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In recent years, researchers have attempted to use gene- and cell-based therapies to restore 

dystrophin and alleviate the muscle weakness that results from Duchenne muscular dystrophy 

(DMD). Our research group has isolated a population of muscle-derived stem cells (MDSCs) 

from the postnatal skeletal muscle of mice. In comparison with satellite cells, MDSCs display an 

improved transplantation capacity in dystrophic mdx muscle that can be attributed to their ability 

to undergo long-term proliferation, self-renewal, and multipotent differentiation, including 

differentiation toward endothelial and neuronal lineages. The overall goal of this study was to 

investigate whether the use of nerve growth factor (NGF) improves the transplantation efficiency 

of MDSCs. Two methods of in vitro NGF stimulation were used: retroviral transduction of 

MDSCs with a CLNGF vector to constitutively express NGF and direct stimulation of MDSCs 

with NGF protein. Neither method of NGF treatment changed the marker profile or proliferation 

behavior of the MDSCs, but direct stimulation with NGF protein significantly delayed cells’ in 

vitro differentiation ability. Stimulation with NGF also significantly enhanced the engraftment 

efficiency of MDSCs transplanted within the dystrophic muscle of mdx mice, resulting in better 

muscle regeneration. These findings highlight the importance of NGF as a modulatory molecule, 

the study of which will broaden our understanding of its biological role in the regeneration and 

repair of skeletal muscle by muscle-derived cells.  
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1.0 BACKGROUND 

 
 
 
 

1.1 ADULT SKELETAL MUSCLE CHARACTERISTICS 

 
 
The muscle fibers are the basic contractile units of skeletal muscles, individually surrounded by a 

connective tissue layer and grouped into bundles called perimysium to form a skeletal muscle 

(Figure 1.1A). Myofibers are multinucleated syncytia with their postmitotic myonuclei located at 

the periphery, as seen in the muscle cross-section stained with hematoxylin and eosin (H&E) 

(Figure 1.1B, arrow). As well as being rich in connective tissue, skeletal muscles are highly 

vascularized to provide essential nutrients for muscle function (Figure 1.1B, black arrowhead). 

As the myofiber matures, it is contacted by a single motor neuron that branches throughout the 

muscle (Figure 1.1B, white arrowhead). The functional properties of skeletal muscle including 

its contractile ability depend on the maintenance of a complex framework of myofibers, motor 

neurons, blood vessels, and extracellular connective tissue matrix. Therefore, revascularization, 

reinnervation, and reconstitution of the extracellular matrix are all essential aspects of the muscle 

regeneration process. 
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Figure 1.1 Morphological characteristics of adult mammalian skeletal muscle 

 
 
 
 

1.2 MORPHOLOGICAL CHARACTERISTICS OF SKELETAL MUSCLE 
REGENERATION 

 
 
Skeletal muscle is a heterogeneous tissue, containing vascular and neural cells in addition to the 

contractile myofibers. Adult mammalian skeletal muscle is a stable tissue with little turnover of 

nuclei [1, 2]. Minor lesions inflicted by day-to-day wear and tear elicit only a slow turnover of its 

constituent multinucleated muscle fibers. It is estimated that in a normal adult rat muscle, no 

more than 1–2% of myonuclei are replaced every week [2]. Nonetheless, mammalian skeletal 

muscle has the ability to complete a rapid and extensive regeneration in response to severe 

damage. Whether the muscle injury is inflicted by a direct trauma (i.e., extensive physical 

activity and especially resistance training) or innate genetic defects (i.e., DMD), muscle 

regeneration is characterized by two phases: a degenerative phase and a regenerative phase 

(Figure 1.2A).  
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 1.2 Skeletal muscle repair process 

The initial event of muscle degeneration is necrosis of the muscle fibers. Figure 1.2B 

 10 µm cross sections of mice gastrocnemius muscle stained with H&E. Injury by 

toxin (CTX) injection in the muscle results in a rapid necrosis of myofibers and the 

tion of an inflammatory response leading to the loss of muscle architecture (compare 

 1.2B with Figure 1.1B) including the formation of fibrosis (Figure 1.2B, arrow). This 

is generally triggered by disruption of the myofiber sarcolemma resulting in increased 

ber permeability and disruption of the myofiber integrity. The early phase of muscle injury 
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is usually accompanied by the activation of mononucleated cells, principally inflammatory cells 

and myogenic cells. Present reports suggest that factors released by the injured muscle activate 

inflammatory cells residing within the muscle, which in turn provide the chemotactic signals to 

circulating inflammatory cells (reviewed in Refs. [3, 4]). Neutrophils are the first inflammatory 

cells to invade the injured muscle, with a significant increase in their number being observed as 

early as 1–6 hours after myotoxin or exercise-induced muscle damage [5, 6]. After neutrophil 

infiltration and ∼ 48 hours post-injury, macrophages become the predominant inflammatory cell 

type within the site of injury [4, 6]. Macrophages infiltrate the injured site to phagocytose cellular 

debris and may affect other aspects of muscle regeneration by activating myogenic cells [7-10]. 

Thus muscle fiber necrosis and increased number of nonmuscle mononucleate cells within the 

damaged site are the main histopathological characteristics of the early event following muscle 

injury (Figure 1.2C).  

Myofiber regeneration is characterized by the activation of myogenic cells to proliferate, 

differentiate, and fuse to necrotic fibers for repair or to each other for new fiber formation. 

Notably, the expansion of myogenic cells provides a sufficient source of new myonuclei for 

muscle repair (reviewed in Refs. [11-13]). Numerous nuclear radiolabeling experiments have 

demonstrated the contribution of dividing myogenic cells to regenerate myofibers, by 

proliferation phase to form new muscle fibers followed by myogenic cells differentiation and 

fusion into mature muscle fibers [14-16]. Long-standing histological characteristics are still used 

to identify the mammalian skeletal muscle regeneration process. On muscle cross-sections, 

regenerating fibers are characterized by their small caliber and their centrally located myonuclei 

(Figure 1.2D, white arrowhead). Once fusion of myogenic cells is complete, newly formed 

myofibers increase in size, and myonuclei move to the periphery of the muscle fiber (Figure 
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1.2D, black arrow). Moreover, on muscle longitudinal sections and in isolated single muscle 

fibers, central myonuclei are observed in discrete portions of regenerating fibers or along the 

entire new fiber, suggesting that cell fusion is not diffuse during regeneration but rather focal to 

the site of injury [17]. In a time dependent manner after injury, the regenerated muscle fibers will 

become almost morphologically and functionally indistinguishable from undamaged muscle. 

 
 
 
 

1.3 DUCHENNE MUSCULAR DYSTROPHY: A SKELETAL MUSCLE DISORDER 

 
 
Duchenne muscular dystrophy (DMD) is a devastating muscle disease affecting about 1 in 3500 

boys in all populations. It is an X-linked recessive disorder [18] where a mutation in the 2.5 

million bp gene results in a failure to produce the 427 kDa protein called dystrophin at the 

sarcolemma of the muscle fibers [19-21]. Dystrophin and dystrophin associated protein complex 

(DAPC) form a link between the intracellular actin-based cytoskeleton and the extracellualr 

matrix (ECM) which plays a major role in maintaining plasma membrane integrity and stability 

[22-24] (Figure  1.3).  Disruption of this complex leads to increased susceptibility to contraction-

induced injury and sarcolemmal damage leading to myofiber necrosis [(Figure 1.4, compare 

normal human skeletal muscle (A) with dystrophic muscle (B)]. Indeed, upon muscle injury, a 

finely orchestrated set of cellular responses is activated, resulting in the regeneration of a well-

innervated, fully vascularized, and contractile muscle apparatus. This repair process is present in 

DMD, but is not efficient enough to compensate for the necrotic process and fibrosis. Thus, in 

DMD patients, repeated cycles of degeneration-regeneration would exhaust the regenerating 

potential of myogenic precursor cells leading to massive activation of connective tissue that 
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results in muscle fibrosis [18] causing the muscle to undergo progressive weakness and wasting 

[25] which eventually leads to congestive cardiac and respiratory failure before adulthood. 

Despite extensive research in developing an effective approach of dystrophin delivery in 

dystrophic muscle (e.g., cell and gene therapy), there is no therapy capable of substantially 

slowing the course of the disorder and rescuing the diseased muscle tissue.  

 
 

 

 

Figure 1.3 Membrane stabilization by dystrophin protein interaction with intracellular 
cytoskeleton, actin filaments, and the extracellular matrix (Adapted from Expert Reviews in 
Molecular Medicine 2002, Cambridge University Press) 
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Figure 1.4 Immunohistochemical dystrophin labeling of skeletal muscle biopsies, taken from 
a normal individual versus a patient with Duchenne’s muscular dystrophy (Courtesy of  Johnny 
Huard, PhD, Pittsburgh, PA) 

 
 
1.3.1 Animal Model of DMD 

 
 
The biochemical and genetic animal homologue to human DMD is the mdx mouse. It is a 

spontaneously occurring mouse line deficient for dystrophin due to a point mutation in exon 23 

of the dystrophin gene, which forms a premature stop codon [26]. The mdx mouse with less that 

10% of the normal amount of dystrophin, and less than 0.1-0.01% of muscle fibers staining 

positively for dystrophin, is considered a true genetic homologue of DMD [27]. Although mdx 

mice are normal at birth, skeletal muscles show extensive signs of muscle degeneration by 3–5wk 

of age [28-30]. This acute muscle degeneration phase is accompanied by an effective 

regeneration process leading to a transient muscle hypertrophy [28, 29]. After this period, the 

degeneration/regeneration activity continues at lower and relatively constant levels throughout 

the life span of the animal. In fact, muscle of mdx mice differs from DMD patients in that it 

exhibits a greater degree of compensatory muscle regeneration and a scar fibrotic replacement 
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[28]. However, for reasons that remain unclear, in the older animals (∼15 months), the muscle 

regeneration process is defective and the mice become extremely weak and die before wild-type 

littermates [31-33]. Such a milder histopathological modification is reflected by a slower 

progression of the disease. 

 
 
 
 

1.4 CURRENT TREATMENTS AND THEIR LIMITATIONS 

 
 
Two different therapeutic approaches have been explored in an effort to deliver normal 

dystrophin to murine and human dystrophic muscle: cell therapy based on myoblast 

transplantation (MT) and ex vivo gene therapy based on viral and non-viral vectors. 

MT involves transplantation of primary myoblasts into defected muscle which contribute 

to the formation of new muscle fibers during repair and regeneration, and help in delivery of 

dystrophin [34-42]. The initial animal experiments and clinical trials, however, have suggested 

that although myoblast transplantation is feasible and introduced donor cells have fused with 

host myofibers around the site of injection and produced normal dystrophin [43-45], the amount 

of muscle fiber expressing dystrophin  was not therapeutically significant and rather inefficient 

[39, 41, 42, 45, 46].  Donor cells may have also suffered from poor spread from the injection site, 

a low survival rate, and immune rejection by the host system [47-54]. In animal experiments, 

immunodeficient animals and/or immune-suppressive regimens [40, 44, 48, 55, 56], 

preirradiation of the injected muscle [44], and myonecrotic agents [35, 48] have been used 

extensively to improve the success of this technique. Although these approaches may be used to 

improve the restoration of dystrophin in mdx mice, the success of this technique remains rather 
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limited and for the most part, clinically impractical. To minimize the problem of immune 

rejection in human, autologous myoblast transfer has been employed, where primary myoblasts 

are removed from a patient via biopsy, expanded in cell culture, genetically manipulated with 

therapeutic genes, and re-introduced to the same patient. This technique therefore permits the 

introduction of myoblasts capable of expressing the transgene into defected muscle. 

Virus-mediated delivery of the dystrophin gene to alleviate the biochemical deficiency in 

skeletal muscle became more of the research focus as a novel and attractive alternative. Viral and 

non-viral vectors have evolved rapidly. Plasmid, DNA, liposomes, viral vectors (e.g., 

adenovirus, adeno-associated virus, retrovirus, and herpes simplex virus) have already been used 

in the approach for gene delivery to muscles [57-64]. Two basic approaches for local gene 

therapy in the musculoskeletal system have been extensively investigated. Either the vectors are 

injected directly into the host tissue (in vivo) or the cells harvested via biopsy from different 

tissues (e.g., mesenchymal stem cells, muscle-derived cells, or dermal fibroblasts) are expanded 

in vitro,  genetically engineered (transduced/transfected) in vitro, and re-introduced to the same 

patient (autologous) where they either replace degenerated fibers (as in the case of DMD) or 

form additional fibers expressing the desired gene (ex vivo) [65-67]. 

The advantage of direct (non-cell-based) approaches are low toxicity and 

immunogenicity [68], but the inability of most viral vectors to efficiently transduce or infect non-

dividing muscle fibers is one of the major limitations [61, 69, 70].  In addition, the choice of the 

target cell is limited by the location of the defect, and insertion of genetic material into a specific 

type of cell is difficult to control. One way to overcome the difficulties of the direct 

approach and to help maximize the gene transfer efficiency and stabilize the expression was to 

develop an ex vivo method of gene transfer [71-80]. The ex vivo method has been 
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successfully used to deliver dystrophin in dystrophic muscle of mdx mice [81]. In 

humans, this method was used in the clinical setting to deliver and express factor IX for 

hemophilia B [80], interleukin 1 receptor antagonist protein for arthritis [82], human 

pro-insulin for diabetes [83], tyrosine hydroxylase for Parkinson’s disease [84], and 

human growth factor for growth retardation [77]. The advantage of this method is 

multifaceted. First, the gene manipulation takes place outside the body (in vitro), 

thereby bypassing the need to inject massive amounts of virus into the patient. Also, we 

can select cells after transduction by special markers (e.g., neomycin) to increase the 

transduction efficiency and expression of the desired protein. In addition, this method 

give us enormous flexibility because we can choose the ideal cells for specific 

deficiency, For example, in case the of muscular dystrophies, muscle-derived stem cells 

would be an ideal choice for ex vivo gene therapy, with the reasons for this being 

discussed in detail in next the section. 

It is important to realize that ex vivo gene therapy is not without limitations. It is clear that 

immunological problems associated with virally transduced cells still limit this technique. The 

efficiency of retroviral vector-mediated gene transfer is highly variable depending upon the 

vector design, the titer of the package virus, the type and species of the target cell, and is strictly 

dependent upon cell replication [85].  The integration of viral vectors into the genome of cells 

bears the risk of mutagenesis and the development of a potential malignancy. Consequently, all 

gene therapy techniques should be regarded with extreme caution. However, with viral vectors 

continuously being engineered to be less immunogenic, major advances can be expected in the 

near future. 
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1.5 MUSCLE-DERIVED STEM CELLS: POTENTIAL FOR MUSCLE 
REGENERATION 

 
 
Stem cells are undifferentiated cells with unique features including i) appearance in early 

development and persistence throughout life; ii) self-renewal ability resulting in a large number 

of progeny; iii) long term proliferation potential while maintaining transient quiescent state; and 

iv) multilineage potential to enhance the new cell’s incorporation into injured or diseased tissues. 

The stem cells’ definition primarily emerged through extensive research on marker profiles, self-

renewal, and the multi-potential behavior of hematopoietic stem cells (HSCs). On that note, the 

different populations of muscle-derived progenitor cells also appear to exhibit varied degrees of 

pluripotency. The most well-characterized muscle progenitor cells are satellite cells [86], usually 

referred to as “muscle stem cells.” These unique undifferentiated myogenic cells have a 

committed fate and can regenerate injured skeletal muscle very efficiently [87, 88]. In addition to 

participating in the formation of myofibers, satellite cells can also differentiate into other 

lineages, such as adipocytic, osteoblastic, and chondrogenic [89, 90]. Satellite cells are integral 

to the development of skeletal muscle during embryogenesis and the regeneration of muscle 

fibers during postnatal life. During postnatal life, these cells are mitotically quiescent and reside 

between the basal lamina and the sarcolemma of myofibers. During the need for perceived 

growth or during post-natal reparative responses to stress or damage, satellite cells become 

activated, migrate, re-enter the cell cycle, differentiate, and fuse to form new regenerating 

myofibers [87, 88, 91]. Researchers have investigated the injection of satellite cells/myoblasts as 

a means to promote muscle repair in both animals and humans [88, 89]. The results suggest that, 

although the injected cells can improve muscle regeneration, various limitations such as poor 
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survival, limited dissemination of the injected cells, and immune rejection limit the success of 

this technique [47-54]. The development of using stem cells for transplantation may enable 

scientists to overcome these limitations because stem cells in theory are capable of long term 

proliferation, efficient self-renewal, and multilineage differentiation, all of which can improve 

the long-term survival of the cells post-transplantation [37, 92-94]. Investigators in our lab have 

obtained early myogenic progenitor cells highly proliferative, late-adhering, and Sca-1[+]/CD34 

[+]/CD45[–]/c-Kit[–] called muscle-derived stem cells (MDSCs) using a preplating enrichment 

technique [95] (for details refer to Appendix A). This technique separates myogenic cells based 

on their adhesion to collagen-coated flasks. The fraction of more committed myogenic cells that 

were attached to bottom of flask at early time points [early preplate (EP)] exhibit in vitro marker 

profiles, as well as proliferation and fusion behavior comparable to that of  satellite cells (Table 

1.1). The cell population from the late preplate (LP) were called long-term proliferation (LTP) or 

muscle-derived stem cells (MDSCs). 
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Table 1.1 The Marker profile comparison between myogenic, stem, and blood cells, adapted 
from [96, 97] 

 
 

Cell Types Cell Markers * EP LTP (MDSCs) 

Desmin + -/+ 

M-cad + - 

Myogenic cells 

 

 Pax7 + - 

CD34 -/+ +(+) 

Sca-1 -(N) +(+) 

   

Bcl-2 -(N) +(+) 

Stem cells 

Flk-1 N +(N) 

c-Kit - - Blood Cells 

 CD45 - - 

 
 
 

+: >90%, -: <5%, -/+: 5-30%, +/-: 40-80%, N: Not determined 

*(refer to nomenclature for marker profiles name and description) 

 

MDSCs have unique characteristics usually associated with non-committed progenitor cells such 

as i) long term proliferation ability in vitro and in vivo, ii) high self-renewal, iii) multipotent 

differentiation capability (particularly into blood vessel and nerve); and iv) immune-privileged 

behavior [96, 98].  In addition, MDSC are c-Kit[–]/CD45[–], eliminating their potential 
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hematopoietic origin. Moreover, they spontaneously express myogenic markers, MyoD and 

desmin (Table 1).  Finally, the MDSCs have a high potential for myogenic differentiation in vitro 

and in vivo, when compared with satellite cells, and they display a significant improved 

transplantation capacity (higher number of dystrophin (+) myofibers) starting at 10 days up to 30 

and 90 days post-transplantation in gastrocnemius of mdx mice [96].  

Until recently, the satellite cells were presumed to be the sole source of myonuclei in muscle 

repair. However, recent findings have demonstrated the presence of multi-potential stem cells in 

various adult tissues, thereby challenging the widely held view that tissue-specific stem cells are 

predetermined to a specific tissue lineage. In fact, adult stem cells isolated from various tissues 

appear to differentiate in vitro and in vivo into multiple lineages depending on environmental 

cues. Progenitor cells isolated from bone marrow (BM) [37, 99-101], the adult musculature [37, 

96, 102-104], the neuronal compartment [105, 106], and various mesenchymal tissues [107, 108] 

can differentiate into the myogenic lineage. In particular, BM and muscle adult stem cells have 

been shown to differentiate into muscle cells in vitro and to contribute to muscle regeneration in 

vivo (for review, see Refs. [12, 109, 110]). Although these various types of cells appear to be 

able to differentiate toward myogenic lineage their regeneration capacity in skeletal muscle is 

limited. Therefore, MDSCs compared to many other cell types are better candidates for skeletal 

muscle transplantations, particularly because these cells can highly regenerate skeletal muscle, 

be obtained easily from a superficial muscle biopsy (non-invasive manner) from patients, be 

expanded to the desire number, and most importantly, through multi-potential differentiation into 

endothelial and neural lineages, they may enhance the neural and vascular supply during muscle 

regeneration [96].  
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1.6 ROLE OF GROWTH FACTORS IN MUSCLE REGENERATION 

 
 
General terms such as hormone, cytokine, and growth factor are principally of historical interest.  

Specific terms such as nerve growth factor were derived form early descriptions of a factor’s 

action or source, consequently, such terms do not necessarily provide meaningful descriptions of 

their function but rather they exist as identifiers accepted by tradition. There are small proteins 

that serve as signaling agents for cells. Despite being present in plasma or tissue at 

concentrations that are generally measured in picomolar (ng/ml) range, growth factors are the 

principal effectors of such critical functions as cell division, matrix synthesis, and tissue 

differentiation in virtually every organ system [111].  

Figure 1.5 shows a schematic of the mechanism by which growth factors regulate cell 

behavior in general. Growth factors elicit their cellular actions by binding to specific 

transmembrane receptor molecules (Receptor-binding domain) on their target cells membrane. 

These receptors serve as information transducers, converting information carried by a growth 

factor into a form that is usable by the cell. This ligand-receptor interaction activates the 

intracellular domain of the receptor (kinase domain) which possesses the enzymatic ability to 

transfer phosphate groups to proteins (kinase activity). This acts as an intracellular 

communication step.  The presence or absence of the receptor defines whether or not a cell can 

respond to information in its external environment. Growth factor receptors are linked by a 

cascade of chemical reactions in the cytoplasm to various genes in the nucleus with the binding 

of transcription factors (proteins that bind to specific regulatory sequences of DNA) to activate 

gene transcription into messenger RNA (mRNA). The mRNA is then transcribed into protein to 
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be used within the cell. Often this cascade activates several genes at once. As a result, when use 

of a growth factor is considered to treat a specific cell defect, one must be aware that the factor 

may generate multiple effectors, even within a single cell type. While these results may be 

advantageous (as when both cell division matrix synthesis are desired for a repair response), it is 

a theoretical disadvantage if so-called mismatched effects (for example, cell division and matrix 

degradation) are stimulated simultaneously. Each family of growth factors has its own 

corresponding family of receptors. Despite marked differences in structure among receptor 

families, many of the key links in the gene-activating chain of reactions are shared by these 

families. Thus, binding of different growth factors to their respective receptors may lead to the 

same cellular response (such as cell division). Much more impressive than the similarities among 

post-receptor pathways, and much less well understood, are the differences. Many growth factors 

display pleiotrophic activity, eliciting a variety of effects in different stages of development. 

Although it is not yet clear how this remarkable versatility is achieved, these specific 

mechanisms probably will be important in the design of growth factor therapies that will be 

capable of activating only certain genes and not others. Knowledge about receptors is crucial to 

the successful application of growth factors as therapeutic agents. Clearly, treatment with growth 

factors will not help a problem caused by abnormalities in the receptor for that factor. In 

addition, the growth factors must be regulated, so as not extend treatment beyond the therapeutic 

level and to prevent overgrowth of various tissues in the target area. 
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Figure 1.5  
adapted from
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Schematic of the mechanism by which growth factors regulate cell behavior, 
 [111] 

well documented that growth factors can regulate skeletal myoblast proliferation and 

on in vitro [112, 113] and act as stimulators or inhibitors (Table 1.2). Various growth 

thought to play a role in different stages of muscle generation [114, 115] by 

satellite cells to release, proliferate, and terminally differentiate [116-119]. These 

regulate muscle regeneration in vivo must act to maintain a balance between growth 

tiation in order for restoration of normal tissue architecture to occur. It is likely that a 

 of many growth factors is involved in the regulation of myogenesis during muscle 

t and regeneration. The insulin-line growth factor (IGFs), basic fibroblast growth 
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factor (bFGF), platelet-derived growth factor (PDGF), leukemia inhibitory factor (LIF), and 

transforming growth factor beta (TGF-β) have been localized to muscle cells or other cell types 

present in muscle tissue [113, 120-123]. Expression of bFGF and the IGFs have been examined 

in regenerating skeletal muscles by immunocytochemistry and in situ hybridization, and they has 

been found to be up-regulated compared to non-injured muscles [121, 124, 125]. The pre-

treatment of myogenic cells in culture with bFGF has shown to promote cell proliferation, 

resulting in an up to four-fold increase in myofiber regeneration [126]. In the mouse model, the 

IGF-1, bFGF, and to a lesser extent, nerve growth factor (NGF), directly injected post-injury 

have enhanced muscle regeneration in lacerated, contused, and strain-injured muscle [127-138]. 

 
 
 

Table 1.2 Effect of growth factors on the proliferation and fusion of myoblasts in  vitro, 
adapted from [130]  

 
 

Growth Factor* Proliferation Fusion 

bFGF Stimulates Stimulates

IGF-1 Stimulates Stimulates

NGF Stimulates Stimulates

α-FGF Inhibits Inhibits 

PDGF Inhibits Inhibits 

EGF Inhibits Inhibits 

TGF-α Inhibits Inhibits 

TGF-β Inhibits Inhibits 

 
*(refer to nomenclature for the list of growth factors name) 
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While, in the past few years, much has been learned about the effects of these factors on 

musculoskeletal tissues, and a few notable therapeutic successes have been achieved, the 

understanding of their role in muscle diseases remains rudimentary. With continued progress in 

the basic science and clinical investigation of these factors, it is probable that they will become 

the method of choice for the prevention and treatment of a variety of current unsolved problems. 

 
 
1.6.1 Nerve Growth Factor― NGF 

 
 
The term “NGF” was introduced 50 years ago as a target-derived neutrophic factor that is 

essential for the development, survival, and differentiation of developing neurons in the 

peripheral sympathetic and sensory neurons [139, 140]. NGF belongs to the neurotrophin family 

of growth factors that are synthesized as precursors (pro-neurotrophins) that are proteolytically 

cleaved to mature and biologically active form [141]. Because neurotrophins are normally 

expressed at low levels, little is known about their processing and secretion by neurons and non-

neuronal cells in vivo.  

The ideas about the biological role of NGF have been dominated by concepts that arose 

from studies on the differentiation and survival of young neurons. Until recently, the expectation 

was that the biology of NGF would center on the classical target-derived neurotrophic factor 

paradigm in which NGF released by postsynaptic targets acts on presynaptic neurons to build or 

maintain functional contacts and enhance the function of well-defined neural circuits. Although 

this paradigm undoubtedly plays a critical role in both the peripheral nervous system (PNS) and 

central nervous system (CNS), it does not appear to be the sole role for NGF actions suggesting 

this molecule may have broader physiological effects. For example, NGF has been reported to be 
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expressed by the luminal epithelium of the epididymis and the germ cells of the rat and mouse 

testes [142],  and the circulation levels of NGF change not only with age, but also during 

neuroendocrine disregulation, after neurological insults, and during autoimmune and allergic 

diseases [143-149]. More relevant to the work being presented here, NGF has been shown to 

promote the differentiation of muscle cells in culture [150]. Furthermore, Rende at al. in 2000 

showed that NGF expression in skeletal muscle is not only associated with a classical target-

derived neurotrophic function for peripheral nervous system neurons, but also with an autocrine 

action (locally binding to cell-surface receptors on the same cells that produced it) which affects 

the proliferation, fusion into myotubes, and cell morphology of developing myoblasts, thereby 

suggesting that among other roles, endogenous NGF signaling through both neurons and non-

neuronal cells subserves neuroprotective functions and facilitates muscle repair. The regulated 

expression of NGF throughout adult life suggests multiple functions for NGF signaling, many of 

which are poorly understood. 

 
 
1.6.2 NGF Receptors: TrkA and p75NTR 

 
 

The NGF functions as a dimmer of identical subunits linked together by noncovalent 

bonds and with molecular mass of about 26 kDa [151]. The functional activity of NGF is 

mediated by two classes of receptors: high-affinity receptor, TrkA (kd =10-11 M), and low-

affinity receptor, p75NTR (Kd=10-9 M)  [152-156]. 

A schematic drawing of the structural features of Trk and p75NTR is displayed in Figure 

1.6. TrkA is a 140 kDs single-pass transmembrane protein with a single transmembrane domain 

and a single cytoplasmic tyrosine kinase domain that serves as a receptor tyrosin kinase (RTK) 
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for NGF. Neurotrophin-mediated activation of TrkA receptor leads to a variety of biological 

responses and elicits many of the classical neurotrophic actions ascribed to NGF, including 

proliferation and survival, axonal growth and remodeling, assembly and remodeling of 

cytoskeleton [157-159].  p75NTR is a 75-kDs transmembrane glycoprotein that belongs to a 

superfamily of cytokine receptors which includes TNF receptors (TNFR), Fas, CD27, CD40, and 

CD30. p75NTR binds all members of the neurotrophin family with approximately equal 

nanomolar affinity, and is therefore referred to as a neurotrophin receptor, and not as an NGF 

receptor. p75NTR has a distinctive extracellular-domain sequence that differs with TrkA, with 

four distinct cytosine-rich domains that are responsible for ligand-binding. The precise role of 

p75NTR in NGF signal transduction has not been fully elucidated. Several studies have indicated 

that stimulated of TrkA is necessary and sufficient to elicit a full biologic response and is 

required for cell survival, while other reports have highlighted the crucial role of the association 

of TrkA and p75NTR in regulating NGF biological activities on NGF-responsive cells [155]. 

These studies shed light on the often conflicting roles for p75NTR in mediating apoptosis and in 

augmentation Trk-induced survival and differentiation. The selectivity of proNGF for p75NTR 

suggests that its local secretion may determine whether apoptotic or survival actions 

predominate.  
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Figure 1.6 A schematic drawing of the structural features of Trk and p75 receptor, adapted 
from www.izn.uni-heidelberg.edu.de/download/LFB2004/Tucker.pdf

 
 
 
 

1.7 MDSCs & NGF AS A REMEDY FOR TISSUE ENGINEERING 

 
 
Tissue Engineering has been defined as the application of the principles and methods of 

engineering and life sciences towards the development of biological substitutes to restore, 

maintain, or improve functions. It is our expectation that a cell-based therapy can help to provide 

a solution to the growing problem of tissue and organ failure. Therefore, there has been growing 

enthusiasm for a tissue-engineering approach that aims at utilizing stem cells to deliver genes of 

interest to improve healing of the musculoskeletal system. The feasibility of direct injection of 
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human recombinant growth factors for treatment of muscle injuries due to its safety and ease is 

practically hindered because high concentrations of the growth factor are often required to 

produce the beneficial effect. Indeed, studies have shown that growth factors exhibit a dose-

dependent effect on myoblasts proliferation and differentiation in vitro, while in vivo, three 

consecutive injections of high concentration (100 ng) NGF, IGF-1, and bFGF are required to 

improve muscle healing in the mice model [127-138]. The relatively short biological half-life, 

the bloodstream’s rapid clearance, and the limited adequate duration of growth factor delivery 

are the main reasons why large concentrations of growth factors are typically required.  

In this regard, isolated muscle-derived stem cells obtained through the preplate technique 

would be the perfect candidate for cell-mediated therapy and the perfect choice for ex vivo gene 

delivery since these cells show i) long-term proliferation and self-renewal capacity ii) 

multilineage differentiation ability (e.g., myogenic, neurogenic, osteogenic, adipogenic, 

hematopoietic, and chondrogenic), and iii) potential immune-privileged behavior (i.e., the failure 

to trigger the immune response). While the direct in vivo injection of growth factors or stem cells 

is technically less complex, the indirect, ex vivo, gene delivery technique is safer because the 

gene manipulation (i.e. genetically engineering using viral vectors) takes place under controlled 

conditions outside the body. With the ex vivo approach, growth factors can be delivered using 

endogenous cells. These cells are capable of responding to stimuli created by injured tissue and 

can participate in healing process more effectively by delaying, ameliorating, or arresting the 

further degeneration. 
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2.0 PROJECT OBJECTIVES 

 
 
 
 
The overall goal of this project is to evaluate a novel tissue engineering method for skeletal 

muscle repair. Both muscle-derived stem cell transplantation and ex vivo gene therapy are 

excellent candidates for growth factor delivery. We propose that direct stimulation of MDSCs 

with nerve growth factor (NGF) protein and genetically engineering MDSCs with retroviral 

transduction used for sustained delivery of NGF can hold great promise as the basis for tissue 

engineering and gene therapy applications to acquire muscle healing. The development of such a 

novel therapeutic strategy hold tremendous potential for the treatment of pathological conditions 

associated with poor muscle regenerative capacity, such as those observed during injuries and 

muscular dystrophies.  

 
 
 
 

2.1 OBJECTIVE 1: EXAMINE THE PHENOTYPIC EFFECT OF NGF 
STIMULATION ON MDSCS IN VITRO. 

 
 
A variety of growth factors epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), 

insulin-like growth factor-1 (IGF-1), and stem cell factor (SCF) have been shown to be potent 

stimulators of the proliferation and myogenic differentiation of MDSCs in vitro [160]. The 

current study aims to address the phenotypic behavior (proliferation and fusion) of MDSCs 
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under the influence of NGF. Two stem cell markers: Sca-1 and CD34 and two myogenic 

markers: desmin and Pax7 will be examined before and after NGF stimulation. The proliferation 

kinetics and myogenic cell behavior of the control and stimulated MDSCs will be monitored 

using a novel bioinformatic cell culture imaging system, allowing time-lapse image analysis, 

including cell division time and fusion behavior. The myogenic differentiation capacity of these 

cells will be investigated by the ability of cells to differentiate in vitro and to fuse and form 

myotubes. We hypothesize that MDSCs’ marker profiles will remain the same while the 

myogenic marker expression, proliferation kinetics, and myogenic differentiation will change 

following NGF stimulation. 

 
 
 
 

2.2 OBJECTIVE 2: EVALUATE THE EFFECT OF NGF STIMULATION ON 
MDSCS’ REGENERATION  CAPACITY. 

 
 
Our preliminary studies indicate that growth factors promote the multipotent differentiation of 

MDSCs into muscle fibers, blood vessels, and peripheral nerve. They may also contribute to the 

formation of functional skeletal muscle tissue with adequate vascular and neural supplies. We 

hypothesize that NGF stimulation will promote multilineage differentiation, which in turn 

enhances engraftment efficiency (higher number of dystrophin-positive myofibers) and improves 

the regeneration capacity of MDSCs in mdx skeletal muscle. 
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3.0 INTRODUCTION 

 
 
 
 
Duchenne muscular dystrophy (DMD) is a progressive muscle disorder characterized by 

dystrophin deficiency that results in initial necrosis of muscle fibers, which in turn leads to 

progressive muscle weakness and, ultimately, death before or shortly after patients reach the 

second decade of life [19, 161]. Dystrophic muscle has a heightened susceptibility to structural 

damage and a decreased capacity to undergo self-repair. 

Researchers have localized dystrophin in the sarcolemma of myofiber [162-164], where it 

is thought to play a role in maintaining plasma membrane integrity and stability [22-24]. Like the 

muscles of humans with DMD, the muscles of mdx mice are dystrophin deficient [165], which 

makes the mdx mouse an excellent genetic and biochemical model for DMD. Unlike the muscles 

of humans with DMD, however, the muscles of mdx mice show no progressive weakness or 

progressive fibrosis; instead, they exhibit muscle hypertrophy and maintain their regeneration 

capacity [166].  

Although lack of dystrophin leads to progressive muscle degeneration, the evolution of 

DMD is likely to be dependent upon other factors, such as insufficient expression of growth-

associated proteins. After skeletal muscle damage, quiescent myogenic stem cells, which are 

normally embedded in the basal lamina of the muscle fibers, are activated and migrate toward the 

damaged area, where they undergo a cycle of proliferation, fusion, and differentiation that 

culminates in the generation of myofibers that replace the damaged ones [167]. In most cases, 
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myogenic differentiation is measured as increased expression of muscle cells functions such as 

creatine kinase activity, fusion of single cells to form myotubes, or elevation of myosin heavy or 

light chain expression, or other proteins associated with the contractile apparatus. Various 

growth factors can regulate skeletal myoblast proliferation and differentiation and are known to 

play a role in different stages of new muscle regeneration, therefore enhancing the healing 

process [111, 114, 115]. In addition to stimulating cell proliferation, growth factors can maintain 

cell survival and regulate critical intracellular signal transduction pathways [168] under 

conditions that otherwise lead to apoptotic death. 

To date, the list of growth factors known to affect the behavior of skeletal muscle cells or 

to be expressed in skeletal muscle tissue is extensive. However, few studies have investigated the 

role of NGF during skeletal muscle regeneration, and its exact mechanism of activity is poorly 

understood. In addition to acting as a target-derived factor for developing neurons, NGF has an 

autocrine effect on myoblast proliferation and fusion [169-171]. Moreover, adult knockout mice 

expressing a neutralizing antibody against NGF display a severe dystrophy and reduced muscle 

mass [172, 173]. Recent evidence suggests that NGF acts by binding to the high-affinity 

tyrosine-kinase receptor (TrkA) and the low-affinity p75-neurotrophin receptor (p75NTR). TrkA 

is found in developing adult rat myoblasts [174] and during differentiation of muscle cells [170]. 

NGF and p75NTR are widely expressed in myoblasts, human myocyte cultures, and regenerating 

myofibers in the muscle of DMD patients [175, 176].  

Previous studies in our laboratory have revealed that the delivery of human recombinant 

NGF protein via direct intramuscular injection improves both muscle recovery [130] and muscle 

force (fast-twitch strength) after strain injury [129]. However, the efficiency of direct 

intramuscular injection of growth factors varies according to the type of injury encountered and 

27 



 

is limited by the need to maintain high enough concentrations to achieve a therapeutic effect. In 

addition, the use of growth factor proteins to promote healing is severely hindered by the 

difficulty of ensuring their delivery to the injured site [177], their short biological half-lives [66, 

177], and the bloodstream’s rapid clearance of these molecules. For the study reported here, we 

used a combination of MDSC-based gene therapy and direct stimulation with NGF protein to 

examine the effects of NGF on the proliferation and differentiation capacity of MDSCs in vitro 

and their regeneration efficiency in mdx muscle in vivo. 
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4.0 MATERIALS AND METHODS 

 
 
 
 

4.1 ANIMALS 

 
 
Mdx mice (C57BL/10SCsn DMDmdx/J) were purchased from the Jackson Laboratory (Bar 

Harbor, ME). All animal protocols used for these experiments were approved by the Children’s 

Hospital of Pittsburgh’s IACUC committee (protocol # 3/02). 

 
 
 
 

4.2 CELL ISOLATION AND CULTURING 

 
 
A previously described modified preplate technique [96] was used to obtain MDSCs from 

normal (C57BL/6J) 3-week-old female mice. Cells were cultured at an initial density of 450 

cells/cm2 in flasks coated with collagen type I (Sigma-Aldrich Corp., St. Louis, MO) and 

maintained in proliferation medium (Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% horse serum, 10% fetal bovine serum (FBS), and 1% penicillin-

streptomycin; all reagents from Gibco, Inc., Carlsbad, CA) containing 0.5% chick embryo 

extract (Accurate Chemical, Westbury, NY). After 2 days of growth (confluency < 50%), the 
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cells were trypsinized, counted, and replated to generate the quantity of cells needed for each 

experiment. The preplating technique was used to purify slowly adhering MDSCs if necessary. 

 
 
 
 

4.3 GENERATION OF RETROVIRAL VECTOR EXPRESSING NGF 

 
 
NGF cDNA was amplified from plasmid pSP72NGFpA (provided by Dr. Paul Robbins) using 

primers NGF1 (agg cgg ccg ccc acc atg ctg tgc ctc aag cca gtg aaa) and NGF2 (tca aga tct tca gcc 

tct tct tgt agc ctt cct) and Pfu DNA polymerase (Stratagene, CA). The PCR product was cut with 

restriction enzymes Not I and Bg III and cloned into the same 2 sites of retroviral vector pCLX 

[178]. The vector DNA was converted into a replication-defective retrovirus by co-transfection 

(with calcium-phosphate precipitation) into packaging cell line GP-293 (Clontech, Palo Alto, 

CA) with a plasmid, pVSVG, which expressed vascular stomatitis virus glycoprotein as the viral 

envelope.  Conditioned medium containing retroviral vector was stored at -80 oC until use. 

 
 
 
 

4.4 STIMULATION OR RETROVIRAL TRANSDUCTION OF MDSCS WITH NGF  

 
 
MDSCs were plated at 20%–30% initial confluency and either stimulated with 100 ng/ml of 

NGF (Sigma-Aldrich) for 7 days (S-MDSCs) or retrovirally transduced with the CLNGF vector 

to express NGF (E-MDSCs) at a multiplicity of infection of 5 in the presence of polybrene (8 

µg/ml). Normal MDSCs neither stimulated nor transduced served as the control group (C-

MDSCs). E-, S-, and C-MDSCs were expanded for one week in proliferation medium (20% 
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serum) at an initial density of 8x104cells/well on collagen type I–coated 6-well plates, where 

they remained for 48 hours;  proliferation medium was then replaced with low-serum medium 

(2% FBS) in which cells were cultured for an additional 24 hours. Tissue culture supernatant was 

collected and spun at 1200 rpm for 5 minutes at 4 °C, and the level of functional NGF secreted 

by the cells in the tissue culture supernatant was measured by enzyme-linked immunosorbant 

assay (ELISA) (NGF Emax® Immunoassay System kit, Promega, WI) performed as detailed in 

the manufacturer’s instructions.  

 
 
 
 

4.5 CELL CHARACTERIZATION BY FLOW CYTOMETRY 

 
 
Flow cytometry was used to analyze the expression of the cell surface markers cluster 

differentiation (CD34) and stem cell antigen-1 (Sca-1). Cultured cells were trypsinized, spun, 

washed in a buffer made of phosphate buffered saline (PBS) (Dulbecco phosphate-buffer salt 

solution 1X; Mediatech, Inc., Herndon, VA) containing 0.5% bovine serum albumin (BSA) (ICN 

Biomedicals) and 0.1% sodium azide (Sigma-Aldrich), and then counted. After trypsinization, 

the cells were maintained on ice for the remainder of the procedure. The cells were then divided 

into equal aliquots and spun into a pellet. A 1:10 mouse serum (Sigma-Aldrich) was used to 

resuspend each pellet, and the suspensions were incubated for 10 minutes on ice. Predetermined, 

optimal amounts of both direct and biotin-conjugated rat anti-mouse monoclonal antibodies 

(CD34 and Sca-1) were placed in each tube for 30 minutes. Each experimental tube received 

FITC-conjugate for CD34 and biotin-conjugated Sca-1. A separate cell portion received 

equivalent amounts of isotype control antibodies. After several rinses, all fractions (including the 
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controls) were labeled with streptavidin-allophycocyanine (APC) for 20 minutes. Just before the 

analysis, 7-amino-actinomycin D (7-AAD) was added to each tube to exclude non-viable cells 

from the analysis. All antibodies, including APC and 7-AAD, were purchased from BD 

PharMingen (San Diego, CA). At least 10,000 live cell events were analyzed via flow cytometry 

(FACS Aria cytometer using FACS Diva software, Becton Dickinson, San Diego, CA). 

 
 
 
 

4.6 MYOGENIC MARKER EXPRESSION BY IMMUNOCYTOCHEMISTRY 

 
 
A fraction of each group was evaluated by immunofluorescent staining for expression of the 

myogenic proteins desmin and Pax-7. Analysis was performed on methanol-fixed cells that were 

blocked with 5% goat serum in PBS for 1 hour. The cells were incubated for 1 hour with the 

following primary antibodies: mouse IgG anti-desmin (1:250; Sigma-Aldrich) and mouse anti-

Pax-7 (1:50; R&D Systems, Minneapolis, MN). After being rinsed thoroughly with PBS, the 

cells were incubated for 30 minutes with the secondary antibody biotinylated goat anti-mouse 

IgG (1:250; Vector, Burlingame, CA). To fluorescently label the antigenic binding, the cells 

were washed and incubated with Streptavidin-Cy3 (1:500; Sigma-Aldrich) for 10 minutes; nuclei 

were then counterstained with DAPI (1:100; Sigma-Aldrich) in PBS. All dilutions were in 5% 

goat serum in PBS at room temperature. Negative control staining was performed using an 

identical procedure, with omission of the primary antibody. Northern Eclipse software (v.6.0, 

Empix Imaging, Mississauga, ON, Canada) was used to quantify the percentage of myogenic 

cells as the ratio of cells that strongly expressed desmin or Pax-7 to the total number of nuclei in 

10 randomly chosen fields at 200x magnification.  
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4.7 CELL DIVISION ANALYSIS   

 
 
The time lapse between cytokinesis events were recorded as the length of the cell division cycle 

from the time-lapsed video images from a novel microscope imaging system described below. 

For each population, 100 cells were selected and tracked. The division time (DT) of each cell 

was determined by direct observation of the cells from the time-lapsed video record. The 

initiation of cell division was marked at the time when two daughter cells were formed, and these 

cells were followed until their respective division. The lapse time between those two division 

events was recorded as the length of the cell division cycle. The average population doubling 

time (PDT) was calculated by fitting an exponential trend line to several measured data points. 

PDT was estimated by using the software package SigmaStat 2.0 (Jandel Scientific, San Rafael, 

CA) to perform nonlinear regression in order to generate the best fit to the curve. The fraction of 

daughter cells that were actively entering the mitotic cell cycle (α) was calculated from 

experimental data using PDT and DT and solving the re-arranged Sherley model to obtain the 

correlation coefficient (R2) for the nonlinear regression [179, 180], a value that indicates how 

well the data actually fit the model (such that 0 < R2 < 1.0).  

 
 
4.7.1 Experimental Settings 

 
 
Various cell culture and imaging settings such as cell plating densities, image acquisition 

intervals, duration of cell growth, viewfield limits, and optimized phase contrast have already 
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been tested [181]. These settings are important in determining the best densities at which the 

cells are able to interact with each other, while remaining visible. This way, the events can be 

captured accurately without the cells being lost to follow-up. 

MDSCs from each group were plated at an initial density of 450-500 cells/well in a collagen 

type I–coated 12-well plate in 20% serum medium, as described in section 4.2. Cells were 

allowed to adhere for 6-12 hours. Using the microscopic imaging system, time-lapsed visible 

imaging was obtained for individual cells and subsequently, for growing colonies [182]. In these 

experiments, groups of 4 to 6 cells were selected for imaging. Coordinate positions of these view 

fields were recorded by the CytoWorks software program that subsequently controls the time and 

position of stage movement. Images of each view field were acquired at 10-minute intervals for 4 

days. For each cell type and treatment condition, 15 view fields were selected from 6 wells. Cell 

population growth was monitored by counting the total number of cells, N, in the view field at 

12-hour intervals.  

 
 
4.7.2 Imaging System 

 
 
Our imaging system showing in Figure 4.1 consists of a customized mechanical stage containing 

a cell culture system and microscopy (Nikon Eclipse TE-2000-U microscope) specifically 

designed for time-lapsed imaging over long periods of time. In the system, an environmentally-

controlled biobox incubator is mounted to the stage of the microscope, which is in turn linked to 

a CCD camera (Automated Cell Technologies, Inc., Pittsburgh, PA). The x-y position of the 

stage is under the control of the user such that any position on a culture plate can be selected for 

viewing. The system accommodates any sized multi-well plates from 6-well to 384-well. 
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Multiple viewfields can be selected in each well. Each view field or x-y position that is selected 

becomes the location for time-lapsed imaging. Individual images are directly recorded in jpeg 

from the continuous images. Automated measures of the total numbers of cells can made at any 

time point and the division times can accurately determined by direct observation of cytokinesis. 

 
 
 

 

 
 
Figure 4.1 Bioinformatic Cell Culture and Imaging System (Courtesy of Bridget Deasy, 

PhD, Pittsburgh, PA)  

 
 
4.7.3 Non-exponential Growth Model 

 
 
This model was proposed by Sherley [180] and is particularly well-suited for studying the 

expansion of all cell populations and estimation of division time, mitotic fraction or population 

doubling time. Consequently, this model enables researchers to assess the behavior of a 

particular cell population under various culture conditions. The model is based on the Sherley 
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equation that is easy to use and offers a simple way of modeling cell growth for stem cell 

biologists based on the fraction of daughter cells that are dividing, α, while accounting for the 

presence of non-dividing cells: 
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where N is the number of cells at any time t, N0 is the initial number of cells, and both DT and 

cell number at each time point are determined by image analysis directly through individual 

observations of cytokinesis. A brief derivation of this model, including assumptions inherent to 

its use, is provided in Appendix B. 

 
 
 
 

4.8 MYOGENIC DIFFERENTIATION 

 
 
Myogenic differentiation was evaluated by immunocytochemical staining for fast myosin heavy 

chain (MHC) expression. E-, S-, and C-MDSCs were plated at an initial density of 1000 

cells/cm2 in multi-well collagen type I–coated 12-well plates in high-serum DMEM (details 

above) for 2 days. To induce fusion, proliferation medium was replaced with differentiation 

medium (low serum: DMEM supplemented with 2% FBS and 1% penicillin-streptomycin) for an 

additional 3 to 4 days. Immunocytochemistry staining was performed as described above with 

the monoclonal mouse anti-MHC (1:250; Sigma-Aldrich) as the primary antibody to reveal fast 

MHC expression. Nuclei were visualized by DAPI (1:100; Sigma-Aldrich). Representative fields 
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were evaluated to determine the degree of differentiation (percent ratio of MHC-expressing 

nuclei to total number of nuclei), an indicator of differentiation efficiency. 

 
 
 
 

4.9 MYOFIBER REGENERATION IN VIVO 

 
 
A total of 2–3x105 C-, E-, or S-MDSCs were injected into the gastrocnemius muscle of 6–8 

week-old male mdx mice. Mice in the E-MDSC group and their controls were 

immunosuppressed by subcutaneous injection of FK506 (2.5 mg/kg mouse body weight/day) 

beginning on the day of cell transplantation and continuing until the day of sacrifice [183]. Ten 

to fourteen days after transplantation, the gastrocnemius muscles were harvested, flash frozen in 

liquid nitrogen–cooled 2-methylbutane, and serially sectioned (10 µm). Dystrophin staining of 

cryopreserved tissue was performed on acetone-fixed, horse serum–blocked sections using a 

rabbit anti-dystrophin antibody (1:1000; provided by Dr. Terry Partridge) for 3 hours. Sections 

were then washed in PBS and incubated with biotinylated anti-rabbit IgG antibody for 1 hour. 

Next the sections were washed again and incubated with Streptavidin-Cy3 (1:300; Sigma-

Aldrich) for 20 minutes. All incubations were at room temperature. Fluorescence microscopy 

was performed and digital images were acquired. Muscle regeneration was assessed by counting 

the number of dystrophin-positive myofibers in an area containing the largest graft and 

calculating the regeneration efficiency index (RI: the number of dystrophin-positive fibers in the 

host muscle per 105 donor cells) for ease of comparison and graphical display [103].  
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4.10 QUANTIFICATION OF DYSTROPHIN-POSITIVE MYOFIBERS USING 
NORTHERN ECLIPSE 

 
 
The digital images of regenerated dystrophin-positive myofibers from gastrocnemius muscle 

sections immunostained against dystrophin were acquired using a Nikon Eclipse E800 

microscope equipped with a Spot digital camera (Figure 4.2A). Northern Eclipse software 

package (v6.0, Epix Imaging, Inc.) was used to perform dimensional analysis of dystrophin-

positive myofibers both manually and automatically. For manual count, each myofiber was 

numbered and counted using the manual counter provided by the software. For the automatic 

count, the images were converted into binary, black and white (8-bit grayscale) (Figure 4.2B). 

Using a manually-set threshold to delineate the immunofluoresence signal from the background, 

the Northern Eclipse software identifies myofibers that meet the chosen criteria by the user and 

places a circle or a number inside each individual myofiber. The pixel intensities were chosen as 

a set point so that any pixel darker than the set point is turned red/white while pixels lighter than 

the set point are turned cyan/black. The correct set point was determined manually by the user. 

This procedure is called thresholding (Figure 4.2C). During the thresholding, the user should 

maximize the number of connected components so that the myofibers remain distinct enough so 

that the software will be able to count each myofiber separately (Figure 4.3A). If the threshold 

point is at low pixel intensity, the red/white will flood the myofibers (Figure 4.3B), while with 

high pixel intensity, only a few fibers will be distinguished (Figure 4.3C), thereby resulting in a 

low count of myofibers and an under estimation of the data. Increasing the threshold will 

maximize the number of connected components (boundaries around each fiber), and the correct 

number of myofibers will be measured.  The software determines the actual myofiber cross-

sectional area of each fiber and provides quantitative measurements of the number of pixels 
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occupied by each individual fiber. The fiber area distribution (FAD) of 4000 individual 

myofibers per group was measured by determining the total number of pixels occupied by each 

fiber― a number that was easy to convert to µm2 with analysis software. H&E staining of non-

injected regions of the same grafts was used to detect the boundaries of the host mdx myofibers. 

The parameters such as cross-sectional area, diameter (maximal myofiber length in microns), 

minor axis diameter (the longest line through myofiber that is perpendicular to its orientation) 

and myofiber elongation (ratio of major axis to minor axis) were also calculated as median, 10th, 

25th, 75th, and 90th percentiles (for detailed descriptions of each parameter refer to Appendix C). 

This data was compared with control or between groups, using non-parametric one-way 

ANOVA on ranks with a Dunn’s method for multiple comparisons with an unequal sample size.  
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Figure 4.2 Dimensional analyses of immunohistochemically-labeled dystrophin-positive 
myofibers 

 
 
 

 
 

Figure 4.3 Challenges encountered during thresholding an image 
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4.11 STATISTICAL ANALYSIS 

 
 
Differences with p < 0.05 were considered statistically significant. All values are given as the 

mean ± standard deviation of the mean (SD). Direct comparisons between treatment and control 

groups were made by using Student’s t test or the Mann-Whitney Rank Sum test (where 

appropriate). Multiple group comparisons were made by using one-way analysis of variance 

(ANOVA). In cases where the data failed this test and indicated that the data varied significantly 

from a population with a normal distribution, nonparametric tests, the Kruskal-Wallis One Way 

Analysis of Variance on Ranks, were used (p<0.05 significance level).  Nonparametric 

distributions were also detected and comparisons were made using Kruskal-Wallis one-way 

ANOVA on ranks with Dunnett’s test for comparing treatment groups with a single control 

group or comparing between groups with an equal number of sample size; or Dunn’s test for 

comparing treatments groups with unequal number of sample size. All statistical testing and 

regression analyses were performed using SigmaStat for Windows Version 2.0 (Copyright 1992-

1995 Jandel Corporation).  
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5.0 RESULTS 

 
 
 
 

5.1 QUANTITATIVE DETECTION OF NGF 

 
 
Two different methods of NGF stimulation were used in this study: retroviral transduction of 

MDSCs with the CL-NGF vector to induce expression of human NGF (E-MDSCs) and direct 

stimulation of MDSCs with NGF protein (100 ng/ml) for 7 days (S-MDSCs). For both groups, 

normal MDSCs that were neither stimulated nor transduced served as controls (C-MDSCs). We 

used ELISA to measure the levels of NGF secreted by MDSCs in vitro. After transduction with 

CL-NGF that carries a 3’ long-terminal repeat (LTR), virus packing signal (ψ), and human NGF 

cDNA driven by the cytomegalovirus promoter (CMV-P), genetically engineered MDSCs (E-

MDSCs) were able to synthesize, process, and secrete active human NGF (Figure 5.1).  

 
 
 

 

 

Figure 5.1 Schematic representation of the retroviral vector expressing NGF  
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Quantitative detection by ELISA of NGF protein within the cell supernatant revealed that 

the level of NGF secreted by E-MDSCs reached 307.4 ± 42.5 ng/106cells/24 hours 3 days after 

transduction and continued to be high 6 and 9 days after transduction (173.2 ± 11.1 

ng/106cells/24 hours and 164.9 ± 28.2 ng/106cells/24 hours, respectively, *p < 0.05). In contrast, 

NGF-stimulated MDSCs (S-MDSCs) and control (non-treated) MDSCs (C-MDSCs) on average 

secreted NGF at barely detectable levels at the three time points (0.09 ± 0.17 ng/106cells/24 

hours and 0.02 ± 0.37 ng/106cells/24 hours, averages for S-MDSCs and C-MDSCs, respectively, 

Figure 15).  

 
 
 

 

Figure 5.2 Quantitative detection by ELISA of the NGF protein in the cell supernatant  
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5.2 PROLIFERATION KINETICS 

 
 
Growth factors stimulate the proliferation of myogenic precursor cells. To investigate the cellular 

response of MDSCs to NGF, we examined cellular division time (DT), and population doubling 

time (PDT). We fit experimental data sets for C-, E-, and S-MDSCs to the Sherley model 

equations by using nonlinear regression with the correlation coefficient R2 > 0.90 to estimate 

mitotic fraction (α) (i.e., the fraction of daughter cells that are actively dividing). Our data 

suggest that the average DTs (C-MDSCs = 11.9 hours, E-MDSCs = 11.5 hours, and S-MDSCs = 

12.1 hours) were not significantly different in the various groups (p = 0.053, Kruskal-Wallis 

analysis on ranks) and that the PDTs of the different cell groups were also quite similar (11–13 

hours). Moreover, we observed a strong association (as indicated by the high correlation 

coefficient) for all of the groups (R2 = 0.99), but no difference in the estimated α for the 3 groups 

(C-MDSCs = 0.94, E-MDSCs = 0.92, and S-MDSCs = 0.94). The mean mitotic fraction 

remained relatively constant among the groups (~0.94) (Figure 5.3). These results indicate that 

neither NGF transduction nor stimulation significantly alters the proliferation kinetics of 

MDSCs. 
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Figure 5.3 Proliferation kinetics of MDSCs 

 
 
 
 

5.3 IN VITRO STEM CELL AND MYOGENIC MARKER PROFILES 

 
 
We investigated the expression levels of the stem cell markers CD34 and Sca-1 by flow 

cytometry. Data were collected by performing logarithmic amplification on 5000 cells, excluding 

cell debris by combining forward and side scatters. This data is presented as dot plots in Figure 

5.4A (the percentage of cells in each quadrant is indicated in the upper right-hand corner). Our 

results indicate high expression levels of the stem cell markers CD34 and Sca-1 (> 70%) by the 
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control group (C-MDSCs), 7 days after either retroviral transduction of the cells with the CL-

NGF vector (E-MDSCs) or stimulation with 100 ng/ml NGF (S-MDSCs). We observed no 

significant difference between the groups (in terms of stem cell marker expression) after 2 weeks 

of in vitro expansion (p = 0.655). This marker stability suggests that NGF does not affect the 

stem cell marker expression of MDSCs in vitro.  

We also used immunofluorescent staining to assess the cells’ expression of two myogenic 

proteins: Pax-7 and desmin. Myogenic differentiation assay revealed low levels of Pax-7 and 

desmin expression. We quantified the expression of Pax-7 and desmin as the ratio of nuclei 

positive for Pax-7 or desmin to the total nuclei in 10 randomly chosen fields. As shown in Figure 

5.4B, there were no significant differences in Pax-7 expression by the different groups of treated 

and untreated MDSCs (p = 0.148, n=6). Whereas E- and C-MDSCs expressed similar levels of 

desmin, we observed significantly more desmin-expressing cells in the S-MDSC group (p < 

0.05, n=6). 
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Figure 5.4 Marker profile analysis of MDSCs 

 
 
 
 

5.4 IN VITRO MYOGENIC DIFFERENTIATION 

 
 
After cultivating the cells under low-serum and high density conditions, we assessed myogenic 

differentiation in the 3 groups by performing immunohistochemical staining for fast myosin 
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heavy chain (MHC) expression to analyze myotube formation Representative images of MHC-

positive C-, E-, and S-MDSCs (Cy3; red) overlaid on nuclear counterstain (DAPI; blue) are 

shown in Figures 5.5A–C. We defined differentiation efficiency as the percentage ratio of MHC-

expressing nuclei to total number of nuclei. C-MDSCs consistently showed a differentiation 

efficiency of 35%, and E-MDSCs showed 30% differentiation efficiency. In contrast, the 

differentiation efficiency of S-MDSCs, 26%, was significantly lower than that of C-MDSCs, 

which indicates that S-MDSCs have a decreased ability to fuse and form multinucleated 

myotubes (*p < 0.05, n=3, Figure 5.5D). Scale bar represents 100 µm. 

 
 
 

 
D 

 
 

Figure 5.5 Myogenic differentiation in vitro 
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5.5 MUSCLE REGENERATION 

 
 
We evaluated the ability of the 3 groups of cells (E-, S-, and C-MDSCs) to regenerate dystrophic 

skeletal muscle by transplanting 3x105 cells from each cell group into the gastrocnemius muscles 

of 8-week-old male mdx mice. Fourteen days after transplantation, we sacrificed the animals; we 

harvested the injected gastrocnemius muscles, snap froze them, and sectioned them using a 

cryostat. Using immunohistochemical staining, we assessed the number of dystrophin-positive 

myofibers with manual count and quantitated muscle regeneration in terms of the regeneration 

index (RI: the number of dystrophin-positive fibers in the host muscle per 105 donor cells). The 

dystrophin-positive grafts of E- and C-MDSCs are shown in Figures 5.6A and 5.6B. The average 

RI of E-MDSCs was significantly larger than that of C-MDSC’s (435.6 ± 85.5 vs. 197.5 ± 53.8, 

*p < 0.001, n=8, Figure 5.6C). Scale bar represents 250 µm. 
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Figure 5.6 Dystrophin-positive myofiber regeneration elicited by MDSCs transduced with 
CL-NGF 

 
 
 

Differences in the size of the dystrophin-positive grafts generated by S-MDSCs vs. C-

MDSCs were even more dramatic, as shown in Figures 5.7A and 5.7B, respectively. Our 

analysis revealed that the average RI of S-MDSCs was 3-fold higher than that of C-MDSCs (852 

± 203.3 vs. 266.8 ± 137.4, < 0.001, n=11, Figure 5.7C). In addition, the RI of S-MDSCs was 

statistically higher than that of E-MDSCs (*p < 0.001). Scale bar represents 250 µm. 
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Figure 5.7 Dystrophin-positive myofiber regeneration elicited by MDSCs stimulated with 
NGF protein 

 
 
 
 

5.6 MORPHOLOGICAL ANALYSIS 

 
 
Cell morphology was qualitatively examined from the time-lapsed images obtained from the 

bioinformatic cell culture system (200x magnification) during expansion. An example of such 
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images at 0-96 hour’s intervals is shown in Figure 5.8. It is apparent that the morphology of the 

cell population in all three groups is heterogeneous, containing mainly small round shape, with 

some well-defined spindle-shaped cells also being observed.  

 
 
 

 

 

Figure 5.8 Representative time-lapsed images of C-MDSCs population demonstrating 
visualization and morphological recognition of cell morphology in culture (refer to attached 
video clip by double clicking on first image) 

 
 
 

Quantitative analysis of fiber area distribution (FAD) was evaluated using the same 

immunohistochemical engraftment that was used to calculate the RI. FAD analysis of grafts 

generated by the 3 groups of MDSCs revealed that more than 50% of the total number of 

dystrophin-positive myofibers in each group had areas of 0–100 µm2.  In this range, no 

statistically significant differences existed among the treatment groups compared to C-MDSCs 

(p = 0.678; Figure. 5.9). We also analyzed non-injected areas of mdx muscle and found that most 

of the myofibers had areas > 1000 µm2. A non-parametric distribution weighted toward smaller 
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myofiber sizes was apparent. These findings indicate that C-, E-, and S-MDSCs all generated 

new dystrophin-positive myofibers, as indicated by their small size and centronucleation (Figure. 

5.10, arrow). Scale bar represents 50 µm. 

 
 
 

 
 

Figure 5.9 Fiber area distribution (FAD) of newly generated (dystrophin-positive) and host 
myofibers 
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Figure 5.10 A high magnification image of a small portion of an E-MDSC graft shows a large 
number of centronucleated myofibers 

 
 
 

Quantitative measurement of other morphometric parameters such as cross-sectional area, 

diameter, minor axis diameter, and myofiber elongation were also measured and compared based 

on the same images used to calculate RI. Figure 5.11 illustrate the myofiber measurement using 

box plots with median, 10th, 25th, 75th, and 90th percentiles as vertical boxes for each parameter 

mentioned above. Dystrophin-positive myofibers generated by E-, S-MDSCs groups showed a 

statistically greater median values for area, diameter, perimeter, minor axis diameter when 

compared to C-MDSCs (p < 0.05) indicating accelerated muscle fiber regeneration. Median 

cross-sectional area: C-MDSCs (63.2 µm2), E-MDSCs (112.8 µm2), S-MDSCs (95.3 µm2). 

Median diameter: C-MDSCs (14.4 µm2), E-MDSCs (19.7 µm), and S-MDSCs (17.3 µm). 

Median minor axis diameter: C-MDSCs (7.7 µm2), E-MDSCs (11.5 µm), and S-MDSCs (9.6 

µm). Elongation: C-MDSCs (1.7), E-MDSCs (1.7), and S-MDSCs (1.7).  The elongation 

54 



 

parameter (the ratio of the major axis of the myofiber to of its minor axis) between the groups 

did not differ, thereby showing the same physical morphology of myofibers in all the groups 

(Table 5.1). 

 
 
 

 

 

Figure 5.11 Morphological features of dystrophin-positive myofiber 
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Table 5.1 Dimensional characteristics of dystrophin-expressing myofibers 

 
 

 
Area (µm2) 

 

 
Elongation  

 
Median

 
Percentiles 
25%-75% 

 
Median

 
Percentiles 
25%-75% 

 
Mdx 
(non-injected) 

 
2390.3 
 

 
1481 – 3724.8

 
1.7   

 
1.4 – 2.2 

 
C-MDSCs 

 
63.2 

 
33.9 – 155.8 

 
1.7 

 
 1.4– 2.1 

 
E-MDSCs 

 
112.8 

 
48.9 – 288 

 
1.7 

 
1.4 – 2.2 

 
S-MDSCs 

 
95.3 

 
44.9 – 234.5 

 
 1.5  

 
1.3 – 1.7 

 

 
Diameter (µm) 

 

 
Minor Axis Diameter (µm) 

 
 

Median
 

Percentiles 
25%-75% 

 
Median 

 
Percentiles 
25%-75% 

 
Mdx 
(non-injected) 

 
14.4 

 
10.6 – 22 

 
7.7 

 
5.8– 12.5 

 
C-MDSCs 

 
19.7 

 
12.5 – 29.7

 
11.5 

 
7.3 – 17.7 

 
E-MDSCs 

 
17.3 

 
11.5 – 26.8

 
9.6 

 
5.8 – 15.3 

 
S-MDSCs 

 
71.8 

 
57.4 – 92.9

 
48.8 

 
38.3 – 62.2 

 
 
 

At last, the method of manual and automatic count of dystrophin-positive myofibers were 

compared between engraftments obtained from all the groups. While small engraftments were 

easily analyzed with the automatic count, the larger engraftments were challenging. The percent 
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difference between the manual and automatic count were on average 12.4% for small 

engraftments (C-MDSCs) and increased to 23.6-44% for larger engraftments (E-MDSCS and S-

MDSCs, respectively) showing an underestimation of myofiber counts by automatic analysis. 

This is more likely due to loss of resolution in larger engraftments at the edges where the images 

are merged (Figure A.2, Appendix C), and also higher numbers of small, newly generated 

myofibers that are difficult for the software to detect. 
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6.0 DISCUSSION 

 
 
 
 
Although the precise role that NGF plays in the different steps of muscle regeneration remains 

largely unknown, our observations indicate that NGF can improve the regeneration ability of 

MDSCs in skeletal muscle of mdx mice. Whereas the results of our in vitro experiments 

demonstrate that neither retroNGF transduction nor direct stimulation with NGF protein changes 

the marker profile of MDSCs or their proliferation dynamics, direct stimulation with NGF 

protein appears to delay the myogenic differentiation of MDSCs.  

It is well documented that the process of muscle regeneration in normal and dystrophic 

muscle depends on locally produced cytokines and growth factors [111, 121, 125, 184]. Skeletal 

muscle injuries induce a well-established sequence of cellular events that result in the release of 

growth factors that stimulate quiescent satellite cells and other muscle precursor cells to enter the 

cell cycle, proliferate, and eventually fuse to form newly regenerated myofibers and restore 

muscle architecture [167, 185]. Some studies suggest that NGF, the best characterized 

neurotrophic factor, plays an important role in restoring innervation in many tissues after injury. 

For example, NGF is integral to the survival of sensory and peripheral neurons that control 

contraction of smooth muscle [186-188] and axonal regeneration in skeletal muscle [189].  

A prior study in our lab has shown that MDSCs stimulated with NGF or vascular 

endothelial growth factor (VEGF) differentiated toward nerve and endothelial lineages, 

respectively, in a more effective manner when compared with non-stimulated cells. This was 
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evident by a greater number of cells expressing 2’,3’-cyclic-nucleotide 3’-phosphodiaesterase 

(CNPase), a myelin-associated enzyme, and von Willebrand Factor (vWF), an endothelial cell 

marker [96]. These findings suggest that the release of local environmental cues (i) can trigger 

the differentiation of muscle stem cells toward non-myogenic lineages after transplantation of the 

cells into dystrophic muscle and (ii) may contribute to the regeneration of functional muscle 

tissue by enhancing vascular and neuronal supplies.  

Here, we investigated whether MDSCs retrovirally transduced to express NGF display 

different proliferation behavior or altered myogenic differentiation in vitro and improved muscle 

regeneration of dystrophic muscle in vivo.  We used MDSCs rather than satellite cells because 

the former exhibit a superior transplantation capacity and the ability to undergo multilineage 

differentiation [96, 103]. The ex vivo gene transfer approach enables constant delivery of lower, 

more physiological doses of proteins that, if delivered by direct injection, would be quickly 

degraded by natural processes. Retroviral vectors transduce dividing cells with high efficiency 

[190] and elicit long-term, stable expression of the gene of interest by integrating into the host 

cell genome; such vectors are already being used in clinical settings [191, 192]. Our results 

indicate that MDSCs transduced with a retrovirus vector continuously delivered high levels of 

NGF for up to 9 days in culture, while maintaining their typical stem cell marker profile (CD34 

positive and Sca-1 positive). After injection into the skeletal muscle of mdx mice, E-MDSCs 

proliferated and differentiated to generate new muscle fibers that formed large grafts by as early 

as 14 days. These data suggest that the expression of NGF by retrovirally transduced MDSCs is 

relatively stable in vivo and may enhance MDSCs’ survival at the muscle regeneration site.  

In spite of what we have hypothesized in our specific aim 1, the proliferation dynamics of 

the treated MDSCs, including PDT, DT, and α, were similar regardless of the treatment method 
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(i.e., stimulation or transduction). However, S-MDSCs exhibited higher regeneration efficiency 

in vivo than E-MDSCs or C-MDSCs, perhaps due to the delayed differentiation of S-MDSCs 

caused by NGF stimulation in vitro. Some research suggests that cells with delayed fusion 

characteristics have increased regeneration capacities [103]. This could explain our observation 

that S-MDSCs differentiated into myotubes more slowly than did C- and E-MDSCs in vitro and 

exhibited the greatest regeneration efficiency in vivo. It is feasible that the higher proliferation 

ability of S-MDSCs before fusion in vivo allowed them to remain in an undifferentiated state 

longer, thereby resulting in enhanced regeneration. It should be noted that NGF in target tissues 

is in the subpico-molar range [193, 194]. Consequently, it is likely that high levels of NGF 

expression such as in the E-MDSCs, reflect changes such as down regulation of TrkA and 

p75NTR receptors that can diminish the overall binding affinities for NGF. 

Our currently-used methodology measures the dystrophin expression of transplanted cells 

participating in the regeneration process as a whole, including both the conversion of already 

existing myofibers, through donor-host fusion, as well as the formation of new myofibers from 

donor-host and donor-donor cell fusion.  One indirect way to assess these differences of the 

probable route taken by the injected cells (i.e. new myofiber formation), is the fiber area 

distribution (FAD) of dystrophin myofibers relative to those of the control non-injected muscle. 

The FAD showed that most of the individual dystrophin-positive myofibers in all of the MDSC 

groups had areas of 0–100 µm2, whereas most of the host mdx myofibers had areas of > 1000 

µm2. Furthermore, nuclear staining with DAPI revealed that most of the small myofibers 

observed in the MDSC grafts were centronucleated. In combination, these results suggest that 

injection of C-, E-, or S-MDSCs led to the formation of new dystrophin-positive myofibers via 

the fusion of the donor cells with one another rather than the fusion of donor cells with host 
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muscle fibers. Recent studies conducted by Toti et al. 2003 [195] show that only regenerated 

myofibers in the muscles of DMD patients consistently express NGF; dystrophic myofibers or 

healthy myofibers do not show NGF immunoreactivity. In addition, the authors report that 

regenerated myofibers in muscle biopsies from DMD patients are small, round, and occur mostly 

in clusters. These observations led them to hypothesize that in addition to its autocrine function, 

NGF exhibits a paracrine effect on neighboring regenerated myofibers. Our observations of 

myofibers generated by MDSCs transplanted in the skeletal muscle of mdx mice, particularly E-

MDSCs, suggest a similar phenomenon. 

It is worth mentioning that the method of evaluating muscle regenerative efficiency was 

assigned through manually counting dystrophin-positive myofibers on only sections of muscle 

with the largest engraftment as opposed to accounting for the area occupied by the myofibers and 

thus providing only a two-dimensional view of the regenerative process. This current method of 

quantifying dystrophin expression measures only local dystrophin expression, while ignoring the 

distribution of dystrophin-positive myofibers across the entire gastrocnemius muscle. It would be 

extremely difficult and time consuming to quantify the dystrophin-positive myofibers in the 

entire length of the muscle. Therefore, sophisticated image analysis software is needed with 

three-dimensional reconstruction to account for dystrophin-positive expression across the entire 

muscle. This would be practical for larger-scale studies with multiple group comparisons such as 

those being performed here.  
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7.0 FUTURE STUDIES 

 
 
 
 
Aside from those studies already mentioned within previous sections, further experimentation is 

necessary in order to confirm the evidence presented here. In addition, more specific studies to 

address the underlying mechanisms of NGF action in muscle regeneration that would build upon 

and presumably strengthen the work herein presented are also needed. As a follow-up to the 

work described here, experiments will be conducted to further investigate the role of NGF 

stimulation mediating MDSCs’ survival or promotion of cell death to explain the myogenic 

differentiation status and regeneration capacity. When placed in vitro, expansion and/or 

activation of quiescent progenitor populations may likely occur due to growth factors’ effect. 

This may have important implications in terms of regeneration due to direct participation or the 

cells’ chemoattractant abilities. The differences of cell survival and proliferation of MDSCs 

injected into the skeletal muscle may in part explain our improved outcome in regeneration 

capacity of stimulated versus non-treated MDSCs. To test this assumption, TUNEL assay can be 

used to determine differences in the number of apoptotic cells at the site of transplantation 

following injection. Apoptotic cells are revealed by using a fluorescence-conjugated dUTP to 

label the 3’ ends of the DNA fragment generated by activated endonucleases.  One can also 

investigate the actively-dividing cells within injected muscle by tracking the BrdU-labeled cells 

as representative of the mitotically active cells versus apoptotic cells at the site of injection.  
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A number of groups have recently shown that Akt expression, a prosurvival protein, plays an 

important role in myoblasts survival [196] via p75NTR , the low affinity receptor of NGF. The 

p75NTR mediated signals are biologically important for the normal muscle development, since the 

absence of p75NTR receptor in mutant mice showed an impaired muscle strength [196]. Since Akt 

is known to mediate cell survival, and p75NTR activation can promote phosphorylation of Akt, we 

postulate that Akt is activated by NGF via p75NTR to promote the survival of the MDSCs and 

their transition into differentiated states. It was just reported by Shailaja et al. 2005 [196] that 

endogenous activation of Akt is most likely mediated by secreted NGF, and the significance of 

the autocrine signaling by NGF is underscored by its down regulation prior to differentiation 

[170]. So, we predict that the endogenous Akt activation is most likely due to expression of NGF 

by the engineered and stimulated MDSCs with NGF and its subsequent autocrine signaling.  

It should be emphasized that high level of NGF may reflect changes in the levels of 

p75NTR expression at different stages of myogenesis. As a follow-up to the work described here, 

experimentation has already been initiated to further investigate the receptor levels in culture 

after NGF stimulation. To determine if Akt expression plays a role in the improved 

transplantation capacity of E- and S-MDSCs compared to C-MDSCs, levels of Akt should be 

monitored. Protein extract will be prepared for Western blot analysis using manufacturer 

recommendations with antibodies against Akt and phosphorylated Akt on the Ser 473 (Cell 

Signaling Technology, Beverley, MA). The Akt kinase activity will be measured using the Akt 

Kinase Assay Kit using GSK-3 α/β fusion protein as a substrate on immunopercipitated Akt 

(Cell signaling Technology, Beverley, MA). We believe that these future experiments may 

provide evidence elucidating the signaling mechanisms and providing a linkage between the in 
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vitro settings within the context of muscle regeneration. This will offer insight into our current 

understanding of the underlying factors that promote muscle regeneration versus atrophy. 

The formation of newly regenerated dystrophin-positive myofibers in dystrophic skeletal 

muscle does not always correlate with the physiologic performance in the injured muscle, and 

effective healing, however, involves the combination of both measures. In this regard, 

independent confirmation of physiologic measurements (e.g. contractile properties of muscle) 

should be performed before any conclusions regarding the long-term outcome and functionality 

of regenerated muscle fibers can be made. The gastrocnemius muscle should be studied under 

isometric conditions in order to assess specific force generation. In addition, repetitive 

lengthening actions, i.e. “eccentric contraction,” should be undertaken in order to assess the 

ability of regenerated muscle to resist contraction-induced decreases in force output. Unlike 

DMD patients, mdx mice exhibit a mild phenotype partially because of higher expression of 

utrophin, a protein closely related to dystrophin [197, 198] that partially compensates for lack of 

dystrophin [36, 199]. Indeed, double mutant mice mdx/utr -/- lacking both dystrophin and 

utrophin genes develop severe muscular dystrophy and die prematurely [200, 201], similar to 

outcomes observable in DMD patients. Therefore, designing a better model to study contractile 

properties of the muscle is currently in demand and under investigation. 
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8.0 SUMMARY AND CONCLUSIONS 

 
 
 
 
Growth factors play important roles as signaling molecules throughout postnatal development, 

adult life, and aging. This study investigated the effect of nerve growth factor (NGF) on the 

muscle regeneration of the skeletal muscle of dystrophic (mdx) mice. Transplantation of muscle-

derived stem cells (MDSCs) either stimulated with or genetically engineered to express NGF 

resulted in the regeneration of significantly more dystrophin-positive myofibers than did 

transplantation of control (non-treated) MDSCs. NGF did not alter the marker profile or 

proliferation behavior of MDSCs; however, MDSCs stimulated with NGF exhibited delayed in 

vitro differentiation, which may at least, partially explain their improved regeneration capacity 

observed in vivo. 

In conclusion, these findings underscore the importance of NGF during skeletal muscle 

tissue remodeling and indicate that this molecule can improve the muscle regeneration capacity 

of muscle stem cells. Additional studies focused on NGF will substantially enhance our 

understanding of its mechanism and, in so doing, may lead to the development of alternate 

strategies for the treatment of DMD and other muscular dystrophies. 
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APPENDIX A 
 
 
 
 

PREPLATE TECHNIQUE: ISOLATION OF THREE POPULATIONS OF MUSCLE-
DERIVED CELLS 

 
 
Gastrocnemius muscles of several adult-aged normal mice (3 weeks of age, C57 BL/10J; Jackson 

Laboratories) were obtained under aseptic techniques.  A single cell suspension was obtained by 

digestion and enzymatic dissociation of combined muscles to obtain the appropriate number of 

cells. Enzymatic dissociation was performed by serial digestion of hand-minced muscles in 0.2% 

(by weight) collagenase-type XI solution (Sigma) for 1 hour, 0.3% dispase (Gibco-BRL) for 45 

minutes, and 0.1% trypsin (Life Technologies) for 30 minutes.  The final cell suspension was re-

suspended in serum-supplemented Dulbecco’s modified Eagle’s medium (DMEM, containing 

10% fetal bovine serum, 10% horse serum, 0.5% chick embryo extract by volume, and also 100 

U/mL penicillin and 100 µg/mL streptomyocin; Gibco-BRL), which was also used for 

subsequent culturing, and added to a T-75 collagen-coated flask (collagen Type I, Sigma). After 

2 hours, floating cells contained within the supernatant were removed and transferred to a second 

T-75 flask.  Fresh medium was added to the first set of adherent cells (termed preplate 1, or 

PP1), and this procedure was continued for PP2 through PP6 at subsequent 24 hour periods.  A 

smaller surface area flask, T-25, was used for PP6 as the number of remaining non-adherent cells 

by this point was comparatively lower. This process resulted in six primary cultures of adherent 

cells with increasing initial adhesion times that are highly fibroblastic in nature [95, 202-204] 

that were subsequently used for surface protein and desmin analysis. Based on previous reports 

[95], the non-myogenic cells in pp2 and pp3 were removed from the cultures by replating the 

cells. The resulting enriched pp2 and pp3 desmin [+] cells were combined with pp4 and pp5 cells 

and were termed “early preplate cells” (EP). Cells in the pp6 cell population took an additional 

24–72 h to attach to collagen-coated dishes after transfer from pp5 and were termed “late 
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preplate cells” (LP). Most of the LP cells died during the first 1–2 wks of the cultivation period, 

with very few of the adherent surviving cells proliferating and forming clonal colonies that are 

called “long-term proliferating” (LTP) cells or muscle-derived stem cells (MDSCs). A flow chart 

for the isolation of different population of muscle-derived-cells (EP, LP, and LTP or MDSCs) 

based on their adhesion characteristics to collagen coated flasks are shown below (Figure A.1).  

 
 
 

 

pp1 

 
 
 

Figure A. 1 Schematic diagram of the preplating technique used for the isolation of muscle-
derived cell population 

2 hrs

24 hrs 
pp2 

24 hrs 
pp3 

24 hrs pp4 EP 

24-72 hrs pp5 

pp6 

LP LTP (MDSCS) 
1-2 wks 
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APPENDIX B 
 
 
 
 

NON-EXPONENTIAL GROWTH MODEL 
 
 
Mathematical growth models are necessary tools that play a key role in characterizing and 

measuring the kinetic parameters of stem cell populations and understanding stem cell dynamics. 

Within heterogeneous stem cell populations such as MDSCs, a fraction of the cell population 

often remains in a non-dividing state.  To account for this fraction in describing cell population 

growth, a non-exponential growth model has been proposed by Sherley [180]. To simplify the 

mathematical description of non-exponential growth, the following assumptions are made: 1) 

cells undergo asymmetric divisions, such that dividing cells are capable of giving rise to both 

dividing and non-dividing cells; 2) DT of the mitotically-active fraction remains constant; and 3) 

non-dividing cells do not re-enter the cell cycle.  The validity of these assumptions has been 

discussed within the myogenic cell compartment [181].  Starting with an initial number of cells, 

N0, the number of cells at any subsequent doubling time interval can be described by the 

following equation: 

 
oo NNN )1(21 αα −+=  

 
where the first term represents the mitotically-active fraction (assuming the cells split to 2 

daughter cells) and the second term represents the non-mitotically-active (non-dividing) fraction.  

Using the assumption that daughter cells that are dividing remains constant, such that at time 

interval = 2, we have 

 
ooo NNNN )1()2)(1()2(22 ααααα −+−+=  
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or 
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Expansion of the terms and simplification leads to the following expression 
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Now, if we define i = any positive value t/DT, and apply the identity, we have the following 

equation: 
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where the cell number, N, at any time, t, depends on: 1) the initial number of cells (N0), 2) the 

division time (DT) (FD and GT, respectively in Sherley et al.) and 3) the mitotic fraction (α) or 

the fraction of daughter cells which are actively dividing. The Sherley model [180] includes a 

parameter that accounts for the presence of non-dividing cells (quiescent or senescent cells): 
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Here, we can see that if α= 1, the equation reduces to the general exponential 

equation . As α approaches 0.5, the model equation becomes 
t/DT  NN 20= DTtN  NN  200 +=  

and there is linear growth with a slope of N0/2DT.  

 

It should be recognized that the phrases ‘division time’ and ‘doubling time’ are not equal 

(DT≠ PDT) [181]. Simply, division time (DT) should be understood as to the time that it takes 

for an individual cell to complete the cell cycle (cytokinesis) and doubling time, or more 

correctly population doubling time (PDT), is defined as the time it takes for a population of cells 

to double. 
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If all cells in a given population are mitotically active then, PDT=DT, however, if there 

are non-mitotic cells present within the population then PDT∫DT. When non-dividing cells are 

present, the population doubling time is necessarily slower than the division time. 

The appropriate equation to use to estimate PDT is as follows: 

 
( )t/PDT

0 2 NN =  

 
where N is the number of cells at time t, and N0 is the initial number of cells and PDT is the 

population doubling time.  

 

This comes from the more general exponential equation: 

 
kt

0 e NN =  

 
to get the number of population doubling time, use the following equation: 

 

PDT
t doublings # =

 
 
(e.g. if PDT = 10 hrs, then at time t = 24 hrs, you have 2.4 population doublings). When solving 

the first equation above for t/PDT: 
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as a result, 

 
 

0
2 N 

Nlogdoublings population of# =
 

 
The Sherley model [180] equation can be used to obtain PDT based on mitotic fraction, α, and 

DT by setting the PDT as the time t, where N=2N0  and  
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Here, it is observed that population doubling time is now more accurately represented as a 

function of both α and DT.  
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Nonlinear Regression  
 
[Parameters] 
F=1 
[Variables] 
Nexp=col(2) 
t=col(1) 
[Equations] 
GT=cell(3,1) 
n=cell(2,1) 
ep=(t/GT)+1 
A=1-(2*F)^ep 
B=2-4*F 
N=n*(0.5+(A/B)) 
fit N to Nexp 
[Constraints] 
F>0 
F<1 
[Options] 
 
 
 
C-MDSCs 

 
R = 0.999 Rsqr (R2) = 0.999  Adj Rsqr = 0.999 
 
Standard Error of Estimate = 5.896  
 
  Coefficient StdError  t  P  VIF   
F  0.945   0.00205  460.722  <0.001   1.000   
 
Analysis of Variance 

   DF SS  MS  F  P 
Regression  0 189225.058 189225.058 5442.733 >1e20 
Residual   6 208.599  34.767   
Total   6 189433.657 31572.276   
 
 
Normality Test: Passed (P = 0.385) 
 
Constant Variance Test: Passed (P = 0.054) 
 
Power of performed test with alpha = 0.050: 1.000 
 
Parameter Value   Std.Err  CV(%)  Dependencies 
alpha   9.447e-1    2.050e-3  2.171e-1  -0.0000000 
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E-MDSCs 

 
R = 0.997 Rsqr (R2) = 0.995  Adj Rsqr = 0.995 
 
Standard Error of Estimate = 5.896  
    
Coefficient StdError  t  P  VIF   
F  0.923   0.00417  221.435  <0.001   1.000   
 
Analysis of Variance: 
   DF SS  MS  F  P  
Regression 0 195489.727 195489.727 1182.230 >1e20  
Residual   6 992.141  165.357   
Total  6 196481.867 32746.978   
 
    
Normality Test: Passed (P = 0.278) 
 
Constant Variance Test: Passed (P = 0.006) 
 
Power of performed test with alpha = 0.050: 1.000 
 
Parameter Value  StdErr  CV(%)  Dependencies 
alpha   9.231e-1   4.1690e-3  4.516e-1 -0.0000000 
 
 
 
S-MDSCs 

 
R = 1.000 Rsqr (R2) = 1.000  Adj Rsqr = 01.000 
 
Standard Error of Estimate = 2.924 
 
  Coefficient StdError  t  P  VIF   
F  0.936   0.00115  816.573  <0.001   1.000   
 
Analysis of Variance: 
   DF SS  MS  F  P    
Regression 0 151290.897 151290.897 17700.377 >1e20 
Residual  6 51.284  8.547   
Total  6 151342.181 25223.697   
  
Normality Test: Passed (P = 0.233) 
 
Constant Variance Test: Passed (P = 0.014) 
 
Power of performed test with alpha = 0.050: 1.000 
 
Parameter Value  StdErr  CV(%)  Dependencies 
alpha   9.358e-1 1.146e-3   1.225e-1  -0.0000000 
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APPENDIX C 
 
 
 
 

DYSTROPHIN-POSITIVE MYOFIBERS ANALYSIS USING NORTHERN ECLIPSE 
 
 
 

 
 
 
 

All images from the Northern Eclipsed software are reproduced with permission from The Empix 

Imaging, Inc. 
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Images of dystrophin-positive engraftment were taken using the Northern Eclipse 

software. If there was more than one image captured from the engraftment, the images were 

connected so that all positive fibers were measured only once. Figure A.2 shows a composites 

made in Adobe Photoshop 6.0 from all of the images taken from the engraftment of 

gastrocnemius muscle of an mdx mouse injected with MDSCs stimulated with NGF.  

 
 
 

 
 

Figure A. 2 A composite of images from S-MDSCs muscle engraftment  
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Calibrate for Distance  

 
Capturing a picture with known dimensions and then calibrating the software to those 

dimensions is known as calibration. The system is designed to calibrate pixel measurements to 

any unit value (i.e., microns, millimeters, and centimeters). For our purpose, we used an accurate 

glass scale with microns as the unit value. 

An image captured from a scale is shown below (Figure A.3). In the example noted, a 

picture of a micrometer slide was captured from a Nikon microscope using a 40x objective. The 

line was draw such that the starting point is at the top of one scale line and the ending point is at 

the top of the finishing scale line. Then the information such as the objective, the number of units 

that represent the length of the line, and unit name was entered and saved. This procedure was 

done for all of the objectives that were used during the experimental analysis (e.g. 10x, 20x, 40x, 

60x). 

 
 
 

 

40x 

 

Figure A. 3 Image Calibration using micrometer slide with known dimensions 
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Convert To 8-bit Gray 

 
This function is used to convert the current image into 8-bits per pixel image (1 plane of 8-bit 

grayscale data). When the image source is in color, the color data is converted into an image with 

grayscale value. This makes the image ready for thresholding. 

In Toolbar under Process, choose Conversions, and then Convert to 8-bit grayscale.  

Bit is the smallest unit in a binary number (binary digit) or the smallest unit of digital 

information recognized by a computer, and it may take the value of either zero or one (i.e. TRUE 

or FALSE, ON or OFF, 0 or 1, BLACK or WHITE, etc.). A pixel is represented by one or more 

computer bits and is the smallest spatially-digitized unit of an image.  A single pixel has a single 

gray or color value, it is the smallest units by which the image can be collected and displayed. 

The sum of bits per pixel directly determines the number of colors or gray levels that can be 

represented. An 8-bit (1byte) image contains 28 or 256 gray levels, usually from zero (black) to 

255 (white).   

 

Data Options   

 
In the Toolbar menu under Measure, choose Data Options. This menu allows for choosing 

methods of object exclusion or inclusion during measuring, morphometric data reporting 

choices, levels of data reporting, pixel exclusion, numeric data hole filling, and morphometric 

boundary options (Figure A.4). 
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Figure A. 4 Northern Eclipse Data Options window 

 
 
 
Object Policies 

Cut by Selection: if the desired area is already selected by Trace Tool such as Rectangle Tool, 

this option actually cuts objects under traced areas during measuring (Figure A.5A). This 

selection measures all objects within the traced area and cuts objects along the trace line 

measuring partial objects along the cut line.  The Cut by Selection option should be turned on if 

no thresholding is done prior to measuring.  

Excluded from Selection: excludes all objects touching the lines of any traced areas during 

measuring (i.e. only measuring objects totally within traced areas) (Figure A.5B). 

Included in Selection: includes all objects inside a traced area. Those objects touching the 

traced area are not counted (Figure A.5C). 
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Included/Excluded according to Centroid: is the most statistically correct method of counting 

or measuring objects, because only objects with a Centroid (center of gravity point) inside the 

traced region are included in the count (Figure A.5D). 

 
 
A   B   C   D 

 

 

Figure A. 5 Northern Eclipse method of object exclusion or inclusion 

 
 
 

Hint: Cut by Selection is generally not used for counting, but it can be very useful for 

densitometry or for objects that are not easy to threshold and therefore must be traced.  

In all our measurements, we used Excluded from Selection, so only the myofibers totally within 

traced areas were measured. 

 
 

Morphometric Parameters 

 

The type of data to be recorded can be selected by double clicking on or off the red check marks 

beside the list of morphometric parameters.  

 

For our purpose of myofiber area distribution, we used 3 groups of parameters: 
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Group 1: Area & Perimeter 

 

Primitives: 

Area The total number of pixels that an object occupies (Figure A.6A). 

Group 2: Enclosure & Orientation 

 

Primitives: 

Diameter The longest line through an object that is parallel to its orientation (Line KL) 

(Figure A.6B). 

Minor Axis Diameter The longest line through an object that is perpendicular to its 

orientation. (Line HJ) (Figure A.6B). 

Derived: 

Elongation Diameter / Minor Axis Diameter.  Provides a general idea of object proportions 

independent from perimeter or shape (Figure A.6B). 
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BA 

 

Figure A. 6 Northern Eclipse morphometric parameters 

 
 
 
Group 3: Other Parameters 

Object # A unique number that refers to the number of objects being counted. In our case, 

object # is the number of dystrophin-positive myofibers. 

Units The units of the calibrated measurements. Our unit of calibration is microns. 

Bin Classification The name of the Bin that an object is classified as. We created a new bin 

named “myofiber analysis”. 

Boundary 

This option allows the choice of an 8-way Connected or 4-way Connected morphometric 

measuring algorithm to be used. The Boundary method will be required by the user to determine 

when very thin, ambiguous objects need to be deciphered. 
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Bin Classifier Options  

In Tool bar under Measure choose Bin Classifier Options. 

Binning is a method of including or excluding certain objects by means of the objects 

morphometric characteristics (e.g. area, perimeter, and shape factor). Sorting, or data exclusion, 

takes place during the object measurement operations with the goal of selecting or rejecting 

objects that fall into preset morphometric ranges (e.g. measure all objects greater than 500 

microns, or measure all objects with a shape factor greater than 0.7 etc.). We added two new bins 

referred to as “small fibers” and “large fibers” (Figure A.7). 

 
 
 

 
 

Figure A. 7 Northern Eclipse Bin Classifier Options 
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For large Fibers: 

 

Area  <  2000 

Area  >  500 

 

For small fibers: 

 

Area  ≤  500 

Area  > 20 

 

We checked the Include these Objects check box so that all the data with new bin category 

criteria will be included. We un-checked the Default Bin so that other parameters would not be 

included in our measurements.  

 

Note: The above numbers were modified for each engraftment based on the quality of the image 

and fiber size distribution. 

 
 

Threshold   

 
This function is used to select objects in an image by specifying range(s) of values that 

differentiate it from the rest of the image. This process is alternatively known as binarization, 

segmentation, or object detection.  Each pixel is tested independently and it is either selected or 

rejected according to the same criteria.  The goal is to adjust the range(s) only until the pixels in 

the object are selected.  This happens differently depending upon whether the image is 

monochrome or color. 

A range of intensities that corresponds to the gray values in the object can be chosen so 

that the gray values can be seen in the main status bar by moving the mouse over the image 

before calling this function.  The display will change as the values are adjusted, showing the 
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selected pixels in red/white and the unselected pixels in cyan/black.  The range will be between 0 

and 255 for 8-bit images and 0 to 65535 for 16-bit images.   

Occasionally, the range that selects the desired object also selects debris or unwanted 

objects.  If they are smaller, larger, or have a different shape than the desired criteria, then bin 

classification can be used to classify and not include those objects that fall within that bin.  

Alternatively, the objects can be classified so that objects that do not fall within the created bin 

are not included. Finally, the unwanted objects can be ignored and deleted if necessary.  

 
 

Measured Selected Objects   

 
The last step is measuring selected objects and obtaining the raw data. An example of our raw 

data created in the Data Results window is shown below in Figure A.8. 

 
 
 

 
 

Figure A. 8 Northern Eclipse Data Results window  

 
 
 

The count values were logged to an Excel spreadsheet by clicking on Log to DDE. Data 

was analyzed on the selected parameters and statistical analysis was performed as previously 

described.  
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APPENDIX D 
 
 
 
 

PROCEDURES FOR QUANTIZATION OF DYSTROPHIN-POSITIVE MYOFIBER 
USING NORTHERN ECLIPSE 

 
 
1. Open Northern Eclipse 

2. Open your saved image (TIFF format) 

3. In Toolbar choose Process 

→ Conversion 

    → Convert to 8-bit grayscale 

4. In Toolbar choose Measure 

→ Calibrate for distance 

Note: Select the right calibration from the already calibrated scales. If the image is taken 

with a different microscope (e.g. Nikon or Leica), make sure that the correct calibration is 

chosen. In order to check the microscope used to take the image, right click on image and click 

on Image Info. Look at dimensions and consider the following points: 

 

If the dimension is 1280x1024, the image has been taken on Lecia with the Retiga 1300 camera. 

Consequently, choose calibration for Leica. 

 

If the dimension is 1360x1024, the image has been taken in Nikon with the Retiga Exi camera. 

Here, choose calibration for Nikon. 

5. Setting up the parameters 

A)  Go to “View” 

→ View Options  

    → “Data” tab  
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Object Policies 

 

Select Objects Partially inside selected are  Cut by Selection 

 

Object under 10 pixels in size are discarded  

(This options is for eliminating debris or not defined fibers due to their small size, so the # is 

changed based on the engraftment by user) 

 

Morphometric Parameters 

 

Reporting level Details only 

 

Boundary  8-way Connected 

 

Put a check mark on the desired parameters listed: 

 

For our purpose, we used Object #, Units, Area, Perimeter, Diameter, Bin Classification, Minor 

Axis Diameter, and Elongation. 

 

B)  Choose “Bin” tab 

 

Add a new bin by clicking on   New 

Name the new bin as desire 

  

Criteria: 

   → Click on    ADD  

 

→ Choose   Area 

 

→ Scroll down and add >, <, ≤, ≥, based on myofibers area 
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For Example:  

 

Area <   2000 

 

Area >   500 

  

These criteria will select large fibers between 500 to 2000 microns. 

 

Note: Click on    Remove   if there are any changes need to be made. Then, enter new criteria. 

Highlight the bin you need to get rid of and Click on    Delete   under Currently defined Bins. 

Check mark   √    “Include these Objects” only for the new bin created. Un-check for Default and 

delete   any other bins that may exist. 

 

Warning: The Include these Objects check box is an important check box to consider when 

making measurements with Northern Eclipse. In each new bin category, the criteria chosen can 

either be included or not included depending on this check box. Be careful when un-checking the 

Default Bin. It is possible to exclude any measurements from being made and if your system is a 

multi-user system, it may be wise to turn the Default Bin parameters back on or the next person 

using the system may not be getting the results they expect. 

 

C) Click on   Threshold   button in Toolbar.  

 

You will need to select a range of intensities that corresponds to the gray values in the object.  

The gray values can be seen in the main status bar by moving the mouse over the image before 

calling this function.  The display will change as you adjust the values, showing you the selected 

pixels in red/white and unselected pixels in cyan/black.  The range will be between 0 and 255 for 

8-bit images. In our case, the myofibers should have defined boundaries. If the threshold point is 

at low pixel intensity, red/white will flood the myofibers and the myofiber number will be 

underrepresented. If the threshold is at high pixel intensity, the connected components will 

decrease and we will not be representing small fibers. One way of dealing with composites with 

very different sizes of myofibers is to divide the analysis into two sets. First, set the criteria in 
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your bin set up to count large fibers (Area >1000). Later change the criteria to measure the small 

myofibers (Area >100, <1000).  Note that the threshold levels will also require adjustment 

between the two measurements. 

 

D) Click on    Measure    button in Toolbar.  

 

The data will be created according to chosen parameters the in Data Result Window. By clicking 

on top of each parameter, the layout of the information can be changed so that the data can be 

listed in ascending or descending order. Each number can also be clicked individually and 

examined to see which myofiber corresponds to that number. In order to get rid of a measured 

myofiber, close the Data Result Window, go to the image, right click on the number or box on 

that fiber, and “Remove Object”. 

At last, 

 

E) Log to DDE if you are want to record the data to an excel spreadsheet. 

 

If Excel cannot be found, be sure it has been loaded onto the computer first. Also, be sure that 

Excel is run at least once prior to linking through DDE. Once the DDE link has been established, 

all subsequent data logging will use this connection. Book1 will then be launched, and the data 

will go to sheet1 (unless other wise specified). 
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