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ANALYSIS OF AN IMPORTANCE SAMPLING IN A STOCHASTIC

VOLATILITY MODEL

Qiang Sun, PhD

University of Pittsburgh, 2010

This thesis analyzes an importance sampling method whose effectiveness relies

in many cases on the selection of sampler’s parameters. In its typical application

of a Taylor’s stochastic volatility model, a new approach, referred to as ‘universal

importance sampling’, was designed and shown to be much more efficient than those

in the literature, such as the sequential importance sampling. One obvious advantage

of the universal sampling is that the parameters selected do not rely on the sampling

process, so that Monte Carlo simulations can be done on different computers with a

final averaging.
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1.0 INTRODUCTION

Stochastic volatility (SV) models get much concerned in mathematical finance and

econometrics. In econometrics, researchers have more interests in GARCH or ARCH-

type models to investigate volatility. In mathematical finance, discreet and continuous

stochastic volatility models have been playing more outstanding roles. Since 90’s, a

great number of researchers concerned about the behavior of the stochastic volatility,

and its application to the pricing of the financial derivatives or the other financial

assets. One of the difficulties is to how to capture the different stochastic process of

volatilities and do the estimations.

In this paper, like many other related researchers, we consider Taylor’s stochastic

volatility model. The volatility is modeled by a latent stochastic process. We review

the joint density function here to find the basic definition and the total integral over

T -folds. Then we will evaluate the log-likelihood function numerically by integrating

out the latent volatility variables. Because it is impossible to compute the high-

dimensional integral by conventional quadrature, we will use Importance Sampling

to solve the problem. Finally parameter estimations are followed by numerically

maximization of the log-likelihood functions. Let’s examine Taylor’s SV model as the

following:

rt = βevt/2εt, εt ∼ N(0, 1), (1.0.1)

vt = δvt−1 + υηt, ηt ∼ N(0, 1), (1.0.2)

1



where rt is observable time series of financial return, vt a is latent factor following a

AR(1) process, and εt and ηt are serially and mutually independent Gaussian random

variables, which follows [6, 5].

In Taylor’s SV model, the observable variable r = {rt}T
t=1 and auxiliary unobserv-

able (artificial or latent) variables V = {vt}T
t=1 are introduced, along with parameters

Λ. Let T be the number of period of interest and being observed, ρ̃(v1, ..., vT,r1, ..., rT |Λ)

be the joint distribution of (v1, ..., vT,r1, ..., rT ). Then the marginal distribution den-

sity of (r1, ..., rT ) is given by

ρ(r|Λ) ≡
∫

RT

ρ̃(v1, ..., vT,r1, ..., rT |Λ)dv1 · · · dvT , (1.0.3)

Given an observation value (r1, ..., rT ), for the model will then be obtained, the

parameter, Λ∗, if maximum likelihood method is used, by

Λ∗ = arg max
Λ

log ρ(r1, ..., rT |Λ).

In many applications, analytic evaluation of the integral in (1.0.3) is impossible,

so numerical evaluation, with given values of (r1, ..., rT |Λ), are needed here. We will

investigate and clearly derive the proofs and results of the Monte-Carlo approximation

for high dimensional integrals. For notational simplicity, we consider

numerical evaluation of

∫∫

Rm

ϕ(v)dv

where ϕ is a known function. In terms of (1.0.3), we also have

m = T, ϕ(v) = ρ̃(v, r, Λ), (r, Λ) are numerically given.

We use m instead of T to indicate that time is irrelevant, as far as only integration

is concerned. Later on when sequential integration are considered, we change m back

to T .

The Monte Carlo method is to construct estimator to evaluate numerically the
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integral
∫ ∫
Rm

f(η)dη by simulations. Let’s consider a sequence of i.i.d random draws

from random variable (r.v.) η with the probability density ρ(·). After a sequence

η(1), η(2), ... of i.i.d draws with ρ(·) are generated, by Law of Large numbers, we have

∫ ∫

Rm

f(η)ρ(η)dη ∼= 1

N

N∑
i=0

f(η(i)),

with the convergence rate of O( 1√
N

).

Importance Sampling is one of the Monte Carlo methods to solve the above prob-

lem of numerically evaluating
∫ ∫
Rm

f(η)dη. First, we design some probability density

ρ(., a) with some parameter a; Second, we do the transformation as

∫ ∫

Rm

f(η)dη =

∫ ∫

Rm

{
f(η)

ρ(η, a)

}
ρ(η, a)dη,

with the optimal parameter a is selected according to some criteria;Finally use the

estimator to evaluate the likelihood as

∫ ∫

Rm

f(η)dx ∼= 1

N

N∑
i=0

f(η(i))

ρ(η(i), a)
,

With respect to Importance Sampling applications to the estimation of SV models,

the following is the partial list of the reference including Geweke(1989), Danielsson

and Rechard(1993), Shephard and Pitt(1997), Durbin and Koopman(1997), Liesen-

feld and Richard(2003), Richard and Zhang(2007). Geweke (1989) firstly discusses

minimization of Variance of log ρ(r1, ..., rT |Λ) by explicit procedures within specific

classes of fat-tail densities, typically multivariate student -t densities and skewed

generalizations labeled split-t densities. Durbin and Koopmans (1997) apply IS to

evaluate the likelihood function of non-Gaussian state space models. They showed

that the selection of an importance sampler can be approached via the construction

of an operational approximation to a complex model. They verified that this method

is applicable in significantly higher dimensions than the other alternative methods.

Owens and Zhou (2000) discuss various improvements of the IS technique which are

3



well fit for low-dimensional applications. They extend the theoretical results to more

general multiple and mixture samplers and describe conditions under which estimated

coefficients approach the true ones. Richard and Zhang (2007) describes a sequential

and efficient Importance Sampling Monte Carlo (MC) procedure for the evaluation

of high-dimensional numerical integrals, based upon a sequence of auxiliary weighted

regressions which actually are linear under appropriate conditions. Their method can

be used to evaluate likelihood functions and ML estimators for models which have

unobservable variables.

The purpose of this paper is to develop a new importance sampling method, Uni-

versal Importance Sampling. Its computational cost and efficiency are much improved

relative to that of the methods in the previous literatures. Our method is built on

the works of Durbin and Koopmans(1997), Shephard and Pitt(1997), Richard and

Zhang(2007). Comparing to those previous methods, UIS has the following advan-

tages,

1. The estimator from the UIS is unbiased;

2. The “universal importance sampler” is obtained by solving an algebraic system

which by the Newton’s iteration only takes a fraction of second of computing

time; on the other hand, the previous method, sequential importance sampling

depends on random draws and takes a multiple of the time needed for an actual

Monte-Carlo integration based on a fixed sampler;

3. The universal importance sampler can be used in parallel computation since the

sampler is universal; The SIS may not be able to do that since the “optimal

sampler” depends on the collection of all the common random numbers;

4. Numerical simulation shows that the UIS is at least 10 times faster than SIS;

for the particular example at hand, the total random draws can be as large as

1,000,000,000 for UIS whereas for SIS, the maximum number is about 100,000,

partially due to the limitation of virtual memory (2GB).

The rest of the paper is organized as follows. Section 2 reviews Monte-Carlo
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integration methods and sequential importance sampling. Section 3 gives a general

analysis of how to use previous sequential importance sampling method to evaluate

the likelihood function in the stochastic volatility model .Section 4 presents how the

new importance sampling method UIS are designed based on the analysis. Then we

do the comparisons of the results from two methods. Section 5 concludes this paper.
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2.0 MONTE–CARLO INTEGRATION AND SEQUENTIAL

IMPORTANCE SAMPLING

Monte–Carlo Integration (MCI) is a numerical algorithm used to evaluate

∫

RT

f(x) dx =: µ . (2.0.1)

In this section, we review the basic MCI and its recent development by Geweke

(1989) [6], Fishman (1996) [5], Owen and Zhou (2000) [13], and Richard and Zhang

(2007) [15], etc..

2.0.1 Monte–Carlo Integration

The basic idea of MCI is to introduce a T -dimensional random variable X with a

designed probability density function ρ and to write the integral in (2.0.1) as

µ =

∫

RT

f(x)

ρ(x)
[ρ(x) dx] =: E[ϕ(X)], ϕ(x) :=

f(x)

ρ(x)
. (2.0.2)

According to the law of large numbers, the expectation µ of ϕ(X) can be approxi-

mated by the sample mean

µn(X1, · · · , Xn) :=
1

n

n∑
i=1

ϕ(X i) (2.0.3)

where {X i}n
i=1 is a set of random draws of X. We highlight the method as follows:
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Monte–Carlo Integration (MCI)

0. Design a probability density ρ and a random number generator for X that has

density ρ.

1. Generate random draws {X i}n
i=1 from the random number generator for X.

2. Use the sample mean µn := µn(X1, · · · , Xn) in (2.0.3) as an approximation of µ.

Remark 2.0.1. Theoretical and Numerical Technicalities.

(1) One criterion in choosing a good probability density function ρ is the closeness

of the function ϕ(x) := f(x)/ρ(x) to a constant. Another criterion is the convenience

of producing random numbers with the chosen density ρ, from available software pack-

ages. For the second criteria, we recall that one dimensional random variables can

be converted each other via a standard transformation. For example, if X is a 1-D

random variable with a cumulative distribution function (cdf) F (x), then U := F (X)

is uniformly distributed on [0, 1]. In other words, if U is uniformly distributed on

[0, 1], then X = F−1(U) is a random variable with density ρ := F ′.

(2) For consistency, the law of large number [18, p323] states that

E[|ϕ(X)|] =

∫

R
|f(x)|dx < ∞ =⇒ lim

n→∞
µn(X1, · · · , Xn) = µ in probability.

For accuracy, let σ be the standard deviation and σ2 the variance of ϕ(X):

σ2 := V[ϕ(X)] =

∫

RT

f 2(x)

ρ(x)
dx−

( ∫

RT

f(x)dx
)2

.

Assume σ < ∞ and regard X1, · · · , Xn as i.i.d random variables. Then for µn in

(2.0.3),

E[µn] = µ, V[µn] =
σ2

n
, Std[µn] =

√
V[µn] :=

σ√
n

.

Indeed, the central limit theorem [18, p324] states that for each z > 0 ,

lim
n→∞

Prob
(∣∣ µn − µ

∣∣ >
σz√

n

)
=

2√
2π

∫ ∞

z

e−s2/2ds.

7



Note that σ can be approximated by the sample standard derivation of {ϕ(X i)}n
i=1:

σn = σn(X1, · · · , Xn) :=
{ 1

n− 1

n∑
i=1

(
ϕ(X i)− µn

)2}1/2

.

Hence, to describe the accuracy of the MCI, it is informative to write the output as

µ = µn ± σn√
n

.

(3) In certain extensions of MCI, ϕ(·) depends on the random draw {Xi}n
i=1 so

we write it as ϕ[X1, · · · , Xn](·). Analytical investigation on the variance of µn may

be quite complicated. To estimate the error, we may repeat a certain number of MCIs

to generate needed statistics. In other words, instead of performing one MCI using

n samples to produce one approximation, µn, for µ, we perform ne (> 2) number

of MCIs each of which using ns (= n/ne > 1) samples to produce ne number of

approximations, {µ(j)
ns }ne

j=1, of which the sample mean and sample standard deviation

can be used to generate an informative approximation for µ. More precisely, we

compute





µ
(j)
ns :=

1

ns

ns∑
i=1

ϕ[X(j−1)ns+1, · · · , Xjns ](X i+(j−1)ns), j = 1, · · · , ne,

µns,ne :=
1

ne

ne∑
j=1

µ(j)
ns

, σns,ne :=
√

ns

{ 1

ne − 1

ne∑
j=1

(
µns,ne − µ(j)

ns

)2}1/2

,

and express an informative numerical approximation of µ as

µ = µns,ne ±
σns,ne√
nsne

.

Theoretically, if X1, · · · , Xnsne are regarded as i.i.d, then µ
(1)
ns , · · · , µ

(ne)
ns are i.i.d and

V[µns,ne ] =
1

ne

V[µ(j)
ns

] =
E[σ2

ns,ne
]

ne ns

∀ j .

8



Example 1. Let X ∼ N(0, 1) and Y = ln X2. Using MCI evaluate

A := E[Y ] =

∫

R
ln x2 e−x2/2

√
2π

dx, B := V[Y ] =

∫

R

(
ln x2 − A

)2 e−x2/2

√
2π

dx.

Solution. Choose integers ns > 1 and ne > 2 and set n = nsne. Let {X i}n
i=1 be

independent random draws from N(0, 1). Set ϕi = ln[ε2 + (X i)2] where ε is a small

number, say ε = 10−10, introduced to avoid possible overflows. Evaluate the following

quantities:

An :=
n∑

i=1

ϕi

n
, Bi :=

n[ϕi − An]2

n− 1
, Bn :=

n∑
i=1

Bi

n
, A(j)

ns
:=

ns∑
i=1

ϕi+(j−1)ns

ns

,

σA
n :=

√
Bn, σ̃B

n :=
{ n∑

i=1

(Bi −Bn)2

n− 1

}1/2

, B(j)
ns

:=
ns∑
i=1

(ϕi+(j−1)ns − A
(j)
ns )2

ns − 1
,

Ans,ne :=
ne∑

j=1

Aj
ns

ne

(
= An

)
, Bns,ne :=

1

ne

ne∑
i=1

B(j)
ns

,

σA
ns,ne

:=
{ ne∑

j=1

(Ans,ne − A
(j)
ns )2

ne − 1

}1/2

, σB
ns,ne

:=
{ ne∑

j=1

(Bns,ne −B
(j)
ns )2

ne − 1

}1/2

.

The output of a numerical experiment is summarized in Table 1.

Table 1: Numerical Simulation for Example 1

A B

N An σA
n /
√

n σ̂A
ns

/
√

ne |A− An| Bn B̂n σB
n /
√

n σ̂B
ns

/
√

ne |B − B̂n|
4 −1.5650 0.75421 0.79256 0.29464 2.2753 2.1567 0.75421 2.15640 2.65950

16 −2.1935 0.65658 0.43916 0.92311 6.8975 7.8505 0.65658 2.19390 1.96270

64 −2.0869 0.30118 0.33556 0.81653 5.8055 5.6303 0.30118 1.66820 0.87066

256 −1.2627 0.13508 0.17154 0.00765 4.6708 4.4919 0.13508 0.46736 0.26400

1024 −1.3621 0.07214 0.07120 0.09174 5.3297 5.3340 0.07214 0.41793 0.39488

4096 −1.2566 0.03431 0.03845 0.01381 4.8221 4.8029 0.03431 0.17003 0.11267

16384 −1.3012 0.01758 0.01764 0.03085 5.0611 5.0608 0.01758 0.09168 0.12629

65536 −1.2704 0.00862 0.00858 0.00007 4.8728 4.8730 0.00862 0.04630 0.06196

262144 −1.2779 0.00435 0.00437 0.00755 4.9698 4.9697 0.00435 0.02357 0.03497

1048576 −1.2704 0.00217 0.00223 0.00006 4.9447 4.9445 0.00217 0.01173 0.00994

∞ −1.2703628454614781700 4.9348022005446793094

Note: The last row is the true value of B = π2/2 and A = −γ − ln 2 where γ is the Euler constant. Note the σA
n /
√

n and

σ̂A
ns

/
√

ne approach to be the same, and Bn and B̂n approach to be the same as N gets larger. We can see that the choice

of ne does not affect the asymptotic results, so, for simplicity, we can choose ne =
√

N .

From Table 1, one may observe the following:

(1) The MCI relies crucially on the quality of the software that generates random

numbers. Here we are “fortunate” to catch a “rare” event to demonstrate clearly the

9



statistical nature of the Monte-Carlo simulation: when n = 64, Bn−B is “unusually”

large.

(2) When ne changes from small to large (keeping n = nsne fixed), there is no

fundamental change in σns,ne/
√

n, which represents one standard deviation of the

numerical approximation to the true value. That is, when there is no good way to

estimate σn, one can, instead of performing one MCI using n samples, perform ne

MCIs each of which using ns samples, and use the scaled sample standard deviation

σns,ne/
√

nsne as an estimation for the true one.

2.0.2 Importance Sampling

The effectiveness of MCI for (2.0.1) depends on the statistical behavior of the

random variable ϕ(X) := f(X)/ρ(X) where X is a random variable with density ρ.

In practice quite often one chooses the density from a family {ρ(·, a)}a∈A of density

functions. Here A is a parameter set and for each parameter a in the set A, ρ(·, a) is

a probability density function. Note that

µ :=

∫

RT

f(x) dx =

∫

RT

f(x)

ρ(x, a)
[ρ(x, a) dx] = E[ϕ(Xa, a)], ϕ(x, a) :=

f(x)

ρ(x, a)
.

Here and in the sequel, Xa denotes a random variable with probability density ρ(·, a).

If a parameter a ∈ A is chosen, µ can be approximated by

µn(a,X1
a , · · · , Xn

a ) :=
1

n

n∑
i=1

ϕ(X i
a, a)

where {X i
a}n

i=1 are random draws from a random number generator for Xa.

Importance Sampling (IS) is a special technique used for Monte–Carlo integration

which selects an “optimal” probability density function ρ(·, a∗) from a carefully de-

signed family {ρ(·, a)}a∈A.

10



While designing a good probability density family is important and in general

very hard, setting up a criterion for optimality can be quite delicate. Quite often one

uses the following [6, 15, 16]:

a∗ := argmin
a

min
c

∫

RT

[
Q(ϕ(x, a))− c

]2

ω(x, a)ρ(x, a)dx (C)

where ω > 0 is a weight function. Typical choices of Q and ω are

Q(t) = t, Q(t) = ln t, Q(t) = cosh(λ t), ω(x, a) ≡ 1, ω(x, a) = ϕ(x, a).

In general, analytical evaluation of a∗ from (C) is quite difficult since it may involve

integrals that are more complicated than the original integral (2.0.1). One common

practice is to use MCI to evaluat the integrals in (C) and perform an appropriate

minimization via an iteration process. For an optimization that involves random

draws (needed by the MCI), usually it is necessary to use common random numbers

(CRNs), explained as follows.

Let U be a random variable whose random draws can be generated from a standard

software package. Assume that there exists a smooth function Φ(·, ·) such that for

each a ∈ A, the random variable Xa := Φ(U, a) has the distribution density ρ(·, a).

Now let {U i}n
i=1 be n random draws of U . Consider the family {{X i

a}n
i=1}a∈A defined

by

X i
a := Φ(U i, a) ∀ i = 1, · · · , n, a ∈ A. (2.0.4)

For each a ∈ A, {Xa}n
i=1 can be considered as random draws of Xa := Φ(U, a) and it

varies continuously with respect to the parameter a. For a functional that depends

only on {X i
a}n

i=1, numerical optimizations with respect to a can be performed, quite

often, with stability.

When random draws of every Xa in a family {Xa}a∈A are produced from a single

set of random draws {U i}n
i=1, we call {U i}n

i=1 and {{X i
a}n

i=1}a∈A the common random

numbers (CRNs).

11



Once CRNs are generated, the criterion (C) can be implemented numerically as

a∗ := argmin
a

min
c

n∑
i=1

(
Q(ϕ(X i

a, a))− c
)2

ω(X i
a, a) . (C1)

In [15], Researchers introduced the following (not necessarily equivalent to the above):

a∗ := lim
k→∞

a(k), a(k+1) := argmin
a

min
c

n∑
i=1

{
Q(ϕ(X i

a(k) , a))− c
}2

ω(X i
a(k) , a

(k)).

(C2)

Using importance sampling, the Monte-Carlo integration can be described as fol-

lows:

Importance Sampling Monte–Carlo Integration (ISMCI)

0. Pick a random variable U and design a family {ρ(·, a)}a∈A of probability densities

with a function Φ such that Xa := Φ(U, a) has density ρ(·, a). Also design Q and

ω.

1. Generate independent random draws {U i}n
i=1 of U .

2. Find an “optimal” value a∗ from (C), (C1) or (C2), where {X i
a} are produced

from (2.0.4).

3. The output of an informative numerical approximation for µ is µn±σn/
√

n where

µn :=
1

n

n∑
i=1

ϕ(X i
a∗ , a

∗), σn :=
{ 1

n− 1

n∑
i=1

[ϕ(X i
a∗ , a

∗)− µn]2
}1/2

.

Remark 2.0.2. (1) The “optimal” parameter a∗ obtained from criterion (C1) or

(C2) depends on the CRNs used for MCI and hence is local or non-universal. The

“optimal” parameter a∗ from the criterion (C), on the other hand, is universal in

the sense that it does not depend on the CRNs. A universal parameter, albeit can

be found, has the obvious advantages: (i) it is efficient for repeated MCIs, say, for

various different sizes of samplings; (ii) in error analysis, {ϕ(X i
a∗ , a

∗)}n
i=1 can be

regarded as i.i.d random variables so central limit theorem applies.

(2) When a∗ depends on {U i}n
i=1, the quantity σn/

√
n may not be a good approx-
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imation of the true standard deviation of µn. If this is the case, one may consider to

use the sample standard deviation of a set of MCI approximations; see Remark 2.0.1

(3).

Example 2 ( [15]). Let δ > 0 and consider the use of the probability density family

{ρ(x, a)}a∈A with ρ(x, a) = ae−ax1{x>0} and A = (0,∞) to evaluate µ =

∫ ∞

0

e−xδ

dx.

(1) The MCI Method. Let U be a random variable that is uniformly distributed on

[0, 1] and

ϕ(x, a) =
e−xδ

a e−ax
, Xa = − ln U

a
∀ a > 0.

Then Xa is a random variable with density ρ(·, a) and µ = E[ϕ(Xa, a)]. If a is a

selected parameter and {U i}n
i=1 are random draws of U , µ is approximated by µn(a)±

σn(a)/
√

n where

µn(a) :=
n∑

i=1

ϕi(a)

n
, σn(a)2 :=

n∑
i=1

[ϕi(a)− µn(a)]2

n− 1
, ϕi(a) :=

exp
(
− [ 1

a
ln 1

U i ]
δ
)

aU i
.

(2) The Criteria. We list a number of criteria for the “optimal” parameter a∗.

1. a∗ = a∗1 := argmin
a

V [ϕ(Xa, a)] = argmin
a

∫ ∞

0

eax−2xδ−ln adx, for δ > 1.

When δ ∈ (0, 1), the variance of ϕ(Xa, a) is infinite so we may consider

a∗ = â∗1 := argmin
a

E[|ϕ(Xa, a)− µ|] ∀ δ > 0.

2. a∗ = a∗2 := argmin
a

V [ln ϕ(Xa, a)] =

[
Γ(1 + 2δ)− Γ2(1 + δ)

δΓ(1 + δ)

] 1
δ

, for δ > 0.

3. a∗ = a∗3 := {δΓ(1 + δ)}1/δ

= lim
k→∞

a(k) where a(k+1) := argmin
a

V [ln ϕ(Xa(k) , a), a)].

Indeed, a(k+1) = (a(k))1−δδΓ(1 + δ) so limk→∞ a(k) exists if and only if δ ∈ (0, 2).

4. a∗ = a∗4(U
1, · · · , Un) := lim

k→∞
a(k) where a(k+1) = argmin

a
min

c

∑n
i=1{ln ϕ(X i

a(k) , a)−

13



c}2One can show that a∗4 exists if and only if δ ∈ (0, 2) and in such a case,

a∗4(U
1, · · · , Un) :=





n∑
i=1

(X i
1)

δ [X i
1 − c]

n∑
i=1

[X i
1 − c]2





1/δ

, c :=
1

n

n∑
i=1

X i
1, X i

1 := ln
1

U i
.

Asymptotically, one can verify that lim
n→∞

a∗4(U
1, · · · , Un) = a∗3.

(3) Numerics. To demonstrate the effectiveness of choosing the optimal parameter a,

we present our numerical results in Table 2 and Table 3, and Figure 1–2.

Figure 1: The sample standard deviation curve on a− σ coordinate system.
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Figure 2: The sample standard deviation curve on a− σ coordinate system.
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In Figure 1 , δ = 1.5. We plot the sample standard derivation curve σ = σn(a)

on the a-σ coordinate system. Curves displayed are for n = 2k with k = 8, · · · , 22.

All curves are smooth since CRNs are used for different a’s. The thick dashing curve

corresponds to the curve σ =
√

V[ϕ(Xa, a)] =
√

E[σn(a)2] =
√

nE[|µn(a)− µ|2] for

all n.

In Figure 2 , δ = 0.5 so E[|µn(a) − µ|2] = ∞ and a∗1 is undefined. We plot the

scaled L1 norm d = E[|µn(a)−µ|]/d∗n with d∗n = mina E[|µn(a)−µ|] on the a-d plane.

It seems that

aopt := argmin
a

E[|µn(a)−µ|] ≈ â∗1
ln(ln n)

(n > 24), d∗n := minE[|µn(a)−µ|] ≈ ln(log2 n)√
n

.

Here the values E[|µn(a)−µ|] displayed are indeed numerical approximations obtained

from an average of ne = 32 Monte-Carlo simulations. The dashing curve represents

the function d = E[|ϕ(Xa, a)− µ|]/d∗1 which attains its minimum at â∗1 ≈ 0.088.

(4) Conclusion. It is quite clear that when δ > 1, the MCI is not sensitive to the choice

of a∗; for example, when δ = 1.5, for any a between 1 and 2, the standard deviation

of the resulting MCI is no bigger than twice of the optimal one. Nevertheless, when

0 < δ < 1, the performance of MCI is very sensitive to the choice of a ; namely,

importance sampling is truly the key for efficiency.

For discussions from other points of view, see Owen and Zhou (2000) [13], and

Richard and Zhang (2007) [15].

Remark 2.0.3. The MCI is typically used for high space dimensions, i.e. for T large.

When T is small, it is better to use integration quadrature rules. For instance,

∫ ∞

0

e−xδ

dx
x=− 1

a
ln 1

u======

∫ 1

0

e−[ 1
a

ln 1
u
]δ

au
du ≈ µn

R :=
1

n

n∑
i=1

e−[− 1
a
Ui]

δ

aUi

∣∣∣
Ui=

i
n

.

While error estimates from numerical quadrature rules are absolute (confidence level

= 100%), error estimates in MCI are statistical and confidence levels can never reach

100%.
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2.0.3 Sequential Importance Sampling

Sequential Importance Sampling (SIS), a variation of IS, is a powerful technique

developed by Geweke (1989) [6], and Fishman (1996) [5], for the Monte-Carlo inte-

gration of (2.0.1) where T À 1. In this method, a family {ρ(·, a)}a∈A of probability

density functions with parameter a = (a1, · · · , aT ) is to be designed and when a

parameter a∗ ∈ A is selected, the integral µ in (2.0.1) is approximated by

µn(a∗, U1, · · · , Un) :=
1

n

n∑
i=1

ϕ(X i
a∗ , a

∗), ϕ(x, a) :=
f(x)

ρ(x, a)
, X i

a := Φ(U i, a),

where {Ui}n
i=1 is a set of common random numbers drawn independently from U and

Φ is a smooth function having the property that for each a ∈ A, Xa = Φ(U, a) has

density ρ(·, a).

For the importance sampling, the “optimal” a∗ is selected by solving a mini-

mization problem having the same space dimension as that of A. In the sequential

importance sampling, a fairly large dimension of the set A is introduced and a “sub-

optimal”, that is, not necessarily “optimal”, parameter a∗ is obtained by solving a

sequence of minimization problems each of which involves only a very small parame-

ter space dimension. The introduction of a large set A allows a good approximation

of f(x) by a constant multiple of certain density functions in the family {ρ(·, a)}a∈A,

and the sequential minimization reduces significantly both the theoretical and the

numerical complexity. A good balance between the size of A and the degree of sub-

optimality improves significantly the performance of SISMCI.

To transform the global minimization of the importance sampling to a sequential

minimization of the sequential importance sampling, one designs a special decompo-

sition of the form

ψ(x, a) := ln
f(x)

ρ(x, a)
= ψ0(a) +

T∑
t=1

ψt(x, a).

While the importance sampling uses optimal a that minimizes certain variance of ψ,
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the sequential importance sampling only requires at to minimize certain variance of

ψt, for each t = 1, · · · , T . One version of a “suboptimal” a∗ = (a∗1, · · · , a∗T ) can be

defined as the solution of

a∗t = argmin
z

V[ψt(Xa∗ , a
∗
1, · · · , a∗t−1, z, a∗t+1, · · · , a∗T )] ∀ t = 1, · · · , T.

Quite often analytical evaluation of V [ψt] is very difficulty so a Monte–Carlo

integration with CRNs is used to evaluate V [ψt]. To illustrate this aspect, let {U i}n
i=1

be a set of CRNs drawn independently from a random number generator for U . Set

X i
a = Φ(U i, a) where Xa = Φ(U, a) is a random variable with density ρ(x, a). Then

V [ψt(Xa, a)] is in certain sense propositional to

min
c

n∑
i=1

(
ψt(X

i
a, a)− c

)2

. (2.0.5)

Hence, (2.0.5) can be implemented numerically as the solution of

a∗t = argmin
z

min
c

n∑
i=1

{
ψt(X

i
a∗ , a

∗
1, ..., a

∗
t−1, z, a∗t+1, ..., a

∗
T )− c

}2

ω(X i
a∗ , a

∗) ∀ t.

(2.0.6)

Here ω is a weight function introduced as an added feature.

Problem (2.0.6) is usually solved numerically by an iteration process: a∗ =

limk→∞ a(k) where

a
(k+1)
t = argmin

z
min

c

n∑
i=1

{
ψt(X

(i)

a(k) , a
(k)
1 , ..., a

(k)
t−1, z, a

(k)
t+1, ..., a

(k)
T )− c

}2

ω(Xa(k), a
(k)).

Although it not guaranteed that as k → ∞, a(k) converges, one can argue that the

effectiveness of the method should be related to the rate of the convergence of {a(k)};
fast convergence provides a hard evidence towards the effectiveness (accuracy) of

the method; poor convergence warns that it is most probably the family of density

functions, instead of the numerical iteration scheme, that needs to be redesigned.

An example of the application of the sequential importance sampling Monte–Carlo

integration will be presented in the next section.
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3.0 AN APPLICATION OF THE SISMCI

In this section, we apply the sequential importance sampling Monte–Carlo inte-

gration method to evaluate a likelihood function of a stochastic volatility model. This

particular application has been presented by Geweke (1989) [6], Fishman (1996) [5],

Owen and Zhou (2000) [13], and Richard and Zhang (2007) [15], etc., in a context of

very general setting. Here we present a simplified version of their derivation. Addi-

tional analysis will be given in the subsequent sections.

3.0.4 The Problem

1. The Stochastic Volatility Model. We consider a stochastic volatility model [17]

rt = βevt εt, vt = δvt−1 + ν ηt

where εt, ηt, t = 0,±1,±2, · · · , are i.i.d N(0, 1) distributed random variables.

Here {rt}∞t=−∞ models an observable time series, say stock returns with mean sub-

tracted, βevt is the conditional volatility of rt. The condition of knowing vt cannot be

materialized since vt is assumed to be a latent factor, i.e., a non-observable stochastic

process. In this model, we have three parameters:

Λ := (β, δ, ν) ∈ (0,∞)× (−1, 1)× [0,∞).

Under the new variable xt = vt/ν, the stochastic volatility model can be reformulated
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as

rt = βeνxt/2εt, xt = δxt−1 + ηt.

2. The Marginal, Conditional, and Joint Density Functions. For notational simplic-

ity, in this section we omit most of the dependence of functions on the parameters

Λ = (β, δ, ν). By abusing the notation we denote by ρ(xt) the marginal density func-

tions of the random variables xt, by ρ(xt|xt−1) the conditional density of xt under

the condition of known xt−1, and by ρ(rt|xt) the conditional density of rt under the

condition of known xt. We denote by ρ(r1, · · · , rT , x1, · · · , xT ; Λ) the joint density of

r1, · · · , rT , x1, · · · , xT with the given parameter Λ. Finally, we denote by ρ(r; Λ) the

joint density of r = (r1, · · · , rT ). Now we use (1.0.2) to derive these density functions.

Since |δ| < 1, one derives from the recursion xt = δxt−1 +ηt and the independency

and normality of {ηs}∞s=−∞ that

ρ(xt|xt−1) =
1√
2π

e−(xt−δxt−1)2/2, xt =
∞∑
i=0

δiηt−i, ρ(xt) =

√
1− δ2

√
2π

e−
1−δ2

2
x2

t .

The equation rt = βeνxt/2εt and the independency of εt and xt =
∑∞

i=0 δiηt−i imply

that

ρ(rt|xt) =
e−r2

t /(2β2eνxt )

√
2πβ2eνxt

=
e−νxt/2−r2

t e−νxt/(2β2)

√
2πβ2

.

We then derive from these conditional densities that

ρ(r1, · · · , rT , x1, · · · , xT ; Λ) = ρ(x1)ρ(r1|x1)
T∏

t=2

[
ρ(xt|xt−1)ρ(rt|xt)

]

=

√
1− δ2

(2πβ)T
exp

[
−

T∑
t=1

(νxt

2
+

r2
t e
−νxt

2β2

)
− (1− δ2)x2

1

2
−

T∑
t=2

(xt − δxt−1)
2

2

]
.

Finally the marginal distribution density ρ(r; Λ) of r = (r1, · · · , rT ) under given

parameter Λ can be calculated from the above joint distribution by

ρ(r; Λ) =

∫

RT

ρ(r1, · · · , rT , x1, · · · , xT ; Λ)dx1 · · · dxT . (3.0.1)

3. The Maximum Likelihood Estimator (MLE). Suppose R = (R1, · · · , RT ) is a
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set of observations of r = (r1, · · · , rT ). Then the maximum likelihood estimator

Λ∗ = (β∗, δ∗, ν∗) for the parameters in the model (1.0.2) is defined as

Λ∗ = Λ∗(R) := argmax
Λ∈(0,∞)×(−1,1)×[0,∞)

ρ(R; Λ) .

To find Λ∗, one has to evaluate the T -dimensional integral in (3.0.1) which does

not seem to have an analytical closed form. Since T is usually quite large, efficient

numerical algorithm is needed to perform the integration. Indeed this is our current

focus of the attention. For definiteness, we formulate our problem as follows.

Problem: Given constants β > 0, δ ∈ (−1, 1), ν > 0, and (R1, · · · .RT ) ∈ RT , numer-

ically evaluate the integral
∫
RT f(x)dx where x = (x1, · · · , xT ) and

f(x) =

√
1− δ2

(2πβ)T
exp

[
−

T∑
t=1

(νxt

2
+

R2
t e
−νxt

2β2

)
− (1− δ2)x2

1

2
−

T∑
t=2

(xt − δxt−1)
2

2

]
.

(3.0.2)

3.0.5 Sequential Importance Sampling Monte–Carlo Integration

Here we present a simplified derivation of the algorithm used for the numerical

evaluation of (2.0.1) with f given by (3.0.2).

1. The family of probability density functions. The special form of f suggests that

we use the Gaussian distribution family. More specifically, we define {ρ(x, a)}a∈A by





a := (a1, · · · , aT , b1, · · · , bT ) ∈ A := (0,∞)T × RT ,

ρ(x, a) :=
T∏

t=1

1√
2πa2

t

e−[xt−a2
t (δxt−1−bt)]2/(2a2

t ) (x0 ≡ 0).

(3.0.3)

For any a ∈ A, a random variable Xa that has density ρ(·, a) can be obtained from

a single T -dimensional random variable η as follows. Let η1, · · · , ηT be i.i.d. N(0, 1)

distributed random variables. Set η = (η1, · · · , ηT ) and Φ(η, a) = (Φ1, · · · , ΦT ) where
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{Φt}T
t=0 are defined by

Φ0 ≡ 0, Φt = a2
t [δΦt−1 − bt] + atηt, t = 1, · · · , T. (3.0.4)

It is easy to verify that Xa := Φ(η, a) is a random variable with density ρ(·, a).

Given random draws {ηi}n
i=1 = {(ηi

1, · · · , ηi
T )}n

i=1 of η, we denote by {X i
a}n

i=1 the

corresponding CRNs defined by X i
a = Φ(ηi, a). The components of X i

a are denoted

as (X i
a,1, · · · , X i

a,T ).

For convenience, in the sequel we use the following “artificial” values:

x0 := 0, aT+1 := 1, bT+1 := 0, δtτ :=





1 if t = τ,

0 if t 6= τ.

2. The function f(x)/ρ(x, a). We can calculate, for any a = (a1, · · · , aT , b1, · · · , bT )

in A,

ψ(x, a) := ln
f(x)

ρ(x, a)
= ψ0(a) +

T∑
t=1

ψt

(
xt, pt(a), qt(a)

)
,

where

ψ0(a) := ln

√
1− δ2

(
√

2π β)T
+

T∑
t=1

(
ln at +

a2
t b

2
t

2

)
,

ψt(z, κ, `) := κ z2 + ` z −
(R2

t e
−νz

2β2
+

νz

2

)
, (3.0.5)





pt(a) :=
1

2a2
t

− 1 + δ2[1− a2
t+1 − δt1]

2
,

qt(a) := bt − δa2
t+1bt+1.

(3.0.6)

Hence, for each a ∈ A,

∫

RT

f(x)dx = eψ0(a)

∫

RT

e
∑T

t=1 ψt(xt,pt(a),qt(a))[ρ(x, a)dx].

The simple expression of ψt(z, κ, `) in (3.0.5) suggests that it is convenient to use

the parameters p = (p1, · · · , pT , q1, · · · , qT ) as independent parameters and use a =
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(a1, · · · , aT , b1, · · · , bT ) as dependent parameters. The following result then becomes

very helpful.

Sequential Importance Sampling Monte-Carlo Integration

0. Load input {β, δ, ν, R1, · · · , RT}. Assign ε =“tolerance” a value, say, 10−4.

Set at = 1 and bt = 0 for all t = 1, · · · , T + 1, and X i
0 = 0 for all i = 1, · · · , n.

Generate independent N(0, 1) distributed random numbers { {ηi
t}T

t=1 }n
i=1.

1. Define {{X i
t}T

t=1}n
i=1 by X i

t = a2
t [δX

i
t−1 − bt] + atη

i
t, t = 1, · · · , T, i =

1, · · · , n.

2. For each t = 1, · · · , T , find

(pt, qt, ct) = argmin
(κ,`,c)

n∑
i=1

(
ψt(X

i
t , κ, `) + c

)2

.

3. Set aold = (a1, · · · , aT , b1, · · · , bT ), define a = (a1, · · · , aT , b1, · · · , bT ) by (3.0.7),

and make a switch as follows:

|a− aold| < ε ?
No−→ Max Itera-

tion?

No−→ goto 1

↓ Yes ↓ Yes

goto 4 Abort!

4. Produce the output

ln

∫
T

f(x)dx ≈ ψ0(a)−
T∑

t=1

ct + ln
( 1

n

n∑
i=1

exp
( T∑

t=1

[ψt(X
i
t , pt, qt) + ct]

))
.
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Lemma 3.0.1. The map a ∈ A → p(a) := (p1(a), · · · , pT (a), q1(a), · · · , qT (a)) de-

fined by (3.0.6) is one-to-one. Its inverse can be calculated iteratively as follows

(recalling aT+1 = 1 and bT+1 = 0):





at = ( 2pt + 1 + δ2[1− a2
t+1 − δt1] )−1/2,

bt = qt + δa2
t+1bt+1,

t = T, T − 1, · · · , 1. (3.0.7)

In addition, this inverse p−1 maps [0,∞)T ×RT to
(
0,

1√
1− δ2

]
× (0, 1]T−1 ×RT .

The proof is a straightforward verification and hence is omitted.

3. Criteria for “Optimal” Parameters. Based on (2.0.5) and (2.0.6), we present two

criteria.

When True (Theoretical) variance are used, we propose the following: the “opti-

mal” parameter a∗ ∈ A to be used for SISMCI is the solution of

(
pt(a

∗), qt(a
∗)

)
= argmin

(κ,`)

V
[
ψ(Xa∗,t, κ, `)

]
∀ t = 1, · · · , T. (T)

Here Xa := (Xa,1, · · · , Xa,T ) := Φ(η, a) where Φ(η, a) := (Φ1, · · · , ΦT ) is defined in

(3.0.4). We shall investigate this criterion in detail in the next section.

In rest of this section, we consider the criterion used by previous literature, in

which the variance in (T) is replaced by Sample variance; that is, after the generation

of CRNs, {ηi}n
i=1, the optimal parameter a∗ is the solution of

(
pt(a

∗), qt(a
∗)

)
= argmin

(κ,`)

min
c

n∑
i=1

(
ψt(X

i
a∗,t, κ, `) + c

)2

∀ t = 1, · · · , T, (S)

where (X i
a,1, · · · , X i

a,T ) := Φ(ηi, a).

4. The Sequential Minimization. To solve problem (S), first we consider a simple

minimization where a∗ on the right–hand side of (S) is replaced by a generic a ∈ A

. That is, we consider the map a ∈ A → p∗(a) := (p∗1(a), · · · , p∗T (a), q∗1(a), · · · , q∗T (a))
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where

(
p∗t (a), q∗t (a)

)
:= argmin

(κ,`)

min
c

n∑
i=1

(
ψt(X

i
a,t, κ, `) + c

)2

∀ t = 1, · · · , T. (3.0.8)

From the explicit expression of ψt(z, κ, `) in (3.0.5 ), we see that the minimization

problem on the right-hand side is a standard linear regression whose geometric inter-

pretation is the orthogonal projection of the vector F onto the space expanded by

1, L and B where

F =
R2

t

2β2
(e−νx1

a,t , · · · , e−νXn
a,t) +

ν

2
L, B = ([X1

a,t]
2, · · · , [Xn

a,t]
2),

L = (X1
a,t, · · · , Xn

a,t), 1 = (1, · · · , 1)n×1.

Thus, (p∗t (a), q∗t (a)) is indeed the solution of the following linear system (with ε = 0)




B ·B + ε L ·B 1 ·B
B · L L · L + ε 1 · L
B · 1 L · 1 1 · 1 + ε







p∗t (a)

q∗t (a)

ct(a)


 =




F ·B
F · L
F · 1


 .

When n > 3, the theoretical probability that the n-dimensional vectors 1, L, and B are

linearly dependent is zero. Hence, we can assume that the above system (with ε = 0)

always admits a unique solution so that p∗(a) is well-defined by (3.0.8). Numerically

we can take a tiny positive ε to ensure the robustness of the program.

It is easy to see now that a∗ solves (S) if and only if a∗ is a fixed point of the

composite map

a ∈ A p∗−−−→
(3.0.8)

p = p∗(a)
p−1

−−−→
(3.0.7)

ã = p−1(p) = p−1 ◦ p∗(a).

One may be happy to notice the following. The minimization problem in (3.0.8) is

in certain sense meant to approximate the exponential function he−νs (h = R2
t /(2β

2) >
0) by a quadratic function κs2 + [` − ν/2]s − c. Since the function s ∈ R → he−νs

is convex, it should be true in general that the solution of problem (3.0.8) satis-

fies p∗t (a) > 0, i.e., p∗(a) ∈ [0,∞)T × RT . Hence, by Lemma 3.0.1, p−1 ◦ p∗(a) is
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well-defined.

Numerically, the fixed point a∗ of the map p−1◦p∗ can be obtained by an iteration

process:

a∗ = lim
k→∞

a(k), a(k+1) := p−1 ◦ p∗(a(k)).

4. A Numerical Scheme. Based on the above discussion, if we use (S) as the criterion

for the “optimal” parameter, we can design a numerical algorithm for sequential

importance sampling (SIS) as follows:

Here ct is introduced for the necessity of numerical implementation that avoids over-

flow of the floating-point arithmetic for exponentially large or exponentially small

numbers.

3.0.6 A Numerical Experiment.

In the sequel, a point x = (x1, · · · , xT ) in RT will be referred to as a path since

we visualize it as a curve {(t, xt) ∈ R2 | 0 6 t 6 T}.
1. The Input. As an illustration, we use artificial data generated by a Monte-Carlo

simulation for (1.0.2) with (β, δ, ν) = (1, 0.9, 0.5). For the convenience of numerical

analysis, we take a small size T = 50. The data {Rt}T
t=1 are plotted as the thin curve

in Figure 3 (a).

2. The Optimal Parameters. The optimal parameter, denoted by a∗(n) where n is

the number of sample paths, depends on the CRNs {{ηi
t}T

t=1}n
i=1 used in the MCI.

One of such parameters is plotted in Figure 3 (a). The theoretical mean, denoted by

a∗∗, of the optimal parameters a∗(n) is the solution of (T). For the particular CRNs

used in our simulation, we list the deviation |a∗(n)− a∗∗| in the last column in Table

3. It is quite easy to see the tendency that

max
16t6T

|a∗t (n)− a∗∗t | −→ 0 as n −→∞.

Based on this observation, it is then quite natural to take the initial value a(0) of
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a∗ = limk→∞ a(k) as a∗∗, which will be fully analyzed in the next section. In Table

3, comparisons of the number of iterations and the CPU time (in seconds) are made

between the case of setting a(0) = a∗∗ and the default case of setting a(0) ≡ 1.

When n = 4, the sequence a(k) oscillates and does not seem to converge. This is

not a generic phenomenon and it came to our attention by chance.

Figure 3: SIS Curves (a)
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The thin curve represents {Rt}50
t=1 which has mean −0.16, Std 0.95, skewness −0.05,

and kurtosis 4.47. The two thick curves are {a∗t }50
t=1 and {b∗t }50

t=1.

3. Importance Sample Paths. In Figure 3 (b) we plot two of the important sample

paths {X i
t}T

t=1 ( i = 1, 2, · · · , n) defined by X i
t = a∗t

2[δXt − b∗t ] + a∗t η
i
t. Also plotted

are the mean path (setting ηi
t = 0) with optimal parameter a = a∗(n) for different n.

These mean paths are almost the same since a∗(n) ≈ a∗∗. As (η1, · · · , ηT ) ∼ N(0, I),

all important sample paths oscillate around the mean paths.

4. Error Analysis. Let µ :=
∫
RT f(x)dx and µn be its numerical approximation. Note

that

ln µn = ln µ + ln
(
1 +

µn − µ

µ

)
≈ ln µ +

(µn

µ
− 1

)
.
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An informative approximation of ln µ can be written as ln µ = ln µn + εn/
√

n±σ/
√

n

where εn/
√

n = E[ln µn] − ln µ is the bias and σ is a constant. We propose the

following for the estimation of σ.

Figure 4: SIS Curves (b)
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The curves clustered in the middle are the mean paths for different n. The thin
curves are two of the important sample paths used in one of the MCIs.

(1) As an approximation, the optimal parameter a∗(n) can be regarded as a

constant vector, since its dependence on the CRNs used in the MCI is very weak.

Hence we can approximate σ by the sample relative standard deviation

σn :=
{ 1

n− 1

n∑
i=1

(eψi

eψ
− 1

)2}1/2

, eψ :=
1

n

n∑
i=1

eψi

, ψi :=
T∑

t=1

ψt(X
i
t , pt, qt).

From Table 3, one sees that σn/
√

n does provide a basic size of error of the MCI output

for the Log likelihood. In addition, one does see a tendency that σn → σ ≈ 0.5 · · · as

n →∞. One may also notice that there does exist a negative bias of size comparable

to σn/
√

n.

(2) We use a simple version of ANOVA (analysis of variance). Suppose we perform
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ne number of SISMCI experiments, each of which takes ns samples. We denote

the approximations and sample relative standard-deviations from these SISMCIs by

µ
(j)
ns , σ

(j)
ns , j = 1, · · · , ne.

(i) The relative variance of each µ
(j)
ns , j = 1, · · · , ne, is approximately σ2/ns so

the sample relative variance of {µ(j)
ns }ne

j=1 also approximates σ2/ns. Hence σ can be

approximated by

σns,ne :=
√

ns

{ 1

ne − 1

ne∑
j=1

( µ
(j)
ns

µnsne

− 1
)2}1/2

, µnsne :=
1

ne

ne∑
j=1

µ(j)
ns

.

(ii) Since each σ
(j)
ns , j = 1, · · · , ne, approximates σ, so does their average. This

average can be finely tuned by the following. Set µ̄·,j the average of µij over i =

1, · · · , ns and µ̄ the overall average. Then

(nsne − 1)σ2 ≈
ne∑

j=1

ns∑
i=1

(µij

µ̄
− 1

)2

=
1

µ̄2

ne∑
j=1

{ ns∑
i=1

(
µij − µ·j

)2

+ ns

(
µ·j − µ̄

)2}

≈ (ns − 1)
ne∑

j=1

σ(j)
ns

2 + (ne − 1)σ2
ne,ns

Here the second term is of the order neσ
2 = [nensσ

2]/ns and can be neglected when

ns À 1. Anyway, we can approximate σ by

σnsne
:=

1√
nens − 1

{
(ns − 1)

ne∑
j=1

σ(j)
ns

2 + (ne − 1) σ2
nsne

}1/2

.

In summary, denoting by n = nsne the total number of sample points used, we

expect

ln µ = ln µns,ne +
εn√
n
± σ√

n
, σ ≈ σn ≈ σnsne

≈ σns,ne .

In Tables 3 and 4, we list these sample standard deviations σn, σns ne and σnsne

from numerical simulations. From these listed data, one can obtain a basic size

σ ≈ 0.5. That is to say, a log likelihood estimation from an SISMCI has an error of

size 0.5/
√

n.
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5. Biased Estimator. Since the parameter a∗ depends on the CRNs, fully theoretical

analysis of the statistical behavior of the random variable µn = µn({{ηi
t}T

t=1}n
i=1) is

out of our reach for the moment. Nevertheless, from Table 4, one sees that most of

ln µn underestimate ln µ. Indeed, one can run a statistical analysis to show that it is

statistically significant to reject the hypothesis E[ln µn] − ln µ = 0. For example, in

ne = 128 experiments, the average of ln µ128 − ln µ is −0.0182 which is more than 5

sample standard-deviation (= 0.00354) away from zero. This gives us an extremely

high level of confidence to accept the hypothesis that ε128 > σ. We tend to believe

that

lim
n→∞

εn := lim
n→∞

√
n
(

ln µ− E[ln µn]) ∝ σ.

Remark 3.0.4. 1. The CPU time listed is only for reference and it is not always

proportional to the amount of calculation needed. We use Matlab on Dell’s PC which

seems to be efficient in handling certain particular dimensions of vectors so it may

take shorter time to do larger job; see the amount of CPU time for the comparison

of (ne, ns) = (32, 128) and (ne, ns) = (32, 256) and also the comparison of (ne, ns) =

(64, 256) and (ne, ns) = (128, 128).

2. If an estimator is biased by more than one standard-deviation, then taking the

average of a large number of the values produced by Monte-Carlo simulation won’t im-

prove the approximation. If εn > σ were rigorously verified, then taking for example,

ne = 100, of the Monte-Carolo experiments with fixed number of sample points, say

ns = 100 , does not guarantee to obtain an approximation with error size O(1/
√

nsne).

Indeed, when ne →∞, one obtains a limit value ln µ− εns/
√

ns.
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4.0 A NEW APPROACH OF SISMCI FOR SVM

In this section, we investigate the SISMCI for the likelihood function defined in

(3.0.1), using the criterion (T) which is new in the literature. To be specific, we

assume that Λ = (β, δ, ν) ∈ (0,∞)× (−1, 1)× [0,∞) and R = (R1, · · · , RT ) ∈ RT are

given and fixed, and consider the integral

` := ln

∫

RT

e−φ(x)dx (4.0.1)

where φ(x) is given by

φ(x) := ln
(2πβ)T

√
1− δ2

+
T∑

t=1

{
νxt

2
+

R2
t

2β2
e−νxt

}
+

(1− δ2)x2
1

2
+

T∑
t=2

(xt − δxt−1)
2

2
. (4.0.2)

4.0.7 Normalization

Note that φ is a sum of convex functions, so φ is convex. Indeed, it is strictly

convex so it has a unique point of minimum. Hence, the major contribution toward

the integral (4.0.1) comes from the integration of the integrand in a certain vicinity of

the point of local minimum of φ. Clearly, in Monte-Carlo integration, of importance

are those samples that are near the point of minimum of φ. It is therefore useful, at

least from numerical point of view, that we perform a normalization by shifting the

origin to the point of minimum of φ, so important samples in MCI are near the origin

in the new coordinate system.

Lemma 4.0.2. The function φ(·) defined in (4.0.2) has the following properties:
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1. φ is strictly convex in RT ; that is, for every x ∈ RT , the matrix D2φ(x) of all

second order derivatives of φ at x is positive definite.

2. There exists a unique x∗ = (x∗1, · · · , x∗T ) ∈ RT such that φ attains its global

minimum:

φ(x∗) < φ(x) ∀x 6= x∗.

3. Let ζ(x) = φ(x∗ + x)− φ(x∗). Then

ζ(0) = 0 < ζ(x) ∀x 6= 0, Dζ(0) = 0, D2ζ(x) > (1− |δ|)2 I ∀ x ∈ RT ,

ζ(x) =
(1− δ2)x2

1

2
+

T∑
t=2

(xt − δxt−1)
2

2
+

T∑
t=1

ht

(
e−νxt − 1 + νxt

)
(4.0.3)

where I is the T × T identity matrix, and

ht ≡ R2
t

2β2
e−νx∗t , t = 1, · · · , T.

4. In terms of ζ, the integral (4.0.1) can be written as

ρ(R; Λ) =

∫

RT

e−φ(x)dx = e−φ(x∗)
∫

RT

e−ζ(x)dx. (4.0.4)

Note that the function e−νz − 1 + νz is convex and attains its global minimum

zero at z = 0.

Proof. Since e−νz is a convex function, φ is the sum of convex functions so it is also

convex. Notice the identity

(1−δ2)x2
1+

T∑
t=2

(xt−δxt−1)
2 = (1−|δ|)(x2

1+x2
T )+(1−|δ|)2

T−1∑
t=2

x2
t +|δ|

T∑
t=2

(
xt− δ

|δ|xt−1

)2

.

We see that the minimum eigenvalue of the Hessian D2φ is no smaller than (1− |δ|)2

so D2φ is positive definite and φ is strictly convex.

The above identity shows that φ grows to ∞ as |x| → ∞ so that φ admits a

unique point of local minimum. We denote this point by x∗ = (x∗1, · · · , x∗T ). It is easy
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to check that ζ(x) := φ(x∗ + x)− φ(x∗) can be expressed as

ζ(x) =
(1− δ2)x2

1

2
+

T∑
t=2

(xt + δxt−1)
2

2
+

T∑
t=1

(
hte

−νxt + gtxt

)
− c

where c, g1, · · · , gT are constants. Using ζ(0) = 0 we have c =
∑T

t=1 ht. Also from

0 = Dζ(0) = (g1− νh1, · · · , gT − νhT ), we see that gt = νht for all t. Hence, ζ(x) has

the form (4.0.3).

4.0.8 The New Criterion for the Sequential Importance Sampling

We now investigate a numerical evaluation of (4.0.4) by using the SISMCI. Same

as before, we use the probability density family {ρ(x, a)}a∈A defined in (3.0.3). One

finds that

ψ(x, a) := ln
e−φ(x∗+x)

ρ(x, a)
= ψ0(a) +

T∑
t=1

ψt(xt, pt(a), qt(a))

where {(pt, qt)} are given by (3.0.6) and

ψ0(a) :=
T∑

t=1

(
log

√
2πa2

t +
a2

t b
2
t

2

)
− φ(x∗), (4.0.5)

ψt(z, κ, `) := κ z2 + ` z − ht[e
−νz − 1 + νz]. (4.0.6)

We shall use the following

Criterion For Universal Optimal Parameters

The universal optimal parameter a∗ is the solution a ∈ (0,∞)T×T of the system

(pt(a), qt(a)) = argmin
(κ,`)

Var [ψt(Xa,t, κ, `)] ∀ t = 1, · · · , T. (T)

Here ψt(z, κ, `) and (pt(a), qt(a)) are defined in (4.0.5) and (3.0.6) respectively,

whereas the random variable Xa,t is defined by Xa,t = Φt(η, a) with Φt given by (3.0.4)

where η ∼ N(0, IT×T ).
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4.0.9 Sequential Minimization

To solve the system (T), it is crucial to solve the minimization problem in (T),

for which we have the following.

Lemma 4.0.3. Let a = (a1, · · · , aT , b1, · · · , bT ) ∈ A and (Xa,1, · · · , Xa,T ) := (Φ1, · · · , ΦT )

where {Φt}T
t=1 is given by (3.0.4) with (η1, · · · , ηT ) ∼ N(0, I).

(1) Xa,t ∼ N(µt, σ
2
t ) where (µt, σ

2
t ) are calculated iteratively by setting µ0 = 0, σ0 = 0

and 



µt := a2
t [δµt−1 − bt],

σ2
t := a2

t + δ2a4
t σ

2
t−1,

t = 1, · · · , T.

(2) If ξ ∼ N(µ, σ2), then argmin
(c1,c2)

V [c1ξ
2 + c2ξ − e−ξ] =

(
1
2
, −[1 + µ]

)
e−µ+σ2/2.

(3) For ψt given by (4.0.5),

argmin
(κ,`)

V [ψt(Xat, κ, `)] = (0, νht) + hte
−νµt+ν2σ2

t /2
(ν2

2
,−ν[1 + νµt]

)
. (4.0.7)

Proof. 1. Consider (3.0.4). Note that Φt−1 depends only on η1, · · · , ηt−1, so it

is independent of ηt. Since a linear combination of independent normal distributions

is still normal, we see that each Φt is normal. Denote by µt and σ2
t the mean and

variance of Φt. Taking the mean and variance of the equations in (3.0.4) we then

obtain the induction formula for µt and σt.

2. Let v = ξ − µ ∼ N(0, σ2). Then E[v] = 0, E[v2] = σ2, E[v3] = 0, E[v4] = 3σ2

and

E[ve−v] = −σ2eσ2/2, E[v2e−v] = σ2(1 + σ2)eσ2/2.

Set u = e−v−eσ2/2{1−v+ 1
2
(v2−σ2)}. We can check that E[uv] = 0 and E[uv2] = 0.

Hence,

V[e−v − c1v
2 − c2v] = V[u + eσ2/2{1− v + 1

2
(v2 − σ2)} − c1v

2 − c2v]

= V[u] +
(
c1 − 1

2
eσ2/2

)2

V[v2] +
(
c2 + eσ2/2

)2

V[v].
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Figure 5: UIS Curves (a)
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Dots on top are {a∗t } and in the middle are {b∗t }. The thin curve is {h∗t }, thick one
is {x∗t } and dotted one is {x∗t + xt}.

This implies that

argmin
(c1,c2)

V[e−v − c1v
2 − c2v] = (1

2
, −1) eσ2/2.

Consequently, using ξ = v + µ we have

argmin
(c1,c2)

V[e−ξ − c1ξ
2 − c2ξ] = argmin

(c1,c2)

V[eµ(e−ξ − c1ξ
2 − c2ξ)]

= argmin
(c1,c2)

V[ev − c1e
µv2 − (c2 + 2µ c1)e

µv]

=
(

1
2
, −[1 + µ]

)
e−µ+σ2/2.

3. The third assertion is trivially true when ht = 0. Hence assume ht > 0. Set ξ =

νXa,t; then ξ ∼ N(νµt, ν
2σ2

t ). It follows from ψt(z, κ, `) = κz2+(`−νht)z−ht(e
−νz−1)
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that

argmin
(κ,`)

V[ψt(Xa,t, κ, `)] = argmin
(κ,`)

V
[ψt(Xa,t, κ, `)

ht

]

= argmin
(κ,`)

V
[ κ

ν2ht

ξ2 +
`− νht

νht

ξ − e−ξ
]
.

The third assertion of the Lemma that follows from the second assertion.

Figure 6: UIS Curves (b)
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Ten sample paths (points) used in MCI. The middle one is expectation {xt} of all
sample paths, obtained by xt = {a∗t 2(δxt−1)− b∗t }.

Now since (pt, qt) in (3.0.6) is equivalent to a in (3.0.7 ), we see that (T ) can be

solved as follows

Theorem 1. A parameter a = (a1, · · · , aT , b1, · · · , bT ) ∈ (0,∞)T × RT is a solution
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of (T ) if and only if there exist (µ1, · · · , µT , σ1, · · · , σT ) such that





at =
(

1 + δ2[1− a2
t+1 − δt1] + ν2hte

−νµt+ν2σ2
t /2

)− 1
2
,

bt = δa2
t+1bt+1 + νht[1− (1 + νµt)e

−νµt+ν2σ2
t /2],

µt = a2
t [δµt−1 − bt],

σt = at

√
1 + δ2a2

t σ
2
t−1

∀ t = 1, · · · , T.

(4.0.8)

Here σ0 := 0, µ0 := 0, aT+1 := 1, bT+1 := 0, δts := 1 if t = s and δts := 0 if t 6= s.

Remark 4.0.5. (1) It is important to observe that the “optimal” parameters, being

the solution of (4.0.8), do not depend on the CRNs. This is fundamentally different

from the sequential “optimal” parameters obtained from the criterion (S) discussed

in the earlier section. Since in using (S), most of the computing time is spent on the

searching a∗ = limk→∞ a(k) which depends on the CRN {{ηi
t}T

t=1}n
i=1, the advantage of

using (4.0.8) is numerically efficient and theoretically sound.

(2) At the optimal parameters, one finds that,

V[ψt(Xa,t, pt(a), qt(a))] = h2
t e
−2νµt+ν2σ2

t

(
eν2σ2

t − 1− (νσt)
2 − 1

2
(νσt)

4
)
.

Also, one can show that the optimal parameters satisfy

0 < a2
t 6 1 (t = 2, · · · , T ), 0 < a2

1 6 1

1− δ2
, 0 < σt 6 1

1− δ2
(t = 1, · · · , T ).

Note that rt = βevtεt where vt = νxt and V [vt] = ν2/(1 − δ)2 > (νσt)
2. We see

that at least when the stochastic part vt of the volatility is not too large, our SISMCI

method will be very effective. We omit the details.
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4.0.10 Numerical Implementation

1. The flow of our new sequential importance sampling goes as follows.

Universal Sequential Importance Sampling Monte–Carolo Integration

1. Find x∗ by solving Dφ(x∗) = 0.

Define h = (h1, · · · , hT ) as in (4.0.7).

2. Solve a∗ = (a1, · · · , bT , b1, ·, bT ) from (4.0.8).

Define p = (p1, · · · , pT , q1, · · · , qT ) as in (3.0.6).

3. Generate independent N(0, 1) distributed random draws { {ηi
t}T

t=1 }n
i=1.

Define {{X i
t}T

t=1}n
i=1 by X i

t = a2
t [δX

i
t−1 − bt] + atη

i
t.

4. Produce the output as ` = `n ± σn/
√

n, computed by

ψi :=
T∑

t=1

ψt(X
i
t , pt, qt), eψ :=

n∑
i=1

eψi

n
, `n := ψ0(a) + ln eψ,

σ2
n :=

1

n−1

n∑
i=1

(eψi

eψ
− 1

)2

.

2. Numerical Algorithm Calculating x∗. Numerically, the point x∗ in Lemma 4.0.2

can be solved from the equation Dφ(x∗) = 0 via Newton’s iteration:

x∗ = lim
k→∞

x(k), x(0) = 0, x(k+1) = x(k) − (D2φ(x(k))−1Dφ(x(k)). (4.0.9)

Since φ is convex, the Newton’s iteration scheme (4.0.9) converges unconditionally

and fast. The numerical evaluation of (D2φ)−1Dφ is also very easy. Note the following

∂φ

∂xt

=
ν

2
− νR2

t e
−νxt

2β2
+ [1 + δ2]xt − δ[xt−1 + xt+1]

(
x0 ≡ δx1, xT+1 ≡ δxT

)
,

∂2φ

∂xt∂xt

=
ν2R2

t

2β2
e−νxt + 1 + δ2[1− δt1 − δtT ],

∂2φ

∂xt∂xt−1

= −δ,
∂2φ

∂xt∂xs

= 0 if |t− s| > 1.

Hence the evaluation of y = (D2φ(x(k)))−1Dφ(x(k)) can be put into the form of solving
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


a1 c1 0 · · · 0

b1 a2 c2
. . .

...

0
. . . . . . . . . 0

...
. . . bT−2 aT−1 cT−1

0 · · · 0 bT−1 aT







y1

y2

...

yT−1

yT




=




f1

f2

...

fT−1

fT




.

This can be solved by the following Gaussian Elimination procedure: For t = 1

to (T − 1) do {at+1 = at+1 − btct/at, ft+1 = ft+1 − ftbt/at},
yT = fT /aT , for t=(T-1) to 1 do yt = (ft − ctyt+1)/at.

3. The Algebraic System (4.0.8). The universal optimal parameter is the solution

of (4.0.8). We solve it by the following straightforward scheme: start from at ≡ 1

and bt ≡ 0, update the unknowns by the right-hand sides of (4.0.8), in the order of

(σ1, µ1), · · · , (σT , µT ), (aT , bT ), · · · , (a1, b1).

4.0.11 A Numerical Simulation

We take the same data used in the previous section. The results are summarized

in Figure 4 and Table 5.

1. The Normalization. The Newton’s iteration in finding x∗ converges very fast; in

about 5 iterations, we obtain x∗ within 10−12 accuracy. Regarding x∗ = {x∗t}T
t=1 as

a path, we plot it as the thick curve in Figure 4 (a); the corresponding (positive)

{ht} is plotted as the thin curve. In view of Figure 3 (b), one discovers that the

path {x∗t}T
t=1 is close to all the mean paths of the results from the previous literature

using sequential importance sample method. This is not a coincidence; it reflects the

essence of importance sampling: important samples should be those that are near the

point of maximum of the integrand, i.e., neat x∗.
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2. The Universal Optimal Parameter. It takes about 25 iterations to obtain a fixed

point of (4.0.8) with error smaller than 10−12 . The optimal parameter {a∗t}, plotted as

dots on top in Figure 4 (a), is basically the same as that from previous literature, which

depend on the CRNs. Indeed our universal optimal parameter is the expectation over

all possible CRNs of the local optimal parameter. When the sample size is large, the

law of large number ensures that the local optimal parameters should be almost the

same as the universal optimal parameter; see the last column in Table 3. Since the

major portion of the drift for the important sample paths has been taken care of by

the normalization, the universal parameter {b∗t} is quite small; see the dots in the

middle in Figure 4 (a).

Figure 7: Sensitivity of Error Corresponding to Sample size
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The curve represents log2(Error) to
log2(ns).

3. The Important Sample Paths. The mean of all important sample paths is {x̄t}T
t=1

defined by x̄t = a2
t [δx̄t−1− bt] with x̄0 = 0; see the thick almost horizontal cuve in the

middle of Figure 4 (b). Denote x̄ = (x̄1, · · · , x̄T ). Then in the original coordinates
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system, all the important sample points for the MCI is x∗+ x̄, instead of x∗, the point

of maximum of integrand. This slight shift from x∗ to x∗ + x̄ is indeed another fine

tuning of the importance sampling method. After an “optimal” probability density

function ρ(·, a∗) is chosen, major variation of the integrand f(x) near its point x∗ of

maximum has been taken care of, so the center of sample points (= center of mass

with density ρ(·, a∗)) should be, or at least very close to, the point of maximum of the

function f(x)/ρ(x, a∗). The (coordinate-wise) positive shift from x∗ to x∗ + x̄ reflects

the fact that for every h > 0, the center of a mass with density exp(−h[e−νz−1+νz])

is positive.

Figure 8: The Maximum Log Likelihood When β = 0.8337

It is not very difficult to see that if {Xt}T
t=1 is a sample path used in our MCI,

then the shifted path {Xt +x∗t}T
t=1 resembles the important sample paths used in [15].

Indeed, x∗ + x̄ should be the theoretical expectation over all CRNs of all the sample

points.
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4. Error Analysis. Since our parameter is universal, we can apply the central limit

theorem to conclude that `n is asyptotically N(`, σ2/n) distributed so that ` = `n ±
σn/

√
n where σn is the sample relative standard deviation. The result is displayed

in Table 4. Basically, the sizes of the errors are comparable to that of previous

literatures.

Figure 9: The Maximum Log Likelihood When δ = 0.9193

4.0.12 Maximum Likelihood

To test another sequence of data of size 200, with parameters β = 0.8, ν =

0.07, δ = 0.9, the maximum likelihood was applied to search the optimal parameters.

The following graphs are used here to show what the likelihood function values look

like around the optimal points.
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4.0.13 Conclusion.

The new method proposed here has a few advantages over the one discussed in

the previous section.

1. The use of universal parameter saves the computing time.

2. Theoretical analysis of the error for our new method is very simple since it involves

only the classical analysis on the average of i.i.d random variables.

Figure 10: The Maximum Log Likelihood When ν = 0.0746

3. Numerically the initial step of normalization can be totally omitted from numeri-

cal algorithm (with formula (4.0.8) revised of course); theoretically the normaliza-

tion step allows us to see clearly how the method of SISMCI worked; it provides

an important clue for further theoretical work, e.g. efficient sampling should have

the property that the center of mass with density ρ(·, a∗) should be the point of

maximum of the function f(·)/ρ(·, a∗).
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5.0 CONCLUSION

The sequential Importance Sampling depends on the particular common random

draws to figure out the suitable fitted values for the suboptimal parameters. This is

limited and inflexible. The estimators we derive in our another approach present a

general formula which is flexible for financial applications. The new method proposed

in this paper has quite a few advantages over the one discussed in the previous sec-

tions. The use of universal parameter saves the computing time and is more efficient.

Theoretical analysis of the error for our new method is very simple since it involves

only the classical analysis on the average of i.i.d random variables. Numerically the

initial step of normalization can be totally omitted from numerical algorithm. The-

oretically the normalization step allows us to see clearly how the method of SISMCI

works. Finally it provides a valuable clue for further theoretical work.
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