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Recent research suggests that diversity in craniofacial morphology is produced by a 

complex interaction of environmental variables including 1) muscle function, 2) genetic factors 

related to skull growth, 3) timing and heritability of suture fusion (cessation of growth of the 

joints connecting the bones of the skull), 4) growth and morphology of the brain, and 5) other 

non-genetic factors including hormones of the endocrine system. How these factors interact in 

cranial growth and development is not well understood. This dissertation investigated the 

influence of androgenic hormone on suture bone biology. Methodology used including in vitro 

cellular challenges, protein analyses, and in vivo therapies. The work described here utilized a 

large sample size to establish the role of testosterone as a modulator of bone morphogenetic 

protein and subsequent effects on osteoblast differentiation. Testosterone increased the effect of 

BMP on osteoblasts, increasing differentiation. The increased differentiation effect was 

successfully blocked using flutamide, an androgen receptor blocker. Bone cells harvested from 

non suture calvaria in craniosynostotic rabbits were most susceptible to flutamide administration. 

The presence of androgen receptors in cells harvested from the suture and non suture bone of 

craniosynostotic or wild type rabbits could not be confirmed due to a lack of an effective 

antibody. In vivo administration of flutamide to the coronal suture of craniosynostotic rabbits 

resulted in greater growth across the coronal suture. However, no correction of craniofacial 

growth was observed. These results suggest 1) an alternative pathway for dihydrotestosterone’s 

and testosterone’s effect on the suture, similar to the adrenal androgens, via the MAP kinase 

pathway, 2) lack of an effective delivery system of the flutamide treatment, or 3) that an 

androgen receptor blocker-based therapy is not effective for delaying the eventual fusion of the 

coronal suture in this model. 
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1.0  INTRODUCTION 

1.1 CRANIOFACIAL VARIATION 

Variation in craniofacial morphology (i.e., skull shape) has been studied for many years 

in fossil and living primates (Enlow and Hans, 1996; Krogman, 1978).  In humans, this variation 

has historically been associated with isolation and adaptation to specific geographic regions 

(Clark, 1971; Mooney et al., 2002). Recent research suggests that diversity in craniofacial 

morphology results from an inherent plasticity of craniofacial traits. There exists a complex 

interaction of environmental variables (muscle function), genetic factors, timing and heritability 

of suture fusion (cessation of growth of the joints connecting the bones of the skull), growth and 

morphology of the brain, and other non-genetic factors including hormones that act on these 

plasticities (Cohen and MacLean, 2000; Coussens et al., 2008; Coussens and van Daal, 2005; 

Coussens et al., 2007; Enlow and Hans, 1996; Fujita et al., 2006; Fujita et al., 2004; Meindl and 

Lovejoy, 1985; Mooney and Richtmeier, In Press; Moss and Young, 1960; Opperman, 2000; 

Ptak and Petronis, 2008; Wang et al., 2006a). To understand the diversity in phenotypic 

expressions of craniofacial traits, a better understanding of how these factors interact is 

necessary. 
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1.1.1 Short History of Research on Phenotype  

Anthropology has a long history of studying craniofacial variation, especially skull shape. 

Historically, these studies provided description of human variation, including the delineation of 

“races.” Variation in craniofacial morphologies results from a complex interaction of influences, 

including heritability, diet, biomechanics, and the environment. In the past, anthropological 

studies have had success in the delineation of populations based on craniofacial morphologies 

due to consistencies in those influences. However, with the current trend of globalization, 

population admixture does not allow for the same consistencies in results. Thus, a better 

understanding of how the influences on craniofacial morphologies interact is necessary for better 

studies of human cranial variations. 

Darwin (1874) in the Descent of Man addressed the issues of skull shape. He suggested 

that the study of head shapes could garner a great amount of information between and within 

populations. Anthropology has a long history of utilizing craniofacial variations as indicators of 

population affinities (Enlow and Hans, 1996; Krogman, 1978). For example, early research, such 

as that by Karl Pearson, proposed concepts such as the coefficient of racial likeness based on 

cranial measurements, using classifications from “very intricately related” to “very unlikely 

related” and “slight divergence” to “very widely diverged (Pearson, 1926).” This research 

continues to the present. Forensic anthropology in particular continues to rely on antiquated 

stereotypic racial classification. For example: East Asian and American Indian populations being 

the most brachycranic or broad skulled, White populations being mesocranic, or in between 

brachycranic and more dolicocranic, long skulls Black populations, with Polynesian populations 

being variable (Gill, 1998).    
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While forensics continues to rely on racial classifications, modern multivariate statistical 

techniques are the choice of many physical anthropologists. These statistical techniques replace 

earlier racial categorizations, creating affines or population relatedness groups as units of 

measurement. These units are an effective way to side step the argument concerning the viability 

of classifications based on the term “race.” In fact, some of these resulting cranial shape data 

correspond well to geographic location when isolated populations are the unit of study. One 

example for the estimation of regional variation by quantitative phenotypic traits is the R-matrix 

method. In this technique, genetic distances from a centroid, the average phenotypic measures of 

all the populations, are determined from phenotypic trait data (Relethford and Blangero, 1990; 

Relethford and Harpending, 1994; Hanihara and Ishida, 2009, Gonzalez et al., 2002). Research 

of fossil hominids also utilizes similar techniques to explore regional variations (Anton, 2002; 

Baab, 2008; Bruner, 2007). 

In isolated populations, cranial shape does exhibit great genic and heritability dependent 

difference, Figure 1. For example, Franklin et al. examined both Khosian and Bantu skulls from 

isolated populations in South Africa, and demonstrated Khosian derived skulls to be much more 

brachycephalic than Bantu counterparts (Franklin et al., 2007). These same analyses have 

attempted to address questions of the peopling of the Americas. Controversially, research, has 

determined that morphologically non-Northern Asians may have participated in early migrations 

to the New World. Data obtained from analyses of South American populations corroborates the 

early migration theory. This multiple migration hypothesis competes with the more accepted 

genic single wave, out of Beringia model (Gonzalez-Jose et al., 2008; Gonzalez-Jose et al., 

2005).  
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Figure 1: Photographs of Phenotypic Variability in Skull Shape by Geographic Region. Photographs 

of Phenotypic Variability in Skull Shape by Geographic Region. 

A) Asian Derived Skull - Brachycranic Phenotype. B) European Derived Skull.- Mesocranic Phenotype. C) African 

Derived Skull – Dolichocranic Phenotype. D) Australian Aboriginal Derived – Extreme Dolicocranic Phenotype. 

Photographs provided by Mark Mooney, PhD., 2009. 

 

An investigation of the effects of climatic signature of cranial shape as well as intra-

population variation would allow for a better description of population cranial variability. 

Although no acceptable explanation has been agreed upon, microevolutionary processes such as 

drift, gene flow, and directional selection may allow the two seemingly contradictory hypotheses 

to be reconciled (Gonzalez-Jose et al., 2008; Sardi et al., 2005). On a global scale, Hanihara 

suggested that African and Australian derived populations shared a more common craniofacial 

morphology, whereas East Asia and Europeans, and Western Asians and African populations 

were more similar. This study also highlighted the distinct differences in the craniofacial 

morphologies of Northern and Southern Asia, pointing to distinct climatic signatures (Hanihara, 
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1996). In other studies, North American populations appear to exhibit a history of secular trend 

in cranial shape. Since 1840, these crania exhibit a higher vaulted cranium, most likely reflecting 

dietary and environmental change with respect to stock European populations (Jantz and 

Meadows Jantz, 2000).  

In addition to genic factors, populations are under similar environmental influences than 

can increase the likelihood of intra-population similarities in craniofacial variation. For example, 

diet is a known influence contributing to craniofacial variation. The transition from the 

dolicocephalic form in pre-Neolithic technological hunter gatherer societies to a more 

brachycephalic phenotype is often attributed to a softer carbohydrate heavy diet (Stynder et al., 

2007).  However, Gonzalez and colleagues failed to detect this trend in 18 populations of skulls 

from known economic strategies in South America (Gonzalez-Jose et al., 2005). Altitude and 

temperature stresses also influence craniofacial variation. For example, larger crania have a 

positive association with human populations from colder climates (Roseman and Weaver, 2004). 

However, this strength of this association has recently been called into question (Harvati and 

Weaver, 2006). Through experimental animal modeling, Riesenfeld demonstrated a similar 

degree of brachycephalization in heat raised and starvation rats. Thus, heat induced changes were 

the result of body weight loss. Cold weather brachycephalization seemed to result from the 

influence of body weight loss and facial shortening. An increase in cranial height was also 

associated with a response to cold weather (Riesenfeld, 1973). 

 Similarity in biomechanical forces can also increase intra-population similarity in  

cranial form (Vioarsdottir et al., 2002). In Homo sapiens, early brain growth is important in 

determining the size and shape of the cranium (Enlow and Hans, 1996; Mooney et al., 2002; 

Moss and Salentijn, 1969; Moss and Young, 1960; Richtsmeier et al., 2006; Weidenreich, 1941). 
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Moss and Young address mechanical forces that affect craniofacial development, in their 

description of the functional capsular matrix of the neurocranium. These authors suggest that the 

brain encapsulated by the dura mater creates a system of forces produced by growth of the brain, 

placing pressure against this neurocranial capsule, the dura and skull tissues surrounding the 

brain, causing growth (Moss, 1969; Moss and Salentijn, 1969; Moss and Young, 1960). Research 

also suggests the shape of the basicranium, specifically cranial base flexion, to affect the final 

craniofacial form. (Lieberman et al., 2000). Alterations in cranial form can result from other 

mechanical influences. Artificial cranial deformation is one such influence that affects the mass 

of the underlying brain as well. Other severe aberrations to neural expansion also affect the shape 

of the neurocranium, such as hydrocephalus, anencephaly, and macrocephaly (Aldridge et al., 

2005a; Aldridge et al., 2005b).  

Distinct phenotypes of the craniofacial skeleton can result from early aberration of cranial 

suture growth. For example, premature fusion of the sagittal suture prior to the completion of 

brain growth results in scaphocephaly. In contrast, brachycephaly results from early coronal 

synostosis (Cohen and MacLean, 2000; Enlow and Hans, 1996). However, in normal ontogeny 

there is a period of stasis following the cessation of neurocranial expansion that precedes cranial 

suture remodeling and fusion (Cohen and MacLean, 2000; Meindl and Lovejoy, 1985). It has 

been demonstrated that the pattern of cranial suture fusion later in ontogeny (>25 years of age) is 

independent of cranial shape (Cray et al., 2009). Research on a group from the Aleutians Islands 

investigated the role of normal ontogenetic suture fusion with respect to cranial shape. Results 

revealed the same patterns of fusion for brachycranic and dolicocranic populations. This suggests 

fusion pattern is independent of cranial shape in Homo sapiens. These patterns were also found 

to differ from that reported in the literature (Meindl and Lovejoy, 1985). Thus, fusion patterns 
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may be population dependent. Further, standardized methodology using suture fusion to 

determine age-at-death may not be applicable to all populations (Cray et al., 2009). 

Another factor that affects cranial variations is muscular loading. An example, the 

temporalis muscle attachment. Data suggest that dolicocephalics manifest high temporal lines 

(bony attachment sites) due to a reduced surface area for muscle attachment. Animal modeling 

has demonstrated that removal of the temporalis and masseter muscles limits growth in the 

length of the skull and other postcranial dimensions. This removal of biomechanical forces, 

however, does not result in a difference in overall brain size. In addition, supplementing the diet 

can mediate the limitations to growth in the anterior-posterior dimension. This further suggests 

nutrition has an effect on cranial form. Additionally, brain size was relatively unaffected by 

surgical manipulation or differential diet conditions (Riesenfeld, 1967).  

Increased musculature differentially affects the morphology of craniofacial skeleton. 

Hypermasticatory influences on the human cranium are reported to result in a higher vaulted 

skull (Kean and Houghton, 1982). Vecchione et al. (2007) reported on the craniofacial traits of a 

hypermuscular mouse model. These mice had significantly shorter cranial vault length, a 

brachycephalic phenotype, shorter maxillary length, and a longer mandibular body length 

compared to normal controls. Byron et al. (2008) demonstrated that this same hypermuscular 

mouse model possess an anterosuperiorly and dorsoventrally compressed temporal bone as part 

of the brachycephalic phenotype, resulting from the enlarged temporal muscles (Byron et al., 

2008). Vecchione et al. (In Press 2009), using this same model also found significantly shorter 

craniofacial lengths in the knockout model, which suggested that muscle function plays a 

significant role in the ontogeny of craniofacial growth. It was however noted that early changes 
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in cellular growth and differentiation may have an equal impact on final form (Vecchione et al., 

In Review).  

 

1.1.2 Cell and Molecular Factors  

Craniofacial development and variation is influenced by intrinsic genetic factors, 

epigenetic factors (both local and general), as well as environmental influences (Van Limborgh, 

1982). A molecular and morphological data analysis of populations suggests the basicranium, 

temporal bone, upper face, and entire cranium are the most reliable markers of heritability in the 

craniofacial skeleton. The least reliable indicators were the mandible, upper jaw, and cranial 

vault (Smith, 2009).  

A recent study utilizing DNA samples from Caucasians, Asians, Australian Aborigines, 

African Americans, and Indians for linkage analysis, has begun to described the genetic variation 

of craniofacial morphology. These authors utilized 30 blood samples samples for haplotype and 

100 others genotyped for the haplotype tag single nucleotide polymorphisms, htSNPs (the 

limited number of haplotypes in a block), phenotypic polymorphism screenings. This 

polymorphism screening data was compared to the associated craniofacial analysis (head shape). 

The minimal informative subsets of single nucleotide polymorhisms, SNPs, (stable base pair 

variations observed in one region across a population) associated were then compared to the 

htSNPs. Their results showed TWIST1 gene to contain no non-pathological SNPs and no 

polymorphism for craniofacial variation. Thus, the TWIST1 gene is a highly conserved. In 

contrast, these authors were successful in identifying 17 SNPs, 6 of which were novel for the 

FGFR1 gene. For example, the htSNP g.8592931G to C was found to have a negative correlation 
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with the cephalic index for all populations. Larger correlations for cephalic index were found in 

Asians and females. This study suggests that in non-pathological populations, single nucleotide 

polymorphisms (SNPs) on the FGFR1 gene are associated with normal craniofacial variation 

(Coussens and van Daal, 2005).   

Factors at the epigenetic level also influence the developing craniofacial skeleton. These 

epigenetic factors include, local factors, e.g. cytokines (cell signaling molecules), growth factor 

(substance capable of stimulating cell growth), and prostaglandins (lipid compound), (Downey 

and Siegel, 2006; McCarthy et al., 2000). Systemic influences also affect craniofacial 

development and variation. These factors include circulating hormones including parathyroid 

hormones, thyroid hormones (Bradley et al., 1999; Gamborino et al., 2001; Kornreich et al., 

2002; McAlarney et al., 2001) and sex steroids (Abu et al., 1997; Fujita et al., 2006; Fujita et al., 

2004; Lin et al., 2004; Lin et al., 2007), including androgens. Epigenetic research is now being 

conducted to determine influences at the cellular level including effects on DNA methylation, 

phosphorylation, and histone modification. As this research progresses, a greater understanding 

of the genomic epigenetic interaction will be achieved. This knowledge base should in turn allow 

a better understanding of resulting craniofacial phenotypes (Ptak and Petronis, 2008). 

The interaction between genome-epigenetic and the environment has been studied for 

craniofacial development. Most of this research has been conducted on the anomalous 

development of orofacial clefting. The multifactorial threshold model for cleft lip and palate 

suggests clefting anomalies result from exogenous and endogenous factors, a gene-environment 

interactions (Etheredge et al., 2005; Jugessur et al., 2003; Krost and Schubert, 2006; Murray, 

2002). The gene-environment model for non-syndromic orofacial clefting proposes that if a 

genetic predisposition for an anomaly is coupled with a environmental factor that can exacerbate 
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this already existing predisposition, more severe phenotypes will result (Murray, 2002). The 

identified orofacial clefting candidate genes include TGFA, TGFβ3, and MSX1. A large amount 

of orofacial clefting research has elucidated the effects of maternal smoking (Jugessur et al., 

2003; Murray, 2002; Shi et al., 2007; van Rooij et al., 2002; Zeiger et al., 2005), diet, UV 

exposure (Krost and Schubert, 2006), and altitude (Otero et al., 2007), on resulting craniofacial 

anomalies. Sex hormones have also been investigated. Data suggest the environment can 

influence endogenous hormone levels. Further, hormone can also be absorbed via exposure from 

the environment causing teratogenic effects. (Herbst, 1973; Limbird and Taylor, 1998; Molsted 

et al., 1997). As research progresses a better understanding of the gene-environment interaction 

should aid in the diagnosis and management of craniofacial anomalies (Murray, 2002). 

 

1.2 SUTURE BIOLOGY 

Cranial sutures are defined as the fibrous tissue joint separating the adjacent margins of the 

intramembranously derived bones of the skull (Morriss-Kay and Wilkie, 2005). Sutures permit minor 

movement to take place between bones. They provide four functions: 1. passage through birth canal, 

2. shock absorption, 3. brain growth, and 4. prevent of cranial bone separation (Cohen, 2005); 

(Enlow and Hans, 1996; Hall, 2005; Moore and Persaud, 2007; Morriss-Kay and Wilkie, 2005; 

Sperber, 2001). 

Cranial vault bones are formed from neural crest and mesodermal tissue. The development of 

these bones proceeds by intramembranous ossification within a layer of mesenchyme, located 

between the dermal mesenchyme and the meninges. In contrast, cartilages derived from the occipital 
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somites ossify to form the supraoccipital bone. The supraoccipital bone eventually fuses with the 

membranous interparietal bones to complete the skull posteriorly. The cranial region of mammalian 

embryos contains the first four somites and all structures rostral to them. The trigeminal crest is the 

only region rostral to the somites that contributes to skull development. The trigeminal crest also 

contributes to the development of the neural plate region as well as the neural tube. The trigeminal 

neural crest cells maintain a separation from the adjacent mesodermal cranial mesenchyme cells 

during early development. Hox gene expression also plays a major role in early craniofacial 

patterning. Hox expression is inhibitory to the development of the neural crest derived craniofacial 

skeleton. However, Hox is absent from the trigeminal crest, allowing for early neural associated 

development (Enlow and Hans, 1996; Hall, 2005; Moore and Persaud, 2007; Morriss-Kay and 

Wilkie, 2005; Sperber, 2001) 

There is a relationship between the neural crest-mesoderm tissue boundary and the position 

of sutures in the skull vault. The boundary between the frontonasal population and the adjacent 

mesodermal mesenchyme defines the coronal and sagittal sutures. These sutures act as the neural 

crest-mesoderm interfaces. During early development, the sides and roof of the skull arise by 

membranous ossification. This ossification is characterized by needle-like bone spicules that radiate 

peripherally. Presumptive sutures and fontanels appear At the margins of the frontal, parietal, and 

occipital bones, during this early membranous ossification. The frontal bone, facial sutures, metopic 

suture, and coronal suture are of neural crest origin. In contrast, the parietal bone, occipital bone, 

sagittal suture, and lambdoid suture are of mesodermal origin. 

The rostral neural crest cells appear to precipitate the signaling required for sutural growth. 

Sutures develop by a wedge-shaped proliferation of cells at the periphery of the extending bone 

fields, termed the osteogenic fronts. The osteogenic fronts appear to govern morphogenetic 

determination of sutural architecture. For example, unequal biomechanical forces result in 

overlapping or beveled sutures. In contrast, equal biomechanical forces result in end-to-end sutures 

 11 



that approximate each other in the same plane. Formations of the sagittal, metopic, and lambdoid 

occur by narrowing of membranous gaps between bones that were previously widely separated. The 

coronal by contrast overlaps the frontal bone (Morriss-Kay and Wilkie, 2005).  

There are three defined systems of sutures for the neurocranium. The coronal ring consists of 

the continuous coronal-sphenofrontal-sphenoethmoidal sutures and separates the middle from the 

frontal cranial segment. The lambdoid system separates the middle cranial segment from the occipital 

bone. Finally, the sagittal suture is continuous with the metopic suture making up the sagittal system 

(Enlow and Hans, 1996; Hall, 2005; Moore and Persaud, 2007; Morriss-Kay and Wilkie, 2005; 

Sperber, 2001). 

Some genic factors are of importance in the growth and maintenance of cranial sutures. 

Efnb1 plays a role in formation of the neural crest-mesoderm tissue boundary that forms the coronal 

suture. The neural crest-mesodermal boundary leads to the initiation of the FGF-FGFr signaling 

system, which is associated with osteogenic growth and differentiation at the sutural margins 

(Coussens et al., 2007; Morriss-Kay and Wilkie, 2005; Passos-Bueno et al., 2008). In sutures, FGFs 

secreted by osteoblasts at the differentiated edge of the bones, activate receptors involved in both 

osteoprogenitor cell proliferation and the conversion of these cells into differentiated osteoblasts. 

Once the FGFr signaling system is established in sutures, long term skull growth depends on the 

maintenance and balance between the differentiation of new bone and proliferation of the 

osteoprogenitor cell population as a reservoir of potential new osteoblasts (Cohen, 2005; Nie et al., 

2006). 

Other genetic factors may be important in cranial suture morphogenesis. TWIST1 is 

expressed in the sutural mesenchyme between proliferating osteoblasts of the frontal and parietal 

bone edges-separating two bone forming tissues and initiating transcription of Fgfr2. MSX2 and 

TWIST1 act cooperatively, but in parallel pathways, to control the proliferation and differentiation of 
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the neural crest derived mesenchyme that forms frontal bones. TWIST1 and FGFr signaling are a 

fundamental component of the initiation and maintenance of sutural growth (Coussens et al., 2007; 

Morriss-Kay and Wilkie, 2005; Passos-Bueno et al., 2008). BMP (Bone Morphogenetic Proteins), a 

secreted diffusible protein encoded by a member of the TGF-β family (Transforming Growth 

Factor, protein family) may be involved in regulating the balance between undifferentiated states 

of osteogenic cells. Research suggests Sonic Hedgehog (Shh) is expressed in the sagittal suture, 

and may be involved in regulating cranial suture development and intramembranous bone 

formation (Kim et al., 1998; Opperman, 2000).  

Early in ontogeny the cranial sutures are especially affected by the expanding brain, and 

the neurocapsular matrix as a whole (Moss and Salentijn, 1969). The underlying dura appears to 

provide signals for cell proliferation and synthesis, and may harbor the growth factor implicated 

in suture patency and fusion (Mooney et al., 2001; Opperman et al., 1998). Cranial adjustment to 

the expanding brain takes place by bone deposition at the sutural margins, while the sutures proper 

remain patent. Cranial growth proceeds perpendicular to each of the major sutures. There is a period 

of stasis following the cessation of neurocranial expansion and growth, which precedes cranial 

suture remodeling and fusion (Cohen and MacLean, 2000; Meindl and Lovejoy, 1985). It has 

been observed that the expanding brain and its quasi-static strain or extreme biomechanical 

tensile forces (i.e., such as untreated hydrocephalus or distraction osteogenesis) can in some 

extreme cases affect calvarial suture morphology. This effect is evidenced by compensatory 

sutural interdigitation (Mooney and Richtmeier, In Press). However, neurocranial expansion is 

not always temporally related to human suture activity and thus, unlikely to influence eventual 

suture morphology and fusion (Cohen and MacLean, 2000; Meindl and Lovejoy, 1985).  
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Functioning sutures are the sites of continuous bone deposition and resorption. Initially, 

sutures are straight edges of bone separated by connective tissue. Gradually, interdigitation 

develops and become more prominent with time. For interdigitation to form, develop, and 

interlock, the distribution of osteoblasts along sutural bone must be uneven with clumps of 

osteoblasts at the tip of each interdigitation. Sutural interdigitation may permit adjustive 

movements and/or stress reductions. Many interdigitated sutures exhibit complex and variable 

patterns. This relationship depends on the presence, absence, or combination of tensile, 

compressive, and shearing forces. In addition, these variations occur depending on whether these 

forces affect sutural bone, sutural connective tissue, or both. In general, the longer a suture 

remains patent before osseous obliteration, the more interdigitated it will become (Cohen and 

MacLean, 2000; Enlow and Hans, 1996; Hall, 2005; Krogman, 1978; Mooney and Richtmeier, 

In Press; Morriss-Kay and Wilkie, 2005).   

Cyclic strains resulting from masticatory forces may have a high degree of influence on 

later ectocranial suture morphology and fusion (Byron, 2006; Byron et al., 2004; Byron et al., 

2006; Herring, 2008). Data from animal models have shown that bone growth and remodeling at 

the osteogenic fronts of the sutures is compensatory and occurs in response to tensile and 

compressive forces (Byron, 2006; Byron et al., 2004; Byron et al., 2006; Herring, 2008). The 

mechanical properties of sutures differ by loading, but all present morphologically with 

increased interdigitation, with increased function which allows for greater elasticity. 

Experimental evidence suggests sutures under compressive forces result in more interdigitation 

than sutures under tension (Fong et al., 2003; Herring, 2008; Wu et al., 2007). At the cellular 

level in general, sutural strain magnitudes have been shown to be small, increasing with age and 

bone deposition rate which is consistent with a quasistatic strain model influencing osteoblastic 
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activity at the sutural fronts (Henderson et al., 2004).  Sutures adapt to strains through 

compensatory growth at the sutural edge occurring in response to forces that separate the bones. 

Data from a hypermuscular murine GDF-8 (Myostatin) knockout model has shown a positive 

functional relationship between masticatory muscle size and sutural complexity. These mice 

exhibited increased sutural interdigitation and alterations in craniofacial morphology and 

mandible shape compared to wild-type control mice (Byron et al., 2004; Byron et al., 2006; 

Vecchione et al., 2007; Vecchione et al., In Review). Data from this same murine model also 

suggest that the cranial capacities are unaffected (Cray et al., 2008).  

The cause of suture closure is unclear, although there may be one or more mechanisms at 

work. Examples of such factors are vascular, hormonal, genetic, mechanical, or local factors 

(Cohen and MacLean, 2000). Some evidence also points to sutural loading as a causative 

mechanisms for sutural fusion, as it appears new bone is produced at the sutures in response to 

external stimuli (Herring and Teng, 2000). Age related changes in perisutural growth factor 

concentration gradients especially members of the Transforming Growth Factor-Beta (Tgf-β) 

family may also contribute to calvarial suture fusion. The Tgf-βs interacting with many other 

growth factors and genes (i.e. FGFs, MSX) in the sutural ligament and target osteoprogenitor 

cells at the sutural fronts causing them to produce excess collagen and bone resulting in fusion 

(Opperman and Ogle, 2002; Poisson et al., 2004; Rawlins and Opperman, 2008) Figure 2.  

 15 



 

Figure 2: Suggested Interactions Between Genes, Growth Factors, and Suture Morphology  

Modified from Opperman and Ogle, 2002 

 

However, there is data on the ontogeny of suture fusion. Initial suture obliteration seems 

to follow a pattern of slender bony spicules extending from the sutural margins, bridging the 

sutural gap either partially or completely. The initial bony bridging can develop from either the 

inner or the outer table in the frontal and lambdoid sutures. In the sagittal suture for example, 

suture fusion initiation can take place anywhere along its entire length. There does not seem to 

be any predilection for any area as earliest to fuse. Fusion may also begin on either the 

endocranial or the ectocranial surface, although it initiates more frequently endocranially. 

Histological data demonstrates collagenous fibers in the suture have a random organization prior 

to the onset of fusion. Contrastingly, during osseous fusion, connective tissue cells and fibers 

decrease in concentration in the sutural area creating an organized trabecular orientation. At this 

time, collagen fibers increase in tensile strength and decrease in extensibility, creating an 

organized orthogonal collagen lattice immediately preceding and during fusion, suggesting 
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suture fusion may be adaptive to dampen strains across the sutures (Anderson et al., 2006; Wang 

et al., 2006b; Warren et al., 2008), Figure 3. 

 

Figure 3: Collagen Fiber Orientation in Patent and Fusing Sutures.  

Note the orthogonally oriented collagen lattice in the fusing suture. 

Modified from Warren et al., 2008 

1.3 CRANIOSYNOSTOSIS 

Craniosynostosis is the premature fusion of one or more cranial sutures, the fibrous joints of 

the skull. If this synostosis happens early enough in the natural history of the animal, it can lead to 

alterations in skull shape, Figure 4, reduced cranial growth, increased intracranial pressure, impaired 

blood flow, vision and hearing, as well as mental retardation. Craniosynostosis results from an 

overgrowth of bone at the osteogenic fronts of the affected suture. Distortion of skull shape by 

mechanical factors, intrauterine pressure, head binding, etc., are not classified as craniosynostosis 

unless an affected suture is prematurely fused. 8% incidence has been suggested as familial, 

syndromic and nonsyndromic (Bonaventure and El Ghozzi, 2003; Moore and Persaud 2008; Morris-

Kay and Wilkie, 2005; Sperber 2001; (Cohen and MacLean, 2000).  
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Figure 4: Growth resulting from premature fusion of one or more of the cranial vault sutures 

Modified from Cohen and Maclean, 2000 

 

There is some understanding of the genic causes of craniosynostosis in humans. FGFR1-4, 

belonging to a family of tyrosine kinase receptors, are the most common genes implicated in 

syndromic craniosynostosis, and the best described. These FGFRs exhibit a common organization, 

including an immunoglobulin (Ig)-like binding domain, a transmembrane domain and two 

intracellular tyrosine kinase subdomains (TK1 and TK2). The binding of FGF to FGFR in association 

with heparin sulphate proteoglycan (HSPG) induced receptor dimerisation at the cell surface and 

autophosphorylation that triggers phosphorylation downstream signaling proteins (Bonaventure and 

El Ghouzzi, 2003; Nie et al., 2006). Mutations in Fgfr1-3 are identified causes of syndromic 

craniosynostosis. For example, Crouzon and Pfeiffer mutations are located in Fgfr2. These mutations 

occur overwhelmingly in two exons that encode the IgIII a/c domain of the protein. Mutations to the 

Fgfr2 IgII-IgIII linker region also result in Apert Syndrome. These syndromes present with variable 

phenotypes, Figure 5. However, the phenotypic differences resulting from the three equivalent 
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mutations do not relate directly to different functions of the genes, they function interactively and 

loss or gain of function mutations in one gene that affect the function of the protein may have 

secondary effects on one or both of the Fgfrs.   

 

Figure 5: Craniosynostosis Resulting from FGFr Mutations. 

A) Crouzon Syndrome. B) Apert Syndrome. C) Pfeiffer Syndrome. D) Jackson-Weiss Syndrome.  

Modified from Cohen and Maclean, 2000 

 

Apert syndrome, an autosomal dominant FGFr2 mutation (serine 252 to tryptophan or proline 

253 to arginine) is the most severe of the craniosynostosis syndromes. At the cellular level, Apert 

presents with an increase in calvarial cell differentiation, subperiosteal bone matrix, and premature 

calvarial ossification. In addition, the fibroblast biology of Apert affected cells suggests greater 

quantities of glycosaminoglycans and a decrease in circulating Interleukin 1 and 6 (IL1 and IL6). 

Phenotypically brachycephaly (increased head height and a flattened facial region), hand 

syndactylies, megalencephaly, hypertelorism, shallow orbits, maxillary hypoplasia, cleft palate, soft 

palate clefting, midline calvarial defect from glabella to the posterior fontanelle, characterize Apert 

syndrome. There are very often central nervous system disorders including mental retardation, 

ventriculomegaly, hypoplasia of the corpus collosum, and agenesis of the septum pellucidum. Other 

less common phenotypic traits are short humeri and spina bifida (Bonaventure and El Ghouzzi, 2003; 
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Carinci et al., 2005; Cohen and MacLean, 2000; Cohen, 2005; Ibrahimi et al., 2005; Ibrahimi et al., 

2001; Jabs, 2002; Mohammadi et al., 2005).  

Crouzon Syndrome, an autosomal dominant FGFr2 mutation (with de novo cases reported), 

affecting cysteine residue between the IG II and IG III domains, results in accelerated osteoblast 

proliferation and is stimulatory to interleukin I. There is a large amount of variability in phenotype 

for Crouzon, generally presenting a similar craniofacial phenotype to Apert syndrome including 

coronal suture synostosis, but adds ocular proptosis, in some cases scaphocephaly and/or 

trignocephaly, a reduction in length of the anterior cranial base and clivus, and lacks syndactylies. 

Other less frequent features include a solid cartilaginous trachea, dental arch shortening 

anteroposteriorly and in width causing dental crowding, hearing problems, lateral palatal swellings, 

torticollis, increased cranial pressure. Hydrocephalus can also occur due to jugular stenosis and 

venous obstruction (Bonaventure and El Ghouzzi, 2003; Carinci et al., 2005; Cohen and MacLean, 

2000; Cohen, 2005; de Ravel et al., 2005; Glaser et al., 2000; Jabs, 2002).  

Pfeiffer Syndrome, is a mostly de novo FGFr2 mutation resulting from alternative slicing of 

the B exon on the third immunoglobulin domain (serine to cysteine substitution, or a tyrosine to 

arginine), also can be found on FGFr1. Pfieffer presents with an increase in cell proliferation and 

accentuated expression of markers of osteoblast differentiation, i.e. RUNX2. Phenotypic features of 

Pfeiffer include ocular hypertelorism, proptosis, midface hypoplasia, prognathism, high arched or 

cleft palate, choanal stenosis or atresia, strabismus, broad and medially deviated great toe and thumb, 

and brachycephaly due to coronal suture synostosis. Pfeiffer syndrome is subdivided into three 

phenotypes. Type I or classic Pfeiffer is the mildest form that presents without mental delays. Type II 

Pfeiffer presents with mental delays, extreme proptosis, elbow ankylosis, or synostosis, and a 

characteristic cloverleaf skull. Type III lacks the cloverleaf skull. It shares the characteristic 

brachycephaly of Apert and Crouzon, and the ocular proptosis, but lacks syndactylies. It does 
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however have hand and feet involvement, exhibiting broad and short thumbs and toes as cited above 

(Bonaventure and El Ghouzzi, 2003; Vogels and Fryns, 2006). 

Jackson-Weiss is an extremely rare autosomal dominant FGFr2 mutation (specifically a 

missense alanine to glycene coding error) which shares the brachycephaly phenotype of the FGFr2 

related syndromes. Other co-morbidities include ocular proptosis, mandibular prognathism, normal 

intellect, but also lacks syndactylies, exhibiting broad great toes with medial deviation and tarsal-

metatarsal coalescence which is the diagnostic feature of the disorder, without hand abnormalities 

(Bonaventure and El Ghouzzi, 2003; Cohen and MacLean, 2000; Cohen, 2005; Jabs, 2002; Vogels 

and Fryns, 2006). 

Muenke syndrome, an autosomal dominant, with de novo cases reported, is a FGFr3 disorder 

resulting from proline to arginine mutation, in the extracellular ligand-binding domain, between the 

second and third Immunoglobulin-like loop. Muenke can present with coronal suture synostosis, or a 

milder unicoronal synostosis. In addition, the phenotype is characterized by with bulging temporal 

fossae, ptosis, midface hypoplasia, macrocephaly, high arched palate, coned epiphyses, hearing loss 

with some patients exhibiting mild limb abnormalities including bracydactyly and carpal and tarsal 

coalition (Bonaventure and El Ghouzzi, 2003; Cohen and MacLean, 2000; Cohen, 2005; Doherty et 

al., 2007).  

Craniosynostosis occurs from other genic causes as well. Heterozygous missense mutations 

within MSX2 cause Boston type craniosynostosis. MSX2 encodes a homeobox-containing 

transcription factors and the mutation, which in the homeodomain, acts by stabilizing DNA binding. 

In contrast, Saethre-Chotzen has a heterozygous loss of function from mutations in TWIST1. 

TWIST1 encodes a basic helix-loop-helix transcription factor that is essential for mesoderm 

formation. EFNB1 gene encodes ephrin-B1, a ligand for EphB receptors. Eph-ephrin interactions are 

mainly mutually repulsive, and play major roles in preventing cell mixing across boundaries in 
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embryos (Coussens et al., 2007; Kimonis et al., 2007; Morriss-Kay and Wilkie, 2005; Passos-Bueno 

et al., 2008).  

More than 85% of all cases of craniosynostosis are non-syndromic. Underlying genic 

causes may also cause non-syndromic craniosynostosis by gene interaction, or gene-

environmental interactions. Most of these cases go undetected until an associated clinical 

diagnosis occurs. Increases in intra-cranial pressure, learning disabilities, or strabismus are 

examples of such cases. Diagnoses are difficult as the primary defect is not associated with a 

syndrome. The most common non-syndromic, and/or isolated synostosis occurs at the sagittal 

suture, resulting in dolicocephaly. Sagittal synostosis is more common in males, perhaps as great 

as 4:1 (Aviv et al., 2002; Boyadjiev, 2007; Cohen and MacLean, 2000). The second most 

common non-syndromic synostosis occurs at the coronal suture. This pathology can present 

unilaterally, resulting in plagiocephaly, or bilaterally, resulting in brachycephaly. Unilateral 

coronal synostosis makes up about 13% of single suture synostosis cases. Coronal synostosis 

exhibits a 2:1 tendency occurring more commonly in females (Boyadjiev, 2007; Cohen and 

MacLean, 2000). Metopic synostosis is rarer and may be an autosomal dominant trait. However, 

severe cases are associated with hindbrain hernia or Chiari I malformation (Boyadjiev, 2007; 

Cohen and MacLean, 2000; Pouratian et al., 2007). Isolated lambdoid synostosis, unilateral, or 

bilateral, resulting in plagiocephaly, is the rarest of all non-syndromic synostosis. In about 5% of 

all non-syndromic synostosis cases, there is multiple suture involvement (Boyadjiev, 2007; 

Cohen and MacLean, 2000). 

 It has been suggested these non syndromic cases are most often sporadic in nature (Aviv 

et al., 2002). Possible causative mechanisms for non-syndromic cases are, genetic or inheritance, 

intrauterine constraint, twinning, maternal smoking, preterm labor, hormone involvement, and a 

genetic-environmental interaction. FGFr1, FGFr2, FGFr3, TWIST, and MSX2 are also suggested 
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to be involved in non-syndromic synostoses. These non-syndromic cases may be examples of a 

milder form of syndromic pathologies (Boyadjiev, 2007; Cohen and MacLean, 2000; Johnson et 

al., 2000; Lajeunie et al., 2001; Lajeunie et al., 1995; Lajeunie et al., 1996). 

Craniosynostosis affects not only the craniofacial skeleton, but also the underlying dura 

and brain. Thus, clinical interventions are necessary to alleviate the complications resulting from 

craniosynostosis, including increased intracranial pressure that in turn may cause impaired 

cerebral spinal fluid flow and venous drainage, mental retardation and visual disturbances, 

strabismus, and Chiari malformations. There are other major causes of cranial asymmetry 

including positional plagiocephaly, or flattening of the posterior portion of the skull due to 

mechanical influences. However, radical surgical intervention is necessary for craniosynostosis 

and its associated co-morbidities. A strip craniectomy and or partial to total calvariectomy are 

the standard surgical intervention for the affected sutures. These procedures involve the excision 

of the suture and a portion of the bone surrounding the suture. In more severe cases, particularly 

those involving multiple sutures, cranial reconstruction is necessary. Complications can include 

infection, encephalocele, hydrocephalus, dura mater compromise, hematoma, and CSF leaks. 

The risk of each of these complications increase with multiple surgeries (Chatterjee et al., 2009; 

Cohen and MacLean, 2000; Esparza and Hinojosa, 2008; Esparza et al., 2008; Inagaki et al., 

2007; Kelleher et al., 2007; Murray et al., 2007; Ricci et al., 2007). There is a high risk of 

resynostosis after surgical intervention in craniosynostosis that causes increased intracranial 

pressure and abnormal growth, necessitating multiple surgeries, increasing morbidity and 

mortality (Panchal and Uttchin, 2003; Williams et al., 1997). There is currently no standard of 

care for the prevention of post-operative resynostosis (Cooper et al., 2007; Cooper et al., 2009; 

Mooney et al., 2007a; Mooney et al., 2007b), however experimental animal modeling has 
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investigated multiple potential therapies including surgical techniques and protein and molecular 

tools. 

1.4 HOW ANDROGENS EFFECT CRANIOFACIAL GROWTH 

1.4.1 Description of the Pathway  

Androgens are any steroid that contributed to the development or maintenance of male 

characteristics. Androgen receptors mediate most effects of androgens. Androgens are both the 

precursor for male and female sex hormones. Figure 6 exhibits the androgenic chemical 

pathway. Enzymes are necessary for lysing and or catalyzing steroids within the pathway for the 

creation of the steroid downstream. The androgen molecular pathway begins with cholesterol, 

and is acted upon by cholesterol desmolase and converted or synthesized to pregnenolone, a 

prohormone (hormone precursor). Metabolism of this prohoromone occurs by 17α hydroxylase, 

a cytochrome P450 enzyme that will be important for discussion of craniofacial malformations 

because of aberrations in the steroid pathway. This process adds a hydroxyl group, 

hydroxylation, to create 17 hydroxypregneolone, which exhibits a peak concentration during 

puberty and pregnancy. 17α hydroxylase acts upon this prohormone lysing its side chain to 

create dehydroepiandosterone, or DHEA. DHEA acts through binding to the androgen receptors 

or through its metabolites downstream in the pathway. This adrenal steroid is a prohormone for 

the sex steroids. 3β hydroxysteroid dehydrogenase converts DHEA to androstendione, the 

common precursor for the estrogenic and androgenic steroid pathways. The production of 

androstendione occurs both adrenally, mediated by adrenocorticotropin (ACTH), and gonadally, 
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mediated by gonadotropin (luteinizing, LSH, or follicle stimulating, FSH, hormones). 

Androstendione is critical for the production of leydig and theca folliculi cells as well as 

spermatogenic tissue and granulose cells in the gonads. Androstendione is also important for the 

maintenance of sex steroid levels. The aromatase enzyme acts on Androstendione allowing 

conversion to estrone and subsequently estrone to estrogen. 17-β hydroxysteroid dehydrogenase 

can also directly act upon Androstendione allowing conversion to testosterone, the principle 

male hormone, which has importance for male sex organ development, spermatogenesis, and the 

maintenance of muscle mass. Androgen receptors mediate testosterone activity. Androgen 

receptors are a nuclear receptor, which upon exposure to testosterone and dihydrotestosterone 

translocates to the nucleus. Dihydrotestosterone is a more potent androgenic hormone converted 

from testosterone by the 5α-reductase enzyme. Translocation of the receptor allows for the 

regulation of androgen related gene expression for the development and maintenance of the male 

phenotype (Forest, 1997; Hadley, 2005; Herbst, 1973; Lajic et al., 1998; Meehan and Sadar, 

2003; Mo et al., 2006; Nimkarn and New, 2007a; Nimkarn and New, 2007b; Roy et al., 1999; 

Speiser and White, 2003; Witchel, 2007), FIGURE 6. 
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Figure 6: Androgen Pathway and Ligand-dependent Activation of the Androgen Receptor 

Androgens such as DHT diffuse through the plasma membrane of the cell and bind to the AR. Upon ligand 

binding, the AR undergoes conformational changes involving an NH2-/carboxyl-terminal interaction and receptor 

stabilization. The AR translocates to the nucleus where dimerization and DNA binding to regulatory androgen 

response elements occurs (114 - 122). AR (androgen receptor); DHT (dihydrotestosterone); CBP (CREB-binding 

protein); ARE (androgen response element); hsp (heat shock protein); SRC-1 (steroid receptor coactivator 1). 

Modified from (Meehan and Sadar, 2003; Speiser and White, 2003; Witchel, 2007) 
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1.4.2 Bone Cell Biology  

It is well established that bone responds to hormones (McCarthy et al., 2000). Much research 

has focused on the effects of estrogen deficiency on bone maintenance and the incidence of 

osteoporosis (Mansell et al., 2007; Spelsberg et al., 1999). However, short and long-term androgen 

deficiencies may have detrimental effects on both cortical and cancellous bone. Specifically exposure 

can lead to stimulation of cancellous and bone turnover in cortical bones. The effects of bone 

turnover in aging often required clinical prescription of DHT and various adrenal androgens. 

Experimental research suggests flutamide, an androgen receptor blocker, mediates the positive 

effects of androgens on bone, via the inhibition of osteoblast proliferation. After a two-year 

administration period of exogenous androgen, a murine model netted a 45% increase in bone energy 

absorption capacity, a 39% increase in maximum shear stress, a 23% increase in torsional rigidity, 

and 15% increase in bending stiffness, a 107% increase in bone elastic modulus, and a 28% increase 

in compressive stress. These results suggest a great importance for androgen maintenance for the 

biomechanical properties of long bones (Hofbauer and Khosla, 1999; Hofbauer et al., 1999).  

Steroids affect both bone mass and turnover. Rats exposed to exogenous androgen 

demonstrated increased mineralization, and the prevention of cancellous bone loss. However, the 

investigators suggest that biomechanical influences may mediate this relationship. Testosterones, like 

estrogens, have a biphasic relationship with bone maintenances. Although they generally increase 

osteoblast proliferation, at higher levels or concentrations, they can also inhibit osteoblast 

proliferation. The same relationship exists for differentiation (Kasra and Grynpas, 1995). 

Androgens and androgen receptors influence osteoblast proliferation, differentiation, and 

apoptosis. The biphasic relationship for these influences has resulted in both stimulation and 

inhibition of osteoblast proliferation results. However, the adrenal androgen DHEA has been shown 
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to consistently stimulate proliferation, but with less potency than shown for T and DHT. Androgens 

also increase apoptosis, which incidentally estrogens prevent. Androgen exposure increases 

osteoblast differentiation, defined by changes in alkaline phosphates or changes in expression of 

extracellular matrix proteins, i.e. type I collagen, osteocalcin, osteonectin. In vitro, osteoblasts 

exposed to androgen increased the proportion of ALP positive cells as compared to control cells in a 

dose dependent manner. Thus, androgens enhance osteoblast differentiation and may play a role in 

bone matrix production (Compston, 2001; Wiren and Orwoll, 2002). The adrenal androgens may act 

through extracellular signal-related kinase or ERKs pathway. However, the more potent testosterone 

and DHT act by binding to androgen receptors (Compston, 2001; Manolagas et al., 2002; Wiren and 

Orwoll, 2002). 

Androgen receptors influence active bone remodeling. Data from human gingival fibroblasts 

cells cultured from periodontal patients with actively inflamed tissue demonstrated that the inflamed 

source had an elevated metabolic response to androgens at baseline and in response to inflammatory 

stimulus. It has been suggested that this is due to the complex relationship between androgens, 

specifically DHT studied here, and platelet derived growth factor (PDGF), TGF-β, and IGF-I 

involved in tissue repair (Kasasa and Soory, 1998a; Kasasa and Soory, 1998b). 

It also appears that androgens have a relationship with TGF-βs. Androgens increase TGFβ 

activity; especially DHT increasing TGFβ2. Research suggests TGFβ may mediate the androgenic 

effects on osteoblast proliferation, and may determine osteoblast responsiveness. Experimental 

orchiectomy reduces the amount of TGF-β found in bone. Testosterone replacement experimentally 

mediates this effect. This suggests reduction in these growth factors, induced by androgen deficiency, 

influences bone loss associated with low androgen levels (Vanderschueren et al., 2004; Wiren and 

Orwoll, 2002). Loss of bone mass with age may also be due to loss of adrenal androgens, specifically 

DHEA, and not the primary sex steroids. Adrenal and the sex steroid androgens have protective 
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effects for the trabecular bone, acting via the AR and the ER (Compston, 2001; Notelovitz, 2002; 

Sims et al., 2003; Spelsberg et al., 1999; Vanderschueren et al., 2004; Wiren and Orwoll, 2002). 

1.4.3 Craniofacial Growth 

Most research concerning excess androgen in animal models have focused on the external 

genitalia and the inter-sex phenotype (Gray et al., 1994; Wolf et al., 2002), cancer cell research 

(Broulik and Starka, 1997). However, the deliberate introduction of excess androgen in adult 

mice has also proven useful in modeling bone loss and osteoporosis (Coxam et al., 1996; Martel 

et al., 1998; Prakasam et al., 1999; Tivesten et al., 2004). A selection of studies has also 

characterized some changes to the craniofacial skeleton. Administration of high dosages of 

nandrolone phenylpropionate, a pharmacological androgen, to rat pups resulted in larger 

calvarial dimensions, most notably the maxilla-mandibular shape and anteroposterior jaw 

discrepancy. This suggests over exposure to androgen can affect craniofacial growth (Barrett and 

Harris, 1993). Research has also been conducted to determine the effects on craniofacial growth 

after administration of nandrolone phenylpropionate to rats, using cephalometric radiographs at 

60 and 120 post-natal days. These authors found a similar increase in skull length and a 

downward-forward growth of the viscerocranium against the neurocranium (Noda et al., 1994). 

Fujita et al. performed orchiectiomies on male rats at five postnatal days and studied lateral 

cephalographs to determine effects on craniofacial growth. This procedure, the removal of the 

source of endogenous androgen, resulted in inhibition of calvarial growth, especially of the 

nasomaxillary and mandibular areas (Fujita et al., 2004). This suggests that androgens influence 

cranial growth after birth, not just during pubertal growth spurt. The association between high 

levels of androgen, or the absence of androgen and its affect on craniofacial growth indicates that 
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this systemic factor may play a role in both normal suture development and that deemed 

pathological. 

Androgen receptors are also present in cranial sutures. Lin et al. (2004) demonstrated the 

presence of androgen receptors in dura mater and in cells of the osteogenic fronts and in the 

sutural mesenchyme of late gestation mice. These authors suggest that androgens can modulate 

calvarial growth via binding to receptors in osteoblasts and dural cells. Additionally, they found 

androgen receptors in osteoblasts in the osteogenic front of human fetal calvaria. This suggests 

that androgen receptors may promote osteogenesis in these calvarial bones. In addition, any 

effect androgen may have on the craniofacial skeleton is most likely caused by levels of 

circulating serum androgens rather than the level of androgen expression (Lin et al., 2004). 

These same authors also demonstrated that fetal calvarial osteoblasts and dural cells showed 

increased proliferation and differentiation after androgenic hormone expression suggesting a 

possible role in suture fusion (Lin et al., 2007). What role excess androgens have in mediating 

suture fusion in cases where there is a genetic predisposition for craniofacial anomalies 

necessitates investigation. The absence of research concerning these interactions is due to lack of 

a congenitally affected animal model.  

1.4.4 Craniofacial Anomalies 

Some craniosynostoses present with a severe aberration in the steroid hormone pathway. 

Cytochrome P450 oxidoreductase, POR, is described as a flavoprotein that transfers electrons to 

P450 enzymes, including those on the steroidogenic and cholesterol synthesis pathway (Huang et al., 

2005; Miller, 2005; Miller et al., 2005). A combined deficiency in two of these enzymes P450c17 

and P450c21 due to a mutation in the POR gene results in what has been described as a severe form 
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of congenital adrenal hyperplasia, Antley-Bixler Syndrome (Adachi et al., 2004a; Adachi et al., 

2004b; Marohnic et al., 2006; Shackleton et al., 2004; Sue Masters and Marohnic, 2006). Fgfr2 

mutations can also manifest the skeletal anomalies of Antley-Bixler. Thus, Fgfr2 may be a driving 

factor in the craniofacial components of the disease. However, recent research has suggested a 

decoupling of the FGFR2 mutation from the sequence (Reardon et al., 2000; Tsai et al., 2001).  

Antley-Bixler Syndrome presents with severe impairment of the cholesterol metabolism and 

hormonal pathway. An affected female is generally born with ambiguous genitalia indicating excess 

intrauterine androgen exposure. Conversely, an affected male may exhibit poor masculanization, 

perhaps due to the biphasic nature of the effects of sex steroids on growth. The disorder has a 

hallmark accumulation of steroid metabolites, specifically 17-hydroxylase and 21-hydroxylase. This 

in turn causes a stunting of the steroidogenic pathway leading to a deficiency in cortisol, affecting the 

adrenal cortex. In addition, excess metabolites of pregnenolone and progesterone accumulate due to 

the block in the pathway to the sex steroids affecting their target cells (Fluck and Miller, 2006; Fluck 

et al., 2004; Huang et al., 2005; Kelley et al., 2002; Miller et al., 2005; Porter, 2003; Scott et al., 

2007). 

Antley-Bixler Syndrome, the most severe of the disorders on the POR mutation spectrum, is 

an autosomal recessive disorder with poor epidemiology for incidence, owing to the rare nature of 

the disease.  Most cases are however sporadic in nature (Adachi et al., 2004a; Adachi et al., 

2004b; Al-Hassnan and Teebi, 2007). The presence of severe congenital craniofacial and skeletal 

anomalies characterizes Antley-Bixler syndrome. The most commonly described are 

craniosynostosis resulting in trapezoidocephaly (early fusion of coronal and lambdoid sutures), 

severe midface hypoplasia, choanal stenosis, and synostosis of the radiohumeral joint (Arlt, 2007; 

Fukami et al., 2005; Machado et al., 2001; Sulaiman et al., 2007). Many medical specialists are 

required for treatment and maintenance following initial diagnosis including otolaryngologist, 

medical genetics, neurosurgery, endocrinology and cardiology. Airway management is often the 
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primary treatment due to choanal atresia, often requiring nasal stints or tracheotomy. Cortisol 

replacements are generally necessary to prevent further damage to the adrenal cortex. Craniofacial 

abnormalities require surgical intervention to attempt to correct the synostosed sutures and prevent 

complication to neural growth (Arlt, 2007; Bradley et al., 2003; Cragun and Hopkin, 2005; 

Shackleton et al., 2004). 

 

1.5 EXPERIMENTAL ANIMAL MODELING OF CRANIOSYNOSTOSIS 

 

Research has demonstrated that growth of the cranium proceeds perpendicular to a 

functional suture. Research using animal models has utilized experimental immobilization of the 

coronal, sagittal and interfrontal sutures for growth studies, and to model surgical corrections. 

For example, Babler utilized roentgenocephalometrics to determine the growth trajectories after 

coronal suture immobilization. Although these animals demonstrated normal somatic growth, 

they suffered significant alterations in craniofacial growth. Inhibition of growth across the 

affected sutures occurred, in addition, to shortening of the cranial vault length and height. The 

anterior lambdoid site also exhibited a decreased growth. In contrast, the parietotemporal suture 

exhibited compensatory growth. Shortening of the cranial base lengths occurred as well. The 

surgical manipulations, via strip suturectomy suggested that earlier intervention via surgery 

could allow for better craniofacial growth trajectories (Babler and Persing, 1982; Babler et al., 

1982; Persing et al., 1981). Losken et al., also experimentally immobilized the coronel suture to 

model bilateral craniosynostosis. Craniectomy alone or coupled with frontal bone advancement 
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allowed for release of the affected suture. Results demonstrated resynostosis and growth 

disturbances with craniectomy only intervention, with better growth results for the frontal bone 

advancement, advocating for this surgical intervention, clinically (Losken et al., 1991a; Losken 

et al., 1991b).  

Researchers utilize the posterior interfrontal suture, a normally fusing suture in mouse 

models to study craniosynostosis. Opperman et al. utilized this natural model to investigate the 

delivery of TGFβ3 via a collagen vehicle to the posterior interfrontal suture by periosteal tunnel. 

Results demonstrated a greater frequency of patent sutures in the TGFβ3 treated group. This 

suggests local TGFβ3 in the extracellular matrix may be necessary for suture patency (Opperman 

et al., 2002). Utilizing a similar model, Cooper et al., investigated postoperative re-synostosis 

using the posterior interfrontal suture in mice. These investigators performed suturectomies on 

the interfrontal sutures of experimental mice and delivered Noggin, a BMP antagonist via a 

collagen gel to the extirpated suture area. Results suggested Noggin successfully inhibited 

resynostsosis in these animals, suggesting a possible future direction for these complications in 

craniosynostosis clinical cases (Cooper et al., 2009). 

Genetic mouse models have also become increasingly popular for the study of 

craniosynostosis. Models readily identified in the literature include an Apert model (Hajihosseini 

et al., 2001; Holmes et al., 2009; Shukla et al., 2007; Tanimoto et al., 2004; Twigg et al., 2009; 

Wang et al., 2005; Yang et al., 2008; Yin et al., 2008; Yu and Ornitz, 2001), Crouzon model 

(Carlton et al., 1998; Chen et al., 2003; Perlyn et al., 2006), Saethre-Chotzen model (Connerney 

et al., 2006; Firulli et al., 2005), Muenke model (Mansour et al., 2009), and MSX2 related model 

(Satokata et al., 2000). Problems exist for the identification of these models as correlates to 

human syndromes as many are specific to the genetic loci and not phenotype, which historically 
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has been how human syndromes are characterized (Cohen and MacLean, 2000; Cohen, 2005). 

To date these studies have concentrated on producing the models, and description of the 

phenotype. Exploration is necessary to determine the clinical usefulness of these models. 

A rabbit model with congenital synostosis of the coronal suture has been described 

(Mooney et al., 1994a; Mooney et al., 1994b; Mooney et al., 1998b; Mooney et al., 1998c). 

Similar to humans, this colony of New Zealand White Rabbits demonstrates autosomal dominant 

transmission with incomplete penetrance (Mooney et al., 1996). The model also presents with a 

broad range of phenotypic expression (from unilaterally affected animals, animals with delayed-

onset suture synostosis, to animals presenting with complete bilateral fusion) (Mooney et al., 

1998b; Mooney et al., 1998c), Figure 7. These affected rabbits seem to be over expressing Msx2 

at the suture site (Horutz et al., 1996) as well as TGFβ2 (Poisson et al., 2004), suggesting that the 

same gene(s) or pathways are involved in this pathogenesis as human syndromes. Successful 

post-suturectomy interventions for craniofacial growth, intracranial volume, and prevention of 

resynostosis have utilized Noggin and an anti-TGFβ2 antibody (Cooper et al., 2007; Mooney et 

al., 2007a; Mooney et al., 2007b). In addition, a successful rescue, delivery of TGFβ3 to the 

cranial suture via periosteal tunnel in a collagen vehicle, prior to fusion has been described 

(Chong et al., 2003). The rabbits, because they possess susceptible phenotypes, provide a unique 

opportunity for investigating the relationship between systemic variations in circulating growth 

factors, hormones and congenital suture pathology.  
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Figure 7: Craniosynostotic Rabbit Model 

From left to right: Wild Type, Delayed Onset Synostosis, Early Onset Synostosis 

Modified from (Mooney et al., 2007b) 

 

1.6 STATEMENT OF PURPOSE, HYPOTHESIS AND GOALS 

The purpose of this dissertation project was to examine how the endocrine system, 

specifically androgenic hormone, interacts with suture growth and synostosis. The affected 

craniosynostotic rabbit model (early onset synostosis and delayed onset synostosis) was used to 

investigate several hypotheses: 

1)  A cellular level response was investigated using normal rabbit suture and non-suture 

bone cells as controls and early onset synostotic suture and non-suture cells as experimental 

groups. These cells were exposed to differing concentrations of testosterone to elicit cell 

proliferation and differentiation responses. The hypothesis given results obtained by Lin et al. 
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(Lin et al., 2004; Lin et al., 2007) and the known effect of testosterone on TGFβ, was that an 

increase in proliferation and differentiation would occur due to testosterone exposure to these 

suture and non-suture bone cells, in a dose dependent manner. In addition, a co-culture of 

testosterone and BMP was conducted to better characterize this interaction. It was hypothesized 

that the co-culture would lead to a decrease in proliferation due to BMPs known effect on the 

osteoblast lineage, and an even greater increase in differentiation, than testosterone treatment 

alone, in a dose dependent manner. 

2) Flutamide, an anilide, which competes with testosterone and dihydrotestosterone for 

binding to androgen receptors, thus acting as an androgen blocker (Reynolds, 1996) was also be 

used to characterize the effects of testosterone and BMP co-cultures on these cells.  It was 

hypothesized that flutamide administration would mediate/block the effects testosterone has on 

these cells decreasing proliferation and differentiation relative to the expected increases, in a 

dose dependent manner. 

3) Western blotting and immunohistochemistry was utilized to detect the presence of 

androgen receptors in tissues and cells harvested from normal wild type New Zealand white 

rabbit, and the affected synostotic rabbits.  

4) Finally, an in vivo study utilized an androgen receptor blocker, flutamide, to rescue the 

suture of delayed onset synostosis affected rabbits, destined to undergo suture synostosis. 

Currently the etiopathogenesis of non-syndromic craniosynostosis in humans is poorly 

understood (Cohen and MacLean, 2000; Cohen, 2005). Sex hormones are a possible endogenous 

variable that can be modified by the environment, or may present as purely environment 

exposure, thus acting as a teratogen affecting craniofacial development (Herbst, 1973; Limbird 

and Taylor, 1998; Molsted et al., 1997). A better understanding of the gene-environment 
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interaction could aid in diagnosis and management of craniofacial anomalies (Murray, 2002). 

The synostotic rabbits, because they possess susceptible phenotypes, provide a unique 

opportunity for investigating the relationship between systemic variations in circulating 

androgen, androgen receptor activity, and congenital suture pathology. If the androgenic 

pathways are perturbed, clinical or subclinical cases of excess androgen could potentially 

interfere with TGFβ therapies currently designed to treat craniosynostosis (Chong et al., 2003; 

Mooney et al., 2007a; Mooney et al., 2007b). Lin et al., (Lin et al., 2004; Lin et al., 2007) 

reported on the identification of androgen receptors presence in the osteogenic fronts and 

underlying dura of several cranial sutures in late gestation fetal mice. This provides the basis for 

the effect of androgens in suture growth and morphology. It was hypothesized that delivery of 

flutamide to the coronal suture could delay osseous fusion and facilitate greater growth across 

the coronal suture and correction of craniofacial growth in this craniosynostotic model. 
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2.0  MATERIAL AND METHODS 

2.1 PRIMARY RABBIT BONE CELL TESTOSTERONE CHALLENGE 

Tissue was harvested from 10 day old New Zealand White Rabbits, both wild type and 

those expressing the congenital coronal suture fusion phenotype born into the breeding colony at 

the University of Pittsburgh, Department of Anthropology. This model has been previously 

described (Mooney et al., 1994a; Mooney et al., 1994b), and similar to humans, this colony of 

New Zealand White Rabbits demonstrates autosomal dominant transmission with incomplete 

penetrance. Tissue was harvested from the coronal sutures of the rabbits as well as the parietal 

bone for non-suture bone control. Cells from the coronal suture and non suture parietal bone 

were isolated and grown in T-75 flasks in Dulbecco’s modified Eagle’s medium (DMEM, 

supplemented with penicillin/streptomyacin (pen/strep) and fetal bovine serum (FBS). At 

passage 2 cells were seeded in 96 well plates in triplicate at a density of 1,000 cells per well, 

based on cell density studies in which the optimal density was determined to prevent cell 

confluence and allow for adequate growing across 7 days of treatment.  Each animal was studied 

for cell proliferation and differentiation as per methodology described below. 

MC3T3-E1 murine osteoprogenitor cells, harvested from murine calvaria and purchased 

as a stock immortalized cell line (American Type Culture Collection (ATCC), Manassas, VA), 

were utilized for the purpose of study consistency, error bars indicate of accuracy in cell culture, 

 38 



and as a control for whether activity should be expected. Cells were reconstituted and grown in a 

T-75 flask until transfer into T-175 flask.  Cells were cultured in an alpha minimum Eagles 

medium (αMEM) which contains L-Glutamine, Phenol Red and Sodium Pyruvate. The αMEM 

was supplemented with streptomyacin (pen/strep) and fetal bovine serum (FBS). These cells 

were seeded in 96 well plates in triplicate at a density of 10,000 cells per well, based on cell 

density studies in which the optimal density was determined to prevent cell confluence and allow 

for adequate growing across 7 days of treatment.  The MC3T3-E1 served as the positive control 

for the cell assay studies. 

Treatments 

Testosterone propionate (TP) was used as an experimental treatment on the cell lines. TP 

was purchased from Sigma Aldrich (St. Louis, MO). TP has a molecular weight of 344.5. 100% 

Ethanol was used to reconstitute the TP, and titrations were employed to create the 

concentrations used for experimental study. 

Control and experimental treatment wells were set up for each plate, treatments consisted 

of: proliferation media, basic control cells seeded and fed basic media; ethanol, control for 

testosterone reconstitution; Bone Morphogenetic Protein-4 at 5ng/ml, a polypeptide belonging to 

the TGFβ superfamily which plays a strong role in bone development; TP reconstituted at 

concentrations of -12, -14,-16,-20,-24,and -30 molecular weight; and TP concentrations added to 

BMP4 at 5ng/ml. Treatments were run in triplicate wells (averaged) and the studies were run in 

or in excess of  triplicate resulting in N=3  or greater for each treatment per cell type.  

Assessment of Proliferation 

Cell proliferation was determined by Cell-titer 96 aqueous one solution cell proliferation 

assay kit (Promega, Madison, WI, USA). After 7 days of treatment, cells seeded into the 96-well 
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plates were incubated for one hour with 20 μl of Cell-titer 96 aqueous one solution added to each 

well. The absorbance at 490 nm was recorded with a 96-well plate reader (Biotek, VT).  

Assessment of Differentiation 

Cell differentiation was determined by an alkaline phosphatase (ALP) activity assay. 

ALP is an early biochemical marker for osteoblast differentiation. After 7 days of treatment, 

media was removed from cells seeded into the 96 well plates and cell lysis was performed.  After 

30 minutes of incubation at 4°C deionized water and a p-Nitrophenyl phosphate solution was 

added to the lysis buffer.  Three control wells containing no cells were also treated. Plates were 

then incubated at room temperature in the dark for 30 minutes. The absorbance at 405 nm was 

recorded with a 96-well plate reader (Biotek, VT). ALP activity was then calculated using the 

following formula: ((Optical Density – the mean Optical density of the control wells)*total 

volume*dilution) / (18.45*sample volume). All statistical analyses were performed using SPPS 

15.0 (Chicago, IL). 

 

2.2 PRIMARY RABBIT BONE CELL FLUTAMIDE TREATMENT 

Tissue was harvested from 10 day old New Zealand White Rabbits, both wild type and 

those expressing the congenital coronal suture fusion phenotype born into the breeding colony at 

the University of Pittsburgh, Department of Anthropology. This model has been previously 

described (Mooney et al. 1994a; 1994b), and similar to humans, this colony of New Zealand 

White Rabbits demonstrates autosomal dominant transmission with incomplete penetrance. 

Tissue was harvested from the coronal sutures of the rabbits as well as the parietal bone for non-
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suture bone control. Cells from the coronal suture and non suture bone were isolated and grown 

in T-75 flasks in Dulbecco’s modified Eagle’s medium (DMEM, supplemented with 

penicillin/streptomyacin (pen/strep) and fetal bovine serum (FBS). At passage 2 cells were 

seeded in 96 well plates in triplicate at a density of 1,000 cells per well, based on cell density 

studies in which the optimal density was determined to prevent cell confluence and allow for 

adequate growing across 7 days of treatment.  Each animal in the study was studied for cell 

proliferation and differentiation as per methodology described below. 

MC3T3-E1 murine osteoprogenitor cells, harvested from murine calvaria and purchased 

as a stock immortalized cell line (American Type Culture Collection (ATCC), Manassas, VA). 

Cells were reconstituted and grown in a T-75 flask until transfer into T-175 flask.  Cell were 

cultured in an alpha minimum Eagles medium (αMEM) which contains L-Glutamine, Phenol 

Red and Sodium Pyruvate. The αMEM was supplemented with /streptomyacin (pen/strep) and 

fetal bovine serum (FBS). These cells were seeded in 96 well plates in triplicate at a density of 

10,000 cells per well, based on cell density studies in which the optimal density was determined 

to prevent cell confluence and allow for adequate growing across 7 days of treatment.  The 

MC3T3-E1 served as the positive control for the cell assay studies. 

Treatments 

Testosterone propionate (TP) and flutamide, an androgen receptor blocker, were used as 

experimental treatment on the cell lines. TP and flutamide were purchased from Sigma Aldrich 

(St. Louis, MO). TP has a molecular weight of 344.5; flutamide has a molecular weight of 276.2. 

100% Ethanol was used to reconstitute the TP and flutamide, and titrations were employed to 

create the concentrations used for experimental study. Control and experimental treatment wells 

were set up for each plate, treatments consisted of: proliferation media, basic control cells seeded 
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and fed basic media; ethanol, control for testosterone reconstitution; Bone Morphogenetic 

Protein-4 at 5ng/ml, a polypeptide belonging to the TGFβ superfamily which plays a strong role 

in bone development; TP reconstituted at a concentrations of -16, molecular weight, TP at -16 

molecular weight added to BMP4 at 5ng/ml, flutamide at concentrations of -8, -10, and -12 

molecular weight, flutamide concentrations added to TP at -16 molecular weight, and flutamide 

concentrations added to TP at -16 molecular weight, and BMP4 at 5ng/ml. Treatments were run 

in triplicate wells (averaged) and the studies were run in or in excess of  triplicate resulting in 

N=3  or greater for each treatment per cell type.  

Assessment of Proliferation 

Cell proliferation was determined by Cell-titer 96 aqueous one solution cell proliferation 

assay kit (Promega, Madison, WI, USA). After 7 days of treatment, cells seeded into the 96-well 

plates were incubated for one hour with 20 μl of Cell-titer 96 aqueous one solution added to each 

well. The absorbance at 490 nm was recorded with a 96-well plate reader (Biotek, VT).  

Assessment of Differentiation 

Cell differentiation was determined by an alkaline phosphatase (ALP) activity assay. 

ALP is an early biochemical marker for osteoblast differentiation. After 7 days of treatment, 

media was removed from cells seeded into the 96 well plates and cell lysis was performed.  After 

30 minutes of incubation at 4°C deionized water and a p-Nitrophenyl phosphate solution was 

added to the lysis buffer.  Three control wells containing no cells were also treated. Plates were 

then incubated at room temperature in the dark for 30 minutes. The absorbance at 405 nm was 

recorded with a 96-well plate reader (Biotek, VT). ALP activity was then calculated using the 

following formula: ((Optical Density – the mean Optical density of the control wells)*total 
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volume*dilution) / (18.45*sample volume). All statistical analyses were performed using SPPS 

15.0 (Chicago, IL). 

2.3 IMMUNOHISTOCHEMISTRY 

Bone tissue from the coronal suture and non suture parietal bone control in a 10 day old 

wild-type (WT) and a rabbit with delayed onset (DOCS) and an early onset craniosynostosis 

rabbit (EOCS), and matched gonads and gonadal fat were be harvested as part of an on-going 

protocol by Dr. Gregory Cooper, Ph.D. and his lab at Children’s Hospital of Pittsburgh in the 

Department of Pediatric Plastic Surgery. The gonads/gonadal fat were treated as positive controls 

and were stained first to ensure the usefulness of the primary antibody, as the antibody was 

specific to human androgen receptor mapping (Xq11.2-q12). A primary antibody, a mouse 

monoclonal antibody specific to human AR (SantaCruz Technology, CA, cat #sc-52309) used to 

determine expression of AR, was chosen because it was the only identified antibody not raised in 

rabbits. This antibody was also chosen because it does not cross-react with estrogen, 

progesterone, or glucocorticoid receptors, and has been proven to react with AR in human 

reproductive organ tissues. However the reported cross reactivity against rabbit was less than 

2%.   

Sections (8–10 µm thick) were deparaffinized, rehydrated through graded alcohols, and 

treated with deionized water for 3 minutes. Endogenous peroxidase activity was quenched using 

a 20 minute incubation with 3% H2O2 in methanol. Slides were blocked with 2% goat serum, the 

host of the secondary antibody, through a 30 minute incubation at room temperature. The 

primary antibody mixed in 2% serum, at dilutions of 1:50, 1:250, or 1:1000, was added and 
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slides were incubated for 30 minutes at room temperature.  Negative control sections were 

incubated with 2% goat serum with no primary antibody. Sections were then washed in 

deionized water and secondary antibody, goat anti-mouse IgG (SantaCruz Technology, CA) in 

phosphate-buffered saline (PBS), was added at dilution 1:250 and 1:500 and incubated for 30 

minutes. After the secondary antibody, the presence of AR specific antibody was visualized 

using diaminobenzidine substrate (Sigma-Aldrich Corp., St. Louis, MO), and the slides washed 

in water. Sections were then counterstained with Harris hematoxylin, dehydrated, and mounted.  

Patterns of AR expression of the gonad were examined.  

2.4 WESTERN BLOTTING 

2.4.1 Western Blotting for Androgen Receptor 

Bone cells at the coronal suture, and the parietal bone, non suture bone, in 10 day old 

wild-type (WT) and rabbits with early onset craniosynostosis (EOCS) have been harvested as 

part of an on-going protocol by Dr. Gregory Cooper, Ph.D. and his lab at Children’s Hospital of 

Pittsburgh in the Department of Pediatric Plastic Surgery. In addition, stock cultures 

immortalized mouse calvarial pre-osteoblast cell MC3T3-E1 (E1) were used as a cellular control. 

Cells were plated and cultured for 3 days in medium.  Protein extracts will be prepared as 

follows. Cold lysis buffer (50 mM Tris–HCl, pH 7.4) containing 250 mM NaCl, 5 mM EDTA, 

50 mM NaF, 0.1% TritonX 100 and a cocktail of protease inhibitors (Sigma, St. Louis, MO) 

were added and mechanical homogenization will be performed by five passages through 1 mL 

pipette tip. The solution was cleared by centrifugation (5000 × g for 15 s). Protein concentrations 
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were assayed using the Bradford method, using known protein concentration to determine a 

standard curve (Zor and Selinger, 1996). (10-15 µl of Laemmli buffer added to a microtube, add 

beta mercaptoethanol at 5% of total sample volume, protein sample was added at 20 µg. Sample 

were heated for 2 minutes at 70 degrees Celsius). Proteins were separated by 10% SDS-PAGE 

and then electro-blotted onto a nitrocellulose membrane. The membrane was soaked for 1 h in 

PBST (PBS, 0.05% Tween 20) containing 5% BSA. Rabbit cells were then incubated overnight 

at 4 °C with primary monoclonal mouse human specific AR antibody (SantaCruz Technology, 

CA, cat # sc-52309, ) (1:250), primary polyclonal AR antibody raised in rabbit (Santa Cruz 

Technology, CA, cat # sc-815) (1:250) or beta actin control primary antibody raised in mouse 

(ABCAM Technology, MA, cat # ab6276) (1:1000). MC3T3-E1 were incubated overnight with 

the same primary antibodies. Membranes were then washed three times (15 min) with PBS, 

incubated with secondary peroxidase-labeled IgG (1:10,000) specific to primary antibody 

(Mouse primary antibodies subjected to Goat anti-mouse secondary; rabbit primary antibody 

subjected to Goat anti-rabbit secondary antibody) (LICOR Odyssey Systems, NE) for 1 h and 

washed three times with PBS. Bound antibodies were detected by using the ultraviolet western 

blotting detection kit according to the manufacturer's recommendations, Odyssey Infrared 

Imaging System. Molecular weights of proteins were determined using biotinylated protein 

markers. 

2.4.2 Coomassie Blue Total Protein Stain 

A coomassie blue stain was performed to identify total protein at specific molecular 

weights at both stages of Western blotting protocol prior to incubation with antibody, after SDS 

protein gel electrophoresis and blotting membrane transfer (see above).  Due to the questionable 
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usefulness of the primary antibody as described above, this step was used as a non-specific 

indicator of presence of protein about the level where the androgen receptor would be identified 

at 137 kd (R & D systems, Santa Cruz Biotechnology). The coomassie blue treatment allows the 

visualization of protein bands. Following the above western protocol 20 µg of protein from wild 

type and congenital synostosed non suture bone and suture bone as well as MC3T3-E1 cells were 

subjected to SDS Page electrophoresis and blotting membrane transfer.  Resulting gel and 

membrane were stained with coomasie blue stain for 15 minutes while shaking.  Destaining was 

performed with a solution 40% methanol, 10% acetic acid, 50% deionized water. Destaining 

solution was left on for 45 minutes while shaking, and destaining solution was switched out for 

fresh solution every 15 minutes. A protein molecular weight marker, ladder, was used to 

determine the region of interest (BIORAD Kaleidoscope, CA).  Images were captures via digital 

camera, gel reader, and desktop scanning for best resolution. 

2.5 IN-VIVO FLUTAMIDE TREATMENT FOR DELAYED ONSET 

CRANIOSYNOSTOTIC USING A NON-SYNDROMIC RABBIT MODEL 

Sample sizes of at least six per group are based on power calculations from a previous 

study, with the calculated effect size of 0.80, and setting alpha at 0.05.  New Zealand White 

rabbits (Oryctolagus cuniculus), born in our ongoing breeding colony of congenitally synostosed 

animals (Mooney et al., 1994a; Mooney et al., 1994b) Figure 8, were utilized in the study.  

Rabbits were randomly assigned to four groups as follows: Group 1- rabbits with delayed onset 

synostosis and periosteal elevation (surgical control group), n=10; Group 2- rabbits with delayed 

onset synostosis, periosteal elevation, and collagen and bovine serum albumin (BSA) protein 

 46 



(vehicle control group 1), n=6; Group 3- rabbits with delayed onset synostosis, periosteal 

elevation, and collagen and 100% ethanol (vehicle control group 2), n=6; Group 4- rabbits with 

delayed onset synostosis, periosteal elevation, and collagen with 15mg of flutamide dissolved in 

100% ETOH (Experimental Group), n=8. 

 

Figure 8: Craniosynostotic Rabbit Sutures 

Provided by Dr. Mark Mooney 

 

At 10 days of age, rabbits were anesthetized with an IM injection (0.59 ml/kg) of a solution 

of 91% Ketaset (Ketamine Hydrochloride, 100 mg/ml) and 9% Rompun (Xylazine, 20 mg/ml).  

The scalps will then be shaved, depilated, scrubbed with betadine/alcohol, and prepared for 

sterile surgery.  The calvaria were exposed using a midline scalp incision and the skin reflected 

laterally to the supraorbital borders.  Holes were then be made in the periosteum and bone using 

a fine dental bur (0.4 mm) and packed with silver dental amalgam to serve as radiopaque 

markers.  The holes were placed in quadrants, 3mm lateral to the sagittal suture, 3mm anterior 

and posterior to the coronal, frontonasal, and anterior lambdoidal sutures, Figure 9.  At 25 days 

of age the initial diagnosis was reassessed and confirmed from pre-operative and 25 day 

radiographs and the rabbits with delayed onset craniosynostosis were randomly assigned to the 

aforementioned groups. The rabbits were anesthetized with an IM injection (0.59 ml/kg) of a 
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solution of 91% Ketaset (Ketamine Hydrochloride, 100 mg/ml) and 9% Rompun (Xylazine, 20 

mg/ml), the scalps were prepared for sterile surgery, and calvaria exposed for surgery. In rabbits 

in Group 1, periosteal tunnels overlying the coronal suture were created, and nothing was 

injected, Figure 10a. In rabbits in Group 2, 0.1ml of collagen, Figure 10b, containing 500ng of 

BSA was injected into the periosteal tunnels overlying the coronal suture.  In rabbits in Group 3, 

.1 ml of collagen was mixed with 100% ETOH and was injected into the periosteal tunnels 

overlying the coronal suture. In rabbits in Group 4, .1 ml of collagen was mixed with 15 mg 

flutamide (Sigma Aldrich, St. Louis), dissolved in 100% ETOH. The scalp wounds were then 

closed with 4/0 Vicryl (resorbable) sutures. All animals received postoperative SQ injections (2 

mg/kg) of Baytril (Bayer Corp., Shawnee Mission, KS 66201) BID for 5 days as a prophylaxis 

for infection. Following surgery, pups were taken off the table and returned to the prep/recovery 

room.                      

 

 

Figure 9: Figure 9: Amalgam Markers Implanted in the Skull 

Provided by Dr. Mark Mooney 
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Figure 10: Periosteal Tunnel Overlying the Coronal Suture 

10a on left: Periosteal Tunnels; 10b on right: Collagen Vehicle 

Provided by Dr. Mark Mooney 

 

Cranial vault growth was assessed and monitored at 10, 25, 42, and 84 days of age using 

serial head radiographs.  The coronal sutures from each group of rabbits were harvested at 84 

days for any future histomorphometry or immunohistochemical studies. Means and standard 

deviations for the various craniofacial growth variables were calculated and compared among 

conditions using a 3 x 4 (group by age), two-way analysis of variance, with a repeated measure 

design.  Intergroup differences will be assessed using least squared differences comparison test.  

Mean differences will be considered significant if p<0.05. 

Serial lateral and dorsoventral head radiographs (including the front right paw) were 

taken with the rabbits sedated with an intramuscular injection (0.40 mL/kg) of a solution of 91% 

Ketaset (ketamine hydrochloride, 100 mg/mL, Aveco Co., Inc.) and 9% Rompun (xylazine, 20 

mg/mL; Mobay Corp.). The heads were immobilized in a specifically designed cephalostat, 

Figure 11, and a Phillips Oralix 70 (Washington, DC) dental x-ray unit was used at an exposure 
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of 50 kV, 7 mA and a .17- to .50-second exposure time, and a tube-to-cassette distance was held 

constant at 152 cm. The cephalographs were viewed on a light box and a number of 

cephalometric landmarks and amalgam markers on either side of the coronal suturectomy site 

were identified and traced on acetate tracing paper. The tracings were then scanned using a 

Microtek 9800 XL scanner and the digital images were stored on a Dell Optiplex PC. The 

landmarks were assigned Cartesian (x and y) coordinates and the distances between the markers 

were measured using the Dolphin image analysis software program (Dolphin Imaging & 

Management Solutions, Sacramento, CA). The landmarks and markers that were identified from 

the cephalographs included: 1) CS, anterior and posterior coronal suture markers; 2) ALS, 

anterior lambdoidal suture; 3)MOP, maximum occipital point; 4) OP, opisthion; 5) SOS, 

sphenooccipital synchondrosis; 6) FE, frontoethmoidal point; 7) UMP, upper molar point; 8) PR, 

prosthion; 9) PSES, presphenoethmoidal synchondrosis; and 10) the proximal and distal articular 

surfaces of the third, right metacarpals viewed on the dorsoventral cephalographs. Somatic, 

sutural, and craniofacial growth were assessed by calculating age-related changes in a number of 

measures, including bodyweight and third metacarpal length; amalgam marker separation at the 

coronal suturectomy site; overall craniofacial length (MOP-PR); intracranial volume (cranial 

length*cranial width*cranial height); cranial base length (SOS-PSES); and the cranial vault 

shape (height/length) index ([ALSSOS/OP-FE]*100); cranial length (OP-FE); cranial width 

(widest vault point); cranial height (ALS-SOS); cranial base angle (BAS-OF-FE °); and palatal 

angle (BAS-OF-PR °), Figure 12. All of the measurements were performed blind with regard to 

group identity. A random sample of 10% of past radiographs were traced and measured twice. 

Intraobserver, repeated measurement reliability was calculated at r = 0.963 (p< 0.01) with a 
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3.15% standard error of measurement. All statistical analyses were performed using SPPS 15.0 

(Chicago, IL). 

 

 

Figure 11: Cephalostat and 25 day Radiograph with Amalgam Markers 

Provided by Dr. Mark Mooney 
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Figure 12: Cephalometric Landmarks 

Provided by Dr. Mark Mooney 
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3.0  RESULTS 

3.1 CELLULAR TESTOSTERONE CHALLENGE 

3.1.1 Assessment of Proliferation 

Table 1 provides the sample sizes for these analyses. The MC3T3-E1 are included in the 

graphs for cell control representation, especially to denote if differences in activity are to be 

expected. Note the small error bars. It appears as though the MC3T3-E1 lack a proliferative 

response to BMP alone, but do react to testosterone treatments.  However, there appears to be a 

lack of response for the BMP+Testosterone co-cultures. 

               Table 1. Sample Sizes for Proliferation of Testosterone Study 

           Cell Type            N 

Congenital Synostosed Suture Bone 7 

Congenital Synostosed Non Suture Bone 3 

Wild Type Suture Bone 4 

Wild Type Non Suture Bone 3 

MC3T3-E1 3 
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To determine the effects of reconstituting the stock hormones in ethanol, a pair design 

was employed to determine the relationship between the proliferation response between cells 

treated with proliferation media only and proliferation media with ethanol added. The 

assumption of normality was met for each cell type for both treatments. There was a significant 

difference between proliferation media response (χ=.5419, SD .2124) and proliferation media 

with ethanol added (χ=.5047, SD .1993), t=2.704, df=16, p=.016.  Thus comparison of hormone 

only response will be normalized to proliferation media with ethanol added. 

To determine of adding BMP resulted in altered proliferation activity a paired design was 

employed comparing proliferation media only and proliferation media with BMP added. The 

assumption of normality was met for both PM and BMP. There was no significant difference in 

proliferative response between proliferation media (χ=.5419, SD .2124) and proliferation media 

with BMP added (χ=.5545, SD .2042), t= .448, df=16, p= .660. 

The proportion of BMP proliferative activity, normalized to proliferation media response, 

was investigated for differences by cell type. Means are represented in Figure 13. Synostotic 

cells were the most responsive with non suture bone having the greatest mean response. These 

cells were also the most variable. A two way ANOVA design was implemented for BMP 

proliferative response by phenotype (wild versus synostotic) and cell type (suture versus non 

suture bone). The assumption of normality was violated for synostotic non-suture bone affected 

cell types (non-suture bone: W= 0.764, p= .031). A natural log transformation allowed for 

normality across cell types. The assumption of homogeneity of variance was violated, F= 4.87, 

df 3,13, p=.018. ANOVA should be robust against this violation, however, susceptibility to type 

I errors are noted. There was no significant difference for BMP proliferative response by 

phenotype by cell type, F=0.880, df. 3, 13, p=.365. There was no significant difference in BMP 
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proliferative response by phenotype averaged across cell type, F= 2.411, df 1, 13, p=.144. There 

was no significant difference in BMP proliferative response by cell type averaged across 

phenotype, F= 0.006, df 1, 13, p=.940. 
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Figure 13: BMP Proliferative Response by Cell Type  

(1.0 indicates 100% of baseline proliferation media response) 

 

To determine if adding testosterone resulted in altered proliferation activity a paired 

design was employed comparing proliferation media with ethanol added and proliferation with 

ethanol and testosterone added. The assumption of normality was violated for both groups.  After 

transformations, the natural log performed best, however both groups still violated normality 

(ETOH: W=.848, p<.001; Testosterone: W=.910, p<.001). Thus a one sample Wilcoxon test was 

applied. There was no significant difference in proliferative response between proliferation 

media with ethanol added (χ=.5047, SD .1943) and proliferation media with ethanol and 

testosterone added (χ=.5274, SD .2020), Z= -1.838, p=.066. 
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The proliferative response of cells treated with testosterone was investigated for dose (-

12, -14,-16,-20,-24, and -30 mols.) response, phenotype and cell type by a three way analysis of 

variance. Violations of normality occurred for synostotic phenotype suture bone cells at -12,-20, 

-24, and -30 dosages. An inverse transformation resulted in the best fit for normality, but 

violations occurred for the same categories, W=.793, df=7, p=.040, for each respectively. The 

dose response of the testosterone treatments by cell type normalized to activity of proliferation 

media with ethanol added are illustrated in Figures 14-15. It appears that the synostotic cell 

types demonstrate the greatest relative proliferative response, especially at lower dosages.  The 

wild type suture bone mean response does not reach 100% of proliferation with ethanol added 

activity except at the lowest dose, thus non suture bone cell types appear to have more 

proliferative reaction. Note the large standard errors indicating inherent variability. The 

assumption of homogeneity of variance was met F=1.487, df 23, 78, p=.101. The pattern of 

differences for proliferative response by dose by phenotype by cell type, F=.005, df 5, 78, 

p=1.000. The pattern of difference of cell type by dose averaged across phenotype was no 

significant, F=.106, df 5, 78, p=.991. The pattern of difference of phenotype by dose averaged 

across cell type was not significant F=.055, df 5, 78, p=.998. The pattern of difference of 

phenotype by cell type averaged across dose was not significant, F=1.084, df 1, 78, p=.301. The 

pattern of differences of dose averaged across phenotype and cell type, was not significantly 

different, F=.191, df 5, 78, p=.965. The pattern of difference by cell type averaged across 

phenotype and dose was not significantly different, F=.019, df 1, 78, p=.892. The pattern of 

difference by phenotype averaged across dose and cell type was not significantly different 

F=3.236, df 1, 78, p=.076. 
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Dose Response Curve for Testosterone Treatments by Cell Type
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Figure 14: Dose Response Curve for Proliferation Activity with Testosterone Added Normalized to 

Proliferation Media+ETOH Proliferation Activity. 

Reference line indicates 100% of Baseline Proliferation Activity of Proliferation Media with Ethanol 

Added 
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Figure 15: Proliferation Response Means. Normalized for Proliferation Activity Treated with Media Only  

Reference line indicates 100% of Baseline Proliferation Activity of Proliferation Media with Ethanol 

Added 

 

To determine if adding testosterone to BMP resulted in altered proliferative activity a 

paired design was employed comparing proliferation media with BMP added and proliferation 

media with testosterone and BMP added. The assumption of normality was violated for 

proliferation media with BMP added data (W=.917, p<.001). Transformations did not fare better. 

Thus a one sample Wilcoxon test was applied. There was no significant difference in 

proliferation response between proliferation media with BMP added (χ=.5545, SD=.1991) and 

proliferation media with BMP and testosterone added (χ=.6067, SD=.1960), Z= -.249, p= .804. 

The proliferative response of cells treated with testosterone added to BMP 50 ng/mol 

normalized to baseline BMP proliferative activity was investigated for dose (-12, -14, -16, -20, -

24, and -30 mols.) response, phenotype and cell type, by a three way analysis of variance. 

Figures 16-17 exhibit the dose responses for proliferation with testosterone treatment co-

cultured with BMP. The synostotic cell types appear to have a much greater proliferative 

 58 



response, with wild type means not reaching baseline BMP proliferative activity levels. The 

synostotic cells appear to have a biphasic response with highest doses and lowest doses 

exhibiting greater activity than intermediate doses. Note the large standard errors indicating 

inherent variability. The assumption of normality was violated for all doses of synostotic suture 

bone responses and wild type suture bone at -14 doses. An inverse transformation allowed for 

normality for all categories with exception of wild type suture bone at -14 mols, W=.749, p=.04. 

The assumption of homogeneity of variance was violated F=2.238, df 23, 74, p=.005. The 

susceptibility to committing a type 1 error is noted due to this violation. The pattern of difference 

for testosterone+BMP proliferative response by dose by phenotype by bone type were not 

significantly different, F= .787, df 5, 78, p= .562. The pattern of difference of phenotype by dose 

averaged across bone type were not significantly different, F= 0.977, df 5, 78, p=.437. The 

pattern of difference of bone type by dose averaged across phenotype was not significantly 

different, F= 0.496, df 5, 78, p= .778. The pattern of difference of phenotype by bone type 

averaged across dose was not significantly different, F=0.545, df 1, 78, p=.463. There were no 

statistically significant differences for proliferation by dose averaged across phenotype and bone 

type, F= 1.372, df 5, 78 p=.244. There were no significant differences by cell type averaged 

across phenotype and dose, F= 0.579, df 1, 78, p= .449. There was a significant difference in 

proliferative response by phenotype averaged across cell type and dose, F=12.171, df 1, 78, 

p=.001. Synostotic phenotype (χ=1.446, SD 0.834) exhibited much greater overall proliferation 

normalized to baseline BMP proliferation compared to wild type phenotype (χ= 0.924, SD 

0.082). 
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Dose Response of Testosterone + BMP
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Figure 16: Dose Response Curve for Proliferation Activity with Testosterone Added to BMP 

Normalized to Proliferation Media+BMP Proliferation Activity 

Reference line indicates 100% of Baseline Proliferation Activity of Proliferation Media with BMP Added 

 

 

Figure 17: Proliferation Response Means. Normalized for Proliferation Activity Treated with Proliferation 

Media with BMP Added Means  

Reference line indicates 100% of Baseline Proliferation Activity of Proliferation Media with BMP Added 
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3.1.2 Assessment of Differentiation 

Table 2 provides the sample sizes for these analyses. The MC3T3-E1 are included in 

graphs for cell control representation, especially to denote if activity should be expected.  Note 

the small errors bars.  It appears as though the MC3T3-E1 are very responsive BMP alone, but 

much less so compared to other cell types for testosterone and BMP and testosterone co-cultures. 

Figure 18 are the representative ALP stains indicating differentiation, for each cell type for 

baseline proliferation media treatment, BMP treatment, testosterone treatment and testosterone 

with BMP added treatment.  Note all are positive, indicating the necessity for the quantitative 

ALP analyses below. 

 

Table 2: Sample Sizes for Differentiation of Testosterone Study 

           Cell Type            N 

Congenital Synostosed Suture Bone 7 

Congenital Synostosed Non Suture Bone 3 

Wild Type Suture Bone 4 

Wild Type Non Suture Bone 3 

MC3T3-E1 3 
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Figure 18: Alkaline Phosphate Stain for Cell Types 

For each composite starting on the top left moving clockwise: Proliferation Media Treatment, BMP 

Treatment, Testosterone Treatment, Testosterone BMP Co-culture Treatment 

 

To determine the effects of reconstituting the stock hormone in ethanol, a pair design was 

employed to determine the relationship between the differentiation response between cells 

treated with proliferation media only and proliferation media with ethanol added. The 

assumption of normality was violated for both proliferation media only and proliferation media 

with ethanol added for differentiation response (PM: W=0.796, p=.001; PM+ETOH=0.806, 

p=.001). Square root, inverse, natural log, log based 10 and squared transformation failed to 

normalize the data.  Thus a one sample Wilcoxon test was applied. There was a significant 

difference between proliferation media response (χ=0.0415, SD .0486) and proliferation media 

with ethanol added (χ=0.0322, SD=0.0407), Z= -2.059, p=.039, with PM+ETOH exhibiting less 

differentiation response. The comparison of hormone only response will be normalized to 

proliferation media with ethanol added. 
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To determine if adding BMP resulted in altered differentiation activity a paired design 

was employed comparing proliferation media only and proliferation media with BMP added. The 

assumption normality was violated for both PM and BMP. After transformations, the natural log 

performed best normalizing the BMP data. However proliferation media still violated normality 

(PM: W=.855, p=.013). Thus a one sample Wilcoxon test was applied. There was no significant 

difference in differentiation response for between proliferation media (χ=0.0415, SD .0486) and 

proliferation media with BMP added (χ=0.0559, SD=.0649), Z= -1.823, p=.068. 

The proportion of BMP differentiation activity, normalized to proliferation media 

response, was investigated for differences by cell type. Means are represented in Figure 19. 

Synostotic cells had the greatest variability, but the greatest response, especially non suture bone 

compared to the wild type phenotype. A two way ANOVA design was implemented for BMP 

differentiation by phenotype (wild versus synostotic) and cell type (suture vs. non suture bone).  

The assumption of normality was violated for both synostotic cell types, suture (W= 0.768, 

p=.020) and non suture bone (W=0.735, p=.028). A natural log transformation allowed for 

greater normality with only the non suture bone cell type violating normality (W= 0.725, 

p=0.22). The assumption of homogeneity of variance was met, F=1.568, df 3, 13, p=.245. Figure 

6 demonstrates the means for each group. Note the large standard errors indicating inherent 

variability. The histogram suggests wild type suture bone to have the greatest response, with both 

synostotic cell types being fairly consistent and showing less activity, and wild type non suture 

bone showing the least response. There was no significant pattern of differences for BMP 

response for phenotype by cell type, F= 2.151, df 1, 13, p= .166. There were no significant 

differences in BMP response by phenotype averaged across cell type, F=.144, df 1, 13, p=.711. 
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There were no significant differences in BMP response by cell type averaged across phenotype, 

F= 0.035, df 1, 13, p=.854.  

 

Figure 19: BMP Differentiation Activity Normalized to Proliferation Media Response 

(1.0 indicates 100% of baseline proliferation media response) 

 

To determine if adding testosterone resulted in altered differentiation activity a paired 

design was employed comparing proliferation media with ethanol added and proliferation media 

with ethanol and testosterone added. The assumption normality was violated for both groups. 

After transformations, the natural log performed best, however both groups still violated 

normality (ETOH: W=.933, p<.001; Testosterone: W=.913, p<.001). Thus a one sample 

Wilcoxon test was applied. There was no significant difference in differentiation response for 

between proliferation media with ethanol added (χ=0.0322, SD .0397) and proliferation media 

with ethanol and testosterone added (χ=0.0344, SD=.0356), Z= -0.976, p=.326. 

The differentiation response of cell treated with testosterone was investigated for dose 

(12, -14, -16, -20, -24, and -30 mols.) response, phenotype and cell type by a three way analysis 
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of variance. Violations of normality occur for the following groups, synostotic suture bone at -12 

dose, -14 dose, -24 and -30 dose, synostotic-non suture bone at -30 doses, and wild type suture 

bone at -24 and -30 dosages.  A natural log transformation resulted in the best fit for normality 

(square root, inverse, log base 10, squared) with violations occurring for synostotic suture bone 

at -24 dose (W=.801, p=.042) and -30 dose (W=.703, p=.004) and synostotic non suture bone at -

30 dose (W=.666, p=.004). Dose response curve, Figures 20-22, demonstrated the greatest 

reaction from the synostotic non suture bone cells with a biphasic response, differentiation 

peaking at -14 and -30 dosages, with over twenty times the baseline response at its peak. The 

synostotic suture bone also appears to have a greater reaction than other cell types with a similar 

biphasic reaction, with close to five times the baseline response at its peak.  Note the large 

standard errors indicating inherent variability. The assumption of homogeneity of variance was 

violated F=2.185, df 23, 78, p=.013. ANOVA should be robust against this violation.  The 

pattern of difference for differentiation response by dose by phenotype by bone type were not 

significantly different, F= .425, df 5, 78, p= .830. The pattern of difference of phenotype by dose 

averaged across bone type were not significantly different, F= .297, df 5, 78, p=.913. The pattern 

of difference of bone type by dose averaged across phenotype was not significantly different, F= 

.838, df 5, 78, p= .527. The pattern of difference of phenotype by bone type averaged across dose 

was significantly different, F=4.916, df 1, 78, p=.030. Here the wild type phenotype exhibited 

greater differentiation for suture bone (χ=1.228, SD 1.505) than non suture bone (χ= .8820, SD 

.3079) compared to synostotic phenotype which exhibited much greater mean differentiation for 

non suture bone (χ=9.874, SD=16.611) than suture bone (χ=2.871, SD 6.060). There were no 

statistically significant differences for differentiation by dose averaged across phenotype and 

bone type, F=1.079, df 5, 78, p=.378. There were no significant differences by bone type 
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averaged across phenotype and dose, F= 1.872, df 1, 78, p= .175. There was a significant 

difference in differentiation by phenotype averaged across bone type and dose, F=12.557, df 1, 

78, p=.001. The synostotic phenotype (χ=4.972, SD 10.749) exhibited much greater overall 

differentiation than the wild type phenotype (χ=1.080, SD 1.158). 
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Figure 20: Dose Response for Differentiation Activity with Testosterone Added Normalized to 

Proliferation Media+ETOH Differentiation Activity 

             (1.0 indicates 100% of baseline proliferation media with ethanol added response) 
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Figure 21: Differentiation Response Means. Normalized for Differentiation Activity Treated with Media Only  

Reference line indicates 100% of Baseline Differentiation Activity of Proliferation Media with Ethanol 

Added 
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Figure 22: Differentiation Response Means with Error Bars. Normalized for Differentiation Activity Treated 

with Media Only  

Reference line indicates 100% of Baseline Differentiation Activity of Proliferation Media with Ethanol 

Added 

 

To determine if adding testosterone to BMP resulted in altered differentiation activity a 

paired design was employed comparing proliferation media with BMP added and proliferation 

media with testosterone and BMP added. The assumption normality was violated for both 

groups. After transformations, the natural log performed best, however both groups still violated 

normality (BMP: W=.891, p<.001; BMP+Testosterone: W=.964, p=.007). Thus a one sample 

Wilcoxon test was applied. There was a significant difference in differentiation response 

between proliferation media with bmp added (χ=0.0559, SD .0633) and proliferation media with 

BMP and testosterone added (χ=0.0577, SD=.0655), Z= -2.493, p=.013, testosterone appearing 

to increase differentiation than just treatment with BMP alone. 

The differentiation response of cell treated with testosterone added to BMP 50 ng/mol, 

normalized to baseline BMP differentiation activity was investigated for dose (12, -14, -16, -20, -
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24, and -30 mols.) response, phenotype and cell type by a three way analysis of variance. 

Figures 23-25 exhibit the dose responses for differentiation with testosterone treatments co-

cultured with BMP. Synostotic phenotype appears to exhibit a much greater response for 

differentiation, especially the non suture bone type, peaking at over 40 times baseline activity at 

the -14 mol treatment and decreasing with decreased dose concentration. Synostotic suture bone 

also appears to have greater differentiation activity than the remaining cell types, peaking at the -

16 mol treatment.  Note the large standard errors indicating inherent variability. The assumption 

of normality was violated for all synostotic permutation and wild type suture bone at -12 and -14 

mol treatments.  An inverse transformation allowed for normality for all permutation but wild 

type non suture bone treated with -16 mols, W=.767, p=.039. The assumption of homogeneity of 

variance was violated F=12.266, df 23, 74, p=.001. The susceptibility to committing a type 1 

error is noted due to this violation. The pattern of difference for testosterone+BMP 

differentiation response by dose by phenotype by bone type were not significantly different, F= 

.763, df 5, 77, p= .579. The pattern of difference of phenotype by dose averaged across bone type 

were not significantly different, F= 1.236, df 5, 77, p=.300. The pattern of difference of bone 

type by dose averaged across phenotype was not significantly different, F= .977, df 5, 77, p= 

.437. The pattern of difference of phenotype by bone type averaged across dose was not 

significantly different, F=2.331, df 1, 77, p=.130. There were no statistically significant 

differences for differentiation by dose averaged across phenotype and bone type, F= .485, df 5, 

77 p=.787. There were no significant differences by phenotype averaged across bone type and 

dose, F= 1.068, df 1, 77, p= .305. There was a significant difference in differentiation by bone 

type averaged across phenotype and dose, F=5.611, df 1, 77, p=.020. Non suture bone (χ=10.868, 

SD 29.208) exhibited much greater overall differentiation than suture bone (χ= 3.745, SD 8.444). 
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Figure 23: Dose Response for Differentiation Activity with Testosterone BMP Co-Culture Added 

Normalized to BMP Differentiation Activity 

              Reference line indicated 100% of Baseline BMP Differentiation Activity 
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7 Day Differentiation Means/ Normalized for BMP activity means 
(indicating testosterone+BMP activity/BMP activity for each plate)
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Figure 24: Differentiation Response Means for Differentiation Activity with Testosterone BMP Co-

Culture Added Normalized to BMP Differentiation Activity 

                    Reference line indicated 100% of Baseline BMP Differentiation Activity 
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Figure 25: Differentiation Response Means with Error Bars for Differentiation Activity with Testosterone 

BMP Co-Culture Added Normalized to BMP Differentiation Activity 

Reference line indicated 100% of Baseline BMP Differentiation Activity 

 

 

 

3.2 CELLULAR FLUTAMIDE TREATMENT 

3.2.1 Assessment of Proliferation 

Table 3 provides the sample sizes for these analyses. The MC3T3-E1 are included in 

graphs for cell control representation, especially to denote if activity should be expected.  Note 

the small errors bars.  It appears as though the MC3T3-E1 do have responses to the treatments. 

 72 



Table 3: Sample Sizes for Proliferation of Flutamide Study 

           Cell Type            N 

Congenital Synostosed Suture Bone 6 

Congenital Synostosed Non Suture Bone 5 

Wild Type Suture Bone 7 

Wild Type Non Suture Bone 6 

MC3T3-E1 6 

 

To determine the effects of reconstituting the stock hormones in ethanol, a pair design 

was employed to determine the relationship between the proliferation response between cells 

treated with proliferation media only and proliferation media with ethanol added. Normality was 

violated for each treatment.  A natural log transformation allowed for normality. There was a 

significant difference in proliferative response between proliferation media treatment only 

(χ=.8617, SD .3673) and proliferation media with ethanol added (χ=.8258, SD .3630), t=2.996, 

df=23, p=.006.  The comparison of hormone only response will be normalized to proliferation 

media with ethanol added.  

To determine of adding BMP resulted in altered proliferation activity a paired design was 

employed comparing proliferation media only and proliferation media with BMP added. The 

assumption of normality was violated for both groups. A natural log transformation allowed for 

normality. There was a significant difference in proliferative response between proliferation 

media treatment only (χ=.8617, SD .3673) and proliferation media with BMP added (χ=.8197, 

SD .3453), t=2.705, df=23, p=.013.  BMP appears to inhibit proliferation activity at 7 day 

analysis. 
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The proportion of BMP proliferative activity normalized to proliferation media response 

was investigated for differences by cell type. Figure 26 exhibits the means (+/- SE) for each cell 

type.  Wild type cell types appear to exhibit the greatest mean proliferation and the synostotic 

non suture bone appear to exhibit the least. A two way ANOVA design was implemented for 

BMP proliferation by phenotype (wild versus synostotic) and cell type (suture versus non suture 

bone).  The assumption of normality was met for all cell types. The assumption of homogeneity 

of variance was met, F=.404, df 3, 20, p=.752. There was no significant difference for BMP 

proliferative response for phenotype by cell type, F=.046, df 1, 20, p=.833. There was no 

significant difference for cell type averaged across phenotype, F=.011, DF 1, 20, p=.918. There 

was no significant difference for phenotype averaged across cell type, F=1.425, df 1, 20, p=.247. 

 

 

Figure 26: BMP Proliferative Response by Cell Type 

(1.0 indicates 100% of baseline proliferation media response) 
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To determine of adding testosterone 16 mols, resulted in altered proliferative activity a 

paired design was employed comparing proliferation media with ethanol added and proliferation 

media with ethanol and testosterone -16 mols added. The assumption of normality was violated 

for both groups.  A natural log transformation allowed for normality for each group. There was a 

significant difference in proliferative activity between proliferation media with ethanol added 

(χ=.8258, SD .3630) and Proliferation media with ethanol and testosterone -16 mol treatment 

added (χ=.7921, SD .3531), t=4.509, df 23, p<.001. Testosterone appears to significantly inhibit 

the proliferative activity. 

The proportion of testosterone -16 mol proliferative activity, normalized to proliferation 

media with ethanol added, was investigated for differences by cell type. Figure 27 exhibits the 

means (+/- SE) for each cell type.  All appear to have similar mean response, with some variation 

about the mean. A two way ANOVA was implemented for T -16 mol proliferation by phenotype 

(wild versus synostotic) and cell type (suture versus non suture bone). The assumption of 

normality was met for each type.  The assumption of homogeneity of variance was met, F=.204, 

df 3, 20, p=.893. There was no significant difference for testosterone proliferative response for 

phenotype by cell type, F=.001, df 1, 20, p=.975. There was no significant difference for cell 

type averaged across phenotype, F=.081, df 1, 20, p=.778. There was no significant difference 

for phenotype averaged across cell type, F=0.014, df 1, 20, p=.907. 
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Figure 27: Testosterone -16 mols. Proliferation Activity Normalized to Proliferation Media with Ethanol 

Response 

(1.0 indicates 100% of baseline proliferation media with ethanol added response) 

 

To determine if adding testosterone -16 mols to BMP resulted in altered proliferation 

activity a paired design was employed comparing proliferation media with BMP added and 

proliferation with BMP and testosterone added. The assumption of normality was violated for 

both groups. A natural log transformation allowed for normality for both groups. There was a 

significant difference in proliferative response with proliferation media with BMP added resulted 

in greater proliferative activity (χ=.8197, SD .3453) than testosterone added (χ=.7327, SD 

.2919), t=2.568, df=23, p=.017. 

The proliferative response of cells treated with testosterone added to BMP normalized to 

baseline BMP proliferative response was investigated for difference by phenotype (Wild versus 

synostotic) and cell type (suture versus non suture bone) by a two way analysis of variance.    

Figure 28 represents the mean (+/- SE). Suture bone appears to have a greater proliferative 
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response than non suture bone types. The assumption of normality was met for all types.  The 

assumption of homogeneity of variance was met, F=.184, df 3, 20, p=.906. There was no 

significant difference for testosterone +BMP proliferative response for phenotype by cell type, 

F=.124, df 1, 20, p=.728. There was no significant difference for cell type averaged across 

phenotype, F=.074, df 1, 20, p=.789. There was no significant difference for phenotype averaged 

across cell type, F=0.231, df 1, 20, p=.636. 

 

 

Figure 28: Testosterone -16 mols BMP Co-Culture. Proliferation Activity Normalized to BMP Response 

(1.0 indicates 100% of baseline BMP Response) 

 

To determine if adding flutamide resulted in altered proliferation activity a paired design 

was employed comparing proliferation media with ethanol added and proliferation media with 

ethanol and flutamide added. The assumption of normality was violated for both treatments. An 

inverse transformation allowed for normality for each treatment. The proliferation media with 
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ethanol added showed a significantly higher proliferative response (χ=.8258, SD .3579) than 

flutamide added (χ=.7533, SD=.3389), t=4.867, df 11, p<.001. 

The proliferation response of cells treated with flutamide, normalized to baseline 

proliferation media with ethanol treatment was investigated for dose (-6, -8, and -10 mols), 

phenotype (wild type versus synostotic) and cell type (suture versus non suture bone), by a three 

way analysis of variance. Figure 29 exhibits the means (+/- SE) for each cell type.  With the 

exception of wild type non suture bone cell treatments, flutamide treatments do not appear to 

vary greatly in proliferative response.  In addition, bone cell types appear to have similar 

responses. The assumption of normality was met for each type.  The assumption of homogeneity 

of variance was met, F=2.043, df 11, 36, p=.055. There were no significant difference in 

proliferative response of flutamide by dose by phenotype by cell type, F=.803, df 2, 36, p=.456. 

There were no significant difference in proliferative response of dose by cell type averaged 

across phenotypes, F=.181, df 2, 36, p=.835. There was no significant difference by phenotype 

by dose averaged across cell types, F=1.179, df 2, 36, p=.319. There was no significant 

difference by phenotype by cell type averaged across doses, F=1.345, df 1, 36, p= .254. There 

were no significant difference by dose averaged across phenotype and cell type, F=.273, df 2, 36, 

p=.763. There was no significant difference by cell type averaged across dose and phenotype, 

F=.000, df 1, 36, p=.986. There was no significant by phenotype averaged across dose and cell 

type, F=.051, df 1, 36, p=.822. 
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Figure 29: Flutamide Proliferation Activity Normalized to Proliferation Media+Ethanol Response 

(1.0 indicates 100% of baseline proliferation media with ethanol added response) 

 

To determine if adding flutamide to BMP resulted in altered proliferation activity a 

paired design was employed comparing proliferation media with ethanol and flutamide added to 

BMP, with proliferation media with BMP added only. The assumption of normality was violated 

for both groups. An inverse transformation allowed for normality across the groups.  The BMP 

added to proliferation media (χ=.8197, SD .3404) exhibited significantly greater proliferative 

activity than the flutamide + BMP co-culture (χ=.7589, SD .3074), t= 3.516, df 47, p=.001. 

The proliferative response of cells treated with flutamide+BMP co-culture, normalized to 

baseline BMP activity, was investigated for dose response (-6, -8, -10 mols), phenotype (wild 

versus synostotic) and cell type (suture versus non suture bone), by three way ANOVA. Figure 

30 exhibits the means (+/- SE) for each cell type.  There appears to be a dose response across the 

groups, with the highest concentration of flutamide co-culture reflecting the highest mean 

proliferative activity. The assumption of normality was violated for the synostotic suture bone at 
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-8 mols flutamide treatment, W=.743 p=.011. An inverse transformation allowed for normality 

across groups. The assumption of homogeneity of variance was met, F=1.851, df 11, 36, p=.081. 

The pattern of differences by dose by phenotype by cell type was not significant F=.157, df 2, 

36, p=.855. The pattern of differences of phenotype by dose averaged across cell type were not 

significant F=1.334, df 2, 36, p=.276. The pattern of differences of phenotype by cell type 

averaged across dose were not significant, F=.043, df 1, 36, p=.837. The pattern of differences of 

cell type by dose averaged across phenotype were significant F=3.398, df 2, 36, p=.044. The 

synostotic cells appears to exhibit a much greater proliferative activity (χ=.7650, SD .2631) at 

the -10 mols dose than the non suture bone (χ=.5385, SD=.0919). The pattern of differences by 

cell type averaged across dose and phenotype were not significant, F=1.297, df 1, 36, p=.262. 

The pattern of differences of phenotype averaged across dose and cell type were not significant, 

F=.211, df 1, 36, p=.649. The pattern of differences of dose averaged across phenotype and cell 

type were significant F=5.933, df 2, 36, p=.006. A post hoc pairwise bonferroni comparison 

revealed the -10 mol treatment (χ=.6706, SD .2333) to exhibit significantly less activity than the 

-6 mol (χ=.8254, SD .3930; p=.009) and -8 mol treatments (χ=.6706, SD .2944, p=.018).  
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Figure 30: Flutamide + BMP Proliferation Activity Normalized to BMP only response 

(1.0 indicates 100% of baseline BMP Response) 

 

To determine if there is an additive in reducing proliferative activity with the addition of 

flutamide to testosterone in ethanol a paired design was employed comparing the amount of 

reduction of activity for testosterone and testosterone flutamide co-culture. The assumption of 

normality was met for both groups. There was no significant difference in the percentage of 

activity reduced by testosterone (χ=.0417, SD .0452) and flutamide testosterone co-culture 

(χ=.0386, SD .1327), t=.145, df 47, p=.885. 

The percentage of proliferative activity reduced by flutamide co-cultured with 

testosterone compared to testosterone only treatments were investigated for dose (-6,-8,-10), 

phenotype (wild type versus synostotic), and cell type (suture versus non suture bone), by a three 

way ANOVA. Figure 31 exhibits the means (+/- SE) for each cell type.  The assumption of 

homogeneity of variance was violated for wild type non suture bone at -6 mol dose, W=.759, 

p=.020.  Transformations did not improve on this normality. ANOVA should be robust against 

this violation. The assumption of homogeneity of variance was met F=2.467, df 11, 36, p=.120. 
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There were no significant differences by phenotype by cell type by dose, F=1.429, df 2, 36, 

p=.253. There were no significant pattern of differences of cell type by dose averaged across 

phenotype, F=.338, df 2, 36, p=.716. There were no significant pattern of differences of 

phenotype by dose averaged across cell type, F=1.883, df 2, 36, p=.167. There were no 

significant pattern of differences of phenotype by cell type averaged across dose, F=2.051, df 1, 

36, p=.161. There was no significant main effect for dose, F=.465, df 2, 36, p=.632, cell type, 

F=.055, df 1, 36, p=.816, or phenotype F=.216, df 1, 36, p=.645. 

 

Figure 31: Amount of Proliferative Activity Reduced Flutamide + Testosterone -16 mols. 

Proliferation Activity Normalized to Testosterone -16 mols. only response 

 

To determine if there is an additive in reducing proliferative activity with the addition of 

flutamide to testosterone +BMP a paired design was employed comparing the amount of 

reduction of activity for testosterone+BMP and testosterone flutamide +BMP co-culture. The 

assumption of normality was met for both groups. There was a significant difference in the 

percentage of activity reduced by testosterone added to BMP treatment compared to BMP 
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baseline (χ=.0943, SD .1050) and flutamide testosterone co-culture with BMP (χ=.1389, SD 

.1361), t=3.802, df 47, p<.001, suggesting less activity when flutamide is added. 

The percentage of proliferative activity reduced by flutamide co-cultured with 

testosterone and BMP compared to testosterone and BMP only treatments were investigated for 

dose (-6,-8,-10), phenotype (wild type versus synostotic), and cell type (suture versus non suture 

bone), by a three way ANOVA. Figure 32 exhibits the mean response reduced for each cell type 

(+/- SE). Wild type non suture bone appears to be the most responsive to flutamide treatment. 

The assumption of normality was violated for wild type non suture bone at -6 mol dose, W=.754, 

p=.008.  Transformations did not improve on this normality. ANOVA should be robust against 

this violation. The assumption of homogeneity of variance was met F=2.160, df 11, 36, p=.20. 

There were no significant differences by phenotype by cell type by dose, F=.144, df 2, 36, 

p=.867. There were no significant pattern of differences of cell type by dose averaged across 

phenotype, F=1.617, df 2, 36, p=.213. There were no significant pattern of differences of 

phenotype by dose averaged across cell type, F=1.236, df 2, 36, p=.303. There were no 

significant pattern of differences of phenotype by cell type averaged across dose, F=1.639, df 1, 

36, p=.209. There was no significant main effect for dose, F=1.957, df 2, 36, p=.156, or 

phenotype F=.302, df 1, 36, p=.586. There was a significant main effect by cell type flutamide 

blocking less percent activity in suture bone cells (χ=.0235, SD .06883) than non suture bone 

cells (χ=.0877, SD .1136), F=7.569, df 1, 36, p=.009. 
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Figure 32: Amount of Proliferative Activity Reduced Flutamide + Testosterone -16 mols BMP Co-Culture 

Proliferation Activity Normalized to Testosterone -16 mols. BMP Co-Culture Response 

 

3.2.2 Assessment of Differentiation 

Table 4 provides the sample sizes for these analyses. The MC3T3-E1 are included in 

graphs for control cell representation, especially to denote if activity should be expected. It 

appears as though these cells are reactive to BMP increasing differentiation, and flutamide 

decreases differentiation. There does not appear to be a strong response to testosterone treatment. 

Figure 33 are the representative ALP stains indicating differentiation, for each cell type for 

baseline testosterone treatment, testosterone BMP co-culture treatment, flutamide testosterone 

treatment and flutamide testosterone with BMP added treatment.  Note all are positive, indicating 

the necessity for the quantitative ALP analyses below. 

 

 84 



Table 4: Sample Sizes for Differentiation of Flutamide Study 

           Cell Type            N 

Congenital Synostosed Suture Bone 6 

Congenital Synostosed Non Suture Bone 5 

Wild Type Suture Bone 7 

Wild Type Non Suture Bone 6 

MC3T3-E1 6 

 

 

Figure 33: Alkaline Phosphate Stain for Cell Types 

For each composite starting on the top left moving clockwise: Testosterone Treatment, Testosterone BMP 

Co-culture Treatment, Flutamide Testosterone Treatment, Flutamide Testosterone BMP Co-culture Treatment 

 

To determine the effects of reconstituting the stock hormones in ethanol a paired design 

was employed to determine the relationship between differentiation response between cells 

treated with proliferation media only and proliferation media with ethanol added. The 

assumption of normality was violated for both groups. A natural log transformation allowed for 

normality of both groups. There was a significant difference in differentiation between 
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proliferation media only (χ=.0273, SD .0168) and proliferation media with ethanol added 

(χ=.0242, SD .01338), t=3.293, df 23, p=.003. The comparison of hormone only response will be 

normalized to proliferation media with ethanol added. 

To determine if adding BMP resulted in altered differentiation a paired design was 

employed comparing proliferation media only and proliferation media with BMP added. The 

assumption of normality was violated for both groups. A natural log transformation allowed for 

normality for both groups. BMP exhibited greater differentiation (χ=.0434, SD .0408) compared 

with baseline proliferation media response (χ=.0273, SD .0168), t=3.260, df 23, p=.003. 

The proportion of BMP differentiation activity normalized to proliferation media 

response was investigated for difference by cell type. Figure 34 exhibits the means (+/- SE) for 

each cell type. Wild type suture bone appears to have a very great response compared to other 

cell types. A two way ANOVA design was implemented for BMP differentiation by phenotype 

(wild versus synostotic) and cell type (suture versus non suture bone). The assumption of 

normality was violated for wild type suture bone category.  A natural log transformation allowed 

for normality across groups. The assumption of homogeneity of variance was met, F=2.065, df 3, 

20, p=.137. There was no significant pattern of differences of phenotype by cell type for BMP 

differentiation response, F=1.810, df 1, 20, p=.194. There was no significant difference by cell 

type averaged across phenotype for BMP differentiation, F=2.900, df 1, 20, p=.104. There was 

no significant difference by phenotype averaged across cell type for BMP differentiation, F= 

1.306, df 1, 20, p=.267. 
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Figure 34: BMP Differentiation Response by Cell Type 

(1.0 indicates 100% of baseline proliferation media response) 

 

To determine if adding testosterone -16 mols, resulted in altered differentiation a paired 

design was employed comparing proliferation media with ethanol added and proliferation with 

ethanol and testosterone -16 mols added. The assumption of normality was violated for both 

groups. A natural log transformation allowed for normality for each group. There was no 

significant difference in differentiation between proliferation media with ethanol added (χ=.0242 

SD .0134 and that with T -16 mols added (χ=.0244, SD .0135). 

The proportion of testosterone -16 mol differentiation, normalized to proliferation media 

with ethanol added, was investigated for differences by phenotype (Wild versus Synostotic) and 

cell type (suture versus non suture bone), by two way ANOVA.  Figure 35 exhibits the means 

(+/- SE) for each type.  Wild type non suture bone appears to have the only mean increase in 

differentiation, with other types appearing to be about 100% of baseline activity. The assumption 

of normality was met for all groups. The assumption of homogeneity of variance was met, 
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F=.673, df 3, 20, p=.579. There was no significant pattern of differences of phenotype by cell 

type for differentiation, F=.925, df 1, 20, p=.348. There was no significant difference by cell type 

averaged across phenotype for differentiation, F=2.650, df 1, 20, p=.119. There was no 

significant difference by phenotype averaged across cell type for differentiation, F=2.092, df 1, 

20, p=.164. 

 

 

Figure 35: Testosterone -16 mols. Differentiation Activity Normalized to Proliferation Media with 

Ethanol Response 

(1.0 indicates 100% of baseline proliferation media with ethanol added response) 

 

To determine if adding testosterone -16 mols to BMP resulted in altered differentiation 

activity a paired design was employed comparing proliferation media with BMP added and 

proliferation with BMP and testosterone added.  The assumption of normality was violated for 

both groups. A natural log transformation was best for normalizing the data, but the testosterone 

group still violated normality, W=.904, p=.030. Thus, a Wilcoxon paired comparison is used. 

Proliferation media with BMP added had significantly greater differentiation (χ=.0434, SD 
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.0408), than proliferation with BMP and testosterone co-culture (χ=0.3781, SD .0374), Z=2.686, 

p=.007. 

The differentiation response of cells treated with testosterone added to BMP normalized 

to baseline BMP differentiation activity was investigated for difference by phenotype (Wild 

versus Synostotic) and cell type (suture versus non suture bone) by a two way analysis of 

variance. Figure 36 exhibits the means (+/- SE) for each cell type. Wild type suture bone appears 

to react similarly to BMP baseline levels, and wild type non suture bone appears very inhibited. 

The assumption of normality was met for each all types. The assumption of homogeneity of 

variance was met, F=.359, df 3, 20, p=.784. There was no significant difference for phenotype by 

cell type, F=2.828, df 1, 20, p=.108. There was no significant difference for phenol type 

averaged across cell type, F=.101, df 1, 20, p=.754. There was a significant difference in 

differentiation by cell type, suture bone cells (χ=.9540, SD .2313) exhibiting significantly greater 

differentiation than non suture bone cells (χ=.7440, SD .1528). The non suture cells are thus 

much more inhibited with testosterone co-culture compared to BMP baseline. 
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Figure 36: Testosterone -16 mols BMP Co-Culture. Differentiation Activity Normalized to BMP Response 

(1.0 indicates 100% of baseline BMP Response) 

 

To determine if adding flutamide resulted in altered differentiation response a paired 

design was employed comparing proliferation media with ethanol added and proliferation with 

ethanol and flutamide added. The assumption of normality was violated for both groups. A 

natural log transformation allowed for normality. Proliferation media with ethanol added 

exhibited significantly greater differentiation (χ=.0242, SD=.0132) than the flutamide co-culture 

(χ=.0217, SD .0123), t=3.432, df 47, p=.001. 

Differentiation of cells treated with flutamide, normalized to baseline proliferation media 

with ethanol treatment was investigated for dose (-6, -8, and -10 mols), phenotype (Wild Type 

versus Synostotic) and cell type (Suture versus Non Suture), by a three way ANOVA. Figure 37 

exhibits the mean (+/- SE) for each cell type. There appears to be two distinct patterns, suture 

bone decreasing differentiation at lower doses of flutamide, and non suture bone increasing 

differentiation at lower doses. The assumption of normality was met for all type. The assumption 

of homogeneity of variance was met, F=2.125, df 11, 36, p=.12. There were no significant 

 90 



differences in differentiation for phenotype by cell type by dose, F=.062, df 2, 36, p=.940. There 

were no significant pattern of differences for differentiation by cell type by dose averaged across 

phenotype, F=.783, df 2, 36, p=.465. There were no significant pattern of differences for 

differentiation by phenotype by dose, averaged across cell type, F=.025, df 2, 36, p=.975. There 

were no significant pattern of difference for differentiation by phenotype by cell type averaged 

across dose, F=1.789, df 1, 36, p=.189. There was no significant main effect for dose, F=.090, df 

2, 36, p=.914. There was no significant main effect for cell type, F=.350, df 1, 36, p=558. There 

was no significant main effect for phenotype, F=.184, df 1, 36, p=.671. 

 

 

Figure 37: Flutamide Differentiation Activity Normalized to Proliferation Media+Ethanol Response 

(1.0 indicates 100% of baseline proliferation media with ethanol added response) 

 

To determine if adding flutamide to BMP resulted in altered differentiation a paired 

design was employed comparing proliferation media with ethanol and flutamide added to BMP, 

with proliferation media with BMP added only. The assumption of normality was violated for 

each group. A natural log transformation allowed for normality. There was no significant 
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difference in differentiation between proliferation media with BMP added (χ=.0434, SD .0402) 

and that co-cultured with flutamide (χ=.0453, SD .0449), t=1.123, df 47, p=.267. 

Differentiation of cells treated with flutamide and BMP co-culture, normalized to 

baseline BMP activity, was investigated for dose response (-6, -8, and -10 mols), phenotype 

(wild type versus synostotic) and cell type (suture versus non suture bone), by three way 

ANOVA. Figure 38 exhibits means (+/- SE) for each type. Like flutamide treatment alone there 

appears to be two distinct patterns, suture bone decreasing differentiation at lower doses of 

flutamide, and non suture bone increasing differentiation at lower doses. There were multiple 

violations of normality, synostotic suture bone treated with -10 flutamide, synostotic non suture 

bone with -6 flutamide, wild type suture bone treated with -6 and -8 flutamide.  An inverse 

transformation worked best, but still had two violations of normality, Synostotic suture bone 

treated with -10 flutamide, W=.755, P=.012, and Wild type suture bone treated at -6 flutamide, 

W=.753, p=.006. ANOVA should be robust against these violations. The assumption of 

homogeneity of variance was met, F=1.670, df 11, 36, p=.121. There was no significant pattern 

of difference for differentiation by phenotype by cell type by dose, F=2.984, df 2, 36, p=.063. 

There were no significant pattern of differences by cell type by dose averaged across phenotype, 

F=1.131, df 2, 36, p=.334. There were no significant pattern of differences by phenotype by dose 

averaged across cell type, F=.256, df 2, 36, p=.776. There were no significant pattern of 

differences by phenotype by cell type, averaged across dose, F=2.425, df 1, 36, p=.128. There 

was no significant dose main effect, F=2.013, df 2, 36, p=.148. There was no significant 

phenotype main effect, F=.706, df 1, 36, p=.406. There was a significant main effect by cell type, 

suture bone (χ=1.064, SD .2281) having significantly greater percent differentiation than non 

suture bone (χ=.9037, SD=.2609), F=.6447, df 1, 36, p=.016. 
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Figure 38: Flutamide + BMP Differentiation Activity Normalized to BMP only response 

(1.0 indicates 100% of baseline BMP Response) 

 

To determine if there is an additive effect in reducing differentiation with the addition of 

flutamide to testosterone in ethanol a paired design was employed comparing the amount of 

reduction of activity for testosterone and testosterone flutamide co-culture. The assumption of 

normality was met for both groups. There was a significant difference in percent differentiation 

activity change, testosterone alone increasing differentiation (χ= -.0236, SD .1339), flutamide co-

culture resulting in a significant percent decrease (χ=.1602, SD .1960), t=6.828, df 47, p<.001. 

The percent of differentiation reduced by flutamide co-cultured with testosterone 

compared to testosterone only treatments were investigated for dose (-6, -8, and -10 mols), 

phenotype (wild versus synostotic) and cell type (suture versus non suture bone) by a three way 

ANOVA. Figure 39 exhibits means (+/- SE) for each type. There appears to be several patterns 

of response, the wild type suture bone exhibiting an increase in reduction of activity as dose of 

flutamide decreased. Wild type non suture bone demonstrates a biphasic response. Synostotic 

suture none exhibits a decrease in reduction of differentiation with lower doses, and synostotic 
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non suture bone appears to show the opposite pattern. The assumption of normality was met for 

all types. The assumption of homogeneity of variance was met, F=.945, df 11, 36, p=.511. There 

was no significant pattern of differences by phenotype by cell type by dose, F=1.991, df 2, 36, 

p=.151. There was no significant pattern of differences by cell type by dose averaged across 

phenotype, F=.189, df 2, 36, p=.828. There was no significant pattern of differences for 

phenotype by dose averaged across cell type, F=1.535, df 2, 36, p=.229. There was no significant 

pattern of difference by phenotype by cell type averaged across dose, F=1.866, df 1, 36, p=.180. 

There was no significant dose main effect, F=.582, df 2, 36, p=.564. There was no significant 

cell type main effect, F=.430, df 1, 36, p=.516. There was no significant phenotype main effect, 

F=.961, df 1, 36, p= .333. 

 

 

Figure 39: Amount of Differentiation Activity Reduced Flutamide + Testosterone -16 mols. 

Differentiation Activity Normalized to Testosterone -16 mols. only response 

 

To determine if there is an additive effect in reducing differentiation with the addition of 

flutamide to testosterone+BMP a paired design was employed comparing the amount of 
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reduction of activity for testosterone+BMP and testosterone flutamide BMP co-culture. The 

assumption of normality was violated for both groups.  A square root transformation worked best 

for normalizing the data but the flutamide co culture remained non-normal, W=.914, p=.011. 

Thus, a Wilcoxon paired comparison was utilized. The flutamide co-culture (χ=.2798, SD .2127) 

exhibited significantly greater percent reduction in differentiation compared to 

testosterone+BMP co-culture (χ=.1422, SD .2193), Z=4.011, p<.001. 

The percent reduction of differentiation activity reduced by flutamide co-cultured with 

testosterone and BMP compared to testosterone and BMP only treatments were investigated for 

dose (-6, -8, -10), phenotype (wild type versus synostotic), and cell type (suture bone versus non 

suture bone), by a three way ANOVA. Figure 40 exhibits the means for each cell type (+/- SE). 

All types except wild type non suture bone which appears to have a biphasic response appear to 

increase in reduction of differentiation with decreased dose. The assumption of normality was 

met for all types. The assumption of homogeneity of variance was met, F=1.804, df 11, 36, 

p=.100. There were no significant differences in percent differentiation reduction by phenotype 

by cell type, by dose, F=.844, df 2, 36, p=.438. There was no significant pattern of difference by 

cell type by dose averaged across phenotype, F=.227, df 2, 36, p=.798. There was no significant 

pattern of differences by phenotype by dose averaged across cell type, F=.155, df 2, 36, p=.857. 

There was no significant pattern of differences by phenotype by cell type averaged across dose, 

F=.001, df 1, 36, p=.973. There was no significant dose main effect, F=1.183, df 2, 36, p=.318. 

There was no significant cell type main effect, F=.164, df 1, 36, p=.688. There was no significant 

phenotype main effect, F=.003, df 1, 36, p=.959. 
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Figure 40: Amount of Differentiation Activity Reduced Flutamide + Testosterone -16 mols BMP Co-

Culture  

Differentiation Activity Normalized to Testosterone -16 mols. BMP Co-Culture Response 

 

3.3 CULLED CELLULAR DATA 

3.3.1 Assessment of Proliferation 

To best describe the relationship between bone cell proliferation response when treated 

with bone morphogenetic protein and testosterone all data was culled, collapsing wild and 

synostotic phenotypes, and suture and non suture bone, and hormonal treatment levels, in an a 

priori fashion.  Sample sizes, means, standard errors, and standard deviations are listed in Table 

5. Figure 41 exhibits the means (+/- SE) for bone cell proliferative response to the various 

previously described treatments. The greatest proliferative responses appear to be for 

proliferation media, flutamide treatment, flutamide BMP co-culture and testosterone and 
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flutamide co-culture. Inhibition of proliferative response appear to be greatest for testosterone 

treatment and testosterone and BMP co-culture, with less proliferative response also seen 

compared to other groups for testosterone, flutamide and BMP co-culture. T-tests were used to 

investigate the following comparison for proliferative response, 1) ethanol vs. testosterone; 2) 

ethanol vs. flutamide; 3) BMP vs. proliferation media; 4) BMP + testosterone vs. BMP; 5) BMP 

+ flutamide vs. BMP; 6) BMP + testosterone +flutamide vs. BMP; 7) BMP+ testosterone vs. 

BMP+ testosterone+ flutamide; 8) testosterone vs. testosterone +flutamide; 9) flutamide vs. 

testosterone +flutamide. 

 

Table 5: Proliferative Response: Culled Data Set Descriptives 

Treatment N χ SE SD 

Proliferation Media 42 .7286 .0530 .3437 

Ethanol 42 .6918 .0522 .3384 

BMP 42 .7090 .0489 .3166 

Testosterone            132 .5811 .0220 .2531 

Testosterone+BMP            132 .6298 .0189 .2167 

Flutamide 48 .7533 .0489 .3389 

Flutamide+BMP 48 .7589 .0444 .3074 

Testosterone+Flutamide 48 .7369 .0393 .2723 

Testosterone+Flutamide+BMP 48 .6930 .0395 .2738 
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Figure 41: Proliferation Response Culled, Means +/- SE 

 

1) Testosterone appears to significantly inhibit proliferation activity compared to ethanol 

baseline, t=2.265, df 172, p=.025. 2) Flutamide does not appear to significantly inhibit 

proliferative activity compared to ethanol baseline, t=.8595, df=88, p=.392. 3) BMP does not 

appear to differ significantly from baseline proliferation media proliferative activity, t=.2718, df 

82, p=.787. 4) BMP + testosterone co-culture does not appear to significantly reduce 

proliferative activity compared to BMP baseline, t=1.832, df 172, p= 0.069. 5) BMP + flutamide 

co-culture does not differ significantly in proliferative activity compared to BMP baseline, 

t=.7569, df 88, p=.451. 6) BMP+ flutamide +testosterone co-culture does not differ significantly 

in proliferative activity compared to BMP baseline, t=.2571, df 88, p=.798. 7) BMP + 

testosterone + flutamide co-culture does not differ significantly than BMP+ testosterone in 

proliferative activity, t=1.608, df 178, p=.110. 8) Testosterone treatment exhibits significantly 

less proliferative activity than testosterone +flutamide co-culture, t=3.579, df 178, p<.001. 9) 
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Flutamide treatment does not differ significantly from flutamide+ testosterone co-culture, 

t=.2614, df=94, p=.794. 

3.3.2 Assessment of Differentiation 

To best describe the relationship between bone cell differentiation response when treated 

with bone morphogenetic protein and testosterone all data was culled, collapsing wild and 

synostotic phenotypes, and suture and non suture bone, and hormonal treatment levels, in an a 

priori fashion.  Sample sizes, means, standard errors, and standard deviations are listed in Table 

6. Figure 42 exhibits the means (+/- SE) for bone cell differentiation response to the various 

previously described treatments. The greatest differentiation was expressed for BMP co-culture 

with testosterone, BMP alone, and BMP co-culture with flutamide. The testosterone response 

appears slightly greater than ethanol baseline, flutamide treatment exhibits less differentiation 

response, with the lowest response observed for testosterone flutamide co-culture. Finally, the 

BMP testosterone and flutamide co-culture demonstrates less differentiation than BMP, or BMP 

with testosterone added, T-tests were used to investigate the following comparison for 

differentiation response, 1) ethanol vs. testosterone; 2) ethanol vs. flutamide; 3) BMP vs. 

proliferation media; 4) BMP + testosterone vs. BMP; 5) BMP + flutamide vs. BMP; 6) BMP + 

testosterone +flutamide vs. BMP; 7) BMP+ testosterone vs. BMP+ testosterone+ flutamide; 8) 

testosterone vs. testosterone +flutamide; 9) flutamide vs. testosterone +flutamide. 
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Table 6: Differentiation Response: Culled Data Set Descriptives 

Treatment N χ SE SD 

Proliferation Media 42 .0330 .0052 .0336 

Ethanol 42 .0273 .0043 .0277 

BMP 42 .0480 .0079 .0513 

Testosterone           132 .0319 .0028 .0321 

Testosterone+BMP           132 .0519 .0053 .0608 

Flutamide 48 .0217 .0018 .0123 

Flutamide+BMP 48 .0453 .0065 .0449 

Testosterone+Flutamide 48 .0195 .0016 .0110 

Testosterone+Flutamide+BMP 48 .0288 .0034 .0234 

 

 

 

 

Figure 42: Differentiation Response Culled, Means +/- SE 
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1) Testosterone does not appear to differ significantly for differentiation compared to 

ethanol baseline, t=.8451, df 172, p=.400. 2) Flutamide does not appear to differ significantly for 

differentiation compared to ethanol baseline, t=1.254, df=88, p=.213. 3) BMP did not exhibit 

significantly different differentiation from baseline proliferation media proliferative activity, 

t=1.586, df 82, p=.167. 4) BMP + testosterone co-culture does not appear to differ significantly 

for differentiation compared to BMP baseline, t=.381, df 172, p= 0.704. 5) BMP + flutamide co-

culture does not differ significantly for differentiation compared to BMP baseline, t=.2625, df 

88, p=.794. 6) BMP+ flutamide +testosterone co-culture exhibited significantly less 

differentiation compared to BMP baseline, t=2.324, df 88, p=.022. 7) BMP + testosterone + 

flutamide co-culture exhibited significantly less differentiation compared to BMP+ testosterone, 

t=2.558, df 178, p=.011. 8) Testosterone treatment exhibits significantly greater differentiation 

than testosterone +flutamide co-culture, t=2.627, df 178, p=.009. 9) Flutamide treatment does not 

differ significantly for differentiation than flutamide+ testosterone co-culture, t=.9501, df=94, 

p=.345. 

 

3.4 ANDROGEN RECEPTOR IDENTIFICATION 

3.4.1 Immunohistochemistry 

Table 7 provides sample size for animals that tissue was harvested from. Brown coloring 

would indicate a positive reaction with the antibody. A high concentration of 1:50 primary 

antibody to 2% serum treatment resulted in no positive staining, Figure 43. Thus, the positive 
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control tissue was negative for the androgen receptor. This indicated that the antibody likely did 

not recognize the rabbit androgen receptor. Thus, sutures were not stained as even a positive 

result could not be considered positive. 

 

Table 7: Sample Sizes for Immunohistochemistry Tissue 

      N Phenotype        Sex 

      2 Delayed Onset Synostosis        M/F 

      2 Early Onset Synostosis        M/F 

      2 Wild Type        M/F 
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Figure 43: : Immunohistochemistry for Androgen Receptor on Synostotic Testes 

Note the Seminiferous Tubules are outlined, and the presence of pale stained Leydig Cells in the Interstitial Areas 

 

3.4.2 Western Blotting 

Initial western blotting procedure was for rabbit and MC3T3-E1 cells against the anti-

mouse receptor. For the first gel, protein was loaded from left to right with the ladder, MC3T3-

E1, wild type suture bone, wild type non suture bone, synostotic suture bone, and synostotic non 

suture bone at 30 µl per lane for 50ug of protein.  Results were negative for all lanes, Figure 44. 

A second run was attempted. Six lanes were loaded in order MC3T3-E1, wild type non suture 

bone, synostotic suture bone, wild type suture bone, synostotic non suture bone, and synostotic 
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suture bone. 50 µg of protein was loaded for each well. The results were again negative, Figure 

45. A positive result was not expected for the MC3T3-E1 lanes, due to incubating with a mouse 

primary. The rabbit cells were negative allowing for two possibilities, 1) the antibody did not 

recognize the androgen receptors or 2) the lack of presence of the androgen receptor in these 

cells. 

 

Figure 44: Western Blotting for Androgen Receptors in Rabbit Primary Cells and MC3T3-E1 Immortalized 

Cells: First Run 

Note the Negative Result 

 

 

 

Figure 45: : Western Blotting for Androgen Receptors in Rabbit Primary Cells and MC3T3-E1 Immortalized 

Cells: Second Run 

Note the Negative Result 
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Western Blotting was conducted for MC3T3-E1 cells against a rabbit polyclonal antibody 

for androgen receptors and a beta actin control. The cells were loaded in 4 lanes with a total 

protein density of 10 µg. Results were positive for all lanes for beta actin, Figure 46.  Results 

however were negative for androgen receptors.  Because this antibody is proven against mouse 

cells, (Santa Cruz, CA; Stanbrough et al., 2001), it is likely the androgen receptors are not 

present, or active in these MC3T3-E1 immortalized cells.  

 

 

Figure 46: : Western Blotting for Androgen Receptors in MC3T3-E1 Immortalized Cells 

Note the Negative Result for Androgen Receptors. Beta Actin Control Antibody is Positive 

 

Western Blotting was conducted for rabbit cells against a rabbit polyclonal antibody for 

androgen receptors. The cells were loaded in 4 lanes in the following order, wild type suture 

bone, wild type non suture bone, synostotic suture bone, and synostotic non suture bone. Cells 

were seeded at a density of 50 µg per well. Results were negative for all lanes for both gels, 

Figure 47. A positive result was not expected for the androgen receptors as the primary antibody 

was raised in rabbits.  
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Figure 47: Western Blotting for Androgen Receptors in Rabbit Primary Cells against a Rabbit Polyclonal 

Antibody 

Note the Negative Result for Androgen Receptors. 

 

Western Blotting was conducted for rabbit cells and MC3T3-E1 cells for beta actin, 

against a primary mouse monoclonal antibody. The cells were loaded onto 2 gels, one for suture 

bone, wild and synostotic, with MC3T3-E1 controls, and one for non suture bone, wild and 

synostotic, with MC3T3-E1 controls. For each the cells were loaded in 4 lanes in the following 

order, MC3T3-E1, synostotic, MC3T3-E1, wild type. Cells were seeded at a density of 25 µg per 

well. Results were positive for all lanes for beta actin, Figure 48.   

 

 

Figure 48: Proof of Principle: Rabbit Primary Cells and MC3T3-E1 Immortalized Cells against a 

Mouse Monoclonal Beta Actin Antibody 

                                Note the Positive Result for all lanes for both membranes. 

 

 106 



Coomasie blue total protein stain was used to identify bands in the 132 kD region of a gel 

after electrophoresis and membrane after western blotting to determine if protein is present in the 

area of interest for rabbit cells in lieu of positive immunoflourescent western result. The gel was 

loaded with wild type suture bone, MC3T3-E1, synostotic suture bone, wild type suture bone, 

synostotic suture bone, synostotic non suture bone, and reference ladder. 50 µg of protein were 

loaded per lane. It appears that there are protein bands between the 100-150 kD for each lane, 

Figure 49. Suture bone lanes appeared to stain the darkest, denoting more protein in the area.  A 

second gel was subject to immunoblotting and the resulting membrane was stained with 

coomasie blue for total protein stain. The lanes were loaded as follows; two reference ladders 

MC3T3-E1, wild type non suture bone, synostotic suture bone, wild type suture bone, synostotic 

non-suture bone, and synostotic suture bone. 50 µg of protein were loaded per lane.  It appears 

that there are protein bands between the 100-150 k D for each lane, Figure 50. 

 

Figure 49: Coomassie Blue Total Protein Stain of Gel after Electrophoresis 

Lanes left to right: Wild Type Suture Bone, MC3T3-E1, Synostotic Suture Bone, Wild Type Suture Bone, 

Synostotic Suture Bone, Synostotic Non Suture Bone, Ladder. Note, tear in gel due to drying. 
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Figure 50: Coomassie Blue Total Protein Stain of Membrane after Immunoblotting 

Lanes from left to right- Kaleidoscope Ladder, LiCor Ladder, MC3T3-E1, Wild Type Non Suture Bone, 

Synostotic Suture Bone, Wild Type Suture Bone, Synostotic Non Suture Bone, Synostotic Suture Bone 

 

3.5 THE EFFECTS OF LOCALIZED FLUTAMIDE THERAPY ON CORONAL 

SUTURE SYNOSTOSIS AND CRANIOFACIAL GROWTH 

3.5.1 Somatic Growth 

Table 8 indicates the sample sizes for each group. Body weight was explored for group 

by age differences. Figure 51A exhibits the means (+/- SE) for groups by age. The experimental 

flutamide group does appear slightly larger at the 25 to 84 day time points, but the slopes appear 

similar for all groups. The assumption of normality was met for all groups. The assumption of 

 108 



homogeneity of variance was met for each age, p>.05. There were no significant differences at 

10 days of age (F=1.361, p=.278) for body weight. However significant differences for weight 

by group existed for 25 (F=7.183, p=.004) days, 42 (F=3.066, p=.046) and 84 days of age 

F=8.441, p=.001. Post hoc least square differences for 25 days of age demonstrates significant 

differences between the experimental flutamide treatment group (χ=.5200, SD .0932) was 

significantly larger than the other groups, surgical controls (χ=.3710, SD .1168), p=.005, 

collagen vehicle controls (χ=.3350, SD .0476), p=.002, and the ethanol control group (χ=.4067, 

SD .1204), p=.05. This time point occurs before experimental treatment, and thus probably 

reflects the inherent variability in weight in the colony. Post hoc least square differences for 42 

days of age demonstrates significant differences between the experimental flutamide treatment 

group (χ=1.2638, SD .1965), being significantly larger than surgical controls (χ=1.0190, SD 

.1472), p=.011, and ethanol treatment controls (χ=1.0080, SD .2476) p=.025. Because there was 

a pre-existing difference it seems unlikely these weight differences were due to experimental 

treatment. Post hoc least square differences for 84 days of age demonstrates significant 

differences between the experimental flutamide treatment group (χ=2.7757, SD .2546), being 

significantly larger than surgical controls (χ=1.9720, SD .4312), p<.001, and collagen vehicle 

controls (χ=1.9367, SD .2447), p=.001. Ethanol treatment group (χ=2.5120, SD .5207) also 

exhibited significantly greater body weights than the surgical controls, p=.016, and collagen 

vehicle groups, p=.019. Because there was a preexisting difference it seems unlikely these 

weight differences were due to experimental treatment. 
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Table 8: Sample Sizes for In Vivo Rescue Study 

Group         N 

Surgical Control        10 

Collagen Vehicle Control         6 

Ethanol Control         6 

Flutamide Experimental Group         8 

 

Third metacarpal length was explored for differences group by age.  Figure 51B exhibits 

the means (+/- SE for each group). The experimental flutamide group appears to diverge at 25 

days of age, exhibiting greater metacarpal length, but only at that time point. The collagen 

vehicle control group appears to exhibit smaller metacarpal lengths at 84 days of age than the 

other groups. There were multiple violations of normality (ethanol group at 10 days of age, and 

experimental flutamide group at 10 and 84 days of age). A natural log transformation improved 

normality, but two violations remained for the experimental flutamide treatment group, 10 days 

(W=.728, p=.005) and 84 days (W=.730, p=.013). ANOVA should be robust against these 

violations. The assumption of homogeneity of variance met for all ages, p>.05. There were no 

significant differences in third metacarpal length at any time point, 10 day (F=.829, p=.491), 25 

day (F=1.747, p=.185), 42 day (F=.521, p=.672) or 84 days of age (F=1.422, p=.275) by group. 
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Figure 51: Somatic Growth Comparisons for In Vivo Rescue Study 

Legend- A: Bodyweight, B-Metacarpal Length 

 

3.5.2 Cephalometry 

Cephalometric landmarks are exhibited in Figure 12. Figure 52 exhibits examples of 84 

day lateral cephalographs for each group in the study. Coronal suture marker distance was 

investigated by one-way ANOVA for each age point. Figure 53 exhibits the mean growth across 

the coronal suture by group. At the 25 day time point the surgical control and collagen vehicle 

control mean separation and are much less than the ethanol control treatment and flutamide 

experimental treatment, which appear similar. At 42 and 84 days the flutamide group has the 

greatest growth, followed by the ethanol controls and surgical control group and the collagen 

vehicle controls exhibiting the least growth across the coronal suture. The assumption of 

normality was met for all groups. The assumption of homogeneity of variance was met for each 
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time point, p>.05. There was a significant difference at 25 days of age, F=5.899, df 3, 26, 

p=.003. Post hoc least square differences exhibit significant differences between the surgical 

control group (χ=1.1950, SD .5620) and the ethanol control treatment group (χ=2.317, SD 

.8629), p=.009, as well as the flutamide experimental treatment group (χ=2.1344, SD .9637), 

p=.016. Significant differences also existed for the collagen vehicle control group (χ=.8417, SD 

.6778), and the ethanol control group, p=.003, and the flutamide experimental group, p=.004. 

There was a significant difference in coronal suture marker separation at 42 days, F=2.851, df 3, 

24, p=.05. Post hoc least square differences exhibit larger separation for the flutamide 

experimental group (χ=3.8063 SD .4022) compared to the surgical control group (χ=2.700, SD 

.5081), p=.029, and the collagen vehicle control group (χ=2.399, SD 1.0842), p=.019. There was 

no significant difference in coronal suture marker separation at 84 days of age by group, 

F=1.111, df 3, 25, p=.363. 

 

 

Figure 52: Example of 84 Day Lateral Cephalographs for Each Study Group 

Clockwise from Top Left: Surgical Control, BSA Vehicle Control, Ethanol Control, Flutamide Treatment 
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Figure 53: Coronal Suture Marker Separation 

Surgical Controls, BSA Vehicle Control, Ethanol Control, and Flutamide Experimental Control 

Note the Divergence of the Flutamide group from the Ethanol Controls Between 25 and 42 Days 

 

Craniofacial length was investigated for differences group by age. Figure 54A exhibits 

the mean (+/- SE). All groups demonstrate similar means and growth curves. The assumption of 

normality was met for all comparisons. The assumption of homogeneity of variance was met for 

each comparison, p>.05 There were no significant differences in craniofacial length by group at 

10 days of age, F=.772, df 3, 24, p=.521, 25 days of age, F=1.399, df 3, 25, p=.266, 42 days of 

age, F=.813, df 3, 22, p=.500, or 84 days of age F=.991, df 3, 20 p=.417. 

An index for intracranial volume was investigated for differences group by age. Figure 

54B exhibits the mean (+/- SE). All groups start out similarly and retain the similarity from 10-

42 days for the means.  At 84 days the collagen vehicle group appears to have the highest ICV, 
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but means do not look too dissimilar. The assumption of normality was met for each comparison. 

The assumption of homogeneity of variance was met for each comparison. There were 

significant differences by group for the 10 day, F=3.162, df 3, 25, p=.042, and the 25 day, 

F=6.831, df 3, 22, p=.002 time points. Least squared significant differences for 10 day data 

reveal significant differences between the collagen vehicle control group (χ=13365.46, SD 

1369.14) and all other groups, surgical controls (χ=11504.95, SD 1600.49), p=.012, ethanol 

control group (11472.81, SD 1173.62), p=.018, and flutamide experimental group (χ=11639.63, 

SD 860.68), p=.021. Least squared significant differences for 25 day data reveal significant 

differences Surgical control group (χ=16031.38, SD=1771.26) and the ethanol control group 

(χ=18463.95, SD=1962.04), p=.02 and flutamide experimental group (χ=20329.85, 

SD=2202.14), p<.001. There were no significant differences at 42, F=2.372, df 3, 23, p=.10 and 

84 days, F=2.590, df 3, 16, p=.09, for intracranial volume by age. Because the differences occur 

before experimental intervention, it is likely differences are due to inherent variability in the 

species. 

An index for cranial base length was investigated for differences group by age. Figure 

54C exhibits the mean (+/- SE). The surgical controls and collagen vehicle controls appear to 

exhibit a similar growth curve and appear to be greater than the measures for the ethanol control 

and flutamide experimental group, which appear to have a similar growth curve respectively. 

The assumption of normality was met for all comparisons. The assumption of homogeneity of 

variance was met for all comparisons.  There were significant differences by group at 10 days of 

age, F=3.259, df 3, 24, p=.039, 25 days of age, F=3.412, df 3, 25, p=.033, and 84 days of age, 

F=8.248, df 3, 20, p=.001.  There was no significant difference at 42 days of age, F=2.558, df 3, 

22 p=.081. The least squared difference for 10 day old data revealed the collagen vehicle control 
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group (χ=19.46, SD 1.17) to differ significantly from all other groups, surgical control (χ=17.07, 

SD 1.90), p=.007, ethanol control (χ=17.20, SD 1.15), p=.017, and experimental flutamide 

treatment (χ=17.56, SD 1.20), p=.031. The least squared difference for 25 day old data revealed 

the collagen vehicle control group (χ=22.68, SD 1.39) to differ significantly from all other 

groups, surgical control (χ=20.66, SD 1.66), p=.017, ethanol control (χ=19.98, SD 1.69), p=.005, 

and experimental flutamide treatment (χ=20.96, SD 0.90), p=.048. The least squared differences 

for the 84 day old data revealed a dichotomy the surgical control group (χ=27.16, SD 2.03) and 

collagen vehicle group (χ=29.23, SD 1.28) both differing from the ethanol control group 

(χ=24.28, SD 0.28) and experimental flutamide treatment (χ=24.87, SD 1.81) respectively 

(Surgical Control vs. Ethanol Control, p=.011; Surgical Control vs. Experimental Flutamide 

Treatment, p=.015; Collagen Vehicle Control vs. Ethanol Control, p=.001; Collagen Vehicle 

Control vs. Experimental Flutamide Treatment, p=.001). 

Cranial shape index was investigated for differences group by age. Figure 54D exhibits 

the mean (+/- SE). All groups represent a similar growth curve.  There appears to be a derivation 

for the collagen control group at 42 days of age, it appears to be much greater than the other 

groups. There were multiple violations of normality.  A natural log transformation worked best 

to normalize the data but two violations remained, collagen vehicle group at 10 days (W=.685, 

p=.004) and experimental flutamide group at 25 days.  ANOVA should be robust against these 

violations. The assumption of homogeneity of variance was met for all comparisons. There were 

no significant differences for cranial index by group for any age, 10 days, F=.518, df 3,25, 

p=.674, 25 days, F=.631, df 3,26, p=.602, 42 days, F=.952, df 3,23, p=.432, or 84 days, F=.195, 

df 3,21, p=.899. 
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Cranial length was investigated for differences group by age. Figure 54E exhibits the 

mean (+/-SE). The pattern of growth appears to be the same for all groups. The assumption of 

normality was violated for two groups, collagen control group at 10 days (W=.743, p=.02) and 

42 days (W=.722, p=.02). Standard transformations did not improve on the normality. ANOVA 

should be robust against this violation. The assumption of homogeneity of variance was met for 

all comparisons except the 42 day comparison, F=7.634, p=.001. For that comparison a robust 

test of equality of means, a Welch test, was employed. There were no significant differences in 

cranial length by group at 10 days of age, F= .404, df 3, 25, p=.751, 25 days, F=1.313, df 3, 26, 

p=.291, 42 days, F=2.528, df 3, 9.118, p=.122, or 84 days of age, F=.407, df 3, 21, p=.750. 

Cranial vault width was investigated for differences by group at each age. Figure 54F 

exhibits the mean (+/-SE). Growth curves appear to be similar with a derivation by the flutamide 

experimental group at 25 days, appearing to increase in width more than the other groups. The 

assumption of normality was met for each comparison. The assumption of homogeneity of 

variance was met for each comparison. There were significant differences by group at 10 days, 

F= 3.096, df 3, 25, p=.045, and 25 days, F=3.488, df 3, 22 p=.033. Least square differences at 10 

days were for the collagen vehicle control group (χ=23.28, SD 1.03) compared with all other 

groups, surgical controls (χ=21.81, SD 1.42), p=.017 ethanol control (21.60, SD 1.00), p=.013 

and flutamide experimental group (χ=21.88, SD 0.68), p=.025. Least square differences at 25 

days existed only between the experimental flutamide group (χ=26.58, SD 1.05) and the surgical 

control group (χ=24.11, SD 2.21), p=.006. There were no significant differences by group at 42 

days, F=1.410, df 3, 24, p=.264 or 84 days of age, F=.650, df 3, 17, p=.593. 

Cranial height was investigated for differences by group at each age. Figure 54G exhibits 

the mean (+/-SE). The assumption of normality was met for each group. The surgical control 
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group appears to fall off at 25 and catches up to the other groups by 84 days of age.  The ethanol 

control group appears to have a greater cranial height at 84 days of age. The assumption of 

homogeneity of variance was met for all comparisons.  There were significant differences in 

cranial height by group for 10 day, F=3.012, df 3, 25, p=.05 and 25 days of age, F=4.182, df 3, 

26, p=.015. The least squared differences for 10 days of age demonstrate the collagen vehicle 

group (χ=18.48, SD .80) to differ significantly from all other groups, surgical controls (χ=16.71, 

SD .72), p=.011, ethanol controls (χ=16.78, SD .75), p=.029, and flutamide experimental group 

(χ=16.80, SD .70), p=.022. The least squared difference at 25 days of age exhibited significant 

differences between the surgical control group (χ=17.96, SD .58) and the ethanol controls 

(χ=19.25, SD .85), p=.009, as well as the flutamide experimental group (χ=19.23, SD 1.22), 

p=.006. There were no significant differences for 42 days, F=2.178, df 3, 23, p=.118, or the 84 

day comparisons, F=.598, df 3, 21, p=.624. 

Cranial base angle was investigated for differences by group at each age. Figure 54H 

exhibits the means (+/-SE).  Different patterns of growth appear to exist. The experimental 

flutamide group shows a decrease in angle over time, the surgical and collagen vehicle controls 

appear to increase in angle until 42 and then sharply decrease and the ethanol control group 

appears to have a flat line, or lack of change in angle. The assumption of normality was met for 

each group. The assumption of homogeneity of variance was met for all comparisons. There 

were no significant differences in cranial base angle by group at 10 days, F=1.465, df 3, 24, 

p=.249, 25 days, F=.838, df 3, 25, p=.486, 42 days, F=1.010, df 3, 22, p=.407, or 84 days of age, 

F=.416, df 3, 20, p=.744. 

Palatal angle was investigated for differences by group at each age. Figure 54I exhibits 

the means (+/- SE). A similar pattern of growth exists for all groups, decreasing angle over time, 
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except for the collagen vehicle control group which appears to exhibit a sharp increase between 

10 and 25 days, and tapers off after. The assumption of normality was met for all groups. The 

assumption of homogeneity of variance was met for each comparison. There was a significant 

difference in palatal angle by group at 10 days of age, F=10.247, df 3, 24, p<.001. Least squared 

significant difference reveal the collagen vehicle control group (χ=126.06 SD 2.98) to exhibit a 

less obtuse angle than every group, surgical controls (χ=130.91, SD 2.43), p=.001, ethanol 

control (χ=132.58 SD 2.82), p<.001, and flutamide experimental group (χ=133.03, SD 1.20), 

p<.001. There were no significant differences in palatal angle by group at 25 days, F=1.269, df 3, 

25, p=.306, 42 days, F=2.888, df 3, 22, p=.06, or 84 days of age, F=.569, df 3, 20, p=.642. 
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Figure 54: Cephalometry 

Surgical Controls, BSA Vehicle Control, Ethanol Control, and Flutamide Experimental Control 

Left to Right, Top to Bottom: A. Craniofacial Length, B. Intracranial Volume, C. Cranial Base Length, D. 

Cranial Shape Index, E. Cranial Length, F. Cranial Width, G. Cranial Height, H. Cranial Base Angle, I. 

Palatal Angle 
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4.0  DISCUSSION 

4.1 MAJOR CELLULAR MORPHOLOGY RESULTS 

4.1.1 Overview 

The primary goal of the characterization of cellular response to testosterone was to 

determine if differences existed between our craniosynostotic rabbit colony and wild type 

controls. This investigation was specific to osteoblast activity, proliferation and differentiation. 

Increased susceptibility to testosterone exposure may be a possible pathway for the increase in 

bone seen at the synostotic rabbit coronal suture. An interesting by-product of these analyses was 

the suture bone versus non-suture bone comparison for these same effects.  

Cells treated with ethanol showed decreased proliferation and differentiation compared to 

baseline, irrespective of phenotype or bone type. The effects of ethanol on bone cells were tested 

because water and PBS were not sufficient to reconstitute the flutamide. For each assay in this 

study, MC3T3-E1 cells were used as an established positive control. MC3T3-E1 cells were 

found to have low variability within experiments, suggesting consistent assay techniques. 

Because it stimulates osteogenic differentiation, BMP administration was expected to 

reduce cell proliferation. However, both suture and non-suture bone of our affected synostotic 

rabbits showed an increase in proliferation at 7 days after BMP treatment, compared to baseline. 
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The standard error bars are sizeable. This error reflected the true variability in these samples. 

Further, these data may point toward a greater variation in cellular response than reported in the 

literature. Here, the sample N equaled the number rabbits used for the study, not the number of 

wells run, or times the same cells were run. To reiterate, three wells were used for each study and 

averaged to compute a mean for the plate. The grand mean resulted from averaging three 

identical plates. The wild type suture bone was also comparable to baseline numbers. A true 

decrease in proliferative activity after BMP treatment may occur earlier with recovery by seven 

days. However, pretest proliferation analyses allowed for determination of both time and cell 

density for cell culture. Thus, for these cells, BMP did not decrease proliferation as expected. 

Although not significant, testosterone treatment did seem to effect proliferation averaged 

across cell types. The data suggest testosterone increases proliferation. The dose response curve 

demonstrates an interesting trend. Synostotic cells had substantially increased proliferation 

response with testosterone treatments above -30mol. There also appeared to be a biphasic 

response to testosterone for rabbit cells with peak reactions around -12 and -30mol treatments. 

The synostotic suture bone at -12 and -30mol treatments was more proliferative than other cell 

types. The non-suture bone also showing an increase in activity at -30 mols. However, analysis 

of variance did not show differences by dose, bone type, phenotype, or any interaction, 

suggesting presence of exogenous testosterone might affect proliferation for bone cells 

independent of these doses. Though the doses may appear to be unnecessarily low, increased 

proliferation was demonstrated at the -30mol dose for synostotic suture bone.  

For all cell types, combined testosterone and BMP treatment did not significantly alter 

proliferation compared to BMP treatment alone. However, the synostotic suture bone cells 

exhibit between 1.4 and 1.6 times the proliferative activity compared to baseline values. 
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Synostotic non-suture bone nearly doubled its proliferation at -16mol compared to baseline. 

Lower concentrations of testosterone had less effect. Other cell types treated with both 

testosterone and BMP show little change in proliferation compared to BMP treatment. Non-

suture bone showed peak proliferation at -16mol while suture bone peaked at -14 mols, 

suggesting regional differences in proliferative response to combined BMP and testosterone 

treatment. However, there were no statistically significant differences for dosage, bone type, 

phenotype, or interaction terms. Thus, these data suggest treatment with exogenous testosterone 

alone or with BMP does not significantly affect proliferation in calvarial bone cells.  

There was precedent for collapsing cell type, phenotype, and dose data sets to more 

generally compare groups because none were strong predictors of proliferative response. The 

resulting N is then 132. This analysis showed that testosterone treatment decreased proliferation. 

Though testosterone and BMP co-culture also decreased proliferation compared to BMP alone, 

the differences were not statistically significant. Thus, testosterone does appear to inhibit 

proliferation alone and in co-culture with BMP, suggesting the cells may be differentiating or 

calcifying.  

BMP treatment appears to affect differentiation. Synostotic non-suture bone exhibited a 

greater response to BMP stimulation compared to suture bone. This result was opposite of the 

hypothesis that bone derived from a previous growth site would have more differentiation 

response than bone derived from a non-growth site. When ALP activity was averaged across cell 

types, BMP did not significantly alter differentiation. However, the p value was extremely close 

to significance, suggesting a trend toward increased differentiation. The collapsed data also 

shows a statistically insignificant increase in differentiation caused by BMP treatment.  
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Testosterone administration elicits greater differentiation in the synostotic cells compared 

to wild type controls. Within synostotic cells, the non-suture bone exhibited more differentiation 

activity than suture bone. The non-suture bone exhibited a biphasic dose response curve with 

peak differentiation activity at -16 mols. and -30 mols. treatments. The -30 mols. dose exhibited 

a 20x increase in differentiation activity. Synostotic suture bone exhibited the greatest 

differentiation at -14 mols, and -30mol, suggesting a biphasic response as well. Other cell types 

did not significantly differ from baseline. These measurements taken from these experiments 

showed high levels of variation between subjects (rabbits). These data, averaged across cell 

types, suggest testosterone treatment did not significantly alter differentiation. Wild-type animals 

exhibited greater differentiation under testosterone administration for suture bone compared non-

suture bone. Synostotic affected rabbit cells exhibited the opposite relationship. In addition, the 

synostotic cells from suture and non-suture bone, exhibited greater differentiation than wild type 

cells. Again, dose did not show statistically significant differences. The collapsed data 

demonstrated testosterone administration significantly inhibited differentiation. Contra most 

reports in the literature, testosterone administration decreased both proliferation and 

differentiation. This point will be further discussed below (section 4.1.2). 

For all cell types combined, testosterone and BMP co-culture treatment significantly 

increased the differentiation response compared to BMP treatment alone. This result suggests an 

additive relationship for BMP with testosterone. Synostotic non-suture cells had peak 

differentiation activity at -14 mols. testosterone with BMP treatment. The -14 mols. dose resulted 

in a mean 40x increase in differentiation compared to BMP only treatment. Synostotic suture 

bone had peak differentiation at a lower dose, -16 mols. The wild type cells do not differ from 

baseline BMP differentiation measures. For this analysis, synostotic cell types exhibit a large 
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amount of variation about the mean. This relationship reflects the variation in the synostotic 

rabbit colony. The analysis of variance suggested no significant differences by dose, phenotype, 

or interaction terms. However, non-suture bone does have greater differentiation measures 

compared to suture bone for testosterone and BMP treatment. The collapsed data set 

demonstrated that testosterone BMP co-culture resulted in an increase in differentiation 

compared to BMP baseline. Thus, testosterone did increase the effects of BMP on osteoblast 

differentiation. 

The primary goal of the characterization of cellular response to flutamide was to 

determine if the effects noted in the testosterone administration data could be mediated using this 

androgen receptor blocker. The expectation was that flutamide administration alone would not 

significantly affect proliferation or differentiation. When not in the presence of androgen 

flutamide should have little effect. However, in the presence of testosterone effects should be 

noted.  

For these characterizations, a constant -16 mols. testosterone dose was chosen. This 

concentration coincided with the greatest differentiation response for testosterone with BMP 

added for the testosterone studies. Control data showed BMP decreased proliferation compared 

to control baseline values. In addition, testosterone showed no differences or proliferation by 

dose, cell type, phenotype, or significant interaction terms, consistent with the above testosterone 

analyses. Combined testosterone and BMP treatments significantly decreased proliferative 

activity when compared to BMP baseline. There were no differences, however, for cell type, 

phenotype, or interaction terms. The collapsed data set analysis was consistent with these 

findings. 
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For all cell types, flutamide treatment significantly reduced proliferation activity 

compared to baseline proliferative values. This result may indicate the presence of endogenous 

receptors in these cells. However, there were no significant differences by doses, cell type, 

phenotype, or significant interaction. This suggests the cell types have equal response to 

flutamide administration. The collapsed data did not show a significant difference between 

flutamide and baseline values. This suggests the effects of flutamide administration on cell 

proliferation are minimal.   

Combined flutamide and BMP administration significantly decreased proliferation 

compared to BMP baseline values. Flutamide appeared to have the greatest effect, inhibition, in 

the wild type cells. There was a dose dependent response across all cell types. Cell treated with 

flutamide at -10 mol. dose treatments showed less proliferative activity than other doses. This 

result suggests flutamide is similar to testosterone in that it can demonstrate a biphasic response 

for proliferation. However, the collapsed data did not exhibit a difference for proliferation after 

combined flutamide and BMP treatment. This observation provides further evidence that there is 

great cell response variation inherent in these samples. 

Flutamide administration was expected to have the greatest effect in the presence of 

testosterone. Data above suggest testosterone inhibited cell proliferation in these rabbit cells. For 

all cell types, combined flutamide and testosterone treatment did not significantly alter 

proliferation compared to testosterone treatment alone. The flutamide response was variable, but 

most permutations showed a decrease in proliferation. However, synostotic suture bone at -10 

mols and wild type cells from non-suture bone at -8 mols showed an increase in proliferation. 

These results may suggest some difference in responsiveness by dose and cell type. 

Nevertheless, the collapsed data set demonstrated a significant increase in cell proliferation for 
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combined testosterone and flutamide treatment compared to testosterone treatment alone. This 

result provides evidence that flutamide mediates the effects of testosterone for cell proliferation. 

The combined flutamide, BMP, and testosterone co-culture treatment significantly 

reduced proliferation activity compared to combined BMP with testosterone treatment. This 

effect was especially strong or wild type non-suture bone. There were no differences found by 

dose, or phenotype. However, non-suture bone showed a greater reduction in proliferative 

activity compared to suture bone. Conversely, the collapsed data set did not exhibit a significant 

difference between combined flutamide, BMP, and testosterone compared to BMP and 

testosterone treatment alone.  

 To reiterate for the control data, BMP treatment significantly increased differentiation 

compared to baseline values. Wild type suture bone had the highest values for differentiation 

with BMP treatment. However, there were no significant differences by phenotype or cell type. 

Testosterone treatment did not increase differentiation. Wild type non-suture bone had the 

greatest differentiation upon testosterone treatment. Again, there were no significant differences 

by phenotype or cell type. In addition, for combined testosterone and BMP treatment, suture 

bone had significantly greater differentiation response compared to non-suture bone. Combined 

testosterone and BMP treatment decreased differentiation for this -16 mols. dose. The results 

from the testosterone study are not consistent with these results where the co-culture 

demonstrated increased differentiation. This result reflects the inherent variability between the 

animals utilized.  

 For all cell types, flutamide treatment decreased differentiation from baseline values. 

Again, it is possible that flutamide was targeting endogenous testosterone and/or androgen 

receptors present in the cells. A greater effect on differentiation, decrease, at lower doses of 
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flutamide was noted for suture bone. Non-suture bone had decreases in differentiation activity at 

higher flutamide dose. However, there were no significant differences by phenotype, cell type, or 

dose for amount of differentiation with flutamide treatment. The collapsed data set showed no 

significant difference, between flutamide treatment, and baseline values for differentiation. This 

result suggests flutamide had little effect on these cells when administered alone.  

Combined flutamide and BMP treatment did not significantly affect differentiation 

compared to BMP baseline differentiation. There were not significant differences for dose or 

phenotype. Suture bone did exhibit a significantly greater increase in differentiation compared to 

non-suture bone. This result suggests regional differences in susceptibility to flutamide 

treatment. However, the combined data set shows no significant difference for differentiation 

between combined BMP and flutamide treatment compared to BMP alone. This result suggests 

overall, flutamide does not the effect of BMP on osteoblast differentiation.  

For all cell types, combined flutamide and testosterone treatment reduced differentiation. 

However, there were no significant differences by dose, phenotype, or dosage. This result 

suggests all cell types respond similarly to this combined treatment. The collapsed data indicated 

showed that combined flutamide and testosterone treatment significantly inhibited 

differentiation. This treatment resulted in the least amount of differentiation of all treatments.  

Combined flutamide, testosterone, and BMP treatment showed a significant decrease of 

the differentiation response compared to combined testosterone and BMP treatment. All cell 

types except wild type non-suture bone responded in a dose dependent manner, the higher doses 

of flutamide resulted in less differentiation. However, there were no significant differences for 

reduction in differentiation by cell type, phenotype, or dosage, again suggesting a similar 
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response across all type. The collapsed data analysis showed the same relationship. The 

flutamide, BMP, and testosterone combined treatment decreased differentiation.  

To briefly summarize these cellular results, very few differences existed by phenotype 

and cell type. In addition, there were no significant differences existed by dose. There was great 

variation in measures reflecting the biological, cellular, and molecular reality of the study of 

hormones. Inter-individual variation existed as well. This reflects the actuality of cellular studies 

using a true sample size. For testosterone and combined testosterone and BMP treatment, the 

synostotic cell dose response curves were impressive. However, there were no significant 

differences by dose. This appears to be due to statistical outliers. These outliers point toward a 

physiological spectrum for sensitivity to exogenous androgenic exposure. The wild type animals 

did not exhibit this same variation. These results suggest there may be an interaction between 

androgenic hormone exposure and the overproduction of bone in our affected animals. The 

outcomes of these studies suggest a little hormone exposure during a critical time window can 

majorly affect bony growth.   

Moreover, it appears that suture bone and non-suture bone are more reactive to an 

increase in differentiation at different doses. Suture bone peaked in its differentiation activity at a 

slightly lower dose than non-suture bone, which suggests different biphasic curve responses by 

bone types. In general, it appeared that suture bone responded less to flutamide, testosterone, and 

BMP co-culture than non-suture bone.  

The collapsed data set provided a clear indicating of these experimental treatment effects 

on calvarial bone derived cells. Testosterone and combined testosterone and BMP treatment 

resulted in a decrease in proliferative activity. These results suggest that the cells were no longer 

proliferating and were differentiating or even constructing a calcified matrix. In addition, it 
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appeared that flutamide mediated these effects. Flutamide treatment groups resulted in a greater 

proliferative response. Thus, testosterone appeared to inhibit proliferation, alone and with BMP. 

This effect was rescued by flutamide administration. 

Research suggests BMP should elicit greater osteoblast differentiation. These data show 

testosterone to increase the effects of BMP on differentiation. The testosterone treatment did not 

exhibit an increase in differentiation. This result suggests the androgenic effect on osteoblast 

differentiation can be mediated through the BMP pathway. Flutamide administration greatly 

decreased the combined testosterone and BMP effect on differentiation. This result suggests that 

flutamide can counteract the effect that androgenic hormone has on BMP in osteoblast 

differentiation. As flutamide is a specific androgen receptor blocker, it follows that androgen 

receptors must have been present in these calvarial derived cells.  

4.1.2 Comparison to Studies in the Literature 

Unlike reports in the literature (Kasperk et al., 1989), the data here suggest that the effect 

testosterone has is dependent upon the presence of BMP. Testosterone alone demonstrated little 

effect on cell proliferation. It may be that other growth factors enhance skeletal growth when 

treated with testosterone. These growth factors may include the FGFs, IGFs, and TGFβs (Gori et 

al., 1999; Hofbauer et al., 1998). The MAP kinase ERK-1 can mediate testosterone’s 

proliferative effect. MAP kinase is redundant in most cell proliferation and differentiation 

pathways (Hofbauer et al., 1998; Wiren et al., 2004). Data from the present study is in contrast to 

what Kasra and Grynpas (1995) concluded with in vivo study of primate bone densities after 

long term androgen exposure (Kasra and Grynpas, 1995). It is most likely that the observed 

differences in bone density were due to the effect that testosterone has on muscle development 
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and not that it directly affected bone cell biology (Compston, 2001; Notelovitz, 2002; 

Vanderschueren et al., 2004; Wiren and Orwoll, 2002; Wiren, 2005). Additionally, bone marrow 

has also been the target of investigation for a testosterone dependent effect, It appeared that 

testosterone increased endothelial cell proliferation, which suggests a possible mechanism for 

maintenance of bone integrity in general (Foresta et al., 2008; Ray et al., 2008). In addition, 

testosterone also decreased the proliferation of osteoclasts (Michael et al., 2005).  

Wang et al. (2007), using DHEA on a primary murine osteoblast cell line showed an 

increase proliferation and decrease apoptosis via the MAP kinase pathway (Figure 55). This 

demonstrated the effectiveness of an adrenal based hormone to mediate bone cell morphology, 

independent of androgen or estrogen receptors (Wang et al., 2007). Interestingly, BMP-2 has 

also been implicated as an agonist to the MAP kinase ERK pathway, increasing phosphorlyation 

of SMAD and increasing the expression of P38 and ERK downstream (Ghosh-Choudhury et al., 

2007; Naganawa et al., 2008; Tang et al., 2008). It may also be that dihydrotestosterone induces 

a phosphorlyation of the protein kinase Akt, which induces translocation to the osteoblast 

nucleus, causing cell growth (Kang et al., 2004). Miki et al. (2007) also found that an aromatase 

inhibitor increased osteoblast proliferation in a human osteoblast cell line. This effect was 

inhibited by flutamide administration suggesting an androgen receptor specific response. 

However, these authors also found, via reverse transcriptase polymerase chain reaction, an 

increase in the expression of HOX D11. Thus, androgens can affect the osteoblast lineage via 

AR dependent or independent pathways (Miki et al., 2007). In addition, it would seem that 

HOXD 11 expression could be upregulated even if all of its downstream targets were not. 

Flutamide administration did decrease osteoblast proliferation in Miki et al. study. It is important 

to note that adrenal androgens appear to have several pathways in which osteoblasts and bone 
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formation can be affected. However, it is unclear, if the more potent testosterone and 

dihydrotestosterone both have the same affinity as the adrenal hormones. Since cell data from the 

present study showed a significant effect with flutamide administration, it was probably 

mediated by androgen receptors. 

 

Figure 55: Mitogen Activated Protein Kinase Pathway 

Modified from http://www.emdbiosciences.com/popup/CBC/ip_mapk_signaling_pathway.htm 

 

Lin et al. (2007), after androgenic administration in fetal mouse calvarial osteoblasts and 

dural cells showed increased proliferation and differentiation, suggesting a possible role in suture 

fusion. This is contra to the results found here and those reported by Chen et al. (2000). Chen et 
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al. (2000) reported that testosterone administration in a rat fetal calvarial model decreased 

proliferation, and slightly increased differentiation. The only difference may be that Lin et al 

(2007) used dihydrotestosterone, a much more potent androgenic hormone than testosterone.    

Thus, data from the present study are unique in that they addressed the interaction of 

testosterone and BMP on osteoblasts. Testosterone appeared to increase BMP’s affinity for 

osteoblast differentiation, this decreasing proliferation. In addition, this primary cell culture 

model reflected a true sample size with its large spectrum of variation, not generally used in most 

cell culture studies. 

4.2 SUMMARY OF ANDROGEN RECEPTOR FINDINGS AND COMPARISON TO 

PUBLISHED STUDIES 

Androgen receptors in the gonads, calvarial, and suture derived bone cells in study 

animal could not be identified using Western Blots or immunohistochemistry. This was expected 

because, the only antibody commercially available was a monoclonal antibody made in mouse 

against human. These antibodies are made to reduce cross reactivity. It is interesting that the 

anti-rabbit polyclonal antibody was also not successful in identifying the androgen receptor in 

mouse-derived. Because gonads are an active site of androgen receptors, the 

immunohistochemistry should have been positive on these slides. This was good evidence that 

our antibody would not work on the multitude of suture derived histology slides cut. It was 

known that using a monoclonal antibody such as this one, would be problematic due to its high 

level of specificity. Any change in the structure of the epitope would result in a negative result. 
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Unfortunately, this was the only antibody commercially available for the androgen receptor that 

was not made in rabbit. 

Other researchers have identified the androgen receptor in the calvaria by using 

immunohistochemistry. Lin et al. (2004), was able to identify androgen receptors in the posterior 

frontal suture dura, posterior frontal osteogenic front, coronal suture dura, sagittal suture dura, 

and the sagittal suture osteogenic front of late gestation fetal mice. Interestingly however, Lin et 

al., (2004) reported no staining (or inconsistent staining) for the coronal suture osteogenic front 

and the coronal suture midsutural mesenchyme. This discovery laid the basis for the present 

investigation on the effects of androgens on suture biology and subsequent craniofacial growth. 

The western blot analyses were equally as unproductive, mostly because the MC3T3-E1 

cells demonstrated no presence of an androgen receptor. The membranes of the western blot 

were positive for protein transfer as identified by coomassie blue total protein stains, and protein 

bands did exist for all cell types between 100-150 k Da where the androgen receptor is located. 

In addition, membranes were positive for beta actin, a cytoskeletal actin gene that is often used to 

compare intensity of proteins present on immunoblotting and successful transfer of protein, for 

all cell types. It was assumed that the MC3T3-E1 cells would be positive for the androgen 

receptors. Upon further inspection into the literature only three studies demonstrated positive 

results for AR using western blots in MC3T3-E1 cells (Balkan et al., 2005; Nakano et al., 1994; 

Wiren et al., 2002). These studies pretreated or transfected cells used with androgenic hormone 

derivates at least three days in culture, prior to analyses. Upon testosterone exposure, androgen 

receptors translocate to the nucleus from the cell membrane and which when bound to androgen 

response elements can transactivate target genes (Lin et al., 2004). Thus, the results of the 

present study suggest that it may be necessary to expose cells to androgenic hormone prior to 
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western blotting to allow for identification of the androgen receptor. The methodological basis 

behind this practice is not clear, as all cells are lysed during processing for western blotting, 

releasing the nucleus. In addition, no published studies have identified androgen receptors in the 

bone cells of rabbit, and as stated above there is no commercially available antibody that is 

proper for use in rabbit for identification of the androgen receptor. Finally, as an aside, it seems 

unlikely that there would have been differences in cellular response, proliferation and 

differentiation, to testosterone, and that the cellular responses could have been mediated with 

flutamide treatment, if androgen receptors were not present in these cells. 

4.3 IN VIVO FLUTAMIDE THERAPY 

4.3.1 Overview 

Data from the present study showed very few growth differences following flutamide 

therapy in synostotic rabbits. Although there were differences in bodyweight after 10 days of age 

(the experimental group exhibited greater weight), this was seen before any treatment occurred 

and suggests that these differences were due to normal variation in the colony. More importantly, 

there were no significant differences in the somatic growth control variable, metacarpal length, at 

any time point by group, which suggests a similar bony growth trend. 

There were not many differences by groups in the cephalometric variables suggesting a 

limited effect of the localized flutamide treatment. A clear trend toward greater coronal suture 

marker separation for the experimental flutamide group compared to controls was observed. 

Here the ethanol controls appear to have a similar trend by 84 days as the surgical controls. At 
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the 42 day time point (17 days post operation), the flutamide experimental group exhibited 

greater growth across the coronal suture than the surgical or collagen vehicle controls, suggesting 

an effect on growth during this time period. However, coronal suture growth in the ethanol 

control group was not significantly different from the experimental group. These results 

indicated that increased coronal suture growth might be due to the ethanol used to reconstitute 

the flutamide. Indeed, given the cellular evidence intrinsic to this dissertation, ethanol treatment 

appeared to decrease proliferation and differentiation of osteoblasts. Literature also supports this 

finding, suggesting ethanol exposure causes apoptosis (Klein, 1997; Klein et al., 1996; Vignesh 

et al., 2006).  

The purpose of the rescue therapy was to delay the ultimate fusion of the coronal suture 

in this model, and facilitate craniofacial growth, specifically in the antero-posterior dimension. 

These animals tended to have the propensity for severe brachycrania. Thus, although the 

flutamide therapy may have been mildly successful in the maintenance of growth across the 

coronal sutures, significantly different cephalometrics measures for craniofacial length, cranial 

base length, cranial length, cranial width, cranial height, cranial index and even intracranial 

volume, would be important to establish that this therapy produced the intended effect.  

If the flutamide therapy contributed to correction of growth, the expectation would be for 

a greater craniofacial length in the experimental group. These data did not provide evidence for 

any real variation among the groups for this measure. In addition, the analysis of variance 

revealed no differences between groups at any time point. Consequently, the flutamide therapy 

was not deemed useful for completely rescuing coronal sutures destined to undergo fusion and 

subsequent correction of craniofacial growth. 

 135 



A successful therapy would be expected to induce a greater cranial length. Results 

suggest that the ethanol controls may have a greater growth pattern than the other groups. Only 

at the 25-day time point does it appear that the experimental group has the greatest mean cranial 

length. Again, here the analysis of variance revealed no differences by group by age. The cranial 

base length results are equally as poor, suggesting that the collagen vehicle with protein controls 

to have the greatest mean base length at all time points. In addition, it appears as though the 

surgical controls have the greatest change in growth between 42 and 84 days. The analysis of 

variance demonstrated the same relationship.  

For both cranial width and cranial height, a decrease in these mean values would be 

expected for a successful craniofacial surgical intervention. The experimental group appears to 

have larger values for cranial with by 84 days than the controls. Cranial height on the other hand, 

demonstrated a possible decrease in the growth curve for the experimental group. Nevertheless, 

there were no statistically significant differences by group or by age after surgical intervention 

for cranial width or cranial height.  

It has been suggested that craniosynostosis can alter intracranial volume (Cohen and 

MacLean, 2000; Mooney et al., 1998a; Mooney et al., 2007b). With his in mind, it follows that a 

successful surgical cytokine intervention would lead to differences in intracranial volume. 

Measuring length by width by height has been established as an appropriate relative 

approximation for intracranial volume (Cray et al., 2008; Morris et al., 2009; Rogers, 1980). 

According to these measures, it appears that the collagen vehicle group exhibited the greatest 

cranial volume by 84 days. There were no statistically significant differences in intracranial 

volume at 42 or 84 days, for group by age. 
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These results seem to suggest that even though the experimental group enjoyed 

minimally more growth across the coronal suture, craniofacial growth and intracranial volumes 

were not improved. It will be important to statistically compare these results to other molecular 

therapies used in this model. Possible reasons for the lack of an overarching effect may be due to 

problems with the surgical vehicle. As stated above the flutamide was viscous and neither 

phosphate buffered saline nor was water able to reconstitute the hormone receptor blocker. Thus, 

ethanol was utilized. In essence, it is possible that the resulting effect on the collagen would be to 

fix the vehicle after mixing. Another possible culprit for the lack luster effects of this study could 

be dose. As no other previous research had been implemented to study the effect of hormone 

receptor blockers in bone biology, or craniofacial biology more specifically, it was a shot in the 

dark. The cellular studies though informative are a difficult template for the abstraction of an 

appropriate dose. As it appears there was a biphasic response to flutamide administration in the 

cellular studies, our dosage implemented in vivo could have been too great or too little. In 

addition, the androgens might not have been overexpressed, or might not have been critical to 

growth in these tissues, which would render the experimental intervention ineffective. In 

addition, the effect that androgens have on TGFβ may not be necessary for proper TGFβ 

functionality. This functionality could have been maintained regardless of the experimental 

intervention by the presence of another hormone, or protein interaction. A final explanation for 

the results of this study would be that there is no positive indication, that androgen receptors are 

located in the osteogenic fronts or in the sutural ligament of the coronal suture, as suggested by 

Lin et al. (2004),. Again, this lack of localized androgen receptor would have rendered the 

experimental therapy ineffective. 
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4.3.2 Comparison to Previous Studies 

Published research on the craniosynostotic model has focused on post-operative 

resynostosis after coronal suturectomy. A notable exception is Chong et al. (2003). In this 

experiment the same methodology was implemented as here. However, TGFβ3, thought to 

inhibit synostosis, was used as a therapy. Chong et al. demonstrated that a high dose of TGFβ3 

rescued fused sutures and allowed for greater growth across the coronal suture, about a 4.5 mm 

increase by day 84. Comparing the data gathered in this present study  to that of Chong et al., 

(2003); high dose TGFB3 appeared to have a greater effect on the coronal suture growth than 

flutamide therapy. The flutamide group mean coronal marker distance was 4 mm. The crux of 

the Chong et al. (2003) study was histomorphometry, which demonstrated again greater width at 

the suture compared to control animals. Thus, TGFB3 therapy was identified as a method for 

inhibiting coronal synostosis.   

The unoperated delayed onset craniosynostotic rabbit model, craniometrics have been 

reported (Burrows et al., 1995). Average cranial vault width at 84 days of age was reported to be 

32 mm (+/-) .226 mm. The animals in the present study all displayed less cranial width than 

these unoperated animals. The coronal marker separation for the present study did not appear to 

differ from that reported by Burrows et al., both being about 4mm. These comparisons again 

indicated that this surgical intervention had very limited usefulness. Similar to what was found in 

Chong et al. (2003), Burrows et al. (1995) reported slightly larger values for cranial height than 

those reported in this present study. However, it appears that cranial length in the flutamide study 

was similar to the length found for the unoperated data in Burrows et al. (1995), suggesting any 

differences in cephalometric data in the flutamide study may be due to inherent growth variation 

in the model.  
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Early onset craniosynostotic occurs in the craniosynostotic rabbit colony (Mooney et al., 

1994a; Mooney et al., 1994b) when the coronal suture completely fuses at or by 10 days after 

birth. This model has also been utilized for attempts at intervention in the post-operative 

resynostosis after coronal suturectomy surgery. Noggin, a BMP inhibitor (Cooper et al., 2007) 

and an antibody to decrease TGF-B2 (Mooney et al., 2007a; Mooney et al., 2007b), have been 

shown to inhibit osteoblast activity and delay reossification of the suture area. Noggin, BMP, and 

TGF-β2 likely effect the osteogenic fronts and the underlying dura. Lin et al. (2004), identified 

androgen receptors in the underlying dura of the coronal suture in a mouse model. Thus, it may 

be a worthwhile to target the underlying dura in the early onset craniosynostotic with flutamide 

to inhibit a potential osteogenic signal. 

4.4 IMPLICATIONS FOR CRANIOFACIAL BIOLOGY 

Androgens are important for their established effect on bone maintenance, as well as the 

effect on bone development. Variations in serum testosterone level may affect cranial shape 

through cell and molecular factors and pathways in bone cell biology or directly through 

mediation of muscular development. Since serum testosterone levels vary between individuals in 

a continuous fashion (Andersson et al., 2003; Brambilla et al., 2007), a similar range may also 

exist for its effect on craniofacial growth. Cranial shape may be influenced by androgen effects 

on the suture. The adrenal androgens can work though androgen receptors and other pathways. 

Thus, the presence of the receptor is not necessary for an androgenic effect. It appears from the 

data in the present study that testosterone can increase the amount of differentiation produced by 

BMP. This result suggests that certain levels of testosterone can cause an increase in osteoblast 
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activity at the suture and other cranial derived bone. Testosterone may also affect other pathways 

such as the TGFβ or FGF pathways. The present study showed a biphasic dose effect on both 

osteoblast proliferation and differentiation. Thus, there is not a simple relationship indicating that 

more testosterone leads to more differentiation.  

Androgenic exposures have been shown to result in larger calvarial dimensions, 

anteroposterior jaw discrepancies, increase in skull length, and inhibition of calvarial growth 

(Barrett and Harris, 1993; Noda et al., 1994; Fujita et al., 2004). These studies highlight a 

genetic-epigenetic-environment interaction. Androgens are intrinsic to the endocrine system via 

the established pathway, but can also be absorbed from exposure via the environment.  

The human syndrome, Antley Bixler, is also indicative of an androgen effect on suture 

biology and growth. Severe cases of Antley Bixler result in trapezoidocephaly, while less severe 

cases result in coronal suture synostosis. Research also suggests that it may be possible that 

Antley Bixler lies toward the severely affected end of the congenital adrenal hyperplasia 

spectrum. Antley Bixler can be caused by maternal virilization, the overexpression of androgen. 

There is seemingly contradictory evidence to virilization and expression of excess androgen. 

Female patients diagnosed with Antley Bixler syndrome exhibit the urogenital characteristics of 

early androgen exposure. Males exhibit the opposite effect, an undervirilization. The expression 

of excess androgen by these patients postnatally is not normally found. The hallmark hormonal 

overexpression is of pregnenolone and progesterone, which are precursors along the 

glucocorticoid and adrenal pathways. These hormones are located well upstream of the sex 

steroid target cells. In a small number of cases, it was shown that both the father and mother of 

Antley-Bixler patients had slightly elevated levels of pregnenolone and progesterone, suggesting 

they were heterozygous carriers. In addition, the mother of Antley-Bixler patients may also 
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express low levels of oestriol, an estrogenic hormone commonly screened for when birth defects 

are suspected (Cragun and Hopkin, 2005; Roth et al., 2000; Shackleton et al., 2004; Warmann et 

al., 2000; Yamamoto et al., 2001). 

Testosterone, an endogenous variable, can be modified by environmental variables or act 

as a teratogen upon exposure (Herbst, 1973; Limbird and Taylor, 1998; Molsted et al., 1997). 

Craniosynostosis likely has a multifactorial threshold model, similar to that described for cleft lip 

and palate. If a genetic predisposition for an anomaly is coupled with an environmental factor, 

which can exacerbate the existing predisposition, a more severe phenotype will result. A better 

understanding of the gene-environment interaction could aid in diagnosis and management of 

craniofacial anomalies (Murray, 2002). 

Growth factors, such as TGFβ1, TGFβ2, and TGFβ3, have been associated with suture 

development in humans, rats, and rabbits. It has been noted that TGFβ1 and TGFβ2 were 

associated with sutural fusion. In addition, TGFβ3 plays a role in keeping sutures patent 

(Mooney et al., 2007a; Mooney et al., 2007b; Opperman and Ogle, 2002; Poisson et al., 2004). 

Therapies developed to rescue sutures from osseous have been developed using TGFβ cytokine 

therapy in a slow-release collagen gel. These therapies have had some success preventing further 

synostosis in both rabbit (Chong et al., 2003) and rat (Opperman et al., 2002) sutures. The 

present study described an attempt to rescue a suture destined to undergo fusion, via an androgen 

receptor blocker. Given the cellular data, it seemed to follow that flutamide administration might 

reduce osteoblast differentiation. Further, the cell data indicated flutamide administration might 

prolong sutural growth at the treated suture. In addition, androgens had a known effect on 

TGFβ2, which the craniosynostotic rabbit model overexpresses. Although, greater growth was 

observed across the coronal suture in flutamide treated animals in the present study, this therapy 
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was not successful in correcting craniofacial growth. In an androgen-compromised model, a 

positive result may have been observed. The present study suggests flutamide administration was 

insufficient to modify overall suture biology. Thus, although in vitro, sutural, and calvarial 

derived osteoblast cells were modified to increase differentiation upon administration of 

testosterone co-cultured with BMP, and this effect was successfully blocked by flutamide 

administration, this was not successfully modeled in vivo. 

4.5 LIMITATIONS AND FUTURE DIRECTIONS 

Future directions concerning cellular studies include additional quantification of cellular 

morphologies, specifically calcification, via standard alizarin red stains or challenge with 

osteogenic media co-cultures with testosterones for quantification of proliferation and 

differentiation. In addition, many permutations upon the known bone pathway could be 

addressed, including co-cultures with the fibroblast growth factors or the TGFβ isoforms, which 

are of particular interest to suture biology. In addition, multiple possibilities exist for better 

quantification of the hormone pathway involvement in normal osteoblast biology as well as 

synostotic suture cells of osteoblast lineage. These possibilities include challenging cells with 

more potent hormone, dihydrotestosterone downstream of the 5α reductase enzyme, or those 

adrenal androgens upstream of the conversion to the estrogenic pathway, including 

androstendione and dehydroepiandosterone.   

There were severe limitations for androgen receptor identification in the rabbit model due 

to the lack of a commercially available antibody suitable for use. For the continued study of 

androgen receptor in the affected rabbit model, it will become necessary to identify sufficient 
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funding to allow a custom-made antibody to be purchased. Once this becomes reality, these 

studies will be repeated to correctly determine presence or absence of androgen receptors not 

only in the cells and tissue of the osteogenic front, but also the underlying dura mater of the 

synostotic animal model. 

There were also several limitations to the in vivo growth studies. The bone pathway logic 

was sound in the sense that flutamide administration should decrease androgen receptor activity 

at the sutural fronts, perhaps resulting in a decrease in TGFβ2 expression. However, no 

published research has applied this treatment clinically to craniofacial growth, which did not 

allow for a proper decision tree for dosage or method of administration. It is possible, given the 

cellular data intrinsic to this dissertation, that the biphasic responses of flutamide administration, 

a higher or lower dose may have been more effective. Another problem was the vehicle, which 

was extremely viscous upon administration due to the necessity to reconstitute the flutamide 

from a solid. For this issue another route of administration or another androgen receptor blocker, 

cyproterone acetate (Broulik et al., 1976; Kauli et al., 1997; Mulder et al., 1987) may prove more 

effective. To reiterate, Lin et al. identified androgen receptor presence in late gestation fetal 

mice. Particularly, they found receptor in the posterior frontal suture dura, posterior frontal 

osteogenic front, coronal suture dura, sagittal suture dura, and the sagittal suture osteogenic 

front. Although the craniosynostotic rabbit model is the best model to study potential therapies 

for the rescue of sutures destined to undergo resynostosis, future research should first replicate 

both suture rescue and postoperative resynostosis after surgical excision. This can be 

accomplished by replicating published methodologies in a mouse or other rodent (Cooper et al., 

2009; Opperman et al., 2002), or by building on the Lin et al work which has positively 

identified androgen receptors at the osteogenic fronts and the underlying dura associated with 
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this suture. Finally, as Lin et al identified androgen receptors in the underlying dura of the 

coronal suture in the mouse, a suturectomy study, in the craniosynostotic rabbit model, utilizing 

an androgen receptor blocker as a therapy, specifically targeting the underlying dura, would be a 

logical step. Other hormone research may also become important for their specific effects on 

suture biology, including estrogens, and the thyroid hormones. A stronger possibility for an 

effect by relaxin administration, which has a specific relationship with collagen organization, 

which is important to within suture organization and eventual sutural fusion also, may prove to 

be interesting. 
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APPENDIX A 

WITHIN SUBJECT ANOVAS 

A 6 x 2 x 2 mixed ANOVA was performed on cellular proliferation response normalized 

to baseline proliferation response as a function of testosterone dose, phenotype and bone type. 

The within subject independent variable was dose with 6 levels (-12,-14,-16,-20,-24, and -30 

mols. testosterone). The between subject variables were phenotype (wild versus synostotic) and 

bone type (suture versus non suture bone). The assumption of normality was violated for 

synostotic suture bone at -12, -20, -24,-30), p=.001.  An inverse function allowed for normality 

for all permutations. Mauchly’s test of sphericity was violated p<.001. Thus a Greenhouse Geiser 

correction was implemented. The independence of subjects assumption was met. There were no 

significant differences in cellular proliferation as a function of dose by phenotype and bone type, 

dose by phenotype, dose by bone type, phenotype by bone type, dose, phenotype, or bone type, 

p>.05, for within subject or between subject effects. 

 A 6 x 2 x 2 mixed ANOVA was performed on cellular proliferation response normalized 

to baseline BMP proliferation response as a function BMP co-cultured with testosterone dose, 

phenotype and bone type. The within subject independent variable was dose with 6 levels (-12,-

14,-16,-20,-24, and -30 mols. testosterone). The between subject variables were phenotype (wild 
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versus synostotic) and bone type (suture versus non suture bone). The assumption of normality 

was violated for synostotic suture bone treated with BMP and all doses of testosterone, as well as 

wild type suture bone treated with -14 mols. A natural log transformation allowed for normality 

for all permutation with the exception of synostotic suture bone at -14 mols (W=.750, p=.013). 

ANOVA should be robust against this violation. Mauchly’s test of sphericity was violated 

p<.001. Thus a Greenhouse Geiser correction was implemented. The independence of subjects 

assumption was met. There were no significant differences in cellular proliferation as a function 

of dose by phenotype and bone type, dose by phenotype, dose by bone type, phenotype by bone 

type, phenotype, or bone type, p>.05, for within subject or between subject effects. There was a 

significant within subject difference by dose, F=3.909, df 2.146, 27.895, p=.029. Post hoc least 

squared differences. Testosterone -14 (χ=.2016, SD .4435) demonstrated significantly greater 

proliferation response than testosterone -12 dose (χ=.0952, SD .4423), p=.04, testosterone -20 

dose (χ=-.0124, SD .3285), p=.04, and testosterone -24 dose (χ=.0195, SD .3468), p=.016. 

Testosterone -16 dose (χ=.2130, SD .4782) was significantly greater than testosterone -20, p=.03, 

and -24, p=.013, doses. 

A 6 x 2 x 2 mixed ANOVA was performed on cellular differentiation response 

normalized to baseline differentiation response as a function of testosterone dose, phenotype and 

bone type. The within subject independent variable was dose with 6 levels (-12,-14,-16,-20,-24, 

and -30 mols. testosterone). The between subject variables were phenotype (wild versus 

synostotic) and bone type (suture versus non suture bone). The assumption of normality was 

violated for synostotic suture bone at -12, -14, -24,-30), in addition to synostotic non suture, and 

wild type suture bone at -30 dose, p=.001.  A natural log function allowed for normality for all 

permutations, except synostotic suture bone at -24 dose (W=.682, p=.002, and T-30 (W=.704, 
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p=.004). ANOVA should be robust against these violations. Mauchly’s test of sphericity was 

violated p=.031. Thus a Greenhouse Geiser correction was implemented. The independence of 

subjects assumption was met. There were no significant differences in cellular differentiation as 

a function of dose by phenotype and bone type, dose by phenotype, dose by bone type, 

phenotype by bone type, dose, phenotype, or bone type, p>.05, for within subject or between 

subject effects. 

A 6 x 2 x 2 mixed ANOVA was performed on cellular proliferation response normalized 

to baseline BMP differentiation response as a function BMP co-cultured with testosterone dose, 

phenotype and bone type. The within subject independent variable was dose with 6 levels (-12,-

14,-16,-20,-24, and -30 mols. testosterone). The between subject variables were phenotype (wild 

versus synostotic) and bone type (suture versus non suture bone). There were multiple violations 

of normality. An inverse transformation allowed for normality for all permutation. Mauchly’s 

test of sphericity was violated p<.001. Thus a Greenhouse Geiser correction was implemented. 

The independence of subjects assumption was met. There were no significant differences in 

cellular differentiation as a function of dose by phenotype and bone type, dose by phenotype, 

dose by bone type, phenotype by bone type, dose, phenotype, or bone type, p>.05, for within 

subject or between subject effects. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular proliferation response normalized 

to baseline proliferation response as a function of flutamide dose, phenotype and bone type. Two 

separate analyses were conducting comparing the within subject independent variable flutamide 

dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between subject variables were 

phenotype (wild versus synostotic) and bone type (suture versus non suture bone).The 

assumption of normality was met for all permutations. The assumption of homogeneity of 
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variance and homogeneity of covariance was met for each analysis Box’s M = 6.683, F (6, 

661.59) = .625, p= .710; Mauchly’s W = 1.000; Box’s M = 5.265, F (6, 661.59) = .492, p= .814; 

Mauchly’s W = 1.000, respectively. Independence of subjects assumption was met. There were 

no significant differences in cellular proliferation as a function of flutamide dose by phenotype 

and bone type, dose by phenotype, dose by bone type, phenotype by bone type, dose, phenotype, 

or bone type, p>.05, for within subject or between subject effect. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular proliferation response normalized 

to baseline BMP proliferation response as a function of BMP co-cultured with flutamide dose, 

phenotype and bone type. Two separate analyses were conducting comparing the within subject 

independent variable flutamide dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The 

between subject variables were phenotype (wild versus synostotic) and bone type (suture versus 

non suture bone).The assumption of normality was met for all permutations. The assumption of 

homogeneity of variance and homogeneity of covariance was met for each analysis Box’s M = 

7.7238, F (6, 661.59) = .677, p= .668; Mauchly’s W = 1.000; Box’s M = 10.264, F (6, 661.59) = 

.960, p= .452; Mauchly’s W = 1.000, respectively. Independence of subjects assumption was 

met. Dose was significant for both comparisons with F -6 BMP co-culture treatment (χ=.9805, 

SD .0647) exhibiting greater proliferation than F-8 BMP co-culture treatment (χ=.9255, SD 

.0684), F=8.988, df 1,8, p=.017; and F -8 BMP co-culture treatment (χ=.9851, SD .1465) 

exhibiting greater proliferation than F-10 BMP co-culture treatment (χ=.8586, SD .1376), 

F=10.264, df 1,8, p=.008. In addition, the only other significant difference was a three way 

interaction for the comparison for -6 and -8 dose owing to the F -8 synostotic non suture bone 

exhibiting a lower than expected mean value (χ=.8843, SD .0334). 
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A 2 x 2 x 2 mixed ANOVA was performed on cellular proliferation activity on cells 

treated with testosterone and flutamide to block activity by dose, phenotype and bone type. Two 

separate analyses were conducting comparing the within subject independent variable flutamide 

dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between subject variables were 

phenotype (wild versus synostotic) and bone type (suture versus non suture bone). The 

assumption of normality was met for all permutations. The assumption of homogeneity of 

variance and homogeneity of covariance was met for each analysis Box’s M = 5.613, F (6, 

661.59) = .525, p= .790; Mauchly’s W = 1.000; Box’s M = 11.164, F (6, 661.59) = 1.044, p= 

.395; Mauchly’s W = 1.000, respectively. Independence of subjects assumption was met. The 

only significant difference was for the interaction dose by phenotype , F=5.844, df 1,8, p=.042, 

due to the synostotic mean block response for -8 mol (χ=.056, SE .043) being greater than that 

for -10 mol (χ= -.047, SE .087), and the inverse relationship existing for the wild type phenotype, 

-10 exhibiting a greater mean decrease (χ=.107, SE .073) than -8 mol treatment (χ=.022, SE 

.036). 

A 2 x 2 x 2 mixed ANOVA was performed on cellular proliferation activity on cells 

treated with BMP, testosterone and flutamide to block activity by dose, phenotype and bone 

type. Two separate analyses were conducting comparing the within subject independent variable 

flutamide dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between subject 

variables were phenotype (wild versus synostotic) and bone type (suture versus non suture bone). 

The assumption of normality was met for all permutations. The assumption of homogeneity of 

variance and homogeneity of covariance was met for each analysis Box’s M = 6.122, F (6, 

661.59) = .572, p= .752; Mauchly’s W = 1.000; Box’s M = 14.808, F (6, 661.59) = 1.385, p= 

.218; Mauchly’s W = 1.000, respectively. Independence of subjects assumption was met. The 
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only significant difference was for dose, flutamide -6 mol (χ=.0793, SD .0645) blocking 

significantly more activity than flutamide -8 mol (χ= -.0087, SD .0635), F=16.162, df 1, 8, 

p=.004. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular differentiation response 

normalized to baseline proliferation response as a function of flutamide dose, phenotype and 

bone type. Two separate analyses were conducting comparing the within subject independent 

variable flutamide dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between 

subject variables were phenotype (wild versus synostotic) and bone type (suture versus non 

suture bone).The assumption of normality was met for all permutations. The assumption of 

homogeneity of variance and homogeneity of covariance was met for each analysis Box’s M = 

631.376, F (9, 733.426) = 1.870, p= .06; Mauchly’s W = 1.000; Box’s M = 5.958, F (6, 661.59) = 

.557, p= .765; Mauchly’s W = 1.000, respectively. Independence of subjects assumption was 

met. There were no significant differences in cellular differentiation as a function of flutamide 

dose by phenotype and bone type, dose by phenotype, dose by bone type, phenotype by bone 

type, dose, phenotype, or bone type, p>.05, for within subject or between subject effect. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular differentiation response 

normalized to baseline BMP proliferation response as a function of BMP co-cultured with 

flutamide dose, phenotype and bone type. Two separate analyses were conducting comparing the 

within subject independent variable flutamide dose with 2 levels (-6 and -8 mols; -8 mols and -10 

mols). The between subject variables were phenotype (wild versus synostotic) and bone type 

(suture versus non suture bone).The assumption of normality was met for all permutations, with 

the exception of wild type suture bone, W=.753, p=.01. ANOVA should be robust against this 

violation. The assumption of homogeneity of variance and homogeneity of covariance was met 
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for each analysis Box’s M = 17.751, F (9, 733.428) = 1.058, p= .392; Mauchly’s W = 1.000; 

Box’s M = 2.257, F (6, 661.59) = .221, p= .973; Mauchly’s W = 1.000, respectively. 

Independence of subjects assumption was met. Dose was significant for comparison of F -6 BMP 

co-culture treatment (χ=1.0772, SD .2795) exhibiting greater differentiation than F-8 BMP co-

culture treatment (χ=.9331, SD .1784), F=10.761, df 1, 8, p=.011. There were no other 

significant differences. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular differentiation activity on cells 

treated with testosterone and flutamide to block activity by dose, phenotype and bone type. Two 

separate analyses were conducting comparing the within subject independent variable flutamide 

dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between subject variables were 

phenotype (wild versus synostotic) and bone type (suture versus non suture bone). The 

assumption of normality was met for all permutations. The assumption of homogeneity of 

variance and homogeneity of covariance was met for each analysis Box’s M = 16.740, F (9, 

733.428) = .998, p= .440; Mauchly’s W = 1.000; Box’s M = 3.374, F (6, 661.59) = .316, p= .929; 

Mauchly’s W = 1.000, respectively. Independence of subjects assumption was met. The 

interaction dose by phenotype was significant, F=12.179, df 1, 8, p=.008, due to the synostotic 

mean block response for -10 mol (χ=.064, SE .071) being greater than that for -10 mol (χ= .014, 

SE .084), and the inverse relationship existing for the wild type phenotype, -8 exhibiting a 

greater mean decrease (χ=.334, SE .073) than -8 mol treatment (χ=.192, SE .060). The 3 way 

interaction was also significant, F=26.560, df 1, 8, p=.001, which appeared to be due to a very 

small mean block (χ= -.055, SE .090) for synostotic non suture bone at -10 mol. 

A 2 x 2 x 2 mixed ANOVA was performed on cellular differentiation activity on cells 

treated with BMP, testosterone and flutamide to block activity by dose, phenotype and bone 
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type. Two separate analyses were conducting comparing the within subject independent variable 

flutamide dose with 2 levels (-6 and -8 mols; -8 mols and -10 mols). The between subject 

variables were phenotype (wild versus synostotic) and bone type (suture versus non suture bone). 

The assumption of normality was met for all permutations. The assumption of homogeneity of 

variance and homogeneity of covariance was met for each analysis Box’s M = 19.880, F (9, 

733.458) = 1.185, p= .301; Mauchly’s W = 1.000; Box’s M = 11.459, F (6, 661.59) = 1.071, p= 

.378; Mauchly’s W = 1.000, respectively. Independence of subjects assumption was met. The 

only significant difference was for dose, flutamide -8 mol (χ=.1865, SD .1995) blocking 

significantly more activity than flutamide -6 mol (χ= .0608, SD .2101), F=16.694, df 1, 8, 

p=.004. 
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