A HYBRID HARDWARE/SOFTWARE ARCHITECTURE THAT COMBINES
A 4-WIDE VERY-LONG INSTRUCTION WORD SOFTWARE PROCESSOR
WITH APPLICATION-SPECIFIC
SUPER-COMPLEX INSTRUCTION-SET HARDWARE FUNCTIONS

by
Dara Marie Kusic

BS, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of
the School of Engineering in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburgh

2005

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by
Dara Marie Kusic

It was defended on
July 6", 2005
and approved by
Alex K. Jones, Assistant Professor, Department of Electrical and Computer Engineering

Steven Levitan, John A. Jurenko Professor, Department of Electrical and Computer
Engineering

Thesis Advisor: Raymond R. Hoare, Assistant Professor, Department of Electrical and
Computer Engineering

ABSTRACT

A HYBRID HARDWARE/SOFTWARE ARCHITECTURE THAT COMBINES
A 4-WIDE VERY-LONG INSTRUCTION WORD SOFTWARE PROCESSOR
WITH APPLICATION-SPECIFIC
SUPER-COMPLEX INSTRUCTION-SET HARDWARE FUNCTIONS
Dara Marie Kusic, MS

University of Pittsburgh, 2005

Application-driven processor design is becoming increasingly feasible. Today,
advances in field-programmable gate array (FPGA) technology are opening the doors to
fast and highly-feasible hardware/software co-designed architectures. Over 100,000
FPGA logic array blocks and nearly 100 ASIC multiply-accumulate cores combine with
extensible CPU cores to foster the design of configurable, application-driven hybrid
processors.

This thesis proposes a hardware/software co-designed architecture targeted to an
FPGA. The architecture is a very-long instruction-word (VLIW) processor coupled with
super-complex instruction set (SuperCISC) hardware accelerants. Results of the
VLIW/SuperCISC show performance speedups over a single-issue processor of 9x to
332x, and entire application speedups from 4x to 127x. Contributions of this research
include a 4-way VLIW designed from the ground up, a SystemC VLIW simulator, a zero-
overhead implementation of a hardware/software interface, evaluation of the scalability
of a shared register file, examples of application-specific hardware accelerants, and an

evaluation of shared memory configurations.

TABLE OF CONTENTS

1.0 INTRODUCTION....coiiiiiiie ettt st sre e b sseeetee e 1
2.0 RELATED WORK ...ttt ettt sttt e 7
2.1 RELATED ARCHITECTURES ... 7
2.2 TECHNOLOGY PLATFORM ..ottt 11
3.0 ARCHITECTURAL DESCRIPTION.....cccciiiitiiiiiiteiiesieeiee e 17
3.1 HARDWARE/SOFTWARE PARTIONING.......ccceoiiirinienine s, 17
3.2 VLIW ARCHITECTURE ... 24
3.3 SHARED REGISTER FILE.......cooiiiiiieee e 26
3.4 ZERO-OVERHEAD HARDWARE/SOFTWARE INTERFACE..................... 31
3.5 SUPERCISC HARDWARE FUNCTIONSooiiiieieeeeeeee e 34
3.5.1 Candidate Selection and Code SW/HW Partitioning.............ccccevevvenenne. 35

3.5.2 Data Flow Graph Generation...........ccccvevueiieieeiesieseese e 38

3.5.3 DFG t0 VHDL CONVEISION......cctitiiiiiiienieieiesie e 42

4.0 SPEEDUP OF SUPERCISC HARDWARE FUNCTIONS.........cccooiiiieiiee 45
4.1 CONTROL FLOW EFFICIENCYooiiiiiieiiieie e 45
4.2 CYCLE TIME COMPRESSIONoooiiiiiiiiieie e 49
5.0 SYSTEM MODELING......cooiiiiiiiiiie ettt 54
5.1 VHDL MODELING......oooiiiiiieiie et 54
5.2 SYSTEMC MODELING ... 56

6.0 PERFORMANCE RESULTS ... 59

6.1 VLIW PERFORMANCE ... 59
6.1.1 VLIW Performance Profile..........ccocoiiiiiiiiiice e 60

6.1.2 Area and Resource UtHZzation...........c.ccooeiiiiiiiiiiiincc e 61

6.2 SUPERCISC HARDWARE PERFORMANCE ..o 62
6.2.1 Overall Application SPEEAUPScceererierieiieie et 63

6.2.2 Area ULHIZALION.cooiiiiiiiieecee e 65

6.3 SUPERCISC SPEEDUP VERSUS AREA INCREASE..........ccccooiiiiiiiiiieens 66
7.0 FUTURE DIRECTIONS ..o 68
7.1 SHARED MEMORYoooiiiiiiiiii ettt 68
8.0 CONCLUSIONot 74
APPENDLX .. e 77
A.1 SOURCE CODE FOR APPLICATION KERNEL OF ADPCM DECODER..... 77
A.2 SOURCE CODE FOR APPLICATION KERNEL OF ADPCM ENCODER...... 78
A.3 SOURCE CODE FOR APPLICATION KERNEL OF G.721 DECODER 79
A.4 SOURCE CODE FOR APPLICATION KERNEL OF GSM DECODER........... 79
A.5 SOURCE CODE FOR APPLICATION KERNEL OF IDCT COLUMN............ 80
A.6 SOURCE CODE FOR APPLICATION KERNEL OF IDCT ROW.................... 81
A.7 SYSTEMC VLIW SOURCE FILE: MAIN.CPP......ccoiiiiiieieee e 82
A.8 SYSTEMC VLIW SOURCE FILE: ALU.CPPooiiiiiiiieeeee e 95
A.9 SYSTEMC VLIW SOURCE FILE: DECODER.CPP........ccccooiiiiiiiiiieeeeie 99
A.10 SYSTEMC VLIW SOURCE FILE: DIRECTIVES.Hccoooiiiiiiiieens 113
A.11 SYSTEMC VLIW SOURCE FILE: ICACHE.CPP.......cooiiiiiiiieieeeieeeeees 116

A.12 SYSTEMC VLIW SOURCE FILE: MUX_2TOL1.CPP......ccoeviiiiiiiiciien 117

A.13 SYSTEMC VLIW SOURCE FILE: PC.CPP.....cccoiiiiiiiiciiiie e 118
A.14 SYSTEMC VLIW SOURCE FILE: RAM.CPPcooviiiiiiiiiiic e 120
A.15 SYSTEMC VLIW SOURCE FILE: REGFILE.CPPcccooiiiiiiiiiiciie 123
A.16 SYSTEMC VLIW SOURCE FILE: STIMULUS.CPP.......ccccccviiiiiiiiiiein 126
A.17 VHDL VLIW SOURCE FILE: TOP_SYSTEM_4PE_STRUCT.VHD............ 129
A.18 VHDL VLIW SOURCE FILE: TOP_ALU_AND_DECODER.VHD.............. 136
A.19 VHDL VLIW SOURCE FILE: TOP_REGISTER_32X32X4W.VHD............. 141
A.20 VHDL VLIW SOURCE FILE: DECODER_NIOS.VHD.......c.cccccoviiiiiiiin 147
BIBLIOGRAPHY ..o s 198

Vi

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

LIST OF TABLES

Available resources on an Altera Stratix 11 EP2S180.cccccoevvvvecieieenenn, 16
Assembly instructions to execute if-then-else statement in software 47
Assembly instructions to execute 16-entry priority encoder in software 49

Table of SuperCISC node isolated for performance and area utilization on an
AIREra EP2S180Fooviiececeee ettt 51

Timing results for paths within 4-way VLIW on Altera EP2S180................. 61

Table 6. Timing results for SuperCISC hardware execution of listed portions of

benchmark applications on Altera EP2S180..........cccooeiiiiiiiniiiienienecee s 63

vii

Figure 1.
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

LIST OF FIGURES

Block diagram of VLIW/SuperCISC architeCture.cccooeveeveninnnninennen, 2
Block-level architecture of Stratix 11 FPGA [29]ccovovviviiieeee e, 12

Block-level diagram of an adaptive logic module (ALM) on a Stratix 11 [29]
.. 13

Block-level diagram of a digital signal processor (DSP) showing
configuration for 18x18-bit multiply-and-accumulate (MAC) on a Stratix Il
(2] et 14

Block-level diagram of the memory distribution on a Stratix Il [29].......... 15

Simplified block-diagram showing custom instruction calls that extended

from NIOSH ISA 4-Way VLIW......ooviiiieceee e 22
Block diagram of VLIW/SuperCISC architecture............ccoocvvvevveienennnnnn, 24
Block diagram of 4-way VLIW.cccoooiiiiiiccceecee e 26

N-element register file supporting P-wide VLIW with P read ports and P
LT L 1 USSR 27

Scalability of a 32-element register file for P processors having 2P read and
P write ports on an Altera Stratix [1 EP2S180..........cccccceviveviviiievieie e, 29

Scalability of a 32-bit P-to-1 multiplexer on an Altera Stratix 11 EP2S180.30

N-element register file supporting SuperCISC hardware and a P-wide VLIW
with P read ports and P WIIte POIS........c.ccvveveiiiieeie e 32

viii

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.
Figure 22.

Figure 23.

Figure 24.

Scalability of a 32-element register file for P processors having 2P read and
P write ports and full SuperCISC hardware access on an Altera Stratix Il
EP2S180. ... ittt et 33

Four step process for the hand-design of SuperCISC hardware. 35

Instruction-level parallelism (ILP) of MediaBench benchmark applications
discovered by Trimaran compiler given parameters for 4-wide VLIW with 2
memory ports and unlimited-wide VLIW with unlimited memory ports [32]

Execution time occupied within the top 10 loops in the code averaged across
the Specint, MediaBench, and Netbench suites, as well as selected security
applications [37]. Time-intensive loops are directed to SuperCISC
NAIAWAIE. ...t ae e sraeaeaneenneens 37

C-language software code for kernel portion of ADPCM encoder [32]...... 39

Data flow graph (DFG) representing SuperCISC hardware function for
kernel portion of ADPCM encoder, shown in Figure 17.........cccccevervennenn. 40

C-language software code for IDCT column operation [32]........ccccccevenen. 41

Data flow graph (DFG) representing SuperCISC hardware function for
IDCT column operation, shown in Figure 19.........cccooevvvievievecie e 42

Entity and port declarations for ADPCM encoder DFG in Figure 18.......... 43
C- and port declarations for IDCT column DFG in Figure 20. 43

Data flow graph (DFG) representing the assembly code in Table 2 that can
be represented in hardware as a 2:1 multipleXer.........cccccovevivevesiieiveiennn, 46

Cycle count for if-then-else statement executed on a single processor and on
a 4-way VLIW. Speedup of 2:1 multiplexer hardware implementation of
the same control flow control flow is shown in bold above the cycle count.
.. 48

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Cycle time utilization of SuperCISC arithmetic nodes normalized to the
cycle time of a 167 MHz processor on an Altera EP2S180...........c..ccocu..... 52

Speedup of fixed operand computation executed in SuperCISC
computational node versus 2 variable computation executed in SuperCISC
node and versus execution on 167 MHz VLIW on an Altera EP2S180...... 53

Design flow for VLIW/SuperCISC architecture [32][33]. ...cccoovvververvennnnn, 55

Run-time profile of benchmark applications compiled for the VLIW
processor only of the SystemC simulator model.ccccccooiveieiieivieenn, 57

Speedup for single application kernels of SuperCISC functions versus
several 167MHz processor architectures [32]........ccccvvveverienieennsiieseerienn 64

Overall application speedup of various processor configurations compared
to single-issue 167MHz architecture [32].......ccccovveveiiievienieiiere e 65

Performance and area increase for VLIW supported by SuperCISC hardware
versus VLIW without SuperCISC support on an Altera EP2S180.............. 67

Memory performance on an EP2S180 for M-RAM and M4K blocks of
varied dual-port size and address space. The shaded area indicates memory
configurations that meet 167MHz timing constraints.............ccoocvvveiveniene 71

Bandwidth speedup of vector-wide dual ported memory over 32-bit dual
ported memory on an EP2S180. The speedup of a 32-bit dual ported
memory is implied to be 1x. ‘Target’ indicates ideal bandwidth speedup. 72

Sample configuration of a shared memory architecture. The VLIW accesses
a 512Kb dual-ported memory. The SuperCISC hardware function accesses
eight, 64KD memory Danks. ... 73

10.

11.

12.

13.

ALU

CISC

CPU

DFG

DSP

FPGA

LAB

LUT

PE

RAM

RISC

VHDL

VLIW

LIST OF ACRONYMS

Arithmetic Logic Unit

Complex Instruction Set Computing
Central Processing Unit

Data Flow Graph

Digital Signal Processing

Field Programmable Gate Array
Logic Array Block

Look-up Table

Processing Element

Random Access Memory

Reduced Instruction Set Computing
VHSIC Hardware Description Language

Very Long Instruction Word

Xi

ACKNOWLEDGEMENT

I would like to express my appreciation to my research and faculty advisor Dr. Raymond
R. Hoare for his guidance and direction on this project. | would like to thank Dr. Hoare
for the encouragement he continually offers to all members of the VLIW research team
and for the positive work environment he fosters. It is truly a privilege to be a member of
his research team. | would also like to thank Dr. Steven P. Levitan and Dr. Alex K. Jones
for serving on my master’s thesis committee. Drs. Hoare, Levitan and Jones have been
an invaluable part of my master’s studies, encouraging me to continue my education and
take an active role in the academic community.

I would also like to thank Sandy Weisberg and Karen Dicks of the Electrical and
Computer Engineering staff for their help navigating the university system. Last but

certainly not least, | would like to thank my family for their love and support.

Xii

1.0 INTRODUCTION

Application-driven processor design is becoming increasingly feasible. In the past, application-
specific processing architectures required two sacrifices: a costly development and fabrication
process and a performance loss to interface via bus or to off-chip hardware. Today, advances in
field-programmable gate array (FPGA) technology are opening the doors to fast and highly-
feasible hardware/software co-designed architectures on a single chip with bus-less
communication. Current FPGAs contain over 100,000 logic array blocks and nearly 100
application-specific integrated circuit (ASIC) multiply-accumulate cores. When efficiently
combined, their processing capabilities exceed high clock-rate desktop processors.

This thesis proposes a hardware/software co-designed architecture targeted to an FPGA.
The architecture is a very-long instruction-word (VLIW) processor coupled with super-complex
instruction set (SuperCISC) hardware accelerants (or hardware functions). SuperCISC hardware
is densely-packed, asynchronous combinational logic circuit that that executes tens to hundreds
of equivalent software instructions representing a kernel of application source code within a
single, long-latency datapath. A high level diagram of the VLIW/SuperCISC architecture is

shown in Figure 1.

v

SuperCISC hardware SupercISC
Decoder

SuperCISC
SuperCISC Hardware
= .

SuperCISC
Hardware

SuperCISC
Hardware

SuperCISC
Hardware

SuperCISC
Hardware

SuperCISC SuperCISC
Hardware . Hardware

e

Shared instruction stream

i

— Instruction
ROM

Shared Register File

Shared
Memory

Shared register file /

4-wide VLIW software
processor

Figure 1. Block diagram of VLIW/SuperCISC architecture.

Results (Section 6.0) of the VLIW/SuperCISC architecture show performance speedups over a
single processor of 9x to 332x, and entire application speedups from 4x to 127x. Contributions
of this research include a 4-way VLIW designed from the ground up, the design of SystemC-
based simulator to mimic the VLIW processor, a zero-overhead implementation of a
hardware/software interface, evaluation of the scalability of a shared register file, examples of
application-specific hardware accelerants, and an evaluation of shared memory configurations.
Contribution 1: A 4-way VLIW was designed from the ground up in VHDL hardware
description language. The VLIW processor combines 4 parallel RISC processors to shared a

register file, address space and instruction stream to execute up to 4 different instructions

concurrently (scheduled at compile time).

Contribution 2: Designing SystemC-based simulator to mimic the VLIW processor. The
SystemC VLIW processor provides run-time instruction counts by type and cycle-accurate
snapshots of functional behavior of the system.

Contribution 3: A zero-overhead implementation of a hardware/software interface was
designed for the VLIW/SuperCISC architecture. The interface binds the hybrid architecture
through a common instruction stream and shared register file. The shared instruction stream
enables zero-cycle context switching. The VLIW register file interfaces to the SuperCISC
hardware with the addition of one 2:1 multiplexer per register. The extra latency is absorbed by
the slack time of the register file respective to the VLIW. Therefore, there is zero noticeable cost
to the operating frequency of the VLIW processor.

Contribution 4: This work evaluates the scalability of a shared register file. Measuring
performance decline of the register file enables informed design decisions with respect to
widening the VLIW processor.

Contribution 5: This work illustrates examples of application-specific hardware
accelerants. SuperCISC hardware is an application-driven execution unit that represents a kernel
of software code as a densely-packed, asynchronous combinational logic circuit. SuperCISC
hardware is currently designed by hand using a 4-step process that starts with application source
code profiling, to hardware/software code partitioning, to data-flow graph generation, and finally
translation to VHDL hardware modeling language.

Contribution 6: Shared memory configurations are evaluated for performance cost. Two
shared memory configurations were presented — an independently-address, interleaved memory

architecture, and a vector-ported single-bank memory architecture.

Algorithms for real-time multimedia, signal processing and scientific computing
applications continue to push for flexible, scalable, highly-parallel processors. Architectural
options for achieving computational acceleration range from homogeneous, parallel processing
networks, to high clock rate deep execution pipelines that support single-thread instruction-level
parallelism (ILP), to application-specific hardware co-processors that can execute complex
sequences of instructions in one time unit. No single option can deliver sought-after
performance gains as effectively as drawing upon the advantages of each [1][2].

Homogeneous parallel processors offer some gain in performance, although speedups
gained through parallel architecture are often limited by the ILP uncovered in benchmark
applications [3][4]. Custom ASIC processors deliver high performance for specified
applications, but are accompanied by high fabrication costs [5] and confronted by the challenges
of reuse [6]. Reconfigurable devices such as FPGAs support application-specific computing
with relatively low costs, but have often been dismissed because of slow performance and
limited capacity [7][8]. Recent advances in FPGA technology, however, are beginning to reform
that notion [9][10].

By combining a parallel processor with custom hardware paths on newer, faster FPGAs,
it is possible to create an architecture in which each processing component compensates for the
shortcomings imposed upon the other. The result is a hybrid processor that exceeds ideal
performance gains of a homogeneous parallel processor functioning alone, and raises the
effective throughput of an embedded processor implemented on an FPGA to compete with high
clock rate desktop processors. Advances in design automation tools coupled with ambitious
plans for a new era of configurable devices promise to make hybrid architectures a standard of

computing. This thesis contributes findings on architectural tradeoffs affecting VLIWSs and offer

4

performance results on hybrid architectures to further the advancement of hybrid processors and
configurable devices for accelerated computing.

Four reduced instruction-set computing (RISC) computational units combine in parallel
to form the VLIW unit within the architecture. A RISC machine provides low-level language
support for a small set of simple instructions in a load/store based architecture [11]. A RISC-
based architecture must be flexible enough to support a wide array of applications, but the
application often requires large code size to compensate for flexibility.

In the VLIW, four RISC-type execution units share a register file and address space and
concurrently execute up to four different instructions from a single application thread. The
VLIW compiler ensures there are no data dependencies between the concurrent instructions [12].
The VLIW relies on the instruction-level parallelism discovered by the compiler to achieve
parallel speedups.

Hardware accelerants use a complex-instruction set computing (CISC) model as the basis
for the design. In the CISC model, one instruction indicates a set of low-level instructions.
CISC machines often take tens to hundreds of cycles to execute a single instruction. In the
architecture described in this paper, SuperCISC refers to a hardware-based accelerator for which
one instruction indicates tens to hundreds of asynchronous operations that operate within a multi-
cycle path interfaced to the VLIW. In the CISC model, computational density is provided at the
cost of limited flexibility.

A hybrid RISC/CISC processor draws upon the strengths of each type of architecture.
The proposed VLIW/SuperCISC architecture couples parallel RISC processors with specialized-
execution CISC co-processor hardware. RISC processors are flexible - they make good general

purpose processors because a small set of instructions builds a wide array of applications. CISC

5

processors are efficient — they execute complex operations in a single time instance. A hybrid
architecture combines the flexibility of a RISC processor with the burst computational power of
a CISC processor.

Section 2.0 introduces related work of similar research projects and presents some
information on the Altera Stratix Il FPGA technology platform. Section 3.0 describes the
architecture of the VLIW/SuperCISC hybrid processor including the shared register file and
hardware/software interface. Section 4.0 presents and analysis of the sources of speedup for
SuperCISC hardware. Section 5.0 describes the VLIW and hybrid processor modeling methods.
Section 6.0 presents performance results of the VLIW and VLIW/SuperCISC architectures as
compared to a single-issue processor. Section 7.0 presents performance data on a shared
memory architecture which may be implemented in the VLIW/SuperCISC at a future date, and

Section 8.0 summarizes the main contributions of this work.

2.0 RELATED WORK

Hardware acceleration is the subject of many academic and industry studies and is supported by
the availability of current field-programmable gate arrays (FPGASs). Research detailed in Section
2.1 generally shows significant speedups of hardware-augmented processors over baseline,
software-execution processors. Although some researchers call for a new era of configurable
devices to support hardware acceleration [7][8][19][20][21][22][23], the VLIW/SuperCISC
architecture targets and is performance-profiled to an Altera Stratix Il FPGA detailed in Section

2.2.

2.1 RELATED ARCHITECTURES

Related work to the VLIW/SuperCISC architecture includes processor/co-processor designs
from industry and from academia. First, work from STMicroelectronics has produced a
functional study of coupling reconfigurable hardware processing units with a VLIW. Next, work
from University of California Berkeley has studied coupling configurable hardware with a single
MIPS processor. Next, work on alternative kinds of configurable technology platforms is
presented, followed by a description of parallel processing work from the University of

Pittsburgh that precedes the work in this thesis.

Industry research at STMicroelectronics has produced a processor model consisting of a
VLIW coupled with a reconfigurable functional unit (RFU) [15], closely aligned with the
research presented in this thesis. The VLIW / RFU combines a 4-way ST200 [17] processor core
with RFUs that serve as kernel accelerators. The project architecture is studied primarily for the
relationship between RFU complexity, Amdahl speedup [12] and latency. Architectural and
performance tradeoffs for RFUs of varying complexity are measured through execution times of
pixel interpolation and standard average difference (SAD) routines for motion estimation in
MPEG4 video encoding. In a worst case technology configuration factor for the RFU, results
indicate a 5x speedup of an RFU-enhanced architecture over a baseline 4-way VLIW for
benchmark applications, reducing the kernel execution time from 26% to 6% of the entire
application. 1/0O bandwidth proves to be the limiting factor in increasing the width and
complexity of the RFUs. While the VLIW/SuperCISC architecture presented in this thesis
considers the underlying microarchitecture, the STMicroelectronics VLIW/RFU study performs
no analysis of a supporting platform.

The Garp study conducted at University of California, Berkeley [7][8], produced a model
for a reconfigurable hardware array coupled to one MIPS processor on a single chip. Garp
devotes attention to the memory model supporting dynamic configuration of the coprocessor
array, optimizing the model for latency reduction. Dynamic configuration of the SuperCISC co-
processors is not considered in this thesis as capacity analysis conducted for this thesis has
shown that current higher-end FPGAs can support a large number of co-processors to support
application-specific computing without run-time re-configuration [18].

Garp researchers dismiss the aptness of FPGAs for the target of their computational

model, instead proposing to target the architecture to currently unfabricated, rapidly configurable

8

hardware. The Garp project was undertaken in the late 1990’s, basing many claims regarding the
unsuitability of FPGAs on now-outdated devices. Advances in FPGA technology help to refute
many of the claims of unsuitability. For one, FPGAs have greatly significantly increased the
number of configurable logic blocks (CLBs), allowing enough area on the chip to contain many
computational kernels in support of more than one application. Second, FPGAs now contain
embedded high-speed multipliers, allaying Garp concerns about slow execution of complex
operations. Third, although the on-chip RAM blocks are still limited, the amount of memory on
an FPGA has increased since the first Garp publication.

PipeRench [19][20], as with Garp, argues for a new era of reconfigurable devices in
attesting to the performance gains of application-specific computational hardware. PipeRench’s
main contribution is in proposing a reconfigurable architecture having a coarser logic grain than
current FPGAs to support a host of expediters for application-development and run-time
execution. PipeRench points out advantages of reconfigurable datapaths not explored in the
context of this thesis, such as efficient handling of reduced or variable bit-width computation,
and datapath pipelining to support intermediate-stage outputs. The work presented in this thesis
focuses on processor architectures that exploit currently-available rather than proposed
reconfigurable devices, but concurs that reconfigurable computing will benefit from advances in
underlying microarchitecture. PipeRench also differs from the SuperCISC architecture by
pipelining stages through the computational hardware, contributing to cycle time waste of simple
operations.

HASTE [21] proposes a configurable fabric with interconnected sub-word ALUs. RaPid
[22] is a pipelined, coarse-grain configurable architecture, and Matrix [23] similarly proposes a

coarse-grain architecture for hardware-based acceleration. HASTE, RaPid and Matrix execute

9

time-consuming computational kernels on coarse-grained reconfigurable fabrics. Most FPGAs
offer comparable coarse-grain support with embedded multipliers/adders. SuperCISC hardware
co-processors implemented on an FPGA reduce the execution latency and increase throughput of
computational kernels as compared with reconfigurable fabrics.

The Imagine processor architecture [24][25] combines a reconfigurable co-processing
functional unit with a processor. The architecture pairs a very wide SIMD/VLIW processor
engine with a host processor. The functional unit/host processor relies on ILP for speedup, but it
is often difficult to achieve these gains due to low ILP discovered within the application source
code. The VLIW/SuperCISC architecture differs from the Imagine processor because it uses a
combinational hardware for the main thrust of its application acceleration.

The Chimaera processor [26] combines a reconfigurable functional unit with a register
file with a limited number of read and write ports. Our system differs as we use a VLIW
processor instead of a single processor and the SuperCISC hardware coprocessors connect
directly to all registers in the register file for both reading and writing, allowing hardware
execution with no overhead affecting the overall performance of the architecture. Chimaera
assumes that the hardware resource must be reconfigured at run-time to execute an application
kernel, which may require significant overhead. In contrast, SuperCISC hardware units are
configured prior to run-time. Additionally, the VLIW/SuperCISC system is implemented in a
single FPGA and thus has a faster design-to-deployment time than Chimaera and any of the
reconfigurable fabrics mentioned above.

Recent work in SIMD architecture connects 64 and 88 processing elements using a
hypercube network [27]. This architecture was studied for the effects of scaling and shows a

modest decline in performance as the number of processors scaled from 2 to 88. Instruction

10

broadcasting and communication interconnect were the only factors significantly impeding
scalability of the architecture. Like the VLIW/SuperCISC, the SIMD ALUs utilize embedded
multiply-add cores on the FPGA and make use of a system of custom instructions to extend the
ISA of the ‘host’ processor (VLIW, SIMD, respectively). The SIMD architecture requires a
communication strategy not required by the VLIW/SuperCISC. One limitation of a SIMD
architecture is the requirement for sameness of the instructions executed in parallel. However,
many benchmark applications cannot fully utilize the degree of parallelism in a SIMD
architecture. Additionally, the SIMD architecture requires parallel programming while
programming for the VLIW/SuperCISC is compiler-driven from serial source code.

Research in industry [28] shows that coupling a VLIW with a reconfigurable resource
offers the robustness of a parallel, general-purpose processor (VLIW) with the accelerating
power and flexibility of a configurable hardware co-processor. The cited work assumes zero
reconfiguration penalty of the co-processing ‘grid’ and that design automation tools tackle the
problem of reconfiguration. The VLIW/SuperCISC differs because the FPGA resources are
programmed prior to execution, giving us a more realistic reconfiguration penalty of zero. The
VLIW/SuperCISC project is actively developing a compiler and automation flow to map

application kernels as SuperCISC hardware to the reconfigurable device.

2.2 TECHNOLOGY PLATFORM

The proposed VLIW/SuperCISC architecture described in Section 3.0 was performance profiled
with respect to an Altera Stratix 1l EP2S180 FPGA. The Stratix 11 family was selected due to its

large number and density of configurable logic-array blocks, embedded DSP multipliers and

11

improved memory capacity over the Stratix 1. Comparable target technology to the Stratix Il

includes the Xilinx Virtex IV family of devices.

10Es

10Es

10Es

10Es

10Es

10Es

10Es

10Es

10Es

10Es

10Es

M512 RAM Blocks far
Duai-Port Memory, Shitt
Begisters, & FIRD Buffers

[ToEs | [ToE |

Ill*‘llll
lll*‘llll
lll*‘llll
lll*'llll
lll*‘llll
lll*'llll

l*‘llll
Ill*‘llll
III+‘IE!I
lll*'llll
:::......::::
lll*‘llll

M4K RAM Blocks 10Es Support DOR, P, PCI-X,

DSP Blocks for for True Dual-Port SSTL-3, SSTL-2, HSTL-1, HSTL-2,

Implementation of FIR Fikers Memo, Tpmmans .'.-'OSI.WTM'S _ -
7 lll**llllﬁﬂllllﬁ*lllllllllll .
---**----ﬁﬂllllﬁ*lllllllllll o
III*+llll**llll**lllllllllll
T lllt*llllh‘llllt*lllllllllll
[T 1] IIII
---**----1 I
lllﬁ*lllli L
1 ---**----1 i
...*+....1 M-RAM Black -
lllt*llll‘ L
e |
T IIIF+IIII1
lll**lllli I
:::**::::**llllt*lllllllllll
a ---**llllﬁqllllhﬂlllllllllll v

Figure 2. Block-level architecture of Stratix 11 FPGA [29]

The Stratix 1l regular row- and column-based architecture shown in Figure 2 distributes

configurable resources over the chip, making feasible a massively parallel design in which each

component has equal access to resources. Configurable logic cells are called logic array blocks

(LABs) or arithmetic lookup tables (ALUTS) each containing eight adaptive logic modules

(ALMs), carry chains, arithmetic chains, control signals, and interconnect lines. Figure 3 shows

an ALM on a Stratix Il with unregistered input, combinational logic, arithmetic units, carry

chains and registered output.

The arithmetic units support addition, subtraction and logic

12

operations AND, OR, NOT and XOR.

Shift operations are implemented through

manipulation between the ALMs. Data storage elements are D-type flip-flops.

dataf0
datae0
dataa
datab
datac
datad
dataei

dataf1

Figure 3. Block-level diagram of an adaptive logic module (ALM) on a Stratix 11 [29]

carry_in

shared_arith_in

I

adder0

Combinational
Logic

adder1

carry_out

l

shared_arith_out

reg_chain_in

w10 general or

" local routing
w10 general or

" local routing

w10 general or

" local routing

. T0 general or

reg_chain_out

local routing

bit

There are 768 9x9-bit multipliers on an Altera EP2S180 that can work together to form 96,

36x36-bit multipliers distributed over 4 columns that are available for parallel processing. Data

collected for this thesis shown that a 32x32-bit multiplication has a post place-and-route

performance of 322 MHz on an EP2S180. Figure 4 shows the DSP block configuration for an

18x18-bit multiply-and-accumulate (MAC). The depth of this diagram would be doubled to

support a 36x36-bit MAC. Note the nodes prior to the adder that indicate support of product

saturation.

13

Oprionai Sarial i
Registor Inpuis from
Fravious DSF Bloek

I Ackler O upunt Block Cufput
PR Muttiplisr Block Sabotion

Optional Stags Confiursbia
as Amumuitor or Dynamic

Fiom the row Am?m@m
intertace block

Summation Stags
tor Ading Four
Muiipiars Together

Opticnal Sanial Shift
Ragister Outputs fo
Noxt DSP Block

i the Golumn

cured!
EN&
a
Tow Opional lipur Aagister
et Stage with Paraliel npt or
L) shiftAagitar onfuranion
1o MultiTrack

l v # Interconnect

Figure 4. Block-level diagram of a digital signal processor (DSP) showing configuration for
18x18-bit multiply-and-accumulate (MAC) on a Stratix 11 [29]

Stratix Il devices are fabricated in 90nm technology that Altera white papers report can support
clock rates up to 500MHz, although Altera Quartus Il post-place and route timing results never
exceed 422MHz for any design implemented on the device. Parallel processing designs can
increase the effective throughput of a single-issue CPU by a factor equal to the width of a multi-
issue parallel architecture.

Three types of random-access memory (RAM) blocks are available on a Stratix 11: M512
RAM, M4K RAM and M-RAM, performing at ideal maximum clock speeds of 380MHz,
400MHz, and 400MHz, respectively. Each block can support varying storage configurations and

port widths. The M512 blocks contain 512 bits plus parity, the M4K contain 4096 bits plus

14

parity, and the M-RAM blocks have 512K bits plus parity. M512 blocks are small and useful for
first-in-first-out (FIFO) modules. Program caches and lookup schemes are suited to the M4K
blocks, and large volume data storage are suited to the M-RAM blocks. All but the M512 blocks
support true dual-ported memory access. Figure 5 shows the placement of the different types of
memory blocks within the row and column architecture of the device, relative positioning to DSP

blocks, and orientation with respect to 1/O pins.

M-RAM blocks interface to
LABs on right and left sides for
easy aceess fo horizontal I°0 pins

M-RAM M-RAM
Block Black
-4

= i e b
M-RAM M-RAM
Block Block
- e <= <
b= e R
M-RAM M-RAM
Block Block
- - -
MK ME12 Dse 1485 Dse

Blocks Blocks Blocks Blocks

Figure 5. Block-level diagram of the memory distribution on a Stratix 11 [29]

Mapping an architectural design onto an FPGA involves configuring row and column
interconnection signals between LABs, RAM and DSP blocks. Configuration of the logic
elements by Quartus Il place-and-route software uses the simulated annealing algorithm with an

infinite number of solutions. The Quartus Il software can be set for varying levels of

15

optimization for the place-and-route algorithm. The software is mature enough to be reasonably
trusted to deliver place-and-route results within an optimal range, but the Quartus Il software
provides an interface for manual placement modifications if so desired.

The EP2S180 is the largest and most robust of the FPGAs in the Stratix Il family.
Generally, the abundance of LABs and DSP blocks can support very-wide parallel processor
designs. The limiting factor for a processor implementation is often on-chip memory capacity.
A design seeking additional memory can use the I/O pins to interface to external memory
devices such as DDR, SDRAM and SRAM. Serial interface channels are available for other
types of data movement. Table 1 quantizes the available resources on a Stratix 11 EP2S180.

Table 1. Available resources on an Altera Stratix 11 EP2S180.

Resource Count
LUT Columns 100
LUT Rows 96
Total LUTs 144,520
9x9-bit DSP Multipliers / Blocks 768172
M512 RAM Blocks (512 b) 930
M4K RAM Blocks (4 Kb) 768
M-RAM Blocks (512 Kb) 9

16

3.0 ARCHITECTURAL DESCRIPTION

The RISC/CISC hybrid software/hardware architecture is composed of a 32-bit, 4-way VLIW
supporting Niosll RISC instruction-set architecture (ISA) coupled with super-complex
instruction set (SuperCISC) co-processing hardware. The hybrid architecture features 4, flexible
RISC processors in VLIW configuration for general-purpose processing and SuperCISC
hardware accelerants for specific-purpose processing. The VLIW was designed from the
ground-up in VHDL to match the Niosll ISA within each processing element. SuperCISC
hardware was designed in VHDL to match data-flow-graphs representing application kernels.
The performance of single-issue and VLIW CPUs are used as benchmarks against which to

compare the results of an architecture supported by SuperCISC hardware.

3.1 HARDWARE/SOFTWARE PARTIONING

A hybrid software/hardware processor requires partitioning the application source code into
portions that run on the RISC general-purpose processor and portions that run on the CISC
application-specific hardware. Partitioning the source code into software/hardware blocks
allows the architecture to pursue two types of application speedup: instruction-level parallelism

and hardware acceleration.

17

The VLIW utilizes instruction-level parallelism (ILP) to achieve application speedup.
ILP is the overlap between non-dependent instructions within application code or code block.
Average ILP is an indication of the number of instructions that can be executed concurrently in a
parallel processor. A VLIW relies on the compiler to uncover ILP and schedule instructions, as
opposed to a superscalar processor that schedules concurrent instructions at execution time using
special hardware support.

If the VLIW executes 100% of the application, the speedup is limited by the width, or the
number of processing units, in the VLIW. A 4-way VLIW executing 100% of the code, with
100% of the processing units active at all times can achieve a maximum of 4x speedup over a
single-issue processor operating at the same clock-speed. Amdahl’s Law of the limitations

imposed on speedup can be expressed as follows [12]:

Equation 1. Amdahl’s equation for execution time improvement.

Execution time after improvement =

Execution time affected by improvement + Execution time unaffected
Amount of improvement

To illustrate the above equation, suppose an application has a 100 second execution time. If
100% of the 4 VLIW processing units were actively executing 100% of the code, the speedup is

4x. This can be represented by the following example:

18

Equation 2. Example of Amdahl’s execution time improvement of 4-way VLIW
with 100% processing elements accelerating 100% of the execution time.

100 seconds + 0 seconds = 25 seconds, or 4x speedup
4x

Because ILP limits the amount of code affected by the 4x processing power of the VLIW, a
second way to achieve gains is through hardware acceleration. A ‘rule-of-thumb’ that can be
called the 90/10 rule states that 10% of an application’s source code is responsible for 90% of
the execution time. A CISC-type hardware accelerant targets the 10% code that often dominates
execution time and seeks to minimize its execution time through compacted, asynchronous
processing elements. Supposing the hardware accelerant effects a 12x speedup on 90% of the
execution time, and 10% execution time takes place on the VLIW, the example in Equation 2

would re-calculate as follows:

Equation 3. Example of Amdahl’s execution time improvement for 4-way VLIW
with 100% processing elements accelerating 10% of single-issue execution time
and SuperCISC hardware with 12x speedup accelerating 90%o of single-issue
execution time.

10 seconds on VLIW + 90 seconds on SuperCISC = 10 seconds, or 10x speedup
4x 12x

The VLIW/SuperCISC pursues two types of performance gains: those achievable through ILP
and those achievable through the 90/10 rule. The 4-way VLIW can execute up to 4 instructions

in parallel, indicating an ideal 4x speedup. To achieve a target application speedup of 10x, a

19

SuperCISC hardware accelerator must have a minimum speedup 12x active upon 90% of the
single-issue execution time. This SuperCISC portion of the code is usually a frequently-called
function or loop-bound computation. SuperCISC hardware functions execute this fraction of the
code within densely-packed, asynchronous computational elements in an effort to minimize
execution time. The remaining code is parallelized using its ILP and executed upon the VLIW.

The mass of asynchronous processing elements in a multi-cycle path, or SuperCISC
hardware, contributes performance gains through two notable attributes: turning software
control-flow into hardware data-flow, and compressing multiple synchronous-ALU operations
into a single asynchronous computation. These two performance attributes of SuperCISC
accelerators exhibit their gains in varied proportions depending on whether a candidate code
block is control-flow intensive, or computation intensive.

Turning software control-flow into hardware data-flow pursues control flow efficiency.
SuperCISC hardware implements branch control using a multiplexer. The multiplexer inputs
articulate all possible branch outcome sequences. The result is a hardware-based control
structure that pre-calculates all possible branch outcomes in anticipation of a switch
(multiplexer). The multiplexer model adds significant performance gains to portions of code rich
in control flow.

Mapping a sequence of synchronous-ALU operations through compact, asynchronous
processing elements pursues the gains of cycle compression. The asynchronous paths of a
SuperCISC function eliminate the cycle-time waste suffered by synchronous pipeline CPU
architectures. In a synchronous processor, all operations execute at the global clock rate set by
the slowest path of the architecture. But simple operations, such as logical bit-shifts, execute

quickly and idle for the remaining clock period. SuperCISC hardware eliminates wasted cycle

20

time. SuperCISC hardware executes a stream of operations through a series of asynchronous
processing elements. Although the latency of the SuperCISC hardware is greater than the VLIW
cycle time, SuperCISC hardware densely packs computational nodes on top of one another to
execute each node operation at the maximum speed supported by the platform technology. The
efficiency of asynchronous processing elements can be referred to as cycle compression, and is
defined and discussed in Section 4.2. Cycle compression adds significant performance gains to
applications rich in arithmetic operations.

SuperCISC hardware contributes significant performance gains at little expense relative
to the overall area occupied by the VLIW. The SuperCISC hardware designed in VHDL to
execute benchmark kernels profiled for this work each utilize less than 1% of the Altera Stratix |1
FPGA logic area and adds an average increase of 0.2x to the area of the VLIW for an average
10x boost in performance. SuperCISC hardware shows an average ratio of 50:1 performance to
area gain when interfaced with the VLIW.

The SuperCISC hardware requires no overhead to interface to the VLIW by using a
shared instruction stream supporting specialized instructions. The ISA chosen for the VLIW
processor designed in VHDL from the ground up supports the Niosll extensible instruction set
[13]. The extensible ISA reserves a unique operation code to identify a custom instruction. The
custom instruction calls to the SuperCISC hardware rather than the VLIW. The Niosll processor
model requires no modifications to make use of this custom instruction, thus there is no overhead
for the interface of SuperCISC hardware functions to the VLIW software processor. A high-
level block diagram showing the VLIW, SuperCISC hardware and custom instruction calls is

shown in Figure 6.

21

FPGA

SuperCISC
4-way VLIW Hardware
Niosll ISA Niosll ISA Niosll ISA Niosll ISA A

ALU ALU ALU ALU

(Custom instructions)

Figure 6. Simplified block-diagram showing custom instruction calls that extended from

Niosll ISA 4-way VLIW.
The SuperCISC hardware requires negligible overhead to interface to the VLIW processor
through the shared data components. Architectures with hardware accelerants can suffer from
latencies because of bus-based communication [14]. The VLIW/SuperCISC architecture has
bus-less communications, and instead uses a shared instruction stream and register file to
interface the VLIW and SuperCISC. This design feature omits the overhead and complexity of
coherence strategies incurred by architectures with localized local data stores and bus-based data
sharing.

The VLIW processing units interface with the SuperCISC hardware via a shared 32-
element register file and common instruction stream. Access ports to the register file are
controlled by data multiplexers and address decoders. The VLIW has access to 8 read and 4
write ports, while the SuperCISC hardware may read from and write to the entire register file
through direct access lines (no address decoding).

The VLIW and SuperCISC hardware share a common instruction stream. The instruction
vector is 128-bits wide, segmented into 4, 32-bit instructions. Each 32-bit instruction word is
dedicated to one of the VLIW processing units. SuperCISC instructions are also issued from the

VLIW instruction stream. A controller external to the VLIW intercepts custom instructions and

22

signals one or more SuperCISC hardware units to commence execution. In the current
implementation, VLIW activity is suspended during SuperCISC execution.

The VLIW processing units share an instruction cache, but each VLIW processing unit
contains its own local decoder. The presence of local decoders indicates support for non-
homogenous instruction execution. Control instructions that alter the program counter are
directed to only one processing element in the VLIW. This strategy avoids potential conflicts
and limits routing control interconnect overhead to the program counter.

Instructions to the SuperCISC hardware are issued from the VLIW instruction ROM.
The SuperCISC hardware processing units receive global control signals (activate, writeback
multiplexing) from a global SuperCISC controller. The SuperCISC controller is a ROM that
contains the control signals for each SuperCISC hardware unit signified by an address within the
ROM.

The result of combining the above elements is a heterogeneous, hybrid architecture
united by a shared instruction cache and global data stores. Program flow switches from the
VLIW to the SuperCISC co-processing hardware wherever pragma statements denote a
hardware function in the source code. The design flow for SuperCISC hardware, including a
description of how application kernels are selected and where the hardware/software context
switching occurs is described in greater detail in Section 3.5. A block diagram of the proposed
processor architecture is shown in Figure 7. Resources shared among processing elements in the

current implementation are the instruction ROM and register file.

23

SuperCISC Z

SuperCISC Hardware SuperCISC
Hardware Hardware :
SuperCISC SuperCISC SuperCISC 7

A ndun Hardware Hardware

Hardware
SuperCISC SuperCISC SuperCISC
Hardware Hardware Hardware
SuperCISC
Hardware

SuperCISC hardware SuperCISC
Decoder Hardware
o

Shared instruction stream t
— Instruction Shared
ROM Shared Register File Memory
g
Shared register file /F 1 I
= N
. .
4-wide VLIW software vuw VLo LW L
processor o Processor_0 Processor_1 Processor_2 Processor_3 ||

Figure 7. Block diagram of VLIW/SuperCISC architecture.

3.2 VLIW ARCHITECTURE

The VLIW consists of 4, 32-bit integer processors sharing a memory bank, register file and
instruction cache. Each VLIW processing unit contains an instruction decoder and Niosll ISA
RISC processor. The shared register file has 32 elements with 8 read ports and 4 write ports.
The memory is a 12-bit word-addressable true dual-ported memory storing up to 16KB of data.
Instructions are 128-bits wide and are stored within a read-only memory (ROM). The instruction
128-bit vector is divided into 4, 32-bit instructions to be directed to the appropriate VLIW
processing element (PE), PEO to PE3.

VLIW processing elements operate on parallelized code of the Niosll instruction
developed by the University of Pittsburgh team working on the compiler and design automation

for the architecture. The Niosll has an extensible ISA that supports custom instructions

24

instantiated to specify calls to SuperCISC hardware functions, discussed in Section 3.5 of this
thesis. Custom instructions are executed outside of the VLIW core.

Static timing analysis performed by Quartus Il synthesis and post-routing processes for
the 4-way VLIW on an Altera EP2S180 estimates an operating clock speed of 167MHz. The
effective VLIW throughput is 668 millions of operations per second (668 MOPS) for an
application with ideal ILP of 4, equal to the number of RISC processors available in the
architecture.

Processing of instructions occurs within a 6-stage pipeline consisting of instruction
FETCHO, DECODE, operand FETCH1, EXEO, EXE1 and WB. Multiplication completes in two
EXE cycles and all other arithmetic operations execute in one cycle. Branch instructions
execute only on PEO to eliminate potential conflicts in the control flow of the program. LOAD
and STOR operations are limited to PEO and PE1 due to dual ports on the memory, therefore

limiting ILP of memory operations to 2.

25

Quad-issue
Instruction
ROM

‘ 32-element Register File ‘

LAY - .

MRS 2
Decoder Decoder Decoder Decoder
K ;\l 4-way 32-bit integer VLIW
Dual-port
512Kb M-RAM

Figure 8. Block diagram of 4-way VLIW.

An adder external to the core arithmetic logic unit (ALU) of the processing elements calculates
memory addresses because its addition has shown to improve overall performance of the VLIW.
Reducing the size of the memory and invoking multiple shifters in the ALU dedicated to
different types of shift operations further optimize the performance of the VLIW. A block
diagram showing the ALU, data store and instruction-issue elements of the VLIW is shown in

Figure 8.

3.3 SHARED REGISTER FILE

A shared 32-element register file having 8 multiplexed read ports and 4 multiplexed write ports

unifies the hybrid architecture. An arbitrarily-sized register file can be represented in Figure 9,

26

where P processing elements interface to N registers. The gains offered by a wide VLIW are
offset by the performance degradation of scaling access ports to the register file. The number of
multiplexed data ports has shown to be the major impedance to scaling a register file in a
multiprocessor architecture. However, SuperCISC hardware access to the register file requires a
slightly simpler configuration than the VLIW. This is due to the SuperCISC’s direct access lines
that do not require an address decoder. An illustration of the augmented register file is shown in

Figure 12.

I_.__.__.__.__.__.__._|
| | | I
i | T 1 ' ||
| o.. P1) Do (P-1) T (P-1) .
WiMux1] I
| wr selo, MWO S g\ Wr_Sel(N-1)\ WMux(N-1)/
I— Reqgl Reqg1 [_
. Wr_En0 g Wr_En1 9 Wr_En(N-1) Reg(N-1)

I | | | I I
b, N-1 |

—
—‘_
I

I R 50 Rd_Sel(P-1)\RAMux(P-1)
fem = —— —_— e — . —— |e——
Register File

PEO PE1 PE(P-1)

Figure 9. N-element register file supporting P-wide VLIW with P read ports and P write
ports.

27

Figure 9 shows a P-processor VLIW with an N-element register file. In front of each port sits a
multiplexer that routes data to and from the register file. Multiplexers on write ports have a
width, P, equal to the number of processors and exist in quantities equal to the number of
registers, N. Each of the N registers requires a 32-bit P-to-1 multiplexer. Multiplexers on read
ports have a width equal to the number of registers, N, and exist in quantities equal to 2x the
number of processors, P (to support 2 operand fetches). Each of the 2P read ports requires a 32-

bit N-to-1 multiplexer.

Multiplexers are fundamental to scaling a register file. The effect of multiplexers is
charted in Figure 10 by plotting the degrading performance of a shared register file against an
increasing number of ports. When the number of register is fixed, the ports become an
expression of the width of the VLIW. The additional routing and wider multiplexers to
accommodate a wider VLIW architecture adds complexity to the register file and imposes
bottlenecks upon the overall performance.

In Figure 10, the number of 32-bit registers is held constant and the number of processors
is scaled. There are 3P ports on the register file, that is, for P processors there are 2P read ports
and P write ports. Performance of the register file can be represented by the equation (273 MHz
— (16*P/2)), where P is in the set of values represented by integer powers of 2. The register

gains an average of 2x area utilization per doubling of P.

28

32-Element Register File
Performance and Area

23,088 ALUT
1 257 MHz (16%) 4
09 —— 226 MHz
08
= 07 ™~
o
g 06 17,149 ALUT
] {79
5 00 ¥
E 0.4 91 MHz
‘—_'-——-___-
=z 4662 ALUT
03 !
2593 ALUT (3%)
02 d -
(1%;
01
0 T T 1
2 4 8 16

Number of Processors

Two Read Ports, One Write Port per Processor +—Area*
—=@—Performance™*

* Area normalized as percentage of area of 16 processor register file
** Performance normalized as percentage of performance of 2 processor register file

Figure 10. Scalability of a 32-element register file for P processors having 2P read and P
write ports on an Altera Stratix 11 EP2S180.
As the most elemental design unit contributing to performance of the register file, a multiplexer
can be analyzed in isolation. Figure 11 shows the impact of increasing width to a 32-bit P-to-1
multiplexer on the Stratix 1l EP2S180. As the width of the multiplexer doubles, the area
consumed on an EP2S180 for the multiplexer increases by a factor of 1.4x. The performance
loses an average of 44 MHz with each doubling of the width of the multiplexer. To expand the
width of the VLIW, both the width and quantity of multiplexers must increase. Therefore, the

register file incurs two strikes upon its performance to increase the width of a VLIW.

29

P-to-1 Multiplexer (32 bits)
Performance and Area
492 MHz 1326 ALUT

1 .—\.&MW (<1%) j’,
0.9 /

. S —
0.8 340 MHz v!ﬁ_,..--

0.7

06 279 MHz 708 ALUT ;'_:.'

211 MHA %] ¢/
05 o

193 MHz

Normalized Unit

0.4 (<4%; A 156 MHz
' 361 ALUT s
0.3 256ALUT = Lo
T 7t alur 18TALUT (<1%) e
0.2 ({1%)__3_'@_ _______ =
01 ¥
0 T T T T T 1
4 8 16 32 64 128 2586
Number (P) of 32-bit Inputs for a Single P-+to-1 Multiplexer
—4— Area*
* Area normalized as percentage of 256-to-1 multiplexer area —=— Performance** |

** Performance normalized as percentage of 4-to-1 multiplexer performance

Figure 11. Scalability of a 32-bit P-to-1 multiplexer on an Altera Stratix 11 EP2S180.

In this context, the parallel processing power of a wider VLIW is offset by the overhead costs of
adding more complex access ports to the register file. This effect applies somewhat differently
to VLIW than to the SuperCISC hardware functions, which interface to the register file in a more
simplified manner than the VLIW, shown in Section 3.4. The cost of interfacing the SuperCISC
to the register file is consumed by the slack time of the resister file within a 167MHz VLIW
architecture on the Stratix Il FPGA. In further support of adding processing power by
interfacing SuperCISC hardware rather than more VLIW processing elements, the speedups
achieved by adding SuperCISC hardware functions to the VLIW far exceed the speedups of a

wider VLIW, as illustrated in Section 6.2.1.

30

Considering the costs of scaling the register file for the VLIW, it is important to know the
levels of ILP that can be discovered by the compiler within a set of target applications before
choosing a parallel architecture. For example, choosing an 8-way VLIW when the average ILP
of target applications is 1.6x would lead to underutilized resources and a complexity that adds
more cost to the performance than realized benefit. The width of the VLIW then becomes an

impedance rather than a facilitator to fast execution of low-ILP applications.

3.4 ZERO-OVERHEAD HARDWARE/SOFTWARE INTERFACE

The VLIW interfaces to the SuperCISC hardware in two ways: sharing a common instruction
stream and sharing a common register file. The two forms of hardware/software interface
contribute no noticeable cost in performance to the VLIW — the instruction stream has a zero-
cycle context switch between VLIW and SuperCISC, and the added latency of interfacing
SuperCISC hardware to the register file is absorbed by the slack time of the 226MHz register file
with respect to the 167MHz VLIW.

Adding direct access of the SuperCISC hardware detracts little from the performance of
the register file. SuperCISC hardware has a different access strategy to the register file than the
VLIW processing units. A SuperCISC hardware function reads from the register file in direct
lines linking each register to all SuperCISC hardware functions (no address decoding). The
SuperCISC hardware function may write to all 32 registers using a direct line access. The
register file needs only a 2:1 writeback multiplexer in front of each register to context switch
from VLIW access to SuperCISC access. A diagram of the register file showing SuperCISC

hardware access is shown in Figure 12.

31

il

FROM SuperCISC
Hardware

[T

O, {N-1)
!_ —_— I lL ______________ —_— — I
| TH H‘H |
| |
| |
| |
| |
. sweH sel MU sy se 2 IMUX S g e N TMuUX .
| |
| |
. EnQ .
I b, |
| |
G RAMWO /' Ry |

Scalable
Register File

PEQ PE1 PE(P-1)

O dN-T)
L
SuperCISC
Hardware

Figure 12. N-element register file supporting SuperCISC hardware and a P-wide VLIW
with P read ports and P write ports.

32

The cost of adding SuperCISC access to the register file can be determined by plotting the
performance and area of a register file without SuperCISC access with the performance and area
of a register file with SuperCISC access. The difference between the values on the vertical axis
represents the cost of interfacing the entire register file to SuperCISC hardware. The plot of the
register file without SuperCISC access and the register file with SuperCISC access is shown in
Figure 13. The average cost of the software/hardware interface to the register file is 20MHz; the
average increase in area for adding SuperCISC access is 8%. Added to a 4-wide VLIW,
SuperCISC hardware detracts only 29MHz from the performance of the register file, meeting the
167MHz overall system timing constraint. The added latency is absorbed by the slack time of

the register file and adds nothing to the cost of the hardware/software interface.

32-Element Register File
Performance and Area
257 MHz 24 228 ALUT
.. LT AYT RS
SR Gt P— 226 MHz (15%)° #3088 ALUT
49MHz L IS - (16%)
0.8 —5)
~ 197 MHZ®™ * . o
s 07 o —
S 6 o ™\ 12840 ALUT.-"
& os T ON% 7 11,149 ALUT
] . e m 0,
E 04 - ’,.c_~3111MHz (7%) VTS
2 o5 5187 ALUT .-~ 90 MHzm- ...
., 12622 ALUT (3%). - T m 69 MHz
0.2 PR ¥
0.1 _ (1% e 4662 ALUT
'0 2593 ALUT (3%)
(1 %) T T 1
2 4 8 16
Number of Processors *— Area VLIN®
Two Read Ports, One Write Port per Processor B— Performance VLMW
" . - -& - Area VLIW + SuperCISC”
* Area normalized as percentage of area of 16 processor register file .
™" Performance normalized as percentage of performance of 2 processor register file e LGeriormancelENVELSURSICISE

Figure 13. Scalability of a 32-element register file for P processors having 2P read and P
write ports and full SuperCISC hardware access on an Altera Stratix 11 EP2S180.

33

3.5 SUPERCISC HARDWARE FUNCTIONS

SuperCISC hardware is an application-driven processing circuit that represents a kernel of
software code as a densely-packed, asynchronous combinational logic circuit. SuperCISC
hardware co-processors pursue application speedups of the 90/10 rule by executing the most run-
time intensive portions of code in circuits maximized for throughput and minimized for latency.
Pursuing gains of the 90/10 rule in a SuperCISC hardware function increases the overall
application speedup when interfaced to the 4-way VLIW, which can only achieve a maximum
speedup of 4x according to Amdahl’s equation.

The design flow of SuperCISC hardware functions is a 4-step process (Figure 16)
currently being automated by the University of Pittsburgh team developing a compiler for the
VLIW/SuperCISC architecture. The first step is to profile the application source code and
identify the run-time intensive portions of the code. The goal is to isolate the code blocks
contributing to 90% or more of the execution time of the program. The next step is to partition
the code into software and hardware blocks for the VLIW and SuperCISC hardware functions,
respectively. The third step generates data-flow graphs (DFGs) for the hardware portions of the
code. The last step is to convert the DFGs into VHDL hardware description language to
interface to the VLIW architecture. It is the last two steps of DFG generation and VHDL
conversion currently undergoing design automation at the University of Pittsburgh. Successful
completion of this work will significantly advance application-driven processors and behavioral

synthesis [32][33].

34

C source code

g Code
Profiling

¢ I
Code
Partitioning |
i N i
‘ DFG j
\ Generation ;
— 1
VHDL
Translation

A 4

Synthesis

Hardware

Figure 14. Four step process for the hand-design of SuperCISC hardware.

3.5.1 Candidate Selection and Code SW/HW Partitioning

Code profiling can identify, among other attributes, an application’s ILP. The motivating
assumption is that highly iterative applications such as those used in video encoding and signal
processing support high levels of ILP that benefit from VLIW parallel computing. Candidate
applications, however, often exhibit less than 2x average ILP [32]. In such cases, even wide

VLIWs performance optimized for shared data components cannot realize desired speedups.

35

Disappointing ILP, not parallel architecture constraints, is the limiting factor to gains achievable
by homogeneous parallel processors.

Figure 15 charts the average ILP discovered by Trimaran compiler [30] for five
benchmark applications within the MediaBench benchmark set [32]. Little additional ILP is
discovered by the compiler by increasing the compiler parameter for processing width from 4-
wide to an arbitrarily-wide processor. The poor ILP discovered within these benchmark
applications limits the speedup of a 4-wide VLIW to less than half its ideal of 4x over a single-

issue processor running at the same speed.

e, m4ALU,2
o 6 Mem
o 1
> 0 @ Unlimited
< ADPCM ADPCM FIR Mpeg2 Mpeg2 Al
Enc Dec Dec Enc Men,w
Benchmark

Figure 15. Instruction-level parallelism (ILP) of MediaBench benchmark applications
discovered by Trimaran compiler given parameters for 4-wide VLIW with 2 memory ports
and unlimited-wide VLIW with unlimited memory ports [32]

Because ILP is the critical factor limiting the gains of parallel architectures, further code analysis
shows the program attributes which can lead to alternative speedups. Following the general rule
that a program spends 90% of its time executing 10% of its code, the Shark profiler [31] used in
this study can identify critical, time-consuming loop iterations within software source code. In
an ideal implementation, minimizing the execution time of kernel portions of the code that
occupy 90% of execution time would result in a 10x speedup (Equation 1), bringing the effective

performance 167MHz processor to 1.67 giga-ops per second (GOPS).

36

(%]
o
o 100%
(@)
— 80%]
o 60%
£ 40%
'_
c 20%-
(@]
S 0%
o =)
X
Q & X & Q
ﬁ QP\ e(\o O\)\ e(\c;
@Q . % < L\
& 9 Q
@@5 N

Average for Benchmark Suite

W loopl O Loop2 E Loop3
B Loop4d O Loop5 B Loops6-10

Figure 16. Execution time occupied within the top 10 loops in the code averaged across the
Speclnt, MediaBench, and Netbench suites, as well as selected security applications [37].
Time-intensive loops are directed to SuperCISC hardware.

Figure 16 shows the percentage of execution time occupied by critical kernels of 4 benchmark
application sets. The MediaBench benchmark set was used to generate the results presented in
this thesis. Application kernels that together contribute to 90% or more of the application

execution time are selected as candidate functions for SuperCISC co-processing hardware.
Using the results of the profiler, the SuperCISC design flow proceeds to the next step and
the code is partitioned by hand into software and hardware segments using pragma statements to

denote exclusion of the hardware portions of the code in the VLIW compiler. The application

kernels inside the pragma statements are then isolated for manual DFG generation.

37

3.5.2 Data Flow Graph Generation

DFG generation from an application kernel is a process easily facilitated by hand although
design automation using the intermediate representation (IR) of the source code will enable rapid
graph generation. The DFGs use a library of nodes to represent basic operations in the source
code. Arithmetic operations map to a node representing the operation within a hardware
element. SuperCISC DFGs vary slightly from conventional DFGs in that they contain
multiplexers to incorporate control flow into the graph. The presence of control structure, such
as if-then-else statements in the source code indicate the presence of multiplexers in the
SuperCISC DFG. Figure 17 shows the high-level C code for a candidate SuperCISC hardware
function that performs a kernel portion of ADPCM encoder [32]. Note the presence of many if-
then-else statements that indicates a control-intensive kernel and the instantiation of many
multiplexers in the resulting DFG. Thus, the ADPCM encoder kernel will benefit from a high
proportion of control-flow efficiency to cycle compression gains in the SuperCISC function

kernel speedup.

38

// Begin Hardware Function
if (bufferstep) {
delta = inputbuffer & Oxf;
} else {
inputbuffer = *inp++;
delta= (inputbuffer >> 4) & O0xf;

bufferstep = !bufferstep;

index += indexTable[deltal];

10 if (index < 0) index = 0;

11 if (index > 88) index = 88;

12 sign = delta & 8;

13 delta = delta & 7;

14 vpdiff = step >> 3;

15 if (delta & 4) vpdiff+=step;

16 if (delta & 2) vpdiff+=step>>1;
17 if (delta & 1) vpdiff+=step>>2;
18 if (sign)

19 valpred -= vpdiff;

20 else

21 valpred += vpdiff;

22 1if (valpred > 32767)

WoOJOUTkd WN R

23 valpred = 32767;
24 else if (valpred < -32768)
25 valpred = -32768;

26 step = stepsizeTable [index];
27 // End Hardware Function
28 *outp++ = valpred;

Figure 17. C-language software code for kernel portion of ADPCM encoder [32].

Each SuperCISC hardware function represents one or more iterations of a time-intensive kernels
of the application. For applications with more than one kernel contributing to the bulk of
execution time, more than one SuperCISC function can be invoked to contribute gains derived
from the 90/10 rule. If there is loop-control surrounding a kernel functions, SuperCISC
hardware can in-line the loops to form a single, large datapath. Data-dependencies between
looped application kernels can produce cascading SuperCISC functions where the dependent
function interconnects with the preceding SuperCISC function at the dependent datapath join.
Edges within a SuperCISC DFG indicate data dependencies and sequencing. In an
FPGA, nodes can be supported by either combinational logic within the logic elements or by the
embedded multiply-accumulate cores. Edges indicate the routing between the FPGA resources.

Figure 18 shows the resulting data flow graph for the ADPCM encoder kernel presented in

39

Figure 17. Note that the DFG contains many multiplexers to represent the if-then-else control
statements within the source code. The datapaths preceding the multiplexer and connected as
inputs represent the possible outcome sequences of the branch statement. The arithmetic nodes
showing constant values as an input utilize the efficiency of hardware to optimize for constant-

value computation.

Figure 18. Data flow graph (DFG) representing SuperCISC hardware function for kernel
portion of ADPCM encoder, shown in Figure 17.

The inverse discrete cosine transform (IDCT) benchmark application contains execution-time
intensive kernels inside the row and column operations performed upon an 1x8 and 8x1 block of

values, respectively. The IDCT benchmark application has two kernel functions, the row and

40

column operations, that comprise the bulk of its execution time. Therefore, the application will

require two SuperCISC hardware functions to pursue the 90/10 rule to supplement the gains of

the VLIW. The source code for IDCT column operation is shown in Figure 19. Note the

absence of if-then-else statements that indicates a SuperCISC hardware function that will realize

its kernel speedups from the efficiency of asynchronous computation and cycle-compression,

explained in detail in Section 4.2.

1. if
2.

3.

4.

5.

6.

7.

8.

9.

10. x0
11. /*
12. x8
13. x4
14. x5
15. x8
16. x6
17. x7
18. /*
19. x8
20. x0
21. x1
22. x2
23. x3
24. x1
25. x4
26. X6
27. x5
28. /*
29. x7
30. x8
31 x3
32 x0
33. x2
34. x4
35. /*

36. blk[8*0]
37. blk[8*1]
38. blk[8*2]
39. blk[8%*3]
40. blk[8*4]
41. blk[8*5]
42. blk[8*6]
43. blk[8%*7]

(1 ((x1 = (blk[8*4]<<8))

(x2 = blk([8*6]) (x3 = blk[8*2])
(x4 = blk([8*1]) (x5 = blk[8*7])
(x6 = =

blk [8*0] =blk [8*1] =blk [8*2] =blk [8*3]
blk [8*4]=blk [8*5]=b1lk [8*6] =b1k [8*7]
iclp[(blk[8*0]+32)>>6];

return;

blk[8*5]) (x7 = blk[8%*3]))){

(blk [8*%0]<<8) + 8192;
irst stage */
W7* (x4+X5) + 4;
(x8+ (W1-W7) *x4) >>3;
(x8- (W1+W7) *xX5) >>3;
W3* (x6+X7) + 4;
(x8- (W3-W5) *x6) >>3;
(x8- (W3+W5) *x7) >>3;
second stage */
= x0 + x1;
= x1;
W6* (x3+x2) + 4;
(X1- (W2+W6) *x2) >>3;
(X1+ (W2-W6) *x3) >>3;

L | 1 (A T o

X4 + X6;
= X6;
x5 + x7;
= X7;
third stage */
= X8 + X3;
-= X3;
= x0 + x2;
-= X2;

(181* (x4+x5)+128) >>8;
(181* (x4-x5)+128) >>8;
fourth stage */
iclp [(x7+x1
iclp [(x3+x2
iclp[(x0+x4
iclp[(x8+x6
iclp[(x8-x6

(

(

(

>>141];
>>14] ;
>>1417;
>>141];
>>14] ;
iclp[(x0-x4)>>14]
iclp[(x3-x2]
iclp[(x7-x1]

i
>>14] ;
>>14] ;

Figure 19. C-language software code for IDCT column operation [32].

41

IDCT column source code is comprised entirely of arithmetic operations and a large number of
shifts by a constant value. The DFG contains no multiplexers for if-then-else and therefore has
no unused datapaths of branches not-taken to consume energy and logic area. The resulting DFG

for IDCT column operation is shown in .

Figure 20. Data flow graph (DFG) representing SuperCISC hardware function for IDCT
column operation, shown in Figure 19.

3.5.3 DFG to VHDL Conversion

From the DFGs, hardware modeling language such as VHDL is used to map the graph into a
high-level circuitry representation. This step is currently undergoing design automation at the

University of Pittsburgh. VHDL design modules represent the nodes in the DFGs and the edges

42

indicate routing and signal dependency in the FPGA hardware implementation. Figure 21 and
Figure 22 show the entity and port declaration for ACPCM encoder and IDCT column,
respectively. Note the reduction of input variables in IDCT column from the C source code

variables to indicate hard-coding of the constant values.

ENTITY ADPCM encoder IS
PORT (
bufstep in : IN std logic_vector (31 DOWNTO 0) ;
index in : IN std logic_vector (31 DOWNTO 0) ;
outbuf_in : IN std_logic_vector (31 DOWNTO 0) ;
outp_in : IN std logic_vector (31 DOWNTO 0) ;
step in : IN std logic_vector (31 DOWNTO 0) ;
val_in : IN std_logic_vector (31 DOWNTO 0) ;
valpred in : IN std logic_vector (31 DOWNTO 0) ;
reg out : OUT std logic_vector (31 DOWNTO 0) ;
reg outl : OUT std_logic_vector (31 DOWNTO 0) ;
reg out2 : OUT std logic_vector (31 DOWNTO 0) ;
reg out3 : OUT std logic_vector (31 DOWNTO 0) ;
reg out4 : OUT std_logic_vector (31 DOWNTO 0)
)i
END ADPCM_ encoder ;

Figure 21. Entity and port declarations for ADPCM encoder DFG in Figure 18.

ENTITY IDCT_col IS
PORT (
x0_in : IN std_logic_vector (31 DOWNTO O0) ;
x1 _in : IN std_logic_vector (31 DOWNTO 0) ;
x2_in : IN std logic_vector (31 DOWNTO 0) ;
x3_in : IN std_logic_vector (31 DOWNTO 0) ;
x4 _in : IN std_logic_vector (31 DOWNTO 0) ;
x5 in : IN std logic_vector (31 DOWNTO 0) ;
x6_in : IN std_logic_vector (31 DOWNTO 0) ;
x7_in : IN std_logic_vector (31 DOWNTO 0) ;
blk0 : OUT std logic_vector (31 DOWNTO 0) ;
blkl : OUT std_logic_vector (31 DOWNTO O0) ;
blk2 : OUT std_logic_vector (31 DOWNTO 0) ;
blk3 : OUT std logic_vector (31 DOWNTO 0) ;
blk4 : OUT std_logic_vector (31 DOWNTO O0) ;
blk5 : OUT std_logic_vector (31 DOWNTO 0) ;
blké : OUT std logic_vector (31 DOWNTO 0) ;
blk7 : OUT std_logic_vector (31 DOWNTO 0)
)i
END IDCT col ;

Figure 22. C- and port declarations for IDCT column DFG in Figure 20.

43

The VHDL file is then compiled, synthesized and routed to connect the configurable logic
elements that represent the SuperCISC hardware. Synthesis software, Synplify Pro or Precision,
compiles the design into a file called a technology-specific netlist. Altera’s Quartus Il place-and-
route accepts the netlist as an input and performs a simulated annealing placement algorithm to
map the netlist to the FPGA. Place-and-route software furthermore analyzes the configuration to

report timing characteristics, logic area utilization, memory occupation and DSP consumption.

44

4.0 SPEEDUP OF SUPERCISC HARDWARE FUNCTIONS

SuperCISC co-processing hardware performs complex computation in deep, highly parallel
asynchronous datapaths. The SuperCISC implementation of software-base control flow as
hardware-based data flow promotes control flow efficiency, explained in Section 4.1. The
asynchronous computational units within SuperCISC hardware promotes cycle compression,
explained in Section 4.2, a reduction of the clock-period waste suffered by many types of
computation executed within a synchronous processor. The two main sources of speedup in a
SuperCISC hardware function, control flow efficiency and cycle compression, allow speedups
that exceed those achieved by conventional parallelization approaches. The speedups of
SuperCISC hardware surpass those given by the application kernel’s ILP. Using Amdahl’s
equation, applying SuperCISC hardware to the run-time intensive portions of an application
raises speedups beyond the 4x factor of the VLIW functioning at 100% utilization on 100% of

the code.

4.1 CONTROL FLOW EFFICIENCY

SuperCISC hardware functions can add efficiency to control flow, the if-then-else statements that
control an application’s execution pattern. In hardware, multiplexers control the flow of data

through a function. Concurrently executing datapaths represent each possible outcome of a

45

control statement. The datapaths feed into a multiplexer that has a select line, controlled by the
branch comparison, to choose among the inputs. The concept of pre-calculating branch
outcomes as multiplexed datapaths is known as predication.

In software, an if-then-else statement in C-code is expressed in a stream of assembly
instructions that include moves, subtractions and comparison-based branches. C code for an in-
then-else statement with its hardware implementation as a 2:1 multiplexer is shown in Figure 23.

The corresponding set of assembly instructions for the if-then-else statement is shown in Table 2.

If (bufferstep) {
delta = inputbuffer & Oxf;
}else {
inputbuffer = *inp++
delta = (inputbuffer >> 4) & Oxf;

:l*inp: 1 inp
inputbuffer
| L P, 3 ——
1 bufferstep i ||nputbuffer| (= =y r |
l=—q=—= - -I --- 1 OxF | 1 OxF > > 0x4 |
llj_d | lmea
=500
=or &

Figure 23. Data flow graph (DFG) showing 2:1 multiplexer that represents C-code for an
if-then-else statement.

46

Table 2. Assembly instructions of if-then-else statement (shaded in grey)

Instruction Description
MOV R1, 0 moves comparison value (zero) into R1
CMP R31, R1, R2 Compare if R2 (bufferstep) == 0 and store the result in R31
BNE R31, #1, (PC + #5) Branch if comparison is false -- if R2 (bufferstep) != 0
ADD R6, R5, 1 Else if R2 (bufferstep) == 0, increment input and store in inputbuffer
RSL R6, #4 Right shift inputbuffer by 4
AND R7, R6, #0xF Logical AND inputbuffer by constant
BR (PC + #2) Skip to next unconditional execution
AND R4, #0x15 If R2 (bufferstep) != 0, execute this instruction
MV Rx, #immed Next unconditional execution

A multiplexer can execute control flow significantly faster than a software equivalent executing
on a single processor. On an EP2S180, a 32-bit 2:1 multiplexer supporting a 1-way comparison
(LT, GT, NE) with default condition can operate at 322MHz, and a 2-way comparison (LTE,
GTE) with default condition clocks in at 206MHz. The same operation consumes a minimum of
4 cycles when executed in software, reducing the effective performance of a 167MHz single
processor to 42MHz. This results in a 11x speedup of a multiplexer with a 2-way comparison
over a single processor.

A 4-way VLIW can execute an if-then-else statement in slightly fewer cycles than a
single-issue CPU. A 2:1 multiplexer exhibits a 4x speedup over a 4-way VLIW to execute the
same operation in software. A comparison of the number of cycles to execute a 2:1 multiplexer

equivalent is shown in Figure 24.

47

Cycle Count for Control Operations
120x
50
90x
& 40
©
3 30
e 20
o 11x 9x
£ 10
= [
0 r
2:1 Multiplexer with 16-Entry Priority
Default Case Encoder
Control Flow Representation
O Single Processor
m 4-Wide VLIW

Figure 24. Cycle count for if-then-else statement executed on a single processor and on a 4-
way VLIW. Speedup of 2:1 multiplexer hardware implementation of the same control flow
control flow is shown in bold above the cycle count.

The speedup of if-then-else statements in hardware is also due the full rendering of branch
prediction. Without branch prediction, a VLIW branch-not-taken outcome flushes a minimum
of 3 instructions from the pipeline, wasting 3 cycles. SuperCISC hardware, however, exhibits
fully rendered branch prediction by saturating multiplexer inputs with complete sequences of all

possible outcomes.

A wide multiplexer indicates a burst of parallelism within a CISC datapath. Complex
branch instructions with more than 2 possible outcomes can be fully predicated by a wide
multiplexer. This level of parallelism for complex control flow is supported by the abundance of
configurable logic area on the FPGA for scaling the multiplexer.

Performance gain of executing complex control flow in SuperCISC hardware is
supported by the results of a 16-condition priority encoder used in the G721 kernel. A value is

compared to a constant set of 16 values, or bins, and the appropriate output routed accordingly.

48

In software, this operation consumes 48 instructions, as shown in Table 3. A 16-entry priority
encoder implemented in Stratix Il FPGA hardware executes a control statement 120x faster than
the same control statement implemented in software to run on a single-issue processor at

167MHz on the same FPGA platform.

Table 3. Assembly instructions to execute 16-entry priority encoder in software

Instruction #Needed Description
MOV R_x, Immed_i 16x moves comparison value into R_x
Subtracts comparison value from
SUBR31 R_i,R x 16x variable in register R_i and stores
result in R31
BE R31,0 16x Branches if R31 equal to zero

A 16-entry priority encoder with fixed comparisons has a performance of 422MHz on an Altera
EP2S180, the maximum clock speed of any logic element on the chip. Assembly code for a 16-
entry priority encoder consumes 48 cycles reducing the effective performance of a 167MHz
single processor to 3MHz. A 4-wide VLIW can implement the priority encoder in 36 cycles for

an effective fMax of 5SMHz.

4.2 CYCLE TIME COMPRESSION

SuperCISC hardware realizes another contribution to its speedup through back-to-back
compression of synchronous arithmetic nodes. Even in a pipelined processor architecture that

executes one operation per cycle, some arithmetic functions, such as shift by constant value, are

49

relatively simple bit manipulations and complete within a fraction of the 6ns clock period on the
167MHz VLIW. The remaining portion of the cycle is spent waiting for the slowest path of the
architecture to execute.

Minimizing idle cycle time with respect to standard processor architectures is called cycle
time compression. Cycle time compression is what allows a SuperCISC function to execute a
sequence of arithmetic operations at a fraction of latency for the same sequence performed on a
pipelined RISC processor. The 4-way VLIW proposed in this thesis executes all arithmetic
operations at a constant rate of 167MHz. A SuperCISC function, however, can execute an
arithmetic operation according to the node’s maximum clock speed within the chip before
proceeding to the next node.

On an EP2S180, a 32-bit adder clocks in at 346MHz, a 2x increase over the performance
of the same operation executed on a 167MHz processor targeted to the same device. Table 4
shows the clock speed of some constituent nodes of hardware functions if they had registered
inputs and outputs and were functioning in isolation on the Altera EP2S180 FPGA. Note that
operations having one fixed operand exhibit faster performance than those having two unfixed
operands. All operations are capable of executing at a clock speed that exceeds that of the

167MHz VLIW.

50

Table 4. Table of SuperCISC node isolated for performance and area utilization on an

Altera EP2S180F
O_peration Area F}f{gg{gﬁgﬁe Latency
(32-bit operands) (LUTS) (MH?2) (ns)
Adder 96 346 3
Subtractor 96 337 3
Multiplier 0 322 3
Variable Shift 135 282 4
Fixed Shift 48 422 2
2-Way Variable Comparator 76 241 4
1-Way Variable Comparator 66 332 3
1-Way Fixed Comparator 33 384 3
1-Way Fixed Comparator 25 386 3
Logical INV 64 366 3
Logical AND/OR/XOR 96 422 2
89-Element LUT 408 229 4
16-Element Priority Encoder 47 422 2
2:1 Multiplexer 64 422 2

SuperCISC hardware combines the computational nodes isolated for performance in Table 4 in
an asynchronous combination within a multi-cycle path relative to the VLIW. The performance
savings of a SuperCISC hardware function over a synchronous CPU can be estimated. First, for
the software-implementation latency, multiply the number of assembly instructions for the
function by the cycle time of the processor. Next, for the hardware-based implementation,
estimate the latency for each datapath of the SuperCISC hardware. Do this by summing the
known latencies for each arithmetic node along each edge of the graph from input to output.

Choose the longest latency to represent the critical path. Subtract the SuperCISC hardware

o1

latency from the CPU latency. Divide this difference by the CPU cycle time to determine the
number of cycles saved to perform the operation within a SuperCISC hardware function.

Figure 25 shows the cycle time utilization of SuperCISC computational nodes if they
were functioning in isolation relative to the cycle time of a 167MHz CPU on the same target
device. Logic operations realize the most benefit from SuperCISC hardware, with the fixed-
operand shift achieving the most compression. Note that multipliers require no logic area
utilization due to their implementation within digital signal processing (DSP) blocks. A 32-bit

multiplier requires 8 DSP units, or 1% of the 768 total 9x9 multipliers available on an EP2S5180.

Cycle time utilization of hardware function

1 arithmetic nodes
§ 08
s 0.6 —
-
c
3 04
0 . —
g
Q
§ 0.2 -

0 T T T T T

Logic Adder Subtractor Multiplier Logical CPU
Operation Shifter
Functional Unit

Figure 25. Cycle time utilization of SuperCISC arithmetic nodes normalized to the cycle
time of a 167 MHz processor on an Altera EP2S180
SuperCISC computational nodes realize the most cycle compression from fixed operand
computation. A fixed operand computation can execute up to 2.5x faster than its 2-variable
equivalent. Figure 27 shows the speedup of 1-fixed operand comparators and logical shifters as

compared to equivalent 2-variable operations on a 167MHz VLIW versus a SuperCISC

52

computational node. The figure indicates that a computation having one fixed operand (i.e. shift
operand by a constant value of 4) executes in hardware about 1.5x faster than a similar operation

having no fixed operands (i.e. shift operand by a variable value).

Speedup of 1 fixed, 1 variable operand
HW node over 2 variable operand equivalent

2.8
2.6
2.4
2.2 A

1.8 A

0 B —
\

1.2 o
1 ‘ ‘
2-Way Comparator Shifter 1-Way Comparator

(LTE, GTE) . (LT, GT, NE)
Functional Operation

vs. 2-variable VLIW at 167 MHz

Speedup

—&— Vs. 2-variable HW node

Figure 26. Speedup of fixed operand computation executed in SuperCISC computational
node versus 2 variable computation executed in SuperCISC node and versus execution on
167 MHz VLIW on an Altera EP2S180

53

5.0 SYSTEM MODELING

The VLIW/SuperCISC software/hardware processor was designed for synthesis in VHDL and
for run-time and behavioral information using C++ and the Synopsys SystemC library. The
VHDL model provides the encoded information that allows the VLIW/SuperCISC architecture
to be compiled for configuration of the FPGA. The same VHDL files could also be used for a
custom-ASIC implementation. The SystemC encoded architecture is used for collecting

statistics of the run-time behavior of the benchmark application.

5.1 VHDL MODELING

The VLIW/SuperCISC software/hardware architecture was designed in VHDL hardware
description language. VHDL stands for very high-speed integrated circuit VHSIC hardware
description language [34][35]. VHDL is used for both synthesizable and behavioral modeling of
digital electronic hardware. VHDL is regulated by the Institute of Electrical and Electronics
Engineers (IEEE). IEEE 1164 defines the most current standard and standard logic libraries
available to VHDL.

VHDL does not require knowledge of the underlying primitive FPGA logic used to
implement the design. The VLIW/SuperCISC VHDL files are parsed within a technology-

specific process called synthesis, in which VHDL text files are compiled into a gate-level

54

implementation called a netlist. The VLIW/SuperCISC processor was synthesized using
Synplicity Synplify as well as Altera Quartusll software to compile a netlist. Analysis of the
synthesized design can provide an estimate of the performance prior to place-and-route of the
design.

The netlist is passed to place and route software issued by a device vendor, such as
Quiartus Il for the Altera family of devices. Quartus Il maps the netlist to a specified FPGA and
configures row and column interconnection signals between LABs, RAM and DSP blocks.
Quartus Il analyzes the configuration, post-place and route, and reports static timing data and
FPGA area and resource utilization. Designs for the VLIW and SuperCISC were hand-
optimized through an iterative process. Figure 27 shows the design flow of the
VLIW/SuperCISC software/hardware processor from conception, to VHDL modeling, to

synthesis, place and route, repeated through iterative design optimizations.

C source code

Code
Profiling

Code
Partitioning

I
DFG
Generation
I
) VHDL ;
*_ | Translation | ./

Loops SynthesiHE)uD GSynthesi Bitstrean) Synthesis

Figure 27. Design flow for VLIW/SuperCISC architecture [32][33].

TNIGS NIOS II
mlrimarar | VLIVW Assembjly VLIVW Machine C
Backen Assembl%r g
55

C Progra

Hardware

5.2 SYSTEMC MODELING

The VLIW architecture was modeled at the system level in C-language source code using the
Open SystemC Initiative (OSCI) SystemC hardware modeling library. The SystemC library
extends C++ for modeling concurrent behavior, time-sequenced operations, hardware data-types,
hierarchical system modeling and simulation [38]. SystemC library enables rapid design time of
a behavioral model of the VLIW architecture. Run-time simulation and verification information
of the system is reported to the standard console and recorded in output files. In addition to
performing system-level run-time analysis, data gathered through a SystemC simulation can be
used to explore issues of dynamic switching power-reduction for making design decisions about
an application-driven architecture.

A hierarchical SystemC VLIW was created for this thesis as a cycle-accurate
representation of the VHDL model. The SystemC VLIW consists of a main.cpp file that
constitutes the top level of the design hierarchy. Instantiated classes within main.cpp represent
the secondary tiers of the hierarchy and stages of the VLIW pipeline (instruction fetch, decode,
execute, memory, and register file writeback). A display class is instantiated to read VLIW
system signals, collect and interpret the information, and display the information to the user.

The SystemC VLIW processor provides data about an application’s run-time profile. The
SystemC VLIW simulator outputs counts of occurrences of different instruction types (memory
load/store, arithmetic, control) recorded from the run-time behavior of the application. Run-time
information of the target application can support the results of the code profiler when designing

an application-driven architecture.

56

Figure 28 shows the run-time profile of application instruction-types for several
benchmarks compiled for the VLIW SystemC VLIW. Note the predominance of memory
load/store instructions that point to the value of implementing a shared address space in main
memory for the SuperCISC hardware. ldentifying run-time instruction-type dominance within a
target application helps to point to future directions of the VLIW project. Figure 28 illustrates
wht motivation for shared memory architecture to accelerate loads and stores of a memory-

intensive applications.

Benchmark Runtime Profile

0.7
0.6 S
5 = |
g 05 = 7 § o G721
2 | g N | [BesM
L =7 § @ ADPCM_Encode
NS = g § @ ADPOM_Decode
B) =
g o2 = 7"\ Z N | |® /DT Colurm
5 SN | B | [/0cT Row
S VAN | B AR
1=l = [Hia N 1 EIVN [HY N

Shift Logic Control Arith Memory
Instruction Type

Figure 28. Run-time profile of benchmark applications compiled for the VLIW processor
only of the SystemC simulator model.

The SystemC library can be used to create a system-level simulator for collection of data about

static and dynamic power consumption [39][40][41]. One way to collect data about the

switching activity of the system to reduce power consumption is to link the SystemC bit-level

data types to a switching counter. On each cycle, a bittwiddle() function would count the number

57

of bits that switch in a given set of signals. The simulator writes the count to a 2D array with a
time stamp and the value. This data can be correlated to energy consumption by time period to
estimate the dynamic switching power. Design decisions for power reductions could be based
upon SystemC reports of the switching behavior for a specific application. A SystemC simulator
can be used in future directions of the VLIW/SuperCISC processor in the area of power-

reduction for application-driven architectures.

58

6.0 PERFORMANCE RESULTS

Performance results for the VLIW/SuperCISC software processor/hardware accelerant
architecture were obtained using Quartus II’s post-place and route static timing analysis of the
Synplicity synthesized netlist. The VLIW processor was isolated from the SuperCISC hardware
and analyzed to determine a baseline performance for the VLIW processor on an Altera Stratix |1
EP2S180 FPGA.

The SuperCISC hardware functions were analyzed independently of one another with the
understanding that their complexity would lead to longer latencies that require multiple VLIW
clock cycles for the SuperCISC co-processors to complete execution. Static timing analysis
measures the latency and slack time from the output of a clocked register, through any
combinational logic, RAM block, or embedded multiplier, to the input of the next clocked stage.
The path of the data vector showing the longest latency is called the critical path of the design.

The critical path dictates the maximum clock frequency of a design sharing a clock tree.

6.1 VLIWPERFORMANCE

Iterations of the design flow have produced a 4-way VLIW with 32-bit Niosll extensible RISC
ISA processors to achieve a peak performance of 167MHz. A program that can support an ILP

of 4 at all times would execute on the 4-way VLIW at a rate of 668MOPS. This throughput

59

would raises the effective speed of the 4-way VLIW to exceed that of many embedded
processors such as the ARM1020 and ARM11 [42].

Achieving optimal performance of the VLIW is not the objective of the performance
profiling — achieving an acceptable performance (above 150MHz) was sought to attain a
baseline performance for the VLIW software processor against which to compare the

performance of SuperCISC hardware accelerants and evaluate their speedups.

6.1.1 VLIW Performance Profile

The performance profile of the VLIW shows the critical path to be between the 512Kb memory
output to the register file, the write-back path of a LOAD operation. The 6ns latency from the
memory bank to the register file could be cut by adding a register stage.

The next-to-critical path is set by the ROM decoder. In an optimal processor design on
an FPGA, the maximum clock frequency would be set by the DSP blocks in which 32-bit integer
multiplication takes place. DSP blocks are statically configured on the chip and therefore
performance is only subject to the bit-width of the operation. Because multiplication on the

VLIW is set to 32-bit inputs, the maximum performance cannot exceed 322 MHz.

60

Table 5. Timing results for paths within 4-way VLIW on Altera EP2S180

Maximum o

Path Clock Speed Latency Stage of Pipeline
5;2Kb Memory Output to 32-element Register 167 MHz 6ns Writeback (LOAD)
File Output
Instruction ROM Output to Decoder Output 196 MHz 5ns Decode
ALU Output to 32-element Register File 249 MHz 4ns Writeback (ALU)
Output
ALU Output to 512Kb Memory Output 309 MHz 3ns Memory (STORE)
Register File Output to Multiplier Output 318 MHz 3ns Execute (MULT)

Table 5 shows the maximum clock speed given by the critical path at the top of the table.
Timing results for other paths within the VLIW show latency for other stages of the VLIW
pipeline. The performance of a 32-bit integer multiplier is shown as reference for the ideal

performance of the VLIW.

6.1.2 Area and Resource Utilization

The proposed VLIW utilizes only 4% of the total logic cells of an EP2S180 FPGA, 25% of
which is allocated to the shared register file. A single Niosll processor occupies 2928 LUTSs,
while 4 Nios Il processors in VLIW formation occupy only twice the area of a single processor,
or 5932 LUTs. The remaining 96% of the EP2S180 logic area is available for SuperCISC
hardware functions.

The VLIW occupies 72, or 8% of the DSP blocks on an EP2S180. It would appear that
the width of a parallel processor is limited by the number of DSP blocks rather than configurable

logic, but tests conducted for this thesis show that synthesis tools direct resources sharing that

61

over-saturates the DSP blocks with more multiply blocks than empirical limits could support. In
cases where a design that demanded more DSP resources than embedded within the FPGA was

targeted to the device, the place and route software

6.2 SUPERCISC HARDWARE PERFORMANCE

SuperCISC hardware co-processors were isolated from the VLIW processor and analyzed
independently of one another to determine execution latency on an EP2S180 FPGA. The latency
of the SuperCISC hardware is used as a measurement against which to compare the execution
times of benchmark applications on a host processor sharing the same technology platform.

The latency of SuperCISC hardware is not subject to an optimization flow because of the
inherent efficiency of the 32-bit design. SuperCISC hardware accelerants instantiate
computational resources dictated by the data-flow graph of the kernel to be mapped, thereby
minimizing the amount of resources dedicated to each task. The latency of some operations
could be reduced by customizing bit-width to suit application-specific operations upon short (16
bit) and char (8 bit) data types.

The SuperCISC hardware functions created in representation of benchmark code kernels
exhibit a latency that ranges from 16ns to 28ns and reduce sequences of complex operations to
the equivalent of a few VLIW clock cycles. Table 6 shows the latency and number of VLIW

clock cycles for the kernel to execute for six SuperCISC functions.

62

Table 6. Timing results for SuperCISC hardware execution of listed portions of
benchmark applications on Altera EP25180

of VLIW
SuperciSC Funcion | Latency | o WSt | ntrucionsto | Speedup over
kernel
G.721 Decoder 24ns 4 736 184x
IDCT Column 22ns 4 204 51x
IDCT Row 21ns 4 100 25x
ADPCM Decoder 16ns 3 54 18x
ADPCM Encoder 28ns 5 80 16x
GSM Decoder 18ns 3 21 X

6.2.1 Overall Application Speedups

SuperCISC hardware accelerants are designed to pursue gains of the 90/10 rule, targeting 90% of
the execution time on a single-issue CPU by mapping the source code (often 10% of the source
code) to hardware. Ideally, SuperCISC hardware exhibits 12x speedup to create an overall
application speedup of 10x when applied to the VLIW, but many of the SuperCISC hardware
profiled for this work exceed 12 speedup. Speedups in excess of 12x can be achieved by
mapping kernels that together contribute more than 90% to the execute time on a single-issue
CPU.

SuperCISC hardware functions have produced maximum kernel speedups of 330x over a
single-issue 167MHz processor [32]. The speedup possible within a SuperCISC function is
contingent upon the number of nodes, the complexity of the node functions, the amount of
control flow that can be implemented to expand the candidate DFG, and the width of the input

operand vector. Figure 29 shows the speedup of SuperCISC hardware executing a single

63

application kernel of a benchmark versus several 167MHz processor configurations targeted on

the same FPGA technology platform executing the same kernel function in software.

Performance Speedup of the Computational Kernels
over Software Equivalent on Various Processors

350.00
= 300.00
8
%- 250.00 —
“ 200.00
g —
o 150.00 []
S
= 100.00
]
3 50.00
0]

0.00 - CI— [[
pNIOS I VLIW 4 VLIW Unl

O ADPCM Decoder 18.33 18.00 18.00
@ ADPCM Encoder 18.25 16.00 16.00
O GSM Decoder 9.33 7.00 7.00
0 G721 Decoder 230.00 184.00 161.67
| IDCT Row 37.40 25.20 25.20
o IDCT Col 64.80 51.20 50.00
m Spherical Decoder 332.50 124.13 123.25

Figure 29. Speedup for single application kernels of SuperCISC functions versus several
167MHz processor architectures [32].
SuperCISC hardware functions raise the application speedup of a 4-way VLIW from 1.3x, less
than half its ideal, to an average 10.2x speedup. This factor exceeds the arbitrary target speedup
of 10x selected for the hybrid architecture. This target speedup is calculated by Amdahl’s
equation, inserting variables for a VLIW accelerating 10% of the single-issue run-time by a

factor of 4x, coupled with SuperCISC hardware accelerating 90% of the single-issue run-time by

64

a factor of 12x. Figure 30 summarizes application speedup given by architectures from a

167MHz single-issue CPU to a 167MHz 4-way VLIW supported by SuperCISC hardware.

Benchmark Speedup
Over the Single Processor pNIOS 1l
30.00 -
25.00 —
8 20.00 —
4
o
@ 15.00 —
(]
o
>
g 10.00
o
0
5.00
0.001 HW HW HW + VLIW
+ + +
NIOS I VLIW 4 | VLIW Unl
P "l opNos T | viwa Unl
@ ADPCM Decoder 1.00 1.13 1.13 2.92 4.15 4.15
m ADPCM Encoder 1.00 1.28 1.28 4.00 7.66 7.66
0O GSM Decoder 1.00 1.35 1.35 4.13 5.81 5.81
0 G721 Decoder 1.00 1.27 1.39 26.49 29.67 28.04
m MPEG2 Decode 1.00 1.46 1.55 6.99 8.82 11.73
O ADPCM Decoder m ADPCM Encoder 0 GSM Decoder 1 G721 Decoder m MPEG2 Decode

Figure 30. Overall application speedup of various processor configurations compared to
single-issue 167MHz architecture [32].

6.2.2 Area Utilization

All benchmarked SuperCISC functions utilize less than 1% of the logic area on an Altera
EP2S180. Given the small area requirements of SuperCISC hardware, it is more meaningful to

look at the logic area with respect to speedup. Figure 31 rank orders the area utilization and

65

kernel speedup of SuperCISC hardware accelerants, normalized to the area and speedup of the
SuperCISC co-processor having the fewest logic elements, the G.721 decoder with 780 logic

elements.

6.3 SUPERCISC SPEEDUP VERSUS AREA INCREASE

Hardware functions demand relatively little area compared with the potential for application
speedup. Expensing an average FPGA logic area increase of 0.2x to the proposed VLIW,
SuperCISC hardware functions contribute to a 10.2x speedup of the total application. In
contrast, to achieve a 1.3x speedup over a single processor, a 4-way VLIW requires a 3x increase
in area. The benefit (speedup) to cost (area) ratio of a SuperCISC function is 17x over that of a
4-way VLIW architecture. Figure 31 shows the speedup and area factor of SuperCISC hardware

functions for each benchmark application.

66

Performance and Area Increases to 4-way VLIV for Adding
Hardware Function

30

25

20

15

Factor Increase over
VLIW
=

O S N S N I N

ADPCM ADPCM IDCTRow IDCT Col G721
Decoder Encoder

Benchmark Application

O Performance Increase
W Area Increase

Figure 31. Performance and area increase for VLIW supported by SuperCISC hardware
versus VLIW without SuperCISC support on an Altera EP2S180

Special on-chip resources such as embedded multipliers and multiply-accumulate (MAC)

units are in limited supply, but devices such the EP2S180 boast 768 9-bit multipliers. IDCT
column operation requires 72, or 9% of the multipliers, but less than 1% of the logic area.
Empirical calculations indicate that the EP2S180 can support no more than 11 IDCT column
hardware functions. Testing of the device limits, however, show that a configurable device can
support many more functions than the number of multipliers would indicate. This effect is due
to routing optimizations that direct resource sharing. Therefore, the truest indication of an
FPGA'’s capacity to support quantities of SuperCISC hardware functions is given by the logic

area utilization and not the occupation of embedded multipliers.

67

7.0 FUTURE DIRECTIONS

Work on the VLIW/SuperCISC software processor/hardware accelerated architecture shows
many directions for future contributions to the area of application-driven computing. From the
compiler perspective, the automated design flow can support configurable width of the VLIW
software processor. The width of the VLIW can be passed as a parameter set by an ILP value of
the target application. From the architecture perspective, memory data stores can supplement the
register file as a shared data interface between software and hardware processing components.
The following section provides data pursuant to using main memory as an additional interface

between the VLIW and SuperCISC hardware.

7.1 SHARED MEMORY

Before designing the memory architecture for a highly-parallel processor, one must consider the
system and application requirements for data capacity, parallel data access, and timing
constraints. A memory must be capacious enough to hold data for an entire application. It must
also provide data access to all the specified processors and perform at a rate to meet of exceed a
baseline operating frequency, 167MHz in the case of our VLIW. Understanding the capabilities
and limitations of the memory on a configurable logic device is critical to predicting synthesis

results in creating a memory architecture that balances the competing requirements.

68

A memory designed for parallel processors may be either shared or distributed. A shared
memory, sometimes called a global memory, is generally large and limited in bandwidth, but
requires no coherence strategy. Multi-processor architectures that share main memory address
space generally achieve better throughput than multi-processors that do not share an address
space [36] and support parallel programming. A distributed memory, sometimes called a mobile
memory, is generally governed by one main memory having one or more smaller, local
memories and requires a coherence strategy. For a massively parallel processor to access all the
data needed from memory, there is a tradeoff between the data access latency of a limited-
bandwidth shared memory and the complexity of designing a coherence strategy for a distributed
memory.

A shared memory may interleave access in time or provide real parallelism to incorporate
the SuperCISC hardware functions into the shared address space. An architecture that supports
time-interleaved memory sharing can be compiler driven, implementing interleaved access at the
instruction level, or provide a conflict strategy to interleave access at the hardware level. In the
current VLIW/SuperCISC architecture, writes of one processing unit may be read on the next
cycle by all other processing units that have access to the shared address space.

A simple strategy for shared address-space sharing in which processing elements have a
common instruction stream, stack and data implies that shared variables have the same meaning
within the application thread to each software or hardware processor within the multi-processor
architecture [36]. A more complex strategy for a shared memory architecture may provide for a
global address space and partitions for private address spaces for hardware processing units and

support of multi-threaded programming.

69

To meet capacity specifications, the memory design may instantiate several different
memory block types available on the chip. The Altera Stratix 11 EP2S180 offers three kinds of
memory: 930 M512 blocks with 512 bits plus parity, 768 M4K blocks with 4K bits plus parity,
and 9 M-RAM blocks with 512K bits plus parity. The M512 and M4K blocks are widely
distributed in columns throughout the chip, making them suitable for smaller, local memories in
a distributed memory architecture. The M-RAM blocks provide the capacity for a shared
memory.

Meeting memory access specifications is closely correlated to meeting timing
specification. Therefore, is it useful to consider the effect of port-width on performance. Peak
memory performance of 348 MHz is achieved on the EP2S180 by limiting utilization to access
only one memory block. Increasing the M-RAM capacity and port size beyond a single block
limit of 512Kbits and 64-bit dual ports requires striping across the blocks at some expense to the
performance of the architecture. Similarly, the M4K blocks only achieve peak performance
when limited to 4Kbits and dual 16-bit ports. Figure 32 below shows performance data for
configurations of address space and dual-port size for the M4K and M-RAM block types. The
shaded area indicates configurations that meet or exceed 167 MHz timing constraints for the

VLIW/SuperCISC software/hardware processor architecture.

70

Memory Performance on an EP2S180 for Configurations that Vary Block
Type, Dual Port-Width and Address Space

400 N 32 KB M-RAM

0128 KB M-RAM
- m 256 KB M-RAM
@512 KB M-RAM

3504 —

3001

250]

W 32 KB M4K
=128 KB M4K
256 KB M4K

200]4

MHz

150 -

100 -

50 H

FF T TFFTTFTTATTTFFTTFTTFSF
FF T T TN Ty

P T TS

T TTTTT TSN TTETT TS

0 T T T
32-bitports 64-bitports 128-bitports 256-bitports 512-bit ports

Port Width

Figure 32. Memory performance on an EP2S5180 for M-RAM and M4K blocks of varied
dual-port size and address space. The shaded area indicates memory configurations that
meet 167MHz timing constraints.

While widening port size may enable vector access to memory that meets timing constraints, the
new configuration may not meet target memory ‘bandwidth speedup.” ldeally, if a single 32-bit
dual-ported memory performs at 100MHz, a 2x bandwidth speedup would indicate that a 64-bit
dual ported memory performs at the same speed of 100MHz. This is often not the case. As a
general rule, as the port-size increases on a memory of fixed-address space, the bandwidth
‘speedup’ falls short of the ideal gain. While this tradeoff is often not important for system
designs that have a global clock and a single timing constraint, it does emphasize the sacrifice
made to accommodate wide vector ports. Figure 33 shows the ‘bandwidth speedup’ of
vectorized dual-ported memory configurations over that of a 32-bit dual-port memory having a

base speedup of 1x. Speedups that exceed target are assumed to be due to random-variant, sub-

71

optimal, exit points of the Quartus Il simulated annealing place-and-route algorithm for the 32-

bit dual-ported memory referenced as a baseline.

Bandwidth 'Speedup' of Vector-wide Dual Ported Memory over 32-bit
Dual Ported Memory on an EP2S180

16 0 32 KB M-RAM
14 || |@ 128 KB M-RAM
1 m 256 KB M-RAM
|| |m512 KB M-RAM
10 -
[oX
2 8 m 32 KB M4K
(&) —
g = 128 KB M4K
N 6 | |
ri 256 KB M4K
4 __ || |0 Target
2 7 E
0 w : : A |
64-bit ports 128-bit ports 256-bit ports 512-bit ports
Port Width

Figure 33. Bandwidth speedup of vector-wide dual ported memory over 32-bit dual ported
memory on an EP2S180. The speedup of a 32-bit dual ported memory is implied to be 1x.
‘Target’ indicates ideal bandwidth speedup.

A shared memory with multiple-word access may support independent addressing as
opposed to vector-based access (one address, many continuous data values). The independently
addressed memory architecture is more complex than a vector-based architecture. The memory
must be composed of multiple banks with some interleaving address strategy. The more banks a

memory interleaves, the higher order decoder needed, and the more complex the routing. An

independently addressed memory, however, affords great access control of the SuperCISC

72

hardware to the main memory. A sample shared memory architecture with an independent

addressing scheme and supporting dual-port access to the VLIW and 8-word access to the
SuperCISC hardware functions is shown in Figure 34.

g

FROM VLIW

512Kb Dual-port Memory Available to VLIW

18 Decodar 64Kb Memory Banks Available to SuperCISC

] || L
JIL

1 il Al B
ux ux

SuperCISC
Hardware

24 1 #l 24 -1
ux ux ux X ux ux
64Kb B64Kb 64Kb 64Kb 64Kb 64Kb 64Kb 64Kb
Dual-port Dual-port Dual-port Dual-port Dual-port Dual-port Dual-port Dual-port
Memory Memory Memory Memory Memory Memory Memory Memory
ll
i
8x1 8x1
Mux Mux
TO VLIW

\

Figure 34. Sample configuration of a shared memory architecture. The VLIW accesses a
512Kb dual-ported memory. The SuperCISC hardware function accesses eight, 64Kb
memory banks.

73

8.0 CONCLUSION

Advances in FPGA technology are making single-chip, custom processors a rewarding and
increasingly feasible pursuit. The architecture proposed in this thesis is one such example - a
VLIW/SuperCISC software processor/hardware accelerated design implemented on a Stratix 1l
FPGA. Its performance profile and application speedups are promising enough to inspire more
work in this field. As fabrication technology improves and more levels of configurable
granularity emerge [7][8][19][20], experimental designs will challenge the boundaries of
traditional processors.

This thesis makes several contributions in the area of VLIW processor design and

hardware-accelerated architectures. Research contributions include:

1. Designing a 4-way VLIW from the ground up in VHDL hardware description language.
The VLIW processor combines 4 parallel RISC processors to shared a register file,
address space and instruction stream to execute up to 4 different instructions concurrently

(scheduled at compile time).

2. Designing a zero-overhead implementation of a hardware/software interface. The
interface consists of a shared register file and common instruction stream. The shared

instruction stream allows execution of the SuperCISC hardware with zero-cycle context

74

switching. The SuperCISC hardware interfaces to the register file with the addition of a
2:1 multiplexer in front of each register file. The added latency is absorbed by the slack
time of the register file with respect to the VLIW. Therefore, there is zero noticeable cost

to the operating performance of the VVLIW processor.

Evaluation of the scalability of a shared register file. Measuring performance decline of
the register file help to make design decisions with respect to widening the VLIW

processor.

Illustrating examples of application-specific hardware accelerants. SuperCISC hardware
is an application-driven hardware accelerant that represents a kernel of software code as a
densely-packed, asynchronous combinational logic circuit. SuperCISC hardware is
currently designed by hand using a 4-step process that starts with application source code
profiling, to hardware/software code partitioning, to data-flow graph generation, and

finally translation to VHDL hardware modeling language.

Designing SystemC-based simulator to mimic the VLIW/hardware-accelerated hybrid
processor. The SystemC VLIW processor provides data about an application’s run-time

profile.

Evaluating the costs of shared memory configurations. Two shared memory
configurations were presented — an independently-address, interleaved memory

architecture, and a vector-ported single-bank memory architecture.

75

The contributions of this work serve to further the advancement and deployment of
application-driven processor design. Single-issue processors may soon approach limits of
transistor size and density and will then require parallel architecture strategies and application-
specific accelerants to achieve execution-time improvements. Creative strategies for processor
design can merge with advances in FPGA technology to open the doors to fast and highly-

feasible hardware/software co-designed architectures.

76

APPENDIX

A.1 SOURCE CODE FOR APPLICATION

KERNEL OF ADPCM DECODER

1. // KERNEL SETUP

2. state = &decoder_ state;

3. outp2 = pcmdata_2;

4. 1inp2 = (signed char *)adpcmdata;
5. wvalpred = state->valprev;

6. 1index = state->index;

7. step = stepsizeTable[index];

8. bufferstep = 0;

9. for (; len > 0 ; len--) {

10. // BEGIN KERNEL

11. if (bufferstep) {

12. delta = inputbuffer & O0xf;

13. } else

14. inputbuffer = *inp2++;

15. delta = (inputbuffer >> 4) & Oxf;
16.

17. bufferstep = !bufferstep;

18. index += indexTable[deltal];

19. if (index < 0) index = 0;

20. 1f (index > 88) index = 88;

21. sign = delta & 8;

22. delta = delta & 7;

23. vpdiff = step >> 3;

24. if (delta & 4) vpdiff += step;
25. if (delta & 2) vpdiff += step>>1;
26. if (delta & 1) vpdiff += step>>2;
27. if (sign)

28. valpred -= vpdiff;

29. else

30. valpred += vpdiff;

31. if (valpred > 32767)

32. valpred = 32767;

33. else if (wvalpred < -32768)

34. valpred = -32768;

35. step = stepsizeTable[index] ;

36. *outp2++ = valpred;

37. // END KERNEL

38.

39. state->valprev = valpred;

40. state->index = index;

7

A.2 SOURCE CODE FOR APPLICATION KERNEL OF ADPCM ENCODER

1 // KERNEL SETUP

2 outp = (signed char *)adpcmdata;
3. 1inp = pcmdata;

4. valpred = state->valprev;

5 index = state->index;

6 step = stepsizeTable [index] ;

7 bufferstep = 1;

8. for (; len > 0 ; len--) {
9. // BEGIN KERNEL

10. val = *inp++;

11. diff val - valpred;

12. sign (diff < 0) ? 8 : 0O;
13. if (sign) diff = (-diff);
14. delta = 0;

15. vpdiff = (step >> 3);

16. if (diff >= step) {
17. delta = 4;

18. diff -= step;

19. vpdiff += step;

20. }

21. step >>= 1;

22. if (diff >= step) {
23. delta |= 2;

24. diff -= step;

25. vpdiff += step;

26. }

27. step >>= 1;

28. if (diff >= step) {
29. delta |= 1;

30. vpdiff += step;

32. if (sign)

33. valpred -= vpdiff;
34. else

35. valpred += vpdiff;

36. 1f (valpred > 32767)

37. valpred = 32767;

38. else if (valpred < -32768)
39. valpred = -32768;

40. delta |= sign;

41. index += indexTable[delta];
42. if (index < 0) index = 0;
43, if (index > 88) index = 88;
44 . step = stepsizeTable[index];

45. if (bufferstep) {

46. outputbuffer = (delta << 4) & 0xf0;

47. } else {

48. *outp++ = (delta & 0x0f) | outputbuffer;
49.

50. bufferstep = !bufferstep;

51. // END KERNEL

52.

53. if (!bufferstep)

54 . *outp++ = outputbuffer;
55. state->valprev = valpred;
56. state->index = index;

78

A.3 SOURCE CODE FOR APPLICATION KERNEL OF G.721 DECODER

1. an = (int)state->bl[i];

2. an = an >> 2;

3. srn = (int)state->dglil;

4. anmag = (an > 0) ? an : ((-an) & Ox1FFF);
5. anexp = quan(anmag, power2, 15) - 6;

6. 1int j = 0;

7. do {

8. 1f (anmag < power2[j])

9. break;

10. j++;

11. } while (3 < 15);
12. anexp = j-6;

13. anmant = (anmag == 0) ? 32

14. (anexp >= 0) ? anmag >> anexp : anmag << -anexp;

15. wanexp = anexp + ((srn >> 6) & O0xF) - 13;

16. wanmant = (anmant * (srn & 077) + 0x30) >> 4;

17. retval = (wanexp >= 0) ? ((wanmant << wanexp) & O0x7FFF)

18. (wanmant >> -wanexp) ;

19. sezi+=(((an * srn) < 0) ? -retval : retval);

A.4 SOURCE CODE FOR APPLICATION KERNEL OF GSM DECODER

1. tmpl = rrplil;

2. tmp2 = vI[i];

3. tmp2 = (tmpl == MIN WORD && tmp2 == MIN_WORD
a. ? MAX WORD
b. : OxOFFFF & (((long)tmpl * (long)tmp2 + 16384) >> 15))

4. sri = sri - tmp2;

5. tmpl = (tmpl == MIN WORD && sri == MIN_WORD
a. ? MAX WORD
b. : OxOFFFF & (((long)tmpl * (long)sri

i. + 16384) >> 15)) ;

6. vI[i+1l] = vI[i] + tmpl;

7.

8. srp+=1;

9. srp = vp = sri;

79

A.5 SOURCE CODE FOR APPLICATION KERNEL OF IDCT COLUMN

1. if (! ((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2])
i. (x4 = blk[8*1]) | (x5 = blk[8*7]) | (x6 = blk[8%5]) |
(x7 = blk[8%*3])))

2. |
3. blk[8*0]=blk[8*1]=blk[8*2]=blk[8*3]=blk[8*4]=blk[8*5]=blk[8*6]=blk[8*7]

= (blk[8*0]+32)>>6;

a. return(0);

4. }
5. x0 = (blk[8*0]<<8) + 8192;
6. X8 = W7*(x4+x5) + 4;
7. X4 = (x8+ (W1-W7)*x4)>>3;
8. X5 = (x8-(W1+W7)*x5)>>3;
9. X8 = W3*(x6+x7) + 4;
10. x6 = (x8-(W3-W5)*x6)>>3;
11. x7 = (x8-(W3+W5) *x7) >>3;
12. x8 = x0 + x1;
13. X0 -= x1;
14. X1 = W6* (x3+x2) + 4;
15. x2 = (x1-(W2+W6) *x2) >>3;
16. x3 = (x1+(W2-W6) *x3)>>3;
17. x1 = x4 + X6;
18. x4 -= X6;
19. x6 = x5 + xX7;
20. x5 -= x7;

21. x7 = X8 + x3;

22. x8 -= x3;

23. x3 = x0 + x2;

24. x0 -= x2;

25. x2 (181* (x4+x5)+128) >>8;

(181* (x4-x5)+128) >>8;
27. temp =(x7+x1)>>14;

X3+x2) >>14;

>>14;

x0-x4
x3-x2
x7-x1

>>14;

(
(
(
(x8-x6
(
(
(>>14;

w
=
t
2
o]
L | | R | N [
v
\
=
N

35. blk[8*0]
36. blk[8*1]
37. blk[8*2]
38. blk[8*3]

[1*1];
[
[
[
39. blk([8*4]
[
[
[

2*i];
3*i];
4*i];
5%i] ;
6*1] ;
7*i] ;
8xi] ;

iclp
iclp
iclp
iclp
iclp
iclp
iclp
iclp

40. blk([8*5]
41. blk([8*6]
42. blk[8*7]

80

A.6 SOURCE CODE FOR APPLICATION KERNEL OF IDCT ROW

AU WN B

~

if (1 ((x1 = blk[4]<<11l) | (x2 = blk[6]) | (x3 = blk[2]) |
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blkI[3])))
blk [0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk([0]<<3;
return (0);
x0 = (blk[0]<<1l) + 128; /* for proper rounding in the fourth stage
*
/
X8 = W7* (x4+x5) ;
x4 = X8 + (W1-W7)*x4;
. X5 = x8 - (W1+W7) *x5;
. X8 = W3* (x6+x7) ;
. X6 = x8 - (W3-W5) *x6;
. X7 = x8 - (W3+W5)*x7;
. x8 = x0 + x1;
. X0 -= x1;
x1 = We* (x3+x2) ;
x2 = X1 - (W24W6) *x2;
x3 = x1 + (W2-W6)*x3;
X1l = x4 + X6;
X4 -= X6;
X6 = X5 + x7;
X5 -= xX7;
X7 = X8 + X3;
X8 -= X3;
X3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;
blk[0] = (x7+x1)>>8;
blk[1] = (x3+x2)>>8;
blk[2] = (x0+x4)>>8;
blk[3] = (x8+x6)>>8;
blk[4] = (x8-x6)>>8;
blk[5] = (x0-x4)>>8;
blk[6] = (x3-x2)>>8;
blk[7] = (x7-x1)>>8;

81

A.7 SYSTEMC VLIW SOURCE FILE: MAIN.CPP

#define SC_USER_DEFINED_MAX_NUMBER_OF_PROCESSES
#define SC_VC6_MAX_NUMBER_OF_PROCESSES 80
#include "systemc.h"

/I#include <climits>
[I#include <cstdlib>
/M#include <time.h>
/l#include <sys/times.h>
#include <fstream>
#include "reg32.h"
#include "stimulus.h"
#include "display.h"
#include "alu.h"
#include "regfile.h"
#include "ram.h"
#include "decoder.h"
#include "mux_2tol1.h"
#include "byte_sel.h"
#include "pc.h"
#include "I_cache.h"
#include <fstream>
#include "directives.h"
#include "mem_addr_conv.h"

int sc_main(int ac, char *av[])

{

int flen;

cout << endl,

cout << "Enter hex file length (in lines): *;
cin >> flen;

sc_signal<int> filelen;
filelen.write(flen);

/l GLOBALS

/I clock(name, period, duty cycle, 1st edge, 1st value)
sc_clock clock("clock",0.25,0.5,0,true);
sc_signal<bool> reset;

sc_signal<bool> en;

sc_signal<int> regin;

sc_signal<int> regout;

/I ALU
sc_signal<int> op_a;

82

sc_signal<int> op_b;
sc_signal<int> alu_out;
sc_signal<int> opcode;
sc_signal<bool>signed_op1;
sc_signal<bool>signed_op2;
sc_signal<int> op_al;
sc_signal<int> op_bl;
sc_signal<int> alu_outl;
sc_signal<int> opcodel;
sc_signal<bool>signed op11;
sc_signal<bool>signed _op21;
sc_signal<int> op_a2;
sc_signal<int> op_b2;
sc_signal<int> alu_out2;
sc_signal<int> opcode2;
sc_signal<bool>signed_op12;
sc_signal<bool>signed_op22;
sc_signal<int> op_a3;
sc_signal<int> op_b3;
sc_signal<int> alu_out3;
sc_signal<int> opcode3;
sc_signal<bool>signed op13;
sc_signal<bool>signed _op23;

/l REGFILE
sc_signal<bool>wr_reg;
sc_signal<bool>immed,;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

sl;

s2;

rc_0;
immed32;
reg_din;
dest;

sc_signal<bool>wr_reg1;
sc_signal<bool>immed1;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

s3;

s4;

rc_1;
immed321;
reg_dini;
dest1;

sc_signal<bool>wr_reg2;
sc_signal<bool>immed2;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

s5;

S6;

rc_2;
immed322;
reg_din2;
dest2;

sc_signal<bool>wr_reg3;
sc_signal<bool>immed3;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

s7;

s8;

rc_3;
immed323;

83

sc_signal<int>
sc_signal<int>

/I RAM

reg_din3;
dest3;

sc_signal<bool>wr_mem;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

bytelane;
reg_to_mem;
mem_dout;
mem_din;
mem_addr;

sc_signal<bool>wr_mem1;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

// DECODER

bytelanel;
reg_to_memd1,;
mem_doutl;
mem_dinl;
mem_addrl;

sc_signal<long>inst;

sc_signal<long>inst1;
sc_signal<long>inst2;
sc_signal<long>inst3;

sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>
sc_signal<int>

load_bytelane;
store_bytelane;
load_bytelanel;
store_bytelanel,;
br_addr;

sc_signal<bool>branch;
sc_signal<bool>branch_check;
sc_signal<bool>jump;
sc_signal<bool>fn_call;
sc_signal<bool>fn_callr;
sc_signal<bool>fn_return;

// PROGRAM COUNTER

sc_signal<int>

addr;

sc_signal<bool>br_taken;
sc_signal<bool>fn_taken;
sc_signal<bool>stall;
sc_signal<bool>stall1;
sc_signal<bool>stall2;
sc_signal<bool>stall3;

/I BTYE SEL

sc_signal<int> mem_to_reg;
sc_signal<int> mem_to_reg1,;

/I MUX
sc_signal<bool>alu_or_mem;
sc_signal<bool>alu_or_mem1,;

/Il REG32
sc_signal<int> alu_to_reg;
sc_signal<int> alu_to_regl;

84

sc_signal<int> alu_to_reg?2;
sc_signal<int> alu_to_reg3;
sc_signal<int> reg_to_memin;
sc_signal<int> reg_to_memini,;

sc_signal<int> prev_addr;

/Il UNUSED SIGNALS//I
sc_signal<int> br_addrl;
sc_signal<bool>branchi;
sc_signal<bool>branch_checka,;
sc_signal<bool>br_taken1,;
sc_signal<bool>jump1;
sc_signal<bool>fn_calll;
sc_signal<bool>fn_callrl;
sc_signal<bool>fn_returnil;

sc_signal<int> br_addr2;
sc_signal<bool>branch2;
sc_signal<bool>branch_check?2;
sc_signal<bool>br_taken2;
sc_signal<bool>jump2;
sc_signal<bool>fn_call2;
sc_signal<bool>fn_callr2;
sc_signal<bool>fn_return2;
sc_signal<bool>alu_or_mem2;
sc_signal<int> load_bytelane2;
sc_signal<int> store_bytelane2;
sc_signal<bool>wr_mem?2;
sc_signal<int> bytelane2;

sc_signal<int> br_addr3;
sc_signal<bool>branch3;
sc_signal<bool>branch_check3;
sc_signal<bool>br_taken3;
sc_signal<bool>jump3;
sc_signal<bool>fn_call3;
sc_signal<bool>fn_callr3;
sc_signal<bool>fn_return3;
sc_signal<bool>alu_or_mems3;
sc_signal<int> load_bytelane3;
sc_signal<int> store_bytelane3;
sc_signal<bool>wr_mems3;
sc_signal<int> bytelane3;

/I Regval to store to mem (0-1)

reg32 store_reg("HOLD_REGVAL");
store_reg.clock(clock.signal());
store_reg.reset(reset);
store_reg.regin(reg_to_memin);
store_reg.regout(reg_to_mem);

reg32 store_regl("HOLD REGVAL1");

store_regl.clock(clock.signal());
store_regl.reset(reset);
store_regl.regin(reg_to_meminl);
store_regl.regout(reg_to_mem1);

/I ALU Val to hold for reg (0-3)
reg32 alu_reg("HOLD_ALU_OUT");
alu_reg.clock(clock.signal());
alu_reg.reset(reset);
alu_reg.regin(alu_out);
alu_reg.regout(alu_to_req);

reg32 alu_regl("HOLD_ALUVAL1");
alu_regl.clock(clock.signal());
alu_regl.reset(reset);
alu_regl.regin(alu_outl);
alu_regl.regout(alu_to_regl);

reg32 alu_reg2("HOLD_ALUVAL2";
alu_reg2.clock(clock.signal());
alu_reg2.reset(reset);
alu_reg2.regin(alu_out2);
alu_reg2.regout(reg_din2);

reg32 alu_reg3("HOLD_ALUVAL3");
alu_reg3.clock(clock.signal());
alu_reg3.reset(reset);
alu_reg3.regin(alu_out3);
alu_reg3.regout(reg_din3);

reg32 addr_reg("HOLD_ADDR");
addr_reg.clock(clock.signal());
addr_reg.reset(reset);
addr_reg.regin(addr);
addr_reg.regout(prev_addr);

/I Stimulus (0)

stimulus stim("stimulus_block™);
stim.reset(reset);
stim.clock(clock.signal());

/I Instruction Cache (0)

I_cache ic("INSTRUCTION_CACHE");
ic.clock(clock.signal());

ic.reset(reset);

ic.addr(addr);

ic.inst(inst);

ic.inst1(instl);

ic.inst2(inst2);

ic.inst3(inst3);

/I Display (0-3 for some)
display disp("display");

86

disp.clock(clock.signal());
disp.reset(reset);
disp.flen(filelen);
disp.op_a(op_a);
disp.op_b(op_b);
disp.alu_out(alu_out);
disp.opcode(opcode);
disp.signed_op1(signed_opl);
disp.signed_op2(signed_op2);
disp.wr_reg(wr_reg);
disp.immed(immed);
disp.s1(sl);

disp.s2(s2);

disp.rc_0(rc_0);
disp.immed32(immed32);
disp.reg_din(reg_din);
disp.dest(dest);
disp.wr_mem(wr_mem);
disp.mem_din(mem_din);
disp.mem_dout(mem_dout);
disp.inst(inst);

disp.addr(addr);
/[disp.mem_addr(mem_addr);
disp.mem_addr(alu_out);
disp.br_addr(br_addr);
disp.branch(branch);
disp.branch_check(branch_check);
disp.br_taken(br_taken);
disp.jump(jump);
disp.fn_call(fn_call);
disp.fn_callr(fn_callr);
disp.fn_return(fn_return);
disp.stall(stall);
disp.alu_or_mem(alu_or_mem);
/Il DISP Sigs PE1
disp.op_al(op_al);
disp.op_b1(op_bl);
disp.alu_outl(alu_outl);
disp.opcodel(opcodel);
disp.signed_op11(signed_op11);
disp.signed_op21(signed_op21);
disp.wr_regl(wr_regl);
disp.immedl1(immedl);
disp.s3(s3);

disp.s4(s4);

disp.rc_1(rc_1);
disp.immed321(immed321);
disp.reg_din1(reg_dinl);
disp.dest1(destl);
disp.wr_mem1(wr_mem1);
disp.mem_din1(mem_dinl);
disp.mem_doutl(mem_doutl);
disp.instl(instl);
/[disp.mem_addrl(mem_addrl);
disp.mem_addrl(alu_outl);

87

disp.stall1(stall1);
disp.alu_or_mem1(alu_or_mem1);
// disp SIGS PE2
disp.op_a2(op_a2);
disp.op_b2(op_b2);
disp.alu_out2(alu_out2);
disp.opcode2(opcode?);
disp.signed_op12(signed_op12);
disp.signed_op22(signed_op22);
disp.wr_reg2(wr_reg2);
disp.immed2(immed?2);
disp.s5(s5);

disp.s6(s6);

disp.rc_2(rc_2);
disp.immed322(immed322);
disp.reg_din2(reg_din2);
disp.dest2(dest2);
disp.inst2(inst2);
disp.stall2(stall2);

/I DISP Sigs PE3
disp.op_a3(op_a3);
disp.op_b3(op_b3);
disp.alu_out3(alu_out3);
disp.opcode3(opcode3);
disp.signed_op13(signed_op13);
disp.signed_op23(signed_op23);
disp.wr_reg3(wr_reg3);
disp.immed3(immed3);
disp.s7(s7);

disp.s8(s8);

disp.rc_3(rc_3);
disp.immed323(immed323);
disp.reg_din3(reg_din3);
disp.dest3(dest3);
disp.inst3(inst3);
disp.stall3(stall3);

/| TEMP DISPLAY SIGNALS
disp.mem_to_reg(mem_to_reQ);
disp.alu_to_reg(alu_to_reg);
disp.load_bytelane(load_bytelane);

/I ALU (0-3)

alu pe("alu™);
pe.reset(reset);
pe.clock(clock.signal());
pe.op_a(op_a);
pe.op_b(op_b);
pe.alu_out(alu_out);
pe.opcode(opcode);
pe.signed_opl(signed_op1l);
pe.signed_op2(signed_op2);

alu pel("alul";
88

pel.reset(reset);
pel.clock(clock.signal());
pel.op_a(op_al);
pel.op_b(op_bl);
pel.alu_out(alu_outl);
pel.opcode(opcodel);
pel.signed_opl(signed opll);
pel.signed_op2(signed op21);

alu pe2("alu2";
pe2.reset(reset);
pe2.clock(clock.signal());
pe2.op_a(op_a2);
pe2.op_b(op_b2);
pe2.alu_out(alu_out2);
pe2.opcode(opcode?);
pe2.signed_opl(signed opl2);
pe2.signed_op2(signed _op22);

alu pe3("alu3";
pe3.reset(reset);
pe3.clock(clock.signal());
pe3.op_a(op_a3);
pe3.op_b(op_b3);
pe3.alu_out(alu_out3);
pe3.opcode(opcoded);
pe3.signed_opl(signed_op13);
pe3.signed_op2(signed_op23);

/I Select to WB from ALU or MEM (0-1)
mux_2tol mux_reg_din("CHOOSE_REGIN");
mux_reg_din.dO(alu_to_reg);
mux_reg_din.d1(mem_to_req);
mux_reg_din.q0(reg_din);
mux_reg_din.sel(alu_or_mem);

mux_2tol mux_reg_din1("CHOOSE_REGIN1");
mux_reg_dinl.dO(alu_to_regl);
mux_reg_dinl.d1(mem_to_regl);
mux_reg_dinl.q0(reg_dinl);
mux_reg_dinl.sel(alu_or_mem1);

/I Select Byte to Load (0-1)

byte sel load din("LOADVAL_BYTELANE");
load_din.byte lane(load_bytelane);
load_din.din(mem_dout);
load_din.dout(mem_to_reg);

byte_sel load_din1("LOADVAL_BYTELANEL");
load_dinl.byte lane(load_bytelanel);
load_dinl.din(mem_doutl);
load_dinl.dout(mem_to_regl);

/I Select Byte to Store (0-1)
89

byte sel store_din("STOREVAL_BYTELANE");
store_din.byte_lane(store_bytelane);
store_din.din(reg_to_mem);
store_din.dout(mem_din);

byte_sel store_din1("STOREVAL_BYTELANE1");
store_dinl.byte lane(store_bytelanel);
store_dinl.din(reg_to_meml);
store_dinl.dout(mem_dinl);

/I Register file ports (0)
regfile rf("reg_file");
rf.wr_reg(wr_reg);
rf.immed(immed);
rf.immed32(immed32);
rf.s1(s1);

rf.s2(s2);

rf.dest(dest);
rf.op_a(op_a);
rf.op_b(op_b);
rf.to_mem(reg_to_memin);
rf.reg_din(reg_din);
rf.wr_regl(wr_regl);
rf.immed1(immed1);
rf.immed321(immed321);
rf.s3(s3);

rf.s4(s4);

rf.dest1(destl);
rf.op_al(op_al);
rf.op_bl(op_bl);
rf.to_memi(reg_to_meminl);
rf.reg_dinl(reg_dinl);
rf.wr_reg2(wr_reg2);
rf.immed2(immed2);
rf.immed322(immed322);
rf.s5(sb);

rf.s6(s6);

rf.dest2(dest2);
rf.op_a2(op_a2);
rf.op_b2(op_b2);
rf.reg_din2(reg_din2);
rf.wr_reg3(wr_reg3);
rf.immed3(immed3);
rf.immed323(immed323);
rf.s7(s7);

rf.s8(s8);

rf.dest3(dest3);
rf.op_a3(op_a3);
rf.op_b3(op_b3);
rf.reg_din3(reg_din3);
rf.reset(reset);
rf.clock(clock.signal());

/I RAM 2 ports
ram mem("RAM");

90

mem.reset(reset);
mem.clock(clock.signal());
mem.wr_mem(wr_mem);
mem.bytelane(bytelane);
/Imem.addr(mem_addr);
mem.addr(alu_out);
mem.mem_din(mem_din);
mem.mem_dout(mem_dout);
mem.wr_mem21(wr_mem1);
mem.bytelanel(bytelanel);
/Imem.addr1(mem_addrl);
mem.addrl(alu_outl);
mem.mem_dinl(mem_dinl);
mem.mem_doutl(mem_doutl);

// CONV MEM_ADDR (0-1_

mem_addr_conv addr_conv("Mem_addr_conv");
addr_conv.mem_addr_in(alu_out);
addr_conv.mem_addr_out(mem_addr);

mem_addr_conv addr_conv1("Mem_addr_convl1");
addr_convl.mem_addr_in(alu_outl);
addr_convl.mem_addr_out(mem_addrl);

/l DECODER (0-3 but different)
decoder dec("decoder");
dec.inst(inst);
dec.prev_addr(prev_addr);
dec.reset(reset);
dec.clock(clock.signal());
dec.s1(sl);

dec.s2(s2);

dec.rc_(rc_0);

dec.dest(dest);
dec.immed32(immed32);
dec.immed(immed);
dec.signed_op1(signed_opl);
dec.signed_op2(signed_op2);
dec.br_addr(br_addr);
dec.branch(branch);
dec.branch_check(branch_check);
dec.br_taken(br_taken);
dec.fn_taken(fn_taken);
dec.jump(jump);
dec.fn_call(fn_call);
dec.fn_callr(fn_callr);
dec.fn_return(fn_return);
dec.opcode(opcode);
dec.alu_or_mem(alu_or_mem);
dec.load_bytelane(load_bytelane);
dec.store_bytelane(store_bytelane);
dec.bytelane(bytelane);
dec.wr_mem(wr_mem);
dec.wr_reg(wr_reg);
dec.stall(stall);

91

decoder dec1("decoderl");
decl.inst(instl);
decl.prev_addr(prev_addr);
decl.reset(reset);
decl.clock(clock.signal());
decl.s1(s3);

decl.s2(s4);

decl.rc_(rc_1);

decl.dest(destl);
decl.immed32(immed321);
decl.immed(immed1);
decl.signed_opl(signed_opll);
decl.signed_op2(signed_op21);
decl.opcode(opcodel);
decl.alu_or_mem(alu_or_mem1l);
decl.load_bytelane(load bytelanel);
decl.store_bytelane(store_bytelanel);
decl.bytelane(bytelanel);
decl.wr_mem(wr_mem1l);
decl.wr_reg(wr_regl);
decl.stall(stalll);
decl.br_addr(br_addrl);
decl.branch(branchl);
decl.branch_check(branch_checkl);
decl.br_taken(br_taken);
decl.fn_taken(fn_taken);
decl.jump(jumpl);
decl.fn_call(fn_calll);
decl.fn_callr(fn_callrl);
decl.fn_return(fn_returnl);

decoder dec2("decoder2");
dec2.inst(inst2);
dec2.prev_addr(prev_addr);
dec2.reset(reset);
dec2.clock(clock.signal());
dec2.s1(s5);

dec2.s2(s6);

dec2.rc_(rc_2);
dec2.dest(dest2);
dec2.immed32(immed322);
dec2.immed(immed?2);
dec2.signed_opl(signed_op12);
dec2.signed_op2(signed_op22);
dec2.opcode(opcode?);
dec2.wr_reg(wr_reg2);
dec2.stall(stall2);
dec2.br_addr(br_addr2);
dec2.branch(branch?2);
dec2.branch_check(branch_check?2);
dec2.br_taken(br_taken);
dec2.fn_taken(fn_taken);
dec2.jump(jump2);

92

dec2.fn_call(fn_call2);
dec2.fn_callr(fn_callr2);
dec2.fn_return(fn_return2);
dec2.alu_or_mem(alu_or_mem?2);
dec2.load_bytelane(load_bytelane2);
dec2.store_bytelane(store_bytelane2);
dec2.bytelane(bytelane2);
dec2.wr_mem(wr_mem2);

decoder dec3("decoder3");
dec3.inst(inst3);
dec3.prev_addr(prev_addr);
dec3.reset(reset);
dec3.clock(clock.signal());
dec3.s1(s7);

dec3.s2(s8);

dec3.rc_(rc_3);

dec3.dest(dest3);
dec3.immed32(immed323);
dec3.immed(immed3);
dec3.signed_opl(signed_op13);
dec3.signed_op2(signed_op23);
dec3.opcode(opcode3);
dec3.wr_reg(wr_reg3);
dec3.stall(stall3);
dec3.br_addr(br_addr3);
dec3.branch(branch3);
dec3.branch_check(branch_check3);
dec3.br_taken(br_taken);
dec3.fn_taken(fn_taken);
dec3.jump(jump3);
dec3.fn_call(fn_call3);
dec3.fn_callr(fn_callr3);
dec3.fn_return(fn_return3);
dec3.alu_or_mem(alu_or_mem3);
dec3.load_bytelane(load_bytelane3);
dec3.store_bytelane(store_bytelane3);
dec3.bytelane(bytelane3);
dec3.wr_mem(wr_mem3);

/I Program Counter (0)

pc ctr("PROGRAM_CTR");
ctr.clock(clock.signal());
ctr.reset(reset);
ctr.addr(addr);
ctr.branch_check(branch_check);
ctr.fn_callr(fn_callr);
ctr.fn_call(fn_call);
ctr.jump(jump);
ctr.branch(branch);
ctr.br_taken(br_taken);
ctr.fn_taken(fn_taken);
ctr.fn_return(fn_return);
ctr.stall(stall);

93

ctr.stall1(stall1);
ctr.stall2(stall2);
ctr.stall3(stall3);
ctr.alu_out(alu_out);
ctr.immed_addr(immed32);
ctr.fn_addr(op_a);
ctr.br_addr(br_addr);

/lcout << "Time for simulation =" << endl;

sc_start(clock, 2048);
/Isc_start(clock, 100);
return O; /* this is necessary */

94

A.8 SYSTEMC VLIW SOURCE FILE: ALU.CPP

#include <systemc.h>
#include "alu.h"
#include "directives.h"

void alu::entry() {

while(1)
{

func = opcode.read();
a=op_a.read();

b = op_b.read();

c=0;

cx =0;

ua = op_a.read();

ub = op_b.read();

uc =0;

ucx = 0;

signl = signed_op1.read();
sign2 = signed_op2.read();

switch (func)

{
case ADD _I:
c=a+b;
break;
case SUB_I:
c=a-b;
break;
case MULT_LI:
c=a*b;
break;
case MULTX I:
if (signl == 1 && sign2 ==1)
{
ucx = ua * ub;
C =ucx >>32;

}
else if (sign2 == 1)

cX=a*ub;
Cc=cx>>32;

95

else

cx=a*b;
c=cx>>32;

}
break;

case DIV _I:
if (signl ==1)
uc =ua/ ub;
}
else

{

}
break;

c=alb;

case AND_I:
c=a&hb;
break;

case OR_I:
c=alb;
break;

case XOR _I:
c=a”b;
break;

case NOR_I:
c=~(alb);
break;

case SLL_I:
c=a<<b;
break;

case SRL_I:
c=a>>b;
break;

case SLA_I:
c=a<<b;
break;

case SRA_L:
c=a>>bh;
break;

case STOR_I:
c=a+b;
break;

96

case STORB_I:
c=a+b;
break;

case STORH_I:
c=a+b;
break;

case STORW _I:
c=a+b;
break;

case LOAD_LI:
c=a+b;
break;

case LOADB _1I:
c=a+b;
break;

case LOADH_I:
c=a+hbh;
break;

case LOADW._I:
c=a+b;
break;

case CMPGTE_I:

if (signl ==1)

(ua>=ub?c=1:c=0);

}

else

{

}
break;

case CMPGT _I:

if (signl ==1)

(@>=b?c=1:c=0),

(ua>ub?c=1:c=0);

}

else

{

}
break;

case CMPLTE_LI:

if (signl ==1)

(@>b?c=1:c=0);

(ua<=ub?c=1:c=0);

97

else

{

}
break;

(a<=b?c=1:c=0);

case CMPLT _I:
if (signl ==1)

(ua<ub?c=1:c=0);

}

else

{

}
break;

(a<b?c=1:c=0);

case CMPEQ _I:
if (signl ==1)

(ua==ub?c=1:c=0);

}

else

{

}
break;

(@a==b?c=1:c=0);

case CMPNE_LI:
if (signl ==1)

(ual=ub?c=1:c=0);

}

else

{

}
break;

(@al=b?c=1:c=0);

case NOOP_I:
break;
default:
c=0;
break;

alu_out.write((int) c);

wait();

}

98

A.9 SYSTEMC VLIW SOURCE FILE

#include <systemc.h>
#include "decoder.h"
#include "directives.h"

void decoder::entry() {

ins = inst.read();

if (true)
{

cycle++;

/I BREAK APART INSTRUCTION
op =ins;

ins >>=6;

immed5 = ins;
immed26 = ins;
immed16 = ins;
tmpimmed32 = ins;
ins >>=5;

arith = ins;

ins >>= 6;

rc =ins;

ins >>=5;

rb =ins;

ins >>=5;

ra=ins;

immediate = 0;
hazard = 0;
br_uncond = 0;

/I INITIALIZE INTERMEDIATE SIGNALS
t_opcode.write(NOOP_);
t_signed_opl.write(0);
t_signed_op2.write(0);
t_wr_memZ2.write(0);
t_wr_regl.write(0);
t_alu_or_mem1.write(0);
t_load_bytelanel.write(0);

t store_bytelanel.write(0);
t_callr.write(0);

t_jump.write(0);

t branch_checkl.write(0);

t _br_addrl.write((int)immed16);
hold_wr_mem.write(0);
hold_wr_reg.write(0);

/I INITIALIZE OUTPUTS

immed.write(0);
branch.write(0);

99

: DECODER.CPP

fn_call.write(0);
fn_return.write(0);
stall.write(0);

immed32.write((int)immed16);
sl.write((int)ra);
s2.write((int)rb);
rc_.write((int)rc);
t_destl.write((int)rc);

switch(op)

case addi:
t_opcode.write(ADD_D);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case muli:
t_opcode.write(MULT _I);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case call:
if (cycle>0)

fn_call.write(1);
immed32.write((int)immed26);
br_uncond = 1;

}
break;

case flushd:
branch.write(1);
immed32.write(0);
br_uncond = 1;
break;

case br:
branch.write(1);
br_uncond = 1;
break;

case bge:
100

t_opcode.write(CMPGTE_I);
t_branch_checkl.write(1);
break;

case bltu:
t_opcode.write(CMPLT _I);
t signed opl.write(1);
t branch_checkl.write(1);
break;

case bgeu:
t_opcode.write(CMPGTE_I);
t_signed_opl.write(1);
t_branch_checkl.write(1);
break;

case beq:
t_opcode.write(CMPEQ _I);
t branch_checkl.write(1);
break;

case bne:
t_opcode.write(CMPNE_I);
t_branch_checkl.write(1);
break;

case blt:
t_opcode.write(CMPLT _I);
t branch_checkl.write(1);
break;

case Idb:
t_opcode.write(LOADB_I);
t_wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
t_alu_or_mem1.write(1);
immed.write(1);
immediate = 1;
t load_bytelanel.write(2);
t_bytelanel.write(BYTE_I);
break;

case Idw:
t_opcode.write(LOADW _I);
t_wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
t_alu_or_mem1l.write(1);
immed.write(1);
immediate = 1;
t_bytelanel.write(WORD _I);
break;

case ldbu:
101

t_opcode.write(LOADB_I);
t_signed_opl.write(1);

t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);

t alu_or_meml.write(1);
immed.write(1);

immediate = 1;

t load_bytelanel.write(2);
t_bytelanel.write(BYTE_I);
break;

case Idhu:
t_opcode.write(LOADH_I);
t_signed_opl.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
t alu_or_meml.write(1);
immed.write(1);
immediate = 1;
t load_bytelanel.write(1);
t_bytelanel.write(HWORD_I);
break;

case ldh:
t_opcode.write(LOADH_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
t alu_or_meml.write(1);
immed.write(1);
immediate = 1;
t load_bytelanel.write(1);
t_bytelanel.write(HWORD_I);
break;

case stw:
t_opcode.write(STORW_I);
t wr_mem1.write(1);
hold_wr_mem.write(1);
immed.write(1);
immediate = 1;
t_bytelanel.write(WORD_I);
break;

case sth:
t_opcode.write(STORB_I);
t wr_meml.write(1);
hold_wr_mem.write(1);
immed.write(1);
immediate = 1;
t store_bytelanel.write(2);
t_bytelanel.write(BYTE_I);
break;

102

case sth:
t_opcode.write(STORH_);
t wr_meml.write(1);
hold_wr_mem.write(1);
immed.write(1);
immediate = 1;
t store_bytelanel.write(1);
t_bytelanel.write(HWORD _I);
break;

case cmpgei:
t_opcode.write(CMPGTE_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
break;

case cmplti:
t_opcode.write(CMPLT _I);
t_wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
break;

case cmpnei:
t_opcode.write(CMPNE_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
break;

case cmpgeui:
t_opcode.write(CMPGTE_I);
t signed opl.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
break;

case cmpeqi:
t_opcode.write(CMPEQ _I);
t_wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;

103

break;

case cmpltui:
t_opcode.write(CMPLT _I);
t_signed_opl.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
break;

case andi:
t_opcode.write(AND_);
t_destl.write((int)rb);
immed.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
immediate = 1;
break;

case andhi:
immed32.write(tmpimmed32 << 16);
t_opcode.write(AND_I);
t_destl.write((int)rb);
immed.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
immediate = 1;
break;

case orhi:
t_opcode.write(OR_I);
immed32.write(tmpimmed32 << 16);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case ori:
t_opcode.write(OR_I);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;
t_wr_regl.write(1);
hold_wr_reg.write(1);
break;

case xorhi:
t_opcode.write(XOR_I);
immed32.write(tmpimmed32 << 16);
t_destl.write((int)rb);
immed.write(1);

104

immediate = 1;
t_wr_regl.write(1);
hold_wr_reg.write(1);
break;

case Xori:

t_opcode.write(XOR_I);
t_destl.write((int)rb);
immed.write(1);
immediate = 1;

t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case rtype:

switch(arith)
{
case add:
t_opcode.write(ADD_);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case sub:
t_opcode.write(SUB_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case divu:
t_opcode.write(DIV_I);
t signed _opl.write(1);
break;

case div:
t_opcode.write(DIV_I);
t_signed_opl.write(1);
break;

case mul:
t_opcode.write(MULT _);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case mulxss:
t_opcode.write(MULTX_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case mulxsu:
t_opcode.write(MULTX_1);
t signed_op2.write(1);

105

t_wr_regl.write(1);
hold_wr_reg.write(1);
break;

case mulxuu:

t_opcode.write(MULTX_1);

t signed opl.write(1);
t signed op2.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case and_r:
t_opcode.write(AND_1);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case xor_r:
t_opcode.write(XOR_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case nor_r:
t_opcode.write(NOR_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case or_r:
t_opcode.write(OR_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case ret:
fn_return.write(1);
br_uncond = 1;
break;

case callr:
t_callr.write(1);
br_uncond =1,

break;

case flushp:
branch.write(1);
immed32.write(0);
br_uncond = 1;
break;

case jmp:
t_jump.write(1);

br_uncond = 1;
106

break;

case cmpeq:
t_opcode.write(CMPEQ _I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case cmpne:
t_opcode.write(CMPNE_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case cmpge:
t_opcode.write(CMPGTE_]I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case cmpgeu:
t_opcode.write(CMPGTE_I);
t_signed_opl.write(1);
t_wr_regl.write(1);
hold_wr_reg.write(1);
break;

case cmplt:
t_opcode.write(CMPLT _I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case cmpltu:
t_opcode.write(CMPLT_I);
t_signed_opl.write(1);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case rotl:
t_opcode.write(SLA _I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

case rotli:
t_opcode.write(SLA_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
immed.write(1);

immediate = 1,
immed32.write((int)immed5);
break;

107

case rotr:

case sll:

case slli:

case sra:

case srali

case srl:

case srli:

default:

t_opcode.write(SRA_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

t_opcode.write(SLL_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

t_opcode.write(SLL_I);

t wr_regl.write(1);
hold_wr_reg.write(1);
immed.write(1);

immediate = 1;
immed32.write((int)immed5);
break;

t_opcode.write(SRA_I);
t_wr_regl.write(1);
hold_wr_reg.write(1);
break;

t_opcode.write(SRA_I);

t wr_regl.write(1);
hold_wr_reg.write(1);
immed.write(1);

immediate = 1;
immed32.write((int)immed5);
break;

t_opcode.write(SRL_I);
t wr_regl.write(1);
hold_wr_reg.write(1);
break;

t_opcode.write(SRL_I);

t wr_regl.write(1);
hold_wr_reg.write(1);
immed.write(1);

immediate = 1;
immed32.write((int)immed5);
break;

break;

108

break;

default:
t_opcode.write(NOOP_1);

break;

} // end case
/****-k*****-k***********-k*****-k**/

/I CHECK for branching

if (br_taken.read() ==1)

/It_wr_regl.write(0);
/It_wr_mem2.write(0);

if(stall_cnt.read() == 0)

/ICHECK FOR DATA HAZARDS
if ((int)ra ==t _dest3.read() && t wr_reg3.read() == 1 && (int)ra !=0)

cout <<" Data hazard on REG[" << (unsigned)ra << "] 2 stages apart, address="

<< prev_addr.read() << endl;
hazard = 1,

}
else if ((int)ra ==t_dest2.read() && t wr_reg2.read() == 1 && (int)ra I= 0)
cout <<" Data hazard on REG[" << (unsigned)ra << "] 1 stage apart, address="

<< prev_addr.read() << endl;
hazard = 1,

}

if (immediate == 0)
if ((int)rb ==1t_dest3.read() && t_wr_reg3.read() == 1 && (int)rb '=0)
cout <<" Data hazard on REG[" << (unsigned)rb << "] 2 stages apart,
address=" << prev_addr.read() << endl;
hazard = 1;

}
else if ((int)rb ==t_dest2.read() && t wr_reg2.read() == 1 && (int)rb = 0)

cout <<" Data hazard on REG[" << (unsigned)rb << "] 1 stage apart,
address=" << prev_addr.read() << endl;

}

hazard = 1;

}

/I CHECK FOR cond BR followed by uncond BR HAZARDS
if (br_uncond == 1 && t_branch_checkl.read() == 1)

{

cout << "Branch hazard at address=" << prev_addr.read() << endl;
109

hazard = 1;
}
/I now check the hazard signal
if (hazard == 1)

{
stall.write(1);
stall_cnt.write(1);
t wr_regl.write(0);
t wr_mem1.write(0);
}
}
/*******************************/
} // end else
/*
/I NOT DEFINED
#define io
#define initd

#define custom
#define eret
#define nextpc
#define break
#define breakr
#define rdctl
#define sync 54
#define trap 45
#define wrctl 46
*/

}
/I end entry()

void decoder::hold_1cycle()
while(1)

{
/I ALU SIGNALS

opcode.write((int)t_opcode.read());
signed_opl.write((bool)t_signed opl);
signed_op2.write((bool)t_signed op2);

t_dest2.write((int)t_destl.read());

t_branch_check2.write((bool)t_branch_checkl.read());

t _br_addr2.write((int)t_br_addrl.read());
jump.write((bool)t_jump.read());
fn_callr.write((bool)t_callr.read());

t_alu_or_mem2.write((bool)t_alu_or_memZ1.read());

/ICHECK FOR BRANCHING
if (br_taken.read() ==1)
{

Ilt_wr_mem2.write(0);
110

}

IIt_wr_reg2.write(0);
else

t_bytelane2.write((int)t_bytelanel.read());
t wr_mem2.write((bool)t_wr_mem1.read());
t wr_reg2.write((bool)t_wr_regl.read());

/Il check the stalls
if (stall_cnt.read() == 1)

stall.write(1);
stall_cnt.write(2);

else if(stall_cnt.read() > 0)
{

stall_cnt.write(0);

stall.write(0);

t wr_meml.write(hold_wr_mem.read());
t wr_regl.write(hold_wr_reg.read());

}
if (fn_taken.read() == 1)
/lcout <<" Func taken" << endl;
t_wr_mem1.write(0);

t_wr_regl.write(0);

}

wait();

} // end hold_1cycle()

void decoder::hold_2cycles()

{

while(1)

{

branch_check.write((bool)t_branch_check2.read());
br_addr.write((int)t_br_addr2.read());
t_dest3.write((int)t_dest2.read());

t alu_or_mem3.write((bool)t_alu_or_mem2.read());

/ICHECK FOR BRANCHING
if (br_taken.read() ==1)

wr_mem.write(0);
t_wr_reg3.write(0);

else

bytelane.write((int)t_bytelane2.read());
wr_mem.write((bool)t_ wr_mema2.read());

111

t wr_reg3.write((bool)t_wr_reg2.read());
}

wait();

}
} // end hold_2cycles()

void decoder::hold_3cycles()
while(1)
if (br_taken.read() ==1)

wr_reg.write(0);

}

else

{
}

alu_or_mem.write((bool)t_alu_or_mema3.read());
dest.write((int)t_dest3.read());
wait();

wr_reg.write((bool)t_wr_reg3.read());

}
} /1 end hold_3cycles()

112

) A.10 SYSTEMC VLIW SOURCE FILE: DIRECTIVES.H

#define SIZE_MEM 32768

#define MEM_ADDR_BITS 14
#define SIZE_REG 32

#define REG_ADDR_BITS 5
/I#define SIZE_PROGRAM 131072
#define SIZE_PROGRAM 4096
#define SIZE_STACK 32

/I ALU OPS

#define NOOP_I -1
#define ADD_I 0
#define SUB_I 1
#define MULT_I 2
#define MULTX_1 3
#define AND_1 4
#define OR_I5
#define XOR_1 6
#define NOR_I 7
#define SLL_18
#define SRL_19
#define SLA_1 10
#define SRA_I 11
#define STOR_I 12
#define LOAD_I1 13
#define CMPGTE_I 14
#define CMPGT _I 15
#define CMPLTE_I 16
#define CMPLT_I 17
#define CMPEQ _| 18
#define CMPNE_I 19
#define DIV _I1 20
#define LOADB |21
#define LOADH_| 22
#define LOADW_I 23
#define STORB_I 24
#define STORH_I 25
#define STORW _| 26

/IMEM OPS

#define BYTE_I 0
#define HWORD _| 1
#define WORD _| 2

/I Instructions(5 downto 0)
#define call 0

#define ldbu 3

#define addi 4

#define stb 5

113

#define br 6
#define Idb 7
#define cmpgei 8
#define Idhu 11
#define andi 12
#define sth 13
#define bge 14
#define Idh 15
#define cmplti 16
#define ori 20
#define stw 21
#define blt 22
#define Idw 23
#define cmpnei 24
#define xori 28
#define bne 30
#define cmpeqi 32
#define ldbuio 35
#define muli 36
#define stbio 37
#define beq 38
#define Idbio 39
#define cmpgeui 40
#define ldhuio 43
#define andhi 44
#define sthio 45
#define bgeu 46
#define Idhio 47
#define cmpltui 48
#define custom 50
#define orhi 52
#define stwio 53
#define bltu 54
#define Idwio 55
#define rtype 58
#define flushd 59
#define xorhi 60

/I Instruction (16 downto 11) in case of rtype (0x3a)
#define add 49
#define and_r 14
#define break_r 52
#define bret 9
#define callr 29
#define cmpeq 32
#define cmpge 8
#define cmpgeu 40
#define cmplt 16
#define cmpltu 48
#define cmpne 24
#define div 37
#define divu 36
#define eret 1
#define flushp 4

114

#define initi 41
#define jmp 13
#define mul 39

#define mulxss 31
#define mulxsu 23

#define mulxuu 7
#define nextpc 28
#define nor_r 6
#define or_r 22
#define rdctl 38
#define ret 5
#define rotl 3
#define rotli 2
#define rotr 11
#define sll 19
#define slli 18
#define sra 59
#define srai 58
#define srl 27
#define srli 26
#define sub 57
#define sync 54
#define trap 45
#define wrctl 46
#define xor_r 30

115

A.11 SYSTEMC VLIW SOURCE FILE: ICACHE.CPP

#include <systemc.h>
#include "I_cache.h"

void |_cache::entry() {
while(1)
{
if (reset.read() == 1)
{
inst.write(icache[0]);
inst1l.write(icachel[0]);

inst2.write(icache2[0]);
inst3.write(icache3[0]);

}
else
if(addr.read() >=0)
{
inst.write(icache[(int)addr.read()]);
instl.write(icachel[(int)addr.read()]);
inst2.write(icache2[(int)addr.read()]);
inst3.write(icache3[(int)addr.read()]);
}
else
{
inst.write(icache[0]);
inst1l.write(icachel[0]);
inst2.write(icache2[0]);
inst3.write(icache3[0]);
}
}
wait();

116

A.12 SYSTEMC VLIW SOURCE FILE: MUX_2TO1.CPP

#include <systemc.h>

#include "mux_2tol.h"

void mux_2tol::entry() {
if (sel.read() ==0)
¢ q0.write((int)d0.read());
else

q0.write((int)d1.read());

117

A.13 SYSTEMC VLIW SOURCE FILE: PC.CPP

#include <systemc.h>
#include "pc.h"
#include "directives.h"

void pc::entry() {

while(1)

{

if (reset.read() ==1)
stackptr = 0;
immedaddr = 0;
iptr =-1;
offset = 0;
fnaddr = 0;

br_taken.write(0);

for (int i=0; i < SIZE_STACK; i++)

stack[i] = 0;
}
/I Check branches before incrementing
else
{

iptr = inst_ptr.read();

offset = (int)br_addr.read();
immedaddr = (int)immed_addr.read();
fnaddr = (int)fn_addr.read();

stackptr = (int)stack_ptr.read();
br_taken.write(0);

if (branch_check.read() == 1 && (int)alu_out.read() > 0)

{
/lif (offset < 0)
I{
offset -=1;
I}

iptr += (offset);
Iliptr += (1 + offset);
br_taken.write(1);

}
else if (branch.read() ==1)
{

iptr += (1 + immedaddr);
fn_taken.write(1);

118

}

else if (fn_callr.read() == 1)

{
stack[stackptr] = iptr;
stackptr++;
iptr = fnaddr;
br_taken.write(1);
fn_taken.write(1);

}

else if (fn_call.read() == 1)

{
stack[stackptr] = iptr;
stackptr++;
iptr = immedaddr;
br_taken.write(1);
fn_taken.write(1);

}
else if (jump.read() ==1)
{

iptr = fnaddr;
br_taken.write(1);
fn_taken.write(1);

else if (fn_return.read() ==1)

{
if (stackptr 1=0)

stackptr--;
}
if (stackptr >=0)
iptr = stack[stackptr];
}
fn_taken.write(1);
}
else if(stall.read() == 1 || stall1.read() == 1 || stall2.read() == 1 || stall3.read() == 1)

/ldo nothing

}

else

{
if (cycle 1= 0)

iptr++;

}

}

cycle++;

}

inst_ptr.write((int)iptr);
addr.write((int)iptr);
stack_ptr.write((int)stackptr);
wait();

}

119

A.14 SYSTEMC VLIW SOURCE FILE: RAM.CPP

#include <systemc.h>
#include "ram.h"
#include "directives.h"

void ram::entry() {

while(1)
{

I/l Reset to zero
if (reset.read() == 1)

/* for (int i=0; i<SIZE_MEM; i++)

mem[i] = 0;
¥
}
else
/Il PORT 0
en =wr_mem.read();
if (en==1)
{

tmpaddr = addr.read();

data = mem_din.read();
if(bytelane.read() == BYTE_I)
{

byte0 = data;
mem[tmpaddr] = byte0;

}
else if (bytelane.read() == HWORD _I)
{
byte0 = data;
data >>=8;
bytel = data;
mem[tmpaddr] = bytel;
mem[tmpaddr+1] = byte0;

else

byte0 = data;
data >>=8;
bytel = data;
data >>=8;
byte2 = data;
data >>=8;
byte3 = data;

120

mem[tmpaddr] = byte3;

mem[tmpaddr+1] = byte2;

mem[tmpaddr+2] = bytel;

mem[tmpaddr+4] = byte0;
}

}

tmpaddr = addr.read();

data = 0;

if (bytelane.read() == BYTE_I)
{

data = mem[tmpaddr];

}
else if (bytelane.read() == HWORD_1I)
{

data = mem[tmpaddr];

data <<= 8;

data += mem[tmpaddr+1];

}

else

{
data = mem[tmpaddr];
data <<= 8;
data += mem[tmpaddr+1];
data <<= 8;
data += mem[tmpaddr+2];
data <<= 8;

data += mem[tmpaddr+3];
mem_dout.write(data);

// PORT 1
en =wr_mem1.read();

if (en==1)

{
tmpaddr = addrl.read();
data = mem_din1.read();
if(bytelanel.read() == BYTE_1I)
{

byte0 = data;
mem[tmpaddr] = byte0;

}
else if (bytelanel.read() == HWORD _I)

{
byte0 = data;
data >>=8;
bytel = data;
mem[tmpaddr] = bytel;
mem[tmpaddr+1] = byte0;
}
else
{
byteO = data;
data >>=8;
bytel = data;

121

data >>=8;

byte2 = data;

data >>=8;

byte3 = data;

mem[tmpaddr] = byte3;

mem[tmpaddr+1] = byte2;

mem[tmpaddr+2] = bytel;

mem[tmpaddr+4] = byte0;
}

}
tmpaddr = addrl.read();
mem_doutl.write(mem[tmpaddr]);

/I all cycles
wait();

}

122

A.15 SYSTEMC VLIW SOURCE FILE: REGFILE.CPP

#include <systemc.h>
#include "regfile.h"
#include "directives.h”

void regfile::entry() {

while(1)
{

I/l Reset to zero
if (reset.read() == 1)

for (int i=0; i<SIZE_REG,; i++)

reg[i] =0;
}
else
{
/' WR_REG 0
en =wr_reg.read();
if (en==1)
{
addr = dest.read();
if ((int)addr !=0)
{
reg[addr] = reg_din.read();
}
Il WR_REG 1
en = wr_regl.read();
if (en==1)
{
addr = dest1.read();
if ((int)addr !=0)
{
reg[addr] = reg_dinl.read();
}
Il WR_REG 2
en = wr_reg2.read();
if (en==1)
{

addr = dest2.read();
if ((int)addr !=0)
{

reg[addr] = reg_din2.read();

123

}

}
Il WR_REG 3
en =wr_reg3.read();
if (en==1)
{

addr = dest3.read();

if ((int)addr !=0)

{

reg[addr] = reg_din3.read();

}

/Il READ REG PEO /il
// OPERAND B
if (immed.read() == 1)

op_b.write((int)immed32);

}
else
{
addr = s2.read();
op_b.write(reg[addr]);
}
/l OPERAND A

addr = s1.read();
op_a.write(reg[addr]);

// TO MEM

addr = s2.read();
to_mem.write(reg[addr]);

/Il READ REG PEL /I
I OPERAND B
if (immedl.read() == 1)

op_bl.write((int)immed321);

}
else
{
addr = sd.read();
op_bl.write(reg[addr]);
}
/I OPERAND A

addr = s3.read();
op_al.write(reg[addr]);

/[TO MEM

addr = s3.read();
to_memZl.write(reg[addr]);

/Il READ REG PE2 /1
// OPERAND B
if (immed2.read() == 1)
op_b2.write((int)immed322);
124

else
{
addr = s6.read();
op_b2.write(reg[addr]);
}
/I OPERAND A

addr = s5.read();
op_a2.write(reg[addr]);
// TO MEM

addr = s5.read();

/Il READ REG PE3 /i1
/ OPERAND B
if (immed3.read() == 1)

op_b3.write((int)immed323);

}
else
{
addr = s8.read();
op_b3.write(reg[addr]);
}
/I OPERAND A

addr = s7.read();
op_a3.write(reg[addr]);
// TO MEM

addr = s7.read();

/I all cycles
wait();

}

125

A.16 SYSTEMC VLIW SOURCE FILE: STIMULUS.CPP

#include <systemc.h>
#include "regfile.h"
#include "directives.h”

void regfile::entry() {

while(1)
{

I/l Reset to zero
if (reset.read() == 1)

for (int i=0; i<SIZE_REG,; i++)

{
reg[i] =0;
}
else
{
/' WR_REG 0
en = wr_reg.read();
if (en==1)
{
addr = dest.read();
if ((int)addr !=0)
{
reg[addr] = reg_din.read();
}
I WR_REG 1
en = wr_regl.read();
if (en==1)
{
addr = dest1.read();
if ((int)addr !=0)
{
reg[addr] = reg_dinl.read();
}
Il WR_REG 2
en =wr_reg2.read();
if (en==1)
{

addr = dest2.read();
if ((int)addr !=0)
{

126

reg[addr] = reg_din2.read();

}
Il WR_REG 3
en =wr_reg3.read();
if en==1)
{

addr = dest3.read();

if ((int)addr !=0)

{

reg[addr] = reg_din3.read();

}

//{ READ REG PEO ///IIi
// OPERAND B
if (immed.read() == 1)

op_b.write((int)immed32);

}
else
{
addr = s2.read();
op_b.write(reg[addr]);
}
/l OPERAND A

addr = s1.read();
op_a.write(reg[addr]);

// TO MEM

addr = s2.read();
to_mem.write(reg[addr]);

/Il READ REG PEL /[l
/ OPERAND B
if (immedl.read() == 1)

op_bl.write((int)immed321);

}
else
{
addr = s4.read();
op_bl.write(reg[addr]);
}
/I OPERAND A

addr = s3.read();
op_al.write(reg[addr]);

// TO MEM

addr = s3.read();
to_memZl.write(reg[addr]);

/Il READ REG PE2 /1
// OPERAND B
if (immed2.read() == 1)

127

op_b2.write((int)immed322);

}
else
{
addr = s6.read();
op_b2.write(reg[addr]);
}
/l OPERAND A

addr = s5.read();
op_a2.write(reg[addr]);
// TO MEM

addr = s5.read();

/Il READ REG PE3 /1
// OPERAND B
if (immed3.read() == 1)

op_b3.write((int)immed323);

}
else
{
addr = s8.read();
op_b3.write(reg[addr]);
}
/l OPERAND A

addr = s7.read();
op_a3.write(reg[addr]);
// TO MEM

addr = s7.read();

/I all cycles
wait();

}

128

A.17 VHDL VLIW SOURCE FILE

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY top_ALU IS

: TOP_SYSTEM_4PE_STRUCT.VHD

0);

PORT(
add sub :IN std_logic;
alu_or mem :IN std logic;
byte lane :IN std_logic_vector (1 DOWNTO 0);
clock 2IN std_logic;
cmp :IN std_logic_vector (2 DOWNTO 0);
left_right :IN std_logic;
lo_hi :IN std_logic;
logic op :IN std_logic_vector (1 DOWNTO 0);
mem_data_out : IN std_logic_vector (31 DOWNTO
op_sel :IN std logic_vector (1 DOWNTO 0);
reset :IN std_logic;
rot_log_arith: IN std_logic_vector (1 DOWNTO 0);
sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);
s2 4 mem :IN std_logic_vector (31 DOWNTO 0);
signed_op :IN std_logic;
signed_op2 :IN std_logic;
alu_out :OUT std logic_vector (31 DOWNTO 0);
flags :OUT std_logic_vector (2 DOWNTO 0);
mem_addr : OUT std_logic_vector (31 DOWNTO

mem_data_in : OUT
st bytelane :OUT std_logic_vector (1 DOWNTO 0)
)i

-- Declarations

END top_ALU ;

-- VHDL Architecture Auto_Gen.top_ALU.struct

-- Created:
by - Dara.UNKNOWN (J11)
at - 17:15:35 07/22/2005

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

LIBRARY Auto_Gen;

0);

std_logic_vector (31 DOWNTO 0);

Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

129

ARCHITECTURE struct OF top_ALU IS

-- Internal signal declarations

SIGNAL add_in > std_logic_vector(31 DOWNTO 0);
SIGNAL add_out :std_logic_vector(31 DOWNTO 0);
SIGNAL alu_out_muxin : std_logic_vector(31 DOWNTO 0);
SIGNAL flags_in :std_logic_vector(2 DOWNTO 0);
SIGNAL lo_hi_mult :std_logic;

SIGNAL load_out :std_logic_vector(31 DOWNTO 0);
SIGNAL log_in :std_logic_vector(31 DOWNTO 0);
SIGNAL log out :std_logic_vector(31 DOWNTO 0);
SIGNAL mem_addr_in :std_logic_vector(31 DOWNTO 0);
SIGNAL mult_out :std_logic_vector(31 DOWNTO 0);
SIGNAL mux_out :std logic_vector(31 DOWNTO 0);
SIGNAL s1_mult :std_logic_vector(31 DOWNTO 0);
SIGNAL s2_mult :std_logic_vector(31 DOWNTO 0);
SIGNAL shift_in :std_logic_vector(31 DOWNTO 0);
SIGNAL shift_out :std_logic_vector(31 DOWNTO 0);

-- Component Declarations
COMPONENT ALU_adder
PORT (
add_sub :IN std_logic;
cmp :IN std_logic_vector (2 DOWNTO 0);
sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);
signed_op : IN std_logic ;
alu_out : OUT std_logic_vector (31 DOWNTO 0);
flags :OUT std_logic_vector (2 DOWNTO 0)
);
END COMPONENT;
COMPONENT ALU_load
PORT (
byte lane :IN std_logic_vector (1 DOWNTO 0);
clock :IN std_logic;
mem_data_in : IN std_logic_vector (31 DOWNTO 0);
reset :IN std logic;
signed wb :IN std_logic;
load_data : OUT std_logic_vector (31 DOWNTO 0)
)i
END COMPONENT;
COMPONENT ALU_logical
PORT (
logic_op : IN std_logic_vector (1 DOWNTO 0);
sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);
alu_out : OUT std_logic_vector (31 DOWNTO 0)
);
END COMPONENT;
COMPONENT ALU_mem_addr
PORT (
s1 :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);

130

alu_out: OUT std_logic_vector (31 DOWNTO 0)
);
END COMPONENT;

COMPONENT ALU_multiplier
PORT (

lo hi :IN std_logic;

s1 :IN std_logic_vector (31 DOWNTO 0);

s2 :IN std_logic_vector (31 DOWNTO 0);

alu_out: OUT std_logic_vector (31 DOWNTO 0)
);
END COMPONENT;

COMPONENT ALU_shifter

PORT (

left_right :IN std_logic;

rot_log_arith : IN std_logic_vector (1 DOWNTO 0);

sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);
alu_ out :OUT std logic_vector (31 DOWNTO 0)
)i
END COMPONENT;
COMPONENT ALU_store
PORT (

add_out :IN std logic_vector (31 DOWNTO 0);
byte lane :IN std_logic_vector (1 DOWNTO 0);
clock :IN std_logic;
reset :IN std logic;
s2_4 mem :IN std _logic_vector (31 DOWNTO 0);
mem_addr :OUT std_logic_vector (31 DOWNTO 0);
mem_data_in : OUT std_logic_vector (31 DOWNTO 0);
st_bytelane : OUT std_logic_vector (1 DOWNTO 0)

)i

END COMPONENT;

COMPONENT Generic_Reg_noenable

GENERIC (

Sizeln : integer;

SizeOut : integer
);
PORT (

A_in 1IN std_logic_vector (Sizeln - 1 DOWNTO 0);

clock : IN std_logic;

reset : IN std_logic;

A out:OUT std logic_vector (SizeOut - 1 DOWNTO 0)
);
END COMPONENT;
COMPONENT Reg_1
PORT (

clock : IN std_logic;

d_in :IN std_logic;

reset: IN std_logic ;
g_out: OUT std_logic
);

END COMPONENT;
COMPONENT Reg_32_noenable
PORT (

clock :IN std_logic;

131

reg_in : IN std_logic_vector (31 DOWNTO 0);
reset :IN std_logic;
reg_out: OUT std_logic_vector (31 DOWNTO 0)

);
END COMPONENT;

-- Optional embedded configurations

-- pragma synthesis_off

FOR ALL : ALU_adder USE ENTITY Auto_Gen.ALU_adder;

FOR ALL : ALU_load USE ENTITY Auto_Gen.ALU_load;

FOR ALL : ALU_logical USE ENTITY Auto_Gen.ALU_logical;

FOR ALL : ALU_mem_addr USE ENTITY Auto_Gen.ALU_mem_addr;
FOR ALL : ALU_multiplier USE ENTITY Auto_Gen.ALU_multiplier;
FOR ALL : ALU_shifter USE ENTITY Auto_Gen.ALU_shifter;

FOR ALL : ALU_store USE ENTITY Auto_Gen.ALU_store;

FOR ALL : Generic_Reg_noenable USE ENTITY Auto_Gen.Generic_Reg_noenable;
FOR ALL : Reg_1 USE ENTITY Auto_Gen.Reg_1;

FOR ALL : Reg_32 noenable USE ENTITY Auto_Gen.Reg_32_noenable;
-- pragma synthesis_on

BEGIN
-- Architecture concurrent statements
-- HDL Embedded Block 1 eb1
-- Non hierarchical truthtable

ebl truth_process: PROCESS(alu_or_mem, alu_out_muxin, load_out)

BEGIN
-- Block 1
CASE alu_or_mem IS
WHEN '0' =>
alu_out <= alu_out_muxin;
WHEN '1' =>
alu_out <= load_out;
WHEN OTHERS =>
alu_out <=alu_out_muxin;
END CASE;

END PROCESS ebl_truth_process;

-- Architecture concurrent statements

-- HDL Embedded Block 3 eb3
-- Non hierarchical truthtable

eb3_truth_process: PROCESS(add_out, log_out, mult_out, op_sel, shift_out)

BEGIN
-- Block 1
CASE op_sel IS
WHEN "00" =>

mux_out <= add_out;
132

WHEN "01" =>
mux_out <= mult_out;

WHEN "10" =>
mux_out <= log_out;
WHEN "11" =>

mux_out <= shift_out;
WHEN OTHERS =>

mux_out <= add_out;
END CASE;

END PROCESS eb3_truth_process;
-- Architecture concurrent statements

-- Instance port mappings.
10 : ALU_adder
PORT MAP (
add_sub =>add_sub,
cmp =>cmp,
sl =>s],
s2 => 32,
signed_op => signed_op,
alu_out =>add_in,
flags =>flags in
)i
load_reg : ALU_load
PORT MAP (
byte_lane => byte lane,
clock =>clock,
mem_data_in => mem_data_out,
reset =>reset,
signed_wb => signed_op,
load_data => load_out
)i
11: ALU_logical
PORT MAP (
logic_op => logic_op,
sl =>sl,
s2 =>s2,
alu_out =>log_in
)i
110 : ALU_mem_addr
PORT MAP (
sl =>sl,
§s2 =>s2,
alu_out => mem_addr_in

)i
13 : ALU_multiplier
PORT MAP (
lo_hi =>lo_hi_mult,
sl =>s1_mult,
s2 =>s2 mult,
alu_out => mult_out

)1
12 : ALU_shifter
133

PORT MAP (
left_right => left_right,
rot_log_arith => rot_log_arith,
sl =>sl,
s2 =>s2,
alu out =>shift_in

)i

store_reg : ALU_store

PORT MAP (
add_out =>mem_addr_in,
byte lane =>byte lane,
clock => clock,
reset =>reset,
s2 4 mem =>s2 4 mem,
mem_addr =>mem_addr,
mem_data_in => mem_data_in,
st_bytelane => st_bytelane

14 : Generic_Reg_noenable
GENERIC MAP (
Sizeln => 3,
SizeOut => 3

)
PORT MAP (
clock => clock,
reset => reset,
A_in =>flags_in,
A_out => flags
)i
15:Reg_1
PORT MAP (
clock => clock,
d_in =>lo_hi,
reset => reset,
g_out =>lo_hi_mult
)i
adder_reg : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>add_in,
reset =>reset,
reg_out => add_out
)i
ex2_reg : Reg_32 noenable
PORT MAP (
clock => clock,
reg_in =>mux_out,
reset => reset,
reg_out =>alu_out_muxin
)i
log_reg : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>log_in,
reset => reset,

134

reg_out =>log_out

)i

mult_reg : Reg_32_noenable
PORT MAP (

clock => clock,

reg_in =>sl,

reset =>reset,

reg_out =>s1 mult

)i

mult_regl : Reg_32_noenable
PORT MAP (

clock => clock,

reg_in =>s2,

reset => reset,

reg_out =>s2_mult

)i

shift_reg : Reg_32_noenable

PORT MAP (

clock => clock,

reg_in =>shift_in,

reset =>reset,

reg_out => shift_out

);

END struct;

135

A.18 VHDL VLIW SOURCE FILE: TOP_ALU_AND_DECODER.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY top_ALU_and_decoder IS

PORT(
addr :IN std_logic_vector (31 DOWNTO 0);
clock . IN std_logic;
inst :IN std_logic_vector (31 DOWNTO 0);
mem_data_out b:IN STD_LOGIC_VECTOR (31 DOWNTO 0);
reset :IN std_logic;
sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);

s2_4 _mem ©IN std_logic_vector (31 DOWNTO 0);
take_branch :IN std_logic;

alu_out :OUT std_logic_vector (31 DOWNTO 0);
base addr :OUT std_logic_vector (31 DOWNTO 0);
br_code :OUT std_logic_vector (5 DOWNTO 0);
br_ext :OUT std_logic_vector (2 DOWNTO 0);
branch_check :OUT std_logic;

call :OUT std_logic;

callr :OUT std_logic;

flags :OUT std_logic_vector (2 DOWNTO 0);
flush_lo :OUT std_logic;

immed :OUT std_logic;

immed_16 _or 5 : OUT std_logic;

immed_val :OUT std_logic_vector (31 DOWNTO 0);
jmp : OUT std_logic;

mem_addr : OUT std_logic_vector (31 DOWNTO 0);
mem_data_in :OUT std_logic_vector (31 DOWNTO 0);

op_a :OUT std_logic_vector (4 DOWNTO 0);

op_b :OUT std_logic_vector (4 DOWNTO 0);

op_immed :OUT std_logic;

rd_mem :OUT std_logic;

ret :OUT std_logic;

st_bytelane :OUT std_logic_vector (1 DOWNTO 0);

wr_mem :OUT std_logic;

wr_reg :OUT std_logic;

wr_reg_addr :OUT std_logic_vector (4 DOWNTO 0)
)i

-- Declarations
END top_ALU_and_decoder ;
enerated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

136

USE ieee.std_logic_arith.all;
LIBRARY Auto_Gen;
ARCHITECTURE struct OF top_ALU_and_decoder IS

-- Architecture declarations

-- Internal signal declarations

SIGNAL add_sub3 :std_logic;

SIGNAL alu_or_mem3 :std_logic;

SIGNAL byte lane :std_logic_vector(1 DOWNTO 0);

SIGNAL cmp3 . std_logic_vector(2 DOWNTO 0);
SIGNAL dest - std_logic_vector(4 DOWNTO 0);
SIGNAL left_right3 :std_logic;

SIGNAL lo_hi3 : std_logic;

SIGNAL logic_op3 :std logic_vector(1 DOWNTO 0);
SIGNAL op_sel3 : std_logic_vector(1 DOWNTO 0);
SIGNAL operands :std_logic_vector(14 DOWNTO 0);
SIGNAL rot_log_arith3 : std_logic_vector(1 DOWNTO 0);
SIGNAL signed_op6 : std_logic;

SIGNAL signed_op7 :std_logic;

-- Implicit buffer signal declarations
SIGNAL immed_16_or_5_internal : std_logic;
SIGNAL op_immed_internal : std_logic;

-- Component Declarations
COMPONENT Hold_dest
PORT (
clock :IN std_logic;
dest :IN std_logic_vector (4 DOWNTO 0);
reset :IN std logic;
dest reg: OUT std_logic_vector (4 DOWNTO 0)
);
END COMPONENT;
COMPONENT Operand_splitter
PORT (
immed :IN std_logic ;
immed_16 or 5:IN std_logic;
operands :IN std_logic_vector (14 DOWNTO 0);

dest :OUT std_logic_vector (4 DOWNTO 0);
op_a :OUT std_logic_vector (4 DOWNTO 0);
op_b : OUT std_logic_vector (4 DOWNTO 0)

);

END COMPONENT;

COMPONENT top_ALU

PORT (

add_sub ©IN std_logic;
alu_or_mem :IN std logic;
byte lane :IN std_logic_vector (1 DOWNTO 0);

clock :IN std_logic;
cmp :IN std_logic_vector (2 DOWNTO 0);
left_right :IN std_logic;
lo_hi :IN std_logic ;

137

logic.op :IN std_logic_vector (1 DOWNTO 0);
mem_data_out : IN std_logic_vector (31 DOWNTO 0);

op_sel 2IN std_logic_vector (1 DOWNTO 0);
reset 2IN std_logic ;

rot_log_arith : IN std_logic_vector (1 DOWNTO 0);
sl :IN std_logic_vector (31 DOWNTO 0);
s2 :IN std_logic_vector (31 DOWNTO 0);

s2 4 mem :IN std_logic_vector (31 DOWNTO 0);
signed_ op :IN std_logic;

signed_op2 :IN std_logic;

alu out :OUT std logic_vector (31 DOWNTO 0);
flags :OUT std_logic_vector (2 DOWNTO 0);
mem_addr : OUT std_logic_vector (31 DOWNTO 0);
mem_data_in : OUT std_logic_vector (31 DOWNTO 0);
st_bytelane :OUT std_logic_vector (1 DOWNTO 0)

);

END COMPONENT;

COMPONENT top_decoder_4pe

PORT (
addr :IN std_logic_vector (31 DOWNTO 0);
clock :IN std_logic;
inst :IN std_logic_vector (31 DOWNTO 0);
reset ©IN std_logic ;

take_branch :IN std_logic;

add_sub :OUT std_logic;

alu_or_mem :OUT std_logic;

base_addr :OUT std_logic_vector (31 DOWNTO 0);
br code :OUT std_logic_vector (5 DOWNTO 0);
br_ext :OUT std_logic_vector (2 DOWNTO 0);
branch_check : OUT std_logic ;

byte lane :OUT std_logic_vector (1 DOWNTO 0);

call :OUT std_logic ;
callr :OUT std_logic;
cmp :OUT std_logic_vector (2 DOWNTO 0);

exl immed :OUT std logic;

flush_lo :OUT std_logic;

immed_16 _or 5:OUT std_logic;

immed_val :OUT std logic_vector (31 DOWNTO 0);

jmp :OUT std_logic ;
left_right :OUT std_logic;
lo_hi :OUT std_logic ;

logic op :OUT std_logic_vector (1 DOWNTO 0);
op_immed :OUT std logic;

op_sel :OUT std_logic_vector (1 DOWNTO 0);
operands :OUT std_logic_vector (14 DOWNTO 0);
rd_mem :OUT std_logic ;

ret :OUT std_logic ;

rot_log_arith : OUT std_logic_vector (1 DOWNTO 0);
signed_op :OUT std_logic;

signed_op2 :OUT std_logic;

wr_mem :OUT std_logic ;
wr_reg :OUT std_logic
)i

END COMPONENT;

138

-- Optional embedded configurations

-- pragma synthesis_off

FOR ALL : Hold_dest USE ENTITY Auto_Gen.Hold_dest;

FOR ALL : Operand_splitter USE ENTITY Auto_Gen.Operand_splitter;
FOR ALL :top_ALU USE ENTITY Auto_Gen.top_ALU;

FOR ALL : top_decoder_4pe USE ENTITY Auto_Gen.top_decoder_4pe;
-- pragma synthesis_on

BEGIN

-- Instance port mappings.
I5: Hold_dest
PORT MAP (
clock => clock,
dest => dest,
reset => reset,
dest_reg => wr_reg_addr
)i
114 : Operand_splitter
PORT MAP (
immed => op_immed_internal,
immed_16 or_ 5=>immed_16 or 5 internal,
operands => operands,
dest => dest,
op_a =>0p_a,
op_b =>o0p_b
)i
ALU :top ALU
PORT MAP (
add_sub =>add sub3,
alu_or_ mem =>alu_or_mem3,
byte lane =>byte lane,

clock => clock,
cmp =>cmp3,
left_right => left_right3,
lo_hi => [o_hi3,

logic op =>logic_op3,
mem_data_out => mem_data_out_b,

op_sel =>op_sel3,

reset => reset,
rot_log_arith =>rot_log_arith3,
sl =>s],

s2 => 32,

s2_4 mem =>s2_4 mem,
signed_op =>signed_op6,
signed_op2 => signed_op?7,
alu out =>alu_out,
flags => flags,
mem_addr =>mem_addr,
mem_data_in =>mem_data_in,
st_bytelane => st_bytelane
)i
top_decode : top_decoder_4pe
PORT MAP (
addr => addr,

139

clock => clock,

inst => inst,

reset => reset,

take_branch =>take branch,
add_sub =>add_sub3,
alu_or_ mem =>alu_or_mem3,
base_addr => base_addr,

br code =>br_code,

br_ext => br_ext,
branch_check => branch_check,
byte lane =>byte lane,

call => call,
callr => callr,
cmp =>cmp3,

exl immed =>immed,

flush_lo =>flush _lo,

immed_16 _or_5=>immed_16 or 5 internal,
immed val =>immed_val,

jmp =>jmp,
left_right => left_right3,
lo_hi =>lo_hi3,

logic op =>logic_op3,
op_immed =>op_immed_internal,

op_sel =>op_sel3,
operands => operands,
rd_mem =>rd_mem,
ret => ret,

rot_log_arith => rot_log_arith3,
signed_op =>signed_op6,
signed_op2 =>signed _op7,
wr_mem =>wr_mem,
wr_reg =>Wr_reg
)i
-- Implicit buffered output assignments
immed_16 _or 5<=immed_16 or_5_internal;
op_immed <=op_immed_internal;

END struct;

140

A.19 VHDL VLIW SOURCE FILE: TOP_REGISTER_32X32X4W.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY top_register_32x32x4w IS

PORT(
clock :IN std _logic;
immed 0 :IN std_logic;

immed 1 :IN std_logic;

immed 2 :IN std_logic;

immed 3 :IN std_logic;

immed_val 0:IN std logic_vector (31 DOWNTO 0);

immed_val_1:IN std logic_vector (31 DOWNTO 0);

immed_val_2:IN std logic_vector (31 DOWNTO 0);

immed_val_3:IN std logic_vector (31 DOWNTO 0);

op_a0 :IN std logic_vector (4 DOWNTO 0);

op.al :IN std logic_vector (4 DOWNTO 0);

op_a?2 :IN std logic_vector (4 DOWNTO 0);

op_a3 :IN std logic_vector (4 DOWNTO 0);

op_ b 0O :IN std_logic vector (4 DOWNTO 0);

op_ b 1 :IN std_logic vector (4 DOWNTO 0);

op_ b 2 :IN std_logic_ vector (4 DOWNTO 0);

op_b 3 :IN std_logic_vector (4 DOWNTO 0);

reset :IN std _logic;

wr_addr_a :IN std_logic_vector (4 DOWNTO 0);

wr_addr_b :IN std_logic_vector (4 DOWNTO 0);

wr_addr_c¢ :IN std_logic_vector (4 DOWNTO 0);

wr_addr d :IN std_logic_vector (4 DOWNTO 0);

wr_data a :IN std logic_vector (31 DOWNTO 0);

wr_data b :IN std_logic_vector (31 DOWNTO 0);

wr_data ¢ :IN std logic_vector (31 DOWNTO 0);

wr_data d :IN std_logic_vector (31 DOWNTO 0);

wr_reg_a :IN std_logic;

wr_reg_b :IN std_logic;

wr_reg_c :IN std_logic;

wr_reg_d :IN std_logic;

s10 :OUT std_logic_vector (31 DOWNTO 0);

s11 :OUT std_logic_vector (31 DOWNTO 0);

sl 2 : OUT std_logic_vector (31 DOWNTO 0);

:OUT std_logic_vector (31 DOWNTO 0);

:OUT std_logic_vector (31 DOWNTO 0);

1 : OUT std_logic_vector (31 DOWNTO 0);

2 : OUT std_logic_vector (31 DOWNTO 0);

2 : OUT std_logic_vector (31 DOWNTO 0);
_mem_0 : OUT std_logic_vector (31 DOWNTO 0);

_mem_1 : OUT std_logic_vector (31 DOWNTO 0);

_mem_2 : OUT std_logic_vector (31 DOWNTO 0);

_mem_3 : OUT std_logic_vector (31 DOWNTO 0)

w un un

w un nun um
NN DNDDNDDNDNDN

w

141

-- Declarations
END top_register_32x32x4w ;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

LIBRARY Auto_Gen;
ARCHITECTURE struct OF top_register_32x32x4w IS

-- Internal signal declarations

SIGNAL B1 0 : std_logic_vector(31 DOWNTO 0);
SIGNAL B1 0 out :std_logic_vector(31 DOWNTO 0);
SIGNAL B1 1 : std_logic_vector(31 DOWNTO 0);
SIGNAL B1 1 out :std_logic_vector(31 DOWNTO 0);
SIGNAL B1 2 : std_logic_vector(31 DOWNTO 0);
SIGNAL B1 2 out :std_logic_vector(31 DOWNTO 0);
SIGNAL B1 3 : std_logic_vector(31 DOWNTO 0);
SIGNAL B1 3 out :std_logic_vector(31 DOWNTO 0);
SIGNAL enable_bus : std_logic_vector(31 DOWNTO 0);
SIGNAL mux_in :std_logic_vector(127 DOWNTO 0);
SIGNAL mux_out :std logic_vector(255 DOWNTO 0);
SIGNAL mux_outl :std_logic_vector(1023 DOWNTO 0);
SIGNAL reg_out :std_logic_vector(1023 DOWNTO 0);
SIGNAL sl _regin_0 : std_logic_vector(31 DOWNTO 0);
SIGNAL sl regin_1:std_logic_vector(31 DOWNTO 0);
SIGNAL sl regin 2 :std_logic_vector(31 DOWNTO 0);
SIGNAL sl regin_3:std_logic_vector(31 DOWNTO 0);
SIGNAL sel_bus :std logic_vector(39 DOWNTO 0);
SIGNAL select_bus : std_logic_vector(63 DOWNTO 0);

-- Component Declarations

COMPONENT Enable_decoder_4W

PORT (
wr_addr_a : IN std_logic_vector (4 DOWNTO 0);
wr_addr_b :IN std_logic_vector (4 DOWNTO 0);
wr_addr_c : IN std_logic_vector (4 DOWNTO 0);
wr_addr_d : IN std_logic_vector (4 DOWNTO 0);
wr_reg_a :IN std_logic;
wr_reg b :IN std_logic;
wr_reg ¢ :IN std_logic;
wr_reg_d :IN std_logic;
enable_bus: OUT std_logic_vector (31 DOWNTO 0)

);

END COMPONENT;

COMPONENT Mux_2x1

PORT (
muxin_a: IN std logic_vector (31 DOWNTO 0);
muxin_b : IN std_logic_vector (31 DOWNTO 0);
sel :IN std_logic;
muxout : OUT std_logic_vector (31 DOWNTO 0)

142

);
END COMPONENT;
COMPONENT Reg_32_noenable
PORT (
clock :IN std_logic;
reg_in : IN std_logic_vector (31 DOWNTO 0);
reset :IN std logic;
reg_out: OUT std_logic_vector (31 DOWNTO 0)
);
END COMPONENT;
COMPONENT Select_decoder_4W
PORT (
wr_addr_a : IN std_logic_vector (4 DOWNTO 0);
wr_addr_b :IN std_logic_vector (4 DOWNTO 0);
wr_addr_c : IN std_logic_vector (4 DOWNTO 0);
wr_addr_d :IN std_logic_vector (4 DOWNTO 0);
wr_reg a :IN std_logic;
wr_reg b :IN std_logic;
wr_reg ¢ :IN std_logic;
wr_reg d :IN std_logic;
select_bus: OUT std_logic_vector (63 DOWNTO 0)
);
END COMPONENT;
COMPONENT mux_hank_32x32x8
PORT (
mux_in :IN std_logic_vector (1023 DOWNTO 0);
sel_bus:IN std logic_vector (39 DOWNTO 0);
mux_out : OUT std_logic_vector (255 DOWNTO 0)
)i
END COMPONENT;
COMPONENT mux_bank_32x4x1
PORT (
mux_in : IN std logic_vector (127 DOWNTO 0);
sel_bus:IN std logic_vector (63 DOWNTO 0);
mux_out : OUT std_logic_vector (1023 DOWNTO 0)
);
END COMPONENT;
COMPONENT reg_bank_32x32
PORT (
clock :IN std_logic;
enable_bus:IN std logic_vector (31 DOWNTO 0);
reg_in :IN std_logic_vector (1023 DOWNTO 0);
reset :IN std_logic;
reg_ out :OUT std logic_vector (1023 DOWNTO 0)
);
END COMPONENT;

-- Optional embedded configurations

-- pragma synthesis_off

FOR ALL : Enable_decoder 4W USE ENTITY Auto_Gen.Enable_decoder_4W;
FOR ALL : Mux_2x1 USE ENTITY Auto_Gen.Mux_2x1;

FOR ALL : Reg_32 noenable USE ENTITY Auto_Gen.Reg_32_noenable;

FOR ALL : Select_decoder_4W USE ENTITY Auto_Gen.Select_decoder_4W;
FOR ALL : mux_bank_32x32x8 USE ENTITY Auto_Gen.mux_bank_32x32x8;
FOR ALL : mux_bank_32x4x1 USE ENTITY Auto_Gen.mux_bank_32x4x1;

143

FOR ALL : reg_bhank_32x32 USE ENTITY Auto_Gen.reg_bank_32x32;
-- pragma synthesis_on

BEGIN
-- Architecture concurrent statements
-- HDL Embedded Text Block 1 ebl
B1 0 <= mux_out(31 downto 0);
s1 _regin_0 <= mux_out(63 downto 32);
B1 1 <=mux_out(95 downto 64);
s1 regin_1 <= mux_out(127 downto 96);
B1_2 <= mux_out(159 downto 128);
s1_regin_2 <= mux_out(191 downto 160);
B1_3 <=mux_out(223 downto 192);
s1_regin_3 <= mux_out(255 downto 224);

sel bus<=op a 3&op b 3&op a2&opb2&opal&ophbl&opal&ophb
mux_in <= wr_data_d & wr_data_c & wr_data_b & wr_data_a;

-- HDL Embedded Text Block 3 eb3
s2_4 mem_0<=B1 0 out;

-- HDL Embedded Text Block 4 eb4
s2_ 4 mem_1<=B1 1 out;

-- HDL Embedded Text Block 6 eb6
s2_ 4 mem _2<=B1 2 out;

-- HDL Embedded Text Block 8 eb8
s2_4 mem_3<=B1 3 out;

-- Instance port mappings.
14 : Enable_decoder_4W
PORT MAP (
wr_addr_a =>wr_addr_a,
wr_addr_b =>wr_addr b,
wr_addr_c =>wr_addr_c,
wr_addr_d =>wr_addr_d,
Wr_reg_a =>Wwr_reg_a,
wr_reg_b =>wr _reg b,
Wr_reg_c =>Wwr_reg_c,
wr_reg_ d =>wr_reg d,
enable_bus => enable_bus
)i
113 : Mux_2x1
PORT MAP (
muxin_a=>B1 0 _out,
muxin_b =>immed_val 0,
sel =>immed_0,
muxout =>s2 0
)i
114 : Mux_2x1
PORT MAP (
muxin_a=>B1 1 out,

144

muxin_b => immed_val_1,
sel =>immed_1,
muxout =>s2 1
);
115 : Mux_2x1
PORT MAP (
muxin_a=>B1 2 out,
muxin_b => immed_val_2,
sel =>immed_2,
muxout =>s2_2
)i
116 : Mux_2x1
PORT MAP (
muxin_a =>B1 3 out,
muxin_b =>immed_val 3,
sel =>immed_3,
muxout =>s2_3
)i
sOa : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>sl regin_ 0,
reset => reset,
reg_out=>sl1 0
)i
sOb : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>B1 0,
reset => reset,
reg_out=>B1 0 out
)i
sla: Reg_32 noenable
PORT MAP (
clock => clock,
reg_in =>sl_regin_1,
reset => reset,
reg_out=>s1 1
)i
slb : Reg_32 noenable
PORT MAP (
clock => clock,
reg_in =>B1 1,
reset => reset,
reg_out=>B1_1 out
)i
s2a: Reg_32 _noenable
PORT MAP (
clock => clock,
reg_in =>sl1_regin_2,
reset => reset,
reg_out=>sl 2
)i
s2b : Reg_32 noenable
PORT MAP (

145

clock => clock,
reg_in => Bl 2,
reset => reset,
reg_out =>B1 2 out
);
s3a : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>sl regin_3,
reset => reset,
reg_out=>sl 3
);
s3b : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>B1 3,
reset => reset,
reg_out=>B1_3 out
);
112 : Select_decoder_4W
PORT MAP (
wr_addr_a =>wr_addr_a,
wr_addr_b =>wr_addr_b,
wr_addr_c¢ =>wr_addr_c,
wr_addr_d =>wr_addr_d,
Wr_reg_a =>Wwr_reg_a,
wr_reg_b =>wr_reg_b,
Wr_reg_c =>Wwr_reg_c,
wr_reg d =>wr_reg_d,
select_bus => select_bus
);
I5 : mux_bank_32x32x8
PORT MAP (
mux_in =>reg_out,
sel_bus => sel_bus,
mux_out => mux_out
);
10 : mux_bank_32x4x1
PORT MAP (
mux_in => mux_in,
sel_bus => select_bus,
mux_out => mux_outl
);
regbank : reg_bank 32x32
PORT MAP (
clock =>clock,
enable_bus => enable_bus,
reg_in =>mux_outl,
reset =>reset,
reg_out =>reg_out

);

END struct;

146

) A.20 VHDL VLIW SOURCE FILE: DECODER_NIOS.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY Decoder_NIOS IS
PORT(

addr :IN std_logic_vector (31 DOWNTO 0);
clock :IN std_logic;
opcode :IN std logic_vector (5 DOWNTO 0);
other ~ :IN std_logic_vector (5 DOWNTO 0);
reset :IN std_logic;
take_branch: IN std_logic;
base_addr : OUT std_logic_vector (31 DOWNTO 0);
ctl_ex1 :OUT std_logic_vector (16 DOWNTO 0);
ctl_ex2 :OUT std_logic_vector (14 DOWNTO 0);
ctlop :OUT std logic_vector (4 DOWNTO 0);
ctl wb :OUT std_logic_vector (1 DOWNTO 0);
flush lo :OUT std logic

);
-- Declarations

END Decoder_NIOS ;

-- VHDL Architecture Auto_Gen.Decoder_NIOS.struct

-- Created:
-- by - Dara. UNKNOWN (J11)
-- at - 14:38:27 07/22/2005

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.numeric_std.all;

LIBRARY Auto_Gen;
ARCHITECTURE struct OF Decoder_NIOS IS

-- Architecture declarations

-- Instructions(5 downto 0)
Constant call : std_logic_vector(6 downto 0) := "0000000";
Constant Idbu : std_logic_vector(6 downto 0) := "0000011";
Constant addi : std_logic_vector(6 downto 0) := "0000100";
Constant stb : std_logic_vector(6 downto 0) := "0000101";
Constant br : std_logic_vector(6 downto 0) := *0000110";

147

Constant Idb : std_logic_vector(6 downto 0) := "0000111";
Constant cmpgei : std_logic_vector(6 downto 0) := "0001000";
Constant Idhu : std_logic_vector(6 downto 0) := "0001011";
Constant andi : std_logic_vector(6 downto 0) := "0001100";
Constant sth : std_logic_vector(6 downto 0) := "0001101";
Constant bge : std_logic_vector(6 downto 0) := "0001110";
Constant Idh : std_logic_vector(6 downto 0) := "0001111";
Constant cmplti : std_logic_vector(6 downto 0) := "0010000";
Constant ori : std_logic_vector(6 downto 0) := "0010100";
Constant stw : std_logic_vector(6 downto 0) := "0010101";
Constant blt : std_logic_vector(6 downto 0) := "0010110";
Constant Idw : std_logic_vector(6 downto 0) := "0010111";
Constant cmpnei : std_logic_vector(6 downto 0) := "0011000";
Constant xori : std_logic_vector(6 downto 0) := "0011100";
Constant bne : std_logic_vector(6 downto 0) := "0011110";
Constant cmpeqi : std_logic_vector(6 downto 0) := "0100000";
Constant Idbuio : std_logic_vector(6 downto 0) := "0100011";
Constant muli : std_logic_vector(6 downto 0) := "0100100";
Constant sthio : std_logic_vector(6 downto 0) := "0100101";
Constant beq : std_logic_vector(6 downto 0) := "0100110";
Constant Idbio : std_logic_vector(6 downto 0) := "0100111";
Constant cmpgeui : std_logic_vector(6 downto 0) := "0101000";
Constant Idhuio : std_logic_vector(6 downto 0) := "0101011";
Constant andhi : std_logic_vector(6 downto 0) := "0101100";
Constant sthio : std_logic_vector(6 downto 0) := "0101101";
Constant bgeu : std_logic_vector(6 downto 0) := "0101110";
Constant Idhio : std_logic_vector(6 downto 0) := "0101111";
Constant cmpltui : std_logic_vector(6 downto 0) := "0110000";
Constant custom : std_logic_vector(6 downto 0) := "0110010";
Constant orhi : std_logic_vector(6 downto 0) := "0110100";
Constant stwio : std_logic_vector(6 downto 0) := "0110101";
Constant bltu : std_logic_vector(6 downto 0) := "0110110";
Constant Idwio : std_logic_vector(6 downto 0) := "0110111";
Constant rtype : std_logic_vector(6 downto 0) := "0111010";
Constant flushd : std_logic_vector(6 downto 0) := "0111011";
Constant xorhi : std_logic_vector(6 downto 0) := "0111100";

-- Instruction (16 downto 11) in case of rtype (0x3a)

Constant add : std_logic_vector(6 downto 0) := "1110001";
Constant and_rs : std_logic_vector(6 downto 0) := "1001110";
Constant break : std_logic_vector(6 downto 0) :="1110100";
Constant bret : std_logic_vector(6 downto 0) := "1001001";
Constant callr : std_logic_vector(6 downto 0) :="1011101";
Constant cmpeq : std_logic_vector(6 downto 0) := "1100000";
Constant cmpge : std_logic_vector(6 downto 0) := "1001000";
Constant cmpgeu : std_logic_vector(6 downto 0) := "1101000";
Constant cmplt : std_logic_vector(6 downto 0) :="1010000";
Constant cmpltu : std_logic_vector(6 downto 0) :="1110000";
Constant cmpne : std_logic_vector(6 downto 0) := "1011000";
Constant div : std_logic_vector(6 downto 0) :="1100101";
Constant divu : std_logic_vector(6 downto 0) := "1100100";
Constant eret : std_logic_vector(6 downto 0) ;= "1000001";
Constant flushp : std_logic_vector(6 downto 0) := "1000100";
Constant initd : std_logic_vector(6 downto 0) :="1110011";

148

Constant jmp : std_logic_vector(6 downto 0) :="1001101";
Constant mul : std_logic_vector(6 downto 0) :="1100111";

Constant mulxss : std_logic_vector(6 downto 0) :="1011111";
Constant mulxsu : std_logic_vector(6 downto 0) := "1010111";
Constant mulxuu : std_logic_vector(6 downto 0) :="1000111";

Constant nextpc : std_logic_vector(6 downto 0) := "1011100";
Constant nor_rs : std_logic_vector(6 downto 0) ;= "1000110";
Constant or_rs : std_logic_vector(6 downto 0) :="1010110";
Constant rdctl : std_logic_vector(6 downto 0) := "1100110";
Constant ret : std_logic_vector(6 downto 0) ;= "1000101";
Constant rotl : std_logic_vector(6 downto 0) :="1000011";
Constant roli : std_logic_vector(6 downto 0) :="1000010";
Constant rotr : std_logic_vector(6 downto 0) := "1001011";
Constant shll : std_logic_vector(6 downto 0) := "1010011";
Constant slli : std_logic_vector(6 downto 0) := "1010010";
Constant shra : std_logic_vector(6 downto 0) := "1111011";
Constant srai : std_logic_vector(6 downto 0) :="1111010";
Constant shrl : std_logic_vector(6 downto 0) ;= "1011011";
Constant srli : std_logic_vector(6 downto 0) := "1011010";
Constant sub : std_logic_vector(6 downto 0) :="1111001";
Constant sync : std_logic_vector(6 downto 0) :="1110110";
Constant trap : std_logic_vector(6 downto 0) :="1101101";
Constant wrctl : std_logic_vector(6 downto 0) :="1101110";
Constant xor_rs : std_logic_vector(6 downto 0) :="1011110";

-- Signal constants

Constant and_op : std_logic_vector := "00";

Constant or_op : std_logic_vector :="01";

Constant nor_op : std_logic_vector ;= "10";

Constant xor_op : std_logic_vector ;= "11";

Constant alu_op : std_logic :='0";

Constant mem_op : std_logic :='1";

Constant left : std_logic :='0";

Constant right : std_logic := '1";

Constant add_op : std_logic :='0";

Constant sub_op : std_logic :="1";

Constant is_signed : std_logic :='0";

Constant is_unsigned : std_logic := "1

Constant lo : std_logic :="'0";

Constant hi : std_logic :='1";

Constant immediate : std_logic :='1";

Constant immed_5 : std_logic :='1";

Constant immed_16 : std_logic :='0";

Constant eq : std_logic_vector(2 downto 0) := "001";
Constant ne : std_logic_vector(2 downto 0) :="010";
Constant It : std_logic_vector(2 downto 0) :="011";
Constant gt : std_logic_vector(2 downto 0) :="100";
Constant Ite : std_logic_vector(2 downto 0) := "101";
Constant gte : std_logic_vector(2 downto 0) := "110";
Constant is_branch : std_logic :='1";

Constant rotation : std_logic_vector(1 downto 0) :="00";
Constant logical : std_logic_vector(1 downto 0) :="01";
Constant arithmetic : std_logic_vector(1 downto 0) :="10";
Constant adder_op : std_logic_vector(1 downto 0) := "00";
Constant mult_op : std_logic_vector(1 downto 0) :="01";

149

Constant logical_op : std_logic_vector(1 downto 0) :="10";
Constant shifter_op : std_logic_vector(1 downto 0) :="11";
Constant call_op : std_logic :='1";

Constant ret_op : std_logic :='1";

Constant write : std_logic :="1";

Constant read : std_logic :='1";

Constant lane_0 : std_logic_vector(1 downto 0) := "00";
Constant lane_1 : std_logic_vector(1 downto 0) := "01";
Constant lane_3 : std_logic_vector(1 downto 0) := "10";
Constant x1 : std_logic :='0";

Constant x2 : std_logic_vector(1 downto 0) := "00";
Constant x3 : std_logic_vector(2 downto 0) := "000";

-- Instruction Stages

Constant fetch : std_logic_vector(5 downto 0) := "000001";

Constant operand : std_logic_vector(5 downto 0) := "000010";

Constant executel : std_logic_vector(5 downto 0) := "000100";

Constant execute2 : std_logic_vector(5 downto 0) := "001000";

Constant writeback : std_logic_vector(5 downto 0) :="010000";
-- Non hierarchical truthtable declarations

-- Non hierarchical truthtable declarations
-- Non hierarchical truthtable declarations

-- Non hierarchical truthtable declarations

-- Internal signal declarations

SIGNAL addrl . std_logic_vector(31 DOWNTO 0);
SIGNAL addr2 . std_logic_vector(31 DOWNTO 0);
SIGNAL alu_or_mem :std_logic;

SIGNAL and_opcode :std_logic_vector(5 DOWNTO 0);
SIGNAL branch_check :std_logic;

SIGNAL byte lane > std_logic_vector(1 DOWNTO 0);
SIGNAL call_func : std_logic;

SIGNAL callr_func :std_logic;

SIGNAL ex1 : std_logic_vector(16 DOWNTO 0);
SIGNAL ex1 1 :std_logic_vector(16 DOWNTO 0);
SIGNAL ex1 add sub :std_logic;

SIGNAL ex1_cmp :std_logic_vector(2 DOWNTO 0);
SIGNAL ex1_immed : std_logic;

SIGNAL ex2 . std_logic_vector(14 DOWNTO 0);
SIGNAL ex2_op_sel . std_logic_vector(1 DOWNTO 0);
SIGNAL flush > std_logic;

SIGNAL flush_call - std_logic;

SIGNAL flush_callr :std_logic;

SIGNAL flush_hi : std_logic;

SIGNAL flush_jmp : std_logic;
SIGNAL flush_regout :std_logic;
SIGNAL flush_ret . std_logic;

150

SIGNAL is_rtype - std_logic;

SIGNAL jmp_func : std_logic;

SIGNAL left_right :std_logic;

SIGNAL lo_hi > std_logic;

SIGNAL logic_op > std_logic_vector(1 DOWNTO 0);
SIGNAL op :std_logic_vector(4 DOWNTO 0);
SIGNAL op_NOT_3a . std_logic_vector(5 DOWNTO 0);
SIGNAL op_immed : std_logic;

SIGNAL op_immed_16 or_5: std_logic;

SIGNAL op_immed 26 :std logic;

SIGNAL op_lo_hi : std_logic;

SIGNAL op_signed_op :std_logic;

SIGNAL opcode_0 . std_logic_vector(6 DOWNTO 0);

SIGNAL opcode_1 > std_logic_vector(6 DOWNTO 0);
SIGNAL opcode_2 > std_logic_vector(6 DOWNTO 0);
SIGNAL opcode_3 : std_logic_vector(6 DOWNTO 0);

SIGNAL return_func : std_logic;
SIGNAL rot_log_arith :std_logic_vector(1 DOWNTO 0);
SIGNAL signed_op : std_logic;
SIGNAL signed_op2 : std_logic;

SIGNAL wb : std_logic_vector(1 DOWNTO 0);
SIGNAL wr_mem . std_logic;
SIGNAL wr_reg : std_logic;

-- Implicit buffer signal declarations
SIGNAL flush_lo_internal : std_logic;

-- Component Declarations
COMPONENT Generic_Reg_noenable
GENERIC (

Sizeln : integer;

SizeOut : integer
)i
PORT (

A_in :IN std_logic_vector (Sizeln - 1 DOWNTO 0);

clock : IN std_logic;

reset: IN std_logic;

A out:OUT std logic_vector (SizeOut - 1 DOWNTO 0)
)
END COMPONENT;
COMPONENT Reg_1
PORT (

clock : IN std_logic;

d_in :IN std_logic;

reset: IN std_logic ;
g_out: OUT std_logic
);
END COMPONENT;
COMPONENT Reg_32_noenable
PORT (
clock :IN std_logic;
reg_in : IN std_logic_vector (31 DOWNTO 0);
reset :IN std_logic;
reg_out: OUT std_logic_vector (31 DOWNTO 0)

151

);
END COMPONENT;

-- Optional embedded configurations

-- pragma synthesis_off

FOR ALL : Generic_Reg_noenable USE ENTITY Auto_Gen.Generic_Reg_noenable;
FOR ALL : Reg_1 USE ENTITY Auto_Gen.Reg_1;

FOR ALL : Reg_32 noenable USE ENTITY Auto_Gen.Reg_32_noenable;

-- pragma synthesis_on

BEGIN

-- Architecture concurrent statements

-- HDL Embedded Text Block 1 ebl

process(clock, flush)

begin

if (flush ='1") then
ctl_op <= (others =>'0";

elsif (rising_edge(clock)) then
ctl_op <= op;

end if;

end process;

-- HDL Embedded Block 2 decoder_op
-- Non hierarchical truthtable

decoder_op_truth_process: PROCESS(opcode_0)

BEGIN
-- Block 1
CASE opcode 0 IS
WHEN call =>

op_lo_hi<=x1;
op_immed_26 <= immediate;
op_immed_16_or_5 <=x1,
op_immed <= x1,;
op_signed_op <= x1;
WHEN Idbu =>
op_lo_hi <=x1;
op_immed_26 <= x1;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_unsigned,;
WHEN addi =>
op_lo_hi<=x1;
op_immed_26 <= x1,
op_immed_16_or_5 <= immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN stb =>
op_lo_hi <=x1;
op_immed_26 <= x1;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;

152

WHEN br =>

op_lo_hi <=x1,;

op_immed_26 <= x1,

op_immed_16_or_5 <=immed_16;

op_immed <= x1;

op_signed_op <= is_signed;
WHEN ldb =>

op_lo_hi<=x1,;

op_immed_26 <= x1,;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN cmpgei =>

op_lo_hi <=x1;

op_immed_26 <= x1,

op_immed_16_or_5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN ldhu =>

op_lo_hi<=x1;

op_immed_26 <= x1,;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_unsigned,;
WHEN andi =>

op_lo_hi <=x1;

op_immed_26 <= x1,;

op_immed_16_or_5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN sth =>

op_lo_hi<=x1;

op_immed_26 <= x1,;

op_immed_16_or_5 <= immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN bge =>

op_lo_hi <=x1;

op_immed_26 <= x1,

op_immed_16 or 5 <=immed_16;

op_immed <= x1;

op_signed_op <= is_signed;
WHEN Idh =>

op_lo_hi<=x1,;

op_immed_26 <= x1,;

op_immed_16_or_5 <= immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN cmplti =>

op_lo_hi <=x1;

op_immed_26 <= x1,

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN ori =>

153

op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_16;
op_immed <= immediate;
op_signed_op <= x1;
WHEN stw =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <=is_signed;
WHEN blt =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_16;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN ldw =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN cmpnei =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN xori =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= x1,
WHEN bne =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_16;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN cmpeqi =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN ldbuio =>
op_lo_hi <=x1;
op_immed_26 <= x1,;
op_immed_16_or_5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_unsigned,;
WHEN muli =>
op_lo_hi<=x1;

154

op_immed_26 <= x1,

op_immed_16_or_5 <= immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN stbio =>

op_lo_hi<=x1;

op_immed_26 <= x1;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN beq =>

op_lo_hi <=x1,;

op_immed_26 <= x1,

op_immed_16_or_5 <=immed_16;

op_immed <= x1;

op_signed_op <= is_signed;
WHEN ldbio =>

op_lo_hi<=x1;

op_immed_26 <= x1;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN cmpgeui =>

op_lo_hi <=x1,;

op_immed_26 <= x1,

op_immed_16_or_5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_unsigned;
WHEN ldhuio =>

op_lo_hi<=x1;

op_immed_26 <= x1;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_unsigned,;
WHEN andhi =>

op_lo_hi <=x1,;

op_immed_26 <= x1,;

op_immed_16_or_5 <=immed_16;

op_immed <= immediate;

op_signed_op <= is_signed;
WHEN sthio =>

op_lo_hi<=x1;

op_immed_26 <= x1,;

op_immed_16 or 5 <=immed_16;

op_immed <= immediate;

op_signed_op <=is_signed;
WHEN bgeu =>

op_lo_hi <=x1,;

op_immed_26 <= x1,

op_immed_16_or 5 <=x1;

op_immed <= x1;

op_signed_op <= is_unsigned;
WHEN ldhio =>

op_lo_hi<=x1;

op_immed_26 <= x1,;

155

op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= is_signed;

WHEN cmpltui =>
op_lo_hi <=x1;
op_immed_26 <= x1;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_unsigned,;

WHEN custom =>
op_lo_hi<=x1;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1;
op_signed_op <= x1;

WHEN initd =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= x1,;

WHEN orhi =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <= immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;

WHEN stwio =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <=is_signed;

WHEN bltu =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= is_unsigned;

WHEN ldwio =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;

WHEN add =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= is_signed;

WHEN and_rs =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;

156

op_immed <= x1,
op_signed_op <= is_signed;
WHEN break =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= x1;
WHEN bret =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= x1;
WHEN callr =>
op_lo_hi <=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= x1,;
WHEN cmpeq =>
op_lo_hi<=x1;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= is_signed;
WHEN cmpge =>
op_lo_hi <=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <=is_signed;
WHEN cmpgeu =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1;
op_signed_op <= is_unsigned;
WHEN cmplt =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN cmpltu =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1;
op_signed_op <= is_unsigned;
WHEN cmpne =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;

157

op_signed_op <= is_signed;
WHEN div =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN divu =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1,;
op_signed_op <= is_unsigned,;
WHEN eret =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= x1,;
WHEN flushp =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= x1,
WHEN jmp =>
op_lo_hi <=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= x1;
WHEN mul =>
op_lo_hi<=lo;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1,;
op_signed_op <= is_signed;
WHEN mulxss =>
op_lo_hi <= hi;
op_immed_26 <= x1;
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN mulxsu =>
op_lo_hi <= hi;
op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= is_signed;
WHEN mulxuu =>
op_lo_hi <= hi;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= is_unsigned,;

158

WHEN nextpc =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= x1,;
WHEN nor_rs =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN or_rs =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN rdctl =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1,
op_signed_op <= x1,
WHEN ret =>
op_lo_hi <=x1;
op_immed_26 <= x1,;
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= x1;
WHEN rotl =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16_or_5 <=x1,
op_immed <= x1,;
op_signed_op <= is_signed;
WHEN roli =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16 or_5 <=immed_5;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN rotr =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16_or_5 <=x1,
op_immed <= x1,
op_signed_op <= is_signed;
WHEN shll =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN slli =>

159

op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_5;
op_immed <= immediate;
op_signed_op <= is_unsigned;

WHEN shra =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <=is_signed;

WHEN srai =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_5;
op_immed <= immediate;
op_signed_op <= is_unsigned;

WHEN shrl =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= is_signed;

WHEN srli =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_5;
op_immed <= immediate;
op_signed_op <= is_unsigned;

WHEN sub =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1,
op_signed_op <= is_signed;

WHEN sync =>
op_lo_hi <=x1;
op_immed_26 <= x1,
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= x1;

WHEN trap =>
op_lo_hi<=x1;
op_immed_26 <= x1,;
op_immed_16 or 5<=x1;
op_immed <= x1,
op_signed_op <= x1,

WHEN wrctl =>
op_lo_hi <=x1;
op_immed_26 <= x1,;
op_immed_16_or 5 <=x1;
op_immed <= x1;
op_signed_op <= x1;

WHEN flushd =>
op_lo_hi<=lo;

160

op_immed_26 <= x1,
op_immed_16_or_5 <=x1,
op_immed <= x1;
op_signed_op <= x1;
WHEN xor_rs =>
op_lo_hi<=x1;
op_immed_26 <= x1;
op_immed_16 or 5<=x1,;
op_immed <= x1;
op_signed_op <= is_signed;
WHEN xorhi =>
op_lo_hi <=x1,;
op_immed_26 <= x1,
op_immed_16_or_5 <=immed_16;
op_immed <= immediate;
op_signed_op <= is_signed;
WHEN OTHERS =>
op_lo_hi<=lo;
op_immed_26 <= x1;
op_immed_16 or 5<=x1;
op_immed <= x1;
op_signed_op <= x1,;
END CASE;

END PROCESS decoder_op_truth_process;

-- HDL Embedded Text Block 3 eb2

--ex1(0) <= ex1_immed;

--ex1(1) <= ex1_add_sub;

--ex1(3 downto 2) <=rot_log_arith;

--ex1(4) <= signed_op;

--ex1(5) <= signed_op2;

--ex1(7 downto 6) <= logic_op;

--ex1(8) <=lo_hi;

--ex1(11 downto 9) <= ex1_cmp;

--ex1(12) <= call_func;

--ex1(13) <= callr_func;

--ex1(14) <= jmp_func;

--ex1(15) <= return_func;

--ex1(16) <= left_right;

ex1l <= left_right & return_func & jmp_func & callr_func & call func & ex1 cmp & lo_hi & logic op &
signed_op2 & signed_op & rot_log_arith & ex1_add_sub & ex1_immed;

--0p(0) <= ex1_immed;

--0p(1) <= op_immed_16_or_5;

--0p(2) <= immed_26;

--0p(3) <= lo_hi_op;

--0p(4) <= signed_op;

op <= op_signed_op & op_lo_hi & op_immed_26 & op_immed_16 _or_5 & op_immed,;

--ex2(1 downto 0) <= ex2_op_sel;
--ex2(2) <= branch_check;
--ex2(3) <= wr_mem;

--ex2(9 downto 4) <= opcode;

161

--ex2(12 downto 10) <= other(2 downto 0);

--ex2(14 downto 13) <= byte_lane;

--ex2(15) <=rd_mem;

ex2 <= byte lane & other(2 downto 0) & opcode & wr_mem & branch_check & ex2_op_sel;

--wb(0) <=alu_or_mem;
--wh(1) <=wr_reg;
wb <=wr_reg & alu_or_mem;

-- HDL Embedded Text Block 4 eb3
process(clock, reset)
begin
if (reset ='1") then
ctl_ex1 <= (others =>"'0";
--elsif (flush = '1") then
--ex1_1 <= (others =>"'0";
--ex1_1(15 downto 12) <= ex1(15 downto 12);
elsif (rising_edge(clock)) then
ctl_ex1 <=exl;
end if;
end process;

-- HDL Embedded Text Block 6 eb5

process(clock, reset)

begin

if (reset = '1") then
ctl_ex2 <= (others =>"'0");

elsif (rising_edge(clock)) then
ctl_ex2 <=ex2;

end if;

end process;

-- HDL Embedded Text Block 9 eb8

process(clock, reset)

begin

if (reset ='1") then
ctl_wb <= (others =>"'0");

elsif (rising_edge(clock)) then
ctl_wb <= wb;

end if;

end process;

-- HDL Embedded Text Block 13 eb12
op_NOT_3a<="000101"
process(is_rtype, opcode, other)
begin
if (is_rtype ='1") then
opcode_0 <=is_rtype & other;
else
opcode_0 <=is_rtype & opcode;
end if;
end process;

-- HDL Embedded Text Block 14 eb13
flush_ret <= ex1_1(15);

162

flush_jmp <= ex1_1(14);
flush_callr <= ex1 1(13);
flush_call <= ex1_1(12);

-- HDL Embedded Block 15 decoder_ex1
-- Non hierarchical truthtable

decoder_ex1 _truth_process: PROCESS(flush_hi, opcode 1)

BEGIN

-- Block 1

IF (flush_hi ='1") THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;
signed_op2 <= x1,;

ELSIF (opcode_1 = call) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <= call_op;
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 = Idbu) THEN
ex1_add sub <=add_op;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <=x1;

ELSIF (opcode_1 = addi) THEN
ex1_add sub <=add_op;

163

ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 = stb) THEN
ex1_add_sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = br) THEN
ex1_add_sub <=add_op;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = Idb) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpgei) THEN

164

ex1_add_sub <=sub_op;
ex1_cmp <= gte;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 = Idhu) THEN
ex1_add_sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <=x1;

ELSIF (opcode_1 = andi) THEN
ex1_add sub <=x1;
exl _cmp <= x3;
logic_op <=and_op;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = sth) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

165

ELSIF (opcode_1 =bge) THEN
ex1_add_sub <=sub_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = Idh) THEN
ex1_add_sub <=add_op;
exl cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmplti) THEN
ex1_add sub <=sub_op;
exl _cmp <=It;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = ori) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= or_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;

signed_op2 <= x1,;

ELSIF (opcode_1 = stw) THEN
ex1_add_sub <=add_op;
ex1_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = blt) THEN
ex1_add sub <=sub_op;
exl cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1;

ELSIF (opcode_1 = ldw) THEN
ex1_add sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpnei) THEN
ex1_add_sub <=sub_op;
ex1_cmp <= ne;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;

167

signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 = xori) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= or_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 =bne) THEN
ex1_add sub <=sub_op;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1;

ELSIF (opcode_1 = cmpeqi) THEN
ex1_add_sub <=sub_op;
exl _cmp <=eq;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = Idbuio) THEN
ex1_add sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,

168

return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <=x1;

ELSIF (opcode_1 = muli) THEN
ex1_add_sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = sthio) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1;

ELSIF (opcode_1 = beq) THEN
ex1_add _sub <=sub_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = Idbio) THEN
ex1_add _sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;

169

jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpgeui) THEN
ex1_add _sub <=sub_op;
ex1l _cmp <= gte,;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <= x1;

ELSIF (opcode_1 = Idhuio) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <=x1;

ELSIF (opcode_1 =andhi) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= and_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,

ELSIF (opcode_1 = sthio) THEN
ex1_add _sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,

170

callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = bgeu) THEN
ex1_add sub <=sub_op;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <= x1;

ELSIF (opcode_1 = Idhio) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpltui) THEN
ex1_add_sub <=sub_op;
exl_cmp <=1t;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <= x1,

ELSIF (opcode_1 = custom) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= x1;

171

call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 = initd) THEN
ex1_add sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 = orhi) THEN
ex1_add sub <=x1;
ex1l_cmp <= x3;
logic_op <= or_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 = stwio) THEN
ex1_add _sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 = bltu) THEN
ex1_add_sub <=sub_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;

172

ex1_immed <=x1;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <=x1;

ELSIF (opcode_1 = ldwio) THEN
ex1_add sub <=add_op;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = add) THEN
ex1_add _sub <=add_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,;

ELSIF (opcode_1 =and rs) THEN
ex1_add_sub <=x1;
ex1l_cmp <=x3;
logic_op <= and_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = break) THEN
ex1_add_sub <=x1;
exl cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;

173

rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = bret) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = callr) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <= call_op;
jmp_func <=x1,
return_func <= x1;
signed_op <=x1;
signed_op2 <= x1,
ELSIF (opcode_1 =cmpeq) THEN
ex1_add_sub <=sub_op;
ex1l_cmp <=eq;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;
ELSIF (opcode_1 = cmpge) THEN
ex1_add sub <=sub_op;
ex1l _cmp <= gte,;
logic_op <= x2;
left_right <= x1;

174

lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpgeu) THEN
ex1_add_sub <=sub_op;
ex1_cmp <= gte;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_unsigned;
signed_op2 <= x1,

ELSIF (opcode_1 = cmplt) THEN
ex1_add_sub <=sub_op;
ex1_cmp <=1t;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpltu) THEN
ex1_add_sub <=sub_op;
exl _cmp<=It;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <=x1;

ELSIF (opcode_1 = cmpne) THEN
ex1_add sub <=sub_op;
exl _cmp <=ne;
logic_op <= x2;

175

left_right <= x1;
lo_hi <=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;
ELSIF (opcode_1 =div) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1,
ELSIF (opcode_1 = divu) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <=x1;
ELSIF (opcode_1 = eret) THEN
ex1_add sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = flushp) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;

176

logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = jmp) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <= call_op;
return_func <= x1;
signed_op <= x1;
signed_op2 <= x1,;
ELSIF (opcode_1 = mul) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=lo;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= is_signed;
ELSIF (opcode_1 = mulxss) THEN
ex1_add sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <= hi;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= is_signed;
ELSIF (opcode_1 = mulxsu) THEN
ex1_add_sub <=x1;

177

ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;

lo_hi <= hi;
rot_log_arith <=x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= is_unsigned;

ELSIF (opcode_1 = mulxuu) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <= hi;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <= is_unsigned;

ELSIF (opcode_1 = nextpc) THEN
ex1_add_sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 =nor_rs) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= nor_op;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= is_signed;

ELSIF (opcode_1 =or_rs) THEN

178

ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= or_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= is_signed;
ELSIF (opcode_1 =rdctl) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 =ret) THEN
ex1_add sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= ret_op;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = rotl) THEN
ex1_add_sub <=x1;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= left;
lo_hi <=x1;
rot_log_arith <= rotation;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

179

ELSIF (opcode_1 = roli) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= left;
lo_hi<=x1;
rot_log_arith <= rotation;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 =rotr) THEN
ex1_add_sub <=x1;
exl cmp <= x3;
logic_op <= x2;
left_right <= right;
lo_hi <=x1;
rot_log_arith <= rotation;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = shll) THEN
ex1_add sub <=x1;
exl cmp <= x3;
logic_op <= x2;
left_right <= left;
lo_hi <=x1;
rot_log_arith <= logical;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 =slli) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= left;
lo_hi<=x1;
rot_log_arith <= logical,
ex1_immed <= immediate;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_unsigned;

180

signed_op2 <= x1,;

ELSIF (opcode_1 = shra) THEN

ex1_add_sub <=x1;
ex1_cmp <=x3;
logic_op <= x2;
left_right <= right;
lo_hi<=x1;
rot_log_arith <= arithmetic;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 = srai) THEN
ex1_add sub <=x1;
exl cmp <= x3;
logic_op <= x2;
left_right <= right;
lo_hi <=x1;
rot_log_arith <= arithmetic;
ex1_immed <= immediate;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_unsigned,;
signed_op2 <= x1;

ELSIF (opcode_1 = shrl) THEN
ex1_add sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= right;
lo_hi <=x1;
rot_log_arith <= logical;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;

ELSIF (opcode_1 =srli) THEN
ex1_add sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= right;
lo_hi<=x1;
rot_log_arith <= logical,
ex1_immed <= immediate;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;

181

signed_op <= is_unsigned,
signed_op2 <= x1,;
ELSIF (opcode_1 = sub) THEN
ex1_add_sub <=sub_op;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;
ELSIF (opcode_1 =sync) THEN
ex1_add sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <=x1,
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <= x1;
ELSIF (opcode_1 = trap) THEN
ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;
ELSIF (opcode_1 = wrctl) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= x1;
call_func <=x1,;
callr_func <=x1;
jmp_func <=x1,

182

return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 = flushd) THEN

ex1_add_sub <=x1;
exl _cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=lo;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <= x1,
jmp_func <=x1;
return_func <= x1;
signed_op <= x1;
signed_op2 <=x1;

ELSIF (opcode_1 =xor_rs) THEN

ex1_add sub <=x1;
ex1l_cmp <=x3;
logic_op <= xor_op;
left_right <= x1;
lo_hi <=x1;
rot_log_arith <= x2;
ex1_immed <=x1;
call_func <= x1;
callr_func <=x1,;
jmp_func <=x1;
return_func <= x1;
signed_op <= is_signed;
signed_op2 <= x1;
ELSIF (opcode_1 = xorhi) THEN
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= xor_op;
left_right <= x1;
lo_hi<=x1;
rot_log_arith <=x2;
ex1_immed <= immediate;
call_func <=x1,
callr_func <=x1;
jmp_func <=x1,
return_func <= x1;
signed_op <= is_signed;
signed_op2 <=x1;
ELSE
ex1_add_sub <=x1;
ex1l_cmp <= x3;
logic_op <= x2;
left_right <= x1;
lo_hi <=lo;
rot_log_arith <= x2;
ex1_immed <= x1;
call_func <=x1,
callr_func <=x1;

183

jmp_func <=x1;

return_func <= x1;

signed_op <= x1;

signed_op2 <=x1;
END IF;

END PROCESS decoder_ex1 _truth_process;

decoder_ex2_truth_process: PROCESS(opcode_2)

BEGIN
-- Block 1
CASE opcode_2 IS
WHEN call =>

ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,

byte lane <= x2;

WHEN ldbu =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <= lane_0;

WHEN addi =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;

WHEN stb =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_0;

WHEN br =>
ex2_op_sel <= adder_op;
branch_check <= is_branch;
wr_mem <= x1;
byte lane <=x2;

WHEN ldb =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_0;

WHEN cmpgei =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN Idhu =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_1;

WHEN andi =>

184

ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1;

byte lane <=x2;

WHEN sth =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_1;

WHEN bge =>
ex2_op_sel <= adder_op;
branch_check <= is_branch;
wr_mem <= x1,;
byte lane <=x2;

WHEN Idh =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_1;

WHEN cmplti =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN ori =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;

WHEN stw =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_3;

WHEN blt =>
ex2_op_sel <= adder_op;
branch_check <= is_branch;
wr_mem <= x1;
byte lane <=x2;

WHEN ldw =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_3;

WHEN cmpnei =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN xori =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN bne =>

185

ex2_op_sel <= adder_op;

branch_check <= is_branch;

wr_mem <= x1;
byte lane <=x2;

WHEN cmpeqi =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN ldbuio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte_lane <= lane_1;

WHEN muli =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;

WHEN stbio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_0;

WHEN beq =>
ex2_op_sel <= adder_op;

branch_check <= is_branch;

wr_mem <= x1;
byte lane <= x2;

WHEN ldbio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,
byte lane <= lane_0;

WHEN cmpgeui =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;

WHEN Idhuio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_1;

WHEN andhi =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN sthio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_1;

WHEN bgeu =>

186

ex2_op_sel <= adder_op;
branch_check <= is_branch;
wr_mem <= x1;

byte lane <=x2;

WHEN Idhio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_1;

WHEN cmpltui =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN custom =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;

WHEN initd =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN orhi =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;

WHEN stwio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
Wr_mem <= write;
byte lane <= lane_3;

WHEN bltu =>
ex2_op_sel <= adder_op;
branch_check <= is_branch;
wr_mem <= x1;
byte lane <=x2;

WHEN ldwio =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= lane_3;

WHEN add =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN and_rs =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN break =>

187

ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1;

byte lane <=x2;

WHEN bret =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN callr =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN cmpeq =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;

WHEN cmpge =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN cmpgeu =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;

WHEN cmplt =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1,
byte lane <=x2;

WHEN cmpltu =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;

WHEN cmpne =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN div =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN divu =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN eret =>

188

ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;
WHEN flushp =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;
WHEN jmp =>
ex2_op_sel <=x2;
branch_check <= is_branch;
wr_mem <= x1,;
byte lane <=x2;
WHEN mul =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;
WHEN mulxss =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;
WHEN mulxsu =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;
WHEN mulxuu =>
ex2_op_sel <= mult_op;
branch_check <= x1;
wr_mem <= x1,
byte lane <=x2;
WHEN nextpc =>
ex2_op_sel <=x2;
branch_check <= is_branch;
wr_mem <= x1;
byte lane <=x2;
WHEN nor_rs =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;
WHEN or_rs =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;
WHEN rdctl =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;
WHEN ret =>

189

ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;

WHEN rotl =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN roli =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN rotr =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;

WHEN shll =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN slli =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;

WHEN shra =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1,
byte lane <=x2;

WHEN srai =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;

WHEN shrl =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN srli =>
ex2_op_sel <= shifter_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;

WHEN sub =>
ex2_op_sel <= adder_op;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;

WHEN sync =>

190

ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1;
byte lane <=x2;
WHEN trap =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <=x2;
WHEN wrctl =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;
WHEN flushd =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= X1,
byte lane <= x2;
WHEN xor_rs =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1,;
byte lane <=x2;
WHEN xorhi =>
ex2_op_sel <= logical_op;
branch_check <= x1;
wr_mem <= x1;
byte lane <= x2;
WHEN OTHERS =>
ex2_op_sel <=x2;
branch_check <= x1;
wr_mem <= x1,
byte lane <=x2;
END CASE;

END PROCESS decoder_ex2_truth_process;

decoder_wb_truth_process: PROCESS(opcode_3)

BEGIN
-- Block 1
CASE opcode_3 IS
WHEN call =>
alu_or_mem <= x1;
wr_reg <= x1;
WHEN Idbu =>

alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN addi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN stb =>
alu_or_mem <= x1;
wr_reg <= X1,

191

WHEN br =>
alu_or_mem <=x1;
wr_reg <=x1;

WHEN Idb =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN cmpgei =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN Idhu =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN andi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN sth =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN bge =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN ldh =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN cmplti =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN ori =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN stw =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN blt =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN ldw =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN cmpnei =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN xori =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN bne =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN cmpeqi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN ldbuio =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN muli =>

192

alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN stbio =>
alu_or_mem <=x1,
wr_reg <=x1;

WHEN beq =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN ldbio =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN cmpgeui =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN ldhuio =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN andhi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN sthio =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN bgeu =>
alu_or_mem <= x1;
wr_reg <=x1;

WHEN Idhio =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN cmpltui =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN custom =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN initd =>
alu_or_mem <=x1,
wr_reg <=x1;

WHEN orhi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN stwio =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN bltu =>
alu_or_mem <=x1;
wr_reg <= x1;

WHEN Idwio =>
alu_or_mem <= mem_op;
Wr_reg <= write;

WHEN add =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN and_rs =>
alu_or_mem <= alu_op;

193

Wr_reg <= write;

WHEN break =>
alu_or_mem <=x1,
wr_reg <=x1;

WHEN bret =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN callr =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN cmpeq =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN cmpge =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN cmpgeu =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN cmplt =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN cmpltu =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN cmpne =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN div =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN divu =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN eret =>
alu_or_mem <= x1;
wr_reg <=x1;

WHEN flushp =>
alu_or_mem <=x1,
wr_reg <= X1,

WHEN jmp =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN mul =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN mulxss =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN mulxsu =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN mulxuu =>
alu_or_mem <= alu_op;
Wr_reg <= write;

194

WHEN nextpc =>
alu_or_mem <=x1;
wr_reg <=x1;

WHEN nor_rs =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN or_rs =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN rdctl =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN ret =>
alu_or_mem <=x1,
wr_reg <=x1;

WHEN rotl =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN roli =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN rotr =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN shll =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN slli =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN shra =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN srai =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN shrl =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN srli =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN sub =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN sync =>
alu_or_mem <= x1;
wr_reg <= x1;

WHEN trap =>
alu_or_mem <=x1,
wr_reg <=x1;

WHEN wrctl =>
alu_or_mem <= x1;
wr_reg <= X1,

WHEN flushd =>

195

alu_or_mem <=x1;
wr_reg <= x1;

WHEN xor_rs =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN xorhi =>
alu_or_mem <= alu_op;
Wr_reg <= write;

WHEN OTHERS =>
alu_or_mem <= x1;
wr_reg <= X1,

END CASE;

END PROCESS decoder_wb_truth_process;

-- ModuleWare code(v1.0) for instance '14' of 'or’
flush_hi <= reset OR take_branch;

-- ModuleWare code(v1.0) for instance '18' of ‘or'
flush_lo_internal <= flush_hi OR flush_ret OR flush_jmp OR flush_callr
OR flush_call;

-- ModuleWare code(v1.0) for instance ‘111" of ‘or'
flush <= flush_lo_internal OR flush_regout;

-- ModuleWare code(v1.0) for instance 'I1' of ‘tand'
I1combo: PROCESS (and_opcode)

VARIABLE dtemp : std_logic;

VARIABLE itemp : std_logic_vector(5 DOWNTO 0);

BEGIN
itemp := and_opcode;
dtemp :="1";

FOR i IN5 DOWNTO 0 LOOP
dtemp := dtemp AND itemp(i);
END LOOP;
is_rtype <= dtemp;
END PROCESS I1combo;
-- ModuleWare code(v1.0) for instance 110" of 'xor'
and_opcode <= opcode XOR op_NOT _3a;

-- Instance port mappings.
10 : Generic_Reg_noenable
GENERIC MAP (
Sizeln =>7,
SizeOut=>7

)
PORT MAP (
clock => clock,
reset => reset,
A_in =>opcode_0,
A _out =>opcode_1
12 : Generic_Reg_noenable
GENERIC MAP (

196

Sizeln =>7,
SizeOut=>7
)
PORT MAP (
clock => clock,
reset => reset,
A_in =>opcode_1,
A _out => opcode_2
)i
13 : Generic_Reg_noenable
GENERIC MAP (
Sizeln =>7,
SizeOut=>7

)

PORT MAP (
clock => clock,
reset => reset,
A_in =>opcode_2,
A _out =>opcode_3

)i
19:Reg 1
PORT MAP (
clock => clock,
d_in => flush_lo_internal,
reset => reset,
g_out => flush_regout

)i
I5: Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>addrl,
reset => flush_lo_internal,
reg_out => addr2
)i
16 : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in => addr,
reset => flush_lo_internal,
reg_out => addrl
)i
17 : Reg_32_noenable
PORT MAP (
clock => clock,
reg_in =>addr2,
reset =>reset,
reg_out => base_addr

);

-- Implicit buffered output assignments
flush_lo <= flush_lo_internal,

END struct;

197

oo

O

BIBLIOGRAPHY

. W.K. Jenkins, “A Highly Efficient Residue-Combinatorial Architecture for Digital Filters,”
Proceedings of the IEEE, v.66, n.6, pp. 700-2, June 1978.

. A. Agarwal, R. Bianchini, D. Chaiken, F.T. Chong, K.L. Johnson, K.L. Kranz, J.D.
Kubiatowicz, B.H. Lim, K. Mackenzie and D. Yeung, “The MIT Alewife Machine,”
Proceedings of the IEEE, v.87, n.3, pp. 430-44, March 1999.

M.B. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, A.
Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffman, P. Johnson and
J. Kim, “Evaluation of the Raw Microprocessor: An Exposed Wire-delay Architecture for ILP
and Streams,” Proceedings of the 2004 IEEE Symposium on Computer Architecture, pp. 2-13,
June 2004.

D. Sima, “Decisive Aspects in the Evolution of Microprocessors,” Proceedings of the IEEE,
v.92 n.12, pp. 1896-1926, Dec. 2004.

K.Y. Tong, V. Kheterpal, V. Rovner, L. Pileggi and H. Schmit, “Regular Logic Fabrics for a
Via Patterned Gate Array,” Proceedings of the 2003 IEEE International Conference on
Custom Integrated Circuits, pp. 53-56, Sept. 2003.

H. Qi, A. Jiang and J. Wei, “IP Reusable Design Methodology,” Proceedings of the 2001
IEEE International Conference on ASIC, pp. 756-759, Oct. 2001.

. J.R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor,” Proceedings of the 5th IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 12-21, Napa Valley, CA, April 1997.

. T.J. Callahan, J.R. Hauser and J. Wawrzynek, “The Garp Architecture and C Compiler,” IEEE
Computer, pp. 62-69, Vol. 33 No. 4, April 2000.

. X.Wang and S.G. Ziavras, “A Configurable Multiprocessor and Dynamic Load Balancing for

Parallel LU Factorization,” Proceedings of the 2004 IEEE Symposium on Parallel and
Distributed Processing, April 2004.

198

10. R.R. Hoare and S.C. Tung, “Combining Mentor Graphics’ HDL Designer FPGA Flow with
a Reconfigurable System on a Programmable Chip, Educational Opportunity or Insanity?”
Proceedings of the 2003 IEEE International Conference on Microelectronic Systems
Education, June 2003.

11. J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, 2"
Ed., Morgan-Kauffman, 1996.

12. J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan-Kauffman, 1996.

13. Altera Inc. Nios Il Embedded Processor Literature: Nios Il Instruction Set Reference,
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf.

14. M. Berekovic, P. Pirsch, T. Selinger, K.I. Wels, C. Miro, A. Lafage, C. Heer and G. Ghigo,
“Co-processor Architecture for MPEG-4 Main Profile Visual Compositing,” Proceedings of
the 2000 IEEE International Symposium on Circuits and Systems, pp. 180-183, Geneva,
Switzerland, May 2000.

15. D. Rizzo and O. Colavin, “A Video Compression Case Study on a Reconfigurable VLIW
Architecture,” Proceedings of the 2002 Design, Automation and Test in Europe Conference
and Exhibition, pp. 540-546, Paris, France, March 2002.

16. C. Kozyrakis and D. Patterson, “Vector vs. Superscalar and VLIW Architectures for
Embedded Multimedia Benchmarks,” Proceedings of the 35" International Symposium on
Microarchitecture, pp. 283-294, Istanbul, Turkey, November 2002.

17. P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Homewood, “Lx: A Technology
Platform for Customizable VLIW Embedded Processing,” Proceedings if the 27th
International Symposium on Computer Architecture (ISCA), 2000.

18. D. Kusic, R. Hoare, A.K. Jones, J. Fazekas and J. Foster, "Extracting Speedup From C-code
With Poor Instruction-level Parallelism,” Intl. Parallel and Distributed Processing Sym.
(IPDPS), Workshop on Massively Parallel Processing (WMPP), Denver, CO, April 2005.

19. S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi and R.R. Taylor, “PipeRench: A
Reconfigurable Architecture and Compiler,” IEEE Computer, pp. 70-77, Vol. 33. No. 4, April
2000.

20. S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor and R. Laufer,
“PipeRench: A Coprocessor for Streaming Multimedia Acceleration,” Proceedings of the 26th
International Symposium on Computer Architecture, pp. 28-39, Atlanta, GA, May 1999.

21. B. A. Levine, H. Schmit, “Efficient Application Representation for HASTE: Hybrid
Architectures with a Single, Transformable Executable,” FCCM, 2003.

199

22. D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. "Architecture Design of
Reconfigurable Pipelined Datapaths,” Twentieth Anniversary Conference on Advanced
Research in VLSI, 1999.

23. E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, Apr. 1996.

24. U.J. Kapasi, W.J. Dally, S. Rixner, J.D. Owens, B. Khailany, “The Imagine Stream
Processor,” IEEE International Conference on Computer Design: VLSI in Computers and
Processors, Sept. 2002.

25. John D. Owens, Scott Rixner, Ujval Kapasi, Peter Mattson, Brian Towles, and William J.
Dally, "Media Processing Applications on the Imagine Stream Processor,” IEEE International
Conference on Computer Design: VLSI in Computers and Processors, Sept. 2002.

26. S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, "The Chimaera Reconfigurable Functional
Unit," IEEE Symposium on FPGAs for Custom Computing Machines, 1997, pp. 87-96.

27. R. Hoare, S. Tung, K. Werger, “A 64-Way SIMD Processing Architecture on an FPGA,”
Proceedings of the 15th IASTED International Conference on Parallel and Distributed
Computing and Systems, 2003, pp. 345-350.

28. S. Dutta, A. Wolfe, W. Wolf and K. O'Connor, "Design Issues for Very-Long-Instruction-
Word VLSI Video Signal Processors," IEEE Workshop on VLSI Signal Processing, San
Francisco, Oct. 1996.

29. Altera Inc. Stratix Il Device Family Data Sheet: Stratix Il Device Handbook,
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf.

30. Trimaran Compiler: Web-based information, http://www.trimaran.org/.

31. Shark Code Profiler: Apple Developer’s Connection,
http://developer.apple.com/tools/sharkoptimize.html.

32. R. Hoare, A.K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung and M. McCloud, “Rapid
VLIW Processor Customization For Signal Processing Applications Using Combinational
Hardware Functions,” Int. Symposium on Field Programmable Gate Arrays (FPGA’05),
Monterey, CA, Feb. 2005.

33. R. Hoare, A.K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung and M. McCloud, "Rapid

VLIW Processor Customization for Signal Processing Applications Using Combinational
Hardware Functions,” EURASIP J. of Applied Signal Processing, 2005.

200

34. P.J. Ashenden, "Modeling Digital Systems Using VHDL," IEEE Potentials, v.17 n.2, pp. 27-
30, Apr.-May 1998.

35. R. Waxman, J.H. Aylor and E. Marschner, "The VHSIC Hardware Description Language
(IEEE Standard 1076)," Digest of Papers from the IEEE Computer Society International
Conference, pp. 310-315, March 1998.

36. D.E. Culler, J.P. Singh and A. Gupta, Parallel Computer Architecture, San Francisco:
Morgan Kaufmann Publishers, Inc, 1999. pp. 28-37, pp. 453-467.

37.D. C. Suresh, W. A. Najjar, F. Vahid, J. R. Villarreal, G. Stitt, “Profiling Tools for
Hardware/Software Partitioning of Embedded Applications,” Proceedings of the 2003 ACM
SIGPLAN Conference on Languages, Compilers and Tools for Embedded Systems, San
Diego, CA, June 2003.

38. Open Source Initiative, http://www.systemc.org.

39. A. Bona, V. Zaccaria and R. Zafalon, “System Level Power Modeling and Simulation of
High-end Instrustial Network-on-chip,” Proceedings of the 2004 IEEE Design, Automation
Test in Europe Conference and Exhibition, pp. 318-323, Feb. 2004.

40. U. Neffe, K. Rothbart, C. Steger, R. Weiss, E. Rieger and A. Muhlberger, "Energy
Estimation Based on Hierarchical Bus Models for Power-aware Smart Cards," Proceedings of
the 2004 IEEE Design, Automation and Test in Europe Conference and Exhibition, pp. 300 -
305, Feb. 2004.

41. C. Mucci, F. Campi, A. Deledda, A. Fazzi, M. Ferri and M. Bocchi, "A Cycle-Accurate 1SS
for a Dynamically Reconfigurable Processor Architecture,” Proceedings of the 2005 IEEE
Parallel and Distributed Processing Symposium, Apr. 2004.

42. ARM Processor Core summary page, http://www.arm.com/products/CPUs.

201

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Available resources on an Altera Stratix II EP2S180.
	Table 2. Assembly instructions of if-then-else statement (shaded in grey)
	Table 3. Assembly instructions to execute 16-entry priority encoder in software
	Table 4. Table of SuperCISC node isolated for performance and area utilization on an Altera EP2S180F
	Table 5. Timing results for paths within 4-way VLIW on Altera EP2S180
	Table 6. Timing results for SuperCISC hardware execution of listed portions of benchmark applications on Altera EP2S180

	LIST OF FIGURES
	Figure 1. Block diagram of VLIW/SuperCISC architecture.
	Figure 2. Block-level architecture of Stratix II FPGA [29]
	Figure 3. Block-level diagram of an adaptive logic module (ALM) on a Stratix II [29]
	Figure 4. Block-level diagram of a digital signal processor (DSP) showing configuration for 18x18-bit multiply-and-accumulate (MAC) on a Stratix II [29]
	Figure 5. Block-level diagram of the memory distribution on a Stratix II [29]
	Figure 6. Simplified block-diagram showing custom instruction calls that extended from NiosII ISA 4-way VLIW.
	Figure 7. Block diagram of VLIW/SuperCISC architecture.
	Figure 8. Block diagram of 4-way VLIW.
	Figure 9. N-element register file supporting P-wide VLIW with P read ports and P write ports.
	Figure 10. Scalability of a 32-element register file for P processors having 2P read and P write ports on an Altera Stratix II EP2S180
	Figure 11. Scalability of a 32-bit P-to-1 multiplexer on an Altera Stratix II EP2S180.
	Figure 12. N-element register file supporting SuperCISC hardware and a P-wide VLIW with P read ports and P write ports.
	Figure 13. Scalability of a 32-element register file for P processors having 2P read and P write ports and full SuperCISC hardware access on an Altera Stratix II EP2S180.
	Figure 14. Four step process for the hand-design of SuperCISC hardware.
	Figure 15. Instruction-level parallelism (ILP) of MediaBench benchmark applications discovered by Trimaran compiler given parameters for 4-wide VLIW with 2 memory ports and unlimited-wide VLIW with unlimited memory ports [32]
	Figure 16. Execution time occupied within the top 10 loops in the code averaged across the SpecInt, MediaBench, and Netbench suites, as well as selected security applications [37]. Time-intensive loops are directed to SuperCISC hardware.
	Figure 17. C-language software code for kernel portion of ADPCM encoder [32].
	Figure 18. Data flow graph (DFG) representing SuperCISC hardware function for kernel portion of ADPCM encoder, shown in Figure 17.
	Figure 19. C-language software code for IDCT column operation [32].
	Figure 20. Data flow graph (DFG) representing SuperCISC hardware function for IDCT column operation, shown in Figure 19.
	Figure 21. Entity and port declarations for ADPCM encoder DFG in Figure 18.
	Figure 22. C- and port declarations for IDCT column DFG in Figure 20.
	Figure 23. Data flow graph (DFG) showing 2:1 multiplexer that represents C-code for an if-then-else statement.
	Figure 24. Cycle count for if-then-else statement executed on a single processor and on a 4-way VLIW. Speedup of 2:1 multiplexer hardware implementation of the same control flow control flow is shown in bold above the cycle count.
	Figure 25. Cycle time utilization of SuperCISC arithmetic nodes normalized to the cycle time of a 167 MHz processor on an Altera EP2S180
	Figure 26. Speedup of fixed operand computation executed in SuperCISC computational node versus 2 variable computation executed in SuperCISC node and versus execution on 167 MHz VLIW on an Altera EP2S180
	Figure 27. Design flow for VLIW/SuperCISC architecture [32][33].
	Figure 28. Run-time profile of benchmark applications compiled for the VLIW processor only of the SystemC simulator model.
	Figure 29. Speedup for single application kernels of SuperCISC functions versus several 167MHz processor architectures [32].
	Figure 30. Overall application speedup of various processor configurations compared to single-issue 167MHz architecture [32].
	Figure 34. Sample configuration of a shared memory architecture. The VLIW accesses a 512Kb dual-ported memory. The SuperCISC hardware function accesses eight, 64Kb memory banks.
	Figure 31. Performance and area increase for VLIW supported by SuperCISC hardware versus VLIW without SuperCISC support on an Altera EP2S180
	Figure 32. Memory performance on an EP2S180 for M-RAM and M4K blocks of varied dual-port size and address space. The shaded area indicates memory configurations that meet 167MHz timing constraints.
	Figure 33. Bandwidth speedup of vector-wide dual ported memory over 32-bit dual ported memory on an EP2S180. The speedup of a 32-bit dual ported memory is implied to be 1x. ‘Target’ indicates ideal bandwidth speedup.

	LIST OF ACRONYMS
	1.0 INTRODUCTION
	2.0 RELATED WORK
	2.1 RELATED ARCHITECTURES
	2.2 TECHNOLOGY PLATFORM

	3.0 ARCHITECTURAL DESCRIPTION
	3.1 HARDWARE/SOFTWARE PARTIONING
	3.2 VLIW ARCHITECTURE
	3.3 SHARED REGISTER FILE
	3.4 ZERO-OVERHEAD HARDWARE/SOFTWARE INTERFACE
	3.5 SUPERCISC HARDWARE FUNCTIONS
	3.5.1 Candidate Selection and Code SW/HW Partitioning
	3.5.2 Data Flow Graph Generation
	3.5.3 DFG to VHDL Conversion

	4.0 SPEEDUP OF SUPERCISC HARDWARE FUNCTIONS
	4.1 CONTROL FLOW EFFICIENCY
	4.2 CYCLE TIME COMPRESSION

	5.0 SYSTEM MODELING
	5.1 VHDL MODELING
	5.2 SYSTEMC MODELING

	6.0 PERFORMANCE RESULTS
	6.1 VLIW PERFORMANCE
	6.1.1 VLIW Performance Profile
	6.1.2 Area and Resource Utilization

	6.2 SUPERCISC HARDWARE PERFORMANCE
	6.2.1 Overall Application Speedups
	6.2.2 Area Utilization

	6.3 SUPERCISC SPEEDUP VERSUS AREA INCREASE

	7.0 FUTURE DIRECTIONS
	7.1 SHARED MEMORY

	8.0 CONCLUSION
	APPENDIX
	A.1 SOURCE CODE FOR APPLICATION KERNEL OF ADPCM DECODER
	A.2 SOURCE CODE FOR APPLICATION KERNEL OF ADPCM ENCODER
	A.3 SOURCE CODE FOR APPLICATION KERNEL OF G.721 DECODER
	A.4 SOURCE CODE FOR APPLICATION KERNEL OF GSM DECODER
	A.5 SOURCE CODE FOR APPLICATION KERNEL OF IDCT COLUMN
	A.6 SOURCE CODE FOR APPLICATION KERNEL OF IDCT ROW
	A.7 SYSTEMC VLIW SOURCE FILE: MAIN.CPP
	A.8 SYSTEMC VLIW SOURCE FILE: ALU.CPP
	A.9 SYSTEMC VLIW SOURCE FILE: DECODER.CPP
	A.10 SYSTEMC VLIW SOURCE FILE: DIRECTIVES.H
	A.11 SYSTEMC VLIW SOURCE FILE: ICACHE.CPP
	A.12 SYSTEMC VLIW SOURCE FILE: MUX_2TO1.CPP
	A.13 SYSTEMC VLIW SOURCE FILE: PC.CPP
	A.14 SYSTEMC VLIW SOURCE FILE: RAM.CPP
	A.15 SYSTEMC VLIW SOURCE FILE: REGFILE.CPP
	A.16 SYSTEMC VLIW SOURCE FILE: STIMULUS.CPP
	A.17 VHDL VLIW SOURCE FILE: TOP_SYSTEM_4PE_STRUCT.VHD
	A.18 VHDL VLIW SOURCE FILE: TOP_ALU_AND_DECODER.VHD
	A.19 VHDL VLIW SOURCE FILE: TOP_REGISTER_32X32X4W.VHD
	A.20 VHDL VLIW SOURCE FILE: DECODER_NIOS.VHD

	BIBLIOGRAPHY

