coordinate:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "coordinate.xsd"
 Specify the coordinate attributes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="x" type="xsd:double"/>
 <xsd:attribute name="y" type="xsd:double"/>
 <xsd:attribute name="z" type="xsd:double"/>
</xsd:schema>

2. Geometric Point:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "point.xsd"
 Define geometric entity - POINT.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="coordinate.xsd"/>
 <xsd:element name="POINT">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute ref="x" use="required"/>
 <xsd:attribute ref="y" use="required"/>
 <xsd:attribute ref="z" use="required"/>
 <xsd:attribute name="id" type="xsd:string"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 193

3. Vector:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "vector.xsd"
 Define geometric entity - VECTOR.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="coordinate.xsd"/>
 <xsd:element name="VECTOR">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute ref="x" use="required"/>
 <xsd:attribute ref="y" use="required"/>
 <xsd:attribute ref="z" use="required"/>
 <xsd:attribute name="id" type="xsd:string"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 194

4. Point Reference
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "refPoint.xsd"
 Define the reference to geometric entity - POINT.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="refPOINT">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="simple"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:href" type="xsd:string" use="required">
 <xsd:attribute name="xlink:actuate" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="onLoad"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:show" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="replace"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 195

5. Vector Reference:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "refVector.xsd"
 Define the reference to geometric entity - VECTOR.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="refVECTOR">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="simple"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:href" type="xsd:string" use="required">
 <xsd:attribute name="xlink:actuate" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="onLoad"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:show" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="replace"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 196

6. Line:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "line.xsd"
 Define geometric entity - LINE.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="refPoint.xsd"/>
 <xsd:include schemaLocation="refVector.xsd"/>
 <xsd:element name="LINE">
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refPOINT"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refVECTOR"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 197

7. Line Reference:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "refLine.xsd"
 Define the reference to geometric entity - LINE.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="refLINE">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:string>
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="simple"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:href" type="xsd:string" use="required">
 <xsd:attribute name="xlink:actuate" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="onLoad"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:show" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="replace"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 198

8. Plane:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "plane.xsd"
 Define geometric entity - PLANE.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="refPoint.xsd"/>
 <xsd:include schemaLocation="refVector.xsd"/>
 <xsd:include schemaLocation="refLine.xsd"/>
 <xsd:element name="PLANE">
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refPOINT"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element ref="refPOINT"/>
 <xsd:element ref="refVECTOR"/>
 <xsd:element ref="refVECTOR"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element ref="refLINE"/>
 <xsd:element ref="refLINE"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 199

9. Distance Constraint:
<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.pitt.edu"
 xmlns:pml="http://www.pitt.edu"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 elementFormDefault="qualified"
 version="1.0">
 <xsd:annotation>
 <xsd:documentation>
 "conDistance.xsd"
 Define the constraint of distance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="conDISTANCE">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="loc1">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:str ing"/>
 <xsd:simpleContent>
 <xsd:attributeGroup ref="locatorAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="loc2">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:str ing"/>
 <xsd:simpleContent>
 <xsd:attributeGroup ref="locatorAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="arc1">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:str ing"/>
 <xsd:simpleContent>
 <xsd:attributeGroup ref="arcAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="arc2">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:str ing"/>
 <xsd:simpleContent>
 <xsd:attributeGroup ref="locatorAttributes"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>

 200

 </xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:double"/>
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:str ing">
 <xsd:enumeration value="extended"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 <xsd:simpleContent>
 </xsd:element>

 <xsd:attributeGroup name=" locatorAttributes">
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:str ing">
 <xsd:enumeration value="locator"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:label" type="xsd:string" use="required"/>
 <xsd:attribute name="xlink:href" type="xsd:string" use="required"/>
 </xsd:attributeGroup>

 <xsd:attributeGroup name="arcAttributes">
 <xsd:attribute name="xlink:type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:str ing">
 <xsd:enumeration value="arc"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="xlink:from" type="xsd:string" use="required"/>
 <xsd:attribute name="xlink:to" type="xsd:string" use="required"/>
 <xsd:attribute name="xlink:actuate" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:str ing">
 <xsd:enumeration value="onLoad"/>
 <xsd:enumeration value="onRequest"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:attributeGroup>

</xsd:schema>

 201

BIBLIOGRAPHY

[1] Zott, C., Amit, R., and Donlevy, J., “Strategies for value creation in e-commerce: best
practice in Europe”, European Management Journal, Vol. 18, No. 5 (October, 2000), pp. 463-
475.

[2] McMeekin, R., “Manufacturing and the internet – we haven’t seen anything yet!”, Computers
& Chemical Engineering, Vol. 24, No. 2-7 (July, 2000), pp. 161.

[3] Sutherland, Ivan, “Sketchpad: A Man-machine Graphical Communications System”, Ph.D.
Dissertation, Massachusetts Institute of Technology, 1963.

[4] Kao, Y.C. and Lin, G.C.I., “CAD/CAM collaboration and remote machining”, Computer
Integrated Manufacturing Systems, Vol. 9, No. 3 (July, 1996), pp. 149-160.

[5] Parunak, H.V.D., “Distributed Collaborative Design (DisCollab): An ATP Opportunity”
http://www.mel.nist.gov/msid/groups/edt/ATP/white-paper (Whitepaper of NIST-ATP
Workshop: Tools and Technologies for Distributed and Collaborative Design, August, 1997).

[6] ibid.

[7] Blessing, L. and Wallace, K., “Supporting the Knowledge Life-Cycle”, in: Finger, S.,
Tomiyama, T., and Mäntylä, ed., Knowledge Intensive Computer Aided Design, IFIP TC5
WG5.2 Third Workshop on Knowledge Intensive CAD, December 1-4, 1998, Tokyo, Japan,
(Boston, Massachusetts: Kluwer Academic Publishers, 1998), pp.21-38

[8] Wang, Y. and Nnaji, B.O., “Functionality-Based Modular Design for Mechanical Product
Customization Over the Internet”, Journal of Design and Manufacturing Automation, Vol.1,
No.1-2, 2001, pp.107-121

[9] WWW Consortium, http://www.w3.org/XML/

 202

[10] Horváth, L., Rudas, I.J., and Varga, T., “Some Possibilities for Including Knowledge into
Models of Mechanical Parts”, IEEE Proceedings of the 1997 International Conference on
Intelligent Engineering Systems, 1997, pp.527-532

[11] Levesque, H.J. and Brachman, R.J., “A Fundamental Tradeoff in Knowledge Representation
and Reasoning”, in: Brachman, R.J. and Levesque, H.J., ed., Readings in Knowledge
Representation (Los Altos, California: Morgan Kaufmann, 1985), Chapter 4, pp.41-70

[12] Sluder, R., “PDES/STEP: The Cornerstone of CALS”, IEEE Proceedings of the 1990 and
1991 Workshop on Reliability and Maintainability Computer-Aided Engineering in Concurrent
Engineering, Leesburg, 1992, pp.227-230

[13] Pratt, M.J., “Extension of STEP for the Representation of Parametric and Variational
Models”, in: Roller, D. and Brunet, P., ed., CAD Systems Development: Tools and Methods
(Berlin: Springer-Verlag, 1997), pp.237-250

[14] Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems (2nd edition; Menlo Park,
California: Addison-Wesley Publishing Company, 1994), pp.39-68

[15] ibid., pp.611-661

[16] IDEF1X Manual USAF Integrated Computer-Aided Manufacturing Program (D Appleton
Company, USA, 1986)

[17] Kusiak, A., Letsche, T. and Zakarian, A., “Data Modelling with IDEF1X”, International
Journal of Computer Integrated Manufacturing, Vol.10, No.6 (November/December, 1997),
pp.470-486

[18] Verheijen, G.M.A. and Van Bekkum, J., “NIAM: an Information Analysis Method”, in:
Olle, T.W., Sol, H.G. and Verijin-Stuart, A.A., ed., Information Systems Design
Methodologies: A Comparative Review: Proceedings of the IFIP WG8.1 Working Conference
on Cooperative Review of Information Systems Design Methodologies, 10-14 May, 1982,
Noordwijkerhout, Netherlands (Amsterdam: North-Holland Publishing Company, 1982),
pp.537-589

[19] Eastman, C.M. and Fereshetian, N., “Information Models for Use in Product Design: A
Comparison”, Computer-Aided Design, Vol.26, NO.7 (July, 1994), pp.551-572

 203

[20] Brown, D.C. and Birmingham, W.P., “Understanding the Nature of Design”, IEEE Expert,
Vol.12, No.2 (March-April, 1997), pp.14-16

[21] Jackson, Peter, Introduction to Expert Systems (2nd Edition; Workingham, England:
Addison-Wesley, 1990), pp. 72

[22] Brachman, R.J. and Levesque, H.J., ed., Readings in Knowledge Representation (Los Altos,
California: Morgan Kaufmann Publishers, 1985), pp.xiii.

[23] Smith, B.C., “Reflection and Semantics in a Procedural Language”, Ph.D. Dissertation,
Massachusetts Institute of Technology, 1982, pp.2

[24] Reichgelt, H., Knowledge Representation: An AI Perspective (Norwood, New Jersey: Ablex
Publishing Co., 1991)

[25] Davis, R., Buchanan, B., and Shortliffe, E., “Production Rules as a Representation for a
Knowledge-Based Consultation Program”, Artificial Intelligence, Vol.8, No.1 (1977), pp.15-45

[26] Quillian, R., “Semantic Memory”, Ph.D. dissertation, Carnegie Institute of Technology,
1966

[27] Brachman, R.J., “On the Epistemological Status of Semantic Networks”, in: Findler, N.V.,
ed., Associative Networks: Representation and Use of Knowledge by Computers (New York:
Academic Press, 1979), pp.3-50

[28] Hartley, R.T. and Barnden, J.A., “Semantic networks: visualizations of knowledge”, Trends
in Cognitive Sciences, Vol.1, No.5 (August 1997), pp.169-175

[29] Minsky, M., “A Framework for Representing Knowledge”, in: Haugeland, J., ed., Mind
Design (Cambridge, Massachusetts: The MIT Press, 1981), pp.95-128

[30] Bobrow, D.G. and Winograd, T., “An Overview of KRL, a Knowledge Representation
Language”, Cognitive Science, Vol.1, No.1 (1977), pp.3-46

 204

[31] Brachman, R.J. and Schmolze, J.G., “An overview of the KL-ONE knowledge
representation system”, Cognitive Science, Vol.9, No.2 (April-June, 1985), pp.171-216

[32] Woods, W.A. and Schmolze, J.G., “The KL-ONE Falmily”, Computers and Mathematics
with Applications, Vol.23, No.2-9 (1992), pp.1-50

[33] Woods, W.A. “What’s in a Link: Foundations for Semantic Networks”, in: Bobrow, D.G.
and Collins, A.M., ed., Representation and Understanding: Studies in Cognitive Science (New
York: Academic Press, 1975), pp.35-82

[34] Brachman, R.J., Fikes, R.E., and Levesque, H.J., “KRYPTON: A Functional Approach to
Knowledge Representation”, IEEE Computer, Vol.16, No.10 (1983), pp.67-73

[35] Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., and Borgida, A., “’Reducing’
CLASSIC to Practice: Knowledge Representation Theory Meets Reality”, Artificial
Intelligence, Vol.114, No.1-2 (October, 1999), pp.203-237

[36] McGuinness, D.L. and Wright, J.R., “An Industrial-Strength Description Logic-Based
Configurator Platform”, IEEE Intelligent System, Vol.13, No.4 (July/August, 1998), pp.69-77

[37] McGuinness, D.L. and Wright, J.R., “Conceptual Modelling for Configuration: A
Description Logic-Based Approach”, Artificial Intelligentce for Engineering Design, Analysis
and Manufacturing: AIEDAM, Vol.12, No.4 (September, 1998), pp.333-344

[38] Wilensky, R., “Knowledge Representation - A Critique and A Proposal”, in: Kolodner, J.L.
and Riesbeck, C.K., ed., Experience, Memory, and Reasoning (Hillsdale, New Jersey:
Lawrence Erlbaum Associates, 1986), Chapter 2, pp.15-28

[39] Borgida, A., Greenspan, S. and Mylopoulos, J., “Knowledge Representation as the basis for
Requirements Specification”, IEEE Computer, Vol.18, No.4 (April, 1985), pp.82-91

[40] Mylopoulos, J., Borgida, A., Jarke, M. and Koubarakis, M., “Telos: Representing
Knowledge About Information Systems”, ACM Transactions on Information Systems, Vol.8,
No.4 (October, 1990), pp.325-362

 205

[41] Greenspan, S., Mylopoulos, J., and Borgida, A., “On Formal Requirements Modeling
Language: RML Revisited”, Proceedings of the 16th International Conference on Software
Engineering, 16-21 May, 1994 (Los Alamitos, California: IEEE Computer Society Press,
1994), pp.135-147

[42] Genesereth, M. R. And Fikes, R. E., Knowledge Interchange Format, version 3.0, Reference
Manual, Logic-92-1 (Stanford, California: Computer Science Department, Stanford University,
1992)

[43] Gruber, T. R., “A Translation Approach to Portable Ontology Specifications”, Knowledge
Acquisition, Vol.5, No.2 (1993), pp.199-220

[44] Finin, T., Fritzson, R., McKay, D., and McEntire, R., “KQML as an agent communication
language”, Proceedings of the Third International Conference on Information and Knowledge
Management, November 29 - December 2, 1994, Gaithersburg, MD USA (ACM Press, 1994),
pp.456-463

[45] Compatangelo, E. and Rumolo, G., “EDDLDP + TDDLDP = a Double-Level Approach to
Domain Knowledge Modelling”, in: Kangassalo, H. and Nilsson, J.F., ed., Information
Modelling and Knowledge Bases VIII (Amsterdam: IOS Press, 1997), pp.279-295

[46] Compatangelo, E. and Rumolo, G., “An Engineering Framework for Domain Knowledge
Modelling”, in: Charrel, P.J., Jaakkola, H., Kangassalo, H. and Kawaguchi, E., ed., Information
Modelling and Knowledge Bases IX (Amsterdam: IOS Press, 1998), pp.51-65

[47] Compatangelo, E., Donini, F.M. and Rumolo, G., “Engineering of KR-Based Support
Systems for Conceptual Modelling & Analysis”, in: Jaakkola, H., Kangassalo, H. and
Kawaguchi, E., ed., Information Modelling and Knowledge Bases X (Amsterdam: IOS Press,
1999), pp.115-131

[48] Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S.,
Knowledge-Based Design Systems (Reading, Massachusetts: Addison-Wesley Publishing
Company, 1990)

[49] Veth, B., “An Integrated Data Description Language for Coding Design Knowledge”, in:
ten Hagen, P.J.W. and Tomiyama, T., ed., Intelledge CAD System I: Theoretical and
Methodological Aspects (Berlin: Springer-Verlag, 1987), pp. 295-313

 206

[50] Tomiyama, T., “Object Oriented Programming Paradigm for Intelligent CAD Systems”, in:
Akman, V., ten Hagen, P.J.W. and Veerkamp, P.J., ed., Intelligent CAD System II:
Implementational Issues (Berlin: Springer-Verlag, 1989), pp. 3-16,

[51] Veerkamp, P., Akman, V., Bernus, P., and ten Hagen, P.J.W., “IDDL: A Language for
Intelligent Interactive Integrated CAD Systems”, in: Akman, V., ten Hagen, P.J.W. and
Veerkamp, P.J., ed., Intelligent CAD System II: Implementational Issues (Berlin: Springer-
Verlag, 1989), pp. 58-74

[52] Tomiyama, T., “Advances in Intelligent CAD Systems”, in: Ören, T.I., ed., Advances in
Artificial Intelligence in Software Engineering, Vol.1 (Greenwich, Connecticut: JAI Press Inc.,
1990), pp.251-283

[53] Eastman, C.M., “A Data Model for Design Knowledge”, in: Carrara, G. and Kalay, Y.E.,
ed., Knowledge-Based Computer-Aided Architectural Design (Amsterdam: Elsevier, 1994),
pp.95-122

[54] Salustri, F.A. “Ontological Commitments in Knowledge-Based Design Software: A
Progress Report”, in: Finger, S., Tomiyama, T., and Mantyla, M., ed., Knowledge Intensive
Computer Aided Design, IFIP TC5 WG5.2 Third Workshop on Knowledge Intensive CAD,
December 1-4, 1998, Tokyo, Japan (Boson: Kluwer Academic Publishers, 1998), pp.41-72

[55] Ozawa, M., Cutkosky, M.R., and Howley, B.J., “Model Sharing among Agents in a
Concurrent Product Development Team”, in: Finger, S., Tomiyama, T., and Mantyla, M., ed.,
Knowledge Intensive Computer Aided Design, IFIP TC5 WG5.2 Third Workshop on
Knowledge Intensive CAD, December 1-4, 1998, Tokyo, Japan (Boson: Kluwer Academic
Publishers, 1998), pp.143-165

[56] Spooner, D.L., “Towards an Object-Oriented Data Model for a Mechanical CAD Database
System”, in: Dittrich, K.R., Dayal, U., and Buchmann, A.P., ed., On Object-Oriented Database
Systems (Berlin: Springer-Verlag, 1991), pp.190-205

[57] Hoare, C.A.R., “Notes on Data Structuring”, in: Dahl, O.J., Dijkstra, E.W. and Hoare,
C.A.R., ed., Structured Programming (London: Academic Press, 1972), pp.83-174

[58] Smith, J.M and Smith, D.C.P., “Database Abstractions: Aggregation”, Communications of
ACM, Vol.20, No.6 (June 1977), pp.405-413

 207

[59] Smith, J.M. and Smith, D.C.P., “Database Abstractions: Aggregation and Generalization”,
ACM Transactions on Database Systems, Vol.2, No.2 (June 1977), pp.105-133

[60] MathML, http://www.w3.org/Math/

[61] Chemical Markup Language, http://www.xml-cml.org/

[62] Synchronized Multimedia Integration Language, http://www.w3.org/AudioVideo/

[63] Scalable Vector Graphics, http://www.w3.org/Graphics/SVG/Overview.htm8

[64] Electronic Business Extensible Markup Language, http://www.ebxml.org/

[65] Open Financial Exchange, http://www.ofx.net/

[66] Wireless Markup Language, http://www.wapforum.org/

[67] OASIS XML Cover Pages, http://www.oasis-open.org/cover/xml.html

[68] Ratchev, S.M., Shiau, J. and Valtchanov, G., “Distributed Product and Facility prototyping
in Extended Manufacturing Enterprises”, International Journal of Production Research,
Vol.38, No.17 (2000), pp.4495-4506

[69] Kahn, H., Filer, N., Williams, A. and Whitaker, N., “A Generic Framework for
Transforming EXPRESS Information Models”, Computer-Aided Design, Vol.33, No.7 (June
2001), pp.501-510

[70] Burkett, W.C., “Product Data Markup Language: A New Paradigm for Product Data
Exchange and Integration”, Computer-Aided Design, Vol.33, No. 7 (June 2001), pp.489-500

[71] Szykman, S., Senfaute, J., and Sriram, R.D., “The Use of XML for Describing Functions
and Taxonomies in Computer-Based Design”, Proceedings of the 1999 ASME Design
Engineering Technical Conferences, September 12-15, 1999, Las Vegas, Nevada (New York:
ASME), paper No. DETC99/CIE-9025

 208

[72] Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., and Senfaute, J., “Design
Repositories: Engineering Design’s New Knowledge Base”, IEEE Intelligent Systems, Vol.15,
No. 3 (May-June 2000), pp.48-55

[73] W3C XML 1.0 recommendation, http://www.w3.org/TR/REC-xml/

[74] Goldfarb, Charles F., The SGML Handbook (Oxford: Oxford University Press, 1990), 4.183,
pp.125

[75] XML Schema work draft, http://www.w3.org/TR/xmlschema-0/,
http://www.w3.org/TR/xmlschema-1/, http://www.w3.org/TR/xmlschema-2/,

[76] XML Xlink, http://www.w3.org/TR/xlink/

[77] Hillyard, R.C. and Braid, I.C., “Analysis of Dimensions and Tolerances in Computer-Aided
Mechanical Design”, Computer-Aided Design, Vol.10, No.3 (May 1978), pp.161-166

[78] Light, R. and Gossard, D., “Modification of Geometric Models Through Variational
Geometry”, Computer-Aided Design, Vol. 14, No. 4 (July 1982), pp.209-214

[79] Perez, A. and Serrano, D., “Constraint Based Analysis Tools for Design”, ACM
Proceedings on the 2nd Symposium on Solid Modeling and Applications, 1993, Montreal,
Quebec, Canada, pp.281-291

[80] Lamure, H. and Michelucci, D., “Solving Geometric Constraints by Homotopy”,
Proceedings of the Third ACM Symposium on Solid Modeling and Applications, May 17-19,
1995, Salt Lake City, Utah, pp.263-269

[81] Ge, J-X, Chou, S-C, and Gao, X-S, “Geometric Constraint Satisfaction Using Optimization
Methods”, Computer-Aided Design, Vol.31, No.14 (December, 1999), pp.867-879

[82] Mullineux, G, “Constraint Resolution Using Optimisation Techniques”, Computers &
Graphics, Vol.25, No.3 (June 2001), pp.483-492

 209

[83] Sunde, G., “Specification of Shape by Dimensions and Other Geometric Constraints”, In:
Wozny, M.J., McLaughlin, H.W., and Encarnacao, J.L., ed., Geometric Modeling for CAD
Applications, IFIP WG 5.2 Working Conference on Geometric Modeling for CAD Applications,
May 12-16, 1986, Rensselaerville, New York, (Amsterdam: North-Holland, 1988), pp.199-213

[84] Yamaguchi, Y., and Kimura, F., “A Constraint Modeling System for Variational
Geometry”, In: Wozny, M.J., Turner, J.U. and Preiss, K., ed., Geometric Modeling for Product
Engineering, IFIP WG 5.2/NSF Working Conference on Geometric Modeling, September 18-
22, 1988, Rensselaerville, New York, (Amsterdam: North-Holland, 1990), pp.221-233

[85] Aldfeld, B., “Rule-Based Approach to Variational Geometry”, In: Smith, A., ed.,
Knowledge Engineering and Computer Modelling in CAD, Proceedings of the 7th International
Conference on the Computer as a Design Tool, September 2-5, 1986, London, pp.59-67

[86] Aldefeld, B., “Variation of Geometries Based on a Geometric-Reasoning Method”,
Computer-Aided Design, Vol. 20, No. 3 (April 1988), pp.117-126

[87] Roller, D., “An Approach to Computer-Aided Parametric Design”, Computer-Aided Design,
Vol. 23, No. 5 (June 1991), pp.385-391

[88] Lee, J.Y. and Kim, K., “Geometric Reasoning for Knowledge-based Parametric Design
Using Graph Representation”, Computer-Aided Design, Vol. 28, No. 10 (October 1996), pp.
831-841

[89] Buchberger, B., Collins, G. and Kutzler, B., “Algebraic Methods for Geometric Reasoning”,
Annual Review of Computer Science, Vol. 3 (1988), p.85-120

[90] Kondo, K., “PIGMOD: Parametric and Interactive Geometric Modeller for Mechanical
Design”, Computer-Aided Design, Vol. 22, No. 10 (December 1990), pp.633-644

[91] Kondo, K, “Algebraic Method for Manipulation of Dimensional Relationships in Geometric
Models”, Computer-Aided Design, Vol. 24, No. 3 (March 1992), pp.141-147

[92] Gao, X-S and Chou, S-C, “Solving Geometric Constraint Systems II: A Symbolic Approach
and Decision of Rc-constructibility”, Computer Aided-Design, Vol.30, No.2 (February 1998),
pp.115-122

 210

[93] Chyz W., “Constraint Management for CSG”, Master Thesis, Massachusetts Institute of
Technology, 1985

[94] Gossard, D.C., Zuffante, R.P. and Sakurai, H., “Representing Dimensions, Tolerances, and
Features in MCAE Systems”, IEEE Computer Graphics & Applications, Vol. 8, No. 3 (March
1988), pp.51-59

[95] Owen, J.C., “Algebraic Solution for Geometry from Dimensional Constraints”, ACM
Proceedings of the First Symposium on Solid Modeling Foundations and CAD/CAM
Applications, 1991, Austin, Texas, pp.397-407

[96] Kramer, G.A., “A Geometric Constraint Engine”, Artificial Intelligence, Vol. 58 (1992),
pp.327-360

[97] Hsu, C.Y., and Bruderlin, B., “Constraint Objects – Integrating Constraint Definition and
Graphical Interaction”, ACM Proceedings of the Second Symposium on Solid Modeling and
Applications, 1993, Montreal, Quebec, Canada, pp.467-468

[98] Solano, L. and Brunet, P., “Constructive Constraint-Based Model for Parametric CAD
Systems”, Computer-Aided Design, Vol. 26, No. 8 (August 1994), pp.614-621

[99] Bouma, W., Fudos, I., Hoffmann, C., Cai, J. and Paige, R., “Geometric Constraint Solver”,
Computer-Aided Design, Vol. 27, No. 6 (June 1995), pp.487-501

[100] Anantha, R., Kramer, G.A., and Crawford, R.H., “Assembly Modelling by Geometric
Constraint Satisfaction”, Computer-Aided Design, Vol.28, No.9 (September 1996), pp.707-722

[101] Latham, R.S. and Middleditch, A.E., “Connectivity Analysis: a Tool for Processing
Geometric Constraints”, Computer-Aided Design, Vol.28, No.11 (November 1996), pp.917-
928

[102] Fudos, I. and Hoffmann, C.M., “A Graph-Constructive Approach to Solving systems of
Geometric Constraints”, ACM Transactions on Graphics, Vol.16, No.2 (April 1997), pp.179-
216

 211

[103] Lee, J.Y. and Kim, K., “A 2-D Geometric Constraint Solver Using DOF-Based Graph
Reduction”, Computer-Aided Design, Vol. 30, No. 11 (September 1998), pp.883-896

[104] Hoffmann, C.M., Lomonosov, A., and Sitharam, M., “Decomposition Plans for Geometric
Constraint Systems, Part I: Performance Measures for CAD”, Journal of Symbolic
Computation, Vol.31, No.4 (2001), pp.367-408

[105] Hoffmann, C.M., Lomonosov, A., and Sitharam, M., “Decomposition Plans for Geometric
Constraint Systems, Part II: New Algorithms”, Journal of Symbolic Computation, Vol.31, No.4
(2001), pp.409-427

[106] Shih, C.H. and Anderson, B., “A Design/Constraint Model to Capture Design Intent”,
ACM Proceedings of the Fourth Symposium on Solid Modeling and Applications, May 14-16,
1997, Atlanta, Georgia, pp.255-264

[107] Pratt, M.J., “Requirements Analysis for an Explicit Constraints Schema for STEP”, ISO
TC184/SC4/WG3 N502 (T1/Parametrics) May 10th, 1996 ,
http://www.nist.gov/sc4/paramet/short/iso/n502.pdf

[108] Shah, J.J. and Rogers, M.T., “Functional Requirements and Conceptual Design of the
Feature-based Modeling System”, Computer-Aided Engineering Journal, Vol.5, No.1
(February 1988), pp.9-15

[109] Shah, J.J. and Rogers, M.T., “Expert Form Feature Modeling Shell”, Computer-Aided
Design, Vol.20, No.9 (November 1988), pp.515-524

[110] Hoffmann, C.M. and Juan, R., “Erep – An Editable, High-Level Representation for
Geometric Design and Analysis”, In: Wilson, P., Wozny, M., and Pratt, M., ed., Geometric
Modeling for Product Realization (North-Holland, 1993) pp.129-164

[111] Chen, X. and Ho Hoffmann, C.M., “Towards Feature Attachment”, Computer-Aided
Design, Vol.27, No.9 (September 1995), pp.695-702

[112] Chen, X and Hoffmann, C.M., “On Editability of Feature-based Design”, Computer-Aided
Design, Vol.27, No.12 (December 1995), pp.905-914

 212

[113] Hoffmann, C.M., “EREP Project Overview”, In: Roller, D. ad Brunet, P., ed., CAD
Systems Development (Berlin: Springer, 1997), pp.32-40

[114] Hoffmann, C.M. and Joan-Arinyo, R., “On User-defined Features”, Computer-Aided
Design, Vol.30, No.5 (April 1998), pp.321-332

[115] Middleditch A. and Reade, C., “A Kernel for Geometric Features”, Proceedings of the
Fourth ACM Symposium on Solid Modeling and Applications, May 14-16, 1997, Atlanta,
Georgia, pp.131-140

[116] National Institute of Standards and Technology,
http://www.nist.gov/sc4/paramet/short/engen/edm46.pdf

[117] Pratt, M.J. and Anderson, B.D., “A Shape Modeling Applications Programming Interface
for the STEP Standard”, Computer-Aided Design, Vol.33, No.7 (June 2001), pp.531-543

[118] National Institute of Standards and Technology, Product Data Exchange Specification:
The First Working Draft, NISTIR88-4004, February 1988

[119] Shah, J.J. and Mathew, A., “Experimental Investigation of The STEP Form-Feature
Information Model”, Computer-Aided Design, Vol.23, No.4 (May 1991), pp.282-296

[120] Roy, U. and Liu, C.R., “Feature Based Representational Scheme of a Solid Modeler for
Providing Dimensioning and Tolerancing Information”, Robotics and Computer-Integrated
Manufacturing, Vol.4, No.3/4 (1988), pp.335-345

[121] Wang, N. and Ozsoy, M., “A Scheme to Represent Features, Dimensions, and Tolerances
in Geometric Modeling”, Journal of Manufacturing Systems, Vol.10, No.3 (1991), pp.233-240

[122] Gomes, A.J.P. and Teixeira, J.C.G., “Form Feature Modelling in a Hybrid CSG/Brep
Scheme”, Computers & Graphics, Vol.15, No.2 (1991), pp.217-229

[123] Rossignac, J.R., “Issues on Feature-based Editing and Interrogation of Solid Models”,
Computers & Graphics, Vol.14, No.2 (1990), pp.149-172

 213

[124] Kim, C. and O’Grady, P.J., “A Representation Formalism for Feature-based Design”,
Computer-Aided Design, Vol.28, No.6/7 (June 1996), pp.451-460

[125] Goldberg, D., “What Every Computer Scientist Should Know About Floating-Point
Arithmetic”, ACM Computing Surveys, Vol.23, No.1 (March 1991), pp.5-48

[126] Segal, M. and Séquin, C. H., “Consistent Calculations for Solids Modeling”, Proceedings
of the First Annual Symposium on Computational Geometry, June 05-07, 1985, Baltimore,
Maryland, p.29-38

[127] Ottmann, T., Theimt, G., and Ullrich, C., “Numerical Stability of Geometric Algorithms”,
Proceedings of the Third Annual Symposium on Computational Geometry, June 08-10, 1987,
Waterloo, Ontario, Canada, p.119-125

[128] Dobkin D. and Silver, D., “Recipes for Geometry and Numerical Analysis, Part I: An
Empirical Study”, Proceedings of the Fourth ACM Symposium on Computational Geometry,
June 06-08, 1988, Urbana-Champaign, Illinois, pp.93-105

[129] Hoffmann, C.M., “The Problems of Accuracy and Robustness in Geometric Computation”,
IEEE Computer, Vol.22, No.3 (March 1989), pp.31-41

[130] C.M. Hoffmann, Geometric and Solid Modeling: An Introduction (San Mateo, California:
Morgan Kaufmann, 1989), Chapter 4, pp.111-154

[131] Sugihara, K. and Iri, M., “A Solid Modeling System Free from Topological
Inconsistency”, Journal of Information Processing, Vol.12, No.4 (1989), pp.380-393

[132] Benouamer, M.O., Jaillon, P., Michelucci, D., and Moreau, J.M., “A ‘Lazy’ Solution to
Imprecision in Computational Geometry”, Proceedings of the Fifth Canadian Conference on
Computational Geometry, Auguest 5-9, 1993, Waterloo, Ontario, Canada, pp.73-78

[133] Yap, C.K., “Towards Exact Geometric Computation”, Proceedings of the Fifth Canadian
Conference on Computational Geometry, Auguest 5-9, 1993, Waterloo, Ontario, Canada,
pp.405-419

 214

[134] Fortune, S., “Polyhedral Modelling with Exact Arithmetic”, Proceedings of the Third ACM
Symposium on Solid Modeling and Applications, May17-19, 1995, Salt Lake City, Utah,
pp.225-234

[135] Fortune, S. and Van Wyk, C.J., “Static Analysis Yields Efficient Exact Integer Arithmetic
for Computational Geometry”, ACM Transactions on Graphics, Vol.15, No.3 (July 1996),
pp.223-248

[136] Hoffmann, C.M., Hopcroft, J.E., and Karasick, M.S., “Towards Implementing Robust
Geometric Computations”, Proceedings of the Fourth ACM Symposium on Computational
Geometry, June 06-08, 1988, Urbana-Champaign, Illinois, pp.106-117

[137] Hoffmann, C.M., Hopcroft, J.E., and Karasick, M.S., “Robust Set Operations on
Polyhedral Solids”, IEEE Computer Graphics and Applications, Vol.9, No.6 (November 1989),
pp.50-59

[138] Segal, M., “Using Tolerances to Guarantee valid Polyhedral Modeling Results”, Computer
Graphics, Vol.24, No.4 (August 1990), pp.105-114

[139] Sederberg, T.W. and Farouki, R.T., “Approximation by Interval Bezier Curves”, IEEE
Computer Graphics and Applications, Vol.12, No.5 (September 1992), pp.87-95

[140] Hu, C.Y., Patrikalakis, N. M., and Ye, X., “Robust Interval Solid Modeling, Part I:
Representations”, Computer-Aided Design, Vol.28, No.10 (October, 1996), pp.807-817

[141] Abrams, S.L., Cho, W., Hu, C.-Y., Maekawa, T., Patrikalakis, N.M, Sherbrooke, E.C., and
Ye, X., “Efficient and Reliable Methods for Rounded-Interval Arithmetic”, Computer-Aided
Design, Vol.30, No.8 (July 1998), pp.657-665

[142] Capoyleas, V., Chen, X., and Hoffmann, C.M., “Generic Naming in Generative Constraint-
based Design”, Computer-Aided Design, Vol.28, No.1 (January 1996), pp.17-26

[143] Atallah, Mikhail J., ed., Algorithms and Theory of Computation Handbook (Boca Raton:
CRC Press, 1999)

 215

[144] Kripac, J. “A Mechanism for Persistently Naming Topological Entities in History-based
parametric Solid Models (Topological ID System)”, Proceedings of the Third ACM Symposium
on Solid Modeling and Applications, May17-19, 1995, Salt Lake City, Utah, pp.21-30

[145] Kripac, J., “A Mechanism for Persistently Naming Topological Entities in History-based
Parametric Solid Models”, Computer-Aided Design, Vol.29, No.2 (February 1997), pp.113-122

[146] Wu, J., Zhang, T., Zhang, X., and Zhou, J., “A Face Based Mechanism for Naming,
Recording and Retrieving Topological Entities”, Computer-Aided Design, Vol.33, No.10
(September 2001), pp.687-698

[147] Shapiro, V. and Vossler, D.L., “What is a Parametric Family of Solids”, Proceedings of the
Third ACM Symposium on Solid Modeling and Applications, May 17-19, 1995, Salt Lake City,
Utah, pp.43-54

[148] Stewart, N.F., “Sufficient Condition for Correct Topological Form in Tolerance
Specification”, Computer-Aided Design, Vol.25, No.1 (January 1993), pp.39-48

[149] Raghothama, S. and Shapiro, V., “Necessary Conditions for Boundary Representation
Variance”, Proceedings of the Thirteenth ACM Annual Symposium on Computational
Geometry, June 4-6, 1997, Nice, France, pp.77-86

[150] Raghothama, S. and Shapiro, V., “Topological Framework for Part Families”, Proceedings
of the Seventh ACM Symposium on Solid Modeling and Applications, June 17-21, 2002,
Saarbrűcken, Germany, pp.1-12

[151] Lachlan, R. An Elementary Treatise on Modern Pure Geometry (London: Macmillan,
1893), Chapter 1, pp.4-5

[152] Bell, E.T., The Development of Mathematics, 2nd ed., (New York: McGraw-Hill, 1945),
Chapter 15, pp.340

[153] C.M. Hoffmann, Geometric and Solid Modeling: An Introduction (San Mateo, California:
Morgan Kaufmann, 1989), Chapter 5, pp.193-203

 216

[154] Dwyer, P.S., “Computation with Approximate numbers”, In: Dwyer, P.S., ed., Linear
Computations (New York: Wiley, 1951), pp.11-34

[155] Warmus, M., “Calculus of Approximations”, Bulletin of Academy of Poland Sciences,
Cl.III, Vol.IV, No.5 (1956), pp.253-259

[156] Warmus, M., “Approximations and Inequalities in the Calculus of Approximations:
Classification of Approximate Numbers”, Bulletin of Academy of Poland Sciences, Series of
Mathematics, astr: et phys., Vol.IX, No.4 (1961), pp.241-245

[157] Sunaga, T., “Theory of Interval Algebra and Its Application to Numerical Analysis”,
RAAG Memoirs 3, pp.29-46

[158] Moore, R.E., Interval Analysis (Englewood Cliffs, New Jersey: Prentice-Hall, 1966)

[159] Hansen, E.R., “Interval Arithmetic in Matrix Computations, Part I”, SIAM Journal on
Numerical Analysis, Vol. 2, (1965), pp.308-320

[160] Moore, R.E., Methods and Applications of Interval Analysis (Philadelphia: SIAM, 1979)

[161] Alefeld, G. and Herzberger, J., Introduction to Interval Computations (New York:
Academic Press, 1983)

[162] Moore, R.E., ed., Reliability in Computing: The Role of Interval Methods in Scientific
Computing (Boston: Academic Press, 1988)

[163] Hansen, E., Global Optimization Using Interval Analysis (New York: Marcel Dekker,
1992)

[164] Alefeld, G., and Mayer, G., “Interval Analysis: Theory and Application”, Journal of
Computational and Applied Mathematics, Vol.121, No.1-2 (September 2000), pp.421-464

[165] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., Applied Interval Analysis (London:
Springer, 2001)

 217

[166] Mudur, S.P. and Koparkar, P.A., “Interval Methods for Processing Geometric Objects”,
IEEE Computer Graphics and Applications, Vol.4, No.2 (February 1984), pp.7-17

[167] Toth, D.L., “On Ray Tracing Parametric Surfaces”, Computer Graphics, Vol.19, No.3
(July 1985), pp.171-179

[168] Kalra, D. and Barr, A.H., “Guaranteed Ray Intersections with Implicit Surfaces”,
Computer Graphics, Vol.23, No.3 (July 1989), pp.297-304

[169] Moore, M. and Wilhelms, J., “Collision Detection and Response for Computer
Animation”, Computer Graphics, Vol.22, No.4 (August 1988), pp.289-298

[170] Von Herzen, B., Barr, A.H. and Zatz, H.R., “Geometric Collisions for Time-Dependent
Parametric Surfaces”, Computer Graphics, Vol.24, No.4 (August 1990), pp.39-48

[171] Duff, T., “Interval Arithmetic and Recursive Subdivision for Implicit Functions and
Constructive Solid Geometry”, Computer Graphics, Vol.26, No.2 (July 1992), pp.131-138

[172] Snyder, J.M., Woodbury, A.R., Fleischer, K., Currin, B., and Barr, A.H., “Interval
Methods for Multi-Point Collisions Between Time-Dependant Curved Surfaces”, ACM
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
, September 1993, New York, NY, pp.321-334

[173] Wallner, J., Krasauskas, R., and Pottmann, H., “Error Propagation in Geometric
Constructions”, Computer-Aided Design, Vol.32, No.11 (September, 2000), pp.631-641

[174] Lin, H., Liu, L., and Wang, G., “Boundary Evaluation for Interval Bezier Curve”,
Computer-Aided Design, Vol.34, No.9 (August, 2002), pp.637-646

[175] Ratschek, H. and Rokne, J., New Computer Methods for Global Optimization (New York:
Ellis Horwood Limited, 1988), Ch.2, pp.28-29

[176] Hansen, E., “An Overview of Global Optimization Using Interval Analysis”, In: Moore,
R.E., eds., Reliability in Computing: The Role of Interval Methods in Scientific Computing
(Boston: Academic Press, 1988), , pp.289-305

 218

[177] Nickel, K., “How to Fight the Wrapping Effect”, In: Nickel, K., eds., Proceedings of the
International Symposium on Interval Mathematics, September 23-26, 1985, Freiburg i. Br.,
Germany, pp. 121-132

[178] Yamamura, K., “An Algorithm for Representing Functions of Many Variables by
Superpositions of Functions of One Variable and Addition”, IEEE transactions on Circuits and
Systems – I: Fundamental Theory and Application, Vol.43, No.4 (April, 1996), pp.338-340

[179] Kolev, L.V., “A New Method for Global Solution of Systems of Non-linear Equations”,
Reliable Computing, Vol.4, No.2 (May, 1998), pp.125-146

[180] Kolev, L.V., “Automatic Computation of a Linear Interval Enclosure”, Reliable
Computing, Vol.7, No.1 (February, 2001), pp.17-28

[181] Hansen, E.R. and Greenberg, R.I., “An Interval Newton Method”, Applied Mathematics
and Computation, Vol.12, No.2-3 (May, 1983), pp.89-98

[182] Collins, G.E. and Johnson, J.R., “Quantifier Elimination and the Sign Variation Method for
Real Root Isolation”, Proceedings of the ACM-SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation, July 17-19, 1989 Portland, Oregon, pp.264-271

[183] Collins, G.E. and Akritas, A.G., “Polynomial Real Root Isolation Using Descarte’s Rule of
Signs”, Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation,
August 10-12, 1976, Yorktown Heights, New York, pp.272-275

[184] Nnaji, B.O., Wang, Y., Kim, K.Y., and Muogboh, O.S., “PEGASUS: A Service-Oriented
Product Engineering System Over the Internet”, IIE Transactions, under review, 2002

 219

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0 INTRODUCTION
	1.1 Role of Internet in Product Design
	1.2 Importance of Capturing Knowledge in Design
	1.3 Research Objectives and Overview

	2.0 DESIGN KNOWLEDGE REPRESENTATION FOR CAD
	2.1 Current Standard Formats
	2.1.1 The Initial Graphics Exchanges Specification (IGES)
	2.1.2 The Standard for the Exchange of Product Model Data (STEP)

	2.2 General Data Models
	2.3 Design Knowledge Representation
	2.3.1 General Knowledge Representation Languages
	2.3.2 Design Modeling Languages
	2.3.3 Requirements for Design Information and Constraint Represent

	3.0 UNIVERSAL LINKAGE MODEL
	3.1 Information Elements of UL Model
	3.2 Directed Hyper Graph
	3.3 Universal Linkage among Entities

	4.0 SYNTAX AND SEMANTICS OF PRODUCT MARKUP LANGUAGE
	4.1 The Syntax of PML
	4.2 The Schema of PML
	4.3 Graph Decomposition
	4.4 Demonstration

	5.0 DESIGN FEATURE AND CONSTRAINT REPRESENTATION
	5.1 Design Feature Representation
	5.1.1 Dual representation of features
	5.1.2 Feature dependency

	5.2 Geometric Constraint Representation
	5.2.1 Robustness in Geometric Computation
	5.2.2 Interval-value numerical constraints

	5.3 Non-geometric Constraint Representation
	5.4 Entity ID Persistency
	5.4.1 Parametric family
	5.4.2 Semantic ID
	5.4.3 Curve, Edge, and Point Mapping

	6.0 INTERVAL GEOMETRIC MODELING
	6.1 Preliminaries of Traditional Interval Analysis
	6.2 Concepts of Interval Geometric Modeling (IGM)
	6.2.1 Interval Definitions in IGM
	6.2.2 Sampling Relation between Real Number and Interval Number

	6.3 Geometry Description in IGM
	6.3.1 Modeling Uncertainty in IGM
	6.3.2 Solving Under-constrained Problems
	6.3.3 Solving Over-constrained Problems

	6.4 Solving Equations in Interval Geometric Modeling
	6.4.1 Interval Linear Equations
	6.4.2 Interval Nonlinear Equations
	6.4.3 Interval Inequalities
	6.4.4 A Numerical Example

	6.5 Design Refinement
	6.5.1 Interval Subdivision
	6.5.2 Constraint Re-specification

	7.0 IMPLEMENTATIONS AND TESTS
	7.1 Service Architecture of Pegasus
	7.2 UL-PML Scheme in Collaborative Design
	7.2.1 PML Modeler
	7.2.2 Lean Information Transfer Based on HTTP
	7.2.3 Lean Information Transfer Based on CORBA
	7.2.4 Distributed Design Information Integration
	7.2.5 Mapping Between Native CAD Data Models and PML Model
	7.2.6 Constraint Propagation and Management

	8.0 SUMMARY AND FUTURE WORK
	APPENDIX I – XML SYNTAX
	APPENDIX II – XML NAMESPACE SYNTAX
	APPENDIX III – XLINK SYNTAX
	APPENDIX IV – XPATH SYNTAX
	APENDIX V – XPOINTER SYNTAX
	APPENDIX VI – EXAMPLES OF PML SCHEMA
	BIBLIOGRAPHY

