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ABSTRACT 

Dengue is an important mosquito-borne viral disease. In Taiwan, there are hundreds to 

thousands dengue cases each year, and dengue is considered one of the most important public 

health issues. The objective of this study was to use geographical information systems (GIS) 

methodology to map and analyze the spatial and temporal distribution of dengue in Taiwan 

during 2004 to 2007 and to elucidate the association of geographical and climatic risk factors 

with dengue incidence. 

Dengue annually occurs starting in summer, peaking in fall and goes down in winter. The 

spatial distribution: Spatial autocorrelation of dengue was measured using Moran’s I at the 

global level and LISA at the local level. The global spatial autocorrelation analysis revealed a 

significantly positive spatial autocorrelation of dengue for 2004 to 2007, with Moran’s I=0.171, 

p-value=0.03. The local spatial autocorrelation analysis showed a significantly high dengue 

incidence around Tainan county and Kaohsiung county (p-value<0.05), which are located in the 

southern Taiwan. Based on the geographical features, dengue tended to occur in the 

southwestern cities/counties in Taiwan with plains and rivers spread. Temperature had a positive 

relationship with dengue incidence in summer and fall (rs=0.74 and p-value=0.002 in summer, 

rs=0.53 and p-value=0.003 in fall). Rainfall had a positive relationship with dengue incidence in 

summer (rs=0.61 and p-value=0.017). However, there was no significant correlation between 

temperature or rainfall and dengue incidence in winter. 
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The public health importance of this study:  Disease maps have been playing a key descriptive 

role in public health and epidemiology. By this study, areas of the current geographical 

distribution of the incidence of dengue in Taiwan were identified. Through spatial 

autocorrelation analyses, the identification of unusual concentration of dengue in Tainan county 

and Kaohsiung county has been defined. This could prompt health agencies and the government 

to take a critical look at these risk areas, and make appropriate health planning and resource 

allocation. 
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1.0  INTRODUCTION 

1.1 DENGUE 

Dengue is an important mosquito-borne viral disease, affecting more than 1.5 billions 

people worldwide. It occurs in tropical and subtropical regions of the world. In Taiwan, there are 

hundreds to thousands dengue cases each year, and dengue is considered one of the most 

important public health issues. There are four Dengue virus serotypes, called DEN-1, DEN-2, 

DEN-3, and DEN-4. Dengue virus is transmitted to human by mosquitoes of aedes genus. Aedes 

aegypti and aedes albopictus mosquitoes are two principal vectors (transmitters) of dengue 

viruses in Taiwan. The former species is distributed in the south of Taiwan, whereas the latter is 

found throughout the island. 

Many factors have been associated with dengue transmission. Marked spatial and 

seasonal diversity in dengue incidence reflects the influence of climate and geography on the 

dengue transmission. Increase in temperature and precipitation can accelerate the development 

rate of mosquitoes and then lead to increased mosquito breeding, which might result in an 

outbreak of dengue epidemic [1]. Taiwan is an island, which is located in the Western Pacific 

between Japan and the Philippines and lies 120 kilometers off the southeast coast of China. 

Crossed by the Tropic of Cancer, Taiwan has a subtropical climate and a tropical climate in its 

southern tip. Taiwan’s high average annual temperature (22°C) and precipitation (2,500mm in 
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plains and basins, and 3,000mm in mountainous area) construct a perfect environment for 

mosquito breeding. 

1.2 GEOGRAPHIC INFORMATION SYSTEMS [2, 3] 

Geographic information systems (GIS) is a computer system that combines information 

with the geographic map in order to capture, search, check, integrate, manipulate, analyze and 

display these information related to positions on the Earth's surface. In the field of health, GIS is 

increasingly used to analyze the geography of disease, specifically the relationships between 

pathological factors (agents, vectors, and hosts) and their geographical environments. For 

example, GIS have been extensively used in describing the geographical distributions of disease 

agents, identifying regions in time and space where people may be exposed to disease agents, 

and mapping spatial and temporal patterns of diseases. Furthermore, contrast to mapping, which 

only provides a visual display of a disease, spatial statistics is widely used to find the relationship 

between cases and its geographical location and verify clustering of cases or spatial correlations. 

Because GIS makes it possible to map environmental factors associated with disease vectors, it is 

especially appropriate for the infectious and vector-borne diseases investigation, such as malaria 

or Lyme disease [4]. 

Many studies, some in which GIS was used, have been conducted to identify the 

mechanisms of dengue transmission in Taiwan. However, most of these studies were limited in 

certain cities or counties in southern Taiwan. Ciu.[5] investigated the relationship between 

dengue and climate change in Taiwan. It was found that the prevalence of dengue in Kaohsiung 

City seemed to be influenced by temperature and precipitation in the previous month. However, 
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the accurate relationship between dengue infection and climate change was not found and this 

study was limited to a small area. In a study by using GIS, Wen et al.[6] identified spatial risk 

areas in Kaohsiung City through temporal characteristics of epidemic dynamic process, including 

frequency, duration and intensity. This study was limited to a small area as well. 

The specific objective of the project work is to: 

(1) map and analyze the spatial and temporal distribution of dengue incidence in Taiwan by 

using dengue case-incidence data, including onset dates of confirmed dengue cases and their 

geographic locations by city/county; and 

(2) investigate the association between dengue incidence and its risk factors with geo-

information, including geographical factors (geographical location, geomorphology, and 

hydrology), and climatic factors (temperature and rainfall) 

 3 



2.0  MATERIALS AND METHODS 

 
2.1 MATERIALS 

A city or county, the biggest administrative unit in Taiwan, was used as the spatial 

mapping unit. The study involved 7 cities and 15 counties (Figure 1). The Center for Disease 

Control- Taiwan (CDC-Taiwan) summarized dengue cases on a weekly basis. Figure 2 illustrates 

the temporal progression of dengue cases for March 2004 to February 2008, and it is seen that 

most cases were concentrated in certain months (e.g., September, October, and November). In 

order to simplify the temporal mapping of a four-year data, we divided one year into four 

seasons: spring (March to May), summer (June to August), fall (September to November), and 

winter (December to February in the next year). Therefore, the season was used as temporal unit 

for better comparison on different dengue risk factors. 
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Figure 1. Geographical administrative distribution of Taiwan 
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Figure 2. Monthly total dengue cases in Taiwan, March 2004 - February 2008 

 

Dengue Incidence 

The dengue case data in this study, including onset dates of a confirmed dengue cases and 

their locations (city/county), were collected from March 2004 to February 2008, provided by 

CDC-Taiwan. Total population size in each city/county was obtained from the Ministry of 

Interior-Taiwan. Dengue incidence is defined as the number of new dengue cases in each 

city/county that occur in each season divided by the total number of people in each city/county 

during that period of time. 

Geographical and Climatic Data 

Geographical data, including altitude distribution, river distribution, and geographical 

administrative distribution of Taiwan were obtained from the RITI Technology Inc. 
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Climatic data, including monthly average temperature and monthly average rainfall from 

March 2004 to February 2008 were obtained from Central Weather Bureau- Taiwan. 

2.2 METHODS 

2.2.1 Software 

 ArcGIS 9.0 Software [7] 

ArcGIS is the name of a group of geographic information system software product lines 

produced by ESRI. ArcGIS consists of Desktop GIS products, which allows users to perform 

spatial analysis, model operational processes, and visualize results on a map. ArcGIS Desktop is 

available at different product levels, with increasing functionality: ArcReader, which allows 

users to view, print, and query maps; ArcView, which allows users to view and edit spatial data, 

create maps, and perform basic spatial analysis; ArcEditor which, in addition to the functionality 

of ArcView, includes more advanced tools for manipulation of shapefiles and geodatabases; 

ArcInfo, the most advanced version of ArcGIS, which allows users the most flexibility and 

control in all aspects of data building, modeling, analysis, and map display.  

The spatial distribution of dengue incidence, climatic factors and geographical factors 

were mapped by the ArcGIS 9.0 software. 
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 GeoDa 095i Software [8-10] 

GeoDa is a free software package that conducts spatial data analysis, geovisualization, 

spatial autocorrelation and spatial modeling. The package was developed by the Spatial Analysis 

Laboratory of the University of Illinois at Urbana-Champaign under the direction of Luc 

Anselin. 

GeoDa has powerful capabilities to perform spatial analysis, multivariate exploratory 

data analysis, and global and local spatial autocorrelational analyses. It also performs basic linear 

regression. As for spatial models, both the spatial lag model and the spatial error model, both 

estimated by maximum likelihood, are included. 

In this study, all spatial autocorrelation analyses were computed using GeoDa 0.9.5i 

software [13, 14]. 

2.2.2 Empirical Bayes Smoothing (EBS) Method [11-14] 

In recent years, a considerable amount of effort has been put into the mapping of 

mortality and disease rates to display the geographical variability of diseases. It is known that 

when rates are estimated from where populations across regions widely vary, the results are 

inherently unstable. Therefore, a number of techniques have been developed to correct for the 

intrinsic variance instability of rates by “smoothing” the rate estimate. The motivation for using 

these techniques comes from the Bayesian inference, which depends on a prior distribution of 

data to get a posterior distribution from which the parameters of interest are estimated. A specific 

Bayesian technique, the Empirical Bayes smoothing (EBS) method, is used in this study. This 

method mostly affects the rate for areas with a small sized population at risk.  
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The EBS method consists of estimating the moments of the prior distribution from the 

data and the raw rate is “shrunk” towards an overall mean. The amount of shrinkage is inversely 

proportional to the population size. In other words, areas with a relatively small population at 

risk will tend to have their rate adjusted considerably, whereas for areas with a relatively large 

population at risk the rate will barely change. 

Suppose a region to be mapped is partitioned into N mutually exclusive areas, an 

individual area being notated as i (i=1, 2, …, N). Let θi be the event rate in area i; Ei be the count 

of events, which is distributed as a Poisson random variable; and ni be the population at risk in 

area i. The maximum likelihood (ML) estimator of θi is pi=Ei /ni (the “raw rate”). Adopting a 

Bayesian framework, suppose that θi has a prior distribution characterized by a mean mi=Eθ(θi) 

and variance iφ =Var(θi). The Bayesian estimator for θi, , then becomes a weighted average of 

the raw rate pi and mi: 

iθ̂

)(ˆ
iiiii mpwm −+=θ                                                                                                           (1) 

with  

)/( iii

i
i nm

w
+

=
φ

φ  

The model can be simplified by taking mi=m and iφ =φ  for all i. There are three methods to 

estimate m and φ : ML method, method of moments, and a mixed method of ML and moments. 

The method of moments is used in the study as it is a distribution-free and non-iterative 

procedure and easy to compute compared to the ML method, which requires a full specification 

of the prior and subsequent derivation of the marginal likelihood values.  
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To estimate m: Since Ep(pi) = Eθ{(pi|θi)} = Eθ(θi) = m, any weighted mean of the pi 

provides an unbiased estimate of m. So, the m can be estimated by the overall mean,
n

E
m i i∑=~ , 

where  is the total population at risk.  ∑= i inn

To estimate φ ; consider a weighted sample variance,
n

mpn
s i ii∑ −
=

2
2 )~(

, and 

i
ip )pip n

mmpE +=≅− φ(var)~( 2  by ignoring the error in using m  as an estimate of m. Thus, ~

n
m

n
n/mn

sE i ii
p +=

+
= ∑ φ

φ )(
)( 2 , where 

N
nn =  is the mean population at risk. Therefore, with 

m replaced by m , a moment estimate of ~ φ  is nms /~~ 2 −=φ , and  when 0=
~φ nms /~2 < . With m 

and φ  replaced by m~  and φ~  in equation (1), the Empirical Bayes smoothed estimator of θi, iθ
~ , 

is calculated by the following formula: 

)~(~~~ mpwm iii −+=θ  

with  

i
i nmnms

nmsw
/~/~

/~~
2

2

+−
−

=  

When the population at risk in area i, ni, is small, the iw~  (shrinkage factor) is near zero, and the 

value of the Empirical Bayes smoothed estimator ( iθ
~ ) is shrunk to the overall mean. When the ni 

is large, the iw~   is near 1, and the iθ
~

 remains essentially unchanged. 

The raw dengue incidence, defined as the number of new dengue cases in each 

city/county that occur in each season divided by the total number of population in each 
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city/county during that period of time, was smoothed using Empirical Bayes Smoothing (EBS) 

technique by the GeoDa 0.9.5i software in order to correct for the variance instability of dengue 

incidence as a result of heterogeneity in dengue cases and population. The EBS technique 

consists of computing a weighted average between the raw dengue incidence for each 

city/county and the whole cities/counties average, with weights proportional to the underlying 

population at risk. In effect, cities/counties with a relatively small population will tend to have 

their dengue incidence adjusted considerably, whereas for cities/counties with a relatively large 

population the dengue incidence will barely change. 

2.2.3 Spatial Autocorrelation Analysis [15-18]  

The correlation pattern among neighboring dengue incidence and the level of spatial 

autocorrelation among neighboring areas were measured by the spatial autocorrelation analyses 

(EB adjusted Moran’s I tests and EB adjusted LISA tests). Spatial autocorrelation of dengue 

incidence was calculated for the summer, fall, and winter during 2004 to 2007. The spatial 

autocorrelation was not calculated for spring because of very few reported cases in this season. 

Spatial autocorrelation is classified as either positive or negative. A positive spatial 

autocorrelation refers to a map pattern where geographic features of similar values tend to cluster 

on a map, whereas a negative spatial autocorrelation indicates a map pattern in which geographic 

features of similar values scatter throughout the map. When no statistically significant spatial 

autocorrelation exists, the pattern of spatial distribution is considered random.  

There are two types of spatial autocorrelation analysis: theglobal spatial autocorrelation 

test (test for clustering) and the local spatial autocorrelation test (test for clusters). Global spatial 
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autocorrelation statistics (Moran’s I was used in this study) estimates the overall degree of spatial 

autocorrelation (clustering) for a dataset. It shows clustering but does not show where the 

clusters are. So, local spatial autocorrelation statistics (LISA was used in this study) is used to 

measure the degree to which a location is surrounded by like values, yielding a measure of 

spatial autocorrelation for each individual location. 

The first step in the computation of spatial autocorrelation statistics is to construct a 

spatial weights file that defines the “neighborhood” structure for each location. There are many 

ways to construct a weights file. A contiguity-based spatial weights (wij) is considered in this 

study, where the definition of neighbor is based on sharing a common boundary. There are two 

types of contiguity-based spatial weights: rook contiguity and queen contiguity. Rook contiguity 

uses only common boundaries to define neighbors, while queen contiguity includes all common 

points (boundaries and vertices). We first used spatial weights based on queen contiguity as they 

always have a denser connectedness structure (more neighbors). We also used spatial weights 

based on rook contiguity to check robustness of results. 

 Global Spatial Autocorrelation 

Suppose a region is partitioned into N mutually exclusive areas, an individual area being 

notated as i (i=1, 2, …, N). Let xi and ni be the count of events and the population at risk in area i, 

respectively. The observed rate in area i is defined as pi = xi/ni. Moran's I statistic, which is 

similar to the Pearson correlation coefficient, is calculated as: 

∑∑ ∑ −
−−

=
i j

i i

ji
ij pp

pppp
w

S
NI 2

0 )(
))((

, 

∑ ≠
=

jiij ijwS
,0  
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where wij is the contiguity-based spatial weights (wij=1 if areas i and j are contiguous, else wij=0), 

Npp
i i /∑=  is the mean rate for the entire region. Moran's I ranges between −1 and 1 all the 

time, with large positive values indicating clustering, with large negative values indicating 

dispersion, and values close to zero indicating absence of spatial autocorrelation. 

Moran’s I statistics can be visualized in a graph, “Moran scatter plot”, where the spatially 

lagged variable (a sum of spatial weights multiplied with values for observations at neighboring 

locations) is on the vertical axis and the original variable is on the horizontal axis. Moran’s I 

statistics is obtained from the slope in the graph. The four quadrants in the graph provide four 

types of spatial autocorrelation: high-high (upper right), low-low (lower left), for positive spatial 

autocorrelation; high-low (lower right) and low-high (upper left), for negative spatial 

autocorrelation (see Figure 3). 

 

 

 

 

 

 

 

 

Figure 3. Moran scatter plot 

high-low low-low 

low-high high-high 
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 Local Spatial Autocorrelation 

Local autocorrelation analysis decomposes the global measure into the contributions for 

each location, detecting similarities or dissimilarities in values around a given rate of a certain 

event. 

Suppose a region is partitioned into N mutually exclusive areas, an individual area being 

notated as i (i=1, 2, …, N). Let xi and ni be the count of events and the population at risk in area i, 

respectively. The observed rate in area i is defined as pi = xi/ni. LISA (local indicator of spatial 

association) statistic, which can be seen as the local Moran’s I, was calculated as: 

jippw
pp

ppI jj ij

i i

i
i ≠−⋅

−
−

= ∑∑
),(

)(
)(

2   

where Ii is the LISA statistic for each area i, wij is the contiguity-based spatial weights (wij=1 for 

contiguous areas i and j, else wij=0), pi and pj are the observed rates for area i and j, 

Npp
i i /∑=  is the mean rate for the entire region. 

For each location, LISA values allow for the computation of its similarity with its 

neighbors and also to test its significance. There are four types of the local spatial 

autocorrelation: 

 Locations with high values with similar neighbors: high-high. 

 Locations with low values with similar neighbors: low-low. 

 Locations with high values with low-value neighbors: high-low. 

 Locations with low values with high-value neighbors: low-high. 

 Locations with no significant local autocorrelation. 
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The high-high and low-low locations (positive local spatial autocorrelation) are typically 

referred to as spatial clusters, while the high-low and low-high locations (negative local spatial 

autocorrelation) are referred to as spatial outliers. 

LISA statistics can be visualized in a “LISA cluster map”, which shows the locations 

with significant LISA statistics (p-value<0.05 is used in the study) with four colors coded by 

type of spatial autocorrelation: dark red for high-high, dark blue for low-low, pink for high-low, 

and light blue for low-high. These four categories correspond to the four quadrants in the Moran 

scatter plot. (See Figure 4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. LISA cluster map 
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Moran’s I and LISA statistics are calculated based on the assumption that the rates are 

independently and identically distributed (i.i.d.) random variables with a normal distribution. 

This implies that the expected value of the rates is constant in all areas. This assumption is 

usually violated when rate is varied in different areas. Therefore, EB adjusted Moran’s I tests and 

EB adjusted LISA tests, proposed by Assuncao and Reis (1999) [18], were performed in this 

study to adjust for the inconstant variance. This adjustment procedure uses a variable 

transformation based on the Empirical Bayes (EB) principle. 

Suppose a region is partitioned into N mutually exclusive areas, an individual area being 

notated as i (i=1, 2, …, N). Let xi and ni be the count of events and the population at risk in area i, 

respectively; and θ1, …, θN be the unknown and possibly different underlying rate of the areas. 

Suppose xi observed events during a reference period has a Poisson distribution with conditional 

mean E(xi|θi) = niθi. The estimated rate pi has conditional mean E(pi|θi) = θi and variance 

var(pi|θi) = θi/ni. Therefore, the estimated rates have different conditional means and variances. 

Adopting a mixing approach, suppose the underlying rates θi have a priori with mean β 

and variance α. Hence, the marginal expectation of pi is β and the marginal variance is α +β/ni. 

Now, only the variances differ among the areas and it increases as the population decreases. The 

moment estimates proposed by Marshall for the parameters α and β given by a=s2−b/(n/N) and 

b=x/n, respectively, where . Therefore, the marginal expectation and 

variance of pi are estimated by b and vi = a+b/ni, respectively. If vi <0, vi is set to be b/ni. 

nbpns ii /)( 22 ∑ −=

Instead of using the rate pi, EB adjusted Moran’s I uses a deviation of the estimated 

marginal mean standardized by an estimate of its standard deviation: 

i

i
i v

bpz −
=  
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EB adjusted Moran’s I is defined as  

∑
∑

∑ −
= 2)( zz

zzW
W

NEBI
i

jiij

ij

 

Like Moran's I, EBI will tend to be positive if the rates are spatially correlated. 

2.2.4 Correlation Analysis 

The correlation between dengue incidence and climatic factors, including temperature 

and rainfall, in summer, fall, and winter from 2004 to 2007 was evaluated by the Spearsman’s 

Correlation test. 
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3.0  RESULTS AND DISCUSSIONS 

3.1 SPATIAL AND TEMPORAL DESCRIPTION OF DENGUE INCIDENCE AND 

CLIMATIC FACTORS 

Figures 5 through 7 demonstrate geographical variation in dengue incidence, temperature, 

and rainfall in four different seasons, respectively. During the dengue-occurring seasons, the 

dengue incidence was higher in southern Taiwan, including Tainan county, Tainan city, 

Kaohsiung county, Kaohsiung city, and Pingtung county. Dengue annually occurred from 

summer, peaked in fall and went down in winter. In the peak season fall, adjusted by EBS 

method, the highest dengue incidence was 0.272 per 1000 people in Pingtung county in 2004, 

0.052 per 1000 people in Tainan city in 2005, 0.358 per 1000 people in Kaohsiung city in 2006, 

and 1.336 per 1000 people in Tainan city in 2007, respectively. 

The average temperature in each city/county increased from the north to the south in four 

seasons except the Nantou county, which is the only landlocked and 83% of  total area covered 

by hills and mountains (with the tallest mountain located) county in Taiwan. When Nantou 

county was not considered, the variance in temperature among cities/counties was small in 

summer (from 26°C to 29°C), but it was large in winter (from 15°C to 22°C). The proper 

temperature for mosquito breeding is between 25°C and 27°C and viruses can reproduce when the 

temperature is greater than 18°C. Unfortunately, the average temperature in southern Taiwan was 
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greater than 20°C in the whole year, which provides a potential mosquito and virus growth area 

(see Figure 6). 

The distribution of rainfall varied strongly with the season. In spring, the average rainfall 

decreased from the north to the south while it increased from the north to the south in summer. In 

fall, the average rainfall increased from the north to the south and it was higher in the east than in 

the west. In winter, the average rainfall was low (less than 100mm, except Yilan County and 

Keelung City) and decreased from the north to the south. The rainfall was concentrated in 

summer, where the average rainfall was greater than 300 mm nationwide (see Figure 7).  
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Figure 5. EBS dengue incidence in four seasons, 2005 
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Figure 6. Average temperature in four seasons, 2005 
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Figure 7. Average rainfall in four seasons, 2005 
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3.2 SPATIAL AUTOCORRELATIONAL ANALYSES OF DENGUE INCIDENCE 

A spatial autocorrelation analysis was carried out to determine the clustering of dengue 

incidence. Based on global spatial autocorrelation analysis, there was a positive and statistically 

significantly spatial autocorrelation for cumulative dengue incidence from 2004 to 2007 (EB 

adjusted Moran’s I=0.171, p-value=0.03). The result of a positive EB adjusted Moran’s I 

indicated that dengue incidence of similar values tended to cluster on a map. Moreover, the EB 

adjusted Moran’s I for the year 2005, 2006, and 2007 were statistically significant (p-

value<0.05). However, there was no significant spatial autocorrelation of dengue in 2004. It was 

possible that only a very small number of cities/counties (seven) had dengue occurred in that 

year, which mad it hard to determine the spatial autocorrelation (see Table 1a and 1b). Detail 

Moran scatter plots are given in Appendix A. Further, according to the EB adjusted LISA cluster 

map of cumulative dengue incidence for 2004 to 2007 shown in Figure 8a and 8b, high dengue 

incidence were significantly clustered around Tainan county and Kaohsiung county (p-

value<0.05). Kaohsiung county could be determined as a significant endemic place because it 

had a significant dengue incidence cluster in each year of 2004 to 2007 (p-value<0.05, see Figure 

9a and 9b). The EB-adjusted Moran’s I values are found to be robust for two types of spatial 

weights. 
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Table 1. EB-adjusted Moran’s I for the cumulative dengue incidence (2004 – 2007) and the 

dengue incidence in the specific years. 

 

1a. Use queen-contiguity spatial weights 

 
Year EB-adjusted Moran's I p-value 

2004-2007 0.171* 0.03 

2004 0.003 0.09 

2005 0.441* 0.001 

2006 0.307* 0.001 

2007 0.114* 0.016 

 

 

 

 

 

* Significant at 0.05 level 

 

1b. Use rook-contiguity spatial weights 

 
Year EB-adjusted Moran's I p-value 

2004-2007 0.171* 0.04 

2004 0.003 0.09 

2005 0.441* 0.003 

2006 0.307* 0.001 

2007 0.114* 0.003 

 

 

 

 

 

 
* Significant at 0.05 level 
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Figure 8. EB-adjusted LISA cluster map of cumulative dengue incidence for 2004-2007: 

8a. using Queen-contiguity spatial weights and 8b. using Rook-contiguity 

spatial weights 
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Figure 9. EB-adjusted LISA cluster map of dengue incidence for 2004, 2005, 2006, and 

                2007: 9a. using queen-contiguity spatial weights and 9b. using rook-contiguity 

                spatial weights 
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3.3 RELATIONSHIP BETWEEN DENGUE INCIDENCE AND GEOGRAPHICAL 

AND CLIMATIC FACTORS 

Figure 10 showed the relationship between dengue and the geomorphology and the 

hydrology of Taiwan. Taiwan is a mountainous island with 30% mountains area, 40% hills and 

plateaus area, and 30% plains area. Taiwan’s mountainous area spreads from the east to the 

central part of the island. Most of the mountain ranges go from north to south. There are 129 

rivers in Taiwan, most of which flow toward the east or west. Because the major watershed, 

Snow Mountain Range, has an eastward inclination, the drainage area of western Taiwan is 

larger than that in the east. Based on these geographical features, dengue tended to occur in the 

southwestern cities/counties in Taiwan with plains and rivers spread. 

Table 2 showed the Spearman’s correlation between dengue incidence and climatic 

factors, temperature and rainfall, in summer, fall, and winter from 2004 to 2007. Average 

temperature had a positive relationship with dengue incidence in summer and fall (rs=0.75 and p-

value <0.001 in summer, rs=0.51 and p-value=0.002 in fall), which suggested that the higher the 

temperature, the higher the dengue incidence in summer and fall. This may be due to 

temperature’s influence on the life cycle of a mosquito or viral replication rates. However, there 

was no significant correlation between temperature and dengue incidence in winter (p-value 

=0.099). This may be due to a low temperature (less then 20 °C) in most cities/counties in 

Taiwan during the winter, which was not proper for mosquito breeding (25°C to 27 °C) and virus 

reproduction (greater than 18 °C ). 

 28 



Average rainfall had a positive relationship with dengue incidence in summer (rs=0.61 

and p-value=0.002) However, there was no significant correlation between rainfall and dengue 

incidence in fall and winter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. EBS dengue incidence in 2005 with the geomorphology (left) and the hydrology  

                  (right) of Taiwan 
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Table 2. Spearman’s correlation between dengue incidence and climatic factors, 2004-2007 

 

Variables / season Spearman’s correlation (rs) p-value 

Temperature and Dengue incidence   

Summer  0.75* <0.000 

Fall  0.51* 0.002 

Winter  0.38 0.099 

Rainfall and Dengue incidence   

Summer  0.61* 0.002 

Fall  -0.38** 0.047 

Winter  -0.01 0.956 

   
* Significant at 0.05 level 

** Barely borderline significant 
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4.0  CONCLUSION 

This study demonstrated the use of GIS methodology to map and analyze the spatial and 

temporal distribution of dengue in Taiwan and elucidate the association of geographical and 

climatic risk factors with dengue incidence. The result of the study suggested that: 1) Dengue 

had a temporal pattern, where it annually occurred from summer, peaked in fall and went down 

in winter; 2) Through spatial autocorrelation analyses, non-randomness in the distribution of 

dengue and the identification of unusual concentration of dengue in Tainan county and 

Kaohsiung county (the southern Taiwan) has been defined. This could prompt health planners in 

the county/city to take a critical look at these risk areas, and make appropriate health planning 

and resource allocation. 3) Based on the geographical features, dengue tended to occur in the 

southwestern cities/counties in Taiwan with plains and rivers spread. 4) High temperature and 

high rainfall are impartment risk factors of dengue in Taiwan. Due to the limited available 

resource, there are many other possible risk factors of dengue which were not included in the 

study. Thus, a more detailed research is required to consider factors like urban development and 

housing construction to thoroughly evaluate the risk of dengue in Taiwan. 
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APPENDIX A 

MORAN SCATTER PLOTS OF DENGUE INCIDENCE 
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Figure 11. Moran scatter plot of dengue incidence for 2004, 2005, 2006, 2007, and 2004- 

                  2007: 11a. using queen-contiguity spatial weights and 11b. using rook-contiguity  

                  spatial weights 
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