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ABSTRACT 

 
IN SITU TEM INVESTIGATION OF THE DEFORMATION AND FRACTURE 

MECHANISM IN NANOCRYSTALLINE METALS 
 
 

Zhiwei Shan, PhD 
 
 

University of Pittsburgh, 2005 
 
 
 

The strength of a material is known to increase with the decreasing grain size and will reach 

its peak strength at certain critical grain size. It was proposed and has been widely accepted that 

this results from the deformation mechanism crossover, i.e. a continuous transition from 

dislocation nucleation and motion to grain boundary mediated plasticity. Evidence for this has 

been sought for many years, however, to date, direct experimental confirmation remains elusive.  

By solving the challenging problems encountered in previous studies, in situ dynamic dark 

field transmission electron microscope (TEM) investigations combined with in situ high 

resolution TEM observations have been performed successfully on high purity nanocrystalline 

nickel samples with an average grain size about 10nm, which show: 1) grain agglomerates 

formed very frequently and rapidly in many locations apparently independently of one another 

under influence of the applied stress, 2) both inter- and intra-grain agglomerate fractures are 

observed in response to the deformation, 3) trapped dislocations are frequently observed in 

grains which may be still in a strained state and no deformation twinning was detected, 4) 

trapped lattice dislocations were observed to move and annihilate during the stress relaxation. 

These TEM observations i) for the first time provide conclusive experimental evidence that grain 

boundary mediated plasticity, such as grain boundary sliding and grain rotation, has become a 

 iii



prominent deformation mode for as deposited Ni. Theoretical analysis suggested that the 

deformation mechanism crossover resulted from the competition between the deformation 

controlled by nucleation and motion of dislocations and the deformation controlled by grain 

boundary related deformation accommodated mainly by grain boundary diffusion with 

decreasing grain size, ii) confirmed the speculation that dislocations are most probably observed 

in stressed grains, iii) suggested that the dimpled fracture surface of nanocrystalline materials 

may result from those newly formed grain agglomerates. Additionally, direct measurement of 

lattice distortions during straining revealed that grain interiors may experience ultra-high elastic 

distortions during tensile deformation. 
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1.0 GENERAL INTRODUCITON  

The Hall-Petch relationship, i.e. the strength and hardness of materials is inversely proportional 

to the square root of the grain size, has been well established experimentally from millimeter-

sized grains down to the submicron regime 1. However, as grain size of the material is reduced to 

nano range (i.e. the grain size typically less than 100nm), a character length scale, dc is observed, 

at which the material reaches its peak strength 2.  For the material with grain size greater than the 

dc, a Hall-Petch relation roughly holds, but deviates form the classical -½ exponent to a value 

near zero. As grain size is reduced to less than dc, a negative Hall-Petch slope, i.e., an inverse 

Hall-Petch behavior (softening) begins to emerge.   

In order to uncover the underlying physical mechanism, numerous models have been 

proposed 3,4 and molecular dynamics simulations (MDS) 5,6 have been carried out. So far, it has 

been more or less accepted that the deformation mechanisms of a nanocrystalline material can be 

classified into three regimes, based on grain size. At the finest grain sizes (typically less than 

10nm), it is believed that the only plastic deformation mechanisms possible are grain boundary 

(GB) processes. In the largest grain size regime (typically 30nm~100nm), the dominant 

deformation mode has been proven experimentally to be dislocation-mediated plasticity 7. 

Between them lies a crossover regime, where a continuous transition from dislocation nucleation 

and motion to GB mediated plasticity, i.e. from an intragranular process to an intergranular one, 

is expected.  
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     The above proposed mechanism offers a reasonable explanation for the existence of peak 

strength of a material. However, they are mostly based on indirect experimental evidence 1 as 

well as MDS 5. The latter, as suggested in a recent review 8, should be regarded only as a source 

of inspiration and qualitative guidance and not as a means to validate or disprove the existence of 

mechanism. Therefore, to find direct evidence that shows the operation of deformation 

mechanism transition has become critical to evaluate the above proposed mechanisms.  

     In-situ TEM investigation has been proven to be the powerful tool for revealing the 

underlying physical mechanism that dominates the macro behavior of the materials and it has 

been employed to find such direct evidence for many years. However, to date, experiments 7,9,10  

failed to detect conclusive direct evidence for the operation of non-dislocation based plasticity 

mechanism. This naturally led to two questions: 1) Does a deformation mechanism crossover 

regime really exist? 2) If “yes”, where is it and how can we probe it experimentally? The paucity 

of such direct evidence severely limits our further understanding on this topic.  

     Backed by the abundant indirect evidence and the resounding physical insight from 

MDS, the existence of a crossover regime seems unchallenged. Therefore the failure to detect 

grain boundary mediated plasticity is most probably due to the inappropriate experimental means 

that have been employed. A detailed review of previous works readily shows that the materials 

used usually suffered from contamination, texture, porosity and other artifacts, and that the grain 

size is often at the upper limit or larger than the predicted crossover grain size regime. This 

means that high quality sample is necessary. After a comprehensive literature investigation, it 

was found the Ni prepared by pulsed laser deposition may be the best candidate material for our 

research objective due to its high purity, fully dense, very small grain size and narrow grain size 

distribution. The detail of the sample preparation procedure will be described in Chapter 3.   
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    As for the technique, it has been proven that TEM provides the best means to reveal the 

underlying physical mechanism of nanocrystalline materials deformation and fracture due to its 

in situ, dynamics, atomic resolution and direct observation capability. Chapter 3 also gives the 

basic background for TEM.  Due to the limitation of the sample design, all previous TEM 

investigations were performed only in bright field TEM mode, which makes it difficult to 

differentiate between the contrast changes resulting from dislocation activity and those from 

grain boundary activities. Therefore, in order to reveal the existence of the crossover regime, 

improved sample design and selective TEM observation techniques are required. Based on above 

consideration, in situ bright field TEM investigation under low strain rate (Chapter 4), in situ 

dark field TEM investigation (Chapter 5), in situ high resolution TEM observation (Chapter 6) 

and in situ nano beam diffraction observations (Chapter 7) with improved sample designs have 

been performed, respectively. For the first time, direct and compelling conclusive evidence of the 

deformation mechanism crossover was provided (Chapter 5). In addition, unexpected dislocation 

activities were also observed in grains as small as 5 nm (Chapter 6). Nano beam diffraction 

observations revealed that a nanocrystalline grain with a size of about 20 nm may experience 

ultrahigh elastic strain during deformation and the implication of this finding will be discussed in 

Chapter 7.  

    Dimpled structures are always observed on the fracture surface of nanocrystalline 

materials. In order to explain the observed phenomenon, several grain sizes related mechanisms 

have been proposed. However, none of them can give a reasonable explanation for the entire 

grain size regime. In Chapter 8, a new mechanism inspired by in situ TEM results was proposed 

which provides a rational for the formation mechanism of dimpled fracture surface for the entire 

grain size regime.  
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    To date, most of the TEM works have been done qualitatively. However, in order to 

approach the truth of this tiny world, quantitative characterization is necessary. In chapter 9, I 

give the outline of possible future works.   
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2.0 BACKGOUND 

2.1 INTRODUCTION 

Nanocrystalline (nc) metals (characterized by a grain size less than 100nm) exhibit ultra-high 

yield and fracture strength and hardness1,11-14, superior wear resistance15,16, enhanced superplastic 

formability at lower temperature17,18 and faster strain rates relative to their coarse-grained 

counterparts 19,20. These appealing characteristics with potential significance for engineering 

applications have generated considerable interest both in the processing and in the characterizing 

of nc metals. The various methods invented to produce nc metals can be classified into two 

categories. One involves producing atom clusters or nano-scaled particles as precursor to form 

nanocrystalline materials with relatively large dimension by further consolidation process, e.g. 

physical vapor deposition, pulsed laser deposition 21,22, inert gas consolidation 23, chemical vapor 

deposition24, electron deposition 25,26, amorphous crystallization 27-29 etc. The other is to produce 

nanocrystalline materials form bulk coarse-grained materials. This approach includes processes 

like mechanical milling 30,31, shot peening 32-35, severe plastic deformation36,37, equal channel 

angular pressing 38, high pressure torsion 39,40 etc.  

How the grains deform in nc metals under stress is directly responsible for the observed 

unique mechanical properties. Among the important variables (such as grain shape, grain size, 

grain boundary structure, etc) that characterize the microstructure of nc metals, grain size plays 

5 



 

an important role in deciding the dominant mechanism of plastic deformation for crystalline 

materials. In coarse grained (cg, grain size larger than 1000nm) and ultra-fine crystalline (ufc, 

grain size ranged from 100-1000nm) metals, plastic deformation is mainly carried by the 

nucleation and motion of dislocations within the individual grains.  Dislocations can move 

through the crystal grains and can interact with each other. Grain boundaries often act as barriers 

for dislocations transmission. It is the dislocation pile up at the boundary and the tangle of the 

dislocations in the grain interior that make the material harder to deform. Based on dislocation 

pile up, the strengthening with grain refinement has traditionally been rationalized by so-called 

Hall-Petch mechanism, i.e., the increase in yield stress is inversely proportional to the square 

root of the grain size. However, as grain sizes are reduced to the naonometer scale (less than 

100nm), this processes invariably breaks down and the yield stress versus grain size relationship 

departs markedly from that seen at cg and ufg metals41-43. With further grain refinement, the 

yield stress of the nc metals peaks in many cases at an average grain size value on the order of 

10~15nm or so and weakens with further decrease in grain size1,44. Despite the large number of 

investigations devoted to the examination of their mechanical response and underlying reasons, 

the picture of the deformation mechanism in nc metals is far from being understood. 

Consequently, there is a concerted global effort underway using a combination of novel 

processing routes, experiments as well as large-scale computations5,45-48 to develop deeper 

insights into the various aspects of these phenomena.  
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2.2 LITERATURE REVIEW AND RESEARCH OBJECTIVES 

2.2.1 Processing of nanocrystalline materials 

The past two decades have witnessed remarkable advances in processing and characterization of 

materials with nanometer range. The motivation of these improvements is to get what so called 

high purity, fully dense, bulk, uniform, narrow grain size distribution, free of texture, and with an 

as small as possible average grain size value nanocrystalline materials. Gas phase condensation 

followed by consolidation (GPCC) is the earliest one employed. This technique was pioneered 

by Gleiter 11 and only produces nano structured materials in powder form. Subsequent 

compaction and densification to full density have been proven to be a great challenge. The major 

stumbling block is grain growth during consolidation of the nanometer-sized powder, 

diminishing the unique characteristics of the nanostructure. Another problem associated with 

powder metallurgy is the introduction of impurities during the course of processing. It has been 

shown recently that the density of the specimens can be increased by cold rolling, while retaining 

the equiaxed, texture free microstructure without a change in grain size49; So far, contamination, 

imperfect particle bonding and volume flaws such as porosity have been the major artifacts that 

adversely influence the properties of nano-structured (ns) metals. They are also the origin of 

controversies in the interpretation of various experimental observations of the mechanical 

properties. As pointed out by some previous work, the use of a two step50 (powder production 

and consolidation) process to obtain bulk samples can be both expensive and problematic.   

    Electrodeposition 51 (ED) (direct current and pulsed) has been proposed to be able to 

prepare fully dense nanocrystalline materials 41,51,52. It has been used to produce sheets (with 
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thickness of 100µm or more) of nc metals such as Ni53, Co54,55, Cu52,56. Grain size of 20-40nm 

are routinely produced by controlling the component of the plating bath and other parameters. 

However, possible roles of texture, pre-existing voids, columnar grain structure, and hydrogen, 

carbon and sulfur either in solid solution or segregated to grain boundaries influencing the 

mechanical response are intrinsic  problem of this popular method. Therefore, reports on 

mechanical properties have to be accompanied by an accurate microstructure investigation.  

    Equal channel angular extrusion (ECAE) is a technique invented and pioneered by Segal 

57 by subjecting a metal to severe plastic deformation through a simple shear processes with 

little, if any change in the cross sectional area of the work piece. The technique is announced to 

be able to produce truly bulk, fully dense and contamination-free metals with sub-micron to 

nanoscale grain sizes and therefore attracted the growing interest of specialists in materials 

science (for detail, see review by Valiev R.Z et al, 58). However, this method has limited ability 

to refine the grain size of metals into tens nanometer or smaller as well as to get expected high 

angle grain boundaries.   

    Surface mechanical attrition treatment (SMAT) was asserted 59-62 to be a “one-step 

processing” technique compared with GPCC and can prepare nc microstructures with 

predominantly high-angle grain boundaries in a sample that is sufficiently thick to represent bulk 

behavior, yet without introducing contaminations or porosity. However, as prepared samples are 

far from uniform. The grain sizes are usually a function of depth from the surface.   

Recently, Hugo R.C et al 9 have studied the nanocrystalline Ni thin films prepared by DC 

Magnetron sputtered and pulsed laser deposition, respectively with in-situ TEM. It was found the 

material processed by DC magnetron sputtered deposition behave in a brittle manner, with 

failure occurring via rapid coalescence of intergranular cracks. Conversely, the laser deposited 
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film behaved in a ductile manner, with failure occurring by slow ductile crack growth. The 

difference was attributed to the high porosity found at the grain boundaries in the sputtered film. 

Further TEM and indention studies22 show that the Ni films prepared by pulsed laser deposition 

are especially defect free, high purity nanocrystalline material with a narrow grain size 

distribution. In addition, the grain size is controllable. It is evident from the foregoing discussion 

that the nanocrystalline materials prepared with paused laser deposition (PLD) may be the best 

candidate material for the objective of our study. 

2.2.2 Mechanical properties of fcc nanocrystalline metals 

The grain size dependence of yield stress in metals has been represented as a d-1/2 relationship 

since the pioneering work of Hall63 and Petch 64. The term Hall-Petch was introduced by Conrad 

65 as a tribute to these researchers. The classic Hall-Petch relationship has been used for several 

decades to describe the relationship between yield stress and grain size, namely  

2
1

0

−
+= kdττ                                                                           (1) 

where τ is the yield stress, τ0 is the friction stress needed to move individual dislocations, k is a 

constant (often referred to as the Hall-Petch slope and is material dependent), and d is the 

average grain size. The original explanation for this effect, envisaged by Hall and Petch 66, was 

that pile-ups formed at grain boundaries, and required a critical stress to break through them. 

However, this relation has been the subject of intensive research in recent years due to the 

complex behavior observed in nanophase materials22,44,67-69. Most of the results confirm the 

validity of the classical H-P relation down to the grain sizes of the older of a few tens of 

nanometers, eventually with a different slope in the sub-micro range but keeping the classical 
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exponent -1/2.  Masumura et al1 plotted a Hall-Petch plot based on the published data.     

According their plot, the reported data show three different regions: (1) a region from single 

crystal to a grain size of about 1µm. There is universal agreement of effectiveness of Hall-Petch 

relation in this grain size region.  (2) A region for grain sizes ranging from 1µm to about 30nm. 

Hall-Patch relation roughly holds, but deviates from the classical -1/2 exponent to a value near 

zero. Although some of the deviation from Hall-Petch strengthening could be simply be due to 

the artifacts of the samples, such as pores, impurities at the grain boundary and trapped in the 

interior of the grains, if the totality of the data is taken into consideration, it is fairly safe to 

conclude that the increase in strength on grain refinement in this region is somewhat less than 

predicted by the Hall-Petch relation. (3) A region for grain sizes less than 30nm. Much more 

controversial observations have been reported in this grain size region. The inaccurate 

measurement of grain size, uncertainties about the nature of the grain boundary, as well as 

different measuring methods can all be responsible for the diversity of the results. However, if all 

available evidence in taken into consideration, a negative Hall-Petch slope of softening with 

further reduced grain size, i.e., an inverse Hal-Petch relation appears to be visible at least in some 

systems.  

    Based on the idea that dislocation pile-ups can not be supported at the very small grain 

sizes70, Various models have been proposed to offer an explanation for the apparent controversy 

1,44,68,70-73. These frequently predict a deformation mechanism transition from one mainly 

controlled by dislocation mediated plasticity to one mainly controlled by grain boundary 

activities along with the decrease of the grain size. However, except for indirect evidence, to date, 

direct experimental confirmation of deformation mechanism crossover remains elusive74.  
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2.2.3 Atomistic simulation 

The use of large scale molecular dynamics (MD) simulations has provided insight into the 

atomic scale processes that may occur during plastic deformation. Such computer simulations are 

usually performed in uniaxial tension, with high loads chosen to produce a measurable strain 

within the sub-nanosceond MD time scale. Two loading models have been taken in the 

simulation of deformation: the first is to keep the load constant and evolution of deformation 

over time is followed 75-85. The second is to apply a strain step by step, followed by a short 

relaxation time during the interval5,45. This is similar to the constant strain rate deformation. Both 

room temperature deformation and high temperature deformation 47,80 have been performed with 

MD simulations. 

    At room temperature and in fully 3D grain boundary net-works with an average grain size 

value below 30nm in Ni and Cu, the simulation demonstrates the ability of the nano-sized grain 

boundary network to accommodate an external applied stress by means of GB sliding and 

emission of partial dislocations involving local structure changes in the net work 5,45,79-82. When a 

constant strain rate is applied to nc Cu, the yield stress is found to decrease with decreasing grain 

size, thereby suggesting a reverse Hall-Petch type relationship5,45. This softening has been 

ascribed to the increased content in grain boundary atoms that facilitate sliding and no direct link 

with dislocation activity.  

Simulations of tensile deformation have also been performed at room temperature on Al 

with 2-D-columnar GB networks76,77,86. The four columnar grains have special orientations, so 
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that only three types of grain boundaries are represented. For a 20nm columnar diameter sample, 

it was shown that by increasing the load from 2 to 2.3 GPa, the strain rate increases by more than 

two orders of magnitude resulting in strain rates of ~108-109/s, and that the deformation process 

changes from one involving grain boundary processes to one dominated by partial dislocations 

with a strain rate that depends inversely on the grain size. The presence of two length scales, one 

the grain size and the other represented by the dislocations splitting distance under stress, was 

recognized as being important to the onset of slip-deformation processes in nc Al. The analysis 

led to the generation of a deformation map that captured the interplay between these two length 

scales. Twinning was shown to occur after approximately 12% plastic strain and a stress level of 

2.5 GPa for a grain size of 45nm, with twins originating at grain boundaries as well as in the 

grain interior from the interactions of stacking faults86. Further, the authors predicted that the 

plastic deformation is predominantly carried by deformation twinning. However, by repeating 

the simulation for a 2D columnar sample using the same potential as for their 3D samples, 

FrØseth et al87] found that the dominant deformation mechanism in defect-free samples is full 

dislocation activity instead of partial dislocations as reported earlier and twinning cannot be a 

predominant deformation mechanism in defect-free samples. The apparent discrepancy between 

different simulations shows that except the intrinsic limitation, such as restricted time-scale (only 

last for picoseconds) or strain rate (be 109/s), unrealistic perfect samples as well as all kinds of 

unproven assumptions, the simulation itself is far from a self-consisted system. Therefore, as 

asserted in a recent review by Kumar et al8,  the simulation should be regarded only as a source 

of inspiration and quantitative guidance and not as a means to validate or disprove the existence 

of a mechanism 
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2.2.4 Transmission electron microscopy observations  

From the foregoing literature review, it is clear that a deformation mechanism crossover at a 

given critical grain size regime has been suggested by both the MD simulations and indirect 

evidence (mainly the indentation, tensile or compression experiment). But how, and at what 

grain size will the deformation mechanism crossover occur is still under discussion.  

Transmission electron microscopy (TEM) has been proven to be a powerful tool that may 

disclose the secret of this black box because of its ability to examine the postmortem 

deformation microstructure at atomic scale and/or the deformation processes directly. By 

checking the microstructure with the help of post-mortem TEM investigation, Legros et al 4  

failed to detect any dislocation debris or trapped lattice dislocations in their tensile deformed 

nanocrystalline Ni with its initial average grain size about 28nm. By assuming that grain 

boundary acts as dislocation source and based on the yield stress measured in their experimental , 

the authors4 further predicted that the critical grain size below which dislocations stopped to 

contribute to deformation is about 20~30nm for Ni.  However, this estimate for the critical grain 

size at which dislocation source activation stops contradicts the results from MD simulation and 

the models based on the mechanical test, both of which showed that dislocations will remain 

active to grain size as small as about 10nm.  

    With the objective of observing activated deformation mechanism, dislocation motion, 

and/or grain boundary related deformation as they occurred, a few pioneering in situ deformation 

studies have been conducted in the TEM 7,9,10,88. The first of these observations was performed 

on a nanostructured gold thin film with grain diameters of 10nm and a film thickness of 

10~20nm by Ming Ke et al88 . The gold thin films were produced by ion beam sputter deposition 
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on a layer of 50nm amorphous polyvinalformal film, which was supported by a 200 mesh copper 

grid and then strained the copper grid in JEOL 4000FXS TEM with a Gatan single tilt 

heating/straining stage equipped with displacement control and measurement capabilities. By 

measuring the changes in the angular relationships between the lattice fringes of different grains 

during deformation, grain rotation was asserted to be observed. In addition, no evidence of 

dislocation activity was detected during or after staining. However, the authors did not give 

comments on the possible effect of the substrate, which can definitely affect the arrangement of 

the grains on its top and therefore any results gained may be much different from that expected 

for free standing thin film. In addition, the thickness of the gold film is only one to two times of 

grain size, which means the films are far from a continuous solid, but may include many pores 

(as indicated by authors) and cracks. What is more, the extremely low pore growth rate (10-

12~10-13 m/s) makes the experiment much more like a traditional creep test instead of an in situ 

tensile deformation test. All of the above reasons seriously weaken the reliability of the 

conclusion gained in this experiment.  

    The second of these studies was recently accomplished by Youngdahl et al10. The copper 

specimens used in this study were produced by inert gas condensation followed by compaction 

with a reported dense of 97%. Although the nominal grain size measured by X-ray diffraction 

data was 30nm, the TEM observation shows the samples have a much wider grain size 

distribution ranging from 20-500nm and with the majority lying between 50-80nm. (This 

indicated the measurement of the grain size based on indirect method such as X-Ray may deviate 

much from the truth and therefore one has to be very careful of the value gained.) The samples 

were strained and viewed in a Philips CM30 TEM operating at 300kv in the bright field mode. 

Parallel arrays of dislocations are claimed to be observed in grains as mall as 50nm in size. Rapid 

14 



 

and repeated contrast changes in individual grains with their size down to 30nm during straining 

are observed and ascribed to be the result of dislocation motion. However, for the grains with 

their size less than 30nm, the visualization is not available due to the size overlap problem. 

Further, it was noted that no evidence for grain boundary related deformation has been detect in 

their experiment.  

   Kumar et al.7 reported observations of an in-situ deformation study on a so called 

electrodeposited, fully dense, nanocrystalline Ni with an average grain size of ~30nm and a 

narrow grain size distribution. They found extensive dislocation activity within several grains 

ahead of the crack tip, emission and absorption of dislocations at grain boundaries. Further, the 

authors concluded that dislocation-mediated plasticity plays a dominant role in the deformation 

of nanocrystalline Ni examined. Although the authors mentioned that grain boundary sliding 

facilitated the nucleation of voids (which are thought as nucleation sites for dimples formed on 

the fracture surface) in their proposed deformation mechanism, no evidence of grain boundary 

related deformation have been reported.  

Hugo et al 9 reported in-situ TEM tensile testing on two nanocrystalline Ni thin films, one 

prepared via DC magnetron sputtering and the other prepared via pulsed laser deposition. The 

former had a grain size of 19nm and latter has a grain size of 17nm. Both films had a nominal 

thickness of 100nm. Because of the presence of grain boundary porosity, the sputtered material 

was found to behave in a brittle manner, with failure occurring via rapid coalescence of 

intergranular cracks. However, the laser deposited film behaved in a ductile manner, with failure 

occurring by slow ductile crack growth. Because of what so called global and local tilting of the 

samples, all of the experiments reported in this work were performed in bright-field imaging 
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mode. Again, the authors reported that both films exhibited pervasive dislocation motion before 

failure, and showed no conclusive evidence of grain boundary related deformation. 

2.2.5 Motivation and objective  

It is evident from the foregoing discussion that very limited fundamental understanding exists of 

the deformation in nanocrystalline metals. The key point is whether or not grain boundary related 

deformation will submit traditional dislocation mechanism as the dominant deformation 

mechanism when grain size is reduced down to some critical value. No doubt, in situ dynamics 

TEM tensile test are the best choice for the direct study and possible verification of this 

mechanism.  

    It has been argued by MD simulation that grain boundary related deformation, grain 

rotation and/or grain boundary sliding will be facilitated by the thin film geometry and the 

accelerated diffusive events near the surface under the electron beam flux. If this is true, the 

absence of the grain boundary mediated deformation in thin film means this phenomenon is less 

likely present in bulk materials. Then all the theories based on grain boundary mediated 

deformation have to be reconsidered. However, the numerous indirect evidences as well as the 

theoretical analysis indicated this is not likely to be the case. Another possibility is that what so 

called artifacts of film geometry and/or the effect of beam flux are not important to the observed 

deformation mechanism. In a recent review 8, it has been pointed out that the simulation should 

be regarded only as a source of inspiration and qualitative guidance and not as a means to 

validate or disprove the existence of a mechanism. By carefully examining the existing 

theoretical analysis as well as the reported experiments, the absence of the grain boundary 

related deformation may be due to the following reasons: First, the average grain size used in the 
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in situ TEM tests are not small enough. As mentioned in the foregoing discussion, the peak value 

of the strength or the softening occurred when the average grain size is in the range of 10~20nm. 

This means the obvious deformation mechanism transition are most likely to be observed in the 

samples with the average grain size in this regime. Therefore, good sample, i.e. one that is full 

dense, with narrow grain size distribution, a lower average grain size value (10~20nm), free of 

contamination and texture is necessary for the further experiment.  Second, the TEM technique 

employed to identify the possible activated deformation mechanism has not been appropriate. To 

date, all the observations reported are obtained with the bright field mode, which makes it 

difficult to differentiate the contrast changes resulting from grain boundary related deformation 

and those resulting from the motion of lattice dislocations in such small grain size system under 

normal straining conditions. Therefore, it is necessary to explore other effective TEM techniques, 

for instance, such as low strain rate observations, dark field observation, as well as micro beam 

diffraction.    

    The present study was, therefore, initiated with the specific objective of observing, both 

during and after deformation by TEM experiments, the mechanisms of the deformation and 

fracture using state of the art experimental tools in high purity, fully dense nanocrystalline metals 

with a narrow range of gain sizes.  

.   
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3.0 EXPERIMENTAL PROCEDURES 

3.1 MATERIALS 

In this work, we chose to use the nanocrystalline nickel film prepared by pulsed laser deposited 

(PLD).   The Ni films were deposited in vacuum using a KrF excimer laser, with a wavelength of 

248nm, a 34ns full width at half maximum (FWHM) pulse width, and operated at a pulse rate of 

35HZ. The pure Ni ablation target and sample substrates were mounted in an all-metal vacuum 

chamber with a base pressure of 2×10-7 Torr. The laser light was directed through a UV-

transparent window to a fixed position in the plane of the Ni target. The target was continuously 

rastered in that plane over several square centimeters during deposition. The laser power density 

at the target was typically 1-2J/cm2, such that ~0.007nm of material was deposited with each 

shot, yielding a ~0.25nm/sec growth rate. 

A particle filter is mounted between the targets and the sample to eliminate the slow, non-

plasma components of the laser ablation plume, which would otherwise lead to a rough, nonideal 

film. The interposed velocity filter consists of a 15cm diameter wheel with two 5cm wide slots 

around the periphery; it is spun at high speed during the deposition, with the laser synchronized 

to the wheel position. The laser is fired when one of the openings is positioned between the 

target and sample substrate, allowing the fast (~103m/s) plasma component of the plume to pass 

though to the substrate, while blocking the slower moving (~10m/s) particle component. The 
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velocity filter is spun at 2100 rpm with a wheel to target spacing of 2cm, producing an area on 

the substrate ~1cm wide with a smooth, uniform film incorporating very few large particles22. 

The substrate used in our study is [001] NaCl.  

3.2 EXPERIMENT PRICIMPLE 

3.2.1 Transmission electron microscope 

TEM is a unique tool in characterization of materials crystal structure and microstructure 

simultaneously by diffraction and imaging techniques. A projector shines a beam of light through 

(transmits) the slide, as the light passes through it is affected by the structures and objects on the 

slide. These effects result in only certain parts of the light beam being transmitted through certain 

parts of the slide. This transmitted beam is then projected onto the viewing screen, forming an 

enlarged image of the slide. TEM work the same way except that it shines a beam of electrons 

through the specimen. 

Figure 3.1 shows briefly the principle of TEM. The electron gun produces a stream of 

monochromatic electrons. This stream is focused to a small, thin, coherent beam by the use of 

condenser lenses 1 and 2. The first lens which is usually controlled by the "spot size knob" 

largely determines the "spot size", i.e. the general size range of the final spot that strikes the 

sample. The second lens which are usually controlled by the "intensity or brightness knob" 

actually changes the size of the spot on the sample; changing it from a wide dispersed spot to a 

pinpoint beam. The beam is restricted by the condenser aperture, knocking out high angle 

electrons (those far from the optic axis, the dotted line down the center). The transmitted portion 
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is focused by the objective lens into an image Optional Objective and Selected Area metal 

apertures can further restrict the beam; the Objective aperture enhancing contrast by blocking out 

high-angle diffracted electrons, the Selected Area aperture enabling the user to examine the 

periodic diffraction of electrons by ordered arrangements of atoms in the sample. The image is 

passed down the column through the intermediate and projector lenses, being enlarged all the 

way. Finally, the electrons strike the phosphor image screen and light is generated, allowing the 

user to see the image. 

Figure 3-1:  Diagram of the main element s of TEM. 
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3.2.2 Selected area electron diffraction patterns 

Figure 3-2: Selected area diffraction patterns from (A) single crystalline Ni and (B) 

Nanocrystalline Ni.  

Selected area electron diffraction (SAED) is a method in which the selected area diffraction 

pattern (SADP) was produced on the display screen of the microscope when parallel electrons 

which are excited from gun under high voltage (80~1000 kV) transmitted through a small area 

(usually ~1-10µm in diameter, determined by intermediated lens aperture size) of the thin foil 

specimen and are diffracted according to Bragg's law. For single crystal material, SADP consists 

of a transmitted beam (or direct beam) spots and many other periodic distributed diffracted beam 

spots (figure 3.3 A). But for poly- or nanocrystalline materials, the SADP consists of a 

transmitted beam and a number of rings (figure3.3 B). Although the real diffraction phenomena 

is due to complex interactions of charged electrons with the periodic potential field of the lattice, 

Bragg's Law or Laue Conditions are sufficient approximations for usual practical applications. A 

SADP is, in the simplest sense, a Fourier transform of the periodic crystal lattice, giving us 

information on the periodicities in the lattice, and hence the atomic positions.  With the help of 
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SADP, one can obtain the following information of the sample from which the EDP was taken: 

crystalline or amorphous; if crystalline, the crystallographic characteristics, such as lattice 

parameter, symmetry, etc;  orientation of the individual grains with respect to the electron beam; 

any special grain boundaries, such as twin boundary, single phase or multi phase boundaries, etc.  

3.2.3 Nano beam electron diffraction (NBED) 

Unlike conventional SAED in which the electron beam incident on the specimen is parallel, nano 

beam electron diffraction (NBED) is a method in which a diffraction pattern is formed on the 

display screen by finely converged electron beam illuminating only a very small area (usually 

~10~100nm in diameter, depend on the type of equipments used) on the specimen.  

Figure 3-3: Ray diagram showing NBED pattern formation. A convergent beam at the specimen 

results in the formation of disks in the back focal plane of the objective lens.  
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3.2.4 Principles of TEM image contrast 

Quantitatively, contrast can be defined as the difference in intensity (∆I) between two adjacent 

areas 
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Generally speaking, TEM image contrast arises because of the scattering of the incident 

beam by the specimen. The electron wave can change both its amplitude and its phase as it 

traverses the specimen and both these kinds of change can give rise to image contrast. Thus a 

fundamental distinction we make in the TEM is between amplitude contrast and phase contrast. 

In most cases, both types of contrast actually contribute to an image, although one will tend to 

dominate. Amplitude contrast includes two principle types, namely mass-thickness contrast and 

diffraction contrast.   

    Mass-thickness contrast arises from incoherent (Rutherford) elastic scatter of electrons. It 

was found the cross section for incoherent scatter is a strong function of the atomic number as 

well as the thickness of the specimen89. Generally speaking, a region with high atomic number 

element is expected to scatter more electrons than low atomic number region of the same 

thickness; thick regions scatter more electrons than thin region of the same elements. As a 

consequence, for the case of a bright field image, thicker and/or higher mass areas will appear 

darker than thinner and/or lower mass areas. The reverse will be true for a dark field image.  

23 



 

    Diffraction contrast is simply a special form of amplitude contrast because the scattering 

occurs at special angles (Bragg diffraction) which are controlled by the crystal structure and 

orientation of the specimen.  

3.2.5 Bright field and Dark field observation  

Bright field (BF) and dark field (DF) are two basic TEM modes to form amplitude-contrast 

images. When only the direct beam is selected by objective lens, a BF image will be formed in 

the image plane of the lens, as shown in Figure 3.4 A. The arrangement will produce amplitude 

contrast whether the specimen is crystalline or amorphous. If we tilt the incident beam such that 

one of the diffraction beams remain on axis (Figure3.4 B), then a centered dark-field (CDF) 

image will be formed.  In this work, I assume CDF is the operational mode in DF imaging.  

Figure 3-4: Comparison of the use of an objective aperture in TEM to select (A) the direct and 

(B) the scattered electrons forming BF and DF images, respectively.  
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3.3 EXPERIMENT EQUIPMENT AND METHODS  

3.3.1 General observation 

b lly put into a cup of deionized water to get the free standing films. 

Then 200 mesh copper grids (TED Pella) were used to take the Ni films out with the help of 

ake sure the Ni films were filtered out as a 

Figure 3-5: The ion thinning room in NCEM, LBNL.  

For general observations, the Ni films which have been trimmed into 2 by 3 mm along with its 

salt su strate were first carefu

tweezer. Great patience has to be paid in this step to m

flat patch. After drying with clean filter papers, the Ni film was transferred into the chamber of a 

Fischione ion thinning machine (as shown in the middle of Figure 3.5) with the copper grid 
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down. The specimen was then ion-thinned to perforation from the upside by means of single-gun 

milling with the aid of liquid nitrogen cooling. The operating voltage was 5 kv and the tile angle 

was about 10 degree. Finally, in order to remove possible deposited contamination on the 

specimen surface, a cleaning process was performed under a voltage of 2 kv with double-gun 

milling for 10 min. The resulting thinned specimen was examined in an atomic resolution 

microscopy (ARM) with a point to pint resolution of 0.15nm to characterize the micro structures 

of as-prepared Ni.  

3.3.2 In situ dynamics BF TEM and NBED observations 

 

Figure 3-6:  Model 654 single tile holder and tip detail.  

Both the in situ dynamics BF and nano beam electron diffraction (NBED) were performed within 

a JEOL 2000 STEM which is located in electron microscopy center, Department of Materials 

Science, University of Pittsburgh. The operative voltage is 200kV. The room temperature tensile 

loading during in-situ TEM experiments was applied incrementally in discrete steps with a Gatan 

654 single tile straining holder (as shown in Figure 3.6). The use of the thermal-emission 

electron gun of the JEOL 2000FX limited the minimum workable probe size for NBED to a 
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diameter of about 20nm. Hence, here only the larger grains in the Ni film could be probed during 

the tensile loading in the TEM. All the images were taken with a Gatan CCD camera. 

3.3.3 In situ dynamics DF TEM and HREM observation 

Both in situ dynamics dark field TEM observation and in situ dynamics HREM observation were 

done by employing a JEOL 3010 instrument operating at 300kV with a point-to-point resolution 

gital CCD camera and videotape 

images were obtained with a Gatan 622 TV-rate video-intensified camera and recorded with a 

fully in the stressed state.   

of 1.9 Å.  Still images were obtained with a Gatan 754 Di

VCR. The regions immediately ahead of the crack tips were monitored during in-situ straining to 

identify the active deformation mechanisms. Part of the {111} and {200} diffraction rings were 

selected as the image forming diffraction vectors. As an upper limit of deviation in tilt away 

from the exact Bragg orientation one may assume about two Bragg angles, 2θ, which for 300kV 

electrons and Ni with a lattice parameter of 0.3512nm is on the order of only 2θ≈0.6 degrees. 

Thus, the diffracting (200) and (111) type planes in the grains that constitute the strongly 

diffracting bright regions in the DF images of the Ni-film are essentially in an edge-on 

orientation with respect to the plane of the image.  

In order to address the challenging problem of observing the microstructure of 

nanocrystalline Ni in the stressed state, I adopt a loading to deformation, holding to stable, and 

imaging with in situ HREM method. For the first time, the microstructure of nanocrystalline 

material Ni at atomic scale was investigated success
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4.0 IN SITU BF TEM INVESTIGATION OF DEFORMATION IN 

NANOCRYSTALLINE NICKEL  

4.1 INTRODUCTION 

Due to the tiny size of the nano grains, all TEM observation has to be performed at high 

magnification in order to get useful deformation information. As a consequence, the observation 

has to be focused in a very small area of the whole sample. What is more, in order to catch the 

deformation information efficiently, the deformation process in the monitored area is highly 

expected to occur continuously in response to the discrete external loading steps. Based on above 

consideration, almost all in situ TEM researchers 7,10,21 chose to monitor the areas ahead of a 

propagating crack. However, the local strain rates of these areas are expected to be quite high 

upon the loading. As a result, rapid changes in contrast occurring continuously in many different 

grains were frequently observed under BF TEM observation mode. This type of TEM contrast 

change phenomenon has usually been identified as dislocation activity9  although the contrast 

changes may also result from other factors, such as grain rotation and/or grain boundary sliding 

and moving bend contours, grain boundary fringes, moiré fringes et al. As a consequence, it is 

hard to get convincing evidence for the identification of those activated deformation mechanism.  

During dynamic deformation process, dislocations are expected to move in discrete steps 

with an abrupt and asynchronous manner, dislocations in arrays are expected to move 
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individually while grain boundary mediated deformation and other features are expected to move 

smoothly and continuously. Therefore, if the effects from global rotation and/or local bending 

can be mini  occur in a 

relatively slower manner, then o identify those activated 

deformation mechanism of nanocrystalline materials, such as dislocation nucleation and/or grain 

boundary mediated plasticity.  

mized or even eliminated and at the same time make the deformation

it is possible for TEM researchers t

4.2 EXPERIMENT PROCEDURES 

For in situ TEM tensile testing, one critical requirement is of to minimize the effect from global 

rotation (the entire rotation of the specimen) and those so called local bending. This is because 

all TEM work is based on the contrast change of the image. Just like deformation can induce 

grain contrast change, global rotation and local bending can also lead to changes in image 

contrast of a grain. Therefore, these non-deformation effects have to be eliminated or at least 

minimized for a successful TEM investigation on identifying the activated deformation 

mechanism.  For this purpose, a special substrate was designed, as shown in Figure 4.1.  

 

Figure 4-1:  Schematic of the straining specimen, in which the free standing Ni film was glued 

on the special designed copper substrate.  
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The substrates were prepared from a commercially available Cu film with its thickness of 

50µm. The film was trimmed into oblong substrates with their size about 2.5mm×11.5mm. Two 

holes, 1.32mm in diameter and with a center to center distance of 9mm were drilled into each 

substrate for purposes of pin loading.  As shown in Figure 3.1, one narrow crevice about 0.2mm 

wide was also created with a sharp knife in one side of the substrate at its middle part to allow 

the electron transmission. The narrow width of the crevice is designed to ensure that the film 

deformed in a single axis tensile manner while at the same time minimize entire rotation of the 

sample (global rotation). The length of the crevice is experimentally decided so that the residual 

ith the 

sodium chloride (NaCl) substrate was pressed down to the copper substrate. After curing, the salt 

substrate was removed by dissolving it in deionized water. To ensure the best conditions for 

TEM observations, only samples that were well attached to the Cu-substrate and free of other 

contamination from the sample preparation procedure were selected for TEM investigations.   

 

part of the substrate is enough to keep the shape of the substrate whereas small enough to be 

deformed by the in situ tensile stage. After flattening, the substrate was cleaned with acetone in 

an ultrasonic cleaner for ten minutes to remove any possible pollution induced during the 

handling procedure. 

The PLD Ni films used in this part of the work has a nominal thickness of 60 nm. First, a 

thin layer of super-glue was painted around the crevice of the copper substrate, and then the 

nanocrystalline Ni film, which has been trimmed into 2 mm ×1.5 mm piece along w
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4.3 EXPERIMENT RESULTS 

4.3.1 Microstructure of as deposited 60 nm Ni film 

Figure 4.2 A is typical BF TEM image of as-deposited nc-Ni films with nominal thickness of 

60nm. The measurements of dark field electron microscopy reveal a fairly narrow grain size 

distribution and a narrow grain size distribution with a mean grain size of approximately 10nm. 

Twins are occasionally seen in some grains. The prevalence of the Moirè fringes is due to the 

superposition of grains lying on the top of each other. No pores are detected.  The selected area 

diffraction pattern (SADP) shown as an inset indicates that no apparent preferred orientation or 

‘texture’ of the grains although the substrate surface is (001) single crystal NaCl. This may be 

due to the large lattice mismatch between substrate and Ni as well as the small thickness. Moiré 

fringes are due to the super position of the grains lying on the top of each other. 

Microstructure characterization by means of HREM observation confirmed that the as 

deposited sample consists of nanocrystalline grains with an average grain size of about 10nm. 

Most of the nanometer sized grains are equiaxed and separated by high angle grain boundaries 

(Figure 4.2 B). For example, five grains are identified in Figure 4.2 B and indicated as G1, G2, 

G3, G4 and G5, respectively. The orientation difference angle of the edge-on plane between G2 

and G3 is about 53°, and that between G3 and G4 is about 9.5°. No grain boundary phases were 

revealed in these samples. Some distortion areas with size about 1~2 nm are often detected at the 

position of grain boundary junctions. It is worth to point out that most of the grain boundaries are 

curved and therefore maybe in strained state.  
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Figure 4-2: Typical BF TEM image (A) and typical HREM observation (B) of as deposited 

nanocrystalline nickel with its nominal thickness of 60nm.   

32 



 

4.3.2 

When the 60nm e 

loading steps in TEM, m m at 

thinning areas, as shown in Figure 4.3.  

Figure 4-3: Localized plastic defo  thinning and further straining 

lead cracks to nucleate and propagate

ed through the 

coalescence of some dispersed cracks. As reported in previous studies10,21, the materials ahead of 

the main crack always experience fast deformation upon the loading and therefore make it 

difficult to identify those activated deformation mechanism. However, it is interesting to note 

that besides the main crack, there existed quite a few branch cracks. These branch cracks can be 

Dynamic bright field observation of microstructure evolution of 50nm Ni 

 Ni films are in-situ deformed on the special designed substrate by tensil

any localized band-like thinning areas are first observed to for

favorite sites and further straining leads cracks to nucleate and propagate in those band-like 

rmation, giving rise to bands of

 in those band-like thinning areas. 

After the initial few loading pulses, a main crack will finally be form
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classified into two types based on their relationship to the main crack. The first type is the branch 

 part of the 

strain upon loading, the local strain rate ahead of this type of branch cracks are relative low.  

e local strain rate of those areas adjacent to this type of 

cracks is almost indiscernible upon the further straining. Taking all the factors in consideration, I 

chose to study the deform

cracks.    

c BFTEM observation. The 

studied grain-like dark  we call it grain-like dark area 

instead of a grain, becau t resulted from 

a grain or a grain group with close contrast) is located ahead of a 

branch crack. Due to the relaxati enough to allow 

observation of the detail evoluti ent, it was found 

ndicular to the narrow 

thinning band formed ahead of the crack.  

At the start of straining, the grain-like dark area is approximately equiaxed with its lower 

part in dark contrast. The boundary of these two parts is almost parallel to the thinning band, as 

shown in Figure 4.4 a. The contrast of the studied grain-like dark area is sensitive to every 

displacement pulse. Upon application of a displacement step, the contrast of the whole grain-like 

cracks that are connected to the main crack. Because the main crack bears the major

Moreover, because the crack tip area is always in tensile state, local bends can be eliminated in 

maximum extent during the observation. The second type is of the branch cracks that are 

independent of the main cracks.  Because the main cracks and those first type cracks have born 

almost all the applied external strain, th

ation of the materials that located in areas ahead of the first type branch 

Figure 4.4 shows a series of images extracted from the dynami

 area (as indicated by the black arrow, here

se it is difficult to confirm that the area with same contras

crystalline directions simply by 

on of other areas, the local strain rate is low 

on of the grain-like dark area.  By measurem

that the grain-like dark area located about 170nm ahead of a crack tip and its size is about 20nm 

at the initial state. The direction of the tensile axis is approximately perpe
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area changes immediately into dark contrast in an abrupt manner. After that, some relaxation 

occurs and the contrast boundary of the dark area goes back somewhat toward its initial position. 

About 3 step displacements later, the contrast of the dark area becomes uniformly dark and 

stable, as shown in Figure 4.4 b. The above procedure indicates that both elastic and plastic 

deformation occurred on every staining pulse. The elastic part relaxes immediately after the 

displacement pulse. 

Figu

It is interesting to note as loading progresses, a notch beginning to emerge at the position 

indicated by the white arrow in Figure 4.4 b. At the same time, the contrast boundary moves 

re 4-4: Bright field observation of contrast evolution of an area during straining. 
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back to the middle of the area again. This can be explained as stored strain energy being released 

through the formation of the notch. The notch grows with each additional loading step and 

shrinks a little during two loading step intervals. Step by step, the original grain-like dark area is 

separated by the growing notch. After another 4 loading steps beyond those of Figure 4.4 b, the 

rudiments of two grains 1 and 2 are clearly seen, as indicated by the two white arrows in Figure 

from local bending 

4.4 c.  Since a high energy would be necessary for the splitting of a single grain, the grain-like 

dark area presumably corresponds to two or more grains with their crystalline direction closely 

 nearly 

 inner 

18nm

Wh

in such a small area or from complex local elastic strain change. A 

nal applied 

stress.  Although the force exerted on the studied grains by those around them can be very 

complex due to the non-uniform grain size (from several nm to 28nm), the fact all the other 

aligned to each other. In fact, we will in our following study that such agglomerates of

aligned grains form early during tensile deformation of this material90.  Note now that the 

direction of the contrast boundary line is tilted from the original one which indicates some

structural change has occurred. Further loading steps lead the contrast of ‘new born’ grains 1 and 

2 to become darker and uniform, as shown in Figure 2D. The sizes of grains 1 and 2 are about 

 and 8nm, respectively.  

4.4 DISCUSSION 

ile it is possible that the contrast change of the studied grains resulted from global rotation of 

the whole film, this is not consistent with the fact that other nearby grains did not rotate out of 

their initial contrast during this sequence. It is also unlikely that the contrast change resulted 

characteristic of elastic strain is that it will diminish through the release of exter
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grai

The microstructure of the PLD Ni film with its nominal thickness of 60 nm has been 

characterized by TEM. It was found this high quality Ni sample is essentially fully-dense, 

The deformation process has been studied by using in situ BF TEM observation under low local 

strain rates. The observation suggested that grain boundary mediated plasticity, such as grain 

rotation and grain boundary sliding is very likely to contribute prominently to entire plastic 

deformation.  

 

ns in view show essentially no contrast change indicates that elastic strain induced contrast 

change can account at most part of the contrast change.  A more likely explanation is that the 

contrast evolution was induced by grain rotation and/or grain boundary sliding in response to the 

tensile deformation process.  

4.5 CONCLUSIONS 

artifact-free thin film with its average grain size about 10nm and narrow grain size distribution. 
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5.0 IN SITU DF TEM INVESTIGATION OF THE DEDEFROMATION IN 

NANOCRYSTALINE Ni  

5.1 INTRODUCTION 

In previous study, it has been show at d by PLD has a very high quality 

and grain boundary mediated plasticity very likely contributed prominently to the entire plastic 

ry sensitive to grains’ orientation changes. However, at mentioned earlier, global 

rotation and local bending can also introduce grain orientation changes. Therefore, in order to 

take the advantage of DF TEM observation, we have to eliminate or at least minimize the effects 

from global rotation and local bending.   

n th the Ni film prepare

deformation. However, more convincing evidence is necessary. Considered that grain boundary 

processes, such as grain boundary sliding and grain rotation, if existed, will inevitably lead to the 

reorientation of those involved grains, therefore, DF TEM observation would be the best choice 

for us to reveal these activated mechanisms. Unlike the BF TEM observation, which may include 

all the contrast information, such as mass-thickness contrast, diffraction contrast and phase 

contrast, the DF TEM observation mainly reflect the information of diffraction contrast and 

therefore is ve
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5.2 EXPERIMENT PROCEDURE 

Figure 5-1: (a) Schematic of the straining specimen construction and (b) TEM image of the 

starter crack prepared with FIB.    
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The samples used in this part of work were PLD Ni films with its nominal thickness of 150 nm. 

The sample preparation introduced in section 4.2 was adopted because it has been experimentally 

proven that such a design can minimize the effects from global rotation and local bending and 

ensure the Ni film deformed under a stress state that is close to single axis tensile conditions. To 

allow the deform  with a size about 5 µm 

wide and 1 mm long was fa  the open edge of the 

free standing Ni film  that the cracks would 

The room d with a JEOL 3010. (For detail see 

section 3.3). The regions imm e crack tips were monitored during in situ 

straining to identify th lution TEM (HRTEM) 

observations were done both in ARM 

5.3.1 Microstructure of as de

TEM observations (F as-deposited Ni consists of roughly equiaxed 

grains with random orientations (see inset in Fi easurements of DF TEM 

images reveal a narrow,  several nanometers to 

daries. 

ing region of the film to be easily located, a starter crack

bricated with a focused ion beam (FIB) from

, as shown in Figure 5. 1. Such a design ensured

advance perpendicular to the tensile loading direction.  

 tensile loading and imaging were performe

ediately ahead of th

e active deformation mechanism. High reso

(section 3.3) and in JEOL 3010.  

5.3 EXPERIMENTAL OBSERVATIONS 

posited 150 nm Ni film 

igure 5.2 A) indicate that the 

gure 5.2 A). Statistical m

 log-normal grain size distribution, ranging from

23 nm with an average value of 9.7±3.9 nm (Figure 5.2 B). HRTEM shows that most grains are 

separated by large-angle grain boun
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Figure 5-2:  TEM observations of the typical microstructure in the as-deposited nanocrystalline 

nickel films. The bright field TEM micrograph (A) and the selected area diffraction pattern (inset 

in (A)) show roughly equiaxed grains with random orientations. The statistical distributions for 

grain size (B) were obtained from multiple TEM images of the same sample. 
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5.3.2 Experimental observations 

Figure 5.3 A is a typical DFTEM i  an area which has been pre-

thinned by recourse to low te ed state. Figure 5.3 B is the 

selected area diff posited Ni film prior to 

deform

occurring continuously in m tified as evidence of 

dislocation activ observations reveal that the 

deform

features that are m ed immediately in the 

deform nm in 

diam om the same 

region and with the sam gure 5.3 B) exhibits fewer, 

asymme tion rings in comparison with 

im igure 5.3 D) indicate that the sample 

thinned locally during defor  revealed that the 

large bright features observed aller grains (e.g. 

Figure 5.3 E) rather than a sing stress-assisted grain growth. 

Comparison of the undeform ation state (Figure 5.3 

aller 

grains in these agglomerates exhibit essentially edge-on orientations of their {111} and/or {200} 

mage of a Ni sample taken from

mperature ion milling in the undeform

raction pattern (SADP) taken from an area of as-de

ation. Upon straining, bright field TEM observations show rapid changes in contrast 

any different grains. This has been iden

ity previously10,21. However, the in situ DFTEM 

ation behavior is significantly more complex. It was found many strongly diffracting 

uch larger than the initial average grain size are form

ed zone upon straining (e.g. the feature marked by a white arrow is about 60 

eter in Figure 5.3 C). The SADP from the deformed area (Figure 5.3 D, taken fr

e selected area aperture size as in Fi

trically distributed diffraction spots in each of the diffrac

the SADP obtained prior to deformation (Figure 5.3 B). The reduced background intensity and 

proved contrast in the SADP of the deformed area (F

mation. Higher magnification DFTEM micrographs

after deformation consist of a number of sm

le large grain resulting from 

ed state (Figure 5.3 A, B) and the post-deform

C, D and E) indicates that groups of neighboring grains have undergone an orientation change 

during straining and have formed numerous grain agglomerates.  Because of the nature of the 

image formation mechanism of DFTEM images (section 3.3), we can conclude that the sm
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lattice planes. The schematic in Figure 5.3 F depicts a possible crystallographic substructure 

associated with an agglomerated group of grains that would be consistent with the type of 

contrast observed in the DFTEM micrographs after straining (Figure 5.3 E).   

To elucidate further the mechanism responsible for the formation of the agglomerated grain 

regions, real time observations were performed. Contrast changes in areas subject to high strain 

during in situ TEM straining experiments were recorded in the DF mode. The DF micrographs 

shown in Figure 5.4 are still frames extracted from a typical dynamic sequence of images taken 

during the application of a single displacement pulse. The times listed on each still frame are 

based on the video-acquisition rate of 30 frames per second. At the beginning of this sequence, 

there were no grains in a strongly diffracting condition in the area indicated by the white arrow 

(Figure 5.4 A). 1/30 of a second later, a bright spot emerges from a grain about 6 nm in diameter 

and remains well-defined in size as a single, approximately equiaxed grain until t=0.1 s (Figure 

5.4 B). Over the next couple of frames a number of additional neighboring grains rotate into 

strongly diffracting conditions for either the {200} or {111} planes. The fact that other nearby 

grains, which are in a strong diffraction condition, do not rotate out of contrast confirms that 

there has been no global rotation of the specimen area and that the rotations observed at the 

arrowed location are internal changes of the sample structure. Additionally, note the small 

‘notch’ discernible at the lower left corner of the agglomerate, in both Figure 5.4 D and E, which 

indicates that the growth in size of this agglomerated group of grains was not isotropic and 

involved sudden rotation of individual grains. At t=0.5 s, the group of grains has grown into an 

elongated equiaxed shape with an approximate size of 60 nm along the short axis and 80 nm 

along the long axis (Figure 5.4 F). After this very rapid morphological change the rate of growth 

of the grain agglomerate decreased significantly. 
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Figure 5-3: TEM micrographs showing the evolution of the Ni microstructure during in-situ 

straining.  
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Figure 5-4: DFTEM observation of the rapid genesis of an agglomerate (e.g. white arrow

depicted by individual still frames extracted from a dynamic video-sequence.  (A) t=0 s, no 

grains in strong diffraction condition near the white arrow; (B) t=0.1 s,

) 

 a grain in strong 

diffraction condition with size about 6 nm is visible; (C) t=0.2 s, a group of grains in bright 

nsions 60 nm by 35 nm; (E) t=0.4 s and (f) t=0.5 s, the size of the group of grains 

increases to maximum dimensions of about 80 nm by 60 nm. 

contrast, size about 28 nm, is visible; (D) t=0.3 s, now the group of grains has a nearly elliptical 

shape, dime
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5.3.3  HRTEM observation 

right corner in Figure 5.5 is an inverse Fourier-filtered (FFT) image of the region framed by the 

Figure 5-5: A typical HREM image of a thin area newly formed by deformation. A dislocation is 

trapped inside a grain close to the grain boundary (delineated by dark dash line).  The inverse 

Fourier-filtered image (inset at upper right corner) from inside the white box shows the 

dislocation with more clarity. 

During this part of work, HREM images of suitably oriented grains that were still under stress 

were also obtained in the thin area newly produced by the deformation. Trapped lattice 

dislocations were detected in some of the grains. An example HREM micrograph of one of these 

trapped dislocations is shown in Figure 5.5.  A dislocation (white T) that is trapped in the 

vicinity of a grain boundary (delineated by dark dash line) can be seen. The inset at the upper 
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white box, which allows the dislocation to be displayed more clearly. The frequent observation 

of trapped lattice dislocations in the post-deformation state indicates that dislocation mediated 

deformation . Two other very 

recent experim talline Ni while under 

stress91,92

5.3.4 

mation can 

become prom e critical value. 

tation and grain boundary 

e driving force for grain 

s-orientation dependence of the 

Grain rotation is viewed as a 

sliding problem on the periphery of the grain; changes in the grain shape during rotation are 

ain size below a certain value at room temperature) yields a d-4 

 is still active even when the average grain size is about 10 nm

ents also detect the presence of dislocations in nanocrys

, although for larger grains, 20 nm and 26 nm, respectively.  

Discussion 

The DFTEM observations confirm the prediction that grain boundary mediated defor

inent when the average grain size of a material decreases below som

Several theoretical studies have considered the operation of grain ro

sliding as possible deformation modes93-95. These studies assume that th

rotation is the net torque on a grain, which results from the mi

energy of the GBs that delineate a given grain from its neighbors. 

assumed to be accommodated by diffusion, either through the grain boundaries or through the 

grain interiors. Assuming that grain boundary diffusion is dominant (reasonable in 

nanocrystalline metals with gr

dependence on the rotation rate, where d is the grain size. This is a striking dependence upon 

grain size. For example, for d=60 nm and 6 nm, respectively, and keeping all other factors 

identical, the grain rotation rate for the latter will be 104 higher than for the former. This 

qualitatively explains our observation of extremely rapid formation of the grain agglomerates by 

rotation during straining.  The rate of the grain rotation processes will generally decrease with 

time, as a state of new equilibrium is approached locally. 
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However, the frequently observed trapped dislocation and the absence of deformation 

twinning are quite unexpected. It has been predicted that cut off grain size value for significant 

dislocation activities for Ni should lie between 20 to 40nm4,92 and twinning will be a preferred 

deformation mode when grain size drop down to certain value96. The physics governing the 

observed deformation crossover can be understood by considering the effect of grain size on the 

different operative processes. A number of computational simulations have predicted that GBs 

on sources in nanocrystalline materials5,76,80. Based on these simulations, 

Chen et al96 proposed a dislocation-based model which suggests that the nucleation stress for 

c

Ni

c

can act as dislocati

both perfect and partial dislocations is inversely proportional to the grain size. Furthermore, this 

model predicts the existence of a critical size d , below which the deformation mechanism will 

change from one controlled by normal unit dislocation motion to one controlled by partial 

dislocation activity.  If we take the dislocation core parameter α=1, the shear modulus as µ =95 

GPa 97 and stacking fault energy of nickel as 0.128~0.24 J/m2 98,99, the critical size (d ) for Ni 

then ranges from 11~22 nm. However, according to this theory, the lower bound of the 

nucleation stress for partial dislocations (for d=23 nm) in our sample is as high as 2.1~2.8 GPa. 

This indicates that very high local stress is necessary for the nucleation of partial dislocations in 

nanocrystalline Ni with an average grain size of 10 nm. In contrast, the rate of grain boundary 

mediated deformation, as mentioned above, increases rapidly with a scaling of d-4.  Thus, the 

deformation mechanism crossover is an inevitable result of the competition between the 

deformation controlled by nucleation and motion of dislocations (unit and partial) and the 

deformation controlled by grain boundary related deformation, accommodated mainly by grain 

boundary diffusion with decreasing grain size.  
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A critical part of this investigation was following the rapid sequence of initial grain 

realignments by closely examining successive video frames in dark-field TEM mode. The 

frequently observation of the GB mediated deformation observed here would not have been 

possible in bright field TEM conditions, because of the inherent difficulty with differentiating the 

contrast changes caused by grain boundary related deformations from those caused by the 

motion of lattice dislocations in small grains, e.g. less than 20 nm.  

5.4 CONCLUSIONS 

The plastic behavior of crystalline materials is mainly controlled by the nucleation and motion of 

lattice dislocations. However, in situ dynamic transmission electron microscopy observations of 

nanocrystalline nickel films with an average grain size of about 10 nanometers shows that grain 

boundary mediated processes have become a prominent deformation mode. Additionally, trapped 

lattice dislocations are observed in individual grains following deformation. This change in the 

deformation mode arises from the grain-size dependent competition between the deformation 

controlled by nucleation and motion of dislocations and the deformation controlled by diffusion 

assisted grain boundary processes. 
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6.0 IN SITU DYNAMICS HREM OBSERVATION  

6.1 INTRODUCTION 

Compared with their coarse-grained counterparts, nanocrystalline metals exhibit unique 

mechanical properties, including high strength, high hardness and an enhanced ability to deform 

superplastically17,100-102, which currently represent a subject of intensive fundamental research. 

 transmission electron microscopy (TEM) investigations, for 

instance in the form of dislocation debris or trapped lattice dislocations, has proven unsuccessful 

in previous studies4. Yamakov et al77 suggested that extended dislocation can exist inside a 

nanoscale grain only under very high stress and that the removal of this stabilizing stress would 

lead to absorption of these dislocations at the grain boundary source from which they originally 

nucleated. Unfortunately, typical sample TEM sample preparation methods, e.g. mechanical 

thinning followed by ion thinning or twin-jet electropolishing, often inevitably result in 

However, an experiment-based understanding of the fundamental physical mechanisms 

responsible for their unique mechanical properties remains elusive, especially for those metals 

with average grain size smaller than 30nm. Both experiments9,10,22,90 and atomistic 

simulations77,80,103 revealed that dislocation-mediated plasticity may still play a role in the 

deformation of nanocrystalline metals with grain sizes down to about 10nm. Hence, it may be 

expected that evidence of lattice dislocation glide activity during straining may exist in the 

microstructure of deformed nanostructured metals. However, providing experimental evidence of 

dislocation activity by post-mortem
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relaxation of some of the stresses associated with prior deformation. Hence, it is difficult to 

verify some of the intriguing predictions of computational and theoretical studies. The current 

paucity of experime ally limits 

the development of a mechanistic understanding of the mechanical behavior and properties of 

these interesting materials. 

In this Chapter, I reported  c ntal problem of observing the 

microstructure of nanocrystalline Ni in the stressed state. I employed an in-situ tensile 

deformation TEM technique in combination with dynamic in-situ high-resolution TEM (HREM) 

observations. Unlike previous studies, here trapped lattice dislocations are observed frequently in 

nanoscale grains that are still in a stressed state. Furthermore, during stress relaxation dislocation 

movement and even annihilation have been documented by dynamic HREM. Analyses of the 

TEM data indicate that some of the trapped dislocations have unit dislocations with Burgers 

ntal data on dislocation activates in nanocrystalline metals critic

 the hallenging experime

vectors 110
2

.  

6.2 EXPERIMENT PROCEDURE  

The Ni film and the sample design used in this part of work is exactly same as those used in in-

situ DF TEM observation (Chapter 5), i.e., PLD Ni film with its nominal thickness of 150nm. In 

order to address the challenging problem of observing the microstructure of nanocrystalline Ni in 

the stressed state, after initial incremental loading to induce deformation the samples were held 

under stress, while continuously imaging the deformed region using a JEOL 3010 instrument 

operating at 300kV with a point-to-point resolution of 1.9 Å.  HREM images were obtained in 

1
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those newly formed thin areas which were still in the strained state after the samples became 

sufficiently stable. 

6.3 EXPERIMETNAL RESULTS AND DISCUSSIONS 

Because of the tiny grain size, the traditional contrast criterion  is no longer valid even for the 

identification of any trapped lattice dislocations. Therefore, the only possible means to detect any 

trapped lattice dislocations directly and to further determine the Burgers vector of those detected 

dislocations is through HREM.  Trapped lattice dislocations were frequently detected in the 

grains after the samples became sufficiently stable. 

An example HREM micrograph of two of these trapped dislocations is shown in Figure 6.1.  

For the lower grain, a dislocation that is trapped in the vicinity of grain boundary (delineated by 

 line) can be seen clearly. The position of the dislocation is labeled by a white T. Figure 

6.1 b depicts an inverse Fast Fourier-filtered (IFFT) image of the region framed by the dark box 

in Figure 6.1 a. The inset in Figure 6.1 b is the corresponding FFT, which confirms the 

approximate electron beam on for the lower grain in 

Figure 6.1 a.  

It is of interest to note a dislocation trapped in the middle of the upper grain shown in Figure 

×

89

dark dash

 direction to be close to a <110> directi

6.1 a, which has small dimensions of approximately 5nm 10nm. Figure 6.1c is an IFFT image of 

the area marked by the dark square in Figure 6.1 a reconstructed using the spatial frequencies of 

the (200) planes and the trapped dislocation is labeled by a white T (Figure 6.1 a) and dark arrow 

(Figure 6.1c).  
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Figure 6-1: (a) HREM micrograph of a thin area freshly formed by deformation. The Ts and 

boundaries were delineated by dark lines. (b) IFFT of the area framed with the black box in 

figure 3a. The Fourier-transformed image shown as an inset indicates that the electron beam is 

close to the 110

arrowheads indicate the position of a trapped lattice dislocation in the grain interior. Grain 

 zone axis of the grain. (c) IFFT of the area framed with the white box in (a). 
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Based on the idea that very small grains cannot sustain the stress necessary for the 

ation multiplication at the observed yield stresses and with an approximation of

 size, Legros et al 4 evaluated a critical grain size belo

dislocation source can no longer operate to be about 20~40nm for face-centered cubic (fcc) 

tals, depending on the nature of the dislocations 4,92. According to their m

necessary for the nucleation of dislocation can be expressed as 

disloc  the source 

size equal to the grain w which a 

me odel, the stress (τ) 

d
bαµσ 2

=                                                                          

e magnitude of the Burgers vector; d is the grain size; µ is the shear m

cation parameters [α=0.5 and 1.5 for edge and screw dislocations, respectively]. 

=95GPa and d equal to 7.5 nm, the estimated stress is approxim

depending on the type of the dislocations.  This indicates that the yield

nanocrystalline Ni can be much higher than that measured by Legros et al (1.15 GPa) 

ovided by recent reported experimental data from indentation tests

ess for these thin films of pulsed-laser deposited nanocrystalline Ni can be a

0.86 GPa 22.  

Quite unexpected, neither trapped partial dislocation nor deform

in our observations. Based on the lowest energy theory, atomistic simula

(6. 1) 

Here b is th odulus; α 

is the dislo  

Taking µNi ately 3.2~9.5 GPa, 

 strength of 

4. Evidence 

for this is pr  which showed 

that the yield str s 

high as 5.15±

ation twining was detected 

tions of 3D structures 

tion 

that dislocation source size equal to the grain size. According this model, a critical grain size dc  

found only partial dislocations emission at grain boundaries for metals with grain size less than 

30nm, followed by glide through the grain and absorption in the opposite side of the grain 

77,80,103. Inspired by the results from molecular dynamics simulations 86 and the deformation 

twinning observed in aluminum, Chen et al 96 proposed a dislocation model with the assump

54 



 

Figure 6-2:  Determination of the Burgers vector of the trapped dislocation. (A) HREM showed a 

dislocation (indicated by white arrow head) was trapped inside a grain close to the grain 

boundary (delineated by dark dash line). (B)  The inverse Fourier-filtered image from inside the 

dark box in figure 6.2 (A) showed the dislocation with more clarity. Burgers circuit used to 

determine the Burgers vectors of the trapped dislocation is also shown.  
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exists, below which the deformation mechanism will transit from those controlled by normal slip 

to those controlled by pa 96 predicted that that 

twinning will become rain size. According to 

Chen at al’s m ined to lie between 11 nm ~22 nm. 

However, the fa ation twinning in deformed 

as-deposited Ni indicated deform and only restricted to 

peculiarities of high-pressure lo ation, rolling or high-pressure 

torsion 87,96,104,105.  

All previous HREM obs e. Therefore it may be 

argued that the observed trapped  the pinned effect of surface 

contamination, such as surface oxid  order to 

clarify this, a series of HREM i ned trapped dislocations 

were collected after a displacem islocations 

are resulted from ove or rearrange themselves 

along with stress relaxation served dislocations are due to the 

 

rearrangeme

The example HREM i  sequence, shown in Figure 6.3 

A and 3 B, were obtained over a relaxation period of about 90 seconds. The strong ripple 

by low-angle grain boundary.  

rtial dislocations activity. Further, Chen et al 

 a preferred deformation mode below this critical g

ode, the critical grain size for Ni was determ

ilure to identify any partial dislocation and/or deform

ation twining is not in general possible 

ading techniques, such as indent

ervations have been performed near static stat

dislocations are resulted from

ation rather than from the effect of residual stress. In

mages of a given stressed area that contai

ent pulse had been applied. If the observed trapped d

 surface pinned effect, they are not expected to m

process.  On the contrary, if the ob

effect of residual stress, then it is conceivable that stress relaxation should lead to the

nt or even annihilation of these trapped dislocations in nanocrystalline grains.  

mages extracted from such a dynamic

contrast in Figure 3 A and 3 B may be taken as an indication that the area is experiencing 

substantial strain106. In contrast to the as-deposited state where most of grains are found to be 

divided by high angle grain boundaries, the grains after deformation appear to be divided mainly 

56 



 

Figure 6-3:  Dynamical HREM observations of the microstructure evolution of a grain during the 

stress relief. The positions of the dislocation cores have been indicated by T. (A) t=0 (B) t=89s 

(C) IFFT of Figure A and (D) IFFT of Figure B 
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As shown in Figure 6.3 A and B, the low angle grain boundary which se

the upper right corner and the one at lower left corner has a tilt angle of about 8 degrees. Our 

previous observations 90 has revealed that the grain agglomerates, which form

tly in areas that are experiencing large plastic deformation prior to th

responding to the applied external stress, are very likely to be resulted from

grain boundary processes. Following the formation of these grain agglom

observed to nucleate and propagate in an inter- or intra-agglomerate manner107 . Thermodyna

considerations indicate that deformation-induced changes in the GB structure would favor the 

genesis of low-angle GBs from high-angle GBs, allowing for the reduction in free energy of the 

. Because all the HREM images were taken from the thin areas produced by de

ably, the grain boundary state observed in Figure 6.3 resulted from

interaction among the local grains in response to the external applied stress.  

In order to identify the locations of the various dislocations trapped in this ar

parates the grain at 

ed very rapidly and 

independen e fracture in 

 diffusion-assistant 

erates, cracks are 

mic 

system formation, 

presum  the synergic 

ea, the IFFT 

images corresponding to Figure 6.3 A and B are shown in Figure 6.3 C and D, respectively. 

close to each other (e.g., several times the magnitude of Burgers vector) can be very large 108. 

The dislocations marked with a dark T experienced no apparent displacement during the 

relaxation period of 86s, while those dislocations marked with a white T moved and rearranged 

(Figure 6.3 C and D). Using the dislocations marked with a dark T as reference, the upper two 

dislocations marked with white Ts that were very close to each other (Figure 6.3 C) annihilated 

with each other during the relaxation period (Figure 6.3 D).  The lower two dislocations marked 

by a white T (Figure 6.3 C) moved closer to each other during this time interval (Figure 6.3 D).  

Obviously, the dislocations are not in an equilibrium state because dislocations with opposite 

sign are intermixed with each other. The attractive force for dislocations with opposite sign and 
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The

ite side of the grain 

or r

 shrinkage and eventual annihilation of trapped dislocations segments during stress relaxation 

in the nanocrystalline Ni confirm the predication 77 that dislocation are most probably observed 

in stressed state. However, it is not appropriate to equal the experimental observation here to 

those from atomic simulations. This is because of the molecular dynamics simulation can only 

capture the start of the deformation due to its sub-nanosecond time-scale restriction, and thus 

exclude certain time-dependent processes. In contrast, due to the intrinsic stability requirements, 

HREM observations only reveal the dislocation dynamics at the final state of the deformation. 

Great efforts are still necessary to uncover the entire process from initial deformation to final 

failure of nanocrystalline materials.  

It is interesting to note the dislocation rearrangement occurred in a rather sluggish manner. 

According the description based on molecular dynamics simulation, once nucleated, the 

dislocations will usually glide through the grain and absorption in the oppos

e-absorbed at the grain boundary source from which they originally nucleated due to the 

stress relaxation 77. In both cases, the dislocation should move in a pretty fast manner. Two 

reasons may be account for this. On the one hand, the Frank-Read mechanism is known to 

account for the major portion of dislocation multiplication that occurs in crystals. Along with the 

decreasing of the grain size, the loop radius may exceed the diameter of the grain and therefore 

the nucleated dislocation has to terminate at the GBs. As a consequence, the dislocation mobility 

may be decreased by the GBs. On the other hand, nucleation and emission of a dislocation 

corresponds to the removal of a grain boundary dislocation from the GB nucleation site and a 

reorganization of the remaining grain boundary dislocations. For the same reason, the absorption 

of a dislocation will also lead the reorganization of an existed grain boundary. Both of above 

may lead a sluggish motion of the trapped dislocation besides the intrinsic lattice friction stress.   
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By monitoring the Bragg peak profiles of x-ray diffraction using the Swiss Light Source 

during cycle deformation of nanocrystalline Ni, Budrovic et al 92 showed that the peak 

broadening due to dislocations is reversible upon unloading for nanocrystalline Ni with an 

average grain size of 26nm, but irreversible for coarse Cu with a grain size of 20µm. Further, the 

authors concluded that the deformation process does not build up a residual dislocation network 

in nanocrystalline materials. This appears in agreement with our HREM observations.  However, 

as shown in their loading-unloading curve (Figure 2 and 3 of 92), the Ni film were fatigued to 

fracture during the third loading circle. This means that the damage accumulation mechanism 

was in effect from the start of the loading cycle and may play a critical role for our understanding 

on t

6.4 CONCLUSIONS 

In summary, we demonstrate that dislocation dynamics processing can be achieved successfully 

by exploring a combination of in-situ deformation and in-situ HREM observation. The detection 

of trapped dislocation in grains as small as 5nm by 10 nm suggested that the as-deposited 

nanocrystalline Ni may exhibit much higher yield strength than expected. The absence of 

deformation twining suggested that twinning may not be a preferred deformation mode even if 

the nucleation stress for partial is less than that for perfect dislocation.  Unlike the molecular 

simulations which can only capture the very start information of the nanocrystalline materials 

deformation, the results report here only capture the final state of nanocrystalline materials 

he deformation of nanocrystalline materials. However, the authors seems have overlooked 

this important factors and therefore make their conclusion in a questionable state.   

60 



 

deformation. Therefore, further efforts are necessary to reveal the entire process of 

nanocrystalline materials deformation.    
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7.0 IN SITU NANO BEAM DIFFARACTION OBSERVATION 

7.1 INTRODUCTION 

Ever since Herbert Gleiter presented the first concepts for developing nanocrystalline materials 

over 20 years ago, it has been thought that nanocrystalline materials contained an extremely 

large fraction of grain boundaries with a special atomic structure. This, plus the experimental  

observations that grain shapes remain equiaxed before and after deformation 102,109, lead to the 

suggestion 79,110 that the grain boundaries serve as viscous deformable layers and mass-transport 

networks, with the central regions of the nano grains behaving like a rigid body during the 

deformation of nanocrystalline materials.  However, more recent experiments 7,8 suggest that 

grain boundaries (GBs) in well prepared nanocrystalline materials are not anomalous but similar 

to those found  in their coarse-grained counterparts. This naturally leads to two fundamental 

questions that, to our knowledge, have hitherto not been fully answered. Do individual nano 

grains behave differently from that have been expected during deformation? If so, what are the 

mechanistic contributions of those individual grains to the overall deformation response? 

Developing an understanding of these related issues would provide valuable insights into the 

mechanical deformation characteristics of a wide variety of nanocrystalline metals. In addition, 

investigation of individual grains could also lead to fundamental understanding of the unique 

mechanical properties of nanocrystalline materials, such as ultra-high strength and hardness.  
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7.2 EXPERIMENT PROCEDURE 

The Ni film a e used in in-

situ BF TEM observation (Chapter 4), i.e., PLD Ni film with its nominal thickness of 60nm 

glued on the special designed copper substrate. Again, I chose to focus on the grains ahead of 

branch cracks due to the low local stain r F TEM observations, nano beam 

electron diffraction (NBED) can not only monitor the possible rotation of the nano grain 

nd the sample design used in this part of work is exactly same as thos

ate. Unlike BF and D

involved in the deformation, but also reveal the possible internal structure change of the grain 

during the straining.  The use of the thermal-emission electron gun of the JEOL 2000FX TEM 

limited the minimum workable probe size for NBED to a diameter of about 20nm. Therefore, 

only those grains larger than 20 nm can be studied with NBED. 

7.3 EXPERIMENTAL OBSERVATIONS 

Large variations in the magnitude of grain rotation and internal structure were found. Figure 7.1 

are extracted images from a sequence of observations which shows maximum variation. Figure 

7.1 A, C, and E are typical BF images showing the feature under investigation (delineated by a 

dashed line). Figures 7.1 B, D, and F are the corresponding NBED patterns that revealed that the 

feature under investigation is a single grain.  The grain under observation was located about 

210nm ahead of a branch crack and had a diameter of about 22nm. Due to the large image shift 

and the possible contrast change of this grain in response to the displacement steps, other readily 

identifiable features in the vicinity have been employed as a reference to relocate this grain. 
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Figure 7-1: Bright-field contrast (A, C, E) and its corresponding NBED pattern (B, D, F) 

temperature. The diffraction patterns did not match any known f.c.c zone axis. The intensity 

change of the diffraction spots suggested that the rotation of the grain involves multiple rotation 

axes. A reference coordinate is shown in figure 2E with its X and Y axis horizontally and 

evolution of a grain (delineated by dash line) during straining of as-deposited Ni at room 

vertically, respectively.  
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It is clear that the contrast of the studied grain has changed significantly with each loading 

pulse (F panying 

likely to be responsible for the e 7.1, as this will usually cause 

contrast change acro gnification TEM observations 

confirme nt pulse occurs only around the 

center of the band- mation. For those 

areas that are a little farther  remained nearly 

ns is due to a change 

in the excitation ant reciprocal 

lattice point from tal orientation of 

confirm ulti-axial. 

 In orde ation of the grain, 

both the angles of diffraction vect ce axis X defined in Figure 7.1 F 

and the ma easured. Each new 

NBED pattern corresponds to a different loading state, following the application of one or more 

ystal structure, despite the fact that the selected area diffraction pattern 

clearly indicates that the as-deposited Ni film has the proper FCC structure. 

igure 7.1 A, C and E). Dramatic changes are also discernible in the accom

NBED patterns (Figure 7.1 B, D and F). Global rotation (i.e. rotation of the entire region) is not 

observed contrast change in Figur

ss the entire field of view. Lower ma

d that the contrast change in response to a displaceme

like thinning area, i.e., the area that is experiencing defor

from the deforming area, the image contrast

constant. The intensity variation of the diffraction spots in the NBED patter

 error associated with each spot (this is the distance of the relev

 the surface of the Ewald sphere89) and is sensitive to the crys

the grain. Therefore, the irregular intensity changes observed in the NBED spots not only 

 that grain rotation has occurred, but also indicate that the grain rotation is m

r to quantify the relative rotation and the possible elastic deform

ors with respect to the referen

gnitude of the diffraction vectors for eight NBED patterns were m

loading pulses. The ratios of the diffraction vector lengths and the co-angles between different 

crystallographic directions were also calculated based on these original data, as shown in Table 

7.1. It is surprised to see that no corresponding zone axis direction could be found to produce a 

diffraction pattern that exactly matched the experimentally collected NBDP when assuming an 

undistorted perfect Ni cr
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Table 7.1:  Summary of measured results of 8 NBED patterns  

 

series R  /R

(±0.01) 

R / R

(±0.01)

R / R

(±0.01)

θ

(±0.5°)

θ

(±0.5°) 

θ

(±0.5°) 

After calibration using a known NBDP from undeformed grains of the same Ni film, the 

diffraction vector lengths in the experimental NBDP were found to be closest to those expected 

for 

i&X, 

the changes are not consistently in phase. 2&X increases monotonically up to 7.5 degree, but 

θ1&X and θ3&X both increase and decrease during straining, with θ1&X changing in a relatively 

1 2 3 1 3 2 1&3 3&2 1&2 

1 1.139 1.330 1.168 51.8 44.1 78.2 

2 1.112 1.315 1.183 53.5 46.0 76.5 

4 1.167 1.328 1.139 54.9 46.2 75.1 

5 1.138 1.290 1.133 55.2 47.0 74.8 

6 1.104 1.255 1.136 55.0 49.0 75.0 

8 1.073 1.253 1.168 55.1 50.3 72.4 

<110> 1.000 1.155 1.155. 54.74 54.74 70.32 

3 1.148 1.304 1.136 54.7 46.6 75.3 

7 1.105 1.267 1.146 54.7 48.3 75.3 

a beam direction of <110>. For comparison, Table 7.1 also lists the theoretical ratio of the 

diffraction vector lengths and inter-directional angles (co-angles) for the <110> beam direction 

for perfect FCC Ni. For convenience, the three crystallographic directions are marked 1, 2 and 3, 

respectively, according to the diffraction vector lengths from short to long (Figure 7.1 B, D and 

F). The angles of diffraction vectors 1, 2 and 3 with respect to the reference axis X defined in 

Figure 7.1 F (θ i=1, 2, and 3) are plotted in Figure 7.2 A for the sequence of eight NBED 

patterns.  It can be seen that all three diffraction vectors have rotated counterclockwise around 

the beam direction by at least 1.3 degrees from the first to the eighth NBED pattern. However, 

θ
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Figure 7-2: (A) Gives the measurements of the co-angle changes between 1, 2, 3 diffraction 

vectors and the reference X-axis. (B) Gives the measurements of the distances of 1, 2 and 3 

diffracted beams from the zero-order beam.  
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rough ma m shear 

deform  Table 1, at 

the beginning of this se ° and 44.1° 

respectively.  changed in 

an almo

 

undeform astic strain relaxation 

a synergistic way to 

accommodate nt stress acting 

upon the studied grain. 

The m how that 

changes occu

(Rhkl λL, where 

λ is the elec

-d0)/d0, where 

d1 and d0 ar ane, respectively. 

Because Rd=constan ntally measured co-

in an approxim easured diffraction 

leng

, the largest elastic strains along the directions 1, 2 

nner, as shown in Figure 7.2A.  This would be consistent with a non-unifor

ation of the studied grain during straining. According to the data collated in

quence, the co-angles of θ1&2, θ2&3 and θ3&1 are 78.2°, 51.8

 After a number of additional displacement pulses, these co-angles have

st monotonic manner to 72.4°, 55.1° and 50.3°, respectively, at the end of the 

observations. These co-angles systematically approach the corresponding theoretical values for

ed Ni grain with a zone axis of <110> orientation. The apparent el

of the studied grain indicates that the grain and its neighbors act in 

 the loading pulses, resulting in a decrease of mechanical constrai

easurement in lengths of the diffraction vectors defined as 1, 2 and 3 s

r in a rather irregular manner with additional loading pulses (Figure 7.2 B). Based 

on Bragg’s Law of diffraction of fast electrons in the TEM, the lengths of the diffraction vectors 

) can be converted to interplanar spacing (dhkl) using the well-known relation Rd=

tron wave length and L is camera length 89. The linear strain in the grain along the 

particular crystallographic direction normal to the planes (hkl) is given by εhkl=(d1

e the strained and unstrained interplanar spacing of the (hkl) pl

t, it follows that εhkl=(R0-R1)/R1. Since the experime

angles approach the theoretical values of a perfect Ni crystal with a zone axis of <110> direction 

ately monotonic manner, it appears justified to use the m

ths of the eighth NBED pattern as the unstrained value, and another extreme value along a 

particular crystal direction as the strained value to estimate the maximum value of elastic strains 

along these crystallographic directions. Thus
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and 3 direction are about 5.5%, -3.0% and -2.1%, respectively. These are remarkably large 

strains because annealed single crystals usually yield at elastic strains of less than 0.01% 111. 

7.4 DISCUSSION 

Although all calculations presented here are at best first-order approximations, it still appears 

reasonable to conclude that severe non-uniform elastic deformation occurred in response to the 

initial displacement pulse in the nanocrystalline grain studied by NBED, which then relaxed over 

a period of time. The build-up of large elastic strains in crystalline grains in response to suitable 

externally applied deformation can be understood by considering the size effect of crystals. By 

assuming that atomic sliding on slip planes is concurrent with, and the cause of, plastic flow, it 

has been deduced that the theoretical yield strengths of a single crystals of pure materials are 

about µ/10, where µ is shear modulus 112.  However, when the mechanical strength of most 

crystalline solids is measured on a bulk case, the experimental strength is always much smaller 

(about 10-2~10-3) than the theoretical strength of a perfect crystal. It has been well experimentally 

established this is due to the presence of defects within the crystal and on its surface. For 

example, annealed bulk crystals normally contain from 104~108 dislocations per square 

centimeter 113. It is the motion, interaction, generation and annihilation of those preexisted 

dislocations that lead the crystalline metal materials show much lower yield strength than that 

predicted by theoretical prediction.  The first experimental verification that materials strengths 

may approach the theoretical value was achieved by testing the strength of metal tin whiskers (a 

filament-like single crystal with its diameter about a few micros) over 50 years ago114. After that, 

the strengths of a large number of whiskers prepared by a variety of methods have been 
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measured, either by means of bend tests or tensile tests. The maximum values are summarized in 

Table 7.2. It can be seen the elastic strain for Ni was as large as 1.8%.  

Table 7.2:  Strength of whiskers114 

Material Max. elastic 
strain 

Method of testing Method of 
growth 

Fe 4.9 Tension Halide reduction 

Cu 2.8 Tension Halide reduction 

Ag 4.0 Tension Halide reduction 

Ni 1.8 Tension Halide reduction 

Si 2.0 Tension Halide reduction 

Zn 2.0 Tension Vapor 
condensation 

NaCl 2.6 Tension Preciptitation 

SiO2 5.2 Tension Vapor 
condensation 

Sl2O3 3.0 Tension Vapor 
condensation 

MoO2 1.0 Tension Vapor 
condensation 

C 2.0 Tension Vapor 
condensation 

Sn 2 to 3 Bending Growth from 
solid 

Ge 1.8 Bending Halide reduction 

ZnO 1.5 Bending  

ZnS 1.5 Bending Vapor 
condensation 

LiF 3 Bending Cleavage 

MgSO4.7H2O >2 Bending Precipitation 

 

In spite of the large scatter in strength, a trend towards higher strengths as the diameter of 

the whiskers decreases can still be detected clearly 111. The reason behind this is believed to be 
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by virtue of the fact that small volume crystals not only have little chance to possess defects, 

such as dislocations but also are relative difficulty to generating dislocations either internally or 

at the surface 111,115. Therefore, i e volume of crystal is small 

enough to exclude the existence of any defects, then it is possible for the crystalline materials to 

reach its theoretical strength. It can be seen from Table 7.2, the maximu  strain for Ni 

whi  is 1.8%. However, aring the size of whiskers (a few micro mete  

seve millimeter in length the grain we stud (grains size is  

appa aller and efore are expected t  perfec  

the atomic model of uniaxial tensile failure, it has be  the estimated theoretical fracture 

strengths for Ni is 37.2 GPa112. Taking the Young’s modus of Ni as bulk value 200GPa, and 

overlooked the nonlinear effect, the maximum elastic stain can be as high as 16.6%. In 

comparison, the maximum elastic strains we measured here is only about 5 y be due 

to the following reasons:  

On the one hand, unlike the whiskers, every single nano-grain in nano terials is 

confined both mechanically and geometrically by its neighboring grains.  Any externally applied 

force exerted upon the material will be transferred ual grains by

grains through the grain boundaries. Because material hoose the easi

it is the weaker of the two strengths – that of the individual grains or that of the grain boundaries 

– that determines the strength and hardness of real materials. For materi sizes of 

mill r dimensions down to the sub-micrometer a nto the nanom , it has 

been well established experimentally that the increase in yield stress is inversely proportional to 

the square root of the grain size. This relation, known as Hall-Patch relation, is believed to result 

from the pileup of dislocations at the grain boundaries. For a given dislocation pileup array, the 

t is reasonable to postulate that if th

m elastic

skers comp rs in diameter and

ral 111), ied here  about 20 nm) is

rently much sm  ther o be similar  to a t crystal. Based on

en shown

.5%.  This ma

structured ma

to individ  their surrounding 

s always c est way to deform, 

als with grain 

imete nd even i eter regime
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stress concentration acting upon the lead dislocation is proportional to the number of dislocations 

in the pile-up and the applied external shear stress 108. As grains become smaller, especially 

deeply into the nanometer range, higher stresses are necessary for dislocation nucleation and the 

space limitations imposed on the extent of a pile up resulting in a reduction of the local stress 

concentration on the lead dislocation. A higher external applied stress is thus required to nucleate 

dislocations and to overcome the barrier imposed by the grain boundary before plastic flow 

occurs. Correspondingly, higher yield stress, increased hardness and larger elastic strain, as 

observed in our experiments, are expected to occur. Upon reaching a certain critical stress level, 

i.e., the maximum strength of the material, the local stress accumulation will be released either 

by the nucleation and motion of dislocations or by grain boundary mediated plasticity. The latter, 

such as grain boundary sliding and/or grain rotation, is expected to be facilitated by grain 

boundary diffusion and to  increase in prominence with the decreasing grain size 90. As a 

consequence, the material will exhibit macro-scale deformation and the elastic strain 

accumulated in the single grains then will be released. Details of the elastic strain release depend 

on the loading mode and the local environment confining the individual grains. Thus, the 

existence of a peak value of the yield stress or hardness for real materials is an inevitable result 

of the competition between the stress necessary for the dislocation nucleation and pileup and the 

strength of the grain boundary barriers. Hence, the position and the magnitude of this peak value 

will not only depend on the average grain size, but also on the strength of the grain boundaries, 

i.e., on the grain boundary structure. This indicates that for a given grain size grain boundary 

engineering may be explored to tailor the mechanical strength of nanocrystalline metals. For 

instance, if nanocrystalline metals can be designed to contain many special grain boundaries that 

act as strong barriers to dislocation motion and at the same time exhibit limited ability for 
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boundary diffusion, which is expected for coherent twin boundaries, higher strength and higher 

hardness may be obtained than for the same material with a random grain boundary structure at a 

given grain size. First indications of the beneficial effect of an increased content of twin 

boundaries have been shown in recent work by Lu et al 56, where ultrahigh strength copper was 

obtained when the fraction of twin boundaries was increased by recourse to pulsed 

electrodeposition technique.   

Due to that higher lattice strength are expected for nano grains, presumably the observed 

ultra high elastic strain in fact reflects the possible strength of those as-deposited grain 

boundaries. This, in turn, allows us to critically evaluate two highly cited models, which predict 

a critical grain size below which dislocation pile up or multiplication cease operation 3,4.  By 

relating the repulsive force between two dislocations to an externally applied force and assuming 

that the hardness of a materials is about 6 times the shear stress, Nieh et al. 3 predicted that the 

critical grain size for Ni is about 2.5nm. However, by assuming a Frank-Read type source as 

dislocation multiplication mechanism and using their measured yield strength value, Legros et al. 

4  predicted that the cut off value for significant dislocations activity of  Ni is  about 38 nm. Both 

of the above calculations assume a constant shear modulus, although theoretically, the nonlinear 

elastic effect will lead to a decrease in Young’s modulus and shear modulus at very large stress 

level. According to Nieh’s model, the relation between the applied external stress (σ) and the 

equilibrium distance between the two dislocations (l ) can be expressed as:  c

cl)1(2
•

−
=

νπ
b 1µσ                                                             (7.1) 

Where µ is the shear modulus, b is the magnitude of the Burgers vector, ν is Poisson’s ratio. 

Because µ=E/[2(1+ ν)] 116, without losing generality, we can rewrite equation (1) into:  
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                                            ( )( ) εννπ
1

114
•=

bl                                                      (7.2) 

where ε=σ/E is normal strain and E is the Young’s modulus. Taking ν=0.312 

−+c

dicated that a dislocation pile up mechanism may be valid even at 

very

el, depending on the 

nature of the dislocations involved. This is in good agreement with our previous observations 90.  

 

116, b=0.249nm and 

ε equal to the maximum elastic strain measured in our experiments i.e., 5.5%, the lower bound 

equilibrium distance lc is estimated as approximately 0.4 nm. This value is unphysically small 

because lc~b. Nonetheless, it in

 small grain sizes, based on the large elastic strains measured in our experiment. An 

additional supporting point is that the Hall-Petch relationship continues to hold up in these same 

nickel films, even with the small grain size of 10 nm. 22.  However, an appropriate dislocation 

multiplication mechanism is apparently necessary to accommodate any dislocation pile up. The 

Orowan relation for the expansion of a dislocation loop suggests that dislocation multiplication 

requires Frank-Read-type sources.  With an approximation of the source size equal to the grain 

size (d) (reasonable for nanocrystalline materials, especially for those with grain size less than 

20nm), according to elementary dislocation theory 108, the critical shear stress necessary (τ) to 

nucleate a dislocation can be expressed as τ=2αµb/d . The parameter α reflects the character of 

the dislocation (α=0.5 and 1.5 for edge and screw dislocations, respectively). Assuming that 

τ~σ/2, then it is readily shown that the grain size d=2αb/[(1+ν)ε]. Again, taking ε =5.5%, the 

maximum elastic strain measured in our experiment, the estimated lower bound of grain size for 

the operation of a dislocation source is approximately 3.5~10.4 nm for nick
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7.5 CONCLUSIONS 

Nano-beam electron diffraction has been used to study the behavior of individual grains in 

nanocrystalline Ni during deformation under low local strain rate conditions. Direct 

measurement of lattice distortions during straining reveals that grain interiors may experience 

large elastic distortions during tensile deformation.  These results indicate that a peak strength 

value must exist, with a position and magnitude that depends on both grain size and grain 

boundary structure. Additionally, the critical size below which dislocation sources cannot 

operate is determined to be between 3.5 and 10.5 nm for nickel, depending on the type of 

dislocation.  
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8.0 FOMATION MECHANISM OF THE DIMPLED FRACTURE SURFACE  

8.1 INTRODUCITON 

In nanocrystalline metals (i.e. average grain size typically less than 100nm), tensile stress-strain 

curves at room temperature show very high strengths accompanied by limited uniform 

deformation 12,117. This behavior is very similar to that observed during brittle fracture.  

Consequently, it may be expected that fracture occurs intergranularly and that the three-

dimensional nature of the grains would be revealed on the fracture surface. However, 

experimental observations of fracture surfaces of nanocrystalline metals typically exhibit dimple 

features with sizes considerably larger than the grain size 7,8,20,52,84,118-121. Fracture surfaces of this 

type are most frequently characteristic of ductile fracture.  

Several explanations have been proposed to account for this apparent paradox of ductile-like 

dimpled fracture surfaces in nanocrystalline metals that exhibit a brittle response. Studying 

nanocrystalline Ni, Kumar et al. 7 proposed that the dimpled fracture surfaces may have resulted 

from the evolution of those grain boundaries (GBs) and/or triple junction voids which form when 

intragranular slip (dislocation motion) is coupled with unaccommodated GB sliding. This 

mechanism reasonably accounts for the experimental observations in nanocrystalline Ni with an 

average grain size of about 30nm, where dislocation-mediated plasticity has been proven to be 

the dominant deformation mode 7. However, it cannot explain the dimple features observed on 
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the fracture surface of nanocrystalline materials with a much smaller grain size (e.g. less than 10 

nm 121). It is expected that GB mediated plasticity (GB sliding and/or grain rotation) will begin to 

replace dis mall 

grain size 2,5,103.   

Iwasaki et al 121 recently reported deformation and fracture characteristics of an 

electrodeposited nanocrystalline N all rain size of 8.1mm. The fracture 

surface also showed dimple features with sizes 2.5 to 25 times larger than the average grain size. 

Post-mortem high-resolution TEM of the immediate vicinity of the fracture surface showed a 

long deformation band which aligned primarily along GBs. Hence, the authors  proposed that 

the dimpled fracture surface is a result of grains sliding in clusters and that the dominant 

deformation mechanism in nanocrystalline Ni-W is GB sliding. However, the authors did not 

mention how or why grains might slide as clusters, nor directly demonstrate this mechanism in 

operation.   

 study the fracture 

surfaces of nanocrystalline material. Hasnaoui et al. 84 studied a specimen containing 125 grains 

with a mean grain size of 6nm. They demonstrated that due to the presence of GBs that are 

resistant to sliding, local shear planes are concentrated around their neighboring planes, creating 

a cluster of grains embedded in a sliding environment. Thus, an inherent plasticity length 

emerges that is on the order of several grain sizes and corresponds to the dimensions of the 

dimple features documented on experimental fracture surfaces. However, the unrealistically high 

strain rate (10 s ), very short duration (350 ps), as well as the high temperature (800K) used 

suggest that the results obtained from the MD simulation should be used only for qualitative 

guidance, rather than as a validation of the existence of the proposed mechanism . 

location mediated plasticity as the dominant deformation mechanism for such s

i-W oy with an average g

121

Molecular dynamics (MD) computer simulations have been used to

7 -1

8
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It is evident from the foregoing discussion that all the proposed explanations have their own 

limitations. However, if we take all of them 7,84,121 into consideration, a common characteristic 

can be identified: GB sliding plays an important role in the formation of dimpled features on the 

fracture surfaces of nanocrystalline materials, while no direct experimental confirmation of the 

role

8.2 MATERIALS AND EXPERIMENTAL METHODS 

In this study, we select to use the Ni samples synthesized by directing a high-energy pulsed  

KrF excimer laser onto a high purity Ni target under a vacuum with a base pressure of 

approximately 2×10 torr and the resulting Ni plasma was deposited onto a [001] NaCl substrate 

 of this mechanism has been reported in these studies. Therefore, confirming the prevalence 

of GB-related deformation seems to be a key point for uncovering the underlying physical 

mechanism that dominates the formation of the dimpled fracture surfaces in nanocrystalline 

metals. With its inherently dynamic character and atomic-scale resolution, in situ transmission 

electron microscopy (TEM) observations during tensile straining may be expected to provide 

additional useful insights into the nature of the formation of dimple features on the fracture 

surfaces of the nanocrystalline materials.   

A detailed analysis of previous studies ready to show that GB sliding has been taken as the 

common mechanism 7,84,121 to rationalize the formation of the dimple structures observed on the 

fracture surface of nanocrystalline metals and alloys although no direct experimental 

confirmation on such mechanism has been reported in these studies. Therefore, to confirm the 

activation of GB related deformation seems to be a key point for uncovering the underlying 

physical mechanism that dominate the formation of the dimpled fracture surface. 

-7 
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to a

 of their {111} and/or {200} planes.  

However, global and local tilting of the sample during deformation are two often 

encountered problems amics DFTEM 

observation 21. Analysis shows they are most probably resulted from the inappropriate sample 

ll images were 

obta

 nominal thickness of 150nm. It has been shown 9,90 that as-deposited Ni films possess of 

very high-quality, fully-dense and essentially artifact-free with an average grain size typically 

less than 10nm.  

As for the technique, we choose to employ in situ dynamic dark field TEM (DFTEM) 

observation because GB sliding, if exists, will naturally lead the reorientation of those involved 

individual grains and DFTEM is sensitive to this orientation change. Because the {111} and 

{200} polycrystalline diffraction rings of Ni are very close to each other and the limitation of the 

select field aperture size, both {111} and {200} diffraction spots were selected as the image 

forming diffraction vectors. According to the nature of the image formation mechanism of 

DFTEM images89, any grains illuminated with bright contrast is in strong diffracting conditions 

and exhibit essentially edge-on orientations

that hinder us to achieve a successful in situ dyn

design. In this study, a special sample design developed in our previous study was adopted 90. It 

has been experimentally proven that this improved sample design can minimize the global and 

local tilting in maximum extent.   

The room temperature tensile loading during in situ TEM experiments was applied with a 

single-tilt straining stage while continuously imaging the deformed region using a JEOL 3010 

instrument operating at 300kV with a point-to-point resolution of 1.9 Å.  Sti

ined with a Gatan 754 Digital CCD camera and videotape images were obtained with a 

Gatan 622 TV-rate video-intensified camera and recorded with a VCR. The regions immediately 
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ahead of the crack tip were monitored during in situ straining to identify the active deformation 

and fracture mechanisms.  

8.3  RESULTS AND DISCUSSION  

TEM observations (Figure 8.1a) indicate that the as-deposited Ni consists of roughly equiaxed 

grains.  No obvious texture is detected by electron diffraction in the specimens used here. 

Statistically significant measurements using DFTEM images reveal a narrow, log-normal grain 

size distribution, ranging from several nanometers to 23 nm with an average value of about 10 

nm . High-resolution electron microscopy (HREM) shows that most grains are separated by 

high-angle GBs (Figure 8.1b). No additional GB phases, no porosity and no intergranular 

micr

Due to the sample design, the discernable deformation and the fracture process were usually 

concentrated in a narrow, long band-like area ahead of the crack tip. Under BFTEM imaging 

conditions, rapid changes in contrast of many different grains are observed to occur continuously 

in the band-like area where the local strain rate is usually high upon loading. This type of 

BFTEM contrast change has been reported previously 10,21 and has usually been identified as 

dislo

90

ocracks were detected in these samples90.  

cation activity, although it may also result from other strain induced deformation 

mechanisms, such as GB mediated plasticity.  
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Figure 8-1: Microstructure of as deposited nanocrystalline nickel. (a) Bright field TEM 

micrograph of the nanocrystalline Ni, (b) Typical HREM image of as deposited Ni. 
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Figure 8-2:  DF TEM observation of the deformation and fracture process of as-deposited 

nanocrystalline Ni.   
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Figure 8.2 shows DFTEM images extracted from videotape, which depict the dynamic 

evolution of the deform  

8.2a shows an area bef e right-hand-side inset in Figure 8.2a is a 

DFTEM image taken from mperature ion thinning. 

This micrograph confirm posited nanocrystalline 

Ni with an average grain size of about 10nm ny bright contrast features form 

very frequently and rapidly at m

r, under the influence of the applied stress as 

shown in Fi erates of smaller grains and 

the details of their fo . Clearly, the size of these bright 

ch larger than the average grain size. 

Comparison of the undefor tion state (Figure 8.2b) 

have undergone an orientation change during 

straining and formed num aller grains in these 

agglomerates exhibiting essentia their {111} and/or {200} planes. 

Further loading causes the crack to  thinner area, where the grain 

agglomerates are concentrated ination of Figure 8.2b and 8.2c found 

that, instead of rema zes and shapes of the grain 

agglomerates changed in a rath ation and fracture process. 

 larger grain agglomerates in response to the additional loading pulses.  

Figure 8.2d shows the final crack propagation path. The bright contrast features at the edges of 

the propagating crack indicate that some grain agglomerates behave in a collective manner 

ation and fracture process of nanocrystalline Ni upon loading.  Figure

ore deformation occurred. Th

 an area that has been thinned using low te

s the narrow grain size distribution of the as-de

. Upon loading, ma

any locations in the narrow, long band-like area ahead of the 

crack tip, apparently independent of one anothe

gure 8.2b.  These features have been identified as agglom

rmation are discussed in Ref. 90,107,122

contrast features (up to about 80 nm in Figure 8.2b) is mu

med state (Figure 8.2a) and the post-deforma

indicates that groups of neighboring grains 

erous larger grain agglomerates, with the sm

lly edge-on orientations of 

 propagate through this band-like

(Figure 8.2c). Careful exam

ining constant after formation, the si

er irregular manner during the deform

This implies that GB related plasticity mechanisms were active among the groups of smaller 

grains that constitute the
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Figure 8-3: DFTEM observation of the intra-agglomerate deformation depicted by individual 

still frames extracted from a dynamic video-sequence.   
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during the fracture process and the crack advances around them rather than through them (i.e. in 

ages 

e are 

approxim

erate 

t of 

tates 

em

extracted at t=6.6s when the evolution of the grain agglomerate almost stopped.  Note that the 

surrounding features in bright contrast provide a frame of reference for the evolution of the grain 

agglomerate we have been considering.   They appear nearly constant in shape and position, 

indicating that any overall bending or rotation of the observed region did not occur.  Instead, the 

an inter-agglomerate mode of crack propagation and fracture). 

However, deformation and fracture through or across the grain agglomerates is also observed. 

Figure 8.3 shows DFTEM micrographs extracted from a typical dynamic sequence of im

taken after the application of a single displacement pulse. The times listed on each still fram

based on the video-acquisition rate of 30 frames per second. At the beginning of this sequence, 

the grain agglomerate indicated by the white arrow exhibits a slightly oblong shape with an 

ate size of 60nm along the short axis and 80nm along the long axis, as shown in Figure 

8.3a.  Then a v-shape notch begins to form and grows at the middle-left of the agglom

(Figure 8.3b).  Following the growth of the notch, the lower left part of the agglomerate, which 

has been separated by the growing notch, begins to dim and finally rotates completely  ou

contrast by t=1.0 s (Figure 8.3c). However, only 1/30 of a second later the lower left part of the 

grain agglomerate, a region of about 8 nm in size, close to the average grain size, ro

suddenly back into a strongly diffracting orientation again. This sequence implies that the 

individual grains in the nanocrystalline Ni can suddenly rotate under the influence of the applied 

stress. During the growth of the middle left notch, another notch at the middle right end began to 

erge and grew, as shown in Figure 8.3e (t=2.8s). After this sequence of rapid contrast 

changes, the evolution of the agglomerate slowed significantly. The image in Figure 8.3f was 
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changes in contrast of the grain agglomerate located centrally in Figure 8.3 are due to local grain 

ted plasticity 90,107 and would be 

completely inconsistent with an interpretation wherein these grain agglomerates were produced 

simply by grain coarsening or grain growth 122.  

60nm by 90nm is indicated by the white arrow. (b) The agglomerate split at t=0.13s (c) t=0.23s, 

orientation changes, presumably by rotation.  The re-splitting of the grain agglomerate in the 

center of Figure 8.3 is further strong evidence of GB media

Figure 8-4: DFTEM observation of intra-agglomerate fracture depicted by individual still frames 

extracted from a dynamic video-sequence.  (a) t=0s, a agglomerate with dimension of about 

the crack propagated across the agglomerate; the residual parts located at the crack edges are 

indicted by the white arrows.   

Figure 8.4 shows DFTEM images extracted from video tape, which demonstrate the dynamic 

fracture process of as deposited Ni occurring in an intra-agglomerate manner. At the beginning 

of this sequence, the image of the agglomerate indicated by the white arrow had a dimension of 

about 60 nm by 90nm (Figure 8.4a). However, only 0.13s later, the agglomerate was observed to 

split into two parts (Figure 8.4b). It is worth noting that the total size of the two bright, split parts 

in Figure 8.4b appears smaller than the original agglomerate (Figure 8.4a) due to a gray zone 

between them.  This suggests that grains in the middle of the original agglomerate have rotated 

out of contrast, and that grain-boundary processes are active in producing the fracture. At 

t=0.23s, a crack has propagated across the agglomerate and the two residual parts of the 
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agglomerate located at the opposite edges of the crack can be seen clearly, as indicated by the 

white arrows in Figure 8.4c.  

Thermodynamic considerations imply that deformation-induced changes in the GB structure 

would favor the genesis of low-angle grain boundaries (LAGB) from high-angle grain 

boundaries (HAGB), allowing for a reduction in free energy of the system. In order to verify the 

grains identified are divided by low angle grain boundaries and the lattice fringes are belong to 

GB structure of the grains constituting the agglomerates, HREM images were taken along the 

crack edge where, as shown in Figure 2 and Figure 4, inter- and/or intra-agglomerate fractures 

are expected to occur. An example is shown in Figure 5.  

Figure 8-5: Typical HREM image taken from the areas around the propagating crack tip. All the 

{200} type.  
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In comparison with the as-deposited state (Figure 8.1b), it was surprising to identify more than 8 

grains in such a small area and to find that all of the grains appear to be delineated by LAGB. 

This evidence strongly supports the genesis of LAGB from HAGB during the deformation-

indu

ed than (002) planes because of their 

larger interplanar distance.  

Recently, lline nickel with 

ning during tensile straining, 

 

residual dislocations. However, re they observed a reduction in the 

(400) full widths at half m

additional recovery is seen only tion peaks and not in the (111) 

fam

ma

observation in Fig. 4 of the type planes in an edge-on 

orient ate. It is notable that 

improved crystalline EM of thin 

films (~100 nm) and by x-ray diffraction of thicker electro-deposited films (~200 µm) 92.  This 

ced formation of the larger grain agglomerates.  Because of the small diffraction angles for 

fast electrons used in the TEM, lattice fringe images are produced only for those crystal planes in 

a nearly edge-on orientation, i.e., those with normals approximately perpendicular to the incident 

beam direction. After calibrating the magnification, it was found that most of the lattice fringes 

in the HREM images are consistent with (002) planes of the fcc Ni lattice. This appears unusual 

since (111) planes are expected to be more readily imag

 Budrovic et al. 92 reported that plastic deformation in nanocrysta

average grain size of about 26nm exhibits reversible peak broade

which is believed to be caused by a deformation process that fails to produce a network of

lative to the undeformed state, 

aximum (FWHM) of the x-ray peaks after the unloading.  This 

in the (200) family of diffrac

ily or in the (220) peak.  Hence, it appears reasonable to propose that localized (100) textures 

y develop during the deformation of nanocrystalline Ni, which would be consistent with our 

unusually high incidence of (002) 

ation in the group of nanocrystalline grains constituting an agglomer

 alignments of lattice planes appear to be observed by both T
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implies that the deformation processes identified with TEM do yield insights into the behavior of 

thicker nanocrystalline material as well. 

8.4 DISCUSSION 

The observations presented above clearly reveal that the grain agglomerates, which formed very 

rapidly and independently in areas experiencing large plastic deformation prior to the fracture in 

response to the applied external stress, result from GB-mediated plasticity, such as GB sliding 

and grain rotation. Following the formation of these grain agglomerates, cracks are observed to 

propagate in an inter- or intra-agglomerate manner. HREM indicates that these grain 

agglomerates are very likely comprised of numerous small grains that are separated by LAGB.  

The mechanistic process envisioned from these observations can be described as follows: The 

dense network of grain boundaries 

90

present in the nanocrystalline material represents a metastable 

state. This metastable state can be destabilized by an applied external stress. Due to the spatially 

inhomogeneous distribution of the microstructure, such as grain sizes, grain shapes, grain 

orientations, grain boundary structure etc., the rearrangement or reorientation of individual grains 

at certain favored sites can be activated to release the locally accumulated stress resulting from 

the application of a critical level of external stress, i.e. the critical resolved shear stress may be 

achieved locally, producing local or micro-yielding in some regions of the nanocrystalline 

material. This disrupts the former metastable local equilibrium. With or without a short 

incubation period, which may possibly be facilitated by diffusional processes, individual grains 

with especially favorable characteristics (size, shape, orientation etc.) rearrange first by GB 

sliding, grain rotation or even dislocation activities . These grains can then serve as seeds and 
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eventually trigger an avalanche of interactions in the neighboring grains, followed by further 

reorientation and/or coalescence. However, the evolution of the grain agglomerates usually spans 

only a very short time period, as a state of new metastable equilibrium is approached locally.  

Our observations of the formation of grain agglomerates, as well as their deformation and 

fracture characteristics, allow us to speculate on their role in the fracture process. Firstly, the 

grains that are adjacent to the outer boundaries of the grain agglomerates presumably have a 

stable structure, i.e. they are not easily deformed. If this were not the case they would likely 

energy of the system. Rapid diffusion along grain boundaries in nanocrystalline materials 1,123,124 

during the formation of the grain agglomerates will inevitably lead to the transportation of point 

defects, such as vacancies, to the agglomerate boundaries in order to conserve volume. This 

renders the boundaries of the agglomerates favorable sites for the nucleation, growth and 

larger than the average grain size, may tend to stay together as a unit during the deformation and 

fracture process (as shown in Figure 8.2d). If the cracks propagate along the boundaries that 

surround the agglomerates, the fracture surfaces would be expected to exhibit dimple features on 

the order of the agglomerate size.  The first-order correlation between observed dimple sizes 

during fracture 7,84 and the size of the grain agglomerates suggests that this may be the case. 

become incorporated into the agglomerate, favored by an accompanying decrease in the free 

propagation of voids and cracks. As a consequence, the grain agglomerates, which are much 

Secondly, the genesis of the LAGB from HAGB inside the grain agglomerates indicates that 

the smaller grains in some grain agglomerates could share at least some of their available slip 

systems. This would facilitate dislocation-mediated plasticity within the agglomerates via 

dislocation transfer across the LAGB’s at stress levels that are lower than would be expected for 

randomly oriented nanocrystalline grains with the same grain size, for instance. Therefore, the 
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formation of these softer grain agglomerates must inevitably lead to plastic instabilities, causing 

a catastrophic “brittle-like” failure response due to the excessive localized deformation. Despite 

the rapid “brittle-like” failure response, the large amounts of associated plastic deformation can 

be expected to yield a fracture surface characteristic that is more ductile in nature.  Thus, the 

grai

d by 

dislo

n agglomerates can lead directly to the formation of the large dimpled features observed on 

fracture surfaces of nanocrystalline metals.     

The foregoing discussion qualitatively explains the underlying mechanism why 

nanocrystalline materials with their grain size in the regime where grain boundary mediated 

plasticity are expected exhibit very limited elongation to failure but show dimple structures on 

the fracture surface. However, what is the mechanism for those materials with their grain size in 

the regime where dislocation mediated plasticity are dominant? A detailed literature 

investigation readily to show that almost all of the nanocrystalline materials exhibit limited 

elongation to failure but with a dimple structure on their fracture surface are prepared by electron 

deposition 7,8,20,52,84,118-121. Besides the intrinsic impurities introduced by this processing method 

7, TEM observations indicated that most of the nanocrystalline grains in these materials are 

equiaxed and separated by small-angle grain boundaries that consist of dislocations arrays125. 

The impurities in this type of nanocrystalline materials can lead to solid solution strengthening 

and grain boundary embrittlement. This accounts at least part reason for the very limited 

elongation to failure. Moreover, the nano grains which are close to each other and divide

cation arrays may behave essentially like a larger grain and exhibit ductile characterization 

in responding to the external applied stress, just similar to the discussion for the grain 

agglomerates.  
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Based on the idea that certain kinds of grain boundaries can be resistant to sliding, Hasnaoui 

et al 84 suggested that general HAGB are necessary for good ductility of nanocrystalline 

materials. However, this is based on the assumption that the structure of the grain boundaries 

remains stable as the nanocrystalline materials undergo deformation. In real materials, as in our 

experiments, it is quite likely that the GB structure will change locally at the onset of the 

deformation by forming numerous grain agglomerates.  This instead leads to highly localized 

plastic deformation of the grain agglomerates and the catastrophic fracture of nanocrystalline 

mate

8.5 CONCLUSION  

In summary, using in situ tensile straining DFTEM investigations of a free standing 

nanocrystalline Ni film with a nominal thickness of 150nm, it was found that grain agglomerates 

formed very frequently and rapidly in many locations, apparently independently of one another 

and propagate in a combined inter- and intra-agglomerate manner. Post mortem HREM 

observations show evidence for the genesis of LAGB from HAGB. Guided by the in situ TEM 

tensile experiments as well as other reported experiments, we propose that the “brittle response” 

rials. Therefore, simply increasing the density of general HAGB may be detrimental to the 

overall elongation to failure of nanocrystalline materials with a narrow grain size distribution. In 

order to improve the ductility of nanocrystalline materials and retain high yield stress, other 

methods such as using multiple scales of grain sizes 126 or increasing the density of low energy 

GB 56,  may be necessary to produce local strain hardening and spreading of plasticity processes 

throughout the evolving microstructure of the deforming nanocrystalline metals.   

under the influence of applied stress at the onset of deformation. Cracks are observed to nucleate 
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of nanocrystalline materials during tensile loading results from the formation of grain 

agglomerations. These observations suggest that simply increasing the number of high-angle 

grain boundaries in a nanocrystalline metal is unlikely to lead to increased ductility, and that 

other metallurgical methods (greater control of grain size distribution and increasing the number 

of low energy GB) may be more fruitful. Understanding the formation mechanisms and role of 

grain agglomerates in nanocrystalline metals is expected to directly impact the processing 

methods required to create nanocrystalline metals with improved strength and ductility. 
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9.0 SUMMARY AND CONCLUSIONS 

In summary, the microstructure of the PLD Ni film with its nominal thickness of 60 nm has been 

characterized by TEM. It was found this high quality Ni sample is essentially fully-dense, 

artifact-free thin film with its average grain size about 10nm and narrow grain size distribution. 

The deformation process has been studied by using in situ BF TEM observation under low local 

strain rates. The observation suggested that grain boundary mediated plasticity, such as grain 

rotation and grain boundary sliding is very likely to contribute prominently to entire plastic 

deformation.  

In situ dynamic dark field transmission electron microscopy observations of nanocrystalline 

nickel films with an average grain size of about 10 nanometers confirmed that grain boundary 

mediated processes have become a prominent deformation mode. Additionally, trapped lattice 

dislocations are observed in individual grains following deformation. This change in the 

deformation mode arises from the grain-size dependent competition between the deformation 

controlled by nucleation and motion of dislocations and the deformation controlled by diffusion 

assisted grain boundary processes. 

The dislocation dynamics processing has been achieved successfully by exploring a 

combination of in-situ deformation and in-situ HREM observation. The detection of trapped 

dislocation in grains as small as 5nm by 10 nm suggested that the as-deposited nanocrystalline 

Ni may exhibit much higher yield strength than expected. The absence of deformation twining 
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suggested that twinning may not be a preferred deformation mode even if the nucleation stress 

for partial is less than that for perfect dislocation.  Unlike the molecular simulations which can 

only capture the very start s deformation, the results 

report here only capture the final state of nanocrystalline materials deformation. Therefore, 

further efforts are necessary to reveal the entire process of nanocrystalline materials deformation.    

ined to be between 3.5 and 10.5 nm for nickel, depending on the type of 

dislo

 genesis of LAGB from HAGB. Guided by the in situ TEM 

tens

 information of the nanocrystalline material

Nano-beam electron diffraction has been used to study the behavior of individual grains in 

nanocrystalline Ni during deformation under low local strain rate conditions. Direct 

measurement of lattice distortions during straining reveals that grain interiors may experience 

large elastic distortions during tensile deformation.  These results indicate that a peak strength 

value must exist, with a position and magnitude that depends on both grain size and grain 

boundary structure. Additionally, the critical size below which dislocation sources cannot 

operate is determ

cation.  

By employing in situ tensile straining DFTEM investigations of a free standing 

nanocrystalline Ni film with a nominal thickness of 150nm, it was found that grain agglomerates 

formed very frequently and rapidly in many locations, apparently independently of one another 

under the influence of applied stress at the onset of deformation. Cracks are observed to nucleate 

and propagate in a combined inter- and intra-agglomerate manner. Post mortem HREM 

observations show evidence for the

ile experiments as well as other reported experiments, we propose that the “brittle response” 

of nanocrystalline materials during tensile loading results from the formation of grain 

agglomerations. These observations suggest that simply increasing the number of high-angle 

grain boundaries in a nanocrystalline metal is unlikely to lead to increased ductility, and that 
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other metallurgical methods (greater control of grain size distribution and increasing the number 

of low energy GB) may be more fruitful. Understanding the formation mechanisms and role of 

grain agglomerates in nanocrystalline metals is expected to directly impact the processing 

methods required to create nanocrystalline metals with improved strength and ductility. 
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10.0  OUTLOOK-QUANTITATIVE INVESTIGATION OF NANOCRYSTALLINE 

DEFORMATION 

10.1 MOTIVATION 

The unusual attributes of nanocrystalline materials, such as ultrahigh strength and hardness, low 

temperature super-plasticity etc. have generate considerable interest in the use of these metallic 

systems for a wide variety of structural and functional applications. However, despite the 

extensive efforts over the past decade, reliable properties of nanocrystalline materials are still 

very limited. This, on the one hand, is due to experimental challenges encountered in processing 

perfect nanocrystalline materials. For example, i) The microstructure of nanocrystalline materials 

depends severely on the processing methods; ii) It has been difficult to obtain bulk 

nanocrystalline materials without processing flaws or contaminations; iii) Only very limited 

amount of nanocrystalline material can be produced for most processing methods; iv) The 

standard mechanical testing protocols are often not suitable for measuring the tensile properties 

of the small nc samples. On the other hand, it is largely due to the lack of understanding of the 

underlying physical mechanisms that control these mechanical properties of nanocrystalline 

materials.  With the encouraging efforts of pioneer’s work, it have been confirmed so far that 

deformation mechanism of nanocrystalline materials can be divided into three regimes, 

according to grain size2,90.  However, this is largely based on qualitative investigations. For 

example, i)although it has been confirmed that there exists a cross over regime, between which, 
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the dominant deformation mode will change from one controlled by the nucleation and motion of 

dislocation to one controlled by grain boundary mediated plasticity, the exactly grain size 

bou on 

ability of nanocrystalline materials will i the decreasing of the grain size, but 

quantitative experimental dada on this are very scarce; iii) based on the assumption that 

nanocrystalline materials are intrinsic ductile, the limited elongation to failure have been largely 

attribute to localized deformation w a he highly non-uniform distributed 

microstructure of nanocrystalline materials. However, to date, no firm experimental evidence on 

It is evident from forgoing discussion that very limited quantitative data are available of the 

physical mechanisms that control the macro properties of nanocrystalline materials, although it is 

very important for our understanding on this topic. The reason behind this is the limitation of 

available techniques and the lack of creative experimental design.  Therefore, in order to fulfill 

the specific objective of gaining quantitative data of nanocrystalline deformation, new 

experimental techniques as well creative idea are necessary.   

ndary of this cross over regime remains unclear; ii) it has been predicted that the diffusi

ncrease sharply with 

hich re resulted from t

this has been provided although it is feasible to get such data with a selective technique on a 

small volume of nanocrystalline materials with uniform microstructure; iv) so far, TEM are the 

best experimental means for directly revealing the undying physical mechanism that control the 

solid deformation and it has been argued for a long time that electron irradiation may have 

import effect on nanocrystalline deformation, but quantitative data, such as how illumination 

density, time, voltage etc are related to the microstructure of any particular nanocrystalline 

material during the solid deformation are still very limited.  
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10.2 EXPERIMENTAL FEASIBILITY  

 

Figure 10-1: (a) Scanning electron micrograph of the microstage showing the freestanding 

aluminum thin-film specimen being attached to the force sensor beam at one end and to 

supporting beams at the other. Markers D and F, read displacements at both ends of the 

Deflection of the sensor beam (read by marker F), multipl

specimen. The left end of the microstage is pulled by a piezo actuator of a TEM straining stage. 

ied by its spring constant, gives the 

forc

elongation of the specimen. The gap XX' prevents accidental straining of the sample during 

sensors D and F. There is no substrate under the specimen so that the TEM beam can go through 

In situ TEM so far has been a major analytical instrument in the research of solid deformation. 

However, general in situ TEM sample holders usually are not equipped with force displacement 

sensors. As a result, these holders can only be used as qualitative in situ deforming research 

e on the specimen. The difference between the two markers' (D and F) gaps gives the 

mounting of the microstage on to the TEM straining stage. The TEM straining stage has to move 

and deform the microstage to close the gap XX' before loading the sample. (b) Microtensile test 

stage on a TEM straining stage. (c) Zoomed view of the specimen and the two displacement 

the sample for microstructural inspection127. 
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without simultaneous measureme  to perform quantitative 

analysis, i.e. observing the deformation mechanism during materials testing and measure the 

stress-strain states in solids at the same time, sample holders that combine quantitative testing of 

thin films with qualitative TEM observation have to be developed.  

Numerous efforts have been made to develop such instruments in the past years 127-131. 

Based on a displacement-based uniaxial tensile testing technique, Haque M.A. and Saif M.T.A. 

developed an in situ TEM (or SEM) tensile instruments in department of mechanical & industrial 

Engineering, University of Illinois at Urbana-Champaign. Figure 9.1 shows the SEM graph of 

the instrument. First, a layer of Aluminum was deposited on both sides of the wafers by 

sputtering. Then a test chip equipped with a force sensor and an actuation mechanism for 

displacement generation is fabricated through microelectronic technique128. Finally, the 

 situ TEM nano-indentation has been also 

132

nt of stress-strain response.  In order

freestanding specimens are released from the substrate by dry etching with minimal pre-

stressing. The specimen is gripped at the two ends by adhesion to the substrate. The novel 

assembly of a force sensor and structural spring structures ensures perfect alignment of the 

specimen to the loading direction.  So far, quantitative uniaxial tensile tests on nanocrystalline 

aluminum128, gold127 have been performed in TEM by recourse to this in situ tensile equipment. 

Although the present experiments are limited to the complex sample preparation procedure and 

relative larger grain size (~50nm), potential applications of similar quantitative testing in TEM 

on nanocrystalline deformation and fracture are very attractive.  

Besides in situ TEM tensile instruments, in

developed. For example, three generations of such devices have been developed at Nation Center 

of Electron Microscope (NCEM), Lawrence Berkeley National laboratory (LBNL).  The first 

generation  (in situ NI-I) was developed mainly by Wall et al. . Their efforts mainly focused on 
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the development of a stage for the 1.5 MeV high-voltage electron microscope (HVEM) at the 

NCEM, LBNL. Compared with most of today’s electron microscopes, the HVEM has the 

advantages of its high specimen penetration and large pole gap. As shown in Figure 9.2, the 

original holder design has a sharp tip mounted onto a long, stiff metal that ran through the shaft 

of th

s 

for c

e goniometer.  Tip motion along the plane that is perpendicular to the shaft rod (z-plane) 

was controlled by the screw piezo drives that pushed upon bellows, while the in and out (along 

the shaft rod direction, z-direction) was accomplished by an ultra-low reduction gear motor 

drive.   

Figure 10-2: Schematic of original in situ nanoindentation holder for the high-voltage electron 

microscope132.  

Figure 9.3 presents a schematic of the second generation of in situ nano-indentation (in situ 

NI-II) holder developed in NCEM, LBNL. In contrast to the in situ NI-I, in which screw drive

oarse Z-plane and a fine gear motor for Z motion were used, the coarse positioning of the 

indenter tip in NI-II is accomplished with manual screw drives in all three axes. Such a design 

enables to position the tip mechanically to within about 1 µm of the electron-transparent edge in 

the z-direction. Another significant improvement in NI-II is to use the piezoceramic tube for the 
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fine motion of the tip. As a consequence, it is possible to position the tip with about 1nm 

precision. However, the in situ NI-II is still limited to qualitative analysis.   

Figure 10-3: Schematic of in situ NI-II holder developed in NCEM, LBNL133.  

Figure 10-4: New quantitative in situ nanoindentation stage (NI-III), NCEM, LBL.  

In order to set up quantitative in situ TEM indentation device, NCEM has tried to find 

cooperation with Hysitron Inc. which is known to be good at atomic force microscope (AFM). It 

has been proven that such cooperation is not only necessary but also efficient. The first product 

resulted from this cooperation has been accomplished recently and is shown in Figure 9.4. This 
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is the first high accuracy quantitative in situ TEM nano-indentation stage on the world.  The load 

resolution is about 0.2 mN and the displacement resolution is 0.5nm. This new device for the 

first time provides the possibility of direct correlation of in situ TEM indentation observations 

 the initial test of 

 its initial design 

param om those 

with standard load-displacement curves. Figure 9.5 represents some results from

this novel device. Analysis shows this novel device is even better than some

eters. It is expected that deformation and fracture study on solid will benefit fr

newly developed quantitative devices.  

 

Figure 10-5: Preliminary results of the NI-III quantitative device (This figure was provided by 

Dr. Minor in NCEM, LBL).  
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APPENDIX A 

COMMENT ON "GRAIN BOUNDARY-MEDIATED PLASTICITY IN 

NANOCRYSTALLINE NICKEL" 

 
 

 
Nanograin rotation via grain boundary sliding has been predicted as an important deformation 

mode in nanocrystalline materials as grain sizes approach less than 10 nm 5,103,134. However, 

definite experimental evidence beyond molecular dynamics (MD) simulations has been long 

sought. Recently, Shan et al. 90 reported in situ straining dark-field transmission electron 

microscope (DFTEM) observations of grain rotation in nanocrystalline Ni and claimed that the 

plastic deformation of nano-Ni is mediated by this grain boundary behavior. Although the 

experimental results reported by Shan et al. are interesting, their assessment and analysis of the 

TEM images are problematic. Using the images presented in 90, we have quantitatively measured 

the relative displacements and grain sizes. Both results suggest that the grain rotation and 

associated contrast change reported by Shan et al. more likely come from low-temperature 

nanograin growth, caused by electron-beam irradiation and applied stresses, than from plastic 

deformation. 

In Figure A.1, we show contrast-inverted images from figure 3 in 90. Small grains with 

less contrast change are linked with lines to form a trapezoidal frame surrounding grain G, which 
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exhibited significant contrast change during loading. Overlaying the trapezoidal frame in Figure-

ap.1 B and F, shows that all the joint points of the frame match well with the original small grains.  

 

 

 

 

 

 

 

 is about ±1 nm and the corresponding strain smaller than 0.5%. The measurements 

do not suggest any system  

alter the line lengths, we measured the angles marked in Figure A.1 B. We were also unable to 

 

 

 

 

 

Figure A. 1  Contrast-inverted images of figure 3 in 90. The small grains with less contrast 
change during loading were linked to form a trapezoidal frame. 

Precise measurements of the line lengths were performed using NIH Image, and the 

dependence of the line lengths on loading time was plotted (Figure A.2). The mean error of these 

measurements

atic length changes and, thus, any relative displacements and strains. 

To rule out the possible bending and torsion deformation, which might not significantly 
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observe any systematic angle changes with time. These measurements unambiguously show that 

no detectable deformation occurred during loading. If the significant contrast change of grain G 

were caused by plastic deformation, relative displacements, either in plane or out of plane, should 

mation cannot be 

accomp

Figure 
distance changes between the smaller grains around the marked grain G as a function of loading 

systematic deformation occurs accompanying the continuous contrast changes of grain G. (B) 

grain G as a function of time. The linear relation between S and t is consistent with the classical 

As several attempts have well demonstrated 7,10,21, it is extremely difficult to get uniform 

plastic deformation in nanocrystalline samples and localized deformation and cracking cannot be 

have been observed among the surrounding grains, because plastic defor

lished solely by a single grain rotation. 

 

A. 2: Measurements of line lengths, angles, and grain areas using NIH Image. (A) The 

time (see Figure A.1 B). The slope of each line approaches zero, which suggests that no 

The relation between the angles (see Figure A.1 B) and loading time. (C) Changes in the area of 

grain growth equation 
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avoided during in situ straining TEM observations. Although the data in Figure A.1 were 

recorded during in situ tensile tests, it is quite possible that the region observed by Shan et al. did 

not experience visible plastic deformation and that the observed contrast change came mainly 

from nanograin growth caused by electron-beam irradiation and applied stresses. The time-

related size change of grain G, measured using the NIH Image, revealed a linear relation between 

grain size in the area (S) and time (t) (Figure A.2 C) that is exactly consistent with the classical 

grain growth equation 13 k is a constant. 

also indicate nanograin growth 

during DFTEM observations. S 90 to be close to 

that of figure 2B in 90 ber of bright spots that 

correspond to  diffraction patterns 

results from the grai ecrease claimed by Shan et al. 90. 

Additionally,  attributed to the grain 

boundaries. Crystal defects—for ple, dislocations, as revealed by their high-resolution 

electron microscope im ilar contrast caused by their 

elastic strain fields 90. , the dark contrast that Shan et al. 

suggested represented at are characteristic of 

classica

5, S - S0 = kt, where S0 is the initial grain size and 

The diffraction patterns shown in figure 2, B and D, in 90 

lightly adjusting the brightness of figure 2D in 

 reveals continuous rings with an increasing num

coarsened grains; this, in turn, suggests that the change of

n growth, rather than the thickness d

the contrast in the DFTEM [figure 2E in 90] cannot be solely

 exam

age [figure 4C in 90)]—can provide the sim

After contrast inversion of figure 2E in 90

grain boundaries shows discontinuous features th

dislocations in bright-field TEM. It is not surprising to see dislocations in the nanograin because 

the grain size, at around 50 nm in diameter, is large enough to contain a number of perfect 

dislocations. Actually, the appearance of the edge dislocations as observed by Shan et al. is also 

consistent with the rotation growth theory, as suggested by recent MD simulations 48,136 and the 

l rotation growth model 137. 
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In summary, the TEM results reported in 90 can be interpreted as nanograin growth caused 

by electron-beam irradiation and applied stresses. Although nanograin growth may not be the 

whole story, and although a small amount of deformation through grain boundary mediation may 

occur accompanying the observed grain rotation, the grain contrast change reported by Shan et 

al. appears to result mainly from nanograin coalescence and growth rather than visible plastic 

deformation.  
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APPENDIX B 

RESPONSE TO COMMENT ON "GRAIN BOUNDARY-MEDIATED PLASTICITY IN 

NANOCRYSTALLINE NICKEL" 

 
 
Our study 90 reported on the deformation response of nanocrystalline Ni durin

transmission electron microscopy (DFTEM) straining experiments and s

direct and compelling evidence of grain boundary-mediated plasticity. Based on th

the limited experimental data we presented, however, Chen and Yan  propo

contrast changes more likely resulted from grain growth caused by 

applied stress rather than from plastic deformation. Here, we give specific reasons why their

assertions are incorrect and discuss how the measurement approaches they have used are 

inappropriate. Additionally, we present further evidence that supports our original conclusions. 

The method Chen and Yan employed to measure displacement merely probes the in-plane 

(two-dimensional) components of incremental strain occurring during the very short time interval 

shown [figure 3 in 90] instead of the accumulated strain. As we noted explicitly in the supporting 

online material in 90, the loading was applied by pulsing the displacement manually. After each 

small displacement pulse, the monitored area always moved significantly within or even out of 

the field of view. Clear images could be obtained only when the sample position stabilized within 

the field of view and at that time severe deformation was nearly complete. Thus, little 

incremental strain occurs during this short image sequence [figure 3 in 90], as one might expect. 

 g in situ dark-field 

howed what we view as 

eir analysis of 

122 se that the reported 

electron irradiation and 
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We believe that the images shown in figure 3 of 90 are particularly valuable in 

understanding deformation in nanocrystalline materials. In general, the formation process of 

grain agglomerates simply occurred too fast to be recorded clearly. Moreover, instead of 

remaining constant after formation, the sizes of the grain agglomerates changed in a rather 

irregular manner in responding to the deformation and fracture process (see, for example, Figure 

A  

agglomerates. Figure 3 in 90 than 6 hours of videotaped 

. 3 B and D). This indicates that strong grain boundary-related activity occurred inside the grain

, a short (0.5 s) extract from more 

experimentation (imaged ahead of cracks), not only reveals the formation process of a grain 

agglomerate, but also shows conclusive evidence for grain rotation and excludes the effect of 

overall sample rotation. 
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Figure 

along the propagating crack path. Inset in (A) is an image from an undeformed area that has been 

conclusions. Chen and Yan also ation has occurred, yet simultaneously state 

that the analysis has a deform  This is simply not consistent; 

even small strains of this order  

In contrast with previous 7,10,21, the special sample design 

adopted in our investigation 90 arily concentrated in a band 

like area ahead of the propagating cr  agglomerates were observed 

only in this band like thinning area pplied loads (Figure 03 B). No similar 

phenomena were detected under the electron  alone or in stressed areas apart from the main 

deformation area, and these phenomena have situ observations of this 

same material made by other researchers  observed to follow 

this deformation area upon further displacement pulses (Figure 0.3 C and D). This clearly 

  

 

t, Chen and Yan claimed a linear relation between "grain" area and time 

easurements made from figure 3 in 90 and claimed that these measurements are 

exactly consistent with the classical grain growth equation. However, as we noted 90, the growth 

A. 3: Dark-field TEM images showing deformation and fracture of nanocrystalline Ni in 

response to an applied tensile displacement pulse. Note the growth of larger grain agglomerates 

pre-thinned with low-temperature ion thinning to show more clearly the presence of small grains 

as well as the narrow grain size distribution. 

It should be noted that other small grains still exhibit some minor contrast changes in 

figure 3 in 90. Hence, using them as reference points yields measurements that may not be 

accurate to ±1 nm [as Chen and Yan 122 claim in their analysis] and limits the accuracy of their 

indicates that the enlarged agglomerates do not result simply from electron irradiation plus stress, 

but rather from stress-induced deformation.

In their commen

claim that no deform

ation measurement error of 0.5%.

may cause plastic deformation.

 in situ TEM experiments 

 ensured that all deformation was prim

ack. We found that these grain

 as a response to the a

beam

 not been reported during in 

21. Subsequent cracks were always

 

based on their m
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in size of this agglomerate is not isotropic and occurs in an irregular manner. For example, after 

bright contrast emerged from a grain about 6 nm in diameter, it remained well defined in size as a 

single, approximately equiaxed grain until t = 0.1 s (figure 0.4).  
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Figure A. 4:  Expanded Sequence of dark-field TEM images collected in situ, providing 

additional detail to evaluate the process of grain grains group of nanocrystalline Ni in response to 

one displacement pulse. The times listed are based on the videotape record speed (30 frames per 

second). 
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        We   

video im erate is not consistent 

 in the 

origin

 their 

argum

 

Figure A. 5: e. Clearly, the 

growth in area of the agglomerate is not consistent with linear grain growth. Note the "terraces" 

indicated by black arrows, which suggest an "incubation" time between grain rotations. 

ent pulse might have added mechanical driving force to overcome an apparent 

activation barrier that exists for the thermally activated process of grain growth. This additional 

 have reproduced the "grain growth" plot of Chen and Yan (Figure A.5) using our entire

age sequence (fig. S1). Clearly, the growth in area of the agglom

with linear grain growth. (Unfortunately, only a portion of these data could be included

al paper for reasons of space.) Notably, Chen and Yan did not apply a similar "grain 

growth" analysis to nearby grains; this would have yielded no information in support of

ent, as those grains show essentially no growth.  

 Changes in the area of the grain agglomerate as a function of tim

In addition, if classical grain growth were occurring during our observations—even 

though it is not expected at ambient temperature in nanocrystalline nickel 138,139—the initial 

displacem
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mechanical contribution would diminish over time. However, once the appropriate larger grains 

would have grown to about 6 to 10 times the size of the average grain (see, for example, the large 

grains in figs. S1 and S2), their growth would be expected to continue at the expense of the 

smaller grains in their vicinity, because the curvature-derived driving force would be greater, 

more strongly favoring their continued growth and the reduction of the free energy of the 

material. However, this was not the case [see, for example, figure 8.3, which was extracted 

immediately after the sequence shown in figure 3 in 90. Without any further displacement pulses, 

the key grain agglom e. Further loading 

leads agglomerate 

ma  is further 

conclusive classical grain 

growth. 

The im erates, instead of 

pare the 

undeform our paper [figure 2, 

90 were taken under identical conditions—that is, using the same illumination 

 

e images 

out of 

erate stopped growing and then appeared to split with tim

to crack propagation in the band-like deformation area in an inter- or intra-

nner. Again using the nearby features as references, this subsequent splitting

evidence of grain boundary-mediated plasticity and argues against 

age shown as figure 2E in 90 allowed us to state that grain agglom

individual large grains, resulted from the applied displacement pulse. To directly com

ed and deformed states, the two diffraction patterns that appeared in 

B and D, in 

intensity, the same selected-area aperture size, and the same exposure time. Simply boosting the 

contrast, as Chen and Yan have done, fundamentally alters the information in these patterns and 

thus yields an inaccurate conclusion. Presumably they have mistakenly chosen to alter th

concern over whether we had taken them in an equivalent manner; unfortunately, their 

alteration of contrast removes the difference in background intensity, which demonstrates that the 

material has also thinned and thus has been plastically deformed. 
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When considering how DFTEM images are formed, it is clear that the smaller grains in 

the agglomerates exhibit essentially edge-on orientations of their {111} lattice planes, their {200}

lattice

 

ively, a dark-field image of the type we have used is formed by selecting a small part of 

the diff

 planes, or both 90. From a thermodynamic view, it is very possible that these grains are 

divided by small-angle grain boundaries (which would consist of dislocation arrays) or even that 

some coalescence occurred 140. However, considering that grain agglomerates, after being formed, 

change their sizes in a rather irregular way in response to the deformation (for example, Figure. 

A.3 B to D), classical grain rotation-induced grain growth, if it exists, is not likely to be 

prominent. 

The contrast-inverting method used by Chen and Yan 122 on figure 2E in 90 is poorly 

chosen. A bright-field image is formed by selecting the direct beam in the selected-area 

diffraction pattern, which will include contrast information from all diffracting lattice planes. 

Alternat

raction rings (for polycrystalline materials) using the objective lens aperture. The dark-

field image only includes the contrast information from those grains that are oriented such that 

they contribute to the specific diffraction vectors (direction and length) contained in the small 

region of the diffracting rings that is selected by the objective lens aperture. Therefore, to obtain 

bright-field contrast by inverting the dark-field contrast is simply incorrect; bright-field and dark-

field TEM images give strictly inverse intensity only when considering a two-beam diffraction 

condition in the kinematics electron diffraction limit 141. Moreover, diffraction-contrast TEM 

images display true grain sizes only when the diffraction condition, exposure time, and image 

intensities are selected correctly. Manipulation of TEM images by software is easy but is fraught 

with scientific peril and should be done only with great care. 
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In sum, it is unfortunate that only part of the video frames from our experiments could be 

included in 90, as this omission led to the incorrect deduction by Chen and Yan 122 of a false linear 

grain growth by subsequent measurements. However, the remaining supporting evidence that 

they present stems largely from inappropriate image contrast adjustments and a misreading of our 

original paper. 
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