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ABSTRACT 
 

Two major issues hinder the application of microarray based gene expression profiling in 

clinical laboratories as a diagnostic or prognostic tool. The first issue is the sheer volume and 

high-dimensionality of gene expression data from microarray experiments, which require 

advanced algorithms to extract meaningful gene expression patterns that correlate with biological 

impact. The second issue is the substantial amount of variation in microarray gene expression 

data, which impairs the performance of analysis method and makes sharing or integrating 

microarray data very difficult. Variations can be introduced by all possible sources including the 

DNA microarray technology itself and the experimental procedures. Many of these variations 

have not been characterized, measured, or linked to the sources.  

In the first part of this dissertation, a decision tree learning method was demonstrated to 

perform as well as more popularly accepted classification methods in partitioning cancer samples 

with microarray data. More importantly, results demonstrate that variation introduced into 

microarray data by tissue sampling and tissue handling compromised the performance of 

classification methods.  

In the second part of this dissertation, variations introduced by the T7 based in vitro 

transcription labeling methods were investigated in detail. Results demonstrated that individual 

amplification methods significantly biased gene expression data even though the methods 
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compared in this study were all derivatives of the T7 RNA polymerase based in vitro 

transcription labeling approach. Variations observed can be partially explained by the number of 

biotinylated nucleotides used for labeling and the incubation time of the in vitro transcription 

experiments. These variations can generate discordant gene expression results even using the 

same RNA samples and cannot be corrected by post experiment analysis including advanced 

normalization techniques.  

Studies in this dissertation stress the concept that experimental and analytical methods 

must work together. This dissertation also emphasizes the importance of standardizing the DNA 

microarray technology and experimental procedures in order to optimize gene expression 

analysis and create quality standards compatible with the clinical application of this technology. 

These findings should be taken into account especially when comparing data from different 

platforms, and in standardizing protocols for clinical applications in pathology. 
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PREFACE 
 

The successful application of DNA microarray based gene expression profiling in 

translational research makes it a potential tool for use in clinical laboratories for diagnostic, 

prognostic, and therapeutic applications in the era of molecular medicine. However, the DNA 

microarray must overcome two significant hurdles before it can be used use in clinical 

environment. First, the massive volume of the gene expression data from DNA microarray based 

experiments requires a set of reliable algorithms that can discover patterns of gene expression 

robustly with high sensitivity and specificity. Second, published results from many studies have 

demonstrated the existence of significant variations in the data introduced by both the technology 

itself and the experimental procedures utilized to produce gene expression data. These variations 

can significantly impair the utility of microarray data in identifying biologically meaningful gene 

expression patterns.  

This dissertation represents work over five years, a time span in which research in 

microarray data has migrated from statistical analysis of large high-dimensionality data set to the 

understanding and control of experimental data variation between platforms, laboratories, and 

experiments. For these reasons, this dissertation has two main objectives.  

The first objective is to test the usefulness of a decision-tree learning algorithm for 

classification using large high-dimensionality gene expression data sets from DNA microarray 

experiments. Results and implication of this work are discussed in Chapter II. The second 

objective is to study the experimental variation introduced by a particular RNA labeling method 

and discovery its source. Results from this study are described in Chapter IV of this dissertation. 

In addition, Chapter III reports results from an attempt to integrate gene expression data 

generated from different types of arrays at different institutions. This work contributes to our 
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overall understanding of other sources of variation in the DNA microarray technology and 

microarray based gene expression profiling experiments. 

Two other studies are included as appendixes. Appendix A is a study describing the gene 

expression patterns in different types of prostate tissue specimens, which was done in 

collaboration with others in the Becich laboratories and directly related to the theme of this 

dissertation. Appendix B is a manuscript submitted to the Intelligence System for Molecular 

Biology (ISMB) 2002 Conference as a student paper. It was presented at the conference as a 

poster. It reports the results of using decision-tree learning to detect the global gene expression 

changes in rat brain after cocaine treatment. This study was collaboration with Drs David G. 

Peter and Robert E. Ferrell from Department of Human Genetics and Dr. Vanathi 

Gopalakrishnan from the Center for Biomedical Informatics (CBMI). It also is the initial phase 

of applying the decision-tree learning algorithm on microarray data which was tested in Chapter 

II of this dissertation.      

Chapter I summarizes the background knowledge related to the results presented in 

Chapter II, III, and IV. Section 1.1 provides an overview of the DNA microarray technology and 

discusses in detail the strategies of probe design and selection used for producing the Affymetrix 

GeneChip® arrays. It will help better understand the platform-dependent strategy proposed in 

Chapter III (Section 3.3.2.2) for microarray data integration. It will also help to understand how 

gene expression intensity values from the Affymetrix GeneChip® arrays are calculated by 

various algorithms in Section 1.3.2. Section 1.2 reviews the experimental procedures of DNA 

microarray based gene expression profiling experiments. RNA labeling methods are discussed in 

detail because they are important to understand the results presented in Chapter IV. Section 1.3-

1.5 review the analysis of gene expression data from DNA microarray experiments. This 
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includes both low-level and high-level analysis, each of which involves different principles. Both 

low-level and high-level data analysis are applied for every study conducted in this dissertation. 

Finally, Section 1.5 provides a thorough discussion of experimental variation in gene 

expression data in DNA microarray based experiments. Awareness of the extreme importance of 

this topic has increased recently and many manuscripts have reported on sources of data 

variation in microarray experiments. This section provides a systematic review of the current 

understanding of the problem and the possible solutions proposed. In particular, variations 

related to RNA labeling methods, tissue sampling and handling are discussed in detail as they 

provide direct background for results in Chapter II, III, and IV respectively.  
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1. CHAPTER I Introduction 

The classical dogma of molecular biology[1] states that the genetic information stored in 

DNA flows to RNA and then from RNA to protein by means of transcription and translation 

respectively. Gene expression is the process by which genetic information at the DNA level is 

converted into functional proteins. The transcription of messenger RNA from DNA molecules is 

an important regulatory point in this process and may signal cascades of many other events. The 

complexity and abundance of the messenger RNA population in a cell or organ reflect the 

cellular events in response to the environmental changes. Therefore, the study of patterns of gene 

expression at the messenger RNA level under different physiological conditions will provide 

evidence for understanding of many biological systems and gene function.  

In general, the study of gene expression involves the comparison of mRNA populations 

between two samples taken under different conditions such as diseased versus healthy or treated 

versus untreated. In the past two decades, gene expression analysis has evolved from studying 

only one differentially expressed gene at a time to a detailed survey of the whole transcriptome. 

This rapid progress is in large part driven by the development and application of DNA 

microarray techniques.  

1.1.DNA microarray overview 

1.1.1. Overview 

What is a DNA microarray? 
A DNA microarray is a small analytical device that holds hundreds or thousands of DNA 

molecules for the simultaneous examination of fluorescently labeled samples (cRNA, cDNA, 
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mRNA or total RNA) prepared from the messenger RNA population taken from cell cultures or 

tissue samples[2-6]. The DNA molecules on array surfaces are called ‘probes’; the fluorescently 

labeled samples are referred to as ‘targets’. Probes are manufactured in a high-density fashion on 

a small area (1.28cm × 1.28 cm for Affymetrix GeneChip® array and 3 inch × 1 inch for typical 

cDNA microarray) of a flat and solid glass surface. Probes are ordered in grid and each probe on 

an array has a unique ‘address’ (or X-Y coordinate) on a two-dimensional surface. This ensures 

the correct identification of each probe by computer-controlled robots used in microarray 

production and by software tools for data analysis purpose. Each probe is also highly specific to 

identify only one sequence in the transcriptome. DNA microarray technology allows sifting 

through and analyzing genomic information with exceptional speed and precision compared to 

other existing methods such as Northern blot analysis, differential display or serial analysis of 

gene expression(SAGE)[2-4]. 

History about the development of DNA microarray technology  
Early forms of DNA arrays were initially generated by spotting the bacterial colonies on 

filter membranes for gene identification and DNA sequencing studies. Subsequent improvements 

in laboratory automation enabled the creation of high-density filter arrays[7, 8]. Beginning in the 

1980s, many studies used the high-density filter arrays for sequencing, analyzing different gene 

expression and identifying new genes[7-14]. These arrays are, in general, entitled as 

‘macroarrays’ because of the ‘gigantic’ size (usually 8cm to 22cm in diameter) of the nylon filter 

membranes. Along with the advent of automatic high speed spotting techniques for array 

manufacture were the introductions of glass surface for hybridization by several research groups 

in the late 1980s and early 1990s[15-19]. These experiments established the feasibility of 

hybridizing on glass surface and further founded the array fabrication techniques currently in use 
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today. In 1995, Schena et al.[4] from Stanford University Medical Center was the first to report 

the usage of cDNA microarray for quantitative monitoring of gene expression patterns. Then in 

1996, Lockhart et al.[2] at Affymetrix Inc. (Santa Clara, CA) reported, for the first time, 

expression monitoring experiments by hybridization to high-density oligonucleotide arrays. 

Since then, cDNA microarrays and oligonucleotide arrays have become the major microarray 

platforms used for gene expression profiling.  Based on a database analysis of 2,000 microarray 

citations from 1995 to 2002[3], 65% of all the publications based on DNA microarrays 

experiments used cDNA microarrays and 26% of them applied oligonucleotide microarrays in 

their studies. In addition, 81.5% of microarray publications are for gene expression analysis. 

Type of DNA microarrays 
One major difference between cDNA and oligonucleotide microarrays is the type of 

DNA probe utilized. Probes on cDNA microarrays are typically 500~2500bp double-strand 

cDNAs produced by PCR amplification of cDNA libraries[3-5, 20]. In contrast, probes on 

oligonucleotide microarrays are single-strand 20~90 nucleotide molecules synthesized in vitro. 

In addition, microarrays can also be categorized based on array fabrication methods. For spotted 

arrays, DNA probes are mechanically deposited on the array surface[3-5, 20-26]. For in situ 

arrays, probes are synthesized in silico[2, 3, 6, 21, 22, 27-29], such as the GeneChip® arrays 

manufactured by Affymetrix Inc.. (Santa Clara, CA) DNA microarrays may also be categorized 

as one- or two-channel format where the difference is at the number of dyes used to label targets. 

For a DNA microarray using two dyes, two channels are needed in the image acquisition devices 

to gather signal from each dye.  

To date many species have been studied by microarray based experiments. Among all 

publications on microarrays from 1995 to 2002, more than half of microarray publications are 
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from studies on human. Other popular species are mouse, yeast, and rat with decedent order of 

publications. E. coli, Arabidopsis, fruit fly, and C. elegans together account for 11.2% of all 

these publications. Other microarray-available species are zebra fish, B. subtilis, bovine, maize, 

P. aeruginosa, Plasmodium, Procine, S. aureus, soybean, sugar cane, wheat, Xenopus laevis etc. 

In theory, any organism/species can be studied by microarray; this is an attractive feature of 

microarray technology[3]. 

Applications  
DNA microarray based gene expression profiling has been widely applied to all kinds of 

research involving gene expression profiling. The use of this technology for non-human species 

is focused on gene function, development and expression survey of the whole genome[29-31]. 

The most common use of microarrays is gene expression profiling of human specimens and, 

among those, the most popular application is gene expression profiling of human cancers. Many 

studies have presented results on discovery of gene functions, drug targets, pathway dissection, 

etc… More importantly, DNA microarray base gene expression profiling has been successfully 

applied in clinical research on the classification of clinical samples, discovery of subclasses of 

disease, and prediction of disease outcome and patient survival (also see Section 1.4.3 and 

Section 104.4)[32-40].  

Other types of microarray 
In addition to DNA microarrays, other types of microarrays have also been developed 

more recently for high-throughput profiling other types of molecules or biological systems. 

Among these, tissue microarray is worthy to be summarized. 

Tissue microarray (TMA) technology[41] is used for high-throughput in-situ tissue 

analysis including immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), 

4 



 

mRNA in situ hybridization (mRNA ISH). A tissue microarray contains up to thousands of 

different tissue samples aligned in grid on a microscope glass slide.  Each tissue sample on a 

TMA is usually 0.1 to 0.6mm in diameter; adjacent tissue samples are 0.1mm apart[41, 42]. 

Tissue samples on a TMA are from representative regions of original tissue samples fixed by 

formalin and embedded in paraffin blocks or fixed by cold ethanol and embedded in Tissue 

Tek® O.C.T.™ compound for preserving intact DNA and RNA[43]. As pointed out by Simon et 

al.[42], the process of making a TMA involves handling many tissue specimens as well as 

associated data. These include the identification of relevant samples from a tissue bank, the 

collection of glass slides for selected cases, the selection of morphologically representative area 

on slides, the collection of paraffin blocks of the selected cases and the storage of histological 

and clinical information of selected cases. TMAs can be constructed manually or using semi-

automated devices with two needles. One needle punches a hole, 0.1 to 0.6mm in diameter, on 

the ‘recipient’ paraffin block at a specific coordinate. The other needle with inner diameter of 0.1 

to 0.6mm retrieves tissue samples from the selected region on the ‘donor’ paraffin embedded 

tissue specimen and then precisely arrays the core biopsy in the pre-made hole. A ‘donor’ tissue 

specimen can provide many tissue biopsies with negligible damage. A recipient paraffin block 

can hold hundreds, up to thousands of core tissues. Glass slides containing very large number of 

tissue samples are made from consecutive sections cut from the ‘recipient’ block, and are hence 

called tissue microarrays or TMAs. 

  There are many advantages of using TMAs. The key advantage is that molecular markers 

can be examined in the context of tissue morphology. TMA technology provides a platform to 

detect DNA, RNA, or protein targets on a large number of different tissue types using uniform 

methodologies and interpretation criteria. As the original tissue specimens remain intact, TMA 
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allows intensive studying small tissue specimens as well as preserve precious tissues for future 

investigations. TMAs also allow possible automated analysis of arrayed tissue samples as each of 

them has relatively precise position on a TMA[42, 44]. 

Although TMAs can be used for any types of in situ tissue analysis, TMAs have been 

utilized mainly in cancer research. Applications of TMAs have been very well reviewed with 

great details by Simon et al.[42, 44] and summarized as follows. TMAs can be constructed to 

include tissue samples from multiple tumor types. This type of TMAs has been utilized to 

evaluate the prevalence of markers in different types of tumors. TMAs can contain different 

stages of a particular type of tumor for studying tumor progression and detect associations 

between tumor phenotype and genotype. There are also TMAs containing tumor tissue samples 

with clinical follow-up data for studying cancer prognosis and reveal association between genetic 

alteration and clinical outcome[45]. 

1.1.2. DNA microarray fabrication 

1.1.2.1. Overview  
DNA microarrays are fabricated by various techniques including techniques for in situ 

synthesis of oligo-nucleotide on an array surface[2, 6, 15, 27, 28, 46-48] and techniques for 

spotting pre-synthesized probes onto array surfaces[3, 4, 23, 25]. DNA microarrays created by in 

situ methods, such as GeneChip® arrays from Affymetrix Inc., are only available commercially. 

Spotted DNA microarrays are commercially available but also can be manufactured at 

microarray facilities in academic centers such as the Brown’s lab at Stanford University 

(http://brownlab.stanford.edu/).  

Microarray fabrication begins with the selection of a panel of appropriate probes that will 

be attached on the array surface. Two types of probes are currently in use for DNA microarray 

6 

http://brownlab.stanford.edu/


 

based gene expression profiling: cDNA probes and oligonucleotide probes. There are two 

approaches to prepare probes for DNA microarray manufacture: (1) cDNA probes and 

oligonucleotide probes can be prepared beforehand and then delivered onto the array surface; (2) 

Oligonucleotide probes can be synthesized in situ during array manufacture (refers to the in situ 

synthesis mentioned above). Accordingly, tasks related to probe preparation also vary. The major 

tasks in probe preparations include design, selection, and annotation of probes. Figure 1.1 

outlines the major steps/tasks for probe preparation based on probe type.  

Oligonucleotide probes may be synthesized in situ or fabricated prior array construction 

(Figure 1.1a). Either way, sequence information is required to design and prepare 

oligonucleotide probes. Since the recent completion of sequencing the whole genomes of human 

and other species[30, 31, 49], the availability of sequence information is no longer a factor that 

limits the production of oligonucleotide arrays. Probes are selected from established sequence 

databases, such as UniGene[50] and TIGR Gene Indices[51]. After a region on the sequence of a 

transcript is selected as a potential probe to represent the transcript on a microarray, this region 

needs to be validated by comparing it with all sequences, if available, in the transcriptome of the 

studied organism to minimize cross-hybridization using sequence similarity algorithms such as 

global BLAST. If the region is not unique enough to identify single transcript in the 

transcriptome, it is dropped and another region in the sequence of the same transcript may be 

selected and evaluated using the same strategy until a unique region is identified. Once probes 

are selected, precursors are prepared for microarray construction in situ, or probes are prepared 

using classical phosphoramidite chemistry[3, 52, 53] and purified before delivering to the array 

surface(Figure 1.1a).  

 

7 



 

 
 
Figure 1.1 Schematic of probe perpetration workflow for Oligonucleotide microarrays (a) and cDNA 
microarrays (b). 
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cDNA probes are obtained by purifying PCR products of cDNA clones (Figure 1.1 b). In 

contrast to oligonucleotide probes, the availability of sequence information is not a prerequisite 

for cDNA probe preparation. cDNA clones usually can be obtained as pre-constructed, validated, 

and annotated clone sets from academic and commercial resources. Under certain circumstances, 

such as the lack of clone sets for the organism of interest, a cDNA library may need to be 

prepared from a specific cell type or tissue[54]. Before cDNA clones can be used for cDNA 

probe amplification by PCR, each individual clone in the library needs to be sequenced to verify 

the sequence itself and avoid possible redundancy. cDNA clones are selected to represent as 

many unique transcripts as possible to produce arrays with low redundancy of transcript 

representation to survey the broadest possible set of genes. 

1.1.2.2. Affymetrix strategies for probe design and selection 
Affymetrix has unique proprietary ways to design and selection probes for gene 

expression analysis. (Please refer to Lipshutz et al.[6] for a graphical illustration.) This design 

strategy determines that hybridization results using Affymetrix GeneChip® arrays need to be 

analyzed by specially designed algorithms (discussed in Section 1.3.2). On the other hand, this 

strategy provide means by which platform-dependent integration approach can be developed as 

presented Chapter III for the integration of microarray gene expression data from different 

generations of the Affymetrix GeneChip® arrays.  

When selecting probes from sequence databases, a set of heuristic rules and/or model-based 

approach is applied to identify candidate sequences as probes. Significantly, redundancy is 

applied to every single transcript surveyed by the array[2, 6, 29, 55, 56]. Multiple probes (11~20) 

are used for each transcript. This redundant set of probes is called a “probe set”. These 

approaches lead to the current set of GeneChip® arrays for gene expression analysis[6].
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Probe redundancy 

A set of probes, named a “probe set,” is used to represent one transcript. A probe set 

comprises 11 to 20 independent pairs of probes/oligonucleotides. Each probe matches to a 

sequence region of the transcript with minimum, if not, overlapping to other probe sets. In the 

Affymetrix design, each probe is actually implemented as a probe pair. A probe pair consists of a 

perfect match probe (PM) and a miss match probe (MM) and both PM and MM probes are 25-

mer in length. The PM probe is 100% complementary to target sequence; the MM probe, on the 

other hand, has a single mismatch at the 13th base. Therefore, the only difference between PM 

and MM sequence is in the central position of the sequence[2, 6, 29, 55, 56].  

To summarize, in the Affymetrix GeneChip® arrays, redundancy is present at two levels: 

(1) the use of multiple oligonucleotides with different sequences (a probe set) to hybridize on 

different regions of a single transcript, (2) the use of MM probes in addition to the PM probe. 

These redundancies may offer advantages in the context of gene expression detection. When 

multiple oligonucleotides are used for the same transcript, the signal is derived by taking an 

average of the set of individual hybridization signal from each oligonucleotide. This may provide 

a better signal, decrease the signal-to-noise ratio, and increase accuracy for RNA quantitation. 

MM probes can be used as a control for cross-hybridization and non-specific hybridization. 

When calculating intensity value for a target, intensity values from MM probes in its probe set 

will be subtracted. At low concentration of a target, hybridization to the PM and MM probe pair 

will help to distinguish true signal with background/noise, i.e. whether the signal is generated by 

hybridizing the right target on its probe set or from non-specific hybridization of any type[6]. 

Probe selection rules 
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Each probe set representing a transcript is selected from 3’ end sequence region of its 

intended target. For example, regardless the length of the transcripts, the maximum distance of 

the 5’-most probe pair to the 3’ end of the transcript on the HG-U95Av2 array and HG-U133 set 

is about 600 base pair. This 3’-biased probe selection strategy ensures maximum number of 

targets are available for detection even when mRNA have been partially degraded because 

mRNA degradation usually starts from the 5’ end. Uniqueness of probes is assessed by 

comparing the candidate probe sequence first to all probes on the array and then to the full-length 

sequences of all transcripts in the surveyed species, if available. Probes were rejected if there 

were 22 or more base positions matched. Further selection is based on the performance of probes 

in hybridization experiments. A set of heuristic rules have been developed for probe set selection 

based on probe behavior as a function of certain sequence features[2]. Neural network algorithms 

are then used to assess probe characteristics. At the last step, probes were rejected if more than 

60 synthesis steps are needed to help minimize synthesis time and cost[2, 29].  

1.2.DNA microarray based gene expression profiling 

1.2.1. Experimental procedure 

The experimental procedure of a gene expression profiling study using DNA microarrays is 

summarized as follows (Figure 1.2 a). The first step in such a study is to identify the sources of 

RNA. This is usually done while designing the study and the source is determined by the study 

objectives. Most common sources of RNA are either cell cultures or tissue specimens from 

experiment animals or patients. Experiments start from collecting RNA samples by extracting 

them from the RNA sources. Targets are then prepared by labeling RNA samples with 

fluorescent dyes using different methods. Some RNA labeling methods also amplify RNA 

samples at the same time. At the hybridization step, each labeled nucleotide acid molecule 
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(mRNA, cRNA, or cDNA) in targets hybridizes with a probe complementary to its sequence on 

the array surface and forms a probe-target hybrid. Depending on the type of DNA microarray, 

two targets from different sources can hybridize on one array or on two separated arrays. 

Fluorescent dyes on each probe-target hybrid glow when stimulating the array surface with light. 

The intensity of emission from each hybrid is proportional to the relative abundance of an 

expressed transcript. Florescent emissions are captured by optical devices, converted to digital 

signal, and saved in an image file. Signal intensities stored in image files can be transformed to 

numerical intensity values for every probe on the array by appropriate algorithms. 



 

(a) experimental procedure starting from identifying the RNA sources and all the way to data analysis, (b) the possible sources of 
variation identified at each step of the experimental procedure, (c) data analysis including low-level and high level analysis.  

Figure 1.2 Schematic of the experimental procedures, data analysis and sources of variation in gene expression profiling using DNA microarrays.  
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1.2.2. RNA quality 

The primary target for gene expression analysis is mRNA derived from cell cultures or 

tissue samples. The quality of RNA from these samples will determine the quality of the ultimate 

gene expression data from DNA microarray hybridization. Alternatively, the quality of RNA 

samples is determined by multiple factors in the tissue acquisition and storage procedures 

discussed in Section 1.5.3.1 and 1.5.3.2. There are several factors that affect RNA quality in the 

target preparation and labeling process worthy of discussion here. RNA is not stable and 

RNAases exist in abundance in cells and in laboratory environments, which may cause the 

degradation of RNA samples. Therefore, RNA samples should be handled with great caution. 

RNA samples should be purified before target preparation and labeling process to remove 

proteins, DNAs, etc… In addition, phenol which is a reagent used commonly for RNA 

purification should be removed as it interferes the labeling efficiency of cyanine fluorescent 

dyes[57]. 

RNA purity is usually checked by a UV spectrometer. RNA with good purity should have 

an OD 260/OD 280 ratio above 1.8. 260nm and 280nm are the wavelengths at which the 

absorbance of the RNA recorded. If RNA is contaminated with proteins, the ratio will be lower 

than 1.8. RNA quality can be accessed by electrophoresis on an agarose gel and recently by a 

Bioanalyzer from Agilent (Foster City, CA). Good-quality RNA on a Bioanalyzer output should 

have smooth baselines with no increase of small molecular weight fragments. The 28s and 18s 

(for eukaryotic RNA samples) rRNA ratios should be between 1.5 and 2.0. 

1.2.3. Target preparation and labeling 

This section describes the approaches to prepare targets from purified, high-quality RNA 

samples for DNA microarray hybridization. After hybridization of targets with their 
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corresponding probes on a DNA microarray, a reporting system is needed to signal the detection 

of a target and the intensity of the hybridization. Therefore, like conventional Northern and 

Southern blots, targets are labeled for signal detection purpose. According to Schena [3] there are 

two major approaches for target labeling: (1) direct labeling where labeling tags are attached in a 

covalent manner directly to the target molecule using a enzymatic or chemical means; (2) 

indirect labeling in which labeling tags are attached in non-covalent and indirect way to the 

target molecule using dendrimers, antibodies or some other reagent. Because of recent 

improvement in labeling techniques, mRNA can also be directly labeled without “transferred” to 

cDNA or cRNA[58, 59].  

For DNA microarray based experiments, the most popularly used labeling reagents are 

various kinds of fluorescent reagents although there are other types of labeling reagents used. 

Fluorescent reagents can be used for both direct and indirect labeling. Most commonly used 

fluorescent reagents are cyanines including Cy3 and Cy5, and phycoerythrin (PE)[3].  

In addition to labeling, target mRNA may be converted to cDNAs or cRNA for several 

reasons: (1) labeling can be introduced during the conversion, (2) cDNA is more stable than 

mRNA and therefore it is easy to handle and store than mRNA, (3) the process of obtaining 

cDNA and cRNA involves mRNA amplification that provides means to obtain enough targets 

from minute amounts of mRNA.  

To generate good quality array data, a typical microarray experiment requires 5~20 

micrograms of labeled targets which correspond to milligrams of tissues or approximately 

106~107 cells from cell cultures[2, 4]. This requirement limits the use of microarray based gene 

expression analysis as most clinical tissue samples, for example biopsies and tissues from laser 

capture microdissection (LCM), are too small to provide enough starting materials. Therefore, 
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enzymatic amplification methods have been applied to generate abundant targets for 

hybridization from limited amount of starting material[60-64]. 

In the following sections, target labeling and/or target amplification methods will be 

discussed. Table 1.1 summarizes these methods based on the amount of total RNA needed, 

signal amplification or target amplification, popular dyes used, array platform used, time and 

work intensity. For a graphical illustration of each method please refer to Richter et al.[65]. 
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Table 1.1 Comparison of target labeling methods. 

 
 

 Reverse 
Transcription 

RT with 
aminoallyl 

T7 RNA 
polymerase 

based in vitro 
transcription 

SMART PCR Dendrimer  
TSA 

Direct labeling of 
mRNA 

(1) by Cole et al. 
(2) by Gupta et al. 

Start amount of 
total RNA 10~15 µg      10~15 µg 0.01~15µg 0.05~1 µg 1µg 0.5~2µg 10~15 µg 

Sequence sense Anti-sense  Sense

Probe sense Sense  Antisense

Signal 
amplification Yes.  No

Target 
amplification 

No 
Yes. Through 
passive target 
amplification 

Yes. Through 
passive target 
amplification No  Yes

Array platform 
used 

Affymetrix, 
Oligo, cDNA 

Oligo, 
cDNA 

Affymetrix, 
Oligo, cDNA cDNA arrays cDNA 

arrays 
cDNA 
arrays 

Affymetrix, 
cDNA array 

Time (hours) Several hours 
(4) 

Several 
hours  

(9) 
Several days Several hours 

(4) 

Several 
hours 

(6) 

Several 
hours  

(9) 

2 hours for (1) 
under 1hour for (2) 

Work intensity Low       medium High low low High low

RT: reverse transcription;  
TSA: tyramide signal amplification; 

 



 

1.2.3.1. Labeling with reverse transcription (RT) 
The basic RT approach is as follows. An oligo-dT primer is used to hybridize with 

mRNA which serves as the template for RT. cDNA is reversely transcribed from mRNA by 

incorporating deoxynucleotides base-by-base, some of which are covalently linked by a 

fluorescent reagent, with reverse transcriptase[3, 66]. Therefore, in the cDNA sequences 

produced there are nucleotides labeled with fluorescent dyes. After RT, the mRNA or total RNA 

templates are degraded and cDNAs are then purified. Both mRNA and total RNA can be used 

for RT reaction, but only the mRNA molecules in a total RNA sample is reverse transcribed 

because of the primer. Random primers are used when reverse transcribing prokaryotic RNA 

samples or RNA without poly-A tails. Reverse transcription of mRNA was the first labeling 

method used in DNA microarray based gene expression analysis[2, 4]. It is also a simple and 

effective approach. Furthermore, many different types of fluorescent reagents can be used for 

labeling with reverse transcription.  

Aminoallyl nucleotide analogs have been developed recently for direct labeling using 

reverse transcription [3, 28, 67]. An aminoallyl nucleotide has aliphatic primary amine group 

which is subsequently labeled with an amine-reactive fluorescent dye. The labeling is 

accomplished in two steps. First, the aminoallyl nucleotide analogs are incorporated through 

reverse transcription. Then the amine-reactive fluorescent dye reacts with aminoallyl group of 

nucleotide incorporated to form covalent bounds. Compared to fluorescently labeled nucleotides, 

aminoallyl nucleotide analogs have higher incorporation rates because of its small size and 

therefore more effective labeling can be achieved.  
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1.2.3.2. Labeling with T7 RNA polymerase based in vitro transcription 
 

The T7 RNA polymerase based in vitro linear amplification assay makes single stranded 

cRNAs that is antisense to the corresponding mRNA molecule by a multi-step enzymatic 

reaction [60, 61, 63]. An RNA polymerase promoter is integrated into 5’ end of each cDNA 

molecule by reversely transcribing mRNAs with a chimeric primer composed of oligo (dT) with 

the bacteriophage T7 RNA polymerase promoter. The 2nd strand of cDNA is then synthesized 

using the 1st as a template. Once double stranded, the T7 RNA polymerase promoter region 

becomes functional. The ds-cDNA molecules subsequently serve as the template for in vitro 

transcription of the single stranded antisense complementary RNA molecules by T7 RNA 

polymerase. Biotinylated labeled NTP molecules are introduced at this step. The degree of 

amplification depends upon the enzyme concentration and incubation time[61]. In a typical 

application of this method, more than 30 µg of cRNA can be generated from as little as 1µg of 

total RNA using an overnight incubation. When only minute amounts (less than 100ng) of total 

RNA are available, this method is modified to include an additional cycle of reverse transcription 

and in vitro transcription after the first in vitro transcription reaction in order to produce enough 

cRNA targets[60, 63]. Aminoallyl nucleotide analogs have also been used recently for direct 

labeling with the T7 RNA polymerase based in vitro amplification[68]. 

Fidelity and linearity of the approach have been well documented (Section 1.5.4). This 

approach provides a solution for the problem of insufficient amount of target mRNAs for 

microarray hybridization. However, this approach is quite time consuming and several studies 

have shown systematic biases introduced by this approach[64, 69, 70]. More details on 

comparisons studies of labeling approaches will be summarized and discussed in Section 1.5.4. 

The variations introduced by this method have also been investigated thoroughly in Chapter IV.   
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1.2.3.3. Labeling with SMART™ PCR amplification 
 

Polymerase chain reaction provides a way to amplify bulk amount of nucleic acids from 

minute amount of starting material. However, the nature of PCR limits its use in target 

preparation for microarray based gene expression experiments. PCR amplification is exponential 

where short templates are amplified more efficiently than long templates and therefore will 

distort the abundance and complexity in the mRNA population studied[64]. Nevertheless, there 

are several studies used a modified version of PCR amplification, SMART™ PCR or template 

switch PCR (TS-PCR), for target amplification and labeling in microarray gene expression 

experiments[62, 64, 71]. Based on the report from Petalitis et al.[62], SMART™ PCR provides 

better linearity compared with traditional PCR and increase the sensitivity of microarray 

experiments by allowing the detection of more transcripts which are below the detection 

concentration using direct labeling. Saghizadeh et al.[71] showed SMART™ PCR and IVT 

amplification are comparable in reproducibility and reliability by comparing gene expression 

data from the two approaches to data form total RNA and mRNA. However, a comparison study 

of SMART™ PCR and the T7 based amplification method by Puskás et al.[64] demonstrated that 

gene expression data from the T7 based method had better correlation with nonamplified (labeled 

by RT reaction) data than data from SMART™ PCR even though, both approaches gave highly 

reproducible data. Nonetheless, PCR amplification methods have not been accepted as a safe, 

reliable target labeling and amplification approach. 

1.2.3.4. Tyramide signal amplification  
 

Indirect labeling using tyramide signal amplification (TSA) employs antibody-antigen 

binding and enzymatic reactions to label array spots of target-probe hybrids. Labeling with TSA 
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labels target-probe hybrid and therefore labeling event takes place after hybridization. In 

addition, TSA labeling generates highly reactive fluorescent dyes which then couples with the 

array surface. Two components are critical to this assay: hapten (usually biotin) modified 

nucleotides and horseradish peroxidase (HRP) conjugated antibody (streptavidin). cDNA are 

incorporated with hapten modified nucleotides by reverse transcription of mRNA/total RNA and 

then hybridized on the array. After hybridization, the array is incubated with HRP conjugated 

antibodies, which bind to haptens on the target-probe hybrids. The binding of antigen and hapten 

brings HRP close to the array surface. The array is then incubated with hydrogen peroxide 

(H2O2) which is used by HRP to oxidize tyramide linked fluorescent reagents such as Cy5-

tyramide. Oxidized tyramide fluorescent reagents are highly reactive and can rapidly attach to 

the array surface. Therefore, at only the spots where hybridization takes place, fluorescent dyes 

will be incorporated[3, 65, 72].  

TSA approach amplifies fluorescent signal rather than the target. The advantage of using 

TSA compared to using the reverse transcription method is that it can provide hundred fold 

signal amplification and therefore minimizing the usage of precious RNA samples[3, 72]. One 

drawback of this protocol is that it is a little time consuming compared to other methods[3].  

Biotin labeling 
It is worthwhile to reveal the mechanism of biotin labeling approach which is adopted by 

several oligonucleotide platforms such as Affymetrix GeneChip® arrays[2] and CodeLink 

BioArray [25, 73] for gene expression from GE Healthcare. The biotin labeling method is similar 

to TSA as it also uses antigen and antibody binding (biotin and streptavidin) to link fluorescent 

dyes to the target-probe hybrids but there is no enzymatic reaction needed for the biotin labeling 

approach. Streptavidin molecules are coupled with fluorescent dyes, phycoerythrin (PE) for 
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GeneChip® arrays and Cy5 for CodeLink bioarrays, and therefore the labeling is done once the 

antibody and antigen binds.  

1.2.3.5. Labeling with dendrimer 
 

A dendrimer is a complex nucleic acid structure created by specific annealing of multiple 

nucleotide oligomers together to form a highly-branched structure[65, 74-76]. When use for 

labeling in microarray experiments, some branches can be labeled with fluorescent reagents, 

other branches tagged with a specific sequence tag. 

The indirect labeling approach using dendrimer works as follows. At reverse transcription, 

a chimeric primer is use, which contains both the poly-dT primer sequence and a small piece of 

sequence called “capture sequence”. This capture sequence is integrated to the 5’ end of cDNA 

molecule. (The capture sequence is complementary to the aforementioned sequence tag in some 

dendrimer branches.) cDNA targets are then hybridized on the array. cDNA are incorporated 

with hapten modified nucleotides by reverse transcription of mRNA/total RNA and then 

hybridized on the array. After hybridization, the array is incubated with the dendrimer. The 

sequence tag on a dendrimer hybridize with the capture sequence at each target-probe hybrid and 

the fluorescent labels on the dendrimer will be used to report the target-probe hybridization[3, 

65, 76]. 

The advantage of dendrimer approach is that each dendrimer can carry hundreds (up to 

350) of fluorescent labels. Small amount of target molecules (as low as 1 µg) at hybridization 

will provide enough signal for detection with high signal-to-noise ratio. Labeling process does 

not depend on the incorporation of fluorescent dNTP in a RT or IVT reaction and therefore the 

labeling can be robust[3, 65, 76].  
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1.2.3.6. Direct labeling of RNA 
 

There are labeling approaches developed to label RNA molecules directly without 

amplification or conversion in the second example. Two methods are worthy of discussion. 

Direct labeling of RNA with multiple biotins has recently been proposed by Cole et al. 

from Affymetrix Inc. (Santa Clara, CA)[58]. This approach uses T4 RNA ligase to attach a 3’-

biotinylated donor molecule to the target RNA[58]. mRNA targets are reverse transcribe to 

cDNA and then converted to cRNA by in vitro transcription without amplification. cRNA are 

then fragmented to small pieces, 50~200bp, and dephosphorylated to expose 3’-hydroxyl groups. 

T4 RNA ligase is then used to catalyze the addition of the biotinylated donor molecules to 3’-end 

of the fragmented cRNAs. This approach labels fragmented cRNAs uniformly and therefore can 

avoid any bias from sequence dependent incorporation. Gene expression data from this method 

has 90% agreement with data from T7 based labeling approach when studying gene expression in 

AML vs. ALL indicating its acceptable sensitivity for detecting differentially expressed 

transcripts[58]. 

Direct labeling of RNA with platinum-linked cyanine dyes was reported by Gupta et 

al.[59]. In this approach, the mRNA molecules are labeled in the total RNA by a single-step non-

enzymatic reaction. Platinum is attached with cyanine fluorescent reagents. The platinum reagent 

can react with the N7 of guanine (G) residues in a RNA sequence to form a stable coordinate 

bond[59]. The stability of the RNA molecule and its hybridization ability is not be affected by 

labeling.[59] By comparing to gene expression data from labeling with regular reverse 

transcription approach, Gupta et al.[59] demonstrated the high precision and low error for gene 

expression analysis. 
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The advantage of direct labeling of RNA is that it does not require any amplification and 

has only minor enzymatic manipulations. The integrity of the RNA sample is maximally 

preserved and the labeling procedure is much simplified. In addition, the direct labeling of RNA 

is quite fast. On the other hand, the direct labeling of RNA requires large amount of RNA and 

therefore may not be realistic for studies using low volume or rare tissue samples[58, 59]. One 

important note is that targets from direct labeling of RNA approaches are sense sequences in 

reference to mRNA, i.e. the same sequence as mRNA, and therefore the DNA microarrays need 

to be constructed to contain antisense probes[58, 59].  

1.2.4. Hybridization, detection and image acquisition 

There are two major ways to perform hybridization experiments (Figure 1.2a). A target can 

hybridize on one DNA microarray alone or two targets of different origin can co-hybridize on 

the same DNA microarrays. When using co-hybridization, targets are typically prepared from 

RNA taken from either cell cultures under different conditions or two different tissue samples 

and the same transcripts/genes from the two targets will compete for probe binding on the DNA 

microarray. Therefore, targets need to be labeled with two different fluorescent reagents so that 

binding of transcripts from each target can be distinguished at each spot. For a transcript/gene, 

depending on the amount of the two targets, the hybridized spot will show mixed color. Co-

hybridization usually is used on spotted arrays; the most popular pair of fluorescent dyes is Cy3 

and Cy5. On the other hand, if hybridization is done one target per DNA microarray, targets can 

be labeled and prepared with an appropriate approach and the comparison of two samples is 

conducted afterwards using intensity data from the two DNA arrays. 

Hybridization of targets with probes on DNA microarrays typically takes place at certain 

temperature and requires a certain amount of time to ensure hybridization reactions approach 
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equilibrium. A closed environment is needed to retain the hybridization solutions on the array 

surface. Affymetrix GeneChip® arrays use a closed plastic chamber; other DNA microarrays 

made on microscopic glass may need a lid with sealed edges to cover the array surface. 

Depending on the types of labeling approaches, extra work may be needed after hybridization 

process. For example, if targets were prepared using Dendrimer or TSA approaches, the actual 

labeling takes place after hybridization[3, 66, 72, 74]. Once all steps have been completed, DNA 

microarrays are subject to scanning and image acquisition.  

Hybridization signals are generated by using light to stimulate the emission of the 

fluorescent dyes. Light from a lamp with certain wavelength shires on the array surface and 

causes the fluorescent dyes at each feature/spot to emit. The amount of emission is determined 

by the amount of fluorescent dyes bound, which is correlated with the amount of targets-probe 

hybrids at the site. If co-hybridization takes place, two wavelengths are needed to stimulate 

emissions of the two different fluorescent dyes. The emission is passed through emission filters 

and captured by a charge-coupled devise (CCD) camera. A scanner walks through the entire 

array surface with precise positioning to capture the signal feature-by-feature. Signals will be 

stored in image files. Therefore, image files are the first set/level of data generated from 

microarray experiments. For Affymetrix GeneChip® arrays, the image files have “.dat” 

extension. For cDNA arrays, the images files are usually in TIFF format.  

1.2.5. Background subtraction and intensity calculation 

Images must be analyzed to identify the arrayed spots and to measure the relative 

fluorescent intensities for each element. Most scanners or array platforms provide software 

packages to handle image processing. Image processing involves three steps. First each spots or 

features must be identified and distinguished from noises and backgrounds on the array which 
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may be due to target precipitation contaminants (dust, etc.), or hybridization artifacts. The 

background needs to be calculated locally and then eliminated from each spot or element. 

Followed by determination of local background, the background-subtracted hybridization 

intensity for each spot or element must be calculated.  

For cDNA microarrays, there are two major ways regarding the calculation of intensities: 

either using the mean or the median intensity for each spot[3, 5, 77]. The intensity values will be 

used for normalization and expression ratio calculation that will be discussed in Section 1.3.1. 

For Affymetrix GeneChip® arrays, the fluorescent intensity at each probe cell is calculated in 

several steps. First, a grid is applied to the array image. This grid divides the image into many 

probe cells. Each probe cell covers an area, measured by pixels, on the image file. Then, pixels at 

borders are eliminated from intensity calculation as background. The distributions of intensities 

from remaining pixels in a probe cell are plotted and the intensity value at 75% is used to 

represent the average intensity of this probe cell. Average intensity is calculated for each probe 

cell in the image. The resulted average intensities are stored in a text file with “.cel” extension. 

This file is then used for probe-level analysis and normalization to generate gene expression 

value for each gene on the array [78]. 
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1.3.Low-level data analysis 

Data analysis includes both low-level data analysis and high-level data analysis (Figure 

1.2c) When analyzing a microarray data set, low-level analysis is performed first. The purpose of 

low-level data analysis or normalization is to adjust for any bias which arises from variation in 

the microarray technology rather than from biological differences between the RNA samples or 

the printed probes. 

1.3.1. Low-level data analysis for cDNA microarrays 

For cDNA microarrays, after image processing, it is necessary to normalize the relative 

fluorescent intensities in each of the two channels and normalize across arrays. Normalization 

adjusts for variations in labeling and detection efficiencies for the fluorescent labels and for 

possible variations in initial RNA. It is well known that Cy3 and Cy5 have different 

incorporation rates[79]. Three normalization methods are popularly used[3, 77, 79]. All methods 

assume that most of genes in the array, some subsets of genes, or a set of exogenous genes 

spiked into the RNA before labeling should have an average expression ratio equal to one.  

The first normalization method simply uses the total measured fluorescence intensity on an 

array. The assumptions are: (1) equal amounts of two samples were hybridized on the array; (2) 

the overall intensity across all spots in the array should be equal for two channels. Under these 

assumptions, a normalization factor can be calculated and then used to scale the intensity for 

each spot in the array.  

The second approach uses linear regression techniques. For closely related samples, the 

expression levels of many genes are assumed constant across samples. Therefore, a scatter plot 

of measured intensities from Cy3 and Cy5 should have a theoretical slope of one. Under this 

assumption, regression techniques can be used to compute the real slope and adjust it to one. 
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Usually, in many experiments, the measurements are not linear. Under this circumstance, local 

regression techniques can be used such as LOWESS regression (Locally Weighted Scatter plot 

Smoothing regression)[79, 80]. 

The last approach, developed by Chen et al.[81], relies on the assumption that intensities of 

a subset of house keeping genes have constant mean values and standard deviation independent 

of samples. The measured Cy5 to Cy3 ratio for these genes can be modeled and adjusted to one. 

In Chen et al. study[81], the authors developed an iterative procedure to perform normalization 

using this approach. 

After normalization, the data for each gene is reported as expression ratio of the two 

samples hybridized on the same cDNA array and ratios are usually in log scale. This ratio for 

each gene is simply calculated by dividing the normalized intensity from one channel with its 

normalized value from the other channel. Expression ratios will be used for high-level analysis 

for class discovery, class comparison, or cancer classification and/or predication. 

1.3.2. Low-level data analysis for Affymetrix GeneChip® arrays 

1.3.2.1. Probe level analysis  
 

As discussed in Section 1.1.2.3, Affymetrix GeneChip® arrays for gene expression apply 

a unique probe design. A transcript is represented by a set of probe pairs (11 pairs or 20 pairs) 

and each pair of probes contains a perfect match (PM) probe and a mismatch (MM) probe. Both 

PM and MM probes are 25mers oligonucleotides. The PM probes complement exactly to the 

corresponding transcript sequences; the MM probe has a mismatch nucleotide at the 13th 

position. When measuring gene expression, each probe will give an intensity measurement 

corresponding to the hybridization between the probe itself and the targeted sequences in the 

hybridization solutions. Therefore, analysis of gene expression data from Affymetrix 
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GeneChip® arrays should start at the probe level in order to yield a single numerical value for a 

transcript by summarizing the intensity values from all probes in the probe set for this transcript. 

There are three algorithms used popularly to perform probe level analysis of expression results 

from Affymetrix GeneChip® arrays. The following paragraphs will summarize these three 

methods. 

Affymetrix Statistical Algorithm 
Affymetrix Statistical Algorithm is embedded into the GeneChip® Operating Software 

(GCOS) package. Early versions of the package are called Microarray Suite, MAS. Version 5.0 

(MAS 5.0) also employs the Affymetrix Statistical Algorithm for data analysis. Version 4.0 

(MAS 4.0), however, applied empirical analysis algorithms which were proved to perform 

inferiorly compared with the Statistical Algorithm discussed below. GCOS provides automated 

operation and control of instruments (fluidics and scanner), management of experiments and 

sample information, data acquisition, and data analysis. The Affymetrix Statistical Algorithm is 

the component in this software package that performs data analysis[82, 83]. This algorithm 

provides two types of analysis, ‘single array analysis’ and ‘comparison analysis’. 

Single array analysis  

For the single array analysis, there are two components, the detection algorithm, and the 

signal algorithm. The detection algorithm tells if a transcript is present or not in the hybridization 

solution. Using probe pair intensity values (which is stored in the “.cel” files) in a probe set it 

generates a detection p-value and assigns a detection call to the probe set. Detection calls can be 

“Present”, “Absent” or “Marginal”[82, 83]. The signal algorithm in single array analysis is used 

to derive numerical expression intensity values from probe pairs in a probe set. Signal is 

calculated using the One-Step Turkey’s Biweight Estimate. Briefly, for each probe pair, the 
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intensity values of MM probe or an estimated value, if MM probe has higher intensity value than 

PM probe, is subtracted from the intensity value of the PM probe. The adjusted intensity of PM 

probe is log transformed and then assigned a weight based on the differences of this value to the 

median of all probe pairs in the probe set. For example, if the log transformed, adjusted intensity 

of PM probe in a probe pair is equal or very close to the median of all log transformed and 

adjusted intensities from all probe pairs in the probe set, it will be assigned a high weight. The 

mean of the weighted intensity values for a probe set is determined and becomes the quantative 

expression intensity value for the probe set[82, 83]. For single array analysis, probe-level 

analysis is performed first then data is normalized using the method discussed in section 1.3.2.2. 

Comparison analysis  
Comparison analysis compares expression from two arrays, hybridized with two distinct 

samples usually experiment and control, to detect changes in gene expression. Similar to single 

array analysis, the comparison analysis also has two components, a ‘change algorithm’ and a 

‘signal log ratio algorithm’[82, 83]. Before results from two arrays are compared, they need to be 

normalized or scaled to correct variations between the two arrays. Normalization and scaling will 

be discussed in 1.3.2.2. For the discussion of comparison analysis, assume results from the two 

arrays have been normalized or scaled.  

The ‘change algorithm’ detects the ratio of gene expression for each probe set between 

the experiment array and the baseline array. It also calculates a Change p-value. A change call is 

assigned to each probe set after comparison based on the Change p-value. The change calls can 

be “Increase”, “Marginal Increase”, “No Change”, “Decrease”, or “Marginal Decrease”[82, 83]. 

The “signal log ratio” algorithm calculates ratios of gene expression between experiment and 

control arrays. The signal log ratio represents the level and direction of the change of a probe set. 
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To get this ratio, the log ratio between the two arrays is first calculated for each probe pair. Once 

log ratios for all probe pairs in a probe set are gathered, the signal log ratio is computed using a 

one-step Tukey’s Biweight method by taking a mean of these log ratios[82, 83]. 

Model-based Expression Analysis 
The model-based expression analysis algorithm calculates Model-based expression 

indexes (MBEI) for each probe set based on probe level intensity values across multiple 

Affymetrix GeneChip® gene expression arrays[84, 85]. It has been implemented in the DNA-

Chip Analyzer (dChip) software package[86]. Model-based expression analysis performs 

normalization first and then calculates the expression intensity values. The normalization method 

used in this model will be discussed in section 1.3.2.2. For the following discussion, please 

assume normalization has been performed.   

Model-based expression analysis builds a model to estimate the expression of a gene in 

each sample of a multiple-sample study based on the responses of probe intensity values on the 

arrays to gene expression changes across samples. It assumes that each probe, PM or MM 

probes, in a probe pair will have different sensitivity in responding to the expression change of 

the gene corresponding to the probe set. Therefore, a probe-sensitivity index is estimated for a 

probe across all arrays in the study. The (PM-MM) difference of each probe in an array is the 

product of MBEI in the array and the probe-sensitivity index of the probe plus an error term. 

Here the (PM-MM) deference is known for each probe pair and the probe-sensitivity index can 

be estimated by surveying the intensity value of the probe across all arrays in the analysis. As a 

result, the MBEI can be calculated and it is reported as the intensity for that probe[85, 86].  

In the newer version of the MBEI algorithm, the authors proposed a revised model that 

calculates the MBEI using only the intensity value of the PM probes. The reason for using only 
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PM probes is that some MM probes are not sensitive enough to the changes of expression of a 

transcripts between samples[84]. The inclusion of intensity of MM probe, therefore, may impair 

the MBEI on faithfully representing the expression level of a transcript in each sample. The PM-

only model[84, 86] is similar to the PM-MM model but it changes the (PM-MM) difference term 

in the algorithm with intensity of PM probe. 

Compared to the MAS5.0 algorithm, MBEI reduces the variability of expression intensity 

estimate of the low expressor or rare transcripts. The PM-only model also provides a better 

estimation compared to either (PM-MM) model or MAS5.0[84, 85, 87]. 

Robust Multi-array Average (RMA)  
Robust multiple average (RMA) [87, 88] is implemented in the Bioconductor software 

package [89].  RMA also requires normalized data before probe-level analysis using quantile 

normalization discussed in section 1.3.2.2. RMA estimates the expression intensity values for 

each probe on an array using a log scale linear additive model. The model calculates the log 

transformed PM intensity values that are normalized and background corrected. The expression 

intensity value of a probe set is obtained by fitting a linear model with the intensity values from 

each the transformed PM probes (background corrected and normalized)[87, 88].  

In a comparison of the three probe-level analysis methods discussed above by Irizarray et 

al.[87], results demonstrated that RMA outperformed of both MAS5.0 and dChip on the 

precision of estimating gene expression intensities for low expressor by effectively reducing 

variations within replicate arrays, the consistency of fold change estimation and on detection of 

differentially expressed genes (increased sensitivity and specificity of the detection). 
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1.3.2.2. Data normalization 
Probe-level analysis algorithms and/or software packages usually have normalization 

strategies implemented as well.  

Normalization methods used GCOS software 
GCOS software package provides two normalization procedures, normalization, and 

scaling, for the gene expression data Affymetrix GeneChip® arrays. Both methods maneuver 

either the average intensity value of all transcripts on each array or the average intensity values 

from selected probe sets/transcripts on the array. If all probe sets are used, the normalization is 

considered global. The assumption for global normalization is that most of genes in a 

transcriptome will not have changes in expression in both control and experiment samples, or 

under disease and normal states. However, under certain circumstances, for example treating cell 

culture with a drug, transcription levels of many, if not most, genes in a transcriptome will 

change. Therefore, only the group of genes known with no differential expression can be used in 

the calculation of average intensity value in normalization procedure. By doing so, the real gene 

expression change due to drug treatment will be preserved and only the experimental variations 

are eliminated by normalization. In addition, both methods are considered linear as the average 

intensity values of all arrays are normalized by multiplying a factor. The factor is calculated by 

comparing the average intensity value to either an arbitrary number or the average intensity value 

of a baseline array. 

When scaling, a numerical value, which is user defined and adjustable, is set arbitrarily as 

the target intensity value. The average intensity value of each array is set to this target intensity 

value by multiplying it with a factor, called scaling factor. If the average intensity value is larger 

than the targeted value, the scaling factor for this array is less than 1.0. Conversely, scaling factor 

is larger than 1.0. Scaling makes it possible the comparison of multiple arrays in a study since 
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scaling, presumably, removes possible technical variations across arrays. Scaling can be used 

independent of the comparison analysis. Therefore, in a multi-array study, even though there 

may not be a baseline array, the arrays can still be compared for changes in gene expression after 

scaling[82, 83, 90].  

Normalization, on the other hand, can only be used in the comparison analysis 

(mentioned in Section 1.3.2.1) where gene expression between an experimental array and a 

baseline array are compared. At normalization step in the comparison analysis, the average 

intensity value of the experimental array is brought up or down to the average intensity value of 

the baseline array by multiplying the average intensity value of the experimental array with a 

factor called normalization factor. If the baseline array is changed, the normalization factor of an 

experimental array changes as well[82, 83, 90].  

Normalization method used dChip – Invariant set normalization 
For model-based expression analysis, probe intensities on an array need to be normalized 

before calculating MBEI. The normalization strategy used here is called “invariant set 

normalization” [84, 86]. This method normalizes the average intensity value of each array in a 

study (except the baseline array) to the average intensity value of the baseline array. The baseline 

array usually is the array with the median average intensity value across all arrays in the study. 

Alternatively, if a baseline experiment/sample is included in the study, the array from the 

baseline experiment/sample is used. 

This normalization strategy depends on genes of which expression intensities do not 

change across arrays (i.e. not differentially expressed). However, it is usually not possible to 

identify such group of genes. The assumption for this method is that probes of a gene with no 

change in expression between an array and the baseline array will have similar intensity ranks. 
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Therefore, in this normalization method, for each array, intensity values of probes (only PM 

probes are used) are ranked. Then the rank from an array is compared to the rank from the 

baseline array. The probes that have the similar rank on both arrays are considered to belonging 

to the genes with no differential expression across the two arrays. An iterative approach is used 

to compare the ranks and select the set of invariant probes across all arrays in the study in the 

end. Each array is normalized to the baseline array based on the comparison of intensity values 

of probes in the invariant set across the two arrays. For each study, the invariant set of probes is 

different[84, 86]. 

Normalization method used in RMA -- Quantile normalization 
The normalization method used in RMA (Robust Multi-array Average, Section 1.3.2.1) is 

called quantile normalization. Performing quantile normalization makes the distribution of 

intensity values of all probes the same for all arrays in an analysis. In order to do so, first, data 

from all probes are projected to a high-dimensional space where each array is represented as a 

column of intensity values. If there are n arrays in the analysis, after the transformation, there 

will be n columns of data. Intensity values in a column are then sorted from small to large. 

Average is taken for all intensity values in a row and this average is used to replace the original 

value in each cell (i.e. the row in each column). After replacing each cell with the row average, 

the column is sorted again from small to large. The value in each cell becomes the normalized 

intensity value for a particular probe in an array[87, 91].   

Bolstad et al.[91] compared the three normalization methods aforementioned. Their 

results show that the quantile normalization method outperformed both the scaling normalization 

(a linear normalization) and the invariant set normalization (non-linear normalization) in terms of 

the ability to reduce variations of a probe set across all arrays in an analysis and speed.  
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1.4.High-level data analysis 

1.4.1.  High-level analysis overview 

Many data analysis methods have been developed or adapted from other fields of research 

and then applied to DNA microarray technology for gene expression profiling. These methods 

are usually considered high-level analysis approaches in contrast to the low-level data analysis 

methods. The development and application of an analysis method is determined mainly by the 

study objective.  

Typical research in biological or biomedical field is hypothesis-driven because it 

investigates the mechanisms of a specific gene by manipulating the experimental conditions. 

Microarray based gene expression profiling, on the other hand, provides global/comprehensive 

survey of gene expression in a transcriptome by monitoring the expression levels of tens of 

thousands of genes simultaneously. Therefore, most microarray based gene expression profiling 

studies are typically considered descriptive research[92, 93]. Nonetheless, a gene expression 

profiling study using DNA microarrays will always at least have clear objectives and answer 

well-defined questions.  

In the following paragraphs, analysis methods will be summarized in the context of study 

objectives. Since there are a large number of analysis methods available and usually only a small 

number of them have been accepted and widely used in the research community, only those 

methods will be mentioned in the discussion. Before discussing the specific analysis objective 

and methods, it is worthy to describe the gene expression data sets from DNA microarray 

experiments.  
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1.4.2. Characteristics of microarray gene expression data 

As mentioned before, the power of microarray based analysis is to make possible the 

simultaneous monitoring of tens of thousands of genes, in a massively parallel fashion and across 

many samples at the same time. Gene expression data resulted from microarray experiments 

have unique features which are different from results of all other means of gene expression 

profiling analysis such as Northern Blot, SAGE or RT-PCR. Let us assume there is a study using 

microarray experiment to survey gene expression of m samples with an array of n probes/probe 

sets. The number of data points or expression intensity values in the results will become m × n. 

Such a study may survey gene expression in a number of samples (several hundreds) and a DNA 

microarray typically contains thousands of probes. Therefore, microarray data always has large 

volume and high dimensionality. These features make the analysis of gene expression data from 

DNA microarray experiments with classical statistical method almost unfeasible. In addition, as 

multiple samples and genes are surveyed at the same time in a microarray experiment, there may 

be uncover networks or patterns of gene expression which can not be detected by classical 

analysis methods.  

1.4.3. Study objective and high-level analysis methods 

1.4.3.1. Class discovery 
 

Class discovery studies aim to discover previously unknown subtypes of samples or 

specimens using gene expression profiles from microarray experiments. The main idea for this 

type of studies is that, although some samples or specimens may share similar morphological 

features, they have distinct patterns of gene expression. Therefore, a global survey of gene 

expression will help to discover specific patterns, which can be used to identify this new 

subgroup of samples or specimens. Class discovery is usually combined with class comparison 
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and prediction to perform cancer classification with microarray gene expression profiling results. 

Many studies in cancer research have been able to identify new subtypes of cancer using 

microarray gene expression data[33, 94, 95]. For example, Alizadeh et al.[95] conducted studies 

to characterize gene expressions in B-cell malignancies systematically. In their study, gene 

expression patterns identified from microarray data were able to distinguish diffuse large B-cell 

lymphoma into two clinically significant groups that had not been identified previously using 

classical morphological criteria and/or cellular markers.   

Alternatively, class discovery can also be used to discover groups of co-expressed genes 

and some of them may be novel genes or expression sequence tags with no known function. By 

grouping unknown genes with known genes, inferences can be possibly made on the functions 

and family of a novel gene based on its expression pattern. 

Data analysis involved in class discovery is not supervised with predefined class 

memberships or gene function groups. The resultant clusters or groups of samples or genes are 

derived based solely on gene expression data with no prior information about the samples. 

Therefore, methods used in class discovery are “unsupervised”[96, 97]. The most popularly used 

methods in class discovery are clustering methods including hierarchical clustering,[96, 98] K-

means clustering,[96, 99] self-organizing maps[96, 100], etc. In addition, methods for data 

visualization using multidimensional scaling, such as principle component analysis[96], have 

been used in class discovery. 

Clustering algorithms group similar objects (tissue specimens or genes) by calculating the 

similarity or distance (dissimilarity) between objects and grouping similar objects together[96]. It 

is useful to partition genes or tissue specimens into clusters based solely on microarray gene 

expression results. On the other hand, clustering algorithms can find clusters even in random data 
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sets. Therefore, it is critical to validate the clusters resulting from clustering analysis[96, 97, 

101]. Many cluster validation approaches are available[96, 101] but most of them are not trivial 

to implement and use. When clustering is used in class discovery, researchers should be aware of 

its limitations and be cautious on any conclusive statements based on clustering results, unless 

appropriate validation is performed.  

1.4.3.2. Class comparison, class prediction and prognostic prediction 
 

Class comparison studies compare gene expression profiles from different classes of cancer 

specimens and identify gene expression patterns uniquely associated with a particular class or 

subclass of a certain type of cancer. Class comparison involves two aims. First, gene expression 

profiles from different classes or subclasses are compared to investigate if there are differences 

in patterns of gene expression. Secondly, analysis of gene expression is focused on specifying 

the group of genes differentially expressed between classes if they have distinct gene expression 

patterns. Most of these studies also attempt to develop a predictor or classifier based on the 

expression values of selected genes. This last aim, class prediction, may also be listed as a 

distinct objective. However, most likely, to achieve a possible prediction, studies have to have 

class comparison completed first.  

There are many examples for class comparison studies in the literature. The work from 

Golub et al.[32] is likely the first publication on class comparison and class prediction. In their 

study, the authors proposed the classification of human acute leukemia using solely DNA 

microarray data. They built a class discovery procedure to identify differentially expressed genes 

between two types of acute leukemia, ALL and AML. Then a predictor is built, using only gene 

expression results, which can distinguish ALL and AML without prior knowledge of the class 

membership of a specific sample. This study sets an example for molecular classification using 
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microarray data, which combines class comparison and class prediction to achieve better 

classification of cancer. Many more studies have followed this work and attempt to molecularly 

classify of many different types of human cancers[33, 36, 45, 102]. A number studies are also 

focused on the classification of multiple cancer types using microarray gene expression 

results[33, 34, 39, 40, 103, 104]. 

In addition to classification, recent studies focused on linking gene expression patterns from 

microarray results to the prediction of cancer prognosis and clinical outcomes. This kind of study 

aims to investigate whether there is a relationship between gene expression and clinical 

outcomes. Usually a prognostic predictor is built using solely the expression levels of the 

selected genes to predict the clinical outcome. Studies have focused on predicting outcomes, 

such as metastasis and patient survival, of many types of human cancers[34-36, 38, 105-108]. By 

comparing predictions based on classical histologic criteria, predictors built on gene expression 

results have been proved more powerful in predicting the outcome of the cancer from a patient 

and therefore will help to improve therapeutics and patient care. 

Van’t Veer et al.[106] reported the prediction of the clinical outcome of breast cancer using 

microarray data. The authors were able to identify a 70-gene prognosis signature or poor 

prognosis predictor of distant metastases of breast cancer with high accuracy even though the 

primary cancer was lymph node-negative disease, i.e. no lymph node metastasis at the time of 

diagnosis. Van De Vijver et al.[107] further evaluated this “poor prognosis predictor” on its 

ability to predict the survival of 295 breast cancer patients with and without lymph node 

metastases. Their results demonstrated that the predictor/prognosis signature built using only 

gene expression data performed best on predicting the appearance of distant metastases in first 

five years after treatment. The predictor was also highly predictive of the risk of distant 
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metastases of patients with or without lymph node metastases at the time of diagnosis. Results 

from these two consecutive studies proved the predictive power of gene expression signature in 

clinical outcome studies.  

The prerequisites for successful cancer classification and prognosis prediction are 

comprehensive information related to clinical outcomes including patient demographics, 

pathological and histological information such as disease stage and grade, treatment, prognosis 

related information such as lymph node metastases and survival after treatment, etc... Gene 

expression signatures with high predictive ability can only be identified when informative and 

sufficient clinical information is provided along with the gene expression profiles from 

microarray experiments. The collection of cancer tissue specimens and the management of the 

patient and disease related information requires tremendous effort over a long periods of time 

and rely on tissue banking informatics tools such as disease-specific databases or comprehensive 

data warehouses.   

If a study involves class comparison, significance tests should be used to identify 

differentially expressed genes between samples belonging to different classes. Significant tests 

are usually considered supervised since data analysis is conducted using the known knowledge 

of sample class memberships. This is in contrast to unsupervised methods such as clustering.  

Though many statistical tests are available (and more are being developed), the most popularly 

used methods are nonparametric tests such as Mann-Whitney rank sum test or multiple testing 

with controlling for false positives such as Welsh’s t-test with the Bonferroni correction. 

ANOVA can also be used to compare the multiple conditions. Alternatively, Significance 

Analysis of Microarrays (SAM)[109] and the Signal-to-Noise metric with Permutation[32] allow 

the estimation of variation in experimental error between replicates and therefore estimate the 
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false discovery rate at various levels of stringency. In general, the success of significance testing 

is dependent on the size of the difference one wishes to detect, the variation in the data, and the 

number of replicates available. Because the variation in the data is a function of expression level 

(with greater variation at lower expressions), it is difficult to estimate the level of differential 

expression that will be found to be significant in an experiment. Hence, gene lists from 

significance tests should be interpreted carefully.  

Classification and class prediction also use supervised methods, which can detect patterns 

of gene expression and build classifiers or predictors. The classifiers or predictors are built based 

on the expression data of some differentially expressed genes. The selection of differentially 

expressed genes is called “feature selection”. It is the first step toward developing the classifier 

or predictors. Methods for feature selections can be the methods used for class comparison, 

which identify significantly expressed genes between samples. Another method, principle 

component analysis[110], can also be used for feature selection. The popularly used methods for 

building classifiers or predictors from microarray data are Discriminant Analysis[111], Nearest 

Neighbor classifiers[38], the Weighted Gene Voting method[32], Support Vector Machines[112, 

113], Shrunken Centroids[114], Fishers Linear Discriminant Analysis (FLDA)[111] and 

Decision Tree Based Methods using Recursive Partitioning[115]. 

It is difficult to compare the performance of different methods and to identify the best 

method. Dudoit et al.[111] performed a direct comparison of several methods (Weighted Gene 

Voting method, Decision-Tree learning method with or without boosting, Nearest Neighbor 

classifier, standard and diagonal discriminant analysis) on their ability to classify three 

microarray data sets. Their results showed that the diagonal discriminant analysis and Nearest 
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Neighbor classifier had the best performance; the standard discriminant analysis performed 

poorly. For their study, decision-tree learning methods had intermediate performance.      

An issue associated with class prediction studies is the validation of the classifiers or 

predictors. It is usually accomplished by two ways. Cross-validation is performed for almost 

every study. In doing so, usually a portion of the samples or specimens is left out when building 

the classifier or class predictor. Subsequently it is used to predict the class membership of the 

left-out samples. The set of left-out samples is referred to as the ‘test set’; the set of samples used 

in the classifier is called the ‘training set’. Leave-one-out cross-validation (LOOCV) is a special 

case of the cross-validation method. In LOOCV, one sample is left out at a time and a classifier 

is built using the training set of samples (all samples – the left-out sample). This classifier is 

tested on its ability to predict the class membership of the left-out sample. This process is 

repeated until each sample is left out once. The performance of classification or class prediction 

is measured by the overall error rate in LOOCV[32, 96]. It is important to note that, at cross-

validation or LOOCV, feature selection is only performed using the training set. The test set is 

remained unseen by the classifier so that the accuracy on predicting the test set reflects the “true” 

performance of the classifier[96, 97].  

Alternatively, the performance of a classifier or a class predictor can be validated by 

classifying or predicting the class memberships of samples in another microarray data set. 

Samples from this new data set should not be used either in feature selection or in developing the 

classifier. Such a data set can be obtained from the published articles that carried out studies 

using similar RNA samples as we did in Chapter II[38]. Alternatively, if there are a large number 

of samples in an analysis, the original data set can be divided into two portions; the larger portion 
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of samples is used to build the classifier and the smaller portion is used to validate its 

performance[96].  
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1.5.Variations in gene expression data from DNA microarray experiments  

1.5.1. Overview 

It is common for multiple groups to conduct similar studies using different types of DNA 

microarrays and/or clinical tissue specimens. These studies may also ask very similar, if not the 

same, questions; however, gene expression results from DNA microarray based experiments 

often give quite different answers due to the lack of control of variation.  

For example, the contest data sets for the Critical Assessment of Microarray Data Analysis 

(CAMDA) 2003 conference came from four studies on lung cancer. The four data sets were 

created by four research groups from different institutions, Michigan[35], Harvard[33], 

Stanford[34], and Ontario[36]. Data sets from Harvard and Michigan groups were generated 

from two generations of Affymetrix GeneChip® arrays; and data sets from Stanford and Ontario 

used cDNA microarrays. The goals of their studies were: (1) to perform molecular classification 

and staging of lung cancer specimens for diagnosis purpose, (2) to help predict cancer prognosis 

and patient survival.  

Each study reported either (1) a molecular classification of lung cancer with a panel of 

differentially expressed genes or (2) linkage of patient survival to gene expression. There was 

little or no overlap between the differentially expressed gene lists from the four studies. This 

makes true meta-analysis very challenging. Furthermore, only 4% (2499) of the total transcripts 

(62029) surveyed by the four DNA microarrays—Harvard 12600, Ontario 19200, Michigan 

7129, Stanford 23100—were present on all four of the arrays used in these studies[116]. Other 

limitations on cross-platform integration were related to inherent differences between types of 

DNA microarrays (cDNA probes vs. oligonucleotide probes or one channel vs. two channel), 

tissue sampling and handling, clinical parameters (tumor stage/grade, percentage of tumor cell in 
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the specimen, etc.), demographic differences of the patients etc. Each of these factors may 

introduce variations and/or systematic biases into gene expression data. Results in Chapter III 

reported our efforts on attempting to integrate data sets from Harvard and Michigan using two 

different integration strategies. Although integration can be achieved to certain degree in our 

results, complete integration is not possible due to the variations in microarray data sets.    

Studies on the molecular classification of prostate cancer showed similar observations[37, 

38, 40]. Independent groups at University of Pittsburgh[37, 40] and MIT[38] compared prostate 

cancer to non-cancerous prostate tissue using two versions of the Affymetrix GeneChip® human 

genome arrays, HG_U95av2 and HG_U95A arrays respectively. The study carried out by the 

MIT group identified a group of genes strongly correlated with the grade of prostate tumor 

differentiation measured by Gleason score, and a model built solely on microarray gene 

expression data was able to predict patient outcome[38]. The study by our laboratories at the 

University of Pittsburgh, on the other hand, built a gene expression model using 70 differentially 

expressed genes to predict the aggressive behavior in prostate cancer[40]. Both studies provided 

strong evidence for the concept that the clinical behavior of prostate cancer are linked to the 

differences in gene expression patterns which could be detected at the time of diagnosis[38, 40].  

On the other hand, although the tumor and non-tumor samples used in the two studies had 

very similar clinical features and DNA microarray data were generated using very similar arrays, 

classifiers built based on data from University of Pittsburgh could not classify correctly tissue 

samples from the MIT study[117]. (Ma, et al. submitted to BMC bioinformatics and please see 

Chapter II in this thesis for details). Further investigations[37] on the data set from University of 

Pittsburgh revealed that the non-tumor tissue samples were dissected from regions close to the 

cancer and therefore carried genetic changes similar to or mimic of morphologic cancer. 
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Therefore, in this example, tissue sampling likely affected the performance of the classifier built 

based on data from University of Pittsburgh. This underlines the importance of selecting the 

correct “baseline” or control tissue in the design of microarray based gene expression 

experiments[37, 117]. 

Many more studies in every field of research where DNA microarray is used as the major 

analysis tool for gene expression face similar challenges for cross-platform comparison. Many 

other factors, in addition to those aforementioned, influence microarray based gene expression 

studies profoundly and the resulting gene expression data may suffer from variations or biases 

caused by these factors (Figure 1.2b). As the awareness of the problem and pitfalls in microarray 

data has increased dramatically for the last 5 years, cross-platform comparison studies have been 

used to investigate the types, sources, and extent of variations, and potential methods to 

minimize these variations. The following section will review these studies and summarize the 

current knowledge on the sources of variation, which interferes with cross-platform comparison 

and data integration.   

1.5.2. Overall levels of variations indicated by cross-platform comparison studies 

Almost all available DNA microarray platforms have been compared with each other in 

various studies[118-121]. Comparisons were focused on: (1) the concordance of intensity levels 

detected for each transcript surveyed on an array; (2) the concordance of differential expression 

ratios between experimental samples and controls or under two conditions; (3) the biological 

themes identified in gene expression data. Concordance is often measured by the correlation of 

intensity values or ratios over a group of overlapped transcripts. The group of transcripts 

overlapped among DNA microarray platforms compared in a study is usually identified by 

finding transcripts with the same UniGene identifier or by matching the sequences of transcripts 
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targeted by probes. Biological themes are usually assigned to differentially expressed genes from 

a study by studying their categories in Gene Ontology[122] using software tools such as 

EASE[123]. In addition to the relative comparisons among arrays, Northern blot analysis, and 

(quantitative) RT-PCR (qRT-PCR) results of a number of transcripts provide a standard for the 

assessment of the degree of agreements among various array platforms and further allow 

calibration of microarray data.  

Early comparisons in 2002 and 2003 were rather discouraging as comparison results 

showed there was lack of concordance between the available microarray platforms that were 

designed to survey biological relevant patterns[119, 124-126]. The correlations of the intensity 

values and the ratios/fold changes of the differentially expressed genes across platforms ranged 

from significantly low (<0.5) to moderate (0.5~0.6)[124, 126]. The subsets of differently 

expressed genes identified by different platforms had limited overlap[119]. However, it is 

important to note that for the genes that do overlap, the ratios/fold changes showed good 

agreement with fold changes from Northern blot analysis or qRT-PCR[124]. On the other hand, 

these independent validation approaches failed to validate transcripts with disparate expression 

intensity values across platforms[125]. 

Over the past several years, cross-platform concordance has improved significantly as both 

the technology and experiences with the technology advanced. In 2004, Yauk et al.[118] 

compared six DNA microarray platforms used for gene expression analysis including one with 

long oligonucleotide arrays, three with short oligonucleotide platforms, and two cDNA array 

platforms. Results showed rather reasonably high correlations (0.65~0.78) for the pair-wised 

cross platform comparison of the Affymetrix GeneChip array, the Agilent oligonucleotide array, 

the CodeLink Uniset I array, and the Agilent cDNA array using either a group of genes common 
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in all platforms or the genes in common on a given pair of platforms. Similar or better levels of 

concordance have also been reported by other studies[127-129]. Using a two factor ANOVA 

analysis, results from Larkin et al.[130] in 2005 demonstrated that 90% of the overlapping genes 

(~5800) between the Affymetrix GeneChip® arrays and TIGR cDNA arrays was little affected 

by platforms on gene expression intensity values and that these genes had high correlation of 

intensity ratios across platforms (>0.80). For genes consistent across platforms, qRT-PCR results 

also showed robust correlations between platforms. While for genes with disparate expression 

ratio measurements between platforms, qRT-PCR results disagreed with both platforms and 

provided a third expression profile. 

Larger scale, comprehensive studies have been carried out in 2005 on comparing multiple 

DNA microarray platforms, taking into consideration not only the variations between microarray 

platforms but also the variability across different laboratories[120, 121].  

Irizarry et al.[121] published the first ever platform comparison study across different 

laboratories in Nature Methods, April 21, 2005. In this study, the authors compared gene 

expression results from three platforms--Affymetrix GeneChip® arrays, two-color cDNA arrays, 

and two-color oligonucleotide arrays--using the same RNA samples with a known number of 

differential expressed genes. Gene expression data were produced from a consortium of ten 

laboratories from the Washington DC and Baltimore areas with each array platform implemented 

in at least two laboratories. Their results showed laboratory effects typically influence the 

precision of gene expression data, and that precision varies across laboratories where the same 

array platform was used.  

In the same issue of Nature Methods, another cross-platform, between-laboratory study was 

conducted by the Toxicogenomics Research Consortium[120]. In this study, the authors 
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investigated effects from many technical aspects, such as RNA labeling methods and data 

acquisition, as well as effects from various microarray platforms on the overall agreement of 

cross-platform comparisons. Gene expression data from a total of twelve DNA microarray 

platforms and across eight laboratories were compared. For most platforms in the comparison, 

reproducibility of gene expression data between laboratories was poor but could be dramatically 

improved by standardizing RNA labeling and hybridization, microarray processing, data 

acquisition and normalization. This result highlights the importance of standardization in 

improving the concordances across array platforms. ANOVA analysis of this data demonstrated 

that the microarray platform is the most prominent source of variability in microarray data and 

contributes to more than half of the variability observed in the data. Other sources of variations 

are laboratory, tissue, array replicates, tissue × platform, tissue × laboratory, and dye. Overall, 

the results showed that good concordances (correlation coefficient >0.90) were achieved across 

commercial DNA microarray platforms and between laboratories. The best reproducibility came 

from commercial DNA microarrays with standardized protocols. In summary, within the limits 

investigated to this point, microarray data sets can be comparable across platforms and between 

laboratories when known sources of variation have been controlled for or eliminated.  

Although reasonably good agreement across platforms can be achieved, it is still far from 

perfect. In all cross-platform comparison studies, there have been a number of genes which have 

disparate expression profiles across platforms. For example, a gene can be differentially 

expressed with a large fold change in expression data from one platform but show no difference 

across the same biological samples in data from another platform. Northern blot or qRT-PCR 

may verify none of the results from any of the array platforms but may generate yet another gene 

expression profile for this gene[121, 130]. This may be due to other sources of variation that 
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have not been identified or more likely it is because transcript sequence information and 

annotation have not been fully understood or optimized. Either way, the concordance can still be 

improved.  

Regardless of the level of concordance achieved in various comparison studies, there are a 

number of common findings worthy of discussion. Commercial DNA microarrays typically show 

lower variances in array replicates and higher sensitivity in detecting differentially expressed 

genes than custom made/academic center DNA microarrays[118, 120]. Therefore concordances 

between commercial DNA microarray platforms are better than the agreement between custom 

made arrays or between custom made arrays and commercial arrays[118, 120, 131]. 

Concordances across platforms are better when using fold changes/ratios of gene expression 

instead of intensity measurements[130]. Even when there is low level of concordance across 

array platforms and/or between laboratories, the biological themes identified in gene expression 

data from different platforms may have significant agreement with each other[119]. 

Reproducibility of gene expression data across platforms can be improved by applying 

“superior” analysis algorithms such as probe level analysis algorithms and normalization 

techniques[130]. Agreements across platforms can be improved by removing noise in the gene 

expression data for example by using only transcripts identified as present by preliminary DNA 

microarray analysis in the initial RNA samples[128] or by applying standardized protocols[120, 

121, 130]. Finally, tissue heterogeneity, cell type difference, or biological treatments influence 

much more significantly the gene expression data than technical variations among different 

platforms[118, 130, 132]. 
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The most important sources of variation investigated in platform comparisons studies 

(mentioned above) are summarized as follows (also depicted in Figure 1.2b side-by-side with 

steps in the experimental procedure Figure 1.2a).  

(1) Inherent differences among various platforms such as probe type, probe 

length, features of probe sequences, probe quality, annotation, and surface 

substrate, 

(2) Tissue sampling and handling, 

(3) Technical aspects such as RNA labeling, hybridization, and data handling as 

demonstrated in the between laboratory comparisons.  

The following sections will focus on variations from tissue sampling and handling, and RNA 

labeling. These discussions will provide background knowledge for Chapters II, III, and IV.  

1.5.3. Variation introduced by tissue sampling and tissue handling 

The purpose of gene expression analysis is to detect relative changes in gene expression in 

order to make inferences regarding the underlying biological mechanisms or states. Therefore, 

gene expression profiles should reflect either the biological or the physiological state of a tissue 

sample or cell culture or relative differences in gene expression between two tissue samples or 

cell cultures under different treatments. It is not surprising to discover that biology is the major 

driving force in cross platform comparisons. For example, results from the study by Yauk et 

al.[118] showed that, despite the different types of arrays used, gene expression data formed 

major clusters based on the cell types and tissue origin indicating that biological differences 

influence gene expression data more significantly than technical variations among different 

platforms. As mentioned above, Larkin et al.[130] demonstrated that gene expression intensity 

values of 90% of the overlapping genes (~5800) between the two platforms were not affected by 
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array platforms but rather represent the true states of gene expression in the original RNA 

samples. A number of comparison studies on RNA preparation and labeling approaches also 

proved the same idea by demonstrating that RNA amplification and labeling approaches can 

introduce non-negligible amount of biases/variations but these biases do not significantly impair 

gene expression profiles[64, 133, 134]. 

On the other hand, as pointed out above, sampling and tissue handling have significant 

impact on accuracy and reproducibility of microarray based gene expression analysis. This is of 

particular importance for microarray based gene expression studies on human diseases such as 

the breast cancer studies in the CAMDA workshop[33-36] and the prostate tumor classification 

studies[38, 40] discussed at the beginning of this section. Careful sampling is important because 

human tissues are very heterogeneous by nature. Tissue handling, on the other hand, ensures the 

quality of the initial RNA samples obtained from a tissue specimen.  

1.5.3.1. Tissue sampling 
 

Human tissues, normal or diseased, are very heterogeneous, comprising many cell types 

including epithelial cells, stromal cells, muscle cells, nervous tissue, fat cells, immune cells. 

Different regions of a tissue may also have distinct composition of cell populations (cell type + 

the number of cells in each type). This results in variation even between very similar tissue 

samples. This inter-sample heterogeneity (tissue heterogeneity) is in addition to differences 

between individuals (the inter-patient heterogeneity). For example, individuals may have 

different single nucleotide polymorphism at a particular site in the sequence of a transcript. In 

cancer studies, even though tissue samples dissected in a surgery are rich in cancer cells, the 

population of cancer cells may be “contaminated” by non-cancerous cells. Cancerous tissues 

removed by surgery typically contain normal appearing tissues to remove completely the 
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cancerous tissues. Therefore, most tumor tissues are “contaminated” with normal appearing 

tissues. There is also heterogeneity of cellular populations such as multifocality and different 

degrees of malignancy (grade). Furthermore, as a large tissue specimen usually is dissected into 

small blocks and each block used for a study is different from all others.[57, 135, 136] Giving 

this level of heterogeneity, it is quite challenging to obtain consistent tissue samples with a 

somewhat consistent number of cells affected by the disease or biological state, for gene 

expression analysis in a study.  

One example of the effects of sampling on microarray based gene expression profiling is 

the study on molecular classification of prostate cancer at University of Pittsburgh[37, 40, 117]. 

Three types of tissues were collected, cancerous tissues (tumor), normal appearing tissues 

adjacent to the cancer (adjacent normal), and normal tissues from disease-free (free of any 

prostate related diseases) organ donors (donor). Each type of tissues produced unique gene 

expression profiles. Yu et al.[40] reported a cancer field effect because the gene expression 

profile of the adjacent normal tissues is changed substantially (and, to certain degree, it 

resembles the profile from cancer). Chandran et al.[37] conducted in depth analysis to compare 

the gene expression profiles from the three types of tissues with the same data set. Profiles from 

adjacent normal tissues correlate better with profiles form tumor than those of the donor tissues. 

The comparison of tumor vs. donor detected many more differentially expressed genes than the 

comparison of tumor vs. adjacent normal at a similar stringency level (false discovery 

rate<0.025). These results suggested that the normal appearing tissues adjacent to prostate 

cancers undergo tumor-like changes in gene expression. The authors also speculated on which 

type of tissue, normal appearing tissue adjacent to cancer or normal tissue from disease free 

organ donor, serve as a better baseline in an study for detecting differentially expression genes in 
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prostate cancer. Alternatively, Ma et al.[117] performed classification studies using the same set 

of data using various machine learning algorithms. Classifiers constructed from profiles of tumor 

and donor performed better than classifiers built form profiles of tumor and adjacent normal both 

in leave-one-out validation and in classification of gene expression data sets of prostate cancer 

from other institutes. These results reinforced the hypothesis of the choice on baseline tissues for 

prostate cancer studies which should include “true normal” controls.  

Interestingly, Stamey et al.[137] conducted a study to investigate what is the best prostate 

control tissue. Three potential control tissues were collected, peripheral zone, central zone, and 

benign prostate hyperplasia (BPH). Gene expression profiles were generated from each type of 

tissues. Profiles were compared to each other for efficiency in detecting present 

transcripts/genes. Each profile was then compared with expression profile from Gleason grade 

4/5 prostate cancer for detecting differential expression genes. Their results showed that there 

was substantial overlap of the present genes in each profile. However, very little overlap of the 

differentially expressed genes detected using each “normal” type of tissues as control. 

Expression profiles of the morphologically normal appearing peripheral zone tissues shared 

many genes with Gleason grade 4/5 cancer, suggesting a possible field effect similar to that 

described in the Pittsburgh study. Their results demonstrated the variations introduced by 

inappropriate sampling and, once again, emphasized the importance of using the right controls 

for any study on detecting differential gene expression and therefore eliminated from the study. 

Several approaches have been proposed and implemented in daily practice to provide 

good/correct sampling in gene expression analysis. First, pathological evaluations should always 

be used at the time of collecting tissue samples. Pathological evaluations can help ensure the 

tissue blocks obtained for a study do contain enough of the tissues (such as tumor tissues) of 
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interest. Pathological evaluations will also provide cell composition information in the tissue 

samples. For example, pathological evaluation can tell that tumor cells may only be 10% of all 

cells in a tissue specimen used for gene expression profiling. 

Intra- and inter-patient heterogeneity can be diminished by increasing sample size so that 

appropriate statistical analysis and normalization can be applied to expression profiles. 

Alternatively, Bakay et al.[132] first demonstrated that intra-patient tissue heterogeneity and 

differences between individual patients (inter-patient) are the major source of variability in gene 

expression data when a single DNA microarray platform is used. Then, the authors tested a 

strategy for eliminating the intra-patient and inter-patient variations by pooling/mixing of patient 

cRNA samples before hybridization. Pooling was done with cRNA samples from different 

region of a tissue to help minimizing intra-patient variations. It was also done with cRNA 

samples from different patients with matched age, gender, disease stage, etc. to diminish inter-

patient variations. Results from hybridizations using pooled cRNA samples demonstrated that 

gene expression profiles from pooled samples were able to detect differential gene expression 

between target tissue and control with high specificity comparable to the profiles generated from 

individual cRNA samples, while at the same time, intra- and inter-patient variations were 

effectively normalized. Their results suggested that pooling or mixing a rather small number of 

RNA samples from multiple regions of a piece of tissue from an individual and from multiple 

individuals matched for most variables (age, gender, disease, etc.) can help eliminate variations 

owing to tissue heterogeneity and provide stringent and robust gene expression data. 

Laser capture microdissection (LCM) is also used to help improve sampling[138-141]. 

LCM is a process by which individual cells can be dissected from a tissue specimen. A typical 

LCM procedure is as follows (Please refer to Emmert-Buck et al. [138] for a graphical 
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illustration.). A thin, transparent film is applied to the surface of a microscopic slide, which holds 

a piece of tissue. The film is a thermoplastic film made of ethylene vinyl acetate polymer. Under 

the microscope, selected areas of film on top of the cells (or tissues) of interest are activated by 

laser pulse. The activated film has strong focal adhesion power which allows the selected regions 

to be procured from the tissue. The film with the procured cells is then removed from the slide 

and cells/tissues adhered are sent to further treatments in DNA, RNA or enzymatic assays. 

Multiple regions can be procured on a single film in one procedure. The transferred cells or 

tissues retain their morphological features which can be verified under microscope.

 
LCM offers an efficient means to isolate cells of interest from other cell types in a tissue. 

It has been applied successfully to collect samples for DNA microarray based gene expression 

analysis[139, 141, 142]. One issue associated with LCM is the limited amount of RNA from 

collected cells. But the problem has been mitigated by amplifying RNA with the T7 RNA 

polymerase based in vitro transcription method (Section 1.2.3.2)[63, 143]. Gene expression 

profiles from amplified cRNA from LCM have been validated to have high fidelity and 

reproducibility[139-141]. One potential drawback of LCM is that it uses morphological 

characteristics to identify cells of interest, and cells with similar morphological features may not 

have same gene expression profiles. For example, epithelial cells in the adjacent normal prostate 

tissues resemble normal epithelial cells but genetically their expression profiles share many 

characteristics with cancerous epithelial cells. This discrepancy may potentially introduce biases 

into gene expression profiles generated from LCM samples.  
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1.5.3.2. Tissue handling 
 

Good tissue handling guarantees the quality of the initial RNAs extracted from the tissues 

and therefore provides an optimum start for target preparation (labeling and/or amplification) as 

mentioned in Section 1.2.2. For gene expression analysis, tissue handling is of special 

importance because RNA samples are very sensitive to degradation. Therefore, fresh tissues need 

to be handled and stored properly to preserve the transcriptomes intact. 

There are a couple of major problems in tissue handling which can potentially affect the 

quality of RNA samples. First, the length of processing time from surgical removal of tissues to 

collect samples for research use will affect gene expression greatly by inducing ischemia. 

Ischemia is caused by lack of blood flow to a tissue/organ. Without blood flow, the tissue/organ 

will be depleted of oxygen and therefore become hypoxic. In the state of ischemia, stress-specific 

response genes will be transcribed to protect tissues from damage. Prolonged processing time 

may cause tissues to be ischemic and therefore affect gene expression.  

Dash et al.[144] reported the effect of warm ischemia on differential gene expression of 

radical prostatectomy specimens. In this study, gene expression profiles of tissue samples 

collected at different time after radical prostatectomy were compared. A number of genes were 

identified with significant increase of expression at 1 hour after radical prostatectomy. Many of 

these genes have shown increased expression secondary to ischemic stress, hypoxia. Therefore, 

after surgical removal or biopsy, tissues should be collected as soon as possible and processed 

then stored properly if not used immediately.   

The means by which tissues are processed after surgical removal or biopsy is also an 

important factor affecting RNA quality. Typically, tissues are fixed in formalin and embedded 

into paraffin blocks, which can be preserved for many years and archived. However, RNAs will 
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be degraded by forming cross-links with formalin[135, 136]. Alternatively, tissues can be snap-

frozen in liquid nitrogen to avoid RNA degradation. Tissues should be put into solutions, such as 

RNAlater and ethanol that inhibit RNase[57, 135]. 

1.5.4. Variations introduced by RNA labeling methods 

Various labeling and target preparation approaches have been used in DNA microarray 

based gene expression studies (Section 1.2.3). A well known recommendation[65, 70] on 

labeling approaches for DNA microarray based gene expression analysis is that one should never 

change/combine labeling strategies within a study as the data from more than one method may 

not be comparable. This indicates the possibility of profound, not yet fully characterized, 

differences introduced by labeling and/or amplification approaches. Systematic assessments of 

the performance of these methods[64, 65, 70, 74] have demonstrated that individual labeling 

methods can significantly influence the gene expression data and data using different 

amplification approaches on the same type of array may not be directly comparable[145]. In 

addition, many have pointed out that labeling and target preparation (including labeling and 

amplification) is one of the many technical variables that can profoundly influence the 

compatibility of gene expression data across platforms  and between laboratories[119, 120, 130]. 

This section will summarize the comparison studies conducted on various labeling and/or 

amplification approaches and their effects on gene expression data from DNA microarray based 

experiments.  

Most of the comparison studies use “controlled” studies/experiments where other 

experiment variables such as the source of total RNA and the type of DNA microarray are 

controlled to study the effects of different labeling and/or amplification methods on gene 

expression analysis. Gene expression data from total RNA /mRNA labeled using reverse 
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transcription approach is usually used as the standard for the comparison studies. However, the 

reverse transcription labeling approach is not necessarily the best method to preserve the initial 

RNA abundance and complexity. There is significant variation during total RNA extraction or 

mRNA purification[70, 146]. Therefore, a small number of differentially expressed genes may 

have to be further verified by Northern blot or quantative RT-PCR. Performance of the labeling 

approaches is reported as the sensitivity of gene detection and the reproducibility of that 

detection. Labeling approaches may vary from each other at (1) the gene populations detected as 

present/differentially expressed in the RNA sample and at (2) the ratio of differential expression, 

which is expressed as fold change or a statistical metric such as signal-to-noise ratio or t-test 

value. 

A couple of labeling methods, including TSA[72] and the dendrimer approach[76] which 

cause signal amplification with no target amplification have been recently developed and have 

not yet been adopted as routine procedure for target labeling in DNA microarray based gene 

expression analysis. Variations from these methods have not been studied systematically. Stears 

et al.[76] and Manduchi et al.[74] reported that the dendrimer approach has low background, 

high signal-to-background ratio, comparable level of reproducibility and ability to detect 

expression, and requires much less targets for hybridization compared to reverse transcription 

approach using cDNA microarrays. However, in a comparison study carried out by Richter A et 

al.[65] using a cDNA microarray comprising genes in iron metabolism regulation, the dendrimer 

approach failed in detecting any differentially expressed genes. The TSA approach showed high 

background, moderate accuracy and sensitivity in the same report[65]. In summary, gene 

expression analysis using these two labeling approaches may be less capable of detecting 

differentially expressed genes and introduce more biases/variations into gene expression data. 
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Furthermore, the signal amplification may not recapitulate relative differences in a linear 

fashion[72].  

Many more studies have been conducted on the variations introduced by labeling 

approaches with target amplification such as the T7 RNA polymerase based in vitro transcription 

method and SMART PCR method. PCR based methods employ exponential amplification that 

may distort the initial transcript levels. Therefore are not widely adopted for target preparation in 

DNA microarray based experiments (also see Section 1.2.3.3 for details)[64, 133].  

T7 RNA polymerase based in vitro transcription was developed by Gelder and 

Eberwine[60, 61, 63] and first applied for target preparation in gene expression analysis using 

Affymetrix GeneChip® arrays by Lockhart et al. in 1996[2]. This method has been adopted with 

modification as the major target preparation method for various types of DNA microarrays 

including cDNA arrays and long-and short-oligonucleotide arrays[2, 22, 25, 28, 147-149]. This 

method amplifies mRNA in a linear fashion and, in theory, introduces little distortion to the 

initial transcript level in mRNA samples. Therefore, the relative abundance and complexity of 

mRNA will be maximally preserved in the amplification products. Various studies[2, 61, 69] had 

proved the linearity of this method. Gelder and colleagues[61] have shown by electrophoresis the 

distribution of the antisense RNA amplified is similar to the cDNA population from which it was 

produced. By Northern blot and Southern blot analysis, their results also show that the 

abundance of the amplified antisense RNA is representative to the parent cDNA. Lockhart and 

co-authors[2], on the other hands, prove the linearity of amplification with array hybridization 

results. Poly-A tailed synthetic prokaryotic RNA molecules were spiked into eukaryotic total 

RNA samples at varies of known concentrations, from low to high, before amplification. The 
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array intensities of each spiked control genes are quantitively related to its concentrations over 

the entire concentration range[2].  

High reproducibility of the T7 based method has been reported in almost every study 

regardless the type of DNA microarrays used with high correlation coefficients (>0.90) and low 

average coefficient of variances among replicates (<15%) [25, 64, 69, 73]. Correlations of 

amplified and non-amplified (total RNA/mRNA) data is in the range of 0.77~0.85[64, 150-152]. 

In a systematic study conducted by Richter et al.[65] using a custom cDNA array comprising 

known genes for iron metabolism regulation, the T7 based method yielded the largest number of 

genes as differentially expressed which is also close to the number of genes presented on the iron 

chips expected to be expressed in the cell line studied, indicating the T7 based method has the 

best sensitivity. The reverse transcription labeling method on the other hand detected the smallest 

number of genes as differentially expressed and therefore target amplification increases 

sensitivity. When compared to the gene expression data from unamplified mRNA and total RNA 

(labeled by reverse transcription), most studies show that the T7 driven amplification method 

detected 80% ~ 94% of genes identified by unamplified mRNA or total RNA as differentially 

expressed[64, 148, 152, 153]. Similarly to Ritcher et al.’s study [65], the T7 based amplification 

method usually identifies more differentially expressed genes than unamplified mRNA or total 

RNA[70, 152, 153]. Genes uniquely called present or differentially expressed in gene expression 

results from one type of method were further proved to be true by qRT-PCR verification, 

suggesting an increase of sensitivity using the T7 amplification method. Two-rounds of 

amplification[60, 63] is necessary to yield enough material for DNA microarray based gene 

expression analysis. Studies showed that gene expression data from two-round of amplification 

was relatively comparable (correlation is about 0.93~0.95) to data from standard T7 based 
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method[133, 134, 145, 154]. However, certain variations are introduced by two-rounds of 

amplification (discussed bellow).  

In summary, within the limits investigated to this point, the T7 RNA polymerase based in 

vitro transcription method (one- or two- rounds) has been proven to amplify mRNA linearly and 

the gene expression profiles from T7 based method demonstrate acceptable/excellent fidelity and 

reproducibility as well as improved sensitivity. Therefore some scientists suggest the routine 

usage of RNA amplification for all array based gene expression profiling experiments.[152] 

However others suggest to use RNA amplification only when the starting material is limited[64] 

and to verify microarray gene expression results with other independent methods like Northern 

Blot and qRT-PCR.  

For the T7 RNA polymerase based linear in vitro transcription, selective sequence 

amplification could occur even in the case of linear amplification. Sequence specific efficiency 

of the T7 RNA polymerase may also introduce biases to the initial transcript level at in vitro 

transcription owing to the early termination of transcription because of a very long poly(A) tail 

or strong secondary structure in sequences[64]. 

Different variations introduced by the T7 RNA polymerase based amplification approach 

have been reported in a number of studies[69, 70, 133, 134, 145, 150, 154, 155]. Using an 

ANOVA model and multiple hypothesis testing, Nygaard et al.[155] reported that target 

amplification significantly affects differential expression ratio of 10% of the genes studied. 

Variations introduced by either sequence-dependent or sequence independent manner[69, 70]. 

Baugh LR et al.[69] reported a reduction of present calls in gene expression profiles of the 

amplified cRNA by the T7 method because of a high molecular weight product existing in the 

cRNA products. This product is produced by the T7 RNA polymerase in the presence of the 
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carried-over oligo (dT)-T7 primers. Li Y et al.[94] reported that systematic biases can be 

introduced by RNA amplification method in a sequence-dependent rather than copy-number 

dependent fashion. The authors also reported sequence dependent biases and 5’ under 

representation introduced by T7 based RNA amplification.  

Variations are also observed in the amplification products where the distribution of cRNA 

products changed compared to the distribution of total RNA or mRNA, indicating the possible 

distortion of relative transcript abundance caused by amplification. For example, several reported 

showed that amplified products have smaller range than purified mRNA and there is a shift 

toward small transcript size in distribution (we also observed the shift of transcript size 

distribution in Chapter IV, Section 4.4.3)[153, 156]. More shifts were observed with two-round 

of amplification[134, 154]. Polacek et al. speculated that this shift is because of early termination 

of reverse transcription and/or in vitro transcription of the T7 based amplification method[153]. 

Spicess et al. on the other hand, thought this is owing to the cRNA degradation by T7 RNA 

polymerase and suggested that one should never compare gene expression results with cRNAs 

from different amplification times[156]. A number of studies also demonstrated the decreases of 

intensity values of certain transcripts in gene expression data caused by 5’ truncation at the T7 

target amplification process[69, 133, 145, 148]. For such a transcript, the 3’/5’ intensity ratio, if 

there are both probes designed from 5’- and 3’- end sequences, will subsequently increased. This 

is quite a prominent variation observed in gene expression results from two-round 

amplification[133, 145]. In addition, Gold et al. speculated the 5’ truncation in amplification is 

the cause of the observed decrease of sensitivity after two-round of amplification[134]. 

Efforts had been made to correct some of the variations aforementioned and to improve 

gene expression data from amplification. For example, a template switch strategy has been used 
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to synthesize of second strand cDNA to ensure the generation of full-length ds-cDNA[148, 151]. 

However, Zhao et al.[151] demonstrated that template switch did not help to improve fidelity of 

gene expression data with target amplification. Baugh et al.[69] improved gene expression 

results from amplified targets by removing the template-independent, high molecular weight 

products which is caused by the excess amount of oligo-(dT)-T7 primer during amplification. 

However, variation can not be 100% removed from amplified products indicating there are 

uncharacterized sources responsible for the observed variations other than 5’-end truncation and 

template-independent high molecular weight products. Understanding the possible sources of 

variations and the impacts of the variations to gene expression results will also help on better 

study design and cross-platform comparison. 

In addition, there are many “versions” of the T7 RNA polymerase based in vitro 

amplification methods available, each of which is designed to produce optimized array 

hybridization results as claimed by its manufacture. It is intuitive to speculate that these methods 

may introduce variations into gene expression results even though they are all derived from the 

original T7 based method. However, up to now, there is no systematic comparison of different 

methods.  

Chapter IV in this thesis described a comparison study of three popularly used T7 based 

methods. Results from this comparison study demonstrated the existence of significant variations 

introduced across different T7 based target amplification methods. In addition, results also 

demonstrated that both the number of biotinylated nucleotides used for labeling and the reaction 

time of in vitro transcription are responsible for the observed variations.  
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2. CHAPTER II  Effects of analysis methods on the supervised classification of 
prostate tissue samples using microarray data: implications of variation introduced by 

sampling and tissue handling  

Resubmitted to BMC Bioinformatics 

2.1. Abstract 

Tumor classification and class prediction has become one important application of 

microarray technology. In this study, we examine the classification of prostate tumor tissue and 

normal (non-tumor) prostate tissue using three different classification methods (Boosted 

Decision Tree based on the C4.5 algorithm, Support Vector Machines and Weighted Gene 

Voting) at various levels of feature selection. In addition, we were able to divide the normal 

(non-tumor) samples into different types (normal prostate tissue from cancer prostatectomies and 

normal prostate tissue from tumor free organ donors), and examine the effect of using one or the 

other in the analysis. Our results indicate the boosted decision tree results were as good if not 

better as the classification produced by more accepted microarray classification methods such as 

support vector machines and weighted gene voting. Significantly, the type of ‘normal tissue’ 

used in the analysis had a significant impact on the accuracy of the classifiers, indicating that the 

sample selection and tissue processing may be much more important than the specific analysis 

method used in the interpretation of microarray data. 
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2.2.Introduction 

Over the past several years, gene expression microarray technology has been successfully 

applied in prostate research. Numerous groups have reported the discovery of individual genes 

associated with prostate cancer[38, 45, 139, 157, 158], the reliable discrimination of tumor and 

benign samples[38], and the correlation of gene expression with traditional morphologic metrics 

of tumor progression such as Gleason grade[38]. In addition, the possible discovery of prostate 

cancer sub-types with varying degrees of aggressiveness has been reported[40].   

One of the most critical microarray applications is tumor classification and class 

prediction – the task of classifying samples into known diagnostic classes. Compared to 

unsupervised methods such as clustering[98], supervised classification methods are preferred for 

performing these tasks because such methods takes advantage of existing information and 

domain knowledge and therefore should create a more accurate (and reliable) classifier. 

Supervised classification methods take training sets in which the expression of each gene and 

diagnostic class (tumor, non-tumor, etc) of each sample is known and use that information to 

build a classifier that can predict the diagnostic class of new tissue samples based on their gene 

expression data.  

Supervised classification will be particularly important in the pathology laboratory, when 

they are faced with the task of classifying a clinical specimen into one or more diagnostic 

categories (for example, benign, pre-malignant, and malignant) based on microarray results. It 

will also be important for predicting progression and patient survival. This scenario is becoming 

more and more realistic, as an increasing number of hospitals (including the University of 

Pittsburgh Medical Center) are implementing clinical laboratories to use microarray technology 

for diagnostic, predictive and prognostic classification (on an experimental basis).  
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There are however, a number of open questions surrounding the supervised classification 

of tissue samples in general and prostate samples in particular. For example:  

(1) There are multiple supervised classification methods in use including the Nearest 

Neighbor classifiers[38], the Weighted Gene Voting method[32], Support Vector 

Machines[112, 113], Shrunken Centroids[114], Fishers Linear Discriminant Analysis 

(FLDA)[111], and Decision Tree Based Methods using Recursive Partitioning[115]. 

There is limited information on which are most accurate and appropriate for prostate 

tissue classification. 

(2) Most microarray experiments measure a large number of genes (more than 10,000) on a 

few dozen tissue samples. This high dimensionality makes analysis and interpretation 

difficult. The expression of the great majority of genes (reported by a microarray) does 

not change between specimen classes. These genes therefore do not contribute a 

differential "signal" but do contribute "noise", making the classification process less 

effective and potentially more costly. For these reasons, there has been interest in "feature 

selection" as a pre-processing step before the application of classification algorithms. 

Numerous statistical methods[32, 109] have been developed to reduce the dimensionality 

of microarray data by selecting only genes that are significantly expressed between 

specimen classes. However, the effect of feature selection should be examined 

systematically.  

(3) The microarray experiment itself is difficult to perform and control. Numerous 

experimental factors such as sampling, tissue handling[144] and storage conditions can 

affect results. The adult human prostate is an architecturally complex, hormonally 

sensitive organ that continues to evolve over a person's lifetime. Significantly, different 
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topological zones in the prostate manifest different biology - adenocarcinoma, a common 

finding in the organ's periphery seldom involves the central or transitional zones. Most 

intriguing, published studies using a variety of techniques as diverse as chromosomal 

analysis[159], SAGE[160], ploidy analysis[161, 162], and image analysis[163-165] have 

shown molecular and morphologic abnormalities in normal appearing prostate adjacent to 

adenocarcinoma. 

In this study, we evaluate the classification and prediction of prostate tissue samples from 

three independent data sets. We used three classification methods (Boosted Decision Tree 

(BDT)[166], Support Vector Machines (SVMs)[112, 113], and Weighed Gene Voting 

(WGV)[32]). We examined the results at different levels of feature reduction and, most 

importantly, compared tumor samples against different types of “normal” baselines. Our results 

indicate that the classification methods performed in a fairly similar manner (both well or poorly 

depending on the samples compared), feature selection can have an important impact on 

accuracy of BDT and, in these prostate data sets, tissue sampling and processing methods may be 

much more important than the specific statistical methods used in the analysis process.  

2.3.Materials and methods 

2.3.1. Data sets 

Three data sets were used in this study. The data sets had in common the use of tumorous and 

normal appearing human prostate tissue. However, the data sets were generated at different 

institutions using different populations and different sampling techniques. These differences 

were particularly significant in the selection of normal tissue. While tumor samples were taken 

from prostate cancer patients, normal samples were taken from both the normal appearing 

regions of prostatectomy specimens (Patient Normal), and from normal appearing areas of tumor 
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free prostates taken from organ donors (Donor Normal). Table 2.1 gives the clinical and 

pathologic features of patients, donors, and specimens. 

The Primary Data set 
The primary dataset (Table 2.1) used in this study was generated by scientists at University of 

Pittsburgh Medical Center (UPMC)[40]. There were three sample types used in this data set. 

Eighteen “Donor Normal” samples were taken from prostates harvested from eighteen organ 

donors. These prostates were certified to be free of tumor by UPMC pathologists and the samples 

were felt to be histologically “normal” (no prostatic hyperplasia, inflammation, etc.) Samples 

were also taken from patients undergoing radical prostatectomy for prostate adenocarcinoma. 

From sixty-three patients, 60 tumor samples and 63 samples of normal appearing prostate 

adjacent to tumor (Patient Normal) were analyzed. In all, 141 samples (18 Donor Normals, 60 

Tumors and 63 Patient Normals) were run on the Affymetrix U95Av2 chip. The raw expression 

data was then analyzed using MAS5.0 software (Affymetrix Inc.) and normalized using a global 

normalization approach. This data is referred to as the “PITT” data set in the following 

discussions. Please also refer to Appendix A for a related study on this data set.  

The Two Independent Test Data sets 
Two previously published prostate tumor datasets (Table 2.1), referred as “Singh” data 

set[38] and “Welsh” data set[39], were obtained from public domain or given kindly by the 

authors respectively. The Singh data set was generated from patient prostatectomy specimens. 

There were 52 histologic tumor samples and 50 samples taken from normal appearing areas of 

the prostatectomy adenocarcinoma (Patient Normals) using Affymetrix U95Av2 chip. The 

Welsh data set was generated by using Affymetrix U95A chip (12600 probe sets are overlapped 

between U95A and U95Av2 chips) from 24 histologic tumors and 8 normal tissue samples 
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(Patient Normals). Normal samples were obtained from 8 of the specimens with tumor. The raw 

expression data (".dat" files and ".cel" files) of these two datasets were reanalyzed using MAS5.0 

software and normalized by the same global normalization method as that used for PITT data set. 

This procedure makes the three data sets comparable for the subsequent analysis. 
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Table 2.1 Clinical and pathological features of the prostate tissue samples in the three data sets. 

 
 

 PITT Singh Welsh 

Tumor Samples 

No. of Tumor Samples 60 52 25 (24 unique samples) 

Features of Tumor Samples 
T2a 2 3.3% 7 13.5% 5 20.0%
T2b 21 35% 25 48.1% 6 24.0%
T3 0 0 1 4.0%

T3a 24 40.0% 16 30.8% 6 24.0%
T3b 11 18.3% 4 7.7% 2 8.0%
T4 1 1.7% 0 0.0% 0 

T4a 1 1.7% 0 0.0% 0 

Pathological 
Stage 

Tx 0 0 4 16.0%
5 2 3.3% 4 7.7% 1 4.0%
6 13 21.7% 15 28.8% 7 28.0%
7 28 46.7% 29 55.8% 9 36.0%
8 5 8.3% 2 3.8% 5 20.0%

Gleason Grade 

9 12 20.0% 2 3.8% 2 8.0%
40-49 4 6.7% 3 5.8% 2 8.0%
50-59 19 31.7% 24 46.2% 8 32.0%
60-69 24 40.0% 22 42.3% 14 56.0% Age 

70-79 13 21.7% 3 5.8% 0  

Other 
information 

PSA values before and after 
prostatectomy; recurrent; vital status; 
seminal vesicle invasion; extension 

through capsule; etc. 

PSA value; Gland volume; 
extension through capsule; 
positive surgical margin; 
seminal vesicle invasion; 
recurrent; non-recurrent; 

etc. 

Selected transcript levels 
(PSA, Hepsin, MIC-1); 

percentage of various cell 
types from the section 
adjacent to the tissue 

profiled; etc. 
Non-Tumor Samples 

No. of Non-Tumor Samples 81 50 8 

Donor 18 0 0 
Features of Donor samples 

 <10 1 5.6%  
 10-19 4 22.2%  
 20-29 5 27.8%  
 30-39 1 5.6%  
 40-49 3 16.7%  
 

Age 

50-59 4 22.2%  
Patient Normal 63 50 8 

Features of NAT samples 
 40-49 4 6.3% 3 6.0% 0 
 50-59 20 31.7% 21 42.0% 4 50.0%
 60-69 26 41.3% 23 46.0% 4 50.0% 

 

Age 

70-79 13 20.6% 3 6.0% 0  
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2.3.2. Classification approaches 

Three classification methods were used in this study, the Boosted Decision Tree approach 

(BDT)[167], Support Vector Machines (SVMs)[112, 113] and the Weighted Gene Voting 

(WGV) method[32]. The goal was to introduce the decision tree learning method based on C4.5 

algorithm and compare its performance with the other two commonly used, successfully applied, 

classification methods.  

C4.5 Decision tree learning (DT) 
The decision tree learning programs used in this study were C4.5 Release 8 (Quinlan, 

1993), which is a freeware, and its related commercial product C5.0/See5 Release 1.17 

(RuleQuest Research Pty Ltd., Australia).  

C4.5 uses the “divide and conquer” technique (also called recursive partitioning) to 

construct a decision tree from the training set. Each member of the training set belongs to a 

single class (for example benign or malignant). Each member also has one or more attribute-

value vectors where the values are mutually exclusive (for example, invasive or not invasive). 

For a continuous attribute such as the expression level of a gene or the serum level of a marker, 

cut offs are uses to construct mutually exclusive outcomes (e.g. > 5.0 and <= 5.0). To create a 

tree, an attribute is selected based on the “information gain” and the training set is split 

(partitioned) into subsets where all members of a subset have the same value for the given 

attribute. This process is applied recursively until all subsets contain members of a single class. 

A simplified set of rules defining each leaf (class) can further be derived after the tree is grown. 

These rules are not expressed as a tree structure and may be more attractive to the user [168]. 

Information gain [168] measures of how well a given attribute/gene separates the training set into 
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subsets. It is defined as the expected reduction in entropy caused by partitioning the examples 

according to this gene.  

Gain (S, A) ≡ Entropy (S) - ∑ |Sv| Entropy(Sv) / |S|; 

v Є Values (A)    (1) 

Where A is a gene, Values (A) is the set of all possible values for attribute/gene A, and Sv is the 

subset of S for which attribute/gene A has value v. Entropy [168] in equation (1) represents the 

purity of samples in a subset and is defined as:  

Entropy (S) ≡ ∑i –pi log2 pi     i = 1, …, c  (2) 

The decision tree built from training examples will be used to predict the classification of new 

examples (in the “testing” set). When a new example comes into the tree, it starts to traverse the 

decision tree from the root node. At each node, the corresponding test is performed on it. The 

outcome of the tested attribute determines the branch on which the sample will descend to the 

next test/node. This process ends when a leaf is encountered and the classification of this leaf 

determines the predicted class of this example.  

The boosting approach 
The See5/C5.0 Release 1.17 (RuleQuest Research Pty Ltd., Australia) has implemented 

adaptive boosting based on the work of Rob Schapire and Yoav Freund[169]. Boosting is a 

general method in machine learning to improve the accuracy of any given learning algorithm 

(not just decision trees) by generating and combining multiple inaccurate classifiers/rules. Each 

training example is given a weight. In each trial, the boosting algorithm generates a classifier 

based on all the weighted training examples and assigns a new weight to each of them based on 

the classification results such that misclassified examples get more weight as the classification 

proceeds. Adjusting weight at each round forces the learning algorithm to focus on the different 
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examples and thus generates different classifiers. At the end, all the classifiers are combined by 

voting according to their accuracies to create a compound classifier[169]. In this study, the 

number of trials used was increased from 0 to 50 with a pace of 5 trials each time. 

Support vector machines (SVMs) 
Gist software tool for support vector machine classification version 2.0.2 is used in this 

study. It is developed by William Stafford Nobel in the Department of Computer Science at 

Columbia University and by Paul Pavlidis in the Columbia Genome Center 

(http://microarray.cpmc.columbia.edu/gist/). 

An SVM attempts to computes a multi-dimensional plane (a hyper-plane) that separates 

all members of two different classes in the multidimensional microarray data set. Specifically the 

SVM computes a “maximal margin hyper-plane” that separates the two classes in the training set 

such that each training example has a maximum distance between it and the hyper-plane. When 

training examples are not linearly separable in the input space, i.e. SVM can’t find a maximal 

margin hyper-plane that can completely separate the classes in the input space, SVM uses a 

kernel function to map all the training examples to a higher-dimensional feature space where a 

maximal margin hyper-plane can be located and thus training examples can be linearly separated 

by it[112, 113]. In this study, only the simple dot-product kernel is used. In addition, soft-margin 

has been applied by tuning the diagonal factor (DF) to control the training error[113]. The range 

of DF was set to 0, 0.01, 0.1, 0.5, 1, 2, 5 and 10.   

Weighted gene voting (WGV) 
Weighted Gene Voting (WGV) is a method for binary classification first proposed by 

Golub et al. (1999)[32]. In WGV, genes are ranked based on a selection metric such as the 

signal-to-noise metric[32]. Then for the selected genes, each gene casts a vote for class 1 or 2. 
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Finally, a class vote for each example calculates as the summation of all the votes from the 

selected genes.   

2.3.3. Feature selection 

For our feature selection criterion, we use the signal-to-noise (S2N) metric developed by 

Golub et al. (1999)[32]. Given “n genes” and “m tissue samples”, each of the m tissue samples is 

labeled either 1or 2 depending on the comparison at hand. (e.g. Tumor (1) v Donor Normal (2)). 

For each of the n genes, we calculate the mean, µ1 and µ2, and standard deviation, σ1 and σ2, 

for the samples labeled 1 or 2 respectively. The signal-to-noise metric is calculated as:  

S2Nij = (µij-µij) / (σij+σij); i = 1, …, n, and j = 1, 2; 

The S2N metric gives the highest and lowest scores for genes whose expression levels 

differ most on average in the two classes while also favoring those with small deviation in scores 

in respective classes. Genes are then ranked by S2N. The most positive and most negative genes 

are genes selected as the most differentially expressed, and therefore the top ranked, features 

used in this study. 

2.3.4. Experimental method 

Purposes of this study were to compare the effectiveness of the three classification methods 

(BDT, SVM, and WGV) across a series of data sets and to explore the classification tasks with 

gene expression data generated from human cancer specimens. The Experimental method can be 

described as follows (figure 2.1).  

The initial phase of the study (Figure2 1a) concentrated on the binary classification of 

Tumor and Non-Tumor samples in the PITT data set. As we described before, Non-Tumor 

samples in the PITT data set consist of Patient Normal samples and Donor Normal Samples. We 

applied each of the three classification methods (BDT, SVM, and WGV) to this comparison 
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using a “leave-one-out” cross-validation (LOOCV) format (Figure2 1b). Initially, this was done 

against the entire feature set (~ 12,600 feature/sample). 

Returning to the initial data set, in the leave-one-out format, we used the S2N method (vide 

supra) to rank each feature (gene) for differential expression in the comparison of Tumor v Non-

Tumor samples (i.e. gene selection is also subjected to cross-validation). We then progressively 

re-applied the classification methods (in the same leave-one-out format) to data sets limited to 

the most differentially expressed features (genes) in the comparison (as determined by the S2N 

algorithm). This was done at various levels of stringency, resulting in data sets that represented 

the 2000, 1000, 500, 200, 100, 50, 20 and 10 most differentially expressed features in the 

comparison. At each level of stringency, equal numbers of the most up and down regulated genes 

were selected to compose the pre-selection features (e.g. the 2000 most significantly expressed 

genes contain 1000 most up regulated genes and 1000 most down regulated genes). The results 

of each classifier, at each level of pre-selection of features, were then compared (figure 2.1b).  

In the second phase of the analysis (figure 2.1a), Patient Normal samples and Donor Normal 

samples from the Non-Tumor category in the PITT data set were used separately to build 

classifiers with Tumor samples (in the PITT data set) separately. This gave us two types of 

comparisons: Tumor v Patient Normal and Tumor v Donor Normal. As in the phase 1, the three 

classification methods were first used to generate classifiers using the full feature (gene) set and 

a series of smaller feature (gene) sets selected for differential expression using the S2N metric in 

a LOOCV fashion. The Tumor v Patient Normal and Tumor v Donor Normal) classifiers were 

further investigated by using the PITT data set as a training set and two, previously published, 

independent data sets as test data sets. As in phase 1, the three methods were first used to 

generate and test classifiers using the full feature sets and a series of smaller feature sets selected 
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for differential expression using the S2N algorithm. It is important to note that this time the most 

significantly expressed genes were selected using all training samples in the comparison because 

the performance of the classifiers was assessed by its ability to predict classes of independent 

samples (Figure 2.1c). 
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Figure 2.1 Depicts the experimental method in detail.  
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Figure 2.1 legend: a) Illustrates the three phases of the experimental design. Four types of 

classifiers were built from three types prostate tissue samples in PITT data set. b) shows the 

procedures for the leave-one-out cross-validation (LOOCV) experiments when combining with 

feature selection. Two classes of tissue samples, class A and class B, are used to construct 

classifiers where class A has n tissue samples and class B has m tissue sample. When performing 

LOOCV using the full set of genes (all genes), a classifier (Class A v Class B) was built with 

(n+m-1) tissue samples and then used to predict the class membership of the tissue sample left 

out. This process was repeated (n+m) times until all tissue samples had been left out once. When 

feature selection is performed in combination with LOOCV, feature selection is performed using 

the (n+m-1) tissue samples to generate a series reduced feature sets consisting of a pre-defined 

number (2000, 1000, 500, 200, 100, 50, 20, 10) of most significantly expressed genes (i.e. 

feature selection is also subject to leave-one-out cross validation). Classifiers (Class A v Class B) 

are constructed use the reduced feature sets and used to predict the classification of the one left-

out tissue sample. This process is performed (n+m) times as each sample needs to be left out 

once. Prediction results for each left-out tissue sample are summarized to give the LOOCV 

results using the reduced feature sets. LOOCV results are shown in Figure 2.2c and Table 2.2) 

Shows the procedure of validating classifiers on independent data. The classifiers (Class A v 

Class B) are built from both the full feature set (all genes) and the reduced feature sets generated 

by feature selection procedure and tested on predicting the class membership of the tissue 

samples in the same test data set. Prediction results are summarized in Figure 2.2 and the best 

results are listed in Table 2.3.  
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2.3.5.  Performance evaluation 

Four types of classifiers were generated for binary classification of the prostate specimens: 

a classifier for Tumor v Non-Tumor samples, a classifier for Tumor v Donor Normal samples, a 

classifier for Tumor v Patient Normal samples and a classifier for Patient Normal v Donor 

Normal Samples. Tumor samples are always considered as “positive” and the other type of tissue 

samples, Non-Tumor, Patient Normal, or Donor Normal, are “negative” samples in these 

comparisons. In the Patient Normal v Donor Normal comparison, Patient Normal is “positive” 

and Donor Normal is “negative”. The “positive” and “negative” assignments are arbitrary but 

necessary for measuring the performance of a classifier discussed in the following paragraph.  

The performance of each classifier was measured by examining how well it identified 

tissue samples belonging to its two classes in the training set itself while doing LOOCV or in the 

test sets since the class assignment of each tissue samples were known prior of learning. Using 

the classifier for Tumor v Non-Tumor as an example, each tissue sample can be categorized in 

one of four ways: the true “positives” (TP) and the true “negatives” (TN) are the Tumor and the 

Non-Tumor tissue samples, respectively, according to both the classifier and their true class 

assignments; the false “negatives” (FN) are Tumor tissue samples classified as Non-Tumor tissue 

according to the classifier; the false “positives” (FP) are Non-Tumor tissue samples classified as 

Tumor by the classifier. The number of samples in each category is reported for each of binary 

classifier. The overall performance is measured by the “Accuracy” of classification. Accuracy is 

calculated as Accuracy = (TP + TN) /Sum where Sum = (TP + TN + FP + FN). 
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2.4.Results 

2.4.1. Tumor v Non-Tumor classification 

Table 2.2 shows the best leave-one-out cross-validation (LOOCV) results of the classifiers 

built from Tumor and Non-Tumor tissue samples in the PITT dataset using the three 

classification methods – BDT, SVMs and WGV. Feature reduction was also applied and cross 

validated. (LOOCV results at different levels of feature selection are given in Figure 2.2a.) 

Parameters of each method were tuned to get the best classification results. All classifiers gave 

comparable accuracies, between 0.74 and 0.8, while using reduced feature sets. The best 

LOOCV result was generated by boosted decision tree (BDT) method where 41 of the 60 Tumor 

samples and 72 of the 81 Non-Tumor samples were classified correctly.  

These results illustrate that Tumor tissue samples cannot be classified accurately in 

LOOCV when Non-Tumor samples were used as the “baseline” to build classifiers (since the 

best LOOCV result is 0.8 as discussed above). In addition, the poor performance of the 

classifiers for Tumor v Non-Tumor makes the validation on independent data sets less essential. 

We did not further investigate prostate tissue classification with this classifier. 

2.4.2. Tumor v Patient Normal classification and Tumor v Donor Normal 

classification 

Non-Tumor tissue samples were separated into two groups – Patient Normal samples and 

Donor Normal samples based on their tissue origins. Tissue samples in each group were then 

used to build classifiers against Tumor tissue samples. Thus two types of binary classifiers were 

generated – a classifier for Tumor v Patient Normal and a classifier for Tumor v Donor Normal. 
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Table 2.2 LOOCV results of the four types of classifiers built by PITT data set using three methods. 

 
 

BDT: boosted decision tree; SVM: support vector machine; WGV: weighted gene voting; FP: false positive; FN: 
false negative; TP: true positive; TN: true negative; AC: accuracy; DF: diagonal factor. 

Classifiers Tumor vs. Non-
Tumor 

Tumor v Patient 
Normal 

Tumor v Donor 
Normal 

Patient Normal v 
Donor Normal 

classification 
methods BDT SVM WGV BDT SVM WGV BDT SVM WGV BDT SVM WGV 

Parameters Boost 
0 

DF 
0.1 NA Boost 

30 
DF 
0.5 NA Boost 

0 
DF 
0.1 NA Boost 

5 
DF 
0.1 NA 

Feature 20 50 100 20 200 1000 20* 50 100 500 200 100 
FP 9 21 19 13 21 18 1 1 1 4 0 1 
FN 19 15 16 16 16 17 3 0 1 1 2 4 
TP 41 45 44 44 44 43 57 60 59 62 61 59 
TN 72 60 62 50 42 45 17 17 17 14 18 17 
AC 0.80 0.74 0.75 0.76 0.70 0.72 0.95 0.99 0.97 0.94 0.98 0.94 

*: When the classification results are the same at different levels of feature selection, the smallest number of genes 
is reported. 
 

2.4.2.1. LOOCV results 
LOOCV results at each level of feature selection are given in Figure 2.2b and Figure 2.2c 

whereas the best results generated from each method are shown in Table 2.2. 

The classifiers for Tumor v Patient Normal did not perform well in LOOCV experiments. 

All three methods gave similarly low accuracies (< 0.8). The BDT classifier gave the highest 

accuracy of 0.76 when applied to the 20 most significantly expressed genes. 16 of the 60 Tumor 

tissue samples and 13 of the 63 Patient Normal tissue samples were misclassified as Patient 

Normal and Tumor respectively. SVMs gave the lowest accuracy of 0.7 (using 200 most 

significantly expressed genes. In aggregate, Tumor v Patient Normal classifier results were no 

better and actually even a little worse than the LOOCV results from the classifiers for Tumor v 

Non-Tumor.  

The classifier for Tumor v Donor Normal, however, yield significantly high accuracies in 

LOOCV study. All three methods gave accuracies above 0.9. Classifiers built by BDT had the 
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lowest accuracy of 0.95 and the classifiers by SVMs gave the highest accuracy of 0.99 where 

only 1 Donor Normal tissue sample (and no Tumor samples) was misclassified.  

These results show that Tumor samples can be classified correctly in LOOCV when 

Donor Normal samples were used as “baseline” to create the classifiers. Patient Normal samples 

on the other hand were difficult to separate from Tumor samples regardless of classification 

method or degree of feature selection.  

2.4.2.2. Validation on independent data 
The two types of classifiers (Tumor v Donor Normal and Tumor v Patient Normal) built 

from the three methods were further validated on two independent data sets – the Singh data set 

and the Welsh data set. Although the classifiers for Tumor v Patient Normal had demonstrated 

poor prediction accuracy in LOOCV, we still attempted to validate the Tumor v Patient Normal 

classifiers on the independent data sets. The results were compared with those from the 

classifiers built on the Tumor v Donor Normal comparison (Table 2.3, Figure 2.2e, f, h and i). 

As we expected, the classifiers for Tumor v Patient Normal (Table 2.3 and Figure 2.2e) 

generated from all three methods did not give good accuracy on predicting the class membership 

of the Tumor and Patient Normal tissue samples in the Singh data set. The lowest accuracy is 

0.73 and is obtained by the classifier built by WGV. The highest accuracy was 0.84 by the 

classifiers built by SVMs where 11 of the 52 tumor tissue samples and 5 of the 50 Patient 

Normal tissue samples in the Singh data set were misclassified as Patient Normal and Tumor 

correspondingly. 

Significantly, in the original paper by Singh et al.[38], Tumor samples and Patient Normal 

samples in that data set had been reported to show significant differences in gene expression and 

were classified successfully (LOOCV accuracy was 0.95) by a nearest neighbor classifier. 
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However, such two notably distinct types of tissue samples were inseparable by our classifiers 

built using the Tumor and Patient Normal tissue samples in the PITT data set regardless of the 

classification method employed. 

Table 2.3 Validation results of three types of classifiers built by PITT data set built by three methods on two 
independent data sets. 

 
 

Classifiers Tumor v Patient 
Normal 

Tumor v Donor 
Normal 

Patient Normal v 
Donor Normal 

Validation on Singh Data Set 
Classification 

methods BDT SVM WGV BDT SVM WGV BDT SVM WGV 

Parameters Boost 
35 

DF 
1 NA Boost 

10 
DF 
0.01 NA Boost 

5 
DF 
0 NA 

Feature 200 200 20 10 20 100 10 20 500 
FP 10 5 24 0 0 0 0 0 0 
FN 13 11 4 0 1 0 2 4 0 
TP 39 41 48 52 51 52 48 46 50 
TN 40 45 26 0 0 0 0 0 0 
AC 0.77 0.84 0.73 1 0.98 1 0.96 0.92 1 

Validation on Welsh Data Set 
Classification 

methods BDT SVM WGV BDT SVM WGV BDT SVM WGV 

Parameters Boost 
15 

DF 
5 NA Boost 

5 
DF 
0 NA Boost 

0 
DF 
0.1 NA 

Feature 1000* 50 100 10 10 50 10 10 100 
FP 0 0 0 0 0 0 0 0 0 
FN 1 1 1 0 0 0 0 0 0 
TP 24 24 24 25 25 25 8 8 8 
TN 8 8 8 0 0 0 0 0 0 
AC 0.97 0.97 0.97 1 1 1 1 1 1 

BDT: boosted decision tree; SVM: support vector machine; WGV: weighted gene voting; FP: false positive; FN: 
false negative; TP: true positive; TN: true negative; AC: accuracy; DF: diagonal factor. 
*: When the classification results are the same at different levels of feature selection, the smallest number of genes is 
reported 
 
On the other hand, the validation of the Tumor v Patient Normal classifiers on Welsh data set 

(Table 2.3 and Figure 2.2h) was very successful. Classifiers from all three methods gave the 

same high accuracy of 0.97. Only one Tumor tissue sample from the Welsh data set was 
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misclassified and all Patient Normal tissue samples were classified perfectly as Patient Normal. 

This result is contradictory to the poor prediction results on Singh data set discussed above and 

was somewhat surprising.  

Welsh data set was also used by authors of the Singh data set to validate a nearest 

neighbor classifier for Tumor v Patient Normal tissue samples in the Singh data set. The 

prediction accuracy was also notable high (Accuracy was 86% using 16-gene model despite a 

10-fold difference in overall microarray intensity between these data sets.)[38]. However similar 

classifier developed using the Singh data set failed to predict the classes of Tumor and Patient 

Normal tissue samples in the PITT data set accurately (accuracy ~ 72%, data not shown).  

The finding that classifiers built on the PITT Tumor v Patient Normal and classifiers built 

on the Singh Tumor v Patient Normal both validate in the Welsh data set yet do not validate 

against each other’s data set suggests that there maybe a limitation in use of the Welsh data set 

for validation. The Welsh data set has good internal control and limited noise, but is rather small, 

containing 25 Tumor tissue samples and 8 Patient Normal samples and therefore may not 

represent all the characteristics of the Tumor and Patient Normal prostate tissue population. 

Thus, the prediction results on this data set may not provide enough information about the 

accuracy of Tumor v Patient Normal classifiers. 
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Figure 2.2 Bar charts on the comparisons of accuracies of the classifiers built by the three methods at 
different level of feature selection.  
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Figure 2.2 legend: x axis is the number of genes used in common log scale (log 10); y axis 
represents accuracy. DBT: boosted decision tree, SVMs: support vector machines; WGV: 
weighted gene voting. Accuracies are represented by bars. The accuracy bars of the same type of 
classifiers built by the three methods using the same number of significant genes are grouped 
together. 
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Since neither the Singh data set nor the Welsh data set have Donor Normal tissue 

samples, only the Tumor tissue samples were used to validate the performance of the classifier 

for Tumor v Donor Normal built by the three classification methods from PITT data set. 

Therefore, in Table 2.3, the true negative and false positive categories are empty and accuracies 

were calculated based on the classification results of Tumor tissue samples in the two data sets. 

The lack of Donor Normal tissue samples in the two independent test data sets limits the 

complete evaluation of the performance of this classifier. In particular, no information will be 

provided on the specificity of this classifier giving that specificity is measured by dividing true 

negatives with all “negative” samples. Here, the specificity of this classification is defined as the 

probability that a tissue sample is not classified as Tumor given that it is not a Tumor tissue 

sample (it is a Donor Normal tissue sample). However, we know of no other prostate cancer data 

set in the public domain that has Donor Normal tissue samples. LOOCV results of the classifier 

for Tumor v Donor built by PITT data set (reported above) can provide nearly unbiased error 

estimate. Furthermore, the Tumors are more difficult to classify and the classifiers’ performance 

on Tumor tissue samples is more interesting to us. We report the validation results in Table 2.3 

and Figure 2.2.  

The classifiers for Tumor v Donor Normal built with PITT data were very successful in 

predicting the classes of the Tumor tissue samples in Singh and Welsh data sets (Table 2.3 and 

Figure 2.2f, 2i). Both the classifier built by BDT and the classifier built by WGV perfectly 

classified all Tumor tissue samples while the classifier by SVMs misclassified one Tumor tissue 

sample in Singh data set. All the classifiers built by the three methods perfectly predicted the 

classification of all Tumor tissue samples in the Welsh data set. Compared with the validation 

results of the classifier for Tumor v Patient Normal discussed earlier, these results suggest that 
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Tumor tissue samples in the two independent data sets are classified perfectly by the classifiers 

using Donor Normal as “baseline”.     

Both the results of LOOCV and results of validation on the two independent data sets imply 

that Donor Normal is a better “baseline” than Patient Normal. The Tumor and Patient Normal 

tissue samples in the PITT data set cannot be easily separated from each other in LOOCV study 

and the classifier built from these samples cannot predict the classes of the Tumor and Patient 

Normal tissue samples in the Sign data set. On the other hand, the Tumor tissue samples in the 

PITT data set are remarkably distinct from Donor Normal tissue samples in both the PITT data 

set and the two independent data sets. The Non-Tumor class is a pool of both Patient Normal and 

Donor Normal tissue samples and therefore the performance of the classifiers based on the  

Tumor v Non-Tumor comparison was significantly worse than the classifier for Tumor v Donor 

Normal but slightly better than the classifier for Tumor v Patient Normal (regardless of 

classification method).  

2.4.3. Patient Normal v Donor Normal classification      

Based on the results above, we postulated that Patient Normal tissue samples in the PITT 

data set are significantly different from Donor Normal samples in the PITT data set and a 

classifier for Patient Normal v Donor Normal would perform successfully. Classifiers for Patient 

Normal v Donor Normal were built by all three methods using 63 Patient Normal and 18 Donor 

Normal tissue samples in the PITT data set.  

The best LOOCV accuracies (Table 2.2 and Figure 2.2d) are all above 0.9 and classifiers 

built by BDT and WGV gave the same accuracy of 0.94. The best accuracy of 0.98 was 

generated by SVMs in which only two of the Patient Normal tissues were misclassified as Donor 

Normal and all Donor Normal tissues were perfectly identified.  
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Results of validating the classifiers for Patient Normal v Donor Normal on two independent 

data sets were also reported in Table 2.3 and Figure 2.2g, 2j. Once again, since the Singh and 

Welsh data sets do not have Donor Normal tissue samples, the accuracies were measured by the 

classification results of Patient Normal samples only. While predicting the classification of 

Patient Normal tissues in the Singh data set, all classifiers gave similar, very high, accuracy 

above 0.9. The WGV classifier achieved the best prediction accuracy with all of the 50 Patient 

Normal samples in the Singh data set perfectly classified. All classifiers built from the three 

methods gave an accuracy of 1 (100%) when validating on the 8 Patient Normal tissue samples 

in the Welsh data set. 

These results confirm the distinction between Patient Normal and Donor Normal tissues in 

the PITT data set. Significantly, using the Donor Normal tissues as “baseline”, the classifiers 

built from PITT data set predict the classification of Patient Normal tissues in the two 

independent test data sets very well and as such suggests the Donor Normal tissues are different 

from all the Patient Normal tissues we tested (see more in Section 2.4.4).  

By combining these results with the results from the classifiers for Tumor v Donor 

Classification, we recognize that Donor Normal in the PITT data set is a unique type of Non-

Tumor prostate tissues that has remarkable distinctions from Tumor prostate tissues and Patient 

Normal. This makes classification tasks using Donor Normal as “baseline” highly successful. It 

is important however to remember that these results do not imply anything about the reason that 

Donor Normal and Patient Normal act as distinct entities (see more in Section 2.5). 

2.4.4. Classification of tissue samples from unseen classes 

Classification of tissue samples from unseen classes includes: predicting the classification 

of tissue samples from other organ using all the classifiers we tested in this study, predicting the 
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classification of Donor Normal tissue samples using a classifier for Tumor v Patient Normal, 

predicting the classification of Tumor tissue samples using a classifier for Patient Normal v 

Donor Normal and predicting the classification of Patient Normal tissue samples using a 

classifier for Tumor v Donor Normal. (The first two prediction tasks are beyond the scope of this 

study.) The last two prediction tasks are particularly interesting to us as they can provide insight 

on the specificity of the Tumor v Donor Normal and the Patient Normal v Donor Normal 

classifiers, when Donor Normal tissues are absent from the independent test sets.  

We used the exactly same classifiers for Tumor v Donor Normal and for Patient Normal v 

Donor Normal in Table 2.3 to predict the class memberships of the Patient Normal tissue and 

Tumor tissue samples in the Singh and Welsh data sets correspondingly as those classifiers built 

by each method gave the best validation results. In another words, the exact parameters and 

reduced feature sets were used to construct the classifiers using PITT data set by each method 

that were then used to predict the classification of the tissue samples from an unseen class in the 

two independent data sets.  

Table 2.4 shows the prediction results. Most of the Patient Normal tissue samples in the two 

independent data sets were predicted as Tumor by the classifiers for Tumor v Donor Normal 

built by all three methods. Whereas most of the Tumor samples were put in the Patient Normal 

category by the classifiers for Patient Normal and Donor Normal. This result suggest that 

classifiers for Tumor v Donor Normal and for Patient Normal v Donor Normal were able to 

distinguish tissue samples from different patient origins as both the Tumor and Patient Normal 

tissue samples were mostly not predicted as Donor Normal. In addition, this result provides 

additional support on the uniqueness of Donor Normal tissues.   
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Table 2.4 Results of the two types of classifiers built by PITT data set using three methods on the 
classification of tissue samples from unseen classes in independent data sets. 

 
 

Classifiers Tumor v Donor Normal Patient Normal v Donor 
Normal 

Tissue samples for 
prediction in each 
independent data set 

Patient Normal Tumor 

Singh Data Set 
Classification methods BDT SVM WGV BDT SVM WGV 
AC (from Table 2.3) 1 0.98 1 0.94 0.92 1 
Classified as Donor 
Normal 1 5 5 2 0 0 

Classified as Tumor 49 45 45 50 52 52 
Welsh Data Set 

Classification methods BDT SVM WGV BDT SVM WGV 
AC (from Table 2.3) 1 1 1 1 1 1 
Classified as Donor 
Normal 0 2 1 1 1 1 

Classified as Tumor 8 6 7 24 24 24 
BDT: boosted decision tree; SVM: support vector machine; WGV: weighted gene voting; FP: false positive; FN: 
false negative; TP: true positive; TN: true negative; AC: accuracy. 
 

2.4.5. Feature selection on classification accuracy 

We have observed in Table 2.2 and 2.3 that most of the best accuracies are obtained while 

performing classification using a small subset of significantly expressed genes instead of the full 

set of genes. Comprehensive investigation of the effect of feature selection on classification 

accuracy results in constructing Figure 2.2 where the classification results of each classifier at 

different level of feature selections are plot and compared. 

Performances of the classifiers built by the BDT method appear to be significantly affected 

by feature selection. Five of the ten results, the LOOCV accuracy of the classifier for Tumor v 

Non-Tumor (Figure 2.2a), the LOOCV accuracy of the classifier for Tumor v Patient Normal 

(Figure 2.2b), the accuracy of the classifier for Tumor v Patient Normal validating on Singh data 
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(Figure 2.2e) and the accuracies of the classifier for Patient Normal v Donor Normal validating 

on both Singh and Welsh data (Figure 2.2 g and j), show significantly increase in accuracies 

along with the decrease of the number of significantly expressed genes used. The accuracy of the 

classifier for Tumor v Patient Normal validating on Welsh data, however, earns low accuracies 

when decreasing the number of significant genes used. Both the LOOCV accuracy and the 

accuracies of the classifier for Tumor v Donor Normal validating on both Singh and Welsh data 

are not affected by feature selection although the best LOOCV accuracy is gained using either 20 

or 50 most significant expressed genes. 

The performances of the classifiers built by the SVMs, on the other hand, have not been 

affected much by feature selection. Only the accuracies of the classifier for Patient Normal v 

Donor Normal validating on Singh (Figure 2.2g) and Welsh data (Figure 2.2j) significantly 

increased when decreasing the number of significant genes used. All other accuracies have not 

shown considerable trends along with feature selection. This finding agrees with other 

studies[113]. 

Finally, the accuracies of the classifiers built by WGV showed similar trends as those of the 

classifiers built by support vector machines. Most of the accuracies have not been affected by 

feature selection. The LOOCV accuracy of the classifier for Tumor v Patient Normal (Figure 

2.2b) and the accuracy of the classifier for Patient Normal v Donor Normal validating on Singh 

data (Figure 2.2g) decreased when reduce the number of significant genes used. The accuracy of 

the classifier for Tumor v Patient Normal validating on Welsh data (Figure 2.2e) increased 

significantly while decreasing the number of significant genes used. 

In the aggregate, the BDT appears to favor small subsets of significant genes; SVMs 

performs well regardless of the number of genes used; whereas the WGV approach functions 
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badly when the number of significant genes used is too small (10 genes or 20 genes). It is hard to 

summarize a rule to predict the perfect number of genes for a given classification method. The 

number of genes used to achieve the best accuracies depends on the data set and individual 

classification method used. Significantly, the performances of the classifiers built by the three 

methods are not adversely affected if the number of genes used is reduced from 12,000 to 2,000 

or less. However, this feature selection dramatically decreases the complex city and cost of the 

classification task.  
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2.5.Discussion 

The main goals of our work are to create highly accurate classifiers based on microarray 

gene expression data and make sound predictions on the classification of prostate cancer tissue 

samples. To this end, the classifiers for Tumor v Donor Normal and for Patient Normal v Donor 

Normal built from PITT data set performed very well in both leave-one-out cross validation 

studies and validation on independent data sets. These results were independent of the methods 

(BDT, SVM and WGV) used to build the classifiers. On the other hand, classifiers for Tumor v 

Non-Tumor (where Non-Tumor tissue samples consist of Patient Normal and Donor Normal 

tissue samples) and the classifiers for Tumor v Patient Normal built from PITT data set gave low 

accuracies in leave-one-out cross validation regardless to classification method. For comparison, 

the Tumor v Patient Normal classifiers were validated on independent data with the expected 

poor results. These results indicate that quality of data and type of baseline data employed is 

much more important than the specific classification method used, and is an important factor in 

microarray analysis of prostate cancer. 

It is important to note that the Tumor v Patient Normal comparison and the Tumor v 

Donor Normal comparison are fundamentally different. In the Tumor and Patient Normal 

classification, both the Tumor and Patient Normal samples are from the same patient population 

(prostate cancer patients undergoing prostatectomy) and from the same type of surgical 

specimens (prostates with cancer taken at surgery).[38-40] Donor Normal samples are from a 

different population (health organ donors) and specimen types (cancer free prostates taken at the 

time of organ harvest)[40]. The differences picked up by the classifiers for Tumor v Donor 

Normal built from the PITT data set may therefore be secondary to either biology or artifact 

(differences in processing or population) or both. That said, the classifiers for Tumor v Donor 
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Normal proved capable of accurately separating Tumor from Non-Tumor samples in all three 

data sets containing Tumor and Patient Normal tissue samples. It is our belief that at least some 

of this separation may be due to biologic differences between prostate cancer and truly normal 

donor prostate (and, by extension, some biologic similarities between tumor and adjacent normal 

appearing tissue from a diseased gland). These distinctions in underlying population and tissue 

origins also contributed to the success of the classifiers for Patient Normal and Donor Normal 

built from PITT data set in predicting the classification of all the Patient Normal tissue samples 

in all three data sets.   

We have further investigated the possible causes for the poor prediction results of the 

classifiers built from PITT Tumor v Patient Normal data on the Singh data set. As mentioned 

briefly in the results section, we built classifiers on the Singh Tumor v Patient Normal data set 

using all three classification methods and evaluated them through the leave-one-out cross 

validation and against two independent data sets (PITT and Welsh data sets). All classifiers 

performed very well in LOOCV (accuracy ~ 95%) and against the Welsh data set but poorly 

(accuracy ~ 0.72) against the PITT Tumor v Patient Normal data. The significant LOOCV 

differences in Tumor v Patient Normal classifiers built on the PITT (accuracy ~ 70%) and Singh 

(accuracy ~ 95%) indicates there may be differences in the either the population, sampling, 

processing or a combination between the two data sets. 

These findings have implications for microarray analysis and prostate biology. Classifiers 

for Tumor v Patient Normal built on the Singh data using all three methods performed well in 

LOOCV, indicating that there were expression differences between Tumor and Patient Normal 

samples that can support a robust classification. Results from original Singh paper[38] also 

provided evidence for distinctions in gene expression between the two types of tissues in Singh 
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data. Classifiers for Tumor v Patient Normal built on the PITT data performed poorly in 

LOOCV, indicating limited and fairly soft gene expression differences between sample types. 

Barring differences in laboratory technique or quality (which cannot be determined from the 

data, as no quality control data is provided) one could attempt to reconcile these differences 

based on potential difference in population, tumor grade or stage, or sampling.  Patient Normal 

samples could have been taken closer or further away from the tumor. In other studies several 

groups have reported molecular differences in normal appearing prostate immediately adjacent to 

tumor[45, 170]. It is also possible that the samples were taken from different anatomic lobes (i.e. 

posterior versus central) and therefore might reflect topographical variation in expression 

patterns because of different epithelium/stromal/smooth muscle ratios.  

Careful evaluation of the original papers, as well as discussions with the authors, 

indicates that though there were multiple, relatively small differences in samples (Table 2.1) and 

the way they were taken, processed, stored. It is very difficult to determine which if any of these 

factors are responsible for the significant difference in classifier performance. This appears to be 

another example for the growing consensus in the literature[93, 171] of importance of careful 

experimental design, tissue sampling, quality control and documentation of all aspects of 

microarray studies, not just statistical analysis. 

Another contribution of this study came from the simultaneous application of three 

classification methods. This approach helped to minimize any possible impairment on the 

classification results because of a bad classification algorithm. The results indicate that the C4.5 

based decision tree learning approach, if boosted, performed equivalently to the classification 

performance produced by more accepted microarray classification methods such as support 

vector machines and weighted gene voting.  
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The decision tree based classifiers are of particular interest to the clinical application of 

microarray analysis because, unlike many classifiers, decision tree classifiers are easy to 

understand and the output - the learned decision trees and the induced rules sets - are remarkably 

easy to interpret. Decision trees are non-parametric, can incorporate numeric and categorical 

attributes, and are robust in the face of missing values. Furthermore, decision trees can be used to 

explore and reveal correlations and interactions between genes that exist in biologic systems and 

provide information on the relationship between attributes and classes. The C4.5 decision tree 

learning method[167] also aids in the selection of a small set of relevant genes by automatically 

selecting genes (on the basis of information gain) that are the most informative to the 

classification problem at hand. This property may make decision tree learning the optimal 

classification method in clinical applications of gene expression data. 

Despite their potential advantages, decision tree based classifiers have not been widely 

applied to the analysis of microarray data. Brown et al.(2000)[112] applied decision tree 

classifiers based on the C4.5 algorithm to the classification of genes and reported that results 

were inferior to those produced by Support Vector Machine classification. Zhang et al 

(2001)[115] introduced a decision tree based approach and claimed to be able to classify breast 

and colon cancer specimens successfully. However, the authors of that paper introduced 

selection bias while performing cross-validation after selection of the informative genes using 

the full data set. Therefore, the very high accuracies from cross validation are biased.   

Finally, it is important to note that it is the underlying gene expression, a function of both 

biology and experimental procedure that determines the classification performance. Differences 

in experimental design, specimen types, patient populations between different data sets, as well 

as the lack of consistent quality control documentation across the entire microarray experimental 
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process remarkably affected the microarray results and as such provided the most significant 

difficulties in classification tasks. .  
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3. CHAPTER III Integration of microarray data sets with platform dependent solutions  

Presented as a Poster at Critical Assessment of Microarray Data Analysis 2003 Conference 

3.1.Abstract 

Comparison and integration of gene expression data generated at different institutions 

and across different DNA microarray platforms have become major tasks for many studies 

involving DNA microarray experiments. Accordingly, integration of information from several 

data sets of lung cancer gene expression profiling studies had become the major challenge of the 

Critical Assessment of Microarray Data Analysis 2003 conference (CAMDA’03). This study 

describes the analysis efforts attempted to integrate gene expression profiling results of lung 

cancer studies from two distinct research institutions using two generations of Affymetrix 

GeneChip® arrays. Results were presented on CAMDA’03 conference as a poster. In order to 

combine gene expression data, two data integration strategies were used in this study. One 

method integrates gene expression data using overlapped GenBank accession numbers or any 

other common identification from public databases across different DNA microarray platforms. 

The other method, in contrast, is a strategy specific for the Affymetrix GeneChip® arrays as it 

uses the probe-level matching information to achieve data integration. Integrated data was 

compared to examine whether these solutions are sufficient to achieve integrate between studies. 

We also discuss some of the issues relating to integrating diverse data sets. 
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3.2.Introduction 

Gene expression profiling with DNA microarray based experiments have recently been used in 

molecular classification of cancers[33, 34] and prediction of clinical outcomes using clinical 

specimens[35, 36]. Usually, a number of studies on a particular type of cancer are conducted 

independently over years and/or at more than one institution because of the high cost of 

microarray experiments and limited availability of clinical specimens. As a result, multiple 

microarray data sets can be generated for the same cancer type and cover the same question in 

cancer biology. If integrated, these data sets could contribute significantly towards inter-study 

validation and the development of cancer biomarkers.  

However, integration of microarray gene expression data is not straightforward. 

Microarray gene expression data sets may be generated from different microarray platforms or 

different versions of arrays within the same platform. As reviewed in Chapter I, there exist a 

number of microarray platforms differing in probe deposition methods, number of probes per 

target, probe sequences and targets identified[2, 4, 25, 28]. Even within a single platform such as 

Affymetrix GeneChip® arrays, various versions of arrays or array sets differ in probe and target 

sequences making comparison between versions difficult. Consequently, the integration of 

information from different microarray dataset becomes a major challenge in many analyses using 

data from microarray experiments.  

HG_U95Av2 and HuGeneFL arrays were used to generate lung cancer data sets at two 

institutions (Table 3.1)[33, 35]. Both of them survey gene expression in human genomes; there 

are several major differences between them. First, the two arrays have different number of probe 

sets which represents different full-length genes. HuGeneFL is an early generation array which 

has 7,129 probe sets representing 5,600 full-length human genes. Most of the full-length genes 
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on this array were selected from UniGene build 18 and the rest of them were from either 

GenBank or TIGR (The Institute for Genomic Research). HG_u95Av2, in contrast, has 12,600 

probe sets and monitors the expression level of approximately 10,000 full-length genes, all of 

which were selected from UniGene build 95. There is some overlap of the full-length genes 

represented by the two arrays. The degree of overlapped is discussed in Section 3.4.1. Second, 

the number of probe pairs in a probe set on each array is different. HuGeneFL uses 20 probe 

pairs in a probe set to represent a transcript in the human genome while HG_U95Av2 uses 16 

probe pairs instead. Furthermore, for a probe set representing the same transcript in human 

genome on the two arrays, the probes in this probe are not identical. These three major 

differences should be taken into consideration when attempting to integrate gene expression data 

generated from the two arrays.   

In this study, we have attempted to devise two strategies to integrate two lung cancer data 

sets generated using either HuGeneFL or HG_U95av2[33, 35] and examine whether these 

solutions are sufficient to achieve integrate between studies.  

3.3.Materials and methods 

3.3.1. Data sets 

Two data sets on lung cancer were used to plan two approaches for integrating gene 

expression profiling results from different generations of the Affymetrix GeneChip® arrays. One 

data set (Harvard)[33] was generated at Harvard using Affymetrix HG_U95Av2 arrays and the 

other (Michigan)[35] was generated at Michigan using Affymetrix HuGeneFL arrays. Table 3.1 

summarizes and compared these two studies including: the types of microarrays, patient 

demographic information, clinical variables, and processions presented in the original repots. 

Many fields in the table have no information from the original reports and therefore filled with 
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“NA”. The “.cel” files from both data sets were downloaded for data integration and further 

analysis.  

Table 3.1. Comparison of the two lung cancer data sets for integration. 

 
 

 

  Harvard Michigan 

Microarray types HG_U95Av2 HuGeneFL 
No. of Transcripts on the array 12,600 7,129 

No. of full-length Genes represented 10,000 5,600 
UniGene Build No. 95 18 

Other Sequence Databases NA GenBank, TIGR 

DNA 
Microarrays 

Probe pairs 16 20 
Total number of patients in study 203 96 

Primary lung adenocarcinoma 127 86 
Normal 17 10 

Age (Median) 64 63.5 
Female 71 51 

Male 53 35 

Demographics 

Smoking 44 48 
Where is normal relative to tumor NA NA 

% tumor cells variable >70% 
Met static 12 NA 

Survival (average month) 37.5 29.5 
P53 accumulation NA See paper 

K ras mutation NA See paper 
Stage I 73 67 

Stage III 10 19 
Average Diameter Variable NA 

Clinical 
Variables 

Classification Variable Variable 
Surgery Variable NA 

Processing condition NA NA 
RNA quality Control Measure NA NA 

Processing 
Conditions 

Hybridization and scanning 
conditions Replicate NA 
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3.3.2. Data integration strategies 

Two strategies were used to integrate data from the studies since the HGU95Av2 and 

HuGeneFL arrays contain different probe sets. Figure 3.1 schematically depicts the two 

methodologies.  

3.3.2.1. Integration based on GenBank accession number 
In the first approach (Method I) the two datasets were analyzed using Microarray Analysis 

Suite version 5.0 (Affymetrix Inc. Santa Clara, CA) and then integrated by matching the 

GenBank accession number of each probe set in the two arrays (Fig 3.1a). Only those transcripts 

with GenBank accession numbers represented on both array types were used for further analysis. 

3.3.2.2. Integration using the overlapped probes 
The second integration approach (Method II) integrates data by using probe-level 

matching information provided by Affymetrix (Fig 3.1b). Many probe sets in one array type, e.g. 

HuGeneFL, may share/match probes with a probe set on the other array type. Only probe sets 

sharing probes on both array types were used for data analysis and normalization with MAS5.0. 

The data sets obtained afterward has been integrated as they contain only gene expression data 

from probe sets with matched probes. These data were then subject to further analysis.  

Figure 3.2 presented details on how the integration was done by using overlapped probes. 

The probe matching information is provided in the Array Comparison File by Affymetrix Inc. 

(Santa Clara, CA). This file contains details about probe sets which shared matched probes on 

the two generations of Affymetrix GeneChip® arrays. For example, as depicted in Figure 3.2, 

the probe set A28102_at on the HuGeneFL array shares three matched probes with the probe set 

31726_at on the HG_U95Av2 array. The maximum number of matched probes is 16 because 

typical probe sets on the HG_U95Av2 array comprise 16 probe pairs and typical probe sets on 
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the HuGeneFL array contain 20 probe pairs. Therefore, even at the maximum level of overlap 

some of the probes of a probe set on the HuGeneFL array do not match any probe of the 

overlapped probe set on the HG_U95Av2 array. On the other hand, not every probe sets on either 

of the two arrays has a match on the other array. 

 

Figure 3.1 Schematic representation of the two integration strategies.  

(a) Integration using GenBank accession number; (b) integration with probe-level matching 
information.
 

In order to accomplish integration, matched probes were first identified for a probe set in 

one array and its corresponding probe set with which it shares probes on the other array. Only the 

matched probes participated in the calculation of expression intensity values for the two probe 

sets; all other probe pairs with no matches were eliminated from data analysis by MAS5.0. If a 

probe set had no match at all, it was eliminated from data analysis. MAS5.0 software uses a 

“MASK” file to identify which probes for each probe set need to be eliminated from analysis 
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[172]. Therefore, after identifying matched probes, for each probe set, an entry listing the probes 

for elimination was inserted into the MASK file of the particular array it belongs to (Figure 3.2). 

 
 
 
Figure 3.2 Integration using overlapped probes.  

 
3.3.3. High-level data analysis 

Using either integration approach, the two data sets were combined to create one larger data 

set. Hierarchical clustering[98] was applied on the integrated data. Within the integrated data set, 

Pearson’s correlation coefficients were calculated between data from Harvard and data from 

Michigan. Significance Analysis of Microarray (SAM)[109] was then used to determine if after 

integration data from Harvard and Michigan exhibit similar expression profiles by comparing 

differential gene expression of tumor versus normal samples and Stage I versus Stage II tumors. 
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3.4. Results 

3.4.1. Integrated data sets 

Method I gave 5,987 overlapped transcripts across the two array types which account for 

83.98% of all transcripts on the HuGeneFL array (7,129) and 47.52% of all transcripts on the 

HG_U95Av2 array (12,600) respectively. Alternatively, method II yielded 6,167 overlapped 

transcripts corresponding to 86.51% of transcripts on HuGeneFL and 48.94% of transcripts on 

HG_U95Av2. Of these overlapped transcripts detected by either methods I and II, 4,671 of them 

were revealed by both methods, corresponding to 65.52% of all transcripts on the HuGeneFL 

array and 37.07% on the HG_U95Av2 array. Expression data from the 5,987 transcripts from 

method I and the 6,167 transcripts from method II were used for further analysis. In addition, 

several genes that were found to be significantly expressed in the original papers were eliminated 

by data integration (data not shown). 

3.4.2. Correlation coefficients of the integrated data 

Using integrated data from method I (5,987 transcripts), Pearson’s linear correlation 

coefficients of Harvard normal vs. Michigan normal, Harvard tumor vs. Michigan tumor, 

Harvard stage I tumor vs. Michigan stage I tumor, and Harvard stage III tumor vs. Michigan 

stage III tumor were 0.762, 0.805, 0.816, and 0.751 respectively (Table 3.2). The average of 

these Pearson’s correlation coefficients is 0.78. Expression data of Harvard stage III tumors vs. 

Michigan stage III tumors had the least correlation indicating the stage III tumor samples from 

the two studies may be significantly different. Using integrated data from method II, these 

correlation coefficients were improved significantly. The average Pearson’s correlation 

coefficient is 0.91. All four correlations reported were above 0.88 and the Harvard Stage III 

tumor vs. Michigan stage III tumor still gave the lowest correlation coefficient of 0.884 (Table 

3.2). 
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Table 3.2 Pearson’s correlation coefficients within integrated data. 

 
 

Harvard vs. Michigan 
Integration 
Methods Normal vs. 

Normal 
All Tumor vs. 

All Tumor 

Stage I Tumor 
vs. Stage I 

Tumor 

Stage III Tumor 
vs. Stage III 

Tumor 
Average 

Method I 
(5,897) 0.762 0.805 0.816 0.751 0.784 

Method II 
(6,167) 0.896 0.936 0.937 0.884 0.913 

 

3.4.3. Hierarchical clustering of the integrated data 

Using the integrated data set from either method I or method II to perform clustering with 

all profiles from the two original studies, the Harvard and Michigan experiments separated into 

distinct clusters suggesting that some major underlying inter-institution variation in the two data 

sets cannot be eliminated by either integration methods used in this study. These variations are 

more significant than biological difference between tissue samples and therefore the major 

driving force for clustering is the inter-institution variation. On the other hand, within the clusters 

formed for profiles from each institute, tumor and normal samples were separated to distinctive 

clusters indicating that the biological difference was preserved even though different integration 

strategies were used (data not shown).  

3.4.4. Ability to detect differentially expressed transcripts after data integration 

After data integration using either method, the individual data sets, Harvard data set and 

Michigan data set, were used to determine if they exhibit similar expression profiles. Differential 

gene expression of tumor versus normal and Stage I tumor versus Stage III tumor were detected 

by SAM analysis. For each comparison, the lists of differentially expressed transcripts from 
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either data set were compared and the number of overlapped transcripts for the 100, 50, 25, 10, 

and 5 most up- and down-regulated transcripts were listed in Table 3.3.  

Using either integration methods, for the comparison of tumor vs. normal, the maximum 

proportions of overlapped transcripts in all transcripts in the comparison was detected when 

comparing the 100 most up- and down-regulated, totally 200, transcripts. As the number of 

differentially expressed transcripts in the list decreases, the percentages of overlapped transcripts 

were also decreases. In another word, when increases the stringency of SAM analysis, the 

number of overlapped transcripts detected from integrated data sets decreases.  

Table 3.3 The number of differentially expressed genes overlapped in each comparison using integrated data 
from either method. 

 
 

# of Overlapped Differentially Expressed Genes (# 
of up genes / # of down genes) Comparisons Within the 

integrated data sets Methods 

Top 100 Top 50 Top 25 Top 10 Top 5 

I 80/200 
(40%) 

36/100 
(36%) 

14/50 
(28%) 

4/20 
(20%) 

3/10 
(30%) Harvard 

Tumor vs. 
Normal 

Michigan 
Tumor vs. 

Normal II 97 /200 
(48.5%) 

39/100 
(39%) 

13/50 
(26%) 

3/20 
(15%) 

1/10 
(10%) 

I 9/200 
(4.5%) 

2/100 
(2%) 0 0 0 Harvard 

Tumor: 
Stage I vs. 
Stage III 

Michigan 
Tumor: 

Stage I vs. 
Stage III II 5/200 

(2.5%) 
2/100 
(2%) 

1/50 
(2%) 0 0 

 

For the comparison of stage I tumor vs. stage III tumor, however, the lists of 

differentially expressed transcripts from Harvard data and Michigan data detected by SAM 
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analysis were very different from each other. The gene lists did not overlap at all when the 10 or 

5 most up- and down-regulated transcripts were compared regardless of integration methods. 

Only several genes were overlapped when the 100 most up- and down-regulated transcripts 

(totally 200) were compared. These results indicate that although the Harvard and Michigan data 

sets demonstrate some level of overlap in differential gene expression, they are not identical.  
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3.5.Discussion 

Results from this study demonstrated that integration of information from different 

datasets could be accomplished to some degree. Moderate to high correlation (0.75~0.94) can be 

achieved between gene expression profiles from the two original studies after integrating data 

from two generations of the Affymetrix GeneChip® arrays with either strategy proposed in this 

study. However, both the hierarchical clustering results and the low levels of concordances in 

detecting differentially expressed transcripts after data integration indicated the existence of 

major inter-institution variations which cannot be eliminated or controlled by integration 

strategies used. The inter-institution variation may be due to differences in patient demographics, 

tissues, sampling methods, experimental and analysis methods (Table 3.1). It is these potential 

sources of variation that must be addressed in future genomics and proteomic studies to allow 

inter-study comparisons and to produce high quality, highly annotated data sets for biomarker 

validation. Therefore, the complete integration of microarray gene expression datasets cannot be 

accomplished until all the variations in the process of microarray gene expression analysis have 

been identified and well controlled.  
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4. CHAPTER IV In vitro transcription labeling methods contribute to the variability of 
gene expression profiling with DNA microarrays 

Submitted to Journal of Molecular Diagnostics 

4.1.Abstract 

Considerable variation in gene expression data from different DNA microarray platforms 

has been demonstrated. However, no characterization of the source of variation arising from 

labeling protocols has been performed. To analyze the variation associated with T7-based RNA 

amplification/labeling methods, aliquots of the Stratagene Human Universal Reference RNA 

were labeled using three eukaryotic target preparation methods and hybridized to a single array 

type (Affymetrix U95Av2). Variability was measured in yield and size distribution of labeled 

products, as well as in the gene expression results. All methods showed a shift in cRNA size 

distribution, when compared to un-amplified mRNA, with a significant increase in short 

transcripts for methods with long IVT reactions. Intra-method reproducibility showed correlation 

coefficients >0.99, while inter-method comparisons showed coefficients ranging from 0.94 to 

0.98 and a nearly two-fold increase in coefficient of variation. Fold amplification for each 

method was positively correlated with the number of present genes. Two factors that introduced 

significant bias in gene expression data were observed: a) number of labeled nucleotides that 

introduces sequence dependent bias, and b) the length of the IVT reaction that introduces a 

transcript size dependent bias. This study provides evidence of amplification method dependent 

biases in gene expression data. 
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4.2.Introduction 

Analysis of gene expression with DNA microarrays has allowed reclassification of 

tumors based on unique molecular profiles with potentially important prognostic and therapeutic 

implications[94, 107]. However, there are still significant hurdles for gene expression profiling 

to achieve routine acceptance within the clinical laboratory. A frequent criticism for the routine 

clinical use of this technology is the lack of concordance among results obtained using different 

array platforms[173].  

While it is believed that the major causes for platform-dependent differences in gene 

expression are due to variations in array design, probe deposition, probe sequence and gene 

annotation, very little attention has been paid to the bias introduced by the amplification and 

labeling reactions of different manufacturers. Linear, high fidelity amplification is critical as it 

ensures accurate replication of the size, distribution, and complexity of the initial mRNA 

population. Several studies have suggested that systematic biases are introduced by variations in 

amplification technique which could impact expression results regardless of the choice of array 

platform[64, 69]. These results challenge the common underlying assumption that representation 

of transcripts in a sample remains unchanged by the amplification and labeling protocols used 

prior to hybridization.  

The most widely used RNA amplification and labeling technique presently in use is the 

T7-based method developed by Gelder and Eberwine[61]. A growing number of T7 based 

amplification systems are now commercially available and most incorporate modifications from 

the original technique. The goal of the present study was to specifically test the effect of 

variations in amplification and labeling protocols on gene expression results. To achieve this 

goal, we compared three widely used, commercially available target amplification methods[2, 
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73] to delineate the variation introduced by each one, and determine its potential impact on gene 

expression data. 

4.3.Materials and methods 

4.3.1. RNA sample 

The Universal Human Reference (UHR) RNA (Stratagene Corp. La Jolla, CA) was used for 

all amplification reactions. Aliquots of the total RNA samples were prepared according to the 

manufacturer’s protocol. Quality of the RNA was assessed by OD260/OD280 in a ND-1000 

Spectrophotometer (Nanodrop Technologies, Wilmington, DE) and by capillary electrophoresis 

with the Agilent 2100 Bioanalyzer (Agilent Technologies, Inc. Palo Alto, CA). Purification of 

mRNA was performed with the Oligotex Direct mRNA Mini Kit (Qiagen Inc. Valencia, CA) as 

suggested by the manufacturer. 

4.3.2. Target preparation methods 

Methods compared in this study will be described briefly in this section. For details readers 

are referred to the manufacturer’s manuals and selected references[2, 73, 174-176]. Table 4.1 

summarizes the major differences and similarities among the three target labeling kits. 

a. Affymetrix Eukaryotic Target Preparation 

Two in vitro transcription labeling kits compared in this study are used to prepare biotin 

labeled cRNA targets for Affymetrix GeneChip® arrays: the Enzo BioArray High YieldTM RNA 

Transcript Labeling Kit (Enzo) and the GeneChip® Expression 3’-amplification Reagents for 

IVT labeling (Affy). For first and second-strand synthesis, these two methods utilize reagents 

from Invitrogen Inc., and follow the same experimental steps. Hence, major distinctions between 

the two methods exist in the in vitro transcription (IVT) step. Twelve UHR RNA aliquots were 

labeled by each of the two methods and five were hybridized to arrays for each method. We also 
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performed additional experiments using a modified version of the Affy method where IVT 

reactions incubated for only 4 hours at 37 oC (Affy4h).  

Table 4.1 Comparison of the target amplification and labeling methods. 

 
 

 CodeLink Affy Affy4h Enzo 

Starting Total RNA 1 µg 1 µg 1 µg 5 µg 

Reverse Transcription 
Reagents CodeLink ------------------------ Invitrogen ---------------- 

RT incubation 2 hours 1 hours 

2nd-strand cDNA 
synthesis Reagents CodeLink ------------------------ Invitrogen ---------------- 

2nd strand incubation 2 hours 2 hours 

Biotinylated 
Ribonucleotides Biotin-11-UTP 

Biotin-conjugated 

Uridine analog 

Biotin-CTP 

Biotin-UTP 

In vitro Transcription 
Incubation 14 hours 16 hours 4 hours 4 hours 

Purification and 
Fragmentation 
Reagents 

CodeLink ------------------------ Affymetrix ---------------- 

 

a.1 First-Strand and Second-Strand cDNA Synthesis--All reagents are from Invitrogen Corp, 

(Carlsbad, CA) unless otherwise specified. Recommended amounts of total RNA (Table 4.1) in 8 

µL Nuclease-free water were spiked with 2 µL diluted poly-A RNA control (Affymetrix, Santa 

Clara, CA), then incubated with 2 µL of 50 µM T7-Oligo (dT) 24 primer (Affymetrix, Santa 

Clara, CA) at 70oC for 10 minutes and cooled on ice. Poly-A RNA controls were diluted to 

appropriate concentrations immediately before performing the experiment in order to maintain 

116 



 

the same proportionate final concentration of the spike-in controls to the total RNA. First-strand 

cDNA was synthesized by adding 4 µL 5X 1st-strand buffer, 2 µL 0.1M DTT, 1µL 10mM dNTP, 

1µL Superscript II reverse transcriptase and incubating at 42 oC for one hour. Second-strand 

cDNA was synthesized by adding 91µL of Nuclease-free water, 30 µL 5X 2nd-strand buffer, 3µL 

10mM dNTP, 1 µL E. coli DNA ligase, 4 µL E. coli DNA polymerase I, 1 µL RNase H and 

incubating at 16oC for two hours. 2 µL T4 DNA polymerase was added and the reaction was 

incubated at 16oC for 5 minutes. Reactions were stopped by adding 10 µL 0.5 M EDTA. Double-

stranded cDNA was purified using the Sample Cleanup Module (Affymetrix, Santa Clara, CA).  

a.1.1 Synthesis of Biotin-labeled cRNA with the Enzo kit--Purified double-stranded cDNA was 

used in the in vitro transcription reaction using the Enzo BioArray High YieldTM RNA Transcript 

Labeling Kit (Affymetrix, Santa Clara, CA) at 37oC for 4 hours in a 40 µL reaction volume, 

containing 4 µL of 10X HY reaction buffer, 4 µL 10X biotin-labeled ribonucleotides, and 4 µL 

10X DTT, 4 µL 10X RNase inhibitor mix, 2 µL 20X T7 RNA polymerase and variable amounts 

of RNase-free water.  

a.1.2 Synthesis of Biotin-labeled cRNA with the Affy kit--Purified double-stranded cDNA was 

used in the in vitro transcription reaction using the GeneChip® Expression 3’-amplification 

Reagents for IVT labeling kit (Affymetrix, Santa Clara, CA) at 37 oC for 16 hours in a 40 µL 

reaction volume, containing purified ds-cDNA, 4 µL of 10X IVT labeling buffer, 12 µL IVT 

labeling NTP mix, 4 µL IVT labeling enzyme mix and variable amount of RNase-free water. Ten 

additional labeling reactions incubating for only 4 hours were also performed (Affy4h method). 

a.2 Fragmentation and Hybridization for Enzo and Affy Protocols--One µL of purified biotin 

labeled cRNA was then analyzed for purity and concentration by ND-1000 Spectrophotometer 

and Agilent 2100 Bioanalyzer. For the cRNA prepared by Affy4h method, purified cRNA from 
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two reactions were pooled together to achieve the required amount of cRNA for hybridization. 

15 µg of purified cRNA was incubated with the adequate amount of fragmentation buffer 

(Affymetrix, Santa Clara, CA) at 94 oC for 35 minutes. 1 µL aliquot was used to assess complete 

fragmentation by capillary electrophoresis.  

b. GE Healthcare CodeLink Expression System Target Preparation 

Twelve biotin-cRNA samples were prepared by the CodeLink method using the 

CodeLink Expression Assay Reagent Kit (GE Healthcare, Piscataway, NJ). All reagents used are 

from this kit unless otherwise specified. 1 µg of total RNA in 8 µL Nuclease-free water were 

spiked with 1 µL of working solution of bacterial control mRNAs and 2 µL diluted poly-A RNA 

control (Affymetrix, Santa Clara, CA), then incubated with 1 µL of T7-Oligo (dT) Primer at 

70oC for 10 minutes, and cooled on ice. First-strand cDNA was synthesized by adding 2 µL 10X 

1st-strand buffer, 4 µL 5mM dNTP mix, 1 µL RNase inhibitor, 1µL reverse transcriptase and 

then incubating at 42 oC for two hours.  

Second-strand cDNA was synthesized in a 100 µL reaction volume by adding 63 µL of 

Nuclease-free water, 10 µL 10X 2nd-strand buffer, 4 µL 5mM dNTP mix, 2 µL DNA polymerase 

mix,1 µL RNase H, and then incubating at 16 oC for two hours. dsDNA was purified using the 

QIAquik PCR purification kit (Qiagen Corp, Valencia, CA).  

In vitro transcription reaction was carried out by mixing purified dsDNA with 4 µL 10X T7 

reaction buffer, 4 µL T7 ATP solution, 4 µL T7 GTP solution, 4 µL T7 CTP solution, 4 µL UTP 

solution, 7.5 µL 10mM biotin-11-UTP (PerkinElmer Corp. Wellesley, MA), and 4 µL 10X T7 

enzyme mix, then incubating for 14 hours at 37 oC, final reaction volume was 40 µL. Biotin 

labeled cRNA products were purified with the RNeasy Mini Kit (Qiagen Corp. Valencia, CA). 
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15 µg of cRNA from each sample were fragmented following the recommended procedures in 

CodeLink target preparation manual.  

4.3.3. Evaluation of amplification products 

cRNA yield for all methods was assessed in a ND-1000 Spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). Fold amplification was calculated by dividing the total cRNA 

yield by the estimated mRNA content (2% of total RNA) in the initial starting total RNA of each 

reaction. mRNA/cRNA size distribution was obtained by capillary electrophoresis with the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Inc. Palo Alto, CA), using the “Smear 

Analysis” function of the 2100 Expert software (Agilent Technologies, Inc. Palo Alto, CA). Six 

transcript size regions: 0~0.2kb, 0.2~0.5kb, 0.5~1.0kb, 1.0~2.0kb, 2.0~4.0kb and 4.0kb~max 

were defined in the electropherograms and then used to determine the percentage of area under 

the curve for each size interval. Small amount of rRNA contaminations, both 18s rRNA and 28s 

rRNA, was observed on electropherograms from mRNA and cRNA from the Enzo method. 

rRNA proportion was subtracted from the total area under the curve and from their 

corresponding regions when calculating the percentage of area under the curve. However, it is 

important to note that size distribution in the Agilent Bioanalyzer is relative to the fluorescence 

intensity and does not reflect the actual number of transcripts of a given size. Four individual 

mRNA samples were evaluated to determine the size distribution of un-amplified transcripts. 

4.3.4. Hybridization, washing, staining and data processing 

  Five cRNA samples from each method were hybridized to Affymetrix GeneChip HG-

U95Av2 arrays which contain 12625 probe sets representing approximately 10,000 full-length 

genes. Briefly, 15 µg of fragmented cRNA were mixed in a hybridization cocktail with control 

oligonucleotide B2 (Affymetrix, Santa Clara, CA), eukaryotic hybridization controls 

119 



 

(Affymetrix, Santa Clara, CA), herring sperm DNA (Promega Corp. Madison, WI), Acetylated 

Bovine Serum Albumin(BSA) solution (Invitrogen Corp. Carlsbad, CA), 2X hybridization 

buffer--made from MES-free acid monohydrate(Sigma-Aldrich Corp. St. Louis, MO), MES 

sodium salt (Sigma-Aldrich Corp. St. Louis, MO), 5M NaCl (Ambion, Inc. Austin, TX), 0.5M 

EDTA (Sigma-Aldrich Corp. St. Louis, MO), molecular biology grade water, 10% Tween 

20(CalBiochem, San Diego, CA), and 10% DMSO (for Affy and Affy4h methods only) and 

variable amounts of water to a final volume of  300 µL. 200 µL of hybridization cocktail was 

hybridized on each array at 37 oC for 16 hours. Each array was then washed, stained with 

streptavidin-phycoerythrin in a GeneChip® Fluidics Station 400(Affymetrix, Santa Clara, CA) 

and scanned by a GeneChip® Scanner 3000 (Affymetrix, Santa Clara, CA) as recommended by 

the manufacturer. Quality Control (QC) parameters were derived from the MAS 5.0 algorithm of 

the GCOS software (version 1.1, Affymetrix, Santa Clara, CA). Numerical gene expression data 

were derived from the raw intensity files using two distinct algorithms: the MAS 5.0 and the 

MBEI algorithm from the dChip software (http://www.dchip.org)[177]. Gene expression data 

will be submitted to NCBI’s Gene Expression Omnibus. 

4.3.5. Analysis of gene expression data 

Present (P) and Absent (A) calls are based on the detection calls made by the GCOS 

software. For the purposes of this study, we defined that a transcript (probe set) is “truly” present 

in the UHR RNA if it is identified as “P” at least three times out of five replicates of any 

amplification labeling method.  

Data from MBEI PM-only model[177] of the dChip software were used for all the 

transcript lists analyses. The Avadis Pride software package v3.3 (Strand Genomics, Redwood 

City, CA) was used for annotation, filtering, and integration of gene expression data. Michael 

120 

http://www.dchip.org/


 

Eisen’s Cluster and TreeView software tools (http://rana.lbl.gov/EisenSoftware.htm)[98] were 

used to perform hierarchical clustering and view clustering results. Coefficient of Variance (CV) 

for each transcript across samples was calculated by dividing the standard deviation of its 

intensity values over the mean and expressed as a percentage (%CV).  

Two-class unpaired comparisons of gene expression data from two methods were 

performed with the Significance Analysis of Microarrays (SAM)[109] software tool 

v1.21(http://www-stat.stanford.edu/~tibs/SAM/). All gene expression profile comparisons with 

SAM were performed at a false discovery rate (FDR) of less than 0.03% (delta level of 3.0), 

except the comparison between Affy and Affy4h data, which was performed at an FDR of 0.32% 

(delta = 2.0). STATA software v8.01 (STATA Corp. College Station, TX) was used for all other 

statistical analysis including correlation studies, Mann-Whitney tests, analysis of variance and 

regression analysis. SigmaPlot v.8.0 (SSPS Inc. Chicago, IL) and Microsoft® Excel were used 

for all plots. 

For each “method A to method B” comparison of intensity values with SAM, transcripts 

that showed significantly increased values in method A over B were labeled as “affected by A”. 

Conversely transcripts significantly increased in method B, therefore decreased in method A, 

were labeled “affected by B”.  For the Enzo vs. Affy4h comparison, we calculated differences in 

Cytosine content in the target sequence of transcripts affected by these methods. The target 

sequence of a transcript is defined as the region interrogated by all probes in a probe set in the 

Affymetrix HG-U95Av2 array. Differences in cytosine content were calculated as the ratio of C 

to U. and expressed as G/A, thus reflecting the actual mRNA sequence. For the Affy vs. Affy4h 

comparison, transcript sizes reported correspond to the target mRNA sizes reported by the array 
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manufacturer. Both transcript lengths and probe sequence information were obtained from the 

NetAffx website (www.affymetrix.com).  
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4.4.Results 

4.4.1. cRNA yields 

More than 30 µg of cRNA were obtained with the Affy, Enzo and CodeLink methods in 

almost all reactions (Table 4.2). The Affy4h method yielded approximately 10 µg on average. 

The CodeLink method had the highest cRNA fold amplification and showed more variability in 

cRNA yields, which was mostly based on lot-to-lot differences of the amplification kit (Table 4.2 

Table 4.3). Lot-to-lot variability in amplification yield was not observed in the Enzo or Affy 

methods. 

Table 4.2 cRNA yield, fold amplification, and quality control parameters from the hybridizations to HG-
U95Av2 chips (Mean ±SD). 

 
 

 CodeLink Affy Affy4h Enzo p-
value§

cRNA yield 
(µg)* 83.80±41.11 37.35±5.41 10.79±1.70 31.16±5.94 <0.0001

Fold 
Amplification* 4189.75±2055.73 1867.67±270.38 554.81±88.37 322.84±60.44 <0.0001

Median Array 
Intensity (raw) 128.60±46.31 109.00±10.65 150.40±11.94 207.08±47.18 0.0019 

Background 44.45±8.89 50.03±2.40 66.84±4.41 77.02±18.18 0.0005 

RawQ(noise) 1.57±0.28 1.76±0.13 2.18±0.09 2.53±0.49 0.0004 

% of P Calls 54.50±0.70 51.20±2.80 54.60±2.30 48.40±3.30 0.0026 

# of Present 
Genes 7476 7207 7455 6869 NA 

*: n=12. For all other rows, n=5. 
§: One-way ANOVA test with Bonferroni correction. 
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Table 4.3 Amplification yields from each lot of the CodeLink kit. 

 
 

 

 

 

 

 

CodeLink Kit Lot I (n=6) Lot II (n=6) Lot I and II (n=12) 

Yield 48.29 ± 16.59 119.30 ± 20.44 83.80 ± 41.11 

Fold Amplification 2414.42 ± 829.52 5965.08 ± 1022.17 4189.75 ± 2055.73 

%CV 34.35 17.13 49.06 

4.4.2. Hybridization performance 

All hybridizations met quality control (QC) criteria as defined by the array manufacturer; 

however, some significant differences were noted (Table 4.2). Compared to hybridization results 

from Affy and CodeLink methods, the Enzo method had statistically significant higher 

background (one-way ANOVA: Affy vs. Enzo p-value=0.005; CodeLink vs. Enzo p-value= 

0.001), rawQ values (noise) (Affy vs. Enzo p-value=0.004; CodeLink vs. Enzo p-value= 0.001) 

and average median array intensities (raw) (Affy vs. Enzo p-value=0.002; CodeLink vs. Enzo p-

value= 0.012).  

There were no significant differences across samples in the 3’/5’ ratios of GAPDH, Lys and 

Phe (Table 4.4). However, the 3’/5’ ratios for β-Actin, Dap and Thr, were significantly higher in 

the samples labeled with the CodeLink method compared to Affy, Enzo and Affy4h methods (β-

Actin & Thr p<0.001 for all methods; Dap p = 0.004, 0.006, and 0.011 for each method 

respectively). Interestingly, control transcripts that showed increased 3’/5’ ratios are all nearly 

2kb long, while the controls not affected by this bias (GAPDH, Lys and Phe) are all less than 

1.5kb long. Additionally, rRNA sequences were detected in all but the Enzo labeling method 

(Figure 4.1). 

124 



 

Table 4.4 (3’/5’) ratios (Mean  ± SD) for housekeeping genes and bacterial poly-A RNA spike controls. 

 
 

 CodeLink Affy Affy4h Enzo Transcript 
Length (kb) 

Housekeeping Genes 

GAPDH 1.16 ± 0.12 1.11 ± 0.06 1.07 ± 0.10 0.91 ± 0.05 1.27 

β-Actin 5.08 ± 1.73 1.44 ± 0.13 1.20 ± 0.08 1.10 ± 0.13 1.76 

Poly-A RNA Spike Controls 

Lys 3.04 ± 0.24 3.16 ± 1.46 2.97 ± 1.21 2.87 ± 0.58 1.00 

Phe 1.75 ± 0.22 1.65 ± 0.11 2.45 ± 0.56 2.45 ± 0.14 1.32 

Dap 5.85 ± 1.12 2.34 ± 0.40 3.11 ± 0.92 2.47 ± 0.95 1.82 

Thr 4.43 ± 0.36 2.02 ± 0.12 2.35 ± 0.22 2.37 ± 0.67 1.98 
 

 
 

 
Figure 4.1. Intensity values of the 3’, M, and 5’ probe sets for 28S and 18S ribosomal RNAs. 

The number (# / 5) on each column indicates the times this probe set is called “present” in the 
five hybridizations performed for each method. For example, the 4/5 of the “3’_at” probe set 
of18S rRNA in the Affy result (the left most bar) means that four of the five hybridizations 
detected this probe set as “present” in the RNA sample.  
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The set of present genes, as defined in the methods section, consisted of 8,281 transcripts, 

equivalent to 65.76% of all probe sets on a HG-U95Av2 array. The Enzo method had the lowest 

number of present probe sets. There was a positive correlation (R2 =0.9553) between fold 

amplification and the number of present transcripts in samples from the Affy, Enzo, and 

CodeLink methods. Furthermore, this correlation is maintained as the stringency of the Present 

transcript definition goes from at least 3 of 5 replicates to 4 of 5 and 5 of 5 (data not shown). 

Interestingly, despite having relatively low fold amplification, the number of present probe sets 

in data from the Affy4h method is almost identical to the CodeLink method (Table 4.2). The four 

methods showed 83.3% agreement in present/absent calls for all transcripts interrogated by the 

HG-U95Av2 array (Figure 4.2). Of these, 6,183 (74.66%) were identified as present by all four 

methods. Only 2,098 were discordant between methods and, from the discordant set, less than 

10% (of all transcripts on the array) were identified as present by only one method. The set of 

present transcripts (8,281), based on our definition in the method section, comprise transcripts 

both identified as present by all four methods (6,183) and discordant between methods (2,098).  
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Figure 4.2 Concordance on present/absent transcript calls among the four methods studied.  

Total number of transcripts in the U95v2 array is 12,592. Complete agreement among methods is 
represented by a white background and further divided into present and absent calls. 
Disagreement among methods is shaded. 
 

4.4.3. Size distribution of cRNA products 

Table 4.5 shows the distribution of cRNA products for each method. These data are derived from 

the electropherogram profiles of the IVT products. All methods yielded cRNA with different size 

distributions when compared to the non-amplified mRNA in the Universal Human Reference 

RNA sample with the Enzo method being most similar. The most significant difference was seen 

in the abundance of transcript size between 0-200bp (p <0.001) and 200 to 500 bp (p <0.001, 

except Enzo p =0.014). Long incubation methods (Affy-14h and CodeLink-16h) produced higher 

abundance of short cRNA transcripts (<1000 nucleotides), while short incubation methods (Enzo 

and Affy4h) produced a higher percentage of longer cRNA transcripts (>2000 nucleotides). 

127 



 

Table 4.5 Size distributions of mRNA in Universal Human Reference RNA and cRNA samples generated by 
the four labeling methods. 

 
 

Base pair UHR mRNA 
(n=6) 

CodeLink 
(n=6) 

Affy  

(n=4) 
Affy4h 
(n=10) 

Enzo  

(n=6) 

0~200 4.2 ±1.35 11.5 ± 1.03 10.4 ± 0.52 8.2 ± 0.97 6.9 ± 0.46 

200~500 4.5 ± 1.02 15.4 ± 1.30 14.0 ± 1.39 11.2 ± 1.06 7.1 ± 0.62 

500~1000 17.6 ± 9.11 26.3 ± 1.92 21.8 ± 1.53 21.4 ± 0.89 16.4 ± 0.85 

1000~2000 28.3 ± 10.40 25.6 ± 1.16 23.4 ± 1.22 25.1 ± 0.57 24.7 ± 0.96 

2000~4000 29.2 ± 13.38 15.1 ± 1.45 19.4 ± 1.04 22.2 ± 0.96 28.4 ± 0.60 

4000~max 16.0 ± 7.54 6.12 ± 1.88 11.08 ± 3.01 11.9 ± 1.77 16.5 ± 1.13 

Note: The transcript abundance in each region is represented as its percentage to the total 
distribution.
 

4.4.4. Reproducibility of gene expression measurements 

Pair-wise Pearson correlation coefficients of normalized gene expression measurements, 

within and between methods, were calculated using the set of present transcripts. Gene 

expression data showed excellent intra-method reproducibility and sensitivity, with correlation 

coefficients >0.990 for all methods (Table 4.6). The Affy and Affy4h methods had the highest 

inter-method correlation coefficient (r = 0.989), while the Enzo and CodeLink data correlate 

with each other the least (r = 0.949). With unsupervised hierarchical clustering, the arrays 

formed distinct clusters based on target preparation methods confirming that inter-method 

variability is greater than intra-method variability (data not shown). 
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Table 4.6 Intra- and inter-method pair-wise correlation coefficients. 

 
 

 Affy CodeLink Enzo Affy4h 

Affy 0.9958    

CodeLink 0.9795 0.9916   

Enzo 0.9650 0.9494 0.9953  

Affy4h 0.9890 0.9703 0.9662 0.9962 
 

4.4.5. Variability of gene expression measurements 

Coefficients of variance (CV) for each present transcript were calculated across all 

replicates within a method (intra-assay) or across all four methods (inter-assay). As seen in 

Figure 4.3 a, all methods had average CVs of less than 12%, with Affy having the highest (10.45 

± 6.64%) and Affy4h the lowest (7.41 ± 4.81%). Inter-method variability was almost double of 

the intra-method (mean = 19.93 ± 9.87%). Figures 4.3 b-d show examples of the variability seen 

between methods for selected transcripts. CV plots for all transcripts in each method are 

presented in Figure 4.4. As has been shown in other studies, variability was higher in the low 

intensity region[85, 119]. 
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Figure 4.3 Variability in gene expression data.  
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Figure 4.3 legend: a) Intra- and inter-assay %CV for all present transcripts. The solid line on 

each box represent the median %CV while the dashed line represents the mean %CV. b) example 

of two transcripts with high intensity values in hybridization result showing no change across 

methods. c) example of one transcript with low intensity values showing difference between 

Affy vs. Affy4h comparison. d) example of low expressor affected by the Enzo method in the 

Enzo vs. Affy4h comparison. 
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Figure 4.4 Intra- and inter-assay variations among all methods studied.  

Average %CV data were plotted as a function of log average intensity value for each present 
transcript. In each plot, every black dot represents a transcript; a trend line (grey) depicts the 
moving average of %CV of every 100 transcripts. For better visualization values >60% CV are 
not shown. 
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Paired comparisons between all methods with the SAM algorithm revealed significant 

changes in transcript measurements, showing that cRNA targets prepared by the four studied 

methods have significant, reproducible, and consistent differences (Table 4.7). Since all 

experiments started with the same total RNA and were hybridized to the same array type, these 

differences are introduced by the target preparation (amplification) method. For each “method A 

to method B” comparison of intensity values with SAM, transcripts that showed significantly 

increased values in method A over B were labeled as “affected by A”. Conversely, transcripts 

significantly increased in method B were labeled “affected by B”. The comparison between Enzo 

and Affy4h methods had the highest number of “affected” transcripts; while the comparison 

between Affy and Affy4h had the lowest even at a less stringent level. For all comparisons, each 

method accounted for approximately half of the affected transcripts. 

Table 4.7 SAM analysis results from paired comparison of all methods. 

 
 

Method A Method B FDR 
(%) 

Number of 
Affected 

Transcripts (%§) 

Affected in A 
(%§) 

Affected in B 
(%§) 

Affy CodeLink 0.0202 1633 (19.7) 864 (10.4) 769 (9.3) 

Affy Affy4h 0.3187* 2029 (24.5) 1335 (16.1) 694 (8.4) 

Affy Enzo 0.0109 5070 (61.2) 2577 (31.1) 2493 (30.1) 

CodeLink Affy4h 0.0151 3090 (37.3) 1445 (17.4) 1645 (19.9) 

CodeLink Enzo 0.0140 4976 (60.1) 2407 (29.1) 2569 (31.0) 

Affy4h Enzo 0.0082 5085 (61.4) 2585 (31.2) 2500 (30.2) 

*: Delta for this comparison was set at 3.0, all others at 2.0.  
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Since there are multiple factors that could contribute to the observed inter-method 

differences, we performed two focused comparisons that allowed us to isolate the sources of 

variation: a) the Enzo vs. Affy4h comparison was used to analyze the effect of double nucleotide 

labeling, and b) the Affy vs. Affy 4h comparison was used to analyze the effect of long in vitro 

transcription reaction time. From all the methods studied, Affy and CodeLink are the most 

similar in terms of workflow; however, comparison between these two methods still showed 

affected transcripts that could not be explained by the variation sources discussed above.  

4.4.6. Sources of variation 

4.4.6.1. Dual labeling 
The Enzo method uses double nucleotide labeling (biotin-CTP and biotin-UTP) while 

others use one (Table 4.1). Samples labeled with this method had higher average un-normalized 

fluorescence intensity values than all other methods (Table 4.2). As seen in Table 4.6 for the 

Enzo/Affy4h comparison, 61.4% of all transcripts have significantly different gene expression 

values, and are therefore affected by the method-dependent variation.  

We hypothesized that if this method-dependent variation is a direct result of the double 

nucleotide labeling, then the transcripts that show higher gene expression values with the Enzo 

method will have a higher Cytosine content in the transcript sequence interrogated by the probe 

set, since this nucleotide is only labeled by this method. This was expressed as the G/A ratio of 

the target transcript sequence as defined in the Methods section. The average G/A ratio of 

transcripts showing elevated expression in Enzo data was 1.166 ± 0.485, which is significantly 

higher than those of transcripts increased by the Affy4h method (0.773 ± 0.305; Mann-Whitney 

test: z = -32.477 p <0.00001). When transcripts that are affected significantly by the two 

methods are categorized according to their G/A ratio, we found that 93.7% of transcripts with 
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ratios >2.0 show significantly higher values with the Enzo method and 84.70% of genes with 

ratios <0.5 show higher values with the Affy 4h method (Figure 4.5). 

 
 
 

Figure 4.5 The G/A ratio of the affected transcripts from SAM analysis of the Enzo vs. Affy4h comparison.  

Enzo and Affy4h affected transcripts (totally 5,085) were divided into groups based on their G/A 
ratios which were obtained from the target sequence information provided by array manufacture. 
In each group, the number of affected transcripts by each method and the corresponding 
percentages of total number of affected transcripts in this group were obtained. The percentage 
of affected transcripts of each method in each group was plotted as a function of the G/A ratio. 
 
 

4.4.6.2. Incubation time 
Given that the Affy and Affy4h methods only differ in the length of IVT incubation time 

(Table 4.1), comparison of these two methods provides an insight on how this factor affects gene 

expression data. In this comparison, 24.5% of all present transcripts are significantly different 

between Affy and Affy4h methods with a delta of 3.0 (FDR= 0.3187%).  

135 



 

 
 
 

Figure 4.6 Transcript lengths of the affected transcripts from SAM analysis of Affy vs. Affy4h comparison.  

Affected transcripts from SAM results were grouped based on their transcript lengths. In each 
interval, the number of affected transcripts and their percentage in the total number of affected 
transcripts in this interval were gathered. The proportion of affected transcripts of each method 
in each interval was plotted as a function of transcript length. Please note only the transcripts 
shorter than 1.5kb were of interest to this analysis. 

 

Based on the transcript size shift observed with long IVT reactions, we hypothesized that 

transcripts with significant higher expression values in samples labeled with a long (overnight) 

IVT are more likely to be short transcripts. The analysis of 3’/5’ ratios of control genes shown 

above revealed that the 3’ end of transcripts > 1.5 kb was preferentially amplified by at least one 

of the long incubation methods (Table 4.4). Therefore, we investigated if genes < 1.5 kb would 

be preferentially amplified by a long-IVT labeling method. Figure 4.6 shows the percent of 
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transcripts <1.0 kb that are selectively increased in the Affy method in comparison to the Affy4h. 

These data show an inverse relationship between transcript length and the percentage of 

transcripts whose expression values are increased by the long IVT. Linear regression analysis 

shows an R2 of 0.9291, indicating a strong association between the increase of transcript length 

and the decrease of the proportion of long-IVT affected transcripts. This association could not be 

found when a comparison of both long IVT methods (Affy/Codelink) was done (Figure 4.7). 

 
 

 

Figure 4.7 Percentage of affected transcripts by each method in the Affy vs. CodeLink comparison (long 
IVT), grouped by transcript length.  

Data were plotted using the same strategy described in the legend for Figure 4.6 No correlation 
with transcript length was found in this comparison. 
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4.5.Discussion 

 This study demonstrates specific biases in gene expression data introduced by 

commercially available T7 RNA polymerase based amplification reagent kits and protocols. 

Although T7 amplification is generally regarded as linear, several studies have shown 

differences in gene expression between amplified cRNA (single or double round) and non-

amplified mRNA[64, 69, 70, 133, 151]. Our results corroborate and extend those obtained in 

other studies, and show that gene expression results can show biases that are dependent on the 

number of labeled nucleotides in the amplification kit or in the length of IVT reaction, which 

translates to a transcript size-dependent bias.  

Most researchers judge labeling kit for DNA microarrays based on their performance in 

yielding sufficient labeled cRNA for hybridization. However, our results suggest that attention 

should be paid to the number of biotinylated ribonucleotides used for labeling at the in vitro 

transcription step. When comparing single vs. double nucleotide labeling with normalized data, 

we found that approximately 30% of the present genes had substantially higher gene expression 

values in Enzo (double nucleotide) compared to Affy4h (single nucleotide), suggesting the data 

sets generated from methods using two labeling nucleotides are not directly comparable to data 

sets derived by using a single labeling nucleotide. It has been shown previously that 

incorporation of biotin-CTP is not as efficient as biotin-UTP.[73, 178] Our results are in 

agreement with these findings, since we found differences when the G/A ratio was higher than 2, 

indicating that at least 2 incorporated biotin-CTPs per biotin-UTP are necessary to significantly 

increase the amount of fluorescent signal per transcript. However, given the complexity of the 

labeling process, and the hybridization reaction, it is unclear if the biases introduced by the 

number of labeling molecules can be corrected by a normalization method.  
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We also demonstrate that the distribution of transcripts shifts towards shorter cRNA 

products in protocols with long IVT incubations, suggesting enhanced amplification of short 

transcripts. This is further corroborated by the fact that short transcripts were more likely to be 

increased in cRNA samples from long IVT labeling methods. Interestingly, Spiess and 

collaborators reported a similar cRNA size shift with long IVT incubation, but suggested that 

degradation of cRNA molecules by T7 RNA Polymerase accounted for this observation.[156] 

However, in our results long incubations consistently gave higher yields, which contrasts with 

their decrease in cRNA yield after 5h. Furthermore, in their description of exonuclease activity 

of T7 RNA polymerases, Sastry and Ross indicated that this activity is only unmasked in 

paused/arrested transcription complexes and that the kinetic balance during normal transcription 

was balanced towards polymerization[179]. We speculate that the degradation and/or decrease in 

IVT yields seen by Spiess and others [151, 156] with IVT reactions exceeding 4h, could be a 

result of paused transcription complexes due to depletion of reaction components. New IVT kits 

that are designed for longer incubation times seem to overcome this problem. Although the 

degree of amplification correlated with the increase in short cRNA transcripts, we were unable to 

assess the role of enzyme concentration between protocols with identical incubation times 

because the kit manufacturers would not provide this proprietary information.  

In this study, the number of transcripts identified as P in a sample, was directly related to 

the degree of amplification achieved in all methods but one (Affy 4h). This suggests that 

transcripts actually present in a sample are not always amplified successfully, which contributes 

to the variability within and between assays. In fact, as seen in other studies[119], variability in 

gene expression measurements was most pronounced in the low fluorescence intensity range, i.e. 

in the low expressor transcript range, as would be expected if low abundance transcripts are not 
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efficiently amplified each time. It is interesting to note that the Affy 4h method, which used 

pooled reactions due to low fold amplification, yielded similar P calls as the CodeLink platform, 

which showed the highest fold amplification. These results suggest that multiple labeling 

reactions may be more effective at amplifying low-expressor transcripts, because more 

transcription initiation events may occur with multiple short-term incubations. Further testing of 

this hypothesis is currently underway in our laboratory.  

Intra-method variability reflects random errors created during the performance of a 

specific method, while inter-method variability comprises both random experimental errors and 

systematic biases. In the present study, all methods provided low intra-method CVs, but inter-

method variability was considerably higher. Average CV across any two methods ranged from 

15.65% to 20.44% approximating the average %CV across all methods of 19.93%. Other studies 

have reported correlation coefficients for the CodeLink and Affymetrix platforms between 0.59 

to 0.79[119, 128, 180]. In our study, we obtained higher correlation coefficients between these 

two platforms, which could reflect the fact that all samples were hybridized to the same array 

type, therefore isolating only the variability contributed by the labeling method.  

Another significant difference observed between labeling methods was under 

representation of 5’ probes from genes larger than 1.5 kb with the CodeLink method. This 

phenomenon was observed by Baugh et al[69], and was demonstrated to be related to inefficient 

reverse transcription. Indeed, when comparing the CodeLink method against all others, which 

share a common RT step, the former requires a longer incubation period (2h vs. 1h) that may 

lead to depletion of dNTPs and early termination of reverse transcription reactions yielding 5’ 

truncated cDNA products. It is also possible that IVT further contributes to 5’ under-

representation when the T7 RNA polymerase fails to transcribe full-length transcripts. It is likely 
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that the majority of gene expression results are not affected by this phenomenon, since most 

probes in current array designs are 3’ biased, but this factor should be taken into account for 

probes that interrogate the 5’ region of selected transcripts.  

In summary, our results indicate that individual amplification methods significantly bias gene 

expression data, despite the fact that they are all derivatives of the T7 RNA polymerase based 

linear amplification. We have shown that part of this variability can be explained by: the number 

of biotinylated nucleotides used in the labeling reaction and the length of the in vitro 

transcription reaction. These biases are not corrected by intensity based normalization techniques 

such as the invariant set normalization method[177], and therefore can generate discordant 

results even with the same sample. As shown recently, concordance between different platforms 

has improved substantially thanks to advances in gene annotation and array design[130]  and 

high reproducibility among laboratories can be achieved when the same protocols and array 

platforms are employed[121, 181]. Our results emphasize the importance of standardized target 

preparation methods in order to optimize gene expression analysis and achieve a consistency 

compatible with clinical application of this technology. These findings should be taken into 

account when comparing data from different platforms, and in standardizing protocols for 

clinical applications. 
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5. CHAPTER V Conclusions and future prospects 

5.1.Conclusions 

The goal of this thesis work is to help improve bioinformatics support and quality assurance 

(QA) for DNA microarray based gene expression profiling, with the goal of molecular diagnosis 

implementation of DNA microarrays as diagnostic and prognostic tools in clinical pathology 

laboratories. Rigorous quality assurance and quality control (QA/QC) have been applied in the 

clinical laboratories as a critical component to guarantee the delivery of high-quality test results 

by controlling the variance and detecting measurement errors. For DNA microarray based gene 

expression profiling, QA and QC can be achieved through standardizing both the technology and 

experimental procedures. Work in this thesis provides insight into the problems existing in the 

experimental procedure associate with gene expression profiling.  

The most important conclusion that can be drawn from observations in this dissertation is 

that significant levels of variations can be introduced into microarray gene expression data either 

by tissue sampling or by the target preparation method and that these biases often overwhelms 

the most powerful statistical analysis. Variations introduced by tissue sampling have been shown 

to interfere significantly the accurate classification of tissue specimens from cancerous and 

disease free donor prostate and this principle almost certainly extends to all organ systems. For 

the classification of prostate tissue specimens using classifiers built on microarray data, results 

show the selection of the tissue baseline; normal prostate tissue specimens from prostate cancer 

free donors versus normal appearing prostate tissue from prostate cancer patients. In addition, 

results from this dissertation showed that the decision-tree learning algorithm can be successfully 
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applied to the classification of cancer using microarray data although even the best analysis 

could be significantly undermined by experimental biases such as these discussed above. 

DNA microarray allows the high-throughput gene expression profiling of any biological 

system by simultaneously surveying the expression level of tens of thousands of transcripts in 

massively parallel fashion and across many cellular conditions. Gene expression data from DNA 

microarray based experiments have both a massive data volume and exceptionally high 

dimensionality and, as a result, it becomes a major challenge to discovery biologically 

meaningful gene expression patterns from such data sets. It is not hard to understand why 

algorithm design and application became a major task in the application of DNA microarray 

technology for gene expression profiling. Few studies had been done on classification using 

decision-tree learning at the time the study in this dissertation was conducted. Results in this 

thesis show that the decision-tree learning algorithm performed as well as, if no better than, 

several popularly used classification algorithms on partitioning prostate tissue specimens using 

solely microarray gene expression profiling data. However, unlike the popular analysis methods 

of the time, decision-tree learning algorithm created a classifier in the form of a tree structure, 

which could be used to suggest potential underlying relationships between genes or potential 

linkage within pathways; these features have made the decision-tree learning algorithms 

attractive for classification tasks using microarray data. Despite the success of the decision-tree 

learning algorithm, however, the performance of all three classification methods was clearly 

impaired by the limited quality of the microarray gene expression data sets themselves.   

Gene expression data from DNA microarray based experiments should delineate the 

composition and the relative abundance of each transcript in a transcriptome and this should be a 

function of the biological events happening at the time cells or tissues were harvested. However, 
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noise and biases at various levels have been observed in microarray gene expression data and 

have significantly interfered with the accurate discovery of unique patterns of gene expression in 

a cell or tissue specimen. In many cases, the noise and bias introduced have been much larger 

than the biological signals themselves. This has been a major obstacle for the clinical application 

of DNA microarray technology as a diagnostic and prognostic prediction tool for clinical 

application.  

Recently efforts have been focused on identifying possible sources of variations by 

comparing microarray gene expression profiling results generated from different microarray 

platforms, various institutions, and multiple laboratories. DNA microarray platform, tissue 

sample, laboratory and array replication are the major sources recently identified which can 

introduce significant levels of variations in microarray gene expression data[120, 121]. RNA 

labeling, hybridization, data acquisition, and data analysis methods, if standardized, have also 

been proven to significantly improve the reproducibility of gene expression profiling between 

datasets produced on different array platforms and across different laboratories[120, 121]. 

Significantly, however, no study has been performed to formally investigate the level and source 

of these variations.    

T7 RNA polymerase based in vitro transcription labeling method is the most popularly 

used RNA labeling method. Past works have proven the linearity of this methodology and 

pointed out the potential for biases introduced by RNA amplification. However, no studies had 

systematic evaluated the significance of those biases or investigated their source. Results from 

the second aim of this dissertation demonstrated, for the first time, that significant levels of 

variations can be introduced into microarray gene expression data by several RNA labeling 

methods even though they are all derivatives of the T7 RNA polymerase based method. More 
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importantly, statistically significant associations have also been established between the 

variations observed and their possible sources. Specifically, variations in the number of 

biotinylated nucleotides used in labeling have been shown to be responsible for the alteration of 

gene expression pattern of approximately 30% transcripts presented on a microarray. 

Furthermore, the incubation time of the in vitro transcription has been shown to significantly bias 

the gene expression pattern of short/small transcripts significantly. The observed 

variations/biases introduced into the experimental data set cannot be eliminated or controlled by 

applying advanced normalization algorithms such as the invariant set normalization, indicating 

data from experiments using target preparation methods with different number of labeling 

nucleotides or IVT reaction time may not be directly comparable.  

Furthermore, although results reported were from the comparison of three particular 

methods/kits these observations can be generalized to other RNA labeling methods. First, these 

results show that the variations introduced by RNA amplification and labeling methods are 

significant. The average coefficient of variance of all transcripts on the array across all three 

methods is approximately 0.2 (Figure 4.3 and 4.4). For each paired SAM analysis, a large 

number of present transcripts were significantly altered/biased (20%~60% of all present 

transcripts on the array) (Table 4.7). Since the three methods are all derivatives from the T7 

RNA polymerase based in vitro amplification approach, greater levels of variations may be 

expected in microarray gene expression data if RNA labeling methods used are fundamentally 

different from each other.  

Secondly, the association between the number of biotinylated nucleotides and biased 

expression pattern of transcripts is not unique to the labeling methods used in this study. When 

comparing microarray data from RNA labeling methods that differ with the number of labeling 
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nucleotides, results may not be directly comparable. This is because the number of labels on each 

target molecule (cRNA or cDNA) varies when the number of labeling nucleotides changes. 

Depending on DNA microarray platform used, this variation may be or may not be controllable 

by normalization or other algorithms. For Affymetrix GeneChip® arrays, no easy solution is 

expected as the probe sets are designed with high redundancy and hybridization of targets to 

each probe is not yet a fully understand procedure, but for arrays incorporating one probe per 

transcript, solutions or approximations may be made. The bottom line is that caution should be 

taken when attempting to compare gene expression data if the labeling methods use different 

number of labeling nucleotides.  

Third, observations from this dissertation also suggest results from RNA labeling 

methods using T7 RNA polymerase based in vitro transcription is different and may not be 

comparable directly if the length of IVT reaction is not appropriately controlled. Optimum IVT 

reaction times are 4~5hours based on the studies on hand in this dissertation in Chapter IV.  

Past work has shown that tissue sampling is an important source of variations in DNA 

microarray gene expression profiling. In this dissertation, results show that tissue sampling 

affected the performance of classifiers built using microarray gene expression data. When 

classifiers built on gene expression profiles of normal appearing tissues adjacent to prostate 

tumor and profiles of prostate tumors were not able to classify correctly prostate tumors from 

other institutions. On the other hand, if using the profiles of prostate specimens from prostate 

disease free organ donors to build the classifier instead, classifiers performed well on 

distinguishing prostate tumor specimens, indicating that biases induced were as great as even the 

most profound biologic signals. In addition, results from the attempt of integrating lung cancer 

data from different generations of the Affymetrix GeneChip® arrays demonstrated how 
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variations from all sources (tissue sampling and handling, patient demographic information, 

experiment methods, analysis methods, etc. Table 4.1) dwarfs the “cancer” relevant biological 

signal, causes specimens to cluster by institution instead of biology and makes difficult, if not 

impossible, the integration of microarray data sets from different institutions if appropriate QA 

and QC are not utilized. Most importantly, these findings highlight the importance of 

correct/appropriate tissue sampling in applying DNA microarray gene expression profiling in 

cancer research and possible clinical application.  

Lastly, observations and conclusions from this dissertation emphasize the importance of 

standardized target preparation methods and tissue sampling in order to optimize gene expression 

analysis and achieve a consistency compatible with clinical application of this technology. These 

findings should be taken into account when comparing data from different platforms, and in 

standardizing protocols for research and clinical applications. 

5.2.Future prospects 

 
The ultimate goal is to achieve rigorous quality control and quality assurance by 

standardization of both the DNA microarray technology and the experimental procedure so that 

good quality and comparable gene expression profiling results can be created at each individual 

laboratory. Moreover, these high quality data sets can eventually be shared and made available 

for meta-analysis. Once standardized, DNA microarray technology will become a powerful tool 

for research use and for diagnosis and prognosis in clinical laboratories. However, because 

biases induced by experimental procedure often cannot be “controlled” by later analysis, if data 

is to be shared or compared, standardization cannot be done in one laboratory or a single 

institution. Both the research community and the DNA microarray related industry should work 

together toward accomplishing this goal. Every result and each raw data set will contribute to the 
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overall efforts and bring us closer to the ultimate goal of transparent sharing of gene expression 

data sets. Therefore, at the end of this dissertation, two types of future prospective work are 

proposed: (1) work towards to improving comparability of existing microarray gene expression 

profiling data sets, (2) work towards furthering experimental standardization of gene expression 

studies. 

5.2.1. Developing algorithms to approximate, control or eliminate variations 

introduced by the number of labeling nucleotides  

Many previously published studies used RNA amplification and labeling methods with two 

labeling nucleotides while the majority of current studies use methods with one single labeling 

nucleotide. The significant levels of variation due to the number of labeling nucleotides (as 

demonstrated in this thesis), therefore, becomes a hurdle for the comparison and integration of 

microarray gene expression results generated recently with data from the past two years. 

A possible solution to this problem is to develop algorithms which can simulate and control 

for the events occurring at hybridization and, at the same time, take into account of the number 

of labeling molecules on a target molecule. Before such an algorithm can be developed, more 

analysis need to be done on the effect of the number of labeling nucleotides on other types of 

DNA microarray which may have different probe length and use different labeling dyes. These 

may all contribute to the overall variations observed across different data sets and will be used to 

develop important parameters in the approximation/correction algorithm. 

5.2.2. Cross-platform comparison and integration of prostate gene expression data 

generated with standardized target preparation method 

As target amplification and labeling methods have been demonstrated to introduce 

significant level of variations into microarray gene expression data (Chapter IV), cross-platform 
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comparison and integration studies should be cautious in the use of multiple target preparation 

methods. Therefore, the data set that was generated in our laboratory using prostate tissue 

specimens from both tumor patients and disease-free organ donors is very useful in this work. 

The uniqueness of this data set is that targets for hybridization were all prepared with one RNA 

labeling method. Three types of arrays were used: the CodeLink oligonucleotide arrays from GE 

HealthCare; the HG_U95Av2 arrays and the HG_U133A arrays from Affymetrix.  

The objectives of this proposed study are as follows. First, variations due to the 

differences between DNA microarray platforms will be measured and characterized. Three 

paired comparison can be made: CodeLink array vs. HG_u133A array, CodeLink array vs. 

HG_U95Av2, and HG_U133A array vs. HG_U95Av2 array. Previous studies reported the 

correlation of gene expression data from CodeLink arrays and Affymetrix GeneChip® arrays is 

from 0.5 to 0.79[118, 119, 128]. Most of these studies did not control for the variation introduced 

by target preparation methods. Results from our data sets are expected to show better 

concordance of gene expression data from the two platforms. These comparisons will help to 

investigate further the possible sources of the observed variations.  

We expect to use this data set to study a data integration strategy with matched sequences 

and matched probes across different platforms. Previous studies from other groups have shown 

that cross-platform concordance of microarray gene expression data can be improved by using 

probes with matched sequences[182]. Variations from target preparation methods and other 

sources were not controlled and therefore the levels of improvement may be less than optimum. 

The data set we have generated is unique and valuable because it was truly with very well 

controlled experiments to minimize possible variations and used a single target preparation 
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method. Comparison and integration results from this data set should reflect more closely the 

real level of improvement possible by using sequence matched probes.  

5.2.3. Developing an optimal method for target amplification and labeling 

An optimal target preparation method would preserve 100% the integrity, composition, and 

relative abundance of each transcript in a transcriptome. Results from this dissertation show that 

that the Affy 4h method, which used pooled reactions due to low fold amplification, yielded a 

similar number of “present” transcripts as the CodeLink platform which showed the highest fold 

amplification. These results suggest that multiple labeling reactions may be more effective at 

amplifying low-expressor transcripts, because more transcription initiation events may occur 

with multiple short-term incubations. Further testing of this hypothesis is currently underway in 

our laboratory.   

5.2.4. Future works related to other sources of variation in DNA microarray based 

gene expression profiling 

In this thesis, tissue sampling and target preparation methods have been investigated as 

sources for the variations in microarray gene expression results. There are many other ones left 

unstudied.  

For example, the probe design for different DNA microarray platform may affect the 

microarray data if probes are not optimized to hybridize with their intended target molecules. 

The issues with probe design are whether redundancy should be applied and the optimal probe 

length with or without redundancy. Controversial results regarding these two issues have been 

reported recently[28, 183, 184]. Large scale, systematic studies need to be carried out to 

investigate this problem.   
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Hybridization is a critical step in microarray experiments (Figure 1.2a). Current protocols 

typically use 18 to 24 hours at hybridization and assume that this length of incubation is long 

enough for hybridization reactions to reach equilibrium. However, a study by Sartor et al.[185] 

recently carried out a study to investigate the effect of increasing hybridization time (from 18 

hours to 42~66 hours) on gene expression data using two-channel long oligonucleotide 

microarrays. Their results show that hybridization results from prolonged hybridization yielded 

more genes detected as present on the array, higher signal-to-noise ratio, and better 

reproducibility compared to results from 18-hour hybridization. These results suggested that 

hybridization reaction does not reach to equilibrium, as assumed, at 18 hours and, consequently, 

gene expression data from such hybridization will not reflect faithfully the level of expression of 

transcripts in a transcriptome. Specifically, as there will be high proportion of nonspecific 

hybridization before reaching equilibrium, some genes presented in the transcriptome may not be 

detected as present in microarray data sets and the fold change of the differentially expressed 

genes may be underestimated. The study summarized here demonstrates the variations 

introduced by hybridization on a specific type of DNA microarrays. It is likely that variation 

from the length of hybridization is not unique to the two-channel long oligonucleotide array used 

in that study. Other studies had also presented some preliminary results support this 

observation[23]. However, few studies thoroughly investigate the extent and source of variations 

introduced by hybridization. Furthermore, variations associated with hybridization time may 

vary with target concentration. Therefore, target concentration should also be taken into account 

when such studies are designed.  

In summary, we have proposed several possible prospective studies to extend the 

observations and results from this thesis. These future studies will help to improve 

151 



 

standardization of experimental procedures, provide better integration of microarray data sets 

which have been generated, and improve our understanding of the sources of variation in DNA 

microarray data.  
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APPENDIX A 
 
 
 

Differences in gene expression in prostate cancer, normal appearing prostate tissue 
adjacent to cancer and prostate tissue from cancer free organ donors 
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Decision tree learning-based characterization of the global effects of cocaine abuse on gene 
expression in the rat brain 
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ABSTRACT  
Motivation: This study aims to 
characterize the global changes in gene 
expression across the rat brain due to an 
acute dose of cocaine. Microarray gene 
expression data were generated from 
cocaine-treated and untreated tissue 
samples from five regions of the rat 
brain. A decision tree learning method 
was applied to this data to learn 
plausible models of the interactions 
among the brain regions.  
Results: Our approach to normalization 
and filtering of the original dataset 
provides a useful methodology for 
successful application of decision tree 
learning to this novel gene expression 
dataset. The popular decision tree 
learning program C4.5 learned a highly 
accurate (97.53% average prediction 
accuracy from cross-validation) and 
human-understandable model from the 
normalized and filtered data. The 

learned model  depicted a global change 
in gene expression among three brain 
regions in response to an acute dose of 
cocaine. The learned global pattern was 
verified independently using a different 
normalization procedure and 
visualization. The rule sets were studied 
carefully and the genes covered by each 
rule were annotated based on Gene 
Ontology terms. 
Contact: chmst40@pitt.edu
Supplementary Information: The 
normalized dataset and the Gene 
Ontology annotations of the genes 
covered by each rule are available at 
http://www.pitt.edu/~chmst40/ratdata/. 
 
Key words: Decision Tree Learning, 
Cocaine Abuse, Descriptive Generalized 
Models, Gene Expression Analysis, 
Normalization. 
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INTRODUCTION  
One of the major public health problems 
in the United States stems from the 
abuse of psychostimulant drugs, such as 
cocaine, amphetamine and their 
derivatives. A critical property of these 
drugs is that they tend to be addictive, 
that is, when administered in acute 
doses, their usage entails repeated usage. 
Cocaine and similar drugs induce the 
expression of immediate early genes 
which activate several networks of 
biochemical pathways in brain neurons 
(Hope, 1998; Torres and Horowitz, 
1999). These affected neurons locate in 
different brain regions and belong to 
different brain systems but synaptically 
converge on a common set of 
mesocorticolimbic neurons (Torres and 
Horowitz, 1999). The complexity of this 
system has made it difficult to map gene 
expression to addictive behaviors. 
Recently developed high-throughput 
microarray technology, however, allows 
the expression of thousands of genes to 
be monitored simultaneously and thus 
has the potential to enable the study of 
drug abuse at the genomic scale. This 
capability may provide a new way to 
understand the global changes in the 
gene expression patterns in brain due to 
drug abuse. Specifically, we can identify 
patterns of gene expression that 
correspond to cocaine exposure. 

A number of popular methods 
exist to identify higher order patterns in 
gene expression data. These methods can 
be usefully classified as being 
“supervised” or “unsupervised”. 
Unsupervised methods, such as 
clustering (Eisen et al., 1998) and self-
organizing maps (Tamayo, et al., 1999), 
seek to identify patterns in the gene 
expression data without the use of prior 
knowledge. Such methods are useful in 
basic data discovery and often find 

unique and novel groupings in the data 
but often do not reproduce known 
groups. Supervised methods, such as the 
decision tree learning method used in 
this study, on the other hand, incorporate 
informative specimen labels and 
knowledge about the dataset beyond the 
gene expression data. For example, a 
supervised method might be told which 
subjects had a given disease and which 
had not, and it would use that 
information to classify gene expression 
patterns. Supervised methods are likely 
to find gene expression patterns that 
correlate with the external labels, in this 
case the disease or lack of the disease. 

Decision tree learning (Quinlan, 
1986) is a commonly used technique to 
derive plausible descriptive models from 
training examples that can used to 
classify test examples whose 
classification is unknown. A primary 
advantage with respect to clustering 
methods and other supervised learning 
methods is that the predictive models 
obtained from decision tree learning 
method are human-understandable rules 
and therefore, enable characterization of 
general trends within the training 
dataset.  Decision tree learning has been 
applied in the past to gene expression 
data (Brown et al, 2000), but with 
limited success. 

In this paper, we describe an 
approach to normalization and filtering 
of a novel gene expression dataset that 
enables the learning of highly accurate 
decision rules to characterize gene 
expression obtained from normal tissue 
as well after treatment with an acute 
dose of cocaine. The analysis of this 
initial set of experimental data aims to 
understand the global effects of cocaine 
across the brain, using rat as the model 
animal. The popular decision tree 
learning program C4.5 was used to learn 
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a highly accurate decision tree, and then 
generate set of production rules (using 
the C4.5rules program) that describe a 
generalized model for discriminating 
between cocaine-treated and untreated 
brain. This model describes the global 
effect of cocaine in the rat brain and 
implicates the interaction among the 
regions in rat brain due to cocaine abuse. 
 
METHOD  
The Cocaine Dataset 
Forty male Sprague Dawley rats, twenty 
naïve and twenty sensitized with an 
acute dose of cocaine were used in the 
experiment. From the naïve and 
sensitized cohorts, pools of total RNA, 
from five brain areas: the Amygdala 
(AMY), Caudate Putamen (CPU), 
Nucleus Accumbens (NA), Prefrontal 
Cortex (PFC) and Ventral Tegmental 
Area (VTA), were used as the substrates 
for cDNA synthesis (see Figure 1 for 
spatial distribution of the brain regions). 
Region specific tissue from twenty 
animals was required to procure 
sufficient high-quality mRNA for the 
microarray experiments. It was also 
hoped that pooling tissue from twenty 
animals would also dampen the possible 
effect of inter-individual differences in 
gene expression at baseline or following 
treatment. We therefore had ten samples 
for analyzing differences in gene 
expression using commercially available 
Rat Genome U34A (RG-U34) array set 
from Affymetrix, Inc, Santa Clara, CA. 

There are totally 8799 probe sets 
on the RG-U34A array derived from all 
full-length or annotated genes (~7000) 
as well as thousands of EST clusters. In 
this paper, we will use “gene” as the 
general term referring to the genes and 
ESTs on the microarray chip. The results 
of gene expression analysis using the 
Affymetrix Micro Array Suite 4.0 

software from Affymetrix, Inc., Santa 
Clara, CA, are expressed as several 
parameters representing both qualitative 
as well as quantitative information for 
each gene represented on the arrays. An 
important quantitative measure of gene 
expression is represented by the Average 
Difference parameter. The Average 
Difference is a relative indicator of the 
level of expression of a transcript, and is 
used to determine the changes in 
expression of a given gene.  For each 
gene, there are ten Average Difference 
data points corresponding to its relative 
expression level in cocaine-treated and 
untreated tissue samples from five brain 
regions. Thus, there were 87990 data 
points available for analysis, divided as 
follows - 8799 genes x 2 conditions x 5 
regions.  

 
Figure 1. Schematic representation of some of 
the neurotransmitter systems in the rat brain 
sagittal section. AMY = Amygdala; CPU = 
Caudate Putamen; NA = Nucleus Accumbens; 
PFC = Prefrontal Cortex; VTA = Ventral 
Tegmental area. The schema is derived from 
page 55 of the Rat Nervous System volume 1: 
Forebrain and Midbrain (Paxinos, 1985).   
 
Overall Methodology  
Our methodology used for analysis of 
this dataset is depicted in Figure 2. The 
Average Difference values from 8799 
genes, from ten samples were merged 
into one data file, referred to as the raw 
data (Figure 2a, Step 1). Using this data, 
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Figure.2. Our method for learning models for the cocaine dataset. (a) A flowchart for the possible steps to 
perform the decision tree learning. A brief explanation is given to each step. (b) The seven experiments we 
performed by applying different combinations of the steps shown in (a). The * indicates that the sequence 
of performing normalization and filtering is not critical for deriving the result. 
 
the decision tree learning program C4.5 
learned an extremely inaccurate model 
(Figure 2b, Experiment1). The default 
settings were used for all runs of C4.5, 
as changing the parameters did not 
significantly improve the prediction 
accuracy of the learned models. The raw 
data was subsequently normalized and/or 
filtered prior to decision tree learning 
(Figure2a, steps 2 and 3; Figure2b, 
Experiments 2 to 7).  Experiment 7 
yielded a highly accurate model from 
normalized and filtered datasets, with a 
small number of rules within the rule set. 
The gene expression pattern implicated 
by this model was observed and 
validated visually by using GeneSpring 
4.1. The genes covered by each rule 
were annotated on the basis of TIGR Rat 
Gene Index. The software tools used in 
this study are listed below: 

• C4.5 Release 8 publicly available at 
http://www.cse.unsw.edu.au/~quinla
n/ was used for decision tree 
learning.  

• GeneSpring software version 4.1 
from Silicon Genetics, Redwood 
City, CA, was used to normalize the 
raw data and perform gene clustering 
using spearman correlation. The 
gene tree was used to validate the 
decision tree learning result.  

• TIGR (The Institute for Genomic 
Research) Rat Gene Index release 
Version 6.0 is publicly available at 
http://www.tigr.org/tdb/rgi/index.ht
ml. This index provides the source of 
gene ontology annotation.  

 
Decision Tree Learning 
Training examples are represented as the 
gene expression values for each brain 
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region for each gene (i.e. five values in 
this dataset), followed by the brain 
tissues’ classification, i.e. normal 
(untreated) or cocaine (cocaine-treated). 
Two examples are shown below, where 
each of the five relative expression 
values is separated by commas, followed 
by the target class (NORMAL or 
COCAINE):  
 

0.949,1.143,0.691,0.242,1.316,COCAINE. 
1.006,1.789,0.718,0.783,2.121,NORMAL. 

 
Given such training examples, 

we apply C4.5 to learn a decision tree 
classifier that comprises of region-wise 
tests of expression values that best 
discriminates examples of cocaine-
treated class from the normal brain tissue 
samples. The decision tree is built 
incrementally by applying an entropy-
based measure called “information gain” 
to determine which attribute (gene 
expression in a particular brain region 
such as Amygdala) is most informative 
in terms of discriminating between the 
target classes (i.e. normal vs. cocaine). 
This most informative attribute is then 
placed as the first test at the root of the 
decision tree, with branches labeled 
according to its values. The training data 
are then sorted along the branches. For 
each branch, the next most informative 
attribute that best discriminates among 
the subset of training data along that 
branch, is then chosen as the attribute 
whose values will be tested. The process 
continues until there are no more 
training examples that need to be 
covered (classified) along each branch. 
The leaf nodes contain labels of the 
target class, and represent the 
classification of the conjunction of 
features (<attribute, value> pairs) along 
that unique path from the root attribute 
of the decision tree. The most general 
classifier and the smallest decision-tree 

that does not over-fit the training data is 
used for prediction (Quinlan, 1993). 
 
Data Normalization  
A normalization procedure is first 
applied to the data (8799 x 10) by using 
GeneSpring 4.1. To normalize in the 
context of DNA microarrays means to 
standardize your data to be able to 
differentiate real (biological) variations 
in gene expression levels and variations 
due to the measurement process. 
Normalizing also scales the data so that 
you can compare relative gene 
expression levels (GeneSpring, 2001). 
Here, each sample was normalized to 
itself first, and then each gene was 
normalized to itself across all the ten 
data points.  
 The normalization of each 
sample to itself (also called per sample 
normalization or normalized per sample 
in this paper) intends to remove the 
differences in amount of exposure 
between samples, so different samples 
are comparable to one another. The 
median of all measurements in a given 
sample X is set to 1, and all other values 
scaled accordingly. The formula used is:  
 

(the signal strength of gene A in sample X) 
(the median of all of the measurements taken in sample X) 

 
The normalization of each gene 

to itself (also called per gene 
normalization or normalized per gene in 
this paper) accounts for the difference in 
detection efficiency between spots. It 
also allows you to compare the relative 
change in gene expression levels, as well 
as display these levels in a similar scale 
on the same graph. The formula used is: 
 
 
 

(the signal strength of gene A in sample X) 
(the median of every measurement taken for gene A 

throughout all of the samples) 
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The mean value of all gene 
expression data, for one given sample or 
gene, is commonly used in normalization 
since mean is correlated with standard 
deviation of that data. However in our 
dataset, there are no repeat 
measurements available for each sample. 
Moreover, the data points for a given 
gene are obtained from tissues across 
different rat brain regions. It is not 
meaningful to determine the standard 
deviation from this gene expression data, 
for a given sample or gene, and 
consequently the mean value of that data 
is not reliable. Under this condition, the 
median value of the data is less subject 
to outliers and therefore more 
representative of the overall expression 
level for all the expression data for a  
given sample or gene. Therefore, the 
median value was used for normalization 
instead of mean value in this study.  
 
Filtering 
The filtering procedure took advantage 
of a qualitative feature in the Affymetrix 
expression data files called the Absolute 
Call Metric (Affymetrix Inc., 2000). 
Using the Absolute Call we could 
eliminate transcripts that were reported 
to be absent (A) or only marginally 
present (M) as detected by the 
technology. The filter was designed to 
select only genes reported to be present  
(P) in all 5 brain regions under both 
cocaine-treated and normal brain 
conditions. After applying this filter to 
the original data, we obtained 1917 
genes that are present in all ten 
experiments. 

Schadt et al. (2000) have argued 
that filtering of genes on the basis of 
Absolute Call can be associated with 
some risk as genes with “absent” or 
“marginal” expression may be 

informative. However, the goal of our 
study was to detect differences in global 
expression pattern in cocaine exposed 
and naïve rats. Therefore, the 3140 genes 
(36% of the 8799 genes on the chip) that 
were “absent” in all samples are clearly 
not informative for our purposes. This 
left 42% of genes which were called 
“present” in between 1 and 9 of the 
samples (22% were expressed in all ten 
specimens and therefore included by the 
filter). Because of the large quantitative 
variation induced by these partially 
expressed genes, and uncertainty of how 
to represent “absent” genes in our 
model, we decided to focus on the 1917 
genes that were expressed in all samples. 
 
RESULTS AND DISCUSSION 
Prediction Accuracy   
Table 1 depicts the dramatic 
improvement in the prediction accuracy 
of the classifier due to our method as 
described in Figure 2. TP and TN refer 
to the true positive rate (sensitivity) and 
true negative rate (specificity); FP and 
FN refer to the false positive and false 
negative rate. The accuracy of each 
classifier is calculated as the percentage 
of training examples that are classified 
accurately (the number of correct 
predictions/ the number of examples 
predicted * 100). As reported in this 
table, the true positive rate (TP) for 
cocaine class prediction increased to 
98.85% in both Experiment 5 and 7. The 
accuracy of the classifiers for classifying 
the training examples increased to 
98.36% and 98.88% respectively.  

Experiment 5 and 7 yielded the most 
accurate models. The datasets used in 
these two experiments were both 
normalized sample-wise but, in 
Experiment 7, the data were also
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Table.5.1. Comparison of the prediction accuracy of models generated by running C4.5 against different 
datasets. TP: true positive rate; FP: false positive rate; TN: true negative rate; FN: false negative rate; AC: 
accuracy. The experiment numbers are identical to those of Figure2b.  

Datasets TP (%) FP (%) TN (%) FN (%) AC 
(%) 

Experiment 1. raw data (8799 genes, no 
normalization and no filtering) 45.49 17.14 82.86 54.51 64.18 

normalized data (8799 genes in each dataset) 
Experiment 2. normalized per sample 

data 87.2 24.7 75.3 12.8 81.25 

Experiment 3. normalized per gene 
data 70.2 32.37 67.63 29.8 68.92 

Experiment 4. normalized per sample 
and per gene data 87.16 26.51 73.49 12.84 80.32 

normalized and filtered data (1917 genes in each dataset) 
Experiment 5. normalized per sample 

then filtered data 98.85 2.13 97.86 1.15 98.36 

Experiment 6. normalized per gene 
then filtered data 19.67 6 94 80.33 56.83 

Experiment 7. normalized per sample 
and per gene then filtered data 98.85 1.1 98.9 1.15 98.88 

Table 5.2. Results from a ten-fold cross-validation on the training set consisting of 3834 examples (1917 
genes x 2 classes). TP: true positive rate; FP: false positive rate; TN: true negative rate; FN: false negative 
rate; AC: accuracy. 

Times TP (%) FP (%) TN (%) FN (%) AC (%) 
1 98.44 3.12 96.88 1.56 97.66
2 97.92 1.04 98.96 2.08 98.44
3 96.35 2.08 97.92 3.65 97.14
4 93.75 1.04 98.96 6.25 96.35
5 97.92 2.6 97.4 2.08 97.66
6 97.4 1.04 98.96 2.6 98.18
7 98.44 3.65 96.35 1.56 97.4
8 98.44 2.08 97.92 1.56 98.18
9 97.92 3.65 96.35 2.08 97.14
10 97.4 3.12 96.88 2.6 97.14

Average 97.4 2.34 97.66 2.6 97.53
 
normalized gene-wise prior to the 
decision tree learning. This indicates that 
per sample normalization makes a 
significant difference in prediction 
accuracy in learned models. The model 
learned from Experiment 7 was selected 
as it has the smaller set of rules (17 

rules) compared with the model learned 
from Experiment 5 (37 rules).  
 
Cross-validation  
To test the robustness of the selected 
model, a ten-fold cross-validation is 
performed, wherein 10 separate runs of 
C4.5 were made using each time 90% of 
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the relative expression data from 1917 
genes as training examples; and the 
remaining 10% as the test set of 
examples. The results with this cross-
validation were very encouraging (> 
97% accuracy on each test set). These 
results described in Table 2 lead us to 
believe that there are distinguishable 
patterns across the five brain regions in 
response to cocaine that can be modeled 
as a decision tree. Examples that are 
misclassified by a good model can also 
point us toward genes whose expression 
patterns lie in the boundary areas of the 
two classes, that is, those patterns that 
are not entirely describable as belonging 
to one class versus the other.  
 
Production Rule Model  
The production rules generated by 
C4.5rules program were carefully 
studied (Figures 3 and 4). All the rules 
for a single class appear together and the 
class subset (the group of rules for a 
single class) is ordered according to 
prediction accuracy of the rule; while the 
rule numbers are based on when they 
were generated. As in Figure 3, all the 
rules for the NORMAL class are listed 
first; then are the rules for the 
COCAINE class. The rules are applied 
to each case in the test dataset one by 
one in the listed order until the case is 
covered by a rule. The first rule that 
covers the case will be taken as the 
operative one since that is the rule with 
highest classification accuracy. During 
generation of the decision-tree, all 
training examples classified by any 
existing rule are removed from 
consideration; hence each rule in the 
rule-set will cover at least one training 
example not covered by other rules.  

Each production rule comprises 
of a left-hand side and a right-hand side. 
The left-hand side can contain tests for 

values of up to five attributes that are 
normalized gene expression values in 
five brain tissue samples. The right-hand 
side contains a classification, which is 
the name of a target class such as 
COCAINE or NORMAL. For example, 
Rule 25 in Figure 3 can be interpreted as 
follows. The left-hand side of the rule 
contains tests for values of two attributes 
which are normalized gene expression 
values in brain tissue from the Amygdala 
and Prefrontal Cortex; while the right 
side is a class name namely COCAINE. 
A test case that satisfies the left side of 
this rule is classified as COCAINE. The 
program also predicts that this 
classification will be correct for 99.7% 
of unseen cases that satisfy this rule’s 
left-hand side. This implies that 
whenever this rule is used to classify an 
unseen test case that has not been 
classified by any of the more accurate 
rules for that class, there is a 99.7% 
chance that the classification is accurate. 

Rule 17, the most generalized 
rule in the rule set that covered 1227 
genes without any misclassification 
described a pattern of global effects on 
gene expression in the five different 
brain regions under cocaine treatment 
(Figure 4). This pattern showed that 
genes are up regulated in Amygdala and 
simultaneously down regulated in the 
Prefrontal Cortex and to some extent in 
the Ventral Tegmental Area. We verified 
this pattern by the result of a clustering 
study on gene expression of the 1917 
genes using GeneSpring 4.1.  

Prior to the clustering study, the 
raw data was firstly normalized sample-
wise. Then the relative expression value 
of each gene in cocaine treated samples 
was divided by that in normal sample, 
from each brain region. These 
normalized relative expression data of a 
gene indicated the fold change in gene 
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expression between the cocaine treated 
samples   and   normal   samples  

 

 
Figure.3. The set of rules obtained by providing 
all 3834 training examples to C4.5 and 
subsequently invoking C4.5rules to create rules 
from the learned decision tree. These rules 
provide a plausible, generalized model learned 
from the training data. The program 
automatically finds the values for normalized 
expression levels across one or more brain 
regions that in combination are predictive of 
cocaine-treated tissue or normal tissue. Each rule 
can be used to classify a certain number of 
training examples to a certain degree of accuracy 
(indicated in square brackets). The boxed rules 

did not misclassify any training example. See 
Figure 1 legend for abbreviations. 

 
 
Figure 4. Coverage of training examples (genes 
described by their expression values tagged with 
the type of tissue) by each of the rules in the 
learned rule set in Figure 3. Consider for 
example Rule 25, which was used 46 times in 
classifying the training cases. All of the cases 
that satisfied the rule’s left-hand side did in fact 
belong to class COCAINE, so this rule did not 
misclassify any example (Wrong = 0). The 
advantage of including this rule in the set of 
learned rules is indicated as 24 (24|0) – this 
means that if the rule were omitted, 24 cases now 
classified correctly by this rule would be 
classified incorrectly, and 0 cases now 
misclassified by this rule would be correctly 
classified by the subsequent rules and the default 
class; the net benefit of retaining the rule is thus 
24 = 24 – 0. Other rules could be interpreted 
similarly. (Quinlan, 1993). The confusion matrix 
(Kohavi and Provost, 1998) is shown at the 
bottom of the figure with 1.1% of examples 
incorrectly classified. The boxed rules are 
corresponding to the same rules in Figure 3. 
 

 
from each brain region. This dataset was 
filtered as described in the METHOD 
Section. This filtered dataset was 
therefore referred as the fold change 
dataset. A gene tree was built from the 

fold change dataset by using the gene 
clustering function provided by 
GeneSpring 4.1. Similarity was 
measured by spearman correlation; 
separation ration was set to 0.5; and the
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Figure 5. Visualization of the 1917 genes present in all ten samples. Red indicates up-regulated genes and 
blue indicates down-regulated genes. The expression of these genes are shown in the following order row-
wise alternating between cocaine-treated and normal tissue; from Amygdala, Caudate Putamen, Nucleus 
Accumbens, Prefrontal Cortex and Ventral Tegmental Area.  The pattern of global effects of more than half 
of the genes being over-expressed in Amygdala; and simultaneously under-expressed in the Prefrontal 
Cortex and to some extent in the Ventral Tegmental Area is clearly visible and is described by Rule 17 in 
Figure 3. 
 
minimum distance was adjusted to 
0.001. The gene tree obtained for 
visualization (Figure 5) depicted the 
same pattern described by Rule 17 and 
provided a strong evidence for the 
existence of that global effect.  

Apart from the model, we listed 
and annotated genes covered by each 
rule using Gene Ontology terms  from 
the TIGR Rat Gene Index. The Gene 
Ontology annotation provides insightful 
information for a gene categorized as: 
the cellular component a gene belongs 
to, its molecular function, and the 
biological process associated with the 

gene (The Gene Ontology Consortium, 
2000). The Gene Ontology based 
annotation of the genes covered by each 
rule and the normalized dataset are made 
available publicly at 
http://www.pitt.edu/~chmst40/ratdata/ .  

We also studied many of the 
genes obtained from the rules that do not 
misclassify any of the training examples 
(the boxed rules in Figure 3). Many of 
the genes covered by these rules are 
implicated in signal transduction 
mechanisms. For example, the HPC-1 
gene covered by Rule 30 was up 
regulated in both Amygdala and Caudate 
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Putamen. HPC-1 antigen may play a role 
in neurotransmitter release from nerve 
terminals by associating with omega-
CgTX-sensitive N-type calcium channel 
and synaptotagmin (Yoshida et al., 
1992). This reinforces the general belief 
that several signal transduction pathways 
are activated from the receptor/cell 
surface to the nucleus and back that 
regulate the behavioral circuits in the 
brain leading to the kinds of response 
seen in animals exposed to drugs.  
 
CONCLUSIONS  
Methods for visualization and analysis 
of large, high throughput gene 
expression datasets remain an important 
area of research. In this paper we present 
such a method based on classical 
supervised machine learning. In 
particular, we have successfully used the 
well known decision tree learning 
program C4.5 to analyze global effects 
of acute cocaine exposure in the rat 
brain. The program was able to generate 
highly accurate, human-understandable 
rules that could distinguish cocaine 
exposed and naïve rat brains on the basis 
of gene expression data and which were 
consistent with Spearman correlation 
based statistical clustering analysis on 
differently normalized gene expression 
data from a same set of genes.  

Our methodology of 
normalization and filtering ensured the 
success of decision tree learning. The 
importance of normalization and 
filtering however, is not unique to 
decision tree learning or this study, it is a 
critical step first step in analysis of all 
large gene expression data sets no matter 
which analytic approach is used. 

In order to develop suitable 
treatment options for drug abuse, science 
will need to establish whether the effects 
of drugs such as cocaine are due to local 

or global changes in gene expression 
across the various brain regions. Our 
experiment establishes one such 
interaction among the Amygdala and the 
Prefrontal Cortex that could be very 
useful in this understanding.  The 
Amygdala region of the brain is typically 
associated with fear and emotion 
(Agglenton, 2000); while the Prefrontal 
Cortex is associated with long-term 
memory, planning and multi-tasking 
(LeDoux, 1996). The simultaneous 
down-regulation of more than a 
thousand genes in the PFC region and 
up-regulation of the same genes in the 
Amygdala is a likely contributor to 
reinstating drug-seeking behavior due to 
short-term reward or stimulus. Previous 
studies have implicated both 
dopaminergic as well as non-
dopaminergic systems as being involved 
in drug abuse and addiction (Lucas et al., 
1997; Bhat and Baraban, 1993). This 
study suggests that there are strong 
global effects of interaction among brain 
regions due to the exposure to a drug. 
Treatment measures designed to 
counteract these global effects might be 
more successful than those that consider 
only local effects of drug exposure. 
In conclusion, we have demonstrated 
that the decision tree learning method 
can accurately learn from microarray 
gene expression data and can generate a 
human-understandable model that can be 
used for prediction. The model learned 
from the gene expression data of rat 
brain with or without cocaine treatments 
describes a global change of gene 
expression due to acute cocaine 
treatment. This model provides evidence 
for the existence of global effects of 
cocaine in the rat brain, implicates the 
interaction of different brain regions 
under cocaine treatment, and gives 
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insightful information for the treatment 
of drug abuse. 
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