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All tissues in the human body continuously grow, remodel, and adapt to changes in their 

physiological environment, in order to maintain homeostasis or to retain it in case of pathologies. 

The growth and remodeling (G&R) process results in changes in structure and composition. To 

elucidate how observed changes in tissue components are related to altered tissue level 

mechanical behavior, structural constitutive models are required with physiologically relevant 

model parameters. Specifically what is required is a finite deformation constitutive model 

describing the tissue mechanical behavior, in combination with the appropriate kinematics for 

the multiple tissue components, and experimental data of a relevant tissue application. An 

excellent example is the urinary bladder wall (UBW), which undergoes profound remodeling in 

response to different pathologies, such as spinal cord injury (SCI). The overall objective of this 

dissertation was to develop a morphologically-driven, multi-phase constitutive model that would 

allow for separate investigation of the contribution of individual tissue components to the tissue-

level remodeling process.  

As a first step, a constitutive model was developed of UBW extracellular matrix (ECM). 

Removing the smooth muscle cells from UBW tissue via decellularization allowed for the 

separate mechanical and structural investigation of UBW ECM. It was shown that the presence 

of de novo produced elastin in the UBW ECM post-SCI induced, indirectly, a distinct 

mechanical behavior with higher compliance, allowing for a higher overall extensibility of the 

post-SCI UBW and increased bladder storage capacity. The ECM constitutive model was 

extended and modified to be able to apply it to a multi-component tissue with individual model 

components existing in different reference states. Parameters were determined from biaxial 

mechanical data of decellularized and intact UBW tissue using a step-wise fitting approach 

implemented in MATLAB. As an initial step towards a theoretical G&R framework, a 

parametric analysis was performed to investigate if observed mechanical changes in post-SCI 

UBW were due to changes in morphology or intrinsic constituent properties. The developed 
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 v 

model has the potential to explain underlying remodeling mechanisms of individual constituents 

in muscular tissues in several pathologies (e.g. UBW post-SCI), and predict remodeling events in 

a tissue engineering setting of muscular tissues. 
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1.0  INTRODUCTION 

1.1 SCOPE 

All tissues in the human body continuously grow, remodel, and adapt to changes in their 

physiological environment, resulting in changes in structure and composition. In addition to 

adaptation within normal physiological ranges, pathologies and their subsequent adaptations 

account for a large part of observable tissue-level changes. Remodeling has been defined as a 

change in structure resulting in altered material properties that is achieved by reorganizing 

existing constituents or by synthesizing new constituents of different organization [65, 150]. The 

main load-bearing constituents of many native tissues are (smooth) muscle, collagen and elastin, 

and growth and remodeling (G&R) involves production and degradation of all these tissue 

components, as well as reorientation of the fibrous components, resulting in changes in wall 

thickness, tissue mass, and tissue structure.  

G&R in soft tissues has been studied most extensively in the vasculature [4, 8, 45, 62, 

66]. Sustained changes in flow or pressure (e.g. hypertension), induce altered turnover of cells, 

collagen, and possibly elastin, and these changes may alter the mechanical and structural 

properties of the tissue as well as its geometry and biological function. In the vascular field, it 

has been recognized that “there is a pressing need to predict growth and remodeling of arteries in 

response to altered mechanical environments and to elucidate the underlying mechanisms” [62], 

and because of the abundance of available literature on G&R in vasculature, it may serve as a 

basis for studying G&R in other tissues. However, the driving mechanisms and the underlying 

processes for G&R are tissue-dependent, and hence a universal mechano-growth law likely does 

not exist [150]. On the other hand, general trends among tissues with similar compositions 

should be apparent. 
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To elucidate how observed changes in tissue components are related to altered net 

mechanical behavior at the tissue level, structural constitutive models are required with 

physiologically relevant model parameters. To develop a complete model of G&R in muscular 

soft tissues that undergo large deformations, the following main components are needed:  

− A finite deformation constitutive model describing the elastic tissue mechanical behavior, in 

combination with the appropriate kinematics for the multiple tissue components. 

− Kinetic equations describing the time-dependent G&R. 

− Experimental data of a relevant tissue application.  

An excellent example application is the urinary bladder wall (UBW), which has as main load-

bearing components collagen and smooth muscle (SM), undergoes large deformations, and 

exhibits highly nonlinear and anisotropic mechanical behavior. Moreover, it undergoes profound 

remodeling in response to different pathologies, such as spinal cord injury (SCI) [34, 47, 50, 102, 

106-109, 137, 152, 172, 174]. The urinary bladder wall tissue appears to remodel to compensate 

for the change in mechanical environment that exists as a result of the specific pathology, and 

attempts to restore normal organ-level function, i.e., storage and voiding, through an unknown 

cell-to-tissue signaling mechanisms. This is in contrast to what is believed in the vascular field 

where blood vessels remodel to restore homeostatic wall stress. However, complete functional 

recovery of the bladder is never achieved because of lack of return of neural control.  

This dissertation provides a general modeling framework for elucidation of underlying 

mechanisms of tissue-specific remodeling processes, specifically applied to remodeling in the 

UBW as a result of SCI. The next sections will first introduce all relevant concepts and 

terminology of constitutive models and growth and remodeling, as well as the available literature 

on current studies in theoretical growth and remodeling. 
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1.2 CONSTITUTIVE MODELS OF SOFT TISSUES  

1.2.1 Introduction 

The theoretical description of the mechanical behavior of a material is captured in a constitutive 

model, and the functional form of this equation can only be determined by experiments. The 

stress-strain results of mechanical testing provide constitutive models with model parameters. 

Soft tissues can be characterized by a complex geometry, composite nature, and highly non-

linear, finite deformation, often anisotropic mechanical behavior, which complicates determining 

constitutive relations for soft tissues. The most general type of constitutive models used for soft 

tissues are so-called phenomenological models. Y.C. Fung is considered the pioneer of 

constitutive models for soft tissues and many researchers have used variations of the so-called 

“Fung-type” models for many different soft tissue applications [38, 56, 83, 85, 148]. Fung 

models are widely used because they are capable of capturing the highly non-linear mechanical 

behavior over a wide strain range. However, whereas Fung models and phenomenological 

models in general capture the general stress-strain behavior, they lack the ability to capture the 

underlying mechanisms contributing to tissue behavior, and the model parameters are not based 

on physiological phenomena. Structural models, on the other hand, are based on microstructural 

tissue features that are experimentally measurable and have the ability to relate tissue level 

mechanical response to individual fibrillar constituent properties. 

1.2.2 Stress and strain – measurement and definitions 

The mechanical behavior and material parameters of tissues are determined through mechanical 

testing. Uniaxial testing is the most basic form of mechanical testing and subjects tissue strips to 

loading in one direction only and leaves one edge stress-free, which is never the case in vivo. 

Furthermore, uniaxial loading experiments cannot provide the full relationship between all stress 

and strain components in a constitutive relation [39]. Whole organ testing is more physiological, 

but the complex stress and strain boundary conditions on most organs, due to external loading by 

the surrounding organs or an irregular geometry, prevent accurate investigation of isolated tissue 

response. For planar membrane tissues, planar biaxial testing over a wide strain range with 
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physiological loading levels is the most desirable testing method. It has been shown that biaxial 

testing can be successfully used to investigate mechanical behavior of various planar soft tissues, 

e.g., skin, diaphragm, epicardium, myocardium, heart valve tissue, and urinary bladder wall [10, 

39, 47, 85, 91, 147, 173]. Biaxial tests assume a membrane approximation, and hence, the stress 

in the direction normal to the plane of testing is zero. This allows for a two-dimensional 

specialization within the framework of a three-dimensional theory[58]. When biaxial testing is 

performed with the testing specimen’s material axes aligned with the testing apparatus, and no 

shear deformations are applied, shear stresses are zero. 

Most soft tissues behave in a viscoelastic manner, with characteristics of stress-relaxation 

when held at a constant strain, creep when held at a constant stress, and hysteresis when 

subjected to cyclic loading and unloading. The loading-unloading behavior can be simplified to a 

pseudo-elastic behavior when the tissue is preconditioned and the stress-strain relation is 

repeatable. The loading branch and the unloading branch are each represented by its own unique 

constitutive equation. Pseudo-elasticity is a convenient description of the stress-strain 

relationship in cyclic loading specifically. Soft tissues are also often assumed to be 

incompressible, i.e., constant volume under loading.  

The two important measures in a material’s mechanical behavior are stress, defined in its 

simplest form as force divided by the area it is acting on, and stretch or strain, measures of a 

change in length upon loading. An important aspect of defining a tissue’s stress-strain behavior 

is the definition of zero stress state or reference state. In this state no loading is applied and the 

material is assumed to be completely stress-free. In the case of finite deformations, several 

different definitions of stress and strain are used. Let the vector X represent the position of a 

point P in the reference configuration, and x the position of that same material point in a 

deformed configuration. Then, the deformation gradient tensor F describes the transformation of 

the line segment dX to dx as = ∂ ∂F x X . A change in an infinitesimal volume element (dV) from 

the reference to the deformed configuration is defined as 0 detJ dV dV= = F , which is 

equivalent to 0 detJ ρ ρ= = F due to conservation of mass. In here, ρ is the tissue density in the 

current configuraiton and detF is the determinant of F. 

Because F contains rigid body motions, alternative measure of strains are defined that 

purely represent deformations giving rise to strain energy. The Right Cauchy-Green tensor C, the 
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Left Cauchy-Green tensor B, and the Green-Lagrange or Green’s strain tensor E are defined in 

Eq.(1.1), where I is the identity tensor. 

 

( )1
2

T

T

=

=

= −

C F F
B FF

E C I

 (1.1) 

The Cauchy stress tensor t is derived from the traction vectors acting on a body’s 

surfaces and is defined in the deformed configuration; in a uniaxial sense it is defined as force 

divided by deformed area. The Lagrangian or 1st Piola Kirchhoff stress tensor P is defined in the 

referential configuration and in a uniaxial sense is defined as force dived by initial area. The 1st 

Piola Kirchhoff stress tensor is related to the Cauchy stress tensor as 1J −=P F t . The 2nd Piola 

Kirchhoff stress tensor S, which has no direct physical meaning and represents a very useful 

stress measure in computational mechanics because it is a symmetric tensor, is in turn related to t 

as follows: 1 TJ − −=S F tF . Eq. (1.2) gives an overview of all relations, including those between P 

and S. 
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 (1.2) 

All three stress measures will be used throughout this dissertation, without restating the relations. 

1.2.3 Thermodynamic considerations 

Thermodynamic considerations place important restrictions on the functional form of 

constitutive equations [151]. These are based on the first and second laws of thermodynamics for 

a thermomechanical continuum, in which thermal and mechanical effects dominate the material’s 

behavior, and where electrical, chemical and other effects are ignored. The following text is 

largely based on “Nonlinear theory of elasticity. Applications in biomechanics”, Chapter 5 by 

Taber [151], and concepts were verified by consulting “Nonlinear solid mechanics. A continuum 

approach for engineering” by Holzapfel [53], and “The non-linear field theories of mechanics” 

by Truesdell and Noll [153]. Extended derivations can be found in these works; the following 
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section provides a summary of the relevant concepts. The first law of thermodynamics deals with 

conservation of energy. For an arbitrary material region of a thermomechanical continuum, the 

principle of conservation of energy can be written in the form  

 K U P Q+ = +    , (1.3) 

where K is the kinetic energy, U the internal energy (consists of thermal energy and strain 

energy), P the mechanical power input (the rate of work done on a body by applied loads) and Q 

the rate of heat input. The left side represents rate of change in internal energy, the right side the 

rate of change in energy that is added externally. For an arbitrary volume element that deforms 

from dV into dv, Eq.(1.3), written in the local form, and in terms of the Cauchy stress tensor t, or 

the first Piola Kirchhoff stress tensor P, respectively, results in: 

 
0 0 0

: 0
: 0T

u r
u r

ρ ρ

ρ ρ

− − +∇⋅ =

− − +∇⋅ =

t D q
P F q







. (1.4) 

In this, the following definitions hold. ρ0 is the mass density in the reference configuration; ρ is 

the mass density in the deformed state; u the internal energy per unit mass; D the rate-of-

deformation tensor; F the deformation gradient tensor; r the rate of heat production per unit mass 

due to internal sources; q and q0 the outward-directed heat flux vectors per unit deformed and 

undeformed surface area, respectively; ∇ is the gradient operator, and∇ is the gradient operator 

with respect to the deformed state. The resulting form of the first law of thermodynamics (Eq. 

(1.4)) states that the rate of increase in internal energy of a volume element ( uρ  or 0uρ  ) is equal 

to the sum of the rate of work done by the stresses on the element, i.e. the stress power ( :t D or

: TP F ), the rate of internal heat production (ρr or ρ0r), and the rate of heat flow into the element 

(−∇⋅q or 0−∇⋅q ). 

 The first law of thermodynamics basically states that work can be converted into heat and 

vice versa, so that the total energy remains constant, but it does not consider dissipated energy. 

The second law of thermodynamics restricts the direction of energy conversion processes and is 

based on the concept of entropy (Σ). For a solid body, the second law of thermodynamics states 

that the time-rate of change of the total entropy in a body is greater than or equal to the sum of 

the influx of entropy through the surface of the body and the entropy generated by internal heat 

sources. The Lagrangian local forms of this relation, which is also called the Clausius-Duhem 

inequality, is given by 
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 0

0

1 0r
T Tρ

 Σ − + ∇⋅ ≥ 
 

q
 . (1.5) 

The possible forms for constitutive equations are restricted by thermodynamic 

considerations based on Eqs. (1.4) and (1.5). The relevant constitutive principles for a 

thermomechanical material include coordinate invariance, determinism, local action, 

equipresence, material objectivity, physical admissibility, and material symmetry. The first six 

are described below; the principle of material symmetry is used when specific forms of 

constitutive equations for elastic materials are derived, taking into account symmetries in the 

material. 

The principle of coordinate invariance states that constitutive equations must be 

independent of the coordinate system that is used to describe the motion of a body, and hence 

should be developed in tensor form. The principle of determinism states that the stress 

distribution in a body at a given time is depended on the history of deformation and temperature. 

For an elastic material however, no energy is dissipated and temperature effects are neglected, so 

the stress at time t depends only on the instantaneous deformation. The principle of local action 

indicates that the motion and temperature at a point in a thermoelastic body can be determined 

from the values and the spatial derivatives of the dependent constitutive variables at a nearby 

point. For simple materials, this suggests, together with the principle of determinism, that the 

constitutive equations for a thermoelastic material can be written in the form 
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= ∇
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t t R F

q q R F

R F

R F

, (1.6) 

where R defines the spatial dependency. The principle of equipresence states that an independent 

variable that appears in one constitutive equation for a material, must be present in all 

constitutive equations for that material. This is useful if other effects are to be included.  

The principle of material objectivity or material frame indifference states that constitutive 

equations must be invariant under rigid motions of the spatial reference frame. In other words, 

the events occurring at a point in a body must be independent of the motion of the observer. The 

deformation gradient tensor F is per definition an objective quantity, since it describes changes 

relative to a given reference configuration. Under a change of reference frame, a general second 
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order tensor T transforms through the rotation tensor Q as * T= ⋅ ⋅T Q T Q . Since deformation and 

temperature are objective, the constitutive relations for a thermoelastic material (Eq. (1.6)) are 

frame indifferent. Using the conversion definitions of stress measures (Eq. (1.2)), this eventually 

states  

 
( )
( )
( )

g
f
h

=
=
=

S U
C
E

, (1.7) 

 where g, f and h are called response functions, and U is the right stretch tensor which is obtained 

through polar decomposition of F ( = ⋅F Q U ). For small rotations, this also holds for the other 

stress tensors t and P.  

 The principle of physical admissibility states that constitutive equations must be 

consistent with any of the basic laws of continuum mechanics, including the first and second 

laws of thermodynamics (Eqs. (1.4) and (1.5)). Stating these equations in terms of the 2nd Piola 

Kirchhoff stress S and eliminating r between these two equations yields 

 ( )0 : 0T uρ Σ − + =S E

 . (1.8) 

Eq. (1.8) can now be combined with the general constitutive equations in Eq. (1.6) and the case 

is considered for which temperature is considered to be the independent variable. It is convenient 

to introduce the Helmholtz free energy function per unit undeformed volume as 

 u Tψ = − Σ , (1.9) 

as a replacement for the internal energy u. Then, Eq. (1.6) is replaced by 

 ( ), , ,T Tψ ψ= ∇R E , (1.10) 

and Eq. (1.8) is transformed to 

 ( )0 : 0Tρ ψ− +Σ + =S E 

 . (1.11) 

Combining Eqs. (1.10) and (1.11), and using the chain rule yields 

 0 0 0: 0T T
T T

ψ ψ ψρ ρ ρ∂ ∂ ∂   − − Σ + − ⋅∇ =   ∂ ∂ ∂∇   
S E

E
   . (1.12) 

For independent strain and temperature distributions, each of the three terms equals zero. And 

since E and T (and hence E and T ) can be chosen arbitrarily, the expressions in parentheses 

must be zero. This results in the relations: 
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ψρ
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ψ

∂
=

∂
∂

Σ = −
∂

∂
=

∂∇

S
E

. (1.13) 

If the deformation is isothermal ( 0T = ) which is usually considered to be the case for biological 

tissues, then ( ),ψ ψ= R E and the material behaves elastically. In this case, a strain energy 

density function Ψ is defined as 

 ( ) ( )0, ,ρ ψΨ =R E R E , (1.14) 

per unit undeformed volume. Since the density ρ0 of the undeformed body is independent of 

deformation, Eq. (1.13) gives the constitutive equation  

 ∂Ψ
=
∂

S
E

, (1.15) 

where the 2nd Piola Kirchhoff stress tensor is derived from the scalar strain energy density 

function Ψ. 

1.2.4 Phenomenological hyperelastic constitutive models 

A material with a constitutive relation of the form described by Eq. (1.15) is called a hyperelastic 

material. In other words, the mechanical properties of a hyperelastic material are characterized 

completely by a scalar strain energy density function. During an isothermal deformation, the 

strain energy is associated with the free energy per unit undeformed (reference) volume, and the 

strain energy is zero in the reference state. Materials which keep the volume constant throughout 

a deformation are characterized by the incompressibility constraint  

 det 1J = =F  (1.16) 

For incompressible materials with J = 1, Eq. (1.15) is expressed as  

 1 12 p p− −∂Ψ ∂Ψ
= − = −

∂ ∂
S C C

C E
, (1.17) 

where p is a Lagrange multiplier that is determined from the equations of motion and boundary 

conditions (kinematic constraints) and is usually associated with the hydrostatic pressure in a 
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tissue. Taber [151] notes that this terminology often has been a source of confusion in the 

biomechanics literature. In fact, p generally does not have a direct physical interpretation, but is 

just a Lagrange multiplier that is needed to enforce the incompressibility constraint (Eq. (1.16)) 

[151]. Note that in the measures for stress as defined in Eq. (1.2), J = 1 for incompressible 

materials.  

A strain energy function exists for a perfectly elastic material; hyperelasticity is a 

subclass of (non-linear) elasticity, where the stress state of a material is independent of its 

loading history. The actual work done by the stress field on a hyperelastic material during a 

certain time interval depends only on the initial and final configurations, i.e., it is path 

independent [53]. Under the assumption of pseudoelasticity, the strain energy function should 

technically be referred to as a pseudo-strain energy function. In the rest of this dissertation, the 

general term strain energy is used. Under the condition of plane stress (with S13 = S23 = S33 = 0) 

for planar biaxial deformation, the strain energy is dependent on the strain components E11, E22, 

E12, E33. Because of the incompressibility constraint (Eq. (1.16)), the 33-component can be 

calculated from the other components and only three of the four components are independent 

[58]. A reduced strain energy function can be defined as  

 ( ) ( )11 22 12 11 22 12 33Ψ̂ , , Ψ , , ,E E E E E E E= . (1.18) 

and the stress components are derived from this as 

 

11
11

22
22

2
12 12 33

12 33

Ψ̂

Ψ̂
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S
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S
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∂
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=
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. (1.19) 

When shear components are assumed to be negligible, this reduces to 
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11 

Note that Holzapfel reemphasizes that “there is a significant difference between a planar 

specialization of a three-dimensional strain energy function and an a priori two-dimensional 

strain energy function” [58]. 

The most common type of constitutive models used for soft tissues are phenomenological 

models, which are usually of a polynomial or exponential form. A very well-known example of a 

phenomenological constitutive model, originally introduced by Fung [39] but used and extended 

by many researchers afterwards, is of the form 

 ( )exp ,ic f a Ψ = ⋅  E , (1.21) 

where the function f generally consists of polynomial terms of the components of E of varying 

order (with constants ai), depending on the specific set of mechanical data. The most general 

form of Eq. (1.21) is given by (in indicial notation with the summation convention) [40]: 

 ( ) ( )0
1 exp
2 ijkl ij kl mnpq mn pq ij ij ijkl ij klE E E E E E Eα β β γ κΨ = + + + + . (1.22) 

Another form of phenomenological constitutive equation is expressed in terms of a set of 

independent strain invariants of C or B [144]. The first three (principal) invariants are defined as 

 ( )

2 2 2
1 1 2 1

2 2 2 2 2 2 2 2
2 1 2 1 3 2 3

2 2 2 2
3 1 2 1

1
2
det det

I tr tr

I tr tr

I J

λ λ λ

λ λ λ λ λ λ

λ λ λ

= = = + +

 = − = + + 

= = = =

C B

B B

C B

. (1.23) 

These invariants are used to define the strain energy for isotropic materials, i.e. 

 ( ) ( )1 2 3, ,λ λ λΨ = Ψ = ΨC , (1.24) 

which results in the three principal stresses (Cauchy, 1st Piola Kirchhoff, and 2nd Piola Kirchhoff, 

respectively) in an incompressible material (a=1,2,3) to be defined as (see also [53]) 

 

1

1

a a
a

a
a

a
a a

t J

P

S

λ
λ

λ

λ λ

− ∂Ψ
=

∂
∂Ψ

=
∂

∂Ψ
=

∂

. (1.25) 

For incompressible materials (Eq. (1.16)) I3 = 1, and the two principle invariants I1 and I2 are the 

only independent deformation variables [53]. 
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Many different forms of strain energy functions for isotropic soft deformable materials in 

terms of the principal stretches have been proposed in the literature. On the other hand, many 

materials, and in fact, most biological tissues, are characterized as anisotropic and cannot be 

described by isotropic constitutive equations. A material is considered anisotropic when its 

material properties are direction dependent. These materials can be viewed as being composed of 

an isotropic matrix material (ground substance) and one or more families of fibers responsible 

for the anisotropy, with the derivation of the constitutive relation based on the principle of 

material symmetry. This approach, initially proposed by Spencer [143, 144] and leveraged by 

Holzapfel [55], can be viewed as a “hybrid” approach, between pure phenomenological and fully 

structural. The simplest representation of this is transverse isotropy, with one family of fibers. 

The fiber direction in the reference configuration is defined by a unit vector a(X), and its 

structural tensor is defined as ⊗a a . The so-called pseudo-invariants of C and a, related to the 

fibers, are now introduced as  

 
2

4
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5

T
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T

I
I

λ= =

=

a Ca
a C a

, (1.26) 

where λA is the stretch in fiber family A. For a transversely isotropic material, the strain energy is 

written in terms of the five invariants as ( )1 2 3 4 5, , , ,I I I I IΨ = Ψ . When a material consists of 

two families of fibers, where the second fiber family is defined by the unit vector b, additional 

strain invariants are defined associated with this additional fiber family and the interaction 

between the two families. The invariants I6-I8 are defined as 
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λ= =

=
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b Cb
b C b
a Cb

. (1.27) 

In soft tissues, the strain energy function is often divided into an isotropic and an anisotropic part 

representing the isotropic matrix and the fibers, respectively, resulting in  

 ( ) ( )1 2 4 5, , ,iso anisoI I I IΨ = Ψ +Ψ  , (1.28) 

when assuming incompressibility (I3 = 1). This is often simplified to [55] 

 ( ) ( )1 4 6,iso anisoI I IΨ = Ψ +Ψ . (1.29) 

Different specific functional forms of Ψiso and Ψaniso have been proposed in the literature, where 

for Ψiso often a neo-Hookean formulation is used 
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 ( )1 3
2iso
c IΨ = − , (1.30) 

and for Ψaniso many different phenomenological expressions similar to Eq. (1.22) have been 

proposed (e.g. [54-56, 67, 69, 110, 176]). An interesting generalization of the invariant based 

method has been presented by Ehret and Itskov [70]. They present a constitutive model for fiber-

reinforced materials consisting of an arbitrary number of fibers, where each fiber is represented 

by its individual structural tensor and a weight factor.  

1.2.5 Structural constitutive models 

Whereas phenomenological and strain-invariant based models have provided many useful 

insights into soft tissue mechanical behavior, they do not capture the underlying mechanisms of 

tissue behavior. Structural constitutive models, on the other hand, attempt to integrate 

information on tissue composition and structure to avoid ambiguities in material characterization, 

and to allow for separate investigation of the contribution of each individual tissue component to 

the tissue behavior. Note that in several studies, derivations from the invariant based approach 

are considered structural [56, 57]. However, although the inclusion of fiber families can be 

considered structural, the fiber response is characterized by a phenomenological relation. This is 

in contrast to how the term structural is defined in this dissertation.  

The generally accepted structural approach is based on the assumption that the overall 

tissue mechanical behavior results from the collective contribution of the individual fibrous and 

cellular components, with experimentally measurable model parameters describing individual 

components. Structurally-guided material models are not limited to the study of soft biological 

tissues. The textile industry has utilized this approach in many different forms for woven and 

non-woven fabrics (e.g., [36, 73, 105]). For planar collagenous tissues, the structurally-based 

theoretical framework was initially developed by Lanir [59, 82, 84, 86]. He based his studies on 

earlier work on uniaxial elastic models based on the undulated structure of collagen fibers in 

tendons, skin, aortic tissue and general connective tissues and on two biaxial models that 

considered the rotation of fibers during deformation (see references in [84]). In this modeling 

technique, the tissue level response is related to the collective contribution of individual fiber 

ensembles, and the fibrillar connective tissue is treated by homogenizing the fiber ensemble 
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response. Individual fibers are assumed to bear load only when stretched beyond a specific slack 

strain, and fibers are recruited upon loading. Sacks [129] later extended this approach by 

demonstrating that the complete planar biaxial mechanical response of the tissue could be 

simulated by combining the fiber ensemble stress-strain response, derived from a single 

equibiaxial test, with an experimentally determined fiber angular distribution. 

A similar structural approach combining a fiber recruitment function with the invariant 

based approach considering one family of fibers has been applied to the vascular wall [178, 180]. 

These are the most sophisticated applications of structural models currently available in the 

literature. Note, that no one study has succeeded yet to fully combine a fiber recruitment function 

and a fiber distribution function and apply it to a full set of mechanical data. This will be done in 

the current dissertation, and the complete constitutive modeling approach will be described and 

extended in Chapter 2.0. 

1.3 GROWTH AND REMODELING 

1.3.1 Growth models 

Growth and remodeling is involved in many pathological as well as normal physiological 

processes, such as tissue maintenance and aging; adaptations to altered loads, e.g. in exercise; 

wound healing in responses to injury or clinical treatment; and progression of disease [6]. 

Theoretical models of G&R will allow for elucidation of the underlying mechanisms of specific 

remodeling processes.  

A generally accepted model for growth describes volumetric mass growth, as initially 

developed for uniform growth under mechanical load by Hsu [61], developed for bone by Cowin 

and coworkers (e.g. [21]), and extended and formalized within the framework of finite elasticity 

by Skalak (e.g. [138]). Combining these theories, Rodriguez et al. [123] formulated a continuum 

theory that accounts for the coupling between stress and finite growth, where they introduced 

and employed the multiplicative decomposition of the total deformation gradient into its elastic 

and growth parts (Figure 1.1). In all the above theories, growth is prescribed a priori via 

kinematics based on assumed constitutive relations for the evolution of stress-free 
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configurations. A thorough and extended derivation of a general constitutive theory of stress-

modulated growth of pseudo-elastic soft living tissues, utilizing this decomposition, is given by 

Lubarda and Hoger [96]. Menzel added fiber reorientation to this theory of multiplicative growth 

in a 3D Finite Element implementation [101]. Davol et al. recently implemented the theory for a 

multi-constituent cartilage tissue in a 3D Finite Element formulation [31]. These general theories 

of growth were computationally very convenient and have been proven very useful; however, 

they only model consequences of G&R, and not the fundamental process by which G&R occurs, 

i.e. the continual production and removal of constituents. 

 

 

 

Figure 1.1. Schematic representation of the multiplicative decomposition of the deformation gradient. 
The deformation gradient is composed into its elastic and growth parts The mass of an infinitesimal volume element 
in the initial configuration B0 is dm0. T he corresponding mass in the configuration Bg and B is dm. Reprinted with 

permission from [95]. Copyright @ ASME, 2004. 

1.3.2 Mixture theories 

Mixture theory, which combines continuum theories for the motion and deformation of solids 

and fluids, with general principles of chemistry, might be better suited for modeling G&R. This 

was pointed out in a recent comprehensive study by Ateshian on using theories of mixtures for 

biological systems [5]. In a somewhat narrower context, Garikipati et al. provided a mixture 
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theory which coupled mass transport with mechanics for the application of growth, where the 

solid constituents originate from tissue precursors that are dissolved in the fluid constituent, 

allowing application of conservation of mass [43]. In a companion paper they also covered 

remodeling, which they defined as a motion of material points in material space [44]. 

Humphrey and coworkers have developed what could perhaps be called the most 

extensive modeling framework for tissue remodeling utilizing the so-called constrained mixture 

approach, where the tissue is assumed to be a mixture of multiple (solid) constituents, which are 

constrained to deform together [65]. This theory has mainly been applied in studies on the 

vascular wall. The theory of mixtures is used to account for the separate contributions of each 

constituent, and homogenization is done through a rule-of-mixtures model for the stress 

response. Formal ideas of mixture theory for mass balance are melded with the less stringent 

concept of rule-of-mixtures for linear momentum balance.  

The theory has been refined over the years, and eventually it was suggested to consider 

two classes of constituents: those that are soluble and structurally not significant (e.g. cytokines 

and chemokines), and those that are insoluble but structurally significant (e.g. collagen, muscle) 

[6]. Stress-dependent kinetic models of the turnover of cells and ECM have been incorporated 

[66], as well as equations for fiber reorientation [7]. Each constituent is produced and degraded, 

which can be represented in the model by evolution equations (or kinetic relations) for the mass 

or mass density production [66]. Constituent turnover involves complex chemical reactions, but 

first order kinetics can often provide reasonable descriptions [46]. The specific form of the 

kinetic relations will be dictated by experimental data, as pointed out by Rao et al. [118]. With 

these types of expressions, a new equilibrium state is reached when the stress is equal again to 

the homeostatic value, and the production rate is zero. Different forms of the survival function 

have been proposed in the literature, depending on the physiological remodeling process; see 

examples in [7, 8, 65, 68, 118]. The constrained mixture approach has been applied successfully 

by Humphrey and coworkers to various questions and open problems in vascular mechanics. 

As stated in a recent review by Humphrey [64], the rule-of-mixtures relation allows one 

to retain many of the advances in non-linear biomechanics by simply writing the net strain 

energy function in terms of the energies stored in individual constituents as they are produced. 

The fact that changing rates of production (protein synthesis and cell proliferation) and 

associated half-lives are accounted for, enables basic mechanisms of G&R to be modeled 
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mathematically rather than merely modeling the kinematic consequences of such turnover. 

Changes in geometry are computed naturally in the constrained mixture model of G&R simply 

by satisfying linear momentum balance at each G&R time point. Note, that current functional 

forms are in a state of infancy, and appropriate constitutive relations need to be derived based on 

experimental data. This holds especially for the rates of mass density production and survival 

functions, but also for the strain energy functions. Each of these constitutive equations will need 

to be derived uniquely for each new application. Variations of the mixture approach, sometimes 

in combination with other approaches, have been implemented by other groups and have been 

used in different applications [52, 78, 79, 116, 154-156, 170].  

1.4 OBJECTIVES AND OUTLINE 

G&R is an evolving and important research area and there is a need for theoretical models to 

describe G&R processes for different tissues in order to elucidate underlying mechanisms. To 

develop such a model, a constitutive model is needed that captures the underlying multi-

component tissue structure, combined with kinetic equations describing the G&R processes in 

the individual tissue components. One highly remodeling muscular tissue system is the 

vasculature, where most literature on theoretical G&R is available. G&R theories developed for 

the vasculature provide a good basis for a general structurally based constitutive model of a 

remodeling multi-component soft tissue, and will hence lay the basis for our future model. 

However, what will need to be kept in mind is that these theories all assume that the tissue is 

remodeling to restore homeostatic stress values, in contrast to restoring normal physiological 

organ function in a pathological situation. 

A similarly highly remodeling muscular tissue is the urinary bladder wall, as evidenced 

by our extensive experimental database of remodeling in the UBW as a result of SCI. This 

database will provide us with the opportunity to apply our model to a specific tissue system to 

elucidate key remodeling mechanisms. The experimental data suggests that distinct mechanical 

stimuli, such as prolonged periods of high strain or stress, or frequent short-term intermittent 

loading, induce different remodeling events to compensate for the change in mechanical 

environment in an attempt to restore normal organ-level function. Because of the lack of 



18 

restoration of other important physiological factors, the remodeling results in a pathological 

process. This is in contrast to the general assumption that tissues remodel in response to changes 

in local stress conditions to restore homeostatic stress values.  

While our model will be applied to the specific application of the urinary bladder wall, it 

is developed in a fully generalized manner, using a step-wise approach. In its general form, it can 

be used for any multi-phase (muscular) soft tissue as well as in remodeling predictions in a tissue 

engineering setting. The novelty of our approach lays firstly in the sophistication of the multi-

component constitutive model. Each model component is derived separately through the use of 

decellularized tissue specimens. As the first step, the collagen constituent was modeled based on 

its unique coiled and crimped structure, using the fiber ensemble as the basic unit. In the next 

step, this model was combined with an expression for the inactivated muscle component. The 

unique feature of this approach was that both constituents were expressed to a common, intact 

tissue reference state, while the collagen mechanical behavior was determined in decellularized 

tissues. To enable this approach, our currently existing structural constitutive model for 

collagenous tissues was re-derived based on a physically realistic fiber model and to include 

permanent set effects to account for processes such as decellularization and preconditioning. The 

model was utilized in terms of strain energy which allowed determination of an average 

mechanical response of both tissue components. The resulting morphologically based multi-

component model laid the important and necessary basis for future G&R studies. As an initial 

step towards this goal, parametric studies were performed in order to explain changes in UBW 

mechanical behavior at 10 days after initiation of SCI. The hypothesis

This dissertation is based on three main objectives. The 

 that was investigated is 

that changes in UBW mechanical properties as a result of SCI can be explained by 

morphological changes alone, without intrinsic changes in constituent properties. 

first objective was to formulate a 

constitutive model of extracellular matrix (ECM) to elucidate basic remodeling mechanisms in 

this specific tissue component, specifically, the mechanical role of de novo synthesized elastin on 

urinary bladder ECM. The second objective was to develop a morphologically driven 

constitutive model of a multi-phase tissue, applied to the urinary bladder wall. A common 

experimentally-attainable stress-free reference state for all tissue components laid at the basis of 

this model. To achieve this objective, the existing structural model was re-derived to include two 

necessary modifications; a physically realistic fiber model, and a formulation to account for 
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multiple tissue components existing in different reference states. As an essential part of this, a 

robust parameter estimation procedure was developed. The third and last objective

The objectives are addressed in this dissertation in the following order. Chapters 

 was to obtain 

insights into UBW remodeling as a result of SCI. More specifically, to elucidate if mechanical 

changes in UBW tissue after spinal cord injury can be explained by morphological changes, e.g., 

constituent mass fractions and fiber orientation, without intrinsic changes in constituent 

properties. Mechanical and structural data of UBW tissue from a rat model of SCI was re-

analyzed and the developed multi-phase constitutive model was used to investigate changes in 

model parameters in order to explain the mechanical behavior of UBW after SCI at the 10-day 

time point. It is anticipated that this will lay the basis for a generalized modeling framework of 

remodeling in multi-phase muscular soft tissues. 

2.0 - 5.0 

provide the relevant background and specific methods for the actual studies, which in turn are 

described in Chapters 6.0 - 8.0 . First, the constitutive modeling approach is introduced and 

important and novel modifications to the model are described in Chapter 2.0. This is followed 

by a chapter on validation and numerical implementation of the model, as well as methods for 

parameter estimation (Chapter 3.0). In Chapter 4.0 an extensive review of the urinary bladder 

wall and the available experimental data on remodeling as a result of SCI is provided. Chapter 

5.0 describes the methods used to provide a complete experimental database needed for the 

model. This includes analyses on the available experimental data presented in the previous 

chapter. Chapter 6.0 describes the study that addresses the first objective, where the mechanical 

role of de novo synthesized elastin in the urinary bladder wall is investigated. In Chapter 7.0 the 

complete morphologically based constitutive model of a multi-component tissue is summarized 

and model parameters are determined from experimental data of the urinary bladder wall. This 

model is used in Chapter 8.0 to investigate the mechanical behavior of the urinary bladder wall 

after spinal cord injury at the 10-day time point. In Chapter 9.0 the main findings are 

summarized, and as part of future directions, an initial remodeling framework is proposed, which 

has the potential to simulate urinary bladder wall remodeling at different time points after spinal 

cord injury. The conclusion of this dissertation will show that the developed morphologically 

based multi-phase constitutive model will serve as a basis to elucidate remodeling mechanisms 

in various applications, such as specific tissue pathologies and tissue engineering settings. 
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2.0  DEVELOPMENT OF STRUCTURAL CONSTITUTIVE MODELS FOR MULTI-

PHASE SOFT TISSUES 

The structural approach as introduced in section 1.2.5, where each model parameter has 

physiological significance, allows for separate investigation of the contribution of each 

individual tissue component to the tissue’s mechanical behavior, and eventually will provide the 

ability to elucidate changes as a result of pathological processes. The structural constitutive 

model described in this chapter builds upon the theoretical work formally introduced by Lanir 

[59, 82, 84, 86], in which the tissue-level response is related to the collective contribution of 

individual fiber ensembles. The term fiber ensemble refers to a collection of fibers sharing a 

common orientation. This modeling technique treats the fibrillar ECM component by 

homogenizing the fiber ensemble response. This modeling approach for planar collagenous 

tissues is integrated into a multi-component structural constitutive model by combining it with a 

description for a second component. To facilitate this, the current structural constitutive model is 

re-derived based on a new, correct fiber stress-strain relation and the inclusion of a so-called 

permanent set deformation in order to take into account multiple reference states of separate 

model components. This chapter describes the development of this structural model, starting 

from the basis in section 2.1, and extending it in subsequent sections. Parts of this chapter 

(specifically sections 3 and 2.1.5) are based on S. Wognum, D.E. Schmidt, M.S. Sacks, On the 

mechanical role of de novo synthesized elastin in the urinary bladder wall, J Biomech Eng, 

2009, 131(10): 101018 [175], Copyright @ ASME. 
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2.1 ORIGINAL CONSTITUTIVE MODEL FORMULATION 

2.1.1 Assumptions 

It is assumed that a representative volume element (RVE) can be identified that is large enough 

to represent the processes associated with the microstructure of the material in some average 

sense, yet small compared to the characteristic length scale of the microstructure (Figure 2.1). 

The RVE is treated as a three-dimensional continuum, and within the RVE, the following 

assumptions are made (see also [129]): 

1. The tissue can be idealized as a network of fibers of varying types and structures, all 

embedded within a compliant ground matrix. The two fiber families considered in the current 

study are collagen and muscle. 

2. Fiber-fiber interactions are ignored, so that the net tissue response is the sum of the 

individual fibers responses. 

 

 

 

Figure 2.1. Schematic of the representative volume element. 
Fiber ensembles are an idealized group of fibers of varying undulation, aligned along the same angle θ, represented 

by the unit vector N. 

Nx2

x1

θ
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3. Hydrostatic forces generated by the matrix are considered negligible compared to the fiber 

forces, and are handled by assuming these components collectively induce an incompressible 

behavior at tissue level. 

4. Contributions from non-load bearing constituents are combined with the ground matrix. 

5. Collagen fibers are intrinsically undulated (also called crimped) and gradually straighten with 

increased stretch. The load required to straighten the collagen fiber is considered negligible 

compared to the load transmitted by the stretched fiber. Once a fiber has been stretched to a 

straightened state, it will transmit load and will be considered linear elastic. Note, that the 

exact meaning of this last point is addressed in section 2.3. 

In the following, the RVE is simplified, and treated as a two-dimensional planar continuum. 

2.1.2 Tissue level framework  

The tissue level strain energy density Ψ of the RVE is assumed to result from the contribution of 

smooth muscle (SM) and extracellular matrix (ECM), weighted by their respective volume 

fractions φ and is defined as  

 ( ) ( ) ( ) ( )i ECM ECM SM SM
i

Ψ = φΨ = φ Ψ +φ Ψ∑E E E E . (2.1) 

If the tissue is considered to consist mostly of water (tissue density = ~1 g/ml), and if individual 

constituent densities are assumed to be equal, volume fractions can be approximated by mass 

fractions. Assuming a pseudoelastic, hyperelastic material response, the tissue-level 2nd Piola 

Kirchhoff stress S is derived from the strain energy as (see also Chapter 1.0 Eq. (1.17)) 

 ( ) ( ) ( )1 1( ) ECM SM
ECM SMp p− −∂Ψ ∂Ψ ∂Ψ

= − = φ + φ −
∂ ∂ ∂

E E E
S E C C

E E E
, (2.2) 

where the Lagrange multiplier p accounts for the incompressible nature associated with non-

fibrillar tissue components. p was eliminated as a result of the configuration of planar biaxial 

testing (see also section 1.2.4, Eqs. (1.18)-(1.20)).  

A structurally based modeling approach for planar collagenous tissues is employed for 

the ECM strain energy function, where the contribution of individual fiber ensembles acting at 

independent orientations is summed over all orientations, using a statistical fiber orientation 

distribution function. Thus, it assumes the form  
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 ( ) ( ) ( )( )( ) ( , )ens ens ens
ecm col colR d R E d

θ θ
θ θ θ θ θ θΨ = Ψ = Ψ∫ ∫E E , (2.3) 

where col stands for collagen, R(θ) is the fiber angular density function, ens
colΨ is the strain energy 

associated with an individual collagen fiber ensemble (ens), and ens TE = N EN is the uniaxial 

Green-Lagrange strain acting in the ensemble direction, defined by a unit vector parallel to the 

fiber axis in the reference configuration N(θ). The effective ensemble response has been modeled 

with a phenomenological expression [9, 129] as well as with a formulation accounting for the 

recruitment process [129]. Both approaches are described next. 

2.1.3 ECM component – phenomenological fiber ensemble model 

Exponential models have been successfully used to describe the nonlinear effective fiber 

ensemble stress-strain relation. In our group, a two-parameter exponential model has been 

defined which was applied to the aortic valve [9, 129]: 

 ( ) ( )1 2exp 1ens ens ensS E d d E = −  . (2.4) 

Using this exponential fiber model form for the fiber ensemble response, this model can be 

considered hybrid, in the sense that the fiber orientation distribution is defined in a structural 

manner and can be determined experimentally, whereas the fiber ensemble model itself is 

phenomenological.  

 A modified version of this model considers the fact that collagen fibers are being 

recruited up to an upper bound ensemble strain Eub where all fibers are straight. The effective 

fiber ensemble response follows de exponential response of Eq. (2.4) up to this upper bound 

strain, and when the upper bound strain is reached, the fiber ensemble is assumed to behave in a 

linear elastic manner with a modulus equal to the tangent modulus at Eub, under the assumption 

that straight collagen fibers behave linear elastic. This results in the following fiber ensemble 

model: 

( )
( )

( )

1 2

1 2

exp 1 0

exp 1ens
ub

ens ens
ub

ens ens
ens

ens ens
ub ub ubens E E

d d E for E E
S E S E E d d E for E E

E =

  − < < 
= ∂    − + − >  ∂

. (2.5) 
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2.1.4 ECM component – fiber ensemble model with recruitment 

The structural formulation for collagen fibers assumes that the fibers are crimped and transmit 

load only if stretched beyond the point where all the crimp has disappeared, i.e. the slack stretch 

or strain. Once in straightened condition, fibers are assumed to follow a linear elastic material 

model. In the case of straight fibers without slack this implies f tS Eη=  or 2

2f tEη
Ψ = , where η 

is the fiber modulus and Et is the true fiber strain. In case of undulated fibers, Et is related to the 

ensemble or fiber strain by 
1 2

ens
s

t
s

E EE
E
−

=
+

, where Es is the fiber slack strain. This process is 

schematically depicted in Figure 2.2. In terms of Et, the fiber stress-strain relation for an 

undulated fiber is  

 
( )2

1
1 2 1 2 1 2

f f f s f st
f

f t f s s s

E E E EES
E E E E E E

η η
∂Ψ ∂Ψ − −∂

= = = =
∂ ∂ ∂ + + +

. (2.6) 

The ensuing fiber ensemble strain energy and stress-strain relation are then described as the sum 

of individual fiber strain energies of the ensemble (Figure 2.1), weighted by the distribution of 

slack strains D, as  

 
( ) ( ) ( ) ( )

( )
[ ]

2

0 0

20 0

2 1 2

( ) ( ) ( )
1 2

ens ens

ens ens

ensE Eens ens
col f f

ensE Eens ens
col f f

E xE D x x dx D x dx
x

E xS E D x S x dx D x dx
x

η

η

 −
Ψ Ψ φ  + 

−
= φ

+

= =

=

∫ ∫

∫ ∫
. (2.7) 

In this η is the collagen fiber modulus, φf the collagen fiber fraction, and D(x) a recruitment 

function. For convenience, φf is often absorbed in the effective fiber modulus K: 

 fK η= φ . (2.8) 

D(x) describes the fraction of fibers realizing a fully straightened state at a given strain 

magnitude, which is effectively the distribution of slack strains D(Es). D is defined over 

Es∈[Elb,Eub], where Eub is the upper bound strain defining an ensemble strain state where all 

fibers are straight, and Elb the ensemble strain where recruitment begins (Elb can be assumed to 

equal zero in many cases).  
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Figure 2.2. The process of fiber recruitment explained by building up from a single fiber. 
A)Uniaxial loading of a crimped fiber, with the corresponding stress-strain (Sf-E) curve. K is the fiber modulus. B) 

Uniaxial loading of an ensemble of fibers with the corresponding Sens-Eens curve indicating how recruitment of 
individual fibers results in a nonlinear stress-strain curve. C) Scaling it up to the tissue-level with anisotropic biaxial 

mechanical behavior resulting from specific distribution of fiber ensembles (see also Figure 1.1). 

Under equibiaxial strain conditions, E11 equals E22, and zero shear is assumed (E12 = 0). 

Because of the symmetry of R(θ) and the fact that D(x) does not depend on θ, the fiber ensemble 

stress-strain relationship could be obtained directly from the experimental data using Sens = S11 + 

S22, and Eens=E11=E22 [86, 129]. Hence, the parameters of the fiber ensemble model (Eq. (2.7)) 

could be experimentally determined directly from an equibiaxial stretch protocol. 

Combining Eqs. (2.2), (2.3) and (2.7) leads to a complete formulation for stress in the 

ECM component 

 
[ ]

2

2

( )

20

( )( ) ( ) ( )
1 2

ens ensE

f
E xR D x dx d

x

π

π

θ θθ θη
−

 − φ ⊗ 
+  

= ∫ ∫S E N N . (2.9) 

The fiber distribution function R(θ) is represented by a beta distribution function with mean μR 

and standard deviation σR. 
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2.1.5 Fiber recruitment function 

Forms and functions describing fiber recruitment, a process in which fibers in an individual 

ensemble engage into load transmission as they become fully straightened, has been presented in 

the literature [129]. The recruitment function D(Es) can be represented by different functions. 

The simplest relation is of exponential form: 

 ( )
( )( )

exp 1

exp 1
1

2

s s

ub ub
s

ub

E Ea b
E E

D E
abE
a

  
− +  

  =
 −

+ − 
  

, (2.10) 

where the denominator is introduced to ensure 
0

( ) 1ubE
D x dx =∫ . This function is implemented in 

the parameter estimation user interface (Chapter 3.0 , but it is not actually used in the present 

study.  

As an initial step, the recruitment function D(Es) is represented by means of a unimodal 

modified beta distribution with mean μ and standard deviation σ [100]. The beta distribution B(y) 

is defined on the interval y ∈ [0, 1], which is modified to be defined on the interval [0, Eub], with 

y = Es/Eub, so that 

 ( )
1 2

otherwise

( , , ) 0
, ,

0

s ub
ubs

B y s s E E
ED E µ σ

 ≤ ≤= 


, (2.11) 

where s1 and s2 are shape parameters computed from μ and σ using  

 
2 3 2

1 2 12

1,s s sµ µ µσ µ
σ µ

− − −
= = . (2.12) 

The beta function is restricted to a unimodal shape with a lower bound of zero and to prevent the 

upper bound going to infinity, by enforcing s1,s2 > 1. Note, that for an unbound function 

μ,σ∈[0,1].  

This model is extended by adopting a structurally guided form for the fiber ensemble 

strain energy. To take into account both levels of fiber uncoiling present in the bladder collagen 

fiber network, D(Es) is modified to the following bimodal distribution (with j = 1,2, and γ a 

scaling factor): 
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 1 2( , , , ) (1 )s j jD E D Dµ σ γ γ γ= + − . (2.13) 

The parameters are bound in a similar manner, i.e. the shape parameters are larger than 1, and to 

enforce two distinguishable peaks, μ1 < μ2.  

To estimate the fiber effective modulus (K, Eq. (2.8)), we note that if the tissue would 

consist of all straight fibers, the maximum tangent modulus (MTM) would equal K. At strain 

values Eens>Eub, all fibers are recruited, and MTM is determined using  

 
( )

ub

20

( ) ( )
1 2

ens
ub

ens ens E

ens E E

S E D xMTM K dx
E x≥

∂
= =

∂ +∫ . (2.14) 

The greater the degree of slacked fibers that exists in the tissue (either a longer slack length per 

fiber, or more slacked fibers), the lower the MTM is as compared to K. Hence, MTM provides a 

lower bound value for K, because the integral on the right hand side of Eq. (2.14) is lower than 1 

because of the presence of fiber slack. Note this problem is solved by the model modifications 

introduced in the next section (section 2.2). 

2.2 MODIFIED CONSTITUTIVE MODEL FORMULATION TO ACCOUNT FOR 

WORKLESS CHANGE IN REFERENTIAL CONFIGURATION 

2.2.1 Rational and assumptions 

Extensions to the above model formulation are derived to allow handling of changes in tissue 

reference state geometry due to mechanisms such as decellularization and preconditioning. These 

model modifications are necessary because quantitative tissue structural information such as 

fiber orientation is available in a different state (typically a non-preconditioned, unloaded state) 

than the state that the mechanical test is performed in. Moreover, in the case of multi-component 

tissues, physical and structural properties of individual components are not all available in the 

same referential configuration. Procedures such as decellularization and preconditioning induce 

permanent set-like deformations. During mechanical testing the tissue reverts to the post-

preconditioned state when unloaded, and the strain energy density function should be defined in 
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this state. This essentially results in a reference configuration wherein the tissue’s strain energy 

function is defined, that is different from the initial state. 

The ECM model parameters are determined from decellularized tissue, with respect to a 

reference configuration in decellularized state. In the current novel approach, all model 

parameters are described in the intact configuration, whereas the mechanical data were obtained 

in the post-preconditioned decellularized configuration. The relevant states are defined as 

follows: Ω0 is the initial configuration state (the intact state in this specific case) and is stress-

free, Ω1 is the reference configuration (the post-preconditioned decellularized state in this 

specific case) and is thus considered stress-free as well, Ωt is the configuration at time t where 

loading has been applied. The key assumptions are: 

1. Changes are due to alterations in the initial configuration only, which implies that 

volume/mass fractions remain unchanged, and the internal mechanical energy remains 

zero. All changes in internal component configurations are not associated with any 

change in internal energy (e.g. fiber orientation, degree of undulation, thickness, length). 

2. Tissue dimensions and internal architecture change under the affine assumption. Thus, 

the configuration of all constituent fibers in the altered reference state (after all changes 

in initial specimen geometry have taken place) can be predicted. 

3. The configurational change is homogeneous, and can be thus described by a deformation 

gradient tensor with constant components. The deformation gradient tensor associated 

with this change (Ω0→Ω1) is named 1
0 F . As F is a two-point tensor, the general notation 

that is used is β
α F , where a bold capital represents a tensor quantity, and α and β 

represent the first and second state used, respectively. 

4. To be consistent with the undulated linear fiber model, all fibers remain undulated in the 

new reference state. 

These assumptions result in a series of model modifications. 

2.2.2 Model modifications 

I. The deformation gradient tensors associated with Ω0→ Ω 1 and Ω 1→ Ω t, are defined as 1
0 F

and 1
t F , respectively. Following Eqs. (1.1), the associated strain relations are defined by  
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t t 1
0 1 0

t t T t
0 0 0

t t
0 0

1 ( )
2

=

=

= −

F F F
C F F

E C I

. (2.15) 

Based on 1
0 F , the ensemble Green’s strain associated with this deformation is defined as 

 1 1
0 0

ens TE = N E N , (2.16) 

and the ensemble Green strain in Ω0 is related to the ensemble Green strain in Ω1 through 

 1 1
0 1 0 1 02t ens t ens ens t ens ensE E E E E= + + . (2.17) 

II. The following collagen fiber architecture strain requirements are specified, based on the 

existence of a lower and upper bound ensemble strain, 0 lbE and 0 ubE respectively, in between 

which recruitment takes place.  

a. All fibers remain slack for [ ]0 00,t ens
lbE E= . 

b. All recruitment occurs for [ ]0 0 0,t ens
lb ubE E E= . 

c. All recruitment ceases for 0 0 0 max,t ens
ubE E Eε  =   , where 0 max

ensE  is the largest possible 

ensemble strain prior to any yielding or failure. 

d. 0 00 0 max, , ens
lb ubE E E ∈Ω  

III. θ is defined as the fiber orientation in Ω0 , β1 as the orientation of the same fiber in Ω1, and βt 

as the orientation of the same fiber or ensemble at time t. θ’ defines the integration variable 

in Ω1. Note here that all angles are referred to the coordinate system of Ω0 and θ’ is defined 

on the half space [-π/2, π/2]. Using these definitions, and with a known 1
0 F , the fiber 

distribution R1(θ’ ) in Ω1 is defined in terms of R(θ). First, θ is defined in terms of θ’ using 

the following relations 

 ( )

1 1 1 1
0 0

1 1
1 1 0
0 1 1 1

0 0

1 2

1

tan

T T
f

f T T

N
N

λ

θ λ

θ

− − −

−
−

− −

−

=

= =

 
=  

 

n F F n

F nN F n
n F F n

, (2.18) 
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where n=[cos(θ’ ); sin(θ’ )] is the fiber orientation vector in Ω1, and Ni (i = 1,2) are the 

components of N. Using these relations, and following Dafalias [24], R1(θ’ ) is obtained from 

a known R0(θ) in Ω0 through 

 ( ) ( ) ( ) ( )1 1 1 1
0 0 0 01

1 0 0 1
0

  ',   ',
' ',

TT

R R
J

θ θ θ θ
θ θ θ

 
  = 




 
 F FNF FN

F , (2.19) 

where 1 1
0 0J = F . This expression is derived based on the assumption that the total number of 

fibers after deformation is the same as in the reference configuration, which yields the 

relation 1

0 '
R d
R d

θ
θ

= . Furthermore, using the definition of the projection of a cone defined in 

terms of stereo angles and area vectors, together with Nanson’s formula that describes the 

relation between the area vector in the current and reference configurations, and transforming 

it into 2D, this results in 
2

1

0 '
fR d

R d J
λθ

θ
= = . λf is the stretch in the fiber defined as 

2  T
f

Tλ = N F F N (see also Eq. (2.18)). R0(θ) is represented by a beta distribution function with 

parameters μR and σR. 

IV. Since all deformations due to applied loading occur in Ω1, and following Eq. (2.3), Ψ is 

defined in Ω1 as 

 ( ) ( ) ( )( )1 1'
' ' ' 't ens t ens

ECM colR E d
θ

θ θ θΨ = Ψ∫E ,  (2.20) 

where 1
t E  is the Green’s strain associated with Ω1→Ωt. Using Eq. (2.2), while assuming 

incompressibility and specializing for planar biaxial deformations (i.e. using a membrane 

approximation) this results in the constitutive equation for the ECM component 

( ) ( ) ( ) ( )( )2 2
1

1 1 12 2
1 1

' ' ' ' ' ' '
t ensens

t t ens t ens
ECM colt ens t

ER d R S E d
E

π π

π π
θ θ θ θ θ

− −

∂∂Ψ
= = ⊗

∂ ∂∫ ∫S E n n
E

. (2.21) 

V. At the ensemble level, the slack strains, and hence the recruitment function D, are defined in 

Ω1, but D needs to utilize parameters referred to Ω0. The recruitment function ( )1 1
t

sD E  in Ω1 

is derived from the recruitment function ( )0
t

sD E in Ω0 as follows. ( )0
t

sD E  is first defined 

using a beta distribution function B(y), with a mean μ and standard deviation σ defined in 

terms of 0
t ensE , mapped to the interval [ ]0 0,lb lbE E , with [ ]0 0 0,lb lbE E ∈Ω , using 
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 ( )
1 2

0 0 0
0 00

otherwise

( , , )
, ,

0

lb s ubt
lb ubs

B y s s E E E
E ED E µ σ

 ≤ ≤ −= 


, (2.22) 

where s1 and s2 are shape parameters computed from μ and σ using Eq. (2.12), and with 

( ) 0 0
0

0 0

s lb
s

ub lb

E Ey E
E E

−
=

−
. μ and σ are mapped on [ ]0, 1y∈ , as required by the beta distribution, 

but can also be expressed in terms of strain using 0

0 0

y lb

ub lb

E
E E
µ

µ
−

=
−

 and 
( )2

0 0

y

ub lbE E

σ
σ =

−
.  

To utilize this in stress-strain calculations in Ω1, the following definition is used, following 

Eqs. (2.15) - (2.17): 

 ( ) ( )T1 1
0 0 0

1
0

1 ', ',ensE θ θ θ θ =  
   N E NF F , (2.23) 

This can also be obtained using Eq. (2.18), as follows: 
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F F
n F F n

N N
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This is used to define the expressions for lower and upper bound strain in Ω1: 
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, (2.25) 

 

and this gives for y: 
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To satisfy the normalization requirement in Ω1, D is now defined as 
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F F . (2.27) 

With D1(x) given by Eq. (2.27), the fiber ensemble stress-strain relation is described as 
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 ( )( ) ( ) ( )
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1 1 1 20

'
' , '
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t ens t ens
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f

E x
S E D x dx

x

θ θ
θ η θ

−
= φ

+∫ . (2.28) 

Note also that η is defined in Ω0, and hence η in Eq. (2.28) is the actual fiber modulus, i.e., it 

has the same value as if the fiber ensemble stress-strain relation is defined in Ω0. This can be 

proven by considering a uniaxial bar in Ω0 with cross-sectional area A0 and length l0 

subjected to a force f, and the same bar in Ω1, now with a cross-sectional area A1 and length l1 

after a uniaxial permanent set equal to 1
0 1 0l lλ = . The incompressibility assumption requires 

that 1
0 1 0 0 1l l A Aλ = = . The Lagrangian stress in Ω0 can be expressed in terms of the 

Lagrangian stress P in Ω1 as  

 1
0 11

0 1 0 0

1t tAf fP P
A A A λ

= = ⋅ = . (2.29) 

and since for this simple case P = Sλ the 2nd Piola Kirchhoff stress is given as 

 0 11 2
0

1t tS S
λ

=  (2.30) 

Next, using the fiber model given by Eq. (2.6), using 1
0 0 1
t tλ λ λ= , and naming the fiber 

modulus in Ω0 η, and the fiber modulus in Ω1 η*: 
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. (2.31) 

Thus, this proves that η = η*, and the fiber modulus in Ω0 is indeed the same modulus as in 

the modified model defined in Ω1. 

Combining Eqs. (2.21) and (2.28), with K = φf η, and expressing it in component form results 

in 
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. (2.32) 

 

Following section 2.1.5, B(y) in Eqs. (2.22) and (2.27) is modified to a bimodal 

distribution, where B(y) = γB1(y) + (1-γ)B2(y) (with j = 1,2, and γ a scaling factor). A total of 10 

model parameters is now defined: K, μR, σR, μ1, σ1, γ, μ2, σ2, 0Elb, 0Eub, all referred to Ω0. 

Furthermore, under equibiaxial strain conditions, E11 equals E22, and when zero shear is assumed 

(E12=0), the original fiber ensemble stress-strain relationship could be obtained directly from the 

experimental data in Ω1 using Sens = S11 + S22, and 1Eens=1E11=1E22 [86, 129]. Note that this does 

not provide values for 0Elb and 0Eub, but rather only provides an estimate of the shape of D(x), 

with values for 1Elb and 1Eub, where in turn estimates of 0Elb and 0Eub can be derived from. It also 

does not provide a value for K in Ω0, because the permanent set induces an extra scaling effect 

on top of the effect of the slack stretch, as was explained with Eq. (2.14). 

2.3 CORRECTED FIBER STRESS-STRAIN RELATION 

2.3.1 Rationale 

Most structural models rely on non-specific statements of linearity of the stress-strain relation. 

However, the exact choice of stress and strain measures will greatly influence what this actually 

means. Our original fiber model as described in section 2.1.4 assumes that the 2nd Piola 

Kirchhoff stress in the fiber is linearly related to the fiber Green’s strain. However, observations 

from X-ray diffraction experiments on heart valve and tendon have shown that collagen fibers in 

reality exhibit a linear force-displacement relation [90, 132, 133]. Lagrangian tension vs. 

collagen D-spacing showed a linear relation in the mitral valve (Figure 2.3 A) [90].  
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Figure 2.3. A collagen fiber can be assumed to be linear in terms of force – displacement and hence in terms of P-λ. 
A) Relationship between collagen fibrillar D-period strain (εD) and applied equibiaxial tissue tension. Reprinted with 

permission from [90]. Copyright @ ASME, 2007. B) Stress–strain curve of the collagen fibrils–GAG system in a 
molecular dynamics simulation. Lagrangian stress was calculated by assuming that the force calculated through the 

nonlinear equation system acts on a square section whose edge is given by the sum of the diameter and the 
interfibrillar distance. Reprinted from [120]. Copyright (2003), with permission from Elsevier Science Ltd. 

The same type of linear relation was assumed in molecular dynamics simulations of collagen 

fibrils and collagen molecules [120, 164]. In these studies, the collagen fibril-GAG complex 

exhibited a linear stress-strain relation in terms of Lagrangian stress and engineering strain 

(Figure 2.3 B) [120], and collagen molecules showed a 2nd order relation in terms of potential 

energy vs. molecule length, which implies a linear stress-strain relation with a constant modulus 

[164]. 

When a fiber is linear in terms of force-displacement or P-λ, it cannot be linear in S-E, 

since Green’s strain has a nonlinear character as a result of its nonlinear relation to stretch (Eq. 

(1.1)) and hence displacement. In this section, a new fiber stress-strain relation is derived based 

on the assumption that a collagen fiber behaves linearly in terms of force-displacement. In 

addition, a macroscopic reference length is used instead of the individual fiber reference length 

as was the case in the original formulation. Defining this new fiber stress-strain relation will 

increase the physical realism of the model and will make it more intuitive since stretch is a linear 

measure, whereas Green’s strain is nonlinear. In addition, as will be shown in Chapter 3.0, the 

original model exhibits covariance between the fiber effective stiffness parameter K and the 
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parameters defining the recruitment function D. The new fiber stress-strain relation decouples K 

and D, as will be proven in the next section (2.3.2) and illustrated in Chapter 3.0.  

2.3.2 Fiber model modifications 

Consider a fiber of length l0 with cross section A0 subjected to a force f (Figure 2.4 A). The force 

induces a displacement δ = l - l0 in the fiber, and the relation between force and displacement is 

given by *f µ δ= ⋅ , where μ* is the stiffness of the bar. Normalizing the force by initial area and 

displacement by original length gives the traditional linear stress-stretch relationship P(λ) 

 

[ ]

0

0

0 0

1

A Ef
l

f E
A l
P E

δ

δ

λ

= ⋅

= ⋅

= ⋅ −

, (2.33) 

where P is the 1st Piola Kirchhoff stress under the large deformation assumption, λ is the stretch 

in the fiber, and E is the elastic modulus. Next, consider a fiber with slack length ls (Figure 2.4 

B).  

Upon application of a force f, the fiber uncrimps and starts bearing load after a 

displacement δs. The increasing force is linearly related to the “true” displacement δt as given by 

tf µ δ= ⋅ , where μ is the stiffness, and δt = δ – δs. Following the rationale of Eq.(2.33), this gives 

the following stress-stretch relationship: 

 

[ ]

0

0

0 0

t

s

s

Af
l

f
A l
P

η δ

δ δη

η λ λ

= ⋅

−
= ⋅

= ⋅ −

. (2.34) 

In here, the definition λs = δs/l0 is used. Note, that in the case of an ensemble of crimped fibers 

with different slack lengths ls, l0 is the only commonly known length for all fibers. l0 can be seen 

as a macroscopic normalization length.  
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Figure 2.4. Schematic representation of the linear-elastic fiber relation. 
A) Loading of a straight fiber (cross-section A, length l) with the corresponding force (f)-displacement (δ) and stress 
(P)-stretch curves. μ* and E are the fiber stiffness and modulus, respectively. B) Loading of a crimped fiber, with the 

corresponding force (f)-displacement (δ) and stress (P)-stretch curves. μ and η are the fiber stiffness and modulus, 
respectively. 
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This concept is visualized Figure 2.5 by a set of springs with equal stiffness (μ) but with different 

slack lengths (δs). The front of the virtual box is displaced to the right and when it hits a spring, 

the spring starts contributing to the total force, where the total force is the sum of the individual 

forces: ii
f f=∑ . When the stress in each spring is calculated by Eq. (2.34), and all stresses are 

summed up to determine the total stress in the ensemble, it can be shown that the only 

appropriate reference length is the macroscopic reference length l0 (with A0 equals the total cross-

sectional area of all springs):  
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∑

∑

. (2.35) 

 

 

 

 

Figure 2.5. Representation of a fiber ensemble by a set of springs with variable slack lengths. 
A) A displacement (δ) is applied to a set of four springs with equal stiffness and each spring is loaded at a different 
moment. Force is produced by the individual springs as soon as they hit the front of the load applicator. B) Force-
displacement diagram for the four springs in panel A. At each next level, an extra spring contributes to the total 

force. 
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In terms of 2nd Piola Kirchhoff stress, Eq. (2.34) becomes 

 [ ] 1 s
s

PS λη λ λ η
λ λ λ

 = = − = ⋅ −  
, (2.36) 

and converting stretch to Green’s strain (following Eq. (1.1), ( )21
2 1E λ= − or 1 2Eλ = + ) 

results in  

 
1 2

1
1 2

sE
S

E
η

 +
= ⋅ − 

+  
, (2.37) 

with Es the slack strain. Eq. (2.37) replaces the linear relation S=ηEt described in section 2.1.4. 

This fiber stress-strain relation can in this form be implemented in the modified model outlined 

in section 2.2, yielding a complete formulation in terms of Green’s strain. Following Eq. (2.28), 

the ensemble model then is defined as: 

 ( ) ( )1
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1 21
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t ensEt ens t ens
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xS E D x dx
E

η
 + = φ −
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∫ . (2.38) 

As a final step, the model is completely expressed in terms of ensemble stretch, i.e., Eq. 

(2.36) is combined with a recruitment function defined in terms of slack stretch, instead of slack 

Green’s strain. The recruitment function, originally given by Eqs. (2.25)-(2.27) is now defined 

as: 
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with 
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and where the slack stretch 1 sλ runs from 1 to max
1
t

ensλ . The mean and standard deviation are 

defined in terms of the normalized parameter y, but can also be expressed in terms of stretch 

using 0

0 0

y lb

ub lb

µ λ
µ

λ λ
−

=
−

 and 
( )2

0 0

y

ub lb

σ
σ

λ λ
=

−
. 

The ensemble relation as defined in Eq. (2.38) in terms of S-E, cannot be directly formulated in 

terms of P-λ , following a similar rationale as was described in Eqs. (2.29) and (2.31). In terms of 

P-λ this rationale results in the following statements 
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Thus, 
( )

*

21
0

ηη
λ

= , and in the ensemble relation this is accounted for as follows 

 ( ) ( )( )11 2
1 1 0 1 11
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or in terms of 2nd Piola Kirchhoff stress 
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In Eq. (2.43), D and η are completely uncoupled, and when no permanent set deformation is 

present ( 1
0 1λ = ), η can be directly determined from an equibiaxial strain experiment (see also 

section 2.1.5 and Eq. (2.14)) using the relation 

 1

1

( ) ( )
t

ub
ens ens

fens

PTM D x dx
λλ η

λ
∂

= = φ
∂ ∫ . (2.45) 

When λens≥λub, the integral equals 1 and η = MTM/φf.  

The tissue level model, including the modifications for the permanent set and the 

modifications for the fiber model is now given by 
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.(2.46) 

The tissue level strain energy is derived by returning to the fiber stress-strain relation in 

terms of P-λ (Eq. (2.34)). For analogy, we assume that the fibers are isotropic and we are only 

interested in the stress along the fiber length. The 1st PK stress in the fiber direction is derived 

from the strain energy in terms of the principal stretches (Chapter 1.0, Eq. (1.25)) [53]: 
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∂

. (2.47) 

We postulate the following fiber strain energy relation: 
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The ECM strain energy is now given by: 
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To check that Eq. (2.49) is indeed correct, the 2nd Piola Kirchhoff stress is derived from the strain 

energy, this time formulated in terms of the Right Cauchy Green tensor C, as: 
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2 ' ' '
ens t ens

t ECM col
ECM t ensR d

π

π

λθ λ θ θ
λ−
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∂ ∂ ∂∫S
C C

 (2.50) 

with  

 ( )1 1
1

'
ens

t enscol
st ens K λ θ λ

λ
∂Ψ  = − ∂

, (2.51) 

and 

 1

11
22

t ens

t ensT t

λ
λ

∂ ⊗ ⊗
= =

∂
n n n n

C n Cn
, (2.52) 

which is equal to Eq. (2.46). 
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2.4 CONSTITUTIVE MODEL FOR MUSCLE COMPONENT 

For the smooth muscle component, two a priori forms of the strain energy density function are 

defined. The first option assumes a similar form as for collagen, based on fiber families that run 

at a specific angle, using a continuous bimodal distribution function Rsm 

 ( ) ( ) ( )( )/2

0 /2

t
SM SM SMb SMbR s E d

π

π
θ θ θ

−
⊗= ∫S E N N ,  (2.53) 

where 0
T t

SMbE = N EN is the stretch in the smooth muscle fiber bundle (b = bundle). Depending 

on the SM structure, different forms of the distribution function can be assumed. Based on the 

available experimental data on SM orientation of UBW, a bimodal distribution is proposed, 

where the individual distributions RSMC and RSML are each described by a beta distribution and are 

weighted by a factor γSMC, similar to the collagen recruitment function (Eq. (2.13)): 

 ( ) ( ) [ ] ( )1SM SMC SMC SMC SMLR R Rθ γ θ γ θ= ⋅ + − ⋅ . (2.54) 

The second option assumes two discrete orthogonal families of fiber bundles. The model 

form is derived from the theory for fiber reinforced composites, based on strain invariants (Eqs . 

(1.29), (1.26) (1.27)). The smooth muscle component is assumed to consist of two families of 

fibers that do not interact, and hence the strain energy can be described by 

 ( ) ( ) ( ) ( )2 2 2 2
4 6, ,SM aniso A B A A B BI I λ λ λ λΨ = Ψ = Ψ = Ψ +Ψ , (2.55) 

where A and B refer to the two fiber families, and λA and λB are the stretch in fiber family A and 

B, respectively, defined as (cf. Eq. (2.16)): 

 
2

2

T
A

T
B

λ

λ

=

=

a Ca
b Cb

 (2.56) 

Next, it is assumed that the two fiber families are oriented at θ = 00 (C) and 900 (L) weighted by 

a fraction γSMC, and Greens’s strain is used instead of stretch (Eq. (2.15); ( )21
2 1E λ= − ). This 

gives for the discrete SM stress-strain relation: 

 ( ) ( ) ( ) ( ) ( )0 0
0,1 2

1t t
SM SMb SMb SMC SMC SMbC SMC SML SMbLs E s E s E

θ π

γ γ
=

= ⋅ + − ⋅= ∑ES  (2.57) 

Under biaxial loading and assuming no shear it holds that ESMbC = E11, and ESMbL = E22. For both 

model options, the exact constitutive equation a phenomenological exponential constitutive 

equation is assumed for an ensemble of SM fibers following Eq. (2.4): 
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 ( ) ( )1 2exp 1SMb SMb SMbs E d d E = ⋅ ⋅ −   (2.58) 

These two options, i.e., the model with a continuous distribution or with a discrete distribution, 

are explored and compared in Chapter 7.0 (cf. [12]).  

2.5 SUMMARY 

An overview of the relevant equations and their interrelations is given in Figure 2.6 and 

Appendix A. The tissue level constitutive equation is built up from a combination of an ECM 

and an SM constitutive equation. The ECM constitutive equation is described in terms of a fiber 

distribution function and a constitutive equation for a fiber ensemble, and the fiber ensemble is 

described by a fiber recruitment function in combination with a fiber constitutive model. All 

equations are defined in Ω1, but model parameters are defined in Ω0. The smooth muscle 

constitutive equation is defined in terms of a continuous distribution function or a discrete 

number of fiber families. All relevant equations are also repeated below. 

 

 

Figure 2.6. Schematic overview of the interrelations of the components of the multi-phase structural constitutive 
model. The numbers refer to the equations, as summarized below. 
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 ( ) ( ) [ ] ( )1SM SMC SMC SMC SMLR R Rθ γ θ γ θ= ⋅ + − ⋅  (2.54) 

 ( ) ( ) ( ) ( )0 0 1t t
SM SM SMbC SMbC SM SML SMbLs E s Eγ γ⋅ + − ⋅=ES  (2.57) 

 ( ) ( )1 2exp 1SMb SMb SMbs E d d E = ⋅ ⋅ −   (2.58) 
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3.0  MODEL IMPLEMENTATION, MODEL VALIDATION, AND METHODS OF 

PARAMETER ESTIMATION 

The model equations of Chapter 2.0 were implemented in MATLAB (MathWorks Inc.; v.7.6.0 

R2008a for the first study and v.7.8.0 R2009a for the later studies) through a series of function 

files, which are called from script files or from a graphical user interface (GUI), in order to 

calculate model stress values and perform parameter estimation. Each separate component of the 

model is implemented in an individual function file. The function files are called to calculate 

model values when parameters are known and are called by the fitting routines to determine 

parameter values. In addition, function files are utilized for data manipulation such as extracting 

individual protocol data. All components are set up in a modular fashion. The ensemble model 

and the structural model, which includes the ensemble model, are each implemented through a 

separate series of function files. 

This chapter describes the implementation of the structural model (section 3.1) and the 

implementation of the parameter estimation procedures (section 3.2) in MATLAB. Built-in 

algorithms are used for numerical integration and parameter estimation. Section 3.1 first provides 

background information on the specific MATLAB solvers and algorithms for numerical 

integration, followed by validation of the model modifications and the model implementation, 

using synthetic data. Section 3.2 provides background information on parameter estimation and 

on the specific MATLAB solvers and algorithms for parameter estimation, followed by the 

description of the actual fitting methods. The fitting procedure is implemented in two GUIs in 

order to provide full control over the data, fitting settings, and fitting output, including data 

inspection, choices of model type and algorithms, setting parameter bound values, calculating 

model values, etc. Two separate GUIs are developed; one for fitting the fiber ensemble model to 

equibiaxial strain data and one for fitting the complete structural model to multi-protocol biaxial 

mechanical data. This chapter is concluded with a summary (section 3.3). 
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3.1 MODEL IMPLEMENTATION AND VALIDATION 

3.1.1 MATLAB numerical integration functions 

The integrals in both the ensemble model and the tissue-level structural model were calculated 

using numerical integration techniques, also referred to as numerical quadrature. In general, if a 

function is smooth and well-behaved and the limits of integration are bounded, there are many 

methods of approximating the integral with arbitrary precision. In numerical integration, the 

integrand is evaluated at a finite set of integration points, and a weighted sum of these values is 

used to approximate the integral. The specific integration points and weights depend on the 

specific algorithm used, and in adaptive algorithms, these are adapted along the curve. The two 

MATLAB algorithms used in the current dissertation were “quadl” and “quad”, which were both 

adaptive quadrature algorithms. Quadl uses recursive adaptive Lobatto quadrature and is an 

efficient algorithm for smooth integrands, at high accuracies. Quad uses adaptive Simpson 

quadrature and is most efficient for low accuracies with non-smooth integrands. Quadl was 

initially used for the first study. However, the possible non-smooth behavior of the beta function 

made quad the preferred method of integration. Detailed information for each function can be 

found in MATLAB’s documentation. 

3.1.2 Validation of fiber model 

The usefulness of the fiber model modification, where the fiber is assumed linear in terms of 1st 

Piola Kirchhoff stress – stretch (P-λ) instead of in terms of 2nd Piola Kirchhoff stress – Green’s 

strain (S-E), was demonstrated with some simple calculations. In the rest of this chapter, the 

former fiber model will be referred to as “S-E linear fiber model”, and the latter as “P-λ linear 

fiber model”. A single fiber, with a modulus η = 100, was stretched to a maximum stretch λ = 

1.25. The stress-strain behavior (both S-E and P-λ) of the fiber, as well as the slope of the stress-

strain curves, were investigated with and without the presence of slack in the fiber (see for the 

description of slack, section 2.1), for both fiber models.  

A fiber that is linear in S-E, without slack, exhibited a nonlinear behavior in terms of P-λ, 

and the slope of the S-E curve equaled the fiber modulus at all strain values (Figure 3.1). When 
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slack was introduced in the fiber (slack stretch λs = 1.15), the slope of the S-E curve did not equal 

the fiber modulus (Figure 3.2). A fiber that is linear in P-λ exhibited moderate nonlinear 

behavior in terms of S-E, and the slope of the P-λ curve equaled the fiber modulus at all strain 

values (Figure 3.3). These characteristics were preserved when slack was introduced in the fiber 

(Figure 3.4).  

 

 

 

 

Figure 3.1. Stress-strain behavior of a single straight fiber, with a linear material model in terms of in S-E (η =100). 
A linear S-E relation with slope equal to 100 (left panels) results in a nonlinear P-λ relation (right panels). 
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Figure 3.2. Stress-strain behavior of a fiber with slack, with a linear material model in terms of in S-E (η =100). 
A linear S-E relation after a slack stretch λs = 1.15, exhibits a slope unequal to 100 (left panels). Right panels depict 

the corresponding nonlinear P-λ relation and its slope. 

 

Figure 3.3. Stress-strain behavior of a single fiber exhibiting a linear material model in terms of P-λ (η =100). 
Left panels depict a linear P-λ relation with slope equal to 100, and right panels depict the corresponding S-E 

relation and its slope. 
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Figure 3.4. Stress-strain behavior of a fiber with slack exhibiting a linear material model in terms of P-λ (η =100). 
The slope of the P-λ curve after a slack stretch of 1.15 is equal to the fiber modulus. 
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3.1.3 Validation of fiber model at the ensemble level 

At the level of the fiber ensemble, a distribution of slack stretches is assumed (through the 

distribution function D(Es) or D(λs)), and hence the above fiber level results should be 

extrapolated to the ensemble level. For the liner S-E fiber model, it is shown that the larger the 

slack strain, the more pronounced the scaling effect (Figure 3.5). This implies that each fiber in a 

fiber ensemble would have a different modulus η, and the maximum tangent modulus (MTM) of 

the fiber ensemble stress-strain curve (Sens-Eens) will not equal the effective fiber modulus. This 

scaling effect is due to the fact that each fiber is referenced to its own fiber reference length. This 

effect is illustrated at the ensemble level by analyzing the tangent modulus of Sens-Eens and Pens-

λens curves (with φf·η=1000), for the two models respectively, for different recruitment functions 

(Figure 3.6). For the linear P-λ fiber model where the fibers are referenced to the same ensemble 

length, MTM equals the value of φf·η. Each fiber in the ensemble is characterized by the same 

modulus η, even with a distribution of slack lengths. 

 

 

 

Figure 3.5. Maximum slope of the fiber stress-strain curve for different slack stretches. 
A) Maximum slope of the S-E curve for different slack strains, with the linear S-E fiber model (η =100). Compare to 

Figure 3.2. B) Slope of the P-λ curve for different slack stretches, with the linear P-λ fiber model (η =100). The 
slope equals the fiber modulus (η =100). Compare to Figure 3.4. 

1 1.05 1.1 1.15 1.2
0

20

40

60

80

100

λs

m
ax

(d
P

/d
λ

)

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Es

m
ax

(d
S

/d
E

)

A B



50 

 

Figure 3.6. Ensemble behavior for different recruitment functions for both fiber models. 
Panel A-C represent the linear S-E fiber model; Panel D-F the linear P-λ fiber model. A-D) Recruitment functions 

with different values for the mean and standard deviation. B-E) The fiber ensemble response for one of the 
recruitment functions (black line). C-F) Tangent modulus (TM) calculations of the fiber ensemble response for each 

recruitment function. The linear S-E fiber model does not produce a MTM value of 1000, whereas the linear P-λ 
does. 
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3.1.4 Discrete fiber simulations 

To test the implementation of both model modifications in MATLAB, i.e. the permanent set 

(section 2.2) and the P-λ linear fiber model (section 2.3), an objective data set was needed. This 

data was created by simulating the behavior of a set of discrete fibers under loading, which was 

implemented in the software package Mathcad (PTC, USA). First, a single set of circular fibers, 

1 μm in diameter, imbedded in a tissue specimen of dimensions 10x10x1 mm, was simulated. 

The mechanical behavior of the individual fibers followed one of the two fiber models (P-λ 

linear fiber model and S-E linear fiber model), with a given slack stretch and/or a permanent set 

deformation. The tissue specimen was subjected to a defined uniaxial deformation. From this, the 

resulting forces in the individual fibers were calculated and summed up over the total number of 

fibers. This force was distributed over the specimen area, which gave the total stress (1st and 2nd 

Piola Kirchhoff stress) in the specimen composed of one fiber ensemble.  

Next, a continuous fiber distribution was defined by a beta function with a given mean 

(μR) and standard deviation (σR), and a discrete set of fiber ensembles was created with a 

sufficient number of fiber ensembles and number of fibers per fiber ensemble, to match the 

continuous fiber distribution. The fiber ends were sorted and defined per specimen edge to 

distribute the fiber ensembles over angle θ. A total of 361 fiber ensembles was created, with 

149,350 fibers per fiber ensemble. Subsequently, the tissue specimen that was defined by these 

fibers was subjected to a defined biaxial loading protocol, either in- or excluding a permanent set 

deformation. The forces in the fibers were translated into tissue-level stresses, and thus, the 

biaxial stress-strain behavior was simulated.  

In these simulations, for simplicity, all fibers were assumed to be recruited at the same 

slack length, which is effectively the same as the single fiber description in section 3.1.2, and 

hence no fiber recruitment distribution function was included in the formulation. The simulations 

were created with increasing level of complexity, starting from a distributed set of fiber 

ensembles consisting of all straight fibers without slack and building up to fiber ensembles with 

slack and a permanent set effect subjected to shear loading. Table 3.1 gives an overview of the 

different tissue-level discrete fiber simulations (i.e., with a distributed set of fiber ensembles). 

The standard deviation of the fiber distribution function (R(θ)) equaled 15 deg (σR=15o) and the 

fiber effective modulus equaled 1000 kPa (K=1000). The stress-strain output of these simulations 
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was used as data input for the fitting program to validate the implementation in MATLAB. The 

continuous model excluding a fiber recruitment function (compare to Eq. (2.32)) and with the S-

E linear fiber model, is defined in terms of S as follows 

 ( ) ( ) ( )
( )

( ) ( )
2 1 1

1 22
1

' '
' ' ' '

1 2 '

t ens ens
s

t ens
s

E E
R d

E

π

π

θ θ
η θ θ θ θ

θ−

−
= ⊗

 + 
∫S n n , (3.1) 

and the model with the P-λ linear fiber model is defined in terms of P as 
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−
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( )1 'ens
sE θ and ( )1 'ens

sλ θ are calculated from the given model parameters 0
ens
sE or 0

ens
sλ , and 1

0 F , 

following Eqs. (2.23) and (2.24). When there is no permanent set ( 1
0 =F I ), it holds that θ’=θ and 

n(θ’) = N(θ), and all strain and stress terms referred to Ω1 are equal to the same terms expressed 

in Ω0. In the fitting process, the artificial data was scaled with a factor 1000 to decrease the 

calculation and fitting times.  

 

Table 3.1. Overview of settings discrete fiber simulations. 

 
 

 

 

descr. 11 12 21 22 descr. 11 12 22
1 0 none 1 0 0 1 equibiaxial 2 0 2
2 1.5 none 1 0 0 1 equibiaxial 2 0 2
3 1.5 equibiaxial 1 0 0 1 equibiaxial 2 0 2
4 1.5 unequal 1.2 0 0 1 equibiaxial 2 0 2
5 1.5 unequal 1.2 0 0 1 shear 2 0.1 2
6 1.5 shear 1.2 0.10 0.00 1 shear 2 0.1 2
7 1.5 shear 1.2 0.15 0.15 1 shear 2 0.15 2
8 1 none 1 0 0 1 equibiaxial 2 0 2
9 1.5 none 1 0 0 1 equibiaxial 2 0 2

10 1.5 equibiaxial 1.1 0 0 1.1 equibiaxial 2 0 2
11 1.5 unequal 1.4 0 0 1.1 equibiaxial 2 0 2

S-E

P-λ

F01 maxU1tsim. 
no.

fiber 
model λs
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Simulation 1 (Table 3.1) produced linear S-E curves, and the slope of the fiber ensemble 

stress-strain curve (Sens-Eens) equaled the value of K, as expected. A fiber relation that was linear 

in S-E produced a moderate nonlinearity in the P-λ curves as was also described above. 

Introducing a slack stretch in the fiber relation (simulation 2) produced a Sens-Eens relation with a 

slope that was lower than the value of K. This is an indication that in the complete model with a 

distribution of slack stretches, the MTM of the Sens-Eens curve can only be an indication of K, and 

MTM does not equal K. Adding a permanent set had the same effect on the Sens-Eens
 curve 

(simulations 3,4). An equibiaxial permanent set had no effect on R(θ)-R(θ’), as expected, and a 

permanent set with unequal components (simulations 5-7) resulted in a shift of R(θ’) with respect 

to R(θ). The results of simulation 7 are depicted in Figure 3.7. The results of all simulations are 

depicted in Appendix C. 
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Figure 3.7. Comparison of model stress calculations with results of discrete fiber simulation 7 (Table 3.1). 
A) 2nd Piola Kirchhoff Stress vs. Green’s strain for all three components. B) 1st Piola Kirchhoff Stress vs. stretch 

for the 11 and 22 components. C) Fiber distribution function in Ω0 and Ω1. D) Fiber ensemble stress vs. fiber 
ensemble strain. See also Figure C4. 
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Simulation 8, with a linear P-λ fiber model, produced linear P-λ curves, and the slope of 

the fiber ensemble stress-stretch curve (Pens-λens) equaled the value of K. This statement also held 

when slack was introduced in the fiber (simulation 9), in contrast to the linear S-E fiber model. 

However, when a permanent set was added (simulations 10 and 11), MTM did not equal K. In 

fact, the permanent set induced a defined scaling effect. For an equibiaxial permanent set, MTM 

and K (K = φf η, Eq. (2.8)) are related as:  

 1
0 ens

MTMK
λ

= . (3.3) 

When a permanent set is not equibiaxial, 1
0 ensλ is a function of angle, and K can be derived from 

Eq. (3.3) if 1
0 ensλ is replaced by the maximum value of ( )1

0 ensλ θ . The results of simulation 11 are 

presented in Figure 3.8 A,B. For this specific simulation, the fiber stresses were also calculated 

with respect to Ω0, using the model without permanent set.  

3.1.5 Synthetic data 

The implementation of the two model modifications was also tested with a set of synthetic data. 

A theoretical sample with dimensions 10x10x0.2mm in Ω0 was subjected to a permanent set 

deformation 1
0 F followed by a loading defined by an equibiaxial strain path (in Ω1, no shear). The 

dimensions of the sample in Ω0 were calculated from 1
0 F and the dimensions in Ω1. First Piola 

Kirchhoff stresses in Ω1 were calculated for a defined equibiaxial strain path in Ω1 (no shear) 

using the model equations. Forces were calculated from these stress values for corrected sample 

dimensions in Ω1. These forces were used to calculate stresses in Ω0, which were compared to 

stress values calculated using the model equations without permanent set. This validation was 

performed for both fiber models, but only the results of the P-λ fiber model are presented here, 

since this is the model of interest. 
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Figure 3.8. Validation of the model implementation without recruitment. 
A) Comparison of the stress calculations in Ω1 using the modified model, with the discrete fiber simulation output of 

simulation 11 (Table 3.1). B) Comparison of the stress calculations in Ω0 using the modified model, with the 
discrete fiber simulation output of simulation 11. C) Comparison of model calculations in Ω1 with model 

calculations in Ω0. The blue and red lines are the same lines as in panel A and B, respectively. Red open and closed 
symbols represent the stresses in Ω0 calculated from the forces, which were in turn calculated from the stresses in 

Ω1. Red lines represent the stress calculations in Ω0 using the model without permanent set. 
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First, the formulation of the model without recruitment as used for the synthetic fiber 

calculations was validated, using the settings of simulation 11 (Table 3.1). As mentioned in the 

previous section, the model stress calculations in Ω1, as well as the model stress calculations in 

Ω0, matched the stresses from the discrete fiber simulations (Figure 3.8 A,B). Stress values in Ω0 

calculated from the forces (red circles in Figure 3.8 C) were equal to the model stress values 

calculated by the unmodified model (red lines in Figure 3.8 C).  

The same comparison was performed for the complete model formulation including 

recruitment (represented by a beta distribution function) for different settings. First, a virtual 

specimen was subjected to the same permanent set and equibiaxial loading with the following 

recruitment parameters: μ=0.75, σ=0.15, 0λlb=1.5, 0λub=2 (Figure 3.9 A). Second, the same set of 

parameters was combined with a broader fiber distribution (σR=40o) (Figure 3.9 B). Lastly, 

permanent set and loading conditions similar to the experimental data on UBW ECM were 

utilized, i.e., [ ]1
0 1.6 0;0 2=F , maximum loading was [ ]1 1.15 0;01.15t =F , 0λlb=1.8, 0λub=2.1, 

σR=20o, K=15,000 (Figure 3.9 C). 

  This set of parameters was used to explore the behavior of ( ) ( )1 1
0 0

Tensλ θ θ= N FN , as a 

function of angle θ (Figure 3.10 A). The model assumptions (section 2.2) stated that

( )1
0 0

ens
lbλ λ θ≥ for all values of θ. However, considering R(θ) with a preferred orientation 

around θ=0, the fibers are not evenly distributed over all angles, and the model requirement 

( )1
0 0

ens
lbλ λ θ≥ can be relaxed. It could be shown that for σR=20o, 95% of the fibers were 

oriented between a cutoff value θcutoff = +/-38 ( ( ) 0.95cutoff

cutoff

R d
θ

θ
θ θ

−

−
=∫ ) (red dashed lines in 

Figure 3.10 A), and it can be stated that ( )1
0 0

ens
lb cutoffλ λ θ≥  instead of the strict model 

requirement ( )( )1
0 0max ens

lbλ λ θ≥ . The chosen value of 0λlb=1.8 complied with that. Because of 

the angular dependency of 1
0

ensλ , 1λlb and 0λub are also a function of angle, and hence, the 

recruitment function in Ω1 is a function of angle (Figure 3.10 B). Figure 3.10 B shows D1 for 

θ=0o and θ=45o.  
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Figure 3.9. Validation of the model implementation with beta recruitment for different loading regimes. 
Comparison of model calculations in Ω1 with model calculations in Ω0. Red open and closed symbols represent the 
stresses in Ω0 calculated from the forces, which were in turn calculated from the stresses in Ω1. Red lines represent 

the stress calculations in Ω0 using the model without permanent set. A) Permanent set values and equibiaxial loading 
regime of Figure 3.8. B) Same recruitment parameters and loading as A, with a broader fiber distribution of σR=40o. 

C) Permanent set and loading conditions similar to the experimental data on UBW ECM. 
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Figure 3.10. Angular dependence of the ensemble permanent set stretch and its effect on the recruitment function. 
A) The ensemble permanent set stretch 1

0
ensλ is a function of angle θ. With σR = 20o, 95% of the fibers is 

located between θ = -38 and θ = 38o, indicated by the red dashed lines. 1
0

ensλ =1.75 at this point. B) 
Recruitment function D in Ω1 at two different values of θ. 

3.2 PARAMETER ESTIMATION  

3.2.1 Background 

The process of parameter estimation, also referred to as model or data fitting or simply fitting, 

aims at determining parameter values for a model in order to recapitulate experimental data as 

closely as possible. An error function or objective function is minimized, which is usually 

defined as the sum-of-squared errors between the experimental data values and calculated model 

values. The lower the value of the objective function, the better the fit. Finding the minimum 

value of the objective function is an iterative procedure where, after defining a set of initial 

parameter values, the parameter values are altered in each iteration to minimize the objective 

function and to eventually reach the optimal set of parameters.  

Different algorithms are available, many of which are referred to as gradient-based 

methods, where the parameter search is performed along the direction of steepest descent taking 

into account other information such as curvature, depending on the specific algorithm. Gradient-
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based methods take advantage of the smooth behavior of the error surface. In general, it can be 

stated that the closer the initial parameter estimates are to the optimal parameter values, the faster 

the fitting process, and the more likely it is that the true optimal parameter values are found. 

When initial parameter estimates are not similar to the optimal parameter values, one risks 

locating a local minimum when using the gradient-based methods. Additionally, the possibility 

of finding a local minimum instead of a global minimum increases for highly complex functions 

and functions with many parameters where the error function does not behave smoothly. The 

first obvious solution to this problem is to more accurately define initial parameter estimates, but 

this is not always be feasible. The alternative is to use a different type of approach such as the 

genetic algorithm. The genetic algorithm uses the survival of the fittest concept taken from 

evolution theories. A group of parameters sets is maintained instead of just one working solution 

set, and based on how well each set fits the data, it is either used to produce better candidate 

solutions or discarded. 

Many of these algorithms have been implemented in software packages such as 

MATLAB, and in more recent years and in more recent releases of MATLAB, more 

sophisticated algorithms have become available, and the implementations itself have become 

more sophisticated. In this chapter, three different constrained minimization algorithms, readily 

available in MATLAB, are described that were implemented for the specific biaxial mechanical 

stress-strain data used in this dissertation and eventually integrated in a MATLAB GUI. The next 

section (section 3.2.2) describes the three specific MATLAB algorithms that were implemented. 

Only one of these algorithms was used for the parameter estimation performed for this 

dissertation. The constrained minimization algorithm “fmincon” was chosen because it allowed 

for application of nonlinear constraints on the parameters, which was required to constrain the 

shape of the beta distribution functions (see below, section 3.2.2). Possible problems with local 

minima were avoided by carefully choosing initial parameter estimates derived from specific 

knowledge of the experimental data and inspecting two-dimensional error surfaces for specific 

sets of parameter values. This allowed for a carefully guided step-wise fitting process, which was 

contrary to “brute-force” fitting. 
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3.2.2 MATLAB parameter estimation functions 

The complete structural constitutive model (Chapter 2.0 ) is highly nonlinear because of the 

recruitment and distribution functions. This highly nonlinear model required a nonlinear 

parameter optimization or curve fitting algorithm. The MATLAB function “lsqcurvefit” is 

especially designed for curve fitting purposes of nonlinear functions and is formulated such that 

it defines the least-squares problem internally, while the user only provides the function. By 

default, lsqcurvefit uses the (large scale) trust-region-reflective algorithm, which is a subspace 

trust-region method and is based on the interior-reflective Newton method. Trust-region methods 

are based on the basic idea to approximate the function f with a simpler function g, which 

reasonably reflects the behavior of function f in a neighborhood around the point x. This 

neighborhood is the trust region. This algorithm allows the user to define bounds on the 

parameters and hence perform constrained optimization. Lsqcurvefit also has to option to use the 

Levenberg-Marquardt method, but this method does not allow bounds on the parameters. 

Lsqcurvefit also does not allow nonlinear (in)equality constraints on the parameters, which are 

needed for the beta recruitment function. Note also, that the trust-region-reflective method does 

not allow equal upper and lower bounds. 

Another MATLAB algorithm for constrained minimization that does allow nonlinear 

(in)equality constraints on the parameters is “fmincon”. Fmincon is a gradient-based method that 

is designed to work on problems where the objective and constraint functions are both 

continuous and have continuous first derivatives. For curve-fitting purposes, fmincon requires 

the user to define the function to be optimized in terms of a least-squares formulation. Fmincon 

has the option to use three algorithms. These algorithms are the trust-region-reflective algorithm, 

the active-set algorithm, and the interior-point algorithm. The trust-region-reflective algorithm is 

the default algorithm, but this requires the user to explicitly define the gradient as part of the 

objective function and it does not allow inequality constraints. If the gradient is not provided and 

inequality constraints are defined in the problem, the (medium-scale) active-set algorithm is 

chosen. This algorithm uses the sequential quadratic programming method. At each major 

iteration, three steps are performed. First, an approximation is made of the Hessian of the 

Lagrangian function using a quasi-Newton updating method. This is then used to generate a 

quadratic programming sub-problem. The solution of this problem is used to form a search 
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direction for the Quasi-Newton line-search procedure. The genetic algorithm (GA) was also 

implemented in the GUI described below but was not used in the current study. Detailed 

information for each function can be found in MATLAB’s documentation. 

3.2.3 Parameter estimation components for ensemble model 

Data inspection and using information from the data. If biaxial mechanical data from an 

equibiaxial strain protocol is available, it can be used to determine parameters of the ensemble 

model separately. Data from the equibiaxial strain protocol was loaded and graphically 

inspected. Under equi-biaxial strain conditions, E11 equals E22, and zero shear is assumed 

(E12=0). Because of the symmetry of R(θ) and the fact that the fiber recruitment function (D(x), 

see Chapter 2.0 ) does not depend on θ, the fiber ensemble stress-strain relationship could be 

obtained directly from the experimental data using Sens = S11 + S22, and Eens=E11=E22 [86, 129]. 

To smooth small differences between the two directions, the fiber ensemble stretch values were 

calculated as λens=0.5*(F11+F22), and the fiber ensemble strain was derived as Eens=0.5*(λens2-1).  

For each point along the Sens-Eens or Pens-λens curve (depending on the model choice, see 

below), the tangent modulus (TM) was calculated by performing a running linear regression of 

the curve with a window width determined specifically for each data set, based on visual 

inspection of the desired result. From this Eens-TM curve, it could be observed that TM would 

eventually cease to increase with increased stretch. This is the point that all fibers are recruited 

and the fiber ensemble behaves linear elastically, with a stiffness value equal to the maximum 

tangent modulus (MTM). The corresponding strain at this point defines the upper bound strain 

(Eub), and the value of MTM was used as an initial estimate for K. Next, the data sets were 

thinned to facilitate shorter fitting times, and Sens values were scaled, because K was typically 

three or more orders of magnitudes larger than the other parameters.  

 
Model choice. As described above and in section 2.1, two different models could be assumed for 

the fiber ensemble response. First, the choice was made between an exponential model and a 

structural model with recruitment. For the exponential model, two different forms could be 

chosen, i.e., a simple exponential form with the two model parameters d1 and d2 (Eq. (2.4)) or an 

exponential form including a linear part, with the three model parameters d1 and d2 and Eub (Eq. 



63 

(2.5)). For the structural model form, it needed to be decided which fiber relation was used, i.e. 

the linear S-E fiber model (the “original” model, Eq. (2.7)) or the linear P-λ fiber model (the 

“modified model”, Eq. (2.43)). Depending on this choice, MTM was determined from either the 

Sens-Eens curve or the Pens-λens curve, respectively (section 3.2.3). Finally, one must choose 

between three forms of the recruitment function, i.e. exponential, beta distribution, or double 

beta distribution (Eqs. (2.10), (2.11), and(2.13), respectively). The parameters to be fit for the 

structural model with exponential recruitment are: K, Eub, a, b, for the model with the unimodal 

beta recruitment function: K, μ,σ, Elb (or λlb) and Eub (or λub), and for the model with the bimodal 

recruitment function K, μ1, σ1, γ, μ2, σ2, Elb (or λlb) and Eub (or λub). 

 
Determination of initial parameter estimates. Initial parameter estimates were determined from 

visual inspection of the ensemble model fit to the stress-strain data from an equibiaxial test, in a 

user-interactive, iterative process. Initial estimates for K and Eub (or λub) were determined from 

the MTM inspection. Parameters (including K and Eub/λub) were altered, until model stress-strain 

values were similar to data stress-strain values, as determined by visual inspection of the stress-

strain curve. 

 
Fitting settings. Parameter estimation is performed to minimize the sum of squared errors (SSE) 

between the experimental and model ensemble stress values 

 ( )2

mod, exp,
1

N
ens ens

i i
i

SSE S S
=

= −∑ , (3.4) 

subjected to lower and upper bounds and inequality constraints on the parameters. Before the 

actual fitting process is started, choices are made specific to the data set: the fitting algorithm is 

chosen (‘fmincon’, ‘lsqcurvefit’, ‘GA’, see section 3.2.2), values for the lower and upper bounds 

on the parameters are defined, and termination tolerance criteria of the objective function and of 

the change in parameter values are set, as well as the maximum allowable number of iterations 

and function evaluations. When the fitting is terminated and optimal parameters are determined, 

model stress values are calculated with these parameters, and the quality of the fit, defined by the 

r2 value, is as calculated as 

 
( )

2

exp

1
var ens

SSEr
N S

= − , (3.5) 

where “var” represents variance in the data and N is the number of data points. 
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3.2.4 Parameter estimation methods for structural model 

The same setting options and fitting components are available for the complete structural model 

as described above (section 3.2.3) for the ensemble model, i.e., data inspection, model choice, 

iteratively determining initial parameter estimates, solver choice, parameter bounds, termination 

tolerance criteria. If fitting of the ensemble model is performed separately, settings such as 

model and solver choice, bound settings, and scaling and thinning factors, are transferred, and 

parameters found from this fitting are used as initial parameter estimates for the structural model. 

In addition to the ensemble model parameters, initial estimates for R(θ) are determined based on 

visual inspection. Parameter estimation was performed to minimize the sum of squared errors 

(SSE) between the experimental and model stress values in all directions including shear 

stresses: 

 ( ) ( ) ( )2 2 2mod, exp, mod, exp, mod, exp,
11 11 22 22 12 12

1

N
i i i i i i

i
SSE S S S S S S

=

= − + − + −∑ , (3.6) 

or only in the 11 and 22 directions, excluding shear terms 

 ( ) ( )2 2mod, exp, mod, exp,
11 11 22 22

1

N
i i i i

i
SSE S S S S

=

= − + −∑ , (3.7) 

subjected to lower and upper bounds and inequality constraints on the parameters. If shear stress 

and strain in the data are negligible, Eq. (3.7) is optimized. However, if shear stress or strain was 

an essential component of the testing protocol and shear stress and strain values in the data are 

significant, Eq. (3.6) is optimized. When the fitting is terminated and optimal parameters are 

determined, model stress values are calculated with the fit parameters, and the quality of the fit 

defined by the R2 value is calculated for each direction separately using Eq. (3.5). 

The model modifications described in section 2.2 are implemented in the fitting process 

through the definition of the permanent set deformation gradient tensor 1
0 F . If values for 1

0 F are 

detected by MATLAB other than the identity tensor, the appropriate calculations are carried out 

within the specific function files. 
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3.2.5 Additional GUI details 

The fitting process of both the ensemble model and the structural model were implemented in a 

GUI (see Appendix B for images of the interface). All choices and settings described above are 

available here. In addition, both GUIs have the following options: setting of file paths where data 

is to be located and where fitting output is to be saved; saving and loading of settings; setting the 

numerical integration accuracy; saving the fitting output; setting the lower and upper bounds to 

values equal to the initial parameter estimate to exclude the parameter from the fitting process.  

The structural model GUI also has some specific settings, based on the fact that the data 

to be fit consists of stress-strain data from multiple testing protocols that can either be handled 

individually, or simultaneously. Individual protocols are extracted from the loaded data set in 

order to handle the protocols individually in the fitting process as well as in creating plots. It is 

an option to perform the fitting process in steps, where the middle (equibiaxial) protocol is fit 

first, and in each subsequent step, the two protocols before and after are added. For each new 

step, the parameter values found in the previous step are used as initial estimates, and at the end 

of each step the parameters are saved to a temporary text file, allowing one to retain the 

intermediate parameter values if need. In addition, one or multiple specific protocols can be 

chosen to be fit. The option “pause” allows the user to inspect intermediate fitting results. The 

common number of protocols in biaxial mechanical data in our lab is five or seven, and hence, 

the maximum number of protocols to fit is either five or seven. The user has the option to include 

shear terms in the objective function or to exclude them (Eqs. (3.6) and (3.7)). An input field is 

available for the permanent set deformation gradient tensor 1
0 F . It is set standard at the identity 

tensor to represent no permanent set. If data was thinned and/or scaled for the fitting process, the 

setting “all data points” allows the user to calculate and plot the fitting results for all data points 

with unscaled stress values. 

The ensemble model fitting process can be loaded individually but can also be called 

from the structural model GUI, where settings of the ensemble fitting will be transferred to the 

structural model fitting upon exiting the ensemble model GUI. 
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3.2.6 Validation of implementation of fitting process 

The output of the discrete fiber simulations (section 3.1.4) are also used to validate the fitting 

process. Graphical results of all fits are presented in Appendix C, and results are summarized 

here. All data sets were fit well, and final parameters equaled the set parameters, even when 

initial estimates were not similar to the known parameter values. Nothing remarkable is noted 

from simulations 1-4 (Figure C1 and Figure C2). Introducing shear components in the loading 

and/or in the permanent set did not present any problems in the fitting routine (simulations 5-8, 

Figure C3 and Figure C4). It was noted that it was not necessary to include the shear components 

in the objective function to produce accurate parameter results (using Eq. (3.7) vs. (3.6). This can 

be visualized in an error plot of the objective function as a function of different values of σR and 

K, which are the two free parameters if a centered distribution function is assumed (Figure 3.11). 

For both objective functions, a perfect minimum was found at the given values of σR=15o and 

K=1000. Note that the minimum value of the objective function did not equal zero, which 

suggested that the synthetic data was not perfect. For completeness, the fitting results of 

simulation 8-11 are depicted in Appendix C, Figure C5 - Figure C7. 

 

 

 

Figure 3.11. Contour plots of the objective function as function of different values of K and σR. 
A scaling factor of 1000 was used. The red dot denotes the minimum of the objective function. A) Objective 

function is given by Eq. (3.6); the minimum value of the objective function is 0.4307. B) Objective function is given 
by Eq. (3.7) and does not include shear terms; the minimum value of the objective function is 0.4300. 
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3.3 SUMMARY 

In this chapter, it was shown that the structural model with its modifications was successfully 

implemented in MATLAB, including the two levels of numerical integration and the complete 

fitting process. The built-in MATLAB functions for numerical integration and parameter 

estimation have been shown reliable and effective. The complete process of parameter estimation 

was implemented within two separate user interfaces (GUIs), which provided full control over 

the data, fitting settings, and output, including data inspection, choices of model type and 

algorithms, setting parameter bound values, calculating model values, etc.  

The modifications to the structural model, as well as the implementation of the model, 

were validated in three different steps. First, the fiber model formulation was validated by 

showing that the original linear S-E fiber model did not preserve the fiber effective modulus 

when slack was introduced in the fiber, which was solved by using the linear P-λ fiber model. 

Next, simulations with discrete fibers were performed and stress-strain behavior was compared 

to the continuous model formulation. This showed that the modifications to the model 

formulation were correct and that the implementation in MATLAB was correct. Finally, model 

stresses were calculated in both Ω1 and Ω0 for different sets of parameters and loading conditions 

to show that the modified model produces the correct stress strain behavior in Ω1 as well as in 

Ω0, with the same set of parameters. A thorough analysis of parameter covariance might be 

useful to obtain more insight in the model behavior. However, because of the strong nonlinear 

nature of the model, this is not a straightforward task. In conclusion, the structural model with its 

modifications of including permanent set effects and a new fiber stress-strain relation was 

implemented successfully in MATLAB and can be used to determine tissue-specific material 

parameters. 
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4.0  APPLICATION TO URINARY BLADDER TISSUE 

4.1 BACKGROUND ON THE URINARY BLADDER 

4.1.1 Bladder anatomy and structure 

The urinary bladder (Figure 4.1) is a visceral (hollow) neuromuscular organ located anteriorly in 

the lower abdomen, just behind the pelvic bone. The two main functions of the urinary bladder 

are storage of large volumes of urine while maintaining a low intravesical pressure, and timely 

voiding. During urine storage, the bladder is relaxed while the urethra is closed by tonic 

contraction of the urethral sphincter. Normal voiding is accomplished by activation of the 

micturition reflex, where the bladder contracts with simultaneous relaxation of the urethral 

sphincter. The UBW consists of several layers: i) a mucosal layer, which consists of the 

urothelium and the basement membrane, ii) lamina propria, iii) detrusor, and iv) serosa [76, 104]. 

A network of nerves is found throughout all the layers of the bladder wall.  

The urothelium is a mucosal layer of epithelial cells lining the inside of the bladder wall 

and isolates the toxic contents of the bladder from the rest of the body. The urothelial cells rest 

on a basement membrane. The lamina propria, also referred to as submucosal layer, consists of 

connective tissue and blood vessels. The detrusor layer, consisting of smooth muscle bundles, 

makes up the largest portion of the UBW (60-70%) [114] and contracts during bladder emptying. 

The serosa is the most outer layer consisting of a dense layer of collagen fibers. Bladders of 

different species consist of different numbers of smooth muscle layers with alternating 

orientation of the muscle fibers. The human bladder consists of three muscle layers and the rat 

bladder of two. During fetal development, fetal urine is emptied through the urachus instead of 

the urethra, which is a soft tissue tube that emanates from the dorsal part of the dome of the 

bladder. Fully developed bladders still contain a remainder of the urachus (Figure 4.2). 
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Figure 4.1. Schematic of the human urinary bladder. 
Reproduced with permission from [99]. Copyright @ The McGraw-Hill Companies, Inc. 

 

 

Figure 4.2. Schematic of a rat urinary bladder. 
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The SM cells in the detrusor form fascicles sheathed by collagen sheets and these SM 

fascicles are arranged into bundles that run in various directions [41, 42, 104, 157]. The collagen 

fiber network, consisting predominantly of fibrillar bundles of type I and type III collagen [16], 

serves to bind the SM together and provides resistance to high strains. In general, collagen 

structures are optimized to their specific function in each individual tissue type [112]. The 

collagen fibers exist in a coiled form when the urinary bladder is empty, and they straighten out 

during filling [16, 97, 104]. This suggests that the collagen structure in UBW tissue exhibits a 

unique multi-level hierarchy of coils, with super-coiled structures in addition to intrinsic fiber 

crimp, which allows for the accommodation of very large strains. Elastin in the normal UBW is 

found mainly in the vasculature, with small additional amounts in a loose network throughout the 

tissue [41, 77, 104, 125]. It has been suggested in arteries [37], and in the female reproductive 

organs [74, 92], that the elastic fibers keep the collagen in a more coiled state to enhance the 

extensibility of the collagen fiber network. The specific structures of collagen, elastin, and 

smooth muscle that the urinary bladder wall is made out of, are optimized for the organ’s unique 

functions. 

4.1.2 Bladder function 

Normal bladder voiding is accomplished by activation of the micturition reflex, which is an 

autonomic spinal cord reflex. The bladder fills progressively until the tension in the wall rises 

above a threshold level. This happens either by the passive filling or by voluntary contracting the 

abdominal muscles. The stretch receptors in the bladder neck and the urethra are stimulated and 

elicit the micturition reflex, which is a coordinated neuromuscular event characterized by a 

sequence consisting of: 1) a sudden and complete relaxation of the striated sphincter muscles, 2) 

a decrease in urethral pressure, 3) an increase in detrusor pressure as the bladder and proximal 

urethra become isobaric, 4) opening of the bladder neck and urethra, and 5) voiding [13]. As the 

bladder fills, many superimposed micturition contractions begin to appear. When the bladder is 

only partially filled, these micturition contractions usually relax spontaneously after a fraction of 

a minute. As the bladder continues to fill, the micturition reflexes become more frequent and 

cause greater contractions of the detrusor muscle. The micturition reflex is self-generative. The 

micturition reflex also causes inhibition of the external sphincter of the urethra and hence gives 
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the possibility to void. Both voiding and urination can be controlled voluntary by contraction and 

relaxation of the external sphincter [13]. 

In the clinical field of urology cystometry is used to assess bladder function and health 

state. A cystometrogram (CMG) measures intravesical pressure (consists of abdominal pressure 

and detrusor pressure) as a function of bladder volume. The mechanically related parameters that 

can be derived from a CMG are bladder capacity and bladder compliance. Maximum cystometric 

capacity is defined as the volume at which the patient feels that he/she can no longer delay 

micturition. Bladder compliance is defined as change in volume divided by change in pressure 

(ml/cmH2O) [13]. 

Studies on the mechanical behavior of the bladder at the tissue and organ levels have 

provided useful information in assessment of the functional state of the organ [1, 2, 18, 19, 28, 

33, 163]. These studies have included quasi-static uniaxial [1, 3, 26, 167], uniaxial viscoelastic 

[1, 18, 27, 162] and whole organ (in situ) [1, 20, 88, 124] studies. As an example of these 

mechanical studies, the influence of outflow tract obstruction on the mechanical properties of 

detrusor has been studied in an attempt to understand the reason for contractile abnormalities 

[165]. In this study, it was stated that the problem is to determine whether such abnormalities 

arise from defects in the contractile properties or whether they are due to changes in the 

extracellular matrix. The contribution made by both the resting properties and the active 

contraction to overall bladder wall compliance remains a controversial question.  

From quasi-static and stress-relaxation planar biaxial mechanical testing the mechanical 

behavior of UBW tissue was characterized as anisotropic and highly time-dependent [47, 107] 

(see also section 4.2.2). In these studies, three different states were defined, i.e., passive, active, 

and inactive-states, and the bladder wall tissue response was evaluated in the inactive state, 

where all smooth-muscle activity was abolished using a calcium-chelating agent. In another 

study, the stress-relaxation response was divided into the contributions of the ECM and SM 

separately, and it was shown that stresses are transferred from the SM at low strain values to the 

ECM at higher values [108]. Separation of the two components was experimentally achieved by 

decellularization of UBW tissue, through which the SM cells were removed. Histological 

analysis showed no visible damage of the ECM component after decellularization (Figure 4.3). 

The only attempt that has been made to develop a constitutive model of the complete bladder 

was by Damaser and Lehman [27, 29, 30]. Constitutive models, in combination with the 
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appropriate mechanical and clinical studies as mentioned, are essential in establishing the 

functional state of the urinary bladder, and in assessments of changes in function as a result of 

pathologies. 

 

 

 

Figure 4.3. Histological assessment of intact and decellularized rat bladders.  
Intact and decellularized rat bladders were fixed in Formalin and cross-sectional specimens were stained using 

Masson’s Trichrome staining technique. A) Smooth muscle cells (stained in pink) were only present in the intact 
bladder specimens. With kind permission from Springer Science+Business Media: Biomech Model Mechanobiol, 

Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall, Vol 7, 2008, p. 395-
404, J. Nagatomi, K.K. Toosi, M.B. Chancellor, and M.S. Sacks, Figure 3A [108]. Copyright @ Springer-Verlag, 

2007. B) Only collagenous ECM is present (stained in blue) that is no visibly affected by the decellularization 
process. Magnifications = 10x.  

4.2 THE URINARY BLADDER WALL AND SPINALCORD INJURY 

4.2.1 Clinical spinal cord injury 

After spinal cord injury (SCI) above the lumbar level, the brain control is lost and the spinal cord 

undergoes tremendous plastic change. Approximately 250,000 to 400,000 individuals in the 

United States have spinal cord injuries, with urologic complications among the most common 

clinical conditions [32], which have an enormous influence on an individual’s daily activities and 

physical function and can in some cases have an important impact on an individual’s mental state 

A B
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[111]. SCI can lead to severe lower urinary tract dysfunctions including bladder outlet 

obstruction (BOO), urinary retention (due to incomplete voiding), overactive bladders, and 

detrusor instability [35, 168]. A relationship has been shown to exist between treatment for 

several medical illnesses and suicide in elderly patients, including urinary incontinence [72]. 

In BOO specifically, the bladder is subjected to high stresses because of contractions 

against a closed sphincter, and high stretches due to overfilling. BOO leads to several structural 

and functional changes, including hypertrophy, in the detrusor muscle, regarded in part as a 

positive compensatory response aimed to overcome the resistance to bladder emptying [103]. 

After surgical relief of obstruction, bladder wall thickness and bladder weight are significantly 

reduced, suggesting reversibility of the remodeling processes [103]. BOO can result from many 

different pathologies, among others SCI and benign prostatic hyperplasia. 

Bladder abnormalities as a result of SCI are characterized by an initial period of areflexia 

(i.e., lack of contractions), followed by hyperreflexia (i.e., bladder contracts frequently even at a 

relatively small volume), and detrusor-sphincter dysynergia (i.e., the urethral sphincter and the 

bladder contract simultaneously) [134, 168] (Figure 4.4). In addition, they are accompanied not 

only by changes in the UBW tissue morphology, including increased thickness and hypertrophy 

[102], and fibrosis [34], but also by drastic changes in the mechanical properties (clinically 

reflected by compliance) of the wall [50, 137, 172]. Clinically, after the initial stabilization phase 

of the SCI patient where an indwelling catheter is placed, bladder management consists of 

roughly three types: continuous drainage through an indwelling Foley catheter (transurethral or 

suprapubic), clean intermittent catheterization, or spontaneous voiding. Regardless of the bladder 

management method, the lack of a normal micturition reflex leads to a decrease in compliance of 

the bladder [171, 172]. 
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Figure 4.4. Time course of spinal cord injury, in a clinical setting and in the experimental rat model of SCI. 
 

 

 

 

 

 

Figure 4.5. Morphology of normal and (10-day) SCI rat bladders.  
Normal (A,C) and SCI (B,D) rat bladders were fixed in formalin and cross- and horizontal sections were stained 
using the Movat’s pentachrome method. The SCI rat bladder (B) was much thicker and contained more smooth 

muscle (stained in red). Although comparable amounts of collagen (stained in yellow) were present in the sections 
of both normal (C) and SCI (D) bladders, there were significantly more elastic fibers (stained in black; indicated by 
arrows) in the SCI bladder compared to normal. Magnifications = 10× (Frames A and B); 40× (Frames C and D). 

With kind permission from Springer Science+Business Media: Ann Biomed Eng, Changes in the biaxial viscoelastic 
response of the urinary bladder following spinal cord injury, Vol 32, 2004, p. 1409-1419, J. Nagatomi, D.C. 

Gloeckner, M.B. Chancellor, W.C. Degroat, and M.S. Sacks, Figure 6 [107]. Copyright @ Biomedical Engineering 
Society, 2004. 
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4.2.2 Experimental SCI in a rat model 

Our previous studies in a rat model of SCI have revealed that in the first ten days 

following injury during which the bladder is subjected to high levels of strain because of its 

inability tovoid, the UBW tissue became thicker, and significantly more compliant [47]. Using a 

novel image analysis software, Nagatomi et al. were first to quantify structural and 

compositional changes in the urinary bladder after spinal cord injury [107]. It was demonstrated 

that significant increases in smooth muscle and decreases in collagen area fractions in the 10-day 

SCI bladders existed, compared to the normal group. Furthermore, the SCI bladders exhibited 

significantly fewer cell nuclei per muscle area compared to the normal bladders. This indicated 

that hypertrophy rather than hyperplasia is the predominant mechanism that led to the overall 

increase in the wall tissue thickness and mass [107].  

In addition to the smooth muscle hypertrophy, 10-day SCI rat bladders exhibited a 

different pattern of muscle orientation distribution compared to the normal rat bladders. 

Specifically, the orientation of smooth muscle bundles was bidirectional (i.e. in longitudinal and 

circumferential directions) post-SCI, while the orientation of smooth muscle bundles in normal 

bladders was predominantly longitudinal (Figure 4.6) [109]. This corroborated mechanical 

testing results, where bladders were shown to change its material class following spinal cord 

injury and behaved as an isotropic material while normal rat bladder was mechanically 

anisotropic. Additional biaxial mechanical testing to study the viscoelastic behavior of the 

bladder wall revealed that post-SCI bladder tissue exhibited a reduced stress-relaxation and a 

decreased rate of stress-relaxation compared to normal bladder [107]. It was suggested that this 

is due to different viscoelastic behaviors of smooth muscle, collagen, and elastin, where after 

SCI the tissue composition is different from normal.  

Biochemical assays revealed that while the relative collagen concentration decreased, the 

relative elastin concentration of the post-SCI bladder was significantly greater compared to 

normal bladders, which was also confirmed by histological analysis (Figure 4.5) [107]. The 

production of elastin as a result of SCI [106, 107, 152] or in intravesical obstruction [127] is 

remarkable because elastin is generally assumed to be metabolically stable with negligible 

turnover rates [136]. The up-regulation of molecules related to remodeling, such as tropoelastin, 
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lysyl-oxidase, transforming growth factor-β1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) 

was further confirmed by gene expression profiling techniques [106] (Figure 4.7). 

 
 

 

 

 

 

Figure 4.6. Time course changes in SM fiber orientation and biaxial mechanical behavior post-SCI.  
Upper panel: orientation distribution of smooth muscle bundles in normal (a), 1.5-week SCI (redrawn from [109] (b) 

and 10-week SCI (c) bladders. Lower panel: The longitudinal (○) and circumferential (●) stress-stretch curves 
representing data from equibiaxial stress protocol mechanical testing (mean ± SEM) in normal and SCI rat bladders. 

At all time points the changes in preferred muscle orientation corroborated the mechanical anisotropy data. With 
kind permission from Springer Science+Business Media: Ann Biomed Eng, The effects of long-term spinal cord 
injury on mechanical properties of the rat urinary bladder, Vol 36, 2008, p. 1470-1480, K.K. Toosi., J. Nagatomi, 

M.B. Chancellor, and M.S. Sacks, Figure 5 [152]. Copyright @ Biomedical Engineering Society, 2008. 
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Figure 4.7. Microarray analysis (Affymetrix Gene Chip®) of detrusor RNA from normal and SCI rats. 
 The transcription levels for tropoelastin and lysyl oxidase were as high as 8- and 6-fold in SCI at day 3 (■), day 7 (

), and day 25 ( ) compared to normal (□). Furthermore, the transcription levels for TGF-b1 and IGF-1 in SCI rats 
increased to as high as 13- and 5-fold levels, respectively, following spinal cord injury. Reprinted from [106]. 

Copyright @ Elsevier Inc, 2005. 

 

By examining time-course changes in mechanical behavior and tissue composition up to 

ten weeks post-injury, it was shown that there are significant differences between the areflexic 

(first ~4 weeks post-SCI, see also Figure 4.4) and the hyperreflexic phase (after about 4-6 

weeks), in tissue structure, composition, as well as mechanical behavior [152]. The overall 

orientation of SM bundles changed from a predominantly longitudinal preference, to 

bidirectional after 10 days, and back to a longitudinal bias at 10 weeks post-SCI (Figure 4.6). 

Bladder tissue becomes more compliant in the areflexic phase, and stiffens again in the 

hyperreflexic phase (Figure 4.6, Figure 4.8). Furthermore, changes in elastin/collagen 

concentration ratio closely paralleled the change in compliance (Figure 4.8), with higher elastin 

content at all time-points post-SCI as compared to normal tissue [152]. In terms of composition, 

the 10-week SCI bladders exhibited significant increases in collagen area fractions compared to 

the 10-day SCI group, but similar to the normal bladders (Figure 4.9). These changes all 

eventually lead to the inability of the organ to normally fill and void. 
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Figure 4.8. Time course changes in compliance post-SCI by two different measures. 
 Maximum areal strain values, and elastin/collagen ratio (both a measure for compliance) follow the same pattern as 
a function of time post-SCI. Data points from normal and 1.5-, 3-, 6-, and 10-week post-SCI rat bladders, shown as 

mean ± standard error of mean (SEM). Figure redrawn from data from [152]. 

 

Figure 4.9. Area fractions of muscle and collagen in normal, 10-day (redrawn from [109]) and 10-week SCI rat 
bladders, fixed at 50% volume capacity.  

The 10-week SCI bladders exhibited significant increases in collagen area fractions compared to the 10-day SCI 
group, but similar to the normal bladders. Data are mean ± SD; n = 3–5; analyzed by one-way ANOVA followed by 

the Student–Newman–Keuls post hoc test; with * indicating p <0.05. With kind permission from Springer 
Science+Business Media: Ann Biomed Eng, The effects of long-term spinal cord injury on mechanical properties of 

the rat urinary bladder, Vol 36, 2008, p. 1470-1480, K.K. Toosi., J. Nagatomi, M.B. Chancellor, and M.S. Sacks, 
Figure 6 [152]. Copyright @ Biomedical Engineering Society, 2008. 
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4.3 THE URINARY BLADDER AS A REMODELING SYSTEM 

All facts mentioned above indicate that there is strong correlation between the mechanical 

environment, tissue morphology, mechanical properties of the wall, and the health state of the 

bladder. Although extensive studies have been conducted on the effects of SCI on bladder 

function [35, 108, 152, 168, 177], the underlying mechanisms of the time-course changes, the 

specific driving force of UBW remodeling, and its end-goal, are not well understood. The post-

SCI urinary bladder is subjected to high levels of strain during the first 4 weeks after SCI 

because of its inability to void (the areflexic phase), and to high levels of stress after about 6 

weeks post-SCI due to re-innervation of the bladder resulting in uncontrolled contractions 

against a closed sphincter, i.e. the hyperreflexic phase. In the vascular literature, it is assumed 

that blood vessels remodel in response to an increase in blood pressure, by restoring the 

circumferential wall stress to a homeostatic value. This results in thickening of the wall and 

enlarging of the blood vessel. Instead of remodeling to restore homeostatic wall stresses, the 

bladder is most likely adapting to the functional demand of the organ, which means it is 

remodeling to restore function. Due to the fact that full physiological recovery is never achieved 

because of lack of full neural control, the remodeling results in a pathological process. In 

contrast to in blood vessels, the bladder will only fully recover with a “neural fix”, i.e. after 

complete re-innervation. The available experimental data set of UBW remodeling post-SCI [47, 

106-109, 152] provides us with a unique platform to specialize the proposed morphologically 

based constitutive model and to elucidate underlying remodeling mechanisms. 
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5.0  EXPERIMENTAL METHODS TO COMPLETE THE EXPERIMENTAL 

DATABASE 

Experimental data is required to construct a constitutive model with physiological relevant model 

parameters. The necessary data is derived from the published results that were described in the 

previous chapter (Chapter 4.0 ), as well as from new experiments. This chapter describes the 

methods used to provide a complete experimental database needed for the model. This includes 

experimental methods to obtain new data, as well as analyses on the data presented in the 

previous chapter. The experimental data of healthy urinary bladder wall (UBW) is used to 

provide the constitutive model described in Chapter 2.0 with model parameters, and the data on 

remodeling processes in the UBW as a result of spinal cord injury (SCI) are used to guide the 

development of a model to simulate post-SCI remodeling. 

The basis of the required experimental data is the notion that the mechanical behavior of 

the UBW is assumed to result from a combination of the two main load-bearing components, i.e., 

collagen and smooth muscle (SM). In order to determine the physical and structural properties of 

these individual components, a decellularization technique was employed to separate the 

collagen component from the intact tissue in the form of extracellular matrix (ECM). The 

preparation of decellularized UBW specimens is described in section 5.1. This allowed us to 

obtain the following experimental data of the ECM component: Biaxial mechanical data (section 

5.2); Collagen structure (sections 5.3.1and 5.3.2); ECM volume/mass fractions (section 5.3.3). 

 A significant amount of mechanical and structural data of healthy and post-SCI intact 

UBW was available from previous studies, as was introduced in Chapter 4.0. These data needed 

to be reanalyzed to make it suitable for the current constitutive model. The methods employed 

(including description of original methods) to create usable data on healthy intact UBW include 

the following: Biaxial mechanical testing of intact bladder wall (section 5.4.2); SM orientation 

(section 5.4.3). The methods to obtain usable experimental data on remodeling in the UBW as a 
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result of SCI comprise the following: Biaxial mechanical testing of intact bladder wall at 

multiple time points post-SCI (section 5.4.2); SM orientation at different time points post-SCI 

(section 5.4.3); Biochemical composition (collagen and elastin) at multiple time points post-SCI 

(section 5.4.4); Biaxial mechanical testing of post-SCI UBW ECM (section 5.4.5).  

Parts of this chapter (specifically sections 5.1, 5.2, and parts of 5.3) are based on S. 

Wognum, D.E. Schmidt, M.S. Sacks, On the mechanical role of de novo synthesized elastin in 

the urinary bladder wall, J Biomech Eng, 2009, 131(10): 101018 [175], Copyright @ ASME. 

5.1 URINARY BLADDER WALL ECM SPECIMEN PREPARATION 

5.1.1 Tissue preparation 

Urinary bladders were excised from 7 healthy, 2-3 months old, female Sprague-Dawley rats 

(150-300g), following euthanasia with CO2. The bladders were placed immediately in modified 

Krebs solution (containing 113 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4•7H2O, 25 mM 

NaHCO3, 1.2 mM KH2PO4, 5.9 mM Dextrose, and 1 mM ethylene glycol tetraacetic acid 

(EGTA), pH 7.4) and refrigerated at 4 °C for up to 48 hours. The process provided an 

environment for complete SM cell relaxation. Bladders were then cut open longitudinally along 

the urachus and were trimmed down to make square test specimens by removing the dome and 

trigone sections of the organ [47, 152] (Figure 5.1). Dimensions (width, length and thickness) 

and wet weights of the specimens were measured. Thickness measurements were guided by 

assuming that the wet weight in grams equals the volume of the tissue specimen in cm3 (tissue 

density = ~1 g/ml). To quantify tissue deformations, an array of four polypropylene discs (~0.4 

mm in diameter, cut from 2-0 nonabsorbable surgical suture (Ethicon Inc., Somerville, NJ)) was 

affixed to the center portion of the intact bladder specimen’s serosal surface with cyanoacrylate 

adhesive (Permabond, Somerset, NJ) [146]. This marker material was chosen because of its 

ability to securely adhere to the specimen surface through the specimen preparation, 

decellularization, and testing procedures (see sections 5.1 and 5.2). At each step in the testing 

process, marker positions were acquired. 
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5.1.2 Decellularization 

To remove the SM component, the UBW specimens were treated in a series of detergent 

solutions following methods described in [14, 108]. Briefly, whole bladders were immersed in 

hypotonic tris-buffered saline (TBS; pH = 8.0) supplemented with a protease inhibitor (0.01mM 

phenylmethylsulphonyl fluoride (PMSF); Sigma, St Louis, MO) at room temperature with gentle 

agitation for ~28 h. This step was followed by incubation in 1.0% Triton X-100 (Sigma) for 44 h, 

in 0.1% SDS (BioRad, Hercules, CA) for 28 h, and finally the specimen was rinsed with standard 

phosphate buffered saline (PBS). Immersion times were shortened from the original protocol, as 

SM removal appeared to be complete after this amount of time as assessed by histological 

investigation. The dimensions and weight were measured and recorded, and the specimen was 

stored in PBS supplemented with PMSF until testing was performed. 

 

 

 

 

 

Figure 5.1. The process of specimen preparation from an intact rat urinary bladder to a mounted testing specimen. 
Rat bladders are cut open longitudinally along the urachus, and a testing specimen is prepared by trimming it and 

attaching markers onto the serosal surface. The specimen is decellularized, and suture hooks are attached for biaxial 
testing. 
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5.2 BIAXIAL MECHANICAL TESTING OF DECELLULARIZED SPECIMENS 

5.2.1 Kinematics of a biaxial test and stress and strain calculations 

Biaxial mechanical testing is used to determine the mechanical behavior of planar materials or 

membranes. UBW specimens can be considered planar since the thickness is several orders of 

magnitudes smaller than the length and width, and second-order effects such as bending and 

shear are negligible under physiological loading conditions. A plane stress state is assumed 

(stress in the perpendicular direction is zero), and the following homogeneous biaxial 

deformation is considered:  

 1 1 1 1 2 1 2 2 2 1 3 3 3, ,x X X x X X x Xλ κ λ κ λ= + = + =                 , (5.1) 

where X and x are the locations of material particles in the reference and deformed states, 

respectively, and λi and κi are the components of the deformation gradient tensor F (i.e. λi are the 

stretch ratios and κi are measures of in-plane shear). The components of F are determined 

optically at each time point during the test by tracking the position of markers mounted on the 

upper specimen surface that delimit the central target region using optical tracking software. 

Finite element shape functions are used to approximate the position vector field within the 

central target regions. This can include linear and quadratic variations in strain. Since soft tissues 

are composed primarily of water, they can be considered incompressible so that det(F) = 1, and 

λ3 is calculated from the components of F.  

Due to the highly distensible nature of the UBW ECM and the uncharacterized effects of 

decellularization and mechanical preconditioning, we defined each preparation step as separate 

deformation states (Ω) (Figure 5.2), where Ω0 represents an initial (free floating) state. From the 

measured marker positions of each relevant testing state, the deformation gradient tensor F 

associated with each state was determined using standard methods [128]. As F is a two-point 

tensor, we utilized the notation β
α F , where a bold capital represents a tensor quantity, and α and 

β represent the first and second state used, respectively. The corresponding Green-Lagrange 

strain tensor E was determined using E = ½(FTF – I). Under the assumption that the 0.1 g 

applied tare-load is small enough to be considered negligible (i.e. Ω0=Ω3=Ω4), the post-

preconditioned tare-loaded state Ω4 was used as the reference state in previous studies, and 
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dimension values from the initial free floating state Ω0 were used. Note that the Ω3 marker 

positions were not available for these data. In distensible tissues such as UBW ECM, the states 

cannot be considered equal, and the stress-free post-preconditioned unloaded reference state Ω3 

should be used for the stress and stretch calculations, and stress and stretch calculations are to be 

performed with respect to the same state. To facilitate comparison with previously obtained data 

sets (Table 5.1), newly obtained data were also referenced to Ω4, in addition to Ω3. 

The components of Cauchy stress tensor t were calculated from the axial loads and the 

individual specimen dimensions at each time t, which were calculated from the initial measured 

specimen dimensions and the relevant deformation gradient tensor, assuming tissue 

incompressibility. The components of the Second Piola Kirchhoff stress and Lagrangian or first 

Piola Kirchhoff stress tensors (S and P respectively) were calculated from t using Eq. (1.2). This 

newly obtained stress-stretch data set is referred to as data set 1 (Table 5.1). 

Note that it is impossible to fully characterize the three-dimensional mechanical 

properties of an anisotropic material through biaxial testing alone, unless extra assumptions are 

made about the dependence of the stress on specific strain components [58] (see also section 

1.2). In general, the shear components of the deformation gradient and stress tensors can be 

considered negligible, and the two remaining components of the constitutive equation S11(E11, 

E22) and S22(E11, E22) can be determined from planar biaxial testing. 

Table 5.1. Overview of mechanical data 

Data set  1-a  1-b  2* 3* 

animal model  normal  normal  SCI  

specimen prep  decellularized 
specimen  

decellularized 
bladder 

decellularized 
bladder 

tare-load  0.1 g  0.5 g  0.5 g  

testing control  stretch  stress (load)  stress (load) 

max level  specimen 
dependent  100 kPa 100 kPa 

reference state  Ω3 Ω4 Ω4 Ω4 
* Data obtained from [108]. Max level is defined with respect to initial free floating dimensions in Ω0. 
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Figure 5.2. Schematic of all possible different reference states (Ω) encountered during biaxial mechanical testing. 
Outside the dashed box: Reference states as defined in the multi-component model. Ω0 represents the free floating 

intact state, Ω1 the post-preconditioned decellularized state. Inside the dashed box: Reference states as defined in the 
separate ECM model. Ω0 represents the free floating decellularized tissue specimen, Ω1 the state where the specimen 
is mounted in the biaxial testing device, Ω2 the state where a tare-load is applied to the specimen and from which the 
specimen is preconditioned. After this, the specimen is unloaded, which is represented by Ω3 (post-preconditioned 
un-loaded reference state). Before testing, a tare-load is applied, which is represented by Ω4 (tare-loaded references 

state). The deformation between the different states is defined by the deformation gradient tensor β

α F . Relative 
dimensions of the squares are representative of average specimen dimensions as measured. Initial specimen 

dimensions in Ω0 were 12.7 x 9.76 x 0.832 mm, which are also depicted by the dashed lines in the other reference 
states.  

5.2.2 Biaxial mechanical testing procedure 

The decellularized tissue specimens were prepared for planar biaxial mechanical testing under 

stretch-control, and the four sides of each specimen were tethered using nylon suture and small 

stainless steel hooks (Figure 5.1), as described in detail in [47, 128]. The test specimen was then 

mounted onto a custom-made planar biaxial testing device (Figure 5.3). Each side of the square 

test specimen was connected to the motor carriages via sutures to apply four-point loads. The 

load on each axis was constantly monitored using force transducers (with a signal conditioner) 

and the applied load was controlled by adjusting the stepper motors using our custom software 

and a data acquisition board installed on a PC. Testing was performed at room temperature, in 

PBS, under stretch control, and starting from a preload of 0.1g. Throughout testing, in-plane 

axial stretches were determined from the two-dimensional deformation gradient tensor F, 
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determined from displacements of four markers affixed to the surface of the specimen, as 

described above. 

 The maximum testing stretch level was calculated for each specimen individually, from 

the maximum stretch levels of the rat urinary bladder as determined through whole organ strain 

studies, i.e. 2.8 (initial observations from[113]), divided by the axial stretch as a result of 

decellularization, preconditioning, and the 0.1 g tare-load, respectively. The maximum testing 

stretch was limited by the maximum load cell capacity (250g) in some specimens. Tissue 

specimens were preconditioned for 12 cycles under equi-biaxial strain, up to the determined 

maximum testing strain, and where equi-biaxial strain was defined with respect to Ω4. The 

testing protocol utilized a constant ratio of the axial strains E11 :E22 = 1:1, 1:0.33, 1:0.5, 1:1, 

0.5:1, 0.33:1. The specimen was placed in the device with the circumferential I direction aligned 

with x1, and the longitudinal (L) direction with x2, respectively. Each testing protocol consisted 

of 10-12 contiguous cycles with a period of 15 to 25 seconds, and after each cycle the specimen 

was returned to the state at the start of the protocol, i.e. the strain belonging to the initial tare load 

of 0.1 g. The loading portion of the data from the last cycle of the middle equi-biaxial stretch 

protocol (1:1) was used for analysis and model fitting in the ECM study (Chapter 6.0), and the 

loading portion of the data from the last cycle of each of the protocols was used for analysis and 

model fitting in the multi-component model study (Chapter 7.0). 

 

 

 

Figure 5.3. Biaxial mechanical experimental setup. 
A) Schematic of the setup. B) Photo of the setup.  

 
A B
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5.3 TISSUE STRUCTURE AND COMPOSITION 

5.3.1 Structure of bladder ECM 

To prepare for histology, tissue specimens were chemically fixed in 10% formalin and paraffin 

embedded. Next, the blocks were sectioned transversely along the longitudinal direction (cross-

section) or parallel to the specimen surface (en-face) and individual sections were stained. All 

stained sections were investigated using a Nikon (Melville, NY) eclipse E600 bright field 

microscope under 40x magnification, and images were captured with a SPOT Rtslider 1.4MP 

camera and MetaView (Dowingtown, PA) software. Images were enhanced for visualization 

purposes using standard image analysis software. 

 The collagen structure of the intact bladder tissue was visualized at different filling 

volumes. Two normal and two post-SCI bladders (both intact; for spinalization procedures see 

section 5.4.1 below) were filled with 10% formalin at 25% and 100% capacity respectively 

(100% capacity being equal to 0.7 ml for normal and 1.4 ml for post-SCI). A rectangular piece 

from the posterior side of each bladder was excised, and cross-sectional sections were stained 

with Picro-Sirius red.  

A post-SCI (28 days; for spinalization procedures see section 5.4.1 below) bladder tissue 

specimen obtained from an unrelated study was decellularized according to the above protocol. 

To verify that elastin was still present after decellularization of post-injury UWB specimens, and 

to assess the extent of elastin production, cross-sectional and en-face sections were stained with 

Verhoeff van Gieson and elastic trichrome. 

Scanning electron microscopy (SEM) was also used to visualize the detailed collagen 

structure of decellularized bladder in cross-section. A normal decellularized bladder tissue 

specimen was cut into smaller sections, fixed in 10% formalin, and rinsed with PBS before 

further processing. The specimens were washed in sequential washes of 30%, 50%, 70%, 90%, 

and 100% ethanol, and subjected to critical point drying and gold sputter coating.  
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5.3.2 Collagen orientation 

The small angle light scattering technique (SALS) was used to nondestructively quantify 

collagen fiber architecture of UBW ECM. A detailed description of the SALS technique has 

been previously presented [131]. Briefly, a 4 mW HeNe continuous unpolarized laser (λ = 632.8 

nm) is passed through the tissue specimen. The spatial intensity distribution of the resulting 

scattered light represents the sum of all structural information within the light beam envelope. 

The angular distribution of scattered light pattern, which represents the distribution of fiber 

angles within the light beam envelope, is obtained, and the preferred fiber direction, as well as 

the orientation index, are derived from this. To prepare specimens for SALS measurements, 

intact bladders were decellularized according to the protocol described in section 5.1, with each 

step lasting 48 h instead of the 28/44/44 hours as described in section 5.1.2. Decellularized 

bladders were filled with 10% formalin at different filling volumes and placed in 10% formalin 

to fix the collagen structure. A rectangular piece from the posterior side of each bladder was 

excised and was dehydrated through subsequent glycerol-PBS solutions up to 100% glycerol, to 

clear the specimens. SALS measurements are conducted over the entire specimen surface.  

5.3.3 Volume fractions 

Bladder wall tissue is assumed to consist of water, collagen and smooth muscle, and the tissue 

volume is assumed to approximately equal the tissue mass because of the high water content. 

Hence, mass fractions can be used as approximation of volume fractions. Mass fractions of the 

components were determined through determination of wet and dry weights and use of 

lyophilization. Four intact bladders were cut into square specimens as described above and were 

each cut in half. One half was rinsed in distilled water to eliminate salt content from the buffered 

salt solution, frozen at -20 oC overnight, and placed in an FTS Systems Bulk Freeze Dryer Model 

854 lyophilizer until all water was eliminated. The other half was decellularized according to the 

protocol described in section 5.1, rinsed in distilled water afterwards, frozen, and lyophilized. 

Left and right halves were randomized. Specimens were weighted at every step and dimensions 

(length, width, thickness) were measured of the wet specimens. ECM fraction based on dry 

weight was determined as dry weight ECM/dry weight intact, and ECM fraction based on wet 
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weight as dry weight ECM/wet weight intact. Volume fractions of water were determined for 

both intact and decellularized specimens as 1 – dry weight/wet weight. Mean and standard 

deviation (SD) were calculated for the four specimens. Average volume fractions were compared 

to histological area fractions from our previous study [109] (Figure 4.9, see methods in section 

5.4.3) to determine appropriate model parameter values for component volume fractions. 

5.4 REANALYSIS OF AVAILABLE DATA TO MAKE USABLE FOR MODEL 

5.4.1 Methods of spinalization 

Spinal cord defects were created according to established protocols, as described previously [47, 

107, 108, 152]. Female Sprague-Dawley rats were subjected to complete 89ransaction of spinal 

cord at the T9-T10 level. Under anesthesia, the dura and spinal cord at the T9-T10 level were cut 

with scissors and a sterile sponge was placed between the severed ends of the spinal cord. The rat 

bladders were emptied manually two to three times a day and general animal care was given 

according to the protocol approved by the Institutional Animal Care and Use Committee 

(IACUC, University of Pittsburgh, Pittsburgh, PA). The urinary bladders were harvested at 10 

days and 10 weeks post-SCI, respectively, and were immediately placed in modified Krebs 

solution and refrigerated at 4 °C for up to 48 hours following sacrificing of the animals. 

5.4.2 Intact bladder biaxial mechanical data – normal and post-SCI 

Biaxial mechanical data of intact UBW, both normal and post-SCI, were obtained from two 

previous studies [47, 152]. Bladder specimens were prepared and small carbon graphite particles 

were affixed on the luminal surface for strain measurements, and four sides of each specimen 

were tethered using suture and stainless steel hooks. Bladder specimens were mounted onto the 

biaxial testing device (Figure 5.3), and biaxial stress-controlled loading experiments were 

performed at room temperature, in modified Krebs solution, starting from a tare-load of 0.5 g, to 

a maximum stress level of 100 kPa (defined with respect to initial dimensions in Ω0), after 
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preconditioning to the same stress level for 12 cycles. The testing protocols utilized a constant 

ratio of the Lagrangian stresses (in kPa) P11:P22 = 50:100, 75:100, 100:100, 100:75, 100:50. 

These ratios were chosen to cover a wide range of stress states that encompass the known range 

of physiological responses. The specimen was placed in the device with the circumferential I 

direction aligned with x1, and the longitudinal (L) direction with x2, respectively (Figure 5.3). 

Each testing protocol consisted of 10-12 contiguous cycles with a period of 15 to 25 seconds, 

and after each cycle the specimen was returned to the tare-loaded state. The loading portion of 

the data from the last cycle of each protocol was used for analysis.  

New stress-strain data was obtained using the calculations described in section 5.2.1. 

Stress and strain values were calculated with respect to the tare-loaded reference state, and 

additionally, the deformation gradient tensor ( 1
0 intF ) from free floating unloaded state (Ω0) to tare 

loaded reference state (Ω1) was calculated for each specimen. Areal strain (λ1λ2 – 1) was also 

calculated for each sample at each time point, which corresponds to net tissue mechanical 

compliance. Corresponding areal strain results were presented in Figure 4.8. After careful 

inspection of the available biaxial stress-strain data of normal intact UBW, four representative 

data sets were selected for further analysis. Data selection was based on consistency with 

average biaxial behavior as reported in [152] exhibiting significant anisotropy, as well as on 

relative consistency in 1
0 intF values. Data selection of 10-day post-SCI biaxial mechanical data 

was done based on similar criteria, and five representative data sets were selected. For the 10-

week time-point, data sets were found to not be suitable for further analysis. 

5.4.3 SM orientation and area fraction data at different post-SCI time points 

Smooth muscle bundle orientation was quantified in the UBW tissue from 10-day and 10-week 

post-SCI rats, using a novel, custom-made, semi-automated image analysis method. Detailed 

methods have been described previously [109], and were summarized in [152]. For each bladder 

specimen, 12 histological sections (sectioned en face, stained with Movat’s Pentachrome stain) 

from the detrusor layer were examined using light microscopy. On average, six fields per section 

were imaged capturing the entire section without any overlap between the image fields. Digital 

images of each captured field were obtained and used for detection of the edge of smooth muscle 
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bundles, via the image analysis software. The smooth muscle bundle orientation for each bladder 

was quantified by first grouping the muscle edge counts (obtained from 72 images per specimen) 

into 18 angular bins, such that each bin contained the number of edges that lay within an angle 

span of 10o (i.e., –5o–4o, 5o–14o, 15o–24o, ... 165o–174o). The muscle edge counts in each angular 

bin were then normalized by the total number of muscle edges for each bladder, and the data 

were reported as edge count percentages, plotted in the polar coordinate system. To provide a 

visual clarity, taking advantage of the rotational symmetry of muscle orientation about horizontal 

axis (e.g., 30o = 210o), the 180o-rotated image of the plot was added to the original graph to 

construct a 360o polar plot [152]. The results were presented in Figure 4.6.  

To make the data suitable for model implementation, the edge count percentage values 

were multiplied by 180 and divided by 1000*π, to normalize it by the area under the curve 

(AUC), in order to achieve an AUC equal to 1, consistent with the definition of RSM(θ) (with θ in 

radians). Next, a symmetric continuous bimodal distribution function was defined as a 

combination of two beta functions (similar to the double beta recruitment function as described 

in Eqs. (2.11)-(2.13), with peaks centered around 0 rad (circumferential direction, C) and π/2 rad 

(longitudinal direction, L) 

 ( ) ( ) [ ] ( )1SM SMC SMC SMC SMLR R Rθ γ θ γ θ= + − , (2.54) 

where RSMC and RSML are beta functions described by a mean and standard deviation. The SM 

orientation data was fit to this function to determine values for the standard deviations σsmC and 

σsmL and the scaling factor γSM. ΓSM represents the relative fraction of SM fiber bundles running in 

circumferential direction, and hence the relative fraction of SM fiber bundles running in 

longitudinal direction equals (1 – γSM ). 

Additionally, to quantify the area fraction for tissue components using the image analysis 

software, the numbers of color-segmented pixels (i.e., red for muscle and yellow for collagen) 

were counted for all samples. The individual pixel counts for each component were normalized 

by the total pixel counts of both components (sum of red and yellow pixels, representing the 

entire tissue section) for each specimen and the data were reported as bladder tissue composition, 

as presented in Figure 4.9. 
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5.4.4 Biochemical composition data 

As described previously [152], 10-day, 6-week, and 10-week SCI bladder specimens were each 

cut into 12 strips (1 x 10 mm2 each). These strips were weighed, and six of them were digested in 

0.5 N acetic acid supplemented with 1 mg/ml pepsin (Sigma, St. Louis, MO, USA) at 4°C 

overnight. Acid-soluble collagen in the supernatant solution was quantified using a commercially 

available assay kit (Accurate Chemical, Westbury, NY, USA) and following the manufacturer’s 

instructions. In order to digest elastin contents, the remainder six strips were treated with 0.25 M 

oxalic acid at 950C for 180 min (60 min x 3). Elastin concentrations in these supernatants were 

also quantified using a commercially available assay kit (Accurate Chemical) and following the 

manufacturer’s instructions. The data were expressed in terms of mass (in mg or μg) per volume 

of tissue specimen (in cm3). Results were compared to the areal strain results in Figure 4.8.  

These data represent changes in component fractions as a result of SCI, not changes in 

absolute amounts. Unfortunately, bladder weights were not measured at the time of the 

experiments. To allow calculation of absolute mass changes of collagen and elastin, information 

about bladder weights at different time points post-SCI was compiled from the literature and 

weight measurements of individual bladders that were available from other experiments. Data 

points were compiled and an exponential fit through the data points was performed. It was 

assumed that bladder weights at 10 weeks post-SCI are not different from earlier time-points 

(derived from experimental observations; personal communication with K.K. Toosi). 

Interpolated values of bladder mass at the relevant time points were used to convert collagen and 

elastin concentration data into absolute mass data.  

5.4.5 Mechanical data of post-SCI UBW ECM 

As described previously [108], whole bladders were harvested from normal and spinalized (3-4 

week post-injury) female Sprague–Dawley rats (170–200 g initial weight) and were 

decellularized according to the protocol described in section 5.1, with each step for 48 h. Square 

test specimens were prepared, and biaxial stress-relaxation experiments were performed. Before 

testing, a quasi-static equi-biaxial stress test was performed with 12 loading–unloading cycles in 

order to precondition the tissue at the maximum stress level of 100 kPa (defined with respect to 
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initial free floating dimensions). The last cycle of the equi-biaxial stress test was used for 

analysis, and stress values were re-calculated with correct dimension values in the post-

preconditioned state. These data sets from normal and post-injury bladders are referred to as data 

set 2 and 3, respectively (Table 5.1). In addition to standard stress-stretch analysis, the data were 

expressed as average stress (average of P11 and P22 per data point) vs. areal strain, which is 

defined as λ1λ2 – 1, as an overall index of tissue compliance. 
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6.0  ON THE MECHANICAL ROLE OF DE NOVO SYNTHESIZED ELASTIN IN 

THE URINARY BLADDER WALL 

This chapter is an extended version of the publication: S. Wognum, D.E. Schmidt, M.S. Sacks, 

On the mechanical role of de novo synthesized elastin in the urinary bladder wall, J Biomech 

Eng, 2009, 131(10): 101018 [175], Copyright @ ASME. 

6.1 INTRODUCTION 

Virtually all tissues continuously grow, remodel, and adapt to changes in their physiological 

environment, resulting in changes in structure and composition. In addition to adaptation within 

normal physiological ranges, pathologies and their subsequent adaptations also account for a 

large part of observable tissue-level changes. Remodeling has been defined as a change in 

structure resulting in altered material properties that is achieved by reorganizing existing 

constituents or by synthesizing new constituents of different organization [65, 150]. Growth and 

remodeling (G&R) in soft tissues has been studied most extensively in the vasculature [4, 8, 45, 

62, 66]. Sustained changes in flow or pressure (e.g. hypertension), induce altered turnover of 

cells, collagen, and possibly elastin, and these changes may alter the material properties of the 

tissue as well as its geometry and biological function. It has been found that hemodynamically 

altered wall shear stresses and intramural stresses (or strains) correlate well with changes in the 

production of vasoactive, growth regulatory, inflammatory, degradatory, and adhesive molecules 

by vascular cells [66]. In the vascular field, it has been recognized that “there is a pressing need 

to predict growth and remodeling of arteries in response to altered mechanical environments and 

to elucidate the underlying mechanisms” [62], and because of the abundance of available 

literature on G&R in vasculature it may serve as a basis for studying G&R in other tissues.  
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In arteries, elastin fibers form densely packed, concentric fenestrated elastic sheets. As 

pointed out in a recent study [49], “the causal relationship between the microstructure of elastin 

in native tissues and its functional role remains relatively unexplored.” The primary role of 

elastin in most blood vessels is thought to be to redistribute wall stresses. It is well-known that 

elastin degradation occurs during aging, and is accountable for the loss of compliance in many 

tissues, including arteries and heart valves [17, 49, 62]. In a recent study, a quantitative 

investigation of the time-course changes in porcine aortic media during hypertension showed that 

the relative elastin content in hypertensive animals decreased significantly after four weeks of 

hypertension [62]. Because arterial disease is associated with elastin loss, elastin digested tissues 

are used to investigate the effects of elastin loss [37, 71, 81]. Thus, in general, loss of elastin has 

been the focus of most investigations, in contrast to the possible relevance of production of 

elastin.  

The driving mechanisms and the underlying processes for G&R are likely to be tissue-

dependent, and hence a universal mechano-growth law likely does not exist [150]. However, 

general trends among tissues with similar compositions should be apparent. In a general sense, 

the constituents (smooth muscle (SM), collagen, and elastin) of the urinary bladder wall (UBW) 

are similar to those found in arterial tissue. Moreover, we have demonstrated that the UBW 

undergoes profound remodeling in response to different pathologies, which makes it a 

particularly attractive tissue model to study remodeling mechanisms. In particular, spinal cord 

injury (SCI) above the lumbar level can lead to severe lower urinary tract dysfunctions including 

bladder outlet obstruction and urinary retention [35, 168]. These dysfunctions are accompanied 

by changes in the UBW tissue morphology and fibrosis [34, 102], drastic changes in the 

mechanical properties (clinically reflected by compliance) of the wall [47, 50, 137, 152, 172], 

altered ECM components [47, 106, 107, 152], and hypertrophic and reorienting bladder SM cells 

[47, 109, 152]. By examining time-course changes, it was found that the changes in 

elastin/collagen concentration ratio closely paralleled the change in compliance, with higher 

elastin content at all time points post-SCI as compared to normal tissue [152]. These changes all 

eventually lead to the inability of the organ to normally fill and void. In the immediate period 

after injury, the bladder is subjected to prolonged periods of high strain, and as a result, bladder 

tissue remodels profoundly to compensate for the change in mechanical environment. We 

believe that the bladder aims to restore organ-level function, e.g., increased storage capacity at 
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low intravesical pressure, in contrast to other soft tissues such as blood vessels which are 

assumed to remodel in response to an increase in blood pressure, by restoring the circumferential 

wall stress to a homeostatic value.  

As in other muscular tissues, the main load bearing structures in the UBW are SM and 

collagen fibers, where the collagen fiber network serves to bind the SM together and provides 

resistance to high strains. The collagen structure is optimized to function in each individual 

tissue type [112]. UBW mainly contains fibrillar bundles of type I and type III collagen, which 

are mainly found in the lamina propria and serosal layers, between the SM bundles in the 

detrusor and between individual muscle cells within the muscle fascicles [76, 104]. In addition, it 

has been shown that collagen fibers exist in a coiled form when the urinary bladder is empty, and 

they straighten out during filling [16, 97, 104]. This suggests that the collagen structure in UBW 

tissue exhibits a unique multi-level hierarchy of coils, with super-coiled structures in addition to 

intrinsic fiber crimp, which allows for the accommodation of very large strains. In contrast, 

elastin in the normal UBW is found mainly in the vasculature, with small additional amounts 

throughout the tissue [41, 77, 104, 125]. The production of elastin after intravesical obstruction 

[127] or as a result of SCI [106, 107, 152] is remarkable, primarily since elastin is generally 

assumed to be metabolically stable with negligible turnover rates [136]. It has been suggested in 

arteries that elastic fibers keep the collagen in a more coiled state to enhance the extensibility of 

the collagen fiber network, as was evidenced by stretching out of post-elastase treated artery 

specimens [37]. 

We have previously shown that the mechanical behavior of the ECM can be isolated from 

the rest of the tissue through testing of decellularized bladder tissue [108]. Extensive re-analysis 

of the mechanical data from this study warranted more thorough quantitative investigation of the 

effect of elastin on post-injury UBW ECM. Based on this, we hypothesize that the main effect of 

de novo produced elastin post-injury is to keep collagen in a more highly coiled state, thereby 

indirectly affecting the compliance of post-injury UBW tissue.  

Thus, the goal of the present study is to investigate the effects of de novo synthesized 

elastin fibers on UBW ECM mechanical behavior, utilizing a structural approach incorporating a 

fiber recruitment function motivated by its unique super-coiled collagen structure. Biaxial 

mechanical stress-stretch data of normal UBW ECM were fit to a structural constitutive model to 

obtain the mechanical behavior of collagen fiber ensembles. The resulting fiber ensemble model 
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was combined with an experimentally derived fiber distribution function to determine the biaxial 

mechanical behavior of normal UBW ECM, from both newly and previously obtained data 

[108]. In addition, model parameters were modulated based on functional observations to 

quantify post-injury biaxial mechanical data from our previous study [108]. 

6.2 METHODS 

6.2.1 Experimental methods 

Detailed methods were described in Chapter 5.0 . Experimental methods of UBW ECM 

structural and mechanical analysis comprised the following components: tissue preparation and 

decellularization (section 5.1); structural analysis of UBW ECM (section 5.3.1); stress and strain 

calculations (section 5.2.1); biaxial mechanical testing of normal UBW ECM (section 5.2.2). 

With regards to analysis of mechanical testing results, the loading portion of the data from the 

last cycle of the middle equibiaxial stretch protocol (1:1) was used for analysis and model fitting. 

The stress-stretch data were presented as mean ± standard error of mean (SEM) of a 

representative subset of data points, for both stress and stretch. This newly obtained stress-stretch 

data set is referred to as data set 1 (Table 5.1). Equibiaxial stress data presented in the current 

study from decellularized normal and post-injury rat UBW tissue were obtained from a previous 

study and detailed methods were presented in [108]. The summary of these methods to obtain 

data on the mechanical effect of de novo elastin on UBW ECM was presented in section 5.4.5. 

These data sets from normal and post-injury bladders are referred to as data sets 2 and 3, 

respectively (Table 5.1) All data are presented as mean ± standard error of mean (SEM). 

6.2.2 Constitutive model 

The adopted model framework is based on a separate treatment of the mechanical behavior for 

the muscle and ECM components, as proposed in other tissue areas [59, 179]. The present study 

focuses on the model development for the collagen rich ECM constituent. Building upon the 
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theoretical work introduced by Lanir [60, 82, 84, 86], a structurally based modeling approach for 

planar collagenous tissues was developed in which the tissue-level response is related to the 

collective contribution of individual fiber ensembles. The term fiber ensemble refers to a 

collection of fibers sharing a common orientation. This modeling technique treats the fibrillar 

ECM component by homogenizing the fiber ensemble response. This approach was later 

extended in our lab by demonstrating that the complete planar biaxial mechanical response of the 

tissue could be simulated by combining the fiber ensemble stress-strain response, derived from a 

single equibiaxial test, with the experimentally determined fiber angular distribution [129]. It is 

this later method we exploit in the present study. 

Detailed model equations were presented in sections 3-2.1.5 and the relevant equations 

and definitions are repeated here. The complete tissue-level (ECM) strain energy density 

function Ψ assumes the form 

 ( ) ( ) ( )( )ens ens
ECM colR E d

θ
θ θ θΨ = Ψ∫E , (2.3) 

where R(θ) is the fiber angular density function, Ψens is the strain energy associated with an 

individual fiber ensemble, which in-turn equals the sum of individual fiber strain energies of the 

ensemble, and ens TE = N EN is the uniaxial Green-Lagrange strain acting in the ensemble 

direction. Assuming a pseudoelastic, hyperelastic model, the tissue-level 2nd Piola Kirchhoff 

stress S is given by 

 ( ) 1( ) p −∂Ψ
= −

∂
E

S E C
E

, (2.2) 

where the Lagrange multiplier p accounts for the incompressible nature associated with non-

fibrillar components of the ECM. In the present study, p was eliminated as a result of the 

configuration of planar biaxial testing. The fiber ensemble stress-strain relation (Sens – Eens) is 

described in terms of a fiber recruitment function D as 
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x
−

+
= ∫ , (2.7) 

where the variable of integration x represents the slack strains Es, and where for convenience the 

fiber volume fraction φf is absorbed into the fiber effective modulus such that fK η= φ . The 

recruitment function D(Es) is defined by a bimodal modified beta function (Eq. (2.13)), in terms 

of two means and standard deviations (μ1, σ1, μ2, σ1 ), a scaling factor γ, and the upper bound 
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strain that defines the point when all fibers are recruited (Eub). Combining Eqs. (2.2), (2.3) and 

(2.7) leads to a complete formulation for stress in the ECM component 
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6.2.3 Normal UBW ECM fiber ensemble model fitting 

For each of the Sens – Eens curves, the upper bound strain and stress (Eub, Sub) and the maximum 

tangent modulus (MTM) were directly determined from tangent modulus calculations by 

performing a running linear regression of the Sens – Eens curve. Subsequently, the data sets were 

thinned to facilitate lower fitting times, and Sens values were scaled with a factor 20·max(Sens), 

because K was typically three or more orders of magnitudes larger than the other parameters. 

Parameter estimation was performed using custom written files in MATLAB (v.7.6.0 R2008a), 

with a nonlinear constrained minimization algorithm (a sequential quadratic programming Quasi-

Newton line-search method) to minimize the sum of squared errors (SSE) between the 

experimental and model stress values 

 ( )2

mod, exp,
ens ens

i i
i

SSE S S= −∑  (3.4) 

subjected to lower and upper bounds and inequality constraints on the parameters. For the fiber 

ensemble model with a unimodal beta distribution, the bounds on the parameters were as 

follows: 0.75·MTM< K <5·MTM, 1·10-4< μ <0.9999, 10-5< σ < 0.577, where σ = 0.577 is the 

maximum value where the beta function had a unimodal shape (Eq. (2.11), s1,s2 > 1). For the 

fiber ensemble model with a bimodal beta distribution, the bounds were 0.75·MTM< K 

<5·MTM, 10-4< μ1 < 0.9999, 10-5< σ1 < 0.577, 10-10< γ < 0.5, 10-3< μ2 < 0.9999, 10-4< σ2 < 0.577. 

The nonlinear constraints on μ and σ, for both models, were derived from s1,s2 > 1 (Eq.(2.13)), 

and for the bimodal model the linear constraint μ1-μ2<0 was imposed. 

Numerical integration was performed using recursive adaptive Lobatto quadrature 

(“quadl”, see section 3.1.1). Fitting was performed in subsequent steps motivated by the tissue 

structure, to determine the parameters of the individual peaks in D(Es). For each fitting step, 

initial guess values for the parameters were determined by exploring the error function for a 
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range of parameter values (i.e., error space). Data sets referenced to both reference states (data 

sets 1-a and 1-b) were each fit to determine model parameters. The parameters to be fit were K, μ 

and σ for the model with the unimodal recruitment function, and K, μ1, σ1, γ, μ2 and σ2 for the 

model with the bimodal recruitment function. Note that at this stage, Eub was not included as a fit 

parameter. 

To establish initial parameter values, the data were fit to the fiber ensemble model with a 

unimodal beta distribution first, with as initial guess values K = MTM and μ and σ from 

exploring the error space to estimate optimal values. The value of K (K1) found from this fit was 

used as initial guess for the next steps. Secondly, to determine the initial values of the first peak 

of the bimodal beta distribution, the lower half of the data (up to a strain of 0.5·Eub) was fit 

separately to a unimodal model, with K’=γ·K1, and a guess value for γ. The error space (μ1 vs. σ1) 

was investigated for several values of K’. The resulting minimum values for μ1, σ1, and γ=K1/K’ 

were used as guess values for the final fit. Next, the error space of μ2 and σ2 was explored for 

K=K1 and γ=K1/K’ to obtain guess values for μ2 and σ2. As the final step, all parameters were fit 

simultaneously to the fiber ensemble model with the bimodal recruitment model. 

Average values for K and Eub were determined from the 7 specimens, for each reference 

state. Average values for the recruitment function parameters (μj, σj, γ; j=1,2) could not simply be 

obtained through averaging because of the nonlinear nature of the function. The scaled nature of 

the beta function allowed for calculation of D(y) for the normalized strain range of [0,1] for each 

individual specimen and for both reference states using the fit parameters. To obtain average 

parameters, Eq. (2.13) was fit to these results of all 7 specimens simultaneously. 

6.2.4 Determination of normal UBW ECM mechanical behavior  

The fiber ensemble response for UBW ECM with average model parameters from data set 1-b, 

was combined with an expression for the fiber distribution R(θ) to yield the full tissue model 

(Eq.(2.9)). Model stress values in both directions were calculated for each data set for the 

experimental stretch range up to the average maximum stretch, using Romberg integration as 

described before [129]. As in our studies on pericardium, R(θ) was derived from small angle 

light scattering (SALS) data (section 5.3.2). The results of a sample filled with 0.2 ml was used 

for analysis. Σ was determined (μ = 0) for a mean distribution of collagen fiber angles of 15 
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representative locations in the specimen. The resulting fiber distribution was modeled using a 

beta distribution with the mean μθ and standard deviation σθ [129, 131].  

6.2.5 Normal and post-injury stress-stretch data analyses 

In order to compare our previously obtained results with the data set of the current study (data 

sets 2 and 3 vs. data set 1-b), several features in the data needed to be altered. Firstly, average 

thickness values between the two studies were different. Data set 2 was re-analyzed using the 

average thickness value from the present study, and stresses were calculated with respect to the 

post-preconditioned tare-loaded dimensions (Ω4). For data set 3, thickness values were corrected 

with the same factor, under the assumption that the same amount of error was introduced in the 

post-injury specimen thickness measurements as in the normal. Secondly, previous biaxial 

testing was performed starting from a tare-load of 0.5 g, as opposed to 0.1 g for the current 

testing. Since the tissue specimens exhibited high extensibility in the low stress range, the 

portion of the data between 0.1 and 0.5 g was absent in data set 2. In order to let the stress-stretch 

curve of data set 2 mimic the stress-stretch curve of data set 1-b, this difference in tare-load 

needed to be corrected for. As a result, the stress-stretch curve of data set 2 was shifted to the 

right, based on values from data set 1-b. 

6.2.6 Determination of normal and post-injury UBW ECM mechanical behavior 

The fiber ensemble response for UBW ECM was combined with R(θ), and model stress values 

were calculated for the experimental stretch range of data set 2, as described above for data set  

1-b. The same procedure was performed for data set 3, with varied parameters to represent the 

effect of more highly coiled collagen fibers, i.e. a higher value for Eub, and a smaller value for 

the stretch shift. These values were determined by systematically varying one parameter at a time 

until the model values were sufficiently similar to the experimental data. K and σR were not 

altered, under the assumption that intrinsic collagen properties and effective fiber distributions 

did not change substantially as a result of SCI. Note that the recruitment parameters were 

automatically scaled up due to a larger maximum strain value in data set 3. 
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6.3 RESULTS 

6.3.1 General observations 

Decellularization of the intact UBW tissue specimens resulted in specimen extensions, and the 

resulting decellularized bladder specimens were highly distensible (Figure 5.2, Table 6.1). The 

dimensions of the tissue specimens increased after each step in the specimen handling and 

mechanical testing process, e.g. due to mounting in the biaxial testing device and preconditioning 

( 3
0 F ) and due to tare-loading ( 4

3 F ) (Figure 5.2, Table 6.1 B). 

 
 

Table 6.1. Mean and SEM values of specimen observations (n = 7) 

A. Dimensions and weight 

 Width (mm) Length (mm) Thickness (mm) Weight (mg) 

Intact 10.0 ± 0.2 8.59 ± 0.49 0.781 ± 0.031 70.6 ± 4.9 

decell 12.7 ± 0.3 9.76 ± 0.28 0.832 ± 0.043 92.4 ± 4.7 

 
B. Stretch values 

 
3
0 F  4

3 F  

Circumferential 1.25 ± 0.04 1.37 ± 0.05 

Longitudinal 1.19 ± 0.03 1.22 ± 0.04 
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6.3.2 Structure of normal and post-injury UBW ECM 

Cross-sections of normal bladder tissue stained with Picroirius red revealed a super-coiling 

structure of the collagen fibers (Figure 6.1). Under low tissue stretch, the collagen was densely 

coiled and individual collagen coils were difficult to identify. Under high stretch, the collagen 

fiber bundles were very elongated and therefore visible in a coiled configuration, and individual 

fibers were visible within the bundles. The same uncoiling process was visible post-injury, and 

additionally, at low stretch a denser and more highly coiled structure was visible, as compared to 

in the normal bladder. Furthermore, coils appeared more elongated in the fully stretched 

specimen.  

SEM images of a cross-section of bladder ECM confirmed previous results [108] of full 

removal of SM cells after decellularization and confirmed that that fiber bundles still existed in a 

coiled form after decellularization (Figure 6.2). These coils were also visible in decellularized 

post-SCI UBW tissue (Figure 6.3A). Histology using Verhoeff van Gieson and elastic trichrome 

stains convincingly showed the presence and the abundance of elastin fibers in bladder ECM 

after decellularization both in cross-section (results not shown) and en-face (Figure 6.3).  
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Figure 6.1. Cross-sections of intact bladder specimens, stained with Picro-Sirius red stain. 
Bladders were filled at 25% or 100% capacity with 10% formalin. Red is collagen, yellow is SM, and yellow discs 
are red blood cells. The more intense the red staining, the denser the collagen structure. Collagen fibers appear in a 

highly super-coiled configuration in tissue under low stretch, and collagen super-coils uncoil at higher stretches. 
Scale bar is 50 μm. Insets show close ups of representative coiling structures. 
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Figure 6.2. Structure of normal bladder ECM. 
A) Cross-section of normal decellularized bladder visualized by SEM (magnification 500x, scale bar is 10 μm). 
Different layers are visible and collagen fibers appear in highly coiled configuration. B) A close-up showing the 

collagen coils and individual fibers in the coils (magnification 3700x, scale bar is 1 μm). Other visible structures are 
salt crystals from PBS. 

 

 

Figure 6.3. Structure of post-SCI bladder ECM. 
A) En-face section of post-SCI decellularized bladder stained with Verhoef van Gieson stain to visualize elastin 

(black). Arrows point at examples of elastic fibers, and arrow heads point at collagen coils. Some remnants of SM 
tissue are visible. B) En-face section of post-SCI decellularized bladder stained with elastic trichrome stain to 

visualize elastin. Arrows point at examples of elastic fibers. Images were enhanced to better visualize the black 
elastic fibers; scale bar is 50 μm. 

A B

A B
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6.3.3 Biaxial mechanical testing results of normal UBW ECM 

UBW ECM exhibited significant anisotropy (Figure 6.4). Referencing the stress-stretch data to 

Ω4 showed lower maximum stresses in the longitudinal direction, suggesting that UBW ECM 

was more extensible in that direction (Figure 6.4 A). However, referencing the stress-stretch data 

to the Ω3, revealed that the tissue was actually more extensible in the circumferential direction 

(Figure 6.4 B). 

 

 

 

Figure 6.4. Stress-stretch results of biaxial mechanical testing of normal decellularized bladder specimens (mean ± 
SEM, n = 7), with respect to two different reference states. 

P represents first Piola Kirchhoff stress, λ is stretch. Closed circles are circumferential data I, open circles are 
longitudinal (L). A) Data referenced to Ω4. B) The same data, referenced to the stress-free state Ω3, showing that 

bladder ECM is more compliant in the circumferential direction. 
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6.3.4 Mechanical effect of elastin on UBW ECM 

Equibiaxial stress results of normal and post-injury UBW ECM from our previous study [108] (n 

= 4 each) revealed that that UBW ECM was more distensible post-injury as compared to normal 

(Figure 6.5 A). This became more apparent when the data were presented as average stress 

(average of two directions) vs. areal strain (Figure 6.5 B). Post-injury UBW ECM was 

significantly more compliant than normal ECM.  

 

 

 

Figure 6.5. Comparing equibiaxial stress data of normal and post-injury decellularized UBW, referenced to Ω4. 
(mean ± SEM, n = 4 for each group). P represents first Piola Kirchhoff stress, λ is stretch. Open circles are normal, 

closed triangles are post-injury. Both normal and post-injury UBW ECM specimens were more compliant in 
circumferential I direction than in longitudinal (L) direction. B) Average stress (P11, P22) vs. areal strain showing 

that bladder ECM was significantly more compliant than normal bladder ECM.  
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6.3.5 Fiber ensemble model fitting 

Eub, Sub, and MTM values were determined directly from the experimental data, and average 

values are listed in Table 6.2. The equibiaxial stretch data of each specimen were fit to the fiber 

ensemble model with a bimodal beta recruitment function. The average resulting model 

parameters are listed in Table 6.2 for both reference states. The data referenced to Ω3 (data set   

1-a) were used to determine actual model parameters, and data referenced to Ω4 to enable 

comparison with previously obtained data (data sets 2 and 3). Data from all specimens exhibited 

smooth and convex error surfaces at each fitting stage, which provided confidence in the 

parameter estimation results (Figure 6.6). Both the low and high stress ranges of the data were fit 

very well, with average r2 values of 0.993 for Ω3 and 0.992 for Ω4 (Figure 6.8). MTM provided a 

lower bound of K, and was a good prediction of K for data set 1-b. MTM was lower for data set 

1-a because more slack was present in that data. On average, K equaled approximately 3 Mpa, as 

found from both data sets using both the bimodal and the unimodal recruitment function (Table 

6.2). MTM, Eub, and Sub for a representative specimen are presented in Figure 6.7 and Figure 6.8 

A. The average recruitment model of the data with respect Ω3 showed a large second peak and a 

small first peak (data not shown, parameters in Table 6.2), which was less pronounced than the 

peak in the data that were referenced to Ω4 (Figure 6.9). 
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Table 6.2. Average model parameters. 

A 

Ref 
state  Eub 

 Sub 
(kPa)

 
 

MTM 
(Mpa)  

unimodal model bimodal model 
η (Mpa)  r2 η (Mpa)  r2 

Ω4 0.115 ± 0.025 58.1 ± 18.6 2.67 ± 1.28  3.06 ± 1.74 0.988  3.38 ± 1.86  0.992 

Ω3 0.539 ± 0.158 32.6 ± 11.1 0.794 ± 0.251  2.95 ± 1.36  0.992 3.07 ±1.49  0.993 

 
B 

Ref 
state μ1 (-) σ1 (-) γ (-) μ2 (-) σ2 (-) 

Ω4 0.581 0.276 0.243 0.864 0.119 

Ω3 0.874 0.107 0.611 0.962 0.0281 

 

 

 

 

Figure 6.6. Representative error space plot of the fiber ensemble model with bimodal recruitment. 
The error space of μ2 vs. σ2 It shows a smooth and convex error surface with one clear minimum (black dot). The 

contour lines represent the values of the error function. 
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Figure 6.7. Representative plot of determining the maximum tangent modulus. 
A) Sens vs. Eens plot with the part indicated where the data is assumed to be linear. B) Tangent modulus I plot 

indicating the point where it ceases to increase and trails off. This is the value of the maximum tangent modulus 
(MTM). 
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Figure 6.8. Model fitting results of one representative normal bladder ECM specimen (referenced to Ω3). 
A) Representative fit of fiber ensemble stress-strain data of one bladder ECM specimen showing an excellent fit (r2 
= 0.995). The upper bound strain and stress are indicated (Eub = 0.34, Sub = 18.8), and MTM is defined as the slope 
of the line fit through the data points beyond Eub (MTM = 495 kPa). The fiber effective modulus found from the fit 

is K = 1.11 Mpa. B) Representative recruitment function and cumulative distribution function, of the same 
specimen, showing two peaks (denoted by *). 

 

 

Figure 6.9. Average recruitment function of 6 samples. 
Average recruitment function of 6 samples (average ± SEM) (referenced to Ω4). The parameters are given in Table 

6.1. 
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6.3.6 Determination of UBW ECM mechanical behavior 

Combining the average fiber ensemble model determined from data set 1-b (Figure 6.9) with a 

fiber distribution function R(θ) (σR = 41 deg) (Figure 6.10 C) predicted the overall stress-strain 

behavior of normal UBW ECM very well ( 2rC  = 0.948, 2rL  = 0.998, Figure 6.11). The average 

value of Eub = 0.115 was used, which was a factor 0.86 of Emax. σR = 41 deg was slightly higher 

than the average value of 30 deg found from a representative tissue specimen examined with 

SALS (Figure 6.10 A, B). 

To enable comparison of data set 2 with data set 1-b, stress values of data set 2 were 

recalculated with the average thickness value of data set 1, and stretch values in two directions 

were multiplied by λC = 1.035 and λL = 1.043 respectively. The fiber ensemble model as 

determined from data set 1-b was combined with a narrower R(θ) (σR = 34 deg), and a higher 

value for the fiber modulus K of 6.8 Mpa. These values deviated from the ones found from data 

set 1-b, and were determined by systematically varying one parameter at a time until the model 

values were qualitatively similar to the experimental data ( 2rC  = 0.967, 2rL  = 0.988, data not 

shown). The value for K was within the experimental error, since it was equal to the highest 

value of K found from the fitting of data set 1. 
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Figure 6.10. Collagen fiber orientation distribution in UBW ECM. 
A) Representative result of a SALS test. Vectors indicate preferred direction of the collagen fibers and color is a 

measure of alignment (pink is high, blue low). Fibers are aligned predominantly in the longitudinal direction (L, 0o). 
B) Average fiber distribution of 15 locations in SALS specimen, approximately indicated by box in panel A. C) 

Comparison of fiber distributions used. Black line is the fit of a beta distribution to the data in panel B, with σR =30o. 
Blue line is the distribution used for tissue level stress-strain predictions for data set 1, σR = 41o. Red line is the 

distribution used for tissue level stress-strain predictions for data set 2 and 3, σR = 34o.  
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In data set 3, the factor Eub/Emax was determined to be 0.9 instead of 0.86, which yielded 

Eub = 0.133. The shift in stretch values was determined to be 1.01 for both directions. 

Recruitment parameters were automatically scaled up as a result of a higher Eub value. A high 

correlation between the model with modified parameters and data set 3 was achieved ( 2rC  = 

0.995, 2rL  = 0.993, Figure 6.12 A). The final sets of model parameters for both normal and post-

injury UBW ECM were used to calculate the effective fiber ensemble response (Figure 6.12 B). 

The ensemble responses demonstrated that the altered fiber recruitment post-injury, with a 

difference in maximum fiber ensemble strain of approximately 3%, resulted in effectively more 

compliant tissue with a change in areal strain of approximately 10% (Figure 6.5). 

 

 

 

Figure 6.11. Average tissue-level model prediction. 
Combining average fitting result of fiber ensemble function, with a fiber distribution function R(θ), with σR = 41 

deg, predicted the equibiaxial stretch data very well. 
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Figure 6.12. Prediction of behavior of normal and post-injury decellularized bladder tissue. 
Using an average fiber ensemble function (A) plus R(θ) with σR = 34 deg, equibiaxial stress data of normal 

decellularized bladder (B) and of post-injury decellularized bladder (C) is predicted. D) Prediction of effective fiber 
ensemble behavior of normal and SCI bladder ECM. Average model parameters from normal tissue, and modified 

parameters for post-injury tissue were used. 
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6.4 DISCUSSION 

6.4.1 Summary 

Removing the SM cells from bladder wall tissue allowed for the separate investigation of the 

effects of de novo produced fibrillar elastin on UBW ECM. The structural constitutive model of 

normal UBW ECM was based on a bimodal recruitment function representing the two levels of 

coiling in the collagen structure, and the correct stress-free reference state was used in the 

analyses. Key results of the study indicated that the presence of elastin fibers in the UBW ECM 

post-injury induces, indirectly, a distinct mechanical behavior with higher compliance (Figure 

6.12). This was attributed to the presence of more highly super-coiled collagen fibers in post-

injury UBW ECM. The present model also suggests two additive mechanisms (Figure 6.13): 

1. Elastin fibers exert forces on the existing collagen fiber network resulting in tissue 

retraction and subsequently in a more highly coiled collagen fiber network in the empty 

organ. 

2. De novo synthesized collagen fibers are produced in this more contracted reference state 

and thus may form in a more highly coiled configuration.  

The results of both mechanisms are: 

1. A net increase in ECM compliance allowing for a higher overall extensibility of the post-

SCI UBW tissue and increased bladder storage capacity.  

2. Continuation of ECM production until the ability of the tissue to extend equals the 

maximum filling ability.  

The UBW G&R mechanism is thus an organ-level driven process which does not necessarily 

result in re-establishment of a homeostatic stress state, but instead attempts to achieve a degree 

of overall organ functional restoration. 
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Figure 6.13. Schematic showing the effects of SCI on organ level storage function and UBW compliance. 
SCI induces overfilling of the bladder and increasing tissue strain, which stimulates elastin production. Elastin fibers 

pull in existing collagen and make the structure more super-coiled, which in turn decreases the reference state 
dimensions. De novo produced collagen is deposited in a more coiled configuration. This increases tissue 

compliance and overall extensibility, and eventually decreases the effective tissue strain. 
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6.4.2 Normal UBW ECM mechanical behavior 

The mechanical behavior of decellularized UBW tissue under equibiaxial stretch was utilized to 

determine collagen mechanical behavior in UBW tissue. Collagen recruitment was shown to 

occur in a bimodal manner, which was consistent with histological evidence. Specifically, the 

small first peak represented unwinding of the super-coils, and the larger second peak represented 

uncrimping of the individual collagen fibers. The model proved to be sensitive to changes in the 

shape of the recruitment function. Small differences in D produced large effects in the fiber 

ensemble stress-strain behavior, i.e., the presence of the subtle first peak in D was necessary to 

fit the experimental data in a satisfactory manner.  

Combining the fiber ensemble model including an average recruitment function with an 

experimentally determined collagen distribution function allowed for simulation of the complete 

biaxial mechanical behavior of normal UBW ECM. However, because of the extensible nature of 

the specimens and a difference in tare-load between the data sets, the previously obtained 

experimental data had to be manipulated in order to be compared with current data. The model 

with altered collagen recruitment parameters was capable of simulating post-injury mechanical 

behavior data. ΣR of the fiber distribution function R(θ) was slightly different for each analysis, 

and different from the SALS results, which was justified by the difference in initial stretch state 

between the data sets, which has an effect on the fiber alignment. 

6.4.3 Reference states 

The results of the present study emphasized the importance of the correct stress-free reference 

state to derive physically correct mechanical properties. However, it can also be concluded that 

in highly extensible soft tissues such as UBW ECM (Figure 6.1), this stress-free state is difficult 

to define. Traditionally, the tare-loaded state is assumed to be nearly stress-free and is hence 

used for stress and strain analyses. In robust tissues such as pericardium, the errors induced are 

negligible. However, stress and stretch values of UBW ECM calculated with respect to the tare-

loaded state proved to be significantly different from those calculated with respect to the 

unloaded state (Figure 6.4), and different conclusions would be drawn from these. Note that the 

comparison between normal and post-injury tissue was done with data referenced to a tare-
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loaded reference state, and hence, caution needs to be taken in interpreting the actual values of 

the model parameters. In addition, data set 2 and 3 were both referenced to their own individual 

reference state and not to a common normal reference state, i.e. before SCI was induced. This 

imposes challenges on investigating time-evolving changes. 

6.4.4 Decellularization 

In our laboratory we previously used decellularized bladder tissue to elucidate properties of the 

bladder ECM separate from the SM component, and this proved to be a valuable system [108]. 

Tissue specimens in the current study were decellularized for a shorter time period, which was 

found not to affect the extent of SM removal (results not shown). Decellularization affected the 

structure of the ECM, i.e., it resulted in stretching of the tissue specimen and most likely 

uncoiling of the collagen fiber super-coils. This would also explain the small first peak in the 

recruitment function. This needs to be taken into account if the results are extended to a complete 

model of UBW tissue. ECM sheets have been used in different studies to isolate ECM properties 

and behavior from other, possibly confounding factors, and to assess the individual contribution 

of a component to the overall tissue mechanical behavior. In decellularized arteries, it has been 

shown that elastin is connected to vascular SM cells, and decellularization relieves the tension 

[126]. Elastin is also connected to collagen, and elastase digestion affects collagen recruitment 

properties [37]. 

6.4.5 ECM structure and composition 

Intact bladder tissue clearly showed the presence of highly coiled collagen bundles (Figure 6.1), 

which confirmed earlier studies in other animal species [16, 97, 104], and this structure was 

maintained after decellularization, in both normal and post-injury bladder tissue (Figure 6.2). In 

addition, the collagen fibers appeared to be more highly coiled in post-injury bladder tissue. 

Furthermore, massive amounts of elastin are produced post-SCI [107, 152], and it was proven 

that elastin was still present after decellularization (Figure 6.2 C,D), which has not been 

observed this clearly in other tissues. In addition, the overall elastin morphology was different 
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from other tissues, where elastic fibers often appear in sheets. In post-SCI UBW, elastin fibers 

were sparsely distributed. 

6.4.6 Collagen-elastin interaction 

The model results indicated that elastin has an indirect mechanical role in post-SCI UBW tissue, 

resulting in effectively more compliant bladder tissue to allow for higher bladder filling capacity 

(Figure 6.5, Figure 6.13). Collagen recruitment in post-injury UBW ECM was different from 

normal (Figure 6.12 B), indicating that collagen fibers existed in a more coiled configuration 

post-injury. Existing collagen exists in a more coiled configuration, and in addition, de novo 

collagen fibers are produced in a more coiled state because of the retracted reference state of the 

tissue. The present study suggested that elastin was responsible for this, which has also been 

suggested previously in the opposite way. In a study comparing control to elastase treated 

arteries it was concluded that elastin degradation altered the collagen engagement properties, 

which contributed to functional stiffening of the wall [37]. The same functionality of elastin to 

keep collagen crimped has been shown in the female reproductive organs. These organs contain 

large amounts of elastic fibers, with pronounced elastin remodeling during pregnancy and birth 

[74, 92]. The rebuild of the elastic fiber system aids in maintaining structural and functional 

integrity of the female pelvic floor after partition, which makes elastin production essential 

during pregnancy [92]. 

6.4.7 Collagen fiber super-coiling 

Both histological evidence and model results underscored the functional implications of a unique 

super-coiled collagen fiber structure in the UBW, as also observed in the literature [16, 97, 104]. 

The two levels of collagen unwinding were incorporated in the structural model by a bimodal 

beta recruitment function, suggesting a distinct bimodal behavior. However, the average 

recruitment function (Figure 6.11) showed a less clear distinction, suggesting a more gradual 

behavior where the coils and the normal crimp straighten out simultaneously after an initial 

period of just unwinding of the super-coils. Collagen coiling structures at different levels are 

present in other tissues, such as the heart. However, the level of super-coiling as observed in the 
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present study is unique to bladder tissue. The coils are present in the connective tissue layers of 

the bladder and act independently of the SM cells. In addition, the unwinding behavior was 

detectable mechanically. The collagen fibers in heart muscle, such as the perimysial fibers 

between myocytes and endomysial fibers connecting the myocytes [15, 98, 122], are all 

connected to the myocytes and act in concurrence with the muscle fibers. 

6.4.8 Model extensions 

The present study elucidated the indirect effects of elastin on pathological UBW ECM 

mechanical behavior. To further elucidate the possible direct mechanical effects of elastin, and 

possible changes in the SM component on intact bladder tissue, as well as to completely describe 

time-course G&R events in intact bladder tissue as a result of SCI, the structural model needs to 

be expanded. Our ultimate goal is to develop a concise structurally based model for soft tissues 

consisting of collagen, SM and elastin, which simulates tissue-level time-course remodeling 

events. The first step to model intact tissue is to add a SM component. Similar models have been 

developed for other muscle containing tissues such as the heart and blood vessels, including 

structural information of the different tissue components [59, 179].  

Our approach to separate the ECM from the tissue will allow us to define the properties 

of the smooth muscle component more accurately. However, an appropriate common reference 

state is required for each tissue component, which is the normal intact tissue state before 

decellularization and before SCI induction. This includes using a correct reference state for 

newly deposited collagen, which we suggested is deposited in a more highly coiled state. 

Humphrey and colleagues developed a constrained mixture theory to take this into account [45, 

65, 66], which could possibly be used.  

Another challenge is to include interaction between the tissue components, since it is 

becoming recognized that the assumption that the tissue components act in parallel and 

independently is an oversimplification [37, 126]. As elucidated in the present study, the 

interaction between elastin and collagen fibers is especially important, and an elastin component 

needs to be added to the model in some form. Modeling elastin as a simple elastic isotropic 

network as is done in models of the vasculature [49, 81, 126], will not be sufficient. 
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6.4.9 Conclusion 

We have shown that instead of remodeling to restore wall stress to a homeostatic value, the 

urinary bladder responds to the prolonged period of high strain due to overfilling by increasing 

its effective compliance through the interaction between collagen and de novo deposited elastic 

fibers. Thus, bladder tissue is adapting to the functional demand at the organ level. Due to the 

fact that full physiological recovery is never achieved because of lack of full neural control, the 

remodeling ultimately results in an irreversible pathological process. Our general modeling 

framework has the potential to elucidate tissue- and pathology-specific mechanisms in various 

tissues. 
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7.0  A STRUCTURAL CONSTITUTIVE MODEL FOR A MUSCLE–CONNECTIVE 

TISSUE COMPOSITE 

7.1 INTRODUCTION 

Many different formulations of constitutive models have been developed for many different soft 

tissues. Soft tissues are generally nonlinear, anisotropic, inhomogeneous, and undergo finite 

strains. Constitutive models, in particular structural constitutive models, allow for clarifying the 

relation between tissue mechanical behavior, tissue morphology, the organ’s functional state, and 

related pathologies. Due to the complexity in determining multi-constituent tissue properties, 

most structural constitutive models for soft tissues focus on a single constituent. However, many 

tissues contain multiple load-bearing constituents. In connective tissues the main load bearing 

constituent is assumed to be collagen fibers, whereas in myocardium or skeletal muscle it is 

muscle cells. Tissues such as the urinary bladder, esophagus, intestines, and arteries contain 

collagen fibers as well as smooth muscle (SM) cells, which together are considered to provide 

the tissue with its mechanical strength and stability.  

The most advanced constitutive models that explicitly take into account both structural 

components (collagen and muscle) are those of arterial wall tissue. In these models the total 

tissue strain energy is assumed to be the sum of the strain energy of the individual tissue 

components, weighted by their respective volume fractions [37, 121, 178, 180]. Typically in 

these types of models, collagen fibers are represented by fiber families that run at a specific 

angle with respect to the center axis. In contrast, a structurally based modeling approach that 

accounts for the intrinsic mechanical behavior of collagen fibers was originally introduced by 

Lanir [60, 82, 84, 86], and has been used more recently in several studies [25, 121, 129, 178, 

179]. The structural approach, where each model parameter has physiological significance, 

allows for separate investigation of the contribution of each individual tissue component to the 
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tissue’s mechanical behavior, and eventually will provide the ability to elucidate changes as a 

result of pathological processes. 

Traditionally, collagenous soft tissues are subjected to preconditioning cycles to obtain a 

reproducible loading-unloading response. The effect of preconditioning itself is usually not 

included in the mechanical description of tissue behavior, and pseudoelastic stress and strain 

analyses are performed using the post-preconditioned tare-loaded state, which is assumed to be 

nearly stress-free. The time-dependent effects of preconditioning have been integrated into 

comprehensive material characterization of tendons and skin by Lanir and coworkers [93, 94, 

149]. This is currently the most sophisticated technique available to include preconditioning 

effects. Related to the effects of preconditioning is the definition of a correct and experimentally-

attainable stress-free reference state. This is an important aspect of developing a finite 

deformation constitutive model. While the true stress-free state exists in the intact organ, specific 

experimental methods might call for alternate approaches to define a suitable reference state. In 

highly extensible soft tissues a true stress-free state is difficult to define (Chapter 6.0), and when 

combining separate data sets of individual tissue constituents, a common reference state might 

not be available. In addition, the issue of choosing the optimal reference length is especially 

important in smooth muscle-rich tissue, because smooth muscle does not have a unique length-

tension relationship nor an optimal length at which maximum contraction is performed [161]. 

Smooth muscle exhibits mechanical plasticity in which the smooth muscle cells constantly adapt 

to changes in length by actin cytoskeleton modifications leading to shifts in force-displacement 

curves and peak forces [135]. 

An excellent example application that underscores these issues is the urinary bladder wall 

(UBW), which undergoes profound remodeling in response to different pathologies such as 

spinal cord injury (SCI) [34, 47, 50, 102, 106-109, 137, 152, 172]. UBW tissue is able to 

undergo large deformations during the filling phase and exhibits highly nonlinear and anisotropic 

mechanical behavior, as quantified by our laboratory through both quasi-static and stress-

relaxation planar biaxial mechanical testing [47, 107, 108]. To elucidate how observed structural 

and functional changes of individual tissue components are related to altered mechanical 

behavior and altered organ function, a structural constitutive model of the UBW is needed. As 

stated in a recent review by Spirka and Damaser [145], “physiological models of the lower 

urinary tract are in their infancy, but they have the long-term potential to improve our 
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understanding of physiological mechanisms.” In early studies, the bladder typically has been 

modeled as an elastic sphere under passive stretching conditions, simulating bladder filling. The 

only attempt that has been made to develop a constitutive model of the complete bladder was by 

Damaser and Lehman [27, 29, 30]. In this study an incompressible, isotropic and homogeneous 

model was used to study the effect of bladder shape, mass, and distension on whole bladder 

mechanics. One of their conclusions was that the shape of the bladder is not as important in 

modeling of the bladder as are the actual mechanical properties of the wall [29]. 

To provide a constitutive model with physiologically relevant model parameters, 

experimental data is required. Our available experimental database contains planar biaxial 

mechanical data of intact, inactivated UBW (without contribution of SM tone) [47, 152]; SM 

orientation data [109, 152]; and planar biaxial mechanical data of decellularized UBW and 

collagen structure data (Chapter 6.0). We have previously shown that the mechanical behavior 

of the extracellular matrix (ECM) can be isolated from the smooth muscle component through 

the use of a decellularization technique [108], and we utilized this method to further elucidate the 

mechanical behavior of UBW ECM by means of a structural constitutive model. This also 

allowed for separate investigation of the effects of de novo produced fibrillar elastin on UBW 

ECM (Chapter 6.0). Under the assumption that the main load-bearing components of the UBW 

are SM and collagen, a combination of mechanical data of intact UBW and UBW ECM, together 

with structural information of both SM and collagen, is sufficient to fully characterize UBW 

mechanical behavior, including the explicit behavior of each of the two components.  

SM contributes significantly to UBW mechanical behavior, especially in the early stages 

of filling, both under passive and inactivated conditions [113]. Under physiological conditions 

SM is characterized by basal tone or passive tension that is independent of neural inputs and can 

lead to spontaneous contractions through myogenic activity [33], which we refer to as the 

passive state. The basal tone is abolished by subjecting the tissue to a calcium-free saline 

solution with a calcium chelating agent, which allows for a focus on the inactive behavior of the 

SM component. In general, it is believed that inactivated SM cells do not contribute to the 

mechanical behavior of tissues such as the vasculature, and are generally not included in 

constitutive formulations (e.g. [56, 126, 178, 179]), with the exception of one recent study where 

smooth muscle cells were represented by discrete fiber families [158]. No commonly accepted 

formulation is yet available for SM in any state and only recently, models describing the 
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mechanical contribution of SM tone have been developed [78, 142, 179]. However, it is 

recognized that the material properties in inactive, passive, and active state are different [39, 48].  

 In the present study, a two-phase structural continuum constitutive model is developed. 

The two phases are ECM and SM, with the unique feature that both constituents are expressed to 

a common, intact tissue reference state, while ECM mechanical behavior is determined in 

decellularized tissues. This is achieved by explicitly defining the net resulting effect of 

decellularization and preconditioning in the model description by introducing a permanent set 

term. The model is applied to the inactivated urinary bladder wall. Under the assumption that 

inactivated SM contributes significantly to the UBW mechanical behavior, it is hypothesized that 

including the mechanical response of inactivated SM is essential for a complete constitutive 

model of UBW. The model for the ECM component is extended from our previously developed 

UBW ECM model (Chapter 6.0), and the functional form of SM is derived from the difference 

between the strain energy of intact UBW tissue and UBW ECM. The model parameters of UBW 

ECM and SM are determined separately and both a continuous and a discrete SM fiber 

distribution are investigated [12]. The two-component structural constitutive model will provide 

the basis for a growth and remodeling framework that will elucidate mechanical and structural 

changes in the urinary bladder wall in several pathologies. 

7.2 CONSTITUTIVE MODEL 

Detailed model equations were presented in Chapter 2.0 and the relevant equations and 

definitions are repeated here. The schematic representation of the model (Figure 2.6) is repeated 

in Figure 7.1. The tissue level strain energy density function Ψ is assumed to result from the 

contribution of SM and ECM, weighted by their respective volume fractions φ, and is defined in 

terms of the Green-Lagrange strain tensor (E) as  

 ( ) ( ) ( ) ( )i ECM ECM SM SM
i

Ψ = φΨ = φ Ψ +φ Ψ∑E E E E . (2.1) 

The tissue level 2nd Piola Kirchhoff stress S is derived from the strain energy density function Ψ 

as 
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 ( ) ( )1 1( ) 2p p− −∂Ψ ∂Ψ
= − = −

∂ ∂
E C

S E C C
E C

, (2.2) 

where C is the Right Cauchy-Green tensor and p a Lagrange multiplier (see also Chapters 1.0 

and 2.0).  

The ECM constitutive model was modified from the original formulation that was outlined in 

section 2.1 and summarized in section 6.2.2. The model modifications were described in sections 

2.2 and 2.3 and included introducing a permanent set effect and a correct linear fiber model. The 

resulting ECM constitutive model, defined in state Ω1, and expressed in component form, is 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1

1

2 '21 2
,11 1 0 12 1

1

2 '21 2
,22 1 0 12 1

1

21
,12 1 0 1

1

' ' , ' 1 cos ' '
'

' ' , ' 1 sin ' '
'

' ' , ' 1

t ens

t ens

ECM f t ens

ECM f t ens

ECM f t e

xS R D x dx d
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. (2.46) 

 

 

 

Figure 7.1. Schematic overview of the interrelations of the components of the multi-phase structural constitutive 
model. The numbers refer to the equations. 
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In this, the following definitions are used.  

- The permanent set ensemble stretch ( ( )1
0 'λ θ ) is derived from the deformation gradient 

tensor 1
0 F  as  

 ( ) ( ) ( )1 1 1 1
0 0

1
0 0 0', ''   ,TT θ θ θ θλ θ  =  

   F F NF FN  (7.1) 

- The fiber distribution function R1(θ’), where θ’ is the fiber angle in Ω1, is defined via 1
0 F

in terms of the fiber distribution function R0(θ) in Ω0, and is given by 

 ( ) ( ) ( )1
1 0

1
0

0 1
0

' 
' ',R R

J
θ θ

θ
θ

λ =  F . (2.19) 

- The fiber ensemble model ( ( )1 1
t ens t ensS λ , ens = ensemble), in terms of a recruitment 

function (D(λs)) and with η the collagen fiber modulus and φf the fiber volume fraction, is 

defined by 

 ( ) ( )11 2
1 1 0 11

1

1
t ens

t ens t ens
f t ens

xS D x dx
λ

λ ηφ λ
λ

 
= − 

 
∫ , (2.44) 

- The function D(1λs,θ’), which describes the distribution of slack stretches 1λs is given by 

 ( )
( )

( )( ) ( )( )
1 2

1 1
1 lb 0 ub 0

1 1 1
11 1

otherwise
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
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


F F , (2.39) 

with the lower and upper bound stretch, respectively, defined as 
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and y a scaled variable: 

 ( )
( ) ( )( )
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1 1
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- ',
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F
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. (2.41) 

Two models are proposed for the smooth muscle component, as introduced in section 2.4, 

one with a continuous fiber distribution and one with two discrete orthogonal families of fiber 

bundles. When investigating both models, it was observed that two different functions for the 

two different fiber families were required. For the continuous model, two beta functions were 

used for the fiber distribution function, one with the mean at 0 deg (circumferential direction, C), 
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and one with the mean at 90 deg (longitudinal direction, L), resulting in the following modified 

equation for the continuous smooth muscle model (compare to Eq. (2.53)):  

 ( )
( ) ( )( )

[ ] ( ) ( )( )
/2

0 0 /2 1
SMC SMC SMC SMbt t

SM
SMC SML SML SMb

R s E
d

R s E

π

π

γ θ θ
θ

γ θ θ−

 ⋅ ⋅  ⊗ 
+ − ⋅ ⋅  

= ∫S E N N  (7.2) 

RsmC and RsmL together represent the bimodal distribution given by 

 ( ) ( ) [ ] ( )1SM SMC SMC SMC SMLR R Rθ γ θ γ θ= ⋅ + − ⋅ . (2.54) 

The model with two discrete families of fiber bundles oriented at θ = 00 and 900, weighted by a 

fraction γ, is given as follows: 

 ( ) ( ) ( ) [ ] ( )
0,1 2

1SM SM SMb SMC SMbC smL SMbLs E s E s E
θ π

γ γ
=

= ⋅ + − ⋅= ∑ES . (2.57) 

A phenomenological exponential expression is proposed for each SM fiber (bundle) model, for 

both the continuous and the discrete model: 

 ( ) ( )1 2d exp 1SMb SMb SMbs E d E = ⋅ ⋅ −  . (2.58) 

The corresponding strain energy for the continuous model is subsequently given by 
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and for the discrete model by 
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7.3 METHODS 

7.3.1 Summary of experimental methods 

Detailed experimental methods were described in Chapter 5.0. Experimental methods related to 

UBW ECM comprised the following subjects: preparation of UBW ECM tissue samples (section 

5.1); stress and strain calculations, including determination of the permanent set deformation 1
0 F  

(section 5.2.1); biaxial mechanical testing of normal UBW ECM (section 5.2.2); and collagen 

fiber orientation (section 5.3.2). Related to the composition of intact UBW, the calculation of 

collagen and SM volume fractions was described in section 5.3.3. Reanalysis of previously 

obtained data on intact UBW comprised the following: smooth muscle fiber orientation (section 

5.4.3) and biaxial mechanical testing of normal intact UBW tissue (sections 5.2.2, 5.4.2). From 

the available biaxial mechanical data sets of normal intact UBW from two separate studies, four 

representative data sets were chosen. 

7.3.2 Parameter estimation methods for ensemble model 

Ensemble model parameters determined in Chapter 6.0 could not be used directly for the full 

structural model because the model was modified and the biaxial mechanical data was 

reanalyzed. The fitting process of the ensemble model was performed again, where the upper 

bound strain/stretch parameter λub was included as a fitting parameter, and an initial estimate for 

λub was determined from the ensemble stress strain curve (Pens-λens in this case). The fitting of the 

ensemble model was performed similarly to the procedure described in section 3.2.3, where it 

was now implemented in a graphical user interface (GUI). Parameter estimation was performed 

with the MATLAB (Mathworks Inc, Release 2009a) function “fmincon” (a sequential quadratic 

programming Quasi-Newton line-search method, see section 3.2.2) to minimize the sum of 

squared errors (SSE) between the experimental and model stress values (in 11 and 22 directions, 

excluding shear terms), as defined in Eq. (3.4). The minimization was subjected to lower and 

upper bounds and (in)equality constraints on the parameters. Numerical integration was 

performed using the MATLAB “quad” function (Adaptive Simpson Quadrature, see section 
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3.1.1). Termination criteria of the fit were set at a tolerance of 10-15, except for where noted 

otherwise.  

First, initial estimates for K and 1λub were determined from tangent modulus calculations 

by performing a running linear regression of the un-thinned ensemble stress-strain data 

calculated from the equi-biaxial strain protocol. Based on the value of the maximum tangent 

modulus, the stress-values were scaled to decrease the parameter value of K to ~1. Next, the 

fitting was performed. Initial parameter estimates were set by using μ and σ determined in our 

previous study, as well as K and 1λub from step 1. The ensemble data were then fit to the fiber 

ensemble model with a unimodal beta distribution. The beta function was restricted to a 

unimodal shape with a lower bound of zero, by enforcing s1,s2 > 1, 1λlb was set to value of one, 

and bounds on the remaining parameters were defined as follows: 0.1·Kguess<K<3·Kguess, 

1<1λub<λmax, 0.1<μ<0.9999, 0.01<σ<0.5772, where σ = 0.577 is the maximum value where the 

beta function maintained a unimodal shape. To determine the initial parameter values of the first 

peak of the bimodal beta distribution, the lower half of the data (up to a strain of 0.5·1Eub) was fit 

separately to a unimodal model with K’ = γ·K and an initial estimate for γ from the first study 

(Chapter 6.0 ). Bounds on the parameters were defined as: 0.01<K’<0.5, 0.01<μ<0.9999, 

0.01<σ<0.5772, and 1λub was fixed to a value of one. Fitting termination criteria were set at a 

tolerance of 10-18
 for this step. Finally, all parameters of the fiber ensemble model were fit 

simultaneously with the bimodal recruitment function. 

7.3.3 Parameter estimation methods for structural model 

The recruitment parameters found from the ensemble model fit were used as initial estimates for 

the structural model fitting process. Thinned, multiprotocol, biaxial mechanical data in Ω1, as 

well as specimen-specific values of 1
0 F were loaded into the user interface. Data was further 

thinned to every fifth data point to speed up the fitting process and was fit to the modified model. 

The fiber distribution function was assumed to be centered around a mean of zero degrees 

(longitudinal direction) (μR = 0). Values of K, 0λlb , 0λub and σR were explored manually by 

inspecting the model stress-strain results of the equibiaxial protocol. K had to be increased 

significantly from the value found in the ensemble model fit because of the scaling artifact 

introduced by the permanent set. To aid in this process, the stress-strain data in Ω0 was loaded as 
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well and appropriateness of values of K, 0λlb , 0λub and σR was assessed. This was alternated until 

reasonable initial estimates for K, 0λlb, 0λub and σR were obtained. Specifically, when σR was 

altered, 0λlb , 0λub had to be altered because of their dependency on θ. These initial parameter 

estimates were used in the fitting process. At every fitting step parameters found from the 

previous step were used as initial estimates.  

During the first fitting step recruitment parameters were kept fixed at the values 

determined from the ensemble fit, μR was set to a value of zero, and the bounds on σR were 

defined as 1·10-5<σR<0.95978 (rad), where σR = 0.95978 is the maximum possible value to 

ensure a unimodal shape for μR = 0. Bounds on 0λlb and 0λub were set for each data set 

individually. This first fitting step with extra thinned data determined parameter values for K, 0λlb 

, 0λub and σR, while keeping the other parameters constant. In the next fitting step, 0λlb was set at 

the value found from the previous step, μR was still set at zero, and the rest of the parameters 

were included in the fit to optimize the recruitment behavior simultaneously with K, 0λub and σR. 

As the final step, the thinning factor was reset to 1 and all parameters were fit simultaneously 

(with μR = 0). To check if the assumption of μR = 0 was appropriate, another fit was performed 

with the bounds -0.1 < μR < 0.1. 

7.3.4 ECM strain energy in Ω1 and transforming ECM strain energy in Ω1 to Ω0 

Parameters as determined from the model fit were used to calculate the ECM strain energy for 

each individual specimen (Eq.(2.49)) for a relevant generalized strain range in Ω1 (50x50 data 

points, assuming shear effects were negligible) that encompassed all specimen specific 

experimental strain ranges.  

To calculate the strain energy of the ECM component in Ω0 from the strain energy in Ω1, 

the changes in volume due to removal of cells as well as retaining of water (swelling) that 

occurred during decellularization needed to be taken into account. Because of the occurrence of 

swelling, the stress borne by the ECM as determined in the decellularized state is not the same as 

the stress that would have been borne by the same ECM component in the intact state. This is 

demonstrated by a 1D uniaxial tension example using a continuum damage mechanics analogy in 

1D [87]. This theory is used to calculate a “swelling factor”. 
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A bar containing voids (‘damage’) is subjected to a uniaxial tensile force f on the side 

with area A, with uniaxial stress defined as σ = f/A (state 1, Figure 7.2). This state is equivalent to 

a UBW specimen consisting purely of ECM, with voids where the SM would be located. In 

continuum damage mechanics, a fictitious, intermediate (i), undamaged configuration is 

considered (state 2, Figure 7.2) with a damage factor φ representing the fraction of damage in 

terms of the undamaged volume. We assume the undamaged state to be equivalent to a UBW 

specimen consisting purely of ECM. Note that this configuration is theoretical and is not equal to 

the decellularized configuration. The third configuration (state 3, Figure 7.2) is obtained by 

theoretically adding water to the intermediate configuration and is equal to the decellularized 

state.  

 

 

 

Figure 7.2. Schematic of a bar subjected to uniaxial tension. 
State (1) represents a fictitious bladder specimen with voids where the SM cells are supposed to be located. State (2) 

represents a fictitious intermediate (i) configuration with the SM cells removed. State (3) is obtained by adding 
water to state (2) and represents a decellularized bladder specimen. A = area, σ = stress, f = force, φ = volume 

fraction.  
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The different areas in each configuration are subjected to the same force f. This is used to 

express stresses in each state in terms of known variables. If φSM is the volume fraction of 

smooth muscle in state 1 (equivalent to the damage variable φ [87]), then the uniaxial tensile 

stress in state 2 ( iσ ) is expressed in terms of the stress in the intact state (σ ) as 1
1i

SM

σ σ
ϕ

=
−

. 

Next, we define the “change of water fraction” between states 2 and 3 in terms of the volume in 

state 3. Under the assumption that there was no water change between states 1 and 2, it is defined 

as 3 1

3

w w
w

V V
V

ϕ∆

−
= . Using this definition, the stress in state 3 is now defined as ( )1i wσ σ ϕ∆= − . 

Combining the two stress relations results in 1
1

w

SM

ϕσ σ
ϕ

∆−
=

−
. 

Extrapolating this 1D example to a UBW specimen subjected to planar biaxial loading, 

and noting that the term σ can be seen as equivalent to the 1st Piola Kirchhoff stress borne by the 

ECM in the intact state (PECM), this results in  

 (1 )
(1 )

SM
ECM decell

w

ϕ
ϕ∆

−
=

−
P P , (7.5) 

where 1
1

SM

w

ϕ
ϕ∆

−
−

is named the “swelling factor”. Incorporating this definition in Eq.(2.2) results in  

 (1 )
(1 )

SM
ecm decell SM SM

w

ϕ φ φ
ϕ∆

−
= +

−
P P P . (7.6) 

Accurate specimen volumes in Ω1 were calculated from a combination of 1) measured 

dimensions in Ω0, 2) dimension changes represented by 1
0 F , and 3) measured thickness in Ω1, 

resulting in the relation ( )1 1
1 0 0

0

det tV V
t

= ⋅ ⋅F . 

Each value of 1Ψecm,I (1E11,I, 1E22,i) was multiplied with the calculated swelling factor to calculate 

true strain energy in Ω0. Note that 1Ψecm,I (1E11,I, 1E22,i) multiplied by the swelling factor equals 

0Ψecm,I (0E11,I, 0E22,i), and that no parameter transformations were needed because of the model 

modifications. 
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7.3.5 Average ECM parameters 

Average ECM strain energy in terms of Ω0 (i.e., including the swelling factor for each data set) 

was calculated for each point (1E11,1E22) of the generalized strain range, creating an “average” 

strain energy data set. Average 1
0 F was calculated by taking the average of each of the four 

components of 1
0 F for each specimen. Note that this yielded the same values as an average 1

0 F

calculated from deforming a unit square by each individual 1
0 F and averaging deformed 

coordinates. In order to obtain “true” average model parameters, the average strain energy data 

set was fit to Eq. (2.49) using the average 1
0 F . Initial parameter estimates were determined as 

follows. Average values of K, 0λlb and 0λub were calculated from the individual parameter values. 

An “average” value for σR was determined by fitting the individual R functions simultaneously to 

a beta distribution function. Average recruitment parameters were obtained in the same manner 

as described in section 6.2.3. Briefly, the scaled nature of the beta function allowed for 

calculation of D(y) for the normalized strain range of [0,1] for each individual specimen using 

the fit parameters. To obtain “average” parameters, the recruitment function was fit to the results 

of all specimens simultaneously.  

The model strain energy results were explored for this set of model parameters; and K, 

0λlb , 0λub, and σR were adjusted to better represent the strain energy data set. With initial fitting 

attempts, it was noted that different combinations of initial estimate values of K and 0λlb yielded 

good fitting results. To investigate this and optimize the initial estimates, an error plot was 

created for a range of K and 0λlb values with values for 0λub and σR based on initial fit inspection, 

and with fixed values for the other parameters as described above. Values of K and 0λlb that 

yielded a minimum value of the objective function were used as initial estimates for the fitting 

process. In the first fitting step, recruitment parameters were kept fixed at the average values, 

while K, 0λlb , 0λub, and σR were optimized in the fitting process using the MATLAB function 

“fmincon” in the same manner as the fitting process of the stress-strain data. In the second fitting 

step, all parameters were included as fitting parameters to further optimize the fit. ΜR was 

assumed to equal zero for both fitting steps. The resulting parameter values represented the 

average ECM mechanical behavior. 
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7.3.6 Intact tissue strain energy 

Strain energy of intact UBW was calculated by calculating the work (W) for each (E11, E22) data 

point of the individual stress-strain data sets in Ω1 (the intact post-preconditioned tare-loaded 

state) from biaxial mechanical testing of normal intact UBW tissue. It was assumed that shear 

was negligible and that there was no dependence on the strain path. The latter results from the 

hyperelasticity assumption, and also implies that the calculated work equals the strain energy. To 

eliminate noise, strain data was first smoothed using a 5-point moving average with a span value 

of 30 (via the MATLAB “smooth” function). Next, for each smoothed data point (E11, E22)I the 

x- and y-component of the shortest distance between (E11, E22)i+1 and (E11, E22)I was calculated, 

and the work for each point (E11, E22)I was calculated using the relation [22, 23] 

 11 11 22 22dW S dE S dE= + . (7.7) 

The set of data points W(E11, E22) in all data sets combined formed the strain energy surface for 

each data set. 

A mathematical description of this surface was obtained by fitting all data points to a 

Fung-type model following Eq. (1.21). The 9-parameter model chosen was previously used to 

interpolate stress components of bladder data [152] and is given by  

 
( )

2 2 2 2 2 2 4 4
1 11 2 22 3 11 22 4 11

1
2 0

22 5 22 11 6 11 22 7 11 8 22

exp

2Q c E c E c E E c E E c E E c E E c E c E

c Q

= + + +

Ψ

+ + + +

=
 (7.8) 

Parameters ci (I = 0,1,…8) were determined from the fit of work data. Since no strain energy is 

involved with the deformation from Ω0 to Ω1, the work for each point (1E11, 1E22) is the same as 

for the corresponding point (0E11, 0E22). In order to eliminate the high variability in 1
0 F values for 

the different data sets, an average state Ω0 was defined from calculating an average 1
0 F . 0E11 and 

0E22 were calculated from the average 1
0 F and 1E11 and 1E22, respectively. The result was a strain 

energy surface of intact UBW with respect to strain in Ω0. The Fung fit parameters resulting 

from the strain energy fit were checked against the equibiaxial stress-strain data. 
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7.3.7 Smooth muscle strain energy and constitutive model 

Eq. (2.1) states that the intact tissue strain energy is the sum of the strain energy of its two 

components (SM and ECM), weighted by their respective volume fractions. Having available the 

strain energy in intact UBW (section 7.3.6), the strain energy of UBW ECM (section 7.3.4, 

7.3.5), as well as values for the volume fractions of ECM and SM (φECM, φSM) (Figure 4.9), the 

SM strain energy Ψsm is calculated as 

 ( ) ( ) ( )intact ECM ECM
SM

SM

φ
φ

Ψ − Ψ
Ψ =

E E
E . (7.9) 

Ψecm is calculated for the intact tissue strain range using the average model parameters obtained 

from the strain energy fit (section 7.3.5). For each point (0E11, 0E22) in the defined strain range, 

Ψsm is calculated with Eq. (7.9), yielding a strain energy surface for the smooth muscle 

component.  

The resulting strain energy surface was fit to the two proposed models for smooth muscle 

(Eqs. (7.3) and (7.4)), using the MATLAB function “lsqcurvefit”. Initial parameters for the 

continuous distribution function were determined by fitting the proposed bimodal beta 

distribution function to the available experimental distribution data (Figure 4.6A). The ratio 

parameter γ for the discrete model was assumed to be the same as for the continuous model. 

Different sets of initial parameter values were tried with γ fixed to the value determined from the 

distribution fit, and the fitting result with the lowest value of the objective function was taken as 

the final result. Resulting parameter values for d1C, d2C, d1L, d2L were used as initial estimates for 

the discrete model. The two resulting fits were compared. 

7.4 RESULTS 

7.4.1 Volume fractions general specimen observations 

Like all tissues, normal UBW tissue consists of mostly water in addition to SM and collagen 

(Figure 7.3). Volume fractions of the different UBW constituents were calculated from UBW 
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specimen measurements, of which half of each specimen was decellularized. The average 

volume fraction of water in intact specimens was found to be 0.84 ± 0.01 and in decellularized 

specimens 0.94 ± 0.004 (Figure 7.3). Note that the standard deviation of these measurements was 

very low. Comparing dry weights of intact specimens and decellularized specimens showed that 

the average volume fraction (based on dry weight) of ECM in intact specimens was 0.55 ± 0.15. 

Finally, combining all measurements yielded average volume fractions based on wet weight of 

smooth muscle (0.08 ± 0.01 ) and ECM (0.1 ± 0.01). 

As described in section 6.3.1, the dimensions of the tissue specimens that were 

mechanically tested increased after each step in the specimen handling and mechanical testing 

process. Average specimen dimensions and weights were presented in Table Table 6.1. From this 

specimen-specific data, combined with the average intact water volume fraction as determined 

from the lyophilization study (Figure 7.3), relevant individual specimen volume fractions were 

determined (Table 7.1).  

 

 

 

Figure 7.3. Volume fractions of tissue constituents as determined through lyophilization of UBW specimens. 
Intact and decellularized UBW tissue specimens were lyophilized and wet and dry weights of specimens were 

determined. 
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Table 7.1. UBW ECM specimen information. 

 
Mean (4) and std (4) refer to calculations of data sets ECM2, 7, 8, 9. 
 

 

 

A total ECM fraction based on dry weight was calculated from the four values of the 

lyophylization study plus the seven values from the tested samples, yielding an overall ECM 

volume fraction based on dry weight of 0.47 ± 0.14 (compared to a value of 0.55 as shown in 

Figure 7.3). Table 7.1 also lists the four components of the permanent set tensor ( 1
0 F ), for all 

seven specimens that were mechanically tested. From the combination of volume fraction data 

and permanent set values, a “swelling factor” was calculated for each specimen, to be used in 

calculation of ECM strain energy in Ω0 (Table 7.1). Averages were also calculated of the four 

data sets that were chosen for further analysis (see section 7.4.2). 

An ECM/collagen volume fraction of 0.47 did not match with the collagen area fraction 

of 0.22 found from the histomorphometric study (Figure 4.9 and Figure 7.4). This can be 

explained by considering that it is likely that decellularized specimens did not consist of 100% 

collagen, but they might also have contained remnants of smooth muscle and other ECM 

proteins. This information was used to determine the volume fraction of collagen fibers in the 

decellularized specimens (Figure 7.4). The collagen volume fraction φf, which appears as a 

model parameter in the structural model (Eq. 2.41), was calculated from the ECM volume 

fraction of 0.47, the intact collagen volume fraction of 0.22, and the average swelling factor of 

the four samples as: φf = 0.22/0.47/1.35 = 0.35 (Figure 7.4). 

 

11 12 21 22
ECM2 1.79 -0.08 0.35 1.37 0.059 0.112 0.540 0.083 0.460 1.70
ECM6 2.41 -0.08 -0.17 1.72 0.053 0.067 0.528 0.085 0.306 1.32
ECM7 2.30 -0.16 -0.18 1.80 0.065 0.077 0.508 0.088 0.369 1.44
ECM8 2.23 0.21 -0.14 1.88 0.067 0.102 0.479 0.094 0.327 1.35
ECM9 1.94 -0.16 0.01 1.34 0.085 0.081 0.278 0.130 0.031 0.90
ECM10 1.97 -0.16 -0.06 1.44 0.081 0.080 0.280 0.130 0.273 1.20
ECM11 1.87 -0.16 0.21 1.61 0.079 0.086 0.341 0.119 0.384 1.43
mean 2.073 -0.086 0.003 1.596 0.070 0.086 0.422 0.104 0.307 1.33
std 0.236 0.135 0.205 0.214 0.012 0.015 0.118 0.021 0.136 0.25
mean (4) 2.065 -0.050 0.011 1.600 0.069 0.093 0.451 0.099 0.296 1.35
std (4) 0.240 0.174 0.241 0.280 0.011 0.017 0.118 0.021 0.186 0.335

fraction 
ECM

F01 swelling 
factorφ_sm φ_Δwat 

Volume 
intact

Volume 
decell
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Figure 7.4. Schematic of UBW volume fractions from two different sources and the integration of information. 
The collagen and smooth muscle area fractions from the histomorphometry study (Figure 4.9) are compared to the 

volume fractions of ECM and smooth muscle found from the lyophilization of intact and decellularized UBW 
specimens. Combining this information yields information about the collagen fiber volume fraction in decellularized 

UBW specimens (see text). 

7.4.2 ECM model fitting results 

The stepwise process of parameter estimation yielded satisfactory results for all seven data sets. 

Figure 7.5 shows a representative fitting result for one data set with good quality of fit values (r2 

= 0.956 for the circumferential direction and r2 = 0.986 for the longitudinal direction). The 

parameter results for all seven specimens are listed in Table 7.2. All parameter values are 

expressed with respect to Ω0, as the model modifications allowed. Three of the seven data sets 

each exhibited their own problems, either in the fitting or in the original data set and were 

excluded from the following analyses. The stress-strain data of specimen ECM6 in Ω1 was 

referenced such that the stress at the first data point was significantly larger than zero, which 

resulted in a non-realistically narrow and tall first peak in the recruitment function. The fits of 

ECM10 and ECM11 yielded an unrealistic high value for K. One of the model assumptions 

stated that ( )1
0 0lbλ λ θ≥ (see also Chapter 3.0). The lower bound stretch 0λlb was larger than the 

cut-off stretch for 95% of the fibers for all data sets, except for the excluded ECM11, and was 

also larger than the cut-off stretch for 99% of the fibers for most data sets (Table 7.3). 

 

 

 

SM
0.53

Collagen 0.22

SM remnants + 
other ECM 

proteins

SM 

0.53

ECM + rest

0.47

SM 

0.78

Collagen 0.22

Lyophilization
study

Histomorphometry
study

Decellularized 
specimen

extra water



141 

 

 

Figure 7.5. Representative results of bladder ECM fitting.  
Results are shown for sample ECM8 (model parameters and r2 values are shown Table 7.2). A) 1st Piola Kirchhoff 

stress vs. stretch in the circumferential I direction, in Ω1 for 5 testing protocols. Black circles are data, red line is fit. 
R2 = 0.956. B) 1st Piola Kirchhoff stress vs. stretch in the longitudinal (L) direction, in Ω1 for 5 testing protocols. 

Black circles are data, red line is fit. R2 = 0.986. C) Resulting fiber distribution function R(θ) and the corresponding 
R(β). ΣR = 18.6o. Zero degrees is aligned with the longitudinal direction. D) Resulting ensemble stress-stretch 

behavior, in Ω0. K = 45 Mpa. E) Resulting collagen fiber recruitment behavior 0λlb = 2.09 0λub = 2.36. F) 
Corresponding cumulative recruitment function. 
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Table 7.2. ECM model parameters defined in Ω0. 

Model parameters are shown for each individual specimen, as well as mean parameters for all specimens, mean 
parameters for the best four specimens, and recruitment and fiber distribution parameters found from the 
simultaneous distribution fits (in italic). 
 

 

 

Table 7.3. Comparison of the lower bound stretch values from the model fit with calculated cut-off values. 

 
 

 

  

K  (kPa) μ 1 (-) σ 1 (-) γ (-) μ 2 (-) σ 2 (-) λ lb(-) λ ub(-) σ R (deg) r2
C r2

L

ECM2 12,228 0.286 0.151 0.103 0.801 0.163 1.77 2.01 23.3 0.963 0.976
ECM6 34,163 0.050 0.043 0.098 0.764 0.178 2.12 2.44 15.6 0.942 0.856
ECM7 85,373 0.188 0.140 0.028 0.870 0.109 2.34 2.59 22.3 0.967 0.949
ECM8 45,573 0.215 0.172 0.033 0.819 0.150 2.09 2.36 18.6 0.956 0.986
ECM9 60,064 0.200 0.150 0.002 0.836 0.128 1.80 2.04 20.2 0.940 0.861
ECM10 150,023 0.148 0.120 0.026 0.860 0.120 1.88 2.05 18.1 0.933 0.818
ECM11 9,727 0.590 0.185 0.277 0.909 0.048 1.76 2.34 34.7 0.912 0.964

mean 56,735.7 1.97 2.26 21.9 0.945 0.916
std 48,919.2 0.22 0.23 6.25 0.019 0.068

mean (4) 50,809.3 0.406 0.239 0.075 0.841 0.131 2.00 2.25 21.0 0.957 0.943
std (4) 30,530.0 0.27 0.27 0.012 0.057

λ01_cutoff 95% λ01_cutoff 99% λlb(-)
1.44 1.53 1.77
2.00 2.13 2.12
2.19 2.28 2.34
1.97 2.03 2.09
1.64 1.76 1.80
1.72 1.82 1.88
1.79 1.84 1.76
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7.4.3 Average ECM parameters and strain energy 

The resulting average recruitment and distribution functions are shown in Figure 7.6, and the 

corresponding parameters are listed in Table 7.2. The shape of the recruitment function is very 

similar to the function determined in the previous study (Chapter 6.0 ), which suggests that 

expression of the recruitment function in terms of stretch is not fundamentally different from 

expression of it in terms of strain. The average fiber distribution function (Figure 7.6 B) with a 

standard deviation of σR = 21 deg is different from the distribution function measured by small 

angle light scattering (SALS) with a standard deviation of σRm = 30 deg (Figure 6.10). However, 

these distributions were each defined in a different state. The model distribution function was 

defined in Ω0, i.e., the intact free floating state, whereas the experimental fiber distribution was 

measured in specimens that were cut from decellularized bladders fixed in a filled state. 

Comparing the average dimensions of intact free floating specimens to the dimensions of filled 

decellularized bladders yields approximate values for the stretch in 11 and 22 directions 

respectively, of 1
0 11 2.37λ =  and 1

0 22 1.65λ = . Applying these values to an R(θ) with σR = 30 deg 

(Eq. (2.19)), yielded an R(β) with σR = 22 deg, which is close to σR = 21deg. 

Strain energy was calculated for each ECM specimen over a generalized strain range 

defined by a circle with a radius of E11 = E22 = 0.16 in Ω1 (Figure 7.7 A). This range was chosen 

such that the strain ranges of all specimens were represented without extrapolating too far. The 

strain energy values were multiplied by the swelling factor determined for each individual 

specimen (Table 7.1). For each point (E11,E22), the strain energy values of four data sets were 

averaged, resulting in an average ECM strain energy surface (Figure 7.7 B).  
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Figure 7.6. Average fiber recruitment and distribution. 
A) A double beta distribution was fit to four recruitment functions in terms of the scaled parameter y. The red 
line is the fit and the error bars represent the standard error of the average of the four recruitment functions. B) 
A beta distribution was fit to four distribution functions. The red line is the fit (σR = 21 deg) and the black lines 

are the individual distribution functions. Zero degrees is aligned with the longitudinal direction. 

 

 

 

Figure 7.7. Strain range and average ECM strain energy. 
A) Strain data points of four ECM specimens are depicted together with the strain range defined by a circle with 
radius 0.16 that encompassed the strain range of all data sets. B) Average ECM strain energy calculated for the 

strain range depicted in panel A. 
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The average strain energy data was fit to the structural model to obtain average ECM 

model parameters. With initial fitting attempts, it was noted that different combinations of K, λlb, 

λub produced good fitting results, suggesting a strong correlation between these parameters. To 

explore this effect, the objective function was explored for a range of values of K and λlb, for 

serveral different values of λub. The resulting parameter space plot for a fixed value of σR = 19 

deg, λub = 2.18, and average recruitment parameters (Figure 7.6 A) is depicted in Figure 7.8 A. 

This combination of parameters yielded the lowest minimum objective function value of 

4.03 ·10-9 for λlb = 1.83 and K = 57,600 (note that this “K” includes the swelling factor and is 

different from the K values in Table 7.2). Higher values of λub, and hence higher values of K, 

yielded higher minimum objective function values. Using the parameter values of the parameter 

space investigation as initial estimates for the fit resulted in a fit quality with r2 = 0.981(Figure 

7.8 B). The resulting parameter values were η = 105,761 kPa (assuming φf = 0.35), μ1 = 0.421, 

σ1= 0.239, γ = 0.047, μ2 = 0.834, σ2 = 0.130, λlb = 1.80, λub = 2.15, σR = 19.08 deg and the 

corresponding recruitment function, ensemble response and distribution function are depicted in 

Figure 7.8 C-E. 
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Figure 7.8. Fitting of average ECM strain energy data to obtain average ECM parameters. 
A) Contour plot of the objective function as function of K and λlb, for “average” recruitment parameters and λub = 

2.18. The minimum value of the objective function (red dot) equals 4.03e-009, for K = 57,600 and λlb = 1.83. B) Fit 
of the average ECM strain energy surface. Black dots represent the average strain energy calculated from four 

samples, and the meshed surface represents the fit. r2 = 0.981. C) Resulting recruitment function with parameters 
μ1=0.421, σ1 = 0.239, γ = 0.047, μ2 = 0.834, σ2 = 0.130, λlb = 1.80, λub = 2.15. D) Resulting ensemble model with η = 

105,761 kPa and φf = 0.35. E) Resulting fiber distribution function with σR = 19.08 deg. Zero degrees is aligned with 
the longitudinal direction. 
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7.4.4 Intact UBW and smooth muscle strain energy 

Work was calculated from the smoothed intact UBW stress-strain data (Eq. (7.7)) in Ω1, and it 

was observed that the work values for all protocols from all four data sets laid approximately on 

one surface (Figure 7.9). This data was fit simultaneously to a Fung-type strain energy function 

(Eq. (7.8)), resulting in a decent fit with r2 = 0.84. Subsequently, the work data and the strain 

energy surface were expressed in terms of a general Ω0 by multiplying the stretch data points 

with an average deformation between Ω0 and Ω1 (ignoring shear terms) of 1
0 11 1.89F =  and 

1
0 22 1.72F =  (Figure 7.9 A). Comparing the average fit strain energy surface with the individual 

data sets resulted in r2 values of 0.793, 0.957, 0.739, 0.730, for the four respective samples. 

Model stress calculations with the Fung fit parameters compared reasonably well with the 

individual specimen stress-strain data from the equibiaxial stress protocol (Figure 7.9 B). 

 

 

 

Figure 7.9. Fit of work data of intact UBW in Ω0 to Fung model and comparison to stress-strain data. 
A) Data points of W(EC,EL) for four specimens were simultaneously fit to a Fung-type strain energy function.( r2 = 
0.84) and a general surface was created. Note that the strain axes do not start at zero. B) The Fung model with fit 

parameters (red dots) predicted the individual equibiaxial stress data in Ω0 (black circles) reasonably well. 
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 ECM strain energy was calculated for the strain range of the intact data sets and 

subtracted from the intact strain energy, taking into account the volume fractions of ECM and 

SM (Eq. (7.9), φecm = 0.22, Figure 7.10). The resulting data set represented the strain energy 

attributed to the smooth muscle component (Figure 7.10 C). Note that in Figure 7.10 the relative 

contribution of strain energy is depicted, which includes the respective volume fractions. 

Smooth muscle orientation was represented in the constitutive model by a bimodal beta 

function (Eq. (2.54)) with peaks at θ = 0 deg (circumferential direction) and θ = 90 deg 

(longitudinal direction). Initial parameters for this function were determined by fitting the 

bimodal beta function to previously obtained SM orientation data, redrawn from the previously 

published polar plot (Figure 4.6 A) to a regular plot as a function of angle θ (Figure 7.11). The 

standard deviations of the circumferential and longitudinal peaks were σRC = 26.3 deg and σRL = 

24.8 deg, respectively, with the ratio of the areas of the peaks γSMC = 0.38 (Figure 7.11). 
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Figure 7.10. Strain energy surface and contour plots for intact UBW and its two components ECM and SM. 
A,B) Intact UBW strain energy. These represent the same data as Figure 7.9. C,D) Strain energy attributed to the 

ECM (including the ECM volume fraction). E,F) The difference in strain energy between intact UBW (panel A) and 
ECM (panel B) yields the strain energy attributed to SM (including the SM volume fraction). Note that the strain 

axes do not start at zero, and that the strain energy axes and the color levels are all at the same scale. 
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Figure 7.11. Smooth muscle orientation data and fit. 
Black dots and line represent the experimental SM orientation data shown in Figure 4.6 A. Red line is the fit of a 
double beta function with two peaks at 0 and 90 degrees. The standard deviation of the peak at 0 deg is 26.3 deg, 
and of the peak at 90 deg, 24.8 deg. The ration between the two peaks (γ) is 0.38. Zero degrees is aligned with the 

circumferential direction to be consistent with the published SM orientation data. 

The smooth muscle strain energy data was fit to a constitutive model with either a 

continuous fiber distribution (Eq. (7.3)) or with two discrete orthogonal fiber families (Eq. (7.4)). 

Figure 7.12 represents the optimal fit result within the constraint of γSMC = 0.38 after 

investigating different sets of initial parameter values. Two families of fibers were maintained, 

which was comparable to the experimentally determined fiber distribution (Figure 7.11), 

although with narrower peaks (represented by lower values for the standard deviations).  

The constitutive model with two discrete orthogonal fiber families at 0 and 90 deg was 

not able to fit the data (Figure 7.13 A, B, r2 = 0.497). Note that the maximum stress values in the 

fiber families are higher than for the continuous model because each curve represents all fibers in 

that direction, whereas in the continuous model, it represents a fiber bundle at a specific angle. 

Four and six families located at different angles around the circumferential and longitudinal 

direction (thereby still representing the general distribution as found experimentally) were also 

investigated, but the result never came close to the fit quality of the continuous distribution 

model (Figure 7.13 C,D, r2 = 0.76 for 6 families). It is clear that if a discrete model would be 

used, an extra term needs to be added to the model, i.e., a set of randomly distributed fibers or 

additional fiber families at off-center axes.  
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Figure 7.12. Fit result of the smooth muscle strain energy for a model with a bimodal continuous distribution. 
A) Smooth muscle strain energy data (black dots, see also Figure 7.10 C) is fit to the continuous SM constitutive 

model (Eq. (7.3)), resulting in good agreement between the data and the model (r2 = 0.988). Note that the strain axes 
do not start at zero. B) The resulting continuous SM distribution function. The standard deviation of the peak at 0 
deg is 20 deg (circumferential), and at 90 deg, 7.6 deg. The ratio between the two peaks, γSMC, was set to 0.38. C) 

The resulting stress-strain relations of the smooth muscle bundles in the circumferential direction (0 deg) and 
longitudinal direction ((90 deg). Parameters: d1C = 2.3⋅10-14, d2C = 14.58, d1L= 2.6⋅10-8, d2L =13.59. 
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Figure 7.13. Fit result of the smooth muscle strain energy for the model with discrete orthogonal SM bundles. 
Smooth muscle strain energy data (black dots, see also Figure 7.10 C) is fit to the discrete SM constitutive model 
(Eq.(7.4)), resulting in poor agreement between data and model. The resulting stress strain relations of the smooth 
muscle bundle aligned along the circumferential direction (0 deg) and the longitudinal direction (90 deg) are also 

shown. A,B) Model with 2 discrete families at 0 and 90 deg (r2 = 0.497 d1C = 5.47⋅10-3, d2C = 3.86, d1L= 1.11⋅10-5, d2L 
=11.1, γSMC = 0.46. ). C,D) Model with 6 discrete families at 0, -20, 20, -85, 85, and 90 deg (r2 = 0.758, d1C = 6.3⋅10-

5, d2C = 5.9, d1L= 9.6⋅10-9, d2L = 15.6) . Note that the strain axes of panel A and C do not start at zero. 
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7.5 DISCUSSION 

7.5.1 Summary 

A two-phase structural constitutive model was successfully established taking into account 

multiple referential configurations and was successfully applied to UBW tissue. Model 

parameters of the collagen phase and the smooth muscle phase were determined separately using 

mechanical and structural data of intact UBW and of decellularized UBW (UBW ECM). To our 

knowledge, this is the first time that the mechanical behavior of two load-bearing constituents 

was determined separately with model parameters expressed in the same state, whereas 

mechanical and structural data was obtained in different states. The two proposed modifications 

to the existing structural model included introducing a fiber stress-strain relation linear in P-λ 

instead of S-E and explicitly taking into account the permanent set effect of decellularization and 

preconditioning. This allowed for successful and reliable parameter estimation of the collagen 

phase of this specific tissue application of UBW.  

The tissue components were not only successfully separated physically but also in terms 

of strain energy, allowing for determination of the model parameters of the smooth muscle 

phase. Using previously determined SM fiber architecture data, the functional form of the SM 

model constitutive equation was determined from subtracting ECM from intact data. It was 

found that a model with two discrete orthogonal fiber families was unable to fit the strain energy 

data. The current study underscores that developing a model and setting model parameters is one 

thing, but applying it to an actual tissue system is a challenge that is not thoroughly addressed in 

the literature. In addition, this is the first non-phenomenological constitutive model of urinary 

bladder tissue that is more sophisticated than one other existing constitutive model developed by 

Damaser and coworkers [27, 29, 30].  

7.5.2 Reference state, preconditioning and permanent set 

The novel feature of the current modeling approach is that model parameters of two different 

constituents were expressed in the same reference state, while structural and mechanical 

properties were obtained in other states. Each of the available mechanical data sets was obtained 



154 

in a different reference state. Decellularization allowed for separate investigation of the collagen 

constituent and subtraction of this behavior from known intact tissue behavior. To our 

knowledge, this approach has not been employed before in its current form. A somewhat similar 

approach involves using elastase to break down elastin in arterial tissue and determine the 

mechanical properties of the remaining tissue separately [37]. However, this does not provide 

information about the elastin component itself.  

The only commonly available reference state for both tissue constituents was the intact 

unloaded reference state before preconditioning. It is common practice in mechanical testing of 

soft tissues to use the post-preconditioned reference state to reference stresses and strains to (see 

also Chapter 6.0). In the case of decellularized tissues as were investigated in the current study, 

however, this state had no meaning with respect to the intact tissue. Decellularization and 

preconditioning caused large deformations in the tissue specimens, which were permanent set-

like deformations assumed to have occurred without change in internal energy (see Chapter 2.0). 

During mechanical testing, the tissue reverts to the post-preconditioned state when unloaded, and 

the strain energy density function should be defined in this state. This essentially results in a 

reference configuration wherein the tissue’s strain energy function is defined that is different 

from the initial state. The explicit inclusion of the permanent set in the constitutive model 

allowed for expressing ECM model parameters in the common intact reference state. However, 

the question of what the true correct stress-free reference state is still remains. 

Preconditioning is utilized in mechanical testing of soft tissues, which are generally 

considered viscoelastic, in order to reach a pseudoelastic steady state, so that the cyclic loading 

and unloading curves are repeatable and stable. Preconditioning might only be suitable for dense 

collagenous tissues and the concept of preconditioning should be revisited for highly deformable 

tissues such as the UBW. One solution, proposed by Lanir, is to explicitly include the time-

dependent effects of preconditioning in the constitutive model [93, 94, 149]. We chose not to 

model the direct effects of preconditioning, but to include only the end result of it by introducing 

the measurable permanent set term into the model. 

The results of the current study must be interpreted within the light of at least one 

important limitation. The study is built on the assumption that the ECM component can be 

separated from a soft tissue without affecting the mechanical and structural properties. Previous 

results from our laboratory have qualitatively shown that the ECM structure was not visibly 
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damaged and the collagen structure appeared intact (Figure 4.3) [108]. Decellularization most 

likely affected the extent of collagen crimp, as observed from the large dimensional increase of 

the specimens (see also Chapter 6.0), suggesting it caused collagen fibers to uncoil or uncrimp 

to a certain extent. However, this is assumed to not affect the overall tissue mechanical behavior, 

as given by two main model assumptions. Firstly, it is assumed that collagen fibers do not bear 

load until fully uncrimped, and secondly, fibers that were crimped in the initial state remain 

crimped in the reference state, after the permanent set deformation (Chapter 2.0).  

7.5.3 Parameter estimation 

Model parameters of the ECM component were obtained through fitting of biaxial mechanical 

data of decellularized bladder specimens to the collagen structural constitutive model. A step-

wise fitting procedure was successfully established. First, an estimate of the parameters 

describing collagen recruitment were obtained, followed by all model parameters of the collagen 

component including the collagen fiber modulus and fiber orientation distribution. All 

parameters were defined in the initial reference state. This step-wise fitting procedure worked 

well and acceptable final fits were obtained for seven data sets, of which four were optimal. 

Considering the high variability in the data, relatively consistent parameter values were obtained. 

The MATLAB optimization algorithm “fmincon” was successful in finding an optimal solution, 

provided that good initial estimates were provided. The solutions converged for every fitting 

step. The fitting process revealed that one cannot rely purely on curve-fitting alone. Knowledge 

of the structural meaning of parameters to guide the choice of initial parameter estimates and to 

restrict the parameter values to reasonable physiological ranges is essential. Note in this light the 

questionable parameter values of two recent constitutive models of tissue engineered blood 

vessels and of esophageal tissue. In both studies, parameters were obtained by unconstrained 

parameter fitting [25, 110]. 

The transition from the fiber ensemble parameters obtained in Ω1 from the equibiaxial 

strain data to initial estimates for the parameters in Ω0 (e.g., 0λlb, 0λub and K) was not trivial. A 

strong correlation between the parameters was observed with the linear S-E fiber model. Use of 

the modified model with the linear P-λ fiber model solved many of those problems. Initial values 

for 0λlb and 0λub were successfully estimated by comparing the model predictions of the model 
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without a permanent set to the data of the equibiaxial protocol expressed in Ω0. σR was estimated 

by inspecting the degree of anisotropy in the equibiaxial protocol, either in Ω0 or Ω1. K was 

increased to yield corresponding maximum stress values in both directions. This was all 

performed while keeping the recruitment parameters fixed to their respective values obtained 

from the ensemble model fit. Based on observations from SALS measurements, it was assumed 

that all fibers were aligned along the longitudinal direction, and hence a value of μR = 0 was 

forced throughout all fitting steps. 

The addition of the permanent set to the model allowed for all parameters to be expressed 

to the intact reference state before any preconditioning, i.e., the reference state that was also 

available for the experimental data on intact UBW. This was especially important for the 

collagen modulus parameter K. It speaks for itself that the collagen modulus is defined in the 

intact tissue, in its most natural state. However, this would not have been possible without the 

inclusion of the permanent set in the model. The value of K is much lower when expressed in Ω1, 

thereby not representing the real collagen modulus. Note that this is generally not accounted for, 

nor recognized in the current state of the literature (e.g. [11, 129] and Chapter 6.0). Parameter K, 

for convenience, included the collagen fiber fraction φf (K = φf η). The collagen fiber fraction in 

decellularized tissues was established to equal 0.35, which yielded an average collagen fiber 

modulus η = 105,761 kPa. This value of roughly 100 MPa is very similar to the collagen fiber 

stiffness found in X-ray diffraction studies [90].  

The average collagen modulus and other average parameter values for the collagen 

component were obtained by fitting the average strain energy of four ECM data sets to the 

model. The advantage of using strain energy vs. stress-strain data to obtain average parameters, 

is that a regular strain grid could be defined over which strain energy was calculated for all four 

data sets, using the model parameters. Other methods to obtain average parameters exist but are 

usually inferior. One commonly used method is to simply average the parameter values of all 

specimens. However, because of the nonlinear nature of the parameters, this is not desirable. 

Another method is to calculate average multi-protocol stress-strain data and fit the model to the 

average data sets, or to fit the model to all data sets simultaneously [130]. Because of the highly 

variable strain ranges in the current study, neither method was feasible. A method to determine 

average parameters of the fiber ensemble model is to average the model ensemble stress-strain 
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behavior calculated with individual specimen model parameters [11], but this is only useful in 

comparing different groups.  

Average strain energy data was obtained by defining an average permanent set 

deformation 1
0 F from the individual 1

0 F of the four data sets. This allowed for defining an average 

Ω0 state, thereby eliminating the variability in the effect of decellularization and preconditioning, 

as well as the variability in the initial inactivated tissue state (see also next section 7.5.4).  

7.5.4 Application to multiple experimental data sets of UBW  

The newly developed structural constitutive model was applied to our extensive UBW data set to 

provide the model with physical parameters [47, 108, 109, 152]. Data had to be reanalyzed to 

make it suitable for model implementation. Biaxial mechanical data and smooth muscle 

orientation data of intact UBW was originally obtained without model application in mind, 

which imposed some challenges on the reanalysis procedures. From the biaxial mechanical data 

of many available, intact tissue specimens, four data sets were selected that represented the 

average reported behavior in Ω1, and that exhibited relatively consistent permanent set values 

(where the intact permanent set is defined between the free floating state Ω0 and the post-

preconditioned tare-loaded reference state Ω1). Intact tissue specimens were most likely not all in 

the same fully inactivated state, indicated by the high variability in 1
0 F values when comparing all 

available data sets. To reduce variability even further, stress-strain data was expressed in an 

average state Ω0 by using an average 1
0 F . In future experiments involving UBW tissue, full 

inactivation of SM cells needs to be better controlled and assessed. 

It has been recognized in bladder smooth muscle that it exhibits a dynamic passive 

length-tension relationship [119, 140-142]. Speich et al. established that rabbit detrusor smooth 

muscle displays passive stiffness that is adjustable because it is dependent on both strain history 

and muscle activation history. In these studies “passive” is defined as the state where cross-

bridges are not cycling to produce active force because tissues are maintained in calcium-free 

solution. Upon addition of calcium, the tissue regains its ability to contract. This is slightly 

different from our “inactive” state where EGTA is added to the solution to chelate all calcium 

present in the SM cells as well and restoration of the active state is not possible. The passive 



158 

length-tension curve for rabbit SM shifts to the right as a result of strain softening (with 

increasing deformations) and to the left following muscle activation [141]. Comparing this to the 

high variability in 1
0 F suggests that the SM cells in the current study were indeed not in the same 

state of inactivation. 

The overall strain range in Ω0 of the intact UBW data sets did not completely overlap 

with the strain range of the decellularized bladder specimens, which made defining a general 

strain range to calculate strain energy challenging. In essence, preconditioning intact and ECM 

tissues yielded a different equilibrium state. The main difference between the biaxial mechanical 

data sets of intact and decellularized specimens was that intact specimens were subjected to 

stress-controlled testing, whereas decellularized specimens were subjected to strain-controlled 

testing. It appeared that UBW tissue responds to stress-history in an inconsistent way. This might 

suggest that the accepted pseudo-elastic approach to model soft tissues may need to be extended 

or even abandoned to accommodate the peculiar stress or strain-path dependency observed when 

dealing with bladder wall tissue (see also [113]). It was assumed that it was justified to 

extrapolate the ECM model prediction beyond the testing strain range, to the overall strain range 

of the intact data sets, because the model parameters have structural meaning and should not be 

expected to depend on the specific strain range chosen. 

Volume or mass fractions of tissue components are usually obtained from general 

histological measures when used for modeling purposes, for example in modeling studies of the 

vascular wall. Similar data was also available for the UBW from our previous histomorphometric 

study [109]. It was anticipated that the collagen volume fraction by that measure would not 

necessarily represent the fraction of ECM as represented by the decellularized tissue specimens. 

For this reason, intact and decellularized specimens were lyophilized, and dry and wet weights 

were measured. Indeed, it was found that both measures of volume fractions were not the same 

(Figure 7.3, Figure 7.4). The information was combined to determine the collagen fiber volume 

fraction in the decellularized specimens φf. This allowed for using the collagen fraction found 

from the histomorphometric study as φECM in the overall tissue model.  

By introducing the permanent set in the model formulation, ECM model parameters were 

automatically expressed in terms of the intact tissue. To fully express the ECM mechanical data 

(or more specifically, the ECM strain energy) in the intact state, an extra transformation had to 

take place to account for the higher water content of decellularized specimens. This was 
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accounted for by multiplication of the strain energy by the so-called “swelling factor”, 

determined from deformation changes based on a damage analogy theory (Figure 7.2) [87]. 

Most challenges in making the experimental data suitable for model implementation was 

the fact that it was obtained by different investigators with multiple different underlying goals, 

and more importantly, without modeling in mind. A suggestion to overcome this problem and to 

modify the current experiments would be to first perform mechanical testing on intact tissue 

specimens, followed by decellularization and mechanical testing of the ECM, where both tests 

are done under strain control. However, the effects of preconditioning and mechanical testing on 

the tissue structure in general and on smooth muscle cells in particular are unknown, which 

would pose other challenges on analysis of the biaxial mechanical data of decellularized 

specimens. 

7.5.5 Smooth muscle 

In the current study, the mechanical behavior of smooth muscle was indirectly determined from 

the difference between the mechanical behavior of intact UBW tissue and of UBW ECM. The 

implicit assumption here is that there is no interaction between the two tissue components of 

collagen and smooth muscle. The analysis was performed via strain energy, not via the 

traditionally accepted approach of stress-strain data. Strain energy of intact tissue was estimated 

by calculating the work produced during biaxial testing [22, 23]. This is only a reliable method if 

the hyperelasticity assumption is valid. To test this, work was calculated for the decellularized 

specimens using the same method and this was compared to the model strain energy calculations. 

Work and strain energy values were found to be very similar. This assumption could not be 

verified for the intact tissue, because of the nature of the study. Work calculations were used to 

derive a constitutive model for inactive smooth muscle, whereas a complete tissue-level 

constitutive model would be needed to calculate tissue (and hence smooth muscle) strain energy. 

To our knowledge, this is the first attempt to derive a mechanical description of smooth 

muscle based on mechanical data that can be attributed solely to the smooth muscle component. 

It needs to be noted, however, that only the inactive behavior of SM was modeled, and basal tone 

or active contraction were not considered. In general, especially in the vascular literature, it is 

assumed that the inactive component of smooth muscle does not contribute to the mechanical 
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behavior (e.g. [56, 126, 178, 179]). The current results show that a significant amount of tissue 

strain energy is attributed to smooth muscle even in inactivated state (Figure 7.10). The present 

results suggest that the assumption used in vascular studies might need to be revisited, or at the 

least it suggests that bladder smooth muscle is different from vascular smooth muscle.  

In the one study where inactive behavior of smooth muscle was included, it was modeled 

as one discrete family of fibers running circumferentially [158]. Depending on the specific blood 

vessel, the majority of the smooth muscle fibers runs along the circumferential direction, and 

hence modeling the SM behavior as one discrete family of fibers is justified. However, in the 

urinary bladder, histomorphometric data has shown that SM is distributed along all directions, 

with two predominant directions, longitudinal and circumferential (Figure 7.11). Following 

Bishoff [12], both a continuous and a discrete fiber distribution were explored and compared, 

and it was found that two orthogonal fiber families were not able to represent the SM strain 

energy surface (Figure 7.13), whereas a constitutive model with a continuous distribution with 

two peaks at 0 deg and 90 deg was able to fit the SM strain energy very well (Figure 7.12). This 

suggests that studies based on the theory of composites using strain-based invariants, such as a 

recent model of esophageal tissue [110], should be interpreted with caution (see Chapter 2.0).  

During the fitting process of the SM strain energy surface, it was noticed that when the 

parameters were not restricted and the standard deviation values of the experimental distribution 

were used as initial estimates, the optimal solution predicted a single fiber family aligned along 

the longitudinal direction. A longitudinal peak that was too wide overruled the contribution of 

circumferential fibers completely. When the ratio of the two peaks was restricted to γ = 0.38, and 

the longitudinal peak was estimated more narrow (lower standard deviation), this was prevented, 

and the peak along the circumferential direction was maintained. This shows again that brute-

force parameter estimation has no meaning, and morphological information is required to restrict 

parameter values to physiologically relevant values (cf. [25, 110]).  

As an extension to the model, to fully describe the mechanical behavior of UBW in 

physiological state, passive tone and active contraction should be added to the model. However, 

determination of the mechanical behavior of UBW in passive or active state is complicated by 

spontaneous contractions (preliminary experimental observations). Furthermore, no generally 

accepted model description of smooth muscle tone and activation is currently available in the 

literature. Models that are available use phenomenological expressions [78, 142, 179].  
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7.5.6 Conclusion 

A morphologically-driven multi-phase constitutive model was successfully developed based on 

the separate treatment of the ECM and SM constituents. The presence of multiple referential 

configurations was accounted for and a physically correct linear fiber model was included. 

Physiologically relevant model parameters were defined in the same referential configuration 

and the mechanical behavior of the SM component was derived via a strain energy-based 

approach. It was found that a model formulation based on a finite number of strain invariants 

was not sufficient to capture the strain energy of the SM component.  

The model will form the basis for a growth and remodeling framework that will explain 

tissue remodeling of individual tissue constituents in different pathologies. Specifically, it will 

elucidate if mechanical changes in the UBW post-SCI are due to changes in constituent fractions 

or intrinsic properties. In addition, the model will have the potential to be utilized in remodeling 

predictions in a tissue engineering setting. 
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8.0  TOWARDS A MODEL TO SIMULATE SOFT TISSUE REMODELING AND 

ELUCIDATE MECHANICSMS 

8.1 INTRODUCTION 

Growth and remodeling (G&R) is involved in many pathological as well as normal physiological 

processes, such as tissue maintenance and aging; adaptations to altered loads, e.g. in exercise; 

wound healing in responses to injury or clinical treatment; and progression of disease [6]. All 

tissues in the human body continuously grow, remodel, and adapt to changes in their 

physiological environment, resulting in changes in structure and composition. G&R involves 

production, degradation, and reorientation of tissue constituents such as collagen, elastin and 

muscle, and newly produced constituents can exhibit different mechanical and/or structural 

properties, resulting in changes in wall thickness, tissue mass, and tissue structure. The specific 

remodeling processes are tissue specific and are aimed at maintaining the unique tissue-specific 

function. Hence, the driving mechanisms and the underlying processes for G&R are tissue-

dependent, and a universal mechano-growth law likely does not exist [150]. On the other hand, 

general trends among tissues with similar compositions should be apparent. Theoretical models 

of G&R will allow for elucidation of the underlying mechanisms of specific remodeling 

processes. There is a need for models that describe the fundamental process by which G&R 

occurs, i.e. the continual production and removal of constituents, and not just consequences of 

G&R, i.e. mass growth.  

Mixture theory, which combines continuum theories for the motion and deformation of 

solids and fluids, with general principles of chemistry, might be a good platform to model G&R 

[5]. Humphrey and coworkers have developed what could perhaps be called the most extensive 

modeling framework for tissue remodeling utilizing the so-called constrained mixture approach, 

where the tissue is assumed to be a mixture of multiple (solid) constituents, which are 
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constrained to deform together [65]. This theory has mainly been applied in studies on the 

vascular wall, but might provide a good basis for developing G&R models in other applications, 

such as the urinary bladder wall (UBW). This dissertation has laid the basis for developing a new 

theoretical description of remodeling, applied to the UBW after spinal cord injury (SCI). It was 

shown that the urinary bladder wall tissue appears to remodel to compensate for the change in 

mechanical environment that exists as a result of the specific pathology, and attempts to restore 

normal organ-level function. This is in contrast to what is believed in the vascular field where 

blood vessels remodel to restore homeostatic wall stress, which calls for extensions to currently 

available G&R theories. 

We hypothesize that the altered tissue mechanical behavior at different post-SCI time 

points is a result of structural changes in the tissue components such as fiber orientation and 

mass fraction. This implies that the intrinsic constituent properties, such as collagen fiber 

modulus, collagen recruitment, and smooth muscle (SM) fiber mechanical behavior, do not 

change with time, and that newly produced material exhibits the same properties as original 

material. This hypothesis will be explored in the current chapter. First, a literature review is 

presented of currently available G&R theories that may serve as a basis for a new theoretical 

description of remodeling. This is followed by an overview of the available experimental data on 

structural changes in the UBW at different time points post-SCI. Based on known responses 

from the this experimental data, remodeling hypotheses are formulated in terms of possible 

regulatory parameters and model inputs. Next, a parametric investigation is performed with the 

multi-phase structural constitutive model that was developed as an initial step to predict altered 

mechanical behavior as a result of changes in constituent structure. Using the obtained 

knowledge, key remodeling parameters are identified and the mechanical behavior of UBW at 10 

days post-SCI is predicted in terms of strain energy. Finally, preliminary kinetic equations 

describing time-course changes in model parameters are suggested.  

8.2 LITERATURE REVIEW OF AVAILABLE G&R MODELS 

The theory of mixtures is used to account for the separate contributions of each constituent, and 

homogenization is done through a rule-of-mixtures model for the stress response. Formal ideas 
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of mixture theory for mass balance are melded with the less stringent concept of rule-of-mixtures 

for linear momentum balance. Two classes of constituents are considered, soluble and 

structurally not significant constituents (e.g. cytokines and chemokines), and insoluble but 

structurally significant constituents (e.g. collagen, muscle) [6]. Each constituent is produced and 

degraded, which can be represented in the model by kinetic relations for the mass or mass 

density production [66]. Constituent turnover involves complex chemical reactions, but first 

order kinetics can often provide reasonable descriptions [46]. The net density production is the 

difference between the true density production and the true density removal [66]. It has also been 

assumed that there are two groups of each tissue constituent, i.e. old and new [45, 46], for which 

a production equation was formulated for new material and a degradation equation for old 

material, using first order type kinetics. 

Production and degradation together can be represented by a survival function including a 

heredity integral, which defines how much of a produced constituent is still present at time t. 

With continual turnover, material produced in the recent past will contribute more to load 

bearing than material produced in the distant past [7, 63]. The mass density of a component is 

described in terms of a survival function, where the production rate (rate of mass change), and 

the survival function (which describes the fraction of a constituent surviving) need to be 

prescribed through constitutive equations that depend on a physiological measure (e.g. 

magnitude or rate of stress or strain, depending on the specific hypothesis, as pointed out before 

[118]) that guides the remodeling, i.e. the critical regulatory parameter [7, 63, 118]. The specific 

form of the kinetic relations will be dictated by experimental data [118]. With these types of 

expressions, a new equilibrium state is reached when the stress is equal again to the homeostatic 

value, and the production rate is zero.  

The rate of mass change has been defined in different ways in the vascular remodeling 

theories: it can be kept constant [4]; can depend on a regulatory parameter such as stress [7, 118]; 

be a function of the number of cells by which the constituent is produced, and the stress 

experienced by the cells via the local collagen matrix [7]; or depend on the deviation of ratio of 

constrictors and dilators from its normal value [8, 63]. In the vasculature, SM cells are assumed 

to maintain circumferential muscle stress and endothelial fluid shear stress at homeostatic values, 

via a combination of growth and active contraction, which makes circumferential stress in the 

SM the critical regulatory parameter in a model [4]. For the survival function, the two main 
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parameters to define are the length of time that a newly produced constituent is present, and its 

decay, which accounts for changes in removal rates during periods of G&R [118]. Different 

forms of the survival function can be used, depending on the physiological remodeling process, 

see examples in [7, 8, 65, 68, 118].  

In traditional continuum mechanics, a stress-free reference state is defined where all other 

(loaded) configurations are mapped to. However, with the continuous turnover of material 

occurring in G&R, there is no such configuration in the traditional sense. Instead, the focus is on 

neighborhoods defined by an identifying location (i.e., a mathematical point), that define the 

geometry of the tissue. In addition, there are three main assumptions in the constrained mixture 

theory [6]. First, each structurally significant constituent k is assumed to move with the body as a 

whole. Second, each structurally significant constituent k can possess an individual natural 

configuration, which is defined by the time τ that the constituent is incorporated within the tissue 

or cell. Third, the material properties at each point are assumed to result from the properties of 

all constituents that co-exist within a neighborhood at a particular G&R time point. In the 

vascular remodeling studies, three configurations are defined, denoted by κ(0), κ(τ), and κ(s), 

where s denotes the current G&R time. G&R starts at s = 0 and new constituents are deposited at

[ ]0, sτ ∈ . For convenience a fourth configuration can be introduced, which is a geometrically 

fixed reference configuration that does not necessarily have to physically exist, such as an 

unloaded configuration at s = 0. 

Even though multiple constituents co-reside within one point, each constituent k 

possesses a unique natural configuration κk(τ). Moreover, this constituent is deposited and 

integrated within configuration κ(τ) at a preferred (homeostatic) value of stretch given by the 

linear transformation Gk(τ). Each constituent can experience a different deformation in the 

current configuration κ(s), relative to its individual natural configuration, denoted by Fk(s). This 

deformation experienced by an individual constituent, which was produced at time τ and exists at 

time s, is defined in terms of tissue deformation F(s) and the “deposition stretch” as 

( ) ( ) ( ) ( )( )1k ks s τ τ−=F F F G . This allows one to relate deformations experienced by individual 

constituents, relative to individual natural configurations, to those experienced by the mixture as 

a whole [7]. Deposition stretches cannot be measured, but reasonable values can be bounded by 

experimentally available information. Simulations have suggested that biologically bounded, 
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stable G&R requires depositions stretches larger than a value of 1, which implies that new 

constituents are likely incorporated within the matrix at a pre-stress [159]. Moreover, this study 

showed that also the combined effects of changing mass density turnover and vasoactivity, in 

combination with the pre-stretch, are essential to capture salient features of bounded arterial 

G&R [159].  

The constrained mixture approach has been applied successfully by Humphrey and 

coworkers to various questions and open problems in vascular mechanics. The most recent 

examples are: Investigating the effects of axial extension and stress on vascular remodeling [64, 

160]; Enlarging intracranial fusiform aneurysms [7]; The resolution of cerebral vasospasm [8]; 

The complementary effect of vasoactivity and matrix remodeling in response to altered flow and 

pressure [158]; Quantification of cloth formation and evolving mechanical properties of 

intraluminal thrombus in aneurysms [75]. 

Variations of the mixture approach, sometimes in combination with other approaches, 

have been implemented by other groups and have been used in different applications [52, 79, 80, 

115, 117, 154-156, 170]. Holzapfel and coworkers initially modeled the process of arterial 

remodeling as collagen fiber reorientation in response to stress [52]. More recently, they have 

been applying this theory in an extended form to the growth of saccular cerebral aneurysms [79, 

80, 170]. They have included expressions for collagen fiber turnover [79], and explicitly 

included fibroblasts in the model, which produce the collagen [80]. Collagen production rate was 

made dependent on the magnitude of the cyclic deformation of fibroblasts, caused by the 

pulsating blood pressure during the cardiac cycle [80]. And finally, they included in the model 

that newly deposited collagen fibers are acted on by fibroblast cells to attach them to the ECM in 

a state of stretch [170]. This analysis was aimed at guiding the selection of suitable functional 

forms for the fiber concentration evolution equations.  

The group of Stergiopulos, in collaboration with Rachev, utilizes a more simplified 

global growth approach. This approach couples explicit geometric remodeling with the 

constrained mixture theory and can be seen as an intermediate approach between the volumetric 

growth approach and constrained mixture models. It is based on the assumption that remodeling 

manifests as a continuous change in the dimensions of the zero-stress configuration driven by 

local arterial stresses. Their studies focus on the time-course arterial remodeling events in 
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response to hypertension and increased blood flow [115, 117, 154-156]. The most recent study in 

this line of research included mechanical and structural inhomogeneity in the model [116]. 

The currently available G&R models require different types of constitutive relations, i.e., 

strain energy functions, rates of mass density production, and survival functions for constrained 

mixture models specifically, all for each family of structurally significant constituents. Current 

functional forms are in a state of infancy, and appropriate constitutive relations need to be 

derived based on experimental data. Each of these constitutive equations will need to be derived 

uniquely for each new application. All available studies in the literature make mention of the 

lack of suitable experimental data. For the current dissertation, experimental data on remodeling 

in the urinary bladder wall (UBW) as a result of spinal cord injury (SCI) was available. In 

addition, the required strain energy functions were developed. As a next step, rates of mass 

density production and survival functions will need to be defined. To enable this, remodeling 

hypotheses are first formulated based on known responses from the available experimental data. 

8.3 URINARY BLADDER WALL REMODELING  

8.3.1 Constituent data 

Methods of obtaining area fraction and biochemical concentration data of the individual UBW 

constituents were described in sections 5.4.3 and 5.4.4. The area fraction values for collagen and 

smooth muscle are used as volume fractions φECM and φSM in the constitutive model. 

Histomorphometric analysis at different time points post-SCI revealed that the fraction of 

collagen decreased with respect to the amount of SM 10 days after injury (φECM = 0.22 for 

normal tissue, and φECM = 0.12 at 10 days post-SCI), and at the 10-week time point, UBW tissue 

exhibited significant increases in collagen area fractions compared to the 10-day SCI group 

(φECM = 0.19 at 10 weeks post-SCI), but similar to the normal bladders (Figure 8.1, see also 

Figure 4.8). This suggests that the collagen fraction recovered towards the end suggesting that 

collagen production was going up after a couple of weeks. The fraction of SM did not change 

significantly (Figure 8.1 B) ((φSM = 0.78, 0.88, and 0.81, at the respective time points).  
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Biochemical concentration of collagen followed the same trend as the area fraction data 

(Figure 8.2 A). This data represented the concentration of soluble collagen, which is different 

from the total amount of collagen. However, considering the similarity in trend it can be assumed 

that the total amount of collagen follows the trend of soluble collagen. The lowest collagen 

concentration was found 6 weeks after injury. Note that area fraction data of intermediate time 

points was not available for comparison. The most remarkable result from this data was that the 

fraction of elastin increased drastically within a couple of days after injury (Figure 8.2 B). As 

was suggested in Chapter 6.0 , this amount of elastin does most likely not contribute to the 

mechanical properties directly, but could indirectly influence the mechanical behavior of the 

collagen component. 

 

 

 

Figure 8.1. Collagen and smooth muscle area fraction data from histomorphometry. 
 A) Histological area fraction of collagen component. * Indicates significant difference in collagen fraction between 
the 10-day and 10-week time point. B) Histological area fraction of smooth muscle component. Data presented as 

average +/- standard deviation. Data is redrawn from [152], and is the same as presented in Figure 4.8.  
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Figure 8.2. Mass fraction changes of soluble collagen and elastin in UBW tissue as a result of SCI. 
A) Mass fractions of soluble collagen at different time-points post-SCI, determined by SirCol assay. Specimen 
numbers for the different data points were n = 7, 5, 7, 5, 4, respectively. B) Mass fractions of elastin at different 

time-points post-SCI, determined by Fastin Elastin assay (n = 10, 5, 6, 5, 4, respectively). Data presented as average 
+/- standard error of mean for both panels. * Indicates significantly different from normal. Data reanalyzed from 

[152]. This data was also presented in terms of relative ratios in Figure 4.8. 

It would be interesting to relate the concentration data to changes in absolute mass of the 

individual constituents. Unfortunately, absolute bladder weights were not measured at the time of 

the experiments. To determine absolute mass changes of different components, rat bladder 

weight data was compiled from the literature and from some preliminary measurements of 

bladders that were available (Figure 8.3). This showed how drastically bladder mass changes 

with SCI. It was assumed that bladder weight at 10 weeks post-SCI would not be different from 

earlier time points (derived from experimental observations; personal communication with K.K. 

Toosi). Values from an exponential fit through these bladder weight values were used to 

transform the concentration values from Figure 8.1 and Figure 8.2 into absolute mass changes of 

the different constituents, to get an idea of the trends (Figure 8.4). Trends were obtained by 

tentatively fitting exponential or linear lines through the data points. These trends will be used in 

future studies to derive hypotheses on production and degradation of the constituents in the two 

separate phases post-SCI. 
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Figure 8.3. Bladder weight at different time-points post-SCI. 
Data derived from literature and new experimental measurements. Legend: ▲ literature values from [134]. ♦ 

average value of 2 bladder measurements. ■ average of 2 literature values [134, 166] combined with average of 5 
bladder measurements. ● measurement of 1 bladder. Black line is an exponential fit through the data points; the 

dashed line is extrapolated. Bladder mass goes up drastically (from 80 mg to ~400 mg) within the first two weeks 
after injury, but appears to stabilize after that. 

 

Figure 8.4. Collagen, elastin, and SM mass changes as a function of time post-SCI. 
Data points are calculated from data in Figure 8.1and Figure 8.2, using data in Figure 8.3. A) Collagen production 
goes up but stabilizes at the end of the first phase, and there is a strong increase in collagen production in the later 
phase. B) Elastin production goes up in the first phase. C) The increase in bladder mass is almost entirely due to 

increase in smooth muscle mass.  
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Smooth muscle orientation data from histomorphometric analysis (Figure Figure 4.5) was 

redrawn and fit to a bimodal distribution function (Eq.(2.54)) (Figure 8.5)). The parameters of 

the fit reflect the (an)isotropic distribution of the two fiber families. The SM fiber distribution of 

normal UBW was also shown in Figure 7.11. At 10 days post-SCI, an equal bimodal distribution 

of fibers is found, with a ratio between the two directions of γSM = 0.54 and approximately equal 

standard deviations fir the two peaks of 21-24o. At the 10-week time point, the circumferential 

fiber family has practically disappeared (σRC = 56.63o) and a relatively narrow peak is found 

along the longitudinal direction (σRC = 14.6o). This distribution appears to be equal to a unimodal 

distribution combined with a random distribution of fibers. 

Figure 8.5 might be misleading, in the sense that the fibers are not actually rotating, but 

merely hypertrophying in specific directions. Direction-specific hypertrophying of SM cells can 

lead to an effective reduction of the fraction of cell edges, and hence a smaller number of cells, 

in a specific direction.  

 

 

 

Figure 8.5. Smooth muscle orientation for normal UBW and at two time points post-SCI.  
Black lines represent data points from Figure Figure 4.6., red line represents the fit with a bimodal beta distribution. 
0 deg represents circumferential direction (C), 90 degrees longitudinal direction (L). A) Normal UBW: σRC = 26.26o, 

σRL = 24.84o, γSM = 0.38. This is the same figure as Figure 7.11. B) UBW 10 day post-SCI: σRC = 21.14o, σRL = 
23.85o, γSM = 0.46. C) UBW 10 weeks post-SCI: σRC = 56.63o, σRL = 14.60o, γSM = 0.45. 

-100 -50 0 50 100
0

0.2

0.4

0.6

0.8

1

θ

R

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

θ

R

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

θ

R

BA C



172 

8.3.2 Intact tissue strain energy at the 10-day post-SCI time point 

Strain energy of 10-day post-SCI UBW tissue (n = 5) was calculated the same way as for intact 

UBW tissue (section 7.3.6) by calculating the work (W) for each (E11, E22) data point of the 

individual stress-strain data sets in Ω1 (the intact post-preconditioned tare-loaded state) from 

biaxial mechanical testing data, and fitting all data simultaneously to a 9-parameter Fung model 

(Eq. (7.8)). A good fit was obtained (r2 = 0.93), although the surface was not monotonically 

increasing for the complete strain range (Figure 8.6 A). For this reason, a pie-shaped section of 

the strain range was selected for further analysis (Figure 8.6 B). The strain energy surface was 

transformed from Ω1 to Ω0 with the average deformation gradient tensor for these five data sets 

given by 1
0 11 1.72F =  and 1

0 22 1.62F = ). The resulting 10-day SCI strain energy surface in Ω0 was 

compared to normal (Figure 8.7) showing a marked difference in (an)isotropy (cf. Figure 4.6). 

 

 

 

 

Figure 8.6. Fit of work data of intact UBW at 10 days post-SCI in Ω1 to Fung model. 
A) Data points of W(EC,EL) for five specimens were simultaneously fit to a Fung-type strain energy function (r2 = 

0.93) and a surface was created for a general strain range. B) A general strain range was determined representing the 
relevant data strain range and a monotonically increasing surface. The surface fit is shown as a 2D color plot. 
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Figure 8.7. Comparison of intact tissue strain energy of normal and 10-day post-SCI data sets in Ω0. 
Individual protocol strain paths are shown by black dots and strain energy surface fits are shown by contour lines. 
The black line indicates a general strain path defining a cross section. Note that the strain axes do not start at zero. 

A) Normal. B) 10-days SCI. 
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8.3.3 Parametric investigation 

In order to determine what model parameters are representative of the mechanical behavior of 

UBW at 10 days post-SCI, a parametric investigation was performed on the tissue level model in 

terms of strain energy with the model parameters determined in Chapter 7 as a starting point. The 

hypothesis was that the mechanical behavior of post-SCI UBW tissue can be explained 

completely by changes in tissue structure. Thus, the effect of alterations in structural parameters 

on the constituent strain energy was first investigated. Parameters related to the ECM component 

were as follows: ECM volume fraction (φECM); lower and upper bound ensemble stretch (0λlb, 

0λub); and standard deviation of the collagen fiber distribution function (σR). A combination of 

changes in σR, 0λlb, and 0λub was also investigated because 0λlb and 0λub are dependent on angle and 

hence depend indirectly on σR (section 3.1.5). A wider collagen fiber distribution (increase in σR) 

should be accompanied by higher values of 0λlb and 0λub for the same permanent set deformation. 

Furthermore, the effect of introducing a second collagen fiber family along the circumferential 

direction was investigated. Parameters related to the SM component were the ratio of 

circumferential SM fibers to longitudinal fibers (γSM), the widths of the circumferential and 

longitudinal fiber distributions (σSMC, σSML). ECM strain energy, SM strain energy, and the 

weighted sum of these was calculated for two specific strain paths in order to facilitate 2-

dimensional plot. The results are summarized, and all graphical results are listed in Appendix D.  

It was found that the model was insensitive to changes in φECM, suggesting that the 

mechanical contribution in normal UBW was relatively low. Changes in σR had a larger effect, 

especially on the ECM strain energy in direction 2. A moderate difference in anisotropy was 

observed at the tissue level. Note, that with a value of 0λlb = 1.8 and an unchanged permanent set 

deformation, σR cannot be larger than 24o (section 3.1.5). The effect of increasing the value of 

0λlb or decreasing 0λub was a pronounced decrease of ECM strain energy and tissue-level strain 

energy in both directions. Note, that with a value of σR = 19o and an unchanged permanent set 

deformation, 0λlb needs to be larger than ~1.73.  

Several combinations of the three parameters (σR, 0λlb, 0λub) were also investigated, and it 

was found that a wider collagen distribution (σR = 30) combined with higher values for the lower 

and upper bound stretch (0λlb = 1.88, 0λub = 2.23) yielded a strain energy behavior that came close 

to the post-SCI tissue-level strain energy. Introducing a second collagen fiber family along the 
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circumferential direction (with the same standard deviation (σRC = σRL = 19), yielded a significant 

increase in ECM and tissue-level strain energy, especially in direction 1. Even a small 

circumferential peak resulted in a significant increase in strain energy. The resulting anisotropic 

behavior of the tissue-level strain energy resembled that of post-SCI tissue. Note, that when more 

fibers are oriented in the direction of the largest permanent set, 0λlb should be increased (section 

3.1.5). 

With respect to model parameters of the smooth muscle component, different values of 

the ratio of circumferential SM fibers to longitudinal fibers (γSMC) did not have a large effect on 

the SM and tissue strain energy. Changing the width of the distribution of circumferential SM 

fiber (σsmc) did not show any visible effect. This is most likely due to the fact that mechanical 

contribution of circumferential SM fibers is low at lower strains (Figure 7.12). On the contrary, 

the effect of changing the width of the distribution of longitudinal fiber family (σSML) was large. 

In fact, the SM strain energy reached unrealistically high values with a broader distribution. This 

is most likely because the longitudinal fiber family overpowered the circumferential family. 

8.3.4 Predicting altered UBW mechanical behavior at 10 days post-SCI 

The results of the parametric investigation were used to guide the prediction of the mechanical 

behavior of UBW tissue at 10 days post-SCI. First, it was assumed that intrinsic material 

properties had not changed and the changes in mechanical behavior could be completely 

attributed to morphological changes such as constituent volume fractions and fiber orientation. 

The intact strain energy (Figure 8.6 B) for 37 data points was fit to the tissue-level constitutive 

model (Eq. (2.1), (2.21), (2.44), (2.53), (2.58)) with fixed values as found from the normal data 

fit for the following parameters: K, μ1,σ1,γ, μ2,σ2, μR for the ECM component, and d1C,d2C, d1L,d2L 

for the SM component. Based on the assumption that collagen fibers are produced by SM cells 

and are hence expected to follow a similar distribution as SM, a bimodal distribution was 

assumed for the ECM component in the same way as for SM. The fit parameters were: 0λlb, 0λub, 

σRC, σRL and γRC for the ECM component and σSMC, σSML and γSMC for the SM component. As 

initial estimates for 0λlb and 0λub, values from the normal data were used, and initial estimates for 

the distribution parameters were based on experimental SM orientation data (Figure 8.5).  
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It was found impossible to fit the strain energy surface of intact post-SCI UBW without 

allowing the contribution of the circumferential family of SM fibers to reach unrealistically high 

values (i.e., high values for σRL and γSMC), to the extent that the longitudinal family of fibers 

almost completely disappeared (results not shown). A good fit was obtained (r2 = 0.98), but this 

has no meaning with unphysiological model parameters. 

As a result, it was deemed necessary to include the intrinsic SM parameters (d1C, d2C, d1L, 

d2L) as fit parameters. When setting appropriate bounds on the parameters during the fitting 

procedure, this yielded good fitting results. During initial fitting attempts, it was found that the 

anticipated circumferential collagen peak was not predicted (low value γRC) and it was decided to 

fix the value of γRC to zero in the final fitting attempt. 

 A good fit of the intact strain energy was obtained (Figure 8.8 A, r2 = 0.996). Figure 8.8 

also depicts the resulting ECM and SM strain energy surfaces for the same strain range. The 

resulting parameters are listed in Table 8.1 where they are compared to the model parameters of 

normal UBW. The most remarkable result is the high value of 0λub combined with a lower value 

of 0λlb (see also Figure 8.10 A). ). This resulted in a more compliant fiber ensemble behavior 

(Figure 8.10 B). This corroborates the findings of Chapter 6.0 of the presence of more coils and 

crimp in the collagen fibers. A slightly wider collagen distribution as compared to normal was 

predicted (Figure 8.9 A, Figure 8.11 C), which can be explained by assuming that newly 

produced collagen fibers post-SCI are deposited in a more random manner. Note, that it was not 

needed to include the collagen modulus as a fitting parameter, i.e., the collagen fiber modulus 

was not altered as a result of SCI. The predicted SM distribution was very similar to the 

experimental distribution (compare Figure 8.9 B and Figure 8.11 B with Figure 8.5 B). The 

mechanical behavior of individual SM fibers was significantly different post-SCI as compared to 

normal, especially in the circumferential direction (Figure 8.11 A; see also parameter values in 

Table 8.1).  
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Figure 8.8. Strain energy of 10-day post-SCI UBW. 
A) Intact tissue strain energy for 37 data points (black dots) was fit to the tissue-level structural model and a good fit 

was obtained (r2 = 0.996). B,C) For the same strain values, ECM strain energy (panel B) and SM strain energy 
(panel C) were calculated with the resulting model parameters. Note that the strain axes do not start at zero and that 

the strain energy axes are not the same for the three panels. The color levels are at the same scale. 
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Table 8.1. Comparison of model parameters of UBW at 10 days post-SCI to normal 

 
 

 

 

 

 

 

 

Figure 8.9. Collagen and SM fiber distribution post-SCI. 
A) Collagen fiber distribution. B) SM fiber distribution. θ = 0 represents the circumferential direction. 
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Figure 8.10. Normal and post-SCI Comparison for collagen component. 
A) Collagen fiber distribution for normal and post-SCI UBW. B) Collagen fiber ensemble stress-strain for normal 

and post-SCI UBW. C) Collagen fiber recruitment for normal and post-SCI UBW. . θ = 0 represents the 
circumferential direction 
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Figure 8.11. Normal and post-SCI Comparison for smooth muscle component.  
A) Mechanical behavior of SM fibers for normal and post-SCI UBW. B) SM fiber distribution for normal and post-

SCI UBW. θ = 0 represents the circumferential direction. 

The general strain path as defined in Figure 8.7 was used to compare cross sections of the 

strain energy surfaces of the different tissue components, in normal and post-SCI UBW (Figure 

8.12, Figure 8.13). Changes in constituent mass fractions, as well as changes in the individual 

constituents contributed to the altered mechanical behavior post-SCI. The partial contribution of 

SM strain energy to the total tissue strain energy increased post-SCI due to the higher volume 

fraction and this was opposite for the ECM component (Figure 8.12). However, by absolute 

measure, both ECM and SM strain energy increased post-SCI (Figure 8.13). The individual SM 

fiber families became more compliant (Figure 8.11 A), but the different fiber distribution 

resulted in an overall higher strain energy (Figure 8.13 B). 

The combined results suggest that the observed mechanical changes at 10 days post-SCI 

are due to a combination of factors. With respect to the ECM component, those are purely 

structural changes, i.e., changes in the collagen fiber distribution and in the collagen crimp 

behavior. The collagen fiber modulus remained unaltered. For the SM component, this involved 

both structural as intrinsic changes. The SM orientation distribution was different from normal, 

as was also shown experimentally, but also the mechanical behavior of the fiber families 

changed.  
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The results of this study in its current state should be interpreted with some caution. 

Although the fitting process was carefully guided by enforcing physiologically realistic bounds 

on the parameters, there was still flexibility in the fit. For example, the relative contributions of 

the two components were not controlled for. A penalty method could be used in the fitting 

process to ensure that each constituent has a significant contribution to the mechanical behavior, 

as was used by Hansen et al. [51]. However, some knowledge on the expected contribution is 

required for this, which is not necessarily available for the post-SCI UBW application. 

 

 

 

Figure 8.12. Comparison of cross sections through the strain energy surfaces for individual tissue components. 
The strain path (Figure 8.7) that was used for the calculations is shown as a reference. Intact, partial ECM 

(φECMΨECM), and partial SM strain energy ((1-φECM)·ΨSM) are plotted vs. circumferential strain Ec for normal UBW 
(panel A) and 10-day SCI UBW (panel B). Note that the strain axes do not start at zero. 
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Figure 8.13. Comparison of cross sections through the strain energy surfaces for A) ECM and B) SM. 
A) ECM strain energy is higher post-SCI, but the slope is lower. B) SM strain energy is higher post-SCI. Note that 

the strain axes do not start at zero. 

8.4 CONCLUSION 

A first step has been taken to elucidate the remodeling process in the UBW at 10 days post-SCI 

using a multi-phase structural constitutive model and available experimental data on mechanical 

and structural time-course changes. The parameters of the constitutive model of normal UBW 

were inspected and systematically altered to guide the fitting of post-SCI strain energy data to 

that same constitutive model. Model parameters of post-SCI UBW were determined and it was 

shown that UBW mechanical behavior post-SCI was predicted without any intrinsic changes in 

collagen properties, but with changes in the SM bundle properties. Observed changes in UBW 

mechanical behavior as a result of SCI can now be attributed to structural changes in the ECM 

component, and both structural and intrinsic properties of the SM component. It remains to be 

elucidated what the changes in SM bundle properties are due to.  

This is the first time that explicit changes in individual tissue constituents have been 

elucidated using a constitutive model combined with experimental data. Studies currently 

available in the literature either show sophisticated models but mention a lack of experimental 
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data to validate the model, or show a vast amount of experimental remodeling data not suitable 

for model implementation.  

Now that the changes in model parameters have been identified at the discrete time point 

of 10 days post-SCI, this knowledge can be used in combination with the time-course constituent 

data to guide the derivation of time-dependent remodeling equations. The known structural and 

intrinsic changes can be represented in these equations by expressing certain model parameters 

as a function of time or as a function of a regulatory remodeling parameter (such as stress or 

strain). The results obtained in the present study are the first essential step in the development of 

a full G&R model. The available literature on G&R as presented in section 8.2 will serve as a 

guideline to develop such a model.  
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9.0  SUMMARY AND CONCLUSIONS 

The original aim of this dissertation was to develop a generalized multi-phase constitutive model 

to simulate soft tissue remodeling and to apply it to a specific tissue system, in order to elucidate 

mechanisms of urinary bladder wall (UBW) remodeling as a result of spinal cord injury (SCI). 

The hypothesis was that distinct mechanical stimuli, such as prolonged periods of high strain or 

stress, or frequent short-term intermittent loading, induce different remodeling events to 

compensate for the change in mechanical environment and to restore normal organ-level 

function. Before remodeling could be studied, a reliable morphologically driven constitutive 

model was needed, and hence, an important component of this aim was to develop a 

morphologically driven multi-phase constitutive model that would allow for separate 

investigation of the contribution of individual tissue components to the tissue-level remodeling 

process. In fact, it was found that developing a reliable constitutive model was crucial and more 

challenging than anticipated and a large emphasis of this dissertation was put on developing this 

model and on creating an appropriate experimental data set to derive physically realistic model 

parameters, rather than simulating soft tissue remodeling. However, it is emphasized that the 

developed model laid the basis for a generalized modeling framework of remodeling in a multi-

phase soft tissue. 

The objectives of this dissertation were as follows: The first objective was to formulate 

an ECM constitutive model to elucidate the mechanical role of de novo synthesized elastin on 

urinary bladder ECM. The second objective was to develop a morphologically driven 

constitutive model of a multi-phase tissue, applied to the urinary bladder wall. To achieve this 

objective, the structural constitutive model as used for the first objective was extended with two 

necessary modifications; one to account for multiple tissue components existing in different 

reference states and the second to include a physically realistic fiber model. The third objective 

was to obtain insights into UBW remodeling as a result of SCI. More specifically, to elucidate if 
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mechanical changes in UBW tissue after spinal cord injury could be explained by changes in 

tissue structure, e.g., mass fractions and fiber orientation, without intrinsic changes in constituent 

properties. The main findings from these objectives are summarized in the following sections. 

9.1 SUMMARY OF MAIN FINDINGS 

9.1.1 On the mechanical role of de novo synthesized elastin in the urinary bladder wall 

A structural constitutive model was used to elucidate basic remodeling mechanisms of ECM. 

Removing the smooth muscle (SM) cells from bladder wall tissue allowed for the separate 

investigation of the effects of de novo produced fibrillar elastin on UBW ECM. It was shown 

that the presence of elastin fibers in the UBW ECM post-SCI induced, indirectly, a distinct 

mechanical behavior with higher compliance. This was attributed to the presence of more highly 

super-coiled collagen fibers in post-SCI UBW ECM. The result was a net increase in ECM 

compliance allowing for a higher overall extensibility of the post-SCI UBW tissue and increased 

bladder storage capacity.  

The urinary bladder responds to the prolonged period of high strain due to overfilling by 

increasing its effective compliance through the interaction between collagen and de novo 

deposited elastic fibers. UBW tissue adapts to the functional demand at the organ level. The 

UBW G&R mechanism is thus an organ-level driven process which does not necessarily result in 

re-establishment of a homeostatic stress state, but instead attempts to achieve a degree of overall 

organ functional restoration. Due to the fact that full physiological recovery is never achieved 

because of lack of full neural control, the remodeling ultimately results in an irreversible 

pathological process. 

9.1.2 A structural constitutive model for a muscle–connective tissue composite 

A novel morphologically-driven multi-phase constitutive model was successfully developed 

based on the separate treatment of the ECM and SM constituents and successfully implemented 
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in the software package MATLAB. The structural constitutive model for planar collagenous 

tissues as used for the first objective was extended to be able to apply it to a multi-component 

tissue with individual model components existing in different reference states. The two necessary 

modifications to the existing structural model included introducing a fiber stress-strain relation 

linear in terms of 1st Piola Kirchhoff stress (P) vs. stretch (λ) instead of 2nd Piola Kirchhoff stress 

(S) vs. Green’s strain (E) and explicitly taking into account the permanent set effect of 

decellularization and preconditioning such that all model components and parameters were 

expressed in the same reference state. This allowed for successful and reliable parameter 

estimation of the collagen phase of this specific tissue application of UBW.  

The structural model with its modifications was successfully implemented in MATLAB, 

including the two levels of numerical integration and the complete fitting process. The built-in 

MATLAB functions for numerical integration and parameter estimation have been shown 

reliable and effective. The complete process of parameter estimation was implemented within 

two separate user interfaces (GUIs), which provided full control over the data, fitting settings, 

and output, including data inspection, choices of model type and algorithms, setting parameter 

bound values, calculating model values, etc.  

The modifications to the structural model, as well as the implementation of the model, 

were successfully validated. It was shown that the original linear S-E fiber model did not 

preserve the fiber effective modulus when slack was introduced in the fiber, which was solved by 

using the linear P-λ fiber model. Comparison of discrete fiber simulations and of synthetic data 

to the continuous model formulation showed that the modifications to the model formulation 

were correct and that the implementation in MATLAB was correct.  

Physically realistic parameters for the multi-phase constitutive model were determined 

form UBW experimental data through an extensive parameter estimation procedure. Available 

experimental data on intact UBW was reanalyzed to make it suitable for model implementation. 

This was extended and combined with new data on the ECM component specifically. The tissue 

components were not only successfully separated physically but also in terms of strain energy, 

allowing convenient averaging of parameters as well as determination of the smooth muscle 

constitutive behavior. It was found that a model with two discrete orthogonal fiber families 

derived from invariant theory was insufficient to accurately represent the strain energy data. A 

continuous fiber distribution was required to model the SM constitutive behavior. This multi-
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phase structural constitutive model with physically realistic parameters will be used to take a first 

step at elucidating remodeling in multi-phase muscular soft tissues, specifically UBW post-SCI, 

in the next objective. 

9.1.3 Towards a model for soft tissue remodeling 

UBW tissue remodels significantly as a result of SCI. Previously obtained experimental data on 

structural and mechanical changes in the rat UBW 10 days after initiation of SCI was reanalyzed 

to make it suitable for model implementation. Specifically, mass fraction data of collagen and 

SM, SM orientation data, and biaxial mechanical data were utilized. The mechanical data of the 

10-day time point was analyzed in the same manner as mechanical data of normal UBW, 

yielding an average strain energy surface for intact tissue. The parameters of the constitutive 

model of normal UBW formed the baseline from which model parameters of post-SCI UBW 

were determined.  

Through fitting of intact post-SCI strain energy data to the constitutive model, it was 

shown that UBW mechanical behavior post-SCI could be predicted without any intrinsic changes 

in collagen properties (i.e. collagen modulus and recruitment parameters), but with changes in 

the SM bundle properties. The ECM was found to be significantly more compliant, thereby 

corroborating the results of the first objective. Observed changes in UBW mechanical behavior 

as a result of SCI can now be attributed to structural changes in the ECM component, and both 

structural and intrinsic properties of the SM component. The identified changes in model 

parameters combined with the time-course constituent data can be used next to guide the 

derivation of time-dependent remodeling equations. Remodeling hypotheses will first need to be 

formulated based on known responses from the available experimental data. The developed 

model has the potential to explain underlying remodeling mechanisms of individual constituents 

in muscular tissues in several pathologies (e.g. UBW post-SCI), and predict remodeling events in 

a tissue engineering setting of muscular tissues. The general nature of the remodeling framework 

will allow for applications to a variety of native and engineered tissues, to investigate and predict 

individual, tissue specific, remodeling mechanisms.  
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9.2 FUTURE STUDIES 

9.2.1 Simulating time-course UBW remodeling 

The multi-phase structural constitutive model needs to be extended with kinetic remodeling 

equations to be able to elucidate UBW-specific remodeling mechanisms as a result of SCI. In 

order to derive kinetic equations, remodeling hypotheses, regulatory parameters, and model 

inputs need to be defined. In the areflexic phase (the initial phase after initiation of SCI) of the 

post-SCI rat bladder, the bladder is over-distended because it is filled over a longer period of 

time compared to a healthy bladder. The bladder is manually expressed every 12 hours, whereas 

normally a rat voids every hour. The time of urine expression is short in comparison to the filling 

time, so emptying time can be ignored, and UBW stretching can be represented by one high 

stretch value. A step increase in a strain measure could be considered as the input to the model in 

the areflexic phase. Areal stretch could be taken as the strain measure to eliminate direction 

dependencies. Normal maximal filling stretches can be determined from the whole-organ strain 

experiments [113], and an areal strain value can be calculated from this. 

As an initial step, the remodeling model expressions will be represented in its most 

general form as a function of time; this should be replaced by a meaningful expression as a 

function of the regulatory remodeling parameter, such as tissue stretch or stress. As elucidated in 

Chapter 8.0 , the parameters that will need to be expressed as a kinetic equation are the 

constituent mass or volume fractions φECM and φSM.. The form of these equations will be 

determined from the time-course constituent data (Figure 8.1 and Figure 8.2). Newly produced 

families of collagen fibers exhibit a different level of coiling, which is represented by a different 

value of λlb and λub, as was confirmed by the 10-day SCI fitting results (section 8.3.4) The shape 

of the collagen recruitment function will be assumed remain unaltered; only the onset of 

recruitment and the endpoint will be different. Based on the results from Chapter 6.0, this effect 

can be introduced as a result of elastin production, and hence the change of λlb and λub can be 

made a function of elastin production via the elastin mass fraction: λlb(φel (t)), λub(φel (t)). Another 

option is to make the change in reference state (via the permanent set deformation 1
0 F ) a function 

of a remodeling parameter, similarly to Watton [169, 170]. Changes in SM orientation (Figure 
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4.6 and Figure 8.5 as further quantified by fitting the data to a bimodal distribution function) 

could be made a function of a directional change in tissue strain to represent directional 

hypertrophy. 

Time-course data of constituent mass-fraction, specifically of SM, can be described by 

exponential rise-to-maximum functions, possibly combined with a limiting factor. These types of 

equations are the response of a linear system to an input of a unit step function. The unit step 

function can be multiplied with a linear factor, which could represent a measure of stretch or 

stress, or another regulatory parameter. Next, it will be assumed that larger SM cells or a higher 

number of SM cells are able to produce more collagen and hence the rate of production of 

collagen can be represented as a linear function of the amount of smooth muscle (e.g. [7]). A 

limiting factor could be introduced to the maximum amount of collagen that the SM cells can 

produce. With respect to the elastin component, as a simple initial step it will be assumed that 

elastin is produced in response to high tissue strain, with a linear relation as function of time or 

as a function of the strain input, wherein it is assumed that elastin is not degraded. The resulting 

kinetic equations will be combined with the constitutive model to simulate UBW remodeling as a 

function of time post-SCI. 

9.2.2 Modeling UBW in physiological state 

The constitutive model developed in the current dissertation describes UBW tissue in inactive 

state, which means that no passive tone or active contractions were taken into account and hence 

the bladder was not modeled in its full physiological state. The physiological state of the smooth 

muscle cells is characterized by basal tone and the ability to contract upon electrical or chemical 

stimulation. To derive a model of the tissue in its full physiological state, the mechanical 

behavior of UBW tissue should be determined in passive and active states, respectively. 

However, this is complicated by the occurrence of spontaneous contractions as was found from 

preliminary biaxial mechanical experiments. In addition, an appropriate method of smooth 

muscle activation to elicit controlled contractions needs to be developed. Currently, no generally 

accepted model of smooth muscle tone and active contraction is available. The challenge will be 

to develop such a model, applied specifically to UBW smooth muscle. What also will need to be 

addressed is the question if it is justified to add inactive, passive, and active behavior, and what 
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effect preconditioning has on each of these. Speich et al. [140-142] addressed this by stating that 

detrusor preconditioning involves elements of both viscoelastic softening (reversible) and strain 

softening (cross-link breakage). They suggested that even inactive stiffness is variable, which 

challenges the assumption that muscle force is the sum of inactive and active forces and inactive 

force is a constant value at a given muscle length. 

To fully validate the model and evaluate the predictive capabilities of the constitutive 

model, it needs to be extended to the organ level. This will allow for investigation of the 

relationship between in vivo organ level loading patterns and tissue level changes. In clinical 

urology and in urology research, a common technique to evaluate bladder function is the 

cystometrogram (CMG), which measures the pressure-volume relation upon controlled bladder 

filling. To simulate the full 3D bladder organ behavior, the constitutive model together with the 

remodeling theories would need to be implemented in a Finite Element Method (FEM) 

framework, together with accurate 3D bladder geometry. In addition, it is relevant to know the 

exact geometry of the organs of the urinary tract and of the entire pelvic floor in their 

physiological environment, because surrounding organs impose external pressure on the bladder, 

which is not taken into account in in vitro testing of the organ. As an initial step, a spherical or 

spheroidal geometry could be implemented without surrounding organs, combined with 

membrane theory (i.e., ignoring tissue thickness) and a simple nonlinear phenomenological 

constitutive model in FEM software such as Comsol Multiphysics®. The next steps would 

involve implementing the complete 3D rat bladder geometry including a 3D fiber orientation 

distribution function, implanting the multi-phase structural constitutive model as developed in 

this dissertation, and to calibrate this with experimental pressure-volume data from rat CMG and 

with ex vivo organ-level strain data [113]. 

In preparation of the organ level simulations, a 3D surface map of collagen fiber 

orientation will to be determined, mapped to an accurate 3D bladder geometry. Following 

methods described by Smith et al. [139], an array of 2D markers is mapped to the 3D geometry. 

An array of white polymer markers dividing the surface in eight sections will be applied to 

decellularized rat urinary bladders filled with opaque silicone. Bladders will be scanned with a 

FARO laser arm to obtain the 3D geometry outlining the marker positions. After scanning, the 

bladders will be cut into sections, and these tissue specimens will be cleared for Small Angle 

Light Scattering measurements to obtain the planar collagen fiber architecture (see section 5.3.2). 
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2D SALS measurements are then mapped to the 3D bladder geometry through the following 

procedure. The 3D point cloud from the FARO scan is converted to spherical coordinates, the 

marker coordinates are obtained, and the point cloud is divided into eight finite triangular 

elements based on the marker locations. A general 3D surface is defined by a surface fitting 

function. Each finite element is related to one of the eight SALS specimens. 2D marker 

coordinates are determined in the SALS scans and the SALS fiber orientation data is mapped to 

the 3D surface through the use of an intermediate natural coordinate system. The possibly 

heterogeneous fiber orientation that is obtained in this manner is incorporated in the Finite 

Element implementation.  

9.2.3 Simulating remodeling in a tissue engineering setting of (smooth) muscle-rich tissues 

 The field of tissue engineering and regenerative medicine is aimed at replacing injured tissues 

with functional tissue equivalents. However, the current understanding of the factors that control 

the functional outcome of the remodeling process that is required for successful tissue 

engineering is extremely limited. Very few quantitative, systematic studies are available that 

determine the effect of controllable factors such as mechanical forces, and even fewer studies 

have focused on (smooth) muscle-rich tissues such as the UBW and the esophagus. The primary 

function of smooth muscle organs is mechanical in nature (storage, voiding, and transport) and 

hence mechanical stimuli are important in its tissue formation. The fundamental quantitative 

principles that guide constructive remodeling of smooth muscle tissue have not been 

systematically investigated. 

In vitro studies at two different levels are currently underway to address the relationship 

between mechanical forces and tissue remodeling in the context of smooth muscle tissue 

regeneration. The first level focuses on the effect of loading patterns on in vitro remodeling of 

UBW ECM scaffolds seeded with smooth muscle cells and the second level on how the SM cell 

seeded ECM scaffolds affect local tissue remodeling events in an in vitro organ culture system. 

Previous in vitro organ culture studies on rat UBW tissue have shown a similar remarkable 

remodeling capability in response to different strain protocols as was observed in the UBW post-

SCI. The general nature of the developed multi-phase constitutive model provides the potential 

to be applied in this setting of tissue engineering. The model can be modified for the specific 
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characteristics of the in vitro systems and underlying mechanisms of in vitro strain-induced 

remodeling can be elucidated in both the ECM scaffold and the combined tissue system of tissue 

and cell populated ECM scaffold. A scaffold component will need to be added to the various 

tissue components in the model. And in addition to tissue constituent production, degradation of 

the scaffold will need to be explicitly modeled. 

Adding a different methodology, the remodeling events such as the production and 

degradation of ECM components and fiber reorientation could also be modeled using a 

bioinformatics approach, such as the Agent Based Modeling (ABM) technique [89]. This 

technique adds a stochastic component to the model, and is based on rules rather than equations. 

9.2.4 Simulating right ventricle remodeling in response to pulmonary hypertension 

Pulmonary hypertension involves chronic pressure overload on the right ventricle (RV), which 

makes the RV an important focus of treatment of this specific type of hypertension. Central to 

RV function is the underlying mechanical behavior of the RV myocardium. Current stu0dies are 

underway to elucidate RV myocardium mechanical behavior in the inactive and active states to 

evaluate the effects of disease and treatment. Morphological and mechanical behavior of intact, 

active, RV myocardium from a rat model of pressure overload will be determined. In this study, 

it is hypothesized that there will be a difference in mechanical behavior between normal and 

pressure-overloaded RV myocardium, and this will be mostly due to remodeled ECM in 

combination with increased myocyte mass. The biaxial mechanical behavior of RV myocardium 

will be quantified in the inactive and actively contracting states, and the relative contribution of 

ECM is determined by using the same decellularization technique as described in the current 

dissertation. The same testing will be performed on RV myocardium after remodeling and failure 

have been induced in the rat by pulmonary artery banding, and results will be compared to the 

normal behavior.  

This situation of RV myocardium remodeling as a result of hypertension is very similar 

to UBW remodeling as a result of SCI as was covered in the present dissertation, and hence the 

developed model will be easily applied to this new tissue system. It is anticipated that the ECM 

component of myocardium can be modeled in the same way as UBW ECM. However, a novel 

constitutive model for the myocyte component will need to be developed based on the observed 
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mechanical behavior of intact myocardium, where the ECM behavior is subtracted. The strain 

energy based approach as utilized in the present dissertation will be a useful technique in this. 

Simulation of the remodeling process in RV myocardium as a result of pulmonary hypertension 

will lay the basis for developing new treatments, specifically focused on the RV myocardium 

tissue. 

  



194 

APPENDIX A 

SCHEMATIC OF MODEL EQUATIONS 
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Figure A1. Schematic overview of the relevant equations of the multi-phase structural constitutive model. 
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APPENDIX B 

MATLAB GRAPHICAL USER INTERFACES 
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Figure B1. Graphical User Interface of the ensemble model fitting process. 
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Figure B2. Graphical User Interface of the structural model fitting process. 
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APPENDIX C 

RESULTS OF SYNTHETIC FIBER SIMULATIONS IN MATLAB 

Table B1. Overview of settings discrete fiber simulations (see also Table 3.1). 

 

descr. 11 12 21 22 descr. 11 12 22
1 0 none 1 0 0 1 equibiaxial 2 0 2
2 1.5 none 1 0 0 1 equibiaxial 2 0 2
3 1.5 equibiaxia 1 0 0 1 equibiaxial 2 0 2
4 1.5 unequal 1.2 0 0 1 equibiaxial 2 0 2
5 1.5 unequal 1.2 0 0 1 shear 2 0.1 2
6 1.5 shear 1.2 0.10 0.00 1 shear 2 0.1 2
7 1.5 shear 1.2 0.15 0.15 1 shear 2 0.15 2
8 1 none 1 0 0 1 equibiaxial 2 0 2
9 1.5 none 1 0 0 1 equibiaxial 2 0 2

10 1.5 equibiaxia 1.1 0 0 1.1 equibiaxial 2 0 2
11 1.5 unequal 1.4 0 0 1.1 equibiaxial 2 0 2

S-E

P-λ

F01 maxU1tsim. 
no.

fiber 
model λs
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Figure C1. Comparison of model stress calculations with results of discrete fiber simulation 1 with the linear S-E 
fiber model without slack (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch in the 11 direction. B) 1st Piola 
Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber ensemble strain. D) Fiber 

distribution function in Ω0 
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Figure C2. Comparison of model stress calculations with results of discrete fiber simulation no. 2 with the linear S-
E fiber model with slack (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch in the 11 direction. B) 1st Piola 
Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber ensemble strain. D) Fiber 

distribution function in Ω0. 
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Figure C3. Comparison of model stress calculations with results of discrete fiber simulation no. 5 with the linear S-
E fiber model with slack, permanent set and shear deformation (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch 
in the 11 direction. B) 1 st Piola Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber 
ensemble strain. D) Fiber distribution function in Ω0 and Ω1. E) 2nd Piola Kirchhoff shear stress vs. shear strain. 
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Figure C4. Comparison of model stress calculations with results of discrete fiber simulation no. 7 with the linear S-
E fiber model with slack, permanent set including shear and shear deformation (Table B1, Figure 3.7). A) 1st Piola 
Kirchhoff Stress vs. stretch in the 11 direction. B) 1st Piola Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber 
ensemble stress vs. fiber ensemble strain. D) Fiber distribution function in Ω0 and Ω1. E) 2nd Piola Kirchhoff shear 

stress vs. shear strain.  
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Figure C5. Comparison of model stress calculations with results of discrete fiber simulation 8 with the linear P-λ 
fiber model without slack (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch in the 11 direction. B) 1st Piola 
Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber ensemble strain. D) Fiber 

distribution function in Ω0. 
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Figure C6. Comparison of model stress calculations with results of discrete fiber simulation 9 with the linear P-λ 
fiber model with slack (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch in the 11 direction. B) 1st Piola Kirchhoff 

Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber ensemble strain. D) Fiber distribution 
function in Ω0. 
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Figure C7. Comparison of model stress calculations with results of discrete fiber simulation 11 with the linear P-λ 
fiber model with slack and permanent set deformation (Table B1). A) 1st Piola Kirchhoff Stress vs. stretch in the 11 

direction. B) 1st Piola Kirchhoff Stress vs. stretch in the 22 direction. C) Fiber ensemble stress vs. fiber ensemble 
strain. D) Fiber distribution function in Ω0 and Ω1. 
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APPENDIX D 

PARAMETRIC INVESTIGATION OF THE MULTI-PHASE CONSTITUTIVE MODEL 

Two linear strain paths were defined that encompassed a general strain range representative for 

both data sets and showing anisotropic effects (Figure D1). These strain paths were used in 

preliminary parametric studies to facilitate plotting of result). For these two strain paths, ECM 

and SM strain energy of normal intact UBW were calculated using the model parameters 

determined in Chapter 7.0, as well as the weighted sum of ECM and SM strain energy (Eq.(2.1). 

These were plotted as function of the circumferential strain EC (Figure D2 A-C). Post-SCI intact 

strain energy (from Figure 8.6) was calculated for the same strain paths for comparison (Figure 

D2 D). 
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Figure D1. Comparison of intact tissue strain energy of normal and 10-day post-SCI data sets. 
Individual protocol strain paths are shown by black dots and strain energy surface fits are shown by contour lines. 
The red lines indicate two general strain paths to use for parametric investigation. The straight line is referred to as 

“direction 1” and the dashed line as “direction 2”. 1 A) Normal. B) 10-days SCI. 
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Figure D2. Strain energy of normal ECM, SM and intact, as well as post-SCI intact, for two linear strain paths. 
The black lines represent “direction 1” and the dashed lines “direction 2” as defined in Figure 8.7. A) Normal ECM 

strain energy calculated using the model fit parameters (Chapter 7.0). B) SM strain energy calculated using model fit 
parameters (Chapter 7.0); C) Weighted sum of normal ECM and SM strain energy. D) Post-SCI intact strain energy 

calculated using the Fung model fit parameters. This is the same data as Figure 8.7 
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Figure D3. Effect of changes in ECM volume fraction parameter on strain energy of intact tissue. 
The weighted sum of ECM and SM strain energy was calculated for different values of φECM. Dashed lines are 

direction 2. The model is very insensitive to values of φECM. 
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Figure D4. Effect of changes in collagen distribution width on strain energy of ECM and intact tissue. 
A,B) ECM strain energy (panel A) and the weighted sum of ECM and SM strain energy (panel B) were calculated 
for different values of σR, along two different strain directions. Arrows indicate the direction of parameter increase. 

σR = 19 represents normal behavior. The effect was larger in direction 1 (which is close to the circumferential 
direction) than in direction 2. C) Comparing the two extreme values of σR shows that the overall effect on the intact 

tissue strain energy is minimal in direction 2.  
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Figure D5. Effect of changes in collagen lower bound strain on strain energy of ECM and intact tissue. 
A,B) ECM strain energy (panel A) and the weighted sum of ECM and SM strain energy (panel B) were calculated 
for different values of 0λlb along two different strain directions. Arrows indicate the direction of parameter increase. 
0λlb = 1.8 represents normal behavior. Higher values of 0λlb yielded a pronounced decrease of ECM strain energy in 

both directions resulting in lower tissue-level strain energy in both directions (panel C). 
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Figure D6. Effect of decreasing the collagen upper bound strain on strain energy of ECM and intact tissue. 
A,B) ECM strain energy (panel A) and the weighted sum of ECM and SM strain energy (panel B) were calculated 

for different values of 0λub along two different strain directions. Arrows indicate the direction of decrease in 0λub 
compared to a normal value of 0λub = 2.15. Lower values of 0λub yielded a pronounced increase in ECM strain energy 

in both directions resulting in higher tissue-level strain energy in both directions (panel C). 
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Figure D7. Effect of introducing a second collagen fiber family on strain energy of ECM and intact tissue. 
A,B) ECM strain energy (panel A) and the weighted sum of ECM and SM strain energy (panel B) were calculated 

for different values of γ along two different strain directions. Arrows indicate the direction of increase in γ compared 
to a normal value of γ = 0. The presence of a collagen fiber family along the circumferential direction yielded a 

pronounced increase in ECM strain energy in direction 1 resulting in different anisotropic behavior at the tissue level 
(panel C). 
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Figure D8. Effect of altering the ratio of circumferential to longitudinal SM fibers on strain energy of SM and intact 
tissue. 

A,B) SM strain energy (panel A) and the weighted sum of ECM and SM strain energy (panel B) were calculated for 
different values of γSM along two different strain directions. Arrows indicate the direction of increase in γSM (normal 
value: γSM = 0.38). C) Comparing the two extreme values shows that the effect on the intact tissue strain energy is 

moderate. 
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Figure D9. Effect of the width of the distribution of longitudinally oriented SM fibers on strain energy of SM and 
intact tissue. 

A,B) SM strain energy (panel A) and the weighted sum of SM and tissue strain energy (panel B) were calculated for 
different values of σSML along two different strain directions. Arrows indicate the direction of increase in σSML 

(normal: σSML = 7.6o). Note the unrealistically high strain energy values. 
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Figure D10. Comparing the effect of two different values of the parameter d1 of the circumferential fiber family on 
strain energy of SM and intact tissue.  

A higher value of d1 resulted in significantly higher strain energy values in direction 1 (normal: dC1= 2.3⋅10-14). 
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