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ABSTRACT 

 
CONSTRAINT-ENABLED DESIGN INFORMATION REPRESENTATION FOR  

MECHANICAL PRODUCTS OVER THE INTERNET 
 

Yan Wang, Ph.D. 
 

University of Pittsburgh, 2003 
 
 

Global economy has made manufacturing industry become more distributed than ever 

before. Product design requires more involvement from various technical disciplines at different 

locations. In such a geographically and temporally distributed environment, efficient and 

effective collaboration on design is vital to maintain product quality and organizational 

competency. Interoperability of design information is one of major barriers for collaborative 

design. Current standard CAD data formats do not support design collaboration effectively in 

terms of design information and knowledge capturing, exchange, and integration within the 

design cycle. Multidisciplinary design constraints cannot be represented and transferred among 

different groups, and design information cannot be integrated efficiently within a distributed 

environment. Uncertainty of specification cannot be modeled at early design stages, while 

constraints for optimization are not embedded in design data.  

In this work, a design information model, Universal Linkage model, is developed to 

represent design related information for mechanical products in a distributed form. It 

incorporates geometric and non-geometric constraints with traditional geometry and topology 

elements, thus allows more design knowledge sharing in collaborative design. Segments of 
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design data are linked and integrated into a complete product model, thus support lean design 

information capturing, storage, and query. The model is represented by Directed Hyper Graph 

and Product Markup Language to preserve extensibility and openness. Incorporating robustness 

consideration, an Interval Geometric Modeling scheme is presented, in which numerical 

parameters are represented by interval values. This scheme is able to capture uncertainty and 

inexactness of design and reduces the chances of conflict in constraint imposition. It provides a 

unified constraint representation for the process of conceptual design, detailed design, and design 

optimization. Corresponding interval constraint solving methods are studied.  
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1.0 INTRODUCTION 

The emergence of Internet technologies and their widespread proliferation has had a 

tremendous impact on industry. The Internet provides a convenient medium for faster business 

transactions. High-speed business information exchange over Internet shrinks the span of both 

time and space. Free information flow facilitates a global free market. The global market has a 

trend to shift its gravity to e-business. For example, US companies invested $9.5 billion on the 

Internet over the first 10 months of 1999. European venture capitalists (VCs) invested $333.9 

million in Internet companies over the same period [1]. With business-to-business e-commerce 

expecting to top $1.3 trillion by 2003, the Internet is a key driving force in the new millennium 

as manufacturers strive to optimize their supply chain [2]. Nevertheless, the Internet brings 

challenges to manufacturers. Within the spectrum of product management activities, faster 

discovery of customer needs, greater customization of the products to meet the customer needs, 

faster new product testing, and shorter product life cycles are issues that manufacturers are 

facing. One of the keys to improving the performances stated above is faster and better product 

design. How to shorten product design cycle time is the major question to answer. 

Computer-Aided Design (CAD) systems are crucial tools for engineers in various fields, 

such as mechanical, electrical, software, chemical, architectural, and civil engineering. The birth 

of interactive CAD tools can be traced back to 1960s [3]. In the past four decades, Mechanical 

Computer-Aided Design (MCAD) systems have been evolving from 2-Dimensional models to 3-

Dimensional models, from wire frame modeling to surface and solid modeling. Some new 
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techniques such as feature-based design and variational geometry have had computer play a 

significant role in product development. In the current highly networked business and 

engineering environment, network oriented collaborative design systems become a development 

trend for future CAD systems to support faster and better product design. 

Despite the advancements in computer technology, there are still some beleaguering 

problems for CAD tools in terms of the efficiency and effectiveness of information exchange 

between human being and computer, as well as computer to computer. The exchange channels 

are far from engineers’ expectation about CAD tools. For example, special engineering skills are 

required to use CAD tools for design. Currently the computer is incapable of walking the human 

being through the design process. Furthermore, lack of common data format causes islands of 

automation in Computer Integrated Manufacturing (CIM). Ease of communication between users 

and computers as well as among computers is the ultimate goal of the future CAD systems, 

which is the issue of interoperability. 

The hub of the conventional mechanical CAD systems is the geometric modeler. The task 

of computers focuses on manipulation of geometric information, whereas non-geometric 

technical information (e.g., material properties, functional requirements, and manufacturing 

methods) and administrative information (e.g., bill of materials, process planning and scheduling, 

and cost estimation) are mostly neglected. Existing design information modeling methods 

impede collaborative design. First, current CAD systems have high risks of degrading integration 

during design. Mechanical design needs to extensively consider various issues of material 

properties, tool selection, tolerance, and manufacturing/assembly process, etc. Computer-Aided 

Drafting falls short in capturing these aspects. Second, current CAD systems do not support 

direct constraint imposition. The raw data of geometric shape, dimensions, features, etc. are 
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entered by specially trained CAD engineers. Other design partners cannot add constraints to the 

design and integrate the non-geometric requirements and specifications in design data. Third, no 

CAD tools exist to effectively aid the conceptual design and propagate specifications and data to 

detailed design and downstream activities. The trial-and-error approach makes the design cycle 

longer for new product conceptualization.  

1.1 Role of Internet in Product Design 

Global market calls for collaboration among designers and manufacturers. The number of 

multi-national companies has increased from 7000 in 1969 to 24000 in 1995 [4]. In 

manufacturing industries, product design and manufacturing process has been much more 

distributed than ever before. The business pressure toward outsourcing forces corporations to 

design complex products collaboratively. Ford Motor Company estimates that suppliers add 60% 

of a vehicle’s value, and automotive companies are increasingly relying on these suppliers to 

participate substantively in vehicle design. Defense Advanced Research Projects Agency 

(DARPA) estimates that the supply chain accounts for more than 50% of weapon system and 

major subsystem production costs [5]. In such a geographically and temporally distributed 

environment, efficient and effective design collaboration should be guaranteed to maintain 

product quality and organizational competency. 

Customers, who are the driving force of manufacturing evolution, are continuously 

increasing their expectations about lead-time, quality, and price. Mass customization is taking 

over mass production. Diversity of products requires producers’ quick responses. Challenges 

exist in cutting costs of design and manufacturing, while retaining high quality. Currently the 
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cost of product design contributes to a significant proportion of its operation costs for a 

manufacturing company. For example, General Electric’s GE90 engine for the Boeing 777 

aircraft cost $2 billion to develop. Ford spends $3-6 billion on developing a new model 

automobile [6]. There is tremendous cost leverage available through improved collaborative 

design.  

In spite of time and space restrictions, the Internet enables communication among design 

team members, as well as with other teams such as material procurement, manufacturing, 

assembly, quality control, and customer services. Customers can directly contact design 

personnel and participate in remote design of products. Stakeholders of supply, manufacturing, 

product test, maintenance, recycling, and others are able to contribute their expertise at early 

product design stages so as to reduce the risk of failure and shorten the design cycle time.  

Specifically, there are several interoperability issues to be considered in collaborative 

design tools. First, collaborative design over Internet requires an industry standard for CAD data. 

To complete effective information exchange, a CAD data exchange standard should be 

established by the CAD industry. There are many CAD file formats currently used in industry, 

such as IGES (Initial Graphics Exchange Specification), DWG, DXF (Data eXchange Format), 

VDAIS (Vereinung Deutsche Automobilindustrie IGES Subset), SET (Standard d'Exchange et 

de Transfert), STEP (STandard for the Exchange of Product model data), and VRML (Virtual 

Reality Modeling Language). These commonly used standard CAD files in industry capture only 

the static geometric information and part of the administrative information. Other information 

that contains designer’s intent such as constraints and other dynamic relationships is lost during 

CAD file translation. The use of pure visible geometric graphics, which is supported by standard 

data translations, does not allow users to modify solid models that lack parameters or features, 
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which represent the history of modeling. As a result, teams with different CAD packages cannot 

work on design projects together efficiently. To exchange all useful product information, a more 

powerful data format should be developed to integrate various design information. 

Second, the information infrastructure that supports the Internet-based product 

development should be established to assist the cooperation of various Computer Aided 

Engineering (CAE) systems. Current CAD data formats were designed for standalone systems. 

All information about components and assemblies has to be available locally in order to be 

processed. Transferring CAD information among design collaborators requires large amounts of 

data to be moved around, which is inefficient under the constraints and limits of communication 

bandwidth. Furthermore, corporations do not wish to expose complete design data to customers 

or suppliers for information security purpose. A collaborative design data model should support 

lean information processing. It should be compliant with industry standards of programming, 

communication, networking, system management, and interfaces between applications and 

system services. It should also have good compatibility and interoperability with current CAE 

systems.  

In this dissertation, a new scheme for capturing design information within the context of 

the Internet services and transactions is developed. To maximize the future CAD systems’ 

openness, flexibility and integrity with the Internet, this data scheme intends to be portable 

across different Internet protocols, network configurations and operating systems. The 

performance and throughput of collaborative design systems could vary based on the 

requirements of application. This data scheme has a distributed style, which supports the 

required scalability and extensibility of the systems. 
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1.2 Importance of Capturing Knowledge in Design 

In modern society, skill specialization creates domain experts, which makes the design 

process less smooth than it was before. Designers are by no means merely exchanging graphical 

and physical shapes, but are exchanging knowledge about design and design process, including 

specifications, design rules, constraints, rationale, etc. As design becomes increasingly 

knowledge-intensive and collaborative, the need for intelligent computational design tools to 

support the representation, use, and integration of knowledge among distributed designers 

becomes more critical. Design data should contain the knowledge that is used and generated in a 

design project. It is essential to ensure that one can represent and reason with what is captured in 

design.  

Knowledge is defined as the fact or condition of knowing something with familiarity 

gained through experience or association as quoted by the Merriam-Webster’s dictionary. 

Information is the valuable data from the subject’s point of view and knowledge is organized 

information. How to represent engineering design data and knowledge is one of the important 

topics to address.  

In general, design data includes [7]: (1) Product data, which covers the requirement 

specification, functional diagram, sketches/drawings, calculations, graphs, etc., as well as 

production plans, user manuals, maintenance instructions, etc. in the entire product life cycle; (2) 

Process data, which includes the rationale behind product data such as the information to support 

arguments and decisions related to the various stages of the product and alternatives, along with 

various aspects of the business involved; (3) Process administration data, which includes the 

planned and actually applied resources (who did what, when and how). Ideally, design 

knowledge should be embedded in design data for storage, transfer, and reuse. 
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Design knowledge covers a variety of mental powers, including laws, rules and formulas 

pertaining to the function and behavior of human, material, object and physical space. Its broad 

spectrum includes general laws such as Newton's laws of motion and Hook's law, specific rules 

such as spatial relations for assembly, human related ergonomic issues, process and environment 

related material properties, cost related durability and reliability, etc.  

Though design knowledge is important, the current standard CAD file formats do not 

capture it well. For example, STEP is only capable of modeling geometric and topological 

elements, tolerance, a small portion of features, and administrative information. The dynamic 

constraints concerning parameters, engineering relationships, functionality, etc. cannot be 

represented, which hinders design knowledge transferring interoperably. 

This dissertation focuses on the representation and manipulation of dynamic design 

information, which includes product data and design rules that are used to capture the variant 

information besides the static one. To a large extent, this type of information is added into design 

data in terms of internal or external constraints. The data and knowledge in electronic format 

should be recognizable to different parties within the computer supported collaborative design 

environment for a successful design. 

1.3 Research Objectives and Overview 

Within the context of Internet-based collaborative design, there are special requirements for 

interoperable design information representation. Information incompleteness, improccessability, 

and inconsistency are major problems to solve. There are needs for representing more design 

knowledge in CAD data, transferring selective design information among design collaborators, 
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carrying design information in a network oriented data scheme, supporting consistent 

interpretation for different systems, modeling uncertainty and inexactness of design, and 

enabling multidisciplinary constraint imposition and integration. 

The research objective of this dissertation is to develop a design information model, 

Universal Linkage (UL) model, to tackle issues related to interoperability for collaborative 

design systems. Research issues include collaborative design data scheme, lean design 

information modeling, Dual-Rep design feature representation, geometric and non-geometric 

constraints integration, semantic naming and linkage, and Interval Geometric Modeling. 

(1) Collaborative design data scheme: An UL-PML scheme is developed to capture geometric 

and non-geometric entities and relations among them. Unlike current CAD neutral formats and 

models, the UL model is able to capture not only static geometric information, but more 

importantly design constraints which reflect the dynamic relations among geometric entities, 

thereby more design knowledge and rationale. This model captures both static and dynamic 

relations among entities. Static relations represent structural and topological associations and 

dynamic relations are constraints defined by designers. Graphically, Directed Hyper Graph 

(DHG) symbolizes UL model. Computationally, Product Markup Language (PML) [8] 

represents this model. PML has the format of Extensible Markup Language (XML) [9], which is 

an emerging Internet information transferring standard. PML inherits XML’s good extensibility, 

flexibility and portability. This research focuses on the feasibility of building information 

interoperability (PML) based upon data interoperability (XML). It includes a new scheme for 

design knowledge and Internet data exchange integration, PML semantics and schema in the 

mechanical design domain, and extensible representation of geometric and non-geometric 

constraints. 
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(2) Lean design information modeling: To enable selective design information exchange and 

sharing, a linkage reference structure is developed in the UL model that allows physically 

distributed entities to be linked to build a logically integrated set of design information. Relations 

of basic entities can be established across the boundary of data files, which overcomes the 

shortcoming of current standalone CAD file formats in information transferring. This allows 

design collaborators to share design information without transmitting large amounts of raw data, 

thereby supporting intelligent information sharing. This introduces a new way of distributed 

design data modeling, storage, and query with entity-level granularity. 

(3) Dual-Rep design feature representation: To support implicit modeling and to enhance the 

existing design feature representation methods, a Dual-Rep feature representation method is 

developed in the UL model. This method models intentional and geometric feature 

independently for both global and local features such that feature construction and evaluation are 

both modeled.  

(4) Geometric and non-geometric constraints integration: To capture more design intent, 

constraints are modeled in the UL-PML scheme as dynamic relations in an extensible form. 

Symbolic constraints are represented in descriptive ways, which eliminate ambiguity and 

uncertainty. Numerical constraints are represented by interval values, which reduce 

inconsistency due to numerical errors. From both symbolic and numerical aspects, CAD models’ 

completeness, reliability, and robustness are improved. 

(5) Semantic naming and linkage: To maintain persistent reference and linkage among entities, a 

geometry-based semantic ID method is developed such that topological entities are identified by 

geometry and geometric entities are named based on surfaces. Hierarchical namespace is 

introduced to reduce the interference between IDs. This method adds semantics of geometry and 
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topology into IDs thereby increasing the stableness of entity reference. It builds the identification 

framework for the distributed UL model, and can enhance the naming persistency of current 

CAD systems. 

(6) Interval Geometric Modeling (IGM): A new geometric modeling scheme based on interval 

representation and analysis is developed to improve model’s robustness and represent design 

uncertainty and inexactness. IGM allows all parameters of geometric modeling (coordinates as 

well as parametric constraints) to be non-trivial-width interval values instead of fixed values. 

Interval numerical constraints then can be used for the process of conceptual design, detailed 

design, and design optimization. It models soft constraints, thus reducing the chance of conflicts 

during constraint imposition. It releases the restriction of under-constrained and over-constrained 

issues for variational geometry. Constraint-driven interval geometric modeling supports more 

design interaction for optimization and decision-making. IGM establishes a generic approach for 

interoperable numerical constraint representation and integration for the entire design cycle. 

 

In this dissertation, Chapter 2 presents current different knowledge representation schemes 

and data models for design. Based on the special requirements for design data models, Chapter 3 

describes the new UL model and DHG representation. Chapter 4 describes the basic syntax and 

semantics of PML, and the schema of PML in the context of mechanical design is defined. This 

includes geometric and non-geometric entities and the relations among them. Chapter 5 describes 

how features can be represented in the UL-PML scheme. Representation issues of intentional 

features and geometric features, symbolic and numerical constraints, parametric families, and 

naming persistency are discussed. Chapter 6 presents the IGM for numerical constraint model. 

Chapter 7 shows the implementation and proof of the new concepts and the UL model. 
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2.0 DESIGN KNOWLEDGE REPRESENTATION FOR CAD 

Functional, material, manufacturing, maintenance, and other information about a product 

need to be transferred among design stakeholders. An integrated product model is vital in 

network-based collaborative design. Current CAD systems use different data structures and file 

formats. Although some standard neutral formats have been developed to support file translation, 

they cannot capture all original product-related information. Most of them only support static 

geometric information, that is, the physical shape of a product. However, product design cannot 

be completely captured by its geometric data. More importantly, design intent including 

functionality, cost, materials, tolerances, etc. determines the actual shape of the product. From 

this viewpoint, design is a decision-making process based on the designer's knowledge. 

Sometimes it is practical to postpone a decision to a later stage of the design and planning 

process [10].  

Currently it is common in a collaborative design environment that members of a design 

group use different kinds of modeling systems. Different design tools are used for different 

stages of the design. Input and output information have several formats. To allow efficient 

communication and collaboration, these pieces of design information should be logically 

integrated and consistently represented for different CAD systems. Current CAD data formats 

were designed for standalone CAD systems. Transferring a large amount of data by network 

communication channels with limited bandwidth is inefficient and the quality of service for 

remote geometric computation and manipulation cannot be guaranteed. 
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Design is a process of knowledge reuse and generation for the designer. The designer's 

intent is the reflection of his or her design knowledge. Attaching detailed product information 

besides geometry and topology is essential for sound CAD model with explicit design 

knowledge. The subsystem of Knowledge Representation (KR) for design is crucial in the 

integrated design system. The responsibility of KR system is to select appropriate symbolic 

structures to represent knowledge, and to select appropriate reasoning mechanisms both to 

answer questions and to assimilate new information, in accordance with the truth theory of the 

underlying representation language [11]. 

Generally there are two kinds of CAD modeling systems. One of them is explicit modeling, 

in which only static geometric information is recorded at any time during the modeling process. 

The other is procedural or implicit modeling, wherein the product is modeled in a sequence of 

instructions, and the history of construction is embodied in the CAD file. Implicit modeling 

requires less geometric computation involvement of human users and more design process 

information than explicit modeling. Most of the CAD tools have migrated from explicit 

modeling to implicit modeling. A good CAD data model should support implicit modeling and 

capture design process information as much as possible. 

2.1 Current Standard Formats 

There are different commonly used formats for CAD models. To attain the objective of 

product data sharing on different platforms, standard CAD file formats are required. Various 

industries have embraced the effective implementation of the Standard for the Exchange of 

Product Model Data (STEP) to achieve this objective. CAD file standardization was initiated in 
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1979 by an industrial group led by Boeing, General Electric, and the National Bureau of 

Standards (now the National Institute of Standards and Technology (NIST)). This work resulted 

in the Initial Graphics Exchanges Specification (IGES) version 1 and was adopted by the 

American National Standards Institute (ANSI) in 1981.  

2.1.1 The Initial Graphics Exchanges Specification (IGES) 

IGES is the precursor of product data exchange standards, similar to the French standard 

SET and the German VDAFS for automobile surface data exchange. It is a U.S. ANSI standard 

whose purpose is simply to exchange flat-file-structured CAD data between systems. IGES is 

executed in a batch-like operation. It was developed using a bottom-up approach with a goal of 

addressing as many entities as possible. That is, the format for elements (geometry, attributes, 

etc.) was defined first, with an application for the data in mind. Software developers attempt to 

match their own internal data element representations based on their interpretation of the IGES 

data element specification. Users often face difficulties when these interpretations are not 

accurate or an entity definition is ambiguous; therefore, conformance to IGES is sometimes 

subjective [12].  

Recognizing these limits, the U.S. IGES group initiated a project in 1984 called Product 

Data Exchange Specification (PDES) to rectify the problems with IGES. International Standards 

Organization (ISO) later embraced PDES as the basis for its international standard (ISO 10303), 

which is commonly known as STEP. 

2.1.2 The Standard for the Exchange of Product Model Data (STEP) 

The objective of STEP is to provide a neutral mechanism capable of describing product 

data throughout the life cycle of a product, independent of any particular system. This kind of 
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system makes it suitable not only for neutral file exchange, but also as a basis for implementing 

and sharing product databases and archiving. 

The STEP (ISO 10303) parts can be grouped into the following five main categories: 

description methods, implementation and conformance methodology, integrated-information 

resources, abstract-test suites, and application protocols (AP): (1) The description methods group 

forms the underpinning of the STEP standard. This includes overview, which contains 

definitions that are universal to the STEP, and EXPRESS language, which is used to describe 

data modes; (2) The implementation methods group describes the mapping from STEP formal 

specifications to a representation used to implement STEP. The conformance testing 

methodology framework provides information on methods to test software product conformance 

to the standard. It also acts as guidance for creating abstract-test suites, and describes the 

responsibilities of testing laboratories; (3) The integrated information resources group contains 

the generic-STEP-data models. These data models can be considered the building blocks for 

STEP, and they can help AP integration and interoperability; (4) The abstract-test suits consist of 

test data and criteria that are used to assess the conformance of a STEP software product; (5) The 

application protocols describe the more detailed and complex data models for specific product 

applications. They not only describe what data is to be used, but also describe how the data is to 

be used in the model. 

In STEP applications, resource models, application protocols, and EXPRESS information 

modeling language are to be implemented. The resource models contain the low-level entities 

and features, such as geometry, topology, form features, product structure configuration 

management, and tolerances. The application protocols describe the scope and information 

requirements for a particular application of STEP, usually by commodity (such as machined 
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parts, sheet metal, castings, composites, etc.). The APs break STEP into more manageable and 

comprehensible "chunks" that can be more readily implemented within a computer environment. 

AP development and implementation is a major distinguishing feature between IGES and STEP. 

EXPRESS, a computer-interpretable data definition language, is built based on the Entity 

Relationship (ER) model, which contains the relationships of generalization and specialization. 

Though STEP is becoming standard in industries, it still cannot capture parametric and 

variational information [13]. This kind of relationship information among geometric entities is an 

important part of design constraints. To fully represent design data, current information models 

for CAD should be expanded so as to contain more relations of design entities. 

2.2 General Data Models 

The objective of data and information models is to describe a Universe of Discourse (UoD) 

in certain ways that the information of the UoD can be transferred. The task of information 

modeling is to provide a sound basis for mapping between the portion of the world of interest 

and a representation of it that can be used as a specification for defining a database and/or 

application. Various product information models have been proposed and some have been used 

in industry. For example, the ER model [14] and its extended version - Enhanced Entity 

Relationship (EER) model [15] are the basic data models in relational database systems. ER/EER 

views the world as consisting of entities with attributes and relationships among them, including 

association, specialization, generalization, inheritance, and categories.  

Integration DEFinition for Information Modeling (IDEF1X) is used to produce a logical 

graphical information model, which represents the structure and semantics of information within 
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an environment or system. IDEF1 was originally developed under the Integrated Computer 

Aided Manufacturing (ICAM) program by Hughes Aircraft and D Appleton Company [16, 17], 

built upon relational theory and entity-relationship modeling concepts. IDEF1X is the extended 

version. Similar to the EER model, the relationships in IDEF1X include connection 

(association), categorization, etc. But IDEF1X has more structural constraints to embed 

semantics. 

Nijssen's Information Analysis Method (NIAM) [18] is a binary-relationship approach, 

based on the concept of information exchange between the user and the computer, using 

elementary sentences (conceptual grammar). In NIAM, object and role correspond to entity and 

relationship in ER. It attempts to build the semantics of the object into the syntax of the data 

structure. Restricting rules such as uniqueness constraint, total constraint, equality constraint, 

exclusion constraint, and subset constraint, are applied on objects.  

The information models of EER, IDEF1X, and NIAM emphasize structural relationships, 

thus connections of entities can be built. The restriction of these models for applications in CAD 

systems is that the structural relations and constraints of these models are invariant [19], whereas 

variant relations among geometric entities in CAD are widely applied to represent design 

constraints. Therefore an information model, which accommodates variant relationship among 

geometric entities, is needed to enable smooth interaction between CAD systems.  

To find an appropriate way to model design data, we need to ruminate the nature of design. 

Design is an information-processing activity that creates a description of an engineered artifact, 

guided by some set of specifications and some set of constraints [20]. It is an intelligent process 

of old knowledge application and new knowledge generation. The behavior of design performed 

by a design engineer is essentially based on his/her knowledge. The sketches or drawings 
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represent the design knowledge of the designer, which are constrained by design rationales. The 

design data is the knowledge about the product, which is represented in a computer 

comprehensible format. Design is a knowledge intensive activity.  

2.3 Design Knowledge Representation 

Knowledge can be divided into two categories: declarative knowledge and procedural 

knowledge. Declarative knowledge is knowing something is the case. Such knowledge is 

generally a matter of knowing facts, or laws, or terminology peculiar to the subject. Knowledge 

about tasks, on the other hand, is often more procedural in character; that is, is knowing how to 

do something [21].  

The notion of the representation of knowledge is at heart an easy one to understand. It 

simply has to do with writing down, in some language or communicative medium, description or 

pictures that correspond in some salient way to the world or a state of the world [22]. Under the 

assumption of knowledge representation hypothesis [23], any process capable of reasoning 

intelligently about the world must consist in part of a field of structures, of a roughly linguistic 

sort, which in some fashion represents knowledge and beliefs that process may be said to 

possess. Moreover, these structural ingredients, independent of what external observers take 

them to be, play an essential and causal role in engendering the behavior that shows the 

knowledge. Any system, whether it be human or artificial, that manifests intelligent behavior, is 

assumed to contain a substructure of knowledge base that encodes knowledge, and another 

substructure of inference engine that manipulates the knowledge. Thus, one can presume from 
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the hypothesis that any KR language contains two aspects, namely syntactic and inferential 

aspects.  

There are many research efforts on knowledge representation and interchange in the area of 

Artificial Intelligence (AI). Generally speaking, there are five approaches in KR, that is, Logics, 

Production Rules, Semantic Networks, Frames, and Artificial Neural Networks [24]. Because of 

its declarative nature, a logical language has the advantage of natural semantics, expressive 

power, economy of storage, generality, flexibility, and maintainability. But it has the 

disadvantage on computational inefficiency, undecidability, default reasoning, and abduction. 

Production rules have been used extensively in expert systems [25]. It has the similar pros and 

cons as logic-based representation languages. In the above two kinds of representation, 

knowledge is organized around relatively simple and independent elements (propositions in 

logics and facts & rules in production rules). Different pieces of knowledge are stored 

independently of each other with no strong interconnections between them. This is against the 

intuition that information in human memory is highly interconnected. Though they have 

attractive property of good expressiveness, computational untractability adds shadows on the 

application prospect. Comparatively, semantic networks and frame-based representation 

languages emphasize more on the structures of knowledge. The semantic network was initially 

created to represent the semantics of English words [26]. Then It was used to represent 

knowledge, including all sorts of non-semantic things (e.g., propositions, physical object 

structure) [27,28]. Knowledge is expressed in terms of objects and the relationship among them, 

graphically corresponding to nodes and arcs. Object-centered frame-based representation 

languages [29, 30] organize knowledge in a more structured fashion for the chunks of knowledge 

than it is in logic. At the same time, the declarative and procedural aspects of a given chunk are 
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tightly connected. Hierarchically, class-frame and instance-frame build the structure of 

knowledge. Inheritance is one of the major relations among objects. The frame is the predecessor 

of the object in the object-oriented concept, which now has been widely used. 

In AI field, KR has been studied for decades. Most of the researches consider how to model 

and represent general knowledge rather than certain specific areas, In the next section, different 

languages for general knowledge representation are introduced. 

2.3.1 General Knowledge Representation Languages 

KL-ONE [31,32] is based on semantic networks formalism. The primitive semantic 

network was unable to distinguish assertional information and definitional information [33]. The 

graphs in semantic networks were open to many possible interpretations. Beginning with the KL-

ONE, description logic (also called terminological logic, taxonomic logic, frame-based 

[description] language, concept language, term subsumption language, KL-ONE-like language, 

and structured inheritance networks) required a precise syntax and semantics for the 

representation language. Assertions are made relative to a context, and they therefore do no 

affect the concept structure. In addition, KL-ONE distinguishes two types of concepts, generic 

and individual concepts. Generic concepts are descriptions of classes of individuals, whereas 

individual concepts are descriptions of individual objects, attributes, relationships etc. From this 

aspect, KL-ONE is similar to the hierarchical frame representations.  

KRYPTON [34] is a mixed representation system which grew out of KL-ONE. It uses a 

network/frame-style language for forming terms and a first-order predicate language for making 

statements. Thus, KRYPTON separates definitional and assertional information by splitting the 

operations into two components: a terminological one (TBox) and an assertional one (ABox).  
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CLASSIC [35] is a description logic with an ancestry of extensive theoretical work tracing 

back over to KL-ONE. It was intended to be built with a compact logic with a variety of 

inferences, which are completion inferences, contradiction detection, classification, subsumption, 

and rule application. CLASSIC can be envisioned as a deductive, object-oriented database 

system. It has been implemented to aid conceptual modeling for configuration of 

telecommunication equipment [36, 37]. 

In KRL [30], the formalism for declarative knowledge is based on structured conceptual 

objects with associated descriptions. It was an attempt to integrate procedural knowledge with a 

broad base of declarative forms. The control structure is based on multiprocessing with explicit 

(user-provided) scheduling and resource control.  The system is so complex that it finally 

collapsed. 

KODIAK [38] is a hybrid language of frames and semantic networks. Like KL-ONE, the 

primary structure of KODIAK is the concept. However, there is no notion of role, slot, or case. 

Instead, the idea of having a slot or role is replaced by a primitive epistemological relation --- 

manifest.  

RML-Telos family [39, 40, 41] includes an object-centered framework, which supports 

aggregation generalization, and classification; a novel treatment of attributes; an explicit 

representation of time; and facilities for specifying integrity constraints and deductive rules.  

Due to domain and community dependency of knowledge, researches on knowledge 

interchange are being conducted for knowledge sharing and reuse. Knowledge Interchange 

Format (KIF) is a computer-oriented language for the interchange of knowledge among disparate 

programs [42]. Ontolingua [43] and Knowledge Query and Manipulation Language (KQML) 

[44] are developed for agent-based knowledge sharing and communication.  
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EDDL+TDDL [45, 46, 47] is a framework for modeling and analyzing domain knowledge 

at a conceptual abstraction level. Within this framework, domains are modeled using two 

different representation levels, namely an epistemological one and a terminological one. The 

epistemological level defines an external, user-oriented and domain-dependent representation 

based on the EDDL language. The terminological level defines an internal, machine-oriented and 

domain-independent representation based on the TDDL language, which is a decidable member 

of the KL-ONE family. The two levels are linked by protoDL. 

The problem of the representation schemes above is that they are designed for general 

knowledge. In mechanical design, design knowledge is applied in the design process. Physically, 

this knowledge is embedded in the process of the design and the design data. Design knowledge 

representation requires a special format of hierarchical structure. It should be able to model 

objects and relations, object properties, classes and instances, etc. [48]. Thus, a dedicated 

representation mechanism is needed to model design knowledge and design data so as to 

represent the information occurred in design efficiently and effectively. 

2.3.2 Design Modeling Languages 

Research on modeling languages for design has been carried out for years. The purpose is 

to represent enough design knowledge in a computer-comprehensible way so that the knowledge 

can be retrieved by computer and reapplied to new design, thereby leading to intelligent and 

easy-to-use CAD tools. 

IDDL [49, 50, 51, 52] is a hybrid language of predicates, frames and production rules. It 

has the concepts of entities, relationships among entities, and attributes of entities and 

relationships. These are represented by objects, first-order predicates, and functions, 

respectively. Objects are denoted as constants and variables of first-order predicate logic. 

 21



  
 

Predicates are used to express logical relationships among entities, and they construct the if-then 

rule paradigm. A function can be defined over a set of both objects and predicates. Calling a 

function corresponds to sending a message to a set of objects in the object-oriented programming 

paradigm.  

EDM [19, 53] is developed based on sets and predicate logic. It has three base forms: 

domains (sets of values), aggregations (sets of named domains, e.g., variables) and constraints 

(general relations that are defined as procedures). All constraints are fully specified and 

executable. 

DKSL [54] is implemented using a frame-based KR scheme. In addition to the features of 

conventional frame systems, it supports the notion of context as a "dictionary" mapping from 

terms to frames. Contexts may be created by the user, and may be nested. A System Context 

contains basic definitions, and a User Context stores user-defined frames. There are no explicit 

classes or "meta-frames" in DKSL. Rather, a prototype-based approach is used, wherein any 

entity can be an exemplar with which other frames can be cloned. Without classes, inheritance 

mechanism is done by clones. 

CML [55] is a general-purpose declarative modeling language for representing physical 

knowledge required for compositional modeling, which formulates a behavior model of a 

physical system by composing descriptions of symbolic and mathematical properties of 

individual components for early-stage design. It is translatable to the KIF [42]. 

The above languages inherit the AI approaches of KR. Though they have good 

expressiveness of logic relations for general design knowledge, they still have limitations on 

representing geometric and spatial relations among entities. And most importantly they lack the 

ability to keep the relations persistent so that they can be transferred among CAD systems.  
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There are two types of relations among geometric entities to be captured. One is the static 

relation that exhibits the basic structural or topological information of entities, such as the 

aggregation relation between a line and its two end points. Another is the dynamic relation that is 

added by the designer as constraint, such as the distance between two points, or concentricity of 

two holes. The dynamic relations can be changed without altering the topological information of 

a part or an assembly. The mechanical design activity deals with both static and dynamic 

relations at the same time. Design is the process of problem solving subject to various dynamic 

constraints. Parametric design is an improvement of the CAD with dynamic constraints. But the 

lack of interoperability for dynamic constraints among different 3D CAD packages reduces the 

power of parametric design. 

2.3.3 Requirements for Design Information and Constraint Representation 

Spooner [56] has a list of requirements for object-oriented CAD data models. Data must be 

modeled as objects organized into aggregation and generalization hierarchies. The data model 

must support definition of object intentions as well as extensions. It must be possible to define 

properties of objects. The data model must allow definition of operations (methods) for objects. 

The data model must support inheritance of properties and operations. It must be possible to 

represent relationships between objects. The data model must allow the intentions and extensions 

of objects to be modified (dynamic schemas). It should possess the properties of support for 

strong typing in the data model, full support for recursive object structures, equivalent support 

for aggregation and generalization, efficient and flexible update capabilities for objects, multiple 

inheritance, support for methods and procedures, and specification and enforcement of data 

integrity constraints. 
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Eastman and Fereshetian [19] proposed criteria to evaluate product models in CAD/CAM 

development. Good models should provide full abstract data types that include object behaviors, 

the ability for modeling multiple specialization, composite objects, relations within 

compositions, relations on object structure, relations between variables, variant relations needed 

for schema evolution and state of integrity. The models should also support integrity 

management of external applications needed for applications management, management of 

partial integrity needed for iterative design, and schema evolution needed for design evolution 

and refinement. 

From the viewpoint of interoperability, the ideal representation language for mechanical 

design should have the following properties. It is declarative in nature and self-explanatory. It 

should be able to capture the inherent properties and relations among objects explicitly. Those 

relations include functional, structural, and performance relations, as well as parametric, 

engineering and other constraints. Properties and relations should maintain good persistency 

during information transferring. The language should be semantically comprehensive. The 

engineering meaning of design can be clearly uttered. The language should be both modularly 

self-contained and flexible so that various objects and their relations with partial integrity can be 

captured, stored, and queried in an arbitrary manner. Additionally, the language should be 

extensible. When new entities and relations are needed, it should be able to be extended. At last, 

to encourage openness, this language should also be simple enough and comprehensible to both 

humans and machines. 

In the UoD of mechanical design, design knowledge mostly appears as constraints during 

the design. Design for manufacturability, assemblability, profitability, quality, safety, and 

recyclability, etc. (DFX) essentially are domain knowledge practice at the early design stage so 
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as to reduce the time of product development. Within these domains, feature, functionality, 

manufacturability, constraint, etc. are information elements, which consist of the domain model 

of design. The information flow within a design team largely depends on the attachment of 

different constraints. The design constraint is the adhesive in the whole design process. It models 

the dynamic relations among geometric entities and captures designer’s intent explicitly. 

Constraint representation is one of the most important aspects for design knowledge and 

information models. Constraints consist of a wide spectrum of domains, including geometric and 

topological relations among geometric objects and features, spatial relations among assembled 

parts, restrictions on configurations because of manufacturability, assemblability, material 

characteristics, ergonomics, reliability, etc. 

Parametric design is an improvement of CAD with features and dynamic geometric 

constraints. Geometric constraints are internally represented by different schemes (mathematical 

equations, predictive logic, graphs, etc.), which capture dimensions and dependencies of 

geometric entities and features. The physical shape of an object is determined by the results of 

constraint solving. But the different internal constraint representations of parametric CAD 

systems are not easily interchangeable. Besides geometric constraints, constraints concerning 

other engineering issues such as material, tolerance, manufacturing, safety, and reliability cannot 

be captured by these CAD systems. 

Therefore, a more open model for design information is needed which will effectively and 

thoroughly represent product data and design constraints. It should be able to model geometric 

objects as well as dynamic constraints defined by designers such that all relevant product 

information can be carried and exchanged seamlessly. Hence a Universal Linkage model is 
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developed for this purpose to model geometric and non-geometric entities and constraints 

explicitly. 
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3.0 UNIVERSAL LINKAGE MODEL 

As mentioned in Chapter 2, various relations are important in recording design information. 

Besides the hierarchical structure of the geometric entities, which represent static relations, 

dynamic relations among entities are important as well. This chapter will describe a Universal 

Linkage (UL) model that captures both static and dynamic relations. Graphically this model can 

be presented by Directed Hyper Graphs (DHG). In Chapter 4, a textual presentation of UL model 

in Product Markup Language (PML) is specified in detail.  

To build an information model for CAD, three fundamental questions should be answered. 

(1) What kind of information elements are to be captured? (2) How would these elements be 

represented? (3) How can information be retrieved from these elements? These three questions 

are dealing with information abstraction, representation, and deduction. These three aspects 

comprise the information structure of CAD systems. 

Pure relational approach abstracts information objects in a structured manner, thus 

information can be easily retrieved and modified using external operations. Object-oriented 

approach categorizes information objects in a modular way, such that objects are self-contained 

micro-systems whereas connections among objects are simplified. Object-oriented models can be 

descriptive object-oriented in which only structures and relations of entities are captured, or 

procedural object-oriented in which both objects’ structures and behaviors are modeled. Besides 

modeling declarative knowledge similar to relational approach, object-oriented approach can 
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also model procedural knowledge, in which information abstraction, representation, and 

deduction are integrated. 

Structurally procedural object-oriented models are much more complicated than declarative 

ones. It is also difficult to achieve high portability and openness for procedural object-oriented 

models. The new UL model does not take the procedural approach in order to ensure good 

interoperability. To make the model simple but comprehensive enough, the UL model adopts a 

hybrid approach of declarative object-oriented and relational modeling.  

3.1 Information Elements of UL Model 

The UL model has the fundamental elements of entities and relations. Entities are abstract 

representation of any objects in the real world. They include geometric entities, topological 

entities, entities of material, tolerance, mathematics etc. Examples are shown in Table 1. 

 

Table 1: Examples of Entities 

Non-Geometric Entities Geometric 
Entities Topology Material Reliability Manufacturing 
Point 
Vector 
Line 
Curve 
Plane 
Sphere 

Vertex 
Edge 
CoEdge 
Face 
Shell 
Body 

Density 
Polythene 
Yield Strength 
Stress 
Friction Coef 
Specific Heat 

MTBF 
Hazard Rate 
Safety Factor 
S-N Ratio 
 

Cutting speed 
Feed rate 
 

 

The information elements used in UL model are defined as follows. 

Definition 3.1: An entity is an object that exists as a distinguishable unit in the Universe of 

Discourse for design. It possesses unique attributes. 
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Definition 3.2: An attribute is a characteristic property or feature that is associated with an entity 

and identifies or modifies the entity. 

Definition 3.3: A relation is a logical or natural association between two or more entities.  

The relations among entities are categorized into two types: static relations and dynamic 

relations. Static relations are basically the structural relations among entities within a part or 

among different assembled parts. They represent static geometric and topological relations. 

Static relations include aggregation, which transforms a relationship between objects into a 

higher-level object [57, 58], and generalization, which refers to an abstraction in which a set of 

similar objects is regarded as a generic object [59]. In CAD information models, geometry-

related relations mostly are aggregation relations while non-geometric (e.g., administration, 

material) relations include both of aggregation and generalization. Dynamic relations are 

specified operationally by designers, which appear as various kinds of constraints. Examples of 

relations are shown in Table 2. 

 

Table 2: Examples of Relations 

Static Relations Dynamic Relations 
Consist-of Distance between two planes 
is-a-kind-of Parallel 
associated-with Angle between two lines 

 

Unlike ER model, which only captures static relations, the UL model differentiates static 

and dynamic relations because dynamic relations are crucial for constraint representation.  
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3.2 Directed Hyper Graph 

Graphically, the UL model can be represented by Directed Hyper Graph (DHG), in which a 

node denotes an entity and an arc stands for a relation. There are two categories of entities in UL 

model, geometric entities and non-geometric entities.  

Definition 3.4: A geometric entity is an entity that is geometrically perceptible and can form a 

concrete shape in a 3-dimensional Euclidean space. It is represented by an elliptical node in 

DHG, as shown in Figure 1-a. 

Definition 3.5: A non-geometric entity is an entity that is not geometric and not geometrically 

tangible in a 3-dimensional Euclidean space. It is represented by a rectangular node in DHG, as 

shown in Figure 1-b. 

 

 
 
 
 
 
 
 
 
 
 
 
          (a) geometric entities                    (b) non-geometric entities 

POINT

CURVE

SURFACE

MATERIAL

EDGE 

MTTF 

 
Figure 1: Geometric entities and non-geometric entities in DHG 

 

There are two categories of relations in the UL model, static relations and dynamic 

relations.  

Definition 3.6: A static relation is a relation that indicates the essential and inherent affiliation of 

entities in order to form a physical object. It is represented by an arc with solid line in DHG. 

Three types of static relations are aggregation, generalization, and general association.  
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To distinguish aggregation and generalization from general association, the start head of 

arc is a diamond for aggregation relation and is a triangle for generalization relation, which is 

illustrated in Figure 2-a. 

 
 
 Aggregation 
     Geometric constraint 
 
 Generalization 
        
               Non-geometric constraint 
 Association 
 
        (a) static relations   (b) dynamic relations 

 
Figure 2: Static relations and dynamic relations in DHG 

 

Definition 3.7: A dynamic relation is a relation that specifies the extrinsic affiliation among 

entities that indicates additional connection or preference. It is represented by an arc with a dash 

line in DHG. Two types of dynamic relations are the geometric dynamic relation and the non-

geometric dynamic relations. 

Definition 3.8: A constraint is a relation of dependency, limitation, or restriction among entities, 

which reflects a special requirement from designer. 

Dynamic relations are constraints added externally by design participants. We use the 

terms dynamic relation and constraint interchangeably. To differentiate two types of constraints, 

a special kind of entities are defined as constraint entities. A constraint entity is drawn in dash 

line and attached on the corresponding constraint arc graphically in DHG, shown as in Figure 2-

b.  

Definition 3.9: An initial entity of a relation is the starting (source) entity of the directed arc 

corresponding to the relation.  
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Definition 3.10: A terminal entity of a relation is the ending (destination) entity of the directed 

arc corresponding to the relation.  

Definition 3.11: A constraint entity is a special entity which indicates the type and 

characteristics of a dynamic relation. 

The entities and relations have the following properties: 

(1) All types of relations are antireflexive. 

(2) Aggregation and generalization relations have transitive properties. 

(3) The direction of an arc implies the asymmetric unitary relation. If an arc has both ends 

arrowed, the relation has the symmetric binary property.  

(4) A constraint entity can be associated with one, two, or more entities, that is, a relation of 

constraint can be specified to one or more objects. 

Figure 3 shows an example of aggregation static relation in DHG. line0 is an instance of a 

LINE. It consists of two points, point0 and point1, i.e., line0 is referring to two points. 

 

line0point0 point1

POINT:point0 POINT:point1

LINE:line0

 
Figure 3: An example of aggregation relation in DHG 

 

Figure 4 shows an example of general association relation in DHG. vertex0 is a topological 

entity and is referring to a geometric entity point0. 
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POINT:point0

VERTEX:vertex0

 
Figure 4: An example of association relation in DHG 

 

Figure 5 shows an example of generalization static relation in DHG. SURFACE is the 

general entity of PLANE, or PLANE is a special kind of SURFACE. Unlike aggregation and 

association, generalization is mostly used in the meta-level of product modeling. It defines the 

relation between two abstract classes. 

 

SURFACE

PLANE

PLANE

SURFACE

 
Figure 5: An example of generalization relation in DHG 

 

Figure 6 shows an example of geometric dynamic relation in DHG. line2 is parallel to 

line1, and the distance from line2 to line1 is d. Here line1 is the terminal entity. The directions of 

constraint arcs are unitary. 
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distance = d
LINE:line2LINE:line1

line1 line2

conPARALLEL:p1

conDISTANCE:d1  
Figure 6: An example of geometric constraint in DHG 

 

Figure 7 shows an example of non-geometric dynamic relation in DHG. The material of 

part1 is aluminum. It is represented by a material constraint entity that is referring to the part. 

 

alluminum

PART:part1

conMATERIAL:m1

part1  
Figure 7: An example of non-geometric constraint in DHG 

 

As a comprehensive example, Figure 8 shows a triangular sheet metal part with 

dimensional constraints. Its geometric and topological information as well as constraints can be 

modeled in DHG as in Figure 9. 

 

 

d0 

d1 

p2

p1p0 

t0
t1

t2

l0

l1l2

 
Figure 8: A triangle with dimensional constraints 
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EDGE: e0 

VERTEX: v0 

EDGE: e1 

VERTEX: v1 

EDGE: e2 

VERTEX: v2 

WIRE: w0 

BODY: b0 

LINE: l0 

POINT:p0 POINT:p1 POINT:p2 

VECTOR:v0 VECTOR:v1 VECTOR:v2

LINE: l1 LINE: l2 

conDISTANCE:d0 

conDISTANCE:d1 

SHELL: s0 

 
Figure 9: DHG representation of the triangle with dimensional constraints in Figure 8 

 

3.3 Universal Linkage among Entities 

Current CAD file formats were designed for standalone computers by which all design 

information about one part/assembly is stored in one file. Thus, they lack flexibility on design 

information retrieving and reuse. They do not support partial data queries. If only part of design 

data is needed, it cannot be retrieved without querying the whole file. Thus, fractions of design 

data cannot be reused unless the whole CAD file is imported. In a collaborative design 

environment, the design tasks of different parts or sections are usually completed by different 

working groups. To enable the seamless composition of product from different groups, new 

modeling technique is needed to support the integration of distributed design information. 
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Besides differentiating the static and dynamic relations among entities, another key feature 

of UL model is that the relations among entities are not restricted within one data file. The 

relations of entities located in different files and domains can be created as well. Relations are 

linkages among information elements. A simple linkage model allows physically distributed 

entities to be linked, and a logically integrated set of design information thus can be built. This 

feature solves the flexibility problem of current CAD data modeling for collaborative design. 

In the UL model, the relation among entities can be extended across file boundaries so as to 

increase flexibility and modularity of CAD models. Universal links of entities may be built to 

support distributed CAD data. This model will take advantages of the Internet connection and 

assist collaborative design in a distributed design environment. As illustrated in Figure 10, 

relations of entities (both static and dynamic) in different domains and physical locations can be 

linked together. One can easily refer to entities in other data files, either located on the same 

computational machine or other locations through the Internet. 

 

INTERNET

 
Figure 10: Universal linkage between files 

 

Graphically, the UL model can be illustrated by DHG. Textually, UL models are 

represented in Product Markup Language (PML) and processed by computers. Chapter 4 

describes the syntax and semantics of PML. 
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4.0 SYNTAX AND SEMANTICS OF PRODUCT MARKUP LANGUAGE 

To encourage future information flow and CAD application over the Internet, a system 

independent data format is vital. It will be advantageous if this ideal format is network-oriented 

at the implementation level, i.e., compatible to the Internet protocols and standards. At the 

semantic level, this format should be object-oriented, which extensively supports data abstraction 

in a well-developed style that itself evolved from the frame representation of knowledge. This 

format should also be able to model and represent geometric and non-geometric constraints 

explicitly in comparison to the existing format. 

With the emergence of Extensible Markup Language (XML), data exchange over Internet 

can have a uniform format. XML is a simple, flexible, and structured text format derived from 

Standard Generalized Markup Language (SGML) (ISO8879). Originally designed to meet the 

challenges of large-scale electronic publishing, XML is playing an increasingly important role in 

the exchange of wide varieties of data over the Internet, such as MathML [60] for mathematics, 

CML [61] for molecules, SMIL [62] for multimedia, SVG [63] for graphics, ebXML [64] for 

electronic business, OFX [65] for financial data exchange, and WML [66] for wireless 

applications etc. There are more than 400 XML application areas in the world [67]. 

An XML-based modeling language, Product Markup Language (PML), is developed for 

mechanical product information modeling, which is CAD and computer system independent. 

Inherited from XML, PML has the following general characteristics: (1) Simplicity: the file is a 

hierarchically tree-structured text. Each object is represented by a node in the tree in the format 
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of characters and markup tags. This makes it easily readable and comprehensible by machines. 

(2) Extensibility: By the nature of markup, PML can be extended for new information if 

necessary. When new concepts or notations are to be used, a modeling system can extend its 

language scope by adding new elements in. It provides good scalability for modeling systems. 

(3) Portability and interoperability: The language tends to separate system-independent content 

and system-dependent format of product information so that useful information about product 

will not be lost during data exchange and translation. PML can include more information in 

product files. It has the capability to include engineering information, such as materials, tools 

selection, cutting path, and managerial information, such as order number, cost, as well as 

geometric information from different levels. (4) Object-oriented: The inherent hierarchical tree 

structure of the language enables good encapsulation such that modular transparency is 

guaranteed for the top-down approach of design. Products are modeled by PML, which describes 

the information about the product explicitly, such as geometries, functions, features, materials 

and contexts. Theoretically all information about product can be modeled in PML. (5) 

Compatible with Information Infrastructure: XML is regarded as the future of web technology. 

PML is compatible to web standards. Compatibility is indispensable when building an open and 

interoperable system.   

Some research has been done on the application of XML in CAD/CAM area. Ratchev et al. 

[68] developed a decision-making environment for distributed product and facility prototyping in 

an extended enterprise. XML is used for conveying design and manufacture messages across 

traditional technology boundaries. Kahn et al. [69] are working on a framework for transforming 

EXPRESS into XML and viewing with standard WWW browsers. Burkett [70] proposed a 

mapping between EXPRESS and XML Data Type Definition (DTD). NIST’s Design Repository 
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project [71, 72] created XML mappings for the function and flow in order to support 

representation of artifact function models in software systems. 

The above research represents geometry based on existing neutral formats (STEP or 

VRML). They do not consider that the relations among geometric entities represent the major 

part of design knowledge. The problem of design information incompleteness is not resolved. 

The major advancement of XML for information modeling is that it has standard syntax. Thus 

the interoperability of semantics can be separated from the interoperability of syntax. Taking 

advantage of XML to model design entities and relations is one of the promising directions for 

solving CAD interoperability issues. 

4.1 The Syntax of PML 

The syntax of PML strictly follows that of XML to ensure the usability and 

interoperability. The compliance to industrial computation and communication standard is the 

premise of computational interoperability at the machine level. The syntax of XML in Extended 

Backus-Naur Form is listed in Appendix I, which is specified at the World Wide Web 

consortium [73].  

Markup is text that is added to the data of a document in order to convey information about 

it [74]. There are four kinds of markup in SGML: descriptive markup (tags), references, markup 

declarations, and processing instructions. XML descriptive markup consists of tags and 

attributes. Matching tags must mark the beginning and the end of each element. Attributes, 

which are embedded in the start tag, must provide additional information about the element. 

Unlike HTML, in which tag set is under the control of the creators of HTML browser, XML puts 
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control of the tag set in the user’s hands. Users can create new tags as needed, which makes an 

XML file extensible. Figure 3 shows an example of point modeled in PML following the syntax 

of XML. It shows that Point1 is a point, where its x, y and z coordinate are 1.0, 1.0 and 0.0 

respectively. Tag set <point> and </point> specifies the geometric meaning of symbol Point1 

and its attributes of x, y and z. 

 

 
      

 
<POINT id=”point1” x=”1.0”, y=”1.0”, z=”0.0”> 
</POINT> 

 
Figure 11: A point in PML 

 

4.2 The Schema of PML 

XML provides a type of syntax for modeling data. It offers a user-defined and extensible 

format to model data and information for different application areas. To enable an XML-style 

language to be used in a particular area, additional efforts should be carried out to define the 

semantics of this language. Therefore, specifying what tags will be used in PML is one of the 

major tasks in defining PML. This includes what kinds of elements to be used to model 

geometric and non-geometric entities, what types of attributes to be specified for each entity, 

how to capture the relations among entities, etc. 

There are two ways to specify the structure of instance documents and the data type of each 

element and attribute in XML, Data Type Definition (DTD) which is inherited from SGML, and 

Schema which is developed recently. Some disadvantages of DTD make people turn to develop 
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Schema. DTD has a different syntax from XML; thus, two processing systems are needed to 

process XML and DTD separately. Furthermore, DTD supports a limited capability for 

specifying data types. For example, DTD cannot add value range constraints on elements. DTD 

does not support all current available data types in databases. Comparatively, Schema has 

advantage over DTD. Schema uses the same syntax as XML. It is object-oriented and extensible 

in nature. It has enhanced data type definition to specify element sets, multiple elements with the 

same name but different contents, etc. It supports attribute grouping, user defined types, 

namespace, etc. The PML Schema is defined according to W3C’s Schema working draft [75]. 

Figure 12 shows two examples of PML schemas used to define entities. The left-hand side 

schema file defines geometric point. A geometric point should contain four attributes, which are 

coordinate x, y, z, and an identification name. The coordinate attributes are defined in the right-

hand side schema file, which are referred by the schema of point. Reference between schema 

files can be built to ensure modularity. Figure 13 is the schema of line entities, which shows that 

a line is defined by either two points or a point and a vector. Appendix VI lists more examples of 

PML schemas. 
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 <?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "point.xsd" 
   Define geometric entity - POINT. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="coordinate.xsd"/> 
  <xsd:element name="POINT"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute ref="x" use="required"/> 
     <xsd:attribute ref="y" use="required"/> 
     <xsd:attribute ref="z" use="required"/> 
     <xsd:attribute name="id" type="xsd:ID"/> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema> 

<?xml version="1.0"?> 
<xsd:schema      
   xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
   version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "coordinate.xsd" 
   Specify the coordinate attributes. 
  </xsd:documentation> 
 </xsd:annotation> 
  <xsd:attribute name="x" type="xsd:double"/> 
  <xsd:attribute name="y" type="xsd:double"/> 
  <xsd:attribute name="z" type="xsd:double"/> 
</xsd:schema> 

 
Figure 12: Schema of POINT referring to coordinates 
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<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "line.xsd" 
   Define geometric entity - LINE. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="refPoint.xsd"/> 
 <xsd:include schemaLocation="refVector.xsd"/> 
  <xsd:element name="LINE"> 
  <xsd:complexType> 
   <xsd:choice> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refPOINT"/> 
    </xsd:sequence> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refVECTOR"/> 
    </xsd:sequence> 
   </xsd:choice> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  

Figure 13: Schema of LINE 

 

The relation of entities in UL model is symbolized by the protocols of XML Xlink [76].  

There are two kinds of links in Xlink: simple and extended. Simple links offer shorthand syntax 

for a common and outbound link with exactly two participating resources. Extended links offer 

full Xlink functionality, such as inbound and third-party arcs, as well as links that have arbitrary 

numbers of participating resources.  

In PML, static relations are modeled by simple links and dynamic relations are modeled by 

simple or extended links. Links can be local within one file, or remote between files. A reference 

is constructed by a reference ID, which include a Uniform Resource Identifier (URI) specifying 
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the name and the location of the referred data file and the referred entity ID. If no URI is 

specified, the reference is a local one. The syntax of the reference ID is shown in Figure 14. 

 

 
    <reference_id> ::= # <entity_id> | <URI> # <entitiy_id> 
    <entity_id> ::= <part_id> | <assembly_id> | <topology_id> | <geometry_id> | 
                           <constraint_id> 
    <topology_id> ::= <body_id> | <shell_id> | <wire_id> | <face_id> | <edge_id> |  
                                 <coedge_id> | <vertex_id> 
    <geometry_id> ::= <surface_id> | <curve_id> | <point_id> | <vector_id> 
  

Figure 14: Syntax of reference ID 

 

To model the data structure of DHG by a tree structure of PML, a mapping process is 

needed. The mapping from DHG to PML tree is done under the guidance of graph 

decomposition rules, which are described in the following section. 

4.3 Graph Decomposition 

In DHGs, entities have hierarchical structure of static relations, as well as other dynamic 

relations. To model the hyper-graph structure with a tree-structured PML, the graph 

decomposition procedure should be carried out. The purpose of graph decomposition is to 

disintegrate the graph structure of the data model into a tree structure by introducing virtual 

entities to mirror some geometric or non-geometric entities. Thus, the graph structure can be 

mapped to the tree structure of PML. 

Definition 4.1: A mirror of an entity is a virtual entity that reflects the referred entity, thereby 

containing all the attributes of the original entity.  

 44



  
 

 

The principles of graph decomposition are listed as follows: 

(1) Entities are represented by elements/nodes in PML. 

(2) Relations are represented by links in PML. 

(3) The bondage of a mirror with its original entity is represented by a simple link that is from 

the mirror to the original entity. 

(4) An aggregate relation is represented in a parent-child relation of elements/nodes in PML in 

which the parent is the initial entity and the child is the mirror of terminal entity.  

(5) An association relation is represented in a parent-child relation of elements/nodes in PML in 

which the parent is the initial entity and the child is the mirror of terminal entity.  

(6) A dynamic relation (constraint) is represented by a simple link, which is from the constraint 

entity to the constrained entity if only one entity is involved in the relation.  

(7) A dynamic relation (constraint) is represented by an extended link whose children specify the 

initial entities and terminal entities of the relation if two or more entities are involved in the 

relation. 

 

The graph decomposition algorithm is listed in Figure 15, assuming that the topological 

hierarchy is as in Figure 16.  
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INPUT:  Directed Hyper Graph G = (V, E) 
OUTPUT: PML Tree T 
 
Add root node TR of T 
TR add child TG (Geometry) 
TR add child TT (Topology) 
TR add child TC (Constraint) 
 
Search the topological node ‘BODY’ in G 
Add a node A corresponding to ‘BODY’ as a child of TT  
Run the following procedure P with input <‘BODY’, A> 
    P: On input node <M, I> 
    START P 
        Mark M in G 
        FOR each unmarked node N with a path from M 
            IF N is a topological entity 
                Add a node J corresponding to N  
                  as a child of TT  
                Add a mirror node of J as the child of I 
                  with a simple link referring to J  
                Run P on input <N, J> 
            ENDIF 
            IF N is a geometric entity 
                Add a node J corresponding to N  
                  as a child of TG  
                Add a mirror node of J as the child of I 
                  with a simple link referring to J  
                Run P on input <N, J> 
            ENDIF 
            IF N is a constraint entity 
                Add a node J corresponding to N  
                  as a child of TC  
                Add an extended link locator node LOC1 
                  referring to M as a child of J 
                Add an extended link locator node LOC2 
                  referring to N as a child of J 
                Add an extended link arc node starting  
                  from LOC1 to LOC2 as a child of J 
                IF there is a path from N to M 
                    Add an extended link arc node starting  
                      from LOC2 to LOC1 as a child of J 
                ENDIF 
            ENDIF 
        ENDFOR 
    END P  

Figure 15: Graph decomposition algorithm 
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BODY 

SHELL 

WIRE FACE 

EDGE 

VERTEX 

LOOP 

COEDGE 

 
Figure 16: Assumed topological hierarchy 

 

Following the rules of graph decomposition, the DHG of the triangular sheet metal part 

example in Figure 9 can be transformed to a tree structure, as shown in Figure 17. Thus the 

design information is expressed in PML and can be easily parsed by computer systems, as shown 

in Figure 18. Elements with a prefix of “con” are constraint entities. Elements with a prefix of 

“ref” are mirror entities. For example, conDISTANCE is a distance constraint entity, and 

refPOINT is the mirror of POINT. The tree structure of PML documents allows computers to do 

geometric and non-geometric edition, operation, query, and other manipulation efficiently. All 

relevant product information is stored in a PML tree. The PML file can be read into a CAD 

system and the information can be translated into the system’s internal representation. 
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Figure 17: Tree structure of entities in Figure 8 after graph decomposition 
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<?xml version="1.0"?> 
<pml:PART id="part0" xmlns:pml="http://www.pitt.edu"  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.pitt.edu/line.xsd"> 
    <pml:GEOMETRY> 
        <pml:POINT id="p0" x="0.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p1" x="20.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p2" x="12.0" y="10.0" z="0.0"/> 
        <pml:VECTOR id="t0" x="20.0" y="0.0" z="0.0"/> 
        <pml:VECTOR id="t1" x="-8.0" y="10.0" z="0.0"/> 
        <pml:VECTOR id="t2" x="-12.0" y="-10.0" z="0.0"/> 
        <pml:LINE id="l0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
        <pml:VERTEX id="v0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:VERTEX id="v1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:VERTEX id="v2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:EDGE id="e0" pml:startParam="0" pml:endParam="20"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="# l0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
        <pml:EDGE id="e1" pml:startParam="0" pml:endParam="12.8062484748657"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="# l1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
        <pml:EDGE id="e2" pml:startParam="0" pml:endParam="15.6204993518133"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="# l2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
        <pml:WIRE id="w0"> 
            <pml:refEDGE xlink:type="simple" xlink:href="#e0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refEDGE xlink:type="simple" xlink:href="#e1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refEDGE xlink:type="simple" xlink:href="#e2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:WIRE> 
        <pml:SHELL id="s0"> 
            <pml:refWIRE xlink:type="simple" xlink:href="#w0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:SHELL> 
        <pml:BODY id="b0"> 
            <pml:refSHELL xlink:type="simple" xlink:href="#s0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:BODY> 
    </pml:TOPOLOGY> 
    <pml:CONSTRAINT> 
        <pml:conDISTANCE xlink:type="extended" pml:lowerBound="19" pml:upperBound="21"> 
            <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v1"/> 
            <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#v0"/> 
            <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> 
            <pml:ARC2 xlink:type="arc" xlink:from="end" xlink:to="start" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
        <pml:conDISTANCE xlink:type="extended" pml:lowerBound="9" pml:upperBound="11"> 
            <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v2"/> 
            <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e0"/> 
            <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
    </pml:CONSTRAINT> 
</pml:PART>  
Figure 18: PML representation of the triangular part in Figure 8 and Figure 9 

 

3D solid models can also be represented in the UL-PML scheme. For example, a 

tetrahedron in Figure 19 is modeled in DHG as in Figure 20 and in PML in Figure 21. 
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Figure 19: A tetrahedron 
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Figure 20: DHG model of the tetrahedron in Figure 19 
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<?xml version="1.0"?> 
<pml:PART id="part0" xmlns:pml="http://www.pitt.edu"  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.pitt.edu/line.xsd"> 
    <pml:GEOMETRY> 
        <pml:POINT id="p0" x="0.0" y="0.0" z="1.0"/> 
        <pml:POINT id="p1" x="1.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p2" x="0.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p3" x="0.0" y="1.0" z="0.0"/> 
        <pml:POINT id="p4" x="0.0" y="0.0" z="1.0"/> 
        <pml:POINT id="p5" x="1.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p6" x="0.0" y="0.0" z="0.0"/> 
        <pml:POINT id="p7" x="0.0" y="1.0" z="0.0"/> 
        <pml:VECTOR id="t0" x="1.0" y="0.0" z="-1.0"/> 
        <pml:VECTOR id="t1" x="-1.0" y="0.0" z="0.0"/> 
        <pml:VECTOR id="t2" x="0.0" y="0.0" z="1.0"/> 
        <pml:VECTOR id="t3" x="0.0" y="1.0" z="-1.0"/> 
        <pml:VECTOR id="t4" x="0.0" y="-1.0" z="0.0"/> 
        <pml:VECTOR id="t5" x="-1.0" y="1.0" z="0.0"/> 
        <pml:VECTOR id="t6" x="0.0" y="-1.0" z="0.0"/> 
        <pml:VECTOR id="t7" x="-1.0" y="0.0" z="0.0"/> 
        <pml:VECTOR id="t8" x="0.0" y="0.0" z="-1.0"/> 
        <pml:VECTOR id="t9" x="0.577350" y="0.577350" z="0.577350"/> 
        <pml:LINE id="l0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l3"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t3" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l4"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p3" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t4" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l5"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t5" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:PLANE id="pl0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p4" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t6" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE> 
        <pml:PLANE id="pl1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p5" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t7" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE> 
        <pml:PLANE id="pl2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p6" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t8" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE> 
        <pml:PLANE id="pl3"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p7" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVECTOR xlink:type="simple" xlink:href="#t9" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PLANE> 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
        <pml:VERTEX id="v0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:VERTEX id="v1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:VERTEX id="v2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:VERTEX id="v3"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p3" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX> 
        <pml:EDGE id="e0" pml:startParam="0" pml:endParam="20"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="# l0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
        <pml:EDGE id="e1" pml:startParam="0" pml:endParam="12.8062484748657"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>  

Figure 21: PML model of the tetrahedron in Figure 19 
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4.4 Demonstration 

UL-PML scheme models product information in a distributed fashion, thus it allows 

physically dispersed CAD data in a collaborative design environment to be integrated logically. 

It does not require all geometric and non-geometric data of a part or an assembly reside in one 

CAD system. Within the limit of network and communication bandwidth, one can break the 

traditional large CAD files into small pieces, thus partial data query and transferring are 

supported by this scheme. Having a standard XML format, PML can be easily processed for 

reading, writing, storing, query, and transferring based on current computational standards and 

network protocols, which possibly makes it widely acceptable by different CAD systems. 

Unlike current CAD files with the information granularity for transferring at the component 

level, UL-PML scheme allows CAD data communication at the basic geometric and non-

geometric entity level.  For example, a connector in Figure 22 is to be designed by two groups, 

the head section by one group and the body section by another. While the body section is being 

designed at one location (in Figure 23), the head section (in Figure 24) data file at another 

location is referring to the top face of the body by linkage specified by URIs as in Figure 25. One 

section of a part can be linked to another section during the component design. In a similar way, 

an assembly file can also refer to the distributed files containing several components. 
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head

body

 
Figure 22: A part to be designed by two groups 

 

 
Figure 23: The body section of the part 
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Figure 24: The head section of the part 

 
 . 
 . 
 . 
  <pml:FACE id="face16"> 
  <pml:refFACE xlink:type="simple" xlink:href="http://www.pitt.edu/~yawst4/pg/body.xml#face16"  
     xlink:show="embed" xlink:actuate="onLoad"/> 
 . 
 . 
 .  

Figure 25: Universal linkage by URI 

 

In summary, UL model captures geometric and non-geometric relations among entities by 

uniform and explicit links in PML such that references between entities can be made across the 

boundary of files and physical locations in a distributed design environment. To main syntax-

level interoperability, PML uses standard XML syntax. Schemas of PML are defined for entities 

and relations. Tree-structured PML allows design information to be easily processed. Graph 

decomposition method is developed to map graph-structured entities and relations to PML tree. 

The properties of UL model include: 
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(1) UL model does not require that one data file contain all information relevant to the designed 

product. Supporting physical distribution, it makes partial design information storage and 

retrieval easy to realize. This will increase the efficiency during design information query. 

(2) The design information can be stored modularly without compromising the integrity of the 

whole product. This eases the requirements on computational time and storage space. Thus it 

provides good flexibility for scalable designer systems. It also encourages reuse of designed 

components/sections, thus reuse of design knowledge. 

(3) The linkage ensures product data’s logical integrity though it is physically distributed. Link 

relations among entities in UL model create a distributed information framework, thus 

collaborative design can be easily realized over the Internet. 

 (4) The design data elements and constraints are connected within the model by links. The 

linkage makes the design data model open and extensible. Information can be generated and 

linked together in the network virtual space. 

(5) With lean product information transferring, design collaborators can share necessary design 

information without losing control of intellectual properties. This scheme thus enables easy 

management of trust relation and design information security in a collaborative design 

environment. 

(6) The geometric and non-geometric constraint representation in UL model incorporates more 

design knowledge in design data. It provides a more comprehensive support for optimization and 

decision-making at different design stages. 

(7) The explicit capturing of multidisciplinary constraints, especially non-geometric constraints, 

allows a more complete information representation than current standard formats. Thus it 

prevents design information loss and reduces the design cycle time. 
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Based on this general UL-PML scheme, a high-level data model is developed to represent 

features and constraints in order to support distributed feature-based parametric modeling, which 

is described in the following chapter. 
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5.0 DESIGN FEATURE AND CONSTRAINT REPRESENTATION 

Feature-based parametric modeling is the new approach used in most of the modern CAD 

systems to derive geometric forms. Features are used in geometry construction instead of low-

level geometric entities, such that shapes can be built with terminologies that are more intuitive 

and meaningful for human designers and engineers, and faster for model reconstruction and 

reuse. Features contain design information of model construction history besides the geometry 

boundary. Parameter information is recorded for constraint and specification driven design, and 

for ease of model re-evaluation in design variation. Geometry and form information is stored by 

geometric and topological entities at the low level, whereas design intent is recorded at the high 

level by features and parameters. Feature-based parametric modeling facilitates geometry 

construction process. Nevertheless, it signifies the interoperability problem of design information 

and knowledge capturing. 

During the process of design, requirements from different stakeholders are imposed on 

design as specifications or constraints, either geometric or non-geometric.  As defined in Section 

3.2, constraints represent dynamic relations among entities specified by users. A simple but 

comprehensive enough scheme to represent constraints is vital for design knowledge and 

information representation in a collaborative design environment. 

Constraint should not only be looked as the complementary part of design. It is the result of 

logic reasoning activity of engineers and other design participants during the design process. It is 
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the specifications and constraints from different aspects that finalize the physical form of a 

design. 

Geometric constraints are the fundamental constraints to be captured in mechanical product 

design. The study of geometric constraints representation can be traced back to the origin of 

CAD research. Constrained geometries are sets of loci that satisfy certain constraints, thus they 

can be constructed systematically by computer systems.  

Different types of geometric constraint solving methods and associated representation 

methods for CAD have been proposed. Generally there are four approaches. The numerical 

approach [77, 78, 79, 80, 81, 82] translates geometric constraints into a system of mathematical 

equations. These equations then can be solved numerically by Newton-Raphson or Homotopy 

methods directly, or by minimizing the sum of squares for all equations indirectly. The artificial 

intelligent approach [83, 84, 85, 86, 87, 88] represents geometric constraints by facts and rules. 

Constraint problems are solved by the aid of geometric reasoning. The symbolic approach [89, 

90, 91, 92] translates geometric constraints into a system of easily solvable nonlinear equations 

with symbolic algebraic methods, such as Grobner’s bases or the Wu-Ritt method, before 

numerically solving them. The constructive approach [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 

103, 104, 105] represents constraints as graphs internally. Constraint system is solved either by 

top-down decomposition or by bottom-up clustering of the constraint graphs along with degrees 

of freedom analysis. 

To support different constraint solving methods in various CAD systems, a neutral model 

for feature and constraint representation should be included in enriched CAD data. Current 

neutral CAD data formats utilize the explicit modeling method to represent geometric entities. 

Implicit geometric relations (such as dimensions and constraints in parametric design tools) 
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cannot be represented. Furthermore, features, which capture design process and history in 

parametric design, cannot be represented in these neutral formats. To ensure various design 

information and rationale is captured explicitly in CAD data, modification and extension of 

neutral CAD data formats are needed. 

Some research efforts have been granted to include parametric information in STEP. The 

program of Enabling Next GENeration mechanical design (ENGEN) [106] was sponsored by 

Defense Advanced Projects Research Agency (DARPA) and PDES, Inc., and National Institute 

of Standards and Technology (NIST) Parametric Group [107]. Though some form features and 

geometric constraints are modeled in the above research, the representation method is not generic 

enough to consider both implicit and explicit modeling, and to include geometric and non-

geometric constraints. Design features represent the history of construction, which contains 

design intent. To allow other design participants to understand the design intent behind the 

shape, and to do modification directly on the same geometry in different CAD systems, design 

features and the transition from implicit model to explicit model should be included in CAD 

neutral formats to enhance interoperability.  

Different disciplines have their own domain specifications or constraints. Design 

constraints consist of specifications in both geometric aspect (e.g., dimensions, parallelism, and 

concentricity) and non-geometric aspect (e.g., functionality, materials, process requirements, and 

ergonomics). During the process of design, geometric constraints are imposed on the geometry to 

find the loci and generate the desired physical shape, while non-geometric constraints are first 

processed by designers based on design knowledge and interpreted to the corresponding 

geometric constraints. The physical shape of a design is determined by geometric constraints 

directly and non-geometric constraints indirectly. Based on different interests, constraints can be 
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categorized in different ways. An example of constraint categorization is shown in Figure 26. 

Geometric constraints are looked as low-level constraints and non-geometric constraints are 

high-level constraints in design specifications. 

It is important to capture non-geometric constraints explicitly in product data in order to 

prevent information misinterpretation or loss. For example, the diameter of a shaft could be 

determined by the limit of machining tools, the dimensions of mating parts, the level of bearable 

load, or the strength of the material. The diameter alone cannot represent the actual specification. 

The explicitly specified non-geometric constraints need to be modeled to retain the source of 

geometric interpretation. There are also some other non-geometric constraints that cannot be 

generally interpreted into geometric information, such as design related material properties, 

manufacturing processes, and working environments. 
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Figure 26: Tree of geometric and non-geometric constraints 
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The UL-PML scheme developed in this research support features and constraints in 

parametric design. It captures design features and their relations to low-level entities. It also 

incorporates non-geometric constraints to preserve design information integrity. 

5.1 Design Feature Representation 

Features represent regions of interests for different application purposes. For example, 

function realization and geometry definition are important during design. Material removal 

methods, tool selection, and tolerances are the major concerns in manufacturing. Spatial and 

kinematical relationships are of interest for assembly. The taxonomy of features is application 

specific. Here, the design feature or form feature that is applied in CAD model construction is 

the main domain of discussion. 

Within a feature-based parametric modeling environment, geometric shapes or forms are 

constructed by high-level units – design features. The feature-based construction procedure 

represents design intent and variation information, which are useful for downstream activities, 

such as design modification, model validation, and manufacturing. Feature-based design has 

been widely used in current CAD systems. Features become indispensable tools to aid designers 

to express ideas and histories of design. Information about features should be modeled as part of 

transferable product data for heterogeneous CAD modeling systems.  

In geometric modeling systems, design features or form features can be represented in two 

levels. One is termed implicit or unevaluated, where features are defined by construct procedures 

and parameters. Another is called explicit or evaluated, by which features are defined by low-

level geometric and topological elements.  
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Most of research in form feature modeling uses implicit representation. For example, in 

ASU Features Testbed Modeler [108, 109], features are defined in terms of various parameters 

and rules about geometric shape. Interaction between features includes spatial relationship and 

volume-based CSG tree and Boolean operations. This modeling scheme only uses predefined 

geometric information, thus it makes feature classification not flexible enough. 

E-REP [110, 111, 112, 113, 114] distinguishes generated features, datum features, and 

modifying features and regards a CAD model as being built entirely by a sequence of feature 

insertion, modification, and deletion description. This description then is translated to explicit 

entity representation. This approach allows feature-based modeling to be independent of current 

different CAD systems. But at the same time, features are isolated with entities. The 

constructional procedures do not directly associate with entities.  

Middleditch and Reade [115] proposed a hierarchical structure for feature composition and 

emphasized the construct relationship of features, but failed to build the connection between 

features and low-level entities. 

Some research represents features explicitly. Based on current framework of STEP 

standards, the ENGEN Data Model (EDM) [106, 116] extended STEP’s current explicit entity 

representation by adding some predefined local features such as round and chamfer. EDM took a 

bottom-up approach only and considered the low-level entity construction process, but did not 

consider implicit modeling aspects in a parametric modeling environment. 

The most commonly used CAD systems use a mixed representation of CSG and B-Rep. It 

is vital that a widely acceptable CAD data model should be able to capture feature-level 

information as well as geometric and topological entities and relations. Pratt and Anderson [117] 

also advocate that the future CAD data modeling standard should support both explicit modeling 
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and implicit modeling. A hybrid of descriptive and procedural representation will accommodate 

requirements from different aspects. 

PDES’s Form Feature Information Model (FFIM) [118, 119] adopted a dual representation 

of explicit and implicit features. Explicit features are represented generally by face lists, while 

implicit features are categorized into depression, protrusion, passage, deformation, transition, 

and area features. The limitation of FFIM is that parameters and constraints are not supported, 

and the relation between explicit features and low-level entities is not explicit modeled. 

Some researchers used a hybrid CSG/B-Rep structure. Roy and Liu [120] constructed CSG 

using form primitives and form features. A face-edge type data structure is used at the low-level 

B-Rep. These two data structures are linked by reference faces. Wang and Ozsoy [121] used 

primitive features and form features to build CSG structure. Dimension and orientation 

information are represented as constraint nodes in CSG tree. A face-edge type data structure is 

used for lower level entities. The connection between two structures is built by pointers from set 

operator nodes in CSG to B-Rep data structure and from faces to feature faces. Gomes and 

Teixeira [122] also developed a CSG/B-Rep scheme, in which CSG represents the high-level 

relationships between features, and the B-Rep model describes the details. An additional Feature 

Topological Structure in parallel with the B-Rep model defines volume form features. 

The above hybrid representations build CSG trees using pre-defined features. Although 

connections between features and low-level entities are built, these hybrid approaches are not 

generic enough.  Some local operations such as chamfer, fillet, and thread cannot be 

implemented purely in CSG context. Feature identification and mapping procedures in different 

modeling systems may not be easy if some systems do not contain a particular feature. Thus, the 

definition of a feature itself needs to be captured. 

 63



  
 

From a more general point of view, an intentional feature [123] captures the process of how 

a feature is defined, and is more flexible than geometric features. An intentional feature is an 

abstraction for accessing groups of geometric elements with certain attributes, while a geometric 

feature is a physical collection of geometric elements. It is advantageous to model features in a 

procedural way in terms of intentional features, which separates feature construction and 

validation. The design feature representation scheme proposed here is a combination of 

intentional and geometric aspects of features. 

5.1.1 Dual representation of features 

A definition of feature in terms of information representation for modeling procedures is 

needed to delineate the scope of feature information elements. Kim and O’Grady [124] proposed 

an abstract representation in which features are defined as building blocks of part with certain 

operators, but did not show detailed relations between features and entities. Relations between 

features and low-level entities are important to make a feature representation generally 

acceptable by current CAD systems.  We define that a design feature is a relation between priori 

properties (profile, orientation, attributes, etc.) and posteriori properties (derived geometric and 

topological entities and their relations). The collection of priori properties is called priori feature, 

and the collection of posteriori properties is called posteriori feature. Priori features consist of 

construction intents and procedures, while posteriori features have evaluated geometric shape 

information.  

If E is a set of low-level entities (geometry and topology), and R is a set of relations 

between entities, a CAD model D can be defined as a set of points in the E-R space, denoted as 

D = (E, R). Furthermore, E can be subdivided into spaces of topology and geometry, E = T ∪ G, 

where T is the set of topological entities, and G is the set of geometric entities. R can be 
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subdivided into spaces of static relation and constraint, R = S ∪ C, where S is the set of static or 

structural relations (generalization, aggregation, association), and C is the set of constraints or 

dynamic relations. Priori features and posteriori features are subspaces of D, and they contain 

information of T, G, S, and C. If Fi is the set of priori features and Fo the set of posteriori 

features, Fi ⊂ D, Fo ⊂ D, i.e., Fi ⊂ E × R, Fo ⊂ E × R.  Feature evaluation is the mapping 

function f: Fi → Fo. Design feature F is defined as the relation f. F can also be denoted as (Fi, 

Fo). The relations between features and low-level entities thus are built, which can be 

summarized as F = ([Ti, Gi]×[Ci, Si], [To, Go]×[Co, So]), where i and o respectively denote entities 

or relations belonging to priori and posteriori features. Some examples of features are listed in 

Table 3.  

While the explicit modeling method builds models using elements of T, G, C, and S 

directly, feature-based modeling composes models in a more structured way by using collections 

of {T, G, C, S}. During the process of modeling, entity specifications for priori features are 

independent of those for posterior features (i.e., Ti ∩ To = ∅ and Gi ∩ Go = ∅). Thus, feature 

definition is separated with feature evaluation, which allows construction procedure, history, and 

other design information be captured along with geometry. 

In the UL model, priori features are modeled by introducing a new type of entities - feature 

entities. Priori features (e.g., protrusion, cut, hole, sweep, chamfer, and fillet) are sets of low-

level entities and relations that express the construct procedures. The relation between feature 

entities and topological and geometric entities in priori feature definition are defined as 

aggregation. Similar to low-level entities, feature entities can be referred as both abstract class 

and instance. Design feature entities are categorized as geometric entities, and can be represented 

in DHG. For example, the priori feature of protrusion in Table 3 is represented as in Figure 27.  
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Table 3: Examples of design features 

 Priori Features Posteriori Features 
Protrusion 
 

Profile                         Trajectory
 
 
 
 
Ti: face  loop, edge, vertex 
Gi: surface  line, curve, point, vector 
Ci: profile dimension, sweep distance 
Si: association, aggregation 
 

 
 
 
 
 
To: face  loop, edge, vertex 
Go: surface  line, curve, point, vector 
Co: dimension / distance, parallelism 
So: association, aggregation, 
 

Cut Profile                         Trajectory
 
 
 
 
Ti: loop  edge, vertex 
Gi: line, curve  point, vector 
Ci: profile location, dimension, 
       sweep distance 
Si: association, aggregation 
 

 
 
 
 
 
To: face  loop, edge, vertex 
Go: surface  line, curve, point, vector 
Co: dimension / distance, parallelism 
So: association, aggregation 
 

Fillet FilletEdge  
 
 
 
 
Ti: edge  vertex 
Gi: line, curve  point, vector 
Ci: dimension (radii of fillet) 
Si: association, aggregation 
 

 
 
 
 
 
To: face  loop, edge, vertex 
Go: surface  line, curve, point, vector 
Co: dimension / distance, parallelism 
So: association, aggregation 
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EDGE: e0 

VERTEX: v0 

EDGE: e1 

VERTEX: v1 

EDGE: e2 

VERTEX: v2 

LOOP: l0 

feaPROTRUSION: p0 

LINE: l0 

POINT:p0 POINT:p1 POINT:p2 

VECTOR:v0 VECTOR:v1
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LINE: l1 ARC: a0 

conDISTANCE:d0 

FACE: f0 

POINT:p3

PLANE: pl0 

 
Figure 27: Priori feature of protrusion in DHG 

 

Posteriori features are modeled in the form of collections of low-level entities and their 

association with high-level feature entities. The boundary topological entities of the models are 

the connections between geometry and feature. For example, in 3D solid models, a face entity is 

the pivot of connection between evaluated entities and feature entities, thus priori feature and 

posteriori feature. The relation between feature entities and face entities in posteriori feature 

definition are defined as general association. Any new face generated in a feature evaluation is 

associated with the feature. The posteriori feature of protrusion in Table 3 is illustrated in Figure 

28. Through feature entities, two levels of feature representation (i.e., priori features and 

posteriori features) are linked.  
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FACE: f1 FACE: f2 FACE: f3 

feaPROTRUSION: p0 

PLANE: pl1 PLANE: pl2 PLANE: pl3 SURFACE: s5 

SHELL: sh0 

FACE: f5 

BODY: bd0 

FACE: f4 

PLANE: pl4

 
Figure 28: Posteriori feature of protrusion in DHG 

 

In this model, low-level entities of a priori feature are independent of those of the 

corresponding posteriori feature. It is possible that two sets of entities represent one geometric 

form. This dual representation scheme makes a priori feature separated from its posteriori 

counterpart, therefore feature construction is independent of feature evaluation and validation.  

For example, the solid part in Figure 29 is constructed by four features: protrusion, 

extrusion cut, hole, and fillet. The construct procedure is illustrated in Figure 30. The priori 

features are specified by some low-level entities, either independently defined or evaluated from 

previous steps, with aggregation relations. Then the feature is evaluated. The generated low-level 

entities are associated with the priori features, i.e., feaPROTRUSION, feaCUT, feaHOLE, and 

feaFILLET. Some features are specified independent of evaluated entities, e.g., protrusion and 

cut. In this case, two sets of entities are referring to the same geometry. For example, face f0 

associated with plane pl0 and face f1 associated with plane pl1 in Figure 30 (a) are referring the 

same surface, while edges of ring r0 and intersecting edges between face f2 and f7, f8 in Figure 

30 (b) are referring the same curves. These redundancies are very necessary to preserve 

information of design intentions. Some features are specified based on evaluated entities from 
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previous steps, e.g., chamfer and fillet. In Figure 30 (d), edge e8 is generated at the protrusion 

creation. 

 

 

protrusion 

cut 

hole 

fillet  
Figure 29: A solid feature example 
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(a) Protrusion 

 
 
 
 

(b) Cut 
 

 
 
 
 

(c) Hole 
 

 
 
 
 

(d) Fillet 

feaPROTRUSION: p0 

PLANE: pl1

PLANE: pl2

PLANE: pl3

SHELL: sh0 

FACE: f4 

BODY: bd0 

FACE: f3 

FACE: f2 

FACE: f1 

FACE: f0 

PLANE: pl4

PLANE: pl5

FACE: f6 

FACE: f5 

PLANE: pl6

PLANE: pl0 

VECTOR:t0 

f0, f1 

f2 
f3 

f4 f5 

f6 

e8 

feaCUT: cut0 

PLANE: pl7

SURFACE: pl8

PLANE: pl9 FACE: f9 

FACE: f8 

FACE: f7 

RING: r0 

VECTOR:t14 

r0 

f2 

f8 

f7 

f9 

feaHOLE: hole0 

SURFACE: pl10FACE: f10 

VERTEX: v19 

POINT: p19 VECTOR:t21 

v19 
f10 

feaFILLET: fillet0 

SURFACE: pl11 FACE: f11 

EDGE: e8 

LINE: l8 

e8 f11 

 
Figure 30: Feature definition procedure in Figure 29 
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    <pml:GEOMETRY> 
        …… 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
    <pml:FACE id="f0"> 
                <pml:refLOOP xlink:type="simple" xlink:href="# lp0" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refSURFACE xlink:type="simple" xlink:href="#pl0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE> 
    <pml:RING id="r0"> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e12" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:RING> 
        …… 
    </pml:TOPOLOGY> 
    <pml:FEATURE> 
        <pml:feaPROTRUSION id="p0" depth="40.0"> 
            <pml:PROFILE> 
                <pml:refFACE xlink:type="simple" xlink:href="#f0" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE> 
            <pml:TRAJECTORY> 
                <pml:refVECTOR xlink:type="simple" xlink:href="#t4" xlink:show="embed" xlink:actuate="onRequest"/> </pml:TRAJECTORY> 
        </pml:feaPROTRUSION> 
        <pml:feaCUT id="cut0" category="extrusion" type="blind" depth="12.0"> 
            <pml:PROFILE> 
                <pml:refRING xlink:type="simple" xlink:href="r0" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE> 
            <pml:TRAJECTORY> 
                <pml:refVECTOR xlink:type="simple" xlink:href="#t14" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY> 
        </pml:feaCUT> 
        <pml:feaHOLE id="hole0" type="through_to_next" diameter="16" depth=""> 
            <pml:PROFILE> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v19" xlink:show="embed" xlink:actuate="onLoad"/> </pml:PROFILE> 
            <pml:TRAJECTORY> 
                <pml:refVECTOR xlink:type="simple" xlink:href="#t15" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY> 
        </pml:feaHOLE> 
        <pml:feaFILLET id="fillet0" type="simple"> 
            <pml:FILLET_EDGE radius1="10" radius2="10"> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e8" xlink:show="embed" xlink:actuate="onRequest"/> </pml:FILLET_EDGE> 
        </pml:feaFILLET> 
    </pml:FEATURE> 
    <pml:CONSTRAINT> 
        …… 
    </pml:CONSTRAINT>  

Figure 31: PML description of feature information of Figure 29 

 

As seen before, dual representation scheme captures both intentional features and 

geometric features. Though redundancy requires more storage space in CAD systems, it is 

worthwhile in order to preserve the design procedure and construct history. Besides the 

association between features and low-level entities the relation between features (i.e., feature 

dependency) is also an important part of design history. 

5.1.2 Feature dependency 

There are two types of relations between features, chronicle dependency and reference 

dependency. Chronicle dependency records the construction process and history of design. It 

 71



  
 

captures feature operations in design step-by-step. In the example of Figure 30, cut feature cut0 

is added after protrusion p0, while hole feature hole0 is built after cut cut0. The hierarchical 

structure of PML trees provides a convenient way to model the chronicle aspect of modeling. 

The sequence of child nodes of the PML tree node FEATURE shows the constructing sequence. 

Reference dependency occurs when previous low-level entities of posteriori features are 

referenced by new priori feature specification. Some local feature operations use entities 

generated from previous evaluation as part of their specification, such as thread, chamfer, and 

fillet. The reference dependency among features is captured in terms of the reference relation 

between entities in priori features and posteriori features. In the example of Figure 30, edge e8 

was generated by protrusion feature p0. When feature fillet0 is defined, e8 is part of the priori 

specification. Fillet fillet0 is reference dependent on protrusion p0. Reference dependency can be 

retrieved in a DHG model using the algorithms in Figure 32 and Figure 33. 
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INPUT:  Directed Hyper Graph G = (V, E) 
        Feature node Nfeat 
OUTPUT: NodeList L containing feature nodes that are 
        dependent of Nfeat 
 
FOR each unmarked face node Nface with  
  an association path to Nfeat 
    run TEST on input <Nface> 
    mark Nface 
    FOR each unmarked edge node Nedge with 
      an aggregation path from Nface 
        run TEST on input <Nedge> 
        mark Nedge 
        FOR each unmarked vertex node Nvertex with  
          an aggregation path from Nedge 
            run TEST on input <Nvertex> 
            mark Nvertex 
        ENDFOR 
    ENDFOR 
ENDFOR 
 
TEST: on input <N> 
START TEST 
    FOR each unmarked feature Nfeat0 that has  
      an aggregation path to N 
        L.add(Nfeat0) 
        Mark Nfeat0 
    ENDFOR 
END TEST 
  

Figure 32: Algorithm to list dependent features of a feature for reference dependency 

 
 

INPUT:  Directed Hyper Graph G = (V, E) 
        Feature node Nfeat 
OUTPUT: NodeList L containing feature nodes that  
        Nfeat depends on 
 
FOR each topological node N with  
  an aggregation path from Nfeat 
    IF N has an association path to feature Nfeat0 
        L.add(Nfeat0) 
    ENDIF 
ENDFOR 
  

Figure 33: Algorithm to list features that a feature depends on for reference dependency 

 

To summarize, features are important information about design intent and history, which 

are widely used in feature-based design. The UL-PML scheme is capable of capturing feature 
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information. The dual representation of priori and posteriori features allows global and local 

feature operations to be modeled, thus the feature definition is separated from the feature 

evaluation. Two dimensional dependency relations between features are captured as well to be 

part of design intent information. 

5.2 Geometric Constraint Representation 

Geometric constraints are fundamental relations needed to construct geometric shapes in a 

parametric or variational way. Current standard formats use the explicit modeling method, 

therefore geometric relations among entities are not captured explicitly. Rather, these relations 

are modeled implicitly. For example, if two lines are parallel, they have the same directional 

vectors instead of explicitly constrained with “parallel”. It is impossible to differentiate 

intentional parallel from accidental parallel. Further, if two directional vectors are (1.0, 0.0, 0.0) 

and (1.00000001, 0.0, 0.0), the question whether they are equal or not is system dependent. The 

small difference may be generated unintentionally because of numerical errors with floating-

point arithmetic, or it may be intentionally specified by the designer. 

To preserve design intent and maintain information integrity, it is essential that product 

data include geometric relations among entities, such as coincidence, concentric, parallelism, 

coplanar, and perpendicularity, such that these specifications and constraints can be recorded and 

transmitted. These relations should be modeled explicitly and included in current explicit 

modeling scheme. EDM [106, 116] classified constraints into three classes: predefined 

constraints which are common and well-known; free form constraints which are expressed by 
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string; and construct constraints which capture the construction process. But it did not show how 

constraints are modeled at entity level and relations are built to support parametric modeling. 

Geometric constraints include a variety of types. The commonly used ones can be 

categorized as in Table 4. Geometric constraints are not mutually exclusive, which means that 

one constraint relation may be represented by another constraint. For example, perpendicularity 

can be represented as an angle of 90 degrees. This implies that constraint representation scheme 

should be flexible enough and extensible. 

 

Table 4: Categories of common geometric constraints 

Dimension Position Orientation Symmetry Tolerance 
Distance 
Radius 
Diameter 

Fixed 
Coincidence 
Concentric 
Point on curve 
Curve on surface 
Curve tangent 
Surface tangent 

Angle 
Horizontal 
Vertical 
Curve parallel 
Surface parallel 
Collinear 
Coplanar 
Perpendicular 

Line symmetry 
Plane symmetry 

Dimension 
Straightness 
Flatness 
Circularity 
Cylindricity 
Of a line 
Of a surface 
Angularity 
Perpendicularity 
Parallelism 
Position 
Concentricity 
Circular runout 
Total runout 

 

In the UL-PML scheme, geometric constraints are only modeled at the topological and 

geometric entity level, since form or shape is the major concern of geometric constraints. Each 

instance of a constraint is defined as a constraint entity. The unidirectional relation between a 

constraint and a topological or geometric entity is dynamic and represented as a path in DHG 

model. A constraint entity can have relations with one, two, or more topological/geometric 

entities. 
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There are two types of geometric constraints. One is numerical constraint, such as distance 

and angle, which gives numerical information; the other is symbolic constraint, such as 

coincidence and parallel, which gives logical information. In many geometric operations, the 

result of numerical computation must be used to infer symbolic facts. The geometric reasoning 

process thus depends on the precision of numerical values, which in turn depends on the 

system’s error tolerance and computational algorithms. Different systems have different 

implementations, which causes errors during geometry interpretation. 

Both symbolic and numerical constraints are modeled explicitly in the UL-PML scheme. 

The inclusion of symbolic constraints eliminates ambiguity and uncertainty, which specifies 

geometric relations semantically. For numerical constraints, an interval-value representation is 

proposed to specify allowance of numerical values to avoid inconsistency. From both aspects, 

the robustness of geometric computation can be improved. 

5.2.1 Robustness in Geometric Computation 

During geometric computation, numerical results about geometric entities are usually 

tested against specified constraints for verification and validation purposes. Numerically, 

0.99999999 and 1.00000000 may be same in some systems but not in others. Similarly, an angle 

of 89.99999999 may be considered perpendicular in some systems but not so in others. 

Conceptually, geometric objects are within a continuous Euclidean space, yet they are modeled 

and computed within a discrete domain of computation. Representing an infinite number of real 

numbers by a finite number of bits requires approximation. In geometric computation, some 

geometric properties such as incidence, separation, tangency, and perpendicularity are derived 

based on numerical calculation. Similar to other numerical computation based on floating-point 
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arithmetic, geometric computation is not as accurate and reliable as we expect, especially when 

irrational numbers are involved. 

The precision of binary representation in floating-point computation always has limits. The 

outcome of the computation thus might largely depend on the detailed algorithm implementation 

and sequence of calculations, which are highly system-dependent. Uncertainty is associated with 

approximate arithmetic computations, and different logical inferences may be made in different 

systems. Consequently, robustness is one of the interoperability issues between CAD systems. 

The numerical errors may come from rounding or cancellation [125]. Not all decimal 

numbers can be represented in binary format exactly. For example, the decimal number 0.1 

cannot be represented exactly but is approximately 1.10011001100110011001101×2-4 in 

floating-point format. This results in rounding errors. Multiplication operations generally require 

double number of bits for the arithmetic. After that, the results are rounded off to normal 

precision. This may generate rounding errors as well. When subtracting nearly equal quantities, 

the most significant digits in the operands match and cancel each other, which generates errors 

due to the cancellation. There are two kinds of cancellation: catastrophic and benign. 

Catastrophic cancellation occurs when the operands are subject to rounding errors. For example, 

consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 – 4ac is 0.0292. But b2 rounds to 

11.2 and 4ac rounds to 11.1, hence the final answer 0.1 has a significant error, which is 

introduced by earlier multiplication. Benign cancellation occurs when subtracting exactly known 

quantities, which has small relative error. 

The severity of the robustness problem in geometric computation has been studied by some 

researchers [126, 127, 128, 129, 130]. Three strategies have been proposed to improve 

robustness and consistency, which are exact arithmetic, symbolic reasoning, and reliable 
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computation. The exact arithmetic approach [131, 132, 133, 134, 135] uses exact numbers (e.g., 

integers) as necessary numerical values and symbolic computation on algebraic geometry to 

calculate other values with variable precision. The symbolic reasoning [136, 137] represents 

geometric entities and infers geometric relations symbolically, and no numerical calculation is 

involved; thus, consistency is maintained. The reliable computation [138, 139, 140, 141] uses 

interval arithmetic such that the exact real result of an arithmetic calculation is enclosed within a 

floating-point interval. 

5.2.2 Interval-value numerical constraints 

To improve the modeling robustness, an interval-value constraint scheme is proposed to 

specify numerical values. A numerical constraint is given by a lower bound and an upper bound. 

For instance, if a distance between two points are given in the format of lower and upper bound, 

it will allows CAD systems to interpret and validate constraints within certain error range.  

Figure 34 shows an example of numerical errors. A regular polygon of 360 sides is built to 

inscribe a circle. Starting from vertex A, the coordinates of starting vertex and ending vertex of 

each side are calculated sequentially based on the previous calculated vertex. The starting vertex 

A of the first side is supposed to coincident with the ending vertex Z of the last side. But as the 

radius of the circle increases, a gap between A and Z appears and the gap is increased as the size 

of the circle increases. The coordinates of Z are listed in Table 5, where the coordinates of A are 

(0.0, 0.0). If different systems have different error tolerances, inconsistent interpretation will be 

derived. 
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A 

Z 

 

Figure 34: An example of numerical errors  

 

Table 5: Coordinates of ending vertex with different radii 
Point Z Radius = 1 Radius = 100 Radius = 10000 Radius = 1000000 
x=  0.000000 -0.000000  0.000000  0.000000 
y= -0.000000 -0.000000 -0.000004 -0.000359 

 

Numerical errors caused by rounding and cancellation are inevitable. Thus a real value 

constraint, such as distance = 10.0, will not guarantee to be satisfied in different systems. To 

ensure symbolic meanings to be derived consistently from numerical results, some flexible 

allowances should be given as numerical constraints for consistent interpretation. In the previous 

example, if a coincidence constraint is given by 001.0000.0 ≤−≤− ZA pp vv , i.e., an interval 

value [-0.000, 0.001] is given in the distance constraint, the two vertices A and Z will be 

coincident with different radii of the circle. Interval values for numerical constraints increase the 

robustness of geometric computation. 

Two types of intervals are considered in a numerical constraint. One is trivial-width 

interval, and the other is non-trivial-width interval. A trivial-width interval gives a narrow 

floating-point value bound to have the real value included within it. This interval gives an 

approximation of the real value that cannot be represented by floating-point values. The width of 
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the interval gives an estimate of floating-point precision. For example, real value 0.1 is 

represented by floating-point interval [1.10011001100110011001100×2-4, 

1.10011001100110011001110×2-4] that is equivalent to [0.099999994, 0.100000009] in decimal. 

A non-trivial-width interval has a wide bound and gives more allowance to entities. If a 

calculated value is within the interval, this constraint is satisfied. The interval value prevents 

topological inconsistency due to error propagation. The width of the interval gives the tolerance 

of errors. For example, in Figure 34, if the distance between A and Z is within the interval 

[0.000, 0.001], coincidence can be derived. If the distance is not within the interval, the 

constraint is not satisfied. Inconsistency error then occurs. Interval-value constraints increase the 

robustness for constraint verification and validation. 

There is a new issue generated during constraint verification and validation test when 

interval values are used. That is how to choose the proper width of an interval value. In the 

example of Figure 34, if the radius of the circle increases continuously, the distance value will go 

beyond the interval [0.000, 0.001] and an inconsistency error will occur eventually. Choosing the 

width of an interval thus is a tricky part of imposing numerical constraints. There are two types 

of errors associated with choosing interval width. If the width of a constraint interval value is too 

small, most of the tests will fail because of numerical approximation, which generates 

unnecessary errors of inconsistency, which is called Type I error. If the width of a constraint 

value is too big, some of the tests that were supposed to fail now will pass, which generates 

unnecessary errors of inconsistency too, which is called Type II error. Choosing interval width of 

constraint values will be influenced by the uncertainty of application type, accuracy requirement, 

software system implementation, and computation hardware precision. It could largely depend 

on users’ experiences. 
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To summarize, it is advantageous that numerical constraints are represented by interval 

values, which reduce the chances of inconsistency due to numerical errors, and symbolic 

constraints are represented in descriptive ways, which eliminate ambiguity and uncertainty. In 

the UL-PML scheme, specific constraint entities are defined using schema, thus geometric 

constraints can be included in an integrated product model. 

Figure 35 gives some examples of modeling symbolic and numerical geometric constraint 

for a feature-based piston design. Geometric constraints include constraints in priori features 

such as the radius r within the profile of revolve feature in Figure 35 (b), constraints in posteriori 

features such as the distance d of the cut feature in Figure 35 (c), as well as inter-feature 

constraints such as concentric of faces f1 and f2 for the assembly in Figure 35 (d).  

 

 
 

              
 (a)             (b) 
 
 

                  
     (c)        (d) 

r

e1 e2 

concentric

f1 f2

d 

 
Figure 35: Constraint examples in a piston and its assembly 
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In the UL-PML scheme, this piston is modeled based on features including revolve, cut, 

hole, pattern, etc., as shown in Figure 36 (a). The constraints in Figure 35 (b), (c), and (d) are 

modeled in PML as in Figure 36 (b), (c), and (d) respectively. Symbolic constraints are 

represented by constraint entities while numerical constraints have interval value allowances in 

computation. 

 

<pml:PART id="piston"> 
    <pml:GEOMETRY> 
        …… 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
     …… 
    <pml:FACE id="f1"> 
                <pml:refLOOP xlink:type="simple" xlink:href="#lp0" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refSURFACE xlink:type="simple" xlink:href="#pl0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE> 
    <pml:EDGE id="e4"> 
                <pml:refCURVE xlink:type="simple" xlink:href="#l12" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
    <pml:RING id="r2"> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:RING> 
     …… 
    </pml:TOPOLOGY> 
    <pml:FEATURE> 
        <pml:feaREVOLVE id="rev0" angle="360.0"> 
            <pml:PROFILE> 
                <pml:refFACE xlink:type="simple" xlink:href="#f1" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE> 
            <pml:AXIS> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e4" xlink:show="embed" xlink:actuate="onRequest"/> </pml:AXIS> 
        </pml:feaREVOLVE> 
        <pml:feaCUT id="cut0" category="extrusion" type="blind" depth="12.0"> 
            <pml:PROFILE> 
                <pml:refRING xlink:type="simple" xlink:href="r2" xlink:show="embed" xlink:actuate="onRequest"/> </pml:PROFILE> 
            <pml:TRAJECTORY> 
                <pml:refVECTOR xlink:type="simple" xlink:href="#t14" xlink:show="embed" xlink:actuate="onLoad"/> </pml:TRAJECTORY> 
        </pml:feaCUT> 
        …… 
    </pml:FEATURE> 
</pml:PART>  

(a) features 
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feaREVOLVE: rev0 

PLANE: pl1

PLANE: pl2

SHELL: sh0 

BODY: bd0 

FACE: fac2 

FACE: fac1 
FACE: fac0 

PLANE: pl0 

LINE:axis0 

EDGE: e1 

EDGE: e2 

conDISTANCE: r 

 
 
 

<pml:PART id="piston"> 
    <pml:GEOMETRY> 
        …… 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
        …… 
    <pml:EDGE id="e1"> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refCURVE xlink:type="simple" xlink:href="#line0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
    <pml:EDGE id="e2"> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v3" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refCURVE xlink:type="simple" xlink:href="#line1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
       …… 
    </pml:TOPOLOGY> 
    <pml:FEATURE> 
        …… 
    </pml:FEATURE> 
</pml:PART> 
<pml:CONSTRAINT> 
        …… 
    <pml:conDISTANCE id="r" xlink:type="extended" pml:lowerBound="49.99998720" pml:upperBound="50.00012210"> 
        <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#e2"/> 
        <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e1"/> 
        <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
        …… 
</pml:CONSTRAINT>  

 
(b) distance constraint between edges 
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 feaCUT: cut1 

PLANE: pl10FACE: f10 

RING: rin1 

VECTOR:t14 

feaCUT: cut2 

PLANE: pl13FACE: f13 

RING: rin2 

VECTOR:t16 

conDISTANCE: d 

 
 
 

<pml:PART id="piston"> 
    <pml:GEOMETRY> 
        …… 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
        …… 
    <pml:FACE id="f10"> 
                <pml:refLOOP xlink:type="simple" xlink:href="#lp10" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refSURFACE xlink:type="simple" xlink:href="#plane10" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE> 
        …… 
    <pml:FACE id="f13"> 
                <pml:refLOOP xlink:type="simple" xlink:href="#lp13" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refSURFACE xlink:type="simple" xlink:href="#plane13" xlink:show="embed" xlink:actuate="onLoad"/> </pml:FACE> 
       …… 
    </pml:TOPOLOGY> 
    <pml:FEATURE> 
        …… 
    </pml:FEATURE> 
</pml:PART> 
<pml:CONSTRAINT> 
        …… 
    <pml:conDISTANCE id="d"xlink:type="extended" pml:lowerBound="3.99898720" pml:upperBound="4.00010210"> 
        <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#f10"/> 
        <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#f13"/> 
        <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
        …… 
</pml:CONSTRAINT>  

 
(c) distance constraint between faces 
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feaCUT: cut5 

SURFACE: cyl5 FACE: f1 

RING: rin5 

VECTOR:t15 

conCONCENTRIC: a

Piston.xml

feaREVOLVE: rev0 

SURFACE: cyl1 FACE: f2 

FACE: fac1 

LINE: axis1 

Piston_asm.xml

Rode.xml

 
 
 

<pml:ASSEMBLY id="piston_assembly"> 
    <pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/> 
    <pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/> 
</pml:ASSEMBLY> 
<pml:CONSTRAINT> 
        …… 
    <pml:conCONCENTRIC id="a" xlink:type="extended"> 
        <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="Rode.xml#f2"/> 
        <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="Piston#f1"/> 
        <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conCONCENTRIC> 
        …… 
</pml:CONSTRAINT>  

 
(d) concentric constraint between faces in assembly file 

 

Figure 36: Piston features and geometric constraints in PML 

 

The above constraints are associated with two entities, which are represented by extended 

links in PML. Constraints can also be associated with one entity. They are represented by simple 
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links in PML. For example, a vertical constraint of edge e1 in Figure 35 (b) can be modeled as in 

Figure 37. 

 

 

feaREVOLVE: rev0 

PLANE: pl1

PLANE: pl2

SHELL: sh0 

BODY: bd0 

FACE: fac2 

FACE: fac1 
FACE: fac0 

PLANE: pl0 

LINE:axis0 

EDGE: e1 

conVERTICAL: v 

 
 
 

<pml:PART id="piston"> 
    <pml:GEOMETRY> 
        …… 
    </pml:GEOMETRY> 
    <pml:TOPOLOGY> 
        …… 
    <pml:EDGE id="e1"> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
                <pml:refCURVE xlink:type="simple" xlink:href="#line0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
       …… 
    </pml:TOPOLOGY> 
    <pml:FEATURE> 
        …… 
    </pml:FEATURE> 
</pml:PART> 
<pml:CONSTRAINT> 
        …… 
    <pml:conVERTICAL id="v"> 
                <pml:refEDGE xlink:type="simple" xlink:href="#e1" xlink:show="embed" xlink:actuate="onRequest"/> </pml:conVERTICAL> 
        …… 
</pml:CONSTRAINT>  

Figure 37: Simple link geometric constraint 
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5.3 Non-geometric Constraint Representation 

Besides geometric constraints, there are a large number of constraints which have no 

geometric meanings themselves, such as material types, mathematical relations, and 

manufacturing process specification, as shown in Figure 26. These types of constraints may 

come from specifications or requirements of different design stakeholders, and are as important 

as geometric shape to maintain the quality of design. A large amount of design intent is 

transmitted by these non-geometric constraints, which unfortunately are unable to be captured 

and transferred along with the geometry by neutral format.  

Some of the non-geometric constraints can be translated into geometric constraints. The 

geometric constraints are the reasoning results from the non-geometric ones. For example, the 

reliability constraint of a load-bearing shaft can be interpreted as the minimal diameter of the 

shaft should be greater than certain value, thus resulting in a diameter constraint with certain 

value. Nevertheless, it is still important to capture the reliability constraints, because some other 

constraints such as an assembly constraint may end up referring to the same diameter constraint. 

Therefore, it is critical that original non-geometric constraints be captured explicitly in the 

product model.  

In the UL-PML scheme, non-geometric constraint entities are associated with high-level 

entities including feature, constraint, part, and assembly. To make it general, non-geometric 

constraints can be represented symbolically, which means that character strings are attached to 

entities of features, parts, and assemblies as supplemental information. Domain specific 

interpreters are needed to assist design system to understand the constraints. The taxonomy of 

non-geometric constraints is domain dependent. Constraint entities need to be defined for each 

application domain.  
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Based on the UL model, constraints can be associated with one or more entities. Some 

examples of non-geometric constraints are shown in Figure 38. A constraint can be a specific 

one, such as the material associated with the part piston and the math associated with three 

distance constraints d, r, and l in this example. It can also be a general one, such as the op_temp 

expressed in character string and associated with the part piston.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<pml:ASSEMBLY id="piston_assembly"> 
    <pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/> 
    <pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/> 
</pml:ASSEMBLY> 
<pml:CONSTRAINT> 
        …… 
    <pml:conMATERIAL id="material" value="Metal Matrix Composites"> 
        <pml:refPART xlink:type="simple" xlink:href="Pison.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/> 
    </pml:conMATERIAL> 
    <pml:conMATH id="math" xlink:type="extended" value=" ‘dim1’ = (‘dim2’ – ‘dim3’ – 2.0) * 2"> 
        <pml:LOC1 xlink:type="locator" xlink:label="dim1" xlink:href="Rode.xml#l"/> 
        <pml:LOC2 xlink:type="locator" xlink:label="dim2" xlink:href="Piston.xml#r"/> 
        <pml:LOC3 xlink:type="locator" xlink:label="dim3" xlink:href="Piston.xml#d"/> 
        <pml:ARC1 xlink:type="arc" xlink:from="dim1" xlink:to="dim2" xlink:actuate="onRequest"/> 
        <pml:ARC2 xlink:type="arc" xlink:from="dim1" xlink:to="dim3" xlink:actuate="onRequest"/> 
    </pml:conMATH> 
    <pml:conGENERAL id="op_temp" value="Maximum operating temperature is 300 C"> 
        <pml:refPART xlink:type="simple" xlink:href="Pisont.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/>  
    </pml:conGENERAL> 
        …… 
</pml:CONSTRAINT> 

r

d

l

material 

op temp 

math

 
Figure 38: Examples of non-geometric constraints 
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5.4 Entity ID Persistency 

One of the problems associated with feature-based parametric design is the naming 

persistency of entities, which has not been solved systematically. Topological entities are used as 

main references to trace geometry and other design information in most commonly used CAD 

systems, which are largely based on boundary representation. The name of a newly created 

topological entity is generated sequentially during the process of design. This new entity could 

be a reference to the new feature of the next step. If parameters assigned in previous steps are 

modified, or previous features are redefined, the parametric system needs to recreate the model. 

The change of a feature will directly affect the features that have reference dependencies on it 

during the model re-evaluation. As a result, some features at later steps may refer to a different 

entity unexpectedly, or even cannot find the reference. This naming persistency problem exists in 

current parametric solid modeling systems. 

A typical example is shown in Figure 39 (a), where a part is constructed by a protrusion 

and a circular cut feature, followed by a hole feature. The position of the hole is partly 

determined by the distance s from the center of the hole to edge e1, which is generated by the 

cut. If the distances from the center of the cut to its references are changed, by either from b to d 

horizontally or from a to c vertically, as shown in Figure 39 (b) and (c) respectively, the distance 

reference of the hole to e1 will jump to edge e2. This is because the ID of the edge e1 was 

assigned to edge e2 after the Boolean operation of the cut, and the orientation information of 

edges is also used in the re-evaluation process. The direct effect of the naming persistency 

problem is that geometry re-evaluation generates an unexpected shape. It causes inconsistent and 

unpredictable geometry. The naming persistency problem affects the process of shape 
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construction within one modeling session. It can also affect the design process between modeling 

sessions. 

 

 
 

                        
                    (a)                                                                          (b) 

                                           
                                                                (c) 

s 

a 
b 

e1 

s

a
d

e2

s

c
b

e2

 
Figure 39: An example of naming persistency problem 

 

In a PML-based distributed modeling environment, the persistency problem can easily 

cause inconsistency and unpredictability of modeling. The identification of entities is crucial to 

maintain the persistent and non-volatile linkage among different data files. Within a design 

session, relations between entities in one file should be sustained. Among different design 

sessions, linkages among files should be preserved as well. The issue of intra-session and inter-
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session persistency should be resolved to allow the UL model to apply in a distributed design 

environment effectively. 

Some heuristic solutions of the persistent naming issue have been proposed. In the research 

of E-REP [142], a topology-based naming method is used. New topological entities are named 

based on the referred old entities during the feature construction. For example, in an extrusion, a 

new edge is named by reference to the sweeping vertex, whereas a new face is named by 

reference to the sweeping edge. When model is re-evaluated, new entities should be identified 

and matched to old entities. The matching of an entity is realized through a local comparison of 

topological neighborhoods by a spectral graph isomorphism algorithm, as well as entities’ 

orientation information. However, graph isomorphism is known to be NP-complete [143] and 

has combinatorial computational costs if a complex part is dealt with. 

Comparatively, Kripac’s topological ID system [144, 145] names a face based on a step ID 

(identifying the particular step that the face is created during the feature operations), a face index 

within that particular step, and the type of corresponding surface. Edges and vertices are 

identified by the names of adjacent faces. Each model maintains a face modeling history during 

the construction. To map the new entities to the old ones if the topology of the model is changed, 

this face modeling history is used during the comparison of the face graphs. Similarly, this 

approach involves time-consuming graph isomorphism procedures in each model reevaluation 

that is related to high cost of computation.  

Wu et al. [146] identify faces by two names. The Original Name (ON) of a face records the 

feature’s generating mode and the location of the face in the feature, while the Real Name (RN) 

of the face contains its ON and the parametric space information. New faces generated by 

Boolean operations will inherit the original faces’ ONs. Edges and vertices are named only by 
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RNs, consisted of adjacent faces’ RNs and parametric space information. The authors had a good 

observation to include parametric information of surfaces in topological IDs, but ended in the old 

trap of enumeration method to identify parameter values. 

In the Boundary Representation scheme, geometry represents unbounded boundary 

information in Euclidean space, while topology is used to characterize coincidence and 

adjacency relations of bounded geometric elements. The latest geometric modelers have 

topology and geometry separately represented. In feature-based parametric modeling, topology is 

rather unstable and volatile. Small adjustment of some parameters may cause topology to be 

changed dramatically. This can be seen as the root of the naming persistency problem. The 

approach of identifying new entities by simply matching old topology to a new one for each re-

evaluation is not a general solution from the computational efficiency point of view. A better 

solution is to include information that is more stable during the model construction into the 

identities of topological entities.  

5.4.1 Parametric family 

The basic technical problem of persistent naming is that a parametric solid model 

corresponds to a class of solids, but there is no formal definition or standard for what this class is 

[147]. While CSG models are globally parameterized, B-Rep models need extra boundary 

evaluation steps to apply parametric modeling, which causes the complexity of parametric family 

definition. In the work of Stewart [148] and Raghothama-Shapiro [149, 150], a parametric family 

of solids is defined based on topological mapping between cell complexes, that is, if any cell of 

B-Rep model K can be mapped to a cell of B-Rep model L, K belongs to the parametric family of 

L. This approach provides a necessary condition for boundary representation variance (BR-
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variance) and parametric family classification. Nevertheless, sufficient conditions for BR-

variance in parametric modeling still remain unresolved. 

To generally define the parametric family of a solid, one needs to study sufficient 

conditions for BR-variance. A sufficient condition for BR-variance based on geometric 

continuity is proposed for a general definition of parametric family. Here, continuity means: 

throughout a valid parameter range, small changes in a solid’s parameter values result in small 

changes in the geometry of B-rep (not “solid’s representation” as in reference [149]). It is 

difficult, if not impossible, to organize variational / parametric families based on topology 

continuity. While adjacency of bounded geometric elements (topology) is volatile in the family 

of variational geometry, the unbounded geometric information (geometry) is more stable.  

Poncelet’s continuity principle states that if, from the nature of a particular problem, a 

certain number of solutions are expected, and if in any particular case this number of solutions is 

found, then there will be the same number of solutions in all cases, although some solutions may 

be imaginary [151, 152]. For instance, two circles intersect in two points, so it can be stated that 

every two circles intersect in two points, although the points may be imaginary or may coincide, 

as in Figure 40. If considered in a complex space instead of a real one, the loci of the two 

intersection points of the circles are continuous with respect to the distance between the centers 

of the circles. 
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Figure 40: Example of intersect continuity 

 

We extend Euclidean space to complex Euclidean space. In an even-dimensional Euclidean 

space R2n, points are ordered sets of 2n real numbers (x1, … xn, y1, …, yn), where xk, yk ∈ R (k = 

1, …, n). If a complex structure is introduced as zk = xk + iyk (k = 1, …, n), we shall call the space 

whose points are ordered sets of n complex numbers  

    Z = (z1, … zn)         (5.1) 

the n-dimensional complex Euclidean space, denoted by Cn.  

For any point p, p ∈ Rn, there is an infinite number of points q’s, q ∈ Cn, such that there is 

a mapping function f: Cn → Rn, f(q) = p. f is a function of orthogonal projection. The 3-

dimensional Euclidean space E3 is the projected real subspace of complex Euclidean space C3, 

where f (q) = Re(q). 

In the domain of parametric design, adding p more dimensions which represents real 

parameter tj’s (tj ∈ R, j=1,…,p) to C3, we have a p×3 dimensional parametric complex Euclidean 
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space denoted by PpC3, where PpC3 = Rp × C3. There are two types of parameters, shape 

parameters (s-parameters) and relation parameters (r-parameter), associated with each geometric 

object. For example, in a planar circle  

     ,      (5.2) 
⎩
⎨
⎧

+=
+=

θ
θ

sin
cos

rby
rax

θ  is an s-parameter and a, b, r are r-parameters. A PpC3 space including m-dimensional s-

parametric subspace and n-dimensional r-parametric subspace can be further defined as Pm×nC3 = 

Rm × Rn × C3. The BR-variance and continuity for parametric family are defined in PpC3. 

Definition 5.1: A curve in C3 is a map γ : R → C3, denoted as )(tγ , where t (t ∈ R) is an s-

parameter of γ . In PpC3, a curve is a hyper-curve, γ : R → R(p-1)C3, where p ≥ 1. 

Definition 5.2: A surface in C3 is a map σ : R2 → C3, denoted as ),( vuσ , where u and v (u, v ∈ 

R) are s-parameters of σ . In PpC3, a surface is a hyper-surface, σ : R2 → R(p-2)C3, where p ≥ 2. 

Definition 5.3: A curve )(tγ  ∈ P(p-1)C3 (t ∈ R) is called C0 continuous with respect to t in the 

neighborhood of t0 if and only if )()(lim 0
0

tt
tt

γγ =
→

. 

Definition 5.4: A curve )(tγ  ∈ P(p-1)C3 (t ∈ R) is called Ck continuous with respect to t in the 

neighborhood of t0 if and only if 
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γγ , and )(tγ  is Ck-1 continuous. 

Definition 5.5: A surface ),( vuσ  ∈ P(p-2)C3 (u, v ∈ R) is called C0 continuous with respect to u 

and v in the neighborhood of (u0, v0) if and only if ),(),(lim 00

0
0

vuvu
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→
→

. 

Definition 5.6: A surface ),( vuσ  ∈ P(p-2)C3 (u, v ∈ R) is called Ck continuous with respect to u 

and v in the neighborhood of (u0, v0) if and only if 
u

vu
u

vu
k

k

k

k

uu ∂
∂

=
∂

∂
→

),(),(lim 0

0

σσ ,  

 95



  
 

v
vu

v
vu

k

k

k

k

vv ∂
∂

=
∂

∂
→

),(),(lim 0

0

σσ , 
uv
vu

uv
vu

k

k

k

k

uu ∂∂
∂

=
∂∂

∂
−−→ 1

0
1

),(),(lim
0

σσ , 
vu
vu

vu
vu

k

k

k

k

vv ∂∂
∂

=
∂∂

∂
−−→ 1

0
1

),(),(lim
0

σσ , and 

),( vuσ  is Ck-1 continuous. 

Definition 5.7: The set of bounding surfaces of a solid object o in space PpC3, bs(o), is a set of 

surfaces, ∀σ  ∈ bs(o), ∃p ∈ σ , such that ∃a, ∃b, a ∈ ε-neighborhood of p, b ∈ ε-neighborhood 

of p, while a ∈ o, b ∉ o. 

Definition 5.8: The set of bounding curves of a solid object o in space PpC3, bc(o), is the set of 

curves, each of which is the intersection of two bounding surfaces, i.e., ∀γ , γ  ∈ bc(o), such that 

)(bs),(bs,, oo ∈∈∃∃ δσδσ , for γ∈∀ pp, , at the same time, δσ ∈∈ pp , . 

In PpC3 space, two curves always intersect, either at real points, imaginary points, or 

infinity. If two curves have an r-parameter r, the locus of intersection of the curves is a curve 

with r as its s-parameter. Similarly, if two curves have r-parameters q and r, the locus of 

intersection of the curves is a surface with q and r as its s-parameters. 

Definition 5.9: An intersecting curve with respect to r (r ∈ R) of two curves )(sγ  and )(tξ , 

)),(),(( rts ξγχ , is a curve of r, where )),(),((, rtspp ξγχ∈∀ , at the same time, ξγ ∈∈ pp , . 

Definition 5.10: An intersecting surface with respect to q and r (q, r ∈ R) of two curves )(sγ  

and )(tξ , ),),(),(( rqts ξγχ , is a surface of q and r, where ),),(),((, rqtspp ξγχ∈∀ , at the same 

time, ξγ ∈∈ pp , . 

Definition 5.11: A solid object o is called C0 continuous with respect to an r-parameter r within 

interval (a, b) in space PpC3, if ∀ )(sγ , ∀ )(tξ , )(sγ  ∈ bc(o), s ∈ R, )(tξ  ∈ bc(o), t ∈ R, such 

that )),(),(( rts ξγχ  (r ∈ R) is C0 continuous with respect to r on r ∈ (a, b).  
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Definition 5.12: A solid object o is called C0 continuous with respect to r-parameters q and r 

within interval (a1, b1) × (a2, b2) in space PpC3, if ∀ )(sγ , ∀ )(tξ , )(sγ  ∈ bc(o), s ∈ R, )(tξ  ∈ 

bc(o), t ∈ R, such that ),),(),(( rqts ξγχ  (q, r ∈ R) is C0 continuous with respect to q and r on q 

∈ (a1, b1), r ∈ (a2, b2).  

If a solid object o can be transformed to another solid object b with C0 continuity with 

respect to an r-parameter r, b belongs to the parametric family of o with respect to r. Similarly, if 

a solid object o can be transformed to another solid object b with C0 continuity with respect to r-

parameters q and r, b belongs to the parametric family of o with respect to q and r. High-order 

parametric families can be defined in a similar way.  

It is noted that a parametric family should be defined with respect to r-parameters. 

Definition 5.11 and 5.12 give the sufficient condition of BR-variance. If a solid has the property 

of C0 continuity on certain intervals of r-parameters, the variance of boundary representation can 

be asserted. 

In brief, if solid geometry is considered in parametric complex Euclidean space, the 

parametric family of a solid can be defined based on the continuity of geometry. Rather than 

topology, unbounded geometry possesses good properties of continuity. This leads to the ideal of 

identifying topological entities with geometry, which is called the semantic ID method 

introduced in the following section. 

5.4.2 Semantic ID 

To resolve the issue of naming persistency, a semantic ID scheme is proposed. The 

intention is to include information of construct relation in geometric IDs and geometric meanings 

of the identification in the topological IDs. The problem of simple enumeration of entity IDs is 
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that entity identification is exposed globally for the whole product structure. The data structure 

of enumeration is simply a link list. If one node is inserted or removed, all nodes following it 

should be renumbered. Any change within the sequence will affect the identification of all 

following entities. Therefore, it is more protective if ID assignments are localized.  

The concept of namespace of an entity ID is introduced here. If a group of entities have 

some common properties, these properties can form a boundary for their names, and a prefix 

based on these properties can be attached on each of these entity IDs. In this way, the namespace 

of entities is divided based on the prefix. Simply from the name of an entity, some characteristics 

of the entity can be inferred. Re-evaluating some entities in one namespace does not affect the 

names of entities in other namespaces. The namespace can be organized in a hierarchical 

structure. One namespace can be divided further into multiple subspaces with an extra layer of 

prefixes in the names so on and so forth, thus forming a tree structure of naming. 

 A feature is a natural selection for the boundary of the namespaces. The ID of a newly 

created geometric or topological entity will be prefixed with the ID of the feature during which 

this feature operation is performed. The namespace of features categorizes entities based on 

construct history, and is the first step to isolate entity creation and identification. For example, 

each entity that is created during the constructing of the first protrusion will have Protrusion1:: 

at the beginning of the entity’s name. 

The namespace of one feature could be partitioned further to differentiate priori and 

posteriori features. A priori feature may have multiple steps to finish the feature definition. Each 

step then can be assigned an independent sub-namespace. For example, a protrusion feature 

operation needs two steps to finish. One is defining profile, and another is the trajectory 

definition. Each entity generated at each step is prefixed by the feature step ID. The entities 
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generated when the profile of the protrusion is defined will have Protrusion1::Profile:: as part of 

the IDs. The entities created when the trajectory is defined will have a prefix 

Protrusion1::Trajectory:: in their IDs. Since entities defined in priori features are independent 

from entities generated in posteriori features, new entities created in priori features are free of 

turmoil from feature re-evaluation. Thus, enumeration in priori features will not cause big 

problems. 

Major issues of naming persistency come from topological entities created in the domain of 

posteriori features. For each of these entities, no feature steps are included in the entity names. 

Within the namespace of each feature, entities should be named in a more meaningful and stable 

way instead of simple enumeration. One consideration is to include stable geometric information 

of the entities in their identification. The question is what kind of geometric information is to be 

included in topological IDs. A general way is to include all geometric information of the entity. 

For example, an edge is named by the combination of feature ID, feature step, curve type, 

starting / ending directional vectors, starting / ending points, surfaces it belongs to, etc.; and a 

vertex is named by the combination of feature ID, feature step, curves it belongs to, coordinates, 

etc. However, this will be a cumbersome procedure to record each topological entity. If one 

value of geometry attributes is changed, the ID should be updated in time. A more feasible 

version is to name a topological entity by including the ID of the corresponding geometric entity, 

thus references of geometric entities are embedded in topological entities’ IDs.  

To improve geometric entities’ naming stability further, information of construct relations 

of geometry is included in geometric IDs. Because surfaces are generally much more stable than 

curves and points, curves and points are named by surfaces. For 2-manifold geometry, a curve is 

formed by two intersecting surfaces, while a point is formed by three intersecting surfaces. Thus, 
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a curve is named by the IDs of the two intersecting surfaces, and a point is named by the IDs of 

the three intersecting surfaces. This naming method takes a general and passive approach to 

identify curves and points, compared to enumeration that is a direct and active approach. This 

general approach may require more computation for identification of curves and points. 

Nevertheless, the ID contains extra construct information about face-based boundary, which is a 

desirable property. 

Besides the reference to its corresponding geometric entity, a topological entity should also 

include boundary relations with other geometric entities in its ID. By including boundary 

information in terms of geometry, the topological IDs contain the actual semantics of topology. 

For example, in Figure 41, if a face is generated by a protrusion feature p1 and is referring a 

surface s1 and bounded by planes s2, s3, s4, and s5, this face will have the name 

FACE(PROTRUSION(p1)::SURFACE(s1) + SURFACE(s2)&SURFACE(s3)&SURFACE(s4)& 

SURFACE(s5)). And the edge that is referring the line formed at the intersection of planes s1 and 

s2 will have the name EDGE(PROTRUSION(p1)::CURVE(SURFACE(s1)&SURFACE(s2)) + 

SURFACE(s3) + SURFACE(s5)). A face ID has the references of the feature namespace, the 

corresponding surface, and the bounding surfaces if there are any. Similarly, an edge ID has the 

references of the feature namespace, the corresponding curve, and the bounding surfaces if there 

are any. There are some special geometry curves and surfaces that do not have intrinsic 

boundaries in B-Rep, such as circles and spheres. In these cases, extra boundary entities shall be 

introduced in order to identify topological entities. Features and surfaces can be named based on 

enumeration because of their relative stableness. 

Until now, we assume that two surfaces intersect at one curve. For polyhedrons, faces are 

corresponding to planes, which is the simplest case. If some faces are corresponding to quadratic 
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or higher order surfaces. The assumption is not always true. Figure 42 illustrates some examples 

of intersecting surfaces. For linear surfaces intersection (plane-plane), a line (as in Figure 42-a) is 

generated. For a linear surface intersecting with a quadratic surface, either one curve (as in 

Figure 42-b, c, d, e, f) or two curves (as in Figure 42-g, h, i) will be generated. For higher-order 

surface intersections, one or two curves (as in Figure 42-k, l, m, n, o) will be generated. One 

exception is the special case that a plane intersects a cubic cylinder or even higher order at three 

or more parallel lines (as in Figure 42-j). 

 

 

 s1

s2 

s3 

s4 

s5 

 face

 edge

 
Figure 41: An Example of face bounded by surfaces and edge bounded by surfaces 

 

The issue of how to distinguish curves and points if two surfaces intersect at two or more 

curves thus arises. Further, even if only one intersecting curve is generated, boundary surfaces 

may divide the curve into two or more edges. To identify curves and edges based on surfaces, 

extra information is needed if ambiguity exists. For parametric surfaces, curves can be identified 

based on the parameter ranges. But not all surfaces have parametric forms, whereas surfaces in 

parametric forms can be transformed to implicit forms. A general method is needed for surfaces 

in implicit forms.  
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          (a)plane-plane                           (b)plane-ellipsoid              (c)plane-elliptic paraboloid

              
 (d)plane-elliptic paraboloid       (e)plane-parabolic cylinder             (f)plane-hyperboloid 

         
   (g)plane-hyperboloid            (h)plane-parabolic cylinder                 (i)plane-cylinder 

                                           
   (j)plane-cubic cylinder                       (k)plane-torus                         (l)elliptic cone-ellipsoid 

                                   
 (m)cone-parabolic cylinder          (n)cone-parabolic cylinder             (o)cone-cubic cylinder  

Figure 42: Examples of intersecting surfaces 

 

One consideration is to add orientation information of curves, which is motivated by the 

concept of edge identification for non-parametric curves [153]. If a kth gradient operator ∇k in 

Cartesian coordinates is defined as 
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a kth gradient of the surface f(x, y, z)=0 at point p = (x, y, z) is 

      (k > 0).   (5.4) ),,(),( zyxff kk ∇=pIσ

The orientation of the surface f(x, y, z)=0 at point p = (x, y, z) can be defined as the 1st gradient 

     ),,(),( zyxff ∇=pIσ .     (5.5) 

Let f(x, y, z) = 0 and g(x, y, z) = 0 be two surfaces intersecting at c = {(x, y, z) | f(x, y, z) = 

0, g(x, y, z) = 0}. And the orientation of the curve c at point p = (x, y, z) is defined as 

     ),(),(),,(11 pIpIpI gfgf σσ ×= .    (5.6) 

If the orientations of the intersecting curves at some interior points are included, edges can 

be identified. A simple way is to include the orientation information of bounding points of the 

curves. For example, in Figure 42-g, plane y = 0 intersects hyperboloid x2 + y2 – z2 –1 = 0, and 

two intersecting curves are bounded by planes z + 1 = 0 and z – 1 = 0. The orientations of two 

ending points for the left curve are [ 22,0,2± ]T, and [ 22,0,2 −± ]T for the right curve, if the 

orientation is defined as the cross product of normal vectors for the plane and the hyperboloid. In 

Figure 42-h, plane z = 0 intersects with parabolic cylinder x2 + z – 1 = 0, and two intersecting 

lines are bounded by planes y + 1 = 0 and y – 1 = 0. The orientation of two ending points for the 

left line is [0,-2,0]T, and [0,2,0]T for the right line, if the orientation is defined as the cross 

product of normal vectors for the plane and the hyperboloid. Here, the sequence of the vector 

product is important in the definition of orientation. If the positions of f and g in (5.6) are 

switched, the orientation will have opposite direction. If the orientations of the curves at two 

ending points are the same, orientations at some other corresponding points on the curves should 
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be derived to differentiate the two curves. If two surfaces are tangent at some points, the 

orientations of intersection curves at these points are zero vectors. 

Extra care should be given to the exceptional cases that have three or more intersecting 

curves and two curves have same orientation information, such as in Figure 42-j. Plane z = 0 

intersects with cubic cylinder x3 – x – z = 0. The orientation of the left line at any point and the 

orientation of the right line at any point are always [0,2,0]T, and [0,-1,0]T for the middle line, if 

the orientation is defined as the cross product of normal vectors for the plane and the cubic 

cylinder. In this case, additional information besides orientation is needed to identify the left and 

the right edge. One can include second-order gradients of surfaces or curves as the 

supplementary information of curve orientation for edge identification.  

The adaptation of the surface f(x, y, z)=0 at point p = (x, y, z) is the second-order gradient 

     .     (5.7) )

)

)

)

,,(),( 22 zyxff ∇=pIσ

The adaptation of the intersection curve by surfaces f and g can be defined as 

         (5.8a) ,(),(),,( 2
12 pIpIpI gfgf σσ ×=

         (5.8b) ,(),(),,( 2
21 pIpIpI gfgf σσ ×=

         (5.8c) ,(),(),,( 22
22 pIpIpI gfgf σσ ×=

When orientation of curve cannot differentiate the intersection curves, either adaptations of 

surfaces or curves need to be included.  In the previous example, the adaptation of the cubic 

cylinder is [-6,0,0]T at any point on the left intersecting line and is [6,0,0]T at any point on the 

right intersecting line. With the second-order gradients, these two curves can be identified even 

though curve orientations are equal. 

If the adaptations of surfaces or curves still cannot differentiate the curves (e.g., in higher-

degree surfaces), higher order gradients can be derived further to identify edges. This method can 
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also be extended beyond surfaces in implicit format. If some surfaces cannot be represented in 

closed form, they can be interpolated and approximated in polynomial forms, or in pragmatic 

sample data forms. The gradients and orientations can be approximated, which makes this ID 

format generally acceptable. 

Similar to curve and edge identification, points or vertices are identified by the 

orientation/adaptation/gradient information of the intersecting curve of the first two surfaces at 

the particular positions if multiple curves or edges are generated by the same set of surfaces. 

In summary, topological entities can be identified based on surfaces in evaluated solid 

geometry. Faces are named by the IDs of corresponding surfaces with bounding surfaces. Edges 

are named by the IDs of corresponding curves with bounding surfaces and extra orientation and 

gradient information of curves at boundary points if necessary, because it is possible that several 

edges are corresponding to one curve and same boundary surfaces.  Curves are named by the IDs 

of intersecting surfaces, as well as additional orientation and gradient information about the 

involved surfaces at some points (e.g., the intersection points between a plane and the curves) if 

necessary, because it is possible that several curves are generated by intersecting surfaces. 

Vertices are named by the IDs of corresponding points, which in turn are named by the IDs of 

intersecting three or more surfaces.  The syntax of topological and geometric entities’ IDs is 

shown in Figure 43. Note that the curve orientation and gradients for a curve name are derived 

based on the sequence of surfaces shown in its surface list in the first segment. 
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<feature_id> ::= <feature_type> ( <feature_name> ) |  
                          <feature_type> ( <feature_name> ) :: <feature_step_name> 
<face_id> ::= <face_type> ( <feature_id> :: <face_name> ) 
<edge_id> ::= <edge_type> ( <feature_id> :: <edge_name> ) 
<vertex_id> ::= <vertex_type> ( <feature_id> :: <vertex_name> ) 
<face_name> ::= <surface_id> | <surface_id> + <surface_list> 
<edge_name> ::= <curve_id> | <curve_id>  + <surface_list> | 
                             <curve_id>  + <surface_list> - ( <additional_curve_info> ) 
<additional_curve_info> ::= <curve_orientation> & <curve_orientation> |  
                                           <curve_orientation> & <curve_orientation> -  
                                           <curve_adaptation> & <curve_adaptation> 
<vertex_name> ::= <point_id> 
<surface_list> ::= <surface_id> | <surface_id> & <surface_list> 
<surface_id> ::= <surface_type> ( <surface_name> ) 
<curve_id> ::= <curve_type> ( <curve_name> ) 
<point_id> ::= <point_type> ( <point_name> ) 
<curve_name> ::= <surface_id> & <surface_list> |  
                              <surface_id> & <surface_list> - ( <additional_surface_info> ) 
<additional_surface_info> ::= <surface_orientation> & <surface_orientation>  |  
                                               <surface_orientation> & <surface_orientation>  - 
                                               <surface_adaptation> & <surface_adaptation> 
<point_name> ::= <surface_id> & <surface_id> & <surface_list> | 
                             <surface_id> & <surface_id> & <surface_list> -  
                             ( <additional_point_info> ) 
<additional_point_info> ::= <curve_orientation> |  
                                           <curve_orientation> - <curve_adaptation> 
<feature_type> ::= <global_feature_type> | <local_feature_type> 
<global_feature_type> ::= PROTRUSION | CUT | HOLE | LOFT | … 
<local_feature_type> ::= FILLET | CHAMFER | THREAD | … 
<face_type> ::= FACE 
<edge_type> ::= EDGE 
<vertex_type> ::= VERTEX 
<surface_type> ::= PLANE | QUADRATIC_SURFACE | CUBIC_SURFACE | 
                               QUARTIC_SURFACE | FREE_FORM_SURFACE 
<curve_type> ::= LINE | QUADRATIC_CURVE | CUBIC_CURVE | 
                            QUARTIC_CURVE | FREE_FORM_CURVE 
<point_type> ::= POINT  

Figure 43: Syntax of IDs for topological and geometric entities 
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5.4.3 Curve, Edge, and Point Mapping 

The IDs of curves, edges, and points may consist of two segments (i.e., surface segment 

and orientation/adaptation/gradient segment). The first segment is rather stable because the 

unbounded surface geometry is independent of topological faces. Even if a face is eliminated 

from a solid, the geometry of a surface still exists in Euclidean space. The second segment, 

which contains vector values, may be changed each time when geometry is altered. That is, 

orientations, adaptations, and higher-order gradients of curves and surfaces at edges’ boundary 

points and inner points may be changed if the geometry of some surfaces is modified. As a 

result, curves, edges, and points of newly generated solids need to be mapped to entities of old 

solids for each feature modification and re-evaluation. 

The mapping here is based on geometric properties instead of topological correspondence 

in references [142, 145]. We simply call the curve, edge, or point ID in the old solid before 

modification old ID, and the ID of its counterpart in the new solid after modification new ID. 

The surface (first) segment of the new ID is the same as that of the old one, which reduces the 

complexity of mapping. The only difference between the old and new IDs is the 

orientation/adaptation/gradient segment. If only one curve is generated at an intersection, or no 

additional geometric information (orientation/adaptation/gradient) is included in either of the old 

and new IDs, there is an exact match for IDs. If two or more curves are generated at the 

intersection, and additional surface information is included in both old and new IDs, the mapping 

is based on closeness of curves.   

Suppose c1 is the intersection curve of surfaces f1 and g1, and c2 is the intersection curve of 

surfaces f2 and g2. Points p1 and p2 are on curves c1 and c2 respectively. The k-closeness of curve 

c1 and c2 at p1 and p2, k-close(f1, g1, f2, g2, p1, p2), is defined as  
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22211121212211 ),,(),,(),,,,,(-k pIpIpppp  (k ≥ 0). (5.9) 

0-closeness of curve c1 and c2 at p1 and p2 is the distance between p1 and p2. 

Curve mapping can be done based on the values of k-closeness. If m curves (c1, c2, … , cm) 

(m > 1) are generated by the intersection of surfaces f1 and g1 in the new solid, and n curves (d1, 

d2, … , dn) (n > 1) were generated by the corresponding surfaces f2 and g2 in the old solid, there 

is a point pi selected on each of the ci (i = 1, 2, …, m) and a point qj selected on each of the dj (j 

= 1, 2, …, n), where pi and qj are the intersecting points between the curves and a plane x = a (or 

y = b, or z = c). For each pair of ci and dj, k-close(f1, g1, f2, g2, pi, qj) is calculated. If only 

orientation is included in curve IDs, k = 1. If adaptation information is included in curve IDs, k = 

2. Generally, k is the highest order of surface gradient in the curve IDs. Then an m×n closeness 

matrix R is generated by listing each of the new curves as row indices and each of the old curves 

as column indices. In each row ri of R, the elements rij is the rank of closeness based on k-

close(f1, g1, f2, g2, pi, qj) for j=1, 2, …, n. The smallest k-closeness is ranked as 1, and the largest 

k-closeness is ranked as n. If a tie appears in k-closeness, (k+1)-closeness (k > 0) of the curves is 

calculated for the closeness matrix. 

Once the closeness matrix is built, the mapping of curves can be done by selecting the 

lowest rank values. Each new curve will be mapped to its corresponding old curve of rank 1. In 

special cases, it is possible that one new curve is mapped to multiple old curves when a curve is 

split into multiple curves (i.e., a old curve has the lowest rank value in multiple rows). For 

example, plane z = 0 intersects with cubic cylinder x3 – x – z = 0 (as in Figure 42 (j)) and three 

curves are generated. If the plane is changed to z = 0.25, three new curves need to be mapped to 

old curves. The 2-closeness matrix is calculated at the intersection points with plane y = 0. 

According to the matrix value 
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curves can be identified. 

After a curve is identified, it is possible that multiple edges are generated by bounding the 

curve by the same set of boundary surfaces. Edge mapping then is needed based on k-closeness 

of the curve at boundary points to identify the corresponding edges between new and old solids. 

Suppose m edges (m > 1) are generated by the same set of boundary surfaces with the same 

intersection curve of surfaces f1 and g1 after re-evaluation. Each edge ai was bounded by starting 

point pis and ending point pie (i = 1, 2, …, m). Before re-evaluation, n edges (n > 1) are created 

by corresponding surfaces f2 and g2. And each edges bj was bounded by starting point qjs and 

ending point qje (j = 1, 2, …, n). For each pair of edges ai and bj, k-closeedge(ai, bj), can be 

calculated as 

),,,,,(-k),,,,,(-k),(-k 22112211 jeiejsisjiedge gfgfclosegfgfclosebaclose qpqp += . (5.10) 

Similar to the closeness matrix of curves, a closeness matrix of edges can be derived with 

each element as k-closeedge(ai, bj). The mapping of edges is based on the ranks of closeness 

matrix. And the mapping of points is based on the closeness of curves. 

In this surface-based semantic ID system, prefixing IDs with feature namespaces 

transforms the original flat namespace to an organized logical naming hierarchy. The IDs 

identify themselves descriptively by the procedure of feature operations. The inclusion of 

geometric information and boundary association in topological IDs let a topological ID possess 

geometric and topological semantics. The geometric IDs possess construct relations of surfaces, 

curves, and points. Because of possible ambiguity if only surface IDs are included in topological 

entities, necessary orientation and gradient information is included in IDs when multiple curves 
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are formed by intersecting the same set of surfaces, or multiple edges are created by same curve 

and boundary surfaces. Curve and edge mapping is needed if orientation and gradient 

information is involved in IDs before and after geometry re-evaluation. 

 

To summarize this chapter, feature and parametric information is indispensable part of 

solid modeling in the UL-PML scheme. Features are represented in dual mode such that 

intentional features and geometric features are combined. The redundancy ensures that design 

intent is represented in the model. Constraints are captured in data model to reflect design 

specifications, both geometric and non-geometric. While symbolic constraints are modeled 

descriptively, numerical constraints are represented by interval values to improve the reliability 

and quality of computational models. These relations are connected by virtual link. A semantic 

ID method is proposed such that entities are named based on persistent geometry to solve the 

problem of topology inconsistency in parametric modeling and broken link in the UL model. All 

of the above aims to improve the interoperability of CAD data modeling in a distributed design 

environment. 

 

By now, several interoperability issues concerning geometry, features, and constraints for 

collaborative design have been addressed. Yet there is one more problem of interoperability 

during different stages of design, which is model interoperability in terms of time between 

conceptual design and detailed design. Commonly used CAD data models are only for detailed 

design. No applicable data model is available for the early conceptual design stage, during which 

geometric information is incomplete and uncertainty exists. There is no generic data model that 

represents geometric and non-geometric information both for conceptual design and detailed 
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design. Lack of geometric models for conceptual design is one of the major hurdles for the 

development of Computer-Aided Conceptual Design. Incorporating robustness consideration 

mentioned in Section 5.2.2, an interval geometric modeling scheme is proposed to enable design 

data to be modeled from conceptual design to detailed design and design optimization, which 

improves CAD data interoperability for different time frames during design. The following 

chapter describes this scheme. 
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6.0 INTERVAL GEOMETRIC MODELING 

During the process of design, various parameters are specified, which include geometric 

parameters (e.g., dimension, coordinate, and tolerance) and non-geometric ones (e.g., material 

characteristics, tooling speed, and expected life). Current CAD systems only allow geometric 

parameters to have fixed values, such as the position of a point in 3D space, the direction of a 

line, the distance between two axes. Instead of simply assigning one real value to a parameter, it 

will be advantageous to give an interval value to each parameter in a CAD model, which means 

that the parameter can take any valid value between the lower and upper bounds of the interval. 

Fixed parameter values generate some problems.  

First, fixed-value constraints bring up conflicts easily at later design stages. Specifying 

determined parameter values implicitly adds rigid constraints on the geometry. The rigid 

constraints reduce the freedom of geometric entities to the minimal levels. These predominant 

constraints will be carried to other stages of design and most likely are the sources of conflicts. 

To resolve the conflicts, some parameter values have to be changed. This trial-and-error cycle 

will continue until no conflicts are found. If an interval is given to a parameter instead of a fixed 

value such that any real value within the interval is valid, the degrees of freedom of geometric 

entities are increased at the early design stages. As more constraints are imposed onto the 

designed object during the process of design, the freedom of geometric entities will be restricted 

gradually. The allowable intervals of parameter values are reduced by stages. There will be fewer 

chances for conflicts to occur during design, and some cycles of modification will be saved. 
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Second, the requirement of fixed parameter values makes the development of Computer-

Aided Conceptual Design (CACD) difficult. At the conceptual design stage, actual values of 

parameters may not be known. Usually it is not important to specify fixed values of certain 

parameters yet. Current CAD systems require that parameter values be fully specified and fixed, 

thus are not effective tools for conceptual design. It is challenging to develop a practically usable 

CACD tool based on the current scheme of fixed parameter values. Nevertheless, if a parameter 

value is specified as a range, the problem of parameter partial integrity can be solved, i.e., it is 

not necessary to fix all values of parameters. This increases the flexibility of the geometric shape 

of the designed part. 

Besides the ability of tackling problems of fixed parameter values, parameter intervals also 

directly represent bounding information for design optimization. Current design optimization 

process often occurs after parameters are specified at the detailed design stage, while the 

intention of feasible ranges of parameters from upstream design activities is not transferable with 

the fixed-value scheme. Parameter constraints of feasibility have to be added separately for 

optimization. However, with the interval representation, the parameter information is directly 

applicable for parameter optimization. Parameter intervals appropriately represent design intent 

of feasibility, thus integrate the sketching and optimization of design. Parameter optimization can 

be performed based on the inherent value bounds.  

In real situations, there are some uncertainty factors in CAD modeling. Aided by computer, 

the dimensions and shape of the designed product are calculated and stored digitally. 

Computational errors from rounding are inevitable, which can become serious if the magnitudes 

of numbers are very different. Uncertainty also comes from the measurement and tolerance of 

human perception. The real value of measurement is the ideal situation that cannot be realized 
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from statistical points of view. Further more, the precision of numbers in a computer depends on 

the word size and floating-point representation of the computer. Different types of computers 

may have different architectures and representations. Variation exists among different 

computers. Thus, a computer-generated value can be looked as a sample from a range of values, 

while the CAD data of a designed product is a sample from the population of models. Parameter 

intervals capture the uncertainty characteristics, and properly model the process of design. 

Intervals also can provide a uniform representation for geometric data and manufacturing 

tolerances in CAD models. Both variational models and tolerance zone models can be 

represented by interval methods. Tolerance propagation or transformation can be easily 

performed by interval analysis. 

6.1 Preliminaries of Traditional Interval Analysis 

Traditional interval analysis began as a tool for bounding rounding errors in numerical 

computation. Early researchers include Dwyer [154], Warmus [155, 156], Sunaga [157], Moore 

[158], and Hansen [159], etc.  

An interval number is defined as an ordered pair of real numbers, [a, b], with a ≤ b. That is, 

it consists of the set {x: a ≤ x ≤ b}. Degenerated intervals [a, a] are equivalent to real numbers. 

Interval mathematics is a generalization in which interval numbers replace real numbers, interval 

arithmetic replaces real arithmetic, and interval analysis replaces real analysis.  

Let ],[][ aaa = , ],[][ bbb =  be real intervals and o  be one of the basic operations addition, 

subtraction, multiplication and division respectively for real numbers, that is, { /,,, }⋅−+∈o . The 

corresponding operations for interval [a] and [b] are defined by 
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    { ][],[][][ byaxyxba ∈∈= oo }.     (6.1) 

Assuming  in case of division, the arithmetic operations are defined as: ][0 b∉

    ],[][][ bababa ++=+ ,      (6.2) 

    ],[][][ bababa −−=− ,      (6.3) 

    { } { }],,,max,,,,[min][][ bababababababababa =⋅ ,   (6.4) 
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, and ][0 b∉ .   (6.5) 

Detailed information about interval arithmetic and analysis can be found in references [160, 161, 

162, 163, 164, 165]. 

6.2 Concepts of Interval Geometric Modeling (IGM) 

Computer graphics and surface modeling have started using methods of traditional interval 

analysis. Research includes rasterizing parametric surfaces [166], ray tracing of parametric 

surfaces [167] and implicit surfaces [168], collision detection of polyhedral objects [169] and 

surfaces [170, 171, 172], error bounding and approximation in polyhedral [138] and curve-

surface modeling [139, 140, 173, 174]. In the above research, interval methods are employed 

either as assistance and approximation tools for analysis of fixed value computation, in which 

interval number provides a concise format for the bounding box or range commonly used in 

computer graphics algorithms, or as approximation representation of geometry to embody errors 

and improve robustness of geometric modeling. Based on trivial-width interval values, some 

traditional interval arithmetic and analysis methods are used for the geometry approximation. 
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Different from the above, Interval Geometric Modeling (IGM) presented here allows all 

numerical values of parameters including coordinates, dimensions, and other values to be non-

trivial-width interval numbers. With this general representation scheme, issues of rigid 

constraints and uncertainty will be solved in CACD. Numerical constraints can be represented in 

a concise way such that design optimization and approximation can become an integrated part of 

CAD. In addition, under-constrained and over-constrained problems in current parametric 

modeling can be handled more elegantly. 

In IGM, we define interval number X as X = [xL, xN, xU] which contains lower bound value 

xL, nominal value xN, and upper bound value xU. The nominal value is usually corresponding to 

the specified fixed value in current CAD systems, which should be between the lower and upper 

bounds.  

The introduction of the nominal value in an interval is necessary for CAD modeling, since 

the nominal value represents the specification of the parameter if the parameter is fixed, thus 

intervals can be easily integrated with current fixed-value system. It allows current CAD 

modeling systems to adopt interval parameters such that current modeling schemes and computer 

visualization can be used. For example, a 2D point P([1,2,3],[4,5,6]) has the specified nominal 

position (2,5). The nominal values are allowed to be changed within the intervals of x and y 

coordinates respectively. Within a CAD system, the point can be displayed at (2,5). When P is 

fixed, its coordinates are ([2,2,2],[5,5,5]), where the intervals converge to the nominal values. To 

simplify the notation, we can use a real number for a degenerated interval. For example, 0 

represents [0,0,0] as well. Figure 44 shows the valid range of a point specified by intervals in 2D 

and 3D spaces respectively. 
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  2D Point:               3D Point: 
  p(X, Y) = p([xL, xN, xU],[yL, yN, yU])    p(X, Y, Z) = p([xL, xN, xU],[yL, yN, yU],[zL, zN, zU]) 

zL

zU 
zNyL 

yN 

yU 

xL xUxN 

yL 

yN 

yU 

xL xUxN

 
Figure 44: Range of a point specified by interval numbers 

 

6.2.1 Interval Definitions in IGM 

An interval value is a set of real numbers. An n dimensional real number space is denoted 

as Rn. An n dimensional interval number space is denoted as IRn.  

Definition 6.1: { UNLULUNL xxxxxxxxxxX ≤≤≤≤== ,],,[ }, where xL ∈ R, xN ∈ R, xU ∈ R, 

and X ∈ IR. 

Inclusion (⊂, ⊆, ⊄) and belong (∈, ∉) relations of sets are valid for interval values, as well 

as union (∪), intersect (∩), and difference (\). Given that A = [aL, aN, aU], B = [bL, bN, bU], we 

have the following relations: 

Definition 6.2 (equivalence): ( ) ( )UULL babaBA =∧=⇔= .  

The equivalence relation is reflexive, symmetric, and transitive. 

Definition 6.3 (nominal equivalence): ( ) ( ) ( )UUNNLL bababaBA =∧=∧=⇔=: .  

Definition 6.4 (strictly greater than or equal to): UL baBA ≥⇔≥~ .  

Definition 6.5 (strictly greater than): UL baBA >⇔>~ .  

Definition 6.6 (strictly less than or equal to): LU baBA ≤⇔≤~ .  

Definition 6.7 (strictly less than): LU baBA <⇔<~ .  
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Definition 6.8 (inclusion): ( ) ( )LLUU babaBA ≥∧≤⇔⊆ , 

                                           ( ) ( )LLUU babaBA >∧<⇔⊂ . 

Figure 45 illustrates the relations of intervals. 0 = [0,0,0] is also called zero interval. Interval A is 

positive, if and only if A ~> 0. Interval A is negative, if and only if A ~< 0. If the nominal value 

of A = [aL, aN, aU] is not concerned, it can simply be denoted as [aL, aU].  

 

  A: 
  B: 
                A ~> B                       A ~≥ B                       A ~< B                      A ~≤ B         
 
  A: 
  B: 
                A = B                        A := B                        A ⊂ B                       A ⊃ B 
 
  A: 
  B: 
                A ⊃ B                        A ⊂ B                         A ⊇ B                       A ⊆ B        
 
 
  *Notation:  
                 xL   xN   xU  

Figure 45: Relations between intervals 

 

Definition 6.9: Interval A = [aL, aN, aU] is empty, denoted as A = ∅, if and only if aL > aU.  

A is called invalid when aN > aU, or aL > aN, or A is empty. 

Definition 6.10 (intersect): },and|{ R∈∈∈=∩ xBxAxxBA , if A ∩ B ≠ ∅, it can be derived 

by { } { } { } { }],min,2/),min,(max,,[max UUUULLLL babababaBA +=∩ . 

Definition 6.11 (union): },or|{ R∈∈∈=∪ xBxAxxBA , if A ∩ B ≠ ∅, it can be derived by 

{ } { } { } { }],max,2/),max,(min,,[min UUUULLLL babababaBA +=∪ . 

Definition 6.12 (difference): },and|{\ R∈∉∈= xBxAxxBA . 

Some basic arithmetic operations are defined. 

Definition 6.13: ],,[ UUNNLL bababaBA +++=+ . 
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Definition 6.14: ],,[ LUNNUL bababaBA −−−=− . 

Definition 6.15: { } { }],,,max,,,,,[min UULUULLLNNUULUULLL bababababababababaBA =⋅ . 

Definition 6.16: 
⎭
⎬
⎫

⎩
⎨
⎧

∉∈= BBy
yB

0,11 . 

Definition 6.17: 
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Note that A – A ≠ 0. During the processes of arithmetic operations, it is possible that an empty 

interval occurs. 

The width of an interval is a real number, defined as wid(A) = aU − aL. Specially, wid(∅) = 

0. Some other notations are ub(A) = aU, lb(A) = aL, and nom(A) = aN. 

6.2.2 Sampling Relation between Real Number and Interval Number 

The intervals capture the uncertainty of design. The association of a real number with an 

interval number is considered as a sampling relation. The value of a parameter, which is 

generated by computer or selected by human designer, is a sample of the corresponding set of 

values within the interval. Statistically, the interval is the sampling population of real numbers. 
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Therefore, one CAD interval model is allowed to generate different shapes because of parameter 

intervals. Implicitly, a CAD interval model defines a set of geometric shapes that automatically 

accommodate geometry variation.  

Definition 6.18: A real number x is a sample of interval X, if and only if x ∈ X. 

Some strict relations exist between intervals, which are related to real number samples.  

Definition 6.19: yxYyXxYX ℜ∈∀∈∀⇔ℜ ,, . XℜY denotes that X has a strict relation ℜ with 

Y (X ∈ IR, Y ∈ IR).  

That is, XℜY if and only if for any sample of X, any sample of Y has a relation with it. For 

example, two intervals are strictly equal if and only if any two sampling real numbers from them 

respectively are always equal. 

Definition 6.20 (strict equivalence): yxByAxBA =∈∀∈∀⇔= ,,~ . 

The definitions 6.4, 6.5, 6.6, and 6.7 implicitly define the strict unequal relations between 

two intervals. These four definitions are equivalent to the following definitions 6.21, 6.22, 6.23, 

and 6.24, respectively. 

Definition 6.21 (strictly greater than or equal to): yxByAxBA ≥∈∀∈∀⇔≥ ,,~ .  

Definition 6.22 (strictly greater than): yxByAxBA >∈∀∈∀⇔> ,,~ . 

Definition 6.23 (strictly less than or equal to): yxByAxBA ≤∈∀∈∀⇔≤ ,,~ . 

Definition 6.24 (strictly less than): yxByAxBA <∈∀∈∀⇔< ,,~ . 

Besides strict relations, some global relations exist in interval arithmetic evaluation and 

problem solving. 

Definition 6.25: yxYyXxYX ℑ∈∃∈∀⇔ℑ ,, . XℑY denotes that X has a global relation ℑ with 

Y (X ∈ IR, Y ∈ IR).  
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That is, XℑY if and only if for any sample of X there exists a sample of Y that has a relation with 

it. Global relations ensure the feasibility of interval arithmetic operations and solutions. The goal 

of solving interval problems is to find a region that includes all feasible solutions. The 

corresponding process is to eliminate certainly infeasible points from a given region so as to 

make it as compact as possible. The global relations make global solution and optimization of 

interval analysis possible. For example, the four basic arithmetic operations of intervals follow 

the rule of global relation and generate the global solution with a compact bound. A global 

equivalence can be defined as follows, which is used in systems of interval equations.  

Definition 6.26 (global equivalence): yxByAxBA =∈∃∈∀⇔= ,, . 

Note that global equivalence is asymmetric. The equivalence relation in definition 6.2 can 

be looked as a special case of symmetric global equivalence. Similarly, some inequalities can be 

defined as global relations that are used in systems of inequalities. For A = [aL, aN, aU], and B = 

[bL, bN, bU], there are 

Definition 6.27 (greater than or equal to): LL baBA ≥⇔≥ . Equivalently, 

 yxByAxBA ≥∈∃∈∀⇔≥ ,, .

Definition 6.28 (greater than): LL baBA >⇔> . Equivalently, yxByAxBA >∈∃∈∀⇔> ,, . 

Definition 6.29 (less than or equal to): UU baBA ≤⇔≤ . Equivalently, 

 yxByAxBA ≤∈∃∈∀⇔≤ ,, .

Definition 6.30 (less than): UU baBA <⇔< , where A = [aL, aN, aU], and B = [bL, bN, bU]. 

Equivalently, yxByAxBA <∈∃∈∀⇔< ,, . 

Note that it is possible that A ≤ B and A ≥ B at the same time. Some properties in real 

analysis do not apply in interval analysis. Again, strict inequalities are special cases of global 
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inequalities. Function evaluation and problem solving in interval analysis are normally based on 

global relations. 

In a multidimensional interval space, an interval vector can be defined in IRn with each 

component as an interval value, and an interval matrix is defined in IRm × IRn with each element 

as an interval value. Corresponding to a real function f: Rn → Rm, if fset(X) denotes {f(x) | x = (x1, 

x2, …, xn), xi ∈ Xi (i = 1, ..., n), X = (X1, X2 …, Xn), X ∈ IRn}, a function F: IRn → IRm is called 

an inclusion function for f at X if fset(X) ⊆ F(X). A natural inclusion function f(X) for f(x) is 

obtained by replacing each occurrence of the variable xi by interval variable Xi. It is based on the 

inclusion isotonicity of the interval operations [175] and the property of pre-declared inclusions 

[176]. Generally, the natural inclusion function f(X) for f(x) is not tight enough, i.e., f(X) ⊂ f(x), 

because of dependency between variables and wrapping effect [177]. 

Interval vectors with same dimensions can be ranked and sorted ascendantly.  

Definition 6.31: Interval vector A and B are ascendantly ordered, 

)()(and,),,,(),,,,(where, 112121 −− ≤→<¬≤⇔== iiiinnnn BABABABBBAAA LLp BABA  

recursively apply starting from i = n.  

Definition 6.32: Interval vector A and B are descendently ordered, 

)()(and,),,,(),,,,(where, 112121 −− ≥→>¬≥⇔== iiiinnnn BABABABBBAAA LLf BABA  

recursively apply starting from i = n. 

Definition 6.33: ).,,,(where)),(wid(max)(maxwid 21 nii
AAAA L== AA  

Definition 6.34: ).,,,(where)),(wid(min)(minwid 21 nii
AAAA L== AA  
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6.3 Geometry Description in IGM 

With the inherent capability of modeling variation, IGM has special properties that makes 

it different from current geometric modeling schemes. 

6.3.1 Modeling Uncertainty in IGM 

The characteristics of variation and uncertainty are inherent in the process of design, during 

which design knowledge and constraints from different aspects are applied to generate the shape 

and configuration of the designed product. Good CAD systems should model geometry as well 

as the design process, such that design can be easily modified at different design stages. 

Compared to traditional variational / parametric design, in which geometry is determined by 

parameters, IGM gives more flexibility to designers, because variation, inexactness, and 

uncertainty of parameters are taken into consideration.  

In an IGM system, all numerical values for coordinates, dimensions, geometric constraints, 

and other properties are specified in the interval format. For example, a 2D model of a triangle is 

illustrated in Figure 46. The numerical values of geometry, including coordinates of three points, 

three vectors, and distances are specified with interval values. The interval format of parameters 

in a geometric modeling system allows variation and uncertainty to be modeled explicitly, 

especially at early design stages. This provides more leeway for designers to change the shape 

during the design. The decisions to fix values of parameters are postponed until later design 

stages. 
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  Points:  
  P0 ([-1, 0, 1], [-1, 0, 1]) 
  P1 ([9, 10, 11], [-1, 0, 1]) 
  P2 ([-1, 0, 1], [4, 5, 5]) 
 
  Vectors: 
  V0 ([1, 1, 1], [-0.25, 0, 0.25]) 
  V1 ([-1, -1, -1], [0.25, 0.5, 0.75]) 
  V2 ([-0.6666, 0, 0.6666], [-1, -1, -1]) 
 
  Parameters: 
  d0 ([8, 10, 12]) 

V0

V1

V2

P0 P1 

P2

d0

 
Figure 46: A 2D triangle geometry specified by intervals 

 

While the available ranges of parameters are narrowed down gradually, uncertainty is ruled 

out and decisions are made throughout the design process until final design is generated. 

Changing current constraints or adding extra constraints would lead to different geometries. As 

illustrated in Figure 47, the shape of a 2D rectangular object may vary based on coordinates of 

four corner points within their allowable intervals. Because of the overlapping of the interval 

areas, the shape could be a rectangle, a triangle, or even a point. Adding or changing geometric 

constraints may reduce the allowable regions for these corner points, thus finalizing shapes 

eventually. This constraint-driven procedure reflects the nature that design is a process of 

constraint imposition and decision making. 

 

 

 
Figure 47: Constraint-driven geometry in interval modeling 
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6.3.2 Solving Under-constrained Problems 

At early design stages, design usually deals with product concepts and system-level 

configuration. Values of detailed geometric parameters are not critical. Current CAD modeling 

scheme, which requires fixed parameter values, is not good at modeling geometry for the concept 

generation. At this stage, the geometric shape for each part is generated to implement functions 

of the new product. The general geometry and configuration are specified in terms of 

functionality, whereas precise values of parameters are not determined yet. In this case, geometry 

has the properties of incompleteness, inexactness, and approximation. It is difficult to model 

incomplete and inexact geometry in current fixed-value CAD systems, which require well-

constrained data and information.  

For example, at the initial stage of designing a mounting bracket, the geometric shape of 

this sheet-metal part is not decided yet, as illustrated in Figure 48a. The available constraints are 

the distance between corner points P0 and P1, the perpendicularity between lines L0 and L1, and 

lines L0 and L3, as listed in Figure 48b. Though the 2D plate is under-constrained in traditional 

parametric CAD systems, the geometry still can be generated in IGM systems.  

The difference of how under-constrained problems is handled in an IGM system is that 

each numerical value has lower bound, upper bound, and nominal value, and the interval defines 

the feasible region of the value implicitly. This type of soft constraints are applied to geometry 

inherently at every step of value specifications. The effect of adding more constraints is to reduce 

the allowable region of geometric entities systematically such that the final geometry can be 

fixed. In modeling under-constrained geometries, the shape of entities is constrained by the 

allowable value ranges, such as coordinate intervals and distance intervals. In the example of 

Figure 48, points P2 and P3 are constrained within their coordinate intervals implicitly. Even 
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though no other distance or angular constraints are added onto them, the geometry still can be 

modeled with certain flexibility. Therefore, the concept of under-constrained geometry in 

traditional parametric or variational design is not critical in IGM. 
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Figure 48: An example of under-constrained geometry in bracket design 

 

6.3.3 Solving Over-constrained Problems 

As design migrates from conceptual design to detailed design stages, more information is 

available for decision making. In most cases, the information is more than enough to determine 

the geometry, by which multidisciplinary specifications from different aspects are to be met. 

There is a high possibility that conflicts of requirements occur, thus tradeoffs of constraints 

should be made to resolve conflicts. 

In current parametric CAD systems, only well-constrained geometry can be solved, thus 

proper geometric constraints should be assigned to determine geometry. Either under-constrained 

or over-constrained situation is not allowed. For instance, in the previous bracket design, if 

geometric constraints are specified as: the position of P0; distances between P0 and P1, P1 and P2, 

P2 and P3, and P3 and P0; L0 is perpendicular to L1 as well as to L3; and L0 is horizontal. Current 

CAD systems will complain that this geometry is over-constrained, as illustrated in Figure 49. 
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Traditional parametric modeling scheme has strict requirements on the number of constraints and 

the way constraints are applied. 

In IGM, the parameter values are all interval values, which means that all distance and 

angle values in the previous example are interval values. Thus these interval value constraints are 

not as rigid as fixed-value ones. Adding more constraints reduces the feasible regions of 

geometric entities. Only those constraints which cause no feasible regions generate conflicts. 

This approach thus loosens the current requirements on applying constraints. Some of the 

previously over-constrained problems will no longer be over-constrained in IGM. 
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Figure 49: An example of over-constrained geometry in bracket design 

 

6.4 Solving Equations in Interval Geometric Modeling 

To incorporate interval geometric modeling methodology into current CAD systems, 

several fundamental issues related to geometric computation should be addressed. These include 

linear and nonlinear equation representations and solutions, which are essential for 
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transformation operation, surface intersection, and constraint solving, etc. The process of solving 

systems of equations or inequalities is also called contraction. It starts with initial values of 

intervals, which are rough estimates of variable values. Then subintervals which do not contain 

the solutions are eliminated, and intervals are “contracted”. This process normally proceeds 

iteratively until no further improvement. Since interval operations involve more steps and 

procedures than regular arithmetic operations, time and space efficient algorithms are critical to 

allow extensive interval computation to be accomplished with the available computational 

resources. 

6.4.1 Interval Linear Equations 

Commonly used numerical methods for solving real-value linear equations can be extended 

to solve interval-value linear equations, such as Gaussian elimination and triangular 

factorization. But matrix-based methods do not solve under-constrained or over-constrained 

questions. In contrast, iteration-based methods have no well-constrain requirement, such as 

Jacobi iteration and Gauss-Seidel iteration. An algorithm for solving interval linear equations 

presented here is extended from the Gauss-Seidel method, shown in Figure 50. Different from 

methods of Alefeld and Herzberger [161], and Hansen and Sengupta [163], this algorithm allows 

under-constrained and over-constrained linear systems to be solved. 

To solve  

          (6.6) miYXA i

n

j
jij ,...2,1

1
==∑

=

where X1, X2, …, Xn are interval variables, Aij is interval constant for each i and j, and Y1, Y2, …, 

Ym are interval constants. Here, m is not necessary equal to n, which means the linear systems 
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could be over-constrained (m > n) or under-constrained (m < n). If an empty interval is derived 

during the process, there is no solution within the given initial intervals. 

 

INPUT:  Interval matrix A 
        Interval vector Y 
OUTPUT: Interval vector X 
 
Interval V 
int i, j, k 
REPEAT until stop criterion is met 
    FOR each 1 <= i <= m 
        FOR each 1 <= j <= n 
            IF Aij=0 
                continue next j iteration
            ENDIF 
            V = 0 
            FOR each 1<=k<j 
                V = V+Aik*Xk 
            ENDFOR 
            FOR each j+1<=k<=n 
                V = V+Aik*Xk 
            ENDFOR 
            V = (Yi – V)/Aij 
            Xj = Xj ∩ V 
        ENDFOR 
    ENDFOR  

Figure 50: Algorithm of extended Gauss-Seidel method for solving linear equations (6.6) 

 

6.4.2 Interval Nonlinear Equations 

Nonlinear equation systems can be solved by the fix-point method, forward-backward 

propagation, Newton’s method, and Krawczyk method, etc. Given that IGM requires a constraint 

solving system be flexible for the number of constraints yet with fast convergence, a linear 

enclosure method is presented here. Let us considering the interval nonlinear equation system  

    ( ) liCF ii ,...2,1==X ,       (6.7) 

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval. The 

following steps are needed to solve the system:  
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STEP 1: Transform each equation of (6.7) to the separable form to eliminate dependency among 

variables;  

STEP 2: Find the linear enclosure of each of the univariate nonlinear functions and form a linear 

equation system;  

STEP 3: Solve the linear system by the algorithm of Section 6.4.1;  

STEP 4: If the stopping criterion is met, stop. Otherwise, repeat from STEP 2 to STEP4.  

 

STEP 1:  

Function f(x1, x2, …, xn) is said to be separable if and only if f(x1, x2, …, xn) = f1(x1)+ 

f2(x2)+ …+ fn(xn). According to Yamamura’s algorithm [178], functions that are composed of 

four basic arithmetic operations (+, −, ×, /), unary operations (sin, exp, log, sqrt, etc.), and the 

power operation (^) can be transformed into the separable form by introducing necessary 

functions. For example, f = f1 × f2 can be transformed to f = (y2− f1
2− f2

2)/2 and y = f1 + f2; f = f1 / 

f2 can be transformed to f = (y2− f1
2−1/ f2

2)/2 and y = f1 + 1/f2; and f = (f1)f2 can be transformed to 

f = exp(y1), y1= (y2
2− (log(f1))2− f2

2)/2, and y2 = log(f1) + f2. In geometric modeling, most of the 

constraints/functions can be transformed into the separable form. 

Thus equations (6.7) can be transformed into 

    ,     (6.8) ( ) miDXf
n

j
ijij ,...,2,1

0
==∑

=

where X1, X2, …, Xn are interval variables and D1, D2, …, Dm are interval constants.  

 

STEP 2:  
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The algorithm based on linear interval enclosure here is more general than Kolev’s method 

[179, 180]. Kolev’s method only considers the degenerated case when Di = 0 for all i. The 

evaluation based on linear enclosure has sharper bounds than the one based on the interval 

Newton’s method if the widths of intervals are nontrivial or thick. Methods using coefficient 

matrix inverse operation, such as Hansen and Greenberg’s [181], are not applicable here since 

situations of under-constrained and over-constrained are considered. 

Linear enclosure of fij(xj) is found within the initial interval of Xj
(0) for each i and j as 

follows. Let Xj
(0) = [xL

j, xN
j, xU

j], we can have 

    ( )j
Lij

S
ij xff = , and       (6.9) 

    ( )j
Uij

T
ij xff = .        (6.10) 

Let  

    j
L

j
U

S
ij

T
ij

ij xx
ff

a
−

−
= .       (6.11) 

The linear enclosure of fij(xj) can be defined as 

    ,     (6.12) ( ) )0(
jijijij XxforxaBxE ∈+=

such that 

    ,     (6.13) ( ) ( ) )0(
jijij XxforxExf ∈∀∈

as illustrated in Figure 51. 

To find out a Bij with the minimum width with given aij, derivation of fij(x) is used if fij(x) is 

continuous and differentiable within interval Xj
(0). The question then is reduced to solving real 

value nonlinear equation 

    ,      (6.14) ( ) )0(
jijij Xxforaxf ∈=′
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fij(xj) 

xj

Xj
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Dij
 

fij
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Figure 51: Linear enclosure of nonlinear interval function 

 

Given that fij(x) is continuous and differentiable for most of geometric relations, equation 

(6.14) has at least one solution. The Secant method can be used to solve the equation efficiently. 

Having been transformed to the separable form, f'ij(x) is a univariate polynomial function or a 

function with unary operations (sin, cos, etc.) for most geometric constraints. For polynomial 

functions, roots can be isolated within disjointed intervals individually based on Descartes’ rule 

of signs before equations are solved numerically. Descartes’ bound gives the upper bound of the 

number of positive roots of a polynomial. Once polynomial functions are solved, solutions to 

unary functions such as sin and cos can be easily found. 

Let P(x) be a polynomial with real coefficients, the following transformations are defined. 

Definition 6.35 (Reverse transformation):  where n is the degree of P.  )/1()]([ xPxxPR n=

Definition 6.36 (Translation transformation): )()]([ txPxPTt +=  for t ∈ R. 

Definition 6.37 (Homothetic transformation): )()]([ cxPxPH c =  for c ∈ R.  

Based on the algorithm of Collins et al. [182, 183], Pij(x) for x ∈ Xj
(0) is transformed to Pij

0(x) for 

x∈ [0, 1] by Pij
0(x) = Hb-a[Ta[Pij(x)]] where a is the lower bound of Xj

0 while b is the upper bound 
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of Xj
0. The roots of Pij(x) for x ∈ Xj

0 have one-to-one correspondence with the roots of Pij
0(x) for 

x ∈ [0, 1]. A list of root intervals or exact roots can be obtained by calling RootIsolation(Pij
0, 0, 

0), wherein the algorithm listed in Figure 52. For each root interval or exact root with 

information of (depth, index) in the list, there is an corresponding 

]
2

)1)((,
2

)([ aindexabaindexabx depthdepth +
+−

+
−

∈  for root intervals or aindexabx depth +
−

=
2

)(  for exact 

roots such that Pij(x)=0.  

 

INPUT:  Polynomial P with n degree 
        int depth 
        int index 
OUTPUT: RootIntervalList 
 
IF P(0) = 0 
    RootIntervalList.addExactRoot(depth, index) 
ENDIF 
IF P(1) = 0 
    RootIntervalList.addExactRoot(depth, index+1) 
ENDIF 
Polynomial Q = T1[R(P)] 
IF DecartesBound(Q) = 1 
    RootIntervalList.addRootInterval(depth, index) 
ELSEIF DecartesBound(Q) >= 2 
    Polynomial P1 = 2nH1/2[P] 
    RootIsolation(P1, depth+1, 2*index) 
    Polynomial P2 = T1[P1] 
    RootIsolation(P2, depth+1, 2*index+1) 
ENDIF  

Figure 52: RootIsolation procedure based on Descartes’ rule of signs 

 

Thus, interval Xj
(0) can be subdivided into small intervals containing an individual root. Let 

. Solutions to (6.14) within interval X( ) ijij axfxg −′=)( j
(0) can be found by (6.15), which lists the 

computation for each iteration n. 

    ,...3,2,1)(
)()( 1

1
1 =

−
−

−=
−

−
+ nxg

xgxg
xxxx n

nn

nn
nn    (6.15) 
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Suppose xjp (p=1, 2, …, P) is the pth solution of equation (6.14), and xj0 = xL
j. Let Bij = [bL

ij, 

bN
ij, bU

ij], where 

    ( ){ }Ppxaxfb jpijjpij
p

ij
U ,...,2,1,0,max =−= ,    (6.16a) 

    ( ) 00 jijjij
ij
N xaxfb −= ,       (6.16b) 

    ( ){ }Ppxaxfb jpijjpij
p

ij
L ,...,2,1,0,min =−= .    (6.16c) 

From (6.13), we have 

    ( ) ( ) miforXEXf jijjij ,...,2,1=⊆ ,     (6.17) 

thus, 

    .  (6.18) ( ) ( ) ( ) miforXaBXEXf
n

j
jijij

n

j
jij

n

j
jij ,...,2,1

111
=+=⊆ ∑∑∑

===

 

STEP 3: 

Solving (6.8) thus is reduced to solving linear equations (6.19) iteratively. 

   .    (6.19) ( ) miforDXaB i

n

j
jijij ,...,2,1

1
==+∑

=

This linear system can be solved using the algorithm described in Section 6.4.1. Because 

the coefficient aij’s are degenerated intervals, only one iteration is needed to solve the linear 

equations. Suppose Yj is the jth variable solution of  (6.19) in the kth iteration. By (6.20), the 

initial value of Xj in the (k+1)th iteration is calculated. If an empty interval is derived, the original 

system has no solution within the given initial intervals (X1
(0), X2

(0), …, Xn
(0)).  

   .    (6.20) njforYXX j
k

j
k

j ,...,2,1)()1( =∩=+
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STEP 4: 

When the stopping criterion, such as the width of intervals has no further improvement 

(6.21a) or the intervals are sharp enough (6.21b), is met, the iteration is stopped. Otherwise, go 

back to (6.8) to find out the new linear enclosures within the updated intervals and repeat the 

procedure starting from STEP 2. 

    1
1

)(

1

)1( )(wid)(wid ε<−∑∑
==

+
n

j

k
j

n

j

k
j XX  for iteration k.   (6.21a) 

   2
1

)( )(wid ε<∑
=

n

j

k
jX     for iteration k.   (6.21b) 

6.4.3 Interval Inequalities 

Consider a set of linear or nonlinear inequalities 

   ( ) liCF ii ,...2,1=≤X ,       (6.22) 

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval, inequalities 

are transformed into equations 

   ( ) liCSF iii ,...2,1==+X ,       (6.23) 

where Si is a slack variable with initial value of [0,0,+∞]. Similarly, 

   ( ) liCF ii ,...2,1=≥X ,       (6.24) 

where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval, can be 

transformed into 

   ( ) liCSF iii ,...2,1==+X ,       (6.25) 

where Si is a slack variable with initial value of [−∞,0,0]. Systems of inequalities can be changed 

to systems of equalities, thus can be solved by methods in Sections 6.4.1 and 6.4.2. 
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6.4.4 A Numerical Example 

As an illustration of solving nonlinear equations using the algorithms described in the 

above sections, constraints the bracket design in Figure 49 are used. The designer specifies the 

nominal value, lower bound, and upper bound of each coordinate and parameter. For example, 

the coordinates of P0 are ([0, 0.25, 0.5], [0, 0.25, 0.5]). The coordinates of P1 are ([0.5, 0.75, 1], 

[0, 0.25, 0.5]). The distance between P0 and P1 is [0.49, 0.50, 0.51]. Geometric constraints are 

assigned to generate the outline of the bracket, which is over-constrained in the sense of the 

traditional parametric modeling. The interval geometric modeler then calculates the ranges of 

geometric points based on the algorithms of solving interval linear and nonlinear equations. 

Figure 53 lists the constraint equations in Figure 49 (b) which are transformed to separable 

form. Based on the algorithm in Section 6.4.2, this over-constrained nonlinear equation system is 

solved. The numerical results are listed in Table 6.  
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Figure 53: Constraint equations of Figure 49 (b) in separable form 
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Table 6: Numerical results of the bracket example 
Initial values Final values (after 20 iterations) Descriptions 
X0 = [0, 0.25, 0.5] X0 = [0, 0, 0] x coordinate of P0
Y0 = [0, 0.25, 0.5] Y0 = [0, 0, 0] y coordinate of P0
X1 = [0.5, 0.75, 1] X1 = [0.5, 0.505012, 0.510024] x coordinate of P1
Y1 = [0, 0.25, 0.5] Y1 = [0, 0, 0] y coordinate of P1
X2 = [0.5, 0.75, 1] X2 = [0.5, 0.516686, 0.533372] x coordinate of P2
Y2 = [0, 0.25, 0.5] Y2 = [0.23886, 0.249714, 0.260569] y coordinate of P2
X3 = [0, 0.25, 0.5] X3 = [0, 0.0116355, 0.0232709] x coordinate of P3

Variables 

Y3 = [0, 0.25, 0.5] Y3 = [0.238869, 0.249677, 0.260485] y coordinate of P3
A0 = [0, 0, 0] fixed position of P0
B0 = [0, 0, 0] fixed position of P0
D0 = [0.49, 0.50, 0.51] distance d0
D1 = [0.24, 0.25, 0.26] distance d1
D2 = [0.49, 0.50, 0.51] distance d2
D3 = [0.24, 0.25, 0.26] distance d3
O1 = [-0.001, 0, 0.001] perpendicularity 

Parameters 

O2 = [-0.001, 0, 0.001] perpendicularity 
 

Figure 54 shows the convergence of interval calculation in solving nonlinear equations is 

reasonably fast. After about 15 iterations, the widths of intervals are not changed any more.  
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Figure 54: Convergence of Interval calculation in the bracket example 

 

Figure 55 illustrates the variation allowance of the bracket profile. As more constraints are 

added, the feasible range for each corner should be narrowed down further until the position is 

fixed. 
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Figure 55: Variation allowance of the bracket 

 

6.5 Design Refinement 

One important aspect related to interval representation of variance allowance is the over 

estimation of allowances. An interval vector simply encloses the allowable region by a hyper 

cube, which often includes infeasible region. During the function evaluation, inclusion functions 

are likely to give a set that is larger than the actual solution set due to dependency or wrapping 

effect. Thus, interval computation tends to over estimate parameter ranges. Design refinement is 

needed to generate more delicate design if desirable details are not reached yet. There are two 

ways to refine design: interval subdivision and constraint re-specification. Interval subdivision is 

to divide existing interval regions into unions of subintervals to achieve the refined view of 
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current design. Constraint re-specification is to modify some of constraints or to add extra valid 

constraints to contract feasible regions. 

6.5.1 Interval Subdivision 

Interval subdivision (also called subpaving) substitutes an interval vector with multiple 

interval vectors such that the corresponding real space region is subdivided into multiple smaller 

regions to cover the actual solution set more compactly. For example, in equations 

    , 
⎩
⎨
⎧

−=+
=+

]8,0,6[]2,5.1,1[]6,5,4[
]6,3,0[]3,5.2,2[]1,5.1,0[

21

21

xx
xx

the solution set can be derived in four quadrants of x1-x2 space respectively. Considering lower 

and upper bounds only, we have the actual solution set that is illustrated by the region in Figure 

56. 

It is clear that even the best solvers that derive the most compact solution X = ([-4,8/3], [-

4/3,5]) will not represent the actual solution set in terms of interval vectors. Thus, in order to 

approximate actual solution set well, interval vectors can be subdivided further to represent the 

solution. As shown in Figure 57, the interval vector X = ([-4,8/3], [-4/3,5]) can be bisected 

recursively and tested if the subintervals belong to the actual solution set. The actual solution set 

thus is approximated by the union of subinterval regions. 
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Figure 56: The solution set represented as a 2D region 

 

 

 
Figure 57: Two-dimensional interval vector subdivision 

 

To represent subdivision of intervals concisely, a power interval can be used. 

Definition 6.38: An n-dimensional power interval with degrees of m, denoted as P(m, n), is an 

ordered list of m non-overlapped interval vectors of n-dimensional, i.e., P(m, n) = [X1, X2, …, Xm], 

where Xi ∈ IRn (i = 1, …, m), minwid(Xi ∩ Xj) = 0 (i ≠ j), and Xi ∠ Xi+1 (i = 1, …, m−1).  
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Consider a design problem f(X) = Y. The target is to find out the actual solution set S ⊆ X 

with minimal size such that f(S) = Y. Interval arithmetic only gives a valid solution D with f(D) 

⊇ Y. If the valid solution is represented by power intervals, refinement can be looked as degree 

elevation of power intervals. If the original solution to a problem is found as an n-dimensional 

vector X = [X1, X2, … , Xn,], the corresponding power interval is P(0)
(1,n) = [X]. One elevation 

operation will bisect X, with each interval vector being deleted and inserted new subintervals. 

Feasibility of each new subinterval then can be tested. The algorithm of subdivision is shown in 

Figure 58. 

 

INPUT:  Power Interval P(m,n) 
        Interval vector Y 
        Mapping function f 
OUTPUT: Power Interval P(k,n) 
 
IF stop criterion is met 
    Return P(m,n) 
ELSE  
    j = m*n 
    Q(j,n) = Bisect(P(m,n)) 
    FOR 1 <= i <= m*n 
        IF f(Q(j,n)(i))⊄ Y 
           Delete(Q(j,n)(i)) 
        ENDIF 
    ENDFOR 
    Subdivide(Q(j,n),Y,f) 
ENDIF  

Figure 58: Subdivide procedure for power interval elevation 

 

Power intervals can be implemented as linked lists. Deleting and adding interval vectors 

during elevation operation can be completed easily. In the numerical example of Section 6.4.4, 

the result is represented by a power interval with a degree of 8. The degree elevation operation is 

done by subdividing elements 5 and 6 recursively. A refined design can be derived as shown 

from Table 7 to Table 10, and compared in Figure 59. 
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Table 7: Initial result of Section 6.4.4 
Set P0 P1 P2 P3

init [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.516685, 0.533371] 
[0.23886, 0.249714, 0.260569] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

 

Table 8: Subdivision level 1 
Subset P0 P1 P2 P3

1 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.508343, 0.516685] 
[0.23886, 0.244287, 0.249714] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

2 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.525028, 0.533371]  
[0.23886, 0.244287, 0.249714] 

[0.00658538,0.0149281,0.0232708] 
[0.238869, 0.249677, 0.260485] 

3 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.525028, 0.533371] 
[0.249714, 0.255142, 0.260569] 

[0.00658538,0.0149281,0.0232708] 
[0.238869, 0.249677, 0.260485] 

4 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.508343, 0.516685] 
[0.249714, 0.255142, 0.260569] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

 

Table 9: Subdivision level 2 
Subset P0 P1 P2 P3

11 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.504171, 0.508343] 
[0.239791, 0.242039, 0.244287] 

[0, 0.009388, 0.018776] 
[0.239264, 0.249824, 0.260384] 

12 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.512514, 0.516685] 
[0.239563, 0.241925, 0.244287] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

13 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.512514, 0.516685] 
[0.244287, 0.247001, 0.249714] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

14 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.504171, 0.508343] 
[0.244287, 0.247001, 0.249714] 

[0, 0.00941007, 0.0188201] 
[0.238869, 0.249677, 0.260485] 

21     
22     
23     
24 [0, 0, 0] 

[0, 0, 0] 
[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.520857, 0.525028] 
[0.244287, 0.247001, 0.249714] 

[0.00658538,0.0148512,0.023117] 
[0.238883, 0.249573, 0.260263] 

31 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.520857, 0.525028] 
[0.249714, 0.252428, 0.255142] 

[0.00658538,0.0148512,0.023117] 
[0.238883, 0.249573, 0.260263] 

32     
33     
34     
41 [0, 0, 0] 

[0, 0, 0] 
[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.504171, 0.508343] 
[0.249714, 0.252428, 0.255142] 

[0, 0.0094117, 0.0188234] 
[0.238869, 0.249677, 0.260485] 

42 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.512514, 0.516685] 
[0.249714, 0.252428, 0.255142] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

43 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.512514, 0.516685] 
[0.255142, 0.257639, 0.260137] 

[0, 0.0116354, 0.0232708] 
[0.238869, 0.249677, 0.260485] 

44 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.504171, 0.508343] 
[0.255142, 0.25759, 0.260039] 

[0, 0.00940018, 0.0188004] 
[0.239261, 0.249823, 0.260385] 
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Table 10: Subdivision level 3 
Subset P0 P1 P2 P3

111 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.239791, 0.240915, 0.242039] 

[0, 0.00730215, 0.0146043] 
[0.239264, 0.249824, 0.260384] 

112 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.239791, 0.240915, 0.242039] 

[0, 0.00938782, 0.0187756] 
[0.239264, 0.249824, 0.260384] 

113 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.242039, 0.243163, 0.244287] 

[0, 0.00938782, 0.0187756] 
[0.239264, 0.249824, 0.260384] 

114 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.242039, 0.243163, 0.244287] 

[0, 0.00730215, 0.0146043] 
[0.239264, 0.249824, 0.260384] 

121 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.239563, 0.240744, 0.241925] 

[0, 0.0114805, 0.0229609] 
[0.238869, 0.249677, 0.260485] 

122 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.239563, 0.240744, 0.241925] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

123 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.241925, 0.243106, 0.244287] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

124 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.241925, 0.243106, 0.244287] 

[0, 0.0114805, 0.0229609] 
[0.238869, 0.249677, 0.260485] 

131 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.244287, 0.245644, 0.247001] 

[0, 0.011393, 0.0227861] 
[0.238869, 0.249677, 0.260485] 

132 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.244287, 0.245644, 0.247001] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

133 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.247001, 0.248358, 0.249714] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

134 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.247001, 0.248358, 0.249714] 

[0, 0.011393,0.0227861] 
[0.238869, 0.249677, 0.260485] 

141 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.244287, 0.245644, 0.247001] 

[0, 0.00722152, 0.014443] 
[0.239244, 0.249818, 0.260391] 

142 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.244287, 0.245644, 0.247001] 

[0, 0.00930719, 0.0186144] 
[0.239244, 0.249818, 0.260391] 

143 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.247001, 0.248358, 0.249714] 

[0, 0.00930719, 0.0186144] 
[0.239244, 0.249818, 0.260391] 

144 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.247001, 0.248358, 0.249714] 

[0, 0.00722152, 0.014443] 
[0.239244, 0.249818, 0.260391] 

211     
212     
213     
214     
221     
222     
223     
224     
231     
232     
233     
234     
241 [0, 0, 0] 

[0, 0, 0] 
[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.518771, 0.520857] 
[0.244287, 0.245644, 0.247001] 

[0.00658538, 0.0148512, 0.023117] 
[0.238884, 0.249574, 0.260263] 

242     
243 [0, 0, 0] 

[0, 0, 0] 
[0.503355, 0.506689, 0.510024] 
[0, 0, 0] 

[0.520857, 0.522942, 0.525028] 
[0.247001, 0.248358, 0.249714] 

[0.0107567, 0.0169369, 0.023117] 
[0.238884, 0.249574, 0.260263] 

244 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.516685, 0.518771, 0.520857] 
[0.247001, 0.248358, 0.249714] 

[0.00658538, 0.0148512, 0.023117] 
[0.238884, 0.249574, 0.260263] 

311     
312     
313     
314 [0, 0, 0] 

[0, 0, 0] 
[0.502726, 0.505651, 0.508576] 
[0, 0, 0] 

[0.516685, 0.518771, 0.520857] 
[0.252428, 0.253785, 0.255142] 

[0.00658538, 0.0148512, 0.023117] 
[0.238884, 0.249574, 0.260263] 

321     
322     
323     
324     
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Table 10: Subdivision level 3 (continued) 
 

Subset P0 P1 P2 P3

331     
332     
333     
334     
341     
342     
343     
344     
411 [0, 0, 0] 

[0, 0, 0] 
[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.249714, 0.251071, 0.252428] 

[0, 0.00722277, 0.0144455] 
[0.239244, 0.249817, 0.260391] 

412 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.249714, 0.251071, 0.252428] 

[0, 0.00930844, 0.0186169] 
[0.239244, 0.249817, 0.260391] 

413 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.252428, 0.253785, 0.255142] 

[0, 0.00930844, 0.0186169] 
[0.239244, 0.249817, 0.260391] 

414 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.252428, 0.253785, 0.255142] 

[0, 0.00722277, 0.0144455] 
[0.239244, 0.249817, 0.260391] 

421 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.249714, 0.251071, 0.252428] 

[0, 0.0113943, 0.0227886] 
[0.238869, 0.249677, 0.260485] 

422 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.249714, 0.251071, 0.252428] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

423 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.252428, 0.253785, 0.255142] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

424 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.252428, 0.253785, 0.255142] 

[0, 0.0113943, 0.0227886] 
[0.238869, 0.249677, 0.260485] 

431 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.255142, 0.25639, 0.257639] 

[0, 0.0114879, 0.0229758] 
[0.238869, 0.249677, 0.260485] 

432 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.255142, 0.25639, 0.257639] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

433 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.512514, 0.5146, 0.516685] 
[0.257639, 0.258888, 0.260137] 

[0.00241403,0.0128424,0.0232708] 
[0.238869, 0.249677, 0.260485] 

434 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.508343, 0.510428, 0.512514] 
[0.257639, 0.258888, 0.260137] 

[0, 0.0114879, 0.0229758] 
[0.238869, 0.249677, 0.260485] 

441 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.255142, 0.256366, 0.25759] 

[0, 0.00730655, 0.0146131] 
[0.239262, 0.249823, 0.260384] 

442 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.255142, 0.256366, 0.25759] 

[0, 0.00939223, 0.0187845] 
[0.239262, 0.249823, 0.260384] 

443 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.504171, 0.506257, 0.508343] 
[0.25759, 0.258815, 0.260039] 

[0, 0.00939223, 0.0187845] 
[0.239262, 0.249823, 0.260384] 

444 [0, 0, 0] 
[0, 0, 0] 

[0.5, 0.505012, 0.510024] 
[0, 0, 0] 

[0.5, 0.502086, 0.504171] 
[0.25759, 0.258815, 0.260039] 

[0, 0.00730655, 0.0146131] 
[0.239262, 0.249823, 0.260384] 
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                     (a) original solution                                                       (b) level 1 elevation 
 

               
 
                     (c) level 2 elevation                                                       (d) level 3 elevation  

Figure 59: Comparison of different levels of subdivisions 

 

It can be seen that the subdivision until level 3 leaves out some infeasible sub-regions that 

are included in the initial result. Subdivision provides a more accurate design based on existing 

constraints. Figure 60 shows the refined bracket design by interval subdivision. 
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Figure 60: Refined bracket design by subdivision 

 

6.5.2 Constraint Re-specification 

Another way to contract a solution is to change or add valid constraints to narrow down 

feasible regions. Feasibility and effectiveness should be considered simultaneously. Constraint 

modification depends on sensitivity analysis, while adding constraints is largely dependent on 

human users’ preferences. One basic question is to differentiate active and inactive constraints. 

Active constraints scope the actual range of solution while inactive constraints have certain 

levels of slackness. At the beginning of interval computation, all constraints are active if a 

sufficiently large initial region is given. As the iteration proceeds, some constraints turn to be 

inactive. The decision of which constraints to be modified is based on the selection of active 

constraints.  

Lemma: For a constraint set p = {f(X) = Y and g(X) = Z}, the subset f(X) = Y with respect to a 

solution D ⊂ X is inactive if f(D) ⊂ Y and g(D) ⊇ Z. 
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Proof: 

Suppose S1 and S2 are actual solution sets of f and g respectively, and S is the actual 

solution set of p. Given that f(S1) = Y and f(D) ⊂ Y, because of the property of inclusion 

monotonic, S1 ⊃ D. Similarly, D ⊇ S2. Thus, S1 ⊃ S2. � 

 

As illustrated by Figure 61, subset f is inactive and g is active in case (a); both f and g are 

active in case (b); and f is active and g is inactive in case (c).    
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Figure 61: Relations of two constraint subsets 

 

In the numerical example of Section 6.4.4, it can be proven that the last constraint is 

inactive based on the above lemma. 
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This chapter presents a new geometric modeling scheme, IGM, based on the interval 

representation and analysis, in which all parameters of geometric modeling (coordinates as well 

as parametric constraints) are non-trivial-width interval values instead of fixed values. It can be 

used as a generic representation of numerical constraints during the process of conceptual design, 

detailed design, and design optimization. It avoids rigid constraints and thus reduces the chance 

of conflicts between constraints. It relaxes the restriction of under-constrained and over-

constrained situations for variational geometry. Constraint-driven interval geometric modeling 

captures more information about constraints for optimization and decision making during the 

design process. IGM provides a possible interoperable way of design data representation and 

integration for different design stages.  
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7.0 IMPLEMENTATIONS AND TESTS 

The implementation and test of various concepts are conducted within the framework of a 

distributed design environment – Pegasus [184]. Pegasus is a service-oriented concurrent 

engineering system which aims to aid customers, designers, manufacturers, suppliers, and other 

stakeholders to participate in the early stage of product design so as to reduce the new product 

development cycle time. Since design is an interdisciplinary and complicated process, it requires 

various contributions from all of the participants. This system integrates the services required 

during the product development period, such as conceptual and detailed design, various analysis 

and tests for assemblability, manufacturability, material, ergonomics, and logistics. Pegasus is an 

open system that possesses good extensibility, portability, interoperability, scalability, and 

transparency. If certain new services are required, the system can incorporate the new functional 

units with no or little changes. Furthermore, heterogeneous service providers can work 

collaboratively and harmoniously within the system over the Internet without compatibility 

problems. 

7.1 Service Architecture of Pegasus 

Concurrent engineering requires the collaboration of various engineering and non-

engineering disciplines, such as aesthetics, drafting, materials, manufacturing processes, quality, 

marketing, maintenance, and government regulations. There have been many computational 
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tools in those different areas. These CAD/CAM/CAE tools can be plugged in Pegasus system to 

form a distributed product development environment, which provides engineering services over 

the Internet. An important approach to achieve transparent transaction is to define engineering 

service protocols explicitly. Thus, the service information can be represented and interpreted 

correspondingly by each individual tool according to these service protocols at the application 

level. 

Service is defined as a process that provides a functional use for a person, an application 

program, or another service in the system. Services should be specified from the functional 

aspect of service providers. To make an existing tool available online or to build a brand new 

tool for such a system, services associated with this tool should be defined. The service 

transaction among service providers, service consumers, and the service manager within Pegasus 

system is illustrated in Figure 62. Once a service is registered at a central administrative 

manager, called the Service Manager, it is then available within the whole system. This process 

is service publication. When a service consumer within the system needs a service, it will request 

a lookup service from the Service Manager. This process is service lookup. If the service is 

available, the service consumer can request the service from the service provider by the aid of 

Service Manager. Most importantly, this service triangular relationship should be built at run-

time. The service consumer (client) does not know the name, the location, or even the way to 

invoke the service from the service provider (server) during the system and tools development 

period. 
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Figure 62: Service triangular relationship 

 

The collaboration between engineering tools is established and executed based on the 

characteristics of services that can be provided. For example, the relationship between a CAD 

tool and a Finite Element Analysis (FEA) tool is based on the FEA service that the FEA tool can 

provide for the CAD tool. The Service Manager, on the other hand, offers service publication 

and lookup for service providers and consumers.  

Service providers that provide different services such as drafting, assembly, manufacturing, 

analysis, optimization, procurement, and ergonomics can be developed independently. As 

showed in Figure 63, servers that provide different engineering services (which are represented 

by nodes) are linked by the Internet. Each node in this network may require or provide certain 

engineering services. Thus, it could be a client or a server for different services depending on 

whether it is the recipient or the provider of such a service. The client/server relationship is 

determined at run-time. The system is open for the future expansion and extension, in case that 

more services are available. The notion of service-oriented collaboration lets the Pegasus system 

have appropriate flexibility. Plug-and- Play (PnP) is an important consideration of this structure. 
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Figure 63: Pegasus system architecture 

 

Service publication and lookup are the primary services provided by the Service Manager. 

As depicted in Figure 64, service publication for service providers includes name publication, 

catalog publication, and implementation publication. Name publication service is similar to the 

white-page service provided by telephone companies, by which the name of the service provider 

is published. Catalog publication service is similar to the yellow-page service: the name and the 

functional description of the service are published. Implementation publication service is the 

procedure by which the service provider makes its implementation and invocation of services 

public so that clients can invoke the service at run-time. Service lookup for service consumers 

includes name lookup, catalog lookup, and interface lookup. Name lookup service is provided so 

that consumers can locate the service providers based on the service names. Catalog lookup 

service is for those consumers who need certain services according to their needs and 

specifications but do not know the names of the services. Interface lookup service is to provide a 

way such that consumers can check the protocols of how to invoke the service. For example, if a 
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consumer wants to do welding analysis but does not know the name of the service (e.g., thermo-

structural finite element analysis), it can use the catalog lookup service. To query the analysis 

procedure of thermo-structural analysis from an interface repository, it may use interface lookup 

service to find out input parameters, return type, etc., of this service. 

 

 

Service Manager

Name Publication Catalog Publication Implementation
Publication

Interface LookupName Lookup Catalog Lookup

 
Figure 64: Services provided by Service Manager 

 

Design data transfer and transaction among servers can be completed based upon various 

distributed computing protocols, such as HTTP, CORBA, Distributed Component Object Model 

(DCOM), and Simple Object Access Protocol (SOAP).  

In today’s software engineering arena where heterogeneity is inevitable, openness is an 

essential characteristic for a distributed computational architecture. It allows complex software 

systems to be efficiently developed, deployed, and maintained. An open collaborative product 

engineering system, such as CAD, CAM, and CAE, should incorporate the following features:  
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(1) Compliance with industry standards of programming, communication, networking, system 

management, and interfaces between applications and system services; 

(2) Portability of applications across different computer operating systems so that the system can 

be easily adopted by various service providers and end users; 

(3) Scalability of application performance and throughput such that the system is applicable for 

either large enterprises with large-scale projects or individuals with simple artifacts; 

(4) Interoperability which is independent of hardware platforms, operating systems, network 

protocols, and application formats such that service providers can be developed independently 

with different programming languages; 

(5) Extensibility which allows new functionalities for existing service providers or new service 

providers to be added into the system such that the system is expandable in the future.  

To ensure that Pegasus is an open system, the implementation should support the above 

five features. In this work, CORBA is employed as basic computational protocol to achieve 

openness. Data transfer and transaction are implemented by CORBA as illustrated in Figure 65. 

The components in this distributed system have peer-to-peer relationships with each other. 

CORBA serves as glue to integrate the whole system. It provides good features of transparency 

for collaborative computation. Computationally intensive applications can be distributed across 

the network. From the end user’s point of view, distributing application components between 

clients and servers does not change the look and feel of one single application. 

The time sequence diagram of service transaction in Pegasus is listed in Table 11 and 

illustrated in Figure 66. It includes the processes of service binding (the service provider 

publishes a service at the service manager), service resolution (the service consumer looks up a 
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service from the service manager), and service execution (the service provider provides the 

requested service). 
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Figure 65: Peer-to-peer relationship among service providers 

 

 

 

Table 11: Service sequence in a client/server transaction  

No. Service Transactions 
1 Service provider requests service binding from service manager 
2 Service manager provides service binding to service provider 
3 Service consumer requests service resolution from service manager 
4 Service manager provides service resolution to service consumer 
5 Service consumer requests service from service provider 
6 Service provider provides service to service consumer 

 

 

 155



  
 

Service
Manager

ORB

Skel

Service
Provider

ORB

Stub

Service
Consumer

ORB

1. Request service binding

3. Request service resolution

2. Provide service binding

5. Request service

6. Provide service

4. Provide service resolution

Time

 
Figure 66: Sequence diagram of a service 

 

7.2 UL-PML Scheme in Collaborative Design 

UL-PML is a distributed CAD data scheme, which allows geometric and non-geometric 

entities, structures, and constraints to be created, stored, and queried in a distributed fashion. 

This allows information transfers at the basic entity level rather than the component level. It 

provides a flexible way for information exchange intelligently and accumulatively without losing 

logical integrity. In a top-down approach, a PML tree can provide different levels of detail. In a 

bottom-up approach, loosely coupled linkage allows lean information transfer.  
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PML can be applied in two approaches. One is to use PML as a part of the native data 

structure in geometric modelers. The other is to translate design data from various formats of 

existing CAD systems into PML models for information exchange. In this research, both of the 

two approaches are implemented and tested. A prototype of geometric modeler using PML as the 

native data structure is built. Mechanisms of lean information transfers based on protocols of 

HTTP and CORBA are developed. Distributed geometry and constraint information can be 

linked based on the UL-PML scheme. The translation mechanism between ACIS data structure 

to PML model is developed and tested in an ACIS modeler prototype. 

7.2.1 PML Modeler 

A native PML modeler is developed completely based on PML data format. Figure 67 

illustrates the architecture of the modeler and Figure 68 shows its user interface. Within the 

modeler, geometry can be generated and processed in the form of a PML tree. Data is stored and 

transferred in PML file format.   

Users interact with the system in a regular design mode, while the Data Manager is 

responsible for local PML tree processing and transparent remote data query. Compatibility to 

computer and Internet standards is necessary to make an open system. The PML modeler uses 

industry standards for file transfer and remote data access. Design information transfer in PML is 

independent of network data transmission. 
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Figure 67: Architecture of PML modeler 

 

 
Figure 68: Interface of PML modeler 
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7.2.2 Lean Information Transfer Based on HTTP 

PML information transfer can use a variety of network protocols such as HTTP. HTTP is a 

widely used application protocol for web service. PML remote data access and selective 

information transfer based on HTTP are developed in the PML modeler. In the example of 

Figure 22, the process of face information transfer between the two groups is illustrated in Figure 

69.  

 

                                              
 

                                                                                                          Web Server  
     
 
                                                                                request 

HTTP
TCP
IP

SDLC / HDLC / PPP / SLIP / LAP / LLC / …  
Figure 69: Lean information transfer base on HTTP 
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7.2.3 Lean Information Transfer Based on CORBA 

The PML modeler also supports lean information transfer based on protocols of CORBA. 

Different from HTTP requests, ORB requests have fat-client architecture. The client/server data 

transfer can be transparently completed through ORB brokers. Clients do not have to specify the 

IP addresses of the target PML references. 

For example, a pair of moulds (Figure 70) are designed separately by two groups. Some 

contacting faces of the two parts must geometrically match each other. In the UL-PML scheme, 

links between the faces in Mould2 and the corresponding ones in Mould1 can be built. Thus the 

geometry and topology information about these faces in the Mould2 can be fetched from Mould1 

to maintain the consistency. In this linkage relation, Mould1 (Figure 71) is at the server site. 

Once it is published in the library (Figure 72) for data sharing, it is available for references.  

In order to meet the surface match requirement, face504, face978, and face1004 in Mould2 

are specified to refer to face3, face239, and face286 in Mould1 (Figure 73). Three faces and six 

bounding edges in Table 12 as well as the corresponding geometry are transferred to the client 

site through data sharing agents. 
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                     (a) mould1                                                        (b) mould2  

Figure 70: A pair of moulds in collaborative design 

 

 

Table 12: Selective topology transferred to Mould2 
Location Name Entity Type Reference Link Type 

face504 Face mould1.xml#face3 simple 
face978 Face mould1.xml#face229 simple 
face1004 Face mould1.xml#face286 simple 
edge508 Edge mould1.xml#edge13 simple 
edge518 Edge mould1.xml#edge23 simple 
edge593 Edge mould1.xml#edge55 simple 
edge635 Edge mould1.xml#edge168 simple 
edge588 Edge mould1.xml#edge60 simple 

mould2.xml 

edge640 Edge mould1.xml#edge163 simple 
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face3 face239

face286

 
Figure 71: The first mould designed at the server site 

 

 
Figure 72: Design library for data sharing 
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face504

face978

face1004

 
Figure 73: The second mould designed at the client site 

 

If there is any change about the three faces of the first mold (Figure 74), the update of the 

second mold will be done automatically because of the linkage (Figure 75). Note that for each 

update, only PML nodes of three faces and six edges are transferred across networks. 
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Figure 74: Updated design of the first mould 

 

 
Figure 75: Updated second mould by translating corresponding references 
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Figure 76: Lean information transfer based on CORBA 

 

7.2.4 Distributed Design Information Integration 

The PML model provides a mechanism to link distributed design information. Elements of 

entities, relations, and constraints can be located locally as well as remotely. As illustrated in 

Figure 23 and Figure 24, geometry and topology can be distributed in different files. Similarly, 

constraints can be linked either locally or remotely. As shown in Figure 77, Figure 78, and 

Figure 79, constraints can be defined either in the same file or in different files. Some example 

constraints are listed in Table 13.  
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As a result, design can be created or modified without processing a large amount of data. 

Design information is modeled in an extensible and uniform format. The efficiency of 

collaborative design then can be improved by the UL-PML scheme. 

 

Table 13: Constraint examples in mold1.xml, mold2.xml, and constr.xml 
Location Name Type Source Target Direction 

a1 angle (geometric) #face3 #face1 bi-directional 
a2 angle (geometric) #face4 #face2 bi-directional 
d1 distance (geometric) #face5 #face3 bi-directional 
d2 distance (geometric) #face5 #face3 bi-directional 
e1 Equation (non-geometric) #a2 #a1 unidirectional 

mold1.xml 

e2 Equation (non-geometric) #d2 #d1 unidirectional 
a1 angle (geometric) #face3 #face1 bi-directional 
a2 angle (geometric) #face4 #face2 bi-directional 
d1 distance (geometric) #face5 #face3 bi-directional 
d2 distance (geometric) #face5 #face3 bi-directional 

mold2.xml 

d3 distance (geometric) #face5 mold1.xml#face5 bi-directional 
e1 Equation (non-geometric) mold2.xml#a1 mold1.xml#a1 unidirectional 
e2 Equation (non-geometric) mold2.xml #a2 mold1.xml#a2 unidirectional 
e3 Equation (non-geometric) mold2.xml #d1 mold1.xml#d1 unidirectional 

constr.xml 

e4 Equation (non-geometric) mold2.xml #d2 mold1.xml#d2 unidirectional 
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Figure 77: Design constraints in mold1.xml 
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Figure 78: Design constraints in mold2.xml 
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Figure 79: Design constraints in constr.xml 

 

7.2.5 Mapping Between Native CAD Data Models and PML Model 

PML model can be a medium of data transfer for distributed design. Different CAD 

systems can exchange lean design information based on PML model. As illustrated in Figure 80, 

CAD systems can map both geometric and non-geometric information to PML tree structure. 

Selectively, a PML sub tree is transferred within a collaborative design environment. To 

integrate PML model and existing CAD systems, translation is needed to map native data 

structures of different CAD systems to the PML structure.  

To demonstrate the possibility of integration between PML and current CAD systems, a 

geometric modeler prototype based on ACIS® kernel is developed, and translation between PML 

and ACIS model is implemented. Figure 81 shows the architecture of the ACIS modeler. 
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Figure 80: PML model as a medium for selective information transfer between CAD systems 
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Figure 81: The architecture of the ACIS modeler 
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In the example shown in Figure 82, a jig model is in the ACIS modeler. It can be translated 

into PML model by the ACIS-PML translator and read by the PML modeler, as in Figure 83. 

Within a collaborative design system, geometric and non-geometric information in PML format 

then can be transferred among groups. If any PML data is received from other parties, it can be 

read and processed either by a PML modeler (as in Figure 84), or by the PML-ACIS translator 

and an ACIS model can be built (as in Figure 85). Note that it is more efficient and secure to 

transmit only partial data in PML across networks, while complete PML models reside in local 

systems. 
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Figure 82: A jig model in SAT format in the ACIS modeler 

 

 
Figure 83: The translated jig model in PML format in PML native modeler at server site 
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Figure 84: The jig model in PML format received at client site  

 

 
Figure 85: The translated jig model in the ACIS modeler 
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7.2.6 Constraint Propagation and Management 

The UL-PML scheme has a determined format for constraint representation to support 

design knowledge interoperability. Geometry constraints are attached to low-level topological 

entities symbolically to eliminate ambiguity. Non-geometric constraints are attached to high-

level entities such as constraints, features, and parts. The generic and uniform constraint 

representation allows constraints to be propagated effectively to support collaborative design. 

To allow various constraints to be propagated within a collaborative design environment, a 

central constraint management unit is needed to maintain a library of constraint standards. 

Collaborators need to publish the format of new constraints in the library, thus other parties can 

check the library and understand the usage. UL-PML scheme provides a uniform and extensible 

constraint format so that interoperable constraint representation is possible. A Constraint Library 

service provider is developed to preserve the constraint format standard in the Pegasus system. It 

stores the syntax of multidisciplinary constraints such that format information of constraints is 

available for lookup. The functionalities include: 1) provide constraint format lookup service; 2) 

maintain the standards of constraints; 3) add, remove, and update constraint format. 

The Constraint Library provides the constraint format query service. As demonstrated in 

Figure 86, once the Constraint Library service provider is registered in the system (step 1), 

constraint formats can be looked up. A client, which can be a geometric modeling system, needs 

to find out how to represent material constraints in a standard way such that other parties can 

understand the syntax and meaning. It requests a constraint format query lookup service through 

a Service Manager (step 2). After getting the server information from the Service Manager (step 

3), it sends query of constraint conMATERIAL to the Constraint Library (step 4). The Constraint 
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Library looks in its database, finds out the format of constraint conMATERIAL, and sends the 

format back to the client (step 5).  
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Figure 86: Process of constraint format query from constraint library 
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In summary, the UL-PML scheme provides a generic design information model for 

collaborative design. It models geometric and non-geometric entities, relations, and constraints in 

a uniform and extensible format. Based on the PML model, design information can be 

transferred without transmitting large amounts of data, which increases the efficiency of 

information sharing in a distributed environment.  

Nevertheless, the flexibility of the PML model is achieved at the cost of computation in 

applications. The major cost of lean product information transfers is the overhead related to 

information interpretation and consistency maintenance. Partial data information, which is based 

on linkage in PML, needs to be interpreted by referring to the source. In order to maintain data 

consistency at the client site and the server site, a signal mechanism should be developed so that 

server can notify clients when an information update is needed. 

 

 

 

 176



  
 

8.0 SUMMARY AND FUTURE WORK 

In this dissertation, incompleteness, improccessability, and inconsistency issues related to 

design information interoperability for collaborative design are researched. Research topics 

include network-conscious geometric information modeling, design knowledge and specification 

capturing, and multidisciplinary constraint representation integration within geometric data. The 

objective is to create new interoperability mechanisms and methodologies to enable the evolution 

of CAD data modeling from current standalone CAD to Internet-based collaborative design.  

To tackle the design information incompleteness and improccessability problems, a UL-

PML scheme is developed to capture geometric and non-geometric relations among entities by 

explicit links in PML. These links allow references between entities to be built across the 

boundary of files and physical locations. This model enables heterogeneous design information 

to be distributed at different physical locations in a collaborative environment, and virtually 

integrated through networks. This distributed format makes selective design information 

transfers possible among design collaborators, which includes fundamental topology and 

geometry elements, structural relations, as well as high-level design information such as design 

features, geometric and non-geometric constraints, components, and assembly data.  PML 

utilizes standard XML syntax. Schemas of PML are defined for entities and relations. Graph 

decomposition method is developed to map graph-structured entities and relations to tree-

structured PML. PML trees allow distributed design information elements to be processed, 

stored, and queried easily. Geometry-based entity naming method is developed to maintain 
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universal linkage among design entities such that relations within a file and among files are 

stable and persistent for different design sessions at multiple locations. 

The UL-PML scheme can be employed as a part of collaborative design information 

infrastructure because of its simplicity, extensibility, system independence, and openness. 

Commonly used CAD models can be mapped to PML models so that lean information exchange 

and partial query can be performed through PML. Intelligent information sharing and design 

reuse thus are supported. A prototype of the PML modeler is developed, which uses PML as the 

native data structure. The PML data structure is independent of network protocols, which can 

make it an open data protocol in a collaborative design environment. Remote data access and 

query based on HTTP and lean information transfers based on CORBA are tested. PML is 

intended to be a medium for heterogeneous CAD systems in design data exchange. Translation 

between different native data structures and PML is needed to apply UL-PML scheme in current 

CAD systems. A translation mechanism between ACIS data structure and PML for explicit 

geometry is developed. And it is tested based on an ACIS modeler prototype. 

To address the design information inconsistency and improve design reliability and quality, 

a method of interval value numerical constraint representation is developed so that computational 

errors and ambiguity can be reduced and robustness of geometric modeling can be improved. 

Additionally, to model design uncertainty and inexactness, and to build the model 

interoperability for different design stages, an IGM scheme is developed based on the non-

trivial-width interval representation and analysis. Soft constraints and preferences are integrated 

in constraint-driven systems. Algorithms for solving IGM constraints are developed. 

The IGM scheme aims to provide a generic numerical constraint representation for 

conceptual design, detailed design, and design optimization. Preferences and constraints are 
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embedded in data models as driving forces and decision-making aids. The IGM kernel for 

interval representation, operation, and constraint solving is developed and constraint solving 

algorithms are tested. 

 

In summary, the major contributions of this dissertation are as follows: 

• A new network-conscious UL model for geometric and non-geometric entities and 

relations based on XML is proposed and developed. Design information interoperability 

is accomplished based on general data interoperability. At the syntax level, the openness 

of this model is guaranteed. Semantics interoperability is independent from syntax 

interoperability. This independence provides an open scheme to solve CAD 

interoperability issues. 

• A new concept of distributed CAD information modeling is developed to integrate 

multidisciplinary design information elements at multiple locations for seamless 

synthesis and integration.  

• A mechanism of lean design information modeling and intelligent information sharing at 

the entity level is developed so that information with partial integrity can be transmitted 

within the limited network bandwidth. This mechanism can have physically distributed 

entities linked across the boundary of data files, thereby introduces a new way of 

distributed design data modeling, storage, and query.  

• Dual-Rep feature representation incorporates intentional and geometric features 

independently for the improvement of design intent capturing and exchange among 

collaborators. 
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• Geometric and non-geometric constraints are represented in an extensible form. 

Integrated with other design data, constraints eliminate inconsistency and ambiguity, and 

improve CAD model’s completeness.  

• A new concept of interval numerical constraint representation is presented, which reduces 

model inconsistency due to numerical errors, and improves CAD models’ reliability and 

robustness.  

• A geometry-based semantic ID method is developed. This method adds semantics of 

geometry and topology into IDs, therefore increasing the stableness of entity reference. It 

builds the identification framework for the distributed UL model, and improves the 

naming persistency of current CAD systems.  

• A new IGM scheme based on interval representation and analysis is developed to 

improve model robustness and capture design uncertainty and inexactness. Constraint-

driven interval geometric modeling supports more design interaction for optimization and 

decision-making. IGM establishes a generic approach for interoperable numerical 

constraint representation for the entire design cycle. 

 

As extensions of this work, several research issues can be studied further. Application of 

PML in heterogeneous systems is to be researched further, including feature-based and explicit 

modeling systems. Research on meta-information about PML distributed data network is 

necessary for information search and management.  Compression and encryption of PML needs 

to be studied. Feature and constraint schemas need to be defined and standardized. The method 

of surface mapping for semantic ID is important to generalize the persistent ID system. In IGM, 

methods for large-scale problem solving and algorithms improvement are essential for 
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commercial application. Interval width selection and optimization for numerical constraint 

imposition is necessary for interactive IGM. 

The research of this dissertation is summarized in Table 14. 
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Table 14: Research Summary 

 

Problems Research Solutions 
& Methodologies 

Contributions Test / Validation Broader Impact Future Extensions 

There are no open and 
general solutions for 
interoperability of 
different proprietary 
CAD file formats and 
version control. 

XML format is 
employed to build 
information 
interoperability based 
on data 
interoperability, where 
XML syntax is 
standardized. 

Advancement of 
current CAD 
translation methods by 
separating semantics 
interoperability from 
syntax interoperability  

As a data protocol, 
PML is tested based 
on HTTP and CORBA 
protocols. Data 
structure mapping 
between ACIS and 
PML for polyhedrons is 
tested. 

CAD data and 
information 
infrastructure for 
collaborative design 
will be established 
based on computation 
and Internet standards 
to maximize the 
openness and 
interoperability. 

Application of PML in 
heterogeneous 
systems 

Design collaboration 
needs to integrate 
distributed design 
information. 

UL-PML scheme has a 
distributed file format 
that links elements of 
design at multiple 
locations. 

New concept of 
distributed CAD 
information modeling 
for collaborative 
design 

Geometry and 
constraint files are 
linked in PML. 

Distributed design data 
model will provide an 
innovative data 
network for seamless 
synthesis and 
integration. 

Meta-information and 
management 

Standalone CAD file 
formats do not support 
collaborative design 
because of inefficient 
information transfer. 

UL-PML scheme 
models reference of 
entities and relations 
by explicit linkage at 
the lowest level. 

New concept to 
support design data 
creation, storage, and 
query with partial 
integrity and fine 
granularity 

PML modeler 
transmits entity-level 
information. 

Flexible and loosely 
coupled design data 
elements at different 
levels of detail will 
allow lean information 
sharing and real-time 
collaboration. 

Encryption and 
compression of PML 

Design feature is not 
interoperable by 
current translation 
mechanism. 

Dual-Rep feature 
representation 
captures intentional 
and geometric features 
independently. 

Advancement of 
current feature 
representation 
schemes in a general 
approach 

UL-PML models 
incorporate global and 
local features. 

A generic feature 
representation is 
essential to capture 
design intent with good 
interoperability. 

Feature schema 
definition and 
standardization 

Multidisciplinary 
design constraints 
cannot be modeled 
uniformly and design 
information is 
incomplete. 

Explicit geometric and 
non-geometric 
constraints are 
represented in an 
extensible form.  

Advancement of 
current constraint 
representation 
schemes in a general 
approach 

UL-PML models 
incorporate geometric 
and non-geometric 
constraints at different 
entity levels. 

Multidisciplinary 
design constraint 
representation allows 
design knowledge 
sharing, reuse, and 
propagation. 

Constraint schema 
definition and 
standardization 

Numerical errors 
generate inconsistent 
and unreliable 
geometry. 

Interval value 
numerical constraint 
representation gives 
allowance for 
geometry 
interpretation and 
increases the model 
robustness. 

Advancement of 
improving geometry 
robustness by new 
concept of constraint 
representation 

UL-PML models have 
interval numerical 
constraint values 
embedded. IGM kernel 
is tested. 

Reliable geometry is 
fundamental for design 
intent capturing. 

Optimal interval width 
selection 

Topological ID is not 
persistent that causes 
unstableness of 
geometry. 

Geometry-based 
Semantic ID method is 
developed to improve 
naming persistency 
within a session and 
between sessions. 

Advancement of 
existing heuristic 
naming methods for 
stable modeling and 
reference 

Linear and quadratic 
surfaces are tested. 

Persistent reference 
and model consistency 
will maintain a reliable 
distributed design data 
infrastructure. 

Surface mapping 

There is no generic 
data modeling to 
support constraint 
direct imposition at 
different design 
stages. 

Interval Geometric 
Modeling scheme is 
developed to model 
uncertainty and 
preferences.  

New concepts and 
methodologies for 
solving information 
interoperability issues 
for the entire design 
cycle 

IGM kernel is built and 
constraint solving is 
tested for ~10-
constraint problem. 

Interoperable 
conceptual design, 
detailed design, and 
design optimization 
tools will use unified 
data form to support 
decision-making. 

Large-scale problem 
solving and efficiency 
improvement 
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APPENDIX I – XML SYNTAX 

[1] document ::= prolog element Misc*    /*Document  */ 
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] |   /*Character range */ 
  [#xE000-#xFFFD] | [#x10000-#x10FFFF]  
[3] S ::= (#x20 | #x9 | #xD | #xA)+    /*White space  */ 
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-‘ | ‘_’ | ‘:’ | CombiningChar | Extender 
[5] Name ::= (Letter | ‘_’ | ‘:’ ) (NameChar)*   /*Names and tokens */ 
[6] Names ::= Name (S Name)* 
[7] Nmtoken ::= (NameChar)+ 
[8] Nmtokens ::= Nmtoken (S Nmtoken)* 
[9] EntityValue ::= ‘ “ ‘ ([^%&”] | PEReference | Reference)* ‘ “ ‘ | /*Literals  */ 
  “ ‘ “ ([^%&’] | PEReference | Refence)* “ ‘ “ 
[10] AttValue ::= ‘ “ ‘ ([^<&”] | Reference)* ‘ “ ‘ | “ ‘ “ ([^<&’] | Reference)* “ ‘ “ 
[11] SystemLiteral ::= (‘ “ ‘ [^”]* ‘ “ ‘) | (“ ‘ “ [^’]* “ ‘ “) 
[12] PubidLiteral ::= ‘ “ ‘ PubidChar* ‘ “ ‘ | “ ‘ “ (PubidChar – “ ‘ “ )* “ ‘ “ 
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-‘()+,./:=?;!*#@$_%] 
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)   /*Character data  */ 
[15] Comments ::= ‘<!—‘ ((Char – ‘ – ‘ ) | (‘ – ‘ (Char – ‘ – ‘)))* ‘-->’ /*Comments  */ 
[16] PI ::= ‘<?’ PITarget (S (Char* - (Char* ‘?>’ Char* )))? ‘?>’ /*Processing Instructions*/ 
[17] PITarget ::= Name – ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’)) 
[18] CDSect ::= CDStart CData CDEnd    /*CDATA sections */ 
[19] CDStart ::= ‘<![CDATA[‘ 
[20] CData ::= (Char* - (Char* ‘]]>’ Char*)) 
[21] CDEnd ::= ‘]]>’ 
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?  /*Prolog   */ 
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl? S? ‘?>’ 
[24] VersionInfo ::= S ‘version’ Eq (“ ‘ “ VersionNum “ ‘ “ | ‘ “ ‘ VersionNum ‘ “ ‘) 
[25] Eq ::= S? ‘=’ S? 
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘ – ‘)+ 
[27] Misc ::= Comment | PI | S 
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S? /*Document Type Definition*/ 
  (‘ [ ‘ (markupdecl | DeclSep)* ‘ ] ‘ S?)? ‘>’ 
[28a] DeclSep ::= PEReference | S 
[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotatoinDecl | PI | Comment 
[30] extSubset ::= TextDecl? ExtSubsetDecl   /*External subset */ 
[31] extSutsetDecl ::= (markupdecl | conditionalSect | DeclSep)* 
[32] SDDecl ::= S ‘standalone’ Eq ((“ ‘ “ (‘yes’ | ‘no’) “ ‘ “) /*Standalone document declaration*/ 
  (‘ “ ‘ (‘yes’ | ‘no’) ‘ “ ‘)) 
[33] LanguageID ::= Langcode (‘ – ‘ Subcode)*   /*Language Identification*/ 
[34] Langcode ::= ISO639Code | IanaCode | Usercode 
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[35] ISO639Code ::= ([a-z] | [A-Z] ) ([a-z] | [A-Z] ) 
[36] IanaCode ::= (‘i’ | ‘I’) ‘ – ‘ ([a-z] | [A-Z])+ 
[37] UserCode ::= (‘x’ | ‘X’) ‘ – ‘ ([a-z] | [A-Z])+ 
[38] Subcode ::= ([a-z] | [A-Z])+ 
[39] element ::= EmptyElemTag | STag content Etag  /*Element  */ 
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’   /*Start tag  */ 
[41] Attribute ::= Name Eq AttValue 
[42] ETag ::= ‘</’ Name S? ‘>’     /*End tag  */ 
[43] content ::= CharData? ((element | Reference | CDSect | PI | /*Content of elements */ 
  Comment) CharData?)* 
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’  /*Empty element */ 
[45] elementdecl ::= ‘<!Element’ S Name S contentspec S? ‘>’ /*Element type declaration*/ 
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children 
[47] children ::= (choice | seq)(‘?’ | ‘*’ | ‘+’)?   /*Element content models*/ 
[48] cp ::= (Name | choice | seq)(‘?’ | ‘*’ | ‘+’)? 
[49] choice ::= ‘(‘ S? cp (S? ‘ | ’ S? cp)+ S? ‘)’ 
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’ 
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘ | ‘ S? Name)* S? ‘)*’  /*Mixed content declaration*/ 
  | ‘(‘ S? ‘#PCDATA’ S? ‘)’ 
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’  /*Attribute list declaration*/ 
[53] AttDef ::= S Name S AttType S DefaultDecl 
[54] AttType ::= StringType | TokenizedType | EnumeratedType /*Attribute types  */ 
[55] StringType ::= ‘CDATA’ 
[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’ | 
   ‘ENTITIES’ | ‘NMTOKEN’ | ‘NMTOKENS’ 
[57] EnumeratedType ::= NotationType | Enumeration  /*Enumerated attribute types*/ 
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘ | ‘ S? Name)* S? ‘)’ 
[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘ | ’ S? Nmtoken)* S? ‘)’ 
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’    /*Attribute defaults */ 
   | ((‘#FIXED’ S)? AttValue) 
[61] conditionalSect ::= includeSect | ignoreSect   /*Conditional section */ 
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘ extSubsetDecl ‘]]>’ 
[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘ ignoreSectContents* ‘]]>’ 
[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents ’]]>’ Ignore)* 
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*) 
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’  /*Character reference */ 
[67] Reference ::= EntityRef | CharRef    /*Entity reference */ 
[68] EntityRef ::= ‘&’ Name ‘;’ 
[69] PEReference ::= ‘%’ Name ‘;’ 
[70] EntityDecl ::= GEDecl | PEDecl    /*Entity declaration */ 
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’ 
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’ 
[73] EntityDef ::= EntityValue | (ExternalID NdataDecl?) 
[74] PEDef ::= EntityValue | ExternalID 
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral   /*External entity declaration*/ 
  | ‘PUBLIC’ S PuidLiteral S SystemLIteral 
[76] NdataDecl ::= S ‘NDATA’ S Name 
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[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’ /*Text declaration */ 
[78] extParsedEnt ::= TextDecl? content   /*Well-formed external parsed entity*/ 
[79] extPE ::= TextDecl? extSubsetDecl 
[80] EncodingDecl ::= S ‘encoding’ Eq (‘ “ ‘ EncName ‘ “ ‘ | “ ‘ “ /*Encoding declaration */ 
   EncName “ ‘ “) 
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘ – ‘)* 
[82] NotationDecl ::= ‘<!NOTATION’ S Name S    /*Notation declarations */ 
    (ExternalID | PublicID) S? ‘>’ 
[83] PublicID ::= ‘PUBLIC’ S PubidLiteral 
[84] Letter ::= BaseChar | Ideographic    /*Characters  */ 
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-
#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] 
| [#x01CD-#x01F0] | [#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386 
| [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC 
| #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-
#x0481] | [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5] 
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] 
| [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-
#x06D3] | #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-#x098C] 
| [#x098F-#x0990] | [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] 
| [#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-#x0A28] | [#x0A2A-
#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-
#x0A74] | [#x0A85-#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-
#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28] 
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61] 
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] 
| [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] 
| [#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] 
| [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] 
| #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-
#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-
#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-
#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-#x0EB3] 
| #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6] 
| #x1100 | [#x1102-#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C 
| #x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163 
| #x1165 | #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB 
| [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-
#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] 
| [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] 
| #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-
#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182] 
| [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3] 
[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029] 
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1] 
| [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 
| [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] 

 186



  
 

| [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-
#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 
| [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-
#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9] 
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] 
| [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] 
| #x0BD7 | [#x0C01-#x0C03]  | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-
#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-
#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 
| [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-
#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-
#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] 
| #x20E1 | [#x302A-#x302F] | #x3099 | #x309A 
[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-#x096F] | [#x09E6-#x09EF] 
| [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] 
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29] 
[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 | #x3005 | [#x3031-
#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE] 
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APPENDIX II – XML NAMESPACE SYNTAX 

[1] NSAttName ::= PrefixedAttName | DefaultAttName 
[2] PrefixedAttName ::= ‘xmlns:’ NCName 
[3] DefaultAttName ::= ‘xmlns’ 
[4] NCName ::= (Letter | ‘_’)(NCNameChar)* 
[5] NCNameChar ::= Letter | Digit | ‘.’ | ‘-‘ | CombiningChar | Extender 
[6] QName ::= (Prefix ‘:’)? LocalPart 
[7] Prefix ::= NCName 
[8] LocalPart ::= NCName 
[9] Stag ::= ‘<’ QName (S Attribute)* S? ‘>’ [NSC:Prefix Declared] 
[10] Etag ::= ‘</’ QName S? ‘>’ [NSC:Prefix Declared] 
[11] EmptyElemTag ::= ‘<’ QName (S Attribute)* S? ‘/>’ [NSC:Prefix Declared] 
[12] Attribute ::= NSAttName Eq AttValue | QName Eq AttValue [NSC:Prefix Declared] 
[13] doctypedecl ::= ‘<!DOCTYPE’ S QName (S ExternalID)? S? (‘[‘ 
   (markupdecl | PEReference | S)* ‘]’ S?)? ‘>’ 
[14] elementdecl ::= ‘<!Element’ S QName S contentspec S> ‘>’ 
[15] cp ::= (QName | choice | seq) (‘?’ | ‘*’ | ‘+’)? 
[16] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? QName)* S? ‘)*’ | ‘(‘ S? ‘#PCDATA’ S? ‘)’ 
[17] AttlistDecl ::= ‘<!ATTLIST’ S QName AttDef* S? ‘>’ 
[18] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl 
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APPENDIX III – XLINK SYNTAX 

[1] Locator ::= URI  | Connector (XPointer | Name) | URI Connector (XPointer | Name) 
[2] Connector ::= ‘#’ | ‘|’ 
[3] URI ::= URIchar* 
[4] Query ::= ‘XML-XPTR=’ (XPointer | Name) 
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APPENDIX IV – XPATH SYNTAX 

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath 
[2] AbsoluteLocationPath ::= ‘/’ RelativeLocationPath? | AbbreviatedAbsoluteLocationPath 
[3] RelativeLocationPath ::= Step | RelativeLocationPath ‘/’ Step | AbbreviatedRelativeLocationPath 
[4] Step ::= AxisSpecifier NodeTest Predicate* | AbreviatedStep 
[5] AxisSpecifier ::= AxisName ‘::’ | AbbreviatedAxisSpecifier 
[6] AxisName ::= ‘ancestor’ | ancestor-or-self’ | ‘attribute’ | ‘child’ | ‘descendant’  
   | ‘descendant-or-self’ | ‘following’ | ‘following-sibling’ | ‘namespace’  
   | ‘parent’ | ‘preceding’ | ‘preceding-sibling’ | ‘self’ 
[7] NodeTest ::= NameTest | NodeType ‘(‘ ‘)’ | ‘processing-instruction’ ‘(‘ Literal ‘)’ 
[8] Predicate ::= ‘[‘ PredicateExpr ‘]’ 
[9] PredicateExpr ::= Expr 
[10] AbbreviatedAbsoluteLocationPath ::= ‘//’ RelativeLocationPath 
[11] AbbreviatedRelativeLocationPath ::= RelativeLocationPath ‘//’ Step 
[12] AbbreviatedStep ::= ‘.’ | ‘..’ 
[13] AbbreviatedAxisSpecifier ::= ‘@’? 
[14] Expr ::= OrExpr 
[15] PrimaryExpr :: VariableReference | ‘(‘ Expr ‘)’ | Literal | Number | FunctionCall 
[16] FunctionCall ::= FunctionName ‘(‘ (Argument ( ‘,’ Argument )* )? ‘)’ 
[17] Argument ::= Expr 
[18] UnionExpr ::= PathExpr | UnionExpr ‘|’ PathExpr 
[19] PathExpr ::= LocationPath | FilterExpr | FilterExpr ‘/’ 
[20] FilterExpr ::= PrimaryExpr | FilterExpr Predicate 
[21] OrExpr ::= AndExpr | OrExpr ‘or’ AndExpr 
[22] AndExpr ::= EqualityExpr | AndExpr ‘and’ EqualityExpr 
[23] EqualityExpr ::= RelationalExpr | EqualityExpr ‘=’ RelationalExpr | 
   EqualityExpr ‘!=’ RelationalExpr 
[24] RelationalExpr ::= AdditiveExpr | RelationalExpr ‘<’ AdditiveExpr | 
  RelationalExpr ‘>’ AdditiveExpr | RelationalExpr ‘<=’ AdditiveExpr | 
  RelationalExpr ‘>=’ AdditiveExpr 
[25] AdditiveExpr ::= MultiplicativeExpr | AdditiveExpr ‘+’ MultiplicativeExpr | 
   AdditiveExpr ‘-‘ MultiplicativeExpr 
[26] MultiplicativeExpr ::= UnaryExpr | MultiplicativeExpr MultiplyOperator UnaryExpr 
  | MultiplicativeExpr ‘div’ UnaryExpr | MultiplicativeExpr ‘mod’ UnaryExpr 
[27] UnaryExpr ::= UnionExpr | ‘-‘ UnaryExpr 
[28] ExprToken ::= ‘(‘ | ‘)’ ‘[‘ | ‘]’ | ‘.’ | ‘..’ | ‘@’ | ‘,’ | ‘::’ | NameTest | NodeType | Operator 
  | FunctionName | AxisName | Literal | Number | VariableReference 
[29] Literal ::= ‘”’ [ ^”]* ‘”’ | ‘”” [^’]* “”’ 
[30] Number ::= Digits (‘.’ Digits?)? | ‘.’ Digits 
[31] Digits ::= [0-9]+ 
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[32] Operator ::= OperatorName | MultiplyOperator | ‘/’ | ‘//’ | ‘|’ | ‘+’ | ‘-‘ | ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ 
[33] OperatorName ::= ‘and’ | ‘or’ | ‘mod’ | ‘div’ 
[34] MultiplyOperator ::= ‘*’ 
[35] FunctionName ::= QName – NodeType 
[36] VariableReference ::= ‘$’ QName 
[37] NameTest ::= ‘*’ NCName ‘:’ ‘*’ | QName 
[38] NodeType ::= ‘comment’ | ‘text’ | ‘processing-instruction’ | ‘node’ 
[39] ExprWhitespace ::= S 
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APENDIX V – XPOINTER SYNTAX 

[1] XPointer ::= AbsTerm ‘.’ OtherTerms | AbsTerm | OtherTerms 
[2] OtherTerms ::= OtherTerm | OtherTerm ‘.’ OtherTerm 
[3] OtherTerm ::= RelTerm | SpanTerm | AttrTerm | StringTerm 
[4] AbsTerm ::= ‘root()’ | ‘origin()’ | IdLoc | HTMLAddr 
[5] IdLoc ::= ‘id(‘ Name ‘)’ 
[6] HTMLAddr ::= ‘html(‘ SkipLit ‘)’ 
[7] RelTerm ::= Keyword? Arguments 
[8] Keyword ::= ‘child’ | ‘descendant’ | ‘ancestor’ | ‘preceding’ | ‘following’ | ‘psibling’ | ‘fsibling’ 
[9] Arguments ::= ‘(‘ InstanceOrAll (‘,’ NodeType (‘,’ Attr ‘,’ Val)*)? ‘)’ 
[10] InstanceOrAll ::= ‘all’ | Instance 
[11] Instance ::= (‘+’ | ‘-‘)? [1-9] Digit* 
[12] NodeType ::= Name | ‘#element’ | ‘#pi’ | ‘#comment’ | ‘#text’ | ‘#cdata’ | ‘#all’ 
[13] Attr ::= ‘*’ | Name  <!-- any attribute type --> 
[14] Value ::= ‘#IMPLIED’ <!-- no value specified, no default --> 
  | ‘*’  <!-- any value, even defaulted --> 
  | Name 
  | SkipLit  <!-- exact match --> 
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APPENDIX VI – EXAMPLES OF PML SCHEMA 

1. Coordinate: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "coordinate.xsd" 
   Specify the coordinate attributes. 
  </xsd:documentation> 
 </xsd:annotation> 
  <xsd:attribute name="x" type="xsd:double"/> 
  <xsd:attribute name="y" type="xsd:double"/> 
  <xsd:attribute name="z" type="xsd:double"/> 
</xsd:schema>  
 
2. Geometric Point: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "point.xsd" 
   Define geometric entity - POINT. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="coordinate.xsd"/> 
  <xsd:element name="POINT"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute ref="x" use="required"/> 
     <xsd:attribute ref="y" use="required"/> 
     <xsd:attribute ref="z" use="required"/> 
     <xsd:attribute name="id" type="xsd:string"/> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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3. Vector: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "vector.xsd" 
   Define geometric entity - VECTOR. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="coordinate.xsd"/> 
  <xsd:element name="VECTOR"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute ref="x" use="required"/> 
     <xsd:attribute ref="y" use="required"/> 
     <xsd:attribute ref="z" use="required"/> 
     <xsd:attribute name="id" type="xsd:string"/> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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4. Point Reference 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   xmlns:xlink="http://www.w3.org/1999/xlink" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "refPoint.xsd" 
   Define the reference to geometric entity - POINT. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:element name="refPOINT"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute name="xlink:type" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="simple"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:href" type="xsd:string" use="required"> 
     <xsd:attribute name="xlink:actuate" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="onLoad"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:show" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="replace"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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5. Vector Reference: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   xmlns:xlink="http://www.w3.org/1999/xlink" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "refVector.xsd" 
   Define the reference to geometric entity - VECTOR. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:element name="refVECTOR"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute name="xlink:type" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="simple"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:href" type="xsd:string" use="required"> 
     <xsd:attribute name="xlink:actuate" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="onLoad"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:show" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="replace"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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6. Line: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "line.xsd" 
   Define geometric entity - LINE. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="refPoint.xsd"/> 
 <xsd:include schemaLocation="refVector.xsd"/> 
  <xsd:element name="LINE"> 
  <xsd:complexType> 
   <xsd:choice> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refPOINT"/> 
    </xsd:sequence> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refVECTOR"/> 
    </xsd:sequence> 
   </xsd:choice> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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7. Line Reference: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   xmlns:xlink="http://www.w3.org/1999/xlink" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "refLine.xsd" 
   Define the reference to geometric entity - LINE. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:element name="refLINE"> 
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string> 
     <xsd:attribute name="xlink:type" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="simple"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:href" type="xsd:string" use="required"> 
     <xsd:attribute name="xlink:actuate" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="onLoad"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
     <xsd:attribute name="xlink:show" use="required"> 
      <xsd:simpleType> 
       <xsd:restriction base="xsd:string"> 
        <xsd:enumeration value="replace"/> 
       </xsd:restriction> 
      </xsd:simpleType> 
     </xsd:attribute> 
    </xsd:restriction> 
   </xsd:simpleContent> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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8. Plane: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "plane.xsd" 
   Define geometric entity - PLANE. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:include schemaLocation="refPoint.xsd"/> 
 <xsd:include schemaLocation="refVector.xsd"/> 
 <xsd:include schemaLocation="refLine.xsd"/> 
  <xsd:element name="PLANE"> 
  <xsd:complexType> 
   <xsd:choice> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refPOINT"/> 
    </xsd:sequence> 
    <xsd:sequence> 
     <xsd:element ref="refPOINT"/> 
     <xsd:element ref="refVECTOR"/> 
     <xsd:element ref="refVECTOR"/> 
    </xsd:sequence> 
    <xsd:sequence> 
     <xsd:element ref="refLINE"/> 
     <xsd:element ref="refLINE"/> 
    </xsd:sequence> 
   </xsd:choice> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema>  
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9. Distance Constraint: 
<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu" 
   xmlns:pml="http://www.pitt.edu" 
   xmlns:xlink="http://www.w3.org/1999/xlink" 
   elementFormDefault="qualified" 
    version="1.0"> 
 <xsd:annotation> 
  <xsd:documentation> 
   "conDistance.xsd" 
   Define the constraint of distance. 
  </xsd:documentation> 
 </xsd:annotation> 
 <xsd:element name="conDISTANCE"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="loc1"> 
     <xsd:complexType> 
      <xsd:simpleContent> 
       <xsd:restriction base="xsd:str ing"/> 
      <xsd:simpleContent> 
      <xsd:attributeGroup ref="locatorAttributes"/> 
     </xsd:complexType> 
    </xsd:element> 
    <xsd:element name="loc2"> 
     <xsd:complexType> 
      <xsd:simpleContent> 
       <xsd:restriction base="xsd:str ing"/> 
      <xsd:simpleContent> 
      <xsd:attributeGroup ref="locatorAttributes"/> 
     </xsd:complexType> 
    </xsd:element> 
    <xsd:element name="arc1"> 
     <xsd:complexType> 
      <xsd:simpleContent> 
       <xsd:restriction base="xsd:str ing"/> 
      <xsd:simpleContent> 
      <xsd:attributeGroup ref="arcAttributes"/> 
     </xsd:complexType> 
    </xsd:element> 
    <xsd:element name="arc2"> 
     <xsd:complexType> 
      <xsd:simpleContent> 
       <xsd:restriction base="xsd:str ing"/> 
      <xsd:simpleContent> 
      <xsd:attributeGroup ref="locatorAttributes"/> 
     </xsd:complexType> 
    </xsd:element> 
   </xsd:sequence>  
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  </xsd:complexType> 
  <xsd:simpleContent> 
   <xsd:restriction base="xsd:double"/> 
    <xsd:attribute name="xlink:type" use="required"> 
     <xsd:simpleType> 
      <xsd:restriction base="xsd:str ing"> 
       <xsd:enumeration value="extended"/> 
      </xsd:restriction> 
     </xsd:simpleType> 
    </xsd:attribute> 
   </xsd:restriction> 
  <xsd:simpleContent> 
 </xsd:element> 
 
  <xsd:attributeGroup name=" locatorAttributes">  
  <xsd:attribute name="xlink:type" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:str ing"> 
     <xsd:enumeration value="locator"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="xlink:label" type="xsd:string" use="required"/> 
  <xsd:attribute name="xlink:href" type="xsd:string" use="required"/> 
  </xsd:attributeGroup> 
 
  <xsd:attributeGroup name="arcAttributes">  
  <xsd:attribute name="xlink:type" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:str ing"> 
     <xsd:enumeration value="arc"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="xlink:from" type="xsd:string" use="required"/> 
  <xsd:attribute name="xlink:to" type="xsd:string" use="required"/> 
  <xsd:attribute name="xlink:actuate" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:str ing"> 
     <xsd:enumeration value="onLoad"/> 
     <xsd:enumeration value="onRequest"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  </xsd:attributeGroup> 
 
</xsd:schema> 
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