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PRECLINICAL BIOCOMPATIBILITY ASSESSMENT OF PEDIATRIC 

VENTRICULAR ASSIST DEVICES 

Carl Anthony Johnson Jr., Ph.D. 

University of Pittsburgh, 2010

 

A number of heart assist devices including the PediaFlowTM ventricular assist device 

(VAD), a magnetically levitated mixed flow rotary blood pump, and the Levitronix®  

PediVAS™, an extracorporeal magnetically levitated centrifugal blood pump are under 

development to address the urgent need for mechanical circulatory support suitable for children 

in heart failure. VADs are associated with a host of biological complications including bleeding, 

thromboembolism, and infection. The biocompatibility of these new devices must be 

characterized in a preclinical model (juvenile ovines) to ensure their safety and efficacy in 

children. However, biocompatibility studies in ovines are limited due to a lack of available 

assays.   

 

Flow cytometric assays were developed to detect ovine platelet activation and function. 

These assays were applied during in vitro assessment of potential biomimetic coatings for the 

blood contacting surfaces of pediatric VADs.  These assays were then applied in vivo in 5 lambs 

undergoing a VAD sham surgical procedure for 30 days duration, in 20 lambs implanted with the 

Levitronix PediVAS for 30 days duration, and in 8 lambs implanted with the three design 

iterations of the PediaFlow VAD ranging from 6 - 72 days duration. The sham surgical 

procedure enabled characterization of the effects of the implant surgery on platelet activation. 
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Bulk phase platelet activation was reduced in blood contacting surfaces that received a 

biomimetic coating compared to uncoated surfaces which was in agreement with platelet 

deposition results. Platelet activation levels rose post-operatively in the sham animals and 

returned to pre-operative levels at approximately two weeks. In PediaFlow and Levitronix 

implanted animals platelet activation also rose post-operatively and typically returned to baseline 

levels. In these implants platelet activation consistently rose following pump or animal 

complications. In a subset of studies platelet activation was elevated for the duration of the study 

and this high level of activation generally coincided with increased kidney infarcts or thrombus 

deposition in the cannulae at necropsy.  

 

Overall, the blood biocompatibility of the Levitronix PediVAS and the PediaFlow VAD 

as represented by a low level of platelet activation observed in the majority of studies is 

encouraging for the potential clinical use of these devices. The ability of the developed platelet 

activation assays to differentiate between surface coatings, and to discern trends with respect to 

pump complications and kidney infarcts following VAD implant demonstrate the utility of the 

assay in assessing the blood biocompatibility of pediatric heart assist devices.   

 

 

 v 



TABLE OF CONTENTS 

PREFACE...................................................................................................................................XV 
 
1.0 INTRODUCTION........................................................................................................ 1 

 
1.1 CONGENITAL HEART DISEASE................................................................... 1 
 
1.2 TREATMENT OF CONGENITAL HEART DISEASE ................................. 2 
 
1.3 VENTRICULAR ASSIST DEVICES IN ADULTS AND CHILDREN ......... 3 
 
1.4 VENTRICULAR ASSIST DEVICES UNDER DEVELOPMENT FOR 

CHILDREN........................................................................................................... 4 
 
1.5 COMPLICATIONS ASSOCIATED WITH VENTRICULAR ASSIST 

DEVICES............................................................................................................... 5 
 
1.6 CELLULAR ACTIVATION FOLLOWING VENTRICULAR ASSIST 

DEVICE PLACEMENT ...................................................................................... 6 
 
1.7 ANIMAL MODELS IN THE STUDY OF VENTRICULAR ASSIST 

DEVICES............................................................................................................... 7 
 
1.8 SPECIFIC AIMS ............................................................................................... 10 

 
2.0  OVINE PLATELET ACTIVATION AND COAGULATION ASSAY 

DEVELOPMENT ...................................................................................................... 11 
 
2.1 FLOW CYTOMETRIC PLATELET ACTIVATION ASSAYS .................. 11 

 
2.1.1 Introduction................................................................................................. 11 
 
2.1.2 Methods........................................................................................................ 12 
 
2.1.3 Results .......................................................................................................... 21 
 
 

 vi 



2.1.4 Discussion..................................................................................................... 25 
 
2.2 NORMAL THROMBOELASTOGRAPH VALUES FOR OVINES ........... 31 

 
2.2.1 Introduction................................................................................................. 31 
 
2.2.2 Methods........................................................................................................ 33 
 
2.2.3 Results .......................................................................................................... 33 
 
2.2.4 Discussion..................................................................................................... 35 

 

2.3 IN VITRO ASSESSMENT OF COATINGS FOR VENTRICULAR ASSIST 
DEVICES............................................................................................................. 36 

 
2.3.1 Introduction................................................................................................. 36 
 
2.3.2 Methods........................................................................................................ 37 
 
2.3.3 Results .......................................................................................................... 38 
 
2.3.4 Discussion..................................................................................................... 39 

 
2.4 CONCLUSIONS................................................................................................ 40 

 
3.0 OVINE LEUKOCYTE ACTIVATION ASSAY DEVELOPMENT..................... 42 

 
3.1 INTRODUCTION ............................................................................................. 42 
 
3.2 LEUKOCYTE PLATELET AGGREGATE ASSAY DEVELOPMENT.... 44 

 
3.2.1 Methods........................................................................................................ 44 
 
3.2.2 Results .......................................................................................................... 45 
 
3.2.3 Discussion..................................................................................................... 49 

 
3.3 LYMPHOCYTE ACTIVATION ASSAY DEVELOPMENT....................... 50 

 
3.3.1 Methods........................................................................................................ 50 
 
3.3.2 Results .......................................................................................................... 52 
 
3.3.3 Discussion..................................................................................................... 52 

 

 vii 



3.4 CONCLUSIONS................................................................................................ 53 
 
4.0  BIOCOMPATIBILITY ASSESSMENT OF THE FIRST GENERATION 

PEDIAFLOW DEVICE............................................................................................. 54 
 
4.1 INTRODUCTION ............................................................................................. 54 
 
4.2 METHODS......................................................................................................... 55 
 
4.3 RESULTS ........................................................................................................... 61 
 
4.4 DISCUSSION..................................................................................................... 70 
 
4.5 CONCLUSIONS................................................................................................ 76 

 
5.0 PLATELET ACTIVATION FOLLOWING IMPLANT OF THE SECOND 

GENERATION PEDIAFLOW DEVICE ................................................................ 78 
 
5.1 INTRODUCTION ............................................................................................. 78 
 
5.2 METHODS......................................................................................................... 79 
 
5.3 RESULTS ........................................................................................................... 83 
 
5.4 DISCUSSION..................................................................................................... 91 
 
5.5 CONCLUSIONS................................................................................................ 98 

 
6.0 PLATELET ACTIVATION FOLLOWING IMPLANT OF THE THIRD 

GENERATION PEDIAFLOW DEVICE ................................................................ 99 
 
6.1 INTRODUCTION ............................................................................................. 99 
 
6.2 METHODS....................................................................................................... 101 
 
6.3 RESULTS ......................................................................................................... 102 
 
6.4 DISCUSSION................................................................................................... 107 
 
6.5 CONCLUSIONS.............................................................................................. 110 

 
7.0 PLATELET ACTIVATION FOLLOWING IMPLANT OF THE 

LEVITRONIX® PEDIVAS™ ................................................................................ 111 
 
7.1 INTRODUCTION ........................................................................................... 111 
 

 viii 



7.2 INITIAL CHRONIC PEDIVAS STUDIES................................................... 112 
 
7.2.1 Methods...................................................................................................... 112 
 
7.2.2 Results ........................................................................................................ 114 
 
7.2.3 Discussion................................................................................................... 115 

 
7.3 TEMPORAL PEDIVAS STUDIES APPLYING DEVELOPED FLOW 

CYTOMETRIC P-SELECTIN ASSAYS ....................................................... 117 
 
7.3.1 Methods...................................................................................................... 117 
 
7.3.2 Results ........................................................................................................ 118 
 
7.3.3 Discussion................................................................................................... 121 

 
7.4 CONCLUSIONS.............................................................................................. 128 

 
8.0 SUMMARY .............................................................................................................. 129 

 
8.1 OVERALL CONCLUSIONS ......................................................................... 129 
 
8.2 FUTURE STUDIES......................................................................................... 130 

 
APPENDIX A............................................................................................................................ 137 
 
APPENDIX B ............................................................................................................................ 138 
 
APPENDIX C............................................................................................................................ 140 
 
APPENDIX D............................................................................................................................ 144 
 
APPENDIX E ............................................................................................................................ 148 
 
APPENDIX F ............................................................................................................................ 153 
 
APPENDIX G............................................................................................................................ 159 
 
BIBLIOGRAPHY..................................................................................................................... 165 

 ix 



 LIST OF TABLES 

 

Table 2-1: List of antibodies evaluated......................................................................................... 14 

Table 2-2: Antibody binding to ovine platelets ............................................................................ 22 

Table 4-1: PF1 implant summary ................................................................................................. 60 

Table 5-1: PF2 implant summary ................................................................................................. 82 

Table 8-1: Anti-human platelet activation antibody binding to ovine platelets.......................... 137 

 x 



LIST OF FIGURES 

 

Figure 2-1: Flow cytometric forward scatter plots ....................................................................... 16 
 
Figure 2-2: Flow cytometric analysis plots................................................................................... 18 
 
Figure 2-3: GB20A, GB84A, and CAPP2A antibody binding to ovine platelets......................... 22 
 
Figure 2-4: CD62P antibody binding to ovine platelets ............................................................... 23 
 
Figure 2-5: Ovine platelet-platelet microaggregates before and after stimulation ....................... 24 
 
Figure 2-6 Annexin V binding to ovine platelets.......................................................................... 25 
 
Figure 2-7 Thromboelastograph values (R, K, G, CI) for ovines and humans............................. 34 
 
Figure 2-8 Thromboelastograph values (Angle and MA) for ovines and humans ....................... 35 
 
Figure 2-9: Rocker setup for in vitro assessment of materials...................................................... 38 
 
Figure 2-10 Platelet Activation following material contact.......................................................... 39 
 
Figure 3-1 Ovine monocyte flow cytometry scatter plots ............................................................ 45 
 
Figure 3-2 Ovine granulocyte flow cytometry scatter plots ......................................................... 46 
 
Figure 3-3 Monocyte platelet aggregates following platelet agonist stimulation......................... 47 
 
Figure 3-4 Granulocyte platelet aggregates follow platelet agonist stimulation .......................... 47 
 
Figure 3-5 Monocyte platelet aggregates following combined leukocyte/platelet agonist 
stimulation..................................................................................................................................... 48 
 
Figure 3-6 Granulocyte platelet aggregates following combined leukocyte/platelet agonist 
stimulation..................................................................................................................................... 48 
 

 xi 



Figure 3-7 CD4 T-cell Activation following stimulation ............................................................. 52 
 
Figure 4-1: Images of the PediaFlow PF1 pediatric VAD............................................................ 62 
 
Figure 4-2: Pressure/Volume flow rate curve for PF1.................................................................. 63 
 
Figure 4-3 Image of the PF1 implant............................................................................................ 63 
 
Figure 4-4 Flow rate and pump speed for the PF1 implants......................................................... 65 
 
Figure 4-5 Blood parameter data for the first chronic PF1 implant.............................................. 66 
 
Figure 4-6 Blood parameter data for the second chronic PF1 implant ......................................... 68 
 
Figure 4-7 Blood parameter data for the third chronic PF1 implant............................................. 69 
 
Figure 5-1 The PediaFlow PF2 pediatric VAD ............................................................................ 79 
 
Figure 5-2 MCA2418 binding to ovine platelets .......................................................................... 84 
 
Figure 5-3 Comparison of method of pre-operative blood collection .......................................... 85 
 
Figure 5-4 PF2 in vitro platelet activation test.............................................................................. 86 
 
Figure 5-5 Platelet Activation following sham studies................................................................. 87 
 
Figure 5-6 Platelet Activation and Necropsy Results from the first PF2 implant ........................ 88 
 
Figure 5-7 Platelet Activation and Necropsy Results from our second PF2 implant ................... 89 
 
Figure 5-8 Platelet Activation and Necropsy Results from the third PF2 implant ....................... 91 
 
Figure 6-1: Image of the PF2 implanted in a 3 kg child (left) and in a 8 kg child (right) .......... 100 
 
Figure 6-2: The PediaFlow PF3 pediatric VAD ......................................................................... 100 
 
Figure 6-3 Computer generated and Digital PF3 Impeller Blade Topology Image ................... 101 
 
Figure 6-4 PF3.1 platelet activation in vitro test......................................................................... 103 
 
Figure 6-5 Platelet activation of the PF3.1 implant .................................................................... 104 
 
Figure 6-6: Platelet activation following PF3.1 implant with stimulation.................................. 104 
 
Figure 6-7: PF3.1b in vitro platelet activation study (0.5LPM) ................................................. 105 
 

 xii 



Figure 6-8: PF3.1b in vitro platelet activation study (1.5LPM) ................................................. 105 
 
Figure 6-9: Platelet activation following PF3.1b implant........................................................... 106 
 
Figure 6-10: Platelet activation following PF3.1b implant with agonist stimulation................. 106 
 
Figure 6-11 Platelet activation of the PF3.1b including samples after rotor touchdown occurred.
..................................................................................................................................................... 107 
 
Figure 7-1: Levitronix PediVAS system, and close up of the PediVAS pump head.................. 112 
 
Figure 7-2: Levitronix custom cannulae ..................................................................................... 113 
 
Figure 7-3: Platelet Positive Events following initial PediVAS implants .................................. 115 
 
Figure 7-4: Platelet activation following Levitronix PediVAS implant using commercially 
available cannula without post-operative complications. ........................................................... 119 
 
Figure 7-5: Platelet activation following Levitronix PediVAS implants using commercially 
available cannula which had post-operative complications........................................................ 120 
 
Figure 7-6: Platelet activation following Levitronix PediVAS implant using the customized 
cannula before and after stimulation with 10 M PAF in implants that had few/no kidney 
infarcts......................................................................................................................................... 121 
 
Figure 7-7: Platelet activation following Levitronix PediVAS implant using the customized 
cannula before and after stimulation with 10 M PAF in implants that had a moderate number of 
kidney infarcts and/or thrombus deposition in the cannulae ...................................................... 122 
 
Figure 8-1 Platelet Activation following the 6th sham study ...................................................... 138 
 
Figure 8-2: Platelet Activation following initial Biomedicus implant........................................ 140 
 
Figure 8-3: Platelet Activation following stimulation after initial Biomedicus implant ............ 141 
 
Figure 8-4: Platelet Activation following 2nd Biomedicus implant ............................................ 142 
 
Figure 8-5: Platelet Activation following stimulation after 2nd Biomedicus implant................. 142 
 
Figure 8-6: Toddler VAD, courtesy of Dr. James Antaki........................................................... 144 
 
Figure 8-7: Platelet Activation after 1 hr Toddler VAD in vitro test.......................................... 145 
 
Figure 8-8: Platelet Activation following 4 hr TVAD in vitro test............................................. 146 
 
Figure 8-9: Platelet Activation following acute implant of the Toddler VAD........................... 147 

 xiii 



 
Figure 8-10: CD4 T-cell activation following sham surgery...................................................... 148 
 
Figure 8-11: CD4 T-cell Activation after Levitronix implant; N = 6 ......................................... 149 
 
Figure 8-12: CD4 T-cell activation following Levitronix implant in animal with suscepected 
infection ...................................................................................................................................... 150 
 
Figure 8-13: CD4 T-cell activation in seventy day PF2.2 implant ............................................. 151 
 
Figure 8-14: CD4 T-cell activation following PF3.1 implant..................................................... 152 
 
Figure 8-15: Combined platelet activation for all in vivo studies for first 30 days, N = 29....... 154 
 
Figure 8-16: Combined platelet activation for all Levitronix data, N = 13 ................................ 154 
 
Figure 8-17: Combined platelet activation for Levitronix implant with uncomplicated post-
operative courses......................................................................................................................... 155 
 
Figure 8-18: Combined platelet activation for Levitronix implants with complicated post-
operative courses or in studies that had numerous kidney infarcts or thrombotic deposition in the 
cannula. ....................................................................................................................................... 156 
 
Figure 8-19: Combined platelet activation for all PediaFlow implants, N = 8........................... 157 
 
Figure 8-20: Combined platelet activation for PF1 implants, N = 3 .......................................... 157 
 
Figure 8-21: Combined platelet activation for PF2 and PF3 implants, N = 5 ............................ 158 
 
Figure 8-22: TEG MA values from the Levitronix cohort of in vivo studies............................. 159 
 
Figure 8-23: TEG MA values for Levitronix implants with uncomplicated post-operative 
courses......................................................................................................................................... 160 
 
Figure 8-24: TEG MA values for Levitronix implants with complicated post-operative courses or 
in studies that had numerous kidney infarcts or thrombotic deposition in the cannula.............. 161 
 
Figure 8-25: TEG G values from the Levitronix cohort of in vivo studies ................................ 162 
 
Figure 8-26: TEG G values for Levitronix implants with uncomplicated post-operative courses.
..................................................................................................................................................... 163 
 
Figure 8-27: TEG G values for Levitronix implants with complicated post-operative courses or 
in studies that had numerous kidney infarcts or thrombotic deposition in the cannula.............. 164 

 xiv 



PREFACE 

First and foremost all glory goes to my Lord and Savior Jesus Christ, my source of strength, my 

light, my hope, and my salvation. I love you Lord! Without you Lord I would not have made it: I 

would not have been healed from pneumonia in 1986, and I would not have made it out of the 

car accident in February 1999. It is by your grace that I am here today! I dedicate this to you. 

 

Thank you to my beautiful wife, Maia for all of her support, faith, patience, encouragement, and 

sacrifice for me to complete this degree. Thank you to my family for instilling in me faith, 

integrity, hard work, and the desire to always do my best.  

 

I would like to thank Dr. William R Wagner for his support and mentorship. I would like to 

extend my warm gratitude for all of his assistance with abstracts, manuscript writing, grant 

writing and presentations, which have played a very significant role in my development as a 

researcher. In addition I would like to thank him for being transparent and sharing some of his 

graduate school stories with me, when I was struggling with a particular task. I would like to 

thank my thesis committee composed of Dr. Wagner, Dr. Harvey Borovetz, Dr. James Antaki, 

and Dr Peter Wearden for their guidance and support in directing my thesis. I would like to thank 

Dr. Borovetz for his faith in me and his financial support for all of the PediaFlow trips, for our 

blood donors, and for always answering my emails even as a busy chair of bioengineering. I 

 xv 



would like to thank Dr. Antaki for his compassion, support, and his technical knowledge that 

taught me a tremendous amount about VAD design during our telecons, and design reviews. I 

would like to thank Dr. Wearden for all of his technical and clinical support and for pushing me 

to think of my data as “biological data” rather than “engineering data”. I know these lessons will 

help to shape my career as a physician scientist. I would like to thank him for giving me the 

opportunity to shadow in the clinic providing me with a greater understanding of the need for 

pediatric VADs. I would like to thank Dr. Marina Kameneva for her tremendous support, her 

faith in me, and for teaching me so much about blood. I would like to thank Dr. Mohammed 

Ataai for allowing me “un-inhibited” use of his FACSCAN flow cytometer over at the BioTech 

Center and for allowing the Wagner Lab to eventually take ownership of the flow cytometer. I 

would like to thank Rich Galka and the Becton Dickinson Technical Support Staff for all of their 

help repairing and troubleshooting the flow cytometer. I would like to thank Ergin Kocyildirim 

for his strong support of the sham surgical studies as well as many of the in vivo studies. I would 

like to thank Melinda from AbD Serotec for all of her help with antibody purchases. I would like 

to thank Dr. Lisa Borghesi for her expertise in helping to develop the lymphocyte activation 

assays. I would also like to thank my professors from my bioengineering courses.  

 

I would like to thank the entire Wagner Lab that I have the opportunity to work with during my 

time in graduate school including: Dr. Alexa Polk, Eric Tom, Dr. Priya Ramaswami-Baraniak, 

Joshua Woolley, Dr. Sang Ho Ye, Dr. John Stankus, Dr. Trevor Snyder, Dr. Jianjun Guan, Dr. Yi 

Hong, Dr. Zuwei Ma, Gina Jackson, Vera Kucharski, Devin Nelson, Nicholas Amoroso, Erin 

Wolff, Dr. Tim Maul, Dr. Greg Weller, Dr. Ken Gage, Dr. Kazuro Fujimoto, Dr. Venkat 

Shankarraman, and Dr. Tim Deglau. I would like to thank the Kameneva Lab: Amanda Daly, 

 xvi 



and Salim Olia. I would like to thank the undergraduates that worked with me in the lab: Kevin 

Affum, Mitch Barnett, Kofi Asenso-Mensah, and Elise Strickler for increasing my productivity 

and teaching me how to teach others. 

 

I would like to thank Pastor Boyd Nelson, Bishop Thomas Ramsey, Pastor Jeremiah Thomas, 

and Bishop Charles Ellis for their support and guidance. I would also like to thank all of the 

students and members of Victory in Christ Campus ministry whom taught me a tremendous 

amount about balance and putting the Lord “first in my life”. I would like to thank the entire 

PediaFlow Consortium. I would like to thank the department of Bioengineering including Dr. 

David Vorp, Dr. William Federspiel, Lynette Spataro, Joan Williamson, Glenn Peterson, Judy 

Repp, and Billie Bergman. I would like to thank the Medical Scientist Training Program 

including Dr. Clayton Wiley, Dr. Bill Brown, and Dr. Manjit Singh. I would like to thank the 

Center for Preclinical Studies including Shawn Bengston, Teri Gasser, Joe Hanke, Loren Gorgol, 

Buffie Kerstetter, Amy Wiester, Manja, Aaron Dean, Michael Firda, and Liz Robinson. I would 

like to thank the Biotech Animal Support Staff. I would like to thank the McGowan Institute of 

Regenerative Medicine including: Lynn, Kelly, Carole Stewart, and Maria Allie, Marla Harris, 

and Joe Gannon. I would like to thank Levitronix for their support, special thanks to Dr. Kurt 

Dasse, Scott Richardson, Barry Gellman, and Dr. John Marks. I would like to thank the entire 

Artificial Heart Program staff for the tremendous clinical experience that I received taking care 

of pediatric and adult VAD patients. My experience here gave me tremendous perspective about 

how VADs can change patient’s lives and the need to improve VAD biocompatibility. 

 

 xvii 



 xviii 

I would like to thank the National Institutes of Health and the National Heart, Lung, and Blood 

Institute for providing me with the Diversity Awardees Supplemental Award. I would like to 

thank Merck and the United Negro College Fund for generously providing me with funding for 

the last two years of graduate school. This fellowships enabled me to always have the necessary 

supplies and gave me many opportunities to travel and present my work, without having to worry 

about funding. This work was also supported by:  NIH SBIR Phase II Award R44 Hl071376-02, 

NIH SBIR Phase I Award R41 HL077028-01, Commonwealth of Pennsylvania, and NSF 

Engineering Research Center for Revolutionizing Metallic Biomaterials (Award #0812348). 

 

 



1.0  INTRODUCTION 

1.1 CONGENITAL HEART DISEASE 

36,000 children are born with congenital heart defects in the United States each year. In 

2006, congenital heart disease had a total mention mortality of more than 6800 [1]. Some of the 

congenital heart conditions include tetralogy of fallot, hypoplastic left heart syndrome, 

transposition of the great arteries, ventricular septal defects, and coarctation of the aorta. 

Acquired cardiomyopathy also affects these young patients and is the leading cause for listing for 

heart transplant [2-4]. It has been estimated that approximately 9200 per year require an invasive 

procedure to repair a life-threatening heart defect within the first year of life. It has been further 

estimated that at least 20% of the deaths caused by congenital heart disease (CHD) occur due to 

perioperative ventricular failure, progressive cardiomyopathy or complications following cardiac 

transplant. These 1,000 to 1,200 pediatric patients represent candidates for sustained mechanical 

circulatory support [5].  
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1.2 TREATMENT OF CONGENITAL HEART DISEASE 

Treatment of CHD can include medical and surgical intervention as well as non-invasive 

treatments performed in a cardiac catheterization laboratory. However in the cases of severe 

refractory heart failure, cardiac transplant and extracorporeal membrane oxygenation (ECMO) 

are the treatment modalities typically considered. Cardiac transplant is an effective treatment for 

many of these CHD patients and has 81% 1 year survival and 75% 5 year survival after 

transplant [6]. However donor organ availability as well as the need to match the size of the 

donor heart to the recipient contributes to 27% mortality after listing for transplantation for 

infants and children, which is the highest mortality in solid organ transplantation [7-8].  There 

are also likely an unknown number of children who could potentially benefit from cardiac 

transplantation who are never listed for a variety of reasons, including absence of a viable long-

term circulatory support modality [5]. 

 

ECMO has been a widely used treatment modality for children in cardiac failure for the 

past 30 years [9-10]. It can also be deployed to provide pulmonary or cardiopulmonary support. 

Despite its widespread use the duration of support for ECMO is limited to 2-3 weeks and is 

associated with a litany of complications including bleeding, thrombosis, and infection [11-12].  

The likelihood of these complications increases with duration of support which can be 

problematic as the wait time for a transplant can well exceed several weeks. ECMO use also 

precludes ambulation, extubation, and rehabilitation, which may negatively impact post 

transplant survival [5]. The use of ECMO as a bridge to transplant gave patients only a 47-57% 
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survival rate to receive a transplant [13-15]. More appropriate solutions are needed to chronically 

support children until their heart recovers or a transplant is made available. 

1.3 VENTRICULAR ASSIST DEVICES IN ADULTS AND CHILDREN 

Ventricular assist devices (VADs) are mechanical pumps that augment blood flow in 

patients with failing hearts. In this capacity, VADs are an accepted treatment modality for adults 

in end-stage heart failure who might otherwise die awaiting transplant [16-17]. VADs were 

shown to provide a significant survival benefit over optimal medical management in patients 

ineligible for heart transplant [16]. Despite the success of VADs in adults, development of VAD 

technology for children has lagged well behind in part because of the much lower number of 

pediatric patients that would benefit from the technology [11, 18].  

 

In the pediatric heart transplant study (PHTS),  VADs were found to be an effective 

treatment modality in children as a bridge to transplant with 77% of the VAD patients surviving 

to transplant [19]. Furthermore, it was determined that there was no difference in the 5-yr 

survival of transplant patients put on VAD when compared to patients who did not require a 

VAD. In comparison to ECMO had a 47%-57% survival to transplant rate demonstrating VAD 

support is a marked improvement as a bridge to transplant. While this study shows encouraging 

results for VAD support for children, the majority of those supported were teenagers [19]. This is 

because the devices used (Thoratec, Novacor, and HeartMate) were designed for adults and their 

size limit its use in younger patients. The PHTS also found that the worst outcomes were 

observed in the youngest patients as well as those that had a diagnosis of congenital heart 
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disease. It was further observed that less than 50% of infants receive a transplant while listed on 

the transplant list, while 68% of children ages 1-18 listed were successfully transplanted, 

underscoring the need for new technology to support infants and young children while awaiting 

transplantation or until their heart recovers [6, 12]. It has further been observed that the vast 

majority of children listed for heart transplant and those who die after listing are under 2 years of 

age [5, 8, 19-20].   

 

The Berlin Heart Excor VAD is a versatile device manufactured in Germany that can 

support infants and young children; however this device does not yet have Food and Drug 

Administration (FDA) approval in the United States (US) limiting its availability. The MicroMed 

Debakey VAD Child has a humanitarian device exemption to be used for children, but its device 

has approval for children ages 5-16 [21]. To date, there are no VADs with FDA approval 

available for infants and small children [9, 11]. It is clear that infants would benefit from the 

increased availability of support options while awaiting heart transplantation [22]. 

1.4 VENTRICULAR ASSIST DEVICES UNDER DEVELOPMENT FOR CHILDREN 

Recognizing the dearth of clinical options for infants and small children in heart failure, 

the National Institutes of Health Heart and Lung Blood Institute (NHLBI) solicited proposals for 

development of novel circulatory support systems for infants and children experiencing 

cardiopulmonary failure and circulatory collapse secondary to congenital and acquired 

cardiovascular disease [12]. Ultimately, 5 consortiums were funded under the pediatric 

circulatory support program (PCSP) including an implantable mixed-flow VAD designed 
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specifically for patients up to 2 years of age (the PediaFlow VAD), another mixed-flow VAD 

that can be implanted intravascularly or extravascularly depending on patient size (the 

PediPump), a compact integrated pediatric cardiopulmonary assist systems (the pCAS), an 

apically implanted axial-flow VAD (the Pediatric Jarvik 2000 Flowmaker), and a pulsatile-flow 

VAD (the Penn State PVAD). These devices are being developed with the potential to initiate a 

clinical trial sometime this decade. These devices are generally being indicated for infants from 2 

to 25 kg and to provide support up to 6 months. Also under development for pediatric cardiac 

and cardiopulmonary failure is the Levitronix PediVAS [23]. The PediVAS is an extracorporeal 

centrifugal pump leveraged from the Levitronix CentriMag, which has been implanted in 

thousands of patients worldwide [24]. This pump is being designed to provide support for up to 

30 days. All together this family of devices is certain to markedly improve the options for small 

children suffering from heart failure.  

1.5 COMPLICATIONS ASSOCIATED WITH VENTRICULAR ASSIST DEVICES  

While VADs have provided adults and to a lesser extent, children with cardiac support 

for their severe heart failure, these devices are associated with a myriad of complications. These 

complications include bleeding, thromboembolism, and infection [16, 25-38]. These 

complications can lead to debilitating strokes, sepsis and multi-organ failure [25, 27]. After 

twenty years of VAD experience these complications while lower in incidence have not been 

completely eliminated [39]. These biocompatibility limitations are one of the major reasons that 

VAD technology has not been more widely adopted in adults with less severe heart failure [25, 

28].  
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Use of VAD technology in children and adolescents has unfortunately yielded some of 

the same complications seen in adults. In the PHTS a 41% infection rate was reported for 

patients with long term VADs along with a 35% stroke rate for patients implanted with more 

short term VADs [19]. With the Berlin Heart, a device specifically developed for children, with 

institutions reporting 20-50% stroke rate, in addition to necessary pump changes due to device 

thrombosis in children implanted with this device [40-41]. With these complications in mind 

biocompatibility deserves special consideration in the design of devices specifically aimed for 

infants and young children.  

1.6 CELLULAR ACTIVATION FOLLOWING VENTRICULAR ASSIST DEVICE 

PLACEMENT 

Patients in heart failure typically are in a heightened inflammatory state [31, 42]. Despite 

this, patients receiving VADs experience a further elevation in cellular activation, cytokines and 

other humoral factors. Several papers have reported a rise in activated platelets or leukocyte-

platelet aggregates following VAD placement [34, 43-46]. Indices of thrombin generation, 

fibrinolysis, and platelet granule secretion have also been shown to increase following VAD 

implant [34, 47-48].  Loebe et al reported an elevation of several inflammatory markers 

including IL-6, TNF-, and neutrophil elastase following VAD placement. Furthermore, 

activated T cells have been reported following VAD implantation. In these studies activation of 

T cells induces T cell death which leads to compensatory B cell hyperactivity. The hyperactivity 

of B-cells can then result in allosensitization [49].  This overproduction of antibodies can spur 
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heightened risk of cellular rejection post-transplant and can increase waiting time for cardiac 

transplant [50-51]. The loss of T cells results in defects in cellular immunity and leads to an 

immuno-compromised state [26, 52-54]. The implantation of VADs leads to an elevation of 

many inflammatory, immune and thrombotic factors, and these factors likely play a role in the 

complications observed in VAD patients.  

 

Also of note in the study of VAD effects on cells is that most new VADs and pediatric 

VADs under development are rotary devices that possess impellers that spin at high revolutions 

per minute to generate a positive and continuous flow of blood. These rotary devices expose 

blood elements to transient high shear. Shear is thought to induce platelet activation and alter 

leukocyte function with the level of cellular alteration related to the shear magnitude and 

exposure period to the elevated shear field [55-58]. Overall, the effects of VAD placement, the 

type of VAD, and VAD configuration on cellular activation and overall biocompatibility are not 

well understood. Given the myriad of complications and activation of the immune, 

inflammatory, and coagulation systems following VAD placement, a greater understanding of 

the effects of VAD placement is merited. Furthermore, additional studies are needed to address 

the effects of blood-surface interactions that might be unique to the low flow rates necessary to 

provide cardiac support for pediatric patients [19].  

1.7 ANIMAL MODELS IN THE STUDY OF VENTRICULAR ASSIST DEVICES 

The use of animals to evaluate cardiovascular devices provides a platform in which to 

study device effects on cellular activation and biocompatibility. Furthermore, the use of large 
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animal models to assess VAD performance and basic biocompatibility is essential before 

proceeding to clinical trials [59-61]. In the past decade circulating activated platelets have been 

quantified in bovines implanted with VADs previously under development [62-64]. A major 

advantage in using animals for in vivo studies is that they are typically healthy before device 

implantation. As stated above this is rarely the case in humans receiving a VAD as they are 

suffering from cardiac disorders and typically have ongoing inflammation and/or coagulopathies.  

The relative health of the animal makes it possible to elucidate device effects on cellular 

activation once the effects of the implantation surgery have dissipated.  This has been 

demonstrated in a study comparing platelet activation between calves receiving a rotary VAD 

and those receiving a sham surgery. Persistent elevation was noted in the calves implanted with 

VADs while those calves undergoing a sham surgical procedure had a transient elevation of 

platelet activation that returned to pre-operative levels within approximately two weeks. Platelet 

activation associated with the sham surgery could be discounted to show that there was ongoing 

platelet activation in the VAD-implanted calves.  Since the calves were healthy before VAD 

implantation, ongoing platelet activation could be directly attributed to the device. Furthermore 

general trends were observed in the level of platelet activation in calves that had an uneventful 

post-operative course and those that that had thrombotic partial occlusion of the VAD [63]. In 

another study the employed platelet activation assays were able to distinguish between surface 

coatings on VADs implanted in calves [62]. Assays investigating leukocyte function and 

inflammation were also developed for bovines. These assays were measured following VAD 

implant and showed persistent elevation  of leukocyte activation indices after implant [65]. These 

results demonstrated the utility of using animal models along with robust assays to evaluate 

VADs preclinically.  
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Ovines are a common animal model for preclinical cardiovascular device assessment [66-

67]. In fact, several groups participating in the NHLBI PCSP have selected the ovine model for 

in-vivo animal testing of their pediatric VAD [5, 12, 23, 68]. However, tools to assess ovine 

cellular activation have been historically limited. The only report observed in the literature on 

ovine platelet activation involved measuring activation in platelet rich plasma, but this study did 

not evaluate platelet activation following implant of a cardiovascular device [69]. In addition this 

study did not utilize an assay that specifically assessed activation epitopes expressed on ovine 

platelets instead looking at enhanced expression of the GpIIbIIIa receptor, a receptor seen on all 

platelets.  Provided the appropriate assays were available they could be used to assess the 

upregulation of activation markers on ovine platelets providing a snapshot of the level of 

circulating activated platelets after implant of a cardiovascular device [63-64, 70]. 

 

Studies involving leukocyte activation in ovines implanted with cardiovascular devices 

are even more limited. More specifically there have been no studies to date specifically 

examining the flow cytometric detection of leukocyte activation epitopes in response to 

cardiovascular device implantation in ovines.  This is in part due to a paucity of commercially 

available antibodies that are known to recognize ovine leukocytes. However in a recent study a 

number of commercially available human antibodies were identified that cross-react to ovine 

leukocyte antigens [71]. These results should aid in furthering the study of ovine leukocytes. 

Overall, there is a great need for more assay development and additional studies in the ovine 

model, to understand the effects of novel pediatric VADs and other cardiovascular devices on 

platelet and leukocyte activation.   
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1.8 SPECIFIC AIMS  

Recently, several pediatric VADs have entered the development stages leading up to 

potential clinical use in children. The effects of these new generation devices on cellular 

activation and their effects on the incidence of complications are not understood. The 

biocompatibility of these new devices must be characterized to ensure their safety and efficacy in 

children. Preclinical studies involving pediatric VADs are typically conducted in juvenile ovines. 

However, biocompatibility studies in ovines are limited due to a lack of available assays.  In this 

report ovine platelet and leukocyte activation assays were developed. The platelet activation 

assays were applied in the in vitro setting and used to assess a covalently attached biomimetic 

material coating on TiAl6V4. These assays were also used to quantify platelet activation during in 

vitro mock circulatory loops containing the PediaFlow and Levitronix PediVAS devices. To 

quantify the effects of implant surgery on cellular activation, cellular activation was quantified in 

a series of surgical sham studies. Finally the developed assays were employed to characterize 

cellular activation temporally in ovines implanted with PediaFlow and Levitronix PediVAS. The 

results of this work establish novel tools to assess cellular activation in ovines and demonstrate 

their importance in preclinical development of blood contacting cardiovascular devices. This 

work further provides information on the suitability of the PediaFlow and Levitronix devices for 

use in providing cardiac support to aid the thousands of children with failing hearts.  
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2.0  OVINE PLATELET ACTIVATION AND COAGULATION ASSAY 

DEVELOPMENT 

2.1 FLOW CYTOMETRIC PLATELET ACTIVATION ASSAYS 

2.1.1 Introduction 

Ovines are a common animal model for preclinical testing of blood-contacting 

cardiovascular devices including mechanical heart valves, endovascular grafts, and ventricular 

assist devices (VADs) [66-67, 72-73]. A critical aspect in the design of these devices is the 

evaluation of their blood biocompatibility. Yet, the biocompatibility data that can be obtained in 

ovine studies is limited due to a paucity of available assays for evaluating circulating blood 

elements during the implant period. In particular, there have been no reports in the literature 

using such techniques to assess temporal platelet activation in ovines implanted with 

cardiovascular devices.  

 

Flow cytometry permits surface expression of platelet activation-dependent epitopes to be 

quantified, providing insight on circulating platelets not obtainable with platelet aggregometry 

and plasma assays for -thromboglobulin and platelet factor 4 [70]. Circulating activated 

platelets have been measured in patients with stents, mechanical heart valves, and VADs as well 
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as in patients suffering from acute myocardial infarction, and ischemic stroke [34, 43, 45, 74-77]. 

The presence of circulating activated platelets has been suggested as a marker for increased risk 

of thrombotic complications [74]. Previously several flow cytometric assays to quantify 

circulating activated bovine platelets and platelet microaggregates were developed and applied to 

assess circulating activated platelets in calves implanted with rotary VADs [62-64]. The 

application of similar assays in ovines could yield a greater understanding of device effects on 

ovine platelet activation during preclinical testing when design changes might be made at a time 

of reduced regulatory and economic burden.  

 

The objective of this chapter was to develop and characterize flow cytometric platelet 

assays that could ultimately be applied in the evaluation of cardiovascular devices undergoing in 

vivo testing in ovines. Specifically we assessed antibodies and Annexin V protein that recognize 

activated human and bovine platelets in an effort to identify cross-reactive markers that could 

selectively bind to activated ovine platelets. The identification and characterization of these 

markers using in vitro stimulation of ovine blood with several platelet agonists is reported.  

2.1.2 Methods 

Blood collection 

Eleven Dorset-cross and Cheviot sheep (3 adult and 8 juvenile) were used in this study. 

Whole blood was collected from healthy ovines by jugular venipuncture using an 18 gauge 1 ½″ 

needle with syringe, discarding the first 3 mL. Blood (2.7 mL) was immediately added to tubes 

containing 0.3 mL of 0.106 M trisodium citrate (Sarstedt, Newton, NC). All experiments were 

performed at room temperature and blood was added to test tubes within 2 hours of collection.  
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Evaluation of monoclonal antibodies to detect ovine platelet activation 

Blood (5 L) was transferred from tubes into 12 x 75 mm polystyrene tubes with each of 

the monoclonal antibodies listed in Table 2-1, 5 L of 20 mM GPRP (Glycine-Proline-Arginine-

Proline for inhibition of fibrin polymerization; Anaspec, San Jose, CA) in phosphate buffered 

saline (PBS; BD Biosciences, San Jose, CA), and 5 L of goat anti-mouse IgG-Alexa Fluor 488 

(Invitrogen, Carlsbad, CA) that was twice the concentration of the primary antibody. Tyrode’s 

buffer (Electron Microscopy Services, Hatfield, PA) with 1% bovine serum albumin (BSA) was 

added to each tube for a total volume of 50 L for control samples. A range of concentrations or 

volumes were evaluated for each antibody. Antibodies that cross-reacted to ovine platelets were 

optimized to obtain a concentration that efficiently labeled platelets. Optimal concentrations are 

listed in Table 2-1.  Antibodies that did not cross-react with ovine platelets are listed in Table 

2-1 with the manufacturer’s suggested concentration or antibody volume.  
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Table 2-1: List of antibodies evaluated 

Antibody Antigen Target Isotype Concentration Volume Source
Monoclonal antibodies

PAC-1 Fluorescein activated human GPIIbIIIa IgM 25 g/mL 20 L BD Biosciences (San Jose, CA)

Anti-human CD109-PE human platelet actuation factor IgG1 20 g/mL 10 L Chemicon (Temecula, CA)

Anti-human CD62P-PE          
clone # AK-4

human CD62P IgG1 * 20 L BD Biosciences

Anti-human CD63-Fluorescein human CD63 IgG1 * 20 L BD Biosciences

BAQ 125A
bovine activated platelet epitope IgG1 15 g/mL 5 L

Washington State University 
Monoclonal Antibody Center 
(WSUMAC; Pullman, WA)

BAQ 56A bovine activated platelet epitope IgG1 15 g/mL 5 L WSUMAC

GC5A bovine activated platelet epitope IgG1 15 g/mL 5 L WSUMAC

Anti-bovine CD63 bovine CD63 IgG1 * 10 L Serotec (Raleigh, NC)

CAPP2A ovine CD41/61 IgG1 7.5 g/mL 5 L
Veterinary Medical Research & 

Development (VMRD; Pullman, WA)

GB20A 85 kD protein on bovine platelets IgG1 7.5 g/mL 5 L VMRD

GB84A bovine CD42d IgG1 7.5 g/mL 5 L WSUMAC
NPL44-10 human CD62P IgG1 25 g/mL 5 L Takara Bio (Shiga, Japan)

MCA2419 human CD62P IgG1 25 g/mL 5 L Serotec

MCA2420 human CD62P IgG1 25 g/mL 5 L Serotec

6F3 ovine CD62P IgG1 25 g/mL 5 L Harvard University (Cambridge, MA)

Isotype control antibodies
IgM-Fluorescein IgM isotype control IgM 25 g/mL 20 L Southern Biotech (Birmingham, AL)

Coli S69 IgG1 isotype control IgG1 
matched for each 

IgG1 Ab experiment
WSUMAC

rabbit IgG rabbit IgG isotype control IgG 30 g/mL 5 L Southern Biotech
Polyclonal antibody

rabbit polyclonal anti-human 
CD62P

human CD62P n/a 30 g/mL 5 L BD Biosciences

* Concentrations not provided by manufacturer  

 

Activated samples were prepared as above, but with 5 L less of Tyrode’s buffer with 

BSA and with 5 L of agonist added for a final concentration of either 20 M adenosine 

diphosphate (ADP; EMD Biosciences, San Diego, CA), 68 M thrombin receptor activating 

peptide-6 (TRAP; Bachem Biosciences, King of Prussia, PA), or 10 M platelet activating factor 

(PAF; EMD Biosciences). These agonists were prepared in PBS.  Quiescent control and 

activated samples were incubated for 20 min in the dark with occasional gentle mixing. After 

incubation, samples were washed with 1 mL of Tyrode’s buffer containing 1% BSA and 0.106 

M sodium citrate and centrifuged at 132 x g for 10 min. Supernatant was then removed and the 

pellet was resuspended. 
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CAPP2A is an antibody that recognizes GpIIbIIIa (CD41/61), an antigen on the surface of 

resting ovine platelets [69, 78-79]. N-Hydroxysulfosuccinimide-LC-LC-biotin (LC refers to a 

hydrocarbon chain extender to reduce steric hindrance; Pierce, Rockford, IL) was added to 

CAPP2A in 20 molar excess to produce CAPP2A-biotin for use as a platelet marker. CAPP2A-

biotin (5 L at 7.5 g/mL) and streptavidin-phycoerythrin (PE) (5 L at 73 g/mL; BD 

Biosciences) were then added to the samples and incubated and washed as before. After 

resuspension of the pellet, samples were fixed with 500 L of 1% paraformaldehyde (Sigma-

Aldrich, St. Louis, MO) in PBS. Flow cytometric analysis occurred within approximately 2 h of 

fixation. 

 

Single platelet scattering events (3500 total) were identified using CAPP2A related PE 

fluorescence and forward scatter (FSC) from each sample ( Figure 2-1A) and assessed for 

fluorescence at a second wavelength corresponding to the binding of antibodies from Table 2-1, 

using a FACScan flow cytometer (Becton Dickinson [BD], Franklin Lakes, NJ).  As shown in 

Figure 2-2, a standard flow cytometric technique was employed to define activated platelets - a 

fluorescence intensity threshold mark was set so that 2 0.2% of the single platelet events had 

fluorescence intensities falling above the mark due to binding of the isotype control antibody.  
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Figure 2-1: Flow cytometric forward scatter plots 

CAPP2A binding versus forward scatter for individual scattering events is displayed identifying ovine 

platelets for an unstimulated sample. (B) Scatter plot of ovine platelets gating with CAPP2A fluorescence and 

forward scatter for a 10 M PAF-stimulated sample. Microaggregates bind more CAPP2A and have a higher 

forward scatter than single platelets. (C) Forward scatter versus side scatter plot for ovine blood cells. The 

region labeled “single platelets” is where platelets typically reside on such a plot. (D) Forward scatter versus 

side scatter plot of ovine platelets identified with CAPP2A. There are a number of cells in the single platelet 

region of panel C that are not in the same region in panel D, suggesting that these cells are not positive for 

CAPP2A and should not be considered platelets. 
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Fluorescence associated with each antibody for control and activated samples was 

compared with respect to this threshold mark (Figure 2-2B-D) and reported as a percentage of 

platelets positive for binding the antibody of interest. Coli S69A (Washington State University 

Monoclonal Antibody Center [WSUMAC], Pullman, WA) was used as the isotype control for 

IgG1 antibodies and goat anti-mouse IgM-Fluorescein (Southern Biotech, Birmingham, AL) 

served as the isotype control for PAC-1-Fluorescein. Percentage of platelets positive for Coli S69 

was 2.1% for control (Figure 2-2A) and 5.7% for PAF-stimulated blood (Figure 2-2B). 

Percentage of platelets positive for CD62P as detected by MCA2419 was 11.6% for control 

(Figure 2-2C) and 70.7% for the PAF-stimulated sample (Figure 2-2D). Since intermittent 

clotting of ovine blood was noted during several of the initial antibody binding experiments, 20 

mM GPRP was added to the samples to prevent fibrin polymerization. Evaluated antibodies in 

Table 2-1 that were conjugated to PE were prepared as above substituting streptavidin-PE with 

streptavidin-fluorescein (5 L at 100 g/mL; BD Biosciences). Samples evaluating the 

CAPP2A, GB84A, and GB20A antibodies were prepared without the addition of a platelet 

marker, eliminating the second incubation and wash steps. In these experiments, 5000 total 

platelet scattering events were collected by forward scatter and side scatter (SSC) in the single 

platelet region shown in Figure 2-1C-D. 

 

 

 

 

 

 17 



 

Figure 2-2: Flow cytometric analysis plots 

The y axes represent the number of platelets having a fluorescence intensity given on the x-axis (arbitrary 

units) due to fluorescent antibody binding. The fluorescence intensity of platelets bound with isotype control 

antibody (Coli S69A) varies little between quiescent control (A) and 10M PAF (B) stimulated blood. The 

fluorescence intensity with monoclonal anti-human CD62P antibody (MCA2419) binding for unstimulated 

(C) and 10M PAF (D) stimulated ovine platelets shows a marked increase with stimulation. 

 

Measurement of ovine platelet microaggregates 

The percentage of platelet-containing microaggregates for samples evaluating NPL44-10, 

MCA2419, and MCA2420 antibodies was measured. Single platelets were identified with 

CAPP2A and forward scatter in control samples. Microaggregates were classified as scattering 

events that bound additional CAPP2A and had higher forward scatter than single platelets 

(compare Figure 2-1A and B). The percentage of microaggregates was defined as the percent of 
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microaggregate events relative to the combined number of single platelet and microaggregate 

events. Microaggregate percents were compared for quiescent control and agonist-stimulated 

samples. In Figure 2-1A (quiescent control sample) the percentage of microaggregates is 2.7 % 

and in Figure 2-1B (PAF-stimulated sample) the microaggregate percentage is 39%. 

 

Evaluation of polyclonal anti-human CD62P Ab to detect ovine platelet activation 

Blood (5 L) was incubated for 20 min with 20 L of Tyrode’s buffer with 1% BSA, 5 

L of  20 mM GPRP, 5 L of polyclonal rabbit anti-human CD62P antibody (30 g/mL; BD 

Biosciences, San Jose, CA) or 5 L of rabbit IgG (30 g/mL; Southern Biotech),  5 L of goat 

anti-rabbit IgG1-A488 (30 g/mL; Invitrogen), 5 L of GB20A (7.5 g/mL) and 5 L of goat 

anti-mouse-IgG1-PE (30 g/mL; Invitrogen) for quiescent control samples. GB20A binds to an 

85 kD protein on ruminant platelets and was used as a platelet marker [79]. Activated samples 

were prepared similarly to the quiescent control samples using 15 L of Tyrode’s buffer with 1% 

BSA and 5 L of agonist for a final concentration of 20 M ADP or 10 M PAF.  

 

Samples were incubated and washed as above. Supernatant was removed, the pellet was 

resuspended, and the sample fixed. Flow cytometric data acquisition was performed within 

approximately 2 h of fixation. Five thousand single platelets identified by forward scatter and 

GB20A binding were collected for flow cytometric analysis as above using rabbit IgG as the 

isotype control antibody.   
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Evaluation of Annexin V-Fluorescein 

Blood (diluted 1:10 in PBS; 20 L) was added to 265 L of Annexin V binding buffer 

(BD Biosciences) for quiescent control samples with 5 L of Annexin V-Fluorescein (BD 

Biosciences), 5 L of 7.5 g/mL GB20A, and 5 L of 30 g/mL of goat anti-mouse IgG-PE for 

20 min.  Activated samples were prepared as above using 235 L of Annexin V binding buffer 

along with 30 L of one of the following agonists for a final concentration of 20 M ADP, 10 

M PAF, 5 M ionomycin (EMD Biosciences), or 5 calcium ionophore A23187 (EMD 

Biosciences). Ionomycin and A23187 were initially dissolved in dimethyl sulfoxide and then 

diluted in PBS to desired concentration. Flow cytometric analysis occurred within approximately 

1 h of blood addition. Five thousand platelets positive for GB20A were assessed for Annexin V 

binding. The fluorescence intensity threshold mark was set to include the upper 2% of the 

fluorescence from the Annexin V quiescent control samples. 

 

Statistical analysis 

All data are presented as mean ± standard deviation.  Statistical analyses were performed 

using SPSS 12.0.1 (SPSS, Chicago, IL).  Comparison of means for quiescent and activated 

samples was calculated using one-way repeated measures ANOVA with the F statistic and 

Bonferroni post-hoc test. Correlations between NPL44-10, MCA2419, or MCA2420 binding and 

microaggregate percentage were performed using the Pearson correlation. Significance was 

considered to exist for p < 0.05. 
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2.1.3 Results 

Evaluation of antibodies to detect ovine platelet activation 

Monoclonal antibodies against human CD62P (clone# AK-4), human CD63, human 

CD109, human activated GPIIbIIIa (PAC-1) and anti-bovine CD 63 all demonstrated very low 

binding to quiescent control samples and did not demonstrate a significant increase in binding to 

ovine platelets stimulated with 20M ADP. Monoclonal antibodies BAQ125A, BAQ56A, 

GC5A, and 6F3 bound strongly to resting ovine platelets (> 58%) but did not exhibit a 

significant increase in binding upon activation with 20M ADP. These results are summarized 

in Table 2-2. CAPP2A, GB84A, and GB20A all bound at least 80% of resting platelets, without 

a resultant increase in binding upon activation with 20M ADP or 68 M TRAP as shown in 

Figure 2-3. The polyclonal anti-human CD62P antibody and monoclonal antibodies NPL44-10, 

MCA2419 and MCA2420 demonstrated statistically significant increases in binding to ovine 

platelets stimulated by 20M ADP or 10M PAF when compared to quiescent platelets as 

shown in Figure 2-4. The antibody concentration or volume corresponding to antibody binding 

results shown in Table 2-2 and Figure 2-3 and Figure 2-4 are listed in Table 2-1. 
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Table 2-2: Antibody binding to ovine platelets 

Human CD63
Human CD62P 
(clone # AK-4) Human CD109 PAC-1 FITC

Quiescent 0.2 ± 0.2 3.3 ± 1.5 0.4 ± 0.5 1.0 ± 0.2
20 M ADP 0.3 ± 0.4 3.5 ± 1.6 1.0 ± 1 1.5 ± 1.0

Bovine CD63 BAQ125A BAQ56A GC5A 6F3
Quiescent 2.0 ± 0 97 ± 2 58 ± 7 99 ± 1 97 ± 2

20 M ADP 2.1 ± 0.8 95 ± 3 65 ± 0.3 95 ± 7 94 ± 4

Anti-human Platelet Monoclonal Antibodies; N 3

Anti-bovine and ovine Platelet Monoclonal Antibodies; N = 3
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Figure 2-3: GB20A, GB84A, and CAPP2A antibody binding to ovine platelets. 

Antibody binding to unstimulated, 20 M ADP, and 68M TRAP-stimulated ovine platelets. N = 7. 
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Measurement of ovine platelet microaggregates 

The percentage of platelet microaggregates increased significantly upon stimulation with 

20M ADP or 10M PAF when compared to quiescent control samples as shown in Figure 

2-5. There also were significant correlations found between the percentage of platelet 

microaggregates detected and the binding of the respective monoclonal anti-human CD62P 

antibodies: MCA2419 (r = 0.919, p < 0.001) and MCA2420 (r = 0.908, p < 0.001). The 

correlation between binding of the NPL44-10 antibody on platelets with percentage of platelet 

microaggregates was not statistically significant: (r = 0.304, p = 0.149). 
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Figure 2-4: CD62P antibody binding to ovine platelets 

The percentage of unstimulated and stimulated ovine platelets positive for p-selectin as indicated by the 

binding of polyclonal and monoclonal anti-human CD62P antibodies. The percentage of CD62P positive 
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platelets was significantly increased (p < 0.001) in 10M PAF and 20M ADP samples compared to 

unstimulated controls for the polyclonal CD62P antibody (N = 8), MCA2419 (N = 7) and MCA2420 (N = 7). 

The percentage of CD62P positive platelets as indicated by NPL44-10 binding was also significantly increased 

(p < 0.05) for samples stimulated with 10M PAF (N = 8) and 20M ADP (N = 8). 
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Figure 2-5: Ovine platelet-platelet microaggregates before and after stimulation 

The percentage of ovine platelet microaggregates increased significantly with stimulation using 20 M ADP 

and 10M PAF (p < 0.001 versus unstimulated). N = 8 for control and stimulated samples. 

 

Annexin V-Fluorescein Binding 

Annexin V exhibited statistically significant binding to ovine platelets stimulated by 

5M calcium ionophore A23187 and 5M ionomycin compared to unstimulated platelets as 
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seen in Figure 2-6. Annexin V binding to 20M ADP and 10M PAF stimulated samples was 

not statistically different from control samples. 
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Figure 2-6 Annexin V binding to ovine platelets 

Annexin V binding to ovine platelets was significantly increased for samples stimulated with 5M ionomycin 

(N = 9, p < 0.001), and 5 M calcium ionophore A23187 (N = 9, p < 0.001).  Annexin V binding to 20 M ADP 

(N = 7) or 10M PAF (N = 8), stimulated platelets was not statistically different from binding to control 

samples. 

2.1.4 Discussion 

In bovines and humans, identifying platelet events during flow cytometric analysis can be 

done by simply gating the scattering events using forward and side scatter. However, ovine red 
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blood cells are smaller than human red blood cells (4.5 versus 8 m diameter) while platelets are 

similar in size, making the discrimination of ovine platelets in whole blood by forward and side 

scatter alone a challenge (Figure 2-1) [80-81].  To reliably detect ovine platelets, a platelet 

specific marker was required. CAPP2A binds to CD41/61 on ovine platelets, and GB84A and 

GB20A bind to an 85 kD protein on the surface of bovine and ovine platelets [78-79]. The 

antigen target for GB84A is CD42d, and this is also the presumed antigen target for GB20A, 

although no confirmation has been reported [82].  Each of these antibodies bound more than 80% 

of cells (Figure 2-3) in the forward scatter vs. side scatter region that contain platelets in 

quiescent control samples. The percentage of cells that these antibodies bound decreased in 

ADP-stimulated samples. This is probably indicative of single platelets forming platelet 

microaggregates that because of their increased size no longer reside in the forward scatter vs. 

side scatter region typically occupied by single platelets. This further illustrates the need for a 

platelet marker to discriminate ovine single platelets and ovine platelet microaggregates from 

other cells. CAPP2A and GB20A were subsequently utilized to label platelets in experiments 

evaluating the binding of various activation-specific antibodies and Annexin V protein.  

 

The goal of our in vitro characterization experiments was to investigate the ability of 

candidate antibodies and Annexin V to increase in binding to activated ovine platelets. The 

stimulation of platelets with agonists that would likely result in secondary generation of 

thrombin and other agonist release was an inherent feature of the study. To specifically avert 

fibrin polymerization while allowing thrombin generation, GPRP peptide was utilized. The use 

of GPRP to prevent fibrin polymerization caused by thrombin has become an accepted practice 

in assessment of platelet function using flow cytometry in whole blood [83-85]. TRAP, a peptide 
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fragment of the tethered ligand receptor for thrombin, can directly activate platelets without the 

generation of a fibrin clot and is an alternative to using GPRP to inhibit the secondary effects of 

thrombin [70]. However, in our hands TRAP did not induce expression of activation-dependent 

epitopes on ovine platelets. 

 

While it is of interest to allow thrombin generation following stimulation with agonists in 

these studies, it would not be desirable to have unanticipated thrombin generation occurring prior 

to agonist stimulation for assay characterization. Since fibrin formation was sporadically 

observed in some blood draws (these samples were not utilized), the question arises as to 

whether there might be artifactual activation due to the presence of thrombin in some samples 

that did not rise to the level necessary for fibrin formation. Our results suggest that such artifact 

does not appear to be relevant for the assays that are showing strong sensitivity to platelet 

activation and that thus might find further use in device evaluation. Specifically, if thrombin 

were variably present, then the unstimulated control samples for the MCA2419 and MCA2420 

assays (Figure 2-4) would not show low levels of activation and have low variance. Of note, the 

values for these assays were not normalized to the control; rather all values including control 

were normalized to isotype-control antibody binding. Activation due to consistently uncontrolled 

or variably uncontrolled thrombin would show up in the magnitude and variance of the 

unactivated control data respectively. Furthermore, if the platelets were activated by thrombin it 

is unlikely that they would be able to respond to the extent observed with agonist addition.  

 

P-selectin (CD62P) is located within the platelet alpha granule and mediates platelet-

neutrophil adhesion.  Upon activation the alpha granule fuses with the cell membrane, expressing 
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p-selectin on the cell surface [70, 86]. 6F3 was the only antibody in this study that was 

specifically raised against an ovine antigen (p-selectin); however, its very high binding on the 

resting platelet (Table 2-2), precluded its use as an effective marker for ovine platelet activation 

[87]. The monoclonal antibody against human CD62P (clone # AK-4) showed no cross-

reactivity to ovine platelets. The polyclonal anti-human CD62P antibody, NPL44-10, MCA2419 

and MCA2420 were also raised against human p-selectin, however these antibodies cross-reacted 

and selectively bound to activated ovine platelets (Figure 2-4). MCA2419 and MCA2420 

exhibited the lowest quiescent control binding, and produced the greatest fold increase in relative 

binding between control and activated samples. The higher control binding with the polyclonal 

CD62P antibody was not unexpected given that a number of antigens would be targeted. The 

higher background binding seen with NPL44-10 was less expected. In addition, NPL44-10 

demonstrated much higher variation then the other cross-reactive CD62P antibodies. Because of 

this variation, it seems that NPL44-10 is not the ideal antibody for quantifying p-selectin 

expression on ovine platelets temporally. For the purposes of one-time in-vitro experiments 

however, NPL44-10 may still be useful. The differences in cross-reactivity and affinity for the 

resting platelet between the monoclonal anti-human CD62P antibodies may be due to the 

different epitopes to which the different antibody clones bound.   

 

Monoclonal antibodies BAQ56A, BAQ125A, and GC5A selectively bound to unknown 

epitopes on the surface of activated bovine platelets and were successfully applied to assess 

circulating activated platelets in calves implanted with VADs [63-64]. In ovines these antibodies 

demonstrated much higher binding to quiescent platelets than was observed with calves and 

selective binding to activated ovine platelets was not observed. NPL44-10 and the anti-bovine 
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CD63 antibody also selectively bound to activated bovine platelets [62]. In ovines, NPL44-10 

selectively bound to activated ovine platelets, but had high background binding, whereas the 

anti-CD63 antibody did not cross-react to a meaningful degree.  

 

The percentage of platelet microaggregates increased upon stimulation with PAF and 

ADP (Figure 2-5). Formation of platelet-platelet and possibly platelet-leukocyte 

microaggregates can follow platelet activation. This phenomenon was noted in our study; a 

significant correlation was observed between ovine platelets expressing p-selectin (assessed with 

MCA2419 and MCA2420) and the formation of platelet microaggregates after stimulation with 

ADP and PAF. Quantification of platelet microaggregates provides an additional index with 

which to assess platelet activation and, at least in bovines, appears to be a marker of very high 

levels of in vivo platelet activation [63]. 

 

Annexin V binds to negatively charged phospholipids including phosphatidyl serine, 

which serve as a catalytic surface for coagulation reactions on platelets [88-89].  Annexin V 

selectively bound to ovine platelets stimulated by the calcium ionophores A23187 and 

ionomycin (Figure 2-6). Calcium ionophores increase intracellular calcium, inducing the 

translocation of phosphatidyl serine to the platelet surface among other effects.  Somewhat 

surprisingly though, Annexin V did not selectively bind to ADP or PAF-stimulated platelets, 

suggesting that these agonists did not stimulate the translocation of phosphatidyl serine onto the 

ovine platelet surface, despite inducing p-selectin expression and microaggregate formation. This 

might suggest that Annexin V binding to platelets is a less sensitive means to quantify platelet 

activation when compared to assays that target CD62P expression. Annexin V’s response to 
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ADP-stimulated ovine platelets, was more consistent with the response to ADP-stimulated 

human platelets, than with ADP- stimulated bovine platelets where Annexin V has been shown 

to bind preferentially [63, 89]. 

 

The use of animals to evaluate cardiovascular devices is an essential part of device 

development as success in animals can provide some assurance that a device will be safe when 

used in humans. A drawback to the use of animals for biocompatibility testing is that animals 

and human platelets respond differently to external stimuli. Goodman reported that sheep and pig 

platelets adhere and spread differently than human platelets on several common biomaterials 

[66].  Pelagalli et al also reported differences in the adhesion of animal and human platelets to 

immobilized fibrinogen [67].  These differences must be considered in interpreting the animal 

platelet response to artificial organs and extrapolating this information to predict human platelet 

behavior. It seems likely however that general trends in platelet activation would hold true: 

design modifications that reduce platelet activation in animals would most likely cause a 

reduction in human platelet activation.   

 

A major advantage in using animals for in vivo studies is that they are typically healthy 

before device implantation. This is rarely the case in humans receiving a device who are 

suffering from a variety of cardiac disorders and typically have ongoing inflammation and 

coagulopathies.  The relative health of the animal makes it possible to elucidate device effects on 

platelet activation once the effects of the implantation surgery have dissipated.   
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Flow cytometry provides potentially more sensitive information about device effects on 

platelets because it can provide some degree of temporal resolution of platelet activation trends 

in vivo, whereas assessment of platelet deposition on an implanted device and detection of end 

organ infarcts can only be adequately assessed during necropsy [64].  As mentioned in Section 

1.7, flow cytometric platelet activation assays were able to discern trends in platelet activation 

between calves having uneventful VAD implantation periods and calves experiencing partial 

thrombotic obstruction of the VAD [63]. These assays were also sensitive enough to detect 

significant differences in the levels of circulating activated platelets for different blood-

contacting surface coatings in VAD-implanted calves [62]. Similar experiments in ovines using 

the assays described in this report could suggest materials or surface coatings that would reduce 

device-related platelet activation. Experiments evaluating the effects of fluid path, shear stress, 

and type of blood-contacting materials on platelet activation may help to elucidate underlying 

contributors to platelet activation observed with artificial organs, and provide insight into 

potential design modifications that could enhance device biocompatibility before the device is 

tested in humans.   

2.2 NORMAL THROMBOELASTOGRAPH VALUES FOR OVINES 

2.2.1 Introduction 

The thromboelastograph (TEG, Haemoscope Corp; Niles, IL) is a diagnostic analytical 

machine that assesses the coagulative state of blood. A blood sample is incubated in the machine 

at 37°C and is rotated 4°45ˊ repeatedly clockwise and counterclockwise and assessed for its clot 
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dynamics. Rotation movement is converted by an electromagnetic transducer to an electrical 

signal and sent to the computer. The TEG machine can potentially provide more comprehensive 

information about the coagulative state of blood when compared to partial thromboplastin time, 

prothrombin time, or other clotting time parameters. While typically used in humans, the TEG 

could potentially be of benefit in the ovine model, provided normal ovine TEG values were 

established. The TEG could potentially provide insight on the coagulative state of ovine blood 

following VAD implant, which could then provide insight into the biocompatibility of a device. 

The TEG might also provide insight into the level or effectiveness of the anticoagulation strategy 

being employed during an implant study The TEG has already been deployed as a tool to 

monitor coagulation in total artificial heart and VAD patients previously [90-92].  Of note, there 

is also some limited recent data reported on assessment of the ovine response to clopidogrel 

using the TEG [93]. The objective of this section was to utilize the TEG to establish normal 

ovine TEG values for use during preclinical pediatric VAD development. 

 

The TEG machine measures a series of values related to the coagulative state of blood 

that include:  

 R-time- time to first clot 

 K-time - time to clot of a certain strength 

 Angle- rate of clot formation 

 G- clot firmness 

 MA- maximum amplitude- measurement of maximum strength of the developed clot. 

Fibrin contributes to MA however, platelets is the most significant contribution to the clot 

strength. 
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 CI- Coagulation Index, assessment of overall coagulation status 

2.2.2 Methods 

Ovine blood (2.7 mL) was drawn via jugular venipuncture or through a jugular venous 

catheter placed pre-operatively before a VAD implant into a tube containing 0.3 mL of sodium 

citrate. 20 L of 0.2 M calcium chloride was added to a TEG sample cup. Blood (340 L) was 

then added to the sample cup and the TEG was initiated. A total of 45 sheep were evaluated. 

Multiple TEG values for a single sheep were averaged together before calculating the final 

average.  

2.2.3 Results  

Sheep TEG values (R, K, angle, G, MA, CI) are plotted along with normal human TEG 

values provided by Haemoscope Corp. 
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Figure 2-7 Thromboelastograph values (R, K, G, CI) for ovines and humans 
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Figure 2-8 Thromboelastograph values (Angle and MA) for ovines and humans 

2.2.4 Discussion 

 Sheep TEG values generally show a higher coagulative state when compared to human 

blood evidenced by the lower R-time, higher clot firmness, coagulation index and maximum 

amplitude. The use of the TEG should be useful to assess anticoagulation status and may become 

a comparison marker to assess the status and function of platelets along with the developed flow 

cytometric platelet activation assays from Section 2.1. Maximum amplitude in particular should 

hold promise as a potential comparison marker as it computes the platelet contribution to the 

strength of a clot.  
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2.3 IN VITRO ASSESSMENT OF COATINGS FOR VENTRICULAR ASSIST 

DEVICES 

2.3.1 Introduction 

Blood contacting surfaces in VADs are typically composed of titanium or the titanium 

alloy, TiAl6V4. While these surfaces are considered to be somewhat biocompatible thrombosis 

and thromboembolism are still significant causes of morbidity and mortality in VAD patients 

[16, 27, 32-33, 37-38]. As a result VAD patients are typically on systemic anticoagulation and or 

antiplatelet medications to reduce thromboembolic risks. The use of these medications however 

increases the risk of bleeding in these fragile patients and while the risk of thromboembolic 

events is diminished, it is not eliminated. 

 

A potential way to reduce the thrombotic risk and the necessity for anticoagulation is to 

improve the biocompatibility of the blood contacting surface. VAD manufacturers have longed 

strived to improve this interface [94]. Methacryloyloxyethylphosphorylcholine (MPC)-bearing 

polymers are phospholipid polymers that mimic the cell membrane that have emerged as a 

promising candidate for surface coatings. MPC-bearing polymers have been applied to a variety 

of surfaces including the surfaces on biomedical devices [95-100]. In animal studies, MPC was 

adhered to the blood contacting surface of the Evaheart pump and compared to the Evaheart 

pump with a diamond like carbon coating, which is a clinically used coating [100]. In this study, 

Evaheart pumps coated with MPC had significantly less platelet activation when compared to the 

DLC coated pumps [62]. The key drawback to the Evaheart pumps coated with MPC is that the 

MPC was not covalently attached to the surface and was shown to elute over time [100]. In this 
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section we sought to covalently attach an MPC containing polymer to the TiAl6V4 surface and 

sought to assess the biocompatibility of the resultant surface in terms of activated platelets in the 

bulk blood by flow cytometric assessment. 

2.3.2 Methods 

The process of covalently attaching a MPC bearing polymer onto the TiAl6V4 surface (Ti-

PMA) is illustrated in the manuscript by Ye et al [101]. The acute in vitro blood biocompatibility 

of the modified surfaces was evaluated by continuous rocking in a hematology mixer for 2 hrs 

with anti-coagulated (6 U/mL heparin) ovine blood (Figure 2-9). The following surfaces were 

evaluated: negative control (no surface), polystyrene (positive control), unmodified TiAl6V4, a 

silanated TiAl6V4 (Ti-APS, an intermediate step in production of Ti-PMA), and Ti-PMA. 

Thrombotic deposition was assessed macroscopically and with scanning electron microscopy. 

Flow cytometry was used to quantify platelet activation as indicated by Annexin V binding for 

ovine blood samples after contact with the unmodified and modified titanium samples.  Blood 

samples were prepared for flow cytometric analysis as described in Section 2.1.2 instead using 

250 L of Annexin V binding buffer and the level of platelet activation was determined as 

described in Section 2.1.2. Activation levels from five independent samples were averaged for 

each surface type. 
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Figure 2-9: Rocker setup for in vitro assessment of materials 

 

2.3.3 Results 

Scanning electron micrographs of modified titanium surfaces (Ti-PMA) had dramatically 

lower platelet deposition than unmodified titanium and polystyrene and Ti-APS samples. In 

concert with the deposition results; platelet activation of blood in contact with the phospholipid 

modified titanium samples (Ti-PMA) was significantly lower than that measured for the 

unmodified titanium and polystyrene samples as reported by Ye et al [101].   
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Figure 2-10 Platelet Activation following material contact  

Quantification of activated platelets in the bulk phase of ovine blood after surface contact under continuous 

rocking. No test surface indicates blood from a rocked tube into which no test surface was placed. Platelet 

activation was quantified by flow cytometric measurement of Annexin V binding. 

 

2.3.4 Discussion 

A dramatic reduction in platelet deposition was accompanied by significantly reduced 

platelet activation results.  Ratner asserted that the assessment of blood compatibility by platelet 

deposition alone is inadequate stating that platelets that do not deposit onto a biomaterial surface 

can still become activated and circulate in the bulk blood [102]. For example, platelet activation 

could be used to discriminate between two surfaces where no platelet deposition was present but 

had different levels of platelet activation in the circulating bulk blood. The platelet deposition 
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results alone would suggest both surfaces are promising yet the activation results would enable 

further discriminate between the different surfaces. The results of this section demonstrate a 

reduction in platelet activation and deposition on the MPC-coated titanium surface. These results 

also demonstrate that the flow cytometric assays developed in Section 2.1 proved useful during 

the in vitro biocompatibility assessment of materials. The use of flow cytometry to detect 

diminished platelet activation in surfaces passivated with MPC was demonstrated in subsequent 

studies where MPC was attached onto TiAl6V4 via a UV-grafting method and through a single-

step method onto to TiAl6V4 [103-104]. The ability to critically discern the level of platelet 

activation from different blood contacting surfaces illustrates the utility of such assays in the 

armamentarium of biocompatibility assessment of cardiovascular devices.  

2.4 CONCLUSIONS 

This chapter summarizes our effort to develop platelet activation and coagulation assays 

for assessment in ovines. Platelets could not be adequately identified by forward and side scatter 

alone; therefore a platelet marker was necessary. CAPP2A, GB20A, and GB84A bound to 

platelets regardless of activation state and can be used for platelet labeling. Several proteins that 

bound to activated human and bovine platelets cross-reacted and selectively bound to activated 

ovine platelets with statistical significance. These proteins included: NPL44-10, MCA2419, 

MCA2420, Annexin V, and a polyclonal anti-human CD62P antibody, and their binding was 

indicative of surface expression of p-selectin and a procoagulant platelet surface. An assay to 

detect microaggregates was also developed and the percentage of aggregates was shown to 

increase upon stimulation. Normal TEG values were established for the ovine model and holds 
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potential to monitor coagulation and may serve as a complementary platelet assessment tool 

along with the developed flow cytometric assays. Finally, flow cytometric assays were able to 

discern between different surfaces in the in vitro setting signifying the utility of the assays as 

important tools for improving the performance and safety of blood-contacting devices in the 

ovine model of preclinical testing.  
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3.0  OVINE LEUKOCYTE ACTIVATION ASSAY DEVELOPMENT 

3.1 INTRODUCTION 

Infection is a very significant complication observed in patients undergoing VAD 

placement [16, 35-39]. Although bleeding and thromboembolic complications tend to level off in 

cumulative incidence after the first month following implant infection incidence continues to rise 

[36]. The study of leukocyte response following VAD placement is therefore merited. Increased 

leukocyte-platelet aggregates (LPA) have been observed in patients following strokes [76]. 

Monocyte-platelet aggregates have also been shown to be elevated in patients with acute 

myocardial infarction [105]. Monocyte-platelet aggregates also increased after VAD 

implantation and following coronary stent placement [34, 46, 106]. Granulocyte-platelet 

aggregates increased after VAD implantation, following stent, and mechanical heart valve 

placement [34, 36, 75, 106-107]. The presence of these aggregates represents increased 

thrombotic and inflammatory potential in the peripheral blood and as such would be meaningful 

measures of biocompatibility following VAD placement in preclinical models. Leukocyte-

platelet aggregates have been studied in calves implanted with adult VADs [65]. In these studies 

leukocyte platelet aggregates were shown to rise sharply following surgery and remained 

elevated above baseline for the duration of the study period indicating there was ongoing 
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inflammation. Such assays that could detect these markers in the ovine model would then be 

attractive given the bovine model. 

 

Patients implanted with ventricular assist devices have activation-induced T-cell death 

accompanied with B-cell hyperactivity [26, 37, 49, 52-54]. Assays to detect leukocyte activation 

may be useful in uncovering the mechanisms underlying alterations in leukocyte function 

observed in VAD patients. CD25 is the IL-2 receptor alpha chain, and CD86 is a marker of B-

cell activation [108-109]. With respect to T-cells the IL-2 alpha chain is up-regulated to form a 

robust IL-2 receptor that can bind to IL-2 with a much higher affinity. Antibodies that could 

block CD25 have been further speculated to be a potential way to prevent VAD-induced T-cell 

activation and subsequent B-cell activation [49, 110].  Upon activation CD4 T-cells express 

MHC class II antigens on their cell surface [111-112]. It has been further noted that the 

CD4/CD8 ratio has been shown to dramatically decrease in some VAD patients in as early as a 

month following VAD implantation [52]. The study of how VADs impact leukocytes is therefore 

merited. We sought to extend the developed flow cytometric assays from Chapter 2 to include 

assays to assess leukocyte platelet aggregate formation and lymphocyte activation. In this 

chapter we sought to develop potential assays to quantify leukocyte activation and then assessed 

them following in vitro platelet and leukocyte agonist stimulation. 
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3.2 LEUKOCYTE PLATELET AGGREGATE ASSAY DEVELOPMENT 

3.2.1 Methods 

 To begin characterization of leukocyte-platelet aggregates (LPA) it was necessary to 

identify antibodies that could label ovine granulocytes and monocytes.  An anti-human CD14 

antibody (AbD Serotec) was reported to label human monocytes and cross-reacted to bovine and 

ovine monocytes. This antibody was initially used to label ovine monocytes, however the 

CAM36A antibody (VMRD) was determined to provide better monocyte labeling as seen in 

Figure 3-1. The PG68A antibody (VMRD) labels ovine granulocytes as seen in Figure 3-2.   

 

Ovine whole blood samples were collected via jugular venipuncture and incubated with 

20 mM fibrinolysis inhibiting factor (GPRP), agonist and CAM36A or PG68A for 20 or 120 

minutes.  The following agonists were used (listed at final concentration): 20  adenosine 

diphosphate (ADP, 20 min incubation), 10 M platelet activating factor (PAF, 20 min 

incubation), 500 nM and 0.2 M Phorbol-myristate-acetate (PMA, 120 min incubation) and 0.2 

 Phorbol-myristate-acetate combined with 5 M calcium ionophore A23187 (120 min 

incubation).  At the end of the incubation period samples were washed with citrated tyrode’s 

buffer.  Samples were then incubated with CAPP2A-biotin (prepared in Chapter 2) and 

streptavidin-PE for 20 minutes.  Ammonium chloride potassium buffer, 8.29 gm NH4Cl, 1.0 gm 

KHCO3, 0.0372 gm disodium ethylenediamine tetra-acetic acid/L distilled H2O; (ACK buffer) 

was added to lyse the RBCs and the samples were centrifuged and resuspended as before, 

washed with Tyrode’s buffer with citrate, then fixed with 1% paraformaldehyde. Using flow 
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cytometry, granulocyte and monocyte cell populations were analyzed to determine if they 

formed aggregates with platelets (evidenced by binding to CAPP2A) following agonist 

stimulation.  IgG1-biotin (Serotec) was used as the isotype control for the leukocytes binding to 

CAPP2A. MCA2419 conjugated to Alexa 488 (MCA2419-A488) was used as a positive control 

to ensure the functionality of the platelet agonists.  IgG1-Alexa Fluor 488 was used as the 

isotype control for MCA2419 binding. 

 

3.2.2 Results 

 

 

Figure 3-1 Ovine monocyte flow cytometry scatter plots 

A) Monocyte region on (FSC) vs. Side Scatter (SSC) B) CAM36A antibody binding vs. Forward Scatter (FSC) 

 

 45 



 

Figure 3-2 Ovine granulocyte flow cytometry scatter plots 

A) Granulocyte region on (FSC) vs. Side Scatter (SSC) B) PG68A antibody binding vs. Forward Scatter (FSC) 

plot 

 

 Platelet p-selectin expression was induced by 20 M adenosine diphosphate (ADP), 10 

M platelet activating factor (PAF), 0.2 M phorbol-myristate-acetate (PMA), or 1 U/mL 

thrombin as quantified by MCA2419. P-selectin expression was not induced after incubation 

with 500 nM or 5TRAP (expected).  Despite this, granulocyte (GPAs) and monocyte platelet 

aggregates (MPAs) did not increase after stimulation with ADP, PAF, thrombin, or TRAP as 

illustrated in Figure 3-3 and Figure 3-4.  
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Figure 3-3 Monocyte platelet aggregates following platelet agonist stimulation 
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Figure 3-4 Granulocyte platelet aggregates follow platelet agonist stimulation 

  

 Monocyte and granulocyte platelet aggregates (Figure 3-5 and Figure 3-6) did increase 

following stimulation with PMA and PMA combined with the calcium ionophore A23187. These 
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graphs demonstrated that granulocytes and monocytes bind to platelets after stimulation and 

indicate that leukocyte platelet aggregates could be an indicator of ovine leukocyte activation. 
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Figure 3-5 Monocyte platelet aggregates following combined leukocyte/platelet agonist stimulation 
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Figure 3-6 Granulocyte platelet aggregates following combined leukocyte/platelet agonist stimulation 
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3.2.3 Discussion 

As observed in Figure 3-1 and Figure 3-2 the antibodies PG68A and CAM36A 

successfully identified granulocytes and monocytes. The results observed in Figure 3-5 and 

Figure 3-6 did show some inconsistency in the generation of LPAs following stimulation. This 

was most notable in Figure 3-5 where there were large error bars for MPA generation following 

stimulation with PMA and ionomycin. It was somewhat surprising that TRAP did not induce 

GPAs or MPAs as this agonist induce leukocyte platelet aggregates in the bovine model [65] It 

was also interesting to note that platelet agonists, ADP, thrombin, PAF, and TRAP did not 

induce the formation of LPAs, while PMA and PMA combined with A23187, which would be 

considered a platelet and leukocyte agonist, did generate LPA formation.. This might indicate 

that platelet stimulation alone is not enough to form LPAs in ovines; leukocytes must be 

stimulated for LPA formation to occur.  This would further suggest that the presence of increased 

LPAs in ovines is indicative of an inflammatory response.  

 

Despite some success with the generation of leukocyte platelet aggregates, IgG1 (isotype 

negative control) binding to leukocytes also increased following stimulation with PMA and PMA 

combined with calcium ionophore A23187. These results cast doubt about the utility of 

leukocyte platelet aggregates as a marker of leukocyte activation. It is possible that the IgG1 

antibody may be binding to the Fc receptor on leukocytes. Activation of leukocytes induces 

expression of many markers; the increase in markers on the surface increases the probability of 

an isotype control antibody binding to leukocytes. This may in fact be the cause of the increased 

isotype control antibody binding to the leukocytes after stimulation. If this is the case the 

increased number of leukocytes positive for the platelet marker antibody (CAPP2A) binding may 
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represent random antibody binding to the leukocytes rather than platelets actually bound to 

leukocytes. Cellular visualization could potentially be used to confirm the presence of platelets 

on leukocytes. In future work the use of fluorescently conjugated anti-monocyte, anti-platelet, or 

anti-granulocyte antibodies would enhance the reproducibility of the assay, although such 

antibodies are not yet available for ovines. Also important to note is the importance of using 

ACK buffer to lyse the red blood cells. The use of water will also lyse ovine red blood cells, but 

in the process appears to lyse granulocytes and other leukocytes making it inappropriate for the 

study of leukocyte activation. At this point caution must be used in applying these LPA assays in 

vivo. 

3.3 LYMPHOCYTE ACTIVATION ASSAY DEVELOPMENT 

3.3.1 Methods  

There were several commercially available antibodies that were specific for ovine 

lymphocyte activation antigens, which we sought to evaluate for their potential to recognize 

ovine lymphocyte activation after stimulation.  These included an anti-ovine CD25 antibody, and 

antibodies that bind to the ovine DR and DQ subunits of MHC class II. Whole blood was 

collected from sheep via jugular venipuncture, discarding the first 3 mL and added to sodium 

citrate tubes. Blood was incubated with rat smooth muscle media that contained antibiotics: 

gentamicin, and streptomycin in 12 well plates. Heparin (11 U/mL, final concentration) was 

added along with the lymphocyte agonists: Concanavalin A (5 g/mL, Con A), or Phorbol-

myristate acetate (0.2 M, PMA). In order to induce expression of activation epitopes the 
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blood/media mixture was incubated for 95 hrs in a 37°C incubator. After incubation blood/media 

mix (200 L) was then incubated with Tyrode’s buffer with citrate (115 L), anti-ovine CD4 

antibody (to label CD4 T-cells; 5 L), and 5 L of either the potential lymphocyte activation 

antibody (anti-ovine CD25 antibody, anti-ovine MHC–DR, or anti-ovine MHC-DQ) or the 

isotype control antibodies (IgG1 or IgG2a) into polystyrene tubes for 20 min. Samples were then 

lysed with 2 mL of ACK buffer, centrifuged and then washed with 1 mL citrated tyrode’s buffer, 

and then fixed with 1% paraformaldehyde. CD4 positive T-cells were analyzed for the 

fluorescence of the respective activation antibody (anti-ovine CD25, anti-ovine MHC-DR, or 

anti-ovine MHC-DQ) on the flow cytometer. Positive events were determined by setting a mark 

that excluded 98% of the isotype control antibody fluorescence. IgG1 was used as the isotype 

control antibody for anti-ovine CD25 and anti-ovine MHC-DQ. IgG2a was used as the isotype for 

anti-ovine MHC-DR. Results from these studies are shown in Figure 3-7. 
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3.3.2 Results 
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Figure 3-7 CD4 T-cell Activation following stimulation 

 

 

3.3.3 Discussion 

With each antibody, there is increased binding to CD4 T-cells following stimulation with 

the Con A or PMA agonists. In the case of anti-ovine CD25 and anti-ovine MHC-DQ, the 

control binding is somewhat high. This maybe in part due to a lymphocyte reaction with the 

polystyrene over the 95 hr time period that induced some expression of protein epitopes; 

however, CD25 is constitutively expressed on some CD4 T-cells that are commonly referred to 

as regulatory T-cells. The anti-ovine MHC-DR antibody also appears to be promising. However 
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the fluorescence associated with its isotype control (IgG2a) also rose in a similar fashion, and 

raises the question if the anti-MHC-DR antibody is actually binding to a meaningful cell surface 

antigen as was the concern with leukocyte platelet aggregates assay. Also in question is the IgG2a 

isotype control antibody, because the IgG1 antibody used as the isotype for analysis of the anti-

CD25 and MHC-DQ antibody did not increase to a high degree in the cultures with the Con A 

and PMA agonists. It may be possible that the IgG2a antibody is recognizing an epitope on T-

cells that might make it inappropriate for use as an isotype in this lymphocyte activation assay. 

Of note, increased binding with IgG2a antibody has been mentioned by other flow cytometry 

users.  

3.4 CONCLUSIONS 

Antibodies that recognize ovine monocytes and granulocytes were tested and could 

distinguish these cells. Granulocyte and monocyte platelet aggregate assays were also developed 

but their utility is in doubt given the results from the negative control antibody following 

stimulation. CD4 T-cell activation assays that quantify CD25, MHC class II DQ, and MHC class 

II DR expression on cells were evaluated in vitro and were shown to bind to activated ovine 

lymphocytes and should be useful (in particular the CD25 and MHC DQ assays) in evaluating in 

vivo ovine lymphocyte activation following cardiovascular device implant. 

 

 53 



4.0  BIOCOMPATIBILITY ASSESSMENT OF THE FIRST GENERATION 

PEDIAFLOW DEVICE 

4.1 INTRODUCTION 

As mentioned in Section 1.4 the University of Pittsburgh consortium was awarded a 

contract from the NHLBI pediatric circulatory support program to build the PediaFlow™ 

pediatric VAD [5, 12, 18, 113]. The PediaFlow VAD is a mixed flow turbodynamic VAD that 

employs a magnetic suspension [5, 18, 114]. The ultimate goal of this device is to deliver a flow 

rate between 0.3 and 1.5 L/min to serve a patient population from newborns to approximately 2 

year olds. The device aims for an implantation period of up to 6 months to provide cardiac 

support as a child awaits a transplant or myocardial recovery. The first generation design (PF1) 

weighs approximately 100 g and pumped a maximum of 660- 810 mL/min against physiologic 

pressure in three ovine animal studies. It measures 51 mm in length, has a 28 mm outer diameter 

and a pump priming volume of less than 2 mL. In concert with meeting the clinical design 

requirements stated above, the focus of PediaFlow VAD development is to achieve high levels of 

blood biocompatibility. To achieve this criterion, the PF1 flow path was developed using 

iterative computational fluid dynamics (CFD) to minimize areas of high shear and to possess 

smooth velocity vectors devoid of stagnation or recirculation zones [5, 18, 113, 115]. Heat 

generation caused by the pump was quantified and determined to be within acceptable limits (≤ 
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2C temperature rise) during normal operation [116]. Furthermore, magnetic bearings were 

chosen for the PediaFlow VAD to avoid the wear and heat generation associated with contact 

bearings [117-118]. Since contact bearings are also known to form a high shear region and may 

promote hemolysis as well as thrombus formation, the use of magnetic bearings in the PediaFlow 

VAD, it was hypothesized, would significantly improve its potential for excellent 

biocompatibility in vivo [117-119]. 

 

Damage to red blood cells (hemolysis) and platelet activation are important parameters 

that are often measured to assess the biocompatibility of artificial organs [44, 62-63, 100, 120].  

The use of platelet biocompatibility assays has demonstrated utility in evaluating VAD design, as 

described above; providing guidance to potentially improve device hemocompatibility [62-63]. 

To assess the biocompatibility of the PediaFlow PF1 design in this report we employed assays 

for hemolysis (quantified by plasma free hemoglobin; plfHb), and plasma protein and fibrinogen 

concentrations (all courtesy of Dr. Marina Kameneva), in addition to flow cytometric assays to 

quantify ovine platelet activation (discussed in Chapter 2) during implantation in vivo [80, 120].  

4.2 METHODS 

In vitro biocompatibility flow loop test 

Blood collection 

Ovine whole blood (540 mL) was collected by jugular venipuncture using an 18 gauge 

1.5-in. needle with syringe and stopcock into a blood bag containing 60 mL of anticoagulant 
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citrate dextrose (ACD) solution. Heparin (4 U/mL) was added to the blood reservoir post 

collection (hematocrit = 28%).  

 

Flow loop setup 

A fluid dynamic test loop with a blood bag reservoir and the PF1 pediatric VAD was 

prepared with luer ports for pressure measurement at VAD inlet and outlet as well as blood 

temperature measurement. A magnetic stir bar was introduced in the bag, which was placed on a 

magnetic stirrer to prevent blood stagnation. The circuit was cleaned and the surfaces passivated 

by introducing, in sequence, detergent (Simple Green, Sunshine Makers, Inc., Huntington Beach, 

CA), enzymatic detergent (Tergazyme, Alconox, Inc., White Plains, NY), water (twice), 1% 

bovine serum albumin solution in Tyrode’s Buffer, and saline. Each of these fluids was pumped 

by the PF1 pediatric VAD through the test loop at minimum speed (3,000 rpm) for 15 min. 

Ovine blood (500 mL) was then added to the reservoir and circulated at 650 – 750 mL/min for 6 

hours at 10,500 rpm.  Resistance of the circuit (a tubing clamp downstream of the pump) was set 

to achieve an afterload pressure of 80 mmHg. The blood bag was placed on a magnetic stirrer 

and a magnetic stir bar was inserted in the blood bag for constant mixing of the blood reservoir.  

A bag with the same ovine blood (~100 mL) was slowly rocked next to the circulation loop to 

serve as a control.  A blood sample was taken at the start of the experiment immediately after the 

pump reached maximum speed (hour 0). The pump operated for six hours and blood samples (3 

mL) were collected hourly from the circuit and the control bag. Each time a blood sample was 

drawn from the flow loop the volume was replaced with blood from the control blood bag to 

maintain the flow loop blood volume at 500 mL.  
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Assessment of plasma free hemoglobin (plfHb) 

Collected blood samples from both the control bag and the flow loop were centrifuged for 

15 minutes at 2200  g to obtain plasma. Plasma was transferred to microcentrifuge tubes and 

centrifuged at 20,800  g for 20 minutes in a microcentrifuge (Eppendorf 5417R, Eppendorf 

North America, Westbury, NY). Plasma was then transferred to disposable semi-micro 

spectrophotometer cuvettes (Thermo Fisher Scientific Inc., Waltham, MA). PlfHb was measured 

for both samples at each time point using a spectrophotometer (Spectronic GENESYS 5, Thermo 

Fisher Scientific Inc.) at 540 nm wavelength [121]. The spectrophotometer was calibrated to zero 

using a blank solution according to established protocols. Hemoglobin calibration curve was 

obtained using standard dilutions of hemoglobin solution of known concentrations.  “Blood 

damage” was then characterized by the normalized index of hemolysis (NIH) using the 

difference between the plfHb from the flow loop and from the control bag recorded at each time 

point [122]. 

 

In vivo testing 

Surgical Procedure 

Anesthesia was induced with ketamine and maintained with inhalation isoflurane. The 

characteristics of each implant can be found in Table 4-1. An arterial line for pressure 

measurement was placed in the left carotid artery along with a venous line for drug and fluid 

administration in the jugular vein. A left thoracotomy was performed through the fourth 

intercostal space. The inflow cannula was measured and cut to length and assembled to the PF1 

inflow connector. A felt-coated sewing ring was fixed on the apex of the heart with pledgeted 

sutures and the cannula was inserted through this ring in the left ventricle via a stab wound. After 
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bolus administration of heparin (150 U/kg), the descending aorta was partially clamped using a 

vascular clamp (without cardiopulmonary bypass) and the outflow graft (Table 4-1) was 

anastomosed and fixed directly onto the pump outflow connector.  The pump was started and set 

to run at maximum speed (Table 4-1). A 6PXL ultrasonic flow probe (Transonic Systems Inc, 

Ithaca, NY) was attached around the outflow graft. After closure of the chest, each animal was 

allowed to recover from anesthesia, and spontaneously ventilate. Marcaine (Hospira Inc, Lake 

Forest, IL USA) was used in the intercostal muscles and Banamine (Phoenix Pharmaceutical, 

Inc; St. Joseph, MO; 25 mg intravenously) was used for analgesia. Heparin was not administered 

for the first 48 hours following implant. Heparin was administered to maintain the ACT at 

approximately 180 seconds and was discontinued whenever the hematocrit dropped below 20%. 

 

Blood collection 

Pre-operative whole blood was collected from each ovine by jugular venipuncture using 

an 18 gauge 1.5-in needle with syringe and stopcock. The first 3 mL were added to sodium 

heparin tubes for plfHb and hemorheological parameter measurement. An additional 2.7 mL of 

blood for platelet activation assessment was drawn and added to tubes containing 0.3 mL of 

0.106M trisodium citrate (Sarstedt, Newton, NC). In the 10-day implant an indwelling catheter 

was inserted for pre-operative blood collection. For this implant, samples were collected by 

withdrawing 20 mL of blood, then the sample volume, and then re-infusing the initial 20 mL of 

blood. Postoperative samples were collected daily through an indwelling arterial line that was 

placed during surgery for plfHb (reported in mg/dL) and hemorheology assessment. For platelet 

activation, samples were obtained on post-operative days 1, 2, and 3, and then twice weekly for 

the duration of each implant. 
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Assessment of blood and plasma parameters 

Heparinized blood (3 mL) samples were used in hemorhelogical assays to measure blood 

parameters including plasma free hemoglobin, total blood hemoglobin, hematocrit, fibrinogen 

and total plasma protein concentrations. Hematocrit was determined in a microhematocrit 

centrifuge (IEC MB Centrifuge, International Equipment Company, Needham Hts, MA). Total 

blood hemoglobin concentration was measured in a hemoximeter (ABL 700 Series, Radiometer 

American Inc., West Lake, OH). The remaining sample was centrifuged at 9500  g for 15 min at 

room temperature (ML Vanguard V6-500, Marketlab, Inc., Caledonia, MI). The supernatant was 

then added to a 1.5 mL microcentrifuge tube and centrifuged again (Laboratory Centrifuge IEC 

MiniMax, International Equipment Company, Needham Hts, MA) at 15,000  g for 12 min. The 

supernatant was transferred to a 1.5 mL microcentrifuge tube and then centrifuged at 20,800  g 

for 20 min (Eppendorf 5417R, Eppendorf North America). The resulting plasma was then 

transferred to disposable semi-micro cuvettes (Thermo Fisher Scientific Inc.) for measurement of 

plasma free hemoglobin as described above. Plasma total protein and fibrinogen concentrations 

were assessed using a benchtop refractometer (Kernco Instruments Co. Inc., El Paso, TX). 

Fibrinogen provided an indirect assessment of the inflammatory state of the animal and plasma 

protein was used as an indirect measure of volume status and is also generally related to liver 

function. 
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Table 4-1: PF1 implant summary 

In vivo 
study #

Animal 
weight 

(kg)

Duration of 
support

Inflow 
cannula 

Outflow 
cannula

Flow rate 
(L/min)

Pump 
Speed 
(krpm)

Mean Arterial 
Pressure   
(mm Hg)

1 54 6 d
shortened 
20Fr DLP

6 mm 
Vascutek 0.81 10.7 76.5

2 30 17 d
shortened 
20Fr DLP

PVC + 6 mm 
Vascutek 0.55 11.0 94.7

3 34 10 d

shortened 
20Fr DLP

PVC + 6 mm 
Vascutek 0.66 10.0 111.8

PVC (6 mm) bonded to Vascutek graft by silicon
Vascutek outflow graft (Terumo Cardiovascular Systems Corp., Ann Arbor, MI)

DLP cannula (Medtronic, Minneapolis, MN)

 

 

Assessment of platelet activation  

Blood (5 L) was transferred from tubes into 12  75 mm polystyrene tubes with 5 µL of 

25 g/mL of either coli S69 (isotype control, Washington State University Monoclonal Antibody 

Center (Pullman, WA, USA)), MCA2419 (anti-human CD62P antibody, AbD Serotec, Raleigh, 

NC) or MCA2420 (anti-human CD62P antibody, AbD Serotec), 5 L of 50 g/mL goat anti-

mouse IgG-Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA), and 35 L of Tyrode’s buffer 

(Electron Microscopy Services, Hatfield, PA, USA) with 1% bovine serum albumin (BSA) and 

0.106M sodium citrate and incubated for twenty minutes. The sample was washed with 1 mL of 

Tyrode’s buffer with 1% BSA and 0.106 M sodium citrate (washing buffer) and mixed. Samples 

were then centrifuged for 10 min at 132  g. The supernatant was removed and the pellet 

resuspended.  
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CAPP2A-biotin (5 μL of 7.5 g/mL) and 5 L of 73 µg/mL streptavidin-phycoerythrin 

(SA-PE; Invitrogen, Carlsbad, CA) were added to tubes and incubated for twenty minutes. 

Samples were then mixed with 1 mL of washing buffer and centrifuged at 132 x g. Following 

removal of the supernatant, samples were fixed with 1% paraformaldehyde.   

 

Flow cytometric analysis was performed as described in Section 2.1.2. In the 10-day 

implant, platelet activation after stimulation was also evaluated. These samples were prepared as 

above using 25 µL of Tyrode’s with 1% BSA, 5 L of 20-mM glycine-proline-arginine-proline 

(GPRP for inhibition of fibrin polymerization, Anaspec, San Jose, CA, USA) in phosphate-

buffered saline (PBS), and 5 µL of either 200 µM of adenosine diphosphate (ADP; Calbiochem, 

San Diego, CA, USA) or 100 µM platelet activating factor (PAF; Sigma-Aldrich; St. Louis, MO, 

USA) instead of the 35 µL of citrated Tyrode’s buffer. In these stimulation studies the use of 

tyrode’s without citrate along with GPRP is necessary as citrate will prevent the expression of 

additional p-selectin. 

4.3 RESULTS  

In vitro testing 

Figure 4-1 illustrates the PediaFlow PF1 pediatric VAD with its outer housing (top 

panel), without its outer housing (middle panel), and a close-up view of the impeller (bottom 

panel). In Figure 4-2 the steady-state in-vitro pressure-volumetric flow rate curve of PF1 is 

shown using a 35% glycerine/saline (vol) blood-analog for pump speeds of 4600-10000 rpm. 

During the 6 hr in vitro blood test, the pump successfully generated a mean flow of 700 mL/min 
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against an 80 mm Hg afterload at 10,600 rpm. The mean hourly NIH value was 0.0087 ± 0.0024 

g/100L, a clinically acceptable result [122].  

 

 

Figure 4-1: Images of the PediaFlow PF1 pediatric VAD 

 

 62 



0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200
Flow rate (mL/min)

P
re

ss
u

re
 h

ea
d

 (
m

m
H

g
)

10000 RPM

9000 RPM

8000 RPM

7000 RPM

6000 RPM

5000 RPM

4600 RPM

 

Figure 4-2: Pressure/Volume flow rate curve for PF1 

The curve of PediaFlow PF1 was generated using a blood-analog for pump speeds of 4600-10000 rpm. 

 

 

Figure 4-3 Image of the PF1 implant 

A) Image of the PediaFlow PF1 during an implant procedure and B) Lateral chest radiograph following PF1 

implant. 
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In vivo testing 

The implantation of the PF1 pediatric VAD is seen in Figure 4-3A.  Figure 4-3B shows 

a lateral chest radiograph following PF1 implant. Table 4-1 summarizes characteristics of each 

of the implants. At the end of study, there was a positive blood culture for bacteria in the first 

implant, although the white blood cell count was within normal limits. White blood cell counts 

were normal at the end of study for the other two implants and their blood cultures were negative 

for any microorganisms.  

 

The flow rate and pump speed are plotted for each implant in Figure 4-4. In the first 

implant pump flow started off at 0.77 LPM and remained relatively constant concluding at 0.85 

LPM. Pump speed was constant at a mean of 10.68 krpm. In the second implant pump flow was 

very low (0.3- 0.4 LPM) for the first five days, beginning to increase on day 6 and reaching its 

maximum (0.67 LPM) on day 9 and remained at approximately this value through the conclusion 

of the study.  Pump speed in this implant starts at 10.6 krpm and begins to increase on day 9 and 

at the end of the study pump speed is approximately 11.5 krpm. Pump flow in the final study 

starts at a mean around 0.7 LPM. The flow signal is lost on days 4-7 due to a loss of acoustic 

coupling. The flow signal returns on day 8 and pump flow at the end of study is 0.6LPM, while 

pump speed is constant throughout the study at a mean of approximately 10 krpm.  
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Figure 4-4 Flow rate and pump speed for the PF1 implants 

A) first, B) second, and C) third PF1 implants (shaded area represents loss of acoustic signal). 

   

In the first chronic study the outflow graft tore post-operatively because of a sharp 

cannula barb. This tear resulted in significant blood loss into the left chest with subsequent 

atelectasis which caused the animal to have labored breathing. The significant blood loss and 

respiratory compromise led to the implant being terminated on day 6. There were no renal 

infarcts or evidence of thromboembolism in other organs observed at necropsy. In Figure 4-5 

plfHb and hematocrit, total plasma protein and fibrinogen concentrations, and platelet activation 

results are presented for the first chronic implant. PlfHb was low for all 6 days of implantation 

with a mean value of < 5 mg/dL. The hematocrit decreased following the implant and began to 
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steadily decline on post-operative day 3 before a marked decrease on day 6 down to 10%. Total 

plasma protein concentration decreased post-operatively, but remained stable at approximately 5 

g/dL for 5 days before decreasing to 4 g/dL on day 6. Fibrinogen concentration rose for the first 

4 post-operative days (up to 700 mg/dL) and began to decrease on day 5. Platelet activation was 

very low at pre-operative values through day 2, but on day 3 rose markedly and remained 

elevated at the conclusion of the implant. 

 

Figure 4-5 Blood parameter data for the first chronic PF1 implant 

A) Hemolysis and h tivation (p-selectin 
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the pump, and a subsequently long, tortuous outflow graft anastomosed to the aorta.  Initially 

very low pump outputs were observed for the target speed, which may have been due to kinking 

of the outflow graft which did eventually resolve. On day 15 there was a power outage in the 

animal facility, which, coupled with a failure in the PediaFlow uninterrupted power source, led 

to pump stoppage (15 min duration) and regurgitant flow through the pump. When power was 

restored, suspected thrombus embolization led to bowel and kidney infarction, which caused the 

gastrointestinal organs to fail and the animal to expire on day 17.  Kidney, bowel, and gall 

bladder infarcts and an abnormal appearing liver were observed at necropsy. Left lung atelectasis 

and significant blood accumulation in the left chest were also observed.  In Figure 4-6 the plfHb 

and hematocrit, total plasma protein and fibrinogen concentrations, and platelet activation results 

for the second chronic implant are presented. The mean plfHb level for this implant was 13.3 ± 

7.9 mg/dL. This parameter was substantially increased on days 4 through 9, but returned to 

baseline levels on day 10. The hematocrit steadily decreased following implantation and two 

blood transfusions were given to the animal (days 2 and 4). The hematocrit stabilized on day 4 at 

20-22%. Total plasma protein concentration reduced post-operatively and began to rise on day 2 

before stabilizing on day 4 at approximately 6 g/dL. The fibrinogen concentration significantly 

increased post-operatively (up to 700 mg/dL on days 2 and 3) and then slowly decreased 

returning to baseline on day 10. Platelet activation was elevated pre-operatively and was highly 

elevated after day 1.   
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Figure 4-6 Blood parameter data for the second chronic PF1 implant 

A) Hemolysis and hematocrit, B) total plasma protein and fibrinogen, and C) platelet activation (p-selectin 

expression on platelets) following the second PF1 chronic implant. 
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with ADP and PAF for the third chronic implant. The latter stimulation assays were newly 

developed and first assessed in vivo with our third animal. Mean plfHb for this implant was 8.8 ± 

3.3 mg/dL. Hematocrit declined from its pre-operative value of 33% to 30% post-operatively and 

decreased slowly before stabilizing at approximately 25%. Total plasma protein concentration 

slightly decreased post-operatively but returned back to baseline on day 4. Fibrinogen 

concentration rose to extremely high levels of 1100 mg/dL on day 5 remaining at a very high 

level ~ 800-1000 mg/dl at the conclusion of the implant. Platelet activation rose slightly on days 

1 & 2 and returned to baseline on day 4. Platelet activation began to rise on day 10 and sharply 

rose in the last data point on day 10. The mostly low platelet activation values in this implant 

were accompanied with an ability of the platelets to respond to application of agonists ADP and 

PAF for all but the final data point.   
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Figure 4-7 Blood parameter data for the third chronic PF1 implant 

 69 



A) Hemolysis and hematocrit, B) total plasma protein and fibrinogen, C) platelet activation and D) platelet 

activation on platelets following stimulation of blood with 20 M ADP and 10 M PAF in the third PF1 

chronic implant. 

4.4 DISCUSSION  

In all three ovine studies hematocrit decreased post-operatively and in the first two 

studies dropped precipitously.  The precipitous drop in hematocrit in the first two studies may be 

explained by the observation of a large amount of blood in the left chest at necropsy. In the first 

study the drop in hematocrit was attributed to an outflow graft tear. In the second study however, 

no obvious tear sites in the graft or inflow cannula were observed, although there may have been 

bleeding at the pump/cannula connection site. Total plasma protein concentration also decreased 

post-operatively in each implant mostly due to blood dilution by the fluids given during surgery 

and post-operatively. The total protein rebounded during the post-operative course in the second 

and third studies. In the first implant however, total plasma protein concentration continued to 

decrease as hematocrit decreased down to 10%. Fibrinogen concentration rose in all three studies 

reflecting the normal post-surgical inflammatory reaction process seen in this animal model [23, 

123]. In the first two studies fibrinogen began to decrease, returning to baseline levels. However, 

in the third implant it remained significantly above baseline at the time of implant termination. In 

this implant, the elevated fibrinogen might have been related to renal injury observed in this 

study as the creatinine in this animal was abnormally low, and the urea nitrogen value was near 

the lower limit of the normal range. Hepatic injury did not appear to be a concern in this implant 

because the AST (SGOT) value was normal. 
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Typically, a plfHb level  > 10 mg/dL would be considered elevated; however, ovine cells 

are more fragile than human and bovine cells indicating that a slightly higher than 10 mg/dL 

plfHb level could still be considered satisfactory from the point of view of low potential 

mechanical damage to red blood cells produced by the pump [124].  Hemolysis levels were low 

in the first and third PediaFlow PF1 pediatric VAD studies. In the second implant the mean 

plfHb level was slightly above 10 mg/dL due to several spikes in plfHb value. The major 

contributor to the hemolysis was the suspected outflow graft kink; as the flow rate increased 

(presumably due to the kink resolving), the plfHb decreased to very low levels. The mean plfHb 

beginning on day 10 (pump reached its maximum flow on day 9) to the end of the implant was 

7.8 ± 2.7 mg/dL. The need for several blood transfusions early in the post-operative period of 

this implant might have also impacted the elevated hemolysis levels observed early in the post-

operative course. However, the baseline plfHb of the transfused blood was not measured before 

it was given to the sheep.  

 

In the bovine model of preclinical testing, the utility of flow cytometric platelet activation 

assays has demonstrated value in differentiating between animals that had uneventful post-

operative VAD courses and those that had evidence of substantial thromboembolism or pump 

thrombotic deposition [63-64].  Given our lack of experience in applying the developed ovine 

platelet activation assays from Chapter 2 in vivo, we sought to understand how these assays 

responded during device implant and evaluate their utility for in vivo biocompatibility 

assessment.  In the first implant, platelet activation rose in concert with an outflow graft tear that 

appeared to occur on day three and resulted in significant blood loss. During the second implant, 
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a kinked outflow graft significantly impeded flow and likely altered the flow path such that it 

became a nidus for platelet activation. The pronounced evidence of thromboembolic infarction 

observed at necropsy was reflected in the markedly increased sustained levels of platelet 

activation in this implant. Overall, the platelet activation data in the third chronic PediaFlow PF1 

pediatric VAD implant was promising and was in contrast to the degree of platelet activation 

observed in the second chronic implant. The pump stopped on day 10 in the third implant as 

well, likely causing retrograde flow through the pump and presumably resulting in elevated 

platelet activation in the final blood collection data point. In all three studies platelet activation 

rose or had sustained elevation in response to pump complications (graft tear, kinked outflow 

graft and pump stoppage, pump electrical short and pump stoppage).  The sensitivity of the 

platelet activation assays to pump complications in this limited data set suggests the utility of 

these assays as a meaningful temporal test of biocompatibility in vivo, in line with the bovine 

experience. 

 

Platelet activation can be caused due to changes in the animal physiology or can be 

precipitated by pump complications. One way to attribute platelet activation to the pump is to 

perform sham surgeries. A sham surgery involves undergoing the equivalent surgery required for 

a VAD implant on a healthy animal without actual placement of the device. Characterizing 

platelet activation in sham studies then enables the determination of platelet activation 

attributable to this surgery. With a group of such sham surgical animals studied, one could 

characterize temporal platelet activation expected from the implant surgery and attribute excess 

or extended platelet activation as being related to pump placement and subsequent device 

operation. While earlier reports have performed such sham procedures with calf VAD implants, 
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we did not perform sham surgeries in this chapter [63]. It is also possible that for any animal a 

bleeding or thrombotic complication unrelated to the pump could arise in the implant period and 

that the platelet activation assays could detect this phenomenon. For these implants, given the 

noted pump-related complications, it seems likely that the elevations in platelet activation seen 

were related to those complications, but other sources cannot be entirely dismissed. 

 

In the development of artificial organs, hemolysis is nearly universally assessed during 

preclinical testing, whereas platelet activation is not. These two parameters, both relevant to 

potential clinical-use blood trauma generated by a device, are not necessarily changing the same 

way over the course of device implantation. In the first implant of this study, hemolysis remained 

low throughout the study while platelet activation was elevated after day 2. In the second 

implant, hemolysis and platelet activation were both initially high, on day 10 however hemolysis 

returned to baseline levels, while platelet activation remained highly elevated. In the final 

implant hemolysis and platelet activation were both low until the final data point where platelet 

activation rose sharply following pump stoppage and the hemolytic markers remained relatively 

constant. These results illustrate the lack of agreement between the erythrocyte-related and 

platelet data. Considering the platelet activation data in concert with the hemolysis and blood 

protein data provides greater insight into the temporal course of VAD biocompatibility. 

 

In the third implant the use of in vitro stimulation with agonists was introduced to 

evaluate circulating platelet responsiveness. A low platelet activation result following 

stimulation would suggest dysfunctional platelets which can not express its markers for platelet 

activation perhaps due to activation marker shedding. An inability for already activated platelets 
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to further respond to agonists would suggest a setting where circulating platelets are already 

activated to a point beyond which there is a limited ability to respond further.  For the third 

implant the mostly low circulating platelet activation values were accompanied with an ability of 

these platelets to respond to agonists ADP and PAF. The response to these platelet agonists 

suggested that the low platelet activation levels observed in this implant reflected minimal 

impact of the PediaFlow PF1 pediatric VAD on platelets, suggesting the potential for good 

platelet biocompatibility.  In contrast, the platelet activation value at the last data point in this 

implant was elevated and platelets from this data point were not able to respond further to 

stimulation.  

 

In the second PF1 implant, pre-operative platelet activation was very high. To obtain pre-

operative samples in our first two implants required animal restraint along with jugular 

venipuncture which induces fear in the animal. Turner and Hodgetts observed stress and 

anesthesia result in changes in ovine jugular hematocrit as a result of sequestering of red blood 

cells in the spleen [125]. The lack of  tranquility in the sheep’s environment was also mentioned 

as a potential stress [125]. These stresses then may have been responsible for the very high pre-

operative platelet activation in our second PF1 implant. In the first PF1 implant the animal was 

housed in the animal facility for a much longer time than the animal of the second implant and 

had grown accustomed to its surroundings, perhaps contributing to the low pre-operative platelet 

activation values. To alleviate artifact in the collection of pre-operative platelet activation data, 

we have since adopted the practice of placing an indwelling catheter in the jugular vein pre-

operatively in the implant animal. The use of such a catheter reduces the potential for stress-

induced artifact in pre-operative sample collection by eliminating the need for animal 
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restrainment and needle stick associated with a jugular venipuncture blood draw. It is worth 

noting that post-operative samples are also collected through a vascular access point. The 

placement of the indwelling catheter pre-operatively was a potential cause for the low pre-

operative platelet activation values observed in the third PF1 implant. 

 

Pump flow was measured by an ultrasonic flow probe. The ultrasonic flow probe relies 

on a continuous and complete coupling between the probe and the outflow graft.  The probe is 

initially coupled to the graft in the perioperative period with ultrasound jelly and serous fluids 

from the inflammatory response to surgery.  The coupling is broken as these materials resorb, 

and there is a period of signal loss until tissue growth and encapsulation reforms the coupling, 

which in our experience typically occurs within 7-14 days post-operatively.  This phenomenon 

should have been observed in the first two implants; however both of these implants 

unfortunately had significant blood loss into the chest and this fluid likely maintained continuous 

coupling.   

 

The maximum flow rate for PF1 (0.81 LPM) was attained during our first implant. The 

design goal for the PediaFlow ultimately is to attain a maximum flow of 1.5 LPM. The PF1 was 

specifically designed to run at subcritical speeds, which limited our maximum speed and hence 

our maximum attainable flow. In our next PediaFlow design iteration we will focus on designing 

the motor (while maintaining the current fluid path) for supercritical performance which may 

enable us to attain the target flows. Once we have re-optimized the motor we can continue with 

additional implants to assess biocompatibility and hemodynamic performance.  Although the 

fluid path will remain the same, the biocompatibility results may change from what we report in 
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this study.  Our hope would be for improvement in platelet and red blood cell biocompatibility in 

future studies, however, our hemolysis and platelet activation assays have demonstrated their 

ability to be sensitive markers of biocompatibility whether the results are positive or not. 

 

The chronic evaluation of the PF1 provided valuable guidance towards improving the 

PediaFlow pediatric VAD in future design iterations. The in vivo experience validates earlier 

CFD work and feasibility of the design of a magnetically levitated turbodynamic pump to 

generate flow rates in the range necessary to provide support to the youngest cardiac patients. 

The first generation pump design was able to generate promising low hemolysis data overall and 

at times, promising platelet biocompatibility. Attaining this level of biocompatibility at low flow 

rates is encouraging. Future design iterations of the PediaFlow however, must focus on achieving 

higher flow rates (1.5 L/min) in order to meet the design goal of providing cardiac support to 

children up to 2 years of age. Cannula/pump connection issues negatively impacted each 

implant, in particular the first two, and along with increasing the maximum flow rate these are 

the most significant issues to be addressed in the next design iteration.  Pump miniaturization to 

ensure implantability in newborns and strengthening the cable jacket to prevent fluid penetration 

also needs to be addressed.  

4.5 CONCLUSIONS 

The PediaFlow™ PF1 pediatric VAD pumped 660-810 mL/min during three chronic 

ovine implants. While this 1st generation pediatric VAD design had several limitations with 

respect to a limited flow range, cannula connections, and compromised driveline, the use of 
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magnetic levitation and actuation to generate flow rates necessary to meet newborn patient 

cardiac demands was validated. Hemolysis levels overall were low during the implants. And 

circulating platelet activation assays temporally reflected pump/cannula implant problems, pump 

stoppage and animal post-operative complications, indicating the utility of these assays as 

sensitive markers of biocompatibility in the ovine model.  
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5.0  PLATELET ACTIVATION FOLLOWING IMPLANT OF THE SECOND 

GENERATION PEDIAFLOW DEVICE 

5.1 INTRODUCTION 

The second generation prototype of the PediaFlow VAD (PF2; shown in Figure 5-1) was 

able to achieve higher flow rates than our first generation PediaFlow VAD through supercritical 

operation by utilizing a more efficient 4-pole motor.  Although the fluid path remained the same, 

the outer housing has a significantly reduced device volume of 35.3 mL (40% decrease) and 

improved cannula connections when compared to the first generation PediaFlow design. Our 

objective in this chapter was to characterize platelet activation during the implant and operation 

of the second generation design of the PediaFlow VAD and also perform a series of surgical 

sham studies to examine purely surgical effects from the implantation procedure. Both 

circulating platelet activation status and the ability of circulating platelets to respond to agonists 

delivered in vitro were quantified. In addition a newly available antibody marker to quantify 

ovine platelet activation was characterized as was the effect of obtaining pre-operative blood 

from venipuncture versus an indwelling venous catheter.  
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1 cm1 cm

 

Figure 5-1 The PediaFlow PF2 pediatric VAD 

5.2 METHODS  

Blood Collection  

An indwelling catheter was inserted in the jugular vein of Dorset-cross, Cheviot, and 

Suffolk sheep for pre-operative blood collection for each of the PF2 implants and surgical sham 

studies. At least three pre-operative samples were collected from the indwelling catheter and 

averaged to obtain the pre-operative data point (post-operative day zero).  

 

Pre-operative blood samples were also used to assess the ability of MCA2418 (an anti-

human CD62P antibody-clone Psel.KO.2.5; AbD Serotec; Raleigh, NC, USA) to preferentially 

bind to activated ovine platelets in nine ovines.  To assess the effect of the jugular vein catheter 

versus jugular venipuncture on pre-operative platelet activation, blood was also drawn via 

jugular venipuncture as described in Section 2.1.2.  
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In vitro biocompatibility flow loop setup 

A mock circulatory test loop with a blood bag reservoir and including the PF2 pediatric 

VAD was prepared as described in Section 4.2.  Ovine blood (240 mL) was added to the 

reservoir and circulated for 2 hr each at 0.5, 1.0, and 1.5 L/min.  Blood was collected hourly for 

assessment of platelet activation. A similar test loop was constructed with another prototype 

pediatric VAD device which utilized an axial thrust bearing (Toddler VAD, Figure 8-6) for 

comparison and evaluated for one hr at 1.8 L/min. 

 

Assessment of platelet activation 

Platelet activation was quantified during the 6 hr in vitro study before and after 

exogenous stimulation with platelet activating factor (PAF; Calbiochem, San Diego, CA, USA). 

Platelet activation was assessed pre and post surgery with samples from each PF2 implant and 

sham surgery animal. In addition, platelet activation was assessed following stimulation using 

adenosine diphosphate (ADP; Calbiochem, San Diego, CA, USA) or PAF in samples from three 

of the sham animals and from all of the PF2 implants.  

 

Blood (5 µL) was transferred from tubes into 12  75 mm polystyrene tubes with 5 µL of 

CAPP2A (7.5 µg/mL; Veterinary Medical Research and Development; VMRD, Pullman, WA, 

USA), 5 µL of goat anti-mouse IgG-phycoerythrin (60 µg/mL; Invitrogen, Carlsbad, CA, USA), 

and 35 µL of Tyrode’s buffer (Electron Microscopy Services, Hatfield, PA, USA) with 1% 

bovine serum albumin (BSA) and 0.106M sodium citrate and incubated for 20 min. Each 

unstimulated sample was performed in duplicate.  

 80 



 

ADP and PAF stimulated samples were prepared as above using 25 µL of Tyrode’s 

buffer with BSA, and 5 µL of either 200 µM ADP or 100 µM PAF, and 5 µL of 20-mM GPRP 

(Anaspec). Samples were then washed with 1 mL of Tyrode’s buffer with 1% BSA and 0.106 M 

sodium citrate (washing buffer) and mixed. Samples were then centrifuged for 10 min at 132  g. 

The supernatant was removed and the pellet resuspended. IgG1-Alexa Fluor 488 (isotype 

control; 5 μL of 25 µg/mL; MCA928A488, AbD Serotec), MCA2418-Alexa Fluor 488 (5 μL of 

25 µg/mL; MCA2418-A488), or MCA2419-Alexa Fluor 488 (5 μL of 25 µg/mL; anti-human 

CD62P-clone Psel.KO.2.7, AbD Serotec) were then added to tubes and incubated for twenty 

min. Samples were then mixed with 1 mL of washing buffer and centrifuged at 132 x 

g. Following removal of the supernatant, samples were fixed with 1% paraformaldehyde. Flow 

cytometric analysis was performed as described in Section 2.1.2. MCA2419 was utilized as the 

platelet activation marker to quantify the effect of the jugular vein catheter on pre-operative 

platelet activation. 

 

In vitro characterization of MCA2418 binding to activated ovine platelets 

MCA928-A488 was used as the isotype control antibody for the evaluation of MCA2418-

A488. Unstimulated samples were prepared as above replacing the 35 μL of citrated Tyrode’s 

buffer with 30 μL of Tyrode’s buffer with (BSA) and 5 µL of GPRP. ADP and PAF stimulated 

samples were prepared as above. Fluorescence associated with MCA2418-A488 for control and 

activated samples was compared to evaluate whether MCA2418 preferentially bound to activated 

ovine platelets. Flow cytometric analysis was performed as described in Section 2.1.2. 
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Implant procedure 

Three sheep were implanted with two PF2 prototypes (PF2.1, PF2.2- Table 5-1). A 

problematic sensor wire (discussed below) was replaced between the first and second PF2.1 

implants. Implant procedure and post operative care was performed as in Section 4.2 with the 

following alterations. The inflow cannula was an 18F cardiopulmonary bypass cannula (DLP; 

Medtronic, Minneapolis, MN, USA) trimmed to 7 cm and communicated with the left ventricle 

through a stab incision to the heart and secured with a felt-coated sewing ring fixed on the apex 

of the heart with pledgeted sutures. The outflow cannula (20F EOPA cannula trimmed to 9 cm, 

Medtronic) was inserted by an introducer through a snare incision into the descending aorta and 

the cannula was then fixed directly onto the pump outflow connector.  The pump was started and 

operated at the desired RPM (Table 5-1). In addition to heparin administered to maintain the 

activated clotting time between 180-200 secs. Warfarin (intravenous coumadin; Bristol-Myers 

Squibb; Princeton, NJ, USA) was also used to maintain the INR in the range of 2.0-3.0. 

 

Table 5-1: PF2 implant summary 

Study #
Pump 

Prototype
Length of Study 

(Days)
Average Pump 
Speed (krpm)

Estimated Average 
Pump Flow (L/min)

1 2.1 17 13.5 1.2

2 2.1 30 15.5 1.5

3 2.2 70 8.5 0.5  

 

 

Sham surgeries were performed on five animals as described for the implant with the 

following alterations: No inflow cannula was inserted into the sewing ring. After the stab 

incision into the apex of the left ventricle the sewing ring site was stapled shut. The descending 

 82 



aorta was partially clamped with a vascular clamp and an outflow graft was anastomosed onto 

the aorta and tied off at the anastomotic site. Coumadin was not used in the sham studies. 

 

Statistical Analyses 

All data are presented as mean with standard deviation. Statistical analyses were 

performed using SPSS 12.0.1 (SPSS, Chicago, IL, USA). One-way analysis of variance with 

repeated measures (Bonferroni post hoc test) was used to compare the means of MCA2418 

binding to unstimulated and stimulated ovine platelets. A paired samples t-test was used to 

compare means of pre-operative platelet activation from jugular venipuncture and jugular venous 

catheter samples. Significance was considered to exist for p<0.05. 

5.3 RESULTS  

Effect of venous line placement and in vitro assessment of platelet activation  

 In Figure 5-2 the MCA2418 antibody bound at significantly higher levels to ADP and 

PAF-stimulated ovine platelets when compared to unstimulated ovine platelets. Pre-operative 

platelet activation after jugular venipuncture and following placement of a jugular venous 

catheter is shown in Figure 5-3. The level of platelet activation measured in samples obtained 

from the venous catheter was significantly reduced from those drawn through jugular vein 

venipuncture. There was also less variance observed in these activation levels when the catheter 

was utilized.  

 83 



0

20

40

60

80

100

%
 C

D
62

P
 p

o
si

ti
ve

 p
la

te
le

ts

Control
20 uM ADP
10 uM PAF

* 

* 

* p < 0.001

 

Figure 5-2 MCA2418 binding to ovine platelets 

CD62P positive platelets quantified by MCA2418 antibody binding to control and 20 M ADP and 10 M 

PAF-stimulated platelets (N = 9). MCA2418 binding to ADP and PAF stimulated platelets was significantly 

higher (p < 0.001) then its binding to unstimulated platelets. 
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Figure 5-3 Comparison of method of pre-operative blood collection 

Boxplot comparison of pre-operative platelet activation from blood taken by jugular venipuncture and after 

insertion of a jugular venous catheter (N = 12 each). Platelet activation following placement of the jugular 

vein catheter was significantly lower (p < 0.05) then platelet activation from jugular venipuncture samples. 

 

 Platelet activation during a 6 hr in vitro study with the PF2.2 VAD is illustrated in Figure 

5-4. CD62P-positive platelets remained low (< 11%) during this entire study; and the percentage 

of CD62P-positive platelets increased markedly following stimulation with 10 M PAF 

throughout the study. In contrast platelet activation following one hr of contact with the other 
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pediatric pump employing the axial thrust bearing rose to 18% in one hr and platelet activation 

following PAF stimulation rose only to 22%. 
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Figure 5-4 PF2 in vitro platelet activation test 

A) Platelet activation during a six hr in vitro circulatory loop with the PF2.2 pump before and following 

stimulation with 10 M PAF. 

 

Sham surgery studies  

In Figure 5-5A platelet activation quantified by MCA2419 rose following sham surgery; 

reaching a peak on day 7 and then steadily declining, returning to baseline levels within the first 

17 days. In Figure 5-5B platelet activation quantified by MCA2418 with and without agonist 

stimulation of the drawn sample is presented. Platelet activation increased following stimulation 

with ADP and PAF but the difference between stimulated and unstimulated activation levels was 

diminished early in the post-operative period compared to the pre-operative difference. The 

difference in platelet activation before and after stimulation increased as surgery-associated 
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platelet activation dissipated. No kidney infarcts were observed at necropsy in any of these sham 

surgery animals. 

 

Figure 5-5 Platelet Activation following sham studies 

A) Platelet activation in fiv n sham surgical studies 
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e sham surgical studies (n = 5) and, B) platelet activation i

following stimulation of blood with 20 M ADP and 10 M PAF (N = 3). 

Figure 5-6 shows platelet a

plantation. Platelet activation rose following surgery reaching a maximum on day 3 and 

returned to baseline levels on day 6. Platelet activation remained low before sharply rising on 

day 16 subsequent to numerous pump stoppages (rotor de-levitation) that occurred prior to 

termination of the study. These events caused rotor touchdown and were found to be the result of 

a manufacturing defect in a sensor wire in the percutaneous cable. In Figure 5-6B platelet 

activation following agonist stimulation was elevated above platelet activation found in 

unstimulated blood over the course of the implant. As with the sham surgery animals, this 

difference in activation increased as unstimulated platelet activation returned to baseline levels. 
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However, in the final samples taken after the pump stoppages the difference between 

unstimulated and stimulated samples again decreased. As seen in Figure 5-6C, no obvious 

kidney infarcts were observed at necropsy and the outlet region of the impeller had a large 

number of scratches covering the surface that were attributable to the numerous pump stoppages. 

 

 

Figure 5-6 Platelet Activation and Necropsy Results from the first PF2 implant 

A) Platelet ac imulation of tivation in the first PF2 VAD chronic implant, B) platelet activation following st

blood with 20 M ADP and 10 M PAF, and C) image of a kidney and the outflow region of the PediaFlow 

impeller at necropsy. Note: There is light reflection artifact on the left border of the kidney. 
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Platelet activation data and necropsy images for the 30-day PF2.1 VAD implant are seen 

in Figure 5-7. Platelet activation rose slightly following surgery reaching a maximum on day 1 

and returned to baseline on day 2. The low platelet activation observed in this study was 

accompanied by an ability of platelets to become further activated following incubation with 

ADP and PAF. There were two small surface infarcts on the left kidney which did not penetrate 

past the cortex and a relatively low number of scratches on the impeller at necropsy. 

 

Figure 5-7 Platelet Activation and Necropsy Results from our second PF2 implant 

A) Platelet activation in the second PF2 VAD chronic implant, B) platelet activation following stimulation of 

blood with 20 M ADP and 10 M PAF, and C) image of the left kidney and the outflow region of the 

PediaFlow impeller at necropsy. The arrow denotes the presence of a kidney infarct. Note: There is light 

reflection artifact on the left portion of the kidney. 
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Platelet activation and necropsy images for the 70-day PF2.2 VAD implant are displayed 

in Figure 5-8. Platelet activation in the 70 day study sharply rose following surgery reaching a 

maximum on day 3. On day 6 platelet activation began to decline, however between days 9 and 

23 platelet activation measurements fluctuated with relatively high levels of activation detected 

by both antibodies on days 13 and 20. When platelet activation was high in the unstimulated 

samples the ability to respond further to ADP and PAF was limited. From day 23 until study 

termination on day 70, circulating activated platelet levels were relatively low, approaching 

baseline, and the platelets were highly responsive to agonist stimulation. At the time of device 

explantation several surface infarcts were observed on the left kidney; these infarcts did not 

penetrate into the medulla. There were also a moderate number of scratches found on the 

impeller of the device. 
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Figure 5-8 Platelet Activation and Necropsy Results from the third PF2 implant 

A) Platelet activation in the PF2 VAD chronic implant, B) platelet activation following stimulation of blood 

with 20 M ADP and 10 M PAF, and C) image of the left kidney and the outflow region of the PediaFlow 

impeller at necropsy.  Arrows denote the presence of kidney infarcts. 

 

5.4 DISCUSSION  

The recently available MCA2418 antibody was shown to cross-react and to differentiate 

agonist-stimulated from unstimulated ovine platelets, demonstrating its potential utility in 

quantifying platelet activation associated with blood contacting artificial organs. These results 
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are similar to results observed in Figure 2-4 with MCA2419 and MCA2420. Each of these 

antibodies recognize human p-selectin on the surface of activated platelets, but being distinct 

clones they will recognize different epitopes on exposed p-selectin and may have differential 

binding to a given level of platelet activation.  In assessing all of the data on these three 

antibodies with ovine platelets from Chapters 2 and 4, MCA2420 appears to have the lowest 

affinity for p-selectin relative to MCA2418 and MCA2419, and thus would be expected to be the 

least sensitive of the three platelet activation markers. Recently we have observed binding of 

MCA2420 to activated ovine platelets that was reduced compared to the initial data from 

Chapter 2. This reduced antibody binding persisted even with increased antibody 

concentrations. As a result, in future studies it is recommended to utilize two distinct antibody 

clones (MCA2418 and MCA2419) for control purposes and discontinue the use of MCA2420. 

 

The in vitro study of the PF2 VAD in a blood perfusion circuit showed promising results 

with low platelet activation over the entire six hr study. The relatively low levels of platelet 

activation were accompanied by an ability to respond to PAF stimulus. The platelet response to 

PAF decreased over time and at the higher flow rates, but even at six hrs there was still a four-

fold increase in the level of p-selectin positive platelets following stimulation. The PF2 results 

observed in vitro were similar to the low platelet activation observed in vivo, demonstrating the 

potential utility of the described platelet activation assays for in vitro testing. Measurements of 

platelet activation with an axial bearing pump in vitro showed elevations in the first hr to 18%. 

After stimulation however, platelet activation only rose to 22%. This minimal response to PAF 

suggested marked platelet dysfunction. The rise to 18% in the first hr of pumping by itself would 

not necessarily have been considered evidence of lack of platelet biocompatibility; however, the 
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inability of platelets to respond to stimulation suggests that substantial levels of activation and 

platelet damage have occurred.  

 

This study is the first to apply these monoclonal antibodies for biocompatibility 

assessment in an in vitro mock circulatory loop using ovine blood.  While limited to a single 

study, the contrast between the two pump types was dramatic and demonstrates the potential 

utility for more sophisticated in vitro studies. For example, this evaluation modality might be 

able to discern differences between similar pumps with different design parameters i.e. gap 

width, number of impeller blades, stator vanes; that would enable more focused research on the 

promising pumps in the more costly chronic in vivo studies.  

 

Elevated pre-operative platelet activation has been observed in ovines as discussed in 

Chapter 4. In these reports stress was speculated to be a significant factor in this elevation and 

the stress was attributed to the necessity of animal restraint and jugular venipuncture to obtain 

blood samples. The time period for the sheep to acclimate to its new surroundings was also 

considered to be a potential factor. The use of an indwelling jugular vein catheter was applied in 

one animal in Chapter 4.  In this report we performed a substantive comparison of platelet 

activation before and after placement of a jugular venous catheter. Figure 5-3 shows pre-

operative platelet activation was significantly decreased following placement of the jugular 

venous catheter, demonstrating the utility of the catheter in obtaining pre-operative platelet 

activation values. It is interesting to note though, that jugular venipuncture does not altogether 

preclude the acquisition of low pre-operative platelet activation as the spread in the data for 

venipuncture in Figure 5-3 indicates. However, this large variability in platelet activation from 
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venipuncture samples provides further argument for the placement and use of a venous catheter. 

It is also important to note that clotting of blood samples collected via venipuncture was not 

uncommon. The use of a venous catheter is further merited because all post-operative samples 

are collected via an indwelling catheter thus ensuring a more appropriate comparison between 

pre-operative and post-operative values, in addition to avoiding comparison of post-operative 

data to artificially elevated baseline measurements.  

 

VAD implantation generally requires invasive surgery (thoracotomy) that causes 

significant tissue damage, inflammation, and platelet activation. The effect of surgery on ovine 

platelet activation had not been previously quantified. Further, determining the extent to which 

surgery causes ovine platelet activation theoretically allows one to distinguish platelet activation 

that can be attributed to the VAD post-operatively. In this report platelet activation rose 

following the sham surgical procedure peaking on day 7 and then steadily dissipated over time 

back to baseline in approximately two and a half weeks. The ability of the platelets to respond to 

agonist similarly returned to baseline levels in this period. If temporal platelet activation after 

VAD implantation followed a trend similar to the temporal sham surgery it would indicate that 

minimal platelet activation was attributable to the device, a promising biocompatibility result.  

 

Platelet activation in each of the PF2 VAD implants rose following surgery. In each case 

platelet activation returned to a baseline level. In the 17-day implant there was a large rise in 

activation on day 16 (Figure 5-6) which coincided with numerous pump stoppages due to a 

manufacturing defect in the axial position sensor cable in the percutaneous lead. With each pump 

stoppage there was rotor touchdown accompanied by regurgitant flow through the device 
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creating a flow field that may have promoted platelet activation. The numerous scratches found 

on the outflow section of the impeller (Figure 5-6C) may also have promoted activation. Despite 

the large spike in platelet activation it is worth noting that plasma free hemoglobin remained 

within normal limits. This large rise in platelet activation following pump stoppage was also 

observed in Chapter 4. In the 30-day implant of the PF2 VAD (Figure 5-7) platelet activation 

only rose to a modest degree (< 20%).  There were several impeller scratches observed in this 

study, but the number of scratches appeared to be the least of the three implants. In the 70-day 

implant (Figure 5-8) platelet activation had the largest rise following surgery of the three 

implants but returned to baseline levels on day 9. However, in this study there were two 

subsequent sharp rises in platelet activation on days 13 and 20 although there were no observed 

pump stoppages or other pump complications on these days. At necropsy impeller scratches were 

identified and the cause of these scratches may have been related to the two spikes in platelet 

activation. Platelet activation did eventually moderate towards baseline on day 23 of this study.  

 

Temporal platelet activation in ovines implanted with the PF2 VAD, particularly in the 

17 and 30-day studies, showed similar trends to that of the sham studies in that there was a return 

to baseline values in the first two weeks. In fact, in these two studies platelet activation was 

lower than that observed in the sham surgery animals and platelet activation resolved more 

quickly. This is an encouraging biocompatibility result for the PF2 device, but merits some 

consideration as to how the VAD implanted animals would achieve such a result. In the sham 

studies the aorta had to be partially clamped in order to sew the outflow graft onto the aorta 

whereas with PF2 VAD placement the aortic cannula was inserted by a snare incision with the 

use of an introducer that required a much shorter aortic clamp time. In addition, coumadin was 
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not used in the sham surgery studies and while coumadin does not have a direct effect on 

platelets, the use of coumadin in the sham studies might have reduced thrombin generation and 

thus had an effect on the resolution of platelet activation after surgery.  Platelet activation in the 

70-day study was higher in the immediate post-operative period in comparison to the sham 

surgery control animals, which suggests that there was some ongoing activation directly 

attributable to the device. However, pump effects did resolve as platelet activation returned to a 

sustained baseline level on day 23.  

 

In this chapter we also show more extensive results of platelet activation following 

stimulation with platelet agonists in the PF2 VAD-implanted ovines cohort. Low platelet 

activation levels would suggest good platelet biocompatibility however low platelet activation 

accompanied with an inability to respond to exogenous stimulation would suggest blunted 

platelet function as a result of irreversible pump-related damage or perhaps due to heavy anti-

platelet medication. Assessing platelet responsiveness may be particularly useful in preclinical 

studies since a healthy animal would be expected to fully respond to platelet stimulus given that 

other pre-existing conditions (e.g. vascular disease, coagulopathies), prior surgery or device 

blood contact would not be present. The mostly low platelet activation measurements observed 

in the PF2 VAD-implanted ovines was accompanied by an ability of the platelets to respond 

strongly to exogenous ADP and PAF stimulation. At the end of the 17-day implant study and 

early in the 70-day study when platelet activation was high, there was a limited amount of further 

activation that was measured following stimulation. 
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Previous studies have related evidence of thromboembolism, as measured by kidney 

infarcts observed at necropsy, to levels of platelet activation measured to VAD implantation 

[63]. The initial level of platelet activation in the 70-day implant was higher than what was 

observed in the other PF2 studies and at necropsy there were more infarcts that were larger in 

size relative to the other two VAD-implanted ovines, although there was no evidence of kidney 

dysfunction during the implant. One of the reasons for the higher platelet activation and 

increased kidney infarcts may have been that the pump was operated at a much lower flow rate 

(0.5 L/min) than the first two implants. In the 17-day PF2.1 study (Figure 5-6) there was a large 

rise in activation at the end of the study without the presence of kidney infarcts. In this study the 

animal was terminated within 48 hrs of an increased frequency of pump stoppages and there may 

not have been enough time for a large thrombus to form or for a kidney infarct to develop grossly 

from a thromboembolus shed late in this period. A utility of flow cytometric assessment of 

platelet activation versus necropsy evaluation alone is demonstrated here in that it can provide an 

ongoing assessment of how the device is performing whereas it can be difficult to determine 

when an infarct has developed and how it might relate to pump or animal complications 

observed over the course of the study.  

 

In comparing the results of these studies with the PF2 VAD to the PF1 results (Chapter 

4), some comments can be made. For the PF1 platelet activation became elevated at the end of 

the study or was sustained throughout the study for all three animals. In the PF2 series of 

implants all three had periods of sustained low platelet activation and only the initial 17-day 

study ended with elevated levels of platelet activation. Many of the complications encountered 

with the first generation PediaFlow implants were related to peripheral system failures (namely 

 97 



cannula connections). This pump issue was eliminated in the PF2 VAD and the device 

underwent a motor redesign to achieve higher flow rates. Given the higher flow rates and higher 

associated shear the improved platelet biocompatibility observed in the PF2 VAD implants is 

encouraging. The PF2 VAD represents a promising next step in the PediaFlow development 

strategy to develop a pediatric VAD for infants and small children with high blood 

biocompatibility. 

5.5 CONCLUSIONS  

This chapter summarizes additional efforts taken to enhance blood biocompatibility 

assessment of cardiovascular devices in the ovine model. A new monoclonal antibody was 

characterized and demonstrated an ability to quantify circulating activated ovine platelets. The 

placement of a jugular venous catheter for blood collection was shown to significantly reduce 

pre-operative platelet activation artifact due to venipuncture. The effect of VAD placement 

surgery on ovine platelets was characterized and platelet activation attributable to the surgery 

was found to return to baseline levels in approximately two weeks and provides a means of a 

comparison for VADs implanted in the ovine model. Platelet activation following implant of the 

PF2 VAD also returned to baseline levels during the implant periods and platelets in contact with 

the PF2 VAD had preserved platelet function. The PF2 VAD demonstrated promising platelet 

biocompatibility and represents a critical next step in the development of a highly biocompatible 

PediaFlow pediatric VAD. 
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6.0  PLATELET ACTIVATION FOLLOWING IMPLANT OF THE THIRD 

GENERATION PEDIAFLOW DEVICE 

6.1 INTRODUCTION 

The PediaFlow Gen 2 devices showed very promising results with respect to platelet 

biocompatibility. In the PF2 series of implants there appeared to be improvement in the platelet 

activation results when compared to the PF1 device as the PF1 was plagued with numerous 

complications that impacted its biocompatibility results. Overall, the PF2 had improved flow 

characteristics and biocompatibility and the fundamental issue with PF2 was it was too big to be 

implanted in a newborn as seen in Figure 6-1 (courtesy of Dr. James Antaki). In order to make 

the PediaFlow device small enough to be implantable in newborns a third generation (PF3) 

(Figure 6-2, courtesy of Launchpoint Technologies) device was developed which included a 

complete redesign of the fluid path, impeller blades (Figure 6-3, courtesy of Launchpoint 

Technologies, compare to Figure 4-1, bottom panel), stators, etc. These major design changes 

merit assessment of PF3 biocompatibility in terms of platelet activation. In this chapter platelet 

biocompatibility was characterized with both in vitro and in vivo studies of the PediaFlow PF3 

device. 
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Figure 6-1: Image of the PF2 implanted in a 3 kg child (left) and in a 8 kg child (right) 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: The PediaFlow PF3 pediatric VAD 
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Figure 6-3 Computer generated and Digital PF3 Impeller Blade Topology Image  

6.2 METHODS 

In vitro biocompatibility flow loops  

Mock circulatory test loops with a blood bag reservoir including the PF3 pediatric VAD 

was prepared as described in Section 4.2. In the PF3.1 study, the pump was added to the circuit 

and circulated for 2 hr each at 0.5, 1.0 L/min. There were concerns about rotor stability at higher 

flow rates. Following the first PF3 in vivo study a titanium ring was inserted to stabilize the rotor 

at higher flow rates; this updated PF3 is referred to as PF3.1b. The addition of this ring provided 

the necessary rotor stability to allow the pump to run at higher rpms. There were two additional 

in vitro studies performed with PF3.1b. These studies were performed for six hours duration at 

either 0.5 or 1.5 LPM. Blood was collected hourly for assessment of platelet activation in each in 

vitro study. 

 

Assessment of Platelet Activation 

Platelet activation samples were prepared as described in Section 5.2. Platelet activation 

was assessed during the in vitro studies and following stimulation with ADP and/or PAF. Platelet 

activation was assessed pre and post surgery with samples from each PF3 implant animal. In 
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addition, platelet activation was assessed following stimulation using ADP or PAF in samples 

from each of the PF3 implants.  

 

In vivo studies 

Two implants were performed with the PF3.1. Implant procedure and post-operative care 

was performed as described in Section 4.2.  

6.3 RESULTS 

Platelet activation results from the 4 hr in vitro test of PF3.1 are shown in Figure 6-4. 

Platelet activation during the PF3.1 in vivo study is depicted in (Figure 6-5) and after exogenous 

platelet stimulation (Figure 6-6).  In this study the pump ran at a speed of 14.5 krpm, generating 

a flow of approximately 0.8LPM and lasted for 72 days, without any major complications.  

 

Platelet activation results during two 6 hr in vitro tests of PF3.1b are shown in Figure 6-7 

(Pump speed: 0.5 LPM) and Figure 6-8 (Pump speed: 1.5 LPM) respectively.  Platelet activation 

is shown for the PF3.1b in vivo study before stimulation (Figure 6-9) and with stimulation 

(Figure 6-10). In the PF3.1b in vivo study the pump ran at 20 krpm for the first three days, 

providing a flow of 1.1 LPM. Beginning on day three the study was compromised with 

numerous rotor touchdown events. The speed was eventually turned down to 16.5 krpm and 

generating a flow of approximately 0.8 LPM. On postoperative day 9 the pump could not be 

restarted and the study was terminated. The electrical connection to the axial position sensor was 

damaged and was concluded to be the cause of the rotor touchdown events. Figure 6-11 
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illustrates platelet activation from the PF3.1b study including samples after rotor touchdown had 

occurred. 

PF3.1 In vitro Platelet Activation Test
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Figure 6-4 PF3.1 platelet activation in vitro test 
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Figure 6-5 Platelet activation of the PF3.1 implant 
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Figure 6-6: Platelet activation following PF3.1 implant with stimulation 
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PF3.1b In vitro Test (0.5 LPM)
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Figure 6-7: PF3.1b in vitro platelet activation study (0.5LPM) 

 

PF3.1b In vitro Test (1.5 LPM)
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Figure 6-8: PF3.1b in vitro platelet activation study (1.5LPM) 
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Figure 6-9: Platelet activation following PF3.1b implant 
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Figure 6-10: Platelet activation following PF3.1b implant with agonist stimulation 
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Figure 6-11 Platelet activation of the PF3.1b including samples after rotor touchdown occurred. 

 

6.4 DISCUSSION 

Following implant of the PF3.1 platelet activation sharply rose and by day 9 had returned 

to baseline. This temporal response was comparable to what was observed in the sham surgical 

studies (Figure 5-5A). In fact platelet activation was back to baseline more quickly than what 

was observed in the sham studies. This phenomenon was also observed in the PF2 studies, and 

attributed to the longer aortic clamp time necessary in the sham studies and the lack of coumadin 

used in the sham studies. However, in the PF3 studies a vascular graft was sewed onto the aorta, 
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and as a result the PF3.1 implant was very similar to the sham surgeries with the exception of the 

use of coumadin.  

 

Following surgery platelet response to agonist did diminish while the platelets were 

highly activated prior to in vitro stimulation, this post-surgical response has been observed in 

other studies. When platelet activation returned to baseline, platelet response to stimulation also 

increased. On day 27 of the study however platelet activation following stimulation with ADP 

and PAF was reduced. Since platelet activation after stimulation with both ADP and PAF were 

reduced, it is reasonable to project that there was some platelet dysfunction occurring at this data 

point. It is also important to note that this platelet dysfunction was not sustained as platelet 

activation after stimulation with ADP and PAF was back to its baseline levels on day 30 (the 

next data point). The response to ADP was so low in fact that it appeared that no agonist had 

been added. In future studies we endeavor to perform the stimulation studies in duplicate so as to 

diminish the possibility of user error. On day 70, there was also a drop in platelet response to 

PAF, but because platelet response to ADP was unchanged, it was concluded that there was no 

change in platelet function. Since ADP is a weaker activator of platelets, it is thought that a 

decrease in platelet function would first be observed as a reduction in platelet response to ADP.  

 

In the sterilization process the housing for the PF3.1b came off and it was not possible to 

securely fasten on the pump housing during the study. It is possible some fluid may have been 

entrapped in the housing. The loose housing resulted in a damaged pin connecting the housing to 

the axial position sensor. This damage to the axial position sensor caused numerous pump 

touchdown events, which resulted altered flow (regurgitation). The numerous pump stoppages 

 108 



and subsequent restarts also likely contributed to embolization of thrombus as evidenced by a 

number of infarcts at necropsy. These events certainly impacted platelet activation and from day 

3 to day 6 there was a sharp rise in the level of platelet activation through the end of the study. 

Platelets responded to agonist stimulation through day 3, but after day 3 platelets were already 

highly activated and there was only a limited response to agonist above the already elevated 

platelet activation levels. In Figure 6-11 platelet activation is shown for the PF3.1b study 

including samples taken when rotor touchdown events were known to have occurred. Platelet 

activation in samples following rotor touchdown events were typically elevated above platelet 

activation in samples where touchdown events were not known to occur.  

 

The environment in the pump following numerous pump stoppages is a clear nidus for 

platelet activation. In PF1 (Figure 4-7C-D) and in PF2 (Figure 5-6 A-B) implants where pump 

stoppages were known to occur there were sharp rises in platelet activation. This underscores 

again the utility of the platelet activation assays in that they consistently show a response when 

there are known pump complications. Given the positive results observed with the initial 3.1 

study it is certainly possible that were it not for the issues with the axial position sensor, a major 

nidus for platelet activation, the PF3.1b study could have exhibited more promising platelet 

biocompatibility. At necropsy there was no thrombus observed around the titanium ring that was 

placed to stabilize the rotor, the major difference between PF3.1 and PF3.1b, so it is unlikely that 

the ring was a nidus for platelet activation.  
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6.5 CONCLUSIONS 

The PF3 device with its size close to that of an AA battery is now small enough to be 

implanted into newborns. Platelet activation in each of the in vitro flow loops showed promising 

low levels of activation coupled with a robust response to exogenous stimulation. Platelet 

biocompatibility in the initial study was very promising with a return to baseline platelet 

activation within 9 days, which represented a swifter resolution of platelet activation than the 

sham studies. Platelet activation following exogenous stimulation was appropriate, signifying 

retained platelet function. In the second chronic study, platelet activation was highly sensitive to 

the numerous rotor touchdown events again illustrating its utility in the assessment of pump 

biocompatibility. Further efforts to increase the flow of this pump while securing the axial 

position sensor are needed. Along with the overall promising platelet activation results, the 

miniaturization of the PediaFlow in this third generation device is a critical step in the goal to 

yield an implantable, highly biocompatible blood pump for newborns.   

 110 



7.0  PLATELET ACTIVATION FOLLOWING IMPLANT OF THE LEVITRONIX® 

PEDIVAS™ 

7.1 INTRODUCTION 

The Levitronix®  PediVAS™ (Figure 7-1, courtesy of Dr. Kurt Dasse) is a magnetically 

levitated extracorporeal pump leveraged from the Levitronix CentriMag, an adult pump that has 

been implanted in over 6000 patients worldwide (personal communication-Levitronix). The 

CentriMag has been successfully applied as a bridge to decision as an LVAD, RVAD, or BiVAD 

and further has been used as the pump head in ECMO circuits [126-129]. The PediVAS can 

provide 0.3 to 3.0 liters of flow for up to 30 days duration and has been implanted in over 500 

children worldwide [23]. There is a need for such devices able to provide short term support as a 

bridge to decision to a longer term support device, or to allow the myocardium time to recover 

[23]. The ability of the PediVAS to generate “lower” flow rates (< 2 LPM) is important as it is 

estimated that the largest cohort of pediatric patients that would benefit from ventricular assist 

devices (VADs) are less than one year of age [20, 22] . The PediVAS is currently undergoing 

final preclinical studies in anticipation of beginning a clinical trial in the United States. The 

objective of this chapter was to further characterize the blood biocompatibility of the Levitronix 

PediVAS in a cohort of studies in terms of circulating activated platelets using commercially 

available cannula and customized Levitronix cannulae (Figure 7-2, courtesy of Dr. Kurt Dasse). 
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7.2 INITIAL CHRONIC PEDIVAS STUDIES  

 

 

Figure 7-1: Levitronix PediVAS system, and close up of the PediVAS pump head. 

 

7.2.1 Methods 

Implant procedure 

We employed lambs weighing approximately 20–30 kg to test the performance and 

biocompatibility of the PediVAS. Surgical procedure and post-operative care were performed as 

in Section 5.2 with the following alterations. The pump and extracorporeal circuit were primed 

with warm balanced electrolyte solution, connected to the cannulae, and the system was placed 

adjacent to the animal to minimize extracorporeal tubing (medical grade Tygon) lengths. An 

ultrasonic flow probe was connected onto the outflow tubing. The pump was started and 

 112 



operated at the following flow range: 0.5-1.5 LPM. The animal was allowed to awaken 

immediately after surgery and supported with a vest and sling restraining system.  

 

 

Figure 7-2: Levitronix custom cannulae  

 

Assessment of cellular activation 

Preoperative whole blood was collected from healthy ovines by jugular venipuncture. 

Post-operative blood was collected as in Section 4.2. Platelet microaggregates were measured as 

described in Section 2.1.2. Platelets binding Annexin V was measured as described in Section 

2.3.2. Leukocyte platelet aggregate tubes were prepared with 120 L of the Tyrode’s buffer, 

5L of 75 g/mL GB20A (ovine platelet marker, VMRD) or 5 L of 75 g/mL Coli S69A, 100 
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L of blood, and 5 L of 300 g/ml goat anti-mouse phycoerythrin (Invitrogen, Carlsbad, CA) 

and incubated for 20 minutes. Samples were then washed and resuspended as previously 

described. Anti-ovine CD45 (pan leukocyte marker; 10 L; AbD Serotec) was added and 

incubated for 20 minutes. ACK buffer was added to lyse the RBCs and the samples were 

centrifuged and resuspended as before, washed with Tyrode’s buffer with citrate, then fixed with 

1% paraformaldehyde. A 2% fluorescent intensity threshold was set based on the isotype control 

antibody to leukocytes (CD45-positive cells); leukocytes with GB20A fluorescence above this 

threshold were considered leukocyte platelet aggregates. 

 

7.2.2 Results 

Measures of platelet activation by flow cytometry including Annexin V, platelet 

microaggregates, and platelet leukocyte aggregates are plotted in Figure 7-3. All of the platelet 

activation indices all increased slightly after the implant surgery. Annexin V increased markedly 

on day 14 and remained elevated through day 28. All of the indices returned to below or slightly 

elevated levels compared with the preoperative values by the conclusion of the study. 
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Figure 7-3: Platelet Positive Events following initial PediVAS implants 

Flow cytometric assays of platelet activation. Assays of Annexin V, platelet microaggregates, platelet 

leukocyte aggregates, were obtained during a 30-day period of observation after device implantation. These 

indices increased during the implant period but returned to levels below or slightly elevated compared with 

the preoperative levels. 

7.2.3 Discussion 

Initial studies with the Levitronix PediVAS produced positive hemodynamic results in 

generating the desired flow rates of 0.5 – 1.5 LPM. However the limited experience with the 

ovine model in these initial studies led to a number of issues with the implant procedure, 

anesthesia, anticoagulation, as well as respiratory management. A number of the assays 

developed in Chapter 2 were not yet available for biocompatibility assessment. There was very 

little increase in the indices following surgery and in the case of leukocyte platelet aggregates 
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and platelet microaggregates changed very little over the course of the study. The validity of the 

leukocyte platelet aggregates assay as discussed in Section 3.2.3 remains a question here until 

the utility of the assay can be confirmed through cellular visualization, or other means. Annexin 

V did sharply rise after 14 days suggesting some ongoing platelet activation; however, this 

activation was not sustained. As mentioned above these initial studies were ongoing along with 

much of the assay development outlined in Chapter 2.  The Annexin V assay must be analyzed 

on the flow cytometer right after the incubation period because there is calcium in the Annexin V 

binding buffer used in the assay which can activate the platelets if the blood is not analyzed soon 

after the incubation period. As a result it is possible that inexperience with this assay may have 

led to some of the elevated Annexin V binding to platelets after the initial two weeks. This 

hypothesis is feasible since in subsequent PediVAS and PediaFlow in vivo studies using the 

Annexin V assay, its binding to platelets typically was not elevated even when there was 

substantial p-selectin expression on platelets, thrombotic deposition in the cannula or evidence of 

kidney infarcts. It is important to note that Annexin V binding did return to baseline by the end 

of the study. If the increase in Annexin V was strictly due to the PediVAS pump, it is 

encouraging that pump-induced activation dissipated but not as promising as sustained baseline 

levels after the initial surgical insult. 
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7.3 TEMPORAL PEDIVAS STUDIES APPLYING DEVELOPED FLOW 

CYTOMETRIC P-SELECTIN ASSAYS  

7.3.1 Methods  

Blood collection 

Pre-operative blood was drawn via jugular venipuncture using an 18-gauge 1.5-in needle 

with syringe, discarding the first 3 mL. Blood (2.7 mL) was then added to sodium citrate tubes.  

At least two pre-operative samples were collected and averaged to obtain the pre-operative data 

point (post-operative day zero). Post-operative samples were collected as described in Section 

4.2. 

 

Assessment of platelet activation  

Platelet activation was assessed pre and post surgery with samples from each animal 

implanted with the Levitronix PediVAS. In animals implanted with the PediVAS and its custom 

cannula platelet activation was also assessed following stimulation using with PAF. Samples for 

platelet activation assessment were prepared as described in Section 5.2.  

 

In vitro biocompatibility flow loop setup 

A mock circulatory test loop with a blood bag reservoir and the Levitronix PediVAS was 

prepared as previously described in Section 5.2. Ovine whole blood was collected by jugular 

venipuncture into a blood bag with of 0.106M sodium citrate solution (1 to 10 by volume). Ovine 

blood (90 mL) was added to the reservoir and circulated for 1 hr at 1.65 L/min against a pressure 
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of 100 mm Hg. Baseline and 1 hr blood samples were collected and assessed for platelet 

activation (before and after stimulation with PAF). 

 

Implant procedure 

Healthy ovines (13; 20-30 kg) were implanted with the Levitronix PediVAS. Implant 

procedure and post operative was completed as described in above in Section 7.2.1. The inflow 

cannula used was either commercially available (cardiopulmonary bypass cannula (Medtronic, 

DLP) or custom Levitronix inflow cannula (Figure 7-2) and the outflow cannula used was either 

outflow graft (Vascutek) or the custom Levitronix outflow cannula.   

7.3.2 Results  

During the one hour in vitro study baseline platelet activation was 8.6% and following 

stimulation rose to 72.5%. After one hour of blood contact in the platelet activation was 2.3% 

and after PAF stimulation was 69.2%.  

 

In vivo PediVAS studies using commercially available cannulae 

Figure 7-4 shows platelet activation following implants of the PediVAS system with 

commercially available cannula that had uncomplicated post-operative courses.  Platelet 

activation rises following surgery and by thirty days has returned to baseline. Figure 7-5 shows 

platelet activation following implants of the PediVAS with commercially available cannula in 

the subset of studies that had post-operative complications including air embolus and thrombotic 

cannula occlusion.  Platelet activation in these cases rise following surgery and begin to decrease 

but following complications platelet activation rises and remains highly elevated at day 30. In the 
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30 day study where an air embolus occurred on day 23 platelet activation returned to baseline at 

day 10; and the average platelet activation from day 10-21 was 9.5% After the air embolus 

occurred (day 23), platelet activation sharply rose and the average level was 59.1% from day 23- 

30. 
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Figure 7-4: Platelet activation following Levitronix PediVAS implant using commercially available cannula 

without post-operative complications. 
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Figure 7-5: Platelet activation following Levitronix PediVAS implants using commercially available cannula 

which had post-operative complications 

 

In vivo PediVAS studies using custom cannulae 

Platelet activation following implant of the Levitronix PediVAS using the custom 

cannulae in the subset of animals that had few or no kidney infarcts is depicted in Figure 7-6. 

Platelet activation in these animals rose following surgery but came back down to below baseline 

values.  Platelet activation following stimulation was substantially higher than platelet activation 

prior to stimulation. Platelet activation in the subset of animals that had mild to moderate kidney 

infarcts and/or thrombus deposition in the cannulae are illustrated in Figure 7-7. Platelet 

activation in these animals rose following surgery and remained elevated throughout the surgery. 

In these studies platelets demonstrated a limited ability to further respond to exogenous platelet 

stimulus. In one of these studies where the implanted animal had a moderate number of kidney 
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infarcts and thrombotic obstruction of the inflow cannula platelet activation was elevated at 

50.4% on day 27 and following PAF stimulation was 50.9%, on day 30 platelet activation 

dropped to 18.7% and following PAF stimulation was 14.9%.  
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Figure 7-6: Platelet activation following Levitronix PediVAS implant using the customized cannula before 

and after stimulation with 10 M PAF in implants that had few/no kidney infarcts. 

7.3.3 Discussion 

The Levitronix PediVAS was designed without bearings, seals, and with large fluid gaps 

to promote biocompatibility [23-24]. The CFD results from Zhang et al also showed no areas of 

stasis and in the majority of the flow field did not have areas of high shear (< 100 Pa) which 

suggested the potential for promising biocompatibility [24]. In fact, promising hemolysis levels 

were demonstrated in vitro and in vivo [23-24]. In this report, the acute in vitro study 
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demonstrated that platelet activation did not increase from baseline and platelets retained their 

ability to respond to stimulus, signifying the potential for good platelet biocompatibility. 
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Figure 7-7: Platelet activation following Levitronix PediVAS implant using the customized cannula before 

and after stimulation with 10 M PAF in implants that had a moderate number of kidney infarcts and/or 

thrombus deposition in the cannulae 

 

High pre-operative platelet activation was an observation in Sections 4.4 and 5.4 and has 

been attributed to animal stress during blood collection. In PediVAS implants however we were 

not able to place jugular venous catheters pre-operatively in this study as in Sections 4.4 and 5.4. 

Platelet activation following implant of the PediVAS (Figure 7-4 to Figure 7-7) was elevated in 

the early post-operative period as expected following surgery. As a result, the high pre-operative 

platelet activation makes it more challenging to assess post-operative platelet activation as it 

appears that platelet activation does not rise following surgery. Without the pre-operative artifact 

however, a post-operative rise following surgery would be appreciated. 
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In the ovine sham surgical studies platelet activation (Figure 5-5) due to the surgical 

insult rose following surgery and returned to baseline in approximately two weeks. Persistent 

platelet activation as seen in Figure 7-4, Figure 7-5, & Figure 7-7 suggests ongoing platelet 

activation past the initial two weeks. Since the implanted animals were otherwise healthy, 

ongoing platelet activation after two weeks can be attributed to the PediVAS device.  Since the 

PediVAS is an extracorporeal device it is also important to note that deployment of this device 

requires the use of a variable length of medical grade Tygon tubing along with connectors that 

may impact biocompatibility. Given the surface area and length of Tygon tubing in contact with 

blood, its impact on biocompatibility may not be negligible. Platelet activation in the majority of 

the studies (Figure 7-4 and Figure 7-6) however, did return to baseline by the conclusion of the 

study which is an encouraging result.   

 

Several of the PediVAS implants did however have some complications and in these 

studies platelet activation (Figure 7-5) remained elevated. The complications included air 

embolus and thrombus deposition on the Tygon tubing or in the inflow cannula. The air embolus 

occurred on day 23 of one of the studies and resulted in a sharp rise in platelet activation 

following the occurrence. The air embolus occurred as a result of a human error while collecting 

a blood sample from the arterial line and was not the result of cavitation or other pump related 

issue.  In this study there was a promising platelet activation time course before the embolus, 

with a return to baseline by the tenth day, mirroring the temporal course of the ovine sham 

studies (Figure 5-5). This particular 30 day study illustrated the sensitivity of the platelet 

activation assays as platelet activation responded to the observed animal complication. 
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Cannula design is an essential component of VAD development and cannula design 

parameters (shape, material, etc.) can have a significant impact on hemodynamic performance 

and biocompatibility [130-131]. As a result it is essential to evaluate the hemodynamic and 

biocompatibility performance of the PediVAS along with the customized cannula. Platelet 

activation results with the custom cannula are displayed in Figure 7-6 & Figure 7-7. In Figure 

7-6) platelet activation returned to below the elevated baseline levels and followed a temporal 

course similar to that observed in sham surgical controls (Figure 5-5). Platelets from these 

studies responded to agonist stimulus throughout the time course signifying that platelets 

following blood contact with the PediVAS retained their functionality.  The low observed 

platelet activation was accompanied with few or no kidney infarcts observed at necropsy. 

 

 In the custom cannula cohort where there were moderate number of kidney infarcts 

and/or thrombotic deposition of either the inflow or outflow cannula at necropsy there was a 

higher level of platelet activation (Figure 7-7) compared to the “few/no infarct” group (Figure 

7-6) . There was a lesser amount of further activation possible in the moderate infarct group due 

to the higher initial platelet activation. These results suggest a potential relationship between the 

level of platelet activation and the level of kidney infarcts and signify the utility of the platelet 

activation assays employed in this study.  

 

In one of the studies from the moderate infarct group platelet activation dropped from 

50.9% to 18.7% on the last day.  This would have been considered a positive result however 

platelet activation following stimulation also drops markedly to 15%. Platelet activation 
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following stimulation would have been expected to remain elevated; its descent suggests marked 

platelet dysfunction at the end of this study. This study illustrates the importance of employing 

stimulation assays during biocompatibility studies as the low final platelet activation result on 

the final of this singular study would have given the impression of improving biocompatibility 

when biocompatibility was diminished. At necropsy there were several cortical infarcts present, 

and large thrombi lodged in both the inflow and outflow cannulae. Despite nearly total occlusion 

of the outflow and inflow cannula however, it is worth noting that serum chemistry values 

remained within normal limits. 

 

In the other two implants from the custom cannula cohort with moderate kidney infarcts, 

serum chemistry values (creatinine) for kidney function were normal, which indicates that 

despite some thrombotic injury to the kidney there was no permanent renal damage. Preservation 

of normal kidney function is a positive result but perhaps underscores the limitations of renal 

serum chemistry values in the biocompatibility assessment of artificial organs. Creatinine 

however is thought to be a poor indicator of kidney injury [132]. Severe kidney damage would 

be necessary before these values became abnormal. More sensitive markers of acute kidney 

injury are becoming available including: liver-type fatty acid binding protein, serum or urine 

levels of neutrophil gelatinase associated-lipocalin, urinary levels of kidney injury molecule-1, 

and urinary levels of IL-18 [133-135]. While it is promising that platelet activation assays used 

in this chapter appear to bear promise in detecting subclinical thrombotic damage it would be 

interesting to note if these more kidney injury markers become elevated in sheep that have 

numerous kidney infarcts and if so could be compared to platelet activation results as a means to 

further discriminate the sensitivity of the employed platelet activation assays.  
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It is unknown exactly what level of platelet activation and kidney infarcts would preclude 

a device preceding to a clinical trial, but clearly the least amount of platelet activation and kidney 

infarcts that a pump design generates would be desirable, as this would ensure the most 

biocompatible device is sent for clinical use. However, it may be unlikely to expect that a pump 

will generate minimal platelet activation in preclinical studies. Preclinical studies of the 

HeartMate II VAD implanted in the bovine model showed that platelet activation was 

persistently elevated (35-55%) after the surgical effects had dissipated [63]. In the clinic the 

HeartMate II has been approved by the FDA and has been successfully implanted in thousands 

of patients; however, stroke rates have been reported to be as high as 18%, not including other 

cases of device thrombosis [136-138]. While the HeartMate II has been immensely successful, 

the stroke rates can still be improved. The promising clinical results with the HeartMate II 

despite persistent platelet activation in preclinical animal models suggest that further reduction in 

observed preclinical platelet activation after the effects of surgery have dissipated could 

potentially lead to lower stroke rates in clinical practice and this should be the focus during 

preclinical VAD design. A level of 20% or less platelet activation with preserved platelet 

function after the effects of surgery have dissipated would appear to be a good design goal to 

target. In our experience studies where ovine platelet activation was less than 20% after surgical 

effects had dissipated typically had a good post-operative course with few kidney infarcts. In 

addition, a target of 20% platelet activation would not require complete dissolution of pump 

induced platelet activation, but would be less than what was observed in the preclinical 

evaluation of the Heartmate II device, which despite being done in the bovine model is the only 

relevant preclinical study for comparison. 
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The platelet activation assays employed in this study have the potential to be valuable in 

comparing various designs, cannula configurations etc, which might not appear different in 

comparison studies evaluating only serum chemistry values. This phenomenon was observed in 

the bovine model where platelet activation assays similar to those employed in this chapter could 

detect differences the level of platelet activation in VADs with different surface coatings 

whereas the serum chemistry and hemorheology values could not detect meaningful differences 

in the surface coatings [62, 100]. 

 

The temporal course of platelet activation (Figure 7-6) in the “few/no infarct” group 

appears to be less than that observed in the uncomplicated cohort of studies using the 

commercially available cannula (Figure 7-4). This suggests the potential for more promising 

biocompatibility for the PediVAS using the custom cannula when compared to the commercially 

available cannula. However, since there were a moderate number of kidney infarcts and/or some 

deposition in the cannula more studies may be prudent to ensure the safe biocompatibility of the 

PediVAS in children with the custom cannulae set. Further investigation into how to prevent the 

elevated kidney infarcts seen in some of the studies might include ways to apply a biomimetic 

coating to the pump or the tubing or investigate ways to reduce the amount of tubing used in 

PediVAS implants to reduce the blood contacting surface area. In summary, the PediVAS was 

successfully implanted and met hemodynamic requirements with both cannulae sets. Platelet 

activation trended with complications and was elevated to a greater extent when there were more 

kidney infarcts and/or thrombotic deposition in the cannula demonstrating the sensitivity of the 

platelet activation assays. 
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7.4 CONCLUSIONS 

The Levitronix PediVAS was successfully implanted in 20 animals and met its 

hemodynamic goals in successfully pumping ovine blood in the desired flow range of 0.5 – 1.5 

LPM. Platelet activation assays generally trended with animal and pump complications as well as 

kidney infarct data. These assays also appeared to be more sensitive than traditional clinical 

markers of renal function with respect to thrombotic kidney damage. Platelet activation using the 

custom cannula holds promise in that a subset of these studies returned to baseline in a temporal 

course similar to VAD sham surgeries. Overall in the majority of studies platelet activation 

returned to baseline levels by 30 days which is an encouraging biocompatibility result; but more 

preclinical studies may help to enhance biocompatibility during clinical trials. 
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8.0  SUMMARY 

8.1 OVERALL CONCLUSIONS 

Bleeding and thromboembolism are major complications associated with VAD placement 

and hinder more widespread use of these devices.  Pediatric VADs under development must have 

diminished levels of complications when implanted in children. The preclinical animal model for 

pediatric VADs is the juvenile ovine model. In this report a number of platelet activation assays 

were developed to quantify activated ovine platelets and function. These assays were able to 

demonstrate lower platelet activation results on biomimetic coated titanium surfaces versus 

uncoated titanium surfaces. Stress artifact observed during pre-operative blood collection was 

significantly reduced after placement of a jugular vein catheter. VAD surgical sham studies 

indicated that platelet activation from the implant surgery dissipated within approximately two 

weeks. During in vivo studies platelet activation assays were successfully used to assess pump 

performance.  During in vivo studies, platelet activation consistently rose following pump or 

animal complications even when hemolysis results remained within normal limits. The level of 

platelet activation also was generally higher in studies where there were a number of kidney 

infarcts or thrombus deposition within the pump circuit when compared to studies that had few 

or no kidney infarcts.  Even when there were numerous kidney infarcts along with elevated 

platelet activation, kidney serum chemistry values typically remained normal, suggesting that the 
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developed platelet activation might be more sensitive in assessing pump performance than the 

standard serum chemistry studies. In several of the PediaFlow and Levitronix studies platelet 

activation rose after surgery before returning to sustained baseline values after the surgical effect 

period had dissipated indicating that these pumps were causing minimal platelet activation. 

These results were further verified in vivo when low platelet activation was accompanied by an 

ability to respond to exogenous agonist stimulation indicating preserved platelet function. This 

low level of activation (before exogenous stimulation) may bode well for potential clinical use of 

the Levitronix PediVAS and PediaFlow VAD. In this study a number of ovine platelet activation 

assays were developed that demonstrated sensitivity in assessing surface coatings and pump 

performance. As a part of comprehensive design and evaluation of prospective blood contacting 

artificial organs the developed assays would be of significant value to improve biocompatibility 

of artificial organs. 

8.2 FUTURE STUDIES 

The results from this work have demonstrated that a number of ovine platelet activation 

assays have been developed. These assays proved to be very useful during in vitro and in vivo 

assessment of the pediatric VADs and suggest promising results for the potential clinical use of 

the PediaFlow and Levitronix PediVAS. There are a number of studies that could be done to 

build upon and enhance what has been learned from this report.  

 

While the platelet activation assays used throughout this work proved to be of great value 

and utility, one drawback is that many of the results presented here evaluated the p-selectin 
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expression marker on ovine platelets.  Multiple anti-p-selectin antibodies were used that had 

different clone numbers which suggested that each antibody bound to a different epitope on the 

p-selectin protein, providing some diversity within the assay. It must be mentioned that p-

selectin is one of the most important cell surface markets on activated platelets and the one most 

extensively examined. However, this work would benefit from the development of other markers 

that could detect different activation markers on the ovine platelet surface. Cell surface markers 

such as CD63, released from dense granules of platelets upon activation, and the activation 

epitope on the platelet fibrinogen receptor could be investigated for ovine platelet activation 

assays. To our best knowledge antibodies that recognize or cross-react to these markers on ovine 

cells do not yet exist. However, some companies such as AbD Serotec offer services where an 

antibody can be created for a particular antigen and this service may be of benefit for these ovine 

studies. Enzyme-linked immunosorbent assays (ELISAs) to measure ovine platelet activation 

markers in serum would also enhance biocompatibility assessment in the ovine model. ELISAs 

depend on antibodies to recognize the epitope of interest and given the dearth of antibodies that 

bind to ovine antigens ELISA evaluation of ovine platelet activation is limited. Some meaningful 

markers to assess via ELISA would include platelet factor-4, -thromboglobulin, thrombin anti-

thrombin complexes, and prothrombin fragment F1.2. The services mentioned through AbD 

Serotec to raise antibodies against cell surface antigens might be a useful starting point in 

developing ELISAs to detect platelet activation markers in serum.  

 

In this report pre-operative platelet activation was elevated in jugular venipuncture 

samples compared to samples taken from a venous catheter. The elevated platelet activation was 

attributed to stress, however it would be interesting to note if serum markers or hormones were 
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elevated after blood draw. A comparison study of serum cortisol and epinephrine levels 

following both types of blood collection could provide further insight into the cause of elevated 

platelet activation following jugular venipuncture and perhaps yield other ways to reduce artifact 

in pre-operative blood sampling.  

 

In the surface coating studies the MPC surfaces were studied using TiAl6V4 square pieces 

in a hematology mixer whose flow regime did not mimic conditions seen in pediatric VADs. The 

next step would be to coat the blood contacting surfaces of a pediatric VAD and run 

simultaneous mock circulatory loops with and without the coating to assess it effectiveness.  If 

the coating is successful in vitro (i.e., decreased platelet deposition and activation), in vivo 

studies with the pumps would be necessary to assess platelet activation on pumps with and 

without the blood contacting surface coatings, to further demonstrate its utility for potential 

clinical application in blood pumps.  Combining superior VAD design (magnetically levitated 

and actuated impeller, a flow regime without vortices, and with no or minimal areas of 

recirculation and stagnation) with a superior surface coating strongly resistant to platelet 

deposition could significantly improve outcomes in VAD patients and ultimately enable more 

patients to benefit from this life saving technology.   

 

Although the VAD community is increasingly moving to rotary blood pumps, there is 

much still to learn about the effects of these supraphysiologic shear environments on blood 

elements. Development of a blood shearing instrument that mimics a pediatric VAD similar to 

what was  developed by Wu et al coupled with the assays developed in this report to determine 

tolerable shear stress and exposure times would greatly aid the understanding of flow effects on 
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blood cells [139]. More comprehensive in vitro studies performed with the PediaFlow and 

PediVAS examining the effects of different flow rates and even comparison studies of devices 

with and without contact bearings would further improve our understanding of blood 

biocompatibility. Results from such work could then be compared with CFD models and enable 

refinement of CFD models to better predict platelet behavior and perhaps improve the selection 

of the most biocompatible pump designs and improve the biocompatibility of the next generation 

of VADs.  

 

A major objective of this work was to assess leukocyte activation following VAD 

implant. Assays to detect granulocyte and monocyte platelet aggregates appeared to increase 

following agonist stimulation but the isotype control antibody binding also increased suggesting 

that the developed GPA and MPA assays may not be meaningful. Also, when the leukocyte 

platelet aggregate assay was used, it did not appear to be very sensitive to the VAD implant. 

Further investigation should be performed in vitro to determine if this assay is viable as a 

measure of thrombosis/inflammation in the ovine model. A neutrophil oxidative burst assay may 

merit investigation to assess potential changes in granulocyte function after VAD implant, this 

type of assay does not require antibodies to particular activation markers on the granulocyte, 

which theoretically suggests that it may work in the ovine model. More encouraging in vitro 

results were obtained looking at markers for CD4 T-cell activation, while there was some 

inconsistency in the results and these markers did not reach statistical significance. Additional 

study is merited here, agonist incubation time for example could be varied (i.e. 24 hrs, for 

example) and more consistent results might be achievable. In vitro assessment of CD11b, also 
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thought to be expressed on activated T-cells may also be useful and may eventually become a 

meaningful in vivo T-cell activation assay.  

 

A recent paper looked at cross reactivity of human antibodies to ovine antigens and one 

of the antibodies shown to cross-react to ovines (anti-human CD86, a B-cell activation marker) is 

of interest given the reports of B-cell hyperactivity in some VAD patients. There is increasing 

interest in the study of ruminant immunology, and over time it is expected that more markers 

will become available that recognize ovine markers of leukocyte activation. Activation-induced 

T-cell death as previously mentioned has been observed following VAD placement. In addition 

to its use as a platelet activation marker, Annexin V, also can be used to measure apoptosis, 

further assessment of Annexin V to measure leukocyte apoptosis assay may provide greater 

insight into pediatric VAD biocompatibility. In the Appendix lymphocyte activation following 

PediaFlow and Levitronix PediVAS placement is presented. The majority of these results show 

limited elevation of lymphocyte activation following implant. However, each of these studies 

incorporated prolonged use of antibiotics past the first week of surgery, which would be 

considered atypical for a VAD patient in the absence of infection. Evaluating lymphocyte 

activation during in vivo studies without prolonged prophylactic antibiotics may give a clearer 

understanding of the temporal response of lymphocyte activation following VAD placement. To 

better understand ovine immunology, measuring lymphocyte activation in ovines (not implanted 

with VADs) with known infection may provide the necessary insight into lymphocyte activation 

response and enable further interpretation of lymphocyte activation results when ovines are 

implanted with a pediatric VAD. 
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It comes as no surprise that there are very few ELISA kits available specifically for 

sheep. There are increasing numbers of antibodies that detect serum markers for inflammation 

that have become available from AbD Serotec and could be used as apart of a sandwich ELISA 

to quantify the inflammatory response following pediatric VAD implant, provided the 

appropriate positive controls can be developed to test their sensitivity. These anti-ovine 

antibodies for ELISA use include IL-1, IL-6, and IL-8. Other antibodies that cross react to 

sheep include anti-TNF-, TGF-, and IL-12, IL-4, and IFN-. 

 

As the PediaFlow and PediVAS devices move closer to clinical trial, continued in vivo 

biocompatibility assessment as discussed in this report is necessary to ensure that 

biocompatibility remains promising. In the case of the PediaFlow, a fourth generation device is 

under development that will require extensive biocompatibility characterization. In the most 

recent cohort of PediVAS studies numerous kidney infarcts were observed in half of their custom 

cannula studies, more work is necessary to see if these infarcts can be reduced. To further 

illustrate their biocompatibility some of these preclinical in vivo studies could be run without 

anticoagulation. Measurement of platelet life span would also be an intriguing study for 

subsequent in vivo experiments given the report by Snyder et al of decreased platelet lifespan 

following VAD implant [63]. There are other devices where the developed platelet activation 

assays could be used to assess biocompatibility. The PediVAS for example can be deployed as 

the pump head in an ECMO circuit and given its potential clinical use; the biocompatibility of 

this circuit must be evaluated before it would be approved by the FDA. Other devices that could 

potentially benefit from the preclinical biocompatibility assessment using assays developed in 

 135 



this report include the Levitronix integrated pump oxygenator and the pediatric Jarvik pump, as 

well as novel heart valves under development. 

 

The ultimate arbiter for success of the PediVAS and PediaFlow pump will be how these 

devices perform clinically. In the animal model, both pumps showed promise, however it is 

unclear how the sheep platelet response to these devices will compare to the human platelet 

response. In vitro mock circulatory loops with human and ovine blood set up for each pump 

would provide meaningful comparison studies and could provide insight into the comparative 

response of each species. Further information would be gained in clinical studies where the same 

markers of activation used in the preclinical ovine model are applied during clinical trials. This 

can be done in that a number of the platelet activation assays developed in this report actually 

target human antigens. Attaining a greater understanding of how sheep platelet response 

compares to human platelet response can strengthen our animal assessment methods to ensure 

that the most biocompatible devices enter the clinic. 
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APPENDIX A 

IN VITRO ASSESSMENT OF ANTI-HUMAN PLATELET ACTIVATION ANTIBODIES 

Table 8-1: Anti-human platelet activation antibody binding to ovine platelets 

Manufacturer: Serotec Beckmann Coulter Santa Cruz
Clone #: MEM-259 CLBGran/12 Polyclonal

Antigen Target: Human CD63 Human CD63 Human CD62P 

Quiescent 4.3 ± 0.5 3.8 ± 2.0 11.9 ± 5.5
20 M ADP 6.4 ± 2.7 5.5 ± 2.2 12.4 ± 1.1
10 M PAF 9.9 ± 4.0 6.2 ± 1.8 12.0 ± 2.2

Anti-human Platelet Monoclonal Antibodies; N ≥
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APPENDIX B 

IN VIVO SHAM STUDY 
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Figure 8-1 Platelet Activation following the 6th sham study 

In this study platelet activation was higher than what was observed in the sham surgery 

cohort of studies, seen in Figure 5-5. Platelet activation did not return to baseline. It is worth 

noting that this animal was not on heparin as the other sham animals were because of suspected 
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bleeding. A thrombus was observed in the right atrium, which grew around the jugular venous 

line, at necropsy. Some of the TEG parameters were also elevated early on in the post-operative 

period of this study. 
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APPENDIX C 

IN VIVO BIOMEDICUS STUDIES 
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Figure 8-2: Platelet Activation following initial Biomedicus implant 

On day 5, a pump change was executed due to very high hemolysis rates. As soon as the 

initial pump head was changed, platelet activation decreased back to baseline. There was 

substantial bearing thrombus observed in the initial pump head.  A moderate rise in activation 

was observed following pump failure on day 10. 
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Figure 8-3: Platelet Activation following stimulation after initial Biomedicus implant 

Although platelet activation was not as high as in other studies in the first week after 

surgery, poor response to stimulation especially evident in the inconsistent PAF results may have 

been the result of platelet damage caused by the pump. 
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Figure 8-4: Platelet Activation following 2nd Biomedicus implant 
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Figure 8-5: Platelet Activation following stimulation after 2nd Biomedicus implant 
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Platelet activation rose on the second post-operative day, returning to baseline on day 6. 

In this study platelet response to stimulus was as expected. On day 11, there was cavitation and a 

pump failure which likely led to a large spike in platelet activation on the final day of the study. 
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APPENDIX D 

TODDLER VAD (TVAD) PLATELET ACTIVATION STUDIES 

 

 

 

Figure 8-6: Toddler VAD, courtesy of Dr. James Antaki 
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Figure 8-7: Platelet Activation after 1 hr Toddler VAD in vitro test 

In this study platelet activation was low and could respond to a high degree to PAF 

stimulation. After a 1 hr pump run however, platelets lost all of their ability to become activated 

and further to respond to PAF stimulation. 
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Toddler VAD (11-10-08) In vitro Platelet Activation Test
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Figure 8-8: Platelet Activation following 4 hr TVAD in vitro test 

At the low flow rates platelet activation was low and able to respond to PAF stimulation, 

a promising sign. At the higher flow rates however, there was more activation with a loss in 

ability to respond to PAF stimulation. The TVAD has an updated axial thrust bearing compared 

to the TVAD studied in the previous figure: Figure 8-7. Since the TVAD was able to run for 4 

hours and 2 hrs at the higher speed and showed an ability to become activated and respond 

marginally to PAF stimulation it can be considered an improvement from the previous bearing. 
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Figure 8-9: Platelet Activation following acute implant of the Toddler VAD 

The low platelet activation observed in this study along with the demonstrated ability of 

platelets to respond to agonists after contact with the TVAD in a 4 hr acute study was promising. 

In this study the TVAD again possessed an updated axial bearing when compared to the TVAD 

bearing used in:  Figure 8-7 and Figure 8-8. The results in this study build upon the 

improvements in the previous bearing from Figure 8-8. 
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APPENDIX E 

IN VIVO LYMPHOCYTE ACTIVATION 
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Figure 8-10: CD4 T-cell activation following sham surgery 

There was a modest elevation in CD4 T-cells expressing CD25 and MHC DQ in the first 

week following surgery. MHC DR expression on T-cells remained stable throughout the 

temporal course. It was surprising that there was only a minimal rise in activation following 

sham surgery, whereas there was a definite rise in platelet activation (Figure 5-5). Also of note 
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were the relatively high levels of baseline lymphocyte activation. As illustrated in Figure 5-3 the 

placement of a jugular venous catheter significantly reduced baseline platelet activation. The line 

placement did not decrease lymphocyte activation. One potential reason for elevated activation is 

that the animals may have been fighting a low grade infection. 
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Figure 8-11: CD4 T-cell Activation after Levitronix implant; N = 6 

After Levitronix PediVAS implant lymphocyte activation was stable for the thirty day 

period. One animal from this cohort was suspected to have an infection as evidenced by a 

neutrophil/lymphocyte switch late in the implant period. The lack of an elevation in T-cell 

activation was somewhat surprising. It is thought that lymphocyte activation might be a 

precursor to infection in these studies. Given that the Levitronix has two open wound sites for 

the inflow and outflow tubing, these animals might be expected to have a higher incidence of 

infection. The Levitronix implants only lasted for thirty days and if these studies continued for 

longer time periods, it is possible that some of these animals may have become more prone to 
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infection and potential increases in lymphocyte activation. In adults with VADs the incidence of 

infection continues to rise with time. Also of note was that each implanted animal received 

prophylactic antibiotics for thirty days, further decreasing the potential for the VAD implanted 

animals to contract an infection. Given the increased shear observed in the Levitronix and 

PediaFlow blood pumps it was thought that more lymphocyte activation would be observed, as 

was observed with the platelets. Minimal increases in lymphocyte activation have to be 

considered to constitute a positive biocompatibility result.  
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Figure 8-12: CD4 T-cell activation following Levitronix implant in animal with suscepected infection 

In this singular study there was a trend towards increased lymphocyte activation and 

there was at least suspicion of a respiratory infection evidenced by the increased carbon dioxide 

and decreasing oxygen saturation and a neutrophil/lymphocyte switch. As mentioned above 

infection was not common in the Levitronix implants, however it is certainly possible that 
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lymphocyte activation might increase before an infection is detected, which would be similar to 

the observation of increased platelet activation and more numerous kidney infarcts at necropsy 

discussed in Section 7.3.3.  
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Figure 8-13: CD4 T-cell activation in seventy day PF2.2 implant 

In this study a modest increasing trend is observed after the initial three weeks of implant. 

A fecal culture was positive for a nematode in this animal. 
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Figure 8-14: CD4 T-cell activation following PF3.1 implant 

There was no evidence of ongoing infection in this study but a clear trend of increasing 

lymphocyte activation was noted. 
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APPENDIX F 

TOTAL AVERAGE OF IN VIVO PLATELET ACTIVATION 

This grand average was computed because it might be useful to use as a comparison for 

platelet activation for future in vivo studies. This average contains platelet activation values from 

all of the PediaFlow, Levitronix, Biomedicus, and sham studies where p-selectin was studied. As 

such it contains both data from studies without complications as well as data with complications. 

Since this average encompasses studies with and without complications it might represent a 

temporal course of platelet activation such that, when a study has platelet activation above this 

‘total average’ it would be expected to have complications or numerous kidney infarcts and when 

a study has platelet activation below this “total average”, the study would be expected to have no 

or minimal complications and few to no kidney infarcts. The data is further broken up into 

Levitronix and PediaFlow cohorts. 
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Figure 8-15: Combined platelet activation for all in vivo studies for first 30 days, N = 29 
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Figure 8-16: Combined platelet activation for all Levitronix data, N = 13 
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Figure 8-17: Combined platelet activation for Levitronix implant with uncomplicated post-operative courses  
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Figure 8-18: Combined platelet activation for Levitronix implants with complicated post-operative courses or 

in studies that had numerous kidney infarcts or thrombotic deposition in the cannula. 
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Figure 8-19: Combined platelet activation for all PediaFlow implants, N = 8 
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Figure 8-20: Combined platelet activation for PF1 implants, N = 3 
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Figure 8-21: Combined platelet activation for PF2 and PF3 implants, N = 5 
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APPENDIX G 

IN VIVO THROMBOELASTOGRAPH VALUES 

In vivo TEG values (maximum amplitude and clot firmness (G) are plotted to determine 

if there were any trends in these values in Levitronix studies with and without post-operative 

complications.  
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Figure 8-22: TEG MA values from the Levitronix cohort of in vivo studies 
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Figure 8-23: TEG MA values for Levitronix implants with uncomplicated post-operative courses. 
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Figure 8-24: TEG MA values for Levitronix implants with complicated post-operative courses or in studies 

that had numerous kidney infarcts or thrombotic deposition in the cannula. 
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Figure 8-25: TEG G values from the Levitronix cohort of in vivo studies 
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Figure 8-26: TEG G values for Levitronix implants with uncomplicated post-operative courses. 
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Figure 8-27: TEG G values for Levitronix implants with complicated post-operative courses or in studies that 

had numerous kidney infarcts or thrombotic deposition in the cannula. 

 

 

Despite noticeable trends in the level of platelet activation (compare Figure 8-17 and 

Figure 8-18) in studies with uncomplicated post-operative courses versus those studies that had 

complications or had numerous infarcts at necropsy, MA and G do not exhibit such trends. The 

lack of a trend for TEG values suggest that the developed flow cytometric platelet activation 

assays are more sensitive in assessing in vivo VAD biocompatibility. 
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