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The anterior cruciate ligament (ACL) is the most important knee stabilizer and is 

frequently injured during sports and work related activities.  Unfortunately, midsubstance ACL 

ruptures have a limited healing capacity. As such, surgical reconstruction using soft tissue 

autografts is often performed. However, long-term follow-up studies have revealed that 20-25% 

of patients had a less than satisfactory outcome.  These negative results have renewed clinical 

interests in healing of a torn ACL by means of biological stimulation.  Thus, there is a need for 

basic science studies in order to better understand such an approach and also to logically develop 

an effective functional tissue engineering (FTE) treatment for an injured ACL.   

The overall objective of this dissertation was to evaluate the positive impact of biological 

and mechanical augmentation on the healing of the ACL using a combined experimental and 

computational approach. The ability of an extracellular matrix (ECM) bioscaffold in combination 

with an ECM hydrogel to enhance ACL healing following suture repair was first demonstrated in 

the goat model.  At 12 weeks of healing, ECM-treatment led to an increase in neo-tissue 

formation as well as improved biomechanical properties of the healing ACL compared to suture 

repair alone.  Second, as the healing process of the ACL was relatively slow even with ECM 

treatment, mechanical augmentation to better restore initial joint stability was required.  

Therefore, a suture augmentation procedure was developed, and improved joint function was 

achieved versus suture repair alone at the time of surgery.  Further, there was increased tissue 
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formation and improved biomechanical properties of the healing ACL at 12 weeks of healing.  

Finally, as a step toward predicting long-term outcomes following these biological and 

mechanical augmentation procedures, a preliminary mathematical model was developed to 

describe the remodeling process of healing ligaments. The results of this work can now be used 

to guide future experiments using FTE treatments to enhance ACL healing.  With a sound 

scientific basis, it is hoped that such exciting new technologies could then be translated into the 

clinical arena to improve patient outcome following ACL injuries. 
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1.0  MOTIVATION 

The anterior cruciate ligament (ACL) is an important knee stabilizer and is subjected to high 

loads during sports and work related activities [87, 258].  As such, it tears frequently and the 

numbers are approximately 100,000 cases per year in the U.S. alone [27].  The loss of knee 

stability after ACL injury results in increased loading of the remaining tissues, such as the medial 

collateral ligament (MCL), medial meniscus, and articular cartilage, that could predispose them 

to damage [6, 113, 189, 208, 225].  It is also well known that midsubstance ACL ruptures have a 

limited healing capacity [13, 164, 169, 281]. Initially, surgeons tried suture repair of a torn ACL 

and had unsatisfactory outcome, with up to 80% failure [13, 61, 119, 120, 185, 237, 281].  For 

the last thirty years, surgical reconstruction using soft tissue autografts to replace a torn ACL has 

been used because these procedures could improve knee stability and allow patient to return to 

preinjury activities [9, 117, 130, 276].  Nevertheless, long-term (10+ years) follow-up studies 

revealed that 20-25% of patients with such surgeries had less than satisfactory outcome, 

including complications associated with the graft donor site and premature osteoarthritis of the 

knee [54, 209, 246].   

With the advent of new technologies, surgeons have revisited the possibility of healing a 

torn ACL by means of  biological augmentation [29, 141, 167, 168, 231, 257].  A successfully 

healed ACL would have many advantages over ACL reconstruction including avoiding donor 

site morbidity and preserving the complex anatomy of the ACL (e.g. its original insertion sites, 
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proprioceptive nerve endings, and so on) that could improve patient outcome in the long-term 

[216]. At the same time, laboratory studies using functional tissue engineering (FTE) 

approaches, such as the use of scaffolds, growth factors, and cells, have shown positive effects 

on restoring the structure and function of an injured ACL [29, 143, 144, 231, 257, 275].    In light 

of these growing interests, there is an increasing need of basic science studies in order to 

properly evaluate as well as to logically develop an effective FTE approach for healing of the 

ACL.   

  In our research center, we have used extracellular matrix (ECM) bioscaffolds, namely 

the porcine-derived small intestinal submucosa (SIS), to enhance patellar tendon (PT) and MCL 

healing.  The ECM-SIS was found to encourage tissue formation, improving the overall quality 

and function of the healing tissue while limiting its hypertrophy [121, 142, 143, 267]. In the case 

of the ACL, the healing following FTE treatments  has been relatively slow [29, 143, 144, 231, 

257, 275].  As the ACL plays a vital role maintaining joint stability, additional mechanical 

augmentation with suture techniques have been added to restore initial joint stability while the 

ACL heals [73, 120, 218].  Nevertheless, there still remains a need for experimental data to asses 

both FTE treatments, such as ECM bioscaffolds, as well as associate suture techniques in terms 

of their ability to enhance ACL healing and maintain joint function.   

While in-vivo experiments are vital to the understanding of the complex biological and 

mechanical stimulus during ligament healing, they are time and resource consuming, particularly 

for longer time points.  An alternative would be to develop a mathematical model to describe the 

biomechanical properties of the ACL throughout the healing process.  An experimentally 

validated model could then be used to predict the effects of FTE treatments in the long-term in a 

time- and cost-efficient manner.  Ultimately, such a model could be implemented within other 
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models, such as a finite element model of the ACL, to design proper rehabilitation protocols. 

Thus, the overall objective was to use a combined experimental and computational approach 

to evaluate the positive impact of biological and mechanical augmentation on the healing of 

the ACL.   
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2.0  BACKGROUND 

2.1 ACL ANATOMY AND FUNCTION 

The ACL is an important knee stabilizer in preventing excessive anterior tibial translation, varus-

valgus rotation, and internal-external rotation of the knee (Figure 1) [259].  Grossly, the ACL can 

be represented by two bundles: the anteromedial (AM) and the posterolateral (PL) bundle. The 

AM bundle is tauter in flexion and the PL bundle tauter in extension. With these two bundles, the 

ACL is well designed to stabilize the knee throughout knee flexion by resisting tensile loads 

under various loading conditions. 

Its biochemical composition consists mostly of water (65-70%) along with fibroblasts 

and their extracellular matrix (30-35%), which is primarily composed of type I collagen, with 

small amounts of other collagens, elastin, proteoglycans, and glycolipids [33, 145, 146, 178, 

255].  The collagen matrix of the ACL is primarily aligned along the axis of loading, so as to 

effectively bear tensile loads and prevent excessive translation of the tibia with respect to the 

femur. Although anatomically intra-articular, the ACL is protected from the synovial fluid by the 

synovium, a thin connective tissue which lines the ACL [57, 97].  The synovium supports a 

dense network of nerves as well as small blood vessels, which are the primary sources of 

nutrition for the ACL [12, 15, 16, 18, 36, 39, 43, 55, 97, 129, 161, 211].  Indeed, if the synovium 

is removed, collagen necrosis and a gradual deterioration of mechanical properties have been 
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observed even when there was no direct injury to the ACL substance [59].  Thus, the synovium 

clearly plays a vital role in maintaining homeostasis of the ACL.   

 

Figure 1. Depiction of the knee joint, showing the important structures for stabilization. 

2.2 ANTERIOR CRUCIATE LIGAMENT INJURIES 

The ACL is the most frequently injured knee ligament during sports and work related activities, 

with tears occurring in over 100,000 people in the United States each year— resulting in an 

annual cost to society on the order of 1 billion dollars [27, 44].  Unfortunately, midsubstance 

ACL ruptures have a limited capacity for healing [13, 98, 119, 164, 252, 281].  If left untreated, 

the injured ACL will often resorb over time [164].  Since the ACL is a primary knee stabilizer, 

joint stability is compromised after its injury. 

As such, a major concern is the potential negative impact on the other tissues in the knee. 

For example, following ACL-deficiency, the other tissue structures of the knee, e.g. the MCL 

and medial meniscus, experience altered loading [6, 113, 189, 208, 225]. In the goat model, the 
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degenerative changes to the medial meniscus as well as the articular cartilage were found as 

early as 8 months following ACL-deficiency [113]. Thus, restoring knee stability and preventing 

damage to surrounding soft tissues are primary goals for treatment after ACL injury [63, 91, 

117]. 

2.3 CLINICAL TREATMENT 

2.3.1 Conservative treatment 

Non-surgical treatment of ACL injuries includes bracing of the knee and rehabilitation protocols 

which aim to increase muscular activity [13, 26, 40, 61, 64, 119, 120, 180, 183, 185, 220, 237, 

238, 281].  These are designed to address the lack of stabilization of the knee, and are still a 

common choice for less active patients or those over 40 years of age.  In some studies, after 

conservative treatment for ACL injuries with appropriate bracing and rehabilitation, as many as 

16% of patients showed evidence of continuity between the femoral and tibial attachment via 

MRI, with others healing to the PCL or lateral femoral condyle [233].  However, most studies 

show unfavorable results in terms of knee stability and return to normal activity levels in about 

50-70% of patients after conservative treatment of an ACL rupture, particularly in those with 

high levels of activity [26, 64, 65, 149, 180, 212, 238, 253].  Another major concern is that 

upwards of 70% of patients with conservative treatment eventually develop osteoarthritis of the 

knee [13, 40, 61, 119, 120, 183, 185, 220, 237, 281].   
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2.3.2 Suture repair  

In light of the poor results following conservative treatment, clinicians have investigated surgical 

alternatives to treat ACL injuries.  A number of suture repair techniques have been developed in 

an attempt to reapproximate the torn ends of the ACL to permit healing as well as to restore 

initial knee stability [13, 61, 120, 156, 167, 218, 220, 237, 248, 281].  In some techniques, the 

ACL tissue stumps were directly sutured to each other.  In other techniques, each tissue stump 

was sutured separately.  These sutures were then passed through bone tunnels created in the tibia 

and femur and fixed to the outer bony cortex.   

Clinical results of these techniques had approximately a 50% success rate at 2 years post-

operatively [182], but by 5 years the results had worsened [13, 61, 120, 156, 169].  It should be 

noted that some successes were noted in these studies; however, the percentage of acceptable 

outcomes were highly variable.  For most studies, the levels of knee instability and lower activity 

levels were similar to those for conservative treatment, and the percentage of osteoarthritis has 

not been improved.  A significant number (20-25%) needed a second surgical procedure in 

which the ACL was replaced entirely.  These poor initial findings have been corroborated in 

follow-up studies carried out to the long-term (30 years) [237, 241].  These results led to the 

popularization of ACL reconstruction as a means to improve clinical treatment. 

2.3.3 ACL reconstruction 

For the majority of younger and active patients, surgeons perform reconstruction procedures 

using tissue autografts with the primary goal being the restoration of knee stability such that 

patients can return to sports or work.  The most popular grafts include the bone-PT-bone (BPTB) 
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and hamstrings tendon autografts.  Although these procedures have proved effective at restoring 

initial knee stability [9, 30, 62, 117, 230, 272, 276], 20-25% of patients experience post-

operative complications, such as anterior knee pain, arthrofibrosis, and flexion/extension deficits, 

many of which are associated with the graft donor site [7, 37, 107, 115, 122, 157, 158, 191, 201, 

205, 209, 219, 273].  More importantly, long-term (7-24 years) outcome studies demonstrated 

that the incidence of osteoarthritis (OA) in patients with ACL reconstruction remain significantly 

high [11, 52, 54, 72, 116, 155, 170, 201, 204, 209, 227, 245].  In fact, some follow-up studies 

which have directly compared reconstruction to conservative treatment have found similar levels 

of osteoarthritis [19, 52, 72, 155, 245]. 

Animal studies of ACL reconstruction have been performed in the dog, pig, sheep and 

goat models to shed light on the ongoing graft remodeling response [5, 167, 168, 174, 175, 190, 

249, 274].  Almost all studies document a large increase in anterior-posterior tibial translation of 

the joint (2-6x normal) within a few weeks after surgery.  At the same time, the biomechanical 

properties of the healing graft rapidly decrease.  For example, by 6 weeks, the stiffness of the 

healing graft was only 13-30% of the normal ACL in the goat model [5, 175].  The 

biomechanical properties slowly recover, but over a period of years.  By 3 years of healing, the 

stiffness of the healing graft was only 50% of the normal ACL [175].  In the same study, the 

anterior-posterior joint stability had been restored by 3 years, despite large increases at early 

timepoints.  These data suggest that the ACL is still not functioning normally even in the long-

term.  However, remodeling in other tissues of the joint may occur due to altered loading, so that 

the joint stability is slowly restored.  
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2.4 MOTIVATION FOR ALTERNATIVE TREATMENTS 

As opposed to ACL reconstruction, a successfully healed ACL would have many advantages 

including avoiding graft donor site morbidity and preservation of the complex anatomy of the 

ACL (e.g. its original insertion sites, proprioceptive nerve endings, and other anatomical 

features).  The latter is essential to recruit muscles, maintain knee stability, and avoid reinjury 

[216].  Additionally, the bone tunnels created in these procedures would be greatly reduced 

compared to ACL reconstruction procedures, which could help to limit the potential for 

associated neurological and vascular problems.  Finally, it could also reduce the reliance on 

expensive hardware needed for ACL reconstruction procedures, e.g. fixation devices; thereby, 

reducing the costs of treating ACL injuries.  Overall, healing of the ACL has potential to allow 

for both a faster return to normal activities and improved patient outcome in the long-term.  

Thus, we wish to explore suture repair of the ACL in combination with FTE treatment as a 

potential alternative to ACL reconstruction.  

2.5 LIGAMENT HEALING 

2.5.1 Phases of ligament healing 

For studying ligament healing, the MCL of the knee has been an excellent model.  In general, its 

continuous healing process following injury can be roughly divided into three overlapping 

phases [74, 186, 250]. The inflammatory phase is marked by hematoma formation which starts 

immediately after injury and lasts for 1-2 weeks. It is followed by the reparative phase (often 
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called the proliferative phase) where fibroblasts proliferate and produce a matrix of proteoglycan 

and collagen, especially type III collagen, to bridge the gap between the torn ends. Over the next 

6 weeks or so, an increasingly organized matrix, predominantly type I collagen, develops and 

cellular proliferation occurs. Finally, the remodeling phase, which is marked by gradual 

alignment of collagen fibers and increased collagen matrix maturation, can continue for years 

[74, 76]. 

Nevertheless, the biochemical constituents of the healing ligament are abnormal even 

after one year [77, 78]. It contains increased amounts of proteoglycans, a higher ratio of type V 

to type I collagen, a decrease in the number of mature collagen crosslinks, and fibrils with 

homogenously small diameters (70 nm) [177, 194, 221]. Although there is an increase in the 

number of collagen fibrils of the healed ligament, the diameters of these fibrils are smaller than 

those of a normal ligament [75]. 

These biochemical changes are reflected in altered biomechanical properties of the 

healing ligament.  For example, the structural properties of the healing femur-MCL-tibia 

complex (FMTC) are inferior to controls at 6, 12, and 26 weeks after injury [186, 250, 262]. By 

52 weeks post-injury the stiffness of the injured FMTC at low loads can be recovered, suggesting 

at least a partial return to normal function; however, the varus–valgus rotation of the joint 

remained elevated and the ultimate load of the FMTC remained lower than normal [112, 151, 

186]. Concomitantly, the cross-sectional area (CSA) of the healing ligament increases rapidly by 

6 weeks and remains high, measuring as much as 2 1/2 times its normal size at 52 weeks [186, 

187].  On the other hand, the mechanical properties of the healing MCL midsubstance (indicative 

of tissue quality) are inferior to those of the normal ligament at early timepoints following injury 
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and remain consistently low up to one year [186, 187, 250]. Thus, the recovery of the stiffness of 

the FMTC is largely the result of an increase in tissue quantity, not a restoration of tissue quality. 

 

2.5.2 Effects of altered loading on normal and healing ligaments 

Based on many years of experimental analyses, it is commonly believed that normal and healing 

ligaments alter their size and biomechanical properties over time via the mechanism of stress- 

and strain-dependent homeostasis [260-262, 268, 269].  For example, immobilization of the 

normal joint for even a few weeks could elicit marked decreases in the structural properties of 

the FMTC and the mechanical properties of the MCL substance in the rabbit model [173, 262], 

with only small decreases in the tissue CSA.  If the joint is remobilized, the properties of the 

ligament could return to normal levels; however, up to one year of remobilization was required 

following 9 weeks of immobilization [262]. Similar results have been noted for the femur–ACL–

tibia complex (FATC) in the primate and rabbit models [173, 179]. Long periods of exercise 

training, on the other hand, only showed marginal increases in the structural properties of 

ligaments with a 14% increase in linear stiffness of the porcine FMTC and only a slight change 

in the mechanical properties of the ligament substance [133, 256, 263].   

Based on the results of these and other related studies, a highly non-linear representation 

of the relationship between different levels of stress and ligament properties is depicted in Figure 

2. The normal range of physiological activities is represented by the middle of the curve. 

Immobilization results in a rapid reduction in tissue properties and mass. In contrast, long term 

exercise resulted in a slight increase in mechanical properties and mass as compared with those 

observed in normal physiological activities. 
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Figure 2. A schematic diagram describing the homeostatic responses of ligaments and tendons in response 

to different levels of stress and motion (reprinted with permission from [262]).  

 

After injury, the healing tissue has also been found to be sensitive to loading.  For 

example, conservative treatment (with no immobilization) of an isolated MCL injury produced 

better results than those with immobilization [34, 250, 264]. Immobilization after ligament injury 

was shown to lead to decreased structural properties of the FMTC and mechanical properties of 

the ligament substance, with concomitant changes to the tissue microstructure [264].  However, 

the CSA of the healing tissue was similar at both 6 and 12 weeks with or without immobilization. 

These experimental findings mirror clinical studies which have reported that patients with a 

complete tear of the MCL respond well to conservative treatment without immobilization [110, 

199].  
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2.5.2.1 Response of Ligament and Tendon Fibroblasts to Loading 

Although ligaments and tendons generally undergo tensile loading at the macroscopic 

scale, a number of different mechanisms have been proposed for how these macroscopic 

deformations are transmitted to the cells, i.e. fibroblasts, within the tissue [25, 47, 134, 135].  No 

matter the mechanism for how cells transmit the applied loads, there is a vast body of 

experimental results showing that cyclically applied tissue-level tensile loads lead to gene 

expression of anabolic proteins, e.g. collagen type I, and eventually tissue production [24, 25, 

136, 176].   

At the same time, macroscopic unloading of ligaments and tendons, leads to increased 

gene expression of catabolic proteins, e.g. matrix metalloproteases, eventually resulting in tissue 

degradation [17, 58, 89].  Thus, although macroscopic strains, or even microscopic, fiber-level 

strains, may be insufficient to describe the complex loading processes at the cellular level, they 

could serve as a simple, generalized measure of how the cells respond in terms of matrix 

production and degradation. 

 

2.5.3 Rationale for ACL healing 

Unlike extra-articular ligaments, there exist several key biological and mechanical factors that 

prevent the ACL from undergoing the normal phases of healing after injury [98, 127, 164, 168, 

252].  First, a number of studies have documented the lower intrinsic healing capacities of the 

ACL compared to the MCL [74, 110, 250], including reduced cellular proliferation [172], ECM 

production [172], gene expression [137, 251] and migration [128], as well as less vascularity [35, 

36]. Second, the thin synovium surrounding the ACL, which plays an important role and 



14 

contains vasculature and nerves, is disrupted and not regenerated until 3-6 weeks following ACL 

injury [16, 84, 164].  Experimental studies showed that migrating cells and newly-formed 

collagen fibers were most prominent in the explants with the preserved synovium, suggesting 

that it could play a critical role in enhancing the healing capacity of the ACL [53]. Without the 

synovium, the synovial fluid can enter the injury site.  Since the joint is constantly moving, this 

creates a “washing effect” which effectively prevents hematoma formation, which is the crucial 

initial step in normal ligament healing.  Third, histological examination of the human ACL 

reveals that it retracts following rupture, creating a large gap between the torn ends.  Thus, even 

if the synovium was preserved, restoration of a continuous tissue would be difficult [164].  

Finally, since the ACL is a primary stabilizer of the knee, the lack of mechanical stabilization 

following its injury also increases the distance between the torn ends and would cause altered 

loading and kinematics even if the ACL were to heal.  

Combined, these factors lead to a large injury site, for an already intrinsically poor 

healing tissue, which is exposed to the synovial fluid.  Thus, creating an appropriate environment 

in which the ACL could heal is a complex problem, which requires addressing these multiple 

biological and mechanical factors simultaneously.  As such, these requirements have inspired the 

FTE treatments with proper surgical techniques suggested in this dissertation.   
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2.6 FUNCTIONAL TISSUE ENGINEERING OF THE ACL 

2.6.1 Recent clinical attempts 

Surgeons have pursued new interventions that could increase healing ACL tissue formation and 

improve knee stability [95, 234-236].  One such treatment is biological augmentation of the 

injured ACL by creating small holes in the bone (microfractures) near the femoral insertion of 

the ACL to introduce bone marrow and blood to the injury site.  This allows formation of a blood 

clots in order to elicit a healing response more similar to the healing of extra-articular ligaments. 

These procedures have proved to be mostly successful to treat ACL tears near the femoral 

insertion site. Over 95% of patients over 40 years of age had restoration of knee function with 

little pain in the short-term [235].  Positive results were also obtained for younger, skeletally 

immature patients. However, 23% of these patients were had reinjuries that required additional 

intervention [94, 234].  Nevertheless, the clinical evidence for the potential of ACL healing is 

indeed encouraging, and suggests that additional laboratory studies should be done to improve on 

these early results.   

2.6.2 Basic science studies 

Laboratory research has also shown that ACL cells can be stimulated through the use of 

scaffolds and growth factors [127, 144, 163, 165-168, 214, 279].  These positive findings have 

motivated in-vivo treatment of partial ACL injuries in animal models with a variety of different 

approaches, including the application of bFGF, hyaluronic acid, and cell therapy using bone 

marrow-derived mesenchymal stem cells  [10, 127, 252].  Based on histomorphological 
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assessments in the short-term, these approaches generally revealed more tissue growth, 

vascularity at the injury site, and better matrix organization compared to the non-treated injury.  

However, all treated ACLs remained considerably abnormal in terms of their morphology and 

biomechanical properties when compared to the normal ACL. 

More recently, Murray and coworkers have developed the use of a platelet-rich plasma 

(PRP) hydrogel to treat ACL injuries, which is intended to simulate a healing clot. Interestingly, 

a completely transected ACL with PRP treatment in combination with suture repair only 

minimally improved over suture repair alone even at 14  weeks post surgery [165].  The authors 

have suggested the need for additional scaffolding and have developed a collagen-platelet rich 

plasma (C-PRP) scaffold to treat a partial ACL tear in a canine model [168] as well as a 

complete ACL transection in a porcine model following suture repair [118, 162, 165, 167].  In 

the canine partial ACL tear model, histological evidence of more healing tissue filling the injury 

site as well as improved biomechanical properties were found compared to non-treatment at 6 

weeks [168].  The C-PRP hydrogel was then extended to a full ACL transection model in pigs, 

which revealed that ACL healing took place at 4 weeks but with hypertrophic neo-tissue 

formation as measured by MRI [167].  Tensile testing of the healing femur-ACL-tibia complexes 

(FATCs) also showed significant improvements in its tensile stiffness and ultimate load.  By 3 

months, treatment with a collagen-platelet composite (CPC) and suture repair led to a 3 fold 

increase in the stiffness of the healing FATCs compared to suture repair alone.  Thus, these 

findings on ACL healing are extremely encouraging.  

However, it should also be noted that the biomechanical properties of the healing ACL 

were still well below those of a normal ACL.  In addition, excessive hypertrophy of the healing 

ACL was observed at all time points, which raises the issue regarding the lack of quality of the 
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healing tissue and its level of contribution to joint function, which was not tested.  Thus, there is 

still a need for novel FTE solutions to induce appropriate tissue growth while limiting its 

hypertrophy to bring about a much improved healing ACL and joint stability.  

2.6.3 Suture techniques in combination with FTE 

In order to achieve the needed joint stability during the early healing process, these new 

biological approaches are often coupled with suture repair and/or augmentation of the torn ends 

of the ACL [61, 120, 167, 184, 218, 248].  As previously mentioned, the goals of suture repair 

are to reapproximate the torn ends of the ACL to permit healing as well as to restore initial joint 

stability.  Most techniques involve suturing of each tissue stump and passing these sutures 

through bone tunnels created in the tibia and femur and fixed to the outer bony cortex.   

A recent study by Fleming and coworkers has shown that suture repair of the ACL tissue 

alone is insufficient to restore anterior-posterior knee [73].  The authors hypothesize that this is 

likely due to sliding of the sutures relative to the soft tissue as well as the difficulty in applying 

tension to the sutures.  Alternatively, augmentation of the injured ACL, by passing sutures 

directly from bone to bone, has been suggested in combination with suture repair to better restore 

knee stability while also reapproximating the ACL tissue stumps. In this approach, the 

augmentation sutures would provide bone to bone fixation, and thus, would greatly reduce the 

possibility of sliding and allow proper tensioning.  In fact, Fleming and coworkers found that this 

technique could better restore anterior-posterior knee stability compared to suture repair [73].   

However, there are a number of limitations in this study, including 1) only 1 degree-of-

freedom motion [111], 2) assessment of knee stability at only one flexion angle (60 degrees), 3) 

applied loads were below the levels of physiological loading, and 4) the study did not consider 
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the outcome of these suture techniques after healing.  All of these concerns can be addressed by 

combining in-vivo animal studies with a robotic testing system to assess joint function.   

2.7 EXTRACELLULAR MATRIX BIOSCAFFOLDS 

2.7.1 Advantages of ECMs 

ECM bioscaffolds are particularly attractive because they are readily available and consist of a 

naturally organized matrix [100, 247].  Examples include small intestine submucosa (SIS), 

urinary bladder matrix, acellular dermis, amniotic membrane tissue, and fascia [100].  Generally, 

these bioscaffolds are extracted from an animal or human source and processed to remove the 

native cells before being used.  ECM bioscaffolds have been utilized in numerous clinical 

settings involving general surgery [14, 41, 56, 79, 80, 148, 215], neurosurgery [28], urology 

[126, 181, 224], and orthopaedics [160, 217, 242], and have been implanted in over a million 

patients to date. 

One bioscaffold, namely porcine ECM-SIS, has been widely utilized because it has many 

desirable biological and ultrastructural advantages.  ECM-SIS is mostly comprised mainly of 

type I collagen that has a well arranged ultrastructural hierarchy.  It has been found that 40% of 

the ECM-SIS can be degraded in-vivo within one month [198] and its by-products are 

chemoattractants for cells [22, 139, 277] and contain bioactive agents, e.g. growth factors, 

fibronectin, angiogenic factors, and so on [101, 159, 247].  Further, its ultrastructural 

characteristics can provide contact guidance for cells in-vivo (Figure 3) [176].  It is our 

hypothesis that the ECM-SIS bioscaffold could accelerate healing by allowing for more rapid 
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cell migration and proliferation in the scaffold as well as new matrix production [23, 38].  

Additionally, the ECM-SIS bioscaffold could serve as a temporary substitute for the synovium 

during the first few weeks to contain the healing response and limit tissue hypertrophy until the 

early healing phase is complete and a new synovium could be formed.  
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Figure 3. A longitudinal section of the small intestine demonstrating the location of the submucosa and its 

ultrastructural differences between the luminal and abluminal sides (Modified from [38]). 

 

2.7.2 Use of ECMs to improve extra-articular ligament healing 

The potential of porcine ECM-SIS bioscaffolds to guide and support soft tissue regeneration, 

promote extracellular matrix organization, and eventually improve the quality of the healing 

tissue has been demonstrated in a rabbit MCL model of extra-articular ligament healing [143, 

171, 257].  A single layer of ECM-SIS was applied to a 6 mm gap injury of the MCL.  At 12 and 
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26 weeks, the morphology of collagen fibers in the ECM-treated group showed denser and more 

aligned along the longitudinal axis of the ligament at both time points, and there were more 

spindle–shaped cells in the ECM-treated neo-MCL [142, 143, 267].  The ECM bioscaffold also 

helped to limit the hypertrophy of the healing tissue as the CSA in the ECM-treated group 

decreased by 28% compared to non-treatment and was closer to sham control at 26 weeks 

(Figure 4).   

 

Figure 4. Cross-sectional area and shape of the MCL following ECM treatment compared to non-treated 

and sham at 26 weeks (*p<0.05) (reprinted with permission from [143]). 

 

At 6 weeks, the gene expressions of other small leucine-rich proteoglycans (SLRP) 

molecules, such as decorin, biglycan and lumican, which are thought to control the formation of 

small collagen fibrils, were down-regulated [142].  By 26 weeks, the collagen content in the neo-

ligament increased by 36% with ECM-treatment, while the collagen type V/I ratio became 33% 

lower than the non-treated group (p < 0.05).  Lowering the type V/I ratio is important because 

excessive collagen type V has been known to limit the formation of larger collagen fibrils [31, 

32].  Correspondingly, the diameter of collagen fibrils increased by 22% at 26 weeks [257].   
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Functionally, the mechanical properties of the healing ECM-treated MCL were also 

significantly improved, as the tangent modulus was 50% higher at 12 weeks and 33% higher at 

26 weeks when compared to those of non-treated (p<0.05) (Figure 5).  The ultimate tensile 

strength at 26 weeks was also 49% higher (p<0.05) [143].  In other words, a single layer ECM-

SIS bioscaffold, could provide contact guidance to the neo-ligament to have a more organized 

matrix while limiting tissue hypertrophy; thereby increasing the mechanical stresses in the 

healing tissue so that it could remodel into a ligament with better quality.   

 

Figure 5. Typical stress-strain curves for ECM-treated and non-treated groups at 26 weeks (reprinted with 

permission from [143]). 
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2.7.3 Use of ECMs to improve extra-articular tendon healing 

In another study, the feasibility of ECM to regenerate the PT after removal of its central third for 

use as an autograft for ACL reconstruction was tested [121]. Using the rabbit model, a 3 mm 

wide defect (about 1/3 of the width of the PT) was created and one strip of ECM-SIS was sutured 

anterior and one posterior to the PT defect.  The defect was left open for the non-treated group.  

Gross examination revealed that abundant neo-PT tissue formed in and around the defect 

area in the ECM-treated group at both 3 and 12 weeks.  Conversely, those for the non-treated 

group had concavities.  Also, it was abundantly clear that there was little or no noticeable 

adhesion formation between the neo-PT and infrapatellar fat pad in the ECM-treated group. In 

contrast, significantly more diffuse adhesive formations between the neo-PT and the underlying 

fat pad were created in the non-treated group.   

Morphological examination of the ECM-treated group showed that the neo-PT had areas 

of high cellularity at 3 weeks while those for the non-treated group showed loose, disorganized 

fibrous tissue with low cellularity.  The former had a large number of spindle shaped cells with 

organized collagen matrix at 12 weeks while the latter still had a sparse distribution of cells with 

patches of disorganized collagen.   

After careful dissection [1, 66], the CSA of the neo-PT tissue was measured and the 

ECM-treated group had 68% higher CSA than the non-treated group (p<0.05). Tensile testing 

showed that the biomechanical properties of the neo-PT tissue from the ECM-treated group had a 

98% higher stiffness and a 113% higher ultimate load than those from the non-treated group 

(p<0.05).  Thus, the results showed that ECM bioscaffold can improve tissue growth, matrix 

organization, and biomechanical properties of the neo-PT, while containing the neo-PT tissue 

within the injury site and preventing its ability to form detrimental adhesions to the surrounding 
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tissues.  In summary, this study showed that ECM-treatment could allow the production of 

abundant tissue in an injury model which has limited ability to heal, and show promise to heal 

other ligaments and tendons with poor healing potential, such as the ACL.   

 

2.7.4 Use of genetically-modified ECM bioscaffolds 

In orthopaedic surgery, the use of porcine ECM-SIS bioscaffolds has become less enthusiastic 

among clinicians because of the negative impression of inflammatory reactions after the 

application of multilayer ECM-SIS bioscaffolds to treat massive rotator cuff repairs [20, 88, 109, 

154, 217]. In one study, an overt inflammatory reaction was noted in 4 of 25 patients at two 

weeks post-implantation, which required open irrigation and debridement [154].   

One possible contributor to the hyperacute inflammatory response observed in 

applications of ECM-SIS bioscaffolds may be the presence of galactosyl-α(1,3)galactose (αGal) 

[20, 109, 154, 217]. Although almost all mammals contain αGal in their cellular membranes and 

extracellular matrix proteins, humans as well as New World primates possess a genetic mutation 

which prevents the formation of αGal.  As such, humans express antibodies to αGal, which could 

lead to hyperacute inflammation and rejection of ECMs from porcine sources.  To alleviate this 

concern, we have collaborated with Revivicor Inc. and have recently obtained a novel ECM-SIS 

bioscaffold derived from genetically-modified pigs (GalSafeTM), in which the 

galactosyltransferase alpha 1, 3 gene (GGTA1) is knocked out [50, 192, 196]. Such αGal(-) 

ECM-SIS bioscaffolds could offer significantly greater potential for future translation in the 

clinical arena once it is proven to successfully heal injured ligaments. 
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2.7.4.1 Comparison of genetically-modified and wild-type ECM bioscaffolds 

In a preliminary study, we wished to examine whether the intrinsic biological properties and 

biomechanical properties of the αGal(-) ECM bioscaffolds remained unchanged; and also, when 

used in hydrogel form, whether they could stimulate ACL fibroblasts.  We examined the 

morphological, bioactive and biomechanical properties of SIS and UBM bioscaffolds (n=5) and 

compared them with those from wild type (n=5) pigs. Morphologically, the αGal(-) ECMs were 

found to be similar to the wild type ECMs via both gross observation and H&E staining. With 

ELISA, western blot and immunohistochemistry, growth factors, including FGF-2, TGF-β, 

VEGF, IGF-1 and PDGF-BB, showed no significant differences in terms of quantity (p>0.05) 

and their distribution within the tissue. Further, a BrdU cell proliferation assay confirmed the 

bioactivity of the extracts from the αGal(-) bioscaffolds to be similar as the wild type 

bioscaffolds. Under uniaxial tensile testing, no significant difference were found for their 

viscoelastic and mechanical properties (p>0.05). The results suggested that genetic modification 

had not altered the properties of the ECM bioscaffolds, and as such, they could be used in tissue 

engineering for human application with the advantage of reduced immunogenicity. 

2.8 MATHEMATICAL MODELING OF LIGAMENTS 

Numerous mathematical models have been developed in order to capture the biomechanical 

nature of soft tissues [85, 104, 107, 131, 132, 195, 206].  For ligaments, this is most often 

represented by the stress-strain behavior under uniaxial tension.  Due the parallel orientation of 

the collagen fibers (Section 2.1), ligaments are often assumed to be transversely isotropic, and a 

number of constitutive models for ligaments have been developed based on this assumption.  
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One such model is presented in Section 2.8.1.  On the other hand, for healing ligaments, the 

assumption of transverse isotropy may not be valid, so a more general model to describe the 

biomechanical behavior of these tissues may be required, and an example is presented in Section 

2.8.2.    

2.8.1 A constitutive relationship for transversely isotropic tissues  

To describe the 3-D mechanical behavior of ligaments, investigators have developed a quasi-

static, hyperelastic strain energy model based on the assumption of transverse isotropy [195]. 

The total strain energy, W, in response to a stretch along the collagen fiber direction, λ, is 

defined to be equal to the sum of the strain energy resulting from the ground substance (F1) and 

collagen fibers (F2): 

                                 2
211 )ln(

2
)()( JKFIFW ++= λ                                                        2-1 

with uncoupled deviatoric and volumetric components. I1 is the first deviatoric invariant of the 

deformation tensor, while λ represents the deviatoric stretch along the collagen fiber direction. K 

is the bulk modulus, and J is the determinant of the deformation tensor. The ground substance is 

described as an isotropic and nearly incompressible matrix (neo-Hookean material), and the 

strain energy function is described as:  

                                                   )3(
2
1

111 −= ICF                                                            2-2 

where C1 is a constant. The collagen fiber matrix is assumed to not support compressive load, 

and the tensile stress-stretch relationship for the collagen matrix is approximated by an 

exponential toe region followed by a linear region:  
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where C3 scales the exponential stress, C4 specifies the rate of collagen uncrimping, C5 is the 

modulus of straightened collagen fibers, λ* is the stretch at which the collagen is straightened, 

and C6 ensures continuity at λ*.  The Cauchy stress is then determined from the strain energy 

function. It was found that this model could fit both the data obtained from both longitudinal and 

transverse dumbbell shaped specimens cut from the human MCL to show its transversely 

isotropic behavior [195].  This constitutive relation has also been applied to a subject-specific 

finite element model of the human ACL and used to predict the stress and strain distribution in 

the ACL under applied loads [228, 278].  

2.8.2 A general constitutive relationship for soft tissues  

The constitutive model described in Section 2.8.1 is specific for highly aligned tissues.  

Another approach is a more general formulation for collagenous soft tissues which can account 

for varying degrees of fiber alignment [108, 125, 131, 206, 207, 280].  One such model has been 

developed by Sacks et al. for the pericardium [206] based on the work of Lanir [131, 132] and is 

presented in some detail below.      

One primary assumption of the model is that the total strain energy of the tissue, W, can 

be related to the strain energy of the collagen fibers within the tissue, w(), by accounting for their 

angular distribution within the tissue, R(θ), and the strain of the fibers, ε: 
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Thus, W is simply the sum of the strain energies of the tissue fibers.  Since the tissue is 

mostly comprised of collagen, the contribution of other matrix components (i.e. elastin, ground 

substance) and the hydrostatic forces were assumed to be negligible.   

For R(θ), Sacks et al. collected data on fiber orientation using the small angle light 

scattering (SALS) technique [207]. To determine the stress-strain relationship, the tissue was 

assumed to be a hyperelastic solid.  As such: 

                                  1−+
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where S is the 2nd Piola-Kirchoff stress, E is the Green-Lagrange strain tensor, p is the Lagrange 

multiplier which accounts for the incompressible nature of the matrix, and C is the Right Cauchy 

Green tensor. 

The model also assumes that the tissue could be represented in terms of fiber ensembles, 

i.e. the collection of fibers with the same orientation.  Another key assumption was that the strain 

of the fiber ensemble, ensE , could be computed as a transformation of the tissue strain with 

respect of the fiber ensemble coordinates (affine transformation). Thus: 

                ENNE Tens =                             jiN ˆ)sin(ˆ)cos( θθ +=                                    2-6 

where N is a unit vector parallel to the long axis of the fiber.  Then, formulations for the 2nd 

Piola-Kirchoff stress of an individual collagen fiber, Sf, were developed.  It was assumed that the 

fibers cannot support compressive loading, and that each fiber can only carry tensile loads along 

its long axis.  Thus: 

)()( 11
ensfensf ESES =                                                                    2-7 



28 

Two models to describe the nonlinear fiber stress-strain law were provided.  The first was 

a simple exponential function.  The second model accounted for the gradual recruitment of linear 

elastic collagen fibers within each fiber ensemble by means of a statistical distribution.  In the 

latter representation, it was assumed that the collagen fibers are crimped and transmit loads only 

after they are straightened.  After that, the stress in the fiber was assumed to be linearly related to 

the strain in the fiber.  However, due to the slack region, the true strain of each fiber is 

represented by s

sens
t

E
EEE

21+
−

= , where tE is the true fiber strain, ensE  is the fiber ensemble 

strain, and sE  is the fiber slack strain.  Thus, the fiber stress-strain relation can be written as 

                       2)21( s

sens

f

t

t
f

f

f
f E

EEk
E
E

E
W

E
W

S
+

−
=

∂
∂

∂

∂
=

∂

∂
=                                            2-8 

The total stress-strain relation of the fiber ensemble is then represented as the sum of the fiber 

strain energies weighted by the percentage of fibers at each slack strain as 
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where D(x) is a function which represents the fraction of fibers which are straightened at a given 

strain.  The form of D(x) will be discussed in more detail in Section 7.1.  Also, it should be noted 

that k incorporates the relative mass fraction of the collagen fibers.  

The components of S can then be calculated to determine the tissue stress-strain 

relationship.  For example the tensile stress along the axis of loading was: 
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Using experimental data on the fiber distribution and mechanical properties, these models 

were able to predict the biaxial behavior of the pericardium and urinary bladder wall [206, 254]. 
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2.8.3 Growth and remodeling 

The healing of biological tissues, in particular the idea of stress- and strain-induced 

homeostasis, has been studied extensively throughout the literature, especially in the areas of 

vascular and bone remodeling [45, 86, 200, 202, 222, 223].  This concept dates back to the 

development of Wolff’s law, which suggested that the structure of trabecular bone coincides with 

the principal stresses due to external loads [202].  The hypothesis was that stress (or strain) could 

alter the growth and remodeling of bone.  Since then, important contributions to tissue 

remodeling have been made by Skalak, Fung, and many others [86, 200, 202, 222, 223].  Skalak 

et al. focused on defining relationships which could describe finite growth of tissues [222].  

These ideas led to the concept of residual stresses within tissues, in the absence of external 

loading [223].  Rodriquez et al. built on the work of Skalak and developed a stress-dependent 

relationship for growth [200].  In these studies, the deformation gradient was separated into parts 

describing its elastic deformation as well as deformation due to growth.  Later, Fung would 

describe growth in terms of a mass-stress relationship, based on general observations in that an 

increase or decrease in stress would lead to a corresponding change in tissue mass [86].  Most of 

these early attempts described these biological processes using phenomenologic models to 

capture their general behavior. 

More recently, there has been an emphasis by Humphrey, Gleason, and others, on 

characterizing growth and remodeling based on a tissue’s microstructural components (e.g. 

collagen, elastin, etc.) [93, 96, 106, 197, 243, 244].  These models, based on mixture theory, 

assume that the mechanical response of the tissue is the sum of the mechanical responses of its 

components, multiplied by their mass fractions.  These models attempt to provide enhanced 

predictive capability with knowledge of the tissue biochemistry and their metabolic turnover 
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rates.  As the tissue is subjected to stresses and strains over time, the matrix is allowed to 

turnover.  In other words, the matrix components are allowed to be deposited and degraded at 

different configurations.  The end result is that the stress-strain relationship varies with time and 

depends on the stretch at which the new matrix is deposited.  In the vast majority of these 

models, the stimulus, e.g. stress or strain, is chosen based on empirical evidence.  Additionally, 

the specific form of the “stimulus function” which determines how a given parameter will 

change based on the current and homeostatic values of the stimulus is generally phenomenologic, 

and not typically based on a biological mechanism.         
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3.0  OBJECTIVES 

3.1 BROAD GOALS 

The broad goal of this dissertation was to develop a methodology to quantitatively assess the 

effects of FTE approaches on the healing process of an injured ACL.  The overall objective was 

to evaluate the positive impact of biological and mechanical augmentation on the healing of the 

ACL using a combined experimental and computational approach. To accomplish this objective, 

three Specific Aims are proposed.   

3.2 SPECIFIC AIMS AND HYPOTHESES 

Specific Aim 1:  To determine the advantages of biological augmentation using an ECM 

bioscaffold, in combination with ECM hydrogel on the healing of a transected ACL following 

suture repair in the goat model.  The stifle joint stability as well as the biomechanical properties 

and histological appearance of the healing ACL were evaluated at 12 weeks.  As ECM-SIS 

bioscaffolds have been shown to enhance ligament and tendon healing by encouraging neo-tissue 

formation with improved overall tissue quality [121, 142, 143, 267], we wished to address the 

research question of whether an ECM bioscaffold used in combination with ECM hydrogel could 

accelerate healing of a transected ACL following suture repair.   
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Hypothesis 1: As ECM bioscaffolds contain a number of bioactive agents that could attract 

healing cells, stimulate matrix production, and accelerate the healing process [42, 188, 210], 

we hypothesized that an ECM hydrogel that fills the ACL injury site could encourage more 

rapid healing tissue formation.  Further, we hypothesized an ECM bioscaffold wrapped 

around the transected ACL could help to contain the healing response at the injury site while 

limiting hypertrophy of the healing ACL to further enhance healing.  A healed ACL with 

appropriate cross-sectional area would increase its mechanical demand under loading and 

thus produce neo-tissue with better biomechanical properties [121, 142, 143, 267]. As a 

result, it could help to better maintain stability of the stifle joint.   

 

Specific Aim 2: To evaluate the advantages of mechanical augmentation using sutures to restore 

joint stability in the goat model. As biological augmentation for healing a transected ACL is 

relatively slow, mechanical augmentation would be needed to replace the role of the ACL during 

early healing.  Thus, appropriate suture techniques are needed to restore initial joint stability 

while the healing process of the ACL takes place [73, 120, 218].  In suture repair, the torn ends 

of the ACL are either sutured together or tensioned by passing the sutures through bone tunnels 

drilled in the tibia and femur and fixing them against the bone.  In suture augmentation 

procedures, the sutures are passed directly from bone to bone and tied under tension. Thus, we 

wished to address two research questions: 1) Does suture augmentation of the transected ACL 

restore initial joint stability closer to that of the normal joint at time-zero compared to suture 

repair?, and 2) Does additional suture augmentation positively affect the healing process of the 

ACL and the function of the stifle joint compared to suture repair alone?   
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Specific Aim 2.1: To quantify the joint stability and the in-situ forces in the ACL in 

response to externally applied loads following suture repair and suture augmentation at 

time-zero and compare the data with those for the intact and ACL-deficient stifle joint.   

Hypothesis 2.1: We hypothesized that suture augmentation will better restore 

joint stability, i.e. anterior tibial translation, compared to suture repair of the ACL 

substance alone, since the former provides fixation of the sutures from bone to 

bone, while the sutures in the latter case would have the potential to slip along the 

ligament tissue. 

Specific Aim 2.2: To evaluate the advantage of suture augmentation plus simple suture 

repair over suture repair alone in terms of maintaining joint stability as well as the gross 

morphological, histological, and biomechanical properties of the healing ACL at 12 

weeks post-surgery in a goat model.   

Hypothesis 2.2: We hypothesized that if suture augmentation could restore initial 

joint stability closer to normal at time-zero and prevent excessive loading of the 

ACL (See Specific Aim 2.1) while simple suture repair could reapproximate the 

torn ends of the ACL, then the distance between the injured ACL tissue created 

following its transection would be minimized and would allow tissue formation to 

heal the ACL.  Over time, loading of the healing ACL would allow both the 

biomechanical properties of the healing ACL as well as the joint stability to be 

closer to normal at 12 weeks of healing compared to suture repair alone.  

 

Specific Aim 3:  To develop a mathematical model to describe the healing process of the ACL 

during its remodeling phase.  As the healing process evolves from inflammation and 
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proliferation to tissue remodeling, both the size and biomechanical properties of ligaments 

change correspondingly over time [260-262, 268, 269].  Based on a large amount of previous 

experimental data obtained [260-262, 268, 269], it is commonly believed that normal and healing 

ligaments alter their size and biomechanical properties over time in response to stress- and strain-

dependent homeostasis.  Thus, we wished to address the research question of whether a 

mathematical model based on strain-based homeostasis could describe the size and 

biomechanical properties of the healing ACL throughout the remodeling process.  

Specific Aim 3.1: To formulate a mathematical model to describe the healing ligament 

over time in terms of its tissue growth and biomechanical properties during its 

remodeling phase.  

Specific Aim 3.2: Validate the model using experimental data collected for the rabbit 

MCL at 12 and 26 weeks of healing. 

Specific Aim 3.3: Use the model to provide preliminary insights on the mechanisms for 

the results obtained in Specific Aims 1 and 2. 

Hypothesis 3:  We hypothesize that a mathematical model based on strain-

dependent remodeling could capture the alterations in size and biomechanical 

properties in the healing ligament which occur in order to restore a homeostatic 

level of strain.   
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4.0  EXPERIMENTAL METHODS 

4.1 STUDY DESIGN 

The three Specific Aims and the accompanying hypotheses were tested by the experiments as 

outlined in the following sections.  In Specific Aim 1, the effects of ECM treatment on joint 

function as well as the gross morphology, histological appearance, and biomechanical properties 

of the healing ACL were assessed at 12 weeks of healing.  In Specific Aim 2, the ability of 

suture techniques to restore joint function were examined both at time-zero and 12 weeks of 

healing, and the gross morphology, histological appearance, and biomechanical properties of the 

healing ACL will be assessed at 12 weeks.  In Specific Aim 3, a mathematical model to describe 

the remodeling of a healing ligament was developed.  For Specific Aims 1-2, a power analysis, 

based on preliminary data on the healing ACL as well as published works related to the effects of 

ECM treatment [143, 167, 168, 171, 267], was performed to determine the number of animals 

needed for biomechanical testing using G*Power [60].  

For Specific Aim 1, two experimental groups were needed: 1) suture repair alone and 2) 

suture repair with ECM treatment.  Goats underwent surgery according to Section 4.3 and were 

euthanized at 12 weeks.  Histomorphological evaluation was done according to Section 4.4.1.  

Joint function was assessed according to Section 4.4.2.1. The CSA of the ACL was measured 

(Section 4.4.2.2), and its biomechanical properties were evaluated (See Section 4.4.2.3).   
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Since treatment was done only in one hindlimb of each animal, an unpaired t-test was 

performed to compare the treatment groups.  In order to detect a mean difference of 3 mm in 

terms of anterior-posterior tibial translation, 20 N in terms of in-situ force, and 25 N/mm in terms 

of stiffness between groups with an overall α=0.05 and a power of 0.8, five (5) animals per 

treatment group were needed.  Two additional animals were used for histomorphological 

assessment.  Further, for increased statistical power, an additional four (4) goats were added to 

the ECM-treated group, with two (2) used for biomechanical testing and two (2) used for 

histological evaluation.  Additional animals were not done for the suture repair group due to the 

large variability noted in the initial animals.  Thus, a total of eighteen (18) animals were utilized 

for Specific Aim 1.     

For the first part of Specific Aim 2.1, four separate suture augmentation groups were 

compared to each other as well as the intact and ACL-deficient joint in an in-vitro study using a 

robotic/UFS testing system, according to the protocol described in Section 4.4.2.1(a).  Since all 

conditions were done on the same set of joints, a paired statistical analysis was done.  As such, 

eight (8) joints were needed to detect a mean difference of 2 mm in anterior tibial translation 

(ATT) and 10 N of in-situ force between groups with an overall α=0.05 and a power of 0.8.  The 

value for the mean difference in ATT was chosen based on the clinical literature in which a 

successful reconstruction procedure following ACL injury could restore translation to within 2-3 

mm at the time of surgery [9, 81, 230].   The value for the mean difference in in-situ force was 

chosen based on the repeatability of our testing system (6-9 N).   

For the second part of Specific Aim 2.1, the goal was to compare suture repair and suture 

augmentation in terms of their ability to restore initial joint function.  Both were also compared 

to the intact and ACL-deficient conditions.  To accomplish this, goat joints were tested in-vitro 
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on our robotic/UFS testing system, according to the protocol described in Section 4.4.2.1(a).  

Using this system, all experimental conditions were tested in the same set of stifle joints.  As 

such, a paired statistical analysis was done.  In order to detect a mean difference of 2 mm in 

terms of anterior-posterior tibial translation and 10 N of in-situ force between groups with an 

overall α=0.05 and a power of 0.8, eight (8) goat joints were needed. 

For Specific Aim 2.2, two experimental groups were required: 1) suture repair and 2) 

suture augmentation with simple suture repair.  Goats underwent surgical procedures according 

to Section 4.3.  At 12 weeks, all animals were euthanized, and specimens were assessed in terms 

of gross observation of the ACL, histomorphology of the ACL (See Section 4.4.1), joint function 

(See Section 4.4.2.1(b)), CSA (Section 4.4.2.2), and the biomechanical properties of the ACL 

(See Section 4.4.2.3).      

  Like Specific Aim 1, these treatments were done in separate animals.  Thus an unpaired 

t-test was performed, and five (5) animals per treatment group were needed for biomechanics. 

Histological evaluation was done in two (2) goats per group.  The suture repair only group was 

already completed in Specific Aim 1, and no additional animals were needed for this group.    

Seven (7) animals were needed for the suture augmentation group for Specific Aim 2.2.  

For Specific Aim 3.1, a mathematical model for ligament healing was developed.  A 

detailed description can be found in Section 7.1. The model was implemented within the 

computer programming package MATLAB (MathWorks, Inc, 7.9.0 (R2009b).  In Specific Aim 

3.2, the model was initially tested using data collected in our research center for the rabbit MCL 

[74, 143, 171, 186, 250], because there is a wealth of data for the healing rabbit MCL  (relative 

to the goat ACL) collected throughout the healing process (See Section 7.3).  This multiple time-

point data is essential for development of the model and assessing its predictive capabilities.  In 
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Specific Aim 3.3, some initial simulations for the healing ACL were run using the model based 

on the experimental data in Specific Aims 1 & 2. 

4.2 PREPARATION OF ECM BIOSCAFFOLDS 

To produce the αGal(-) ECM bioscaffolds, a small intestine from a genetically modified (α1,3-

galactosyltransferase -/-) pig (GalSafeTM, 13 mos., 180 kg.) was harvested immediately after 

euthanasia by Revivicor, Inc. and shipped overnight on dry ice.  Once thawed, the small intestine 

was prepared as previously described [90].  In brief, the small intestine was rinsed, and the tunica 

muscularis externa and the majority of the tunica mucosa were mechanically removed. The 

remaining αGal(-) ECM (tunica submucosa and basilar portion of the tunica mucosa) was then 

disinfected and decellularized in a 0.1% peracetic acid/4% ethanol solution, rinsed twice each in 

phosphate-buffered saline and de-ionized water, and lyophilized.  The αGal(-) ECM used to 

make sheets was then terminally sterilized with ethylene oxide. To make the αGal(-) ECM 

hydrogels, lyophilized αGal(-) ECM sheets were comminuted to a powder, as previously 

described [82, 90].  One gram of αGal(-) ECM powder and 100 mg of pepsin were added to 100 

ml of 0.01 M HCl and kept at a constant stir for ~48 to 72 hrs at room temperature (25 °C). The 

resultant solution of digested αGal(-) ECM (pre-gel solution, 10mg/ml) was kept frozen at -20°C 

until needed. 
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4.3 IN-VIVO ANIMAL MODELS 

All surgical procedures were done using well-established protocols developed in our research 

center and approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee.  The goat model was chosen due to its success as a model for ACL reconstruction [2, 

190]. All surgical procedures were performed using sterile techniques under general endotracheal 

anesthesia using isoflurane (1-3%).  The ACL in the right stifle joint was injured and repaired, 

while the contralateral leg served as a sham-operated control.  A longitudinal midline anterior 

skin incision was made over the PT.  A medial arthrotomy was performed to open the joint 

capsule, and the patella was retracted laterally to expose the ACL.   

During the sham-operation, the ECM sheet and hydrogel were prepared.  The ECM sheet 

was trimmed (~20 mm in length x ~5 mm in width) and sutured to a similarly-sized fibrin sponge 

(Surgifoam, Johnson & Johnson) via 4-0 non-absorbable sutures such that the luminal side of the 

ECM faced away from the fibrin sponge.  Meanwhile, the ECM hydrogel was formed by mixing 

0.1 N NaOH (1.0 ml), 10x PBS pH 7.4 (0.9 ml), 1x PBS pH 7.4 (4.1 ml), and the pre-gel solution 

(9.0 ml) at 4 °C to reach a final ECM concentration of 6 mg/ml.  After, the solution was placed at 

37 °C for ~45 min for gelation to occur. 

For the suture repair groups, repair of the ACL was performed in the right hindlimb using 

a #1 Ethibond suture (Ethicon, Inc.) placed at variable depths in the proximal third of the ACL.  

The same was done in the distal third of the ACL, which resulted in two free suture strands in 

both the proximal and distal thirds of the ACL (Figure 6A).  Next, two bone tunnels were made 

through both the femur and tibia using a 1.5 mm guide wire.  The two femoral tunnels were 

created by aiming the guide wire at different angles immediately anterior to the insertion of the 
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ACL.  The tibial tunnels were created using a using a drill guide system (Acufex, Smith & 

Nephew, Andover, MA) placed immediately medial and lateral to the tibial insertion of the ACL.  

This technique created bone bridges to tie the sutures later in the procedure.  The free ends of the 

sutures were passed through the opposite bone tunnels and were loosened to avoid interference 

with the rest of the surgical procedure.   

 

 

Figure 6. Details on suture repair (A), application of ECM bioscaffold (B), and injection of ECM hydrogel (C). 

 

For all ECM-treated animals, the ECM sheet and fibrin sponge were placed posterior to 

the ACL stumps, with the fibrin sponge facing the anterior direction (Figure 6B).  A small 

amount of the ECM hydrogel (1-2 ml) was injected into the sponge and allowed to soak for 2-3 

minutes.  Then, the free ends of the repair sutures were tied under manual tension to 

reapproximate the ACL tissue stumps and complete the repair.  The ECM sheet and fibrin 

sponge were then wrapped around the ACL stumps and sutured so as to completely enclose the 

injury site.  After, the ECM hydrogel (1-2 ml) was again injected into the injury site (Figure 6C). 
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The defect site in the suture repair only group will undergo the same suture procedures, only 

without ECM-treatment. 

For the suture augmentation groups, each augmentation was created by passing two 

sutures (#2 Fiberwire, Arthrex, Inc., Memphis, TN) directly from the bone tunnels in the femur 

and tibia.  For fixation, a large knot was created in the sutures, which was pulled snugly against 

the outer femoral cortex, while button fixation (Arthrex, Inc., Memphis, TN) was used on the 

tibial side at 60° of knee flexion under maximum manual tension.   

For the first part of Specific Aim 2.1, two femoral tunnels were created and compared: 1) 

a tunnel anterior to the ACL footprint at the femoral origin (FA), and 2) a tunnel through the ACL 

footprint at the femoral origin (FT) (Figure 7A).  For the tibial tunnel location, two groups were 

compared: 1) a single tunnel medial to the ACL footprint at the tibial insertion (TM), and 2) 

tunnels medial and lateral to the ACL footprint at the tibial insertion (TLM) (Figure 7B).   
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Figure 7. Schematic diagram depicting the tunnel locations for suture augmentation. For FA, a tunnel was located 

anterior to the ACL footprint at the femoral origin, while for FT, the tunnel was located through the ACL footprint at 

the femoral origin (A).  In the TM and TLM augmentations, tunnels located medial and medial + lateral to the ACL 

footprint at the tibial insertion were utilized, respectively (B) (reprinted with permission from [69]). 

 

Based on the results of the first portion of Specific Aim 2.1 (Section 6.1.1), a single 

femoral tunnel was created anterior to the femoral insertion of the ACL (Figure 7A), and a tibial 

tunnel was created medial to the ACL insertion (Figure 7B) for the second portion of Specific 

Aim 2.2. For Specific Aim 2.2, a simple suture repair using a modified Kessler technique and #2-

0 Vicryl sutures (Ethicon, Inc.) was done in addition to suture augmentation (Figure 8).  All 
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sutures were loosened to avoid interference with the rest of the surgical procedure.  For both 

suture groups, the ACL was fully transected after placement of the sutures.   

 

 

Figure 8. Illustration of Kessler technique for suture repair. 

   

In all animals, the wounds were closed using standard suture technique.  The capsule and 

skin were then closed.  In the sham-operated control joint, the skin and capsule were incised and 

closed in the same manner as the treatment groups, without injuring the ACL.    

Post-operatively, all animals were allowed free cage activity (cage area: 3 m2).  The 

status of weight bearing and general health condition of all animals were monitored during 

recovery.  Banamine (1.1 mg/kg) was administered twice a day for five days post-operatively as 

an analgesic.  To humanely euthanize the animals, ketamine was injected intramuscularly (30 

mg/kg) for sedation, followed by a lethal injection of sodium pentobarbital (1 ml (390 mg)/ 10 

lbs).   

4.4 METHODS OF EVALUATION 

For all specimens, digital photographs of the ACL were taken for gross observations. 

Histological analyses (Section 4.4.1) including hemotoxylin and eosin (H&E), were used to 

determine collagen fiber alignment and organization.  Biomechanical testing included using a 
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robotic/UFS testing system to assess measure knee function (Section 4.4.2.1), a laser micrometer 

system to accurately measure of the cross-sectional shape and area (Section 4.4.2.2), followed by 

using an Instron testing machine (model 5565) to measure the structural properties of the FATCs 

(Section 4.4.2.3) [3, 190, 213].   

4.4.1 Histomorphology 

Portions (distal, middle, or proximal) of the healing ACL were sectioned for histological 

evaluation which was used to visualize the distribution and arrangement of matrix within the 

ACL as well as the relative number and morphology of the cells within the tissue.  For 

histological examination, the ACLs were examined grossly, carefully removed at the insertion 

sites at the femur and tibia, embedded in O.C.T. compound, and frozen immediately in liquid 

nitrogen following euthanasia.  Serial cryosections of 8 μm thickness were cut through the 

healing tissue (both sagittal and transverse sections).  Slides were stained with hematoxylin and 

eosin and observed under a light microscope. 

 

4.4.2 Biomechanical testing 

For Specific Aims 1 and 2.2, after the animals were euthanized, their hindlimbs were 

disarticulated at the hip joint, wrapped in saline-soaked gauze, placed in double plastic bags, and 

immediately stored at –20°C [265].  Prior to testing, specimens were thawed overnight at room 

temperature.  Surrounding tissues beyond 10 cm proximal and distal to the joint line were 

removed.  Specimens were kept moist with a 0.9% saline solution during dissection and 

biomechanical testing. 
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4.4.2.1 Joint Kinematics and In-Situ Forces in Ligaments 

The robotic/UFS testing system is an innovation developed in our research center over the past 

two decades and was used to determine the kinematics of the goat stifle joint, as well as non-

contact measurements of in-situ forces in the ACL and other tissues of the joint under the 

application of externally applied loads [4, 5, 190, 203, 271].  The system consists of a 6-degree 

of freedom (DOF) robotic manipulator (Puma Model 762, Unimate, Inc.), which is capable of 

achieving position control of the joint, and a UFS (Model 4015, JR3, Inc., Woodland, 

California), which can measure three orthogonal forces and moments (Figure 9).  The robotic 

manipulator has a specified repeatability of 0.2 mm and 0.2˚ for position and orientation, 

respectively, and the UFS is capable of measuring forces and moments with repeatability of 3.5 

N and 0.35 N-m, respectively. The UFS enables the system to operate in a force-controlled mode 

via force feedback from the UFS to the robot to allow the application of specific loads to the 

knee [4, 5, 152, 190, 271]. 

 

Figure 9. A photograph of a specimen tested on the robotic/ UFS testing system. (A) 6 DOF robotic 

manipulator; (B) UFS; (C) Goat stifle joint (reprinted with permission from [69]). 
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The joints were mounted on the robotic/UFS testing system, and the path of passive 

flexion-extension of the joint was measured at 1º increments throughout a range of joint flexion 

(from full extension to 90º) by maintaining a net force/moment of zero in all DOF except 

flexion-extension [203].  The positions that make up this path served as the starting positions for 

the application of external loads.  External loading conditions were then applied at fixed joint 

flexion angles of 30º, 60º, and 90º degrees.  Different experimental protocols were used for the 

data at time-zero (Specific Aim 2.1) [69] and data at 12 weeks of healing (Specific Aims 1 and 

2.2), and the remainder of these protocols will be presented separately. 

(a) Protocol for Specific Aim 2.1 

Effect of Bone Tunnel Location 

The summary of the testing protocol is shown in Table 1.  The 

robotic/UFS testing system was operated in force-control mode to apply external 

loads to the joint at pre-selected angles of joint flexion (30°, 60°, 90°), while the 

resulting 5 DOF joint motions (medial-lateral, proximal-distal, anterior-posterior 

(A-P) translations, and internal-external and varus-valgus (V-V) rotations) were 

measured [5, 258].  Two loading conditions were used: 1) a 67 N A-P tibial load, 

and 2) a 5 N-m V-V torque.  For the V-V torque, internal-external rotation was 

constrained using the robotic/UFS testing system.  This was done due to the large 

amount of natural laxity of the goat stifle joint in the internal-external direction, 

which impacts the ability to apply the V-V torque to the joint.  Further, a 

preliminary study was done to assess the repeatability of the force measurements.  
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A 67 N A-P tibial load was applied to a set of eight intact joints, and the resulting 

kinematics were measured.  For each joint, the same kinematics were repeated 

without altering the joint in any way, while measuring new forces.  It was found 

that the robotic testing system could repeat the applied load to within 6-9 N.  

 

Table 1. Outline of experimental protocol and data acquired to assess the effect of the tunnel locations for 

suture augmentation. 

 Protocol Data acquired 
I. Intact joint Intact joint kinematics 

 
Path of passive flexion-extension 

 
 

External loading conditions 
 

  
A. 67 N anterior tibial load 

 
  

B. 5 N-m varus-valgus moment 
 

 
Transect ACL 

 
 

Repeat kinematics (I.A, I.B) In-situ forces in ACL 

II. ACL-deficient joint 
 

 
Apply loads A and B ACL-deficient joint kinematics 

III. Augmented joint 
 

 
Perform suture augmentation 

 
  

(Random selection) 
 

 
Apply loads A and B Augmented joint kinematics 

 
Release sutures 

 
 

Repeat kinematics (III.A, III.B) In-situ forces in sutures 

 
Repeat III for each augmentation 

  
 

At each joint flexion angle of interest, each loading condition was 

applied five times to the intact joint.  The amount of anterior tibial 

translation was closely monitored during testing to ensure that there were 

no significant increases between loading cycles (<0.5 mm).  Following 

application of these loading conditions to obtain the kinematics of the intact joint, 

the bone tunnels were created, before transecting the ACL.  To determine the 
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influence of the bone tunnels on the joint, the kinematics recorded for the intact 

joint were repeated by the robotic manipulator while the UFS recorded a new set 

of forces and moments.  These were then compared to the values before the 

tunnels were made.  The difference in forces due to drilling the tunnels (<5 N) 

were found to be similar to the repeatability of our robotic testing system (6-9 N).   

Then, the ACL was completely transected.  By the principle of 

superposition, the difference in the forces measured before and after cutting the 

ACL was the in-situ force carried by the ACL under the applied loads [83, 258].  

Then, the loading conditions were again applied to determine the kinematics of 

the ACL-deficient joint. 

To determine the effect of tunnel locations for suture augmentation, a two-

way factorial design was used, as described in Section 4.3.  As such, four 

augmentation groups were utilized and compared (Table 2).  For example, the 

augmentation using the anterior femoral tunnel and a single tibial tunnel was 

designated as Group 1 (FA/TM). 
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Table 2. Summary matrix of augmentation procedures. 

  
Femoral Tunnel Location (Relative to ACL origin) 
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Ti
bi

al
 T

un
ne

l L
oc

at
io

n 
   

   
   

   
   

   
   

   
   

  
(R

el
at

iv
e 

to
 A

C
L 

in
se

rti
on

) 

M
ed

ia
l T

un
ne

l 
O

nl
y 

(T
M

) 
Group 1 
(FA/TM) 

Group 2 
(FT/TM) 

M
ed

ia
l &

 
La

te
ra

l T
un

ne
ls

 
(T

LM
) Group 3 

(FA/TLM) 
Group 4 
(FT/TLM) 

 
 

The surgical procedure for all augmentation groups was done according to 

Section 4.3; however, no additional simple suture repair was performed.  After, 

the two external loading conditions were applied and the kinematics of the 

augmented joint were recorded. The in-situ force carried by the augmentation 

sutures was obtained by removing the sutures and replaying the kinematics of the 

augmented joint [83, 258].  This procedure was then repeated for each 

augmentation.  The order of the augmentations was randomized for each 

specimen. 

  

In-vitro Comparison of Suture Techniques 

For the in-vitro comparison of suture techniques, two loading conditions were 

used: 1) a 67 N A-P tibial load, and 2) a 67 N A-P tibial load with 100 N of axial 

joint compression.  These loads were largely based on those in the literature, and 
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were meant to approximate the average A-P and axial joint loading during normal 

gait in the goat [103].  The summary of the testing protocol is shown in Table 3.   

Following application of these loading conditions to obtain the kinematics 

of the intact joint, the ACL was completely transected through a medial 

arthrotomy, created prior to the start of testing.  The kinematics recorded for the 

intact joint under the loading conditions were repeated by the robotic manipulator 

while the UFS recorded a new set of forces and moments.  By the principle of 

superposition, the difference in the forces measured before and after cutting the 

ACL was the in-situ force carried by the ACL under the applied loads [258].  

Then, the loading conditions were again applied to determine the kinematics of 

the ACL-deficient knee. 

After, suture repair of the ACL was performed according to Section 4.3. 

Following fixation, the two external loading conditions were applied and the 

kinematics of the suture repaired joint were recorded. The in-situ force carried by 

the repair sutures was obtained using the principle of superposition by removing 

the sutures and replaying the kinematics of the repaired joint to obtain a new set 

of forces and moments [258].  Then, suture augmentation was done according to 

Section 4.3.  Like for suture repair, the kinematics of the suture augmented joint 

and the in-situ force carried by the augmentation sutures were determined [258]. 

To determine the relative contribution of the other tissues of the joint, each 

tissue of interest was sequentially removed.  Then, the kinematics for the intact, 

ACL-deficient, suture repaired, and suture augmented conditions were repeated 

while recording new forces in order to determine the in-situ force in each tissue.  
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This procedure was done for the MCL, lateral collateral ligament (LCL), medial 

meniscus, and lateral meniscus.  After removal of all soft tissue, only the bony 

contact connected the femur and tibia, and thus, the remaining forces during 

replay of the kinematics represented those due to bony contact.     

 

Table 3. Outline of experimental protocol and data acquired to compare suture repair and suture 

augmentation. 

 
Protocol Data acquired 

I. Intact joint Intact kinematics 
  Path of passive flexion-extension   
  External loading conditions   
    A. 67 N anterior tibial load (ATL)   
    B. 67 N ATL + 100 N joint compression   
  Transect ACL   
  Repeat kinematics (I.A, I.B) In-situ forces in ACL 

II. ACL-deficient joint   
  Apply loads I.A and I.B ACL-deficient kinematics 

III. Suture repair   
  Perform suture repair   
  Apply loads I.A and I.B Suture repair kinematics (III.A, III.B) 
  Release sutures   
  Repeat kinematics (III.A, III.B) In-situ forces in repair sutures 

IV. Suture augmentation   
  Perform suture augmentation   
  Apply loads I.A and I.B Augmentation kinematics (IV.A, IV.B) 
  Release sutures   
  Repeat kinematics (IV.A, IV.B) In-situ forces in augmentation sutures 

V. Remove soft tissue (e.g. MCL) 
 

 
Repeat kinematics (I, II, III, IV) In-situ forces in soft tissue 

 
 (repeat for each soft tissue of interest) 
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(b) Protocol for Specific Aims 1 and 2.2 

For Specific Aims 1 and 2.2, a single loading condition was used: a 67 N A-P 

tibial load.  Afterward, the MCL, LCL, capsule, medial meniscus, lateral 

meniscus, and bony contact were removed sequentially.  Following each step, the 

kinematics found for each loading condition were repeated while recording new 

sets of forces.  The difference in forces represented the in-situ force in each tissue, 

via the principle of superposition.  After removal of the bony contact, only the 

ACL connected the femur to the tibia.  Thus, at this step, any forces recorded 

during replay of the kinematics represented the in-situ forces of the ACL under 

the external loading condition.  Afterward, the CSA and biomechanical properties 

of the ACL were determined.  

4.4.2.2 Cross-Sectional Area and Shape Measurements  

A laser micrometer system was used to determine the CSA of the ACL [138].  The accuracy of 

the CSA has been determined to be within 5.0% for known shapes and the measurements can be 

done in approximately 1 minute, limiting dehydration of soft tissues.  The FATCs were removed 

from the robotic/UFS testing system and mounted on the laser micrometer system.  The CSA and 

shape measurements were made at the longitudinal center of the ligament [213].   

4.4.2.3 Uniaxial Tensile Testing  

All FATCs were secured in customized clamps, which were mounted onto a materials  testing 

machine (InstronTM 5565) (Figure 10) [4, 171, 213].  A crosshead speed of 10 mm/min was used 

for all tests.  The specimens were preloaded to 2 N and preconditioned between limits of 

elongation that equate to loading within the toe region of the load-elongation curve (0-1 mm).  
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Following these steps, the ACL was left unloaded for 15 minutes.  After, the 2N preload was 

reapplied, and specimens were loaded to failure.  The structural properties (i.e., stiffness, 

ultimate load to failure, elongation to failure, and energy absorbed) of the FATCS were 

determined from the load-elongation curves [4, 171, 213].  The slope of the linear region of the 

curve such that R2 > 0.995 was defined as the stiffness.   

 

 

Figure 10. Femur-ACL-tibia complex mounted within custom clamps on a materials testing machine for uniaxial 

tensile testing. 



54 

4.4.3 Data analysis 

Statistical analyses were done using SPSS software (Version 14.0, SPSS, Inc.).  For all data, 

normality was checked using the Kolmogorov-Smirnov test [102].  If the data are not normally 

distributed, non-parametric tests replaced the parametric tests described below.  For all tests, 

overall significance was set at p<0.05.  If multiple comparisons were done, a Bonferroni 

correction was performed such that p=0.05/n, where n is the number of comparisons made. 

For Specific Aim 1, the joint kinematics, in-situ forces, CSA, and biomechanical 

properties of the two treatment groups were compared to their respective control groups using a 

paired t-test and compared to each other using an unpaired t-test. For both parts of Specific Aim 

2.1, a repeated measures ANOVA was utilized to compare joint kinematics and the in-situ forces 

in the tissues. To determine statistical differences between groups, a Bonferroni post-hoc was 

done. For Specific Aim 2.2, statistical comparisons were performed as in Specific Aim 1.   
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5.0  BIOLOGICAL AUGMENTATION OF THE ACL THROUGH EXTRACELLAR 

MATRIX BIOSCAFFOLDS 

The suture repair technique characterized in Section 4.3 was utilized in Specific Aim 1, in 

which ECM bioscaffolds were applied to enhance healing of the ACL [67, 70, 71]. An ECM 

sheet was wrapped around the injury site, so as to completely enclose it (Figure 6).  Then, an 

ECM hydrogel was injected, so as to fill the injury site (Figure 6). 

5.1 JOINT STABILITY 

All goats tolerated surgery well and were ambulating with a slight limp within a few 

hours following surgery.  Daily inspection of the animals revealed that their weight-bearing had 

returned to normal within the first two weeks.  Afterward, all animals were mobile and moved 

freely with no noticeable limping.   

Figure 11A details the joint function, as represented by the curves for the A-P tibial 

translation (A-PTT) in response to the 67 N A-P tibial load at 30° of flexion as measured by the 

robotic/UFS testing system.  To provide a consistent reference position for all stifle joints, the A-

PTT began at the 67 N posterior tibial load.  It could be seen that the curves for all groups were 

nonlinear. The amount of translation for the experimental groups was much higher, and the 

difference began at low loads.  The suture repair group showed larger amounts of A-PTT than 
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the ECM-treated group.  Similar results were observed with the stifle joint at 60° and 90° of 

flexion (Table 4).  In all three groups, the A-PTT increased from 30° to 60° and then decreased 

at 90°.  Both treatment groups had statistically higher A-PTT compared to those for the sham-

operated controls at 30°, 60° and 90° of flexion (p<0.05).  For statistical comparison of joint 

kinematics data between groups, it is suitable to normalize the A-PTT with respect to the sham-

operated control groups of each animal to take into account the interspecimen variability (Figure 

11B). Between treatment groups, the normalized values for A-PTT for the ECM treated group 

were 30%, 24%, and 13% lower than those for the suture repair group at 30°, 60° and 90° of 

flexion, respectively.  However, these differences were not statistically significant (p>0.05).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

A. 

-80

-40

0

A
nt

er
io

r T
ib

ia
lL

oa
d 

(N
)

-60

-20

ECM-treated Group

5 10
Elongation (mm)

20

40

60

80

15

Suture Repair Group

Sham-operated Group

 

B. 

0

200

500

A
-P

 T
ib

ia
l T

ra
ns

la
tio

n 
   

   
   

   
  

(%
 o

f s
ha

m
-o

pe
ra

te
d 

co
nt

ro
l)

30

100

300

Suture Repair Group
ECM-treated Group

60 90
Flexion Angle (degrees)

400

 

 

Figure 11. A) Average curves for the A-PTT in response to the 67 N A-P tibial load as measured by the 

robotic/UFS testing system at 30° of flexion for the sham-operated, ECM-treated, and suture repair groups.   B) A-P 

tibial translation of the ECM-treated and suture repair groups in response to an 67-N anterior tibial load normalized 

to their respective intact joint controls (mean ± SD). 
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Table 4. Anterior-posterior tibial translations (mm) of the goat joints 30°, 60°, and 90° of joint flexion under an 67-

N anterior-posterior tibial load (mean ± sd).  *Indicates a statistically significant difference compared to the 

respective sham-operated controls (p<0.05). 

           

        Joint Flexion Angle   

      30° 60° 90° 
  I. ECM-treated Group         

Sham-operated Control     3.4 ± 0.4 3.9 ± 0.5 3.0 ± 0.5 
Experimental     8.6 ± 2.0* 11.3 ± 2.1* 10.2 ± 1.9* 
            

  II. Suture Repair Group         
Sham-operated Control     3.8 ± 0.2 4.1 ± 0.3 2.8 ± 0.4 
Experimental     11.8 ± 3.4* 14.4 ± 4.2* 10.8 ± 3.3* 

 
 

In terms of the in-situ force of the ACL under the 67 N anterior tibial load, its anterior 

component at 30° of flexion was plotted against the amount of A-PTT (Figure 12A).  For 

consistency, the A-PTT for all groups was normalized to the respective sham-operated control 

group.  In general, the sham-operated ACLs carried the vast majority of the applied anterior 

tibial load.  A similar response was found for the ECM-treated healing ACLs; however, the 

suture repaired ACLs carried markedly lower anterior force.  Similar findings were obtained at 

with the stifle joint at 60° and 90° of flexion.   
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Figure 12. A) Anterior component of the in-situ force of the ACL as a function of the A-PTT at 30° of flexion for 

the sham-operated, ECM-treated, and suture repair groups.  Note: Values of A-PTT are normalized to the A-PTT for 

the respective sham-operated control group. B) Anterior component of the in-situ force healing ACLs of the ECM-

treated and suture repair groups normalized by the values for the sham-operated ACLs. 
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Table 5. Resultant in-situ force of the ACL (in N) at 30°, 60°, and 90° of joint flexion under a 67-N anterior tibial 

load (mean ± sd).  *Indicates a statistically significant difference compared to the respective sham-operated controls 

(p<0.05). 

           

        Joint Flexion Angle   

      30° 60° 90° 
  I. ECM-treated Group         

Sham-operated Control     62 ± 5 54 ± 6 53 ± 5 
Experimental     52 ± 11 52 ± 8 31 ± 12* 
            

  II. Suture Repair Group         
Sham-operated Control     50 ± 12 51 ± 11 53 ± 7 
Experimental     26 ± 24 29 ± 25 13 ± 15* 

 
 

Quantitative data on the resultant in-situ force of the ACL are presented in Table 5.  The 

intact ACL carried forces ranging from 50-62 N on average throughout joint flexion.  For both 

treatment groups, the highest values of in-situ force of the healing ACL were found at 30° and 

60° of flexion and were not statistically significant from their respective sham-operated controls 

(p>0.05).  In fact, the ECM-treated group, the in-situ force in the healing ACL was found to be 

84% and 96% of those for the sham-operated ACLs.  At 90° of flexion, both treatment groups 

had significantly lower values than the sham-operated control groups (p<0.05).  Similar to the 

joint kinematics, it is useful to normalize the anterior component of the in-situ force of the ACL 

with respect to the sham-operated control groups to compare treatment groups (Figure 12B). 

Following this step, the average values for the ECM-treated group were 92%, 76% and 142% 

larger than those for the suture repair group at 30°, 60°, and 90°, respectively.  However, again, 

these differences were not statistically significant (p>0.05). 
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5.2 GROSS MORPHOLOGY AND DIMENSIONS 

Gross observation revealed that the sham-operated ACLs were white and opaque, consisting of 

distinct bundles with clearly observable collagen fiber orientation (Figure 13A).  In the ECM-

treated ACLs, there was continuous neo-tissue formation for all specimens, with no noticeable 

concavities (Figure 13B).  The neo-tissues were slightly reddish in color but were less opaque 

than the sham-operated control ACLs.  Overall, a small amount of hypertrophy of the ECM-

treated ACLs could be seen compared to the sham-operated controls.  This observation was 

confirmed in the CSA measurement as the healing ACLs for the ECM-treated group were 29.0 ± 

19.3 mm², whereas those for the sham-operated control group were 23.0 ± 4.6 mm².  The 

difference was not statistically significant (p>0.05). It should be noted that one specimen in the 

ECM-treated group, did show significant hypertrophy with a CSA measuring 69.2 mm2.  Upon 

visual inspection, it was observed that the tissue on the anterior portion of the ACL was likely 

not contributing to the function of the ACL, as its appearance and quality were substantially 

lower than toward the posterior regions.  However, this tissue was connected to the sutures as 

well as the rest of the healing tissue, and thus, could not be removed without potentially 

damaging the ACL. In the other specimens, little tissue hypertrophy was observed.   In the suture 

repair group, however, there was only a small amount of neo-tissue found, most of which was 

directly attached to the repair sutures (Figure 13C).  In total, four specimens showed some tissue 

formation, two had very little, and one had no tissue formation at all.  Quantitatively, the values 

for the CSA of the healing ACLs were only 34% of those for the sham-operated control group 

(6.5 ± 4.3 mm² vs. 21.6 ± 5.6 mm², respectively), and the difference was statistically significant 

(p<0.05).  When normalized by their respective sham-operated control of each animal, the 
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experimental/control values for the CSA from the ECM-treated group was four times those of the 

suture repair group (127 ± 90 % vs. 34 ± 25 %, respectively, p<0.05; Figure 14). 

A) Sham-operated 
ACL

C) Suture Repaired                    
Healing ACL

B) ECM-treated         
Healing ACL

 

Figure 13. Gross morphology of (A) sham-operated ACL, (B) ECM-treated healing ACL, and (C) suture repaired 

healing ACL at 12 weeks of healing. 
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Figure 14. The cross-sectional area of healing ACLs for the ECM-treated and suture repair groups at 12 weeks post-

surgery normalized by the values for the respective sham-operated ACLs.  Examples of the cross-sectional shape are 

also shown above each bar graph.  *Indicates a statistically significant difference (p<0.05). 

5.3 HISTOLOGICAL EVALUATION 

Histologically, the midsubstance of the ACL in the sham-operated group showed compact 

collagen fibers that were highly aligned with many regularly interspersed spindle-shaped cells 

(Figure 15A). For two of the four samples from the ECM-treated group and one of the two 

samples from the suture repair only group, aligned collagen fibers parallel to the longitudinal 

axis of the ligament were observed with many spindle-shaped cells oriented along the collagen 

fibers (Figure 15B).  However, at this stage of healing, the matrix was not as dense as the sham-

operated controls. In addition, there were more cells in the ECM-treated healing ACL, most of 

which were spindle-shaped. On the other hand, for the other two samples from the ECM-treated 
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group and one sample from the suture repair group, there were only sparse collagen fibers 

without clear alignment (Figure 15C).  It should be noted that these two samples from the ECM-

treated group were from the first two animals used in the study, and the poor results could be 

partially attributed to a lack of surgical skill.  Nevertheless, the high variability in outcome was 

clear from the histological evaluation. 

 

Figure 15. Histological appearance of the (A) sham-operated ACL as well as the ECM-treated and suture repaired 

healing ACLs at 12 weeks of healing showing (B) good tissue formation and (C) poor tissue formation (100x 

magnification). 
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5.4 TENSILE PROPERTIES 

Figure 16 details the nonlinear load-elongation curves for the ECM-treated and suture repair 

groups.  Typically, the toe region existed for up to 1-1.5 mm of elongation, followed by a linear 

region until failure.  All specimens were found to fail in the tissue midsubstance of the healing 

ACL.  
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Figure 16. Average load-elongation curves of the ECM-treated and suture repair groups at 12 weeks post-surgery. 

 

Data on the parameters representing these structural properties of the FATCs are detailed 

in Table 6. For both the ECM-treated and suture repair groups, the values for stiffness, ultimate 

load, and ultimate elongation were below the values for their respective sham-operated groups 

(p<0.05). Again, the data was normalized with respect to the sham-operated controls for 
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statistical comparisons between experimental groups (Figure 17). The linear stiffness of the 

ECM-treated FATCs was 140% greater than those for the suture repair group 

(experimental/control was 48 ± 19% vs. 20 ± 18%, respectively, p<0.05). Similarly, the mean 

values for the ultimate load were 90% higher with ECM-treatment (16 ± 9% vs. 9 ± 9%, 

respectively); however, these differences were not statistically significant (p>0.05).  The ultimate 

elongation was similar between the two groups (38 ± 14% vs. 30 ± 19%, respectively, p>0.05).   

 

Table 6. Parameters representing the structural properties of the femur-ACL-tibia complexes for the sham-operated 

control, ECM-treated and suture repair groups at 12 weeks post-surgery (mean ± sd).  *Indicates a statistically 

significant difference compared to the respective sham-operated controls (p<0.05). 

 

 
          

  ECM-treated Group   Suture Repair Group 

  
Sham-operated 

Control Healing   
Sham-operated 

Control Healing 
Stiffness (N/mm) 112 ± 21 53 ± 19*   125 ± 23 24 ± 21* 
Ultimate Load (N) 1624 ± 235 249 ± 129*   1385 ± 365 95 ± 90* 
Ultimate Elongation (mm) 15.3 ± 2.9 5.6 ± 1.7*   19.0 ± 6.3 6.1 ± 4.6* 
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Figure 17. Stiffness (A.) and ultimate load (B.) of the healing femur-ACL-tibia complexes for the ECM-treated and 

suture repair groups as a percentage of the sham-operated controls at 12 weeks post-surgery. *Indicates a 

statistically significant difference (p<0.05). 
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6.0  MECHANICAL AUGMENTATION OF THE HEALING ACL THROUGH 

SUTURE TECHNIQUES 

6.1 AIM 2.1- IN-VITRO EVALUATION OF SUTURE TECHNIQUES 

In Specific Aim 2.1, the suture repair and suture augmentation techniques were compared in-

vitro in a set of goat knees using the robotic/UFS testing system to determine their ability to 

restore initial joint stability as well as maintain in-situ forces similar to that of the normal ACL 

[67-69].   

6.1.1 Effect of Tunnel Location for Suture Techniques on Joint Stability 

Since both suture techniques required creating bone tunnels in the femur and tibia, it was 

important to first determine whether the locations of these bone tunnels had a significant impact 

on the resulting joint stability [69].  As described in Section 4.4.2.1(a), a two-way factorial 

design was used (Table 2).  Suture augmentation was used for this study, since it is easier from a 

technical standpoint, as well as more repeatable than suture repair (which would require that 

since the ACL tissue to be repaired multiple times).  Two femoral tunnels were created and 

compared: 1) a tunnel anterior to the ACL footprint at the femoral origin (FA), and 2) a tunnel 

through the ACL footprint at the femoral origin (FT) (Figure 7).  For the tibial tunnel location, 

two groups were compared: 1) a single tunnel medial to the ACL footprint at the tibial insertion 
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(TM), and 2) tunnels medial and lateral to the ACL footprint at the tibial insertion (TLM) (Figure 

7).  We hypothesized that sutures placed through the ACL footprint at the femoral origin will 

better restore kinematics compared to a more anterior femoral tunnel placement because the 

location better replicates the footprint of the ACL.  We further hypothesized that the effect of 

tibial tunnel location will be negligible since the tunnels are placed similarly in the sagittal plane 

while the slight difference in the frontal plane would result in a minimal shift in the line of action 

of the sutures. 

6.1.1.1 Joint Kinematics and In-situ Forces under 67 N Anterior Tibial Load 

The data on joint kinematics in response to a 67 N anterior tibial load as measured by the 

robotic/UFS testing system are detailed in Table 7.  For all experimental conditions, values for 

ATT were higher at 30° and 60° and then decreased at 90°.  For the intact joint, mean ATT was 

found to range from 1.9 to 2.5 mm for the three joint flexion angles tested.  Corresponding 

values for the ACL-deficient joint were 12.8 to 15.5 mm, representing a very large increase of 6-

7 fold (p<0.05).  Following suture augmentation, the ATT was reduced to 2.5 to 5.2 mm and was 

10.3-11.2 mm lower than the ACL-deficient joint throughout the joint flexion angles tested 

(p<0.05). More importantly, there was no statistically significant difference from those of the 

intact joint (maximum difference of means of 2.9 mm, 2.4 mm, and 1.3 mm) at 30°, 60°, and 

90°,  respectively (p>0.05). Statistical comparisons showed no significant differences between 

the four augmentation groups at all three flexion angles, with the largest difference in mean 

values of 0.8 mm between them (p>0.05).     

In terms of the in-situ forces, the intact ACL carried mean forces ranging from 56 N to 69 

N in response to the 67 N anterior tibial load throughout the range of flexion (Table 7).  Similar 

values were found for the sutures in all of the four augmentation groups.  The maximum 
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difference in means was only 11 N, 6 N, and 9 N from the intact ACL at 30°, 60°, and 90°, 

respectively (p>0.05).  The only two exceptions were that Group 1 (FA/TM) and Group 2 (FT/TM) 

were statistically significantly lower than those for the intact ACL at 30° (p<0.05).  When 

compared between the four experimental groups, the findings were the same as for ATT, as there 

were no significant differences in the in-situ forces between them (p>0.05).  
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Table 7. Anterior tibial translation (A) and in-situ forces carried by the intact ACL and augmentation sutures (B) of the goat joints in response to an 67 N anterior 

tibial load at 30°, 60°, and 90° of joint flexion (Mean ± SD). 

 

 
A. Anterior Tibial Translation (mm) B. In-situ Force of ACL/Sutures (N) 

Flexion Angle (degrees) 30 60 90 30 60 90 

Intact Joint 2.3 ± 0.5 2.5 ± 0.5 1.9 ± 0.6 69 ± 6 63 ± 4 56 ± 7 
ACL-deficient Joint 15.3 ± 2.2* 15.5 ± 3.0* 12.8 ± 3.3* NA NA NA 

Suture Augmented Joint     
  

2.8 ± 1.8 
  

60 ± 4+ 

    

   Group 1 (FA/TM) 5.2 ± 1.9 4.9 ± 1.9 57 ± 6 51 ± 6 
   Group 2 (FT/TM) 4.8 ± 1.8 4.5 ± 1.7 2.7 ± 1.7 58 ± 7+ 62 ± 5 52 ± 8 
   Group 3 (FA/TLM) 4.4 ± 1.5 4.3 ± 1.4 2.5 ± 1.5 61 ± 5 60 ± 5 52 ± 10 
   Group 4 (FT/TLM) 4.7 ± 1.7 4.6 ± 1.6 3.2 ± 1.6 62 ± 5 60 ± 6 47 ± 13 
*p < .05 compared with all other joint conditions at the same flexion angle 

            +p < .05 compared to intact joint at the same flexion angle 
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6.1.1.2 Joint Kinematics and In-situ Forces under 5 N-m Varus-Valgus Torque 

The data on joint kinematics in response to a 5 N-m valgus torque are detailed in Table 8.  The 

intact joint had higher values at 90° and lower values at 30°.  The trends were opposite for both 

the ACL-deficient and suture augmented conditions.  For the intact joint, mean values for ATT 

for the intact joint ranged from -0.3 to 0.2 mm for the three joint flexion angles tested. With 

ACL-deficiency, the range of mean values was 2.5 to 5.0 mm, although these increases were not 

statistically significant (p>0.05).  Following suture augmentation, mean ATT was reduced to -0.4 

to 1.3 mm. There was no statistically significant difference from those of the intact joint 

(maximum difference in means of 1.6 mm, 0.4 mm, and 0.4 mm) at 30°, 60°, and 90°,  

respectively (p>0.05). Further, there were no statistically significant differences between the four 

experimental groups, with the largest difference of only 0.3 mm in mean values between them 

(p>0.05).  

In terms of the in-situ forces under the 5 N-m valgus torque, the intact ACL carried mean 

forces ranging from 19 N at 90° to 31 N at 30° (Table 8).  Corresponding values for the 

augmentation sutures were not statistically different from the intact ACL and ranged from 13 to 

16 N on average (p>0.05).  When compared between the four experimental groups, there were no 

significant differences in the in-situ forces between them (p>0.05).   
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Table 8. Anterior tibial translation (A) and in-situ forces carried by the intact ACL and augmentation sutures (B) of the goat joints in response to an 5 N-m 

valgus torque at 30°, 60°, and 90° of joint flexion (Mean ± SD). 

 

   A. Anterior Tibial Translation (mm) B. In-situ Force of ACL/Sutures (N) 
Flexion Angle (degrees) 30 60 90 30 60 90 

Intact Joint -0.3 ± 0.4 0.2 ± 0.7 0.0 ± 1.2 31 ± 13 22 ± 10 19 ± 8 
ACL-deficient Joint 4.7 ± 4.5 5.0 ± 6.1 2.5 ± 4.8 NA NA NA 
Suture Augmented Joint             
Group 1 (FA/TM) 1.0 ± 1.3 0.4 ± 1.2 -0.4 ± 1.3 13 ± 8 13 ± 6 16 ± 12 
Group 2 (FT/TM) 0.9 ± 1.1 0.4 ± 1.0 -0.3 ± 1.3 14 ± 7 15 ± 9 15 ± 10 
Group 3 (FA/TLM) 1.2 ± 1.5 0.6 ± 1.5 -0.4 ± 1.3 15 ± 6 13 ± 5 16 ± 7 
Group 4 (FT/TLM) 1.3 ± 1.5 0.6 ± 1.4 -0.1 ± 1.5 14 ± 8 15 ± 8 13 ± 9 
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The data on joint kinematics in response to a 5 N-m varus torque are detailed in Table 9. 

Similar to the 5 N-m valgus torque, the intact joint had higher values at 90° and lower values at 

30°, while the opposite trends were observed for the ACL-deficient and suture augmented 

conditions.  Mean values of ATT for the intact joint ranged from -0.2 to 0.5 mm for the three 

flexion angles tested. With ACL-deficiency, the corresponding range was 11.7 to 8.0 mm, which 

corresponded to an increase of 7.5 to 11.9 mm (p<0.05).  After suture augmentation, the mean 

ATT was reduced to 1.4 to 4.2 mm.  At 30°, the mean ATT for all augmentation groups were 

approximately 4.0 mm greater than that of the intact joint (p<0.05).  At 60°, mean values of ATT 

for all groups were within 3.0 mm of that for the intact joint, with the only statistically 

significant difference between the intact joint and Group 3 (FA/T2) (p<0.05).  At 90°, all 

augmentation groups restored mean ATT to within 1.6 mm, and were not significantly different 

from the intact joint (p>0.05).  At all flexion angles, the values after augmentation were 

significantly lower than the ACL-deficient joint (p<0.05).  No significant differences were found 

between the augmentations, with a maximum difference in means of only 0.7 mm at 90° 

(p>0.05). 

In terms of the in-situ forces under the 5 N-m varus moment, the intact ACL was found to 

carry mean forces ranging from 59 at 30° to 65 N at 90° (Table 9).  At 30° of flexion, the mean 

in-situ forces of all augmentations were 12-16 N lower than those for the intact ACL (p<0.05); 

however, similar values were observed at 60° and 90° of joint flexion compared to those for the 

intact ACL (p>0.05). When comparing between the four experimental groups, there were no 

significant differences in the in-situ forces carried by the sutures (p>0.05).   
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Table 9. Anterior tibial translation (A) and in-situ forces carried by the intact ACL and augmentation sutures (B) of the goat joints in response to an 5 N-m varus 

torque at 30°, 60°, and 90° of joint flexion (Mean ± SD). 

  
  A. Anterior Tibial Translation (mm) B. In-situ Force of ACL/Sutures (N) 

Flexion Angle (degrees) 30 60 90 30 60 90 
Intact Joint -0.2 ± 0.3 0.3 ± 0.4 0.5 ± 0.5 59 ± 7 61 ± 13 65 ± 16 
ACL-deficient Joint 11.7 ± 2.0* 11.2 ± 1.6* 8.0 ± 1.4* NA NA NA 
Suture Augmented Joint             
Group 1 (FA/TM) 4.0 ± 2.0+ 3.1 ± 2.2 1.4 ± 1.4 43 ± 4+ 51 ± 17 55 ± 10 
Group 2 (FT/TM) 3.9 ± 1.8+ 3.0 ± 2.1 1.5 ± 1.2 44 ± 7+ 54 ± 14 56 ± 8 
Group 3 (FA/TLM) 3.9 ± 1.5+ 3.0 ± 1.6+ 1.7 ± 1.1 47 ± 10+ 52 ± 15 59 ± 14 
Group 4 (FT/TLM) 4.2 ± 2.4+ 3.4 ± 2.5 2.1 ± 1.6 43 ± 6+ 52 ± 10 52 ± 11 
*p < .05 compared with all other joint conditions at the same flexion angle 

        +p < .05 compared to intact joint at the same flexion angle 
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6.1.2 Discussion of Appropriate Tunnel Locations for Suture Augmentation 

In Specific Aim 2.1, we first wished to examine the effects the location of the bone tunnels for 

suture augmentation on the stability of the joint. It was found that the tunnel locations chosen for 

this study had a minimal effect on joint stability.   

We first hypothesized that the femoral tunnel location for the sutures would have a 

significant effect of joint stability and the in-situ force carried by the sutures.  Contrary to our 

hypothesis, no differences were observed when the femoral tunnel was placed just anterior to the 

femoral insertion of the ACL or placed through the femoral insertion.  In the ACL reconstruction 

literature, the effect of femoral tunnel position has been extensively studied in the human knee 

joint [8, 105, 124, 150, 226, 272].  Having an ACL graft placed within the ACL footprint at the 

femoral origin of the ACL has been found to be important as it better restores the knee stability.  

In the current study, the FA tunnel was placed immediately anterior to the ACL footprint at the 

femoral origin, such that the location of the FA and FT tunnels only differed by a few millimeters, 

which may explain why no differences due to femoral tunnel location were discernable under 

either the anterior tibial load or the varus-valgus torque.   

We further hypothesized that tibial tunnel location for the sutures would not play a role in 

joint stability and the in-situ force carried by the sutures.  Our hypothesis was confirmed as no 

differences were found when the sutures were placed medial to the tibial insertion of the ACL or 

medial and lateral to the tibial insertion.  For tibial tunnel location, passing within the anterior or 

middle portion of the ACL footprint at the tibial insertion in the sagittal plane has been shown to 

restore kinematics for both ACL reconstruction using a soft tissue graft [8, 105, 124] or suture 

augmentation [73].  In the frontal plane, ACL reconstruction grafts have been usually placed 
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within the ACL footprint at the tibial insertion [8, 99, 105, 124].  However, in the context of 

using FTE treatments to heal an ACL, it becomes necessary to place the tunnels adjacent to the 

ACL footprint in order to avoid further damage to the injured ACL and perhaps impede its 

healing process.  In this study, sutures placed both medial and lateral to the ACL footprint 

showed no biomechanical advantage when compared to placing the augmentation sutures only 

medial to the ACL footprint. Thus, the location of the tibial tunnels in the frontal plane also had 

little influence on joint stability. 

In summary, all four suture augmentation groups were similarly able to restore joint 

kinematics as well as the in-situ forces in the sutures close to levels of the intact joint and ACL, 

respectively.  Nevertheless, statistical differences versus the intact condition were found for 

some suture augmentation groups, but not others.  It should be noted that the use of a 

robotic/UFS testing system allowed data for the intact, ACL-deficient, and suture augmented 

conditions to be collected in the same set of goat stifle joints allowing repeated measures 

statistical analysis for increased statistical power.  Thus, small and consistent differences in 

means can become statistically significant, even if the difference in the values of the means (~10 

N) was small and on the same order of magnitude of the repeatability of our testing system. 

Since there was no statistically significant change in anterior joint stability between these 

four suture augmentation procedures, the findings suggest that the sutures be placed anterior to 

the ACL footprint of the femoral origin and medial to the ACL footprint of the tibial insertion.  

Since this surgical procedure is relatively simple and avoids further injury to the ACL tissue, it 

was used in the remainder of the dissertation. 
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6.1.3 In-vitro comparison of suture repair and suture augmentation 

In the second part of Specific Aim 2.1, suture repair and suture augmentation were compared in-

vitro on a set of goat knees using the robotic/UFS testing system, according to the protocol in 

Section 4.4.2.1(a).  After performing each procedure, external loads were applied to the joint, 

and the resulting joint kinematics as well as the in-situ forces in the sutures and other structures, 

such as the MCL and medial meniscus, were determined.  The results were compared between 

suture techniques as well as to those for the intact and ACL-deficient conditions. 

6.1.3.1 Joint Kinematics and In-situ Forces under 67 N Anterior Tibial Load 

 

The data on knee kinematics in response to a 67 N anterior tibial load as measured by the 

robotic/UFS testing system are detailed in Table 10.  For the intact joint, the amount of ATT was 

similar at 30° and 60° (2.1 mm and 2.4 mm, respectively) and then decreased slightly at 90° (1.8 

mm).  Corresponding values for the ACL-deficient joint ranged from 13.9 mm at 90° to 17.3 mm 

at 60°, representing an increase of 7-8 fold compared to the intact joint (p<0.05).  With suture 

repair, the amount of ATT reached a maximum of 12.0 mm at 60° and a minimum of 10.8 mm at 

90°.  These values were still 5-6 times higher than the intact joint (p<0.05); however, they were 

34%, 31%, and 22% lower than the ACL-deficient joint at 30°, 60°, and 90°, respectively 

(p<0.05).  With suture augmentation, the amount of ATT ranged from 5.1 mm at 30° to 2.6 mm 

at 90°, and thus, was restored to within 3 mm of the intact joint throughout joint flexion 

(p>0.05).  Furthermore, these values for 69%, 72%, and 81% lower than the ACL-deficient joint 

(p<0.05) and 54%, 59%, and 76% lower than the suture repair group, respectively (p<0.05). 
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Table 10. Anterior tibial translation (in mm) under a 67 N anterior tibial load (*p<0.05 compared to intact, +p<0.05 

compared to ACL-deficient, #p<0.05 compared to suture repaired). 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact Joint 2.1 ± 0.6 2.4 ± 0.6 1.8 ± 0.3 
ACL-deficient Joint 16.6 ± 2.4* 17.3 ± 2.0* 13.9 ± 1.7* 
Suture Technique       
Suture Repair 11.0 ± 3.5*+ 12.0 ± 2.8*+ 10.8 ± 2.4*+ 
Suture Augmentation 5.1 ± 2.2+# 4.9 ± 1.9+# 2.6 ± 1.5+# 

  

In this study, all groups were compared within the same set of joints, and thus, had the 

same reference position.  This allowed the amount of ATT to be directly compared between 

groups, so for this study statistical analyses were done using the values of ATT.  However, when 

comparing to groups in another set of joints (i.e. data at 12 weeks of healing), it is necessary to 

standardize the data in order to allow an objective comparison.  First, in order to eliminate 

dependence on the reference position, the amount of total A-PTT is calculated for each 

experimental condition under the 67-N anterior-posterior tibial load.  As a reference for future 

studies, the values for A-PTT for this study are provided in Table 11.  Further, for results at 12 

weeks, it is important to limit interspecimen variability between experimental groups.  Thus, the 

APTT of the experimental group can be normalized by the APTT of the intact control joint for 

each animal (%experimental/control) (Figure 20).  The normalized values for A-PTT for the 

suture augmentation group (178 ± 66%, 163 ± 60%, and  123 ± 37%) were 43%, 48%, and 62% 

lower than those for the suture repair group (313 ± 106%, 313 ± 85%, and  319 ± 80%), at 30°, 
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60° and 90° of flexion, respectively.  Further, these values were 60%, 62%, and 69% lower than 

the ACL-deficient joint (442 ± 105%, 429 ± 103%, and 397 ± 89%), respectively. 

 

Table 11. Anterior-posterior tibial translation under a 67 N anterior-posterior tibial load. 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact Joint 4.5 ± 0.9 4.8 ± 0.9 4.3 ± 0.8 
ACL-deficient Joint 18.9 ± 2.1 19.6 ± 1.8 16.4 ± 1.2 
Suture Technique       
Suture Repair 13.4 ± 3.3 14.4 ± 2.7 13.3 ± 2.3 
Suture Augmentation 7.4 ± 1.6 7.3 ± 1.5 5.1 ± 1.2 
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Figure 18. Anterior-posterior tibial translation normalized to intact joint (%experimental/control) under a 67 N 

anterior-posterior tibial load. 
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Under the 67 N anterior tibial load, the in-situ force of the intact ACL was similar at 30° 

and 60° and slightly lower at 90° of joint flexion, ranging from 62 N at 30° to 48 N at 90° (Table 

12).  These trends were similar for both the augmentation sutures and repair sutures.  For both 

the suture repair and suture augmentation groups, the in-situ forces in the sutures were similar to 

those for the intact ACL (p>0.05).   Interestingly, statistical analysis confirmed that the in-situ 

force of the augmentation sutures was 21% and 35% higher than the repair sutures at 30° and 

90°, respectively (p<0.05).   

 

Table 12. Resultant in-situ force of the ACL and sutures (in N) at 30°, 60°, and 90° of joint flexion under a 67-N 

anterior tibial load (mean ± sd).  #Indicates a statistically significant difference compared suture repair (p<0.05). 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact ACL 62 ± 5 60 ± 6 49 ± 6 
Suture Technique       
Repair Sutures 50 ± 13 50 ± 13 36 ± 14 
Augmentation Sutures 64 ± 10# 61 ± 5 55 ± 5# 
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Figure 19. Anterior component of the in-situ force for the repair sutures and augmentation sutures normalized by 

the values for the intact ACLs under a 67 N anterior tibial load. 

 

Again, similar to the joint kinematics, it is useful to normalize the in-situ force data with 

respect to the sham-operated control groups to compare treatment groups (Figure 19). Following 

this step, the values for anterior component of the in-situ force of the ACL for the suture 

augmentation group (103 ± 17%, 102 ± 17%, and 108 ± 18%) were 27%, 22% and 47% larger 

than those for the suture repair group (81 ± 23%, 84 ± 25%, and 73 ± 36%) at 30°, 60°, and 90°, 

respectively.  

The in-situ forces of the other tissues of the knee under the 67 N anterior tibial load are 

also presented in Appendix A.  These data are not directly relevant to the objectives of this 

dissertation, but are provided as a reference for future studies.  In general, as the role of the ACL 

decreased, the in-situ forces in the other tissues, particularly the MCL and medial meniscus, 

increased.  
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6.1.3.2 Joint Kinematics and In-situ Forces under 67 N Anterior Tibial Load + 100 N Joint 

Compression 

 

The data on joint kinematics in response to a 67 N anterior tibial load with 100 N axial joint 

compression are detailed in Table 13.  For all groups, values were similar at 30° and 60° of joint 

flexion before decreasing at 90° of joint flexion.  The data on ATT in response to a 67 N anterior 

tibial load with 100 N axial joint compression are detailed in Table 3A.  Values for the intact 

joint ranged from 2.3 mm at 90° to 3.6 mm at 60°.  Corresponding values for the ACL-deficient 

joint ranged from 15.0 mm at 90° to 18.9 mm at 30°, representing an increase of 5-7 fold 

(p<0.05).  The suture repair group reached a maximum ATT of 16.6 mm at 30° and a mimimum 

ATT of 12.2 mm at 90°. These values were still 4-5 times higher than the intact joint (p<0.05), 

but were reduced by 12%, 14%, and 19% compared to the ACL-deficient condition at 30°, 60°, 

and 90°, respectively (p<0.05). With suture augmentation, the ATT ranged from 8.9 mm at 30° 

to 4.1 mm at 90°.  These values were 5.5 mm and 4.4 mm higher than the intact joint at 30° and 

60°, respectively (p<0.05), but were within 1.8 mm at 90° (p>0.05).  Moreover, the ATT was 

reduced by 53%, 57%, and 73% compared to the ACL-deficient joint (p<0.05) and 46%, 50%, 

and 66% compared to the suture repair group at 30°, 60°, and 90°, respectively.  
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Table 13. Anterior tibial translation (in mm) under a 67 N anterior tibial load + 100 N joint compression (*p<0.05 

compared to intact, +p<0.05 compared to ACL-deficient, #p<0.05 compared to suture repair). 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact Joint 3.4 ± 0.7 3.6 ± 0.5 2.3 ± 0.5 
ACL-deficient Joint 18.9 ± 2.7* 18.5 ± 2.7* 15.0 ± 2.7* 
Suture Technique       
Suture Repair 16.6 ± 2.9*+ 15.9 ± 2.6*+ 12.2 ± 1.9* 
Suture Augmentation 8.9 ± 1.7*+# 8.0 ± 2.0*+# 4.1 ± 1.4+# 

  

As in Section 6.1.1.1, all analyses were done using the values of ATT; however, the data 

on A-PTT is also presented so that it could be compared to data from Specific Aims 1 and 2.2 

(Table 14). Further, the data on A-PTT as a percentage of the intact control 

(%experimental/control) is depicted in Figure 20.  The normalized values for A-PTT for the 

suture augmentation group (218 ± 57%, 173 ± 65%, and  150 ± 47%) were 36%, 0%, and 21% 

lower than those for the suture repair group (344 ± 79%, 171 ± 77%, and 191 ± 71%), at 30°, 60° 

and 90° of flexion, respectively.  Further, these values were 45%, 8%, and 41% lower than the 

ACL-deficient joint (396 ± 85%, 186 ± 93%, and 253 ± 64%), respectively. 

When comparing between external loading conditions, the amount of A-PTT for the 

intact joint slightly increased by 62%, 50%, and 28% with the additional 100 N compressive load 

compared to the 67 N anterior tibial load alone at 30°, 60°, and 90°, respectively.  Slightly higher 

increases (75%, 63%, and 58%, respectively) were observed for suture augmentation, while 

slightly lower increases (51%, 33%, and 13%, respectively) were seen for suture repair.  

Interestingly, only small increases (14%, 7%, and 8%, respectively) occurred for the ACL-

deficient joint.  Moreover, the values for A-PTT for the suture augmentation, suture repair, and 
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ACL-deficient conditions were similar at 60° and 90°, in contrast to the results found under the 

67 N anterior-posterior tibial load alone. 

The differences in trends between loading conditions may have been due to a lack of 

stabilization in the ACL-deficient and suture repair groups.  When applying the external loads to 

the joint, the robot first finds a new equilibrium position, that is, the position at which the forces 

and moments in the joint are minimized.  In the case of the 67 N anterior tibial load with 100 N 

joint compression, the new equilibrium position is found after the compressive load is applied.  

In the case of the ACL-deficient and suture repair groups, the lack of anterior joint stability 

caused a large shift in the equilibrium position in the anterior direction.  Then, the load is applied 

in both the anterior and posterior directions.  However, because of the large shift in equilibrium 

position versus the other experimental conditions (e.g. intact and suture augmentation groups), 

the path of motion, and as a result, the relative amount of APTT can change drastically.  Thus, 

these results require careful interpretation.  In order to compare groups for the in-vivo studies on 

a more reliable basis, only the data for the 67 N anterior tibial load will be considered. 

 

Table 14. Anterior-posterior tibial translation under a 67 N anterior-posterior tibial load + 100 N joint compression. 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact Joint 5.1 ± 0.9 5.4 ± 0.9 4.5 ± 0.9 
ACL-deficient Joint 19.9 ± 3.8 10.5 ± 6.5 11.6 ± 4.6 
Suture Technique       
Suture Repair 17.3 ± 3.9 9.2 ± 4.5 8.7 ± 4.3 
Suture Augmentation 10.8 ± 1.5 8.9 ± 2.1 6.4 ± 1.2 
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Figure 20. Anterior-posterior tibial translation normalized to intact joint (%experimental/control) under a 67 N 

anterior-posterior tibial load with 100 N axial compression  

 

The data on in-situ forces in the ACL and sutures are presented in Table 15.  With the 

added 100 N axial compression, the in-situ force in the intact ACL was 102 ± 16 N, 112 ± 10 N, 

and 95 ± 12 N at 30°, 60°, and 90° of joint flexion, respectively.  Again, the ACL was largely 

responsible for carrying the anterior load.  With suture repair, the in-situ force in the sutures were 

2-3 times lower than the intact ACL (p<0.05).  Following suture augmentation, the in-situ force 

of the sutures ranged from 78 N at 30° and 95 N at 60°. These values were significantly lower 

than the intact ACL at 30° and 60° (p<0.05), but were similar at 90° (p>0.05).  Moreover, the in-

situ forces of the augmentation sutures were 129%, 157%, and 90% higher than those of the 

repair sutures at 30°, 60°, and 90°, respectively (p<0.05).   
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Table 15. Resultant in-situ force of the ACL and sutures (in N) at 30°, 60°, and 90° of joint flexion under a 67-N 

anterior tibial load + 100 N axial compression (mean ± sd).  *Indicates a statistically significant difference compared 

to the intact ACL (p<0.05). #Indicates a statistically significant difference compared to suture repair (p<0.05). 

 
    

Flexion Angle 
(degrees)   

  30 60 90 
Intact ACL 102 ± 16 112 ± 10 95 ± 12 

Suture Technique       
Repair Sutures 34 ± 13* 37 ± 28* 49 ± 27* 
Augmentation Sutures 79 ± 11*# 95 ± 9*# 93 ± 11# 
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Figure 21. Anterior component of the in-situ force for the repair sutures and augmentation sutures normalized by 

the values for the intact ACLs under a 67 N anterior tibial load with 100 N axial compression. 

 

Again, similar to the joint kinematics, it is useful to normalize the in-situ force data with 

respect to the sham-operated control groups to compare treatment groups (Figure 21). Following 
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this step, the values for anterior component of the in-situ force of the ACL for the suture 

augmentation group (75 ± 12%, 81 ± 6%, and 93 ± 13%) were 158%, 169% and 106% larger 

than those for the suture repair group (29 ± 16%, 30 ± 26%, and 45 ± 29%) at 30°, 60°, and 90°, 

respectively.  

The in-situ forces of the other tissues of the joint are also presented in Appendix A as a 

reference for future studies.  Like under the 67 N anterior tibial load, as the role of the ACL 

decreased, the in-situ forces in the other tissues, particularly the MCL and medial meniscus, 

increased.  However, with the compressive load, the forces due to bony contact as well as the in-

situ forces of the menisci were greatly increased.  

  

6.2 AIM 2.2- IN-VIVO EVALUATION OF SUTURE TECHNIQUES 

In Specific Aim 2.2, the suture repair and suture augmentation plus suture repair techniques were 

also compared in-vivo in the goat model after 12 weeks to evaluate these techniques in terms of 

their ability to allow healing of the ACL [67].  Biomechanical, histological, and morphological 

evaluations were done according to Section 4.4.  For simplicity, the suture augmentation plus 

suture repair group will be denoted as the suture augmentation group hereon. 
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6.2.1 Joint Stability 

As in Specific Aim 1, all goats tolerated surgery well and were ambulating within a few hours 

following surgery, with weight-bearing returning to normal within the first two to three weeks 

with no noticeable limping.   

The curves for the A-PTT in response to the 67 N A-P tibial load at 30° of flexion as 

measured by the robotic/UFS testing system are detailed in Figure 22A.  Similar to Specific Aim 

1, the A-PTT began at the 67 N posterior tibial load to provide a consistent reference position for 

all stifle joints.  The curves for all groups were nonlinear.  The amount of translation was much 

higher for the experimental groups compared to the sham-operated controls and the difference 

began at low loads. The shapes of the curves for the suture augmentation and suture repair 

groups were remarkably similar, although the suture augmentation group showed lower amounts 

of A-PTT than the suture repair group.   

Similar results were observed with the stifle joint at 60° and 90° of flexion (Table 16).  In 

all three groups, the A-PTT increased from 30° to 60° and then decreased at 90°.  Statistical 

analysis revealed that both experimental groups were significantly different than the sham-

operated controls at all flexion angles tested (p<0.05).   

For statistical comparison of joint kinematics data between groups, the data were again 

normalized with respect to the sham-operated control group (Figure 22B). Between treatment 

groups, the normalized mean value for A-PTT for the suture augmentation group (267 ± 48%, 

297 ± 23%, and 341 ± 53%) was 21%, 21%, and 14% lower than those for the suture repair 

group (312 ± 79%, 350 ± 92%, and 382 ± 94%) at 30°, 60° and 90° of flexion, respectively.  

However, no statistically significant differences could be detected between these groups 

(p>0.05).   



90 

 

A. 

-80

-40

0

A
nt

er
io

r T
ib

ia
l L

oa
d 

(N
)

-60

-20
5 10

Elongation (mm)

20

40

60

80

15

Suture Repair Group

Sham-operated Group
Suture Augmentation Group

 

B. 

0

200

500

A
-P

 T
ib

ia
l T

ra
ns

la
tio

n 
   

   
   

   
  

(%
 o

f s
ha

m
-o

pe
ra

te
d 

co
nt

ro
l)

30

100

300

Suture Repair Group
Suture Augmentation Group

60 90
Flexion Angle (degrees)

400

 

 

Figure 22. A) Average curves for the A-PTT in response to the 67 N A-P tibial load as measured by the 

robotic/UFS testing system at 30° of flexion for the sham-operated, suture augmentation, and suture repair groups.  

B) A-P tibial translation of the suture augmentation and suture repair groups in response to an 67-N anterior tibial 

load normalized to their respective intact joint controls (mean ± SD). 
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Table 16. Anterior-posterior tibial translations (mm) of the goat joints 30°, 60°, and 90° of joint flexion under an 

67-N anterior-posterior tibial load (mean ± sd).  *Indicates a statistically significant difference compared to the 

respective sham-operated controls (p<0.05). 

           

      Joint Flexion Angle 
      30° 60° 90° 

  I. Suture Augmentation Group         
Sham-operated Control     3.7 ± 0.4 4.0 ± 0.5 2.9 ± 0.4 
Healing     9.9 ± 1.6* 11.9 ±1.8* 9.8 ± 1.4* 
            

  II. Suture Repair Group         
Sham-operated Control     3.8 ± 0.2 4.1 ± 0.3 2.8 ± 0.4 
Healing     11.8 ± 3.4* 14.4 ± 4.2* 10.8 ± 3.3* 

 
 

In terms of the in-situ force of the ACL under the 67 N anterior tibial load, its anterior 

component at 30° of flexion was plotted against the amount of A-PTT (normalized to the 

respective sham-operated control group) in Figure 23A.  Just as in Specific Aim 1, the sham-

operated ACLs carried the vast majority of the applied anterior tibial load.  The suture 

augmented healing ACLs carried approximately half of the applied load.  Qualitatively, this was 

substantially higher than the suture repaired ACLs.  Similar findings were obtained at with the 

stifle joint at 60° and 90° of flexion.   
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Figure 23. A) Anterior component of the in-situ force of the ACL as a function of the A-PTT at 30° of flexion for 

the sham-operated, suture augmentation, and suture repair groups.  Note: Values of A-PTT are normalized to the A-

PTT for the respective sham-operated control group. B) Anterior component of the in-situ force healing ACLs of the 

suture augmentation and suture repair groups normalized by the values for the sham-operated ACLs. 
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Table 17. Resultant in-situ force of the ACL (in N) at 30°, 60°, and 90° of joint flexion under a 67-N anterior tibial 

load (mean ± sd).  *Indicates a statistically significant difference compared to the respective sham-operated controls 

(p<0.05). 

           

      Joint Flexion Angle 
      30° 60° 90° 

  I. ECM-treated Group         
Sham-operated Control     50 ± 7 46 ± 8 43 ± 9 
Healing     38 ± 6* 42 ± 7 22 ± 5* 
            

  II. Suture Repair Group         
Sham-operated Control     50 ± 12 51 ± 11 53 ± 7 
Healing     26 ± 24 29 ± 25 13 ± 15* 

 
 

Quantitative data on the resultant in-situ force of the ACL are presented in Table 17.  For 

the intact joint, the ACL carried forces ranging from 43-53 N on average throughout joint 

flexion.  For both treatment groups, the highest values of in-situ force of the healing ACL were 

found at 30° and 60° of flexion and were not statistically significant from their respective sham-

operated controls (p>0.05).  The only notable exception was that the in-situ force in the healing 

ACL for the suture augmentation group was significantly lower than those for the sham-operated 

ACLs at 30° (p<0.05).  At 90° of flexion, both treatment groups had significantly lower values 

than the sham-operated control groups (p<0.05).  Similar to the joint kinematics, it is useful to 

normalize the anterior component of the in-situ force of the ACL with respect to the sham-

operated control groups to compare treatment groups (Figure 23B). Following this step, the value 

of the mean for the suture augmentation group (70 ± 10%, 86 ± 20%, and 58 ± 29%) was 54%, 

60% and 131% larger than those for the suture repair group (45 ± 49%, 54 ± 50%, and 25 ± 
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32%) at 30°, 60°, and 90°, respectively.  Nevertheless, these groups were not statistically 

different (p>0.05).   

6.2.2 Gross Morphology and Dimensions 

After dissection, the sham-operated ACLs at 12 weeks were white and opaque, consisting of 

distinct bundles with clearly observable collagen fiber orientation (Figure 24A).  In the suture 

augmentation group, there was continuous neo-tissue formation for all specimens (Figure 24B).  

The neo-tissues were reddish in color and slightly translucent.  The augmentation sutures could 

be seen immediately adjacent to the healing ACL tissue, but not within it.  Further, the 

augmentation sutures appeared to be loosened within the intra-articular space compared to at the 

time of surgery.  No remnants of the repair sutures could be found, and it is probable that they 

had fully degraded.  The fixation of the sutures at both the femur and tibia remained good at 12 

weeks of healing.  The suture knot on the femoral side did not collapse into the bone tunnel or 

separate from the sutures in any animals.  On the tibial side, the button was surrounded by a 

moderate amount of fibrotic tissue, but was still immediately adjacent to the tibial bone.  No 

signs of rupture of the augmentation sutures were observed.   

In the suture repair group, significant resorption of the ACL was observed (Figure 24C).  

Out of seven stifle joints, one ACL had completely resorbed in the synovial environment, four 

had only a small amount of tissue, while the remaining two still had some tissue concentrated 

around the sutures.  Further, the repair sutures appeared to be loosened within the tissue 

compared to the time of surgery.  The bone bridge at the tibia remained intact with no sign of 

suture rupture.  At the femur, the bone bridge was not directly against the bone in some cases, 
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and rather, within the muscle tissue.  This could have been from loosening over time with 

loading or a result of poor initial fixation during surgery. 

 

A) Sham-operated 
ACL

C) Suture Repaired                    
Healing ACL

B) Suture Augmented         
Healing ACL

 

Figure 24. Gross morphology of (A) sham-operated ACL, (B) suture augmented healing ACL, and (C) suture 

repaired healing ACL at 12 weeks of healing.   

 

 

These gross observations were confirmed in the CSA measurement of the ACLs.  Values 

for the healing ACLs for the suture augmentation group were 19.9 ± 7.6 mm², whereas those for 

the sham-operated control group were 24.4 ± 1.8 mm².  The difference was not statistically 

significant (p>0.05).  For the suture repair group, the values for the CSA of the healing ACLs 

were only 34% of those for the sham-operated control group (6.5 ± 4.3 mm² vs. 21.6 ± 5.6 mm², 

respectively), and the difference was statistically significant (p<0.05).  When normalized by their 

respective sham-operated control of each animal, the experimental/control values for the CSA 

from the suture augmentation group (80 ± 24%) was 2.3 times those of the suture repair group 

(34 ± 25%, p<0.05; Figure 25). 
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Figure 25. The cross-sectional area of healing ACLs for the suture augmentation and suture repair groups at 12 

weeks post-surgery normalized by the values for the respective sham-operated ACLs. *Indicates a statistically 

significant difference (p<0.05). 

 

 

6.2.3 Histological Evaluation 

Histological examination of the midsubstance of the ACL in the sham-operated group showed 

compact collagen fibers that were highly aligned with many regularly interspersed spindle-

shaped cells (Figure 26A). In both samples from the suture augmentation group and one of the 

two samples from the suture repair only group, significant neo-tissue was observed with aligned 

collagen fibers parallel to the longitudinal axis of the ligament and spindle-shaped cells oriented 

along the collagen fibers (Figure 26B).  On the other hand, for one sample from the suture repair 

group, there were only sparse collagen fibers without clear alignment (Figure 26C).   
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Figure 26. Histological appearance of the (A) sham-operated ACL as well as the (B) suture augmentation and (C) 

suture repaired healing ACLs at 12 weeks of healing (100x magnification). 

 

6.2.4 Tensile Properties 

Figure 27 details the nonlinear load-elongation curves for the suture augmented and 

suture repair groups.  Typically, the toe region existed for up to 1-1.5 mm of elongation, 

followed by a linear region until failure.  All specimens were found to fail in the tissue 

midsubstance of the healing ACL.  
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Figure 27. Average load-elongation curves of the suture augmentation and suture repair groups at 12 weeks post-

surgery. 

 

Data on the parameters representing these structural properties of the FATCs are detailed 

in Table 18. For both experimental groups, the values for stiffness, ultimate load, and ultimate 

elongation were below the values for their respective sham-operated groups (p<0.05). Again, the 

data was normalized with respect to the sham-operated controls for statistical comparisons 

between experimental groups (Figure 28). The mean value of the linear stiffness of the suture 

augmented FATCs was 75% greater than those for the suture repair group (experimental/control 

was 36 ± 15% vs. 20 ± 18%, respectively).  However, this difference was not statistically 

significant (p>0.05). Similarly, the values for ultimate load were comparable between the two 
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groups (10 ± 9% vs. 9 ± 9%, respectively, p>0.05).  Finally, the ultimate elongation was similar 

between the two groups (37 ± 8% vs. 30 ± 19%, respectively, p>0.05).   

 

Table 18. Parameters representing the structural properties of the femur-ACL-tibia complexes for the sham-operated 

control, suture augmentation, and suture repair groups at 12 weeks post-surgery (mean ± sd).  *Indicates a 

statistically significant difference compared to the respective sham-operated controls (p<0.05). 

 

 
          

  Suture Augmentation Group   Suture Repair Group 

  
Sham-operated 

Control Healing   
Sham-operated 

Control Healing 
Stiffness (N/mm) 152 ± 29 52 ± 21*   125 ± 23 24 ± 21* 
Ultimate Load (N) 2033 ± 356 209 ± 122*   1385 ± 359 95 ± 90* 
Ultimate Elongation (mm) 14.4 ± 2.9 5.3 ± 1.4*   19.0 ± 6.3 6.1 ± 4.6* 
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Figure 28. Stiffness (A.) and ultimate load (B.) of the healing femur-ACL-tibia complexes for the suture 

augmentation and suture repair groups as a percentage of the sham-operated controls at 12 weeks post-surgery. 
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7.0  MATHEMATICAL MODELING OF THE HEALING ACL 

As described in Section 2.5.2, it is believed that ligaments modulate their size and biomechanical 

properties in response to applied strains above and below its homeostatic level.  A similar case 

can be made for ligament healing especially during the remodeling phase. During healing, joint 

loading and movement results in stresses and strains within ligaments.  In general terms, it is 

theorized that increased strains over a period of time will cause the tissue to remodel by either 

increasing its CSA or altering its biochemical composition to increase its mechanical properties, 

both of which impact the overall stiffness of the tissue.  This is turn reduces the strain in the 

tissue for a given applied load.  In the long-term, these changes in CSA and mechanical 

properties would return the tissue strains to the normal homeostatic levels.  The opposite occurs 

under decreased strains, with a rapid reduction in size and/or mechanical properties.  

In order to evaluate the strain-induced tissue remodeling in the healing ACL, we will first 

develop a general mathematical framework for evaluating growth and remodeling of healing 

ligaments (Section 7.1) and assess the sensitivity of the model to the parameters as well as 

perform some preliminary simulations as a proof-of-concept (Section 7.2).  We will then apply 

the model to experimental data for the MCL, which is a well-established experimental model for 

ligament healing (Section 7.3).  Finally, we will perform some preliminary analyses to gain 

insight on the healing of the ACL (Section 7.4).   
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7.1 MATHEMATICAL FORMULATION OF STRAIN-INDUCED GROWTH AND 

REMODELING 

The formulation of the mathematical framework in this dissertation is an extension of the 

generalized structural constitutive model for hyperelastic soft tissues proposed by Sacks [206, 

254], based on the work of Lanir [131], as well as the large body of theoretical and experimental 

work on growth and remodeling developed by Humphrey, Gleason, and others [46, 93, 106, 

200].  These topics are described in Section 2.8. 

7.1.1 Quasi-static Constitutive Model 

As stated in Section 2.8.2, for the model developed by Sacks et al. [206, 254], the stress 

component along the axis of loading was represented as, 

                    ∫
−

=
2/

2/

2
11 )(cos)()(

π

π

θθθ dESRS ensens                                                 7-1 

where S11 is the component of the 2nd Piola-Kirchoff stress along the direction of loading, R(θ) is 

a function representing the distribution of fibers in the tissue, and )( ensens ES  is the stress-strain 

relationship of the fiber ensemble at each θ.  The constitutive relation for the fiber ensemble is 

                        ∫ ∫ +
−

==
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x
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)()()(                                            7-2 

where D(x) is a function which represents the fraction of fibers which are straightened at a given 

strain, and k is the effective modulus for the collagen fibers. In specifying the form of D(x), a 

beta distribution is useful, since it has a lower bound of zero and upper bound of one.  It can be 

represented as 
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where α and β are shape functions described in terms of the distribution mean, μ, and standard 

deviation, σ: 
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where Γ is the Gamma function.  Within this model, the beta distribution is constructed with 

respect to ensE , such that it exists only between 0 and ensE* , which represents an upper bound 

strain value for the recruitment function.  Thus, ens

ens

E
Ex

*

= , where ensE  is the current strain of the 

fiber ensemble. 

Going back to Equation 7-1, the tissue stress-strain data can be determined from the 

stress-strain response of individual collagen fiber ensembles and the fiber distribution.  For the 

collagen fibers, four parameters make up the shape of the curve, μens, σens, kens, and ensE* .  The 

distribution of the fibers, R(θ), can also be represented as a statistical distribution with a mean 

and standard deviation.  For a transversely isotropic tissue (e.g. normal ligaments), the mean and 

standard deviation of R(θ) can be defined such that all of the fibers are aligned along the axis of 

loading.    For comparison to experimental data, it is useful to also define the 1st Piola-Kirchoff 

stress (P) using the relation,     

TFSP ⋅=                                                                    7-6 
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because P relates forces in the in the current configuration with areas in the reference 

configuration, and thus is more easily calculated since the values for forces and CSA are 

experimentally determined in the current and reference configurations, respectively.   

7.1.2 Application to Constitutive Model to Ligament Healing 

7.1.2.1 What are ligaments trying to restore during healing? 

 As ligaments (such as the MCL) heal, their structural properties gradually increase with time 

(Section 2.5.1). For the MCL at 52 weeks, the load-elongation behavior of the FMTC during 

tensile testing was recovered at low levels of elongation, suggesting at least a partial restoration 

of normal function.  At the same time, the CSA of the healing ligament remained higher than 

normal at all time points.  Meanwhile, the mechanical properties, or stress-strain behavior, of the 

tissue remained inferior to normal and did not noticeably improve by 52 weeks compared to 

earlier time points. Thus, the recovery of the stiffness of the FMTC is largely the result of an 

increase in tissue quantity.  Nevertheless, it is clear that the tissue is not attempting to restore its 

size (CSA) or its quality (mechanical properties) alone.  Instead, on a tissue level, its function, as 

represented by its load-elongation behavior, is being restored. 

However, the cells, which remodel the tissue, do not operate on a tissue-level scale, but 

on a micro-level (or fiber-level) scale.  And thus, the restoration of tissue function may be a by-

product of the restoration of some other homeostatic quantity which the cells can interpret.  As 

noted in Section 2.5.2.1, the mechanisms by which cells interpret mechanical signals are 

complex, multi-factorial, and not well understood to date.  However, there is a strong 

relationship between the level of tissue strain applied to the tissues and the resulting changes in 

tissue size, quality, and function. 
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For example, as a simple thought experiment, consider a linear, elastic, homogenous, 

transversely isotropic tissue.  In such a case,    

111111 xKF =                                                      7-7 

where F11, K11, and x11 represent the force, stiffness, and displacement along the direction of the 

fibers, respectively.  In addition, x11=ε11*l0, where ε11 is the strain and l0 is the initial length of 

the tissue.  Also,  

111111 εTMP =                                                      7-8 

where P11, TM11, and ε11 are the components of the 1st Piola-Kirchoff stress, tangent modulus of 

the tissue, and the infinitesimal strain, respectively, in the direction of loading. Given 

P11=F11/A11 where A11 is the CSA of the tissue then Equation 7-8 can be written as  

11111111 εATMF =     or  11
0

1111
11 x

l
ATMF =                                                   7-9 

In other words, 

0

1111
11 l

ATMK =                                                      7-10 

In terms of load-elongation behavior on a tissue level, the stiffness could be changed over 

time by altering either the modulus of the tissue, its CSA, or its initial length.  Assuming the 

initial length of the tissue remains constant, then the tissue restores its function (load-elongation 

behavior) by altering its stiffness (K11) by changing its quality (TM11) or size (A11).  It could be 

said that the tissue is attempting to change its behavior such that for a given F11, a homeostatic 

value of x11 is achieved.  However, the mechanism by which tissue displacement would be 

interpreted on a cellular level is difficult to understand. 

Alternatively, the restoration of function can be expressed as in Equation 7-9.  In this 

case, function would be restored if the force-strain relationship remains the same.  In other 
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words, it could be said that the tissue is attempting to change its TM11 and A11 such that a 

homeostatic value of ε11 is achieved for a given F11.  Further, by relating the tissue strain to some 

measure of fiber strain via affine deformation (See Equation   2-6) or another mechanism, then 

we can relate the fiber strains at a cellular level to the overall tissue strain, which is easily 

measurable experimentally.  We hypothesize then that these fiber strains could provide a 

measure of homeostasis on the cellular level.  

7.1.2.2 Application of Growth and Remodeling Theory to Ligament Healing 

As mentioned in Section 2.5 and 7.1.2.1, ligaments heal by both changing their size as well as 

intrinsic mechanical properties in an effort to restore function, i.e. load-elongation behavior.  

Thus, throughout time, new matrix is produced while some matrix is degraded within the healing 

ligament.  In addition, the orientation of the matrix can change over time to become more aligned 

with the direction of loading.  Further, through the process of collagen maturation, the intrinsic 

stress-strain behavior of collagen fibers can increase during tissue remodeling.   

In order to model these time- and strain-dependent processes, it is imperative to keep 

track of the matrix produced at each time point separately.  Extending the work presented in 

Section 2.8.3 by Humphrey and Gleason, we can consider the matrix produced at each timepoint 

to be separable such that  

∑ ⋅=
i

ii tWttW ),()(),( εφε                                                      7-11 

In other words, the total strain energy of the tissue (W) at a given time and strain is simply the 

relative mass fraction of the matrix produced at each timepoint (Φi) multiplied by the strain 

energy of the matrix produced at that timepoint.  Note that for ligaments, the collagen fibers are 

the only matrix constituent explicitly considered as they play the dominant mechanical response 
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to loading.  The response of the remaining constituents were lumped into a term representing the 

ground substance of the tissue (Equation   2-2), which was assumed not to be time-dependent. 

 An important parallel can be made with regard to the growth of the tissue such that 

∑=
i

i tAtA )()( 1111                                                             7-12 

Again, this represents the total CSA of the tissue (A11) at any time as a sum of the CSA for the 

matrix produced at each timepoint ( iA11 ).  Note that as the matrix for a given time, ti, degrades, 

the value for iA11  will decrease.  

In order to evaluate these properties over time, the next step is to find specific functions 

for Wi and iA11 .  For Wi of the collagen fibers, the constitutive relationship is found in Equations 

7-1 and 7-2. The ground substance was represented as an isotropic, neo-Hookean material whose 

strain energy is given in Equation   2-2.  From the fiber ensemble stress-strain relationship, we 

can see there are four possible time-dependent parameters: μens, σens, ensE* , and kens. Further, the 

mean and standard deviation of R(θ) can also be time-dependent.  However, for our simulations 

at late timepoints of healing, we will assume the matrix to be transversely isotropic along the 

direction of healing, and thus, R(θ) will remain constant throughout time, with a mean and 

standard deviation such that all fibers are aligned along the direction of loading.  Nevertheless, 

the potential to allow R(θ) is still possible within the model for future studies.  From Equation 

7-12, iA11  should also be time-dependent. 

A number of forms for time-dependent stimulus functions have been proposed in the 

literature, and include linear, nonlinear, and exponential functions [46, 93, 239, 243].  For our 

applications, a linear function is the easiest for an initial analysis and is defined as 
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where f(t) and f(t+Δt) are the values of parameter f at time t and t+Δt, respectively.  Further, 

ens
tE  is the fiber ensemble strain at time t for a given load and ens

hE  is the homeostatic fiber 

ensemble strain for a given load, which the tissue is trying to reach.  Finally, fq  is the 

remodeling constant associated with parameter f with units of time-1.  It is clear that this function 

provides a linear, positive response to an applied strain.  For example, if ens
h

ens
t EE > , then 

)()( tfttf >∆+  provided 0>fq .  This is important, since it is assumed that these functions 

respond positively to applied strain.  An example would be the modulus of the collagen fibers, 

which we would anticipate increasing in response to strains above ens
hE  and decreasing in 

response to strains below ens
hE .   

 On the other hand, some parameters may decrease in response to strains above ens
hE .  A 

good example is ensE* .  Typically, ensE*  should decrease as the stress-strain behavior of the tissue 

improves in response to strain.  As such, we set 0<fq  for these functions such that 

)()( tfttf <∆+ .   

 In the case of underloading ( ens
h

ens
t EE < ), alternative rate constants must be used, since it 

is unlikely that tissues respond exactly the same as when ens
h

ens
t EE > .  For simplicity, we can 

assign a ratio, ri, to each parameter, such that 
i

i
i p

q
r = , where qi and pi are the remodeling 

constants when ens
h

ens
t EE >  and ens

h
ens
t EE < , respectively.  For the case of ens

h
ens
t EE < , the linear 

function described in Equations 7-13 is modified as 
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 In the case of healing ligaments, conditions in which the healing tissue is underloaded are 

not likely to occur due to the large decrease in the mechanical properties of the tissue.  However, 

the model was formulated to include underloading for completeness. 

7.1.3 Computational Approach 

The computational algorithm was developed in Matlab (Version 7.9.0 (R2009b), The 

MathWorks, Inc.) and consists of several sections.  First, the variables were defined and initial 

values were designated.  Then, experimental data for the normal and healing tissues were fit by 

an algorithm described in Section 7.1.3.2 to obtain parameters describing the tissue stress-strain 

behavior.  After, the initial parameters describing the fiber stress-strain relationship were 

estimated via the algorithm in Section 7.1.3.3 given the tissue stress-strain data and fiber 

distribution data.  Then, an iterative technique described in Section 7.1.3.4 was used to simulate 

the healing of the tissue out to the time of interest.  Finally, if the experimental data at the time of 

interest is known, the experimental and predicted data can be compared and the values of the 

remodeling constants can be adjusted accordingly until the two sets of data converge, as 

described in Section 7.1.3.5.    

7.1.3.1   Initial Variables  

The initial portion of the code sets up the variables, values, etc. used in the remaining portions.  

First, any known experimental data were read in and stored as inputs.  Next, the time variables 

(initial timepoint, final timepoint, and time increment) were designated.  The modulus of the 
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ground substance was set to 10 MPa based on data in the literature for ligaments and tendons 

[195].  The collagen content was set at 0.8 based on data in the literature [77].  Also, the number 

of distinct “fiber families” or “fiber ensembles” was set at 9; however, for simulations of 

transversely isotropic tissues, only one fiber family had non-zero values.  Initial values for the 

remodeling constants for each parameter were also set to 5 as a default (units for the remodeling 

constants are per unit time).  Remodeling ratios ( ii pq / ) were set at 100 for each parameter.  

Finally, the simulated in-vivo load was inputted as 25 N.  It should be noted that the value for the 

simulated in-vivo load was arbitrary at this stage and not based in in-vivo measurements.  

However, providing a numeric value allows the calculation of ens
tE  and ens

hE  (as discussed later).  

With these values for the variables, matrices are set up to store the values of the parameters and 

their associated remodeling constants throughout time.  Next, based on the fiber distribution at 

the initial timepoint and the number of fiber ensembles, the area at the initial timepoint for each 

fiber ensemble was calculated.      

To model both the stress-strain behavior of the tissue as well as determine the remodeling 

rates, the strain of the tissue must be found. To do so, the deformation gradient, F, was defined as 
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Note that since the fibers were assumed to be incompressible, the determinant of F equals 1.  

Since det(F)=1=λ11λ22λ33  the stretches in the other directions (λ22, λ33) could be calculated.  All 

other components of F were assumed to be negligible.  Further, the right Cauchy-Green 

deformation tensor, C, was defined as 
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Then, the Green-Lagrangian strain tensor, E, was defined as  
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The component E11 represented the tensile strain in the tissue along the direction of 

loading.   

 

Using the parameter estimates (μtiss, σtiss, tissE* , and ktiss) for the normal tissue (Section 

7.1.3.2) along with the input value for force and the CSA of the normal tissue, the value of E11 

under homeostatic conditions could be calculated.  Then, with Equation   2-6, the fiber ensemble 

strain under homeostatic conditions ( ens
hE ) could be calculated.  The same process was done for 

the healing tissue at the initial timepoint to find ens
tE .  For the future curve-fitting algorithms, the 

matrix for E was defined from zero to ens
tE  at increments of (30/ ens

tE ).  

 

7.1.3.2 Algorithm to Fit Tissue Stress-Strain Data  

In order to compare the experimental stress-strain data with those obtained from the model, it 

was necessary to describe the data in terms of a finite number of parameters.  To do so, the 

constitutive model in Equation 7-2 was fit to the experimental stress-strain. In other words, the 

equation used to describe the fiber ensemble behavior was also used to fit the nonlinear tissue 
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stress-strain behavior.  It is important to note that the parameters for the tissue behavior have no 

direct structural meaning, and are phenomenological in that sense.  However, this approach 

provided ease for the optimization algorithm, and allowed estimation of four parameters (μtiss, 

σtiss, tissE* , and ktiss), which could then be compared to those produced by the model.   

To accomplish this, a custom algorithm was written. Several values of tissE*  were chosen 

evenly throughout the data range.  For each value of tissE* , the stress-strain data above tissE*  were 

fit via a nonlinear least squares algorithm to obtain ktiss.  Then, sets of stress-strain data were 

created for individual values of the mean (μ) and standard deviation (σ) of the beta distribution 

via numerical integration of Equation 7-2.  The values for μ and σ were chosen evenly 

throughout the range of possible values.  For each set of parameter estimates, stress values were 

computed for each value of E11 from the experimental data.  The sum of squared errors (SSE) 

between the experimental and computed stress values was calculated. The values of μ and σ 

which minimized the SSE were chosen as the best values.  Then the range of μ and σ was 

decreased accordingly and process was repeated until the range for μ and σ was less than 0.01.  

The SSE between values of tissE*  were compared.  The value of tissE*  with the lowest SSE was 

set as the new midpoint of the range of tissE* , the range was decreased accordingly, and the 

process was repeated until the range for tissE*  was less than the difference in strain between two 

consecutive experimental data points for E11.  Using this algorithm, the values for μtiss, σtiss, tissE* , 

and ktiss for a tissue could be estimated using the stress-strain data.   
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7.1.3.3 Algorithm to Estimate Fiber Parameter Values Based on the Tissue Stress-Strain 

Data  

With the initial values defined in Section 7.1.3.1 and the parameter estimates for the 

experimental data found in Section 7.1.3.2, the parameter estimates for the fiber stress-strain 

relationship could be found using a custom algorithm.  Using Equation   2-6 and the fiber unit 

vector for each fiber ensemble, the fiber ensemble strain ( ensE ) was calculated for each value of 

the Green-Lagrangian strain tensor, E, defined in Equation 7-17. Using the initial values of the 

fiber ensemble parameters (μens, σens, ensE* , and kens) along with ensE , the fiber stress was 

calculated.  Using Equation 7-1, this was then related to the 2nd Piola-Kirchoff stress for the 

tissue.  Then, the 1st Piola-Kirchoff stress (P) was calculated using Equation 7-6.   

This simulated data set was then fed into the algorithm defined in Section 7.1.3.2 to 

obtain parameter estimates (μtiss, σtiss, tissE* , and ktiss) for the simulated data.  These were 

compared to the parameter estimates of the experimental data.  If the difference between the 

simulated and experimental parameter estimates for any parameter was greater than 1% of the 

experimental parameter estimate, then the values for the initial values of the fiber ensemble 

parameters (μens, σens, ensE* , and kens) were updated based on the difference between the 

simulated and experimental values for the tissue-level parameters, and the process was repeated.  

This procedure was done until parameter estimates for the simulated data were within 2% of the 

experimental data.  As such, estimates of the fiber ensemble parameters (μens, σens, ensE* , and kens) 

could be determined from the experimental data. 

We wished to determine the sensitivity of the algorithm in terms of its ability to converge 

to a solution, even if the initial estimates for the fiber ensemble parameters were far from the 

actual values.  To do so, a set of simulated stress-strain data was generated using a set of fiber 
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ensemble parameters (μens=0.4965, and σens=0.2646, ensE* =0.0336, and kens=387.0 MPa).  Then 

these true values were multiplied by a random factor, and the resulting values were then used for 

the initial guesses for the fiber ensemble parameters.  For kens, the range of random factors was 

0.1-10.  For μens, σens, and ensE* , the range of random factors was 0.5-2, based on the constraints 

of meaningful values for these parameters.  The algorithm was run again with the new initial 

guesses and new sets of fiber parameters were obtained.  This process was repeated ten times.  

For each trial, the absolute value of the percent error between the predicted and actual values was 

calculated.  Across trials, the mean and standard deviation of the error were calculated.  The 

coefficient of variation for each parameter was also calculated as the standard deviation of the 

parameter values divided by the mean of the parameter values multiplied by 100%.       

 All parameters converged to within 5% of the actual values.  In terms of error, the values 

of kens were the lowest (0.4±0.3%).  The error for μens, σens, and ensE*  was 4.0±1.8%, 4.9±1.4%, 

and 3.8±3.0%.  The coefficient of variation was also less than 5% for each parameter, and was 

0.3%, 3.5%, 4.7%, and 3.4% for kens, μens, σens, and ensE* , respectively.  Although these values for 

error and coefficient of variation were small, they do suggest the initial value for the fiber 

ensemble parameters could have some impact on the final estimation of the fiber parameters 

from the stress-strain curve of the tissue.  This is due to the nonlinear nature of the function and 

the possibility of dependency between the parameters.  Moreover, due to the nature of the 

constitutive model and experimental limitations, the micro-scale parameters are adjusted in the 

algorithm in order to create a macro-scale response which matches the experimental data.  This 

creates an added difficulty in curve-fitting as opposed to if the parameters for the macro-scale 

response were being adjusted.  Thus, to maintain consistency between simulations in future 

studies, the initial values for the microstructural parameters (μens, σens, ensE* , and kens) were set 
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equal to the corresponding values for the tissue (μtiss, σtiss, tissE* , and ktiss) found via the curve-

fitting algorithm in Section 7.1.3.2.   

 

7.1.3.4 Numerical Iteration to Simulate Growth and Remodeling 

To simulate growth and remodeling in ligaments, an iterative technique was performed, 

beginning at a prescribed initial timepoint and advancing at a prescribed time increment (Δt).  At 

each timepoint, the changes in the parameters for the fiber ensemble (μens, σens, ensE* , and kens) 

produced at each of the prior timepoints were calculated using Equations 7-13 and 7-14.  Based 

on the amount of new tissue growth as well as the degradation of older tissue, the relative 

fraction of the matrix at each timepoint was recalculated.  Using E, tE11 , and the new fiber 

ensemble parameters (μens, σens, ensE* , and kens), the overall stress response could be found in the 

same manner as in Section 7.1.3.3 and the tissue parameter estimates for μtiss, σtiss, tissE* , and ktiss 

could be obtained.  Along with the new A11, these parameter estimates were then used to 

determine E11 in response to the applied load at the current timepoint.  Then, ens
tE  could be 

updated for the current timepoint as in Section 7.1.3.3.  This process continued until the final 

timepoint was reached. 

 

7.1.3.5 Algorithm to Adjust Remodeling Constants to Fit Experimental Data 

For some simulations, the experimental data at the final timepoint were available.  Thus, it was 

possible to compare the simulated data to the experimental data in terms of the estimated 

parameters.  Based on the difference between the experimental and computed values for these 
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parameter, the associated remodeling constants were adjusted for each parameter via a custom 

algorithm.  Then, the process in Section 7.1.3.4 was repeated.  This procedure was continued 

until the parameter estimates of the simulated data were within 3% of the experimental data.  In 

this manner, an estimation of the remodeling constants could be obtained.       

 

7.2 PRELIMINARY MODEL AND SENSITIVITY ANALYSIS  

7.2.1 Description of Preliminary Model 

In order to demonstrate the general feasibility of the model, a parallel aligned tissue was 

simulated with a set of given input parameters and subjected to uniaxial tension along the 

direction of its fibers.  Values for the parameters were based on those collected at our research 

center for the rabbit MCL at 12 weeks of healing as well as for the sham-operated control (Table 

19) [171].  The parameters kens, A11, and μens were given positive rate constants, such that their 

associated parameters could increase with strains above the homeostatic strain.  The rate 

constants for σens and ensE  were given negative values.  The input force was 25 N, resulting in a 

homeostatic strain ( ens
hE ) of 0.014 in the normal tissue.  This was within the toe region of the 

stress-strain curve.  For this preliminary test, the time interval was set at 1 week.  Healing was 

simulated from 12 to 26 weeks. 
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Table 19. Input data for preliminary model. 

enskq  (day-1) 0.3 

ensq
µ

 (day-1) 0.005 

ensq
σ

(day-1) -0.0125 

ensEq
*

 (day-1) -0.02 

Aq  (day-1) 0.1 

enskr  0.2 

ensr
µ , ensr

σ
, ensEr

*
, Ar  0.02 

Force (N) 25 

Δt (days) 7 

ens
hE  0.014 

μtiss
 at 12 weeks 0.5023 

σtiss
 at 12 weeks 0.2487 

tissE* at 12 weeks 0.068 

A11 (mm2) at 12 weeks 6.0 

ktiss
 (MPa) at 12 weeks 133.2 

μens
 at 12 weeks 0.5182 

σens
 at 12 weeks 0.2551 

ensE* at 12 weeks 0.0638 

kens
 (MPa) at 12 weeks 144.7 
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 Figure 29 shows the simulated stress-strain behavior (P11 vs. E11), CSA (A11), and fiber 

ensemble strain under loading ( ens
tE ) throughout healing.  In general the stress-strain behavior 

increased over time, with the largest increases seen at the earlier timepoints of healing.  The 

same was true for the A11.  Both of these trends correlated well with ens
tE , which decreased in a 

nonlinear fashion.  The steepest decrease in ens
tE  occurred at the early time points, and these 

changes became less apparent at the strain approached its homeostatic level.  
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Figure 29. Simulated stress-strain data (A), cross-sectional area, and fiber ensemble strain under loading (B) as a 

function of time for preliminary model. 

 

 Based on these positive results, and noting the nonlinear nature of these changes 

throughout time, we next wanted to perform a simple sensitivity analysis to determine the impact 

of varying the time interval.    
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7.2.2 Sensitivity to Time Interval 

Due to the highly nonlinear nature of the model, simulation of the data through time required 

numerical iteration at a given time interval (Δt).  Thus, one important question is how the time 

interval impacts the obtained parameter values for the simulated data.  Given the same set of 

initial data as in Section 7.2.1, the healing process was simulated from 12 to 26 weeks of healing.  

Separate simulations were conducted while varying only Δt from 1 day to 98 days.  The 

simulated parameters at 26 weeks were obtained and compared between values of Δt.  For 

example, the ens
tE  is shown in Figure 30. Percent error was calculated for each parameter with 

respect to the respective value when Δt=1 day (Table 20).  In general, the largest errors were 

observed for Δt=98 days, and these errors decreased as Δt became smaller.  At Δt= 7 days, the 

errors for all parameters were 1% or less of those for Δt=1 day.  It is important to note that in 

general these differences were on the order or lower than our experimental accuracy for 

obtaining the original data.  We also observed a drastic increase in the computational time with 

lower values of Δt.  Considering both the error in parameter calculations and computational time, 

Δt=7 days was selected for all simulations in the next sections.  
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Delta t=1 day
Delta t=3 days
Delta t=1 week
Delta t=2 weeks
Delta t=3.5 weeks
Delta t=7 weeks
Delta t=14 weeks

  

Figure 30. Fiber ensemble strain under applied load as a function of the time interval at which parameters 

are updated for remodeling. 

 

Table 20. Error in parameter values at 26 weeks for the time interval sensitivity study (relative to Δt=1 day). 

 
  Time interval (Δt in days)  
  98 49 14 7 3 1 

Tissue 
Parameters 

μtiss 3.2% 0.8% -5.0% 0.0% 0.0% 0% 
σtiss 0% -0.8% -5.5% 0.5% 0.3% 0% 
ktiss -29.0% -1.8% -1.6% -0.8% -0.3% 0% 

tissE*  -8.9% -42.9% 4.4% 0.0% 0.0% 0% 
A11 17.2% 16.9% 2.6% 1.2% 0.5% 0% 

Fiber 
Parameters 

μens 1.5% 1.2% 0.2% 0.1% 0.0% 0% 
σens -4.2% -3.2% -0.5% -0.2% -0.1% 0% 
kens 4.8% 18.9% 2.2% 1.0% 0.4% 0% 

ensE*  -6.9% -5.1% -0.7% 0.3% 0.0% 0% 
ens
tE  4.7% -5.7% -0.8% -0.3% -0.3% 0% 
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7.2.3 Relationship between Rate of Change in Area and Rate of Change in Modulus 

We next wanted to ensure that the model could capture the interplay between the change in fiber 

ensemble properties (kens) and overall tissue growth (A11).  As a first example of this model, we 

evaluated the effect of varying the remodeling rates for A11 and kens ( Aq  and enskq , respectively) 

for a parallel aligned tissue under uniaxial tension.  Again, the representative values for the 

rabbit MCL at 12 weeks of healing were used as a basis.  The Δt was 7 days, and the applied load 

was 25 N. 

First, Aq  was varied from 0.001 day-1 to 10 day-1.  The ens
tE  and stress-strain behavior of 

the tissue for each value of Aq  is shown in Figure 31.  Clearly, as Aq  increases the strain under 

loading decreases more rapidly.  At the same time, since the strain under loading decreases so 

rapidly, the ability of the matrix to remodel by changing its stress-strain behavior was limited.  

When Aq  is much lower than enskq , almost the entire decrease in strain under loading was due to 

alterations in the stress-strain behavior.   
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Figure 31. Fiber ensemble strain under loading (A) and stress-strain behavior (B) as a function of varying 

the rate of CSA growth (qA). 
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Next, enskq  was varied from 0.001 day-1 to 10 day-1.  The strain under loading and A11 of 

the tissue are shown in Figure 32.  Like for Aq , the strain under loading also decreased with 

increasing values of enskq .  In fact, when the enskq  was 10 day-1, the final strain of the tissue under 

loading (0.014) was at its homeostatic value (0.014).  As the rate of fiber modulus rate increased, 

the ability of the matrix to grow in size was limited.  Also, under this condition, the matrix did 

not have to change in size, since the strain under loading decreased so rapidly due to the changes 

in kens.  
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Figure 32. Fiber ensemble strain under loading (A) and cross-sectional area (A11) (B) as a function of varying the 

rate of fiber modulus ( enskq ). 
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7.3 APPLICATION TO MEDIAL COLLATERAL LIGAMENT HEALING 

Next, we wished to determine if the model could be used to describe the healing MCL and 

predict the behavior of those treated with an ECM bioscaffold using data obtained for the non-

treated healing MCL.  First, parameters describing the tissue stress-strain behavior were first 

estimated to obtain a better idea of the differences between the ECM-treated and non-treated 

groups.   

The experimental data for the normal and healing MCL have been previously reported 

[143, 171].  It should be noted that the experimental protocols differed for the data collected at 

12 and 26 weeks of healing.  For the data at 12 weeks (including the sham-operated controls), 

each specimen was preloaded to 1 N, preconditioned for ten cycles from 0 to 0.75 mm, before 

loading to failure at 5 mm/min.  For the data at 26 weeks (including the sham-operated controls), 

each specimen was preloaded to 2 N, preconditioned for thirty cycles from 0 to 1.5 mm, before 

loading to failure at 10 mm/min.  Each test was performed using a materials testing machine 

(Instron, Model 4502, Canton, MA) in a saline bath kept at 37ºC.  From the load-to-failure test, 

the load-elongation and stress-strain data could be obtained [143, 171]. In this dissertation, these 

original data files were used to obtain the parameters describing the tissue stress-strain behavior.  

Since the difference in preload between the protocols at 12 and 26 weeks may have led to 

inconsistency in evaluating the “zero position” of the specimens, the “zero strain” condition was 

set as 2 N for all specimens.  The difference in elongation rates may have also limited 

comparisons between timepoints; however, it has been shown that ligaments are generally strain-

rate insensitive, even when the strain rate changes by a few orders of magnitude [266].  Since the 

load-to-failure test was performed at least one hour following preconditioning, it was also 

assumed the differences in the level of elongation and number of cycles was also negligible.  
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Thus, it was assumed that the stress-strain behavior of the tissue was comparable between time 

points.  

The algorithm was able to fit all curves with R2>0.999.  The values for the obtained 

parameters for the healing MCLs and sham-operated MCLs are presented in Table 21 and Table 

22, respectively.  For the sham-operated controls, the most interesting value is that for ens
tE  at 25 

N of load.  For all sham-operated MCLs, this value was fairly consistent at about 1-2%.   For the 

both treated groups at 12 weeks, this value was higher than the sham-operated controls.  Also, at 

12 weeks, the value for the ECM-treated group (0.035) was almost 55% lower than for the non-

treated group (0.077).  Interestingly, by 26 weeks, these values were similar to each other (0.044 

vs. 0.043), which implies that both treatment groups had reached the same level of strain for a 

given load, suggesting that they are remodeling to reduce the strain to similar levels.  However, 

since the ECM-treated group had a ktiss at 12 weeks of healing, its properties did not need to 

change as much as the non-treated group (in which ktiss rose rapidly).  The implications of this 

can be tested in the model. 
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Table 21. Average parameter values for the tissue stress-strain behavior for the healing MCLs for the non-treated 

(NT) and ECM-treated (ECM) groups. 

 
 ktiss (MPa) μtiss σtiss tissE*  ens

tE  A11 
(mm2) 

NT-         
12 weeks 

133 ± 66 0.50 ± 0.05 0.24 ± 0.01 0.068 ± 0.028 0.077 ± 0.011 7.2 ± 4.7 

NT-         
26 weeks 

321 ± 136 0.53 ± 0.04 0.22 ± 0.02 0.055 ± 0.014 0.043 ± 0.012 6.4 ± 1.4 

ECM-     
12 weeks 

277 ± 116 0.52 ± 0.04 0.26 ± 0.02 0.035 ± 0.019 0.035 ± 0.022 7.9 ± 3.4 

ECM-     
26 weeks 

378 ± 108 0.52 ± 0.05 0.23 ± 0.02 0.054 ± 0.014 0.044 ± 0.012 5.0 ± 1.3 

 
 

Table 22. Average parameter values for the tissue stress-strain behavior for sham-operated rabbit MCLs for the non-

treated (NT) and ECM-treated (ECM) healing groups. 

 
 ktiss (MPa) μtiss σtiss tissE*  ens

tE  A11 
(mm2) 

ShamNT-      
12 weeks 

1115 ± 436 0.44 ± 0.14 0.22 ± 0.03 0.019 ± 0.007 0.013 ± 0.005 5.1 ± 1.0 

ShamNT-      
26 weeks 

1124 ± 457 0.42 ± 0.05 0.22 ± 0.02 0.037 ± 0.010 0.021 ± 0.008 4.2 ± 0.4 

ShamECM-   
12 weeks 

1152 ± 217 0.46 ± 0.09 0.23 ± 0.01 0.020 ± 0.007 0.014 ± 0.004 4.2 ± 0.8 

ShamECM-   
26 weeks 

1191 ± 439 0.44 ± 0.05 0.22 ± 0.03 0.032 ± 0.009 0.018 ± 0.004 4.1 ± 0.6 

 
 

For this simulation, all remodeling rates except for enskq  and Aq  were held constant for 

simplicity.  The experimental and simulated stress-strain data are plotted in Figure 33. The model 

was able to match the shape of the curve for the experimental data at 26 weeks (R2>0.999).  The 

values for the modulus of the tissue at 26 weeks for the experimental and simulated data sets 

were identical (321 MPa and 321 MPa, respectively).  Further, the simulated A11 could match the 
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experimental value to within 0.5% (6.40 mm2 vs. 6.43 mm2, respectively).  For the non-treated 

group to reach the average modulus value at 26 weeks, enskq  was found to be 0.25 day-1, while 

Aq  was -1.52 day-1.   
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Figure 33. Experimental and simulated stress-strain data for non-treated healing rabbit MCLs from 12 to 26 weeks 

of healing. 

We then wished to see whether the rate constants found for the non-treated group could 

be used to predict the results for the ECM-treated group.  The same rate constants found above 

were used along with the average ECM-treated data at 12 weeks to a set of simulated data out to 

26 weeks.  The experimental and simulated stress-strain data are plotted in Figure 34. In this 

case, the model over predicted the stress-strain behavior of the ECM-treated healing tissue at 26 

weeks.  In fact, the model predicted a value for ktiss of 449 MPa, which was 19% greater than the 

actual mean value of the experimental data (378 MPa). 
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Figure 34. Experimental and simulated predicted stress-strain data for ECM-treated healing rabbit MCLs.  The 

simulated stress-strain curves were created using the rate constants for the non-treated group. 

 

Even though the model could not predict the results of ECM-treatment, we could still 

separately fit the ECM-treated group to the model to obtain enskq  and Aq .  Again, there was good 

agreement between the model and experimental data at 26 weeks (Figure 35, R2>0.999).  To 

reach the experimental modulus value at 26 weeks, enskq  was found to be 0.13 day-1, while Aq  

was -8.8 day-1.  The value for enskq  was lower than the corresponding value for the non-treated 

group, while the value for Aq  was much higher.  These trends correspond to the experimental 

data as the relative increase in modulus was smaller and the relative decrease in A11 was larger 
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for the ECM-treated group from 12 to 26 weeks.  As an additional note, for the model to match 

the experimental value for A11 at 26 weeks, a negative value for Aq  was needed for both 

experimental groups, since the values for A11 decreased for both from 12 to 26 weeks.  This topic 

is discussed in Section 8.3. 
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Figure 35. Experimental and simulated stress-strain data for ECM-treated healing rabbit MCLs from 12 to 26 weeks 

of healing. 

 

To further illustrate the differences between the two healing groups, ens
tE  is presented as 

a function of time (Figure 36).  In the non-treated group, ens
tE  decreases steadily as healing 

progresses.  This matches the experimental data in Table 21 which showed large increases ktiss 
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with only a slight reduction in A11, which allows ens
tE  to decrease.  On the other hand, ens

tE  for 

the ECM-treated group slightly increased over time.  This also matched the experimental data in 

that ens
tE  increases from 12 to 26 weeks.  With the sharp decrease in A11 within the ECM-treated 

group, ens
tE  should increase.  Meanwhile, the matrix is remodeling to a better quality tissue such 

that ens
tE  should decrease.  These counteracting mechanisms result in the relatively flat value of 

ens
tE  in Figure 36.   Clearly, trends in the non-treated and ECM-treated tissues are quite different, 

so it is not surprising that the rate constants from the non-treated group could not predict the 

results for the ECM-treated group.  Interestingly, the two plots appear to be converging to a 

similar value of ens
tE . 
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Figure 36. Fiber ensemble strain under applied load for the non-treated and ECM-treated groups as a function of 

time of healing. 
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7.4 IMPLICATIONS FOR ANTERIOR CRUCIATE LIGAMENT HEALING AND 

PRELIMINARY RESULTS 

The previous section highlighted the importance of the level of strain on the remodeling 

response. The model suggests that the ECM-treated group experienced lower strains at 12 weeks 

compared to the non-treated group.  Thus, its stimulus to grow and/or remodel was reduced.  As 

such, its ens
tE  did not change over time.  For the ACL, there is currently a lack of multiple time 

point data necessary to make comparisons like in the case of the MCL.  Only three treatment 

groups have been completed at a single time point in Specific Aims 1 & 2.  Further, due to the 

complex geometry of the ACL, determining its mechanical properties is a challenge, since 

neither a uniform cross-section nor a uniform strain distribution, could be assumed.   

Alternatively, the computation model could be used to perform some simple simulations 

to supplement and explain the experimental findings to date.  All initial values were kept the 

same as in Section 7.3, with the following exceptions: 1) force=50 N, 2) enskq =0.05, 3) 

Aq =0.025, and 4) ens
hE =0.0233. Based on the values of stiffness of the healing FATCs and CSA 

of the healing ACL in Specific Aim 1, we can estimate the tangent modulus of the tissue at 12 

weeks.  The modulus of the ECM-treated group was estimated as 60 MPa, while the value for the 

suture repair group was 100 MPa.  Notice that the value for the suture repair group was higher, 

since the CSA of the ECM-treated group was more than 4x the suture repair group, while the 

stiffness of the healing FATC was only 2.5x greater. 

 With the simulation of healing to 26 weeks, the healing ACL for the ECM-treated group 

still had a lower stress-strain response compared to the non-treated group (Figure 37A), resulting 

in lower values of tangent modulus(ktiss, 78 MPa vs. 149 MPa, respectively).  On the other hand, 
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the CSA of the healing ACL was 4.1 times higher for the ECM-treated group versus suture repair 

(32.5 mm2 vs. 7.9 mm2, respectively).  As a result, the simulated load-elongation behavior of the 

healing ACL for the ECM-treated group was much greater compared to the suture repair group 

(Figure 37B).  In fact, the linear stiffness was 115% greater for the ECM-treated group (76 

N/mm vs. 35 N/mm, respectively).  Moreover, the stiffness for the suture repair group at 26 

weeks was similar to the value achieved by the ECM-treated group at 12 weeks.  This clearly 

shows the delay in the function of the healing ACL with suture repair alone.     
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Figure 37. Simulated stress-strain behavior (A) and load-elongation behavior (B) for the healing ACL for the ECM-

treated and suture repair groups at 12 and 26 weeks of healing. 
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Another item of interest is the effects of hypertrophy of the tissue, i.e. excessive CSA, on 

the growth and remodeling of the healing ACL.  We again considered the healing ACL as a 

transversely isotropic tissue, and two conditions were simulated from 12 to 26 weeks: 1) a 

healing tissue with a CSA of 29 mm2 (CSA29 group), similar to the ECM-treated group in 

Section 5.0 , and 2) a healing tissue with a CSA of 58 mm2 (CSA58 group), double that of the 

CSA29 group.  The initial modulus of the fibers (kens) was adjusted such that the two groups 

would have similar load-elongation behavior at 12 weeks (60 MPa and 30 MPa for CSA29 and 

CSA58 groups, respectively).  The simulated force was 50 N.  All other initial parameters were 

held constant between simulations and were similar to those found in Section 7.2.1. At both 12 

and 26 weeks, the mechanical behavior of the CSA29 group was higher than that of the CSA58 

group (Figure 38A).  Interestingly, the relative change in tangent modulus (ktiss) for both groups 

at 26 weeks compared to 12 weeks was about 31% and 34% for the CSA29 and CSA58 groups, 

respectively (79 MPa and 40 MPa at 26 weeks, respectively).  The estimated load-elongation 

behavior of the tissue was similar at both 12 and 26 weeks. However, because the CSA of the 

CSA58 group was larger, the E11 under the applied load was lower at all time points (Figure 

38B).  This suggests that the CSA29 tissue retains a greater capacity to remodel its mechanical 

behavior in the long-term and highlights the importance of limiting hypertrophy at early phases 

of healing in order to obtain better quality tissue in the long-term. 
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Figure 38. Simulated stress-strain behavior (A) and strain under applied load over time (B) for healing ACLs of 

varying CSA. 
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Finally, we considered the effects of the levels of loading on the healing tissues.  The 

same tissue with a CSA of 6 mm2 was simulated from 12 to 26 weeks of healing with either 25 

or 50 N of applied load (Figure 39).  Compared to the 25 N loading condition, the tissue was able 

to achieve superior stress-strain and load-elongation behavior under the 50 N loading condition.  

In fact, by 26 weeks, the predicted tangent modulus was 12% higher (149.4 MPa vs. 133.9 MPa, 

respectively), while the predicted stiffness was 19% higher (35.2 N/mm vs. 29.6 N/mm, 

respectively) for the 50 N loading condition compared to the 25 N loading condition. This 

highlights the importance of the applied load on the remodeling of the tissue, although the effects 

were not as drastic as the results due to changing the CSA.  A discussion of these topics can be 

found in Section 8.3.   
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Figure 39. Simulated stress-strain behavior at 12 weeks (B) for healing ACL tissues under different loading 

conditions from 12 to 26 weeks. 
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8.0  DISCUSSION AND CONCLUSIONS 

In this dissertation, we were able to demonstrate the positive impact of biological and 

mechanical augmentation on the healing of an injured ACL through a combined experimental 

and computational approach.  First, the ability of an ECM bioscaffold in combination with an 

ECM hydrogel to enhance ACL healing following suture repair was demonstrated in the goat 

model at 12 weeks. ECM-treatment led to improved biomechanical properties and histological 

appearance of the healing ACL compared to suture repair alone.  Second, a suture augmentation 

procedure was developed to provide additional mechanical augmentation to the healing ACL.  

Improved joint stability was shown at time-zero versus suture repair.  These positive changes 

were also found at 12 weeks of healing, although to a lesser extent.  Interestingly, suture 

augmentation with a simple suture repair led to a marked increase in neo-tissue formation as well 

as biomechanical properties of the healing ACL compared to suture repair alone.  Finally, as a 

first step toward predicting long-term outcomes following these biological and mechanical 

augmentation procedures, a mathematical model was developed to describe the remodeling 

process of healing ligaments.  Its ability to quantify changes in tissue biomechanical properties 

and CSA were shown in a generalized model of a healing ligament.  Then, data for the healing 

MCL were used to test the validity of the model and provide insight as to an appropriate 

mathematical formulation to describe the changes in the healing ligament.  Finally, the model 
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was used to provide some early implications of the healing of the ACL following biological and 

mechanical augmentation. 

8.1 IMPACT OF ECM TREATMENT ON THE HEALING OF THE ACL 

In Specific Aim 1, we were able to demonstrate that a combination of ECM-SIS bioscaffold 

coupled with its hydrogel form could improve the healing of a transected ACL following suture 

repair.  We first hypothesized that the bioactive degradation byproducts of ECM-SIS [22, 247] 

would stimulate cells to produce more matrix for increased neo-tissue formation.  In fact, gross 

observation showed abundant tissue formation compared to suture repair alone. In terms of the 

CSA of the ACL, ECM-treatment led to four times as much healing tissue formation compared 

to suture repair alone.  These results are similar to previous studies in our research center using 

ECM-SIS to treat a 6mm MCL gap injury and central third PT defect injury [123, 143, 267].  In 

both cases, significant tissue formation was observed at 12 weeks of healing.   

We further hypothesized that an ECM sheet could act as a temporary synovium to protect 

the injury site and allow tissue formation.  Following injury of the ACL, the synovium, which 

surrounds the ACL, is disrupted.  This allows synovial fluid to enter the injury site and prevent 

healing tissue formation.  Since the ECM sheet surrounded the injury site, it could have 

functioned to prevent excessive tissue growth, ultimately making it a tissue of better quality.  In 

fact, the values for CSA of the ECM-treated ACL were not significantly different from the sham-

operated controls. These results are similar to our previous results for the rabbit MCL which 

noted that values for CSA of the ECM-treated healing tissue at 26 weeks were closer to the 

normal MCL compared to those in the non-treated group  [143, 267].   
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Further, the structural properties of the healing FATC were improved with ECM-

treatment versus suture repair alone. More specifically, the stiffness of the healing FATCs 

following ECM-treatment was more than double those of the suture repair group.  In the case of 

the MCL, these increases were observed in terms of the mechanical properties of the tissue, i.e. 

tissue quality.  However, due to the complex geometry of the ACL, an accurate description of its 

mechanical properties was not experimentally possible.  

The impact of these improvements in the biomechanical properties of the healing ACL 

with ECM-treatment on joint stability was determined using a robotic/UFS testing system.  

Interestingly, under loads simulating a clinical exam for ACL function, statistical significance 

compared to the suture repair group could not be obtained for measures of joint kinematics and 

the contribution of the healing ACL (i.e. its in-situ force), despite obvious differences in the 

behavior of these two groups.  For these tests, the relative levels of loading were lower compared 

to those during tensile testing.  Thus, although improved joint function could be qualitatively 

observed with ECM-treatment compared to suture repair alone, higher levels of loading (tensile 

testing) were necessary to definitively show quantitative differences.  If higher loads were 

applied, the differences in joint kinematics likely would have been more apparent. 

The suture repair technique chosen in this study was based on studies in the clinical 

literature for repair of an injured ACL [61, 120, 248].  In these studies, up to an 80% rate of 

failure was observed at five year post-operatively in terms of joint stability.  Nevertheless, the 

clinical outcomes following suture repair are quite variable, as a small percentage of patients do 

not need secondary surgery or have premature osteoarthritis following suture repair.  Similarly, 

in the current study, large amounts of variability were seen in the amount of joint stability as well 
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as the neo-tissue formation, CSA of the healing ACL, and stiffness and ultimate load of the 

healing FATC.   

The impact of ACL injuries on joint function cannot be understated.  In clinical studies, 

following ACL injury with no surgical treatment, there is persistent instability as well as an 

increased risk for damage to the other structures of the knee, such as the medial meniscus, as 

well as development of premature OA [13, 40, 61, 119, 120, 183, 185, 220, 237, 281].  

Furthermore, animal studies have documented both degenerative changes of the articular 

cartilage and hypertrophy of the medial meniscus could be observed at 12 weeks post-

operatively following ACL transection [113].  Thus, for FTE approaches to be fully successful, 

joint stability must be maintained during healing.  Further, the effectiveness of such approaches 

must be determined in terms of overall joint function, including changes to structures other than 

the ACL, such as the medial meniscus (See Future Directions, Section 9.0 ). 

Our data compare favorably to those healing ACLs treated with a collagen-platelet 

composite scaffold following suture repair in a porcine model, which is tthe current standard for 

FTE treatment of the injured ACL [118].  After the same period of healing (3 months), the 

stiffness of the healing FATCs from the ECM-treated group had values reaching 53 ± 19 N/mm 

compared to 40.2 ± 21.8 N/mm following collagen-platelet composite treatment.  However, it 

should be noted that there are differences in the animal model, surgical procedures, and methods 

of biomechanical evaluation that prevent a direct statistical comparison between these studies.      

When comparing our results to those for ACL-reconstruction using the goat model [5, 48, 

114, 175, 190], the A-PTT for the ECM-treated group was well within the range for those in the 

ACL-reconstructed knees, which could be 2-6 times higher than the intact knees on average at 12 

weeks of healing.  Further, a previous study from our research center has shown the in-situ force 
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of ACL replacement grafts in the goat model to be ~25-45 N at 6 weeks of healing in response to 

a 67-N anterior tibial load [5, 190].  Similar in-situ force levels (from 31-53 N) were seen in the 

ECM-treated ACLs.  Further, the stiffness of the healing FATCs from the ECM-treated group 

(53 ± 19 N/mm) were also comparable to those with ACL-reconstruction at 12 weeks post-

operatively (37.2 ± 22.0 N/mm) [175].  Interestingly, in the same study on ACL-reconstruction, 

the stiffness of the healing graft reached 33% and 50% of normal at 1 and 3 years, post-

operatively.  In the current study, the stiffness of the healing FATC reached 48% at 12 weeks, 

which may suggest that the remodeling process of the healing ACL may be accelerated 

compared to that of an ACL-reconstruction graft.  However, data at longer-term time points will 

be necessary to confirm this hypothesis.  The findings of using ECM treatment for ACL healing 

in the goat model show promise as the data are comparable to those following ACL 

reconstruction, which is the current clinical standard for treatment of ACL injuries.  

Another important contribution of this study was the use of genetically-modified ECM, 

which could help to address the clinical concerns of chronic inflammation found in some patients 

following implantation of the porcine ECM [109, 154].  A significant part of the inflammatory 

response can be attributed to the existence of the αGal epitope [21, 153].  However, since the 

ECMs degrade rapidly in-vivo, the impact of the αGal epitope for ECM-related applications has 

been debated.  A recent study using porcine-derived ECM to treat an abdominal wall defect in a 

primate model showed that the αGal epitopes did increase the presence of αGal antibodies in the 

serum, but otherwise did not negatively affect the remodeling of the tissue [51].  Nevertheless, 

there are still concerns among clinicians regarding the implantation of porcine materials for 

orthopaedic applications, and ECMs from these αGal(-) pigs may offer promise for more 

widespread use in the future.   
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In summary, Specific Aim 1 demonstrated the potential application of ECM bioscaffolds 

and hydrogels in combination with suture repair for ACL healing.  However, it was noted that 

even with ECM-treatment, a considerable amount of joint instability was found at 12 weeks of 

healing.  This motivated the development of alternative suture techniques for mechanical 

augmentation of the healing ACL in Specific Aim 2.  

8.2 MECHANICAL AUGMENTATION OF THE HEALING ACL VIA SUTURE 

TECHNIQUES 

In Specific Aim 2, we wished to compare the effectiveness of a newly developed suture 

augmentation technique to the suture repair technique utilized in Specific Aim 1.  Before making 

these comparisons, we first assessed whether the tunnel locations selected for the suture 

augmentation would have an effect on the joint stability (Section 6.1.1).  Since there was no 

statistically significant change in joint stability due to the tunnel locations chosen, the findings 

suggested that the sutures be placed anterior to the ACL footprint of the femoral origin and 

medial to the ACL footprint of the tibial insertion since it was simpler and avoided further injury 

to the ACL.  This procedure was used in the remainder of Specific Aim 2. 
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8.2.1 Impact of Suture Augmentation on Initial Joint Stability Compared to Suture 

Repair 

In Specific Aim 2.1, we utilized a robotic/UFS testing system to apply external loads to a set of 

goat stifle joints to assess the ability of suture techniques to restore joint stability as well as the 

relative contribution of the ACL.  We found that suture augmentation could restore the joint 

kinematics near the levels of the intact joint, while the in-situ forces in the sutures were closer to 

the ACL compared to suture repair.  These results supported our hypothesis that bone-to-bone 

fixation provided by suture augmentation could allow better stability compared to the soft tissue-

to-bone fixation with suture repair.  

As in Specific Aim 1, the suture repair technique chosen in this study was based on 

studies in the clinical literature for repair of an injured ACL [61, 120, 248].  Our results in the 

goat model mirrored these clinical findings, as the amounts of ATT following suture repair were 

much larger than the intact joint.  

As an alternative, mechanical augmentation techniques, such as the used of additional 

sutures, have been developed as a means to better restore initial joint function [73, 218]. It is 

useful to compare the current results to those of Fleming et al., who examined the influence of 

suture augmentation versus suture repair in the porcine model [73].  In their study, suture 

augmentation could restore joint kinematics to within 1 mm on average under a 30 N anterior 

tibial load, while suture repair could only restore kinematics to within 6 mm on average.  These 

changes are on the same order of magnitude as the current work; however, in general, the 

procedures by Fleming et al. were found to be closer to the intact joint.  There are a few 

explanations for these differences.  First, the porcine stifle joint has a natural laxity much greater 

than the goat stifle joint [270].  Thus, differences in kinematics compared to normal will be more 



146 

apparent in the goat stifle joint.  Second, the level of applied load (30 N) was less than half of the 

current study (67 N).  If similar loads were applied, it is possible that increases in joint 

kinematics may be found versus the intact joint.  Third, during loading of the porcine stifle 

joints, all other translations and rotations of the joint were fixed except for anterior-posterior 

tibial translation.  It is well-known that the joint undergoes coupled motions during in-vivo 

activities.  For example, internal-external and varus-valgus rotations can occur during an applied 

anterior-posterior tibial load.  Studies from our research center showed that constraining these 

other motions can lead to inaccurate joint kinematics and altered contribution of the structures of 

the joint [147].  For example, in the human joint, allowing unconstrained motion led to a 30-40% 

increase in anterior-posterior tibial translation compared to a constrained motion allowing only 

anterior tibial translation.  A significant advantage of the robotic/UFS testing system is that these 

coupled motions can be allowed to achieve a better sense of 6-DOF joint stability.   

Even with suture augmentation, the complex function of the ACL could not be 

completely replicated. In ACL reconstruction procedures, restoration of joint kinematics to 

within 2 mm of the intact joint at the time of surgery under an anterior tibial load is a common 

metric for a successful surgery [9, 81, 230].  The results for suture augmentation in this study 

were similar to those for ACL reconstruction in the goat model [5, 152, 189], as both procedures 

had values for ATT which were within 2-3 mm on the intact joint.   

In summary, suture augmentation shows promise to better maintain joint function 

compared to suture repair alone under externally applied loads.  In conjunction with simple 

suture repair (to reapproximate the torn ends of the ACL), this approach could maintain initial 

joint stability during the early healing process to allow better tissue remodeling and achieve 
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better long-term results. Thus, for our in-vivo studies in Specific Aim 2.2, suture augmentation 

was combined with a simple suture repair procedure. 

8.2.2 Impact of Suture Augmentation on ACL healing at 12 weeks 

In Specific Aim 2.2, we noted an increase in the amount of healing ACL neo-tissue at 12 weeks 

with additional suture augmentation compared to suture repair alone. This supports our 

hypothesis that suture augmentation could provide stability to the joint and limit excessive 

loading to the ACL.  Further, with a simple suture repair, the gap between the injured ACL 

stumps is reduced, which gives the ACL a better chance to heal.  Indeed, with suture 

augmentation and suture repair, the intrinsic healing potential of the ACL was sufficient to 

bridge the gap and form continuous tissue.     

Despite the increased neo-tissue formation with additional suture augmentation, 

improvements in the biomechanical properties of the healing ACL and joint function, could not 

be demonstrated through statistical analyses.  Qualitatively, in terms of joint kinematics, the 

suture augmentation group had a different response to an applied load and the healing ACL 

carried higher in-situ forces than for suture repair alone.  Moreover, the average value of the 

stiffness of the healing FATC was 75% higher with suture augmentation.  The inability to obtain 

statistical significance is likely due to a lack of statistical power as a result of the limited sample 

sizes.  This topic is discussed in more detail in Section 8.5.  

In both the suture repair and suture augmentation groups, the amount of A-PTT relative 

to the sham-operated controls increased at 12 weeks of healing versus time-zero.  These 

differences were most dramatic in the suture augmentation group, which went from providing 

good initial joint stability at time-zero to allowing a large amount of instability at 12 weeks.  
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Although the amount of joint instability also increased with suture repair, the relative increase 

was lower. Since suture repair had significant joint instability at time-zero, there was a limit to 

how much these values could increase throughout healing.   

Interestingly, the augmentation sutures carried minimal loads when an anterior tibial load 

was applied via the robotic/UFS testing system at 12 weeks of healing.  Closer inspection 

revealed that the sutures were permanently elongated in all specimens (Figure 24), which implies 

that the sutures were no longer contributing to joint stability.  However, it was not possible to 

determine the length of time in which the augmentation sutures could contribute to joint stability.  

In any case, by 12 weeks, the healing ACL carried a significant portion of the applied anterior 

tibial load.  Compared to the suture repair group, the healing ACLs in the suture augmentation 

group could have experienced higher loads during joint motion, allowing for more positive 

remodeling and improved biomechanical function by 12 weeks of healing.  This is a topic for 

discussion in Section 8.4.    

Since the augmentation sutures did become considerably elongated over time, the in-vivo 

loading conditions could have been higher than our initial estimations.  A previous study using 

force transducers applied to the normal ACL in the goat model found that an average anterior 

load of approximately 70 N was applied during walking [103].  Thus, the loading levels for our 

gfin-vitro tests were selected accordingly.  However, in the same study, peak ACL forces could 

reach approximately 150-200 N.  If a significant number of high loading cycles occurred, it is 

possible that the augmentation sutures could have permanently elongated early during healing, 

and not provided the appropriate amount of joint stability.  In any case, elongation of the sutures 

is inevitable and even desirable once the ACL heals, so a careful design of the suture technique is 

important.  A more detailed discussion of this topic is presented in Section 8.4.   
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In summary, suture augmentation could be a useful technique to provide initial joint 

stability superior to suture repair alone.  This technique could used in combination with FTE 

treatments to further enhance healing of the ACL, while better maintaining joint stability 

throughout healing. 

8.3 USE OF MATHEMATICAL MODELING TO STUDY ACL HEALING 

In Specific Aim 3, we developed a model to capture the changes in CSA and biomechanical 

properties of a healing ligament via a mechanism of strain-based homeostasis.  The model is 

advantageous to the study of the mechanisms of ligament healing since it incorporates a general 

constitutive model for soft tissues based on the tissues microstructure as well as allows the 

parameters at the fiber level (assumed to be on the same order of size as the cells present in the 

matrix) to remodel and ultimately dictate the tissue level biomechanical properties.  This model 

was able to demonstrate how the stress-strain behavior of the tissue and its CSA would change in 

order to restore the level of homeostatic fiber strain in a generalized model of a ligament.  

Moreover, the interplay between the modulus of the tissue and its CSA based on the relative 

level of their rate constants was shown.    

Furthermore, we were able to utilize the idea of strain-based homeostasis to describe 

experimental data for the rabbit MCL.  The general changes in the stress-strain behavior and 

CSA of the non-treated and ECM-treated groups were captured in the rate constants of these 

parameters.  In addition, the model was able to match the experimental finding that the fiber 

strain in the tissue under a given load did not change much in the ECM-treated group from 12 to 

26 weeks.  The response for the non-treated group was quite different, as the fiber strain for a 
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given load decreased substantially over the same time interval.  This suggests that the two 

experimental groups are remodeling differently over this time period.  At 12 weeks, the ECM-

treated group had a notably higher tangent modulus as well as CSA.  Thus, for any given load, 

the fiber strains in the ECM-treated tissues would be lower than their non-treated counterparts.  

This would lead to less of a stimulus to restore the homeostatic fiber strain in the ECM-treated 

group.  Interestingly, even though the fiber strain in response to an applied load did not change 

over this time period, the CSA did decrease considerably, while the tangent modulus increased.  

This could imply that even if the tissue is not moving toward its homeostatic fiber strain, there 

could be significant alterations in its CSA and biomechanical properties over time.  Thus, further 

mechanisms for growth and remodeling will need to be explored in the future. 

The data sets chosen for the healing MCL were those collected and reported by our 

research center in recent years [143, 171].  It is interesting to note that for the non-treated group, 

the value for tangent modulus of the healing MCL reported in these studies almost doubled from 

12 to 26 weeks (149 ± 77 MPa and 291 ± 123 MPa, respectively).  Similar increases were 

observed in the ECM-treated group.  These data are at odds with earlier studies from our 

research center examining the healing MCL out to 52 weeks after injury [186, 250, 262].  In 

these studies, the modulus of the healing tissue did not increase substantially between 6, 12, and 

52 weeks of healing (230 ± 97 MPa, 269 ± 97 MPa, and 230 ± 158 MPa, respectively).  

However, the values for all of these groups are within a small range 150-300 MPa, suggesting 

that they are similar.  It is also important to note that these data were collected by different 

researchers, and thus, differences in specimen preparation, data analysis, etc. may preclude direct 

comparison between groups.  The data used for this dissertation were chosen in part because the 

raw data files were available which allowed for uniform data analysis across all data sets.  
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However, differences in the experimental techniques may have contributed to differences in the 

obtained data.  In the future, it is important that multiple time point data be collected by the same 

investigators so as to reduce these effects.  Additional methods to reduce inter-specimen 

variability are discussed in Section 9.0 .     

Furthermore, we used the model to supplement the experimental findings in Specific 

Aims 1 & 2.  First, the healing of the ACL was simulated to 26 weeks for both the ECM-treated 

and suture repair groups.  It was found that the stiffness of the healing FATC remained 115% 

higher for the ECM-treated group, and the stiffness for the suture repair group at 26 weeks was 

similar to the value achieved by the ECM-treated group at 12 weeks, which clearly showed the 

delay in the function of the healing ACL with suture repair alone.  Next, we could show that 

hypertrophy of the healing ACL at 12 weeks in terms of increasing its CSA would lead to a 

slower increase in its mechanical properties by 26 weeks.  As such, the importance of limiting 

hypertrophy of the healing tissue at early time points was shown.  Cases of hypertrophy have 

been observed in FTE treatment of the healing ACL using platelet-rich plasma (See Section 

2.6.2).  With ECM-treatment, hypertrophy of the healing tissue was limited, suggesting an 

increase in its quality.  Finally, we noted that if the stimulus, i.e. load, was decreased, the stress-

strain and load-elongation behavior by 26 weeks would also be negatively impacted, 

demonstrating the need for appropriate loading of the healing ligament in order to achieve 

biomechanical properties closer to normal.  Once rigorously developed and validated, this type 

of model could be powerful in that it would allow prediction of long-term outcome with the use 

of short-term data.   

However, it is clear that further development is needed.  This stimulus function chosen 

for these studies was a simple linear relation to fiber strain, which may or may not have a direct 
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basis in terms of the stimuli observed at the cellular level.  More complex relationships may need 

to be explored as noted in Section 8.5. 

 In these preliminary simulations, a transversely isotropic model could not explain the 

decrease in CSA for the healing MCL from 12 to 26 weeks within the context of strain-based 

homeostasis.  A negative value for qA was needed for both experimental groups, since the 

experimental values for CSA decreased for both from 12 to 26 weeks, which is counterintuitive 

to our assumption of strain-based homeostasis. If tissues experience strains above their 

homeostatic strain, we would expect them to want to increase size, not decrease.  Thus, further 

exploration of the assumptions of the current model is needed. 

These results highlight the need for an accurate description of the fiber alignment during 

healing.  Histological evaluation of the healing rabbit MCL has revealed that some degree of 

fiber alignment does exist at 12 weeks; however, the degree of alignment was not similar to 

those of the normal MCL [77, 171].  In our model, under the assumption of affine deformation, 

as the fiber direction moves further away from the axis of loading, the strains in the fibers 

decrease.  Thus, our model would predict a lower strain stimulus on these fibers.  If the strains 

are below the homeostatic strain level, the degradation of matrix for that fiber family would 

become greater than its production, causing an overall loss in mass.  If a sufficient percentage of 

the total area of the tissue consists of these fiber families, then a decrease in CSA could be 

expected, while maintaining a positive value for qA.  Using our model, we could simulate this 

scenario by including multiple fiber families in future studies.   Further, the distribution of fibers 

in the healing tissue could be directly measured using a small angle light scattering (SALS) 

device [207] and directly implemented within the model.     
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 Although still in its preliminary phases, it is easy to see how this model could impact 

both basic science as well as the clinical arena.  A more robust treatment of this model will 

require a significant amount of carefully obtained data.  However, once validated, it could be 

used to answer many research questions in a time- and cost-efficient manner.  

8.4 MECHANISMS OF BIOLOGICAL AND MECHANICAL AUGMENTATION 

APPROACHES FOR ACL HEALING 

In Specific Aims 1 & 2, we were able to show that both biological and mechanical augmentation 

could improve healing of the ACL versus suture repair alone.  In light of these findings, it is 

interesting to explore the potential mechanisms by which each one acts.   

A depiction of the natural biologic healing process of the ACL with an ideal mechanical 

augmentation technique is given in Figure 40.  The vertical axis on the left-hand side represents 

the level of joint stability ranging from normal to ACL-deficient conditions.  The vertical axis on 

the right-hand side represents the relative contribution, i.e. loads carried, by both the mechanical 

augmentation and healing ACL, ranging from the normal ACL to zero contribution.  Both are 

plotted versus healing time on the horizontal axis ranging from early to late.  In order to maintain 

joint stability near the levels of the normal joint (represented by the solid line), the mechanical 

augmentation (represented by the long dashed line) must provide a similar contribution to 

stability as the normal ACL, since the contribution of the injured ACL is zero (represented by the 

short dashed line).  Over time, the contribution of the mechanical augmentation can decrease as 

the contribution of the healing ACL increases.  This is essential, since healing ligaments respond 
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positively to loading.  In an ideal case, this process occurs such that joint stability is maintained 

throughout the healing process.  
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Figure 40. Schematic depicting the ideal ACL healing with appropriate mechanical augmentation. 

 

Next, it is useful to depict the results of suture repair alone, which was used as a control 

in Specific Aims 1 & 2.  In this case, suture repair could not restore initial joint stability.  Thus, 

even though a small amount of healing ACL tissue could form, the joint stability was already 

lost.  As a result, the tissue was likely not properly loaded and could not remodel to effectively 

contribute to stability.   
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Figure 41. Schematic depicting ACL healing following suture repair alone. 

 

In Specific Aim 1, ECM-treatment was able to accelerate tissue formation such that it 

could contribute to joint stability sooner, as depicted in Figure 42.  In other words, it shifted the 

curve for the healing ACL in Figure 40 to the left.  This allowed joint stability to be better 

maintained over time versus suture repair alone since the healing could bear more load and 

positively remodel (as modeled in Specific Aim 3) to more effectively contribute to stability.      

Nevertheless, since suture repair could not restore initial joint stability, even the positive effects 

of ECM-treatment could not restore joint stability following healing.   
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Figure 42. Schematic depicting ACL healing following ECM-treatment with suture repair. 

 

In Specific Aim 2, we showed that suture augmentation could provide initial joint 

stability (Figure 43).  Additionally, suture augmentation with simple suture repair provided 

sufficient protection to allow a substantial amount of healing tissue to form.  However, as with 

suture repair alone, the natural healing process of the ACL would be slow.  Thus, as the 

contribution of the augmentation sutures decreased with time, the healing ACL was not yet 

capable of contributing the amount necessary to maintain joint stability since it did not have the 

needed biomechanical properties.  But, because the healing tissue was able to form, it could 

positively remodel to accept a greater contribution of loading.  Thus, the values for joint stability 

decrease over time during the early phase, but reach a steady state once the ACL has sufficient 

biomechanical properties. 
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Figure 43. Schematic depicting ACL healing following suture augmentation with simple suture repair. 

 

A promising extension of this dissertation would be to combine the advantages found in 

Specific Aims 1 & 2, which is presented graphically in Figure 44.  The combined approach is 

represented by the purple curves, while the ideal curve from Figure 40 is represented by the 

green curves.  Both sets of curves maintain joint stability throughout healing.  However, since 

ECM-treatment allows for accelerated healing of the ACL, it could contribute to stability earlier 

in the healing process, reducing the demand for suture augmentation to maintain stability for a 

long period of time.  The overall end result is a shift in the time when the healing ACL 

contributes the majority to maintaining joint stability from a later time point in the case of natural 

healing to an earlier time point with FTE treatment. This theoretical result will need to be 

verified in future experimental studies.    
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Figure 44. Schematic showing ACL healing following hypothetical combination of results from Specific Aims 1 & 

2. 

 

This thought experiment highlights an area of rising importance within the field of 

orthopaedic sports medicine, namely post-operative rehabilitation and care following FTE 

treatments.  With the use of platelet-rich plasma and other biological stimuli already in practice, 

the question of how soon patients should return to normal activities is still open-ended.  

Theoretically, FTE treatments should allow for a more aggressive rehabilitation protocol, since 

the biomechanical properties of the healing ACL would be higher at earlier time points compared 

to the natural healing process.  Also, the time at which patients return to normal activities should 

theoretically decrease.  Since this area is still in its nascent stages, the specific type and duration 

of rehabilitation following FTE treatment has not yet been well-studied.     
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8.5 LIMITATIONS 

There are a number of limitations to the work in this dissertation.  First, the in-vivo experiments 

were limited by the sample sizes for each group, due to the costs and difficulties associated with 

performing large animal studies.  In terms of biomechanical testing, we were limited to n=7 in 

the ECM-treated group and n=5 both in the suture repair group and suture augmentation group.  

In our study design, we initially planned for seven goats for the suture repair group; however, 

given the clearly poor and largely variable results observed in terms of tissue formation and 

biomechanics, we did not perform surgery on the remaining animals for this study due to ethical 

concerns.  More practically, the high variability of the suture repair group almost certainly would 

have prevented determination of statistical significance for the data on joint kinematics and in-

situ force of the healing ACL in Specific Aims 1 & 2, even if the extra animals were included in 

the study. Post-hoc power analyses suggest that a substantial number of animals would be 

needed to show statistical significance.  For example, to show statistical significance in terms of 

A-PTT at 30º of flexion between the ECM-treated and suture repair only groups, 46 animals per 

group would be required. The same problem existed for Specific Aim 2.2 and the comparisons to 

the suture augmentation group.  Clearly, the number of animals needed would be unfeasible 

experimentally.   

Second, the experimental studies on joint kinematics used externally applied loads that 

were selected on data collected by Holden et al. for the average load applied to the ACL as well 

as the average ground forces during normal walking gait in the goat [103].  Thus, the true in-vivo 

function of the healing ACL could not be determined in this dissertation, but a methodology to 

potentially achieve this goal is highlighted as a future direction in Section 9.0 .   
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Third, although novel αGal(-) ECMs were utilized in this dissertation, the use of the goat 

model prevented a direct evaluation of their immunological advantages.  As with all non-primate 

animal models, caprine tissues contain the αGal eptiope, and thus, goats do not have anti-αGal 

antibodies.  To study the immune reaction due to the αGal(-) ECM, additional studies are 

warranted. 

Fourth, the results were obtained for the goat model and may not yet be extrapolated to 

the human condition.  Once the basic science of using FTE approaches for ACL healing is better 

established, other clinically relevant questions such as the best mode of application, 

rehabilitation, etc. can be addressed. Clearly, there are a number of scientific and practical 

challenges in moving FTE treatments to the clinic, which are outside the scope of this 

dissertation. 

Fifth, the computation model could not predict experimental results for the ACL due to a 

lack of appropriate experimental data as well as the simplistic form of the model.  Moreover, 

even if all groups were performed at multiple time points, the interspecimen variability of in-

vivo studies was quite high.  Paired data would be ideal to eliminate this variability; however, the 

techniques to obtain the necessary information, without euthanizing the animals, are either 

unavailable or difficult to perform experimentally.     

Sixth, the computational model is a very simplified representation of the healing process 

and makes a number of assumptions, as described in Section 7.1.3.  In the future, some of these 

assumptions, like the distribution of fibers in the healing tissue, could be directly measured using 

a SALS device or another similar experimental method [207].  Furthermore, more data are 

needed to identify appropriate functions for a strain-based remodeling response.  A linear 

function was chosen in this dissertation for simplicity; however, more complex functions, e.g. 
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exponential, may be necessary to better describe these behaviors.  Moreover, alternative stimuli 

could be chosen.  For instance, in the field of bone remodeling, many have suggested that strain 

rate as opposed to strain is a more appropriate choice as a stimulus to cells [46, 47].  Along these 

lines, additional studies on the mechanisms of how ligament fibroblasts feel and interpret forces 

could provide insight on how to model the tissue level response to applied strains.   

In our biomechanical studies, a preload (or prestress) is applied to provide a gauge length 

for the remainder of the testing protocol.  It also offers a way to consistently compare the 

mechanical properties between experimental groups.  This differs from the “zero position” of 

normal and healing ligaments in-vivo.  For instance, it is well-known that normal ligaments are 

“pre-strained”, and upon transection of the MCL or ACL, it is common to observe significant 

retraction of its torn ends.  Thus, since ligaments remodel according to their in-vivo conditions, 

these in-vitro assessments may not give an accurate description of remodeling.  Another major 

assumption in the model is that the reference length for the collagen fibers did not change over 

time. Many have suggested that the reference length is indeed an important aspect of growth and 

remodeling in soft tissues [93, 96, 106, 197, 243, 244].  During healing, the reference length of 

the fibers could be altered compared to the normal ACL as new matrix is produced.  These issues 

will need to be considered in future models of ACL healing. 
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8.6 CONCLUSIONS 

8.6.1 Clinical Significance 

This dissertation illustrated the positive impact FTE approaches, such as ECMs, can have on the 

healing of ligaments, even ones with limited natural healing capacity, like the ACL.  Such novel 

treatment approaches are attractive as they would have many advantages over ACL 

reconstruction, including preserving the complex anatomical features of the ACL as well as 

eliminating the complications associated with the graft donor site.  A properly healed ACL 

would have the potential to better maintain multidirectional knee stability.  Additionally, it 

would also allow recruitment of an appropriate set of muscles to prevent muscle atrophy and 

further improve joint function. In the end, these improvements could lead to a reduction in the 

incidence of premature osteoarthritis.  Also, some of these technologies, such as ECMs, are 

already FDA approved, removing one barrier toward their clinical use.   

This dissertation also highlights the need for appropriate mechanical stabilization of the 

joint even with FTE treatment.  No matter what biological agent is applied, poor initial joint 

stability will all but guarantee a less than satisfactory outcome.  Also, as stated in Section 8.4, it 

requires that surgeons and engineers rethink what an ideal repair or augmentation may be, in 

light of the accelerated formation of neo-tissue.  More appropriate rehabilitation protocols may 

need to be developed for these new technologies.  Mathematical modeling could offer a highly 

controlled way to answer some of these questions.  Although the model of the healing ACL is 

still in the early stages, it could potentially be implemented within finite element models to 

predict the stresses and strains in the ligament at different phases of healing.  As such, 
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rehabilitation protocols could be designed in order to prevent excessive stresses and strains in the 

healing ACL, while also providing positive mechanical stimuli for positive tissue remodeling.   

In the end, successful scientific data obtained from this low cost, potentially high yield 

translational research has the potential to significantly impact the clinical management of ACL 

injuries. The results will provide a scientific basis for sports medicine knee surgeons to consider 

the many advantages of inducing ACL healing.  Finally, the techniques described offer the 

potential to extend this technology to other intra-articular ligaments and tendons in the 

musculoskeletal system, e.g. the posterior cruciate ligament of the knee, rotator cuff tendons in 

the shoulder, and so on, which have difficulty to heal.  It is our hope that multidisciplinary 

studies like those done in this dissertation can lead to significant advances in new knowledge to 

help the improvement of the clinical management of ligament and tendon injuries. 

8.6.2 Scientific/Engineering Significance 

The methodologies utilized in this dissertation offer a platform from which to compare the 

efficacy of FTE treatments to enhance ACL healing (Figure 45).  At both the joint and tissue 

levels, the function of the healing ACL was quantitatively assessed.  By developing rigorous 

experimental protocols and taking advantage of highly accurate tools, such as the robotic/UFS 

testing system, the best FTE approaches can be delineated.  Further, the robotic/UFS testing 

system offers the capability to determine the role of the healing ACL within the intact joint by 

determining the in-situ force of the ACL under an externally applied load.   

Nevertheless, long-term animal studies are costly and time consuming.  By developing a 

mathematical model with the ability to predict long-term experimental data, better FTE 

approaches could be logically and rapidly developed, thereby accelerating the rate of basic 
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science research.  These models could then be implemented within more complex finite element 

models to determine the stress and strain distribution within the healing ligaments throughout 

healing which would provide a major step forward toward understanding the healing process of 

ligaments.  
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Figure 45. Schematic for the proposed platform to evaluate functional tissue engineering strategies to enhance 

healing of the ACL. 

 



165 

9.0  FUTURE DIRECTIONS 

The overall goal of the proposed thesis work is to provide a quantitative approach by which FTE 

treatments used to heal the ACL could be quantitatively evaluated.  Needless to say, there are a 

wide range of FTE techniques which could be pursued. Hopefully, they could be evaluated based 

on our findings and the unique methodologies developed in this thesis. The use of platelet-rich 

plasma combined with a collagen scaffold [162, 165, 167] or  the controlled release of growth 

factors, such FGF and VEGF, are viable possibilities.  It would be useful to directly compare 

these approaches with ECM treatment, so as to determine their effectiveness.   

At the same time, it is still necessary to refine the current approaches.  For the ECM 

bioscaffold treatment, our experience has told us that ECM-SIS can yield positive results for 

ligament and tendon healing [21, 121, 142, 143].  However, it is possible that ECM bioscaffolds 

derived from other tissue sources could be even more beneficial for ACL healing.  For example, 

urinary bladder matrix (UBM) has a basement membrane layer, which could possibly function 

better as a synovium. UBM has shown positive results in other applications due to its unique 

bioactive characteristics [49, 193].  Slower degrading alternatives, including the use of more than 

a single layer of ECM (lyophilized together in order to create a multi-layer construct) could be 

used in an attempt to sustain its effect on ACL healing.  Moreover, the ECM could be used 

together with other scaffolds, such as electrospun poly(ester urethane urea) (PEUU) [232].  
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In terms of suture augmentation, modifications, such as changing the suture material or 

amount of suture, can be done to improve results.  These techniques should be rigorously tested 

using our robotic/UFS testing system under multiple loading conditions.  Also, they should be 

subjected to repetitive loading cycles in order to obtain a better description for how their 

properties change over time. 

 Another future direction could be to quantify the impact of a loss of ACL function on the 

other structures of the joint.  It is well known that the structures of the knee joint in humans or 

stifle joint in animals, such as the goat, work in concert to maintain joint function.  For example, 

Jackson and colleagues monitored the changes of the stifle joint in terms of both the 

degeneration of the articular cartilage as well as the hypertrophy of the medial meniscus in the 

goat model following ACL transection [113]. Thus, if one structure is injured, the others must 

increase their relative contribution in response to an applied load.  This is easily observed for the 

data found in Appendix A.    Thus, monitoring the changes in these other structures within the 

joint could provide another method to evaluate the efficacy of FTE treatments. 

 This is particularly true for long-term results in which the degenerative changes in the 

articular cartilage would be observed.  Clinically, the causes for premature osteoarthritis 

following ACL injury have been debated and are likely multi-factorial.  One key question is 

whether even prefect restoration of joint stability could prevent these negative changes.  In other 

words does degeneration of the articular cartilage result from changes in loading due to joint 

instability or from damage during the initial injury.  In the case of the latter, no matter how well 

the function of the ACL is restored through FTE treatment, premature OA would still occur.  In 

fact, there are many clinical cases which document concomitant injuries to the bone, cartilage, 
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and menisci with ACL injury [7, 37, 107, 115, 122, 157, 158, 191, 201, 205, 209, 219, 273].  

This is certainly an area for future exploration.         

Further, carefully obtained experimental data at early time points of healing (1, 3, and 6 

weeks) as well as in the long-term (1, 2, and 3 years) will need to be collected in order to provide 

a more complete description of the ACL healing process.  One exciting recent technology is a 

highly accurate biplanar fluoroscopy system to record in-vivo joint kinematics [92, 140, 240].  

This system could allow for quantificantion of the changes in joint kinematics over time.  After 

the animals are euthanized, the kinematics data could then be repeated using our robotic/UFS 

testing system such that the in-situ forces in the healing ACL during trotting or walking could be 

determined [258].  Other noninvasive ways to collect both the size and mechanical properties of 

the healing tissue could also be implemented in order to collect data at multiple time points 

within the same set of animals.  Along these lines, ultrasound elastography has shown promise 

[229]. 

The data could also help to develop the mathematical model to describe ACL healing and 

test its predictive capabilities. Further, with an increasing amount of experimental data, it will be 

essential to revisit the assumptions of the model and make modifications as necessary.  For 

example, as the cellular mechanisms for interpreting applied loads are elucidated, these could be 

incorporated into the stimulus functions to provide a more accurate description of the remodeling 

process.  Finally, for tissue like the ACL, in which stresses and strains are difficult to measure 

experimentally due to its complex geometry, incorporation of the constitutive model into a finite 

element model could be used to calculate the stresses and strains in the healing ACL under 

physiological loading conditions.   
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APPENDIX A 

IN-SITU FORCES IN SOFT TISSUE STRUCTURES OF THE GOAT STIFLE JOINT 

AT TIME-ZERO 

The in-situ forces of the other tissues of the goat stifle joint at time-zero under a 67 N anterior 

tibial load and a 67 N anterior tibial load with 100 N axial compression are presented as 

reference data for future work.   

A.1 IN-SITU FORCES IN RESPONSE TO 67 N ANTERIOR TIBIAL LOAD 

The in-situ forces of the tissues of the goat stifle joint at time-zero under a 67 N anterior tibial 

load are detailed in Table 23.  The in-situ force in the intact ACL was similar at 30° and 60° and 

slightly lower at 90° of joint flexion.  These trends were similar for both the augmentation 

sutures and repair suturesThe in-situ force of the augmentation sutures was not significantly 

different from those for the intact ACL at all flexion angles (p>0.05).  The in-situ force in the 

repair sutures was 19%, 17%, and 26% lower than the intact ACL; however, these differences 

was not statistically significant (p>0.05).  Further, the values for the repair sutures were 21%, 
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19%, and 35% lower than the augmentation sutures at 30°, 60°, and 90°, respectively (p<0.05 at 

30° and 90°). 

For the intact joint, the MCL carried the largest forces, but they were minimal (<10 N) 

for all tissues at all flexion angles examined other than the ACL.  This is largely due to the fact 

that the ACL carried the vast majority of the anterior load.  After the ACL was transected and the 

load applied, the forces in both the MCL and medial meniscus increased dramatically at all 

flexion angles (p<0.05). The force in the MCL was relatively constant (17-18 N) throughout joint 

flexion.  The force in the medial meniscus was highest at 60°, and slightly lower at both 30° and 

90°. At 60°, the force of the medial meniscus was approximately half of the anterior load (33 N) 

and was about double the MCL.  At 30° and 90°, the MCL and medial meniscus shared the 

anterior load more evenly (~20 N each).  The force in the LCL increased slightly (6-10 N) at all 

flexion angles (p<0.05).  The forces in the lateral meniscus and bony contact remained low at all 

flexion angles (p>0.05).    

With suture repair or suture augmentation, the in-situ forces of the MCL could be 

restored near normal levels (p>0.05). The lone exception was at 90° for suture augmentation 

(p>0.05), but this difference was only 10 N.  For the medial meniscus, both procedures could 

reduce the in-situ force compared to the ACL-deficient knee at all flexion angles, but statistical 

significance was achieved only at 60° (p<0.05).  These forces were also within approximately 

10N of the intact joint at both 30° and 60° (p>0.05, except for suture repair at 30°).  At 90° the 

suture repair and suture augmentation groups were 16 N and 11 N higher than the intact joint, 

respectively (p<0.05).  In the suture repair and suture augmentation groups, the values for the 

LCL, lateral meniscus, and bony contact were under 10 N and similar to the intact joint (p>0.05). 

The only exception was at 30° for lateral bony contact for the suture augmentation group which 
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was 10-13 N higher than all other groups (p>0.05).  This difference was not found at 60° and 90° 

and was likely due to the initial tension applied to the augmentation sutures which dissipated 

with additional loading cycles. 

Another way to express these in-situ force data is to determine the anterior component of 

the force in each tissue as a percentage of the applied 67 N anterior tibial load; in other words, to 

find the contribution of each structure in resisting the applied load. Figure 46 displays these data 

for each angle of joint flexion.  For the intact joint, it is clear that the ACL resists almost all of 

the load (103 ± 11%, 102 ± 6%, and 88 ± 6% at 30°, 60°, and 90°, respectively).  All other 

tissues contributed <5% to the total load and were on the order of the force repeatability of the 

robotic/UFS testing system.  For the ACL-deficient joint at 30°, the capsular structures played 

the dominant role (38 ± 17%), followed by the medial meniscus (24 ± 14%) and MCL (20 ± 

8%).  At 60° and 90°,  the medial meniscus was the most dominant (49 ± 15% and 37 ± 15%, 

respectively), followed by the MCL (25 ± 11% and 28 ± 14%, respectively) and capsular 

structures (13 ± 5% and 18 ± 9%, respectively). 

With suture repair, the sutures resisted the majority of the load (75 ± 20%, 75 ± 18%, and 

53 ± 22% at 30°, 60°, and 90°, respectively); although these values were lower than those for the 

intact ACL.  As a result, the remaining tissues, most notably, the medial meniscus, MCL, and 

capsule, had an increased contribution; however, the values were much less than those for the 

ACL-deficient joint.  With suture augmentation, the sutures bore similar values as those for the 

intact ACL (95 ± 9%, 96 ± 5%, and 83 ± 5% at 30°, 60°, and 90°, respectively), while the 

contribution of the other structures remained low.  
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Table 23. In-situ forces in the tissues surrounding the joint under a 67 N anterior tibial load (*p<0.05 compared to intact, +p<0.05 compared to ACL-deficient, 

#p<0.05 compared to suture repaired). 

 Flexion Angle (degrees) 
  30 60 90 

      Suture Technique     Suture Technique     Suture Technique 

  
Intact 
Knee 

ACL-
deficient  Repair 

Augment-
ation 

Intact 
Knee 

ACL-
deficient  Repair 

Augment-
ation 

Intact 
Knee 

ACL-
deficient Repair 

Augment-
ation 

ACL 62 ± 5 N/A N/A N/A 60 ± 6 N/A N/A N/A 48 ± 6 N/A N/A N/A 
Sutures N/A N/A 50 ± 12 64 ± 9# N/A N/A 49 ± 12 61 ± 5 N/A N/A 36 ± 14 55 ± 5# 
MCL 8 ± 5 17 ± 6* 8 ± 4+ 2 ± 2+ 5 ± 2 17 ± 6* 9 ± 5 8 ± 4 9 ± 5 18 ± 8* 12 ± 7 20 ± 10* 
LCL 1 ± 1 11 ± 7* 6 ± 10 5 ± 3 1 ± 1 7 ± 4* 5 ± 6 6 ± 6 1 ± 1 8 ± 4** 7 ± 6 3 ± 2++ 
Medial 
Meniscus 2 ± 2 19 ± 8* 11 ± 6* 8 ± 6 1 ± 1 33 ± 9* 11 ± 9+ 11 ± 8+ 1 ± 1 24 ± 9** 17 ± 10* 12 ± 6** 
Lateral    
Meniscus 4 ± 3 7 ± 9 3 ± 2 4 ± 4 2 ± 2 1 ± 2 1 ± 1 2 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 1 
Bony    
   Contact                         
   Total 5 ± 2 6 ± 2 6 ± 1 12 ± 6* 6 ± 3 6 ± 1 5 ± 1 7 ± 3 5 ± 2 5 ± 2 5 ± 1 5 ± 2 
          
   Medial   6 ± 1 6 ± 2 6 ± 1 6 ± 1 5 ± 1 5 ± 1 5 ± 1 6 ± 1 5 ± 2 5 ± 2 5 ± 1 6 ± 2 
        
   Lateral   4 ± 2 1 ± 1* 2 ± 1 

14 ± 
7*+# 3 ± 5 1 ± 1 1 ± 1 7 ± 5+ 1 ± 1 1 ± 1 1 ± 1 2 ± 3 
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Figure 46. Relative contribution of soft tissue structures of the goat stifle joint under 67 N anterior tibial load at a) 

30°, b) 60°, and c) 90° of joint flexion. 

 

A.2 IN-SITU FORCES IN RESPONSE TO 67 N ANTERIOR TIBIAL LOAD WITH 

100 N AXIAL COMPRESSION 

The in-situ forces of the tissues of the goat stifle joint at time-zero under a 67 N anterior tibial 

load with 100 N axial compression are detailed in Table 24.  With the added 100 N axial 

compression, the in-situ force in the intact ACL was 102 ± 16 N, 112 ± 10 N, and 95 ± 12 N at 

30°, 60°, and 90° of knee flexion, respectively.  Again, the ACL was largely responsible for 

carrying the anterior load. The in-situ force of the augmentation sutures were within 2-23 N of 

the intact ACL (p>0.05) and ranged from 78 N at 30° and 95 N at 60°.  On the other hand, the in-
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situ force in the primary repair sutures ranged between 34 N at 30° and 49 N at 90°.  However, 

these values were only 33%, 33%, and 52% of the intact ACL (p<0.05) and 43%, 39%, and 53% 

of the augmentation sutures (p<0.05) at 30°, 60°, and 90°, respectively. 

For the other tissues in the joint, the forces were largest for the bony contact in the intact 

joint, which transmitted the compressive load.  In terms of bony contact, the force in the medial 

component was about double that of the lateral component at 30° and slightly higher at 60° and 

90°.  The other tissues carried relatively low forces at all flexion angles.  At 60°, the MCL and 

lateral meniscus carried 14 and 17 N, respectively.  At 90°, the MCL, medial meniscus, and 

lateral meniscus each had in-situ forces of 10-16 N.  With ACL-deficiency, large changes were 

observed compared to the intact knee.  The in-situ force due to bony contact was decreased 

dramatically at all flexion angles, with the largest differences at 60° (p<0.05).  On the other 

hand, the force carried by the medial meniscus and lateral meniscus rose dramatically at all 

flexion angles (p<0.05) and were the primary stabilizers at 60° and 90°. For examples the force 

in the medial meniscus increased 13, 13, and 5 times that of the intact joint at 30°, 60°, and 90°, 

respectively.  The in-situ force in the MCL also doubled at 60° and 90° with ACL-deficiency 

(p<0.05). 

With suture repair, the in-situ forces due to bony contact were increased by 23%, 117%, 

and 50% compared to the ACL-deficient joint (p<0.05), but were still only 77%, 15%, and 33% 

of those for the intact joint (p<0.05).  Meanwhile, the force in the medial meniscus was lowered 

by 13%, 14% and 18% compared to the ACL-deficient joint (p<0.05), but remained 11, 11, and 6 

times higher than the intact joint.  Similar findings were observed for the lateral meniscus. With 

suture augmentation, the forces due to bony contact were restored to similar levels as the intact 

knee (p>0.05).  The forces of the medial and lateral menisci were reduced to 34%, 23%, and 
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26% of those in the ACL-deficient joint and 42%, 27%, and 31% of those in the suture repaired 

joint, in conjunction with similar changes to the lateral meniscus.  Further, these values were 

within 10-20 N of the intact joint throughout flexion; however, the differences were still 

significant at 30° and 60° (p<0.05).  Additionally, the in-situ forces of the MCL and LCL were 

similar to the intact joint at all flexion angles (p>0.05). 

Another way to express these in-situ force data is in terms of the relative contribution of 

each tissue in resisting the applied load, as displayed in Figure 47.  For the intact joint, the ACL 

resists large anterior forces in excess of the applied 67 N anterior tibial load (131 ± 22%, 150 ± 

22%, and 141 ± 26% at 30°, 60°, and 90°, respectively).  The ACL was opposed by the forces 

due to bony contact which were -34 ± 12%, -38 ± 17%, and -45 ± 16% at 30°, 60°, and 90°, 

respectively. All other tissues contributed <5% to the total load.  For the ACL-deficient joint at 

30°, the dominant structure was the medial meniscus, which carried 67 ± 36%, 110 ± 41%, and 

98 ± 42% of the applied load at 30°, 60°, and 90°, respectively. At 30°, the lateral meniscus and 

capsular structures each carried approximately 40% of the anterior load, which was balanced by 

the posterior force due to bony contact.  At 60° and 90°, the role of the MCL increased, as it 

carried about 25% of the applied load.  Interestingly, at 60° and 90°, the lateral meniscus carried 

a posterior load approximately -50% and -25%, respectively.  Meanwhile, at these flexion 

angles, there was little contribution due to bony contact, as most of the force in the bones was 

passed through the menisci. 

With suture repair, the sutures resisted a significant portion of the load (44 ± 22%, 53 ± 

48%, and 65 ± 43% at 30°, 60°, and 90°, respectively); although these values were much lower 

than those for the intact ACL.  As a result, it was not the only contributor, as the medial 

meniscus also carried high loads (38 ± 37%, 80 ± 57%, and 58 ± 47% at 30°, 60°, and 90°, 
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respectively). Other significant contributors at 30° include the capsular tissues and bony contact.  

Similar to the ACL-deficient joint, lateral meniscus carried a posterior load of approximately -

35-45%.  With suture augmentation, the sutures bore similar values as those for the intact ACL 

(89 ± 7%, 88 ± 10%, and 71 ± 9% at 30°, 60°, and 90°, respectively).  The relative contribution 

of the menisci decreased greatly compared to the ACL-deficient and suture repair groups and 

were minimal, similar to those for the intact joint.  Meanwhile, the forces due to bony contact 

were increased and restored to the levels of the intact joint.  
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Table 24. In-situ forces in the tissues surrounding the joint under a 67 N anterior tibial load + 100 N joint compression (*p<0.05 compared to intact, +p<0.05 

compared to ACL-deficient, #p<0.05 compared to suture repaired). 

 Flexion Angle (degrees) 
  30 60 90 

      Suture Technique     Suture Technique     Suture Technique 

  
Intact 
Joint 

ACL-
deficient  Repair 

Augment-
ation 

Intact 
Joint 

ACL-
deficient  Repair 

Augment-
ation 

Intact 
Joint 

ACL-
deficient Repair 

Augment-
ation 

ACL 102 ± 16 N/A N/A N/A 112 ± 10 N/A N/A N/A 95 ± 12 N/A N/A N/A 
Sutures N/A N/A 34 ± 13* 78 ± 11*# N/A N/A 37 ± 28* 95 ± 9*# N/A N/A 49 ± 27* 93 ± 10# 
MCL 11 ± 7 18 ± 6 11 ± 3* 4 ± 1+# 14 ± 4 29 ± 6* 11 ± 3+ 4 ± 3*+# 16 ± 6 28 ± 16 14 ± 5 13 ± 9 
LCL 2 ± 2 4 ± 2 6 ± 3 6 ± 2 1 ± 1 5 ± 4 7 ± 4* 4 ± 2 2 ± 1 9 ± 14 7 ± 3* 4 ± 2 
Medial 
Meniscus 5 ± 2 64 ± 16* 53 ± 21* 22 ± 6*+# 8 ± 8 104 ± 11* 89 ± 17* 24 ± 17*+# 14 ± 16 94 ± 20* 77 ± 15* 24 ± 21+# 
Lateral    
Meniscus 8 ± 5 35 ± 14* 17 ± 16+ 9 ± 8 17 ± 9 71 ± 38* 60 ± 28* 24 ± 16# 10 ± 6 53 ± 37 64 ± 28* 22 ± 11# 
Bony    
   Contact                         
   Total 102 ± 6 64 ± 18* 79 ± 25 95 ± 16 85 ± 12 6 ± 3* 13 ± 13* 77 ± 20+# 82 ± 11 18 ± 15* 27 ± 29* 86 ± 23+# 
          
   Medial   76 ± 20 35 ± 14* 44 ± 26 46 ± 27 56 ± 17 6 ± 2* 5 ± 1* 27 ± 24* 48 ± 24 16 ± 16 19 ± 19 31 ± 23 
        
   Lateral   37 ± 17 25 ± 23 40 ± 35 59 ± 24*+ 37 ± 19 1 ± 1* 9 ± 15* 57 ± 27*+# 38 ± 30 4 ± 7 11 ± 13 56 ± 35*+# 
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Figure 47. Relative contribution of soft tissue structures of the goat stifle joint under 67 N anterior tibial load + 100 

N axial joint compression at a) 30°, b) 60°, and c) 90° of joint flexion.     

 

A.3 COMPARISON OF IN-SITU FORCES IN RESPONSE TO 67 N ANTERIOR 

TIBIAL LOAD WITH 100 N AXIAL COMPRESSION 

For the intact joint, the forces in the MCL were about 3 and 2 times higher with the added 

compressive load at 60° and 90°, respectively.  Similar trends were observed for the ACL-

deficient joint.  With suture repair, the forces in the MCL remained similar under both loading 

conditions.  This was also true to suture augmentation at 30° and 60°. Interestingly, at 90°, the 
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force with the compressive load decreased slightly from 20 N to 13 N on average.  For the LCL, 

forces remained below 10 N for all groups under both loading conditions. 

Not surprisingly, large differences were observed for both the medial and lateral 

meniscus when comparing the 67 N anterior tibial load alone versus with the added 100 N 

compressive load.  For the intact joint, forces for both the medial and lateral meniscus remained 

low, although the values were slightly larger at 60° and 90° under the compressive load.  The 

lateral meniscus reached a maximum of 17 N at 60°, while the medial meniscus reached 14 N at 

90°.  For the ACL-deficient joint, the force in the medial meniscus jumped by 3-4 times with the 

compressive load, while the force in the lateral meniscus spiked to from negligible forces under 

the anterior tibial load alone to 35 N, 71 N, and 53 N on average at 30°, 60°, and 90°, 

respectively.  A similar pattern was observed for the suture repair group as relative increases of 

5-11 times for the medial meniscus and forces of 17-60 N on average for the lateral meniscus.  

With suture augmentation, these large increases were reduced, although still present.  For the 

medial meniscus, the increase in force was only 2-3 times that under the anterior tibial load 

alone.  Likewise, for the lateral meniscus, the force values were only 9-24 N on average. 

The in-situ force due to bony contact was also altered when comparing the 67 N anterior 

tibial load alone versus with the added 100 N compressive load.  These forces were minimal for 

all experimental conditions under the 67 N anterior tibial load alone.  For the large majority of 

the experimental conditions, the force due to bony contact increased with joint compression.  It is 

not surprising that the added compressive load would engage the tissue structures which are 

designed to resist these types of loads.  It is apparent that the force distribution among the tissue 

structures is much more complex when the compressive load is applied along with the anterior 

tibial load.        
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