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ANALYSIS OF AN IMPORTANCE SAMPLING IN A STOCHASTIC
VOLATILITY MODEL

Qiang Sun, PhD

University of Pittsburgh, 2010

This thesis analyzes an importance sampling method whose effectiveness relies
in many cases on the selection of sampler’s parameters. In its typical application
of a Taylor’s stochastic volatility model, a new approach, referred to as ‘universal
importance sampling’, was designed and shown to be much more efficient than those
in the literature, such as the sequential importance sampling. One obvious advantage
of the universal sampling is that the parameters selected do not rely on the sampling
process, so that Monte Carlo simulations can be done on different computers with a

final averaging.
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1.0 INTRODUCTION

Stochastic volatility (SV) models get much concerned in mathematical finance and
econometrics. In econometrics, researchers have more interests in GARCH or ARCH-
type models to investigate volatility. In mathematical finance, discreet and continuous
stochastic volatility models have been playing more outstanding roles. Since 90’s, a
great number of researchers concerned about the behavior of the stochastic volatility,
and its application to the pricing of the financial derivatives or the other financial
assets. One of the difficulties is to how to capture the different stochastic process of

volatilities and do the estimations.

In this paper, like many other related researchers, we consider Taylor’s stochastic
volatility model. The volatility is modeled by a latent stochastic process. We review
the joint density function here to find the basic definition and the total integral over
T-folds. Then we will evaluate the log-likelihood function numerically by integrating
out the latent volatility variables. Because it is impossible to compute the high-
dimensional integral by conventional quadrature, we will use Importance Sampling
to solve the problem. Finally parameter estimations are followed by numerically
maximization of the log-likelihood functions. Let’s examine Taylor’s SV model as the

following:

r = [e"%e, e~ N(0,1), (1.0.1)

v = dv1+on, o~ N(0,1), (1.0.2)



where r; is observable time series of financial return, v, a is latent factor following a
AR(1) process, and €; and 7, are serially and mutually independent Gaussian random
variables, which follows [6, 5].

In Taylor’s SV model, the observable variable r = {rt}thl and auxiliary unobserv-
able (artificial or latent) variables V. = {vt}tT:l are introduced, along with parameters
A. Let T be the number of period of interest and being observed, p(vy, ..., vy, 71, ..., 77| A)
be the joint distribution of (vy, ..., vrr1,...,r7). Then the marginal distribution den-

sity of (ry,...,ry) is given by

p(r|A) = /ﬁ(vl, ey U Ty ey 7| A)doy - - - dog, (1.0.3)
RT

Given an observation value (rq,...,rr), for the model will then be obtained, the

parameter, A*, if maximum likelihood method is used, by

A* = argmaxlog p(r1, ..., 77 |A).
A

In many applications, analytic evaluation of the integral in (1.0.3) is impossible,
so numerical evaluation, with given values of (rq, ..., 7r|A), are needed here. We will
investigate and clearly derive the proofs and results of the Monte-Carlo approximation

for high dimensional integrals. For notational simplicity, we consider

numerical evaluation of / / o(v)dv

where ¢ is a known function. In terms of (1.0.3), we also have

m =T, ¢() = plv,r,\),(r,A) are numerically given.

We use m instead of T" to indicate that time is irrelevant, as far as only integration
is concerned. Later on when sequential integration are considered, we change m back

to T .

The Monte Carlo method is to construct estimator to evaluate numerically the



integral [ [ f(n)dn by simulations. Let’s consider a sequence of i.i.d random draws
Rm
from random variable (r.v.) 7 with the probability density p(-). After a sequence

nW n@ . of i.i.d draws with p(+) are generated, by Law of Large numbers, we have

[ [ fomn= 33~ 16,

with the convergence rate of O(\/I—N)

Importance Sampling is one of the Monte Carlo methods to solve the above prob-
lem of numerically evaluating [ [ f(n)dn. First, we design some probability density

Rm
p(.,a) with some parameter a; Second, we do the transformation as

[ Jron= ] [ {2 v

with the optimal parameter a is selected according to some criteria;Finally use the

estimator to evaluate the likelihood as

With respect to Importance Sampling applications to the estimation of SV models,
the following is the partial list of the reference including Geweke(1989), Danielsson
and Rechard(1993), Shephard and Pitt(1997), Durbin and Koopman(1997), Liesen-
feld and Richard(2003), Richard and Zhang(2007). Geweke (1989) firstly discusses
minimization of Variance of log p(r1,...,r7|A) by explicit procedures within specific
classes of fat-tail densities, typically multivariate student -t densities and skewed
generalizations labeled split-t densities. Durbin and Koopmans (1997) apply IS to
evaluate the likelihood function of non-Gaussian state space models. They showed
that the selection of an importance sampler can be approached via the construction
of an operational approximation to a complex model. They verified that this method
is applicable in significantly higher dimensions than the other alternative methods.

Owens and Zhou (2000) discuss various improvements of the IS technique which are



well fit for low-dimensional applications. They extend the theoretical results to more
general multiple and mixture samplers and describe conditions under which estimated
coefficients approach the true ones. Richard and Zhang (2007) describes a sequential
and efficient Importance Sampling Monte Carlo (MC) procedure for the evaluation
of high-dimensional numerical integrals, based upon a sequence of auxiliary weighted
regressions which actually are linear under appropriate conditions. Their method can
be used to evaluate likelihood functions and ML estimators for models which have
unobservable variables.

The purpose of this paper is to develop a new importance sampling method, Uni-
versal Importance Sampling. Its computational cost and efficiency are much improved
relative to that of the methods in the previous literatures. Our method is built on
the works of Durbin and Koopmans(1997), Shephard and Pitt(1997), Richard and
Zhang(2007). Comparing to those previous methods, UIS has the following advan-

tages,

1. The estimator from the UIS is unbiased;

2. The “universal importance sampler” is obtained by solving an algebraic system
which by the Newton’s iteration only takes a fraction of second of computing
time; on the other hand, the previous method, sequential importance sampling
depends on random draws and takes a multiple of the time needed for an actual
Monte-Carlo integration based on a fixed sampler;

3. The universal importance sampler can be used in parallel computation since the
sampler is universal; The SIS may not be able to do that since the “optimal
sampler” depends on the collection of all the common random numbers;

4. Numerical simulation shows that the UIS is at least 10 times faster than SIS;
for the particular example at hand, the total random draws can be as large as
1,000,000,000 for UIS whereas for SIS, the maximum number is about 100,000,
partially due to the limitation of virtual memory (2GB).

The rest of the paper is organized as follows. Section 2 reviews Monte-Carlo



integration methods and sequential importance sampling. Section 3 gives a general
analysis of how to use previous sequential importance sampling method to evaluate
the likelihood function in the stochastic volatility model .Section 4 presents how the
new importance sampling method UIS are designed based on the analysis. Then we

do the comparisons of the results from two methods. Section 5 concludes this paper.



2.0 MONTE-CARLO INTEGRATION AND SEQUENTIAL
IMPORTANCE SAMPLING

Monte-Carlo Integration (MCI) is a numerical algorithm used to evaluate

» flx)de = pn . (2.0.1)

In this section, we review the basic MCI and its recent development by Geweke
(1989) [6], Fishman (1996) [5], Owen and Zhou (2000) [13], and Richard and Zhang
(2007) [15], etc..

2.0.1 Monte—Carlo Integration

The basic idea of MCI is to introduce a T-dimensional random variable X with a

designed probability density function p and to write the integral in (2.0.1) as

(z)

= —= p(z)dz] = E[p(X)], o) = —/=. 2.0.2

[T b)) = Blp(x)), (o) =12 (202

According to the law of large numbers, the expectation p of ¢(X) can be approxi-

mated by the sample mean

n

(X X7 = %ng(xi) (2.0.3)

i=1

where {X*}" | is a set of random draws of X. We highlight the method as follows:



Monte—Carlo Integration (MCI)

0. Design a probability density p and a random number generator for X that has
density p.

1. Generate random draws {X?}" | from the random number generator for X.

2. Use the sample mean i, := p, (X', -+, X™) in (2.0.3) as an approximation of pu.

Remark 2.0.1. Theoretical and Numerical Technicalities.

(1) One criterion in choosing a good probability density function p is the closeness
of the function p(z) := f(x)/p(x) to a constant. Another criterion is the convenience
of producing random numbers with the chosen density p, from available software pack-
ages. For the second criteria, we recall that one dimensional random variables can
be converted each other via a standard transformation. For example, if X s a 1-D
random variable with a cumulative distribution function (cdf) F(x), then U := F(X)
is uniformly distributed on [0,1]. In other words, if U is uniformly distributed on
0,1], then X = F~Y(U) is a random variable with density p := F".

(2) For consistency, the law of large number [18, p323] states that

Elle(X)|] = / |f(z)|ldr <00 = lim p,(X',--- , X™) =pu in probability.
R

For accuracy, let o be the standard deviation and o® the variance of o(X):

2 2
o® = V]p(X)] = f(x)dx—< fxd:v).
[o(X)] e RT()
Assume o < oo and regard X*',--- | X™ as i.i.d random variables. Then for i, in

(2.0.3),

Bl =1, Vi) = =, Stdja] = v/Vijaa] = %

Indeed, the central limit theorem [18, p324] states that for each z > 0 ,

oz 2 R
lim Prob( n— K| > —) = —/ e /2ds.



Note that o can be approximated by the sample standard derivation of {p(X*)}™,
1 n , 24 1/2
W= on(X, X" ::{— < Xy — n)} .
o= a0 X0 = { S ()

Hence, to describe the accuracy of the MCI, it is informative to write the output as

On

=, + ——
NG

(8) In certain extensions of MCI, ¢(-) depends on the random draw {X;}_, so
we write it as o[X1, .-+ X"](-). Analytical investigation on the variance of u, may
be quite complicated. To estimate the error, we may repeat a certain number of MCIs
to generate needed statistics. In other words, instead of performing one MCI using
n samples to produce one approximation, fi,, for u, we perform n. (= 2) number
of MCIs each of which using ns (= n/n. > 1) samples to produce n, number of
approximations, {uﬁﬂ? i1, of which the sample mean and sample standard deviation
can be used to generate an informative approrimation for u. More precisely, we

compute

(

Mns — ng x U= 1n9+1 7Xjns](Xz‘Jr(g‘—l)ns)7 j=1,---n.,

1

1 & 1 "t A\ 2y 1/2
= — (7) = { P < _ (J)) }
Mg ne . ; Hpls  Ongne Vs n — 1 : Hngmne — Mg )

\

and express an informative numerical approzimation of p as

O-ns,ne
lu = luns,'fle :l: \/W
Theoretically, if X1, --- , X™"e are regarded as i.i.d, then uS}j, e ,Mﬁzﬁe) are i.i.d and
1 b Elogal
V[Mns,ne] = n_ V[:ugé)] = ﬁ V] .



Example 1. Let X ~ N(0,1) and Y = In X2. Using MCI evaluate

A=ElY et B=VI[Y et a)
= []—Rnxﬁx, = []—/R(na:—)ﬁx

Solution. Choose integers ng > 1 and n, > 2 and set n = ngn.. Let {X'}", be
independent random draws from N(0,1). Set o' = In[e? + (X*)?] where ¢ is a small

number, say e = 10710, introduced to avoid possible overflows. Evaluate the following

quantities:
R Y
n i ns i+(—1)n (1)y2
A ~B (B — Bn>2 1/2 ) (90 +(J 1) s Ans )
=/ By, = { } ) B = )
o o zz:; n—1 " i=1 ns —1

I
3
M
3
®
I
3
®
b
3&}
@
/N
I
O
3
N——

I o .
an,”le = n_ellegs)’

1
e ()2 Ne (92
(Ansﬂe _ Ans} }1/2 B . { § (anﬂe _ an ) }1/2
a, = _ 1 .

j=1 j=1

The output of a numerical experiment is summarized in Table 1.

Table 1: Numerical Simulation for Example 1

A B

N An U:?/\/E &’!A;, /e |[A—An| Bn By, af/ﬁ 5'5 /e |B*B€n‘
4 —1.5650 0.75421 0.79256 0.29464 2.2753 2.1567 0.75421 2.15640 2.65950
16 —2.1935 0.65658 0.43916 0.92311 6.8975 7.8505 0.65658 2.19390 1.96270
64 —2.0869 0.30118 0.33556 0.81653 5.8055 5.6303 0.30118 1.66820 0.87066
256 —1.2627 0.13508 0.17154 0.00765 4.6708 4.4919 0.13508 0.46736 0.26400
1024 —1.3621 0.07214 0.07120 0.09174 5.3297 5.3340 0.07214 0.41793 0.39488
4096 —1.2566 0.03431 0.03845 0.01381 4.8221 4.8029 0.03431 0.17003 0.11267
16384 —1.3012 0.01758 0.01764 0.03085 5.0611 5.0608 0.01758 0.09168 0.12629
65536 —1.2704 0.00862 0.00858 0.00007 4.8728 4.8730 0.00862 0.04630 0.06196
262144 —1.2779 0.00435 0.00437 0.00755 4.9698 4.9697 0.00435 0.02357 0.03497
1048576 —1.2704 0.00217 0.00223 0.00006 4.9447 4.9445 0.00217 0.01173 0.00994

¢S] —1.2703628454614781700 4.9348022005446793094

Note: The last row is the true value of B = 7r2/2 and A = —v — In2 where 7 is the Euler constant. Note the UA/\/E and

AA /‘/nE approach to be the same, and B,, and B,L approach to be the same as N gets larger. We can see that the choice

of ne does not affect the asymptotic results, so, for simplicity, we can choose ne = VN.
From Table 1, one may observe the following:
(1) The MCI relies crucially on the quality of the software that generates random

numbers. Here we are “fortunate” to catch a “rare” event to demonstrate clearly the



statistical nature of the Monte-Carlo simulation: whenn = 64, B, — B is “unusually”
large.

(2) When n. changes from small to large (keeping n = ngn. fized), there is no
fundamental change in o,, . /\/n, which represents one standard deviation of the
numerical approrimation to the true value. That is, when there is no good way to
estimate o,, one can, instead of performing one MCI using n samples, perform n,
MClIs each of which using ns samples, and use the scaled sample standard deviation

Ongne/+/TsTle as an estimation for the true one.

2.0.2 Importance Sampling

The effectiveness of MCI for (2.0.1) depends on the statistical behavior of the
random variable p(X) := f(X)/p(X) where X is a random variable with density p.
In practice quite often one chooses the density from a family {p(-, a)}sca of density
functions. Here A is a parameter set and for each parameter a in the set A, p(-,a) is
a probability density function. Note that

(z)

RT p(xva)

pi= [ f@)de= [o(z, a) do] = Elp(Xa,a)],  ¢(x,a) =

Here and in the sequel, X, denotes a random variable with probability density p(:, a).

If a parameter a € A is chosen, i can be approximated by
Mn(a7X17"' ,XTL> :ligp(XZ’a/)
a a n — a

where {X!}" , are random draws from a random number generator for X,,.

Importance Sampling (IS) is a special technique used for Monte-Carlo integration
which selects an “optimal” probability density function p(-,a*) from a carefully de-

signed family {p(-,a)},c4-

10



While designing a good probability density family is important and in general
very hard, setting up a criterion for optimality can be quite delicate. Quite often one
uses the following [6, 15, 16]:

2
a = arginin mcin /RT [Q(go(x,a)) —c| w(z,a)p(x,a)dx (C)

where w > 0 is a weight function. Typical choices of () and w are
Qt) =t, Q(t) = Int, Q(t) = cosh(At), w(z,a) =1, w(z,a) = p(z,a).

In general, analytical evaluation of a* from (C) is quite difficult since it may involve
integrals that are more complicated than the original integral (2.0.1). One common
practice is to use MCI to evaluat the integrals in (C) and perform an appropriate
minimization via an iteration process. For an optimization that involves random
draws (needed by the MCI), usually it is necessary to use common random numbers

(CRNs), explained as follows.

Let U be arandom variable whose random draws can be generated from a standard
software package. Assume that there exists a smooth function ®(-,-) such that for
each a € A, the random variable X, := ®(U,a) has the distribution density p(-, a).
Now let {U?}; be n random draws of U. Consider the family {{X"}" ,},c4 defined
by

X, :=9U'a) Vi=1,-,n,a€ A (2.0.4)

For each a € A, {X,}}_, can be considered as random draws of X, := ®(U, a) and it
varies continuously with respect to the parameter a. For a functional that depends
only on {X!}" | numerical optimizations with respect to a can be performed, quite

often, with stability.

When random draws of every X, in a family {X,},c4 are produced from a single
set of random draws {U}, we call {U}; and {{X?}",},ca the common random

numbers (CRNs).

11



Once CRNs are generated, the criterion (C) can be implemented numerically as
" . 2 .
a* := argmin min Z (Q(@(Xé,a)) - c) w(X;,a) . (C1)
“ T

In [15], Researchers introduced the following (not necessarily equivalent to the above):

k—o0

a* := lima™®, a* ) .= argmin min Z {Qp(X! 1, a) — C}Qw(Xé(k),a(k)).
“ BT
(C2)
Using importance sampling, the Monte-Carlo integration can be described as fol-

lows:

Importance Sampling Monte—Carlo Integration (ISMCT)

0. Pick a random variable U and design a family {p(-,a)},., of probability densities
with a function ® such that X, := ®(U, a) has density p(-,a). Also design @ and
w.

1. Generate independent random draws {U*}?_; of U.

2. Find an “optimal” value a* from (C), (C1) or (C2), where {X’} are produced
from (2.0.4).

3. The output of an informative numerical approximation for y is j,, +o,,/1/n where

n

1 n ‘ . 1 ; . 1/2
Hn = E ZQP(X;*’Q )7 On = { Z[QD(XG*,G ) N 'un]Q} '
=1

n—1

1=

Remark 2.0.2. (1) The “optimal” parameter a* obtained from criterion (C1) or
(C2) depends on the CRNs used for MCI and hence is local or non-universal. The
“optimal” parameter a* from the criterion (C), on the other hand, is universal in
the sense that it does not depend on the CRNs. A universal parameter, albeit can
be found, has the obvious advantages: (i) it is efficient for repeated MClIs, say, for
various different sizes of samplings; (i) in error analysis, {o(Xi. a*)}", can be
regarded as i.i.d random variables so central limit theorem applies.

(2) When a* depends on {U'}?_,, the quantity o, /v/n may not be a good approz-

12



imation of the true standard deviation of u,. If this is the case, one may consider to

use the sample standard deviation of a set of MCI approximations; see Remark 2.0.1

(3).

Example 2 ( [15]). Let 6 > 0 and consider the use of the probability density family
{p(x,a)}aca with p(z,a) = ae™ 150y and A = (0,00) to evaluate p = /00 e dx.
(1) The MCI Method. Let U be a random variable that is uniformly dis(t)m’buted on
[0,1] and

e X, = _an

, Va>0.
ae % a

gp(m,a) =

Then X, is a random wvariable with density p(-,a) and p = Elp(X,,a)]. If a is a

selected parameter and {U'}?_; are random draws of U, p is approzimated by p,(a) £

on(a)/\/n where

n—1 - #la)i= al?

" ila " o) — (a2 ' exp ( — [21In)°
Nn(a) ::Z$7 an(a)2 ::Z[SO( ) Mn( )] L p( u )

i=1
(2) The Criteria. We list a number of criteria for the “optimal” parameter a*.

1. a* = a] = argmin V|[p(X,,a)] = argmin/ eax_%é_ln“dx, ford > 1.
0

a a

When § € (0,1), the variance of ¢(X,,a) is infinite so we may consider

*

a* = aj := argmin E[|o(X,, a) — pl] Vd > 0.

(14 25) —T?(1+9)
oT(1+0)

3
2. a* = aj := argmin V[lno(X,, a)] = [ } , for 6 > 0.

k—o0

3. a*=a} = {1+ 5)}1/6 = lim a® where a*+Y := argmin V[In (X, 1), a), a)].

Indeed, a*+Y) = (a®)1=ISD(1 + 6) s0 limy_o a'®) exists if and only if § € (0,2).

4. a*=aj(U, -, U") := klim a®) where a* ) = argmin min 37" {In (X’ ), a) —

13



c}?>One can show that a}) exists if and only if § € (0,2) and in such a case,

n . . 1/8
S0 (X~ e
a;(U', - U") = = i 5 : c::ﬁZXf, f::lnﬁ.
31X~

Asymptotically, one can verify that lim aj(U', -, U") = aj.

(8) Numerics. To demonstrate the effectiveness of choosing the optimal parameter a,

we present our numerical results in Table 2 and Table 3, and Figure 1-2.

Figure 1: The sample standard deviation curve on a — ¢ coordinate system.

delta=1.5, the sample size is changing from 256 to 4194304

0.8

—+—— n=256
——e— n=1024
0.4~ —+— n=4096

—<%— n=16384
———— n=65536

— - — n=262144
—=4&— n=1048576
o2l > n=4194304
Theoretical line
O minimum pointl
0.1 O minimum point2
(] minimum point3

Criteria2: a*=1.6517

Criteria3: a*=1.5842

Criterial: Theoretical Minimum point a*=1.4782

I3} I I I I I |
[0} 0.5 1 1.5 2 25 3

14



Figure 2: The sample standard deviation curve on a — o coordinate system.

delta=0.5, the sample size is changing from 256 to 4194304

2
1.8
1.6
14l —=4— n=1048576
: - n=4194304
= Theoretical line
O minimum pointl
121 O minimum point2
1
08—
0.6
0.4
I I I I I ]
0] 0.1 0.2 0.3 0.4 0.5 0.6
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In Figure 1, § = 1.5. We plot the sample standard derivation curve o = o,(a)
on the a-o coordinate system. Curves displayed are for n = 2% with k = 8,--- ,22.

All curves are smooth since CRNs are used for diﬁer@nt a’s. The thick dashing curve

corresponds to the curve o = (X4, a)] = VE[o,(a)}] = /nE[|pn(a) — ul?] for
all n.

In Figure 2, § = 0.5 so E[|un(a) — p|?] = oo and at is undefined. We plot the
scaled L' norm d = E||u,(a) — u|]/d with d = min, E[|p,(a) — p|] on the a-d plane.
It seems that

Ak
aq

In(lnn)

In(log, n)

vn

Here the values E[|p,(a)— u|] displayed are indeed numerical approzimations obtained

Qopt, 1= argmin Ef|u,(a)—pul] ~ (n=2",  dy:=minE[u,(a)—ul] =

from an average of n, = 32 Monte-Carlo simulations. The dashing curve represents

the function d = El|p(X,,a) — p|]/d which attains its minimum at @ =~ 0.088.

(4) Conclusion. It is quite clear that when § > 1, the MCI is not sensitive to the choice
of a*; for example, when 6 = 1.5, for any a between 1 and 2, the standard deviation
of the resulting MCI is no bigger than twice of the optimal one. Nevertheless, when
0 < 0 < 1, the performance of MCI is very sensitive to the choice of a ; namely,

importance sampling is truly the key for efficiency.

For discussions from other points of view, see Owen and Zhou (2000) [13], and
Richard and Zhang (2007) [15].

Remark 2.0.3. The MCI is typically used for high space dimensions, i.e. for T large.

When T is small, it is better to use integration quadrature rules. For instance,

1 116 17718
X, a=—imi rlemlainil n 1 o= e [=ali
e’ dr —=——== —du%,uR::—E _—
0 0 au n al;

i=1

Ui=

S

While error estimates from numerical quadrature rules are absolute (confidence level

= 100%), error estimates in MCI are statistical and confidence levels can never reach

100%.
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2.0.3 Sequential Importance Sampling

Sequential Importance Sampling (SIS), a variation of IS, is a powerful technique
developed by Geweke (1989) [6], and Fishman (1996) [5], for the Monte-Carlo inte-
gration of (2.0.1) where 7" > 1. In this method, a family {p(-, a)}sca of probability
density functions with parameter a = (aq,---,ar) is to be designed and when a

parameter a* € A is selected, the integral p in (2.0.1) is approximated by

1 < : x . .
pin (@, U, - U™ = EZ(,O(X;*,CL*), o(x,a) = /() X, :=®U" a),
i=1

where {U;}!, is a set of common random numbers drawn independently from U and
® is a smooth function having the property that for each a € A, X, = ®(U, a) has
density p(-, a).

*

For the importance sampling, the “optimal” a* is selected by solving a mini-
mization problem having the same space dimension as that of A. In the sequential
importance sampling, a fairly large dimension of the set A is introduced and a “sub-
optimal”, that is, not necessarily “optimal”, parameter a* is obtained by solving a
sequence of minimization problems each of which involves only a very small parame-
ter space dimension. The introduction of a large set A allows a good approximation
of f(x) by a constant multiple of certain density functions in the family {p(-, @) }se4,
and the sequential minimization reduces significantly both the theoretical and the

numerical complexity. A good balance between the size of A and the degree of sub-

optimality improves significantly the performance of SISMCI.

To transform the global minimization of the importance sampling to a sequential
minimization of the sequential importance sampling, one designs a special decompo-
sition of the form

f(z)

Y(x,a) :=1In ) =

T
dola) + ) hi(x, a).
t=1
While the importance sampling uses optimal a that minimizes certain variance of 1,
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the sequential importance sampling only requires a; to minimize certain variance of
Yy, for each t = 1,--- [T. One version of a “suboptimal” a* = (aj,--- ,ak) can be

defined as the solution of
a; = argmin V[ (Xoe,al, -+ a;_y, 2z, a5, ,ap)] Vi=1,--- T.

Quite often analytical evaluation of V[i¢y] is very difficulty so a Monte-Carlo
integration with CRNs is used to evaluate V[¢;]. To illustrate this aspect, let {U*}™,
be a set of CRNs drawn independently from a random number generator for U. Set
X! = ®(U*,a) where X, = ®(U,a) is a random variable with density p(x,a). Then

V[1i(X,,a)] is in certain sense propositional to
n ' 9
minz (z/;t(X;, a) — c) : (2.0.5)
i=1
Hence, (2.0.5) can be implemented numerically as the solution of

n
) 2 )
a; = argmin minz {wt(Xé*,a“{, ooy Q5 2, Ay ey ) — c} w(Xg.,a") vVt
z ¢ =
i=1
(2.0.6)
Here w is a weight function introduced as an added feature.

Problem (2.0.6) is usually solved numerically by an iteration process: a* =

limy_.oo a® where
n ) 2
a§k+1) = argmin minz {%(Xﬁ), aﬁ’“), s a@p Zs agﬁ)l, s agg)) - C} w( X0y, a®).
z ¢ im

k) converges, one can argue that the

Although it not guaranteed that as k — oo, a
effectiveness of the method should be related to the rate of the convergence of {a®};
fast convergence provides a hard evidence towards the effectiveness (accuracy) of
the method; poor convergence warns that it is most probably the family of density
functions, instead of the numerical iteration scheme, that needs to be redesigned.

An example of the application of the sequential importance sampling Monte—Carlo

integration will be presented in the next section.

20



3.0 AN APPLICATION OF THE SISMCI

In this section, we apply the sequential importance sampling Monte—Carlo inte-
gration method to evaluate a likelihood function of a stochastic volatility model. This
particular application has been presented by Geweke (1989) [6], Fishman (1996) [5],
Owen and Zhou (2000) [13], and Richard and Zhang (2007) [15], etc., in a context of
very general setting. Here we present a simplified version of their derivation. Addi-

tional analysis will be given in the subsequent sections.

3.0.4 The Problem

1. The Stochastic Volatility Model. We consider a stochastic volatility model [17]
re = e’ &, V=0V VI

where e;,m,t = 0,£1,+2,---, are i.i.d N(0,1) distributed random variables.
Here {r;}?° _. models an observable time series, say stock returns with mean sub-
tracted, Be* is the conditional volatility of r;. The condition of knowing v; cannot be
materialized since v; is assumed to be a latent factor, i.e., a non-observable stochastic

process. In this model, we have three parameters:
A= (8,8,0) € (0,00) x (—1,1) x [0, 50).
Under the new variable x; = v;/v, the stochastic volatility model can be reformulated

21



as

= ﬁem/%t; Ty = 0x4—1 + M.

2. The Marginal, Conditional, and Joint Density Functions. For notational simplic-
ity, in this section we omit most of the dependence of functions on the parameters
A = (f,9,v). By abusing the notation we denote by p(z;) the marginal density func-
tions of the random variables z;, by p(x|z;—1) the conditional density of x; under

the condition of known z;_1, and by p(ri|z;) the conditional density of r;, under the

condition of known x;. We denote by p(ry, - ,rp, 21, -+ ,xp; A) the joint density of
r1,+ ,T7,T1, -, rp with the given parameter A. Finally, we denote by p(r; A) the
joint density of r = (ry,--- , 7). Now we use (1.0.2) to derive these density functions.

Since |§| < 1, one derives from the recursion x; = dx;_1 +n; and the independency

and normality of {ns}32__ that

S§=—00

1 2 = V1-— 02 1.2
o —(z¢—0x1_1)%/2 . 5t ) o -
Ti|Ti_1) = e , Xy = iy Ty) = ——€ )
plade) = 5 S )=
The equation r, = fe**/%¢, and the independency of ¢, and z; = > ;’io dn,_; imply

that
o382 ) my[2-rRe ) (257)

p(”f’tll’t) - \/W = \/W

We then derive from these conditional densities that

T
p(r1, - e, w2y A) = p) p(r]oy) [p(a?tlxt_1)p(n|xt)}
t=2
V1 — 62 ZT: <1/xt N Tfe”t) (1-— 52 ZT: Ty — 5xt 1)
= ————exp |— — — .
(276)T L\ T T A
Finally the marginal distribution density p(r;A) of r = (ry,--- ,ry) under given

parameter A can be calculated from the above joint distribution by
p(r;A) = / p(ry, - rp xy, - oy N)day - - - dag. (3.0.1)
RT
3. The Maximum Likelihood Estimator (MLE). Suppose R = (Ry,---,Rr) is a
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set of observations of r = (ry,--- ,ry). Then the maximum likelihood estimator
= (5%, 0%, v*) for the parameters in the model (1.0.2) is defined as
A=A (R) = argmax p(R;A) .
A€(0,00)x (—1,1)x[0,00)
To find A*, one has to evaluate the T-dimensional integral in (3.0.1) which does
not seem to have an analytical closed form. Since T is usually quite large, efficient
numerical algorithm is needed to perform the integration. Indeed this is our current

focus of the attention. For definiteness, we formulate our problem as follows.

Problem: Given constants 3 > 0,6 € (—1,1), v > 0, and (Ry,--- .Ry) € RT, numer-

ically evaluate the integral [, f(x)dz where z = (21,--- ,z7) and

—VTt . T
f(x):—vl_yexp[_z<%+3§€ > (1 52 Zwt 5101 )?

(2nB)T 252 2

t=1

(3.0.2)

3.0.5 Sequential Importance Sampling Monte—Carlo Integration

Here we present a simplified derivation of the algorithm used for the numerical
evaluation of (2.0.1) with f given by (3.0.2).
1. The family of probability density functions. The special form of f suggests that

we use the Gaussian distribution family. More specifically, we define {p(x, a)}.ea by

a = (ar, - ,ap,by,- ,br) € A:=(0,00)" x RT,
(3.0.3)

T
1
p(x,a) e H e*[zra?(émtflfbt)]2/(2af) (onO).

2
1V 2Ta;

For any a € A, a random variable X, that has density p(-, a) can be obtained from
a single T-dimensional random variable 7 as follows. Let n;,--- ,nr be ii.d. N(0,1)

distributed random variables. Set n = (n1,--- ,nr) and ®(n,a) = (Py,--- , Py) where
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{®,}]_, are defined by
(I)O = 0, (I)t = CL?[(S(I)t_l — bt] + A1, t= ]., tee 7T. (304)

It is easy to verify that X, := ®(n,a) is a random variable with density p(:,a).

Given random draws {n'}"; = {(n, -+ ,n%)}", of 5, we denote by {X!}", the

corresponding CRNs defined by X! = ®(n’,a). The components of X! are denoted
(X(lz I 7X2,T)'

For convenience, in the sequel we use the following “artificial” values:

1 if t=r1,
if t#7.

Ty = 07 ar+1 = 15 bT+1 = 07 6t‘r =

2. The function f(x)/p(x,a). We can calculate, for any a = (ay,--- ,ap,by,- -+ ,br)
in A,

W(z,a) =In f(x()L =o(a) + Y ¢i(we,pi(a), qi(a)),

where

=1
RQ —vz
Vi(z,k,0) = KkZEHLz— ( ;52 + %Z), (3.0.5)
) e L LEPaty b
BT 92 2 ’
(3.0.6)
qt(a) = bt — 5a%+1bt+1.

Hence, for each a € A,

f(2)dz = @ / Xt Um0 ) (. q)da].
T

RT
The simple expression of ¥,(z, k, £) in (3.0.5) suggests that it is convenient to use

the parameters p = (p1, -+ ,pr,q1,- - ,qr) as independent parameters and use a =
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(a1, ,ar,by, -+ ,br) as dependent parameters. The following result then becomes

very helpful.

Sequential Importance Sampling Monte-Carlo Integration

0. Load input {f,0,v, Ry,--- , Rp}. Assign € =“tolerance” a value, say, 107%.
Setag=1land by=0forallt=1,--- , T+ 1,and X;=0foralli=1,--- ,n
Generate independent N (0, 1) distributed random numbers { {n:}Z_, },

1. Define {{X I} 1", by X{ = a?[6X} | — b + am, t=1,---,T, 1 =
1, ,n.

2. Foreacht=1,---,T, find

RS Epe— (n(Xim0) )

(GAR9 ——

3. Set CLOld = (al, e, ar, bl, s ,bT), define a = (CLl, e, ar, bl, cee ,bT) by (307),
and make a switch as follows:

a—a® <27 N9 [Max Ttera| 2%

tion?
| Yes | Yes

4. Produce the output

ln/Tf(x)dx%wo(a)—ict—i—ln <%ieXp<i X, pe, @) +Ct]>>

t=1 i=1 t=
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Lemma 3.0.1. The map a € A — p(a) := (pi(a), - ,pr(a),q1(a), - ,qr(a)) de-
fined by (5.0.6) is one-to-one. Its inverse can be calculated iteratively as follows
(recalling ars1 =1 and bpy1 =0):

ar = (th+1+52[1—a?+1—5ﬂ] >_1/2,

t=T, T—1, - ,1.  (3.0.7)
be = @+ 0ai b,

In addition, this inverse p~* maps [0,00)T x RT to <0, } x (0,177 x RT.

1
Vi

The proof is a straightforward verification and hence is omitted.

3. Criteria for “Optimal” Parameters. Based on (2.0.5) and (2.0.6), we present two

criteria.

When True (Theoretical) variance are used, we propose the following: the “opti-
mal” parameter a* € A to be used for SISMCI is the solution of

(pt(a*),qt(a*)> = argmin V [w(Xa*,t, kO Vt=1,--- T. (T)
(r.0)

Here X, := (X41,---,Xor) := ®(n,a) where ®(n,a) := (Pq,--- ,Pr) is defined in
(3.0.4). We shall investigate this criterion in detail in the next section.

In rest of this section, we consider the criterion used by previous literature, in
which the variance in (T) is replaced by Sample variance; that is, after the generation
of CRNs, {n'}"_,, the optimal parameter a* is the solution of

(pt(a*),qt(a*)) = ar(gmin min 2”: (wt(Xé*ﬂf, K, 0) + c)2 Vi=1,---,T, (9)
#,£) R

where (Xévl, e ,Xi7T) = ®(n', a).

a

4. The Sequential Minimization. To solve problem (.5), first we consider a simple
minimization where a* on the right—hand side of () is replaced by a generic a € A

. That is, we consider the map a € A — p*(a) := (pi(a),--- ,ph(a), ¢ (a), -, ¢r(a))
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where

n ' 9
(pjf(a),qf(a)) := argmin min Z (1/1t(X;’t,/<o, 0) + c> Vt=1,---,T. (3.0.8)
(r,6) R

From the explicit expression of ¢,(z, , /) in (3.0.5 ), we see that the minimization
problem on the right-hand side is a standard linear regression whose geometric inter-

pretation is the orthogonal projection of the vector F' onto the space expanded by

1, L and B where

R,

—ux _xn v "
F=gg(e e e gl B= (Xl K0P,

L:<X;,t7"' 7Xg,t)7 1:(17"' 71)n><1-

Thus, (p;(a),q/(a)) is indeed the solution of the following linear system (with ¢ = 0)

B-B+¢ L-B 1-B pi(a) F-B
B-L L-L+e 1-L ga) | = F-L
B-1 L-1 1-1+¢ ci(a) F-1

When n > 3, the theoretical probability that the n-dimensional vectors 1, L, and B are
linearly dependent is zero. Hence, we can assume that the above system (with ¢ = 0)
always admits a unique solution so that p*(a) is well-defined by (3.0.8). Numerically

we can take a tiny positive € to ensure the robustness of the program.

It is easy to see now that a* solves (S) if and only if a* is a fixed point of the
composite map

ac A _— p=p-(a) — d:p_l(p):p
(3.0.8) (3.0.7)

One may be happy to notice the following. The minimization problem in (3.0.8) is
in certain sense meant to approximate the exponential function he™* (h = R?/(23%) >
0) by a quadratic function ks® + [¢ — v/2]s — ¢. Since the function s € R — he™"*
is convex, it should be true in general that the solution of problem (3.0.8) satis-

fies pi(a) > 0, ie., p*(a) € [0,00)7 x RT. Hence, by Lemma 3.0.1, p~! o p*(a) is
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well-defined.
Numerically, the fixed point a* of the map p~!op* can be obtained by an iteration

process:

a* = lim a®, al

k—oo

1= p~top*(a®),

4. A Numerical Scheme. Based on the above discussion, if we use (.S) as the criterion
for the “optimal” parameter, we can design a numerical algorithm for sequential
importance sampling (SIS) as follows:

Here ¢, is introduced for the necessity of numerical implementation that avoids over-
flow of the floating-point arithmetic for exponentially large or exponentially small

numbers.

3.0.6 A Numerical Experiment.

In the sequel, a point x = (21, -+ ,27) in RT will be referred to as a path since
we visualize it as a curve {(t,7;) € R* |0 <t < T}.
1. The Input. As an illustration, we use artificial data generated by a Monte-Carlo
simulation for (1.0.2) with (5,0,v) = (1, 0.9, 0.5). For the convenience of numerical
analysis, we take a small size T' = 50. The data {R;}L_, are plotted as the thin curve

in Figure 3 (a).

2. The Optimal Parameters. The optimal parameter, denoted by a*(n) where n is
the number of sample paths, depends on the CRNs {{n{}7,}", used in the MCL
One of such parameters is plotted in Figure 3 (a). The theoretical mean, denoted by
a*™, of the optimal parameters a*(n) is the solution of (T). For the particular CRNs
used in our simulation, we list the deviation |a*(n) — a**| in the last column in Table
3. It is quite easy to see the tendency that

max |a;(n) —a;*| — 0 as n — oo.
1<t<T

Based on this observation, it is then quite natural to take the initial value a©) of
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a* = limy_.oo a'® as a**, which will be fully analyzed in the next section. In Table
3, comparisons of the number of iterations and the CPU time (in seconds) are made
between the case of setting a(?) = a** and the default case of setting a(¥) = 1.

When n = 4, the sequence a'®) oscillates and does not seem to converge. This is

not a generic phenomenon and it came to our attention by chance.

Figure 3: SIS Curves (a)

(o} 10 20 30 40 50
time

The thin curve represents { R;}?2; which has mean —0.16, Std 0.95, skewness —0.05,
and kurtosis 4.47. The two thick curves are {a;}?%; and {b;}?°.

3. Importance Sample Paths. In Figure 3 (b) we plot two of the important sample
paths {X;}L, (i=1,2,--- ,n) defined by X; = a}*[0X, — b}] + a}ni. Also plotted
are the mean path (setting 7! = 0) with optimal parameter a = a*(n) for different n.
These mean paths are almost the same since a*(n) ~ a*™. As (1, ,nr) ~ N(0,1),

all important sample paths oscillate around the mean paths.

4. Error Analysis. Let p1:= [or f(2)dx and p, be its numerical approximation. Note

that

lnunzlnu—i—ln(l—l—’un_#) zlnqu(&—l).
H H
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An informative approximation of In y can be written as Inpu = In p,, +¢,/v/n+o/\/n
where ¢,/v/n = E[lnp,) —Inpu is the bias and o is a constant. We propose the

following for the estimation of o.

Figure 4: SIS Curves (b)

The curves clustered in the middle are the mean paths for different n. The thin
curves are two of the important sample paths used in one of the MClIs.

(1) As an approximation, the optimal parameter a*(n) can be regarded as a
constant vector, since its dependence on the CRNs used in the MCI is very weak.

Hence we can approximate o by the sample relative standard deviation

n 12
e?

g (G o) el e

=1

From Table 3, one sees that o, /1/n does provide a basic size of error of the MCI output
for the Log likelihood. In addition, one does see a tendency that o, - 0~ 0.5--- as

n — 00. One may also notice that there does exist a negative bias of size comparable

to o, //n.

(2) We use a simple version of ANOVA (analysis of variance). Suppose we perform
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ne number of SISMCI experiments, each of which takes ng, samples. We denote
the approximations and sample relative standard-deviations from these SISMCIs by
pil o) =1, e

(i) The relative variance of each /L,(i), j =1,--+ n, is approximately o2/ns so

the sample relative variance of {u,(fs)}?;l also approximates 02/n,. Hence o can be

approximated by

1) 211/2 1
Onsne -— V1 { Z ( - 1> } ) Hngne -= — Z//L?('i]s)'
Ne — 1 - Hngn Ne £
Jj=1 se Jj=1
(i) Since each ay(f;), 7 =1,---,n., approximates o, so does their average. This

average can be finely tuned by the following. Set fi.; the average of p;; over i =

1,--- ,ns and g the overall average. Then
Ne Ns /_I/,L 2 1 Ne Ns o 2 . B 2
(nne = 1)o* ~ 3> (7] - 1) = EZ{Z <Nz‘j —M-j) +ns<u~j —u) }
j=1 i=1 =1 =1

Q

(ng—1) Z % + (n. — Vop ..
=1

2

Here the second term is of the order n.o? = [n.n,0% /ns and can be neglected when

ns > 1. Anyway, we can approximate o by

1 le 1/2
Op., =——o-—q(ns—1 o2 4 (n,—1) o2 }
e = = )3 o (D)o

In summary, denoting by n = ngn, the total number of sample points used, we

expect

En o
Mg =M, + et =y 0 R 0w N T A O,
NN e

In Tables 3 and 4, we list these sample standard deviations o0y, 0,5, and o,
from numerical simulations. From these listed data, one can obtain a basic size

o ~ 0.5. That is to say, a log likelihood estimation from an SISMCI has an error of

size 0.5//n.
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5. Biased Estimator. Since the parameter a* depends on the CRNs, fully theoretical
analysis of the statistical behavior of the random variable p, = g, ({{n:}_,}7,) is
out of our reach for the moment. Nevertheless, from Table 4, one sees that most of
In pi,, underestimate In p. Indeed, one can run a statistical analysis to show that it is
statistically significant to reject the hypothesis E[ln u,] — Inpu = 0. For example, in
ne = 128 experiments, the average of In 1198 — In p is —0.0182 which is more than 5
sample standard-deviation (= 0.00354) away from zero. This gives us an extremely
high level of confidence to accept the hypothesis that €155 > 0. We tend to believe
that

lim ¢, := lim \/ﬁ<ln,u — E[ln p,,)) x 0.

Remark 3.0.4. 1. The CPU time listed is only for reference and it is not always
proportional to the amount of calculation needed. We use Matlab on Dell’s PC which
seems to be efficient in handling certain particular dimensions of vectors so it may
take shorter time to do larger job; see the amount of CPU time for the comparison
of (neymns) = (32,128) and (n.,ns) = (32,256) and also the comparison of (ne,ns) =
(64,256) and (n.,ns) = (128,128).

2. If an estimator is biased by more than one standard-deviation, then taking the
average of a large number of the values produced by Monte-Carlo simulation won’t im-
prove the approximation. If €, > o were rigorously verified, then taking for example,
ne. = 100, of the Monte-Carolo experiments with fixed number of sample points, say
ns = 100, does not guarantee to obtain an approximation with error size O(1/\/nsne).

Indeed, when n, — 0o, one obtains a limit value In pu — €, /\/ns.
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4.0 A NEW APPROACH OF SISMCI FOR SVM

In this section, we investigate the SISMCI for the likelihood function defined in
(3.0.1), using the criterion (T) which is new in the literature. To be specific, we
assume that A = (3,6,v) € (0,00) X (=1,1) x [0,00) and R = (Ry,--- ,Rr) € RT are

given and fixed, and consider the integral
(:=1n / e @ dy (4.0.1)
RT

where ¢(x) is given by

T
¢(z) :=In —(21”@; +y {% + Q%ie—m}Jr—(l _25%% Ly e 0men)” gx“)2. (4.0.2)
v t=1

t=2

4.0.7 Normalization

Note that ¢ is a sum of convex functions, so ¢ is convex. Indeed, it is strictly
convex so it has a unique point of minimum. Hence, the major contribution toward
the integral (4.0.1) comes from the integration of the integrand in a certain vicinity of
the point of local minimum of ¢. Clearly, in Monte-Carlo integration, of importance
are those samples that are near the point of minimum of ¢. It is therefore useful, at
least from numerical point of view, that we perform a normalization by shifting the
origin to the point of minimum of ¢, so important samples in MCI are near the origin

in the new coordinate system.

Lemma 4.0.2. The function ¢(-) defined in (4.0.2) has the following properties:
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1. ¢ is strictly convex in RT; that is, for every x € RT | the matriz D*¢(z) of all

second order derivatives of ¢ at x is positive definite.

2. There exists a unique x* = (z7,--- ,2%) € RT such that ¢ attains its global

3. Let ((z) = ¢(a* + x) — ¢(a*). Then

(0)=0<(¢(r) Vax#0, D(0)=0, D*¢(x) > (1 —|6))*T VreRT,

(1—52 )22 s (y — 5xt D2 N (v
C(z) = T PR ht< fo 14 uxt> (4.0.3)
t=2 t=1
where I 1s the T x T identity matrix, and
2
hy=—Ltev, t=1,... T
t 2ﬂ2 ) ) )
4. In terms of , the integral (4.0.1) can be written as

p(R;A\) = / e @ dy = e‘d’(m*)/ e~ @ dz., (4.0.4)

RT RT

Note that the function e™* — 1 4+ vz is convex and attains its global minimum
zero at z = 0.

vz

Proof. Since e™"* is a convex function, ¢ is the sum of convex functions so it is also

convex. Notice the identity

(1=02)224+ 3 (m—0_1)? = (1= |6]) (2222 )+(1—|3]) Zfﬂt |5|Z( xt 1)2.

We see that the minimum eigenvalue of the Hessian D?¢ is no smaller than (1 —|§|)?
so D%¢ is positive definite and ¢ is strictly convex.
The above identity shows that ¢ grows to oo as |z| — oo so that ¢ admits a

unique point of local minimum. We denote this point by x* = (x7,--- ,zk). It is easy
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to check that ((x) := ¢(2* + z) — ¢(a*) can be expressed as

1— 6222 o (2 +610.1)? _
Glay = L= S L0l S (e i) —
t=2 t=1
where ¢, g1, -+, gr are constants. Using ((0) = 0 we have ¢ = Zthl h:. Also from

0= D((0) = (g1 — vh1,- -+ ,gr — vhy), we see that g, = vh, for all t. Hence, ((x) has
the form (4.0.3). O

4.0.8 The New Criterion for the Sequential Importance Sampling

We now investigate a numerical evaluation of (4.0.4) by using the SISMCI. Same
as before, we use the probability density family {p(z,a)}sc4 defined in (3.0.3). One

finds that
equ(x* +$)

(x,a) :=1In = 1o(a) + Z?/Jt(xt,]?t(a)a q(a))

plz,a)
where {(p, q;)} are given by (3.0.6) and

T

Yo(a) = Z (log 2ra? + @) — o(z*), (4.0.5)
t=1
Vi(z,k,0) = w22+ L0z —hle™” — 1+ vz (4.0.6)

We shall use the following

Criterion For Universal Optimal Parameters

The universal optimal parameter a* is the solution a € (0,00)T xT of the system

(pe(a), qi(a)) = ar(gm)in Var [Yy(Xay, k,0)] Vi=1,---,T. (T)
K,
Here ¢(z,k,0) and (pi(a),q:(a)) are defined in (4.0.5) and (3.0.6) respectively,
whereas the random variable X, is defined by X, = ®(n, a) with @, given by (3.0.4)
where n ~ N(0, L, 7).
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4.0.9 Sequential Minimization

To solve the system (T), it is crucial to solve the minimization problem in (T),

for which we have the following.

Lemma 4.0.3. Leta = (ay,--- ,ar, by, -+ ,br) € Aand (Xo1,-- -, Xog) = (1, , @)
where {®;}L_, is given by (5.0.4) with (n1,--- ,nr) ~ N(0,1).

(1) Xos ~ N(p,02) where (ug,0?) are calculated iteratively by setting g = 0,00 =0
and

Mt 2= af[é,ut,l — by,

t=1,---,T.

Y

2. 2 | 5§24 2
of = a; + 0°a;0;_q,

(2) If € ~ N(u,0?), then argmin V[c €2 + o€ — e ¢ = (%7 1+ u])e”“”ﬁ/?,

(c1,¢2)

(3) For i given by (4.0.5),

2
argmin V [ Xap, 5, )] = (0, vhy) + hye et 08/2 <%, —v[l+ I/p,t]> . (4.0.7)
(5,0)

Proof. 1. Consider (3.0.4). Note that ®, ; depends only on 7y, -+, 71, so it
is independent of 7;. Since a linear combination of independent normal distributions
is still normal, we see that each ®; is normal. Denote by p; and ¢? the mean and
variance of ®;. Taking the mean and variance of the equations in (3.0.4) we then

obtain the induction formula for u; and oy.

2. Let v=¢&—p~ N(0,0%). Then E[v] =0, E[v*] = ¢% E[v’] = 0, E[v*] = 352
and

E[ve™"] = —o2¢” /2, E[v’e "] = 0(1 + 02)e” /2.

Set u=e""—e” 2{1—v+1(v?—0?)}. We can check that E[uv] = 0 and E[uv?] = 0.

Hence,

V[e_v — C1U2 — C2U] = V[u + 602/2{1 - v+ %(U2 — 02)} — C1U2 — C2U]

= V[u] + (cl - %e”2/2>2V[v2] + <02 + 6‘72/2>2V[v].
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Figure 5: UIS Curves (a)

Dots on top are {a;} and in the middle are {b;}. The thin curve is {h}}, thick one
is {z;} and dotted one is {z} + 7;}.

This implies that
argmin V(e " — ¢;0® — cpv] = (3, —1) 2,
(c1,c2)
Consequently, using £ = v + p we have

argmin V[e™ — ;6% — ¢x¢] = argmin V[e'(e ¢ — 162 — 3€)]

(c1,e2) (c1,e2)

= argmin V[e" — cie’v? — (co + 2 c;)etv)]
(c1,e2)

o2
= (%, —[1+M]>€ phe s,

3. The third assertion is trivially true when h; = 0. Hence assume h; > 0. Set £ =

v X, then & ~ N(vpy, v?o}). Tt follows from ¢ (z, K, €) = k2*+((—vh)z—hi(e 7" —1)
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that

argmin V[t (Xos, 5, 0)] = argmmv[w}

(,0) (,0) hy
K {— vh,
- . |: i N _€j| ’
ar(%gm V2ht§ vhy $-e

The third assertion of the Lemma that follows from the second assertion.

Figure 6: UIS Curves (b)

| i piy ﬂ\l*‘

S

-

Ten sample paths (points) used in MCI. The middle one is expectation {z:} of all
sample paths, obtained by T; = {a}%(0%;_1) — b} }.

Now since (pt, ¢;) in (3.0.6) is equivalent to a in (3.0.7 ), we see that (T") can be

solved as follows

Theorem 1. A parameter a = (ay, -+ ,ar,by, -+ ,br) € (0,00)T x RT is a solution
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of (T') if and only if there exist (py,--- , pr, 01, -+ ,07) such that

’

_1
a; = ( 1+0%[1—aj,; —0ul + V2hyemvmtviol/2 > .
bt = (5af+1bt+1 —|— I/ht[l — (1 —|— I//jjt>e_Vut+y20t2/2]7
Vi=1,---,T
e = af [6p1i—1 — by,
| Ot = aiy/ 1+ 52at20?_1
(4.0.8)

Here oy := 0,9 :=0,ap,1 :=1,bpy1 :=0,0;s ;=1 if t = s and d;s := 0 if t # s.

Remark 4.0.5. (1) It is important to observe that the “optimal” parameters, being
the solution of (4.0.8), do not depend on the CRNs. This is fundamentally different
from the sequential “optimal” parameters obtained from the criterion (S) discussed
in the earlier section. Since in using (S), most of the computing time is spent on the
searching a* = limy_.o a® which depends on the CRN {{ni}L_ 1", the advantage of

using (4.0.8) is numerically efficient and theoretically sound.

(2) At the optimal parameters, one finds that,
V[e(Xar, pi(a), qe(a))] = hie 2ot (ey%g —1-(voy)® — %(Vat)4)'
Also, one can show that the optimal parameters satisfy

O<al<1l(t=2,---,T), 0<ai<

1
1—462

Note that ry = Be"te; where vy = vy and Vv = */(1 —8)? > (voy)?. We see
that at least when the stochastic part vy of the volatility is not too large, our SISMCI
method will be very effective. We omit the details.
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4.0.10 Numerical Implementation

1. The flow of our new sequential importance sampling goes as follows.

Universal Sequential Importance Sampling Monte—Carolo Integration

1. Find z* by solving D¢(z*) = 0.
Define h = (hy,--- ,hy) as in (4.0.7).

2. Solve a* = (ay,- -+ ,br,by,-, by) from (4.0.8).
Define p = (p1,- -+ ,pr,q1, -+ ,qr) as in (3.0.6).

3. Generate independent N(0, 1) distributed random draws { {ni}L, }7,.
Define {{X}},}., by Xi = @[5/, — b] + au.

4. Produce the output as ¢ =/, + 0,,/+/n, computed by

n 7

T
. . J— e J—
77Z)Z = § 77Z)t(X27pt7Qt>7 ew = E n ) gn = 1/}0((1) +h’l€¢,
t=1

i=1

1 & et 2
ae Ly
n—1 i1 e’/)

2. Numerical Algorithm Calculating z*. Numerically, the point z* in Lemma 4.0.2
can be solved from the equation D¢(z*) = 0 via Newton’s iteration:

z* = lim 2™, 2O =0, 20 =20 _(D2p(z®) I Dg(z®). (4.0.9)

k—oo

Since ¢ is convex, the Newton’s iteration scheme (4.0.9) converges unconditionally

and fast. The numerical evaluation of (D?¢) ! D¢ is also very easy. Note the following

d¢p v vRZe v
a—xt = 5 5—62 +[1+ 52]56'15 — 0@y + T4 (33'0 =0x1, Try = 51'T)7

¢ VR 2
- 4] 4+ 621 — 6y —
axtaxt 262 e + 1+ 5 [ 5751 5tT]>
8% 8%
8xtawt_1 ’ 8xt8x5 01 | 8| -

Hence the evaluation of y = (D?¢ ("))~ D¢ (2™®) can be put into the form of solving
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a; ¢ 0 e 0 Y1 i
by as ¢ - : Y2 Jo
0 0 : _ :
bra ar—1 cr Yr—1 Jr1
O -+ 0 br1 oar yr Jr

This can be solved by the following Gaussian Elimination procedure: For ¢ = 1
to (T'—1) do {a1 = apy1 — bice/ar, forr = foor — fibe/as},
yr = fr/ar, for t=(T-1) to 1 do v, = (f; — ctyis1)/ .

3. The Algebraic System (4.0.8). The universal optimal parameter is the solution
of (4.0.8). We solve it by the following straightforward scheme: start from a; = 1
and b, = 0, update the unknowns by the right-hand sides of (4.0.8), in the order of

(017,1!1)7 T, (UT,MT), (GT, bT), T, (alabl)-

4.0.11 A Numerical Simulation

We take the same data used in the previous section. The results are summarized
in Figure 4 and Table 5.
1. The Normalization. The Newton’s iteration in finding x* converges very fast; in
about 5 iterations, we obtain z* within 10712 accuracy. Regarding x* = {z}}L, as
a path, we plot it as the thick curve in Figure 4 (a); the corresponding (positive)
{h:} is plotted as the thin curve. In view of Figure 3 (b), one discovers that the
path {x7}L, is close to all the mean paths of the results from the previous literature
using sequential importance sample method. This is not a coincidence; it reflects the
essence of importance sampling: important samples should be those that are near the

point of maximum of the integrand, i.e., neat z*.
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2. The Universal Optimal Parameter. It takes about 25 iterations to obtain a fixed
point of (4.0.8) with error smaller than 107'? . The optimal parameter {a} }, plotted as
dots on top in Figure 4 (a), is basically the same as that from previous literature, which
depend on the CRNs. Indeed our universal optimal parameter is the expectation over
all possible CRNs of the local optimal parameter. When the sample size is large, the
law of large number ensures that the local optimal parameters should be almost the
same as the universal optimal parameter; see the last column in Table 3. Since the
major portion of the drift for the important sample paths has been taken care of by

the normalization, the universal parameter {b;} is quite small; see the dots in the

middle in Figure 4 (a).

Figure 7: Sensitivity of Error Corresponding to Sample size

log2(Error)

5 6 7 8 9 10 11 12 13
log2(ns)

The curve represents logy(Error) to
IOgQ(ns).

3. The Important Sample Paths. The mean of all important sample paths is {z;}1,
defined by Z; = a?[07;_1 — bs] with Ty = 0; see the thick almost horizontal cuve in the

middle of Figure 4 (b). Denote & = (Z1,--- ,Zr). Then in the original coordinates
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system, all the important sample points for the MCI is * 4+ Z, instead of z*, the point
of maximum of integrand. This slight shift from z* to * + ¥ is indeed another fine
tuning of the importance sampling method. After an “optimal” probability density
function p(-,a*) is chosen, major variation of the integrand f(z) near its point x* of
maximum has been taken care of, so the center of sample points (= center of mass
with density p(+,a*)) should be, or at least very close to, the point of maximum of the
function f(x)/p(z,a*). The (coordinate-wise) positive shift from z* to x* + & reflects
the fact that for every h > 0, the center of a mass with density exp(—h[e "% —1+vz])

is positive.

Figure 8: The Maximum Log Likelihood When 3 = 0.8337

fix beta=0.8337 , maximum likelihood = -249 5481

It is not very difficult to see that if {X;}L , is a sample path used in our MCI,
then the shifted path {X;+z}}7_, resembles the important sample paths used in [15].
Indeed, x* 4+ Z should be the theoretical expectation over all CRNs of all the sample

points.
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4. Error Analysis. Since our parameter is universal, we can apply the central limit
theorem to conclude that ¢, is asyptotically N (¢,0?/n) distributed so that ¢ = ¢, +
on/v/n where o, is the sample relative standard deviation. The result is displayed
in Table 4. Basically, the sizes of the errors are comparable to that of previous

literatures.

Figure 9: The Maximum Log Likelihood When ¢ = 0.9193

fix delta=0.9193, maximum likelihood = -249 5538

4.0.12 Maximum Likelihood

To test another sequence of data of size 200, with parameters f = 0.8, v =
0.07,6 = 0.9, the maximum likelihood was applied to search the optimal parameters.
The following graphs are used here to show what the likelihood function values look

like around the optimal points.
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4.0.13 Conclusion.

The new method proposed here has a few advantages over the one discussed in

the previous section.

1. The use of universal parameter saves the computing time.
2. Theoretical analysis of the error for our new method is very simple since it involves

only the classical analysis on the average of i.i.d random variables.

Figure 10: The Maximum Log Likelihood When v = 0.0746

fix nu3=0.0748, maximum likelihood = -249 5527

delta : i beta

3. Numerically the initial step of normalization can be totally omitted from numeri-
cal algorithm (with formula (4.0.8) revised of course); theoretically the normaliza-
tion step allows us to see clearly how the method of SISMCI worked; it provides
an important clue for further theoretical work, e.g. efficient sampling should have
the property that the center of mass with density p(-,a*) should be the point of

maximum of the function f(-)/p(-,a*).
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5.0 CONCLUSION

The sequential Importance Sampling depends on the particular common random
draws to figure out the suitable fitted values for the suboptimal parameters. This is
limited and inflexible. The estimators we derive in our another approach present a
general formula which is flexible for financial applications. The new method proposed
in this paper has quite a few advantages over the one discussed in the previous sec-
tions. The use of universal parameter saves the computing time and is more efficient.
Theoretical analysis of the error for our new method is very simple since it involves
only the classical analysis on the average of i.i.d random variables. Numerically the
initial step of normalization can be totally omitted from numerical algorithm. The-
oretically the normalization step allows us to see clearly how the method of SISMCI

works. Finally it provides a valuable clue for further theoretical work.
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