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Premature birth is a major public health problem accounting for over 13,000 deaths and 

0 surviving infants with life-long morbidity yearly.  Preterm premature rupture of the fetal 

branes (FM) is the initiating event leading to preterm birth of 40% of these premature 

ts.  The mechanisms which cause FM failure and thereby rupture are not understood.  A 

k zone” in the FM region overlying the cervix has recently been discovered, which 

nstrates both biophysical weakness and concomitant biochemical evidence of tissue 

deling and apoptosis.  This “weak zone” has been the subject of limited biomechanical 

tigation.  A full understanding of FM failure requires a complete characterization of 

tural and biomechanical behavior of the FM at near/full term under sub-failure (forces well 

 that which induce rupture) and failure conditions as well as elucidating the biological 

rs which modulate its failure.  The goals of this study were to (1) characterize the sub-

re structure-strength behavior of the FM under physiological loading conditions, (2) 

ment a structural constitutive model to investigate the sub-failure responses of FM, and (3) 

cterize the structural/strength sequelae during failure of the FM in the “non-weak” regions.  

first two aims of this study established the baseline structure-strength relation of “non-weak 

” FM tissue.  Specifically, the stress-strain relationship from an unloaded state up to failure 

established.  It was found that the FM behaves as an effectively isotropic material and that 

gen fibers of the FM are recruited rapidly once they are loaded, which may be an important 

iv 



mechanism in the facilitation of FM rupture.  Finally, a novel membrane inflation device 

revealed that upon loading, there was a small increase in collagen fiber alignment, although not 

significant, and there was no change in collagen fiber direction.  More importantly, FM failure 

occurs catastrophically, suggesting that particular collagen fibers are not predisposed to failure.  

The results obtained in this study further our understanding of this unique physiological event, 

failure, and provide a basis for establishing how the structure-function relationship of the FM is 

altered the “weak zone,” which has unique mechanical properties that facilitates membrane 

rupture. 
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P -λ  curve.  A plateau region is achieved once, the tangent modulus no longer 
increases (i.e. the slope is no longer increasing and has become constant).  At this 
point, the maximum tangent modulus (MTM) is attained and it demarcates the 
point where all collagen fibers are recruited.  The stretch associated with this 
point is termed the upper bound stretch, λ .  The λ  is also evident on the stress-
strain curve as the point where the stress-strain curve becomes linear.
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Figure 4-8. (a) The fiber ensemble constitutive model was able to effectively fit the equi-
strain derived S -E  data.  The predicted model parameters suggest that the 
collagen fibers of the FM are recruited at high strain values, but once recruitment 
began, it occurred rapidly.  (b) This behavior is further reinforced upon inspection 
of the D(E )-E  plot  and the Cumulative Fiber distribution-E  plot.  The mean 
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of the D(E )-E  is skewed close to 1 and the standard deviation of the 
distribution is tight, indicative of late, but rapid collagen fiber recruitment.
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Figure 4-9. The “mean” recruitment distribution, D(E ), for 8 samples, with a “mean” µ 
of 0.8831 and an “mean” σ of 0.1092.  Note, there was minimal variability in the 
µ and σ of the between the 8 samples, evidence by similar curves.
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Figure 4-10. Representative image of tissue level modeling results.  (a,b) The tissue level 
structural model was able to fit the multiprotocol biaxial data reasonable well. (c) 
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1.0  INTRODUCTION 

1.1 THE HUMAN FETAL MEMEBRANE 

The fetal membrane (FM) is structurally soft membrane surrounding the fetus during gestation.  

A normal pregnancy requires physical integrity of the FM until term delivery, where timely 

rupture is a vital part of term labor [1].  During gestation, the FM is subjected to applied stresses 

and must support the bulk loads of the fetus and amniotic fluid as well as tolerate local 

deformations due to fetal movement.  Additionally, the FM secretes substances both into the 

amniotic fluid and towards the uterus and guards the fetus against infection ascending from the 

reproductive tract.  The FM is composed of two closely adherent layers, the amnion and the 

chorion, and consists of several cell types, including epithelial cells, mesenchymal cells, and 

trophoblast cells, embedded in a collagenous matrix. 

1.1.1 FM formation 

Fertilization begins when a spermatozoon makes contact with a secondary oocyte, which results 

in the formation of a one celled embryo.  During the first 2-3 days of development, a cleaving 

embryo proceeds along the uterine tube by means of tubal contractions and movement of cilia 

[2].  Mitotic divisions occur at a rate of about one per day, increasing the number of cells or 

blastomeres, and each blastomere is considered totipotent [2].  The embryo enters the uterine 
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cavity after about half a week, where approximately 8-12 cells are present.  When 8-16 cells are 

present, compaction occurs [3] [2].  During compaction the blastomeres become flattened against 

neighbors, which maximizes intercellular contact and minimizes intercellular spaces, resulting in 

a uniform cellular mass, the morula [2, 3].  Additionally cell-to-cell adhesion as well as gap and 

tight junctions first appear during compaction [3].    The embryo is termed the morula when 12 

or more cells are present and until the blastocystic cavity appears.  After 4-5 days and when 16-

32 cells are present, a cavity can be detected in the cellular mass of the morula, and the morula is 

now termed a blastocyst (Figure 1-1).   

 
 

Inner Cell Mass

Trophoblasts  
 
 

Figure 1-1. The blastocycst is composed of the inner cell mass and blastocystic cavity which are 
surrounded by trophoblast.  

 
 
 
The appearance of the blastocyst demonstrates the differentiation into (1) the peripherally 

situated trophoblast cells and the first formation of epithelium and (2) embryonic cells proper, 

which forms the inner cell mass (Figure 1-1) [2, 4]. 

The trophoblast differentiates into two chief varieties (day 6): (1) an inner layer of 

cytotrophoblast, and (2) a multinucleated outer cell layer, the syncytiotrophoblast [2, 4, 5].  The 
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cytotrophoblast surrounds the blastocystic cavity [2].  The syncytiotrophoblast develops from the 

cytotrophoblast, and it synthesizes and secretes chorionic gonadotrophin and other placental 

hormones [2, 4].  Additionally, the syncytiotrophoblast starts to invade the connective tissue of 

the uterus [5]. 

Prior to implantation, the inner cell mass begins to differentiate into external and internal 

cell layers [5].  The two layers are termed the epiblast (ectoderm), which is the external cell 

layer, and the hypoblast (endoderm), which is the internal cell layer [2, 5].  The epiblast gives 

rise to the endoderm [2, 5].  Eventually, the combination of the epiblast and hypoblast forms the 

embryonic disc (occurs soon after implantation; Figure 1-2a) [2, 6].  The fluid within the 

blastocystic cavity is believed to be derived from the trophoblast [2]. 

At 6 days, the blastocyst begins to attach to the uterine lining (endometrium), which 

marks the beginning of implantation [2, 5].  Once the blastocyst begins to penetrate the uterine 

epithelium, the endometrium is termed the decidua [2].  Decidualization, or the decidual 

reaction, is the series of endometrial changes that occur in response to invading blastocyst into 

the endometrium [2, 7].  The endometrium begins to store glycogen and lipids, which serve as 

energy sources for the fetus [2, 7]. 

The first indication of mesenchym is the production of extra-embryonic mesoblast from a 

caudally situated area of proliferation at approximately 7-8 days.  The combination of the 

trophoblast fronting the uterine tissue and the extra-embryonic mesoblast is known as the 

chorion (8-12 days; Figure 1-2).  Originally the trophoblast is solid (7-8 days; Figure 1-2 a) [2].  

However, by day 9, the trophoblast layer forms lacunae as it extends into the endometrium (8-10 

days; Figure 1-2b) [2, 8].  As the synctium of the trophoblast invades the endometrium, it erodes 
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and penetrates the maternal sinusoids, or blood vessels, which then spills the maternal blood into 

the lacunae (10-12 days; Figure 1-2c) [2, 8]. 
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(a)

(b)

(c)

 
 
 

Figure 1-2. (a) The trophoblast is originally solid (7-8 days). (b) An enlarge view of an older blastocyst removed 
from the endometrium.  (c) However, by day 9, the trophoblast layer forms lacunae.  Eventually, the trophoblast 
invade, the endometrium and erodes and penetrates the maternal blood vessels causing maternal blood to fill the 

lacunae and forms the basis for placental circulation [2]. ( Reprinted with permission from [9].  Copyright @ 
Saunders, 2003.) 
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This junction of the maternal blood vessels and trophoblast is the basis of placental circulation 

[2].  As the lacunae coalesce, maternal blood begins to flow through them, and exchange of 

oxygen, carbon dioxide and nutrients occurs [2, 8].  Note that while the lacunae usually contain 

blood, but it has been shown that the intervillous space lacks blood flow during the first trimester 

and is filled mainly with acellular fluid, probably plasma [2]. 

The amniotic cavity appears within the inner cell mass, conceivably by rearrangement of 

epiblastic cells (7-8days; Figure 1-2), and is enclosed by the amnion [2, 5].  The cavity is 

bounded by the epiblast, and dorsally, by a layer of amniotic ectoderm [2].  On the ventral aspect 

of the embryonic disc, extra-embryonic endoderm grows around to enclose a cavity termed the 

primary umbilical vesicle (or yolk sac) (Figure 1-2c) [2]. 

The placenta is a device which allows for intra-uterine pregnancy to occur, and thus, 

facilitates fetal growth.  The placenta synthesizes a large variety of hormones and functions in 

nutrition, respiration, secretion, and excretion [2].  Chorionic villi are the basic feature of the 

placenta and form at approximately 17-23 days [2].  Solid cords of cytotrophoblast, or 

cytotrophoblastic clumps (Figure 1-3), follow the syncytiotrophoblast into the endometrium and 

penetrate into blood-filled lacunar spaces as primary chorionic villi, or stem villi (Figure 1-3) [2, 

10].  Thus, these villi contain a cytotrophoblast core, which is covered by syncytial cells (Figure 

1-3) [2, 10].  The mesoblast penetrates the center of cytotrophoblastic clumps and forms the 

secondary chorionic (stem) villi (Figure 1-3) [10].  As a result, the secondary chorionic villi 

contain a core formed by mesoblastic crests, cytotrophoblastic caps, and are covered by syncytial 

cells [10].  Early in the embryonic period, some chorionic villi develop dense masses of 

trophoblastic cells at their tips [2].  These cytrophoblastic cell columns make contact with the 

eroded endometrium and spread out as part of the lining of the intervillous space (the 
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cytotrophoblastic shell or early basal plate) (Figure 1-3) [2].   This shell firmly attaches the 

placenta to the endometrium [10].  Later the villous cores extend through the cell columns to 

become anchored to the decidua (anchoring villi) (Figure 1-3) [2].  Most villi, however, retain 

free tips in the intervillous space (floating villi) (Figure 1-3) [2, 10].  The capillaries within the 

villi become connected with the embryonic heart via of the umbilical vessels [2].  The 

arrangement of the villi is that of a deciduous tree with roots in the chorionic plate and trunk; 

branches and twigs, suspended in the pool of maternal blood, occupy the intervillous space [2].  
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Figure 1-3. Simplification of the formation of the placenta.  In summary, Cytotrophoblastic clumps follow the 
syncytiotrophoblast into the endometrium and penetrate into the blood-filled lacunar spaces as stem villi.  The 
mesoblast penetrates the center of the cytotrophoblastic clumps and form secondary stem villi.  Some of the 

chorionic villi form dense masses of trophoblastic cells at their tips forming cell columns, which make contact with 
the eroded endometrium and spread out as part of the lining of the intervillous space and form the cytotrophoblastic 

shell).  Later the villous cores extend through the cell columns forming the anchoring villi.  However, most villi 
retain free tips in the intervillous space and are termed the floating villi. (Reprinted with permission from [9].  

Copyright @ Saunders, 2003.)  
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At 56 days, the extra-embryonic coelom, the space between the mesoderm of the chorion 

and the mesoderm covering the yolk sack, is obliterated, and the uterine cavity becomes 

diminished (Figure 1-4).  By 17-20 weeks, the amnion and chorion become fused (Figure 1-4) 

[11]. 

 
 

(a) (b)
 

 
 

Figure 1-4. (a) Late in the first trimester, the space between the mesoderm and the chorion is obliterated and the 
uterine cavity is diminished.  (b) Also, by 17-20 weeks, the amnion and the chorion fuse forming the amniochorionic 

membrane, or the fetal membrane.  (Reprinted with permission from [9].  Copyright @ Saunders, 2003.)  
 
 
 

1.1.2 FM layers and cell types 

The FM is a bilayer structure composed of the amnion layer and the choriodecidua layer.  The 

choriodecidua layer is thick and more cellular, and the amnion layer is stiff and strong.  The 

amnion layer accounts for ~20% of the FM thickness but dominates the mechanical response of 
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the FM[12].  It has been confirmed that the amnion and the choriodecidua layers contain 

collagen types I and III in addition to collagen types IV and V [13].   

The amnion layer is avascular and is composed of 5 sublayers (Figure 1-5, Figure 1-6) 

[14].  The innermost layer, nearest the fetus, is composed of epithelial cells (Figure 1-5, Figure 

1-6a), which secrete collagen types III and IV and noncollagenous glycoprotiens, such as 

laminin, nidogen, and fibronectin, forming the subsequent basement membrane (Figure 1-5) 

[14].  The compact layer of connective tissue is adjacent to the basement membrane, forming the 

fibrous framework of the amnion (Figure 1-5, Figure 1-6) [14].  The collagens of the compact 

layer, types I and III, are secreted in parallel bundles from the mesenchymal cells in the 

subsequent fibroblast layer and are responsible for the mechanical integrity of the amnion 

(Figure 1-5, Figure 1-6) [14, 15].  Collagen types V and VI form fibrous connections between 

the interstitial collagens (types I and III) and the basement membrane [14].  In addition to 

mesenchymal cells, the fibroblast sub-layer of the amnion layer contains macrophages [14].  

Below the fibroblast layer is the intermediate spongy layer, which lies between the amnion and 

the chorion layer and allows the amnion to slide on the underlying chorion (Figure 1-5) [14].  

The spongy layer is composed of hydrated proteoglycans and glycoproteins along with a 

nonfibrillar meshwork of mostly type III collagen [14].   

The chorion layer is thicker than the amion layer and contains a connective tissue 

sublayer and cytotrophoblasts (Figure 1-5) [14].  The cytotrophoblast cells are surrounded by 

collagen type IV [14].  The chorion layer is firmly adhered to the maternal decidua, where the 

decidual cells are surrounded by collagen types III, IV, and V.  Thus, when the fetal membranes 

separate from the uterus at delivery, some adherent uterine tissue, part of the decidua, remains 

attached to the chorion [16].  The resulting layer is the “choriodecidua” layer (Figure 1-5). 
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Figure 1-5. Schematic representation of the various sublayer of the FM.  (Reprinted with permission from: Parry, S., 
Strauss, J.F., Premature Rupture of The Fetal Membranes. New England Journal of Medicine, 1998. 338(10): p. 

663-670.  Copyright @ 1998 Massachusetts Medical Society.  All rights reserved.) 
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Figure 1-6. (a) Scanning electron micrograph of the amnion layer.  Note the dense epithelial cell layer followed by a 
dense collagen network. (B) Below the dense cellular layer is the basement membrane and compact layer.  The 
compact layer contains parallel bundles of collagen fibrils and provides mechanical integrity. (Reprinted with 

permission from [15].  Copyright @ Materials Research Society, 2005) 
 
 
 

1.2 THE PROBLEM: PREMATURE RUPTURE OF MEMBRANES 

Premature birth is a major public problem accounting for over 13,000 deaths and 30,000 

surviving infants with life-long morbidity yearly [17-19].  Preterm rupture of membranes is a 

major cause of preterm birth and is associated with infant morbidity and mortality, with the 

greatest risk of mortality and morbidity in infants born at earlier gestational ages [1, 20].  

Preterm premature rupture of the FM (PPROM) occurs prior to 37 weeks’ gestation and prior to 

the onset of the contractions of labor, and PPROM is the initiating event leading to preterm birth 

in about 40% of premature infants [21-23].   

 Although significant progress has been made recently [1], the physiological mechanisms 

which cause membranes to rupture, term or preterm, are not completely understood.  In order 
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understand FM failure, and thereby provide insight into how we may anticipate, and when 

appropriate, intervene to prevent preterm FM rupture, we need to elucidate: 

1. How the FM mechanically fails 

2. What biological factors modulate its failure 

1.3 COLLAGENOUS SOFT TISSUES 

The extracellular matrix (ECM) of connective tissues is a complex composite material, which is 

comprised of insoluble fibers, microfibrils and a wide range of soluble proteins and 

glycoprotiens.  The ECM provides tissues with their specific mechanical and physiochemical 

properties as well as providing scaffolding for cell attachment and migration [24].  The most 

abundant protein in the body and the predominant component of the ECM are members of the 

collagen family of proteins, which form the major structural elements of connective tissues [24, 

25].  Collagens are the major structural component of all connective tissues as well as the 

interstitial tissue of virtually all functional organs.  Collagens contribute to the stability of the 

tissues and organs and maintain their structural integrity [26].  The physiological roles of 

collagen are achieved by aggregates of the molecules, and construction of these aggregates is 

vital to the integrity of a tissue.  Thus, while the focus of this study was at the collagen fiber level 

of the FM, it is important to understand the how the collagen fiber is formed from the 

microscopic level (molecule) to the macroscopic level (tissue). 

All types of collagens contain a unique tertiary structure called the collagen triple helix 

molecule, or tropocollagen (Figure 1-7).  The triple helix molecule is composed of three 

individual α-chains, which coil into left handed minor helices.  The three chains, staggered by 
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one residue relative to each other, intertwine with one another to form a right handed super helix 

[24, 25, 27].  The triple helical regions have a general structure comprised of tandem repeats of 

Gly-X-Y tripeptide units (Figure 1-7) [24, 25].  The X and Y positions are occupied by proline 

and hydorxyproline residues, respectively [25].  The glycine residue, which is the smallest amino 

acid, allows close packing along the central axis and hydrogen bonding between the three chains.  

The number of Gly-X-Y repeats varies between collagen types.  The Gly-X-Y repeat in fibrillar 

collagen is continuous over the ~1000 amino acid length of the three α-chain subunits of the 

molecule.  However, non-fibrillar collagens contain imperfections and non-collagenous 

interruptions in the Gly-X-Y sequence [24]. 

 
 
 

Individual α chains
 

 
 

Figure 1-7. Schematic representation of the triple helix molecule, or tropocollagen.  Tropocollagen consists of three 
individual α chains, which are left handed helices.  The chains are coiled around each other to form a right handed 

helix.  The three chains are staggered by one residue relative to each other.  Hydrogen bonds form between opposing 
residues in different chains in order to stabilize the triple helix. 

 
 
 
To date, 19 different collagen types have been identified, which are comprised of at least 

33 individual genetically distinct polypeptide chains [24].  Collagens can be grouped into various 

categories based on their structures and supramolecular organizations.  For example, collagens 

can be classified as fibril-forming collagens and basement membrane collagens, in addition to 

others with unique functions [26].  While there is a large diversity in the collagen family, the 
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supramolecular structures maintain the physical integrity of tissues and organs [28].  

Additionally, collagen fibers have the ability to bind cells and thereby influence their migratory 

behavior as well as their differentiation and biosynthetic capabilities [28].  The most abundant 

and widespread family of collagens, which comprises approximately 90% of the total collagen, is 

represented by the fibril-forming collagens [26].  Collagen types I, II, III, and V are fibrillar 

collagens, which provide most of the biomechanical properties essential for the function of 

various organs, where collagen type IV assembles into meshworks restricted to basement 

membranes [26].  Collagen type I is the most abundant collagen and represents the principle 

fibrillar component of many tissues and is considered a heterotrimer of two identical α1(I) 

chains and one α2(I) chain [24, 27].  Collagen type I is a major component of tendon and bone 

[27].  Collagen type I provides tensile stiffness to most organs and defines biomechanical 

properties concerning load bearing, tensile strength, and torsional stiffeness in bone [26].  A rare 

form collagen type I has been identified as collagen type I trimer, which consists of three 

identical α1(I) chains [24, 27].  Collagen type II is the predominant collagen in cartilage and is 

comprised of three α1(II) chains [27].  Collagen type II is similar in size and biomechanical 

properties to that of collagen type I [26].  Collagen type III can be found in skin, blood vessels, 

synovial, and placental tissues [27], and is considered a homotrimer with three α1(III) chains.  It 

is an important component of reticular fibers in interstitial tissues such as lungs, liver, dermis, 

spleen and vessels [26].  Collagen type V accounts for 10% of the total collagen in any tissue, 

and although it is thought to be of interstitial origin, it has not been well characterized.  It is 

comprised of two α1(V) and one α2(V) chains.  Collagen type V typically forms heterofibrils 

with collagen type I and type III and contributes to the organic bone matrix, the corneal stroma, 

and the interstitial matrix of muscles, liver, lungs, and placenta [26].  Finally, collagen type IV is 
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determined to be a basement membrane collagen and contains a more flexible triple helix 

structure [26, 27].  Originally, collagen type IV, was thought to be comprised of three α1(IV) 

chains.  However, recent studies have suggested that collagen type IV consists of two α1(IV) 

chain and one α2(IV) chains [27]. 

1.3.1 Structure of collagen 

Collagen synthesis is a complex multi-step process involving gene transcription within the 

nucleus to aggregation of collagen heterotrimes/homotrimers into larger scale super-structures.  

The first step in collagen formation is the production of specific m-RNAs for different pro-

collagen chains called pre-proα chains.  Different m-RNAs are synthesized in order to produce 

different forms of collagen.  As the pre-proα chains are synthesized in the rough endoplamic 

reticulum (RER), important co-translational events occur during this process.  More specifically, 

proline residues are hydroxylated via 3-proline hydroxylase and 4-proline hydroxylase resulting 

in hydroxylysine, and lysine is hydroxylated by lysyl hydroxylase resulting in hydroxylysine.  

Note that the degree of hydroxylation varies between tissues and probably with the availability of 

substrate, rates of synthesis and turnover, enzyme concentration, and time that the molecule 

remains in the presence of the hydroxylating enzymes [29].  Next, hydroxylysine is glycosylated 

by galactosyl-transferase, and glucose is added by a glucosyltransferase.  A pre-proα chain 

containing a large N-terminal hydrophobic signal is the final translational product.  This N-

terminus signal peptide is probably removed by an intramembranous endopeptidase after 

facilitating the transfer of the pre-proα chain into the lumen of the RER, resulting in proα chains.  

However, the proα chains must be properly aligned to form the triple helix.  It is unclear whether 
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alignment occurs when the polypeptide chains are still attached to the ribosome or if they have 

detached, or if the N-terminus peptide plays a role in this connection.  Nonetheless, the 

appropriate cysteine residues should be aligned side by side as a prerequisite for the formation of 

disulfide bonds that link the individual proα chains at the C-terminus end.  Disulfide bond 

formation occurs before triple helix formation.  Formation of a nucleus of triple helical 

conformation at the C-terminus end occurs and nucleation progresses in a zipper-like manner to 

the N-terminus forming procollagen [30]. 

The procollagen molecule emerges from the RER and progresses towards the Golgi 

apparatus, where it is packaged into vesicles.  The vesicles then fuse with the cell membrane, and 

the procollagen molecule is secreted into extracellular space through exocytosis.  It is likely that 

the basic mechanism of triple helix formation is similar for each type collagen molecule [26].  

However, the steps required after secretion of procollagen to form supramolecule appears to vary 

between collagen types.   

For fibrillar collagens, after secretion into the extracellular space, the nonhelical peptide 

regions are cleaved by procollagen peptidase and tropocollagen is formed (Figure 1-7, Figure 

1-8a).  The next stage in collagen development is the formation of the collagen fibril.  Five rows 

of tropocollagen molecules are aggregated to form a microfibril, where each molecule is quarter-

staggered 1D unit in relation to its neighbor (Figure 1-8b) [29, 31].  Each tropocollagen molecule 

is 4.4D long, which results in a 0.6D gap between consecutive molecules in the same row 

(Figure 1-8b) [31].  The tropocollagens are intertwined in a slow left-handed helical manner 

forming a “super-helix” [31, 32].  Orderly packing of the tropocollagen molecules into the 5 

stranded microfibiril is accomplished by hydrophobic interactions between amnio acids in 

adjacent rows (maximum interactions occur when molecules are displaced by 234 residues or 
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1D).  Next, a large number of microfibrils are packed together for form a fibril, where some 

evidence suggests that microfibrils intertwine in a right-handed helical pattern with a pitch of 

about 1000nm to form a fibril [31]. The fibril displays a characteristic longitudinal banding 

pattern with a repeat of 67 nm (1D).  The fibril banding pattern is due to precise replication of 

the peptide sequence of the tropocollagen chains and to their quarter-stagger microfibril packing 

arrangement (Figure 1-8c) [33].  The fibril diameter was found to be ~50-200 nm [31].   
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Figure 1-8. Schematic representation of the formation of a collagen fibril.  Five rows of (a) tropocollagen molecules 
aggregate to form a (b) microfibril. Each molecule is quarter-staggered 1D unit in relation to its neighbor.  Each 

tropocollagen molecule is 4.4D long, which results in a 0.6D gap between consecutive molecules in the same row.  
(c) Next, a large number of microfibrils aggregate to form a fibril.  A transmission electron micrograph (TEM) of 

the fibril depicts the a characteristic longitudinal banding pattern with a repeat of 67 nm (1D) due to precise 
replication of the peptide sequence of the tropocollagen chains and to their quarter-stagger microfibril packing 

arrangement. 
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The next aggregate in collagen formation is the collagen fiber.  The collagen fiber 

involves lateral association and axial displacement of molecules arranged in parallel [29]. 

Collagen fibrils are organized into tissue-specific suprafibrillar structures.  Fibrils are aggregated 

side-by-side in parallel bundles to form fibers in tissues such as tendons and ligaments, but 

individual fibrils form a network in tissues such as skin, cartilage, and cornea [34, 35].  Fiber 

diameters can range from 200 nm to 12000 nm [36].  The crimp structure, which is the 

alternating dark and light banding pattern apparent between crossed polarizer, can be observed at 

this level of collagen aggregation. 

Basement membrane collagen, collagen type IV, differs from interstitial fibril-forming 

collagen in that when the procollagen is secreted into the extracellular space, the nonhelical 

peptide regions are not cleaved by procollagen peptidase.  Thus, the non-triple-helical domains 

are retained.  The collagen type IV molecule consists of a 360-nm long triple helix which is 

bordered at its N-terminus by a short non-triple-helical interruption followed by the 30-nm long 

helical 7S domain and at its C-terminus by the globular NC1 domain [37].  After secretion, the 

collagen molecules interact to form supramolecular assemblies form [37].  Four collagen IV 

molecules interact by means of their 7S domains to form a spider-like structure and two 

molecules bind each other in a head-to-head fashion by way of their NC1 domains. A 

combination of these interactions forms a loose network.  Additionally, lateral aggregation of 

collagen type IV occurs, which results in a layered hexagonal planar array.  Lateral associations 

and supramolecular helices can be seen under ultrastructural investigations of the human 

amniotic basement membrane [37]. 
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1.3.2 Collagen packing theories 

In any structure, whether it is natural or synthetic, the ultimate strength of tension-bearing 

elements depends on the substance they are composed of and their cross-sectional area [38].  

Mechanical and physical properties of a tissue are dependent on a hierarchical spatial 

arrangement of collagen fibrils [39].  Thus, considering the correlation of the inner architecture 

of collagen fibrils, their diameter, and their spatial layout with functional requirements, fibril 

formation from their molecular precursors are of concern [38].  Electron micrographic and X-ray 

diffraction data provide evidence that there is a regular arrangement of molecules that may result 

from ordered packing within collagen fibrils.  However, while several theories exist, it is still 

unknown how the fibrils are formed from their molecules.  It has become apparent that shape of 

the fibril is dependent on where the molecule is added.  Ramachandran (1967) originally 

suggested a hexagonal packing of molecules but realized that this would result in hexagonal 

fibrils, which are thought to be round (Figure 1-9).  Thus, the suggested a cylindrical structure or 

a modified cylindrical structure, where the molecules were in a spiral orientation (Figure 1-8) 

[40].  
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Figure 1-9. Possible modes of collagen molecule packing as proposed by Ramachandran.  (Reprinted from Prockop 
and Fertala, The Collagen Fibril: The Almost Crystalline Structure.  Journal of Structural Biology, 1998. 122: p. 

111-118. Copyright @ Academic Press, 1998.) 
 
 
 
Galloway (1985) latter suggested that the molecules were packed into cylindrical arrays 

(Figure 1-10) [40].  In this model the outer layers become “lattice-like and allow packing of 

some molecules as quasi-hexagonal unit cells” (Figure 1-9) [40].  However, this theory was 

disputed by Silver, Miller and Prockop (unpublished observations) due to large discontinuities 

between the unit cells in the outer layers of the model [40]. 
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Figure 1-10. Galloway’s proposed model for collagen fibrils.   Galloway suggested that the collagen molecules 
were packed in concentric cylindrical arrays.  .  (Reprinted from Prockop and Fertala, The Collagen Fibril: The 

Almost Crystalline Structure.  Journal of Structural Biology, 1998. 122: p. 111-118. Copyright @ Academic Press, 
1998.) 

   
 
 

Prockop’s group performed a study wherein they developed procedures to generate 

collagen molecules that had a solubility of less than 1 µg/ml and that spontaneously assembled in 

to tightly packed collagen fibrils under physiological conditions [40].  They found that fibril 

formations were entropy driven, which was in agreement with previous findings, and fibril 

assembly demonstrated features typical of a crystallization process.  Additionally, it was 

demonstrated that the diameters of fibrils varied with temperature.  Kadler (1990) used dark field 

microscopy on relatively large diameter fibrils formed at 30oC and found that the first structure 

formed had a blunt end and a pointed end [40].  Moreover, fibrils grew by extension of the 
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pointed tips with no apparent change in the diameter of the initial structure.  Scanning 

transmission electron microscopy (STEM) analysis demonstrated that the pointed tips showed a 

linear increase in mass with length, and the tips were parabloids [40].  These finding prompted 

speculation as to how the symmetry of the tips was maintained as the fibrils grew.  Thus, Silver 

et al. (1992) developed a model for tip growth based on a helical structure (Figure 1-11) [40]. 

(a)

(b)

(c)

(d)

 
 
 

Figure 1-11. Computer simulation of helical models proposed by (a-c) Silver et al. and the spiral model proposed by 
(c) Humes et al. It has become apparent that shape of the fibril is dependent on where the molecule is added.   

(Reprinted from Prockop and Fertala, The Collagen Fibril: The Almost Crystalline Structure.  Journal of Structural 
Biology, 1998. 122: p. 111-118. Copyright @ Academic Press, 1998.) 

 
 
 
Parkinson et al. (1995) then developed a model based on the principle of limited 

diffusion, which is seen in electrochemical depositions or snowflake formation.  This model 

assumed that molecules had a tendency to bind through D period overlaps.  The model predicted 

aggregates that displayed common features of collagen fibrils.  Specifically, these feature 

included an elongated morphology, a preference for tip growth, and a linear relationship between 
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mass and distance from the tip.  Hulmes et al. (1995) went on to develop a model that combined 

the single crystal theory proposed by Fraser, Miller, and associates, the limited diffusion theory 

proposed by Parkinson et al., and the hard disk model proposed by Fratzl.  While many models 

have been proposed, it remains unclear which model is most accurate [40].  A summary of these 

models can be found in Table 1-1. 

 
 

Table 1-1. Summary of models proposed for fibril packing.  (Reprinted from Prockop and Fertala, The Collagen 
Fibril: The Almost Crystalline Structure.  Journal of Structural Biology, 1998. 122: p. 111-118. Copyright @ 

Academic Press, 1998.) 
 

Fit to Criteria 

Model X-ray of 
round fibril 

Growth 
from tips 

Stepwise 
increase in 
diameters 

Micro 
fibrillar 

substructures 

1. Single crystal 
(Fraser/Miller/Wess) No No No Yes 

2. Hard disk/liquid-
crystal/limited diffusion 
(Fratzl, Parkinson) 

No Yes No No 

3. Spiral (Hulmes) Yes Yes No Yes 

4. Cylindrical:     

a. Galloway et al. No No Yes Yes 

b. Silver et al. No Yes Yes Yes 

c. Hulmes et al. Yes No Yes Yes 
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1.3.3 Collagen crimp 

When tendons are placed between crossed polarized and viewed under a light microscope, an 

alternating dark and light banding appears when the tendon is placed parallel and perpendicular 

to the polarizer direction [41].  This banding pattern is referred to as crimp.  Crimp is not 

restricted to tendons and can be found in the fibrillar collagens (i.e. collagen types I-III) of most 

mammalian tissues with the exception of bone and articular cartilage [42].  Although collagen 

crimp is observed at the fiber level, Diamant et al. determined that fiber crimp is a property of 

individual collagen fibrils [41, 42].  In spite the ubiquitous nature of collagen crimp, the cause of 

crimping has yet to be determined.  An early explanation for collagen crimp was that contraction 

of elastin fibers within the collagen structure induced crimp [43].  This theory was dispelled 

because rat tail tendon, which does not contain elastin, clearly demonstrates collagen crimp [43]. 

Some speculate that contraction of mucopolysaccharide matrix, in which the fibrils are 

embedded, causes the fibrils to buckle [43].  Also, determination of the crimp pattern, a result of 

fibril aggregation, is not trivial and has led to various theories (Figure 1-12) [42].  Various 

models have been proposed for the crimp pattern found in tendons and ligaments.  The models 

propose are as follows: (1) a flat crimping ribbon model (Figure 1-12a) [44], (2) planar waviness 

model (Figure 1-12b) [33, 41, 45], (3) a skewed register model (Figure 1-12c) [46], and (4) a 

helix model [47].   

The flat crimping ribbon model assumes that fibrils aggregate laterally to form a tendon 

unit, and the tendon units are bundled together with elastic fibers and fibroblasts resulting in the 

macroscopic tendon.  This model assumes that the fibrils have a ribbon like cross-section that 

results in the flattened cylinder cross-section of the tendon unit, which gives rise to the 

horizontally elongated tendon cross-section.  Polarizing microscopy demonstrated that the 
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ribbons crimp all in phase, with their ribbon planes parallel throughout the tendon.  Note, that the 

flat crimping ribbons are thought to be responsible for the extinction bands that are evident under 

polarizing light. 

It the planar waviness model, fibrils are not straight and follow a wavy or zig-zag 

crimped course and are packed cylindrically to form a collagen fiber [33, 45].  Diamant et al. 

(1972) claim that the fibril cross-sectional appears cylindrical as opposed to a flat ribbon, which 

was claimed by Baer et al. (1976) [41, 44].  Diamant et al. employed polarizing microscopy and 

demonstrated that collagen fibers of native tendons display a planar zig-zag morphology.  Under 

polarizing light, collagen fibers give rise to a periodic pattern of light and dark bands which 

appeared and disappeared systematically as the crossed polarizers were rotated, or as the 

specimen was rotated about its longitudinal axis [33].  Small angle X-ray data presented by 

Gathercole and Keller (1975) supported this zig-zag morphology. 

Rowe et al. (1985) presented the skewed register crimp model and concluded that their 

findings do not support the cylindrical symmetry model of fibril packing.  Instead, collagen 

fibrils appear to aggregate side by side with flexibility in any direction in the register of wave 

patterns across the thickness of the fiber [46]. 

In the helix model, fibrils are helically organized around the fiber axis with a helical 

angle, θ, and a half pitch, h.  In this model, the entire fiber is periodically collapsed in two 

dimensions, and the collapse direction forms an angle α relating to the long axis of the fiber.  

The collapse results in an undulated surface morphology.  This configuration demonstrates that 

the peripheral fibrils are undulated helices with the central ones are normal helices [47].
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Figure 1-12. Proposed models for collagen crimp patterns. (a) Baer et al. proposed a flat crimping ribbon model.  In 
this model, it is assumed that the fibrils have a ribbon like cross-section that results in the flattened cylinder cross-
section of the tendon unit, i.e. fibers, which gives rise to horizontally elongated tendon cross-section.  (With kind 

permission from Springer Science+Business Media: Structureal hierarchies and interactions in the tendon 
composite, vol 12, 1976, Baer, E., Hiltner, A., Friedman, B., Figure 5, Plenum Publishing Corporations)   (b) 
Kastelic et al. proposed that fibrils follow a wavy or zig-zag crimped course and are packed cylindrically.(1. 

Reproduced from Kastelic et al. 1978) (2. Repinted from Journal of Biomechanics, vol 13, A Structural Mechanical 
Model for Tendon Crimping, Copyright 1980, with permission from Elsevier (Pregamon Press, Inc)) (c) Rowe et al. 

suggested the skewed register crimp model and state that their findings do not support the cylindrical symmetry 
model of fibril packing. (Reproduced from Rowe et al. 1985) 

 
 
 

 28 



 
 

1.3.4 Structure-function relationship of collagenous tissues 

Collagens are the major structural element of all connective tissues where they contribute to the 

stability of tissues and organs as well as maintain their structural integrity [26].  The ultimate 

strength of any material, natural or synthetic, depends on the substance in which it is composed.   

Thus, the ability of collagen to transmit load and maintain the structural integrity of tissue is a 

consequence of the aggregation of collagen fibrils, which have a well-defined tensile function, 

into collagen fibers.  

It has been experimentally demonstrated that fibrils can have wide range of diameters.  

The ultimate tensile strength of fibrils is dictated by their diameter size.  For example, fibrils 

with large diameters, which have a wider cross section, have a larger ultimate tensile strength as 

compared to smaller fibrils.  As a result, when tissue undergoes high tensile loading, the collagen 

fibers will have a larger cross sectional area due to the large fibril diameters, allowing the tissue 

to maintain its integrity in the harsh loading environment [38]. 

Additionally, there appears to be a strong correlation between fiber orientation and the 

functional requirements of tissues.  When an oriented stress needs to be withstood, proper fiber 

orientation becomes highly desirable because it provides an optimal match of structure and 

function.  Thus, collagen fiber orientation significantly affects the mechanical properties of a 

tissue.  For example, when a tissue is loaded in only one direction in vivo, the collagen fibers of 

that tissue will orient in one direction only, and the resulting mechanical properties will be 

anisotropic.  However, if a tissue is loaded in all directions, the collagen fibers of that tissue will 
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be oriented in all directions, and the tissue will possess an isotropic mechanical behavior.  Figure 

1-13 is a schematic demonstrating these structure-function relationships.  Consider three samples 

of tissue in an unloaded state.  Sample 1 contains collagen fibers coursing in one direction only, 

which means this tissue has a preferred fiber direction (i.e. the x1 direction) (Figure 1-13a).  

Sample 2 contains randomly oriented collagen fibers (Figure 1-13b).  Sample 3 is an 

intermediate between sample 1 and sample 2 (Figure 1-13c).  It does have fibers coursing in the 

x1 direction, but it also has some fibers oriented in random directions.  Thus, sample 3 does not 

have a strong preferred direction, but it does have some consistent fiber orientation.  Note that in 

the unloaded state, the collagen fibers are crimped (Figure 1-13a-c).  Collagen crimp has a 

significant effect on the mechanical behavior of a tissue, and it is believed to be a significant 

factor in preventing damage if a tissue were loaded rapidly.  When load is applied equally in the 

x1 and x2 directions, sample 1 displays an anisotropic mechanical response, meaning that the 

tissue response in the x1 direction was very different compared to the tissue response in the x2 

direction.  This type of behavior can be seen in heart valves, tendons, and ligaments.   However, 

this was not the case in sample 2.  Sample 2 exhibited an isotropic mechanical response where 

the mechanical response in the x1 and x2 directions were nearly identical, such is the case in the 

fetal membrane or cartilage.  Note that these two situations are extremes.  Sample 3 

demonstrated a modest degree of mechanical anisotropy evidenced by the resulting stress-strain 

curve.  Its tissue response in the x1 direction is different than the tissue response in the x2 

direction.  It is important to note that the x2 response of sample 3 is stiffer than the x2 response of 

sample 1, and this is because sample 3 has more fibers bearing stress in the x2 direction.  Sample 

1 does contain fibers coursing in any direction other than the x1 and thus, only bears stress in the 

x1 direction.  However, the x1 response of sample 1 is stiffer than the x1 response of sample 3.  
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This is because all fibers in sample 1 contribute to the stress in the x1 direction.  In sample 3, 

some of the stress is supported by the fibers in the other directions, reducing the amount of stress 

in the x1 direction.  
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Figure 1-13. Schematic representation of the structure-function relationship between collagen orientation and 
mechanical behavior of a tissue. (a) Sample 1 contains highly oriented collagen fibers in the x1 direction resulting in 
an anisotropic mechanical behavior.  (b) Sample 2 contains randomly oriented collagen fibers, which results in an 

isotropic mechanical behavior.  (c) Sample 3 is an intermediate between sample 1 and sample 2.  Most of the 
collagen fibers are coursing in the x1 direction, but some fibers are oriented in other directions; and thus the 

mechanical behavior is an intermediate between the completely aligned sample 1 and randomly oriented sample 2.  
For example, the x1 mechanical response of sample 1 is stiffer than x1 mechanical response of sample 3.  This 

mechanical behavior can be explained by the underlying collagen microstructure.  In sample 1, all load is born in the 
x1 direction.  However, while most of the load is born by the fibers in the x1 direction in sample 3, but some fibers 

do bear load in the x2 direction, reducing the stress in the x1 direction.  Since some load is born in the x2 direction of 
sample 3, its mechanical response is stiffer than the x2 direction of sample 1, which bear minimal load in the x2 

direction.  In contrast to sample 1 and sample 3, sample 2 is capable of bearing load equally in the x1 and x2 
directions.  Thus, the mechanical response in the x1 direction is not as stiff as in the sample 1 or 3, and the 

mechanical response in the x2 direction is stiffer than that of sample 1 and 3. 
 
 
 

Fiber direction is indicative of the dominant tensile stresses that a tissue undergoes, 

because fiber reorientation is the most efficient and selective way to optimize strength without 

increasing weight and metabolic cost [38].  “The least material is used in the most strategic 

locations to carry the greatest loads with the least strain [38].” 
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1.3.5 Non-linearity of soft tissues 

Collagenous soft tissues exhibit a characteristic non-linear stress-strain behavior.  The nonlinear 

curve can be divided into four distinct regions, the “toe” region, the linear region, and two yield 

regions (Figure 1-15).  Each region of the curve can be attributed to the behavior of the 

underlying microstructure of the tissue.  First, consider a single undulated collagen fiber that is 

initially crimped and cannot bear load (Figure 1-14a,b) resulting in a slack region on the stress-

strain curve.  As increasing stress is applied, the fiber begins to straighten.  Once a collagen fiber 

has become straightened, it will bear load, and the application of increased stress will cause the 

collagen fiber to elongate in a linear elastic manner, with slope K, also known as the elastic 

constant (Figure 1-14b). 
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Figure 1-14. (a) Schematic representation of single undulated collagen fiber.  (b) Traditional recruitment modeling 

assumes that a collagen fiber does not bear load until it is fully straightened. 
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Next consider a group of collagen fibers, with each fiber having a separate degree of 

undulation (Figure 1-15a). FM collagen fibers are recruited (straightened) with different amounts 

of stress due to their various original degrees of crimping (Figure 1-15 b, red line).  One fiber 

may be fully recruited while others are still crimped or partially crimped.  The sequential 

straightening of undulated fibrils due to increased stress results in the “toe” region of the stress-

strain curve (Figure 1-15b, red line).  Once all of the collagen fibers are straightened, the stress-

strain curve becomes linear (Figure 1-15b, black line).  The linear elastic region is the threshold 

of reversibility.  With increased stress, the stress-strain curve transitions from the linear elastic 

regions to the yield regions evidence by a decreased modulus (Figure 1-15b, blue and green 

line). The first yield region can be attributed to permanent fiber elongation (Figure 1-15b, blue 

line), and the second yield region can be attributed to collagen fiber breakage (Figure 1-15b, 

green line).  If only a small number of fibers were present, the various regions (i.e. “toe” region, 

highly linear region, yield regions) of the stress-strain curve would be discrete (Figure 1-15b, 

solid line).  However, when a large population of fibers is present, the stress-strain curve is 

smooth and continuous (Figure 1-15b, dotted line). 
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Figure 1-15. (a) Group of collagen fibers with various degrees of undulation. (b) Gradual recruitment of collagen 

fibers results in a non-linear stress strain relationship, which can be divided into four distinct regions, the toe region, 
the linear elastic region, and two yield regions.  The toe region, represented by the red line, is a result of sequential 
straightening of the collagen fibers.  Once all collagen fibers become straighten the stress-stretch curve transitions 
into a linear region, represented by the black line.  Yield region 1 (blue line) can be attributed to permanent fiber 

elongation, whereas yield region 2 (green line) is a result of collagen fiber breakage. 
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1.3.6 MMP break down of collagen structure 

Matrix metalloproteinases (MMPs) are a family of zinc metallo-enopeptidases that degrade 

extracellular matrix components and play important roles in many normal and pathological 

processes [48, 49].  Normal physiological roles include neutrite growth, cell migration, bone 

elongation, wound healing, angiogenesis, ovulation, sperm maturation, uterine involution, 

menstruation, enamel formation, antigenic processing and presentation, mammary gland 

development, hair follicle development, and embryo implantation [48].  Some pathological 

process involving MMPs include tumor growth and migration, fibrosis, arthritis, glaucoma, 

lupus, scleroderma, cirrhosis, multiple sclerosis, aortic aneurysm, and infertility [48].  For most 

of the MMPs, substrate specificity is not fully characterized.  However, known substrates include 

most of the extracellular matrix components such as fibronectin, vitronectin, laminin, entactin, 

tenascin, aggrecan, myelin basic protein as well as collagens, types I-X and XIV [48]. MMPS are 

secreted from the cells and many have optimal enzymatic activity around neutral pH [49].  

Endogenous inhibitors of metallo-proteinases (TIMPs), TIMPs 1-4, control MMPs [48].  Thus, 

the ratio of the MMP/TIMP for particular collagen thus determines whether the collagen is 

degraded. 

MMPs are produced as zymogens, and contain a signal/prodomain, a catalytic domain 

with Zn2+ molecule in the active site, a hinge domain, and a pexin-like domain (Figure 1-16) 

[50].  The signal sequence and propeptide segment must be removed during activation.  The 

propeptide domain contains a generally conserved sequence PRCGVP around a cysteine that 

chelates the active zinc site and is called the “cysteine switch.”  The catalytic domain contains an 

active site that forms a long groove that divides the domain resulting in “pacman” appearance 

[48].  The propeptide domain lies in reverse orientation of this groove, and the cysteine switch is 
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positioned close to the active site, which allows for different substrate and inhibitor specificities.  

The catalytic domain of two MMPs, MMP-2 and MMP-9, includes a fibronectin-like domain 

which is thought to enhance substrate binding.  All MMPs, with the excemption of MMP-7 and 

MMP-9, contain a hemopexin domain, which is separated from the catalytic domain by a 

variable hinge region.  The hemopexin domain is thought to provide the substrate specificity to 

the MMP and is involved in the activation and inhibition of the MMPs.  Additionally, the hinge 

region provides specificity to the MMP either by direct binding or by setting the orientation of 

the hemopexin domain and the catalytic domain [48].  The three dimensional structure of the 

hemopexin domain can be thought of as a four-blade propeller and contains a calcium binding 

site situated in the folds [48].  Some MMP/substrate interactions appear to require calcium.  

Shedding of the hemopexin domain results in MMP activation, and the isolated hemopexin 

domain is thought to inhibit intact MMPs [48]. 
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Figure 1-16. Structure Domains of Matrix Metalloprotinases.  ( Reprinted with permission from [50].  Copyright @ 
CRC Press, Inc, 1993.)  

 
 
 
Cleavage of interstitial collagen by collagenases has been studied more extensively than 

any other MMP-catalyzed reaction [50].  Collagenases, namely MMP-1 and MMP-8, have the 

ability to degrade interstitial collagens (i.e. collagen types I, II, and III) [50].   The right handed 

triple helix structure, which is compose three left handed α-chains, of the interstitial collagens is 

resistant to cleavage by most proteinases except MMP collagenases.  However, the active site of 

collagenolytic MMPs can only accommodate one α-chain.  Thus, the triple helix structure must 

initially be unwound by a triple helicase mechanism in order to expose the scissile bonds, Gly775-
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Ile776 and Gly775-Leu776 [50, 51].  This step requires the presence of a collagen-binding exosite as 

well as elements within active site.  The hemopexin domain of MMP-1 and MMP-8 supports 

binding to collagen and is required for native collagen cleavage.  After the triple helix has been 

unwound, cleavage of the three α-chains occurs sequentially at the scissile bonds producing ¾ 

and ¼ collagen fragments [51]. 

Another family of MMPs is known as the gelatinases or type IV collagenases, which 

include MMP-2 and MMP-9.  These MMPs have the ability to readily digest gelatins as well as 

type IV collagen, which is typically found in basement membranes.  MMP-2 and MMP-9 cleave 

various peptide bonds such as Gly-Val, Gly-Leu, Gly-Glu, Gly-Asn, and Gly-Ser in denatured 

collagen to yield small peptides, while experimentation on synthetic peptide substrates 

demonstrated that the preferred site of cleavage was the Gly-Ile bond [50].  Gelatinases also 

cleave types VII collagen, found in anchoring fibrils, cartilage type X collagen, and elastin in 

addition to gelatin and collagen types IV and V.  Pepsin-solubalized type IV collagen was 

degraded by the gelatinases, but Makay et al. stated that full-length type IV collagen was 

resistant to proteolysis by both gelatinases, which caused speculation as to whether gelatinases 

actually function as true “type IV collagenases” in vivo.  Nonetheless, the initial cleavage site of 

soluble type IV collagen by MMP-2 and MMP-9 is located roughly ¼ of the distance from the 

NH2-terminus, and Hostikka and Tryggvason suggest that the Gly446-Ile447 bond on the α1(IV) 

chain and Gly464-Leu465 bond on the α2(IV) chain are the scissile bonds and are presumably 

located in the triple helical domain [50].  

Locally produced TIMPS inhibit the activity of secreted fully competent MMPs and 

appear to block or impede MMP precursor activation.  TIMPs appear in a wide variety of 

tisusess and fluids and to be expressed by different normal and transformed cell types form skin, 
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mucosal membranes, synovial tissues, cartilage, dental pulp and ovaries [50].  Currently, there 

are four TIMPs identified, TIMPS1-4, and while TIMPS inhibit all MMPs tested so far, some 

TIMPs have a greater specificity for some MMPs than others [48, 52].  TIMPs form classic 

noncovalent bimolecular complexes with the active forms of MMPs as well as with their latent 

forms under certain circumstancesl [50].  The mechanisms of TIMP inhibition of MMPs has 

been clarified from the crystal structures of TIMP-MMP complexes [52].  TIMPs appear to have 

an overall “wedge-like” shape.  The four residues Cys1-Thr-Cys-Val4 at the N-terminal and the 

Glu67-Ser-Val-Cys70 residues, which are found in TIMP-1, are linked by a disulfide and from a 

contiguous ridge that slots into the active site of the MMPs [52].  The catalytic zinc atom is 

bidentately chelated by the N-terminal amino group and the carbonyl group of Cys1 causing 

expulsion of thee water molecule bound to the zinc atom [52].  Complex formation does not 

appear to involve cleavage of the TIMPs, and the full functional TIMPs can be recovered from 

the complex [50]).  The first 24 N-terminal residues are highly conserved between TIMP-1 and 

TIMP-2 and across species, including the VIRAK sequence noted by Woessner [50].  

Carbamylation of the N-terminal amino group or an addition of an extra Ala at the N-terminus 

inactivates TIMPS so that they can longer inhibit MMP activity [52], and these alterations 

weaken the metal ion chelating ability of TIMPs [52]. 

It has been demonstrated that TIMP-1 forms complexes with MMP-1, but not proMMP-1 

[50].  TIMP-1 also forms complexes with the zymogen form of MMP-9 [50].  TIMP-2 forms a 

complex with zymogen MMP-2 [50], and is a specific inhibitor of MMP-2.  TIMP-2 is 2 to 10 

fold more effective than TIMP-1 in inhibiting gelatins, but TIMP-1 appears to inhibit MMP-1 

more effectively [50]. 
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1.4 PHYSIOLOGICAL FAILURE OF THE FETAL MEMBRANE 

Tissue failure, as occurs when the FM ruptures, is a unique event in normal human physiology, 

whereas other tissue failures (e.g. tendon/ligament failures, bone fracture, skin tears, vascular 

aneurysms) are all pathological processes.  FM rupture is likely a direct consequence of a 

programmed, biochemically mediated weakening process [1, 14] that may work in coordination 

with physical forces.  However, in order to understand FM failure, the relationship between 

physical rupture and programmed, biochemically mediated FM weakening must be established.  

These two mechanisms are discussed in detail in the following. 

1.4.1 Biochemically mediated processes lead to programmed weakening of the FM 

Traditionally, membrane rupture was thought to be a consequence of physical stress alone, 

particularly during labor. However, in 10% of term and 40% of preterm deliveries, membrane 

rupture precedes contractions [14]. It has thus become clear that rupture of the FM, term or 

preterm, is not solely the result of the stretch and shear forces of uterine contractions, but in 

significant part the consequence of a programmed, biochemically mediated, weakening process 

[1, 14].  Animal data clearly documented gestational changes in the FM consistent with 

weakening [14, 53-55].  A homogeneous remodeling process over the entire FM with 

degradation of collagen Type I as a major component was seen in the rat amnion at end gestation 

[56].  Attempts to document similar gestational changes in human FM were initially 

unsuccessful, however [57]. Using a meticulous approach, the Bell group identified a region of 

high morphological change at the rupture site in term vaginal deliveries [58].  The same group 

later identified a similar region overlaying the cervix in patients that delivered by cesarean 
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section without labor [59].  This area of altered morphology was characterized by increased 

matrix metalloproteinase (MMP) activity [60].  Apoptosis, particularly in the chorion trophoblast 

layer, was also reported in this para-cervical region of human FM by them and thereafter by 

several other groups [59-63]. 

Three groups have now confirmed that a zone of altered morphology exists in the region 

overlying the cervix [58, 61, 63].  El Khwad et al., however, was the first to demonstrate that 

these biochemical and histological changes are associated with physical weakening of the FM 

[61].  It was demonstrated that a discrete zone of weakness (“weak zone”) is present in term, 

prelabor FM in the region overlying the cervix.  In addition to decreased rupture strength (1/3 of 

that in other areas of the FM), the “weak zone” showed deceased work to rupture, stiffness, and 

ductility (displacement at the time of rupture) (Table 1-2).   Concomitant with these differences 

in biophysical properties, it was demonstrated that the “weak zone” FM exhibited biochemical 

characteristics consistent with tissue remodeling and apoptosis [61].  The cervical zone, or “weak 

zone,” exhibited increased MMP-9 protein, which showed an inverse linear relationship with FM 

strength [61].  Also, a decrease in TIMP-3 was present in this zone but was prominent in the 

remaining areas of the FM and increase in parallel with FM strength [61].  The cervical zone 

demonstrated an increase in PARP cleavage, indicative of increased apoptosis, compared to 

remaining regions.  PARP cleavage illustrated an inverse linear relationship with strength [61]. 
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Table 1-2. Physical properties of the FM in the cervical zone and the remaining regions. (a) The mean strength of 
the cervical zone was less than the mean strength of the remaining areas.  Also, work to rupture, stiffness, and 

ductility were decreased in the cervical zone. 
 
 

Physical Parameters Cervical Area Remaining Area
Strength 4.98 ± 1.38 N 9.07 ± 2.61 N

Work to Rupture 0.012 ± 0.006 J 0.025 ± 0.011 J
Stiffness 9.14 ± 2.51 N/cm 14.47 ± 3.38 N/cm
Ductility 0.56 ± 0.097 cm 0.67 ± 0.101 cm

 
 
 
 

In addition to MMP-9 other groups have speculated that MMP-2 may be implicated in the 

mechanisms of membrane rupture. However, the exact changes in MMP-2 expression and 

activity during labor are not clear. Some believe that MMP-2 is constituantly produced in the FM 

[64], while others have demonstrated that it is increased in the FM toward end gestation [65].  In 

addition, Yonemoto et. al claimed that MMP-2 was increased in the amnion layer with labor and 

no changes in the chorion [66].  Furthermore, Goldman et. al demonstrated that there is an 

increase in MMP-2 following uterine contractions in the decuida, with no change in the chorion 

layer [67]. 

Finally, it was demonstrated that the “weak zone” contained the same histological 

changes noted in areas of high morphological change by Malak et. al [58, 61].  In another report, 

El Khwad et. al demonstrated that FMs delivered vaginally also had a “weak zone” with identical 

biochemical markers as the Cesarean FM [62].  Furthermore, in FMs with spontaneous rupture, 

the “weak zone” was bisected by the rupture tear line [62].   

The above data is consistent with a programmed biochemical process characterized by 

extracellular matrix (ECM) remodeling and apoptosis acting focally upon the FM region 
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overlying the cervix to create the “weak zone”.  Further, the “weak zone” contains the rupture 

initiation site.  In addition, Kumar et. al also demonstrated that in vitro incubation of FM with 

either TNF or IL-1b can transform “non-weak” FM into weak membranes with the same 

biochemical markers of ECM remodeling and apoptosis seen in the naturally occurring “weak 

zone” [68].    

1.4.2 Biomechanical studies of FM failure behavior 

Many investigators performed in vitro biomechanical studies in an effort to understand FM 

failure [1, 12, 15, 61, 69-78].  Three types of testing techniques were utilized (Table 1-3): 

(1) Tensile testing, in which the membrane is placed between two grips and is gradually 

pulled apart while the resulting forces and strains are monitored [15, 69-72].  

(2) Burst testing, in which a section of membrane is clamped in a circular ring and 

increasing pressure is applied, either via air or fluid, to membrane until failure occurs 

while the height of the membrane is monitored [73-78]. 

(3) Puncture testing, in which a spherically tipped metal probe displaces the central 

portion of a membrane, which is clamped in a ring, perpendicular to the plane of its 

surface [1], while the resultant force is measured [1, 12, 61].   

Note that in order to efficiently compare values from each mode of testing, each failure 

value was converted to a membrane tension.  For tensile testing, the reported force was 

converted to membrane tension by dividing the force by the width of the specimen 

(T=Force/width).  For burst testing, the reported pressures were converted to membrane tension 

using the Law of LaPlace.  Specifically, the Law of LaPlace states the relationship between 

pressure, surface tension, and curvature of the surface of the FM and can be expressed as: 
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2
PaT =  (1-1)

 
where T is the mean membrane tension, P is internal pressure, and a is the estimated radius of the 

FM [36].  The radius, a, was estimated from the radius of the fixture diameter.  If only force was 

provided for the burst and puncture test, the force was first converted to pressure by dividing the 

force by the surface area of a hemisphere (P = Force/Surface Area).  After conversion to 

pressure, equation (1-1) above, was used to determine the membrane tension.  It is important to 

note, that these methods were only used to provide an estimate of the membrane tensions. 
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Table 1-3. Summary of mechanical tests performed on the intact FM.  This table provides the values at which the 
membrane ruptures along with relevant details about the testing techniques.  Note that the fixture diameter is the 

diameter of the circular opening in the center specimen holder in both the burst and puncture devices.  This opening 
in the specimen holder allows the air/water of the burst device and the probe of the puncture device to impinge on 

the secured FM specimen.  The probe diameter is the diameter of the metal probe/plunger in the puncture tests. 
 
 
Study Failure Value Details 

Uniaxial Test 

1 [71, 79] 0.95 N (237.7 N/m) Specimen Dimensions: 4mmx15mm 

Burst (Inflation) Test 

2 [79, 80] 393 mmHg (261.98 N/m) FD: 20 mm 

3 [81] 15 N(152.06 N/m) FD: 15.7 mm 

4 [73] 0.205kg/cm (201.105 N/m) FD: 54 mm 

5 [76] 60 mmHg (152.39 N/m) FD: 76.2 mm 

6 [77] 40 mmHg (101.59 N/m) FD: 76.2 mm 

7 [78] 100 mmHg(253.98 N/m) FD: 76.2 mm 

Puncture Test 

10 [82] 11.34 N (150.40 N/m) FD: 15.88 mm; PD: 12 mm 

11 [61] 9.07±2.61N (144.35 N/m) FD: 25 mm; PD: 10 mm 

12 [12] 4.15±1.27N (206.40 N/m) FD: 20 mm; PD: 3.2 mm 

13 [83] 9.71±2.42N (154.54 N/m) FD:25 mm; PD: 10 mm 
FD = Fixture Diameter 
PD = Probe Diameter 
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In each mode of testing various mechanical parameters (i.e. stiffness and rupture strength 

of the membranes) were determined [1, 71, 79]. Of these methodologies, tensile testing does not 

provide a physiological testing state as the stresses applied are uniaxial, whereas the FM is 

physiologically loaded under a complex biaxial state.  Tensile testing is used because standard 

stress-strain calculations are simple to apply.  Burst testing better mimics the physiologic loading 

state. However, it is logistically difficult and requires relatively large pieces of membrane.  In 

puncture tests, the plunger impinges on the FM resulting in an approximately planar state of 

tension applied to the FM and can be carried out quickly on relatively small pieces of membrane.  

The resultant force measurement is dependent on the size of the metal probe and tissue holder.  

However, Schober et al. demonstrated that data obtained by puncture testing can be directly 

related to that which would be obtained using the more physiological burst testing methodology 

[1, 53, 81, 82].  They reported membrane strength properties in terms of the ratio of surface areas 

of the test sample and the probe, using a fixed specimen diameter and probes of various sizes [1, 

53, 81, 82].  Schober et al. concluded that mechanical properties derived from the puncture 

testing method were equivalent to those obtained with burst testing if the ratio of tissue fragment 

to probe surface area was extrapolated to one [1, 53, 81, 82].  As a result, several recent 

biomechanical investigations of the FM were conducted using this method [61, 62] [1, 12, 61]. 

There are major differences in conclusions based on aforementioned mechanical testing 

methodologies by different investigators due to various reasons. First, different investigators 

were lead to different conclusions because of the use of different testing methodologies (Table 

1-3).  Also, the heterogeneity of the tissue biomechanical properties of the FM surface resulted in 

different conclusions. Investigators were not aware of the existence of a “weak zone” prior to 

reports by El Khwad et al. [61].  In addition, there was confusion as to which layer of the FM 
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was stronger (amnion or choriodecidua) and which component ruptures first.  Recent studies by 

Arikat et al. included video-recording of the rupture process and demonstrated that the 

choriodecidua component of the intact FM did rupture first [83].      

1.4.3 Failure mechanics: a new territory in normal physiology 

Tissue failure is not a normal, physiological event.  Bone breakage, skin tears, bowel ruptures are 

all pathological events which occur as the result of huge force or massive tissue breakdown.  The 

ovarian follicle and some embryological structures do demonstrate tissue failure in the course of 

normal events, but these are relatively thin and lack the mutilaminar structure of FM.  Because 

tissue failure typically occurs as a result of a pathological process and not normal function, the 

biomechanics of soft tissue failure is generally poorly understood.   

Tissue failure mechanics modeling is a relatively new area without much development.  

Constitutive models are used to establish a relationship between physical quantities specific to a 

material, and the constitutive model can be used to approximate the response of the material to 

external forces.  There are two types of constitutive models, phenomenological models and 

structural constitutive models.  Phenomenological models are used to describe the macroscopic 

nature of materials.  Mathematical equations are fit to experimental data in the phenomenological 

approach, and this approach is successful in capturing the nonlinear behavior of soft tissues.  

However, phenomenological modeling does not describe the microstructural basis for the 

constitutive behavior of a material.  Structural constitutive models, however, can elucidate the 

correlation between the underlying microstructure of a material and the mechanical behavior.  

Although many constitutive models have been proposed for the description of the mechanics of 
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various collagenous tissues, only a few models have been formulated to illustrate failure 

processes.   

Liao and Belkoff developed a structural constitutive model for ligament failure [84].  

Their model assumed sequential uncrimping and stretching of collagen fibers is responsible for 

the mechanical response of the ligament and fiber failure occurred sequentially in a brittle, 

strain-limited manner.  In order to incorporate a failure mechanism into the model, the authors 

assumed that when any straightened fiber was deformed beyond a limit strain, brittle failure of 

the fiber occurred.  Additionally, they assumed that all fibers have the same elastic fiber modulus 

and limit strain (a), which constrained the fibers to fail in the same sequence in which they were 

recruited.    

Natali et al. developed an anisotropic elasto-damage constitutive model for tendons [85].  

Their model assumes that damage phenomena are microstructural alterations which result in 

decreased mechanical strength of a material when external loads are applied.  They further 

assume that damage occurs when stress or strain state exceed the elastic limit of a tissue.  Their 

constitutive model incorporates a damage function.  Natali et al. also developed a visco-

hyperelastic model used to analyze the time-dependent mechanical response because their elasto-

damage model only accounted for a decrease in stiffness and strength that can develop under 

significant loading and degenerative conditions [86]. A specific damage criterion was formulated 

to evaluate the influence of strain rate on damage in periodontal ligament.   

De Vita and Slaughter developed a constitutive law for failure behavior in collateral 

ligaments [87].  Their model assumed that collagen fibers are initially crimped and are unable to 

sustain load in this slack configuration.  However, after the fiber become straightened and before 

failure, each collagen fiber exhibits a linear elastic behavior.  Additionally, the authors assume 
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that after the fiber lose their waviness, the fiber fail at different stretches.  While their 

assumptions appear reasonable, when the model was fit to data, the model predicted that fiber 

failure began in the toe region while some fibers were still in their crimped state.  Ligaments’ 

physiological operating ranges are in the “toe” region of the stress-strain curves [88].   Thus, 

failure should not occur during physiological loading, and their model predicted non-

physiological ligament behavior [88].   

Layton and Sastry developed a constitutive model for peripheral nerve of diabetic and 

non-diabetic rats that incorporated fibril load sharing [89].  They investigate two extrema in load 

sharing: (1) equal load sharing, where unbroken fibers in a bundle share load equally, and (2) 

immediate neighbor local load sharing, where only the unbroken fibers adjacent to broken fibers 

in a bundle are subjected to overload.   

Ionescu et al. presented an anisotropic constitutive model for an isotropic matrix 

reinforced by a single fiber family that incorporated strain-based failure criteria [90].  They then 

implemented their model into existing computational solid mechanics software based on the 

material point method, which is a quasi-meshless particle method for simulations in computation 

mechanics.   

Every model presented above is only applicable to parallel-fibered collagenous tissues.  

These models would not be applicable to the FM because the FM contains a complex 

heterogeneous fiber network. 

Volokh developed a bi-layer fiber-matrix model with softening to predict arterial failure 

[91].  Volokh used a softening hyperelasticity approach towards failure modeling as opposed to 

local failure criteria and damage mechanics, which were previously presented.  While this novel 

approach captures the mechanical behavior of the intact arterial wall, this model is over 
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simplified for the fetal membrane.  The arterial wall only contains two families of collagen, 

which is aligned concentrically in the media and longitudinally in the advantia, whereas the fetal 

membrane has randomly oriented collagen fibers. 

Additionally, Slaughter and Sacks developed a constitutive model for fatigue damage in 

chemically treated soft tissue [92].  However, the FM does not fail as a result of fatigue, and this 

type of model is not applicable.  Few others have attempted failure modeling for soft tissues [93-

96].   

In addition to inappropriate or inaccurate failure models, most of the previous FM 

biomechanical studies on failure, while providing important insight, remain limited in that they 

utilize non-physiologic uniaxial loading techniques. Other approaches have utilized simple 

interpretations of puncture-mode failure tests, which while under biaxial loading provide only 

limited understanding of the FM ECM failure process [1, 12, 61, 83, 97].  These focused entirely 

upon the force required to acutely break the FM (rupture force).  However, it remains unclear 

how failure occurs in the FM, which is dictated by the underlying collagen architecture as well as 

the biochemical factors that modulate its failure.  Arikat et al. recently reported video-

documentation of the sequence of events which occur during in vitro FM rupture [83].  Using a 

puncture testing apparatus in which a FM fragment was held in a ring while a plunger applied 

distending force perpendicular to the plane of the FM fragment, the following rupture sequence 

was reported: (1) the amnion and the choriodecidua stretched together under load; (2) the amnion 

separated from choriodecidua; (3) the choriodecidua ruptured; (4) the amnion plastically 

distended further, and (5) the amnion ruptured[83].   These events can be clarified by the 

underlying microstructural responses.  During puncture studies, the amnion and the 

choriodecidua are initially adherent and relaxed with collagen fibers in the FM presumably 
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crimped (Figure 1-17).  With increasing stretch forces in the testing equipment, the amnion and 

the choriodecidua both distend, and the collagen fibers reorient along the direction of applied 

stretch.  The individual fibers begin to uncrimp (Figure 1-17).  As the plunger continues to 

stretch the tissue, the fibers of the amnion layer continue to straighten and eventually become 

taught (Figure 1-17).  During this phase, the choriodecidua and amnion separate from each other, 

and  a  linear fracture  appears in the choriodecidua, while the amnion layer initially remains 

intact[83].  The strongest FM component, the amnion, finally ruptures after undergoing further 

non-elastic deformation [12, 15].  There are two possible scenarios leading up to this failure of 

the amnion (Figure 1-17).  In scenario 1, all collagen fibers are recruited and straightened 

rapidly, resulting in a very small “toe” region.  All collagen fibers will then fail soon after.  In 

scenario 2, the collagen fibers are recruited more gradually contributing to a larger “toe” region. 

Then, with increased stretch, the collagen fibers begin to fail at different amounts of stretch, 

resulting in a gradual failure of the collagen fibers.  The mode of failure is thus likely dependent 

upon the behavior of the tissue under tensions well below that required to rupture the FM. 
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Figure 1-17. Idealization of collagen fiber behavior during puncture studies and its associated tension vs. stretch 
curves.  The amnion layer and the choriodecidua layer are firmly attached and stretched with the plunger during 
puncture studies.  The collagen behavior of the FM up to failure can be idealized by two possible scenarios. In 

scenario 1, collagen fibers are straightened rapidly resulting in a minimal “toe” region and all fibers fail at 
approximately the same stretch after becoming fully straightened.  In scenario 2, due to the various degrees of 

collagen crimp, there is a larger toe region.   After all the collagen fibers become straight, some collagen fibers begin 
to fail, while others remain intact.  As stretch continues to increase, small point defects begin to occur and 

eventually lead to complete failure.  Thus, failure is more gradual as compared to scenario 1. 
 
 

 
The importance of biomechanics in FM failure is also reflected in the relation between 

biomechanical and biochemical processes. It has been demonstrated that proteolytic enzymes 

play a role in membrane rupture [1], and perhaps work synergistically with mechanical forces to 

induce tissue failure.  This speculation is supported by the known interplay between mechanical 

deformation and collagen degradation in soft collagenous tissues [98] [99, 100].  For example, 

Lee et al. demonstrated that tensile loading accelerates the proteolysis of bovine pericardium 

subjected to collagenase [98].  Also, another study demonstrated that the degradation rate of 

collagen increased with stretch [100]. 
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These observations could be caused by two possible mechanisms [100].  Collagen fibers 

are composed of three polypeptide chains (tropocollagens) intertwined to form a triple helix or 

collagen molecule.  The stretching of the collagen molecule may result in the opening of new 

sites making it more susceptible to enzymatic degradation [100].  If only certain sites were 

exposed during stretch, then only these collagen fibers would be more susceptible to failure and 

thus, not all the collagen fibers will fail at once.  Scenario 1 may be explained by this 

phenomenon (Figure 1-17).  Another possible mechanism for the increased degradation rate 

could be that the enzymatic breakdown of a given collagen molecule caused the remaining stress 

in the tissue to be transferred to a neighboring molecule, which may then rupture. If this is a 

widespread event, rapid break down of the collagen fibers could ultimately result in a 

catastrophic failure of the tissue [100].  Scenario 2 may be explained by this mechanism (Figure 

1-17).  While the exact mechanism is unknown, it may be that mechanical stress may facilitate 

weakening of the collagen fibers by attacking the molecules that organize collagen Type 1, such 

as decorin, biglycan, the fibulin family.  Irrespective of the exact mechanisms, we speculate that 

enzymatic degradation of the FM collagen may be accentuated by mechanical stress. 

1.4.4 Understanding sub-failure mechanical behavior is a necessary prerequisite for 

understanding FM failure 

To date, most in vitro mechanical studies have focused on the failure behavior of the FM, 

whereas minimal data exists for the sub-failure mechanical properties.  In order to fully 

understand FM failure, it is first necessary to characterize the sub-failure response of the FM.  

After establishing the sub-failure response of the FM, one can extrapolate this response to failure 

conditions.  In particular, by taking this approach, the complete stress-strain response of the FM 
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from the unloaded, stress-free state until failure will be established.  With this information, a sub-

failure structural model for “non-weak” FM (tissue from regions distal to the paracervical weak 

zone [61, 62]) can be developed.   This model can then be extrapolated to rupture conditions and 

used to investigate the physical basis of the FM “weak zone” [101].  One approach to modeling 

tissue mechanics are structure (i.e. stress-strain) models that can elucidate the correlation 

between the strength enhancing biological components of the FM, such as collagen, and 

mechanical behavior.  Thus, by investigating the structure-strength relationship of “non-weak” 

FM, one can then begin to understand how the structure-strength relationship of the FM is altered 

in the “weak zone” resulting in FM rupture.  In addition to modeling, the direct effects of stretch 

on FM failure need to be investigated and can only be done under sub-failure conditions [101].  

 Our understanding of FM failure biomechanics would be greatly enhanced by utilizing 

physiologic biaxial testing approaches to characterize the sub-failure state and delineate the 

effects of ECM degradation due to a programmed, biochemically mediated, weakening process.  

In contrast, simple interpretations of puncture-mode failure tests have been implemented to 

investigate FM failure, but this type of approach can only provide limited information about FM 

failure (Figure 1-18).  While apparently simple, this test actually induces a complex stress state.  

A stress “amplification” is induced at the tip of the plunger [102].  Specifically, the stress in the 

FM is greatest at the tip of the plunger (Figure 1-18b), and with increasing values of φ, which is 

the angle between the tip of the plunger and an arbitrary point along the membrane, the stress is 

reduced, until the stress field becomes homogenous. The angle in which the FM loses contact 

with the plunger is designated by φc.  Calculations using an average stress would cause an 

underestimation of the failure stresses. 
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Figure 1-18. (a) Schematic of puncture device and the FM being deformed. φ is the angle between the tip of the 
plunger and an arbitrary point along the membrane and is defined from 0 to π/2.  At the tip of the plunger, φ is 0.  φc 
is the angle in which the FM loses contact with the plunger.  (b) Due to the geometry of the plunger, the stress field 

over the surface of the FM during puncture studies is heterogeneous, resulting in a complex data analysis.  At 0, 
which is the tip of the plunger, the stress is the greatest.  With increasing φ, the stress decreases over the surface of 

the FM and eventually becomes homogenous. 
 
 
 

Thus, current failure testing techniques provide limited information on FM tissue 

mechanics.  To better our understanding of the physiologic behavior of the FM, mechanical 

testing techniques need to be more amenable to the determination of FM sub-failure structural 

mechanical properties.  Planar biaxial mechanical testing is one approach for studying sub-

failure mechanical properties.  In particular, the central target region of the test specimen for 

planar biaxial mechanical testing contains uniform stress and strain fields permitting data 

analysis to be simply performed [103].  Also, the target test region is small and located away 

from the outer edges of the test specimen to avoid the effects of specimen grips or tethers [103].  
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1.5 MOTIVATION AND SPECIFIC AIMS OF PRESENT STUDY 

Premature birth is a major public problem accounting for over 13,000 deaths and 30,000 

surviving infants with life-long morbidity yearly [17-19].  Preterm prolonged rupture of the fetal 

membranes (FM) occurs prior to the onset of the contractions of labor and is the initiating event 

leading to preterm birth in about 40% of premature infants [23]. Although significant progress 

has been made recently [1], the physiological mechanisms which cause membranes to rupture, 

term or preterm, are not completely understood. In the past, weakening and rupture of the FM 

were attributed to the mechanical stresses of the contractions of labor [14].  This is not consistent 

with the 10% of term and 40% of preterm births in which rupture precedes contractions.  It is 

now established that animal and human FM undergo extracellular matrix (ECM) remodeling and 

apoptosis in late gestation [56, 62, 104], and these biochemical changes are largely limited to the 

region overlying the cervix in human FM [58, 61, 63]. Moore et. al demonstrated that  region 

overlaying the cervix is physically weaker than the remaining FM [61]. Further, the “weak zone” 

is present prior to labor [61] in patients who underwent repeat Cesarean section, and the FM 

rupture tear line passes through the “weak zone” in patients with spontaneous FM rupture [62].  

Taken as a whole, the FM “weak zone” is likely where FM rupture initiates. 

Tissue failure, as occurs when the FM ruptures, is a unique event in normal human 

physiology, whereas other tissue failures (e.g. bone fracture, skin tears, vascular aneurysms) are 

all pathological processes.  Clearly, a full understanding of the FM failure process requires a 

complete characterization of the structural and mechanical behavior of the FM at near/full term 

under sub-failure (forces well below that which cause rupture) and failure conditions.  Most of 

the previous FM biomechanical studies, while providing important insight, remain limited in that 

they utilize non-physiologic uniaxial loading techniques. Other approaches have utilized simple 
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interpretations of puncture-mode failure tests, while under biaxial loading provides only a 

limited understanding of the FM ECM failure process [1, 12, 61, 83, 97]. Our understanding of 

FM failure biomechanics would be greatly enhanced by utilizing physiologic biaxial testing 

approaches to characterize the sub-failure state of non-weak FM, which will be used to lay the 

basis for understanding how the FM transitions to failure.  Additionally, the failure process of the 

non-weak FM must also be investigated in order to establish how the normal, non-weak 

structure-function relationship of the FM is altered in the “weak zone,” which has unique 

mechanical properties that facilitates tissue failure.  Taking this integrated approach will help 

determine how the FM undergoes mechanical failure as well as elucidating the underlying micro-

mechanical mechanisms that modulates its failure.  It is hypothesized that the structure-function 

relationship of the FM is highly optimized for its unique function to fail at a prescribed time; a 

rare event in normal human physiology.  The results obtained will further our understanding of 

this unique physiological event and thereby provide insight into how we may anticipate, and, 

when appropriate, intervene to prevent preterm FM rupture.   Based on the aforementioned 

rational, the aims of the present study were as follows with a depiction of the aims in a flow chart 

in Figure 1-19: 

Specific Aim 1: Characterize the sub-failure structure-strength behavior of the FM 

under physiological loading conditions.  As a necessary first step, the baseline structure-

strength relation of “non-weak zone” FM tissue will be established.  This will improve the 

understanding of FM tissue biomechanics via the following sub-aims:  

Aim 1.1: Characterize the mechanical properties of “non-weak” FM under biaxial 

loading. Planar biaxial testing techniques allow for physiological loading of the FM and provide 

all relevant deformation necessary for constitutive modeling [103].  The endpoint of this aim was 
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to quantify the sub-failure FM mechanical properties, which will lay the basis for the 

understanding of how the FM transitions to failure.   

Aim 1.2: Assess collagen fiber architecture of both the intact and separated FM 

layers (amnion and choriodecidua) in the “non-weak” FM. Understanding the gross collagen 

fiber architecture of the FM ECM can contribute to a better understanding and predictability of 

the mechanical properties of the FM.  Small angle light scattering (SALS) was used to 

nondestructively quantify collagen fiber architecture alignment of the intact and separated FM 

layers [105].  The endpoints of this aim will be to quantify the collagen fiber structure, such as 

the preferred fiber directions(s) and the degree of fiber alignment.   

Aim 1.3: Determine the in vivo stretch of the FM.  In order to fully characterize the 

mechanical properties of the FM, the baseline, intrauterine stretch of the FM prior to labor must 

be determined.  The scientific endpoint of this aim was to establish the ratio of the surface area 

of the FM in vivo, which will be determined from MRI images, to the surface area after delivery, 

allowing one to determine the in vivo stretch of the FM.   

Specific Aim 2: Implement a structural constitutive model to investigate the sub-

failure responses of FM.  Utilization of a structural constitutive model will allow for the 

establishment of the baseline structure-strength mechanical behavior of the “non-weak” FM by 

elucidating the correlation between the structural components and the resulting mechanical 

behavior of the FM.  The model will be based on fiber-level sub-failure events using a stochastic 

approach and includes a statistical distribution of the fiber recruitment.  The scientific endpoint 

of this aim was to build on the results of specific aim 1, to characterize the response of the FM 

under physiological loading, and to optimize key parameters of the structural constitutive model 

that can be related to the underlying microstructure of the FM. 
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Specific Aim 3: Characterize structural/strength sequelae during failure of the FM 

in the “non-weak” regions.  Building on the results of the first and second aims, the micro-

structural events that occur during loading and failure of the “non-weak” FM will be 

investigated.  This will be achieved through the use of a novel device that will be integrated into 

our SALS system that can perform burst failure tests while simultaneously quantifying the 

collagen fiber architecture, which will help elucidate how the FM transitions to failure. The 

scientific endpoint of this aim was to quantify collagen fiber structure, such as the preferred fiber 

directions(s) and the degree of fiber alignment at various loading levels as well as investigating 

the development of failure in the FM.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 59 



 

Aim 1.2

Determine the in vivo stretch of 
the FM

Hypothesis: The baseline 
intrauterine stretch of the FM prior 
to labor must be established in 
order to establish sub-failure 
mechanical properties of the FM

•Establish the ratio of the surface 
area of the FM in utero to the 
surface area after delivery in order 
to determine the in vivo stretch of 
the FM

Aim 1.3

Assess collagen fiber 
architecture of both the intact 
and separated FM layers (amnion 
and choriodecidua) in the “non-
weak” FM.

Hypothesis: Understanding the 
gross collagen fiber architecture of 
the FM ECM can contribute to a 
better understanding and 
predictability of the mechanical 
properties of the FM.

• Quantify the collagen fiber  
structure, such as the preferred 
fiber directions(s) and the degree of 
fiber alignment

Aim 1.1
Characterize the mechanical 
properties of “non-weak” FM 
under biaxial loading.

Hypothesis: Planar biaxial testing 
techniques allow for physiological 
loading of the FM and provide all 
relevant deformation necessary for 
constitutive modeling 

•Quantify the sub-failure FM 
mechanical properties, which will 
lay the basis for the understanding 
of how the FM transitions to failure 

Aim 2
Implement a structural 
constitutive model to investigate 
the sub-failure responses of FM.

Hypothesis: Utilization of a 
structural constitutive model will 
allow us to establish the baseline 
structure-strength mechanical 
behavior of the “non-weak” FM by 
elucidating the correlation between 
the structural components and the 
resulting mechanical behavior of 
the FM.

•Optimize key parameters of the 
structural constitutive model that 
can be related to the underlying 
microstructure of the FM

Aim 3
Characterize structural/strength 
sequelae during failure of the FM 
in the non-weak regions.

Hypothesis:  Performing membrane 
inflation failure tests while 
simultaneously quantifying collagen 
fiber architecture will elucidate how 
the FM transitions to failure.

•Quantify collagen fiber structure, 
such as the preferred fiber 
directions(s) and the degree of fiber 
alignment at various loading levels
•Investigate the development of 
failure in the FM 

Information learned from previous studies:
• Choriodecidua layer ruptures before the amnion layer
• Amnion layer dominates the mechanical response of 
the intact FM

• Weak zone is present overlaying the cervix in near      
term FM characterized by  collagen remodeling and 
apoptosis

Unknown:
• What is the effect of mechanical forces on the 
biomechanical properties of the FM?  

Sub-Failure Properties Failure Properties
 

 
 

Figure 1-19.  Flowchart of specific aims based. These aims of this study sought to test the overall hypothesis that 
establishment of the sub-failure mechanical properties of the non-weak FM will be lay the basis for understanding 
how the FM transitions to failure and taking this approach will help elucidate how the FM undergoes mechanical 

failure and what factors modulate the underlying micro-mechanical mechanisms. 
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2.0  CHARACTERIZE THE SUB-FAILURE STRUCTURE-STRENGTH BEHAVIOR 

OF THE FM UNDER PHYSIOLOGICAL LOADING CONDITIONS 

2.1 INTRODUCTION 

Normal pregnancy requires that the physical integrity of the fetal membranes (FM) be 

maintained until term delivery.  Timely rupture of the FM is thus a vital part of term labor[1].  In 

the past, weakening and rupture of the FM were attributed to the mechanical stresses of the 

contractions of labor[14].  This is clearly inconsistent with the 10% of term and 40% of preterm 

births in which FM rupture precedes contractions.  It is now established that animal and human 

FM undergo extracellular matrix remodeling and apoptosis in late gestation [56, 62, 104].  In the 

human FM, it has been demonstrated that these biochemical changes are focused on the zone of 

the FM overlying the cervix and that this zone overlying the cervix is physically weaker than the 

remaining FM [58, 61-63].  It is presumed that FM rupture initiates within this “weak zone,” but 

it is not at all clear how this occurs.  

Tissue failure, as occurs when the FM ruptures, is a unique event in normal human 

physiology. Other tissue failures (e.g. bone fracture, skin tears, vascular aneurysms) are all 

pathological processes.  Because tissue failure typically occurs as a result of a pathological 

process and not normal function, the biomechanics of soft tissue failure is generally poorly 

understood.  Moreover, the biomechanics of FM failure must be extrapolated from the behavior 

 61 



of the FM under sub-failure conditions. Therefore, in order to understand the FM failure 

(rupture), the sub-failure behavior of the FM must first be characterized.   In particular, the 

complete stress-strain response of the FM from the unloaded state until failure needs to be 

established so that a sub-failure stress-strain model for “non-weak” FM (tissue from regions 

distal to the paracervical weak zone [61, 62]) can be developed.   This model can then be 

extrapolated to rupture conditions and used to investigate the physical basis of the FM “weak 

zone” [101].  In particular, structural stress-strain models can elucidate the correlation between 

the strength enhancing biological components of the FM, such as collagen, and mechanical 

behavior.  Thus, by investigating the structure-strength relationship of “non-weak” FM, one can 

then begin to understand how the structure-strength relationship of the FM is altered in the 

“weak zone” resulting in FM rupture.  In addition to modeling, the direct effects of stretch on 

FM failure need to be investigated and can only be done under sub-failure conditions [101]. 

The objective of the present study was to accomplish the endpoints of Specific Aim 1.1 

and 1.2: Characterize the mechanical properties of the “non-weak” FM under biaxial loading and 

assess collagen fiber architecture of both the intact and separated FM layers (amnion and 

choriodecidua) in the “non-weak” FM, respectively.  Planar biaxial testing techniques allow for 

physiological loading of the FM and provide all relevant deformation necessary for constitutive 

modeling [103].  Additionally, Soft connective tissues, such as the FM, can efficiently bear 

tensile forces due to their collagen fibers, and the tissue can endure the greatest tensile stresses in 

the direction in which the collagen fibers are oriented.  Thus, understanding the gross collagen 

fiber architecture can contribute to a better understanding and predictability of the mechanical 

properties of soft tissues.   
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2.2 PROTOCOLS 

2.2.1 Tissue procurement and preparation 

FM specimens were collected from women undergoing Cesarean section or Vaginal deliveries at 

MetroHealth Medical Center, Cleveland Ohio after normal term (37-42 weeks) pregnancies.  A 

CWRU/MetroHealth Medical Center institutional review board (IRB) approved protocol was 

utilized.  FM of patients with clinical chorioamnionitis, meconium, maternal diabetes, or 

multiple gestations were specifically excluded.  For these initial studies, FM fragments from 

regions distant from the “weak zone” as determined by methods previously described were 

selected [61, 62]. Fresh FM fragments were stored in 1X Minimum Essential Medium and 

shipped to Pittsburgh, PA overnight on ice.  FM specimens were tested on the day of receipt.  In 

order to prepare specimens for planar biaxial mechanical testing, a 20 mm x 20 mm square was 

dissected from the intact FM specimens sent to our laboratory. Four fiducial markers were placed 

in the center of the tissue in a 2x2 array (Figure 2-1a).  Two loops of 5-0 polyester suture of 

equal length were attached to each side of the specimens via stainless steel hooks. 

2.2.2 Estimation of physiological loading 

A physiologic membrane tension (T) of 35 N/m was used to estimate the sub-failure stress, 

which was determined through the Law of LaPlace using a thin shell approximation [101].  This 

law states a relationship between pressure, surface tension, and curvature of the surface of the 

FM and can be expressed as follows:  

T = ½(P • R) (2-1)
 

 63 



where T is the mean membrane tension (force/unit length), P is the internal pressure, and R is the 

estimated local radius of the FM [101].  P was assumed to be 10 mmHg [106], and R is based 

upon the volume of the FM at term [106, 107].   

Note that in the present study membrane tension was used as opposed to a stress 

(force/unit area) [108].  Utilization of membrane tension eliminated the need for accurate 

thickness measurements, which can vary over the surface of the FM, in stress calculations [108].  

Additionally, both layers of the FM did not bear equal amounts of load.  The choriodecidua layer 

is mostly cellular, while the amnion layer dominates the mechanical response of the FM [12].  

Thus, including the thickness of the choriodecidua layer does not accurately represent the load-

bearing cross-sectional area and may contribute inaccurate stress calculations [108]. 

2.2.3 Planar biaxial mechanical testing 

Specimens were prepared as described above and were then mounted into the planar biaxial 

testing device and aligned with the x1 and the x2 axes of the device (Figure 2-1). During testing, 

specimens were not aligned to any anatomic orientation.   
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Figure 2-1. (a) Biaxial mechanical experimental setup and (b) photo of biaxial testing device, showing the device’s 
x1 and x2 axes. 

 
 
 

All testing was performed with the specimen completely immersed in an aqueous phosphate 

buffered solution (PBS) (pH 7.4) at room temperature. A detailed description of the biaxial 

testing device has been previously reported [109, 110].  Four fiducial markers attached to the 

specimen were used to optically measure its deformation during the test.   

During mechanical testing, a membrane tension (T) was applied along each axis and was 

ramped at ~0.1%/sec to a peak value depending upon the protocol using a triangular waveform.  

A membrane tension of 35 N/m was used to estimate the sub-failure stress (See section 2.2.2).  

Specimens were first be preconditioned for 10 contiguous cycles, following five loading 

protocols: T11:T22 = 0.5:1, 0.75:1, 1:1, 1:0.75, and 1:0.5, where T11 and T22 are the applied 

tensions in the x1 and x2 directions, respectively [108].  This was done for 8 specimens. 
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2.2.4 Data Analysis 

Due to effects of mechanical preconditioning on the FM, a natural, unloaded reference state as 

well as a post-preconditioned, unloaded reference state can be defined.  From the measured 

marker positions of each reference state, the deformation gradient tensor F associated with the 

deformation caused by preconditioning was determined using standard methods [103].  For this 

study, the natural, unloaded reference state (stress free state prior to preconditioning) was used to 

analyze the mechanical data.  

As discussed in section 2.2.1, four fiducial markers attached to the specimen were used to 

optically measure its deformation during the test, and from these measurements, one can define 

Areal Strain as: 

( ) 121 −⋅= λλStrainAreal       (2-2)
 
where λ1 and λ2 are the axial stretch ratios in the x1 and x2 directions, respectively.  Note that 

stretch (λ) is defined as the current length (L) divided by the original length of the collagen fiber 

(L○) [λ = L/ L○]. 

 In order to investigate the overall mechanical behavior and eliminate directionality 

dependencies of the intact FM, average tension and Areal Strain values were computed: 

⎟
⎠

⎞
⎜
⎝

⎛ +
=

2
2211 TT

TensionAverage       (2-3)

 
The tangent modulus of each point on the Average Tension-Areal Strain curve was 

calculated and plotted against Areal Strain (Figure 2-2).  The maximum tangent modulus (MTM) 

was the treated tangent modulus obtained and was the point at which there was no further 

increase in the tangent modulus (Figure 2-2).  The upper bound areal strain (Areal Strainub) was 

the strain at which all collagen fibers were fully straightened and corresponded with the upper 
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bound tension (Tub).  The maximum tension (Tmax) and the maximum areal strain (Areal 

Strainmax) was obtained under the physiologic loading level, 35 N/m.  
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Figure 2-2. (a) A representative Average Tension-Areal Strain curve, where the tangent modulus is calculated as the 
slope at each point of the Average Tension-strain curve, as shown in (b).  Once the tangent modulus reaches a 

plateau, the maximum tangent modulus (MTM) will be reached, and all collagen fibers will be recruited.  The Areal 
Strain where this occurs is defined as the upper bound Areal Strain (Areal strainub).  The Areal Strainub is also 
evident on the Average Tension-Areal strain curve as the point where the Average Tension-Areal strain curve 

becomes linear. 
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2.2.5 Histological analysis 

The following histological analysis was performed to assess the collagen crimp structure in the 

unloaded and loaded states.  First, a section of intact FM was fixed with 0.5% glutaraldehyde in 

an unloaded state.  Next, a 20 mm x 20 mm square section of intact FM was prepared as 

described above for mechanical testing.  The specimen was then mounted into the planar biaxial 

testing device and aligned with the x1 and the x2 axes of the device (note, specimens were not 

aligned to any anatomic orientation) (Figure 2-1) [111].   

  An Areal Strain of ~0.38 was applied to the specimen, which was considered sufficient 

to fully straighten the collagen fibers as it produced a membrane tension of ~35 N/m.  While the 

specimen was under strain, 0.5% glutaraldehyde was added to the bath of the testing device.  The 

strained specimen was left in 0.5% glutaraldehyde under strain for 24 hours.  Finally, transverse 

sections were taken from the unloaded, fixed FM and from the center region of the loaded, fixed 

intact FM.  A Picro Sirius Red stain was used to investigate the collagen crimp structure of the 

FM.  Under polarized light microscopy, collagen fibers of the FM displayed periodic light-

distinguishing bands that correspond to collagen crimp periods.  In addition, a Movat’s 

Pentachrome stain was used to investigate the bilayer structure of the intact FM, which stained 

cell nuclei black, stained collagen yellow to greenish yellow, and stained ground substance blue 

to bluish-green.  All sections were imaged with a bright field microscope under 20 x 

magnification. 
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2.2.6 Small angle light scattering measurements 

SALS was used to nondestructively quantify collagen fiber architecture of both the intact and 

separated FM layers.  A detailed description of the SALS technique has been previously 

presented[105].  Briefly, a 4 mW HeNe continuous unpolarized laser (λ = 632.8 nm) was passed 

through the tissue specimen.  The spatial intensity distribution of the resulting scattered light 

represented the sum of all structural information within the light beam envelope.  The angular 

distribution of scattered light pattern, I(Φ), which represents distribution of fiber angles within 

light beam envelope, was obtained.  Quantifiable information based on I(Φ) includes orientation 

index (OI) and preferred fiber direction (Φc).  The orientation index (OI) was defined as the 

angle that contains one half of the total area under the I(Φ) distribution.  Normalized orientation 

index (NOI) was calculated using:  

o

o OINOI
90

90 −
=       (2-4)

 
where NOI ranged from 0% for a complete random network to 100% for a perfectly aligned 

network [105].  To prepare specimens for SALS, the intact FM and the separated layers were 

first fixed with glutaraldehyde in order to prevent tissue degradation during tissue preparation 

[112].  The glutaraldehyde-fixed intact FM was dehydrated in graded solutions of glycerol/saline 

of 50, 75, 87, and 100% for an hour each [112].  This process cleared the specimens, which was 

necessary for accurate SALS measurements.  SALS measurements were then conducted over the 

entire specimen surface in order to quantify the gross fiber structure of intact FM (n = 8). 
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2.2.7 Statistical analysis 

When a mean value was presented, the standard error of the mean (SEM) was also presented.  A 

t-test was used to evaluate the differences between the maximum stretch at T11 and the maximum 

stretch at T22 as well as mean NOI values. Differences were considered statistically significant 

when p < 0.05. 

2.3 RESULTS 

2.3.1 Mechanical behavior 

The FM exhibited differences in mechanical properties relative to direction of applied tension 

(mechanical anisotropy) (Figure 2-3).  This was demonstrated in Figure 2-3 where T11 vs. stretch 

and T22 vs. stretch curves are different.  However, the statistical analysis used to compare the 

maximum stretch value at T11 and the maximum stretch at T22 resulted in a p-value of 0.300, 

which was not considered significant.  Thus, the degree of anisotropy presented was not 

significant and was within the variability of the data. 

The tension vs. stretch and the tension vs. areal strain curves displayed typical “toe” 

regions at lower values of stretch and areal strain, respectively, followed by a transition into 

highly linear, stiff regions (Figure 2-3 and Figure 2-4a).  With increasing Areal Strain, collagen 

fibers continued to straighten, and the tangent modulus continued to increase (Figure 2-4b). Once 

the Areal Strainub was obtained, all collagen fibers were fully loaded and straightened, and the 

MTM was achieved (Figure 2-4a, b) (Table 2-1).  At this point, the tangent modulus vs. areal 
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stretch curve plateaued, resulting from the fact that the collagen fibers were fully straightened.  

The estimated physiological loading (35 N/m) was above the point where all collagen fibers 

became uncrimped implying that under normal intrauterine conditions the FM has little structural 

reserve (Figure 2-4a). 
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Figure 2-3. Equi-biaxial tension responses of the intact FM. The data presented is the mean and standard error of the 
means (SEM) of experiments with FM from 6 patients.  The dotted portion of the curve is designated as the “toe” 

region, where the collagen fibers are crimped.    The last portion of the curve, represented by the solid black line, is 
the linear region where all collagen fibers bear load and are straightened. 
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Figure 2-4. (a) Tension vs. areal strain for the intact FM.  The overall tissue behavior of the intact FM was 
examined by calculating tension and areal strain, allowing one to neglect directionality dependencies.  The tension 

vs. areal strain curve contained a “toe” region, which transitioned into a highly linear region.  The point at which the 
curve transitioned into the highly linear region was designated as the upper bound and was the point at which all the 
collagen fibers bore load and were straightened   (b) A tangent modulus was calculated for each point on the tension 

vs. areal strain curve.  Once the tension vs. areal strain curve transitioned from the “toe” region, where collagen 
fibers were crimped, into the highly linear region, where collagen fibers were straight, the tangent modulus ceased to 

increase.  This indicated that all collagen fibers were recruited and bear load. 
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Table 2-1. Summary of mechanical tests performed on the intact FM.  This table provides the values at which the 
membrane ruptures. 

 
 

Areal Strainub Tub (N/m) MTM (N/m) Areal Strain max Tmax (N/m)

0.59 ± 0.03 25.62 ± 1.69 657.49 ± 91.78 0.60 ± 0.03 35.56 ± 0.94

 
 
 
 

2.3.2 Micro-structural characteristics  

Histological results indicated that the Type I collagen of the compact sub-layer of the amnion 

was crimped in the unloaded state (Figure 2-5a).  However, once the intact FM was strained, the 

collagen fibers became straightened in order to bear load, and the collagen crimp became 

extinguished (Figure 2-5b). The Movat’s Pentachrome stain demonstrated that the amnion layer 

was predominantly composed of collagen (Figure 2-5c, d).  Collagen in the choriodecidua was 

limited to the reticular layer as it was mostly cellular (Figure 2-5c ,d). 
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Figure 2-5. Histological results using (a,b) Picro Sirius Red and (c,d) Movat’s Pentachrome stains, where numbers 
1-4 refer to the amnion layer, the choriodecidua layer, the crimped collagen, and the straightened collagen, 

respectively.  (a) In the unloaded state, Type I collagen of the amnion layer (1) was crimped (3).  (b)  However, once 
strain was applied, the collagen fibers of the amnion layer (1) bore load and straightened (4).  In the FM’s 

physiological loading state, the collagen fibers were fully straightened.  (c,d)  It was demonstrated that the amnion 
layer (1) is predominantly composed of collagen, with the exception of the epithelial cell layer, and the 

choriodecidua layer (2) is mainly composed of cells with less collagen than the amnion layer. 
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In the stress free state, we observed that the gross collagen fiber architecture of the FM 

and the separated layers were not homogenously aligned but did exhibit small regions of fiber 

alignment (Figure 2-6).  The intact FM and the choriodecidua exhibited low fiber alignment (low 

NOI value) and were not statistically different, suggesting that both the intact FM and the 

choriodecidua are effectively isotropic (i.e. contain no preferred collagen direction) (Figure 2-6).  

However, the amnion layer did exhibit regions of high fiber alignment (higher NOI value) and 

was significantly more aligned than the intact (p<0.001) and the choriodecidua (p=0.002) (Figure 

2-6).  The modest alignment of the amnion layer probably contributed to the modest anisotropic 

mechanical behavior of the intact FM. 
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Figure 2-6. Gross fiber architecture of the intact and separated tissues in a stress free state.  The gross collagen fiber 

architecture of the intact FM and the separated layers exhibited small regions of alignment, but the overall fiber 
architecture was not homogenously aligned.  The amnion layer contains the greatest degree of collagen fiber 

alignment. 
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2.4 DISCUSSION 

2.4.1 Effects of preconditioning on the FM 

In order to fully understand FM failure, it is first necessary to characterize the sub-failure 

response of the FM, which will be used to lay the basis for understanding how the FM transitions 

to failure.  By taking this approach, the complete stress-strain response of the FM from the 

unloaded, stress-free state until failure will be established.  With this information, a sub-failure 

structural model for “non-weak” FM (tissue from regions distal to the paracervical weak zone 

[61, 62]) can be developed.   This model can then be extrapolated to rupture conditions and used 

to investigate the physical basis of the FM “weak zone” [101].   

Current failure testing techniques provide limited information on FM tissue mechanics 

(section 1.4.4).  However, planar biaxial mechanical testing is one approach for studying sub-

failure structural mechanical properties.  In particular, the central target region of the test 

specimen for planar biaxial mechanical testing contains uniform stress and strain fields 

permitting data analysis to be simply performed [103].  Also, the target test region is small and 

located away from the outer edges of the test specimen to avoid the effects of specimen grips or 

tethers [103]. Planar biaxial mechanical testing can provide these necessary boundary conditions.  

However, planar biaxial mechanical testing requires that the FM is mechanically preconditioned.  

When the FM was preconditioned during planar biaxial testing, which involved cyclically 

loading the FM to the same stress-strain, the stress-strain response eventually became stable (i.e. 

the stress-strain response of last preconditioning cycles were nearly identical).  As a result, 

preconditioning allowed for repeatable test results.  However, mechanical preconditioning 
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caused the FM specimens to attain a different equilibrium state, referred to as the post-

preconditioned, unloaded reference state (Figure 2-7).   

  
 

FM fragment

Biaxial test specimen

Natural, unloaded 
reference state

Post -preconditioned, 
unloaded reference state  

 
 

Figure 2-7. The natural unloaded, reference state refers to the stress-free reference state after the FM biaxial 
specimen was dissected from the FM.  After mechanical preconditioning, the FM attained a different equilibrium 

state referred to as the post-preconditioned, unloaded reference state (i.e. dotted line was the original reference 
state).  The natural, unloaded reference state was used for data analysis. 

 
 
 

Thus, in order to accommodate for the effects of mechanical preconditioning on the FM, a 

natural, unloaded reference state (i.e. stress free state prior to preconditioning) was used because 

it is the only common reference state among FM specimens.  Additionally, the natural, unloaded 

reference state is the common reference state used throughout the literature. 

2.4.2 Structure-function relationships of the FM 

Compelling evidence has been previously presented that suggests rupture of the FM is a result of 

both mechanical and biochemical processes [14, 58, 61-63].  Although the biochemical processes 

affecting the FM have been somewhat clarified, the effects of physical processes are less clear.  

In this study, we presented a more complete description of the sub-failure mechanical properties 

of the FM in the area distal to the defined “weak zone” overlaying the cervix, which is a required 
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prerequisite for extrapolation to rupture conditions.  With this information, sub-failure structural 

models of the FM response can be developed and extrapolated to rupture conditions, allowing 

one to investigate how the “non-weak” FM transitions to failure.   

Data presented here demonstrated that under planar biaxial mechanical testing human FM 

exhibited anisotropy and classical tension vs. stretch curves with characteristic “toe” regions, 

followed by transition into highly linear, stiff regions.  Furthermore, it was found that once the 

collagen fibers become fully straighten, they have limited stretching capabilities thereafter.  It is 

highly likely that the collagen fibers of the FM are loaded close to their failure stretch.   

  On a per specimen basis, the FM exhibited a modest degree of mechanical anisotropy 

(Figure 2-3), meaning that the FM’s response to stretch was different along the x1 and x2 axes.  

However, this difference was not statistically significant (p = 0.300).  In consequence, while on a 

specimen by specimen basis the FM exhibited a modest anisotropic response, taken as a whole, 

the FM is an isotropic material.  In addition, it has demonstrated that the collagen structure of the 

intact FM was not consistently aligned (Figure 2-6), meaning that the collagen fibers were not 

strongly aligned in a preferred direction.  Thus, FM collagen fibers are not aligned globally in 

relation to any anatomic structures in the uterus or placenta.  In conclusion, both the 

biomechanical response and the structural measurements indicate that while the FM exhibited 

local anisotropy, the FM is an effectively isotropic material. We believe this to be important 

finding regarding the normal physiological function of the intact FM.  This feature is essential 

for the accommodation of fetal movement throughout gestation.  If the fibers were strongly 

aligned in a preferred direction, the collagen fibers would only support the fetal movement in one 

direction (i.e. the preferred fiber direction).  Thus, the FM would likely more often rupture 

aberrantly with minimal force. 
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The average Areal Strainub, occurred at 99% of the average Areal Strainmax, (Table 2-1).  

This indicated that once the collagen fibers began to bear load, they were recruited very rapidly.  

Also, the average Tub, occurred at 72% of average Tmax (Table 2-1), indicating that the collagen 

fibers were straightened well below physiological loading levels (Figure 2-4a).  These results 

suggest that there is little or no structural reserve in the FM, that is, they had no ability to stretch 

further without breaking, which may be an important aspect of its failure properties.  This 

biomechanical data was further supported by the histological studies demonstrating that under 

physiological loading of the FM, the collagen fibers were no longer undulated. They were 

completely straightened (Figure 2-5).  The FM’s physiological operating range thus appeared to 

be close to its failure stress.   

Unlike the FM, other soft collagenous tissues (e.g. as pericardium, heart valves, and 

ligaments) have a large structural reserve so that their physiological loading ranges are well 

below their failure strengths [88, 113-117].  For example, native bovine pericardium has a 

physiological loading range of 0.6-1 MPa [113-115] compared with an ultimate tensile strength 

of 5 to 26 MPa[116].  Native porcine aortic valve leaflet tissue normally functions at 140 kPa 

and has an ultimate tensile strength of 600-1200 kPa.  Ligaments are thought to function in the 

“toe” region and the early portion of the linear region of the stress-strain curve at approximately 

1-6.25 MPa and have an ultimate tensile strength between 4-45 MPa depending on the age and 

type of ligament [88, 117].  The structural reserves in these tissues prevent them from being 

deformed past their failure strength.  The FM did not function in the “toe” region or early 

portions of the linear regions.  The FM collagen fibers were fully loaded under physiologic 

loading conditions (sub-failure).  Thus, the FM has much less structural reserve than other soft 

tissue, which probably facilitates failure during labor. 
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2.4.3 Limitations 

A limitation of this study is the unclear relevance of preconditioning of the FM to its in vivo 

state.  Oyen et al. demonstrated that the FM has viscoelastic like behavior, and cyclic loading 

results in a drastic reduction of energy dissipation in the first cycle followed by less hysteresis on 

subsequent cycles [15].  Thus, when the FM was preconditioned during planar biaxial testing, 

which involved cyclically loading the FM to the same stress-strain, the stress-strain response 

eventually became stable (i.e. the stress-strain response of last preconditioning cycles were 

nearly identical).  As a result, preconditioning allowed for repeatable test results.  However, the 

mechanism of preconditioning and the relation between a preconditioned tissue’s response and 

its actual in vivo properties is not clear.  Preconditioning is an essential in vivo response feature 

in multiple tissues, such as the heart valves, ligaments, tendons, the left ventricle and the small 

intestine, to name a few.  However, the in vivo state of the FM and its relationship to 

preconditioning is unknown.  The FM is not cyclically loaded in vivo like the aforementioned 

tissues but rather constantly loaded.  Thus, while preconditioning is necessary to produce 

repeatable results during planar biaxial testing, its relevance to its in vivo state is not clear.  Thus, 

it was concluded that the most appropriate reference state was the natural, unloaded reference 

state. 

2.4.4 Summary and Conclusions  

This study provided the first data on sub-failure mechanical properties of the full thickness FM 

using planar biaxial experiments.  This study focused specifically on areas of the FM distal to the 

“weak zone,” where failure likely occurs [1].  Nonetheless, results indicated that the FM is an 
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effectively isotropic material and that that FM collagen fibers in regions distal from the “weak 

zone” became fully loaded and were straightened at the upper bound stretch with little stretching 

capabilities thereafter, suggesting that little or no structural reserve exists in the FM.  This may 

therefore prove to be an important aspect of the FM’s design for failure.  Future studies will 

focus upon the FM “weak zone,” which should lay the basis for the understanding how the FM 

transitions to failure.   
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3.0  DETERMINATION OF IN VIVO PHYSIOLOGICAL LOADING OF THE FM 

3.1 INTRODUCTION 

FM rupture is a normal physiological event, which occurs in the context of labor and delivery of 

an infant. Although it was previously thought that the membranes rupture as a result of shear 

forces resulting from contractions, it is now established that the FM undergoes remodeling and 

weakening metamorphosis during the latter part of gestation. They are programmed to degrade, 

evidence by the fact that at least 10% of term deliveries and at least 40% of preterm deliveries, 

membranes rupture prior to the onset of any uterine contractions. In addition, studies of FM in rat 

and mouse models have shown remodeling of the membranes is initiated with changes in tissue 

collagen and followed by apoptosis of the various cell layers of the membrane. Human studies 

demonstrated that a region overlying the cervix shows similar biochemical changes (rather than 

the whole membrane).   

The importance of biomechanics in FM failure is also reflected in the relation between 

biomechanical and biochemical processes. It has been demonstrated that proteolytic enzymes 

play a role in membrane rupture [1], and perhaps work synergistically with mechanical forces to 

induce tissue failure.  This speculation is supported by the known interplay between mechanical 

deformation and collagen degradation in soft collagenous tissues [98] [99, 100].  For example, 

Lee et. al demonstrated that tensile loading accelerates the prteolysis of bovine pericardium 
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subjected to collagenase [98].  Also, another study demonstrated that the degradation rate of 

collagen increased with stretch [100]. 

Alger and Pupkin stated that minimal growth of the FM does occurs during the final 

weeks of pregnancy as demonstrated by decreased mitosis [118].  Millar et al. suggest that 

disturbance to the FM ECM by means of distention stimulates remodeling of the ECM, resulting 

in an increase in membrane surface, where as excessive distension or inadequate remodeling 

could result in preterm premature rupture of the FM and preterm birth [118].  As previously 

discussed in section 1.4.3, this type of speculated behavior is supported by the known interplay 

between mechanical deformation and collagen degradation in soft collagenous tissues [98] [99, 

100].  Lee et al. demonstrated that tensile loading accelerates the proteolysis of bovine 

pericardium subjected to collagenase [98], while another study demonstrated that the degradation 

rate of collagen increased with stretch [100].  Collagen synthesis and degradation due to 

proteolytic enzymes, such as MMPs, may play a role in membrane rupture [1] and perhaps work 

synergistically with mechanical forces (i.e. distension) to induce tissue failure.  Thus, accurate 

measurements of membrane distension are critical in order to determine the effect of stretch on 

the FM.  

Additionally, as a necessary prerequisite for the characterization of the mechanical 

properties of the FM, the baseline, intrauterine stretch of the FM prior to labor must be 

determined.  In particular, the complete stress-strain response of the FM from the unloaded, 

stress-free state until failure must be established in order to develop a sub-failure structural 

model for “non-weak” FM.  After establishing the sub-failure response of the FM, one can 

extrapolate this response to failure conditions and can be used to investigate the physical basis of 

the FM “weak zone” [101]. 
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The objective of the present study was to accomplish the endpoints of Specific Aim 1.3: 

determine the in vivo stretch of the FM.  As a necessary prerequisite for the characterization of 

the mechanical properties of the FM, the baseline, intrauterine stretch of the FM prior to labor 

must be determined, and the direct effects of stretch on FM failure must be investigated.  It is 

hypothesized the FM is significantly stretched in vivo. Because FM distension cannot be directly 

measured in vivo, we must determine it indirectly from MRI images.  Thus, the ratio of the 

surface area of the FM in vivo to the surface area after delivery will be established, allowing one 

to determine the in vivo stretch of the FM.   

3.2 PROTOCOLS 

3.2.1 Tissue procurement 

 Five placentas (with FM) were obtained from pregnant women delivering in the MetroHealth 

Medical Center. The patients were term and underwent scheduled Cesarean Section deliveries 

with no labor and intact membranes.  Patients were scheduled for MRI within several days of the 

scheduled delivery.  The MRI data from these patients were used for the in vitro surface area 

measurements. Upon delivery, the Moore Laboratory from Case Western Reserve University 

obtained the placentas with FM in order to perform surface area measurements on the tissue. 
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3.2.2 In vitro surface area measurements 

Upon receipt of the placenta and FM, the umbilical cord was clamped as soon as possible. 

Previous studies have observed extensive differences in placental weight (due to blood loss) 

between placentas obtained with versus without the cord clamped. The placenta was weighed 

and washed in room temp PBS. The membranes were carefully dissected from the placenta as 

close to the placental rim as possible. The FM was also washed in room temperature PBS and 

carefully cut into three or four fragments. The fragments were maintained in room temperature 

PBS for a few minutes while the disc was traced. Tracing involved placing the placenta in a dish 

fetal side up. The pan was covered with a plexiglas plate (plate does not touch the disc) and a 

marker was used to carefully trace the disc area onto the plexiglass. This tracing was then 

transferred to tracing paper. 

 Each FM fragment was gently placed on a shallow flat tray which is then filled with 

room temperature PBS. The tray was about 2 cm deep. Once filled, the FM was suspended in the 

PBS in slight contact with the bottom of the tray. The FM fragment (if contorted) was carefully 

unfolded into a single layer, amnion side facing down (toward the bottom of the tray). The tray 

was gently agitated for 30-40 seconds resulting in spreading and suspension of the FM.  The PBS 

was removed from the tray by vacuum aspiration leaving the wet FM fragment lying on the 

bottom of the tray in the same conformation as when suspended.  The plexiglas sheet was then 

placed over the tray and the area of the fragment was traced onto the plexiglas, then transferred 

to tracing paper as outlined above for the disc. 

 To calculate the post delivery surface area from the tracings, four 10 cm x 10 cm pieces 

of filter paper were carefully measured and cut out. The four fragments of filter paper were 

weighed, and the average weight for a 100cm2 area was determined. Then, the placental disc 

 86 



tracing and the FM fragment tracings were cut out.  The tracings were then weighed, and the 

surface areas of each tracing were determined by comparing their weights against the "standard" 

calculated above.  Note that for these studies, the surface area of the entire placental disc was not 

included in the surface area measurements. However, the disc was traced because the surface 

area of the placental amnion over the disc needed to measured, and separating this tissue from 

the placenta would have severely stretched the amnion.   

3.2.3 In vivo surface area measurements 

MRI results were first segmented using free software, Medical Image Processing, Analysis, and 

Visualization (MIPAV), from the NIH website (http://mipav.cit.nih.gov/).  Image segmentation 

was done by the Moore laboratory.  After segmentation was complete, the segmented images 

were then sent the Engineered Tissue and Mechanics and Mechanobiology Laboratory for further 

analysis.  The result of segmenting the raw images (MRI) was a three-dimensional cloud of 

points, commonly referred to as a point cloud (Figure 3-1a).  The point cloud data derived from 

segmentation served as a link between MRI and a three-dimensional geometric model. The 

commercial software Geomagic/Studio (Research Triangle Park, NC) was used in the three-

dimensional reconstruction process.  First, the point cloud data was imported into 

Geomagic/Studio (Figure 3-1a), and a surface wrap was performed to produce a 

stereolithography (STL) formatted surface (Figure 3-1b). A STL surface is a simple surface 

definition made by triangulating the point cloud data, which produces a set of triangular elements 

that only contains information of connectivity and surface normals (Figure 3-1c).  The STL 

surface was then smoothed.  The STL surface must be conservatively smoothed because raw data 

can lead to imperfections in the geometric quality.  Next, four sided patches were defined which 
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capture significant topological and curvature surface characteristics.  Non Uniform Rational B-

spline (NURBs) based model was then constructed from the patch definition by establishing a 

grid of control points within the field of patches (Figure 3-1d).  The NURBs format is 

compatible with CAD modeling tools such as SolidWorks (Dassault Systemes SolidWorks Corp. 

Concord, MA).  After the NURBs-based geometry was constructed, SolidWorks was used to 

calculate the in vivo surface area. 

 
 

(a) Point Cloud Generated 
From Raw Data

(b) Surface wrap applied to 
produce  an STL Surface

(c) STL format of wrapped 
point Cloud

(d) NURBS based surfaces 

 
 
 

Figure 3-1. Key steps in the three dimensional reconstruction process. (a) Raw MRI data is imported into 
Geomagic/Studio.  (b) Next, a surface wrap is applied in order to generate an STL surface. (c) The STL surface is a 

simple surface definition made by triangulating the point cloud from data, which produces a set of triangular 
elements that only contains information of connectivity and surface normals. (d) Finally, a NURBs based surface is 

constructed, which is compatible with commercial CAD modeling tools, such as SolidWorks. 
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3.2.4 Physiological membrane deformation analysis 

In order to estimate the deformed surface area of the FM, the surface area determined from the in 

vivo measurements (section 3.2.3) was divided by the in vitro surface area measurements 

(section 3.2.2). 

3.3 RESULTS 

Data generated from the Moore Laboratory was implemented into Geomagic/Studio, a 

commercial software package, resulting in a complete three dimensional reconstruction of the 

FM (Figure 3-2).  The surface area was then calculated based these three dimensional 

reconstructions.  

 
 

 
 
 

Figure 3-2. A representative image of three dimensional reconstruction of the FM from MRI.  This is a 360o view 
for one membrane. 
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The surface area of the expelled FM (i.e. in vitro surface area), which included the FM 

and the placental amnion, was 842.1 ± 59.4 cm2 (Table 3-1).  The surface area of the deformed 

FM (calculated with SolildWorks from the NURBS based geometry generated with Geomagic), 

or the in vivo surface area measurement, was 2151.4 ± 160.3 cm2 (Table 3-1).  The ratio of the in 

vivo surface area to the in vitro surface area was calculated to be 2.56 ± 0.08, which is assumed 

to correspond to an in vivo pressure prior to labor of 10 mmHg [106].  

 
 

Table 3-1. Summary of in vitro surface area measurements, in vivo surface area measurements, and the 
calculated areal stretch of the FM. 

 
 

Sample Unloaded Surface Area (cm2) MRI surface Area (cm2) Areal Stretch

1 770.6 1917.3 2.49

2 816.7 1891.7 2.32

3 878.0 2277.0 2.59

4 1048.0 2728.0 2.60

5 697.0 1943.0 2.79

mean ± SEM 842.1 ± 59.4 2151.4 ± 160.3 2.56 ± 0.08
 

 
 
 

3.4 DISCUSSION 

Membrane rupture has been largely pursued from a biochemical and histological perspective, but 

the biomechanical aspect of membrane rupture has been grossly understudied.  Membrane failure 

at term gestation is likely to be a result of proteolytic enzyme degradation of the FM in 

conjunction with mechanical forces.  It was hypothesized that the FM is significantly deformed 
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in vivo.  Furthermore, it has been speculated that FM growth is minimized by the sixth month of 

gestation and grows approximately 0.1% thereafter [118].  At this time, the FM is significantly 

deformed with the increasing size of the fetus.  Thus, accurate measurements of membrane 

distension are critical in order to determine the effect of stretch on the FM. Furthermore, the 

baseline, intrauterine stretch of the FM prior to labor must be determined in order to accurately 

interpret biomechanical data and to determine the intrauterine pressure and tension.  Limited 

information on the surface area of the FM in vivo can be found in the literature.  The few 

measurements that exist were based on direct physical of the maternal abdomen between the 

syphysis and the fundus of the uterus [119] or ultrasonography [118].  However, even with 

modern ultrasound equipment, the sequential cuts would not be complete and/or adequate to 

provide data from which to accurately compute the FM surface area.  MRI, however, has been 

utilized to compute organ volumes and surface areas on both a clinical and research basis. 

Through this study, it was determined that in vivo stretch of the FM was 2.56 ± 0.08.  

One important observation is that while there was variability in the in vitro surface area 

measurements (842.1 ± 59.4 cm2) as well as in the in vivo surface area measurements (2151.4 ± 

160.3 cm2), the FM was consistently deformed to 2.56 ± 0.08.  While this goal of this work was 

to simply determine the in vivo deformation, these values have immediate and future 

implications.  First, the stretch values determined in this study will be used in Chapter 5 to 

estimate the physiological loading level of the FM in vivo and corroborate the claim that the in 

vivo pressure prior to labor is 10 mmHg [106].  Additionally, these values will be useful in future 

work investigating the effects of stretch on the FM ECM remodeling and resulting membrane 

failure.   
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3.4.1 Limitations 

It is important to note that these membranes were obtained from patients undergoing repeat 

Cesarean Section deliveries, and thus, the fetuses were delivered ~2 weeks earlier.  In 

consequence, if the fetus was left in the uterus for an additional two weeks, it is likely that these 

membranes would have stretched further.   
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4.0  IMPLEMENTATION OF A STRUCTURAL CONSTITUTIVE MODEL TO 

INVESTIGATE THE SUB-FAILURE RESPONSE OF THE FM 

4.1 INTRODUCTION 

Equations that characterize a material as well as its response to applied loads are referred to as 

constitutive relations because they describe the aggregate tissue behavior resulting from the 

internal constitution of the material [120].  As previously mentioned section 1.4.3, there are two 

types of constitutive models, phenomenological models and structural models.   

Phenomenological constitutive models are used to describe the macroscopic nature of 

materials, but are independent of structural considerations.  Typically, phenomenological models 

are “Fung-type” models, which use an exponential function to describe the tissue strain energy 

[36].  The “Fung-type” model has been implemented by Tong and Fung and Lanir to describe 

skin, Fung et al. and Chuong and Fung to model arteries, Chew et al. for pericardium, Humphrey 

et al. for pleura, and Yin et al. for myocardium [120].  However, while phenomenological 

models are efficient at capturing the nonlinear behavior of soft tissues, they are not capable of 

elucidating the underlying mechanisms of soft tissue behavior.   

Conversely, structural constitutive model can elucidate the correlation between the 

underlying microstructure of a material and the resulting mechanical behavior.  Structural 

constitutive models integrate information on tissue composition and structural information in 
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order to provide insight into the function, structure, and mechanics of tissue and tissue 

components.  Structural constitutive models have been developed for various soft tissues such as 

lung, cartilage, myocardium, heart valves, and skin to name a few [121].  The most complete 

approach towards structural constitutive modeling for soft tissues has been developed by Lanir et 

al. [121].  In Lanir’s modeling approach, a tissue’s total strain energy is assumed to be the sum 

of the individual fiber strain energies, which can be linked to the tissue strain energy through 

tensor transformations from the fiber coordinates to the global tissue coordinates [121].  

Additionally, structural information, such as fiber angular distributions, are modeled using 

assumed statistical distributions, with the distribution parameters numerically estimated from fits 

to experimental mechanical data [121].  Following Lanir’s work, Sacks demonstrated the 

importance of including the angular distribution of collagen fibers to model soft tissues [121].  

Since most in vitro mechanical studies have focused on the failure behavior of the FM, 

limited data exists for the sub-failure mechanical properties of the FM.  In order to fully 

understand FM failure, it is first necessary to characterize the sub-failure response of the FM.  

After establishing the sub-failure response of the FM, one can extrapolate this response to failure 

conditions.  In particular, the complete stress-strain response of the FM from the unloaded, 

stress-free state until failure must be established.  With this information, a sub-failure structural 

model for “non-weak” FM (tissue from regions distal to the paracervical weak zone [61, 62]) can 

be implemented to further characterize the sub-failure properties of the FM, and this model can 

then be extrapolated to rupture conditions and used to investigate the physical basis of the FM 

“weak zone” [101].  Thus, by investigating the structure-strength relationship of “non-weak” 

FM, one can then begin to understand how the structure-strength relationship of the FM is altered 

in the “weak zone” resulting in FM rupture. 
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The objective of the present study was to accomplish the endpoints of Specific Aim 2: 

Implementation of a structural constitutive model to investigate the sub-failure responses of FM.  

Utilization of a structural constitutive model allows for the establishment of the baseline 

structure-strength mechanical behavior of the “non-weak” FM by elucidating the correlation 

between the structural components and the resulting mechanical behavior of the FM.  The model 

is based on fiber-level sub-failure events using a stochastic approach and includes a statistical 

distribution of the fiber recruitment.  Additionally, a tissue level model was implemented to 

quantify the fiber angular distribution within the FM.  The scientific endpoint of this aim was to 

build on the results of specific aim 1 and characterize the response of the FM under physiological 

loading as well as to optimize parameters of the structural constitutive model that can be related 

to the underlying microstructure of the FM. 

4.2 PROTOCOLS 

4.2.1 Tissue procurement and preparation 

FM specimens were collected from women undergoing Cesarean section or Vaginal deliveries at 

MetroHealth Medical Center, Cleveland Ohio after normal term (37-42 weeks) pregnancies.  A 

CWRU/MetroHealth Medical Center institutional review board (IRB) approved protocol was 

utilized.  FM of patients with clinical chorioamnionitis, meconium, maternal diabetes, or 

multiple gestations were specifically excluded.  For these Studies, FM fragments from regions 

distant from the “weak zone” as determined by methods previously described were selected [61, 

62]. Fresh FM fragments were stored in 1X Minimum Essential Medium and shipped to 
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Pittsburgh, PA overnight on ice.  FM specimens were tested on the day of receipt.  In order to 

prepare specimens for planar biaxial mechanical testing, a 20 mm x 20 mm square was dissected 

from the intact FM specimens sent to our laboratory. Four fiducial markers were placed in the 

center of the tissue in a 2x2 array (Fig. 3).  Two loops of 5-0 polyester suture of equal length 

were attached to each side of the specimens via stainless steel hooks. 

4.2.2 Planar biaxial mechanical testing 

Specimens were prepared as described above (section 4.2.1) and were then mounted into the 

planar biaxial testing device and aligned with the x1 and the x2 axes of the device as described in 

section 2.2.3. During testing, specimens were not aligned to any anatomic orientation.  All 

testing was performed with the specimen completely immersed in an aqueous phosphate buffered 

solution (PBS) (pH 7.4) at room temperature, and the tissue samples were not aligned to a 

specific anatomical direction. A detailed description of the biaxial testing device has been 

previously reported [109, 110, 122].  The four fiducial markers attached to the specimen were 

used to optically measure its deformation during the test. 

 The multi-protocol biaxial data generated in section 2.2.3 was used for this study.  In 

addition to the multi-protocol testing described above, an equi-strain test, wherein an equal 

amount of strain was applied along the x1 and x2 axes of a specimen, was aperformed for 

constitutive modeling purposes.  During equi-strain testing, specimens were first preconditioned 

for 10 contiguous cycles under equi-tension.  After preconditioning the sample, an equi-strain 

test was then performed.  In order to determine the appropriate strain level, an equal amount of 

strain was applied along the x1 and x2 axes of a specimen. Once one axis attained a tension level 

of ~35 N/m, the corresponding strain was used to perform the equi-strain test for that particular 
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sample.  A natural, unloaded reference state was used to analyze the mechanical data (see section 

2.2.4 and section 2.4.1).  This was done on 8 specimens.   

4.2.3 Theoretical formulation of model - assumptions 

The following generalized model for planar collagenous tissue is based on previous work 

presented by Sacks [121].  First, one must assume that a representative volume element (RVE) 

can be identified that is large enough to represent the processes associated with the 

microstructure of the material in some average sense, yet small compared to the characteristic 

length scale of the microstructure (Figure 4-1).  The RVE was treated as a three-dimensional 

continuum and was assumed the material can be modeled as a hyperelastic solid.  Thus, 

E
WS

∂
∂

=       (4-1)

 
where S  and E  are the 2nd Piola-Kirchhoff stress and the Green-Lagrange strain tensors, 

respectively.  W is the tissue strain energy density per unit volume.  Within the RVE, the 

following assumptions were made, which were previously presented by Sacks [121]: 

1. For mechanical modeling purposes, the FM was idealized as a planar network of collagen 

fibers embedded in a ground substance or matrix (Figure 4-1), and the hydrostatic forces 

generated by the matrix were ignored due to its negligible production of forces relative to 

forces generated by the fibers. 

2. Collagen fibers are intrinsically undulated and gradually straighten with increased stretch.  

The load required to straighten the collagen fiber is negligible compared to the load 

transmitted by the stretched fiber.  Also, once a fiber has been stretched to a “straightened” 

state, it will transmit load and will be considered linear elastic.  
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3. The degree of fiber undulation can vary considerably.  At the tissue level, the gradual 

straightening of the linear elastic collagen fibers with variable undulations produces the 

classic non-linear stress-strain relationship. 

4. A fiber ensemble is defined as a group of collagen fibers with an orientation defined by a unit 

normal N (Figure 4-1, black lines). Under the affine deformation assumption, the fiber 

ensemble strain, Eens, will be determined from the tissue level Green’s strain tensor E using 

.  ENNT
ensE =

5. When straight, the individual collagen fibers are linear elastic with modulus K. 

6. The total strain energy of the tissue is the sum of the fiber ensemble strain energies. 

θ

N

x1

x2

θ

 
 
 

Figure 4-1. A schematic of the representative volume element idealized for the FM.  The constituent collagen fibers 
have a distribution of undulations (crimp) and directions.  For modeling purposes, an ensemble of fibers (shown here 

as black fibers) was defined by the unit normal N. The total tissue’s mechanical response is the sum of all 
ensembles. 

 98 



4.2.4 Fiber ensemble stress-strain relationship 

Two models can be used to simulate the effective collagen fiber stress-strain law, or the fiber 

ensemble response, a phenomenological model and a structural constitutive model.  The 

phenomenological model is given by the following equation: 

ubensububensEE
ens

ens

ubensens

EEEddEE
E
S

EEEdd

ubens
≥−+−⋅

∂
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<−

= for

for

]1)[exp()(

]1)[exp(

21

21

=)( ensens ES

    

(4-2)

 
This model states that the effective collagen fiber stress, or Sens(Eens), follows an exponential 

form for ensemble strains, Eens, less than the upper bound strain, Eub, which is the strain at which 

all collagen fibers become straight.  However, once the Eub is attained, the collagen fibers were 

assumed to behave linear elastically, and the Sens(Eens) response is linear.  In this model d1 and d2 

are positive constants. 

 The structural constitutive model, which incorporates fiber recruitment and linear elastic 

collagen properties of the collagen fibers, was used in this study to model the fiber ensemble 

response of the FM.  This model was derived from the force-displacement of a single collagen 

fiber, where it is assumed that a collagen fiber is linear in force displacement (F-δ) ([123-125].  

First consider the analogous situation, force-displacement of a simple bar (Figure 4-2): 

 
 

 99 



δ

F

K*
Definitions:

F = Force
δ = Displacement
Lo = Original Length
L = Current length
K* = Stiffness

F
δ

Lo

L

(a) (b)

 
 
 

Figure 4-2. Schematic of (a) the displacement of a simple bar and (b) the resultingForce (F)-Displacement (δ) 
relationship.  When F is applied to a bar, it undergoes a change in length, where Lo is the original length and L is the 

deformed length, and behaves linear elastically, with an associated stiffness, K*. 
  
 
 
When force, F, is applied and the bar displaces (Figure 4-2a), δ, the bar behaves linear elastically 

(Figure 4-2b) according to: 

( ) δδ ⋅= *KF       (4-3)
 
where K* is the stiffness, δ is the displacement, Lo is the original length, and L is the deformed 

length.  Next, the F-δ curve is normalized by the original cross-sectional area, Ao, and Lo, 

respectively (Figure 4-3). 
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P=F/Ao
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Figure 4-3. Schematic representation of the normalized F-δ curve, where E is defined as the modulus of elasticity. 
 
 
 
Equation (4-3) now becomes: 

( )
oo L

E
A
FP δδ ==       (4-4).

 
P is known as the first Piola-Kirchhoff stress (i.e. force/original cross-sectional area), and E is 

the modulus of elasticity. 

Now, consider a single crimped collagen fiber.  When force, F, is applied, the collagen 

fiber uncrimps and straightens (Figure 4-4a).  In this state, the slack displacement, δs, is the 

displacement associated with the uncrimping of the collagen fiber, and note that the fiber does 

not bear load during the uncrimping, which is depicted in the F-δ curve (Figure 4-4b).  Once the 

collagen fiber has become fully straightened, it does bear load with increased force, and the 

actual displacement, δt, is the displacement associated with the fiber as it bears load and behaves 

linear elastically.  δ is the total displacement from the crimped state to the final displacement, 

and µ is the stiffness of the collagen fiber. 
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Figure 4-4.  Schematic representation of (a) the displacement of a collagen fiber and (b) the associated Force (F) – 
Displacement (δ) relationship of a collagen fiber. (a)A collagen fiber is undulated in the unloaded state.  However, 
when force, F, is applied, the collagen fiber uncrimps to a straightened state.  This displacement is referred to as the 
slack displacement δs.  Once the collagen fiber is displaced beyond its straightened state (i.e. δt), it bears load.  (b) 
This behavior can also be represented graphically, where µ is the stiffness of a collagen fiber.  Force the fiber does 

not bear load until the fiber is displaced beyond δs, and the fiber then behave linear elastically thereafter. 
 
 
 

As in the case of equation (4-3),  

( ) µδδ ⋅= tF       (4-5)
 
and 

st δδδ −=       (4-6)
 

Now, as in the case of the simple bar, the F-δ curve is normalized by Ao and Lo (Figure 4-5). 

 
 

δ/Lo
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K

δs/Lo

δt/Lo

 
 
 

Figure 4-5. Schematic representation of the normalized F-δ curve, where K is defined as the modulus of elasticity. 
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Equation (4-5) now becomes: 

o

t

o L
K

A
FP

δ
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where K is referred to as the modulus of elasticity.  Substituting equation (4-6) into equation 

(4-7) results in the follow equation: 

o

s

L
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=       (4-8)

 
Substituting the equation for stretch (λ), oL/δλ = , into equation (4-8) results in:  

)()( sKP λλλ −=       (4-9).
 
Now, in order to convert P into the second Piola-Kirchhoff stress (S), one must divide P by λ, 

which yeilding in the following equation: 
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Next, λ is converted to a Green-Lagrange, E, strain using )1(
2
1 2 −= λE : 
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where Es is the slack strain.  Finally, a stochastic approach was used to represent the distribution 

of fiber slack length as a function of fiber strain. The gradual recruitment of fibers within a fiber 

ensemble was simulated by a statistical distribution of D(Es), which represents the probability 

density of fiber slack strains Es, which describes the fraction of fibers realizing a fully 

straightened state at a given strain level.  Thus, the final equation for the fiber ensemble stress-

strain relationship is:   
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where K incorporates the collagen fiber volume fraction for convenience.  A modified Beta 

statistical distribution was used for D(x): 
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Thus, the ensemble model contains the following for parameters: K, Eub, µ, and σ. 

4.2.5 Tissue stress-strain relationship 

Based on assumption 5, the total tissue strain energy, W, can be expressed by integrating over all 

values of θ: 
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where R(θ) is the angular distribution of the collagen fibers.  Additionally, one integrates over all 

values of θ to determine the tissue level stress-strain relationship: 
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where  indicates external multiplication so that  ⊗ ij][ NN ⊗ =NiNj and S is the tissue 2nd Piola-

Kirchhoff stress tensor.  R(θ) was also modeled with a modified beta statistical distribution, with 

the mean, µ, and standard deviation, σ, described in equation (4-14), and θ∈[0,1].  In component 

form, equation (4-16) becomes: 
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(4-17).

 

4.2.6 Parameter estimation 

Model parameters were obtained from the sub-failure biaxial data for both the fiber ensemble 

structural model and the tissue level structural model.  For the fiber ensemble stress-strain 

constitutive relationship, the parameter, Eub, must be estimated from the Pens-λens biaxial data 

because as mentioned previously, collagen fibers are only linear in P-λ space, which is 

equivalent to Force-Displacement [123-125]. Under equi-biaxial strain conditions (i.e. λ1=λ2=λ, 

P12=P21=k1=k2=0), the fiber ensemble stress-strain law was obtained directly from the biaxial 

mechanical data [121] using: 

    2211 PPPens +=  (4-18).
 
In order to determine Eub and estimate K, Pens vs. λens, which was obtained from equi-strain 

experiments, was plotted as shown in Figure 4-6 for an intact FM tissue specimen.  The tangent 

modulus (i.e. slope) of each point of the Pens-λens curve was calculated and plotted against λens 
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(Figure 4-6), where it can be observed that the tangent modulus will eventually cease to increase 

with increased stretch.  At this point all FM collagen fibers within the fiber ensemble have been 

recruited and the maximum tangent modulus (MTM) was achieved, and the corresponding 

stretch at this level is the upper bound stretch, λub.  K is then estimated using K = MTM.  Eub can 

be calculated from λub by )1(
2
1 2 −= ububE λ .  Thus, Eub is determined and K is estimated. The 

remaining model parameters, K, µ, and σ can be optmized by fitting experimental equi-strain 

data, Sens(Eens), with equation (4-12).   After µ and σ have been determined, the cumulative 

distribution function can be determined: 

    , with        ∫=
ensE
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which is defined the fraction of fibers recruited at a given strain level. 
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Figure 4-6. (a) A representative equi-biaxial strain test of the FM, showing the effective ensemble Pens-λens relation, 
where the tangent modulus is calculated as the slope at each point of the stress-strain curve, as shown in (b).  Once 

the tangent modulus reaches a plateau, the maximum tangent modulus (MTM) will be reached, and all collagen 
fibers will be recruited.  The stretch where this occurs is defined as the upper bound stretch (λub).  The λub is also 

evident on the stress-strain curve as the point where the stress-strain curve becomes linear. 
 
 
 
For the tissue stress-strain constitutive relationship, d1, d2, Eub, µ, σ, were optimized by 

fitting the multi-protocol experimental biaxial data with equation (4-16).  Note that equation 

(4-2) was used for Sens(Eens) in the tissue level model (equation (4-16)) in order to reduce 

computational time.  Pilot studies verified that R(θ) parameters are independent of the form of 

Sens(Eens) such that the model can sufficiently fit the experimental data. 
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4.2.7 Statistical analysis 

When a mean value was presented, the standard error of the mean (SEM) was also presented.  A 

t-test was used to evaluate the differences between various strain levels for the Sens(Eens) fit 

predicted from the ensemble level model and the predicted Sens(Eens) response from the tissue 

level model.  Differences were considered statistically significant when p < 0.05. 

4.3 RESULTS 

4.3.1 Fiber ensemble structural model results 

The fiber ensemble structural model was able to fully capture the ensemble level response as 

evidenced by high R2 values, with a minimum R2 of 0.9989 (Table 4-1).  A summary of all fiber 

ensemble modeling results are presented in Table 4-1. 
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Table 4-1. Summary of estimated model parameter from the fiber ensemble constitutive model (n=8).  Note that 
since µ and σ are non-linear parameters, the mean value presented in this table do not represent the mean response 

value.  Also, µ and σ are normalized by Eub in this table. 
 
 

Sample K (MPa) µ σ Eub R2

1 4.04 0.93 0.07 0.25 0.9989

2 3.99 0.87 0.10 0.14 0.9991

3 4.14 0.93 0.07 0.29 0.9991

4 3.04 0.92 0.07 0.38 0.9992

5 4.97 0.89 0.10 0.17 0.9994

6 4.32 0.92 0.06 0.33 0.9997

7 7.38 0.92 0.08 0.19 0.9996

8 8.64 0.91 0.08 0.17 0.9995

mean ± SEM 5.06 ± 0.68 0.91 ± 0.01 0.08 ± 0.01 0.24 ± 0.03 0.9993 ± 0.0001
 

 
 
 

   The Pens-λens curve displayed typical “toe” regions at lower values of stretch followed by 

a transition into highly linear, stiff regions (Figure 4-7a).  With increasing stretch, collagen fibers 

within the ensemble continued to straighten, and the tangent modulus continued to increase 

(Figure 4-7b). Once the λub was obtained, all collagen fibers were fully loaded and straightened, 

and the MTM was achieved (Figure 4-7b).  At this point, the Tangent Modulus-λens curve 

plateaued, resulting from the fact that the collagen fibers were fully straightened.  The estimated 

physiological loading was above the point where all collagen fibers became uncrimped implying 

that under normal intrauterine conditions the FM has little structural reserve (Figure 4-7a).  Note, 

failure did not occur during loading. 
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Figure 4-7. (a) A representative image of Pens-λens curve produced from an equi-strain test. (b) The tangent modulus 
is calculated as the slope at each point along the Pens-λens curve.  A plateau region is achieved once, the tangent 
modulus no longer increases (i.e. the slope is no longer increasing and has become constant).  At this point, the 

maximum tangent modulus (MTM) is attained and it demarcates the point where all collagen fibers are recruited.  
The stretch associated with this point is termed the upper bound stretch, λub.  The λub is also evident on the stress-

strain curve as the point where the stress-strain curve becomes linear. 
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As mentioned above, the structural model was able to sufficiently capture the effective 

fiber response as evidenced by high R2 values (Table 4-1) and is graphically demonstrated in the 

representative Sens-Eens curve  (Figure 4-8a ).  The modulus of elasticity, K, of the representative 

sample was determined to be 7.38 MPa.  The Eub for the representative sample was concluded to 

be 0.19, whereas the maximum strain attained was 0.20.  The parameters µ and σ of the modified 

beta distribution were 0.17 (0.92*Eub) and 0.02 (0.08*Eub), respectively, which indicated that the 

FM collagen fibers rapidly recruited and were straightened well below physiological stress levels 

(Figure 4-8a).  This phenomenon is further reinforced with the cumulative fiber distribution 

results (Figure 4-8b).  Only a small fraction of collagen fibers were recruited at low strain values 

(Figure 4-8b).  However, at a strain value of 0.128, 50% of the collagen fibers were recruited, 

and at a strain value of 0.186, 75% of the collagen fibers were recruited.  Thus, most recruitment 

occurred close to the Eub (0.19) (Figure 4-8b).   
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Figure 4-8. (a) The fiber ensemble constitutive model was able to effectively fit the equi-strain derived Sens-Eens 
data.  The predicted model parameters suggest that the collagen fibers of the FM are recruited at high strain values, 

but once recruitment began, it occurred rapidly.  (b) This behavior is further reinforced upon inspection of the 
D(Eens)-Eens plot  and the Cumulative Fiber distribution-Eens plot.  The mean of the D(Eens)-Eens is skewed close to 1 

and the standard deviation of the distribution is tight, indicative of late, but rapid collagen fiber recruitment. 
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The average modulus of elasticity, K, was concluded to be 5.06 ± 0.68 MPa and the 

average upper bound strain, Eub, was determined to be 0.24 ± 0.03.  The parameters µ and σ are 

nonlinear parameters and cannot be averaged.  Thus, each D(Eens)-Eens curve for each sample was 

plotted together (Figure 4-9), and D(Eens) was averaged at each individual strain level, which 

produced a mean D(Eens)-Eens curve.  This mean curve was then fit with a modified beta 

distribution to produce a “mean” µ of 0.91 and a “mean” σ of 0.08.  It can be seen from Table 

4-1 and Figure 4-9 that there was little variation in µ and σ between samples.   
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Figure 4-9. The “mean” recruitment distribution, D(Eens), for 8 samples, with a “mean” µ of 0.8831 and an “mean” 
σ of 0.1092.  Note, there was minimal variability in the µ and σ of the between the 8 samples, evidence by similar 

curves. 
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4.3.2 Tissue level structural model results 

The tissue level structural constitutive model was able to capture the tissue response to loading 

reasonably well, with an average R2 value of 0.9061 ± 0.0292 for the S11 vs. E11 data and an 

average R2 value of 0.8946 ± 0.0439 for the S22 vs. E11 data.  While these fits were not as good as 

those of the fiber ensemble model, the results are reasonable for such a wide range of stresses 

associated with multi-protocol testing and the delicate nature of the FM.  A summary of all tissue 

level modeling results are presented in Table 4-2. 

 
 

Table 4-2. Summary of estimated model parameter from the tissue level constitutive model (n=8). Note that since 
d1, d2, µ, and σ are non-linear parameter, the mean value presented in this table do not represent the means response 

value. 
 
 

Sample d1 d2 Eub µ σ R112 R222

1 8.61 x 10-3 29.38 0.56 -24.33 20.48 0.8478 0.9024

2 4.73 x 10-3 39.56 0.32 -57.66 10.24 0.9840 0.9812

3 6.33 x 10-5 54.62 0.24 -67.39 16.43 0.7379 0.6054

4 1.48 x 10-3 51.80 0.35 -88.94 11.83 0.9644 0.9673

5 1.84 x 100 61.00 0.20 -4.45 9.18 0.8712 0.9580

6 1.03 x 10-4 37.97 0.34 44.39 13.36 0.9574 0.9723

7 6.05 x 10-4 33.98 0.53 -23.84 19.38 0.9481 0.9072

8 3.67 x 10-6 88.37 0.23 15.90 14.84 0.9381 0.8631

mean ± SEM 0.23 ± 0.23 49.58 ± 6.75 0.35 ± 0.05 -25.79 ± 15.73 14.47 ± 1.45 0.9061 ± 0.0292 0.8946 ± 0.0439

 
 
 

A representative plot of the multi-protocol data with the model fits, the predicted 

Sens(Eens) response, and the fiber angular distribution, R(θ) are presented below (Figure 4-10a-d).  

For the representative sample, the predicted Eub was 0.34, and µ and σ were 44.39 and 13.36, 
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respectively.  On first inspection of the R(θ) results (Figure 4-10d), it would appear that the FM 

has a strong degree of alignment evidence by the small σ value of the R(θ) curve.   Note that if σ 

was large, this would indicate that there are more fibers present at different angles. This result 

was not consistent with results and conclusions presented in section 2.3.2 and section 2.4.2, 

respectively.  However, as previously noted, the specimens were not aligned to a specific 

anatomical direction, and based on inspection of Table 4-2, there is a wide variability among the 

predicted R(θ) parameters (i.e. µ and σ).  Since µ and σ are nonlinear parameters, they cannot be 

readily averaged.  Thus, in an effort to present an mean R(θ) curve, each R(θ) value at each angle 

from -90 to 90 was averaged to produce an mean R(θ) (Figure 4-11).  The R(θ) curve had a large 

standard deviation with no peaks.  Based on this analysis, fiber directions within the FM are 

random (Figure 4-11). 
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Figure 4-10. Representative image of tissue level modeling results.  (a,b) The tissue level structural model was able 
to fit the multiprotocol biaxial data reasonable well. (c) The tissue level structural model was also able to predict the 

Sens-Eens response from tissue level, biaxial multiprotocol data as well as (d) the fiber angular distribution. 
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Figure 4-11. Fiber angular distributions from 8 different samples and the mean fiber angular distribution.  While on 
a per specimen basis the FM appears to have fiber alignment, there is a wide variability among the predicted R(θ) 

parameters (i.e. µ and σ).  Thus, when taken as a whole, fiber directions within the FM are random, as evidenced by 
the “mean” curve.  Note, the red line represents a completely random distribution. 

 
 
 
To further validate these results, a deeper analysis of the SALS results presented in section 2.3.2 

was performed (Figure 4-12).  Since R(θ) is calculated from the intensity distribution, I(θ), of a 

sample through the following equation: 
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I(θ) from various regions within a sample (n=7) were investigated.  Additionally, the average 

I(θ) from the intact FM specimens (n=7) was extracted.    From the representative SALS image 

presented in Figure 4-12a, it can be seen that there is a wide range of degrees of alignment within 
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the FM.  For example, the highly aligned region (1), evidenced by the pink color, contained an 

I(θ) distribution with tight peaks and possessed a consistent pattern (Figure 4-12).  The 

moderately aligned region (2), identified by the green-yellow region, contained an I(θ) with a 

consistent pattern, but the peaks are less tight as compared to the aligned region (1) (Figure 

4-12a), which means that there more fibers at different angle present.  Region (3), or the blue 

region, was completely random with no consistent pattern in the I(θ) (Figure 4-12a).  However, 

while there appeared to regions of fiber alignment within an FM sample, the average I(θ) from 

each sample appeared to have a random distribution (Figure 4-12b; grey lines). In order to 

represent the overall FM alignment, each I(θ) curve for each sample was plotted together and 

was averaged at each angle, θ, producing a mean I(θ) curve (Figure 4-12b; black dots).  This 

analysis revealed that the overall fiber distribution of the FM is indeed random.   
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Figure 4-12. (a) In the stress free state, it has been observed that the gross collagen fiber architecture of the FM was 
not homogenously aligned but did exhibit small regions of fiber alignment.  The intensity distribution, I(θ) is an 

indicator of fiber alignment.  For example, the highly aligned region (1) or the pink region, contained an I(θ)  with 
tight peaks and possessed a consistent pattern.  The moderately aligned region (2), identified by the green-yellow 

region, contained an I(θ) with a consistent pattern, but the peaks are less tight as compared to the aligned region (1), 
which means that there more fibers are present at different angles.  Region (3), or the blue region, was completely 
random with no consistent pattern in the I(θ) curve.  Thus, due to the wide variability of I(θ) throughout  a single 

FM sample, the average I(θ) from a single sample demonstrated random alignment.  Additionally, the average I(θ) 
from seven different samples had contained no peaks and no consistent patterns, indicating random fiber alignment. 
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4.3.3 Model comparisons 

The effects of preconditioning became apparent when comparing the fitted ensemble response 

from the ensemble model and the fitted ensemble response from the tissue level model. 

The fitted ensemble response from the fiber ensemble constitutive model was statistically 

different (p <= 0.001) from the fitted ensemble response from the tissue level constitutive model 

(Figure 4-13), when the post-preconditioned, unloaded reference state was used.  The ensemble 

response generated from the tissue level constitutive model occurs at larger strain values (Figure 

4-13a; open circles) as compared to that of the fiber ensemble constitutive model (Figure 4-13a; 

filled black circles).  However, the fitted ensemble response from the fiber ensemble constitutive 

model was not statistically different (p = 0.939) from the fitted ensemble response from the 

tissue level constitutive model (Figure 4-13b), when the natural, unloaded reference state was 

used.  It was concluded that the most appropriate reference state was the natural, unloaded 

reference state (section 2.2.4 and section 2.4.1), and when this reference state was used both the 

fiber ensemble model and the tissue level model predict the same mechanical behavior.     
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Figure 4-13. Predicted Sens-Eens responses from the fiber ensemble model (filled black circles) and the tissue level 
model (open circles) when (a) a post-preconditioned reference state was used (p <= 0.001) and (b) when a natural, 

unloaded reference state was used (p = 0.939). 
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4.4 DISCUSSION 

Recent studies of membrane rupture have been largely pursued from a biochemical and 

histological perspective, which has provided relevant insights into membrane failure [1].  

However, an understanding of the biomechanical responses and underlying microstructure of the 

FM in conjunction with biochemical responses is essential for the development of a rational basis 

for treatment and prevention of premature failure.  Once the biomechanical properties are 

established, we can then better formulate how the biochemical processes modulate failure at full 

term.  Thus, the goal of this study was to build on the results of specific aim 1 by relating the 

biomechanical response of the intact FM at near/full term under sub-failure loading to the 

underlying fiber architecture of the intact FM.  Establishment of this structure-function 

relationship is a necessary step towards providing a foundation for future investigation of 

membrane failure. 

4.4.1 Fiber ensemble stress-strain relationship 

The fiber ensemble modeling results indicated that FM collagen fibers are rapidly recruited and 

were straightened well below failure stress levels (Figure 4-7, Figure 4-8, Figure 4-10).  The 

“mean” µ and “mean” σ parameters from the modified beta distributions were 0.91 (i.e. the mean 

was 0.91*Eub) and 0.08 (i.e. the standard deviation was 0.08*Eub), respectively (Figure 4-9).  

Since the beta distribution is only defined from 0 to 1, a µ value of 0.91 is relatively high.  Thus, 

a large µ value and a small σ indicate that the collagen fibers were recruited at high strain values, 

yet once recruitment began, the FM collagen fibers were recruited very rapidly.  
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These conclusions are further validated by the results presented in Figure 4-8 (i.e. a 

representative sample).  The cumulative fiber distribution illustrated the running total fraction of 

fibers recruited at any given Eens and demonstrated that gradual recruitment of collagen fibers 

was followed by a drastic increase in fiber recruitment (Figure 4-8).  All collagen fibers were 

recruited by 0.19 Green’s strain.  A µ value of 0.92 (0.92*Eub = 0.17) and a small σ value of 

0.08 (0.08*Eub = 0.02) indicated that collagen recruitment occurred rapidly at large strain values.  

For example, at 75% of the Eub, only ~5% of the collagen fibers were recruited.  Thus, the 

greatest amount of collagen recruitment occurred in the final 0.1 Green’s strain. 

4.4.2 Tissue level stress-strain relationship 

On a per specimen basis, the tissue level model predicted that the FM contains an aligned fiber 

architecture evidenced by small σ values for the fiber angular distribution, which is consistent 

with the reported modest mechanical anisotropy in section 2.3.1 and section 2.4.2.  However, 

upon inspection of Table 4-1, which showed a large variability between the µ parameter, and 

Figure 4-11, which depicts the mean R(θ) distribution for all samples tested, the fiber angular 

distribution of the FM is random, which was also concluded in section 2.4.2.  Thus, FM collagen 

fibers are not aligned globally in relation to any anatomic structures in the uterus or placenta, and 

the FM is an effectively isotropic material.  This finding results in a significant implication on 

the structure-function relationship of the FM.  The isotropic nature of the FM is essential for the 

accommodation of the bulk loads of the fetus and amniotic fluid as well as toleration of local 

deformations associated with fetal movement.  If the collagen fiber architecture of the FM was 
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not random and contained a highly oriented collagen network, the FM would only be support 

load in the direction of the aligned collagen fibers causing the FM to rupture with minimal force. 

4.4.3 Limitations 

For the planar biaxial experiments, different samples were used for the equi-strain experiments 

and the multi-protocol experiments.  While ideally, one should be able to perform the equi-strain 

and multiprotocol experiments on the same specimen, the delicate nature of the FM was not 

amenable to this. 

An additional limitation of this study was the unclear physiological relevance of 

mechanical preconditioning of the FM as previously discussed in section 2.4.3.  While 

preconditioning was necessary to produce repeatable results during planar biaxial testing, its 

relevance to its in vivo state is not clear.   It was concluded that the most appropriate reference 

state was the natural, unloaded reference state because it is the only reference state common 

among all specimens, and when this is done the results presented herein are comparable with 

results presented throughout the literature. 

4.4.4 Summary and conclusions 

This study provided the first data on the effective collagen fiber stiffness of the intact FM from 

planar biaxial experiments, which was related to the fiber angular distribution of the FM.  The 

results presented clearly demonstrate that the FM collagen fibers are recruited at high strain 

values, yet once recruitment begins, the FM collagen fibers were recruited rapidly.  After the 

fibers have been fully straightened, they have limited stretching capability thereafter.  Also, since 
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failure did not occur during sub-failure loading, it is apparent that collagen fibers do not begin to 

fail until all collagen fibers are fully recruited.  These results suggest little or no structural 

reserve exists in the FM, which may be an important aspect of it failure properties.  Additionally, 

while on a per specimen basis there appeared to be fiber alignment in the FM, the collagen fibers 

are not aligned globally in relation to any anatomic structure in the uterus or placenta, and the 

FM is an effectively isotropic material, which is an essential aspect of the structure-function 

relationship of the FM.  These finding will serve to guide future studies on FM failure properties. 
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5.0  CHARACTERIZATION OF THE STRUCTURE-STRENGTH SEQUELAE 

DURING FAILURE IN “NON-WEAK” FM 

5.1 INTRODUCTION 

Tissue failure is not a normal, physiological event.  Bone breakage, skin tears, bowel ruptures are 

all pathological events which occur as the result of a large force or massive tissue breakdown.  

The ovarian follicle and some embryological structures do demonstrate tissue failure in the 

course of normal events, but these are relatively thin and lack the mutilaminar structure of FM.  

El Khwad et al. has shown that the “weak zone” of the FM has an average rupture force of 

approximately one third that of the rest of the FM [61, 62].  Even weakened in this manner, 

however, the FM should not precipitously fail, especially prior to the onset of contractions as 

occurs in all cases of premature rupture of membranes (PROM).  One possible explanation for 

FM failure is the presence of point defects.  When individual rupture test points within the “weak 

zone” are examined, it is clear that rupture strength, even within the “weak zone”, is highly 

variable [61]. This suggests that point-defects may be present in this area of the FM which could 

serve as rupture initiation sites. 

Many investigators have performed in vitro biomechanical studies in an effort to 

understand FM failure [1, 12, 15, 61, 70-78, 126].  Three types of testing apparatuses have been 

used: (1) tensile testing, in which the membrane is placed between two grips, which are pulled 
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apart;  (2) burst testing, in which a piece of membrane is clamped in a ring and pressure is 

applied, either via air or fluid, perpendicular to the plane of the membrane;  and, (3) puncture 

testing, in which a spherical metal probe is used to displace the central portion of a membrane, 

which is clamped in a ring, perpendicular to the plane of its surface [1].  In each mode of testing, 

the applied force and resulting displacement are measured allowing rupture strength, stiffness, 

work to rupture, displacement at rupture, displacement at maximum force, and viscoelastic 

properties of the membranes to be determined.  Of these methodologies, tensile testing does not 

provide a physiological testing environment as the stresses applied are uniaxial.  It has been used 

because standard stress-strain calculations are easy [70, 71]. Burst testing best mimics 

physiologic loading as it is biaxial and the load is distributed over the entire tissue. However, it is 

logistically difficult and requires relatively large pieces of membrane. Puncture studies are 

biaxial with stress applied perpendicular to the membrane as in normal physiology.  Puncture 

tests can also be carried out quickly with small pieces of test membrane.  However, puncture test 

induce a complex stress state in the FM, and a stress “amplification” is induced at the tip of the 

plunger [102].  Specifically, the stress in the FM is greatest at the tip of the plunger.  

Calculations using an average stress would cause an underestimation of the failure stresses. 

However, a major question remains: What is the effect of mechanical forces – 

intrauterine stretch and the contractions of labor – on the biomechanical properties of the FM?  

The majority of investigators failed to study the effect of stretch upon FM biomechanical 

properties.  They focused entirely upon the force required to acutely break the FM (rupture 

force).  Additionally, our understanding of membrane failure is limited because our knowledge is 

based on tissues either before or after failure.  It remains unclear how the amnion layer, which 

dominates the mechanical response of the FM [12], of the “weak” and “non-weak” FM deforms 
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with the plunger or pressure head until rupture occurs, limiting our ability to investigate the 

actual failure process.  Thus, the objective of the present study was to accomplish the endpoints 

of Specific Aim 3: Characterize structural/strength sequelae during failure of the FM in the “non-

weak” regions.  The micro-structural events that occur during loading and failure of the “non-

weak” FM, specifically the amnion layer, will be investigated through the use of a novel device 

that will be integrated into the SALS system that can perform burst failure tests while 

simultaneously quantifying the collagen fiber architecture, elucidating how the FM transitions to 

failure.  More specifically, by taking this approach, one can gain insight into how failure initiates 

in the amnion layer of the FM and how collagen fibers of the amnion layer orient in order to 

support loading in the “non-weak” amnion layer of the FM. The scientific endpoint of this aim 

was to quantify collagen fiber structure, such as the preferred fiber directions(s) and the degree 

of fiber alignment at various loading levels as well as investigating the development of failure in 

the FM. 

5.2 PROTOCOLS 

5.2.1 Tissue procurement and preparation 

FM specimens were collected from women undergoing Vaginal deliveries at MetroHealth 

Medical Center, Cleveland Ohio after normal term (37-42 weeks) pregnancies.  A 

CWRU/MetroHealth Medical Center institutional review board (IRB) approved protocol was 

utilized.  FM of patients with clinical chorioamnionitis, meconium, maternal diabetes, or 

multiple gestations were specifically excluded.  For these initial studies, large FM fragments 
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from regions distant from the “weak zone” as determined by methods previously described were 

selected [61, 62].  The amnion layer of the FM was then peeled from the choriodecidua layer. 

The amnion fragments were stored in 1X Minimum Essential Medium and shipped to Pittsburgh, 

PA overnight on ice.  The amnion specimens were tested on the day of receipt.   

5.2.2 Small angle light scattering measurements 

SALS was used to nondestructively quantify collagen fiber architecture of amnion layer of the 

FM.  A detailed description of the SALS technique has been previously presented[105].  Briefly, 

a 4 mW HeNe continuous unpolarized laser (λ = 632.8 nm) was passed through the tissue 

specimen.  The spatial intensity distribution of the resulting scattered light represented the sum 

of all structural information within the light beam envelope.  The angular distribution of 

scattered light pattern, I(Φ), which represents distribution of fiber angles within light beam 

envelope, was obtained.  Quantifiable information based on I(Φ) includes orientation index (OI) 

and preferred fiber direction.  The orientation index (OI) was defined as the angle that contains 

one half of the total area under the I(Φ) distribution.  Normalized orientation index (NOI) was 

calculated using:  

o

o OINOI
90

90 −
=  (5-1),

 
where NOI ranged from 0% for a complete random network to 100% for a perfectly aligned 

network [105].   
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5.2.3 Membrane inflation device design 

The membrane inflation test was designed with SolidWorks (Dassault Systemes SolidWorks 

Corp., Concord MA). The burst device consisted of a two cast acrylic hollow cylinders, which 

contained a 1.27cm wall thickness, (Figure 5-1; parts a and c). Cylinder 1 and 2 were attached to 

clamping plate 1 (Figure 5-1; part b) and 2 (Figure 5-1; part d), respectively.  Each clamping 

plate was 1.1 cm thick.  Each cylinder contained a cast acrylic clear window (Figure 5-1; part e) 

at each end in order to permit the laser beam of the SALS device (Figure 5-1; part f) to pass 

through cylinders 1 and 2.  Cylinder 1 acted as a pressurization chamber (Figure 5-1; part a), and 

cylinder 2 (Figure 5-1; part c) was exposed to atmospheric pressure via a groove in the top of the 

cylinder, which permitted natural membrane deformation.  Additionally, the groove in cylinder 2 

(Figure 5-1; part a) allowed for direct measurement of membrane displacement.  Cylinder 1 

(Figure 5-1; part b) contained two access ports.  One port was connected to a three-way stop-

cock.  One opening of the stop-cock was connected the cylinder; a syringe was connected to 

second opening of the stop-cock, which was used to pressurize the membrane; and a blood 

pressure transducer (BLPR2) with an operating range between -50 to +300 mmHg (Sarasota, FL) 

was connected to the third opening of the stop-cock to monitor the pressure within cylinder 1 

during testing. The second port acted as a bleed valve to release all air from within cylinder 1.   

Each clamping plate (Figure 5-1; parts b and d) contained a hole directly in the center of 

the plate, 3 cm in diameter.  Clamping plate 1 (Figure 5-1; part b) contained a series of 2 

grooves, and clamping plate 2 (Figure 5-1; part f) contained a series of 2 protruding ridges.  

Thus, the 2 protruding ridges of clamping plate 2 (Figure 5-1; part f) mated with the 2 grooves of 

clamping plate 1 (Figure 5-1; part b), which served to align the clamping plates as well as hold 

the amnion layer in place.  In addition to the groove and ridges, clamping plate 1 (Figure 5-1; 
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part b) and clamping plate 2 (Figure 5-1, part d) contained o-ring grooves, with an inner diameter 

of 4.13 cm and an outer diameter of 4.76 cm, which were machined outside of the ridges and 

grooves.  O-rings were placed in each groove in order to grip the membrane as wells as serving 

as a seal to the atmosphere.  Finally, clamping plate 2 (Figure 5-1; part d) contained an additional 

o-ring groove, with an inner diameter of 13.02 cm and an outer diameter of 13.65 cm, machined 

outside of the grooves and ridges and the first o-ring grooves.  An o-ring placed in the outer 

groove of clamping plate 2 (Figure 5-1; part d) and mated with a smoothed machined surface on 

clamping plate 1 (Figure 5-1; part b).  This additional o-ring simply served as a seal to prevent 

fluid from leaking of the burst device and did not grip tissue.  The device was then placed in a 

cradle, which could be secured inside the SALS device during testing (Figure 5-1; part h).  The 

clamping plates also contained 14 screw holes, 0.62 cm (i.e. a 10-32 screw was used) in 

diameter, which served to screw the two clamping plates together. See Appendix A for complete 

technical drawings.   Also, room temperature PBS (pH 7.4) was used to pressurize the 

membrane.  Thus, in order to verify that PBS and the cast acrylic windows (Figure 5-1; part e) 

did not cause laser (Figure 5-1; part f) distortion leading to inaccurate structural measurements, a 

validation study was completed, and it was concluded that the device filled with PBS did not 

distort the laser beam of the SALS device (Appendix A). 
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Figure 5-1. Solid model of membrane inflation device.  The device consisted of (a,c) two hollow cylinders, (b,d) 
two clamping plates, (e) two clear acrylic window so that the (f) laser beam of the SALS can pass through the 

membrane inflation device to the (g) screen of the SALS device, and (h) a cradle that is mounted in the SALS device 
and supports the membrane inflation device. 

 
 
 

5.2.4 Membrane inflation study testing protocols 

Upon receipt of the amnion layer of the FM, the amnion was first cut into a circular shape 

approximately 10-13 cm in diameter.  This ensured that the sample was large enough to be 

griped between the first set of o-ring groove discussed in section 5.2.3, yet small enough to not 

interfere with the additional outer o-ring also discussed in section 5.2.3.  Next, cylinder 2 

attached to clamping plate 2 was filled with PBS (pH 7.4) at room temperature (Figure 5-2).  

Then, cylinder 1 attached to clamping plate 1 was fastened to clamping plate 2 (Figure 5-2).  

Finally, cylinder 1 was filled with PBS, and the devices was placed in its cradle and secured in 

the SALS device (Figure 5-3).  Next, a 1 cm x 1 cm square section was scanned with the SALS 
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device at the following pressures: 0 mmHg, 5 mmHg, 20 mmHg, 50 mmHg, 80 mmHg, 100 

mmHg, after which the pressure was incrementally increased 10mmHg until membrane rupture. 

A 1cm x 1cm area was chosen in order to reduce test time and pilot studies verified that SALS 

results within the 1 cm x 1 cm area in the center of the pressurized membrane would not be 

affected by the curvature of the membrane under pressure.  PBS was used to pressurize the 

membrane via a syringe.  At each pressure level, the displacement of the center the inflated 

amnion was measured and recorded.   

 
 

Cylinder 2 + Clamping Plate 2Cylinder 1 + Clamping Plate 1

Amnion
 

 
 

Figure 5-2. Photograph of the membrane inflation device during experimental set-up. 
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Figure 5-3. Image of the membrane inflation device mounted in the SALS device. 
 
 
 

5.2.5 Analysis of membrane deformation 

In order to ensure that the amnion was deforming homogenously, validation studies were 

performed first performed on latex, an assumed isotropic material, and then on the amnion layer 

of the FM (Appendix A).  It was concluded from the validation studies that both the latex 

material and the amnion deformed homogenously.  Thus, assumptions about the deformation of 

the amnion during burst testing can be made.  Due to the geometry of the burst device and the 

homogenously deformed amnion (Figure 5-4), the same deformation assumption utilized in the 

analysis of cells during micropipette aspiration was exploited.  Specifically, since the clamping 

plate thickness was 1.1 cm (Figure 5-4), and the amnion layer did not displace past 1.8-2.0 cm 

 134 



(Figure 5-4), the burst device was treated as a large micropipette (Figure 5-5).  In micropipette 

analysis, it is assumed that the equilibrium shapes of an aspirated cell or in this case the amnion 

are composed of spherical and cylindrical parts (Figure 5-5) [127].  In the case of a cell, as 

aspiration proceeds, the cell projection into the pipette grows, where the radius of the pipette is 

R1, the radius of the spherical part of the cell in the pipette is R2, the projection length of the cell 

is L (Figure 5-5a) [127].  However, when the L ≥ R1, the projection length continues to increase 

as a cylinder with a hemispherical cap with the same radius as the pipette, R1 (Figure 5-5a) [127].  

This same approach will be applied to the amnion during the membrane inflation studies, where 

R1 is 1.5 cm (i.e. the diameter of the fixture opening) and L is the measured displacement of the 

center the inflated amnion (Figure 5-5b).  However, when L < R1, the geometry of the amnion 

will be treated as an oblate spheroid, such that the radius of the amnion, R2, is less than R1 

(Figure 5-5b). 
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3.0 cm
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Clamping Plate 1

Direction of Applied Pressure
 

 
 

Figure 5-4. Schematic of amnion placed between the clamping plates of the membrane inflation device.  The 
thickness of the clamping plate is 1.1 cm and contains a hole in the center that is 3.0 cm in diameter. 
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Figure 5-5. Schematic of (a) a cell inside a micropipette and (b) a pressurized membrane in the membrane 
inflation device.  It is important to note the similar geometries between the experimental devices as well as between 
an aspirated cell and an inflated membrane.  The equilibrium shape of an aspirated cell is composed of spherical and 
cylindrical parts.  R1 is the diameter of (a) the micropipette or (b) the hole in the center of the clamping plate. R2 is 
the radius (a) spherical part of the cell in the pipette or (b) spherical part of the amnion. L is the projection length of 
the (a) cell into the micropipette or (b) amnion into the inflation device.  When L ≥ R1, the projection length of the 
cell or amnion increases with a hemispherical cap with a radius R1.  In the case when L < R1, the geometry of the 

amnion will be modeled as an oblate spheroid. 
 
 
 
In order to quantify the amount of stretch that the FM undergoes, areal stretch was calculated by 

dividing the surface area of the membrane prior to rupture by the initial unloaded surface area.  

Also, the surface area at each pressure level was calculated, and the areal stretch at each pressure 

level was evaluated.  The surface areas were calculated based on the geometries discussed above 

(i.e. spheres and cylinders). 

5.2.6 Stress analysis of the membrane 

As per the validation studies presented in Appendix A, the deformation of the amnion during the 

burst studies is considered axisymmetric, meaning that the undeformed and deformed 

configurations of the amnion can be describe by generator equations that are revolved about a 
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common axis and the applied loads are independent of the angle through which the generated 

curves are rotated [128].  Figure 5-6 depicts an axisymetric membrane in its deformed 

configuration, which is denoted by a generator curve relative to the r and z coordinates.  The 

principal curvatures are defined as: 
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dr
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Additionally from the geometry, 
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Substituting equation (5-3) into equation (5-2) result in the two principal curvatures: 

  
1

1 cos
dr
dφφκ =  and 

12
2

sin1
rr

φκ ==    (5-4)

 
 
 

Z

r

N

φ

r1

r2

 
 
 

Figure 5-6. Schematic of a deformed axisymetric membrane relative to cylindrical coordinates, r and z.  φ is defined 
as the change in orientation of the outward normal vector N as a function of arc length, s. 
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Finally, the equilibrium equations for an axisymetrically deformed membrane based on the 

principal curvatures presented in equation (5-4), can be defined as: 
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where T1 and T2 are the meridional and circumferential (Figure 5-7) stress resultants, 

respectively, and P is the distension pressure. 
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Figure 5-7. Free body diagrams of the meridional stress resultant (T1, red arrows) and the circumferential stress 
resultant (T2, black arrows) for an axisymmetric membrane. 

 
 
 

An inflated elliptical membrane is special equilibrium case from equation (5-5).  In this 

special case, an elliptical membrane remains in an elliptical configuration in both its reference 

and deformed configuration. The principal stress resultants for an inflated elliptical membrane 

can be defined as: 
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where a and b are the deformed principal radii.  When a = b, equation (5-5) reduces to the results 

for an inflated spherical membrane.  Thus, when the projection length L is less than 1.5 cm (i.e. 

R1 in Figure 5-5b) equation (5-5) will be employed.  However, when L≥R1, equation (5-5) 

reduces to  

221
PaTT ==       (5-7),

 
as in the case of micropipette aspiration. 

5.2.7 Statistical analysis 

When a mean value was presented, the standard error of the mean (SEM) was also presented.  A 

one way repeated measures ANOVA was used to evaluate the differences between the NOI and 

preferred fiber directions at each pressure level.  However, statistics were only performed on 

pressure levels up to 120 mmHg because only two samples ruptured at higher pressure values 

resulting in a small sample size.  Differences were considered statistically significant when 

p>0.05. 

5.3 RESULTS 

5.3.1 Membrane inflation – microstructural characteristics 

The collagen fiber alignment of the amnion in the unloaded, stress free state (0 mmHg) was 

considered random with an average NOI value of 40.16 ± 1.31 (Figure 5-8a).  With increased 

pressure, there was a slight increase in the NOI values up to 100 mmHg with no change 
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thereafter (Figure 5-8), but this change was not considered statistically significant (p = 0.315).  

This phenomenon was also demonstrated through histograms of the average NOI values at 

various pressure levels (Figure 5-8b).  It was established that the average NOI distribution 

continued to shift to the right with increased pressure indicating an increase in fiber alignment, 

but after 100 mmHg, the curve did not shift any further to the right, indicating that there was no 

change in fiber alignment thereafter (Figure 5-8b).  It is important to note that the error bars were 

not presented in Figure 5-9 because the large error bars made the graph illegible.  In order to gain 

a better understanding of how amnion fiber architecture adapts to increasing pressure, the rate of 

fiber alignment at each pressure level was computed (Figure 5-9).  The largest change occurred 

at the 0-5 mmHg level, with minimal rates of change thereafter. 
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Figure 5-8. (a) The NOI increase with increased pressure, with the greatest change in NOI occurs under the first 5 
mmHg.  NOI continually increases with pressure up to 100 mmHg, with minimal change thereafter.  It is important 
to note that these changes were not considered statistically significant.  (b) This behavior can also be represented by 

histograms.  When pressure is increased to 5 mmHg, the Frequency-NOI curve shift to the right indicating an 
increase in NOI values (grey line).  The Frequency-NOI curves continue to shift to the right with increased pressure 

up to 100 mmHg (black line), with no subsequent changes. 
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Figure 5-9. The largest rate of change in NOI change occurred at the 0-5 mmHg level, with and minimal rates of 
change past 5 mmHg. 

 
 
 
 

Finally, the preferred direction of the collagen fibers did not change under loading (p = 0.0598) 

(Figure 5-10). 

 
 

Pressure (mmHg)

0 50 100 150 200

P
re

fe
rre

d 
Fi

be
r D

ire
ct

io
n 

(d
eg

)

0

20

40

60

80

180

 
 
 

Figure 5-10. There were no changes in the preferred fiber direction under loading. 
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A representative image, Figure 5-11, depicts the microstructural changes that occur in the 

amnion under pressure.  In the stress-free state (0 mmHg), the amnion was not homogenously 

aligned, while it did exhibit small regions of fiber alignment.  However, with increased pressure, 

the amnion layer did exhibit a slight increase in fiber alignment as well as a minor change in the 

preferred fiber direction (Figure 5-11).  The greatest amount of change in fiber alignment 

occurred between 0 mmHg and 5 mmHg, with a slight increase in NOI values from 5 mmHg to 

100 mmHg (Figure 5-11), and there was no change in fiber orientation thereafter.  Additionally, 

there was a small increasing trend in fiber direction.  Rupture occurred at 120 mmHg. As 

previously discussed in section 1.4.3, it was anticipated that with increased pressure the collagen 

fibers of the amnion would uncrimp and straighten causing an increase NOI values.  However, it 

was unclear how the amnion layer of the FM failed, catastrophically (Figure 5-11; scenario 1) or 

as a result of point defects (Figure 5-11; scenario 2).  It has become evident that that the amnion 

layer of the FM fails catastrophically because no point defects were detected (Figure 5-11; 100 

mmHg) prior to failure (Figure 5-11; 120 mmHg), as in scenario 1.  Thus, the collagen fibers 

first began to uncrimp with increased loading.  As pressure is increased, the fibers became fully 

straightened, and the fibers remained taught until failure occurred, at which point all fibers failed 

at once.  
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Figure 5-11. Representative image of the microstructural changes that occur in the amnion layer of the FM under 
isotropic loading.  NOI values preferred directions (PFD) increased with increased pressure.  However these changes 

were not found to be statistically significant.  Since the change in preferred direction was not significant, the 
increase in fiber alignment was likely due to the uncrimping of the collagen fibers.  Most importantly, failure of the 
amnion layer was found to be catastrophic.  Point defects did not appear in the tissue leading up to failure.  Failure 

of the amnion layer of the FM can therefore be characterized by scenario 1.  Hence, the collagen fibers initially 
uncrimped, with minimal fiber rotation under loading until all fibers failed at once. 
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5.3.2 Membrane deformation and failure 

A summary of the rupture pressures can be found in Table 5-1. 
 
 
 

Table 5-1. Summary of rupture pressures for each specimen. 
 
 

Sample Rupture Pressure (mmHg)

1 93.70

2 214.06

3 105.79

4 150.66

5 116.34

6 246.50

mean ± SEM 154.50 ± 25.53
 

 
 
 
The average calculated areal stretch of the FM was presented for 5 mmHg, 20 mmHg, and the 

areal stretch prior to rupture (Table 5-2).  It is assumed that 10 mmHg is the in vivo pressure at 

term gestation [106].  Thus, 5 mmHg and 20 mmHg were presented to provide a range of stretch 

values close to the assumed in vivo pressure.  The average areal stretch at 5 mmHg, 20 mmHg, 

and prior to failure are 1.79 ± 0.18, 2.11 ± 0.09 and 2.51 ± 0.05, respectively.  Additionally, the 

greatest change in areal stretch with increased pressure occurred between 0 mmHg and 5 mmHg, 

with little change after 20 mmHg (Figure 5-12).  Note that 5 mmHg corresponds to 

approximately 5 N/m and 20 mmHg corresponds to approximately 20 N/m.  Approximately is 
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used because there is a slight variation in the tension level over the surface of the amnion at 5 

mmHg and 20 mmHg, which can be seen in Figure 5-13.  This is further discussed below. 

 
 
Table 5-2. Summary of areal stretch values at physiological loading, 5 mmHg, 20 mmHg, and the areal stretch value 

prior to membrane rupture.  Each stretch is referenced to the unloaded configuration. 
 
 

Sample Areal Stretch at   
5 mmHg 

Areal Stretch at 
20 mmHg

Areal Stretch at 
Rupture

1 2.23 2.32 2.54

2 1.78 2.05 2.59

3 1.12 2.09 2.41

4 1.74 1.78 2.32

5 1.82 2.02 2.55

6 2.05 2.32 2.63

mean ± SEM 1.79 ± 0.18 2.11 ± 0.09 2.51 ± 0. 05
 

 
 
 
However, pilot studies concluded that separation of the amnion from the choriodecidua caused 

the amnion to deform (Appendix B).  The deformation associated with separation was as 

follows: 

⎥
⎦

⎤
⎢
⎣

⎡
±±
±±

=
029.0035.1026.0023.0
026.0044.0021.0041.1

F  

Thus, the values presented in Table 5-2 are re-presented in Table 5-3 to account for the 

deformation associated with membrane separation: 
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Table 5-3. Summary of corrected areal stretch values at physiological loading, 10 mmHg, and areal stretch values 
prior to membrane rupture.  These values account for the deformation associated with membrane separation.  Each 

stretch is referenced to the unloaded configuration. 
 
 

Sample Areal Stretch at 
5 mmHg 

Average Stretch 
at 20 mmHg

Areal Stretch at 
Rupture

1 2.40 2.49 2.74

2 1.92 2.20 2.78

3 1.21 2.25 2.59

4 1.87 1.92 2.49

5 1.96 2.18 2.75

6 2.20 2.49 2.83

mean ± SEM 1.93 ± 0.17 2.26 ± 0.09 2.69 ± 0.05
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Figure 5-12. The greatest change in areal stretch in the amnion layer of the FM was between 0 mmHg and 5 mmHg 
with minimal change after 20 mmHg. 
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For pressures equal to or less than 20 mmHg, the projection length, L, of the amnion was 

less than R1 and the average meridional membrane tension and the average circumferential 

membrane tension (T1 and T2, respectively) varied over the surface of the membrane, with the 

greatest tension at the top of the membrane (Figure 5-13).  Note that φ goes from 0o to 90o.  

However, once L≥R1 (i.e. pressures greater than 20 mmHg), the membrane average tensions 

became uniform over the surface of the membrane, and increased tension simply resulted in an 

upwords shift in the T1-Pressure and T2-Pressure curves (Figure 5-13). 
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Figure 5-13. (a) The meridional membrane tension, T1, and (b) the average circumferential membrane tension, T2, 
at each pressure level.  Note that at lower pressure levels, 5 to 20 mmHg, the T1 and T2 varies over the surface of 

the membrane.  However, when L≥R1, the amnion deforms into a spherical geometry and the tensions become 
uniform. 
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Finally, the average areal strain at each average tension level was plotted, and it can be 

seen that an in vivo areal stretch of 2.56 ± 0.08 (section 3.3) corresponds to a tension level of 103 

N/m (Figure 5-14). 
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Figure 5-14. The in vivo deformation determined in section 3.3 was 2.56 ± 0.08, which corresponds to an in vivo 
pressure of 10 mmHg [106].  Thus, an areal stretch value of 2.56 corresponds to a tension value of 103 N/m. 

 
 
 

5.4 DISCUSSION 

One of the limitations of our current understanding of FM failure is that our knowledge is based 

on tissues either before or after failure.  Prior to this study, it was unclear how the amnion layer 

of the non-weak FM will be deformed during membrane inflation studies, preventing 

investigation of the actual failure process.  Using the developed novel device, we were be able to 
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gain insight into the FM failure process, including whether failure is catastrophic or initiates as 

small defects leading to complete failure.  In this approach the amnion alone was investigated 

because it is known to dominate the mechanical response to the intact FM, with both stiffness 

and strength an order of magnitude greater than the choriondecidua layer [15].  Moreover, by 

performing this membrane inflation test, one was able to investigate how the collagen fibers of 

the amnion layer orient in order to support loading in the non weak amnion.  Understanding the 

differences in the underlying microstructure of the non-weak FM is a key piece of information 

needed to fully understand how the FM fails and is the first step towards understanding how the 

structure-function relationship of the FM is altered in weakened FM. 

5.4.1 Microstructural characteristics and implications 

It was established that there is an increase in collagen fiber alignment with increased loading, 

although not significant (p = 0.315), which was likely due to the uncrimping of the collagen 

fibers and not large fiber rotations, since there was not a significant change in the preferred fiber 

direction with increased loading (p = 0.598) (Figure 5-8 and Figure 5-10).  Moreover, the 

greatest change in fiber alignment occurred in the first 5mmHg of pressure, followed by a minor 

increase in fiber alignment up to 100 mmHg, with no change thereafter (Figure 5-9).  These 

microstructural findings corroborate the mechanical findings presented in section 2.3.1 and 

section 2.3.2 as well as in section 4.3.1 and section 4.3.2, in that once the FM were loaded, the 

FM collagen fibers were recruited rapidly.  Also, these findings suggest that the collagen fibers 

of the amnion layer remains heterogeneously aligned under isotropic loading, meaning that the 

collagen fibers were not strongly aligned in a preferred direction even when loaded, which can 

also been seen in Figure 5-11.  Thus, the amnion can continue to accommodate the bulk loads of 
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the fetus and amniotic fluid as well as toleration of local deformations associated with fetal 

movement even in the loaded state.  If the collagen fibers rotated into a preferred direction under 

loading, the FM would only be support load in the direction of the aligned collagen fibers 

causing the FM to rupture with minimal force. 

5.4.2 Membrane deformation 

It was established that the average maximum areal stretch of the amnion prior to failure was 2.51 

± 0.05, and areal stretch values at 5 mmHg and 20 mmHg were 1.79 ± 0.18 and 2.11 ± 0.09, 

respectively (Table 5-2). While there was variability among specimens in the rupture pressure 

(Table 5-1), the amount of deformation prior to failure was consistent.  Each membrane stretched 

~2.5 regardless of the rupture pressure.  However, separation of the amnion layer and the 

choriodecidua layer resulted in a slight deformation of the amnion layer.  Thus, when this 

deformation was accounted for, stretches at 5 mmHg and 20 mmHg were 1.93 ± 0.17 and 2.26 ± 

0.09, respectively, with a stretch prior to rupture of 2.69 ± 0.05.   

These values can be compared to the in vivo stretch measures presented in section 3.3.  

The maximum in vivo areal stretch estimated in section 3.3 was 2.56 ± 0.08, which is assumed to 

correlate to an intrauterine pressure of 10 mmHg.  It is important to note that the in vivo 

deformation measurements performed in section 3.3 were completed on repeat Cesarean Section 

patients.  Thus, these patients delivered approximately 2 weeks prior to the estimated term 

delivery date, and thus, the MRIs performed on these patients were also 2 weeks prior to the 

estimated delivery date.  In consequence, these stretch measurements may be lower had these 

patients delivered at term, and the fetus grew for 2 more weeks.  Upon comparing the areal 

stretch value of 2.56 (in vivo study) with the value of average maximum stretch value of 2.69 

 151 



(membrane inflation), this phenomenon is evident.  These results suggest that had the fetus 

remained in the uterus until term, the membrane likely would have stretched more.  Finally, an in 

vivo tension value of 2.56 corresponded to a tension value of 103 N/m (Figure 5-14).   

This results can be justified by the planar biaxial testing result found in section 2.3.1, 

Table 2-1, where the estimated upper bound tension level (Tub) from the planar biaxial studies 

was found to be 25.62 ± 1.69 N/m. Note that the corresponding upper bound areal strain was 

found to be 0.59 ± 0.03 (corresponds to an areal stretch value of 1.59) (Table 2-1).  However, the 

samples used for planar biaxial testing were preconditioned, causing these specimens to attain a 

different equilibrium state, resulting in a stiffer mechanical response.  As discussed in the 

sections 2.2.4, 2.4.1, 2.4.3, and 4.4.3, preconditioning allowed for accurate and repeatable test 

results, and the mechanism of preconditioning and the relation between a preconditioned tissue’s 

response and its actual in vivo properties is not clear.  Thus, while the exact stretch values 

between the membrane inflation studies and the planar biaxial studies were not the same, the 

estimated upper bound tension levels were approximately the same (25.62 ± 1.69 N/m for the 

planar biaxial studies (Table 2-1) and ~20 N/m for the membrane inflation studies (Figure 

5-12)).  Additionally, since preconditioning was not performed during the membrane inflation 

studies, the areal stretch values were more comparable to the in vivo areal stretch values.  In 

conclusion, the FM, or the amnion in this case, is loaded up to approximately its upper bound 

stretch value until labor occurs.   

5.4.3 Membrane failure 

As discussed previously, it was unclear how failure arises in the FM.  One of the main goals of 

this study was to determine if failure is catastrophic or initiates as small defects leading to 
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complete failure (Figure 5-11).  Through this study, it was established that failure at the fiber 

lever occured as a result of catastrophic failure.  This finding suggests that no fibers are 

predisposed towards failure, meaning that no fiber is weaker than another fiber prior to 

biochemical weakening. This result provides a basis for establishing how the structure-function 

relationship of the FM is altered the “weak zone,” which has unique mechanical properties that 

facilitates membrane rupture.  It is likely that proteolytic enzymes, specifically MMP-2 and 

MMP-9, play a role in the weakening of the FM, and these enzymes perhaps work synergistically 

with mechanical forces to induce tissue failure.  This speculation is supported by the known 

interplay between mechanical deformation and collagen degradation in soft collagenous tissues 

[98] [99, 100].  For example, Lee et al. demonstrated that tensile loading accelerates the 

proteolysis of bovine pericardium subjected to collagenase [98], while another study 

demonstrated that the degradation rate of collagen increased with stretch [100]. 

 

5.4.4 Limitations 

As with newly developed devices, various circumstances arise during experimental testing.  

During the membrane inflation studies, the pressure decreased during scanning with the SALS 

device at higher pressures, likely due to stress relaxation in this tissue [15].  In order to minimize 

the pressure drop, a smaller area was scanned (i.e. 1 cm x 1 cm) as opposed to the entire 

membrane surface in an effort to reduce scan time.  The pressure drop was ~10-15 mmHg by the 

end of the scan, which lasted ~7-10 minutes/scan.  However, this pressure drop did not have a 

large effect if any on the structural measurements for two reasons.  First, the pressure drop was 

minimal relative to the pressure level at which the scan was performed (e.g. 100 mmHg vs. 90 
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mmHg).  Additionally, the SALS results remained consistent over the scanned 1cm x1cm 

scanned area.  For example, if the pressure drop affected the SALS measurements, the results 

from the beginning of the scan would be drastically different than the SALS results at the end of 

the scan, which was not the case.  Additionally, it has been demonstrated that stress-relaxation 

does not cause a change in D-spacing or angular orientation of collagen [125, 129].   

As discussed in section 5.2.4, a 1cm x 1cm square section was scanned with the SALS 

device at the following pressures: 0mmHg, 5mmHg, 20mmHg, 50mmHg, 80mmHg, 100mmHg, 

after which the pressure was incrementally increased 10mmHg until membrane rupture.  The 

10mmHg increment was chosen because it was unknown what the rupture pressure would be in 

each specimen due to specimen variability.  If a smaller increment was chosen, total test time 

would drastically increase as well as increase the pressure drop and manually applying a 1 

mmHg increment of pressure with a syringe was logistically difficult.  Thus, 10mmHg 

increments of pressure was applied.  The fact that no flaws prior to failure were detected with the 

current 10 mmHg increment should not be construed as an experimental flaw.  While finer 

pressure increments may have shown point defects, it is far more likely that there were none. 

The average calculated areal stretch of the FM prior to rupture (2.51 ± 0.048) was similar 

to the value presented in section 3.3 (2.56 ± 0.08), which was estimated from MRI images. 

However, these tissues were not prepared in exactly the same way.  It is likely that the tissue 

used for the membrane inflation studies were slightly stretch upon receiving them altering the 

unloaded reference state.  Additionally, the tissue in the membrane inflation test was handled 

significantly during experimental set-up.  Due to the delicate nature of this tissue, it is likely that 

this caused deformation in the amnion prior to the inflation test, altering the unloaded reference 

state.  Thus, if they were prepared in exactly the manner, this distortion could be avoided, and it 
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is likely that the stretch at 5 mmHg and 20 mmHg would be more similar to the values presented 

in section 3.3.   

Finally, only the amnion was used in this study because due to the use of the SALS 

device.  Opaque tissues like the intact FM, must be clear with glycerol in order to remove the 

water content within the tissue. This process was necessary for accurate SALS measurements.  

However, clearing of the tissue may alter the mechanical properties of the tissue.  The amnion 

layer of the FM is translucent, however, and this clearing process is not necessary for the this 

tissue.  Thus, only the amnion layer was used in this study.  This is justified in the fact that the 

amnion layer dominates the mechanical response of the tissue and most of the type I collagen in 

the FM.  While there is type I collagen in the choriodecidua layer, it is present in a lesser amount.  

Also, it is assumed that the amnion layer and choriodecidua layer, which are firmly adhered prior 

to failure, stretch the same amount under in vivo loading prior to failure of the choriodecidua 

layer.   

5.4.5 Summary and conclusions 

Prior to this study, it was unclear how failure initiates in the FM and how the underlying 

microstructure of the FM dictates the mechanical response.  Through this study, it was confirmed 

that under isotropic loading, there are not large fiber rotations and that the increased NOI values, 

an indicator of fiber alignment, was due to the uncrimping of collagen fibers.  Additionally, it 

was confirmed that the collagen fibers recruit rapidly under loading, and the tissue did not stretch 

significantly more prior to failure, which may be an important aspect of membrane failure.  

Finally and most importantly, it was confirmed that failure at the fiber level in the amnion layer 
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of the FM is a catastrophic event.  These findings provide a fundamental basis for understanding 

the altered structure-function relationship of the “weak zone” of the FM. 
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6.0  SUMMARY, IMPLICATIONS, AND FUTURE DIRECTIONS 

6.1 SUMMARY OF MAIN FINDINGS 

The main findings of the present study are summarized according to specific aim. The overall 

impact of this work is described in the following section 6.2.  

 

6.1.1 Specific Aim 1: Characterize the sub-failure structure-strength behavior of the FM 

under physiological loading conditions.    

In the first aim of the present study, it was hypothesized that the baseline structure-strength 

relationship of “non-weak” FM tissue must be established in order to improve our understanding 

of FM tissue biomechanics.  Without this fundamental understanding, failure properties of the 

FM cannot be accurately investigated.  In this study, it was found that under biaxial loading the 

FM demonstrated the classical “toe” region found in soft tissues at lower values of stretch, 

followed by a transition into a highly linear region. With increased values of stretch, the collagen 

fibers continued to straighten, until the upper bound stretch was obtained (i.e. the point where all 

collagen fibers are straight).  The average upper bound areal strain (areal stretch-1) was found to 

be to 0.48 ± 0.05, which corresponded to a tension level of 24.31 ± 1.77.  Note, that the 

estimated physiological loading level was 34.90 ± 0.73, which corresponded to an areal strain 
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level of 0.50 ± 0.05 34.90 ± 0.73.  These findings suggested that after the upper bound strain is 

obtained, the FM has limited stretching ability thereafter.  Thus, little or no structural reserve 

exists in the FM.  Additionally, it was found that the FM behaves as an effectively isotropic 

material under loading, allowing the FM to adapt to the bulk loads of the fetus and the amniotic 

fluid as well as tolerate fetal movement throughout gestation. The results from this study provide 

a better understanding of the sub-failure structure-function relationship of the FM and provide 

information on how the FM transitions to failure. 

6.1.2 Specific Aim 2: Implement a structural constitutive model to investigate the sub-

failure response of the FM.  

The goal of this aim was to build on the results of Specific Aim 1 and to further characterize the 

sub-failure structure function relationship of the FM.  The results of this study provided the first 

data on the effective collagen fiber stiffness of the intact FM from planar biaxial experiments, 

which was related to the fiber angular distribution of the FM.  The results of this study, 

demonstrated that the FM collagen fibers were recruited at high strain values, yet once 

recruitment begins, the FM collagen fibers were recruited rapidly.  These results indicate that FM 

is loaded close to its failure stretch, suggesting that the FM contains minimal structural reserve 

and may be an important aspect of its failure properties.   Also, since failure did not occur during 

sub-failure loading, it is apparent that collagen fibers do not begin to fail until all collagen fibers 

are fully recruited.  Additionally, the fiber angular results confirm the finding in Specific Aim 1. 

While on a per specimen basis there appeared to be fiber alignment in the FM, the collagen fibers 

were not aligned globally in relation to any anatomic structure in the uterus or placenta, and the 

FM is an effectively isotropic material.  These findings further contribute the understanding of 
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the physiologic structure-function relationship of the FM.  Furthermore, these findings lay the 

basis for understanding how the FM transitions to normal, physiological failure.  

6.1.3 Specific Aim 3: Characterize structural/strength sequelae during failure of the FM 

in the “non-weak” regions.  

In the third aim, it was hypothesized that performing membrane inflation studies while 

concurrently quantifying the fiber architecture of the FM, specifically the amnion layer, will 

elucidate how the non-weak FM transitions to failure.  This was achieved through the use of a 

novel device that was integrated into the SALS system, which performed membrane inflation 

tests up to failure while simultaneously quantifying the collagen fiber architecture.  Through this 

study, it was determined that under isotropic loading, there were not large fiber rotations and that 

the increased NOI values, an indicator of fiber alignment, was due to the uncrimping of collagen 

fibers.  Additionally, it was confirmed that the collagen fibers recruited rapidly under loading, 

and the tissue did not stretch significantly more prior to failure, which likely facilitates 

membrane failure at a prescribed time.  The calculated areal stretch values between 5 mmHg and 

20 mmHg (i.e. 10 mmHg is the assumed physiological intrauterine pressure prior to labor) was 

1.79 ± 0.18 and 2.11 ± 0.09, respectively, with pressure prior to rupture occurring at 2.51 ± 0.05.  

However, separation of the amnion from the choriodecidua causes a modest amount of 

deformation in the amnion layer.  Thus, when this deformation was accounted for, the areal 

stretch values at 5 mmHg and 20 mmHg were 1.93 ± 0.17 and 2.26 ± 0.09, respectively, with 

pressure prior to rupture occurring at 2.69 ± 0.05.  In Specific Aim 1, it was determined that the 

in vivo areal stretch was 2.56 ± 0.08, which is assumed to correspond to an intrauterine pressure 

of 10 mmHg, and an in vivo tension value of 2.56 corresponded to a tension value of 103 N/m.  
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Additionally, the greatest rate of change in areal stretch during the membrane inflation studies 

occurred at 5 mmHg with a small additional increase in areal stretch at 20 mmHg and no change 

thereafter.  Thus, it can be inferred from the rupture studies that the upper bound areal stretch 

occurred at 20 mmHg, which corresponded to approximately 20 N/m.  These findings are 

corroborated with the planar biaxial mechanical data from Specific Aim 1, wherein the upper 

bound tension of the intact FM was determined to be 25.62 ± 1.69 N/m.  Finally, prior to this 

study it was unclear how failure initiates in the FM and how the underlying microstructure of the 

FM dictates the mechanical response. It was confirmed that failure at the fiber level in the 

amnion layer of the FM is a catastrophic event.  These findings provide a fundamental basis for 

understanding the altered structure-function relationship of the “weak zone” of the FM.  

6.2 IMPLICATIONS OF MAIN FINDINGS 

6.2.1 Implication of the structure-function relationship of the non-weak FM on the 

normal, physiological behavior of the FM 

The sub-failure studies performed in Specific Aims 1 and 2 suggested that the FM collagen 

fibers become fully loaded and are straightened well below estimated physiological loading 

levels.  This indicates that the FM collagen fibers have little or no structural reserve.   In 

contrast, other soft tissues such as pericardium, heart valves, and ligaments’ physiological 

operating ranges are either in the early linear region or in the “toe” region of the stress-strain 

curves [88, 113-117].  However, the FM appears to be loaded proportionally much closer to its 

failure stretch.  In addition, these soft tissues have a large structural reserve, indicating that their 
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physiological loading ranges are well below their failure strengths [88, 116, 117].  The structural 

reserves in these tissues prevent them from being deformed past their failure strength.  If failure 

does occur in these tissues, it is usually due to fatigue or a pathological condition.  In contrast, 

the FM is intrinsically designed to fail at a prescribed time, and since the FM has minimal 

structural reserve in comparison to other soft tissue, failure is probably easily facilitated during 

labor.  

6.2.2 Implication of the structure-function relationship of the FM on FM failure 

As demonstrated in Specific Aims 1 and 2, the FM collagen fibers are recruited at high strain 

values, yet once recruitment begins, the FM collagen fibers were recruited rapidly.  Specific Aim 

3 substantiated these findings as well as confirmed that failure of the amnion, which is known to 

dominate the mechanical response of the FM, fails catastrophically at the fiber level.  Thus, no 

fiber is predisposed towards failure prior to biochemical weakening.  However, membrane 

rupture is clearly not entirely a result of physical forces because in 10% of term labor and 40% of 

premature labor, membrane rupture occurs before contractions begin.  It has been demonstrated 

that proteolytic enzymes, specifically MMP-9 and MMP-2, play a role in membrane rupture [1, 

64-67].  Thus, proteolytic enzymes likely play a role in membrane rupture [1], and perhaps work 

synergistically with mechanical forces to induce tissue failure.  This speculation is supported by 

the known interplay between mechanical deformation and collagen degradation in soft 

collagenous tissues [98] [99, 100].  For example, Lee et al. demonstrated that tensile loading 

accelerates the proteolysis of bovine pericardium subjected to collagenase [98].  Also, another 

study demonstrated that the degradation rate of collagen increased with stretch [100].  Thus, 

weakening of the FM is likely due to the degradation of the basement membrane as well as the 
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compact layer.  There is evidence that MMP-9 is up-regulated in late gestation, and MMP-9 is 

known to weaken collagen type IV, which is found in the basement membrane of the amnion 

layer as well as around the trophoblast and the decidua.  To date, there is no evidence that the 

fibrillar collagens, namely type I, are degraded in the human FM.  Thus, weakening of the strong 

compact layer of the amnion, which contains predominantly type I collagen, may be facilitated 

by the degradation of the molecules that organize collagen type I, such as decorin, biglycan, the 

fibulin family.  There is evidence the MMP-2 can digest decorin [130].  This weakening of the 

FM can be exacerbated by mechanical stress.  For example, collagen fibers are composed of 

three polypeptide chains (tropocollagens) intertwined to form a triple helix or collagen molecule.  

The stretching of the collagen molecule may result in the opening of new sites making it more 

susceptible to enzymatic degradation [100].  If only certain sites were exposed during stretch, 

then only these collagen fibers would be more susceptible to failure and thus, not all the collagen 

fibers will fail at once.  Additionally, decorin was found to mechanically interact with collagen 

fibrils via specific binding to the collagen D-period.  Thus, if only certain binding sites were 

exposed due to stretching of the collagen fiber only certain fibers would be affected by 

enzymatic degradation and thus more susceptible to failure.  Another possible mechanism for the 

increased degradation rate could be that the enzymatic breakdown of a given collagen molecule 

or binding protein causes the remaining stress in the tissue to be transferred to a neighboring 

molecule or fibril, respectively, which may then rupture. If this is a widespread event, rapid 

break down of the collagen fibers could ultimately result in a catastrophic failure of the tissue 

[100].  While the exact mechanism is unknown, it may be that mechanical stress may facilitate 

weakening of the collagen fibers by attacking the molecules that organize collagen Type 1, such 

as decorin, biglycan, the fibulin family.  Irrespective of the exact mechanisms, we speculate that 
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enzymatic degradation of the FM collagen in the “weak zone” may be accentuated by 

mechanical stress. 

6.2.3 Implication of the results on premature rupture of the FM 

To date, there are no physical risk factors associated with the biomechanical or structural 

properties that could be detected with diagnostic tools.  The immediate aim of this work was not 

to develop a diagnostic tool but to establish an improved understanding of the fundamentals of 

membrane function.  In order to understand FM failure, the structure-function relationship of the 

fetal membrane, which depends on the underlying microstructure, needs to be established in the 

non-weakened, near/full term FM.  Without this fundamental understanding, the relationship 

between physical rupture and programmed enzymatic weakening activity is not possible.  This 

study provided the fundamental understanding of the structure-function relationship of near/full 

term, non-weakened FM at the sub-failure and failure level, imparting a platform for future 

investigation of how the structure-strength relationship of the FM is altered in the “weak zone” 

resulting in FM rupture.  Finally, after it is establish how membrane weakening via enzymatic 

degradation leads to mechanical rupture of the FM in normal pregnancy, one can then begin to 

investigate what occurs incorrectly during PROM or PPROM.  If one could narrow down what is 

actually causing the weakening of the FM (i.e. MMP up-regulation, TIMP down-regulation, 

disease, etc.) resulting in rupture, then risk factors can be identified and prevention methods can 

be developed.   
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6.3 FUTURE STUDIES 

6.3.1 Examining the sub-failure and failure properties of weakened FM 

The “weak zone” of the FM has unique mechanical properties which facilitates tissue failure and 

comparing the “weak zone” and “non-weak” zone tissues will allow one to elucidate the unique 

micro-mechanical mechanisms that result in normal, term FM failure.  Thus, future studies 

should include investigation of sub-failure and failure properties of the weakened FM.  This 

would entail repeating Specific Aims 1 and 3 on weakened FM.    

As a first step, the sub-failure properties of term “weak” FM would need to be established 

via planar biaxial testing as was done in Specific Aim 1.  These results could then be compared 

to the sub-failure properties of “non-weak” FM, elucidating how weakened FM transitions to 

failure.  In the current study, it was determined that that the FM collagen fibers are recruited at 

high strain values, yet once recruitment begins, the FM collagen fibers were recruited rapidly.  

These results indicate that FM is loaded close to its failure stretch, suggesting that the FM 

contains minimal structural reserve and may be an important aspect of its failure properties.  

However, weakened collagen fibers may not behave in the same manner, and understanding 

these differences will provide insight into how failure occurs in the “weak zone.”  Figure 6-1 is a 

schematic of four the possible sub-failure behaviors of the weakened FM.  First, the sub-failure 

properties of the weakened tissue may not be any different than “non-weak” FM.  Thus, the 

resulting sub-failure Tension-stretch curve would be exactly the same as described in the current 

study (Figure 6-1; curve 1, grey line).   In the second scenario, the collagen fibers are recruited 

rapidly, but the tissue fails at a lower tension level (Figure 6-1, curve 2, green line).  This would 

 164 



indicate that the FM fibers are weakened equally, and all fibers fail at once.  Thus, the weakened 

tissue would fail at a lower tension level than the “non-weak” FM would.   

The third scenario is depicted by curve 3 (Figure 6-1; dotted blue line).  The collagen fibers are 

not recruited as rapidly, and the Tension-stretch response is not as stiff as the “non-weak” FM.  

However, failure occurs at the same tension as in the normal tissue.  This could indicate that 

fiber failure may be occurring during collagen recruitment, but not enough fibers are failing to 

cause complete tissue failure.  In the last possible situation, the collagen fibers are not recruited 

rapidly, and the tissue fails at a lower tension value (Figure 6-1; curve 4, orange line).  This 

would indicate that fiber failure occurs while other fibers are being recruited.  However, the 

recruited fibers cannot bear the extra load from the failed fibers resulting in complete tissue 

failure at lower tension values.  Once it is established how the underlying collagen fiber 

architecture is altered as evidence in Figure 6-1, one can then establish risk factors which alter 

the collagen architecture as well as develop therapies to prevent or arrest premature membrane 

rupture.  
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Figure 6-1. Curve 1 (grey) describes the physiologic sub-failure behavior, where failure, represented as the red line, 
occurs soon after.  Fetal membranes that fail prematurely can be described by three possible scenarios, depicted in 
curves 2-4.  In curve 2 (green), the collagen fibers are recruited rapidly, but the tissue fails at a lower tension level.  

The second scenario is depicted in curve 3 (blue, dotted line).  The collagen fibers are not recruited as rapidly.  Thus, 
more stretch is required to fully straighten the collagen fibers.  However, failure occurs at the same tension as in the 

normal tissue.  In the third possible situation, curve 4 (orange), the manner in which collagen is recruited and the 
manner in which it fails is different from the physiological behavior.  In this scenario, the collagen is straightened 

less rapidly, and the tissue fails at a lower tension.  Once it is established how the underlying collagen fiber 
architecture is altered as evidence in curve 2-4, one can then establish risk factors which alter the collagen 

architecture as well as develop therapies to prevent or arrest premature membrane rupture. 
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After the sub-failure properties have been established, one can then begin to investigate 

the failure properties of term “weak” FM.  Thus, failure studies would be performed with the use 

of novel membrane inflation device described in section 5.2.3 as was done in Specific Aim 3.  

Failure of the weakened FM could manifest in different way.  For example, if the sub-failure 

properties of the weakened FM were described by the first sub-failure behavior discussed (Figure 

6-1; curve 1, grey line), FM failure could either be catastrophic or a result of small point defects 

leading to total failure.  However, if the sub-failure behavior of the weakened FM was described 

by the second scenario, failure is likely to be a catastrophic event because all collagen fibers 

were weakened equally (Figure 6-1; curve 2, green line).  Finally, if the sub-failure behavior is 

described by either the third or fourth scenario, it would be likely that failure would be a result of 

point defects leading to total tissue failure (Figure 6-1; curve 3, dotted, blue line and curve 4, 

orange line).  

6.3.2 Development of a structural constitutive model for failure 

In addition to the sub-failure and failure studies discussed in section 6.3.1, current approaches 

towards structural constitutive modeling used in Specific Aim 2 will be extended to develop a 

structural constitutive model for FM tissue failure at the fiber level.  The key aspect of this 

approach is that one can use the sub-failure results of “non-weak” and “weak” FM from section 

2.3.1 and section 6.3.1, respectively, to guide the overall model formulation.  Then key structural 

information obtained in sections 2.3.1, 5.3.1, 5.3.2 and 6.3.1 will be utilized to determine key 

failure characteristics to guide the model form.  The model will first be matched to the “non-

weak” zone tissue for “baseline” parameter determination.  Next, one can vary key structural 

parameters (e.g. fiber stiffness, fiber strain at failure, fiber stress at failure) to determine which 
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parameter leads to the greatest changes in tissue failure characteristics.  This will be followed by 

fitting the “weak” zone membrane inflation failure data from section 6.3.1. This approach will 

allow for unique parametric studies to determine what major structural elements lead to tissue 

failure. 

6.3.3 Examining the effects of cytokines on mechanical properties of the FM 

A next step would be the investigation of the effects of collagen remodeling and apoptosis on 

failure due to altered collagen fiber architecture with the membrane inflation device presented in 

section 5.2.3. Recent studies have shown that TNFα and IL-1β induced collagen remodeling and 

apoptosis [68].  Also, recent evidence suggests that TNFα induces IL-1β in choriodecidua 

explants [131]. We hypothesize that by treating the non-weak zone FM with cytokines known to 

be involved with the weak zone, we can reproduce the weak zone effects of the FM.  After 

incubation of FMs in vitro with agents known to cause apoptosis, the amnion layer will be 

separated from the intact FM for membrane inflation testing.  The treated amnion tissue can be 

incrementally loaded until failure occurs (see section 5.2.4), allowing one to determine how the 

weakened amnion will fail.  These results should corroborate the work done by Moore et. al [61, 

62, 68, 83, 97]. The biophysical and correlating biochemical studies that are described above will 

provide insight into the transition from a non weak FM to a weak one that can rupture.  This 

understanding will plausibly allow us to anticipate and develop strategies to intervene to prevent 

premature FM weakening which leads to rupture and preterm birth. 
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APPENDIX A 

MEMBRANE INFLATION DEVICE – DESIGN AND VALIDATION 

A.1 TECHNICAL DRAWINGS FOR DEVICE DESIGN 
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Figure A - 1. Technical drawing for the hollow cylinder. 
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Figure A - 2. Technical drawing for the clamping plate1. 
 

 171 



 

 

Figure A - 3. Section view of clamping plate1. 
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Figure A - 4. Technical drawing for the clamping plate2. 
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Figure A - 5. Section view of clamping plate 2. 
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Figure A - 6. Technical drawing for device cradle. 
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Figure A - 7. Technical drawing for base of cradle. 
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A.2 DEVICE VALIDATION 

A.2.1 Device validation – cast acrylic windows 

In order to verify that the cast acrylic windows of the membrane inflation device (Figure 5-1; 

part e) did not cause the laser of the SALS device (Figure 5-1; part f) to be distorted when it 

passed from cylinder 1 (Figure 5-1; part a) through cylinder 2 (Figure 5-1; part c), a pilot study 

was performed.  First the laser beam scattered was passed through air, and the beam profile was 

captured on the screen of the SALS device (Figure A - 8a).  Then the burst device was filled with 

PBS (pH 7.4) at room temperature, which is used during burst testing, and placed in line and 

directly perpendicular to the laser beam.  The beam profile was again capture on the screen of the 

SALS device (Figure A - 8b).  The beam profiles were segmented (Figure A - 8 c and d) and the 

pixel coordinates from the surface of the segmented images were extracted and plotted 

comparison (Figure A - 7e). There were not observable differences between the two beam 

profiles (Figure A - 8e; R2 = 0.9259).  In conclusion, the laser beam was not refracted by the 

acrylic windows of the burst device, and the device design is amenable to accurate structural 

measurements. 

 

 

 

 

 

 

 

 177 



 
 

(a)

(c)

(b)

(d)

(e)

x - pixel coordinates

0 20 40 60 80 100 120 140 160

y 
- p

ix
el

 c
oo

rd
in

at
es

0

20

40

60

80

100

120

140

160 beam profile
beam profile_device

R2=0.9259

Beam Profile 
Without Dvice

Beam Profile 
With Dvice

 
 
 

Figure A - 8. (a) Laser beam profile without the device (i.e. beam was passed through air). (b) The device was filled 
with PBS and placed in front of the laser beam.  (c,d) The laser beam profiles were then segmented.  (e) Finally, the 
segmented images were compared and it was determined that the laser beam of the SALS device was not distorted 

by the acrylic windows of the SALS device. 
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A.2.2 Device validation – Homogenous Deformation 

In order to ensure that the amnion layer of the FM was deforming homogenously, 

validation studies were performed.  The first study was performed on latex rubber, an assumed 

isotropic material.  Latex rubber was placed inside the burst device and was inflated.  Images 

were taken of the profiles of the inflated latex from the top view and side view of the burst 

device (Figure A - 9 a and b).  The profile images were then segmented with free software, 

Medical Image Processing, Analysis, and Visualization (MIPAV), for the NIH website 

(http://mipav.cit.nih.gov/) (Figure A - 9 c and d).  Next, the pixel coordinates from the surface of 

the segmented images were extracted and plotted comparison (Figure A - 9e).  The R2 value 

between the two profile curves was 0.9105, where (Figure A - 9e).  Thus, it is assumed that the 

latex deformed homogenously and any difference in the plotted curves can be contributed to 

experimental error associated with manual segmentation of the profile images and image quality.  

However, it is important to note, that the latex distends past its fixture opening during inflation, 

which can be seen in both the images and the plotted image profiles (Figure A - 9).   
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Figure A - 9. Image of the (a) side and the (b) top profile of inflated latex with (c,d) corresponding segmented 
images.  (e)The surfaces of the segmented images were compared, and it was determined that the latex deformed 

homogenously. 
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Next, the same study was performed on the amnion (Figure A - 10).  The amnion was inflated 

until the total displacement was of the amnion was ~15mm, since pilot study revealed that the 

amnion ruptured at a displacement of ~18-20 mm.  The same conclusions can be made regarding 

the amnion tissue.  It does in fact deform homogenously, evidence by an R2 value of 0.9398 

between the two profile curves (Figure A - 10e).  Again, any difference between the profile 

curves can be attributed to experimental error associated with manual thresholding of the profile 

images and image quality.  Conversely, the amnion layer does not does not distend past its 

fixture opening as does the latex during inflation (Figure A - 9).  Note, that if the amnion was 

capable of displacing more the 18-20 mm, it probably would distend past its fixture opening like 

the latex.   
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Figure A - 10. Image of the (a) side and the (b) top profile of inflated amnion layer of the FM with (c, d) 
corresponding segmented images.  (e)The surfaces of the segmented images were compared, and it was determined 

that the amnion deformed homogenously. 
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APPENDIX B 

QUANTIFICATION OF AMNION DEFORMATION ASSOCIATED WITH LAYER 

SEPARATION  

B.1 METHODS 

B.1.1 Tissue procurement and specimen preparation 

FM specimens were collected from women undergoing Cesarean section or Vaginal deliveries at 

MetroHealth Medical Center, Cleveland Ohio after normal term (37-42 weeks) pregnancies.  A 

CWRU/MetroHealth Medical Center institutional review board (IRB) approved protocol was 

utilized.  FM of patients with clinical chorioamnionitis, meconium, maternal diabetes, or 

multiple gestations were specifically excluded.  For these initial studies, FM fragments from 

regions distant from the “weak zone” as determined by methods previously described were 

selected [61, 62]. Fresh FM fragments were stored in 1X Minimum Essential Medium and 

shipped to Pittsburgh, PA overnight on ice.  FM specimens were tested on the day of receipt.  

Next, a 20 mm x 20 mm square was dissected from the intact FM specimens sent to our 

laboratory. Four fiducial markers were placed in the center of the tissue in a 2 x 2 array (Figure B 

- 1).   
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Figure B - 1.  Square specimen with fiducial markers placed in a 2 x 2 array. 
 
 

 
Next, the amnion layer was peeled off of the choriodecidua layer, and an image was immediately 

taken of the 4 marker positions.  Images were then taken at 0.5, 1, 1.5, 2, and 4 hours in order to 

track the marker displacements over time.  This procedure was completed on 8 samples. 

B.2 RESULTS 

Upon initial separation, the amnion layer of the FM deformed.  However, over a 4 hour period no 

further deformation was attained (Figure B - 2).  The values presented in Figure B - 2 are 

presented as mean ± SEM.  Thus, areal deformation used in chapter 5.0 was based on the 

deformation values at 4 hours.  The areal deformation estimated from the following equation: 

                                                      21 λλ ⋅=StretchAreal                                                            (B-1) 

and was calculated to be 1.077. 
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Figure B - 2.  Upon initial separation, the amnion deformed stretched 1.038 in the F11 direction and 1.038 in the 
F22 direction.  After the initial separation, the amnion did not continue to deform. (n = 8) 
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