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MINERAL PRECIPITATION AND DEPOSITION IN COOLING SYSTEMS USING 

IMPAIRED WATERS: MECHANISMS, KINETICS, AND INHIBITION 

Heng Li, Ph.D. 

University of Pittsburgh, 2010 

 

Given the increasing water shortage and growing energy demand, novel approaches to water 

reuse are critical to ensuring sufficient water supply for cooling in thermoelectric power plants. 

Major challenges arise from complicated chemistries of the waters under consideration and 

changing operating conditions in open recirculating cooling systems, both of which lead to 

accelerated mineral precipitation/deposition (mineral scaling). This study evaluated three 

impaired waters, namely, secondary-treated municipal wastewater, passively-treated abandoned 

mine drainage, and coal-ash transport water for their use in cooling water systems. The focus of 

the study was on understanding the mechanisms, kinetics, and inhibition of scaling from both 

fundamental and applied perspective. 

Scaling inhibition with a variety of antiscalants was investigated and polymaleic acid 

(PMA) was the most effective antiscalant in all three waters. Scale control with PMA is achieved 

through retardation of mineral precipitation via PMA’s competitive interactions with 

crystallizing ions, and stabilization of suspended mineral particles via surface adsorption of 

negatively-charged PMA molecules. Nevertheless, biofouling and corrosion, two other main 

technical challenges in water reuse for cooling, compromised the effectiveness of PMA for 

scaling control. 
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Equilibrium-based chemical modeling for scaling prediction exhibited limited success for 

cooling systems using impaired waters. The model that considered CO2 degassing, NH3 

stripping, and kinetically-limited solids formation captured the underlying mechanisms dictating 

the pH changes observed in pilot-scale cooling towers. 

Electrochemical Impedance Spectroscopy (EIS) was developed as an in situ, sensitive 

approach for monitoring scaling rates by measuring the electrical impedance at the solid-liquid 

interface. The EIS capacitance correlated very well with the mass of mineral deposits and was 

independent of the chemical composition of the deposits.  The applicability of the method was 

successfully expanded to systems with multiple minerals and broader water chemistries, 

including secondary treated municipal wastewater. 

The key findings of this study indicate that it is possible to control scaling of several 

impaired waters used as makeup water in cooling systems. The chemical treatment approach 

demonstrated in this study offers an alternative to costly pre-treatment that is often suggested 

when impaired waters are used in cooling systems. 
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1.0  INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The growing demand for freshwater, driven by population growth and improved living standards, 

is becoming a great challenge of the 21st century [1, 2]. The current trend of global climate 

change also affects that demand [3-5]. The need for adequate water supplies has prompted 

governments, businesses, and communities to act forcefully and embrace water recycling and 

reuse. Wastewater—water after initial human use—is now being recognized as a significant 

source of water for many purposes, such as process cooling and agriculture [6, 7]. Process 

cooling, having surpassed agriculture since 2005, is now the single largest domestic use of 

freshwater, accounting for 41% of all freshwater withdrawals in the US [8, 9]. 

Many types of wastewater have been successfully reused in various applications, with the 

specific applications depending on both the quantity and quality of the wastewater [10]. Treated 

municipal wastewater (MWW) effluent, for example, represents an abundant and widely 

available source of water that has been employed as cooling-system makeup water, although 

only in a handful of cases [7]. MWW contains low to moderate amounts of total suspended 

solids (TSS) and organic matter, as well as moderate amounts of common mineral ions, such as 

calcium, carbonates, and phosphates [7]. In a typical recirculating cooling system, which 

includes elevated temperature and evaporative loss of water, mineral precipitation and deposition 
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(mineral scaling) on piping and heat exchanger surfaces are among the primary problems (the 

other main issues include corrosion and biofouling). Knowledge about the scaling problem 

caused by MWW or other types of wastewater is, therefore, of critical importance for their 

successful reuse in cooling and other applications. Better understanding of the deposition process 

is of critical importance for the design of effective scale-control measures. 

Besides the importance of scale deposition control when using wastewater for cooling, 

mineral precipitation and deposition are frequently encountered in numerous other water-based 

processes and have historically resulted in large economic losses. For example, the problem of 

scale deposition is responsible for 43% of the cost arising from heat exchanger fouling [11]. 

Also, 4% of the total cost of drinking water supply goes to scale deposition control [12]. Scaling 

in geothermal heat pump systems for building heating and cooling has been a lingering problem 

that impedes the wide adoption of this system in many states [13]. 

Given the increasing interests in water reuse and the ubiquity of the mineral scaling 

problem in most water-based processes, advancing the understanding of the scale deposition 

phenomena and scale interactions with antiscaling chemicals, and improving techniques to 

monitor scale formation and scaling kinetics, become more critical for engineering effective 

scaling control strategies. 

1.2 RESEARCH OBJECTIVES 

The overall goal of this study was to evaluate the feasibility of using impaired waters as 

alternative sources of makeup water for cooling in thermoelectric power generation, with a focus 

on both fundamental and applied aspects of the behavior of mineral precipitation and deposition 
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(scaling) in the context of impaired water reuse in recirculating cooling systems. The following 

questions regarding the scaling process are crucial in understanding, quantifying, and solving the 

scaling problem through well-informed engineering solutions: 

 What are the opportunities and challenges in using impaired waters for power plant 

cooling? 

 What kinds of impaired waters are available for power plant cooling? What are the water 

quality characteristics pertaining to mineral scaling? How severe is the scaling problem in 

cooling systems using different types of impaired waters? 

 What chemical control strategies can be used to mitigate/inhibit scaling in the impaired 

waters under conditions relevant to recirculating cooling? 

 How does simultaneous control of corrosion and biofouling affect scaling control? 

 What are the fundamental mechanisms of chemical antiscaling? 

 Can chemical equilibrium modeling be useful to facilitate the understanding of scaling 

and/or the water behavior in recirculating cooling systems? 

 Can a better detection method be developed for scaling rate measurements to replace the 

traditional gravimetric method of mineral mass determination that is crude, unreliable, 

and time-consuming? 

 

This study was designed and carried out to find answers to these questions. Specifically, 

experimental investigations were directed towards the following five interconnected objectives: 

1) Employ custom-built experimental systems at both laboratory and pilot-scale to examine 

the scaling behaviors of three impaired waters, secondary-treated municipal wastewater, 
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passively-treated abandoned mine drainage, and clarified ash pond water, in cooling 

water pipes under conditions representing open recirculating cooling in power plants. 

2) Systematically evaluate antiscaling chemicals to identify effective ones for use with the 

three impaired waters. Examine the key water quality parameters that impact the 

performance of the antiscalants. Assess the potentially antagonistic goals of biofouling 

and corrosion control with regard to scaling control. 

3) Evaluate the use of comprehensive chemical modeling in predicting scaling behavior 

and/or changes of water chemistries of the impaired waters under cooling system 

operating conditions. Based on experimental findings, propose approaches to improve the 

modeling. 

4) Explore the fundamental mechanisms of scaling inhibition by a chemical that proves to 

be effective for the impaired waters. The understanding of and insights into the 

antiscaling mechanisms will help in selecting/developing proper antiscalants for future 

use. 

5) Develop a new scaling detection approach that is convenient and sensitive for use in 

quantifying scaling rates. Test the robustness of the approach under practically-relevant 

cooling water conditions, namely, complex water chemistries with chemical additives for 

simultaneous control of scaling, corrosion, and biofouling. 

1.3 SCOPE AND ORGANIZATION OF DISSERTATION 

Following the present chapter (Chapter 1) with overall introduction of the dissertation, Chapters 

2-9 were each organized as individual manuscripts for journal publication. Chapter 2 provides a 
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general overview of the escalating water demands for energy production, the potential for use of 

impair water, and the need to study the technical problems associated with such water use. This 

investigation is important because, compared to the typical quality of freshwater sources, the 

lower quality of impaired water in cooling systems can pose several major technical difficulties, 

including mineral precipitation and deposition (mineral scaling), corrosion, and biofouling. 

Many types of impaired water can be potentially used to replace freshwater as cooling 

system makeup water. Chief among those are secondary-treated municipal wastewater (MWW), 

passively-treated abandoned mine drainage (AMD), and clarified coal-ash transport and settling 

pond effluent (APW) within coal-fired power plants. The secondary-treated MWW is potentially 

the most widely available and geographically accessible source of impaired water for power 

plant cooling. However, the mineral scaling problems can be a significant impediment to the 

viability of this water reuse. The control of mineral scale deposition in cooling systems using 

secondary-treated MWW is the subject of Chapter 3. Theoretical, laboratory, and field studies 

were conducted to evaluate the mineral deposition propensities of MWW and associated 

chemical strategies for deposition control under conditions relevant to typical power plant 

cooling. Chapters 4 and 5 include comprehensive information of the feasibility and challenges of 

using the passively-treated AMD and the clarified APW in recirculating cooling systems, 

respectively. Experimental studies showed that polymaleic acid (PMA) effectively decreased the 

settlability of suspended solids in AMD, thus rendering the solids less prone to deposition in the 

pipe flow sections of the cooling system. Modeling and laboratory results show that scaling in 

APW was much less severe than in AMD, even without chemical amendments. 

Besides the chemical complexities of the impaired waters, the pH behavior of the cooling 

water can impact many aspects of proper operations and chemical control regimens in a cooling 
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system. In Chapter 6, a new modeling approach for reliable prediction of the pH changes in open 

cooling systems using MWW was presented. The modeling approach greatly improves one’s 

ability to forecast the cooling water pH at various cycles of concentration, even without knowing 

the recirculating water alkalinity, which was previously a key parameter for pH predictions by 

other empirical models. 

Inspired by the observation of the drastically varied effectiveness of different 

antiscalants, Chapter 7 investigated the impact of PMA, a polymer that had been repeatedly 

observed to be very effective in all the three types of impaired water tested, on the kinetics and 

mechanisms of mineral precipitation and deposition. It was found that the polymer can alter 

mineral precipitation pathways or even completely inhibit mineral precipitation. The inhibition is 

based primarily on the retardation of precipitation induction but also on electrostatic repulsions 

between the polymer-adsorbed mineral colloids and negatively-charged substrate surfaces. 

Further analysis showed that PMA molecules complexed more strongly with Mg2+ than Ca2+. 

Under the influence of PMA, Mg was incorporated in the amorphous precipitates, which were 

slower to form than Mg-free crystalline precipitates. These findings improve our fundamental 

understanding of the antiscaling processes of polymer antiscalants like PMA, and help remove 

the empiricism in the design of new anti-deposition polymers. 

Existing studies of mineral scaling have often relied on simple measurements of bulk 

water chemistries and/or mineral mass accumulations on substrate surfaces. Chapter 8 presents a 

new measurement approach based on Electrochemical Impedance Spectroscopy (EIS) to monitor 

the process of mineral deposition in situ and with requisite sensitivity, both highly valuable traits 

for detection method. The method was validated in several commonly encountered single-

mineral suspensions by comparing and quantitatively correlating with a standard method for 
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deposition rate measurement via mineral mass determination. Furthermore, the applicability of 

the EIS method for mineral deposition monitoring was expanded in Chapter 9 under broader 

water chemistries, including multiple-mineral systems and potential complications of chemical 

additives for scaling, corrosion, and biofouling control. It was demonstrated that the EIS is a 

nondestructive method that allows in situ semi-continuous measurement of overall mineral 

deposition; its sensitivity (< 0.1 mg of deposit detectable) may afford means of early detection of 

mineral deposition. The method also holds great potential as a surface-based sensor to help 

elucidate the mechanisms of mineral surface deposition. In addition, it is possible to use narrow 

ranges of AC scanning frequencies to obtain essentially the same amount of useful information 

for scale detection, thereby saving measurement time and the EIS device cost. 

Chapter 10 provides the main conclusions of this dissertation work and lists the key 

contributions. Overall, a better understanding of mineral precipitation and deposition processes 

and a more advanced deposition detection method contribute to informed decision-making for 

using impaired waters in cooling systems and even broader applications. Extrapolation of this 

work can be considered for more general areas of geochemical mineralogy and biogeochemistry 

of environmental concerns, such as mineral-mediated transport and removal of contaminants in 

ground water environments. The information and insights presented in this work can also add to 

the understanding of mineral fouling control in membrane filtration and desalination application. 

Nevertheless, more specific future work that can be directly branched out from this dissertation 

is given in the final chapter, Chapter 11. 

 



8 

2.0  ESCALATING WATER DEMANDS FOR ENERGY PRODUCTION AND THE 

POTENTIAL FOR USE OF TREATED MUNICIPAL WASTEWATER 

The use of alternative water sources to replace freshwater for cooling will inevitably be a critical 

requirement to ensure sufficient thermoelectric power production in the future. This chapter 

discusses the opportunities and challenges of using treated municipal wastewater (MWW) for 

wet-cooling in thermoelectric power plants. Statistical analysis on the availability of MWW 

showed that secondary-treated MWW is promising in terms of its quantity and geographical 

proximity to power plants. Half of the existing coal-fired power plants in the US can meet their 

cooling water needs using MWW effluent from only 1 or 2 fairly large sewer treatment works 

that are located within a 10-mile radius. Compared to the typical quality of freshwater, MWW’s 

lower quality can pose several technical difficulties, including scaling, corrosion, and biofouling 

in cooling systems. The complicated water chemistry of MWW and the varying operating 

conditions of open recirculating cooling systems pose great challenges for the traditional 

approaches of using chemicals to control scaling, corrosion, and biofouling. New research is 

needed to provide technical support for more suitable control strategies to mitigate these 

problems when MWW is used as makeup water. Although existing federal regulations do not 

prohibit using impaired waters for power plant cooling, and the state regulations impose a 

minimal set of additional environmental requirements for such practices, forward-thinking 
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strategies should be proposed and evaluated to ensure protection of the public and the 

environment as the use of MWW in power plant cooling systems becomes more common. 

2.1 INTRODUCTION 

Water and energy are inseparable in many ways. For instance, water supply and wastewater 

treatment both require energy input. On the other hand, water is needed in power plant cooling to 

drive the thermoelectric energy generation. According to the latest survey, total water withdrawal 

in the US reached 410 billion gallons per day (BGD) in 2005, of which 349 BGD was freshwater 

and the rest (15%) was saline water [1]. Among the major freshwater uses, thermoelectric power 

generation has surpassed agriculture to become the number one use (41%) since 2005. Reliable 

and abundant water sources are required to ensure sufficient power generation in the future. 

However, the increasing water shortages and the global warming effect further exacerbate the 

fierce competition for water among various users [2].  

In the effort to reduce green house gas emissions, implementation of carbon capture and 

sequestration/reuse (CCS/CCR) has been the focus of policy enforcement. However, the 

adoption of CCS/CCR will increase water consumption by 76-90% in a fossil-fuel power plant 

due to the decrease in power generation efficiency and the need of water for the CCS/CCR 

processes [3]. 

Coal, natural gas, and nuclear power, added together, account for nearly 90% of the 

world’s electricity produced in thermoelectric power plants [4]. Regardless of the cooling 

technology used in these power plants, either recirculating cooling or once-through cooling, 

water is critical to cool and condense the steam in the boiler water loop [5].  
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Several cases in arid regions, such as Arizona and Texas, have shown that the lack of 

available cooling water resulted in suspension for existing power plants and permit denial for 

constructing new plants [6, 7].  Rising demand for electricity in those areas will lead to difficult 

decisions in water allocating priorities and finding reliable water sources for electricity 

production. The use of alternative water sources for power plant cooling will likely be an 

inevitable requirement to ensure sufficient energy production in the future. Moreover, tightening 

regulation of water intake structures imposed by the Clean Water Act (CWA) to protect fish and 

other aquatic life (CWA section 316(b)) has put the power plants and other industrial facilities in 

a challenging position for natural water withdrawal. Indeed, the ability to use alternative water 

sources for cooling may provide a competitive advantage for new power plants with respect to 

siting and construction permits [8]. 

Many types of nontraditional water sources may be considered for power plant cooling. 

However, their use may be restricted by drastically varied availability and quality. For instance, 

passively-treated coal mine drainage is most abundant in Pennsylvania and West Virginia, while 

the most severe water constraints for cooling are more likely to lie in western US [9]. Water is 

used to transport either fly ash or bottom ash generated from coal combustion and the effluent 

from ash settling pond is readily available for reuse. However, it is shown that ash pond water 

can only serve for emergency use due to its limited amount. At best, this water can satisfy 25% 

of the need for cooling water makeup [10-12]. Among all the alternatives, treated municipal 

wastewater (MWW) is considered as the most promising water owing to its ubiquitous 

availability and fairly steady quality [13]. 

Although using treated municipal wastewater to replace freshwater withdrawal for power 

plant cooling seems to be feasible based on its availability, use of this impaired water can pose 
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several technical difficulties in cooling systems because of its lower quality compared to typical 

freshwater sources. Metal corrosion, mineral scaling, and biofouling are the major technical 

challenges. 

Besides the technical challenges with the use of MWW, legal basis for wastewater reuse 

for power plant cooling needs to be considered. Whether the cooling systems are new or being 

retrofitted, any water reuse program needs to comply with federal, state, and local regulations. 

The issue of water ownership and right of use may also complicate the use of treated MWW if 

interstate water transportation is involved. In addition to legal considerations, potential air-borne 

pollution and proper blowdown discharge from the cooling systems using concentrated 

wastewater are among the public concerns that must be addressed. 

2.2 ABUNDANCE AND ACCESSIBILITY OF MWW FOR POWER PLANTS 

Treated MWW holds the great potential to be the most promising alternative water sources for 

power plant cooling in the US. Therefore, the analysis of the quantity, availability, and 

geographical proximity of treated MWW for power plants is critically needed and should 

precede technical assessment of the feasibility of MWW reuse for cooling. 

It is estimated that a total volume of 30-40 billion gallons of municipal wastewater is 

treated per day in the US [14]. However, this amount of water is not evenly distributed and the 

effluent discharge rates may vary significantly from site to site. For the analysis of MWW 

availability for power plant cooling, a comparison must be performed between the location and 

amount of water supply and prospective water consumption. The publicly owned treatment 

works (POTWs), which are the most reliable and accessible point water sources regulated by the 
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National Pollutant Discharge Elimination System (NPDES) permit program [15], are considered 

here as the major water providers. Based on NPDES, MWW effluents must reach at least the 

secondary treatment level and be disinfected prior to discharge from the treatment facilities. A 

database containing water flowrates and geographical locations of 33,852 NPDES permitted 

discharges has been constructed by the US EPA since 1996, of which 17,864 are POTWs in the 

lower 48 states and can be considered as potential water providers for power plant cooling. 

The amount of water withdrawal for power plant cooling system makeup can be very 

different, depending on the particular cooling technology used in the power plant. For a once-

through cooling system, 20–50 gallons of water are used to generate one kWh of electricity. On 

the other hand, modern recirculating cooling towers need 0.2-0.6 gallons of water to generate 

each kWh of electricity [11]. However, the construction of once-through cooling systems is no 

longer permitted by CWA 316(b), and the focus of this study was on recirculating cooling 

systems. 

Among all thermoelectric power plants in the lower 48 states, 407 coal-fired power plants 

are selected to represent potential users of treated MWW for cooling. It is assumed that the 

cooling systems in these 407 power plants are recirculating systems, regardless of their current 

actual configurations. The cooling water demand is then estimated by using a conversion factor 

of 0.6 gallons of water per kWh of electricity produced. 

The correlation between the water providers and water users are determined using 

geospatial analysis (ArcGIS version 9.2, ESRI, Redlands, CA). The number of POTWs required 

to satisfy the water needs of a power plant within a specified radius is determined. Coverage of 

10 and 25 mile radius is examined to ensure reasonable transportation distance of the treated 

MWW from the POTWs to power plant. 
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The GIS data show that in Pennsylvania, for example, there are 11.7 POTWs on average 

within a 10-mile radius around each existing power plant, and 62.5 POTWs when the range is 

extended to 25 miles. Nationwide, about 50% of existing power plants can obtain sufficient 

amount of cooling water from POTWs located within a 10-mile radius. Furthermore, for these 

power plants only 1.14 POTWs can supply enough water to meet their water demand. On the 

other hand, 76% of the power plants can have sufficient cooling water supply from an average of 

1.46 POTWs if the radius is extended to 25 miles. It is important to note that only one or two 

water conveyance pipes of reasonable length (less than 25 miles) are required between a power 

plant and the POTWs to supply sufficient amount of cooling water to replace more than 50% of 

current freshwater withdrawal for power plant cooling. The use of MWW as an alternative 

makeup water for power plant cooling is particularly meaningful for the development of coal-

fired power plants in regions where freshwater sources are not readily available. 

2.3 TECHNICAL CHALLENGES 

2.3.1 Inorganic Scaling 

Given the relatively high levels of both dissolved and suspended solids, alkalinity, and 

hardness in typical secondary-treated MWW (Table 2.1), a primary concern when using the 

wastewater for recirculating cooling is the potentially severe mineral scaling problems. Scale 

formation in cooling systems causes a multitude of operational problems, chief among which are 

the hindrance of heat transfer, the obstruction of pipe flow, pump failures, and accelerated fall-

down of cooling tower fills [16]. The bottom line is that scaling causes large economic losses in 
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virtually all water-based industrial processes. The control of scaling is imperative to ensure 

proper operations of these processes. 

Table 2.1. Quality of secondary-treated municipal wastewater (typical ranges of concentration) 

Parameter Range 

pH 7-8 

BOD (mg/L) 3-30 

COD (mg/L) 40-80 

TDS (mg/L)  130-1600 

TSS (mg/L)  10-50 

Alkalinity 
(mg/L as CaCO3) 

100-500 

Ca (mg/L) 28-185 

Mg (mg/L) 23-150 

NH3-N (mg/L) 3-73 

NO3-N (mg/L) 10-30 

SO4 (mg/L) 60-293 

PO4 (mg/L) 0.6-51 

Conductivity 
(mS/cm) 0.2-1.2  

 

An important operational parameter in recirculating cooling is Cycles of Concentration, 

or CoC, which is the primary cause of mineral precipitation and scaling. In a recirculating 

cooling system, there are basically two water loops. One is a closed loop for boiler water and the 

other is an open loop for cooling water. Heat from the closed loop is transferred to the open loop 

at the heat exchanger. The warm water coming from the heat exchanger is distributed at the top 

of the cooling tower. Airflow in the counter direction (or cross-flow direction, depending on the 

specific tower configuration) takes the heat out through evaporative water losses, and the cooled 
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water is cycled back to the heat exchanger. During the cooling water cycling, the evaporative 

water losses lead to increased concentration of mineral salts in the cooling water. Assuming there 

is no loss of the dissolved species to either evaporation or deposition, the CoC can be calculated 

by either the volume of evaporative water loss or by the level of the salt concentration increase. 

However, some salts eventually become supersaturated and precipitate out of solution to form 

scales. In this case, the volume-based CoC calculation is more appropriate that salt concentration 

based. Moreover, the elevated temperature of the bulk water may exaggerate mineral scaling, 

especially for some common minerals such as calcium carbonates. To avoid excessive scaling, a 

portion of the concentrated bulk water is removed through blowdown. At steady state operation, 

feedwater is brought in to make up the volume loss due to evaporation and blowdown. 

Power plant cooling using freshwater may generally encounter only minor scaling 

problems, especially when the system is operated at low CoC [17]. However, in the case of using 

MWW as makeup water, the cooling tower performance could be significantly compromised by 

scaling problems when the water chemistry is not properly managed. A better understanding of 

the mineral deposition processes and mechanisms of MWW in cooling systems is therefore 

required before sound control technologies can be developed and implemented to inhibit mineral 

deposition. 

The development of inorganic solids from an aqueous solution starts with the nucleation 

of minerals from their constituting ions which, based on their ionic complementarity, form small 

clusters. These clusters undergo a dynamic process of growth and disintegration governed by the 

counterplay between the energy penalty incurred by surface generation and the energy gain 

related to the formation of a crystal lattice [18, 19]. At the point where the surface energy cost is 

counterbalanced by the energy of crystal phase formation, a critical size is reached. Afterwards, 
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continued growth leads to a reduction of the Gibbs energy of the system as the further decrease 

of the lattice energy over-compensates for the increase in surface energy. As the spontaneous 

growth ensues, a critical nucleus develops into a primary nanoparticle. These nanoparticles 

further develop into larger particles either by the addition of ions or by the oriented attachment of 

multiple particles. This entire process manifests in the bulk solution as mineral precipitation. 

A substantial amount of research has already been devoted to the thermodynamics and 

kinetics of mineral precipitation and dissolution in bulk solutions. Characterization of single 

minerals (e.g., calcium carbonates, calcium sulfates, iron oxides) in relatively simple solutions is 

well documented in the literature. However, the knowledge acquired from these studies can be 

inadequate for elucidating mineral precipitation behaviors of MWW, which contains a whole 

array of inorganic and organic chemical constituents, as well as certain amount of particulate 

matter. The effects of co-existing chemical species on the precipitation behavior of a particular 

mineral, being either synergistic or antagonistic, have not been studied extensively. Attempts to 

apply the specific data obtained from simple aqueous systems to more complex ones containing 

multiple chemical constituents is likely to achieve limited success. 

Thermodynamic calculations indicate the formation of dolomite (CaMg(CO3)2) in a 

solution supersaturated with calcium, magnesium, and carbonate. However, direct dolomite 

precipitation in laboratories and natural waters under normal conditions (temperature, pressure, 

and salinity) has rarely been observed; the phases that actually form consist of aragonite and 

magnesian calcite (a solid solution) [20, 21]. Thus, great care must be taken in using simple 

thermodynamic calculations to predict behaviors of complex water systems, such as concentrated 

municipal wastewater, where carbonate minerals are dominated by metastable phases and 
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deposition reactions may be governed by uncharacterized foreign surfaces or poorly understood 

phases whose properties differ significantly from underlying bulk mineral. 

A number of common ions present in aqueous solution can pose inhibitory effects to Ca-

based mineral precipitation. The presence of Mg2+ appears to cause the precipitation of beta-

tricalcium phosphate rather than apatite and the precipitation of magnesian calcium carbonate 

rather than calcite [22-25]. In the case of Ca-P precipitation, the net effect of Mg2+ is to increase 

the phosphate solubility at pH below 9, but to decrease it at higher pH due to Mg precipitation as 

Mg(OH)2. The inhibition effect of Mg2+ results from its incorporation into the Ca-P solid lattice, 

which prevents the formation of a well-crystalline Ca-P structure [26, 27]. 

Natural organic matter (NOM) and organic acids are known to inhibit mineral 

precipitation [28-34]. However, the chemical and physical processes involved in the inhibition 

are not well understood because of the complexity of the chemistry and structural variabilities of 

the dissolved organic matter. The inhibitory effects of organic acids on precipitation of Ca-P 

have been generally attributed to their adsorption onto newly formed Ca-P nuclei, thereby 

blocking the active sites for further crystal growth. Aqueous complexation of the acids with Ca 

could also have inhibitory effects by lowering free Ca concentration in solution and thus 

reducing its supersaturation levels with respect to phosphate or carbonate anions. However, such 

direct complexation mechanism is noted to be less important compared to the effect of 

adsorption onto nucleus growth sites [31]. 

Commonly used methods for monitoring scale formation are electrical conductivity and 

turbidity measurements [35]. However, the response from both these techniques is dominated by 

mineral precipitation events in the bulk suspension. In effect, neither technique is able to detect 

mineral deposition, which is a surface process. Therefore, to study scale inhibitors and their 



18 

ability to prevent scale formation, it is critical to use a detection method that is able to 

differentiate between the bulk and surface processes and is able to quantify the scale deposition 

on a given surface. In addition, in the context of using treated MWW as a source of industrial 

cooling water, the effect of disinfectants, which are commonly added for bio-control, on mineral 

scaling has not been studied. Lack of understanding of these issues hinders the development of 

control strategies for mineral deposition that are pre-requisite for successful reuse of MWW for 

cooling. 

2.3.2 Biological Fouling 

Although the treatment processes employed in most POTWs remove large portion of 

biodegradable organic content, treated MWW still contains appreciable levels of phosphorus, 

nitrogen, and residual organic matter. Warm, moist, and nutrient-rich environment in 

recirculating cooling systems is conducive to continued biological growth, including a wide 

range of microorganisms such as bacteria, fungi, and algae [36]. Typical cooling operation, such 

as temperature at 35-45°C, pH 6-9, continuous aeration, and sunlight exposure, makes the 

cooling system a favorable habitat for biological growth. The CoC effect concentrates the 

organic matter and other nutrients in the bulk cooling water, which renders the biological growth 

control even more challenging. 

Biological growth can quickly lead to biomass/slime accumulation on equipment surfaces, 

a process known as biological fouling (biofouling). For example, biofouling is able to develop on 

heat exchanger surfaces within 4-8 hr [37]. The resulting biofilm can bind with suspended solids, 

silt, corrosion products, and organic and inorganic deposits, which greatly exaggerates mineral 

scaling and corrosion (microbial induced corrosion underneath biofilm) problems [38]. 
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Control of biofouling can be achieved through chemical or physical methods. Application 

of proper chemical biocides is a widely adopted approach based on cooling system design and 

the makeup water quality. Chemical biocides work through three primary mechanisms: 1) 

damage the microbial membrane and cell structures, 2) disrupt the microbial metabolic functions, 

and 3) interrupt the biosynthesis of crucial substances [39]. The disinfection efficiency is 

affected by water temperature, pH, redox condition, chemicals added for corrosion and scaling 

control [37, 39]. A general guideline of acceptable biofouling control is 104 CFU/mL (CFU: 

Colony Forming Unit) for planktonic bacteria or 104 CFU/cm2 for sessile bacteria measured by 

the standard heterotrophic plate counts (HPC) [38]. 

Chlorination is the most common chemical program used in cooling systems to control 

biogrowth because of its high efficiency, easy accessibility, and low cost [36]. Biofouling can be 

well mitigated by maintaining a proper disinfectant residual concentration in the bulk water. 

However, elevated organic content and ammonia concentration in cooling systems using MWW 

can greatly increase the free chlorine dose required to achieve breakpoint chlorination. Moreover, 

free chlorine tends to react with natural organic matter to form undesirable disinfection 

byproducts (DBPs), which can endanger public health when they are discharged into surface 

waters. 

Monochloramine has been demonstrated to be as effective as free chlorine in biofouling 

control when secondary-treated MWW is used in cooling systems [40]. Application of 

monochloramine was shown to be more effective than free chlorine in preventing the 

development of biofilm in a cooling system [41]. Chloramination usually requires higher residual 

concentrations than chlorination (1-3 ppm higher) to achieve comparable disinfection 

effectiveness. Nevertheless, monochloramine is more stable with lower decomposition rates 
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compared to free chlorine [42, 43]. As such, the overall chemical consumption can be potentially 

lower with chloramination than chlorination. 

Our study [13] indicated that monochloramine can be very effective in controlling 

biofouling in pilot-scale cooling tower systems using secondary-treated MWW and operating at 

CoC 4. Results from bench-scale experiments indicate that carbonate, phosphate, or sulfate did 

not significantly interfere with the in situ formation of monochloramine in the wastewater. 

However, all of these constituents increased monochloramine decomposition rate. Natural 

organic matter also slightly increased the decomposition rate through redox and substitution 

reactions. Overall, the results from our bench studies are in agreement with the work presented 

by Rao et al. [40]. However, the results from our pilot tests indicated that in situ chloramine 

formation through the reaction between ammonia present in the MWW and sodium hypochlorite 

added to the cooling tower was not reliable. To maintain the total chlorine level above 1 ppm (as 

Cl2), pre-formed monochloramine had to be added to reduce HPC in planktonic and sessile 

phases below the respective target biocontrol criteria. 

In conclusion, monochloramine can be used to replace free chlorine as an effective 

disinfectant in cooling systems using secondary-treated MWW as makeup water. It is essential to 

continuously dose pre-formed monochloramine to maintain target residual disinfectant (2-3 ppm) 

and keep the bioactivity under control. 

2.3.3 Corrosion 

Another challenge when using treated municipal wastewater as makeup water in recirculating 

cooling water systems comes from corrosion of metal heat-transfer surfaces and conveyance 

pipes due to degraded quality of the wastewater and is exacerbated by mineral scaling and 
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biofouling. As a result, knowledge of traditional corrosion control approaches built on the 

experience with freshwater as cooling system makeup water needs to be re-evaluated. 

Among the many water quality parameters influencing corrosion in cooling systems 

using MWW, phosphate and ammonia are of the great interests. Ammonia and phosphate 

concentrations in secondary-treated MWW can reach up to 70 and 50 mg/L, respectively (Table 

2.1). Ammonia is a strong complexing agent toward many metals and metal alloys and can be 

very corrosive [44]. It is recommended that the ammonia concentration in cooling systems 

should not exceed 2 mg/L (as NH3) [45]. Although the ammonia in the makeup water (MWW) 

can be high, several studies reported that the ammonia in recirculating cooling water was low 

[46-48]. Such findings are most likely due to stripping and nitrification in cooling towers, where 

high water temperature (40-50°C), high pH (8-9), and active aeration are all in favor of 

evaporative loss of ammonia. The knowledge of ammonia stripping and nitrification in cooling 

towers is important for determining corrosion control strategies to overcome the aggressiveness 

of ammonia. However, the study of ammonia stripping and nitrification in cooling towers has not 

yet been conducted. 

Phosphate can adsorb onto the surface of metals and metal alloys to form a protective 

thin film against corrosion [49] and has been used as a corrosion inhibitor in cooling systems. 

Calcium phosphate has limited solubility and its precipitation and surface deposition help to 

mitigate corrosion. However, excessive phosphate precipitation can be a problem when the water 

contains high hardness. Preliminary results of the stability of phosphate and phosphate-based 

corrosion inhibitors currently being studied in our laboratory show that these inhibitors tend to 

precipitate in treated MWW. Furthermore, acid addition to the cooling water is still commonly 

practiced to control mineral precipitation. The decreased pH raises the corrosivity of the cooling 
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water. Therefore, pH control-based scaling mitigation can compromise the potential advantage of 

using mineral precipitation for corrosion inhibition. Studies on the optimal acidification 

strategies that balance scaling and corrosion problems would be of great interest. 

As discussed in the previous section, cooling systems using MWW can have high 

biofouling potential, which can cause microbiologically influenced corrosion (MIC). Traditional 

approaches of maintaining free chlorine residuals for biofouling control may cause higher 

corrosion rates due to the direct attack of free chlorine on metals and metal alloys. Free chlorine 

also degrades tolyltriazole (TTA), a commonly used copper corrosion inhibitor. Instead of free 

chlorine, monochloramine may be more appropriate for use in cooling systems using MWW, but 

its influence on the corrosion of metal alloys and the corrosion inhibitors needs to be further 

evaluated. 

Chemical additives for the control of corrosion are still the most widely employed 

approach in recirculating cooling systems. When a cooling system switches its makeup water 

source from freshwater to treated MWW, traditionally proven corrosion control approaches may 

not work well and need to be re-evaluated taking into account degraded water quality and the 

scaling/biofouling phenomena and associated control strategies. 

2.4 REGULATORY ISSUES AND COMMUNITY ACCEPTANCE 

A number of power plants have already blended MWW with freshwater as a cooling makeup 

[11, 15], but the blend ratio varies significantly. Only a few power plants have operated their 

cooling towers with treated MWW as the dominant makeup water. One notable example is the 

Redhawk Power Plant in Arizona that uses over 90% of MWW as its makeup water. The 6.46 
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MGD of wastewater used by the facility is transported 40 miles from a wastewater treatment 

facility, which is located at a higher elevation than the power plant. However, the MWW 

received at the power plant has been further treated before feeding into the cooling towers. 

Power plants usually do not use 100% MWW as cooling system makeup due to a lack of 

technical knowledge and legal framework to support such practices. 

Currently, the US federal government does not directly regulate any practices of water 

reuse, including the reuse of treated MWW as power plant cooling water. EPA has recommended 

guidelines of minimum treatment requirements and desired water quality for water discharge 

programs for industrial cooling systems [15]. Effluent (blowdown) leaving the cooling water 

system should meet the technology-based limits on BOD5, TSS, and pH. Fecal coliforms are also 

restricted with a minimum chlorine residual requirement to limit the bacterial activity in the drift, 

which has high potential to enter the human respiration system and cause health problems. 

In addition to the federal EPA water reuse guidelines, several states have been developing 

regulations applicable to wastewater reuse in power plant cooling systems. The state regulations 

largely focus on the reduction of water aerosols emitted from cooling tower drift, which may 

contain elevated concentrations of pollutants and microorganisms and pose a health risk to the 

public. Generally speaking, however, there are no major impediments for the use of treated 

MWW from POTWs to meet the growing cooling water needs of thermoelectric power plants. 

2.5 SUMMARY: STATUS AND POTENTIAL 

Increasing population and economic development will continue to drive the demand for 

electric power in the years ahead. According to the U.N. Environment Program, the global 
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energy demand will increase by 49% from 2007 to 2035 [50]. Despite growth in renewable 

energy sources, most of the electricity generating capacity in the decades ahead will still be from 

coal-fired and nuclear thermoelectric power plants. In most thermoelectric power production, 

water is used for cooling. About half of the existing power plants in the US employ once-through 

cooling, which will not be an option for proposed new power plants and may not be available for 

re-permitted plants. In recent years, water withdrawal for power plant cooling has surpassed 

agriculture to become the number one use of freshwater in the US. Meeting the freshwater 

demand of new power generation capacity will be very difficult in parts of the country that 

already have limitations on available freshwater, most notably in the west and southwest regions 

of the US. A number of proposed power plants were denied permits due to the lack of sufficient 

freshwater for cooling. 

Waters of impaired quality can be used as alternative sources of makeup water for 

recirculating cooling systems in electric power plants. Some alternative sources include treated 

municipal wastewater, abandoned mine drainage, and industrial process wastewater. Treated 

municipal wastewater is the most widely available and easily accessible water source. 

Under typical cooling tower operating conditions, i.e., elevated temperature and 

evaporative loss of water that leads to concentration of minerals during water recirculation, 

mineral precipitation and deposition, commonly referred to as mineral scaling, is among the 

primary concerns when treated MWW is used as cooling tower makeup water. Control of algae, 

bacteria, fungi, and other organisms is also essential for efficient cooling tower operation due to 

health concerns for people in the vicinity of the power plants using MWW in cooling systems 

(disease-causing organisms may escape with aerosols). Given the potentially high levels of 
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ammonia and phosphate in the source water, intensive protection of all metals in contact with the 

cooling water from corrosion is necessary. 

The feasibility of using chemical inhibitors in combination with advanced treatment to 

manage the cooling water quality need to be examined to ensure successful use of treated MWW 

for power plant cooling. Systematic investigations employing both bench-scale systems and 

pilot-scale cooling towers are needed to explore optimal chemical treatment strategies for 

controlling corrosion, scaling, and biofouling before the most promising strategies can be tested 

in the field. Tertiary treatment, such as nitrification and/or filtration, may be required to reduce 

levels of suspended solids, bioactivity, organic matter, and alkalinity. Studies to determine the 

most cost effective approaches for managing MWW in cooling systems are critical. Changing 

regulatory issues, e.g., more controls on inter-basin transfers, concerns for extra contaminants in 

drift, need to be considered. 

The environmental impacts during delivery, treatment, use, and discharge of MWW for 

cooling need to be investigated. In this regard, a comparative Life Cycle Assessment (LCA) of 

alternative pre-treatment and operating strategies is needed to inform sustainable design and 

decision-making. Social and institutional barriers to reuse of this water for power plant cooling 

may exist and work should be undertaken to identify such barriers and develop approaches to 

overcome them to ensure further development of power generation capacity in the future. 
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3.0  CONTROL OF MINERAL SCALE DEPOSITION IN COOLING SYSTEMS 

USING SECONDARY-TREATED MUNICIPAL WASTEWATER 

Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as 

power plant cooling-system makeup water, especially in arid regions. A prominent challenge for 

the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe 

surfaces. In this study, theoretical, laboratory, and field work were conducted to evaluate the 

mineral deposition potential of MWW and its deposition control strategies under conditions 

relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce 

scale formation when the makeup water was concentrated four times in a recirculating cooling 

system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L 

dosing level in a synthetic MWW. However, the deposition inhibition by PMA was 

compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater 

suppressed the reaction of the free chlorine with PMA through the formation of chloramines. 

Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than 

free chlorine. In pilot tests, scaling control was more complex due to the inevitable occurrence of 

biofouling even with effective disinfection. Phosphorous-based corrosion inhibitors are not 

appropriate due to their significant loss through precipitation reactions with calcium. Chemical 

equilibrium modeling helped with interpretation of mineral precipitation behavior but must be 
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used with caution for recirculating cooling systems, especially with use of MWW, where kinetic 

limitations and complex water chemistries often prevail. 

3.1 INTRODUCTION 

With increasing shortages of freshwater, wastewater is now being recognized as a significant 

source of water for non-potable uses [1, 2]. Among different types of wastewater, secondary-

treated municipal wastewater (MWW) is of increasing interest, primarily because it holds 

promise as a viable alternative source of cooling water in terms of quantity and geographical 

proximity to existing and future power plants in the US [3]. A number of power plants already 

use MWW as makeup water in their recirculating cooling water systems [4, 5]. The majority of 

these power plants are in regions of the US most susceptible to freshwater constraints, i.e., the 

southwest and Florida. These power plants typically use MWW only as a fraction of the total 

makeup water needed or only after significant additional treatment to obtain better water quality. 

The primary challenges with MWW reuse for cooling arise from its low quality. 

Secondary-treated MWW usually contains appreciable amounts of hardness, phosphate, 

ammonia, dissolved solids, and organic matter compared to the amounts in freshwater [6, 7]. In 

recirculating cooling systems, the water constituents become concentrated many times (typically 

4-8 times) because of the evaporative loss of water. The elevated concentrations and high water 

temperature can cause severe mineral deposition (scaling) problems, along with the problems of 

corrosion and biofouling. Because of these challenges, intensive chemical control programs are 

usually implemented [8]. Neither the mineral deposition characteristics of MWW under cooling 

system conditions nor the feasibility of controlling deposit formation through chemical addition 
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when using MWW as the sole source of makeup water in a recirculating cooling system have 

been studied. 

Presently, three types of deposit inhibition chemicals—antiscalants—are widely used to 

prevent mineral deposition on pipe and heat exchanger surfaces in cooling systems: carboxylic 

polymers, such as polyacrylic acid (PAA), polyacrylamid, and polymaleic acid (PMA); 

phosphonates; and polyphosphates. Polymeric antiscalants often incorporate functional groups in 

addition to carboxylate such as sulfonate or benzenesulfonate [9, 10]. 

Multiple antiscaling mechanisms working together contribute to the effectiveness of the 

antiscaling chemicals. First, the precipitation propensity of minerals is mitigated through 

complexation with antiscalant molecules to increase the operational solubility of cationic species, 

primarily Ca and Mg, the most common potential scale forming species in water [11]. Second, 

the antiscalants can interact with newly formed mineral nuclei to disrupt the crystallization 

process, thereby hindering the growth of the precipitating particles [9, 12]. Antiscalants for 

which this mechanism is dominant are commonly referred to as threshold inhibitors. Third, 

antiscalant molecules can stabilize the mineral particulates through electrostatic and/or steric 

interactions to keep them dispersed in the aqueous suspension, rendering them less prone to 

sedimentation or deposition [11]. A fourth mechanism of scale inhibition involves adsorption of 

antiscalants onto pipe surfaces to prevent mineral deposition onto the surfaces. For example, 

phosphorous-bearing groups exhibit strong interactions with surfaces of metals and metal oxides 

[13]. Based on the similar mechanism of surface adsorption, some phosphonates and 

polyphosphates are used as corrosion inhibitors as well because a surface layer of these 

molecules retards surface redox reactions [14]. However, many of the phosphorous-based 

compounds, particularly the polyphosphates, suffer from hydrolysis reactions that produce 
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orthophosphate [15], potentially exacerbating phosphate scaling when the water contains 

significant hardness. The effectiveness and fate of phosphorous-based inhibitors when applied in 

cooling systems using MWW has not been well studied. 

Numerous polymer antiscalants with varied molecular weight, structural features, and 

effectiveness in different waters are available commercially. PMA was selected in this study as a 

model polymer antiscalant based on a literature survey and consultation with practitioners in 

cooling system design and operation. PMA is believed to act as both a colloid dispersant and a 

crystal distorter, particularly for Ca-containing precipitates, the potentially dominant scale 

formers in MWW [2, 5, 16-18]. Besides PMA, representative antiscalants containing 

phosphonates or polyphosphates, including 3-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) 

and tetra-potassium pyrophosphate (TKPP), were also tested for their effectiveness in MWW. 

The influence of orthophosphate and ammonia present in MWW on scaling control is of 

particular interest. Both ortho- and polyphosphate (much less abundant than orthophosphate) 

may precipitate with di- and trivalent cations. Ammonia is a strong complexing agent, especially 

for copper and iron, both of which are common pipe/heat exchanger materials in cooling systems 

[19]. Another concern with the use of MWW for cooling lies in the need to control biogrowth. 

The use of chlorine as a biocide may potentially compromise the effectiveness of organic 

antiscalants because free chlorine, a strong oxidant, is aggressive toward many aqueous organic 

compounds and pipe materials. For example, studies show that large doses of chlorine 

significantly increase mild steel corrosion [20], which leads to iron dissolution and precipitation 

on the pipe surface. Ammonia, on the other hand, can combine with free chlorine to form 

chloramines, which pose less risk for metal alloy corrosion [21]. The influence of chloramines on 

scaling control in cooling systems that use treated MWW has not been investigated in detail. 
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Quantitative analytical methods for studying mineral scaling in cooling systems are not 

readily available in the literature. There is a general lack of well-documented methods suitable 

for in situ measurements of mineral deposition kinetics. Most established techniques pertaining 

to mineral scaling phenomena confine themselves to means of static observations and analysis 

only after solid scales have formed and been collected. For example, ASTM standard methods D 

1245-84, D 2331-80, D 933-84, D 934-80, and D 887-82 only deal with the procedures of 

removing water-formed deposits from sample tubes by specified mechanical or chemical means, 

and with qualitative identification of deposits by spectroscopy-based analysis. Very limited effort 

has been devoted to the study of mineral scaling kinetics in terms of how scales form, at what 

rate(s) they form, and the mechanisms and conditions influencing their formation in waters of 

varying quality. 

The objectives of this study were to investigate the effects of orthophosphate and 

ammonia on the performance of scaling control by PMA in cooling systems using treated 

MWW, and to test the feasibility of biocontrol by chlorine and corrosion control by 

phosphorous-bearing chemicals without interfering with scale inhibition under recirculating 

cooling conditions. Chemical equilibrium calculations were performed to evaluate the mineral 

deposition potential of MWW under a range of cooling water conditions. Laboratory studies 

were conducted to determine effective deposition control strategies under conditions relevant to 

industrial cooling systems, i.e., elevated temperature, circulating flow, and concentrated water 

constituents. In addition, pilot-scale cooling tower tests were conducted to study the 

effectiveness of the model polymer antiscalant, PMA, and the potential applicability and 

implications of an integrated chemical regimen for the successful control of scaling, corrosion, 

and biofouling in using treated MWW for cooling. 
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3.2 MATERIALS AND METHODS 

3.2.1 Secondary-Treated Municipal Wastewater 

A secondary-treated municipal wastewater effluent (i.e., biological trickling filter followed by 

secondary clarification) was collected for use in bench-scale experiments. The effluent was at the 

Franklin Township Municipal Sanitary Authority wastewater treatment plant located in 

Murrysville, PA. Polyethylene (PE) containers (1-L bottles or 5-gallon jars) were used for 

temporary storage of the MWW before experiments. Typical storage time was less than 24 hours, 

otherwise the water was refrigerated. 

To characterize the water quality of secondary-treated MWW, both filtered (0.45-µm) 

and unfiltered water samples were collected and transferred to different PE containers that were 

prepared with the addition of appropriate acid preservatives. Metal concentrations were 

determined by inductively coupled plasma mass spectroscopy (ICP-MS) at a commercial 

laboratory (Test America Analytical Services, Pittsburgh, PA). Other water quality parameters 

were determined either in our laboratories at the University of Pittsburgh or at the commercial 

lab, using appropriate standard test procedures. The concentrations of calcium and magnesium, 

the two principal cationic species, were measured by Atomic Absorption Spectroscopy (AAS). 

The water quality data for secondary-treated MWW are provided in Table 3.1. 

For bench-scale experiments, the wastewater effluent sample was concentrated in the 

laboratory by evaporation at 40°C to reach 4 cycles of concentration (CoC 4) as determined by 

75% volume reduction, prior to use in a bench-scale water recirculating system (Figure 3.1). 

However, it was discovered from preliminary tests that pre-concentrating the MWW resulted in a 

loss of mineral content due to precipitation that took place during the concentration step. This 
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premature precipitation made the concentrated water less representative of MWW at CoC 4. As 

such, a synthetic municipal wastewater was prepared that truly represented CoC 4 in terms of its 

mineral content (i.e., four times more concentrated than the MWW) for detailed investigation in 

the bench-scale studies. The synthetic MWW (CoC 4) was made using DI water (resistivity > 18 

MΩ-cm) with the addition of desired chemical constituents (reagent grade or better). The 

chemical recipe of the synthetic MWW (CoC 4) is provided in Table 3.2. 

 

 
 

Figure 3.1 Customized bench-scale water recirculation system for examining mineral deposition.. 

(a) Schematic flow chart. (b) Picture of the experimental setup with a pipe flow section showing the circular metal 

disc used to collect mineral deposits. 
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Table 3.1 Chemical composition of the secondary-treated municipal wastewater (MWW) from Franklin Township 

Municipal Sanitary Authority, Murrysville, PA 

Analyte Unit Result 
(unfiltered)          (filtered) Analysis limit 

Al mg/L 0.2 - 0.2 
Ca mg/L 42 41 5 
Cu mg/L 0.028 - 0.025 
Fe mg/L 0.5 0.37 0.1 
K mg/L 16.3 NA* 5 
Mg mg/L 10.7 10 5 
Mn mg/L 0.32 - 0.015 
Na mg/L 94 NA 5 
SiO2 mg/L 8.54 NA 1.07 
Zn mg/L 0.07 NA 0.02 
     
pH  7.1 7.2  
NH3 mg N/L 21.0 NA 0.5 
NO3 mg N/L 3.6 NA 0.1 
HCO3 Alkalinity mg CaCO3/L 177 NA 5 
Total Alkalinity mg CaCO3/L 177 NA 5 
BOD mg/L 32 NA 2 
Cl mg/L 106 NA 10 
SO4 mg/L 86 NA 1 
Total P mg P/L 4.5 NA 0.5 
TOC mg/L 27 NA 1 
TDS mg/L 661 NA 10 
TSS mg/L NA 41 5 
Conductance mS/cm 1.03 1.02 0.01 
Turbidity NTU 16.7 NA 1 

*NA: Not Analyzed. 
 

Table 3.2 Chemical composition of synthetic MWW (simulating CoC 4) used for MINEQL+ modeling 

calculations and bench-scale experiments 

 
Cation        mM             mg/L 

Concentration 
 Anion        mM          mg/L 

Concentration 

Ca2+ 7.60 305  SO4
3- 2.84 273 

Mg2+ 7.16 174  HCO3
- 13.44 820 

Na+ 26.88 618  Cl- 31.13 1105 
K+ 0.70 27  PO4

3- 0.21 20 
NH4

+ (as N) 7.01 98     
    The initial level of TDS of the water, before any precipitation takes place, is 3,455 mg/L. 
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3.2.2 Antiscalants and Other Chemicals 

PMA and PBTC, both in 50% active content, were provided by Kroff Chemical Company 

(Pittsburgh, PA). TKPP (48% active content) was provided by Crown Solutions/Veolia Water 

((Vandalia, OH). Free chlorine was used as concentrated sodium hypochlorite (NaOCl) solution 

(5%). Monochloramine was pre-formed by mixing NaOCl and ammonium chloride (NH4Cl) at 

4:1 Cl2:NH3 mass ratio and was used immediately. 

PMA concentrations were determined colorimetrically at 505 nm using a commercial test 

kit (MCI analytical test procedure, Masters Company, Wood Dale, IL). The concentrations of 

PBTC and TKPP were monitored by following Standard Method 4500-P (American Public 

Health, American Water Works Association et al. 1998). Free chlorine and monochloramine 

were measured with a chlorine photometer (HF Scientific Inc., FL). 

3.2.3 Scaling Study in Bench Tests 

A customized bench-scale water recirculating system was equipped with removable stainless 

steel (SS316) circular disc specimens to provide surfaces for scaling/deposition in the 

recirculating water (Figure 3.1). Mineral mass deposited on the SS surfaces (5.61 cm2 per disc) 

was determined to track the scaling process with varied water chemistries and scaling control 

strategies. Water temperature and flowrate were 40°C (105°F) and 11.4 L/min (3 GPM), 

respectively, to reflect actual conditions of industrial cooling systems. In a typical test, the 

recirculating water was exposed to air so that the alkalinity may approach equilibrium with 
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CO2(g), as is the case with actual cooling system operation. Before use, the SS specimens were 

cleaned by ultrasonic wash for 5 min in an acetone/ethanol solution (1:1 v/v ratio), rinsed with 

DI water and air-dried in a laminar flow hood. At predetermined time intervals during an 

experiment, the SS specimens were taken out of the recirculating water through the sampling 

ports. The water remaining on the disc surface was carefully removed by paper tissue without 

disturbing the solid deposits on the surface. The discs were then air-dried for at least 48 hr and 

the mass of each disc was measured using an analytical balance (Mettler AE163, detection limit 

0.01 mg). Final weighing was performed only after a constant mass was achieved (mass 

measurement variation < 0.05 mg/hr). Three measurements were taken for each specimen and 

the average value was reported as the mineral mass on the disc. 

After weighing, the morphology of the scale samples were inspected using Scanning 

Electron Microscopy (SEM, Philips XL30, FEI Co., Hillsboro, OR), and the scale elemental 

compositions were determined by Energy Dispersive X-ray Spectroscopy (EDS, EDAX Inc., 

Mahwah, NJ). These examinations were useful to identify the scale characteristics and facilitated 

the selection of effective scaling control approaches. For example, the identification of the 

mineral deposits by SEM/EDS provided evidence for the selection of the appropriate antiscaling 

chemicals to inhibit the formation of the specific minerals identified in the scales. 

After each experiment, the recirculating system was cleaned by running HCl solution (pH 

2-3) for about 1 hr, followed by DI water rinsing for three times, with 0.5 hr of water 

recirculation each time. 
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3.2.4 Pilot-Scale Cooling Tower Tests 

Pilot-scale cooling towers were constructed and operated with secondary-treated MWW 

(Figure 3.2) to test the optimal chemical treatment regimen that was identified from the bench-

scale experiments. The pipe section for scale collection on disc specimens had a similar design as 

used in the bench-scale tests. For simultaneous evaluation of different scaling control programs, 

three towers were operated side by side at the wastewater treatment plant of the Franklin 

Township Municipal Sanitary Authority (Murrysville, PA). Chemical control of biofouling and 

corrosion was also implemented. All three towers were operated at CoC 4, using a flowrate of 

11.4 L/min (3 GPM). The temperature of water entering the tower was 40°C (105°F) and leaving 

the tower was 35°C (95°F). 
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Figure 3.2 Schematic of pilot-scale cooling tower. The disc coupon rack had a similar design as in the bench-scale 

recirculation system (Figure 3.1). 

 

The cooling towers were tested for two consecutive 21-day periods. The first run was a 

full operation with all three towers and the second run used two towers. The primary purpose for 

the second run was to test the biocontrol by pre-formed monochloramine instead of free chlorine 

[22]. Between the two tests, the towers were cleaned with an acetic-acid solution and disinfected 

by free chlorine. Detailed information on tower operations was recorded, including the water 

temperature profile at different locations, the airflow rate inside the cooling tower, the 

conductivity of circulating water, the flowrates of makeup water, recirculating water, and 
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blowdown stream, as well as the ambient conditions (weather, air temperature, relative humidity, 

etc.). The rates of solid deposition on stainless steel disc specimens were measured during both 

runs. In addition, the corrosion of selected metal alloys and the bioactivity in the towers were 

monitored by a coupon weight loss method [23] and by heterotrophic planktonic/sessile bacteria 

counts [22], respectively. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Bench-Scale Recirculating Experiments with Synthetic MWW (CoC 4) 

The use of a synthetic municipal wastewater allowed the representation of the recirculating 

cooling conditions in which secondary-treated MWW as the sole makeup water was concentrated 

to CoC 4. A series of experiments was conducted to test the effectiveness of the antiscalants 

PMA and PBTC at CoC 4 and to evaluate the impact of chlorine disinfectants, ammonia, and 

phosphate on the performance of the antiscalants. 

Effect of antiscalants. Without antiscalants addition, the mineral deposits collected on a 

disc specimen at CoC 4 during the recirculation of the synthetic MWW were, on average, more 

than 2 mg (Figure 3.3). As a comparison, the deposits collected at CoC 1 were between 0 and 0.2 

mg (data not shown in figure). The antiscalant PBTC dosed at 10 mg/L suppressed deposition to 

about 0.2 mg, which was more effective than when dosed at 5 mg/L (Figure 3.3), suggesting that 

the MWW concentrated to CoC 4 demands higher doses of antiscalants for scaling control, as 

compared with typical values used for freshwater [16, 18]. PMA dosed at 10 mg/L inhibited 
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scaling nearly completely, demonstrating its superior antiscaling effect in the synthetic MWW 

(CoC 4). 

 

 

Figure 3.3 Scaling behavior of a synthetic municipal wastewater (CoC 4) in bench-scale tests with inhibitors at 

different dosing (40°C). 

No inhibitors (●), 5 mg/L of PBTC (□), 10 mg/L of PBTC (■), 10 mg/L of PMA (▲). 

 

Influence of ammonia and phosphate. As can be seen in Figure 3.4, the removal of 

ammonia, which was present as 100 mg-N/L in the other tests, resulted in significant scale 

formation compared with the case in which the addition of antiscalants substantially reduced 

scaling in the presence of ammonia. Conversely, the removal of orthophosphate (as 20 mg-

PO4/L) did not exhibit a profound impact on scaling control by PBTC, which implies that the 

addition of the antiscalant (10 mg/L of PBTC) was sufficient to reduce phosphate mineral scale 

formation. The beneficial role of ammonia for scaling inhibition was due to both complexation 

reactions between ammonia and calcium (confirmed by chemical equilibrium modeling) and 

ammonia adsorption onto mineral surfaces to disrupt particle growth [24]. Also, given the 

predominance of ammonium ions in the experimental pH range (pH 7.5-8) where the water 
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recirculating system was operated, some complexation between NH4
+ and carbonate species 

could also occur to further decrease the precipitation potential of carbonate minerals. 

 

 
 

Figure 3.4 Influence of ammonia and phosphate on scaling control in bench tests with a synthetic MWW at CoC 4 

(40°C) 

No inhibitors (●), 10 mg/L of PBTC (■), 10 mg/L of PBTC, no ammonia (♦), 10 mg/L of PBTC, no phosphate (∆). 

 

Interference of chlorine biocides. As shown in Figure 3.5, the addition of chlorine 

biocides for biogrowth control negatively impacted scaling inhibition by either PBTC or PMA. 

In the absence of the biocides, PBTC substantially inhibited scale formation while PMA nearly 

completely inhibited scaling. However, the addition of free chlorine caused a significant decrease 

in the antiscaling efficiency, Both of the antiscalants were significantly impaired by the oxidizing 

biocides. It is noteworthy that free chlorine was more detrimental than monochloramine to 

compromise the antiscaling effects of PBTC and PMA, even for the case with elevated dosing of 

20 mg/L of PMA (Figure 3.6). 
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Figure 3.5 Interference of chlorine-based biocides on scaling control in bench tests with a synthetic MWW at CoC 4 

(40°C). 

Upper: No inhibitors, no biocides (●), 10 mg/L of PBTC, no biocides (■), 10 mg/L of PBTC, 1 mg/L of free 

chlorine (*), 10 mg/L of PBTC, 1 mg/L of monochloramine (×). 

Lower: No inhibitors, no biocides (●), 10 mg/L of PMA, no biocides (▲), 10 mg/L of PMA, 1 mg/L of free chlorine 

(*), 10 mg/L of PMA, 1 mg/L of monochloramine (×). 

 

 

Figure 3.6 Interference of chlorine biocides with PMA on scaling control in bench tests with a synthetic MWW at 

CoC 4 (40°C). 

No inhibitors, no biocides (●), 10 mg/L of PMA, no biocides (▲), 10 mg/L of PMA, 1 mg/L of free chlorine (*), 20 

mg/L of PMA, 1 mg/L of free chlorine (*). 
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The interaction between PMA and free chlorine is explained by the data shown in Figure 

3.6. In the absence of free chlorine, the PMA concentration remained stable during the entire 

period of experiment (6 days). After 3 days of interaction with free chlorine, PMA started to 

deplete for both doses tested. Furthermore, during the experiment with 20 mg/L of PMA 

addition, total chlorine demand was much greater than in the experiment with 10 mg/L of PMA. 

To maintain a constant level of chlorine in solution, i.e., 1 mg/L, a total of 26 mg/L of chlorine 

was added over the 6 days of the experiment. In comparison, only 6 mg/L of chlorine was 

needed to maintain the 1 mg/L concentration level over the same period of experiment with 10 

mg/L of PMA addition. This explains, at least in part, the sharp decrease in PMA after day 3. 

PMA was substantially consumed by chlorine, especially after 3 days, and consequently, the 

scaling inhibition efficiency was greatly reduced, as evidenced by the appreciable increase in the 

mineral mass deposited on test coupons after 3 days. A number of studies have used PMA as a 

model compound of natural organic matter (NOM) owing to its resemblance of the chemical and 

structural characteristics of natural humic and fulvic acids [25-27]. It is hence not surprising to 

observe the destruction of PMA by free chlorine, given the extensively-studied formation 

pathways of disinfection by products (DBPs) from NOM and chlorine biocides [28-33]. Separate 

batch tests of PBTC in the presence of chlorine additives showed stability of PBTC up to 150 

hours. As such, deposit data beyond 72 hours were not collected in Figure 3.5. 

3.3.2 Pilot-Scale Study with Secondary-Treated MWW 

3.3.2.1 Changes of water chemistry due to scaling 

Table 3.3 shows the chemical treatment program for simultaneous control of scaling, 

corrosion, and biofouling in pilot-scale cooling towers. The program included the addition of 
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PMA and PBTC as scaling inhibitors, TKPP and Tolyltriazole (TTA) as corrosion inhibitors, and 

free chlorine (the first run) or monochloramine (the second run) as biocides. The results of the 

pilot-scale studies provided evidence for the effectiveness of PMA, PBTC, and TKPP in 

preventing scaling from the MWW at larger scale. 

 

Table 3.3 Chemical treatment program (target concentrations) for pilot-scale cooling tower tests with secondary-

treated MWW at Franklin Township, PA (unit: mg/L) 

Chemical 
addition 

                     First Run                                       Second Run 
                    Tower A Tower B Tower C Tower A Tower B 

Corrosion  
Control 

TTA    1    2    2    1    2  
TKPP    0  10  10    0    0  

Scaling 
Control 

PMA    0  10  20    0  10  
PBTC    0    5  10    0    0  

Biocontrol Free Cl2    1.5   1.5   1.5   0   0  
MCA    0    0   0    3    3  

TTA: tolyltriazole; TKPP: tetrapotassium pyrophosphate; PMA: polymaleic acid; PBTC: 3-
phosphonobutane-1,2,4-tricarboxylic acid; MCA: monochloramine. 

 

Water samples, obtained from the recirculating loop of each cooling tower operated at 

steady state, were analyzed for key constituents and chemical parameters (Table 3.4 and Table 

3.5). Before reaching the steady state of CoC 4, a sharp increase of water pH from ~7.2 of the 

makeup water (secondary effluent) to ~8.3 was observed in each tower, primarily due to an 

aeration effect of the cooling towers that liberated CO2 from the water. It is well known that 

effluent from the secondary clarifier in a wastewater treatment plant is commonly oversaturated 

with CO2 yielded by the continuing aerobic biodegradation of residual organic carbon [34-37]. 

We analyzed the pH behavior of the cooling towers through measurements and modeling. 

Detailed description about the pH changes will be reported separately (Chapter 6). After reaching 

CoC 4, the alkalinity in the recirculating water was generally 3-4 times higher than in the 



44 

makeup water, further raising the pH to 8.5-9. The concentration factor of 3-4 for alkalinity was 

lower than the volume-based CoC because part of the alkalinity was lost to the precipitation of 

carbonate solids. 

 

Table 3.4 Concentrations of cationic species and PMA in makeup water (secondary effluent) and recirculating water 

(CoC 4-5) in field testing with pilot-scale cooling towers (unit: mg/L) 

                                         First Run                                Second Run 

Species Raw 
water 

Tower 
A 

Tower 
B 

Tower 
C 

Tower 
A 

Tower 
B 

Ca Total 35.2±1.5 97±7 112±8 111±10 105±3 113±7 

 Filterable 34.5±1.1 91±7 100±9 102±11 98±4 103±6 

Mg Total 10±1 47±8 58±5 57±5 46±3 43±3 

 Filterable 10±1 45±8 55±4 54±5 44±3 42±3 

Fe Total 0.37±0.11 0.59±0.23 0.81±0.25 0.68±0.25 0.74±0.24 0.86±0.28 

 Filterable 0.12±0.03 0.06±0.02 0.05±0.04 0.07±0.03 0.06±0.03 0.08±0.05 

Cu Total 0.06±0.03 0.12±0.03 0.13±0.03 0.13±0.04 0.28±0.14 0.22±0.09 

 Filterable 0.06±0.03 0.10±0.03 0.10±0.03 0.11±0.04 0.23±0.11 0.18±0.09 

PMA Total -- -- 6.8±1.9 14.6±2.6 -- 6.9±1.6 

 Filterable -- -- 4.3±1.3 9.7±2.1 -- 4.5±1.3 
Data are mean values ± 1 sd. Sample size for raw water n = 7. Samples for recirculating water in the cooling towers 
were from day 4 to day 24 during the tower operation (sample size for tower A: 10, tower B: 10, tower C: 11). 

 

Concentrations of chloride in the cooling water were typically 6-7 times higher than in 

the makeup water. This ratio is higher than the expected ratio based on the water volume 

reduction (i.e., CoC 4-5). The extra chloride of some 350 mg/L (estimation based on Table 3.5) 

in the recirculating water came from the addition of chlorine biocides (either free chlorine for the 

first run or monochloramine for the second run). 



45 

Concentrations of sulfate in the cooling water were generally 4-5 times higher than in the 

makeup water, which corresponded well to the volume-based CoC because there was no 

additional sink or source for sulfate, and as such, sulfate behaved as a conservative species. 

 

Table 3.5 Concentrations of anionic species and other chemical additives (for corrosion and biofouling control) in 

makeup water (secondary effluent) and recirculating water (CoC 4-5) in field testing with pilot-scale cooling towers 

(unit: mg/L) 

                                                First Run                                      Second Run 

Species Raw 
water 

Tower 
A 

Tower 
B 

Tower 
C 

Tower 
A 

Tower 
B 

ALK 113±34 283±54 364±53 324±25 232±68 244±79 
SO4 75±7 357±39 388±49 378±76 323±30 356±27 
Cl 142±22 955±135 937±74 917±152 859±133 1050±115 

PO4 11.5±1.8 5.9±1.1 4.1±1.0 5.2±0.6 7.5±2.7 8.1±3.3 
TKPP -- -- 0.6±0.4 0.6±0.4 -- -- 
PBTC -- -- 0.8±0.3 0.9±0.7 -- -- 
TTA -- 1.0±0.8 2.0±0.9 1.8±1.0 -- 1.8±1.0 

Total Cl2 -- 1.2±0.9 1.0±0.7 1.5±0.8 3.2±1.3 3.6±2.2 
For ALK, the unit is mg /L as CaCO3. 

 

Total phosphate concentrations in the tower water were much lower than that in the 

makeup water—nearly 90% of the phosphate precipitated out of water due to its low solubility in 

the presence of high calcium (~100 mg/L, or 2.5 mM) under the cooling tower conditions 

investigated. For example, TKPP, a polyphosphate, was added primarily as a corrosion inhibitor 

(10 mg/L as PO4). However, the measured TKPP concentration in the recirculating water was 

less than 1 mg/L—most of it precipitated and became unavailable for corrosion control. 

Therefore, the feasibility of using phosphate-based corrosion inhibitors such as TKPP in 

secondary-treated municipal wastewater is questionable because it may only add to more 

challenges for scaling control. 
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Tower A, which received no PMA or PBTC for scaling inhibition, precipitated the 

greatest amount of calcium. The amount of calcium in the recirculating water accounted for 60-

70% of the amount fed with the makeup water, i.e., 30-40% of the calcium precipitated. The 

degree of calcium removal by precipitation will be discussed in more detail. 

Similar to sulfate, magnesium was 4-5 times more concentrated in the cooling water than 

in the makeup water, suggesting that magnesium precipitation was minimal. This was confirmed 

by the EDS analysis, which revealed nearly undetectable amount of magnesium in the collected 

solids. 

PMA was added to Towers B and C for scaling control during the first run. The 

concentrations and fate of PMA were monitored periodically. The target levels of PMA in 

Towers B and C were 10 mg/L and 20 mg/L, respectively (daily addition was based on the 

volume of blowdown water). Detected PMA in Tower A, however, was 7 mg/L on average, 

suggesting that about 30% of the PMA was removed with precipitated mineral solids and settled 

out of the liquid phase, or was degraded by chlorine. Furthermore, free PMA (the filterable 

fraction) accounted for about 60% of total aqueous PMA. The rest (40%) was most likely 

associated with suspended solids. Studies have shown that anionic polyelectrolytes such as PMA 

tend to adsorb onto mineral particles and prevent solids settling by providing an electrostatic 

and/or steric stabilization mechanism [11, 27, 38, 39]. 

3.3.2.2 Mass deposition measurement 

Figure 3.7 shows the accumulated scale solids deposited on stainless steel disc specimens 

in the three cooling towers with different chemical dosing strategies. Tower A, as a control 

tower, received no antiscaling chemicals. In Tower B, the addition of 10 mg/L of PMA and 5 

mg/L of PBTC resulted in the least scaling among the three towers. However, when the dosing of 
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PMA and PBTC was doubled in Tower C, expected better scaling inhibition was not observed 

and actually the scales accumulated as much as those in the control tower without antiscaling 

treatment (Tower A). It appeared that overdosing had occurred. Given the small increment 

between the two dosings, the ionic strength of the cooling water was not increased significantly, 

and as such, compression of the electrical double layer of suspended particles was unlikely to be 

important in destabilizing them in Tower C. Also, the additional 10 mg/L of PMA in Tower C 

did not change the water pH. It is more likely, however, that interparticle bridging due to the 

double dosing of PMA might cause particle destabilization and subsequent deposition (scaling), 

an effect similar to enhanced coagulation by polymers. 

 

 

Figure 3.7 Deposit mass measurements in the pilot-scale cooling tower tests using secondary-treated MWW. 

Tower A, no inhibitors (○), Tower B, 10 mg/L of PMA (▲), Tower C, 20 mg/L of PMA (●). 

Deposits were collected on stainless steel disc specimens immersed in recirculating pipe flow. Effective collection 

area 5.61 cm2, flow velocity 0.57 m/s (3 GPM flowrate in 3/4" pipe), water temperature 40 ± 1°C (104 ± 2°F), pH 

8.5 ± 0.3 (open to air condition). Error bars indicate the data range of measurements from duplicate tower tests. 

 

After day 8 (or 4 days after reaching steady state of CoC 4), an accelerated mass 

accumulation of solids on the coupon discs in all three towers was obvious. An analysis of solid 
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composition revealed that biomass (the fraction burnable at 500°C) accounted for 30-50% of the 

total accumulated solids, indicating that biofilm growth played an important role in surface 

fouling in the cooling towers using secondary-treated MWW. Indeed, the dynamic process of 

simultaneous biofouling and mineral scaling might enhance each other mutually—the mineral 

scales can provide a coating layer conducive to biofilm development compared to a smooth 

metal surface, and at the same time the organic matrix consisting of extracellular polymeric 

substances (EPS) of the biofilm can help trap more mineral solids. For example, the inorganic 

mineral fraction of EPS can be as much as 77% of the EPS dry weight [40]. 

3.3.3 Experimental Observation vs. Equilibrium Prediction 

The use of chemical equilibrium modeling with the model MINEQL+ [41, 42] allowed 

estimation of the mineral precipitation potential, the chemical composition of solid precipitates, 

and their relative abundance. In this study, mineral precipitates predicted by MINEQL+ were 

compared with the actual species that comprised the deposits collected from experiments 

conducted at both bench-scale water recirculating systems and pilot-scale cooling towers. 

The precipitated solids from the bench- and pilot-scale tests were inspected using 

Scanning Electron Microscopy (SEM) and their elemental composition determined by Energy 

Dispersive X-ray Spectroscopy (EDS) analyses. The total mass of the solids collected in various 

tests was also compared to the amount predicted by MINEQL+ for the conditions tested. The 

information obtained from these comparisons was used to discuss the usefulness of the 

equilibrium modeling as a predictive tool in assessing the cooling water scaling behavior. 

Based on the chemical composition of the synthetic MWW (Table 3.2), chemical 

equilibrium modeling predicted that hydroxyapatite (HAP) and dolomite would precipitate at 
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CoC 4 (modeling condition: ionic strength corrected, 40°C, and closed system) with the 

following amounts: 

HAP [Ca5(PO4)3OH](s):  0.07 mM (35.2 mg/L)  

Dolomite [CaMg(CO3)2](s):   6.44 mM (1187.5 mg/L) 

Based on the modeling results, the elemental composition of the predicted solids is shown 

in Table 3.6 (Condition (1)). 

For the simulations of synthetic MWW, the initial TDS of the water (CoC 4) was 3,455 

mg/L, of which 1,223 mg/L were predicted to precipitate at equilibrium (35.4 wt%), leaving 65% 

of the initial TDS in solution (roughly, a 1:2 distribution in terms of precipitated vs. soluble total 

solids). Of particular interest is the distribution of Ca and Mg at equilibrium: precipitated, 

complexed, and free ions. Equilibrium prediction by MINEQL+ for synthetic MWW illustrated 

that almost 90% of the initial Ca and Mg should precipitate out of solution. Ca and Mg are thus 

disproportionately removed from the solution comparing to other aqueous species. 

 

Table 3.6 Elemental composition of the precipitates from synthetic MWW: Modeling prediction vs. experimental 

observation 

Condition  Elemental Percentage 
Ca Mg P C O H 

Modeling without 
kinetic constraints (1) 

Molar 10.3 9.8 0.3 19.5 60.0 0.1 
Mass 22.3 12.8 0.5 12.7 51.8 0.0 

Modeling with kinetic 
constraints (2)* 

Molar 20.1 0 0.6 19.2 60.0 0.2 
Mass 40.0 0 0.9 11.4 47.7 0.0 

Observed in bench 
experiments (3) 

Molar 28.7 1.3 0.0 24.2 45.8 0.0 
Mass 52.2 1.4 0.0 13.2 33.2 0.0 

* No Mg precipitation. 
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Stainless steel disc specimens immersed in the bench-scale recirculating system using the 

synthetic MWW were used to collect mineral deposits. After 6 days, the discs were removed 

from the recirculating water and air-dried prior to SEM/EDS analysis. The SEM image shows 

well-shaped crystalline morphologies of calcite (Figure 3.8). Based on the EDS analysis, the 

average abundance of the elements in the collected solids is listed in Table 3.6 (Condition (3)). 

Comparing to the model prediction (Table 3.6 Condition (1)), the sampled solids contained 

excess Ca but were deficient in Mg. This observation that Mg did not participate in the solids 

formation was confirmed by the essentially unchanged aqueous concentration of Mg over the 

course of experiment (Figure 3.9). What the model predicted may be the most stable crystalline 

phases under equilibrium conditions. Deposits precipitated from the experimental water, while 

ultimately driven by thermodynamics, can experience different pathways of mineral formation 

which involved different kinetic constraints and/or inhibitory factors imposed by water chemistry 

amendments. 
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Figure 3.8 SEM image (left) and quantitative 1D EDS analysis (right) of the deposits collected on a stainless steel 

disc immersed in synthetic MWW in bench-scale water recirculating system. 

The arrow line (10 μm in length) on the SEM image indicates the scan line for the EDS analysis of elemental 

abundance. P and H are not detected. 

 

Since Mg was only marginally observed in the collected deposits, a second set of 

modeling calculations was performed with the added modeling constraints: 1) Mg-containing 

solids (e.g., dolomite, huntite, artinite, brusite, and magnesite) were not allowed to form, and 2)  

Calcium carbonate takes the form of aragonite, a faster-forming crystalline phase of CaCO3(s) 

that is also more soluble than calcite [43, 44]. Under these conditions, a total of 759 mg/L of 

precipitates in the form of HAP and aragonite were predicted to form, resulting in a 22% 

decrease in solution TDS. 

HAP [Ca5(PO4)3OH](s):  0.07 mM (35.2 mg/L)  

Aragonite [CaCO3](s):   7.23 mM (723.6 mg/L) 

The elemental composition of the solids predicted under these conditions is shown in 

Table 3.6 (Condition (2)). The result is in a closer agreement with the experimental observation 
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in terms of elemental composition. However, the total amount of solids predicted by modeling 

(759 mg/L) was still significantly greater than that precipitated experimentally (150-200 mg/L), 

implying that precipitation equilibrium had not been established during the experimental 

conditions, i.e., 3-4 days of limiting hydraulic residence time in the cooling water. 

Compared to the modeling prediction of 90% Ca precipitation, only about 35% of Ca 

actually precipitated during the 6 days of bench-scale tests with synthetic MWW (Figure 3.9). A 

similar percentage of Ca precipitation (35-40%) was observed in pilot-scale cooling tower tests 

with secondary-treated MWW. Tower A, which received no PMA, precipitated the greatest 

amount of Ca, while Towers B and C, with PMA addition, retained higher amounts of Ca in 

water. This suggests that PMA retarded Ca precipitation, resulting in higher Ca concentrations 

during the course of tower tests. It is clear therefore that kinetic constraints of precipitation 

exerted by the PMA addition are not captured by the equilibrium modeling that is entirely based 

on thermodynamic calculations. 

 

  



53 

 

Figure 3.9 Changes in the aqueous concentrations of Ca and Mg in bench-scale water recirculating system using a 

synthetic MWW (without chemical addition). 

Closed data points represent concentrations of unfiltered water samples while open points filtered samples. The 

filtration is carried out using 0.45 μm HA type membrane filters (Millipore) to remove suspended solids. Ca 

unfiltered (●), Ca filtered (○), Mg unfiltered (▲), Mg filtered (∆). 

 

For pilot-scale cooling tower experiments, SEM/EDS analyses were performed on 

deposits collected from Tower A after 6 days of operation at CoC 4 (Figure 3.10). The EDS 

spectra show very low amounts of Mg, thereby confirming the results shown in Figure 3.8 and 

Figure 3.9 from bench tests with synthetic MWW.  However, the SEM data indicated solids of 

more amorphous character as opposed to those depicted in Figure 3.8. Alvarez et al. [45] 

observed that the Ca-P complexes preferentially precipitate in amorphous forms in the presence 

of soil organic matter. In addition, amorphous CaCO3(s) has been collected on steel surfaces 

when organic additives are present in solution [46-49]. The interactions of mineral precipitates 

with organic matter present in the actual MWW suggest more complex chemistries occurring in 

pilot-scale cooling tower water than in the bench-scale system where synthetic MWW was used 

to simulate only the inorganic constituents. 

0

50

100

150

200

250

300

0 24 48 72 96 120 144

Co
nc

en
tr

at
io

n 
(m

g/
L)

Water recirculating time (hr)



54 

 

 
 

Figure 3.10 SEM image and the elemental composition of the solid deposits collected on a stainless steel disc 

immersed in the secondary-treated MWW in the pilot-scale cooling tower (Tower A) operated at CoC 4. 

EDS scan was performed on the area outlined by the square box on the SEM image. 

 

The EDS analyses conducted on the solids collected from pilot experiments indicate that 

the deposits consisted primarily of calcium carbonates and phosphates, which is in qualitative 

agreement with the revised model predictions discussed earlier. However, the quantity of 

phosphates appears to be greatly enriched when compared to that in the deposits collected from 

the bench-sale studies using synthetic MWW. This is likely because of the higher P 

concentration in the actual MWW (i.e., 12 mg/L vs. 5 mg/L in the synthetic water). In addition, 

P-containing chemicals, in the form of TKPP (10 mg/L) and PBTC (5 mg/L), were also added to 

the cooling towers for corrosion/scaling control. Chemical analyses indicated that these added 
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phosphates quickly became undetectable in the liquid phase, suggesting their precipitation that 

further contributed to the relatively high P signal in the EDS spectra (Figure 3.10). 

3.4 CONCLUSIONS 

This study demonstrates the feasibility and challenges of using secondary-treated municipal 

wastewater as an alternative cooling system makeup water to replace freshwater. The scaling 

behavior and control of it in recirculating cooling systems was evaluated. Based on the results 

from bench-scale experiments performed in this study, it was determined that commonly used 

polymer-based scaling inhibitors can be effective  in controlling potentially severe scaling when 

using this impaired water as makeup in recirculating cooling systems. PMA worked very well at 

scaling inhibition in the absence of chlorine disinfectants but only partially effective in the 

presence of chlorine. Ammonia present in the wastewater could suppress the aggressiveness of 

free chlorine on PMA. Pre-formed monochloramine was found to be less aggressive than free 

chlorine, while still being an effective biocide. Pilot-scale cooling tower experiments suggested 

that mineral scaling control by PMA was much more challenging due to biofouling. 

Overall, for scaling control of MWW that is concentrated to CoC 4 in recirculating 

cooling systems, 1) PMA can be applied at 10 mg/L level for effective mineral scaling inhibition 

in the absence of biofouling, 2) monochloramine is better suited as biocide than free chlorine 

because of the reduced impact of monochloramine on antiscaling programs, and 3) phosphorous 

based scaling and corrosion inhibitors are not appropriate due to their precipitation with Ca. 
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4.0  SCALING CONTROL FOR REUSE OF PASSIVELY-TREATED ABANDONED 

MINE DRAINAGE IN RECIRCULATING COOLING SYSTEMS 

In coal mining regions where substantial coal-based power generation takes place, significant 

quantities of abandoned mine water that exists in mine voids represent a potential for use as a 

stable, large volume supply of cooling water. Reusing passively-treated abandoned mine 

drainage (AMD) can avoid surface water contamination that can otherwise occur due to the 

overflow of the AMD from mine pools, which is usually acidic and contains high concentrations 

of metals, especially iron and manganese. However, since using AMD for cooling is not widely 

practiced, knowledge about the proper control of scaling issues in cooling systems using AMD is 

limited. The use of AMD is predicated on being pre-treated with aeration/settling ponds to 

remove Fe/Mn and suspended solids. In this study, the scaling behaviors of passively-treated 

AMD and scaling mitigation in cooling water systems were investigated through laboratory and 

pilot-scale experiments. Bench-scale recirculating systems and three pilot-scale cooling towers 

were employed for testing various chemical control schemes for scaling control in AMD. The 

tests were conducted under conditions of temperature, flow velocities, and water constituent 

concentrations similar to those in a recirculating cooling water system. The effectiveness of 

chemical treatment strategies in inhibiting mineral scaling was evaluated through exposure and 

monitoring of specially designed disc specimens in extended experimental tests. Polymaleic acid 

(PMA) effectively decreased the settling of suspended solids and rendered the solids less prone 
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to deposition onto the surfaces immersed in the pipe flow sections. In the absence of PMA, 

significant amounts of solids settled in the sumps of pilot-scale cooling towers where flow 

velocity was minimal. The PVC and stainless steel surfaces exhibited different affinities for 

scaling; PVC was determined to yield increased deposition in bench-scale recirculation systems. 

The observation implies that varied severity of scaling problems can take place in recirculating 

sections of a cooling system made of different materials, which was also observed in the pilot-

scale cooling towers using the same type of passively-treated AMD. 

4.1 INTRODUCTION 

Abandoned mine drainage (AMD) refers to the release of the contaminated groundwater 

produced by dissolution of sulfide minerals (especially pyrite FeS2(s)) and commonly found in 

the areas adjacent to abandoned mine sites [1]. AMD is characterized by low pH, high content of 

iron hydroxides, as well as elevated levels of heavy metals [2]. These characteristics are 

manifested in streams impacted by AMD through sediment color ranging from red to orange or 

yellow due to iron precipitation, and significant endangerment of aquatic and benthic life [3]. 

Coal mining produces the bulk of AMD. This is especially true in Pennsylvania where 

more than 25% of the nation’s total coal output was produced over the past 200 years [4]. As 

such, AMD has been a major water-pollution problem in Pennsylvania where over 3,000 miles of 

streams and associated ground waters have been contaminated [4]. Other areas in the US with 

large volumes of AMD include the other Appalachian coal-producing states and the Illinois-

Indiana coal mining region [5]. AMD is also generated in the hard-rock mining areas of the 

western US, although such water was not examined in this study. 
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Given the large quantity of AMD available, it may be possible to use it for cooling 

purposes in areas of the US where freshwater shortages occur frequently [6, 7]. This practice 

may significantly impact water conservation as consumptive withdrawal of freshwater by 

thermoelectric power generation cooling water systems can contribute significantly to the water 

shortage problem in some areas. In the US, thermoelectric power generation consumed 3.3 BGD 

of freshwater in 1995, mainly through evaporative loss from cooling towers [8]. 

Waters of impaired quality, such as AMD, are of increasing interest as alternative sources 

to freshwater for thermoelectric power plant recirculating cooling water systems. The AMD 

represents significant quantities of possible cooling system makeup water in coal mining regions 

where substantial coal-based power generation takes place [9, 10]. It was estimated that there is 

approximately 250 billion gallons of mine pool volume in West Virginia and Pennsylvania [9]. 

In addition to supplementing withdrawal of surface water for cooling, other benefits of reusing 

mine pool water in power plants are the prevention of AMD-related surface water contamination, 

and additional flexibility in siting new power plants. Although active pretreatment might be 

necessary to raise the water quality of AMD to allow reuse (treatments typically raise pH, reduce 

metal concentration and total dissolved solids), the development and successful implementation 

of passive treatment systems makes it promising to access AMD with better quality [11, 12]. 

Further, AMD chemical compositions often evolve over time to become less acidic and can 

approach neutral pH in many cases, as well as have lower loads of dissolved solids over time 

[13]. Such AMD can be treated with temporary retention in ponds to allow oxidation and iron 

precipitation. Passively-treated, near-neutral pH AMD waters are good candidates for use in 

power plant cooling systems. Indeed, there is already some experience with operating their 

cooling systems totally or partially with treated AMD in Pennsylvania [14]. 
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However, mineral precipitation and subsequent surface scaling remains one of the main 

challenges for AMD reuse in recirculating cooling water systems. Up to date, knowledge in the 

literature concerning mineral scaling in cooling systems caused by AMD is limited due to the 

fact that using AMD as cooling tower makeup is not widely practiced. 

The goal of this study was to evaluate the technical feasibility of reusing AMD in power 

plant cooling tower systems. Specifically, the objectives of this study were to 1) simulate scale 

formation under cooling tower operation conditions at different cycles of concentration via 

chemical equilibrium modeling, 2) test the effectiveness of different chemical treatment 

programs on scaling inhibition in bench-scale water recirculating systems, and 3) determine the 

viability of using AMD as cooling water makeup through testing in a pilot-scale cooling tower 

system. 

4.2 MATERIALS AND METHODS 

4.2.1 Passively-treated AMD characterization and preparation for laboratory and field 

testing 

Passively-treated AMD from the St. Vincent College mine drainage site (Latrobe, PA) was 

chosen for testing in laboratory experiments and in pilot-scale cooling towers. Passive treatment 

at the St. Vincent site is accomplished through a system of constructed wetlands to reduce iron 

content. A total of 7,000 gallon of the AMD for use as makeup water in tests with pilot-scale 

cooling towers was collected and transported to our test site at the Franklin Township Municipal 

Sanitary Authority (Murrysville, PA) by a steel tanker truck on September 30, 2008. The AMD 
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was transferred to a covered and lined steel roll-off container stored outside at ambient 

temperature and was used as needed. 

 

Table 4.1 Characteristics of the passively-treated abandoned mine drainage from St. Vincent College mine drainage 

site (sampled on November 4, 2008). Unit: mg/L 

Analyte Result Reporting limit 
Al ND 0.4 
Ca 228 10 
Cu ND 0.05 
Fe ND 0.2 
K 5.21 B 10 
Mg 61.8 10 
Mn 0.172 0.03 
Na 96.4 10 
SiO2 14.9 2.14 
Zn 0.0281 B 0.04 

pH 7.8  
NH3-N 0.34 J 0.1 
Bicarbonate Alkalinity  117 J 5 
BOD ND 2 
Cl 56.1 1 
NO3-N 0.32 0.05 
SO4 656 J 25 
Total P 0.056 B 0.1 
Total Alkalinity 117 J 5 
TOC 1.7 1 
TDS 991 10 
TSS ND 4 

Notes: J: Method blank contamination. The associated method blank contains the target analyte at a 

reportable level. B: Estimated result. Result is less than reporting limit. ND: Not detected. 
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Water samples were taken from the roll-off container before testing and intermittently 

during testing to serve as baselines for comparison purposes. These samples were collected with 

1-L polyethylene sample bottles and transferred to appropriate polyethylene or glass sample 

containers provided by the commercial laboratory, TestAmerica (Pittsburgh, PA). Appropriate 

preservatives were added to the sample bottles prior to sampling. Results from the analysis are 

reported in Table 4.1. 

Samples of the AMD were collected for laboratory experiments. The AMD was 

concentrated in the laboratory by evaporation at 35-40°C to reach 4 cycles of concentration (CoC 

4) as determined by 75 % water volume reduction. 

4.2.2 Equilibrium modeling of AMD scaling potentials 

The chemistry of AMD cooling water at different CoC was modeled using MINEQL+ version 

4.5 [15, 16] to predict the effects of CoC on scaling. The primary objective for this effort was to 

estimate the amount and composition of mineral solids that would precipitate from the solution 

in the pilot cooling units as a function of CoC, and to understand and interpret the chemistries 

observed in the pilot tests. In addition, the major constituents and their chemical speciation in 

solution were assessed and the dominant scale-producing reactions were identified. 

The following four operational conditions were tested for the AMD water: 

1) The aqueous system was open to the atmosphere (PCO2 = 10-3.5 atm) to allow the 

alkalinity to be in equilibrium with CO2(g) and solids were allowed to precipitate. 

2) The aqueous system was open to the atmosphere (PCO2 = 10-3.5 atm) to allow the 

alkalinity to be in equilibrium with CO2(g) and solids were not allowed to precipitate (i.e., water 

can be super-saturated). 
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3) The aqueous system was closed to the atmosphere with total alkalinity fixed and solids 

were allowed to precipitate. 

4) The aqueous system was closed to the atmosphere with total alkalinity fixed and solids 

were not allowed to precipitate. 

The four conditions represent the extreme effects of atmospheric CO2 and solution 

supersaturation. It is reasonable to expect that the actual conditions for field testing would fall 

within these boundary conditions. 

4.2.3 Scaling inhibition in bench-scale tests 

Methods for studying scaling in cooling tower systems were not readily available in the 

literature. A well-documented method to measure scaling deposition and kinetics in-situ was not 

found in the course of this research. Most established techniques pertaining to scaling 

phenomena confine themselves to means of static observations and analysis once solid scales 

have formed and have been collected [17-19]. Very limited effort has been devoted to the study 

of scaling dynamics and kinetics in terms of how scales form and at what rate(s) they form. In 

addition, there is no quantitative knowledge of conditions influencing and mechanisms dictating 

scale forming processes. 

A method to study scale formation tendency and kinetics for AMD and other impaired 

waters was developed in this study. Bench-scale water circulating systems similar to those 

employed in the corrosion studies were constructed and were dedicated to investigate scaling. 

Stainless steel circular coupon discs were inserted through sampling ports into the recirculating 

water to provide collecting surfaces for scaling/deposition, as shown in Figure 4.1.  A mass gain 

method, similar to the mass loss method for corrosion, was used as a straightforward means to 
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record the scale forming quantities at different water chemistries and scaling control conditions. 

Scaling kinetics of the AMD was studied at varying cycles of concentration (CoC) in the bench-

scale water recirculating systems. Water temperature was fixed at 104°F (40°C) and the flow rate 

was adjusted at 3 GPM. The system was open to air so that the alkalinity may approach 

equilibrium with the atmospheric CO2, which is similar to conditions in actual cooling tower 

operation. 

 

 
 

Figure 4.1 Bench-scale water recirculating system with inserted stainless steel circular disc specimens for scale 

collection and subsequent mass gain measurement. 

Inset shows a pipe T-section where stainless steel circular disc specimens were inserted. Actual AMD water 

collected from St. Vincent College site (Latrobe, PA) was tested. 
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The scale samples collected on the test discs over time were air-dried and weighed with 

analytical balance to obtain mass data. 

Scaling inhibitors tested in this study included tetra-potassium polyphosphate (TKPP, 

also a corrosion inhibitor), polymaleic acid (PMA), Aquatreat AR-540 and AR-545 (terpolymers 

manufactured by Alco Chemicals, Chattanooga, TN), and Acumer 2100 (a carboxylic 

acid/sulonic acid copolymer manufactured by Rohm & Haas, Philadelphia, PA). TKPP and PMA 

were obtained from The National Colloid Company (Steubenville, OH). Monochloramine was 

prepared by mixing sodium hypochlorite (5% stock solution) and ammonium chloride (Fisher) at 

Cl2:NH3-N of 4:1 wt. ratio and was used as a biomass control agent in the pilot-scale testing. In 

addition to TKPP, dedicated corrosion inhibitors in the form of tolyltriazole (TTA) and di-

potassium phosphate (DKP) (The National Colloid Company, Steubenville, OH) were tested in 

this study. 

Varied amounts of adsorption and adhesion of solids were observed on different materials 

in the pilot scale cooling towers. It was hypothesized that surfaces have different degrees of 

affinity toward suspended solids and thus lead to varied amounts of adsorption and adhesion of 

these solids. To test this hypothesis, both stainless steel and plastic coupon discs were used as 

collecting surfaces in bench-scale water recirculating systems. The plastic material selected for 

the experiment was the PVC that was used in the manufacture of the packing material used in the 

pilot-scale cooling towers, so that the information obtained from the bench-scale testing can be 

applied to the pilot-scale experiments. 
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4.2.4 Pilot-scale cooling tower tests 

Three pilot-scale cooling towers were designed and constructed to test in the field the optimal 

chemical control regimen determined from bench-scale experiments. The towers were 

transported to the Franklin Township Municipal Sanitary Authority for side-by-side evaluation 

of different corrosion/scaling/biofouling control programs. The three towers were operated with 

the following target conditions: 1) CoC 4; 2) flow rate 3 GPM (passing through a 0.75" ID PVC 

pipe); and 3) temperature 105°F of the recirculating water entering the tower and 95°F exiting 

the tower. 

The cooling towers were operated using passively-treated abandoned mine drainage 

collected from the St. Vincent College wetland site. The preliminary run started on October 8, 

2008 and ended on October 17, 2008. The final run started on October 18, 2008 and ended on 

November 9, 2008. In both runs, all towers were using 100% of the passively-treated abandoned 

mine drainage as makeup water. The objective of the initial 12-day run was to evaluate the 

influence of high alkalinity and high conductivity of the makeup water on the operation of the 

pilot scale cooling towers. It was found that solids deposition during this run was excessively 

high (the scaling coupons immersed in water were completely covered by a thick layer of 

deposits), primarily because of the malfunctioning of the conductivity-based blowdown control. 

It was concluded that the in-line conductivity meter was not a reliable indicator of the actual CoC 

in the towers for the AMD water. Instead, the blowdown volume was fixed at 10 gallons per day 

to achieve CoC of 4.5 as the total daily makeup water addition averaged 45 gallons. 

Prior to the final run, the towers were cleaned with acetic-acid solution and disinfected by 

free chlorine. Detailed information on tower operations, including the temperature of water at 

specific locations, airflow rate inside the cooling tower, the conductivity of recirculating system, 
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makeup water volume, blowdown volume, water flowrate, and ambient condition (weather, 

temperature, relative humidity), was recorded throughout the run. It was documented that the 

towers were able to perform according to design specifications and adequately simulate the 

operation of full-scale cooling towers in thermoelectric power plants. 

Different levels of polymaleic acid (PMA) were added to each tower to determine its 

effect on controlling scale formation. Towers A and C were dosed at 15 and 25 ppm levels, 

respectively, while Tower B was used as a study control and received no PMA treatment. 

Scaling behavior as monitored with the mass gain of stainless steel coupon discs was analyzed 

by using a mass balance approach for the entire cooling tower recirculating system. Solid (scale) 

deposition rates on the stainless steel coupon surfaces were documented during all runs (along 

with corrosion weight loss of metal alloys, and heterotrophic planktonic/sessile bacteria). Water 

chemistry parameters were monitored to obtain detailed understanding of the cooling tower 

behavior. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Precipitation modeling with equilibrium calculations 

MINEQL+ [15, 16] was used to evaluate the scaling potentials of the AMD at different cycles of 

concentration. In addition, two most commonly referenced practical saturation indexes 

(Langelier Saturation Index and Ryznar Stability Index) were calculated as direct predictors of 

precipitation formation. The pH values with respect to cycles of concentration were also 

calculated. 
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Figure 4.2 Modeling results of LSI (left) and RSI (right) for both open and closed to air cases without solids 

precipitation. 

 

Detailed modeling results, as a function of increasing CoC, consist of the following: 

The Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) under open/closed 

conditions (Figure 4.2); 

The amount and form of solid precipitates under open/closed conditions (Figure 4.3); 

Changes of aqueous pH (Figure 4.4). 

The Langelier Saturation Index (LSI) increased with cycles of concentration, so did the 

scaling potential of the water. Ryznar Stability Index (RSI) was calculated by a different formula 

and usually exhibited an opposite trend with cycles of concentration compared to the LSI. The 

RSI values in Figure 4.2 decreased with the cycles of concentration and were below 6 under all 

conditions, which indicates mild to severe scaling potentials. 
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             a. Open to air     b. Closed to air 

 

 

Figure 4.3 Predicted solid precipitation from the St. Vincent College Abandoned Mine Drainage calculated by 

MINEQL+. 

 

 

Figure 4.4 Predicted solution pH at different CoC under four different operation scenarios (open or closed to air; 

with and without solid precipitation). 
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MINEQL+ modeling results suggest that gypsum and dolomite are the major solid 

precipitates to form from the St. Vincent College abandoned mine drainage under recirculating 

cooling tower conditions. More solids were predicted to precipitate under open-to-air condition 

because of the abundant supply of carbonation. As shown in Figure 4.3, a significant amount of 

otherwise dissolved solids could precipitate and contribute to solids accumulation when the 

towers operate at high cycles of concentration. The amount of solids precipitation at equilibrium 

was predicted to be 7-10 times more at CoC 8 than at CoC 4. 

When the calculations allowed water to be open to the atmosphere and to equilibrate with 

CO2(g), the pH values ranged between 8 and 9. When the calculations were performed in the 

absence of exposure to the atmosphere, the water was predicted to become acidic. Under the 

open condition, the calculated pH tended to increase with increasing CoC, when no solids were 

allowed to form. Such behavior was due to the accumulation of alkalinity with CoC. On the other 

hand, the pH tended to decrease with increasing CoC when solids formation was allowed to take 

place because the alkalinity was consumed through dolomite formation. 

4.3.2 Bench-scale recirculating system experiments 

Two bench-scale water recirculating systems were used to determine the scaling behavior of the 

actual SVAMD water at CoC 4 when inhibitors (i.e., PMA or AR-545) were added. The 

SVAMD water in both systems was treated with 15 ppm anti-scalant: System A with AR-545 

and System B with PMA. SVAMD samples were added to the two water recirculating system 

and the water volume was reduced by 75% to CoC 4 with a heat source in about 5 days. 

Concentration cycles, as determined by solution conductivity (which was the approach 

for field testing), took a longer time to reach CoC 4 than that based on water volume reduction 
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(Figure 4.5). This suggests that the dissolved solids that precipitated during the concentrating 

process do not contribute to the conductivity measurements. The 1:1 trend line defines an ideal 

behavior by which all dissolved solids remain in solution during evaporative concentration. A 

deviation from the 1:1 line indicates that part of the dissolved solids has precipitated out of the 

solution during concentration. In the presence of anti-scalants, the degree of deviation from the 

ideal line indicates the effectiveness of the added antiscalants to hold the solids in solution. 

Using this criterion, it was determined that PMA was more effective. 

 

 

Figure 4.5 Correlation of concentration cycles determined by water volume reduction and conductivity 

measurements. 

 

Coupon discs immersed in the SVAMD water treated with 15 ppm of AR-545 collected 

more solids after 8 days than those immersed in the SVAMD water treated with 15 ppm of PMA, 
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suggesting that PMA performed better in such water (Figure 4.6). In addition, the turbidity of the 

AR-545-treated SVAMD water started to increase from ca. 2 NTU to greater than 10 NTU after 

5 days, while the PMA-treated water remained relatively clear (< 4 NTU). By day 10, the 

difference in turbidity between these two waters grew to more than 35 NTU. 

 

 

Figure 4.6 Coupon mass gain measurements for bench-scale water recirculating systems operated with the SVAMD 

(the water was stored in lab for a week prior to test). Recirculation conditions: 3 GPM, 40°C, pH 8.5. 

 

Beaker tests with other anti-scalants (Acumer 2100 and AR-540) did not generate 

significantly better scaling inhibition performance than that of PMA (Figure 4.7) since the TDS 

of all solutions was approximately the same after reaching 75% volume reduction. These results 

suggest that PMA should be an effective scaling inhibitor for SVAMD water at 15-25 ppm 

dosage level. The effectiveness of PMA at both 15 ppm and 25 ppm concentrations were tested 

in pilot-scale experiments. 
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Figure 4.7 Effectiveness of different antiscalants in beaker tests at 40-45°C. 

Initial water volume was 1.00 L, final volume for TDS measurements was 0.25 L. Water was heated in a water bath 

and bubbled with air to facilitate evaporation. It took 1-1.5 days for the water to reach CoC 4 (i.e., water volume 

reduction from 1.00 L to 0.25 L). 

 

Figure 4.8 shows that the PVC discs collected more solids from water, especially in the 

absence of PMA, than the stainless steel coupons. On average, 3-4 times more solids were 

collected on the PVC than on the stainless steel. 
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Figure 4.8 Coupon mass gain measurement for bench-scale water recirculating systems fed with the SVAMD water. 

The system was operated at 3 GPM, 40°C, and CoC 4.  Upper panel: measured with stainless steel coupon discs.  

Lower panel: measured with PVC coupon discs. 

 

The bench-scale experiments led to two basic conclusions: a) PMA performed 

satisfactorily well for scaling inhibition under the operating conditions employed; and b) 

Conductivity-based control of concentration cycles could deviate significantly from the 

concentration cycles determined based on water volume reduction. 
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Table 4.2 Cooling tower water quality in the field testing using the passively-treated AMD from St. Vincent College 

mine drainage site 

The recirculating tower water analyzed was operated at CoC 4 (the run from October 18, 2008 to November 9, 

2008). Unit: mg/L 

Analyte Result (unfiltered) 

 Tower A Tower B Tower C 
Al ND ND ND 
Ca 825 674 796 
Cu 0.0629 0.0303 B 0.0344 B 
Fe ND ND ND 
K 29.3 23.4 26.3 
Mg 254 251 235 
Mn 0.578 0.109 0.595 
Na 446 450 418 
SiO2 59.1 57.9 54.9 
Zn 0.0567 0.101 0.0531 

    

NH3-N 0.57 J 0.74 J 0.64 
Bicarbonate 

Alkalinity  276 J  92.3 J 257 J 
BOD ND ND ND 
Cl 216 239 223 
NO3-N 1.1 1.1 1.1 
SO4 2930 J 2910 J 2850 J 
Total P 0.64 0.032 B 0.65 
Total Alkalinity 407 92.3 J 400 J 
TOC 13.8 6 17 

Notes: J: Method blank contamination. The associated method blank contains the target analyte at a 

reportable level. B: Estimated result. Result is less than reporting limit. ND: Not detected.  
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4.3.3 Pilot-scale study 

Bulk water chemistry in cooling towers. The water quality data for the three cooling towers are 

summarized in Table 4.2, and discussed in detail below. 

pH – The pH values in towers treated for scaling inhibition by PMA (along with other 

chemical additives for simultaneous corrosion and biofouling control) were different from those 

in the control tower. The control tower (Tower B) that had no PMA addition had an average pH 

of 8.2, whereas the two towers that received chemical treatments for scaling, corrosion, and 

biofouling control had an average pH value of 8.7 for Tower A and 8.8 for Tower C. As a 

reference, the raw SVAMD had an average pH of 7.8. The comparatively higher pH levels in the 

treated towers were related to the higher levels of solution alkalinity that was retained by PMA. 

Chloride – Chloride concentrations in the recirculating water were generally 6-8 times 

greater than those in the makeup water (i.e., 400 mg/L in recirculating vs. 60 mg/L in makeup). 

As such, the values of CoC based on the chloride concentration were also greater than the 

volume-based values of CoC 4-5. The extra amount of chloride input was from the addition of 

chlorine-based biocide (i.e., in the form of monochloramine). 

Sulfate – Sulfate concentrations in the towers were generally 4-5 times higher than those 

in the makeup water. This ratio was close to the volume-based CoC since there was no additional 

sink or source of sulfate (gypsum was not found in solid deposits). 

Phosphate – Orthophosphate was added as a corrosion inhibitor. The target phosphate 

concentration was 5 ppm as PO4
3- but it was not strictly maintained due to its low solubility in 

the presence of high concentration of calcium. Consequently, phosphate concentrations in the 

bulk water remained below 1 ppm. Corrosion studies showed that the added phosphate (in the 
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form of pyrophosphate) was ineffective to prevent corrosion. Rather, the addition of phosphate 

produced more phosphate-containing scales. 

Alkalinity – Alkalinities in Towers A and C were around 4 times higher than those in the 

makeup water, close to the volume-based CoC. However, in Tower B, the alkalinity was close to 

makeup water. The significant difference in alkalinities between the test towers and the control 

tower is attributed to the addition of PMA. Without PMA addition in Tower B, alkalinity was 

consumed by the formation of calcium carbonate precipitates. In Towers A and C, PMA 

successfully inhibited the formation of calcium carbonates and as a result, most of the alkalinity 

remained in the aqueous phase. 

Mass deposition over time. During the pilot-scale testing with the SVAMD water, a 

preliminary run was conducted for a period of 12 days as a test run to obtain critical data for 

cooling tower performance. Figure 4.9 (upper panel) depicts the time course of scale mass 

deposited on stainless steel coupon discs in the three towers during the preliminary run. The 

scale accumulation on the coupon discs was excessive- the entire coupon surface was covered by 

a thick layer of deposits (ca. 2 mm thick). The excessive solids deposition was caused by the 

towers operating at much higher cycles of concentration than originally planned. The towers 

were operated at higher CoC because the conductivity probes in each tower that were used to 

monitor the conductivity of the recirculating water and to trigger blowdown at preset values 

failed to function properly. The experiment was designed to operate with raw SVAMD with an 

average conductivity of 1.91 mS/cm, which means that the recirculating water in each tower 

should have conductivity values between 7.5-9.5 mS/cm to maintain a target CoC of 4-5. 

However, tower blowdown was not successfully triggered at these predetermined conductivity 



77 

levels and the towers were actually operating at CoC 8-10 based on water volume reduction. The 

excessive mass deposition observed was consistent with modeling predictions (Figure 4.3). 

 

 

 

Figure 4.9 Mass gain measurements in pilot-scale cooling towers operated with SVAMD water at FTMSA site. 

Upper: preliminary test run (CoC 8-10); Lower: final run (CoC 4-5).  Deposits were collected on stainless steel 

coupon discs immersed in pipe flow. Effective collection area 5.61 cm2, flow velocity 1.9 ft/sec (3 GPM in 3/4" ID 

pipe), water temperature 104 ± 2°F in the pipe section, open recirculating cooling system.  

 

Upon completion of the preliminary run, the conductivity probes were either calibrated or 

replaced to ensure proper function prior to the final run. To guarantee proper blowdown when 

the towers reached CoC 4, daily check up on the blowdown volume was performed throughout 

the run. When the volume of blowdown based on the conductivity measurements was less than a 
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quarter of the makeup water volume, manual blowdown was executed to maintain CoC 4 in each 

tower. The time course of scale mass deposited for the three towers during the final run is shown 

in Figure 4.9 (lower panel). Comparing with data from the preliminary run where CoC 4 was not 

maintained (Figure 4.9 upper panel), scale deposition was significantly reduced when CoC was 

maintained around 4. 

However, the coupon mass gain measurements showed that the most scale formed on 

discs in water treated with the highest dosage of PMA, which is contrary to expectation. 

According to the data for scale build up over time (Figure 4.9), coupon discs immersed in Tower 

B that was not dosed with PMA collected the smallest amount of scale whereas the coupon discs 

in Tower C with 25 ppm PMA addition collected the largest amount. This outcome of scaling 

behavior is exactly the opposite of the intuitive expectation that addition of PMA would inhibit 

scaling and that higher PMA dosing would perform better. To understand these observations in 

the coupon mass gain measurements, a series of experiments were carried out at the pilot-scale 

and bench-scale and the results are discussed below. 

Effectiveness of PMA to control scaling. The residual PMA concentration in the 

recirculating water was measured and compared to the amount added and then correlated to scale 

formation to determine the effectiveness of the PMA treatment. As shown in Figure 4.10, total 

measureable PMA in both Towers A and C was lower than the added concentration, suggesting 

that a fraction of the added PMA was removed from the aqueous phase. This removal was most 

likely through coprecipitation with solids. The dissolved (aqueous) PMA in water accounted for 

about 50-60% of total PMA in both towers. The remaining 40-50% was associated with 

suspended solids, thereby exerting repulsive forces between suspended particles to discourage 
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solids settling (PMA molecules are generally negatively charged due to dissociation of 

carboxylic groups). 

 

 
 

Figure 4.10 Total PMA (left panel) and dissolved (aqueous) PMA (right panel) concentrations in the recirculating 

water of the cooling towers as measured after daily addition of PMA (with 0.5 hr delay). 

PMA dose was based on water blowdown volume. The aqueous PMA concentration was obtained by filtering the 

water sample through a 0.22-μm filter. Background readings were corrected using water sampled from Tower B 

where no PMA was added. 

 

The effect of PMA as an antiscalant was contrary to the original hypothesis that PMA 

would reduce scale formation; higher concentrations of PMA in the recirculating water resulted 

in more scale deposition on the steel coupons. Additional experiments determined that a 

significant amount of solids were precipitated on the packing in Tower B, which did not receive 

any antiscalant (the PVC surface exhibited significant affinity for the SVAMD solids) and that 

the turbidity of the recirculating water in Tower B was close to that of the makeup water (Figure 

4.11). The large error bars (one standard deviation) of the turbidity measurements (Figure 4.11) 
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with waters in Towers A and C suggest that the differences in turbidity of the two waters are 

statistically insignificant: both waters contained appreciable amount of suspended solids. Such 

findings suggest that the solids formed in Tower B were easily separated from the liquid phase 

and removed from the system. This was evidenced by the mass balance on four main sections of 

the recirculating cooling tower system (Table 4.3). At the bottom sumps of the towers, 

significant amounts of solids were accumulated under slow flow condition. For Tower B without 

PMA treatment, solids buildup became the most serious in the tower packing section where 

evaporative concentration led to precipitation-induced deposition. In Towers A and C, the 

influence of flow rate in the bottom sump and the evaporation on the tower packing were 

mitigated by the presence of PMA, which impeded solids deposition. Higher levels of suspended 

solids in Towers A and C resulted in higher water turbidities and a greater chance for the 

suspended solids to deposit on the pipe and coil sections. It is noteworthy that the ranking order 

of the solids deposition at the pipe and coil section of the three cooling towers calculated based 

on the mass balance analysis (i.e., C > A > B) is in agreement with the scaling trends measured 

by the coupon mass gain (Figure 4.9). 
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Figure 4.11 Turbidity of the makeup water and the recirculating water in the cooling towers during the CoC 4 

operation. 

The column represents mean values of seven measurements over the course of tower operation; error bars represent 

1 standard deviation of the seven measurements for each tower. 
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Table 4.3 Mass balance analysis of solids deposition in different sections of the cooling towers operated with 

SVAMD water at CoC 4 for 25 days (the final run). All units are in grams 

Cooling Tower     A    B    C 

Solids input with makeup water 
(1) 

6183 6126 6488 

Solids output with blowdown 
(2) 

4939 4574 5301 

Net solids input to tower system 
(3) = (1) – (2) 

1244 1552 1187 

    
Solids accumulated in bottom sump 
(4) 

491 557 469 

Solids accumulated on tower packing 
(5) 

506 936 220 

Solids accumulated in the pipe and coil 

sections 
(6) = (3) – (4) – (5) 

247 59 498 

 

Overall, PMA was not very effective at keeping high levels of dissolved solids present in 

SVAMD in solution under the pilot testing conditions and the doses applied. The solids content 

of the SVAMD water at four cycles of concentration was extremely high and inhibition of 

precipitation by PMA was not effective. 

4.4 CONCLUSIONS 

The scaling behavior and control of wetland-treated abandoned mine drainage in recirculating 

cooling systems was evaluated in this study. Results from the pilot-scale experiments determined 

that the addition of commonly used polymer-based scaling inhibitors alone was ineffective for 
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scaling control. The high concentration of total dissolved solids requires more comprehensive 

pretreatment and scaling controls. Nevertheless, the added PMA, at concentrations of 15 to 25 

ppm, lent some stability to suspended mineral solids (high water turbidities) and there was less 

deposition in the pipe flow sections of the cooling towers. 

Deposits from the SVAMD concentrated to CoC 4 in recirculating cooling systems 

exhibited varied affinities to different surfaces. More deposits were collected on the PVC 

surfaces that were used as the tower packing material. Hydrodynamics also played a role in 

deposition. Low flow velocities encountered in the plastic packing and bottom sump sections of 

cooling tower resulted in greater sedimentation. Indeed, significant amount of deposits were 

observed at the bottom of the tower sump, especially in the tower receiving no PMA treatment. 

The finding suggests that scaling took place in a nonuniform manner throughout the cooling 

tower system. Therefore, it is suggested that scaling measurements should be performed at tower 

sections where deposition is of concern. Also, similar materials of test coupon should be used for 

scale deposition to provide substrate surfaces representative of the building materials of cooling 

tower. 

 



84 

5.0  SCALING CONTROL IN ASH TRANSPORT/SETTLING POND WATER 

INTERNALLY USED IN COAL-FIRED POWER PLANT COOLING SYSTEMS 

Water sluicing systems are commonly used at coal-fired electric power plants to remove 

combustion residues, i.e., fly ash and bottom ash, from the plant. Water is used to transport the 

ash to sedimentation ponds where the ash is hydraulically settled and the supernatant—ash pond 

effluent (APW)—is discharged. APW is a promising alternative to freshwater as a cooling water 

makeup for coal-fired power plants, as it is internally available at many plants. The amounts of 

APW available at a coal-fired power plant can generally satisfy the cooling water makeup needs 

in a recirculating cooling system. The reuse of APW, which contains a variety of soluble 

chemicals originated from coal-ash leaching, can avoid their direct discharge to natural waters, 

which can be potentially problematic since the APW contains a variety of soluble chemical 

contaminants originated from the leaching of the sluiced coal ash. But concentrated APW in 

recirculating cooling systems may cause scaling problems. In this study, the feasibility of 

controlling scaling when using clarified APW, the pond effluent after the ash solids are settled, 

in cooling water systems was investigated through laboratory experiments. Bench-scale 

recirculating experiments were conducted to test chemical control schemes for scaling in systems 

APW. The testing was conducted at temperature, flow velocity conditions as well as water 

constituent concentrations similar to those in a recirculating cooling system. The effectiveness of 

chemical treatment strategies in inhibiting scaling was studied through exposure and monitoring 
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of specially designed disc specimens in extended duration tests. The mineral scaling resulting 

from the use of the APW was much less severe than from the previously tested two other 

impaired waters (i.e., secondary-treated municipal wastewater and passively-treated abandoned 

mine drainage). The addition of PMA (10 ppm) effectively inhibited scale formation, while 

without PMA treatment the scale formed consisted of primarily calcium solids. In addition, this 

study demonstrated that the corrosion products from the metallic components of cooling towers 

could potentially lead to elevated amounts of scales due to the re-deposition of the corrosion 

product solids, especially under the conditions where large metallic surface is in contract with 

the APW cooling water. 

5.1 INTRODUCTION 

Ash transport water is typically regarded as expendable waste because after sedimentation, the 

sluicing water effluent from the sedimentation ponds is usually discharged into receiving waters. 

A variety of soluble chemical species are present in ash transport water as a result of leaching 

from the fly bottom ashes and in some cases from addition of plant liquid wastes to the sluice 

water. Fly ash and bottom ash generally contain little organic matter. The chemical constituents 

of most concern in ash transport water with respect to discharge are inorganic, in particular 

metals [1, 2]. These are derived from leaching of ash particles, which consist primarily of oxides 

of silicon, aluminum, and iron, but also contain a number of other metals at lower levels. 

Impaired waters are of increasing interest as alternative sources of makeup water for 

thermoelectric power plant recirculating cooling water systems. Ash transport water has the 

potential for use in cooling systems at coal-based power plants. The large amounts of water 
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involved in these processes represent a substantial opportunity for internal water reuse in cooling 

systems at electric power plants. In most case the ash transport slurries are directed into 

sedimentation ponds in which settling of the ash particles takes place. There is potential to reuse 

a portion or all of the ash pond effluent, as has been investigated periodically in the past [3].  

The amount of ash transport water available at a coal-fired power plant generally can 

satisfy the cooling water need for the recirculating system in the power plant. The mean value of 

bottom ash pond overflow is 3,881 GPD/MW [4], which can contribute 27% of the mean value 

of makeup water needs, in recirculating cooling system, which averages 14,400 GPD/MW [5]. 

The objective of this study was to investigate the scaling potential of APW under the 

conditions commonly encountered in recirculating cooling water systems and study the 

effectiveness of some commonly used scaling inhibitors. Specifically, scale formation of the 

APW was calculated at different cycles of concentration (CoC) under relevant cooling tower 

operation conditions using the chemical equilibrium model MINEQL+. The actual APW taken 

from Reliant Energy Power Plant ash settling pond effluent was tested in a bench-scale water 

recirculating system to examine its scaling behavior under CoC 1 vs. CoC 4. Synthetic APW was 

then used to better represent CoC 4 condition. The effectiveness of different antiscaling 

chemicals were tested using synthetic APW. 
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5.2 MATERIALS AND METHODS 

5.2.1 Ash Pond Water Characterization and Preparation for Laboratory Testing 

APW from the Reliant Energy coal-based thermoelectric power plant, located at Cheswick, PA, 

was used for testing in laboratory experiments, as well as for equilibrium chemical modeling. 

Water samples were collected on October 2, 2007, and analyzed for a range of water quality 

constituents [6]. The water samples were collected with a 1-L polyethylene sampler and then 

transferred to appropriate polyethylene or glass sample containers provided by the commercial 

laboratory, TestAmerica (Pittsburgh, PA). Appropriate preservatives were added to the sample 

bottles prior to sampling. Analyses performed are summarized in Table 5.1. 

Parallel to the sampling for chemical analysis, a larger amount of the APW was collected 

for laboratory experiments. The water was concentrated in the laboratory by heat evaporation at 

35-40°C to reach 4 cycles of concentration (CoC 4) as determined by 75% water volume 

reduction. This concentration level is representative of the CoC used in recirculating cooling 

tower systems operated with impaired waters. 

5.2.2 Equilibrium Modeling of APW Scaling Potentials 

The chemistry of the APW cooling water at different CoC was modeled using MINEQL+ [7, 8] 

to gain insight into the effects of CoC on scaling. The primary objective for this effort was to 

estimate the amount and composition of mineral solids that would precipitate and the water 

chemical composition that would occur under typical cooling tower operation conditions as a 
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function of CoC. The major constituents and their chemical speciation were assessed and the 

dominant scale-producing reactions were identified. 

 

Table 5.1 Characteristics of the ash pond water from Reliant Energy coal-fired thermoelectric power plant, 

Cheswick, PA (sampled on October 2, 2007) 

Analyte Result (mg/L) Reporting limit 
Al 0.588 0.2 
Ca 43.4 5 
Fe 0.344 0.1 
K 2.56 B 5 
Mg 9.38 5 
Mn 0.0281 0.015 
Na 21.6 5 
SiO2 3.29 1.07 
   
pH 8.4 - 
Acidity ND 5.0 
NH3-N 0.068 B,J 0.10 
Bicarbonate Alkalinity  56.3 5.0 
BOD ND 2.0 
Cl 30.4 1.0 
NO3-N 0.28 0.05 
Specific Conductance (mS/cm) 402 1.0 
SO4 92.4 1.0 
Total P 0.033 B 0.1 
Total Alkalinity 60.4 5.0 
TDS 271 10.0 
TSS 20.8 4.0 
TOC 2.4 J 1.0 

Notes: J: Method blank contamination. The associated method blank contains the target analyte at a 

reportable level. B: Estimated result. Result is less than reporting limit. ND: Not detected.  



89 

The following four operational conditions were simulated for the APW water: 

1) The aqueous system was open to the atmosphere (PCO2 = 10-3.5 atm) to allow the 

alkalinity to be in equilibrium with CO2(g) and solids were allowed to precipitate. 

2) The aqueous system was open to the atmosphere (PCO2 = 10-3.5 atm) to allow the 

alkalinity to be in equilibrium with CO2(g) and solids were not allowed to precipitate (i.e., water 

can be super-saturated). 

3) The aqueous system was closed to the atmosphere with total alkalinity fixed and solids 

were allowed to precipitate. 

4) The aqueous system was closed to the atmosphere with total alkalinity fixed and solids 

were not allowed to precipitate. 

The four conditions represent the extreme effects of atmospheric CO2 and solution 

supersaturation. It is reasonable to expect that the actual conditions for field testing would fall 

within these boundary conditions.  

5.2.3 Bench-scale Tests with REAPW 

The objective of the bench-scale studies with APW was to test the effectiveness of different 

scaling inhibition chemicals, added either individually or in proper combinations. The 

experimental system was depicted in Figure 5.1. Four antiscalants were tested whose selection 

was based on a literature review and consultation with experts in the cooling industry. The 

antiscalants were polyacrylic acid (PAA), polymaleic acid (PMA), 2-phosphonobutane-1,2,5-

tricarboxylic acid (PBTC), and tetrapotassium pyrophosphate K4P2O7 (TKPP). PAA and PMA 

are short-chain organic polymers, while PBTC and TKPP are phosphorous-based (i.e., 

phosphates/phosphonates) common antiscalants. At the start of each experiment, an antiscalant 
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was added to the recirculating water. The combination of PMA and PBTC at a dosing ratio of 

2:1, as recommended by cooling experts for better performance, was also tested. In addition, the 

effect of cycles of concentration (CoC) was examined with an actual ash pond effluent from 

Reliant Energy power plant. 

 

 

Figure 5.1 Bench-scale water recirculating system with inserted stainless steel circular disc specimens for scale 

collection and subsequent mass gain measurement. 

Inset shows a pipe T-section where stainless steel circular disc specimens were inserted. Both actual and synthetic 

APW was tested. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Precipitation Modeling with Equilibrium Calculations 

The chemical equilibrium model MINEQL+ (version 4.5) was used in detailed evaluation of the 

cooling water chemistries. Scaling potentials at different cycles of concentration, as measured by 

the two most commonly referenced practical saturation indexes and direct predictors of 

precipitation formation, were analyzed. The pH values with respect to cycles of concentration 

were also calculated. 

Detailed modeling results consist of the following: 

The Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) under open/closed 

conditions as a function of CoC (Figure 5.2); 

 

 

 

Figure 5.2 Modeling results of LSI (left) and RSI (right) for both open and closed to air cases, Reliant Energy ash 

pond water. 
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Amount and form of solid precipitates under open/closed conditions as a function of  

CoC (Figure 5.3); 

Changes of aqueous pH with increasing CoC (Figure 5.4). 

 

              a. Open to air     b. Closed to air 

    

Figure 5.3 Predicted solid precipitation from the Reliant Energy ash pond water, calculated by MINEQL+. 
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Figure 5.4 Predicted solution pH at different CoC under four different operation scenarios (open or closed to air; 

solid precipitation is allowed or not), Reliant Energy ash pond water. 
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solids formation from the APW water was very minimal compared to other impaired waters 

studied in this project. 

When the water was open to the atmosphere to allow equilibrium with CO2(g), the pH 

values were between 8 and 9. When the water was closed to the atmosphere, the water became 

acidic. Under open condition, the pH tended to increase with increasing CoC when no solids 

were allowed to form. This was because of the accumulation of alkalinity with CoC. On the other 

hand, the pH tended to decrease with increasing CoC when solids formation took place because 

the alkalinity was consumed by the formation of calcite and dolomite. 

5.3.2 Bench-scale Recirculating System Experiments 

Tests with actual APW. Interesting scaling behaviors were observed when comparing the 

amounts of deposit over time in the actual ash pond water at CoC 1 vs. CoC 4 (Figure 5.5). After 

the water was recirculated in a bench-scale water recirculating system for 120 h (5 d), more 

deposits were collected from the CoC 1 water.  This observation was contrary to expectations 

because the water at CoC 1 (i.e., un-concentrated raw water) should contain only one quarter of 

the amounts of mineral solutes than the CoC-4 water, and thus would be much less scale 

forming. Results depicted in Figure 5.6, which compares the predicted and measured TDS in 

APW that was being concentrated by evaporation, offered an explanation for this discrepancy. 

During the concentration process of water evaporation to reach CoC 4, a portion of the mineral 

solids was precipitated out of solution. As a result, the TDS contained in the CoC-4 water (the 

CoC was determined by a 75% water volume reduction) was less than four times of the TDS 

contained in the raw (CoC-1) water. On the same figure, the results from modeling prediction by 

MINEQL+ provided similar trend. 
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Figure 5.5 Scaling behavior of the Reliant Energy ash pond effluent in bench-scale water recirculating tests: effect 

of cycles of concentration (CoC). 

Experimental conditions: 40°C and 3 GPM. For CoC-4 tests, the water was pre-concentrated by evaporation in a 

heating bath (40°C) to lose 75% volume before adding to the recirculating system. 

 

 

Figure 5.6 Changes in solution TDS as a function of CoC for Reliant Energy ash pond water. 

Theoretically, TDS should increase linearly with increasing CoC (dashed line). However, as CoC increases, both  

MINEQL+ predictions (open circles) and experimental observations (filled circles) deviated from the theoretical 

curve. The TDS measurements were performed with actual water concentrated by water evaporation. 
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Loss of mineral solids during evaporation did not, however, fully explain the reversal in 

the scaling of the actual APW at CoC 1 vs. CoC 4. To further explore the causes of this 

interesting behavior, the chemical composition of the scale collected from both waters was 

analyzed by energy dispersive X-tray spectrometry (EDS). The analysis revealed a significant 

amount of iron in the scale produced from the CoC-1 water (data not shown). Given the fact that 

the actual APW sampled from Reliant Energy contained very little iron (< 1 mg/L), it is inferred 

that the iron-laden deposit came from the corrosion of mild steel coupons that were inserted for 

simultaneous corrosion studies in the same recirculating system. This was corroborated by the 

fact that the average corrosion rate of the mild steel was 105 MPY, which was more than 10 

times greater than the corrosion rate observed in the concentrated APW (CoC 4). Three other 

corrosion-study coupons made of aluminum, copper, and copper-nickel were also present in the 

recirculating water but their corrosion rates were negligible compared to the mild steel. To 

remove the complications of mild steel corrosion on scaling determination, other experiments 

were performed with corrosion coupons removed from the system, unless stated otherwise 

(corrosion studies were continued using a separate recirculating system). 

The significance of corrosion complications to scaling depends on the relative amounts of 

iron oxidized and released from the mild steel coupons to water. In the bench-scale recirculating 

system, the amounts of iron corroded and added to the recirculating water were significant in the 

relatively small volume of water used (i.e., 2-3 L of total water for each experiment). On the 

other hand, corrosion may not affect scaling as much in the field testing even when both 

corrosion and scaling coupons are used simultaneously, because the water volume contained in a 

cooling tower is much greater (e.g., 75 L in our pilot-scale cooling tower). Nevertheless, these 

findings are indicative in that scaling determination in industrial cooling systems should be 
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carefully executed to take into account the potential contributions of corrosion products to scale 

formation. 

Tests with synthetic APW. Based on the observation in the actual APW at CoC 1 vs. 

CoC 4 as discussed in the previous section, it was decided to use a synthetic APW water that 

truly simulated the chemical composition of the CoC-4 APW, in the study of APW scaling and 

its control by different antiscalants. The chemical composition of the synthetic APW used is 

listed in Table 5.2. The effectiveness of scaling control by PAA, PMA, and PBTC was examined 

first with individual tests of each agent (Figure 5.7). PAA was less effective than PMA, which 

was equally effective as PBTC. To further test the synergistic effect of polymer and phosphonate 

at a 2:1 dosing ratio, which is a widely adopted mix ratio in industrial practices for scaling 

control in cooling systems [9], PMA and PBTC dosed at 10 ppm and 5 ppm respectively were 

added to the synthetic ash pond water (CoC 4). It was observed that the addition of 5 ppm of 

PBTC to 10 ppm of PMA further improved the antiscaling effectiveness but not to a significant 

degree (the difference in the scale mass was less than 10%). 

 

 

 

Figure 5.7 Scaling behavior of synthetic ash pond effluent in bench-scale tests: effectiveness of different 

antiscalants at CoC 4. 
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Table 5.2 Chemical composition of synthetic ash pond water effluent (representing 4 cycles of concentration) 

Cation 
 Concentration 

 mM       mg/L 
Anion 

Concentration 

  mM       mg/L 

Ca2+                    4.41       177 SO4
2- 4.08       392 

Mg2+                    1.63         39.6 HCO3
- 5.12       312 

Na+                    9.45       217  Cl- 8.81       312 

Fe3+                    0.28         15.6   

Note: The Fe concentration used in the synthetic water represents an average iron concentration level among 

different ash pond waters (e.g., Reliant Energy: 0.34 mg/L; TVA plants: 0.03-5.29 mg/L). Initial TDS = 449 

(cations) + 1016 (anions) = 1465 mg/L. Ionic strength = 32.5 mM. 

 

Changes in the aqueous concentrations of calcium and magnesium were monitored for 

each experiment with the synthetic ash pond water. The calcium concentration depleted faster 

and more significantly in the CoC 4 synthetic APW in the absence of any antiscalants than in the 

presence of PAA (Figure 5.8). In both cases, no substantial magnesium reduction was observed. 

Since Ca and Mg were the major cationic constituents of the APW synthetic water, it was 

concluded that calcium depletion in solution was the major contributor to the high level of 

scaling as depicted in Figure 5.7 (“control” curve). The connection between scale formation and 

calcium depletion was demonstrated in an experiment with the addition of PAA: the trend in 

calcium depletion is virtually mirrored in the observed increase in scale deposits in Figure 5.7 

(“PAA 10ppm” curve). Ca depletion began to accelerate after 3-4 days of the experimental run, 

corresponding to the acceleration in scale formation after the same time period. Thereby, both 

curves pointed to a possible reduction in the effect of scaling inhibition by PAA after 3-4 days. 
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Figure 5.8 Changes in the aqueous concentrations of calcium and magnesium in the synthetic ash pond water in 

bench-scale tests. 

Left: Calcium depletion in the absence of scaling control chemicals. Right: Calcium depletion with PAA treatment. 

Solid data points represent unfiltered samples while hollow points represent filtered. 

 

Conversely, PMA and PBTC demonstrated a more sustained scaling inhibition capacity 

over the entire experimental run that lasted 6 days. Solution Ca remained essentially constant 

during both experiments (Figure 5.9). Figure 5.9 also suggests that PBTC was slightly better in 

retaining Ca in solution than PMA, although such distinction was not confirmed by the mass gain 

measurement shown in Figure 5.7. 
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Figure 5.9 Aqueous concentrations of calcium and magnesium in the synthetic ash pond water with antiscaling 

control by PMA (left) or PBTC (right). 

 

The scaling inhibition by the combination of antiscalants PMA and PBTC produced the 

most effective results. Ca was completely stabilized in solution over the entire experimental run 

of 6.5 d (Figure 5.10). Correspondingly, only limited amount of deposits was detected under 

these conditions (Figure 5.7). Changes in PMA concentration over time was shown in the right 

pane of Figure 5.10. Most of the polymer antiscalant remained in water over the duration of the 

experiment. 
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Figure 5.10 The stabilization of aqueous concentrations of calcium and magnesium in the synthetic ash pond water 

under scaling control by PMA-PBTC (left) is in agreement with the relatively constant PMA concentration in the 

water (right). 
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5.4 CONCLUSIONS 

Use of synthetic ash pond water with well-controlled solution chemistry allowed testing of the 

effectiveness of scaling control by different antiscalants. The CoC 4 condition was achieved by 

preparing the solution chemistry according to the chemical composition listed in Table 5.2. 

Both the MINEQL+ model calculations and the experimental results with the ash pond 

water showed that scaling in this impaired water is less of a problem than with the other two 

impaired waters previously studied in this project. The major constituents of the scaling solids 

were calcium minerals. Addition of 10 ppm of PMA or 10 ppm of PBTC proved to be very 

effective in further suppressing scaling to minimal levels. They both prevented calcium from 

forming deposits and their effectiveness lasted longer than that of PAA. 
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6.0  PREDICTING THE PH BEHAVIOR OF RECIRCULATING WATER IN 

COOLING TOWERS 

Reliable prediction of the pH behavior in an open recirculating cooling water system is important 

for proper operation of the cooling system because the pH changes have significant impact on 

the scaling potential, corrosion propensity, and bioactivity in the cooling water. Although the 

water alkalinity is a key factor in pH estimation, existing semiempirical correlations based on the 

measurements of cooling water alkalinity prove to be not adequately accurate, especially for 

cooling systems using concentrated water of impaired quality as makeup. Chemical equilibrium 

modeling with the aid of MINEQL+ software was used to study the influence of solids formation 

on the cooling water pH, and to simulate CO2 degassing and ammonia stripping in a recirculating 

cooling system using secondary-treated municipal wastewater (MWW). Comprehensive 

modeling was used to estimate the cooling water pH more reliably and was validated by 

experimental observations. Specifically, the initial sharp increase of water pH from about 7.2 to 

8.3, as frequently observed in pilot-scale cooling tower tests using secondary-treated MWW, was 

well explained by a CO2 degassing mechanism. A continued pH increase up to 8.7 with 

increasing cycles of concentration (CoC) was attributable to a combined effect of ammonia 

stripping and kinetically-limited carbonate precipitation. Both processes were successfully 

captured by MINEQL+ once relevant modeling conditions (CO2 exchange, mineral phases, etc.) 

were adjusted properly. The modeling approach presented in this chapter greatly improves the 
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ability to forecast the cooling water pH at various CoC, even without knowing the recirculating 

water alkalinity a priori. 

6.1 INTRODUCTION 

Mineral scale formation, metal pipe corrosion, and biological fouling are major problems that are 

constantly encountered in industrial cooling systems. These problems can be quite costly and 

usually demand a great effort to control adequately. Proper management of cooling water 

systems is essential to maintaining cooling efficiency, stable system operation, and equipment 

longevity. Water pH is a master parameter that directly impacts mineral scaling, pipe corrosion, 

and biofouling. Widely used scaling and corrosion indices, such as Langelier, Ryznar, and 

Puckorius indices, are based on measured and/or calculated pH [1]. Bioactivity is heavily 

dependent on pH [2]. Understanding the pH behavior of cooling water, therefore, improves the 

accuracy of estimating the propensities for scaling, corrosion, and biofouling. 

In an open recirculating cooling system, water is brought in contact with ambient air to 

achieve cooling through evaporative water loss. Consequently, the equilibration of CO2 and other 

gaseous constituents between water and air is greatly enhanced. As a first approximation, when 

considering gas exchange reactions, pseudo-equilibrium conditions can be assumed when the 

cooling system is operated at steady state. On the other hand, mineral precipitation can be a slow 

process. Under typical operational conditions of recirculating cooling, complete precipitation 

equilibria may hardly be established. 

There are a few empirical relations between water pH and carbonate alkalinity that ware 

developed based on observations of cooling systems operated using freshwater. With more and 
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more cooling systems embracing water reuse, non-traditional water sources, many of which are 

of impaired quality and have more complex chemical composition than freshwater, will become 

more commonly used [3, 4]. Currently, there is a general lack of knowledge about how the water 

pH behaves when an impaired water is fed into a cooling system. 

The objective of this chapter was to examine the major water constituents that comprise 

the alkalinity of the water in an open recirculating cooling system using secondary-treated 

municipal wastewater as a model nontraditional cooling water source. Key operational 

conditions of the cooling system influencing water pH are discussed. This study presents a more 

reliable approach to predict the pH behavior of open cooling systems using secondary-treated 

municipal wastewater as makeup, by considering more thoroughly the factors that contribute to 

alkalinity as well as mineral solids formation. Ultimately, the proposed approach should be able 

to forecast the recirculating water pH under designed cycles of concentration (CoC), based on a 

few parameters of the makeup water quality. 

6.2 MATERIALS AND METHODS 

Modeling. Equilibrium modeling was performed using MINEQL+ [5, 6] (version 4.6). 

Temperature was set at 40 °C, which is typical of recirculating water temperature. For open 

system simulation, it was assumed that PCO2 = -3.50. For closed system, total carbonate was 

specified based on the measured values of total alkalinity and the pH of makeup water. Non-

ideality was considered by incorporating ionic strength corrections. Model calculations of water 

pH at different CoC were based on solution electroneutrality. 
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The chemical composition of the modeled municipal wastewater is provided in Table 6.1. 

Cooling system CoC was simulated by imposing different multipliers to the data in Table 6.1. 

For each CoC, a variety of modeling conditions were examined. 

 

Table 6.1 Chemical constituents of the modeling water representing secondary-treated municipal wastewater used 

for equilibrium calculations 

 Constituent 

 

Total concentration  

(mM) 

 

 Al 0.007  

 Ca 1.035  

 Cl 2.986  

 Fe 0.009  

 K 0.417  

 Mg 0.440  

 Mn 0.006  

 Na 4.096  

 NH4 1.500  

 NO3 0.257  

 PO4 0.145  

 SiO2 0.142  

 SO4 0.895  

 Carbonates 4.040  

 Measured pH 7.2  

 Ionic Strength 11.8  

 

 



107 

Mineral Precipitation. The compositional analyses of mineral solids collected in pilot-scale 

cooling tower tests showed that the solids consisted of mainly calcium carbonate and phosphate 

minerals. Because magnesium was not detected at significant levels, it was assumed that removal 

of Mg by precipitation can be neglected (Chapter 3). Modeling took into account this limiting 

factor when evaluating the pH behavior of recirculating water, namely, only calcium carbonate 

and phosphate precipitation was allowed to take place when appropriate. 

Experimentation. During pilot-scale testing, ammonia in the recirculating water had very 

low concentrations compared to its concentration in the makeup water. Specifically, more than 

95% of the ammonia was removed from the recirculating water due to effective stripping. 

Modeling calculations evaluated the effect of ammonia on pH. To verify ammonia stripping, 

laboratory aeration tests were performed. Secondary-treated MWW was collected on 11/14/2009 

and placed in a series of 1-L beaker reactors that were stirred at 200 RPM. Water temperature 

was either 23 ºC (room temperature) or 40 ºC. The water was aerated with fine bubbles of air 

created by a diffuser stone. Initial pH was 6.8 and ammonia concentration was 19 ppm as N. 

Correlation of pH and Alkalinity. In most freshwaters, the acid-base chemistry is dictated 

by the open carbonate system because non-carbonate acid-base species are comparatively much 

less significant. The carbonate species are distributed according to the following mass action 

relationships: 

(1) 

Or simply, 

(2) 

 

From Eq. (2), one can derive (assuming 25 °C and 1 atm): 

21
2
33

*
3222 ,,2)( aaH KKKCOHHCOHCOHOHgCO −+−+ +=+==+

3.6
13

*
32 10−−+ =+= aKHCOHCOH
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𝑝𝐻 = log � −
3HCO � + 11.3      (3) 

Under circumneutral pH conditions (pH 6-9), solution alkalinity (ALK) is mainly 

contributed by bicarbonate: 

ALK ≈ [HCO3
−]        (4) 

ALK is commonly expressed as mg CaCO3/L. With this unit conversion, Eq. (3) can be 

written as: 

 𝑝𝐻 = log ALK + 6.6       (5) 

For fairly simple aqueous systems, Eq. (5) provides a simple equation of estimating pH from 

ALK, which is readily measurable. However, in actual cooling waters, the correlation between 

pH and alkalinity may deviate from Eq. (5) due to the existence of other species that can 

contribute to ALK, e.g., phosphates and organic matter. A more general form to account for 

complex ALK is used in Eq. (6): 

𝑝𝐻 = 𝑎 log ALK + 𝑏       (6) 

where the fitting parameters 𝑎 and 𝑏 can be determined by least-square linear regression of 

collected experimental data. A number of empirical values of the fitting parameters have been 

reported to describe the relationship between pH and ALK in cooling systems [7-9]. They are 

summarized in Table 6.2. 

In a simple carbonate system, ALK can be approximated to bicarbonate concentration with 

reasonable accuracy. With systems of more complex chemistry, however, a more complete 

description of ALK should include other species, as listed in Eq. (7). 

ALK = OH – H + HCO3 + 2CO3  

+ HPO4 + 2PO4 – H3PO4 + NH3 + HSiO3 + 2SiO3 + CaOH + CaHCO3 + 2NaCO3          (7) 
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Eq. (7) indicates that phosphates, ammonia, silicates, and calcium complexes can all 

potentially contribute to ALK. 

 

Table 6.2 The coefficients of Eq. (6) used in empirical relations for pH prediction from alkalinity 

Empirical Relation 𝒂 𝒃 Ref 

Puckorius relation 1.47 4.54 [7] 

Watertext relation 1.72 4.13 [8] 

Kunz relation 1.6 4.4 [9] 

 

CO2 Oversaturation in Makeup Water. In an open carbonate system, carbonate species, 

besides CO2(g), exist as either dissolved species or carbonate solids. Total dissolved carbonates 

is expressed as Total Inorganic Carbon (TIC), whose equilibrium values at a given pH can be 

calculated according to Eq. (1). When the measured TIC is greater than the calculated value, 

either CO2 degassing or carbonate precipitation will take place to bring the system to equilibrium. 

6.3 RESULTS AND DISCUSSION 

CO2 Degassing. Based on the information about the chemical composition of the MWW in 

Table 6.1 and without considering potential exchange with gas phase and solid formation (i.e., a 

closed system without precipitation), that the water pH predicted by MINEQL+ was 7.2, which 

was identical to the value measured for actual MWW. Under this “initial” condition, the total 

carbonates were 4.04 mM (Table 6.3). When the system was allowed to exchange with gas phase 
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and to form precipitates (i.e., an open system with precipitation), MINEQL+ calculation shows 

that the water pH would increase to 8.5. This pH increase would be accompanied by the 

formation of calcite and dolomite, which are two most stable calcium (and magnesium) 

carbonate crystalline forms. The concentration of total carbonates decreased to 1.42 mM. If there 

was no CO2(g) exchange between air and water, the precipitates would account for the difference, 

which is 2.62 mM. However, the total precipitated carbonate (CO3
2-) associated with the solids 

was only 0.94 mM. The only possibility for the imbalance is CO2 degassing where a total of 1.68 

mM CO2 was released to the air when the system was allowed to equilibrate with atmosphere. As 

shown in Eq. (8), CO2 degassing resulted from HCO3
- taking up H+, and consequently, the water 

pH increased from 7.2 to about 8.5 due to decrease in H+ concentration. 

 

Table 6.3 Carbonate speciation at initial (closed system) and equilibrium stages (MINEQL+ modeling of MWW 

CoC 1). Unit: mM 

 
pH CO3

2- CaHCO3
+ H2CO3 HCO3

- Ct Calcite Dolomite CO2(g) 

Initial 
(closed) 7.2 0 0.04 0.59 3.39 4.04 - - 0 

Equil. 
(open) 8.5 0.04 0 0.01 1.36 1.42 0.24 0.35 1.68 

 

Should the precipitation not take place, the pH increase entirely due to CO2 degassing would 

be even higher (modeling calculation under this scenario indicates a pH of 8.8). Indeed, 

carbonate precipitation consumes alkalinity, which leads to a decrease of pH, as indicated by Eq. 

(8): 

  Ca2+ + 2HCO3
- = CaCO3(s) + H2O + CO2(g)    (8) 
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Comparing the pH changes in the opposite direction as initiated by Eq. (1) vs. Eq. (8), one 

can see that the CO2 degassing process effected pH more profoundly than precipitation reactions. 

The result was a net increase in pH (Figure 6.1). 

 

 

Figure 6.1 pH increase due to CO2 degassing by aeration experiment using secondary-treated MWW. Error bars 

indicate the measurement ranges. 

 

Ammonia Stripping. Similar to carbonate precipitation, NH3 stripping also consumes 

alkalinity and thus lowers the pH.  Because NH4
+ is the dominant ammonia form in the pH range 

of interest (i.e., pH 6-9), it will react with HCO3
- to produce both NH3(g) and CO2(g), as shown 

in Eq. (9). 

  NH4
+ + HCO3

- = NH3(g) + H2O + CO2(g)    (9) 

In pilot-scale cooling tower tests, it was found that NH4
+ was largely removed from cooling 

water. This observation is confirmed in lab aeration experiments, where ammonia was 

effectively stripped out when water pH was above 8 and temperature was raised to 40 ºC from 
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about 23 ºC (room temperature) (Figure 6.2). Note that the 20 ppm of ammonia initially present 

in MWW could potentially contribute to 1.43 mM alkalinity should all the ammonia be present 

as NH3. (However, ammonia does not contribute to M-Alk., or commonly referred as the total 

Alk.). 

 

 

Figure 6.2 Total ammonia concentration in secondary MWW in beaker stripping test in the lab. 

Water temperature was raised from 23 to 40°C at 2500 min. 

 

pH as a Function of ALK. The correlation between pH and ALK described by Eq. (5), 

which is calculated based on carbonate alkalinity, as well as three empirical relations are shown 

in Table 6.2 and depicted in Figure 6.3. MINEQL+ modeling results were based on the six 

possible conditions that may be correlated when the system is “open to atmosphere” (Figure 6.4). 

Although none of the equations captured our pilot-scale data accurately, they provided 

reasonable boundaries for the field data. It is important to note that the MINEQL+ modeling data 

for MWW match Eq. (5) exceptionally well, indicating that the pH-ALK relationship in MWW 
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can be well described by Eq. (5) under open equilibrium conditions and that ALK is primarily 

contributed by bicarbonate. 

 

 

Figure 6.3 Correlation between pH and ALK. The open circles are modeling results of open equilibrium conditions. 

The conditions included: solid precipitation vs. no solid precipitation; only calcite and hydroxylapatite formation; as 

well as with or without NH3 species. The solid circles are field testing results of pH and ALK. 

 

It is clear from Figure 6.3 that the actual ALK in cooling water of high CoC should not be 

simply the product of makeup ALK and CoC. In actual field testing, the ALK may be 

contributed not only by soluble ALK but by other substances as well, such as organic matter and 

carbonates that are embedded in particulate matter and microbial cell membranes. Moreover, 

alkalinity can be consumed by precipitation reactions. Thus, for secondary-treated MWW as 
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cooling water of complex water chemistry and operational conditions, the real bicarbonate 

concentration was lower than the measured ALK. In other words, the ALK used in the empirical 

relations may be very likely over estimated. One probable way to correct the overestimation is to 

use bicarbonate concentrations as ALK. In doing so the solid circles should shift to the left hand 

side and be closer to the straight line representing Eq. (5). 

pH Prediction Based on More Complete Consideration. The behavior of water pH at 

different CoC for eight modeling conditions described in Figure 6.4 is shown in Figure 6.5. Open 

to the atmosphere and close to the atmosphere conditions resulted in significantly different pH 

levels. In an open cooling system, the actual condition is closer to open to the atmosphere rather 

than closed, except for very low cycles of concentration when CO2 degassing is not of significant 

influence. Thus, the modeling results for CoC 1 (or makeup water) are better approximated by 

the closed condition while higher CoCs are more likely approaching an open condition. 
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Figure 6.4 MINEQL+ modeling conditions for MWW used as cooling system makeup. 

Each condition was examined for CoC 1-6 at 40°C. 
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Figure 6.5 Modeling of pH as a function of CoC under different operational conditions. 

The dashed line represent a best fit of the experimental data by the least square second order polynomial. 

 

Based on the experimental evidence from both laboratory and field studies, magnesium was 

stable in the cooling water and the mineral scales were mainly calcium carbonates and 

phosphates. Also, ammonia had very low concentration (around 98% removal) in the cooling 

water. As such, the scenario (4) from Figure 6.4 (i.e., “Open, solids, no NH3, no Mg”) should be 

the most representative modeling condition. Indeed, the results of Figure 6.5 for this scenario fit 

the field data well, especially at CoC > 2. 

For the field data depicted in Figure 6.5, the CoC was determined by the ratio of the specific 

conductivity of cooling water and makeup water. During field testing, the CoC was determined 

6

6.5

7

7.5

8

8.5

9

9.5

0 1 2 3 4 5 6 7

pH

Cycles of concentration

C
hart

Title

Best fit of field data 

(5) 
(6) 
(2) 
 
 

(1) 
 
 
 
 

(7) 
 

(8) 

(4) 
(3) 



117 

on daily basis and the targeted CoC was 4. The true CoC should be determined by makeup to 

blowdown flow ratio. However, since makeup and blowdown flow were not continuous, the 

exact CoC was difficult to determine at the exact time when pH measurement took place. The 

conductivity of both makeup and recirculating water was measured at the same time when pH 

was measured and should thus be more representative. 

Figure 6.5 implies that by carefully considering the influence of solid formation and 

ammonia stripping, the pH of cooling water at various CoC can be estimated with precision 

using water chemistry equilibrium model such as MINEQL+. 

6.4 CONCLUSIONS 

The pH behavior of recirculating water in open cooling systems using impaired waters, such as 

treated municipal wastewater, is not easily predicted by existing simple empirical equations 

because those equations were established based on data obtained from systems using freshwater 

as cooling makeup. Carbonate alkalinity, which requires accurate measurements in the 

recirculating water, is a critical parameter in those pH estimation equations. Unfortunately, 

alkalinity determination can be extremely difficult in practice, especially with open cooling 

water systems where a variety of parameters can be ever changing. A more comprehensive 

modeling approach, as described in this paper, considers the degassing effect due to cooling 

tower aeration and the solids formation due to the concentration effect of recirculating cooling. 

This approach is demonstrated to be capable of estimating the cooling water pH behavior more 

accurately and robust. Using this approach, one can predict the pH changes after the water is 

recirculated in an open cooling system operated at various CoC, with just the limited knowledge 
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of makeup water quality. This modeling approximation does not need to measure the alkalinity 

of the recirculating water.  
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7.0  INSIGHTS INTO MECHANISMS OF MINERAL SCALING INHIBITION BY 

POLYMALEIC ACID (PMA) 

The occurrence of inorganic mineral deposition (scaling) is ubiquitous in water-based industrial 

processes. It causes system problems, particularly in evaporators, heat exchangers, and 

membrane desalinators, and can significantly increase operating costs. Research on developing 

antiscaling chemicals (antiscalants) has been focused on manipulating the water chemistry, most 

notably raising the solubilities of the precipitating minerals or chemically interrupting mineral 

crystallization processes to stabilize the mineral suspension and prevent solids formation. Up to 

date, the assessment of the antiscaling effectiveness of various polymer antiscalants is largely 

based on empirical tests at either bench or field scale, and lacks theoretically sound systematic 

investigation. In this study, the antiscaling mechanisms of polymaleic acid (PMA), which had 

been used in this study for scaling control in different impaired waters, was systematically 

evaluated using both analytical methods based on bulk solution chemistry and complimentary 

characterization of the mineral solids formed in solution. It was identified that the antiscaling 

mechanisms of PMA on mineral precipitation in bulk liquid was fundamentally different from 

that on mineral deposition on substrate surface. With regard to mineral precipitation in the bulk, 

PMA delayed the initiation of the mineral precipitation even at very low dosing (< 1 ppm). And 

at high doses (> 5-10 ppm) PMA completely eliminated the “fast precipitation” phase in the 

bulk. Also, the precipitation rates were significantly reduced in the presence of PMA. Analysis 
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on the precipitates indicated that magnesium exhibited stronger associations with PMA 

molecules than calcium, resulting in its incorporation in the amorphous solids. With regard to 

surface deposition, PMA worked well to prevent deposition of pre-formed (existing) suspended 

mineral solids. Surface adsorption of PMA onto suspended mineral particles increased the 

negative charges of the solids and rendered them less favorable for deposition onto negatively 

charged stainless steel surfaces. On the other hand, if the suspended solids were not preformed, 

PMA tended to incorporate into the mineral particles during the precipitation process to 

significantly alter the particle morphologies and surface charge distributions to a point that PMA 

lost much of its effect on deposition mitigation. The finding has significant implications in 

scaling control practices in that the protocol for PMA addition should be carefully evaluated. 

Under conditions when mineral precipitation takes place in the bulk, PMA should be better 

added after the fast precipitation took place to avoid the formation of PMA-incorporated mineral 

particles. 

7.1 INTRODUCTION 

Inhibition of mineral scale formation is important in water-based industrial processes because 

mineral scaling on equipment surfaces incurs significant removal costs [1, 2]. Typical water-

based industrial processes where mineral scaling is of primary concern include cooling towers, 

evaporators, heat exchangers, membrane desalinators, and drinking water distribution networks. 

Scale inhibition can be achieved through the addition of chemical compounds known as 

inhibitors or antiscalants. To understand how scale inhibitors work, a detailed assessment of the 

fundamental processes involved in mineral precipitation and deposition is necessary. As 
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schematically shown in Figure 7.1, the mineral ions under supersaturation conditions in solution 

gather through random thermal motion to form clusters. These clusters constantly sample for 

different configurations until reaching a critical size beyond which nucleation takes place. Once 

the embryos become nuclei, crystallization proceeds spontaneously to form larger particles. 

Depending on the surface properties of these particles, they can either stay suspended for long 

time or aggregate to form even larger particles. Eventually, these particles, as well as the mineral 

ions, diffuse through the hydraulic boundary layer, and deposit on a solid surface to form scale. 

To inhibit, or to at least mitigate surface scaling, a chemical added to the suspension needs to 

disrupt at least one of the processes, and it would be more effective if the disruption occurs in 

multiple steps. 
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Figure 7.1 Simplified schematic of the physical chemical processes of mineral scaling and scaling control by 

chemical additives.  
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An added antiscaling chemical can prevent scaling in various ways. The chemical can 

work to sequester or complex with scale forming cationic species, thereby raising the operational 

solubilities of the mineral ions and impeding the processes of clustering and nucleation. The 

chemical can work as a crystal modifier to alter the crystallization pathways and cease the 

growth of mineral particles. The chemical can work as a dispersant by providing an electronic 

and/or steric repellency between the mineral particles, and keeping them from flocculation and 

aggregation. Finally, the chemical can also work as a surface conditioner to render the surface 

unfavorable for scale formation. A good inhibitor chemical should work through multiple 

mechanisms to prevent scaling. 

The objective of this chapter is to elucidate the antiscaling mechanisms of polymaleic 

acid (PMA), which has been used in previous chapters and proved to be effective in mitigating 

scaling of several impaired waters. The effect of PMA on mineral precipitation in bulk solution 

and on mineral particle deposition on solid surfaces was examined independently to obtain 

insights into potentially different mitigation mechanisms of PMA on precipitation and 

deposition. The influence of PMA on mineral particles was investigated using both pre-formed 

particles in the absence of PMA and particles formed in the presence of PMA. 
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7.2 THEORETICAL BACKGROUND 

7.2.1 Nucleation 

Under supersaturated conditions, mineral ions constantly sample for different configurations for 

mineral solid formation [3-7]. This random clustering of ions arising from their ionic thermal 

motion is easily reversible, i.e., the clusters are in a constant state of formation, break-up, and 

disappearance. The mineral clusters can consist of a broad size range, from dimers, trimers, etc., 

all the way to i-mers (i > 100, in terms of the number of ions), until a cluster reaches a critical 

number j, at which state the addition of an extra monomer leads to nucleation. Before the cluster 

reaches the critical number or critical size, the energy barrier is high, i.e., the cost to create a 

nano-sized particle of high specific surface area overwhelms the benefit of energy gain through 

ionic bonding. Nucleation refers to the formation of new clustering centers from which 

spontaneous crystal growth can proceed (i.e., energy gain from bonding overtakes energy cost 

for creating the additional surface area). The nucleation process determines the size and size 

distribution of the crystals produced. Subsequently, monomers (ions) are deposited on these 

nuclei, and crystallites are being formed. 

At the very beginning of nuclei formation, the crystals are sufficiently small (1-10 nm in 

dimension), and quantum-mechanical effects may alter various physical and chemical properties, 

and complicate the classical treatment of nucleation and crystallization theories. Nevertheless, a 

brief review of the classical nucleation theory is given below. 

The free energy of formation of a nucleus corresponding to the critical j-mer, consists 

essentially of the energy gained from making bonds (volume-based free energy) and of the work 

required to create the nucleus surface [8]: 
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∆𝐺𝑗 = ∆𝐺𝑏𝑢𝑙𝑘 + ∆𝐺𝑠𝑢𝑟𝑓      (1) 

For a nucleus, the bulk energy gain, which is always negative for a supersaturated 

solution, can be expressed as 

∆𝐺𝑏𝑢𝑙𝑘 = −𝑗𝑘𝑇 ln 𝑆       (2) 

where, 𝑗 is the number of ionic units (monomers) in the nucleus. When expressed in terms of 

volume for a spherical nucleus having radius 𝑟 and ionic volume 𝑉𝑖𝑜𝑛 (m3), 𝑗 takes the following 

form: 

𝑗 = 4𝜋𝑟3/3
𝑉𝑖𝑜𝑛

        (3) 

𝑆 is the saturation ratio: 

𝑆 = �𝐼𝐴𝑃
𝐾𝑆𝑃

�
1/𝑛

        (4) 

where, 𝐼𝐴𝑃 stands for ionic activity product, 𝐾𝑆𝑃 is solubility product, 𝑛 is the number of ions in 

the formula unit of a mineral 𝐴𝑥𝐵𝑦  (i.e., 𝑛 = 𝑥 + 𝑦). Because of the normalization by 𝑛, the 

saturation ratio is independent of the way the formula is written, e.g., Ca5(PO4)3OH or 

Ca10(PO4)6(OH)2. 

The energy cost of surface formation can be expressed in terms of the specific interfacial 

energy or surface tension 𝛾 (mJ/m2), which is assumed to be independent of nucleus size, and a 

spherical surface area: 

∆𝐺𝑠𝑢𝑟𝑓 = 4𝜋𝑟2𝛾       (5) 

Hence, the nucleation energy of a spherical crystal can be written as: 

∆𝐺𝑗 = −4𝜋𝑟3/3
𝑛𝑉𝑖𝑜𝑛

𝑘𝑇 ln �𝐼𝐴𝑃
𝐾𝑆𝑃

� + 4𝜋𝑟2𝛾 = 𝑓(𝑇, 𝑆, 𝑟)   (6) 
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Table 7.1 Critical cluster formation and associated energy barrier 

 (𝑉𝑖𝑜𝑛 = 3 × 10−29 𝑚3 corresponding to a spherical ion of radius 1.9 Å; T = 25°C; γ = 100 mJ/m2) 

𝑆 
(supersaturation) 4 5 7.5 10 15 20 25 50 100 

Δ𝐺𝑗∗ (10−20𝐽) 46.4 34.4 21.9 16.8 12.2 9.9 8.6 5.8 4.2 

𝑟𝑗∗ (Å) 10.5 9.2 7.3 6.4 5.4 4.9 4.5 3.8 3.2 

𝑗∗ (#) 162 107 53 36 22 16 13 7 4 

 

It can be seen that the nucleation energy is a function of temperature, saturation ratio, and 

the nucleus size. Table 7.1 calculated the nucleation energy and the critical size for nucleation as 

a function of the saturation ratio. In Figure 7.2, ∆𝐺𝑗 is plotted as a function of 𝑟 (or equivalently, 

of 𝑗) for a series of saturation ratio 𝑆 values. Obviously, spontaneous nucleation would proceed 

only when the solution is supersaturated and the size of ion clusters is large enough to overcome 

the activation energy barrier. Increasing the saturation ratio will not only lower the energy 

barrier, but also shorten the time needed for spontaneous nucleation by reducing the critical 

cluster size. From the right pane graphs, it appears that 𝑆 = 10-20 is needed for favorable and 

quick nucleation. Also note that the curve for 𝑆 = 1 depicts the energy cost to create the crystal 

surface because there is no bulk free energy gain under this equilibrium condition. When 𝑆 > 1, 

with increasing cluster size the bulk energy gain, which increases with 𝑟3, outweighs the surface 

energy cost, which increases with 𝑟2. The energy cost for large crystals becomes negligible, and 

continued crystal growth may only be hindered by other barriers, such as a decrease in 𝑆 or in 

ionic diffusion, or an increase in hydraulic shear exerted on the crystals. All of these mechanisms 

are utilized to a varied extent by antiscaling chemicals added to a supersaturated mineral 

solution. 
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Figure 7.2 Energetics of mineral nucleation. 

The energy barrier and the critical size of nucleus depend on the supersaturation (𝑆). a) Free energy of formation of 

a spherical nucleus as a function of its size, calculated for different saturation ratios. The height of the energy 

maximum, Δ𝐺𝑗∗ , is the activation barrier to the nucleation process at a saturation level specified by 𝑆 . b) The 

activation energy decreases with increasing supersaturation. c) The size of critical nucleus also decreases with 

increasing supersaturation. The curves were calculated based on the following assumptions: 𝑉𝑖𝑜𝑛 = 3 × 10−29𝑚3 

(corresponding to a spherical ion of radius 1.9 Å); T = 25°C; γ = 100 mJ/m2. 

 

To get a better sense of the newly-formed nucleus size, one can ask the question, how 

many ions have to be incorporated in a cluster before reaching a critical size. When S  = 10 for 

instance, rj∗ = 6.35 Å, it is estimated that j = 36. For S = 20, rj∗ = 4.9 Å, and j = 16. A list of 

these parameters is also provided in Table 7.1. 
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The temperature effect on nucleation is reflected by the kT term, assuming that the 

surface energy is independent of temperature. Increasing temperature renders nucleation more 

favorable. For example, at 𝑆 = 10, increasing temperature from 25°C to 40°C leads to a 9% 

lowering of the energy barrier and 8% reduction in the critical cluster radius. 

7.2.2 Nucleation kinetics 

Several chemical affinity-based rate models have been developed to describe the nucleation 

kinetics in terms of free energy changes, ∆𝐺. Two basic types of rate laws are widely used: linear 

and nonlinear rate laws with respect to ∆𝐺. The linear rate laws have the following general form 

[9]: 

𝑟 = 𝑘𝑓 �𝑒
𝑛∆𝐺
𝑅𝑇 − 1�       (7) 

where 𝑟 is in mole/(time ∙ area), 𝑘𝑓 is the nucleation rate constant, 𝑅 is the ideal gas constant, 𝑇 

is absolute temperature. The parameter 𝑛  is a constant and has been assumed to contain 

information about the growth mechanism, e.g., 𝑛 = 1  is indicative of surface adsorption-

controlled growth. 

The nonlinear rate laws are generally expressed as: 

𝑟 = 𝑘𝑓 �𝑒
∆𝐺
𝑅𝑇 − 1�

𝑛
      (8) 

In both of the rate law expressions, the physical meanings of the parameters are the same. 

Theoretical models have been used to argue that 𝑛 = 2 (second order) describes growth at screw 

dislocations on the crystal surface with a spiral mechanism while higher orders can be applied to 

growth at both screw and edge dislocations. 
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7.2.3 Nonspherical crystal geometry 

For a nonspherical crystal, its surface area can be expressed as 

𝐴 = 𝛼 � 𝑉𝑀
𝑛𝑁𝐴

�
2/3

𝑗2/3       (9) 

where, 𝑉𝑀 is the molar volume of the solid phase (volume occupied by one mole of formula units 

in the solid, 𝑉𝑀 = 𝑛𝑉𝑖𝑜𝑛𝑁𝐴), 𝛼 is a geometric factor that depends on the shape of the crystal, e.g., 

for a sphere 𝛼 = √36𝜋3 = 4.84 [8]. 

The mean ionic radius (typically 1-2 Å) can be written as: 

𝑟𝑖𝑜𝑛 = 0.5 � 𝑉𝑀
𝑛𝑁𝐴

�
1/3

      (10) 

where the molar volumes are available in CRC Handbook of Chemistry and Physics. 

Using this expression, the surface energy term can be written in a more general form: 

∆𝐺𝑠𝑢𝑟𝑓 = 𝛼�4 𝑟𝑖𝑜𝑛2  𝑗2/3� 𝛾     (11) 

7.2.4 Interfacial energy: homogeneous nucleation vs. heterogeneous nucleation 

For homogeneous nucleation as discussed above, the interface is between water (W) and a 

mineral cluster (C): 

𝛾 = 𝛾𝐶𝑊       (12) 

Empirical relations exist for a given type of crystals (oxides, sulfates, carbonates, etc.). 

As a rule of thumb, high 𝛾𝐶𝑊 corresponds to low solubility: the mineral particles prefer self-

interaction among themselves over interaction with water due to higher energy cost to do the 

latter. One empirical relationship states [10]: 
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4 𝑟𝑖𝑜𝑛
2

𝑘𝑇
𝛾𝐶𝑊 = 4.7 − 0.272 ln𝐶𝑠𝑎𝑡     (13) 

where Csat is the molar concentration of mineral formula unit in solution at solubility limit (e.g., 

max moles of CaCO3 unit per liter of solution in equilibrium with solid CaCO3); rion is the mean 

ionic radius (in m); and the unit of γCW is J/m2. Table 7.2 provides a list of interfacial energies 

for common minerals, the solubilities (values were calculated for pH = 7 for oxides and 

hydroxides), and values for the mean ionic radius. It should be noted that calculated surface 

energies for solids will never serve as more than a guide as to what expect experimentally. 

Different preparations of the same substance and widely different experimental methods and 

conditions may yield different observations. 

In the case of heterogeneous nucleation, 𝛾 needs some redefinition because the nucleus is 

now formed in part in contact with the solution and in part in contact with the surface of a solid 

substrate (S): 

∆𝐺𝑠𝑢𝑟𝑓 = 𝛾𝐶𝑊𝐴𝐶𝑊 + (𝛾𝐶𝑆 − 𝛾𝑆𝑊)𝐴𝐶𝑆    (14) 

In the case of promoting heterogeneous nucleation, the substrate operates as such that its 

interaction with the mineral is energetically favorable (i.e., small, even negative 𝛾𝐶𝑆) and its 

interaction with water is no better, or worse than the interaction of minerals with water:  𝛾𝐶𝑊 ≈

𝛾𝑆𝑊. Under these conditions, 

∆𝐺𝑠𝑢𝑟𝑓 ≈ 𝛾𝐶𝑊(𝐴𝐶𝑊 − 𝐴𝐶𝑆)     (15) 

 

 

 

 

 



131 

 
Table 7.2 Surface free energies of minerals 

Mineral Formula 𝛾𝐶𝑊  
(mJ/m2) 𝐶𝑠𝑎𝑡 (M) 𝑟𝑖𝑜𝑛 (Å) Ref 

Calcite CaCO3 94 6 × 10−5 1.56 Christoffersen et al. (1988) 

Witherite BaCO3 115 1 × 10−4 1.68 Nielsen and Sohnel 
(1971) 

Gypsum CaSO4∙2H2O 26 1.5 × 10−2 1.57 Chiang et al. 
(1988) 

Barite BaSO4 135 1 × 10−5 1.76 Nielsen and Sohnel 
(1971) 

F-apatite Ca5(PO4)3F 289 6 × 10−9 1.54 Van Cappellen 
(1991) 

Hydroxyapatite Ca5(PO4)3OH 87 7 × 10−6 1.54 Arends et al. 
(1987) 

OCPp Ca5(PO4)3∙H2O 26 2 × 10−4 1.58 Van Cappellen 
(1991) 

Portlandite Ca(OH)2 66 6 × 10−5 1.32 Nielsen and Sohnel 
(1971) 

Brucite Mg(OH)2 123 1.5 × 10−4 1.19 Nielsen and Sohnel 
(1971) 

Gibbsite (001) Al(OH)3 140 7 × 10−8 1.18 Smith and Hem 
(1972) 

Quartz SiO2 350 1 × 10−4 1.16 Parks 
(1984) 

Amorph. Silica SiO2 46 2 × 10−3 1.16 Alexander et al. 
(1954) 

Kaolinite AI2Si2O5(OH)4 200 1 × 10−6 1.17 Steefel and Van Cappellen 
(1990) 

OCPp = Octacalcium phosphate (subscript p = precursor). 
 

7.2.5 Nucleation inhibition 

Many organic molecules were reported to display an ability to retard or totally inhibit mineral 

precipitation from solution when present at very low (ppm) concentrations [10]. Although the 

precise mechanism of precipitation inhibition is not clearly understood at this time, it is known 

that in supersaturated solutions of sparingly soluble salts, a significant delay in crystal nucleation 
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and subsequent growth is observed in response to chemical treatment [11]. This delay is referred 

to as the "induction time" of the system, which occurs at remarkably low "threshold dosages" of 

the chemicals added, usually in the order of 1-10 ppm. The scale inhibition capability of 

antiscaling chemicals is related to chemical structure, molecular weight, active functional groups 

and solution pH, parameters that have been studied in depth by several investigators [12-15]. In 

all cases, the effect of precipitation retardation by antiscaling chemicals is equivalent to a 

reduction in the supersaturation level of the mineral solution. 

7.2.6 Inhibition of crystal growth  

Broadly speaking, crystal growth inhibition can be achieved through particle stabilization [16]. 

The stability of mineral colloids can be achieved by maintaining or even increasing interparticle 

repulsive forces such as electrostatic (charge-based) and steric forces. Surface charging of 

mineral particles commonly arises from nonspecific ionic adsorption. 

Charge stability can be semi-quantitatively measured by the zeta potential of the charged 

particles. Measured zeta potentials exceeding ±20 mV is regarded to be indicative of good 

stability whereas within ±10 mV is deemed unstable. With very weak surface potentials, 

coagulation quickly leads to the formation of bigger particles. 

Theoretically, charge stability can be described by the classical DLVO theory that takes 

into account both electrostatic repulsion and van der Waals attraction [8]. Solution chemistry 

plays a critical role in the DLVO interactions, with the most important parameters being pH, 

counter ion concentrations, and solution ionic strength. Near the pH values corresponding to a 

zero zeta potential (i.e., pHiep or pHpzc), the electrostatic repulsive forces diminish. It is therefore 
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important to have the knowledge about the specific pHpzc of the aqueous system in order to keep 

the suspension stable. Practically, it is important to specify the solution pH. 

The pHpzc can be determined by potentiometric titration technique, in which HCl or 

NaOH solution is added to the suspension and resulting pH is recorded. From the titration curve 

usually two pK values can be identified corresponding to the dissociation of the acid and base 

functional groups, and the pHpzc is calculated by the following equation: 

pHpzc = pK1+pK2
2

      (16) 

The steric effects between suspended particles are not captured by the DLVO description 

and the steric forces constitute an important part of non-DLVO interactions, among which the 

hydration force is most commonly encountered in aqueous suspension. A surface having ions or 

other surface groups that interact very strongly with water will have a net repulsion with another 

likely-configured surface due to the energetic cost of removing the bound water layers (opposite 

to the hydrophobic force that arises from an energetic gain in removing water layers from 

between two surfaces that repel water in nature). The hydration potential can be superimposed on 

the DLVO potential. The repulsive hydration force is generally exponential in form with a decay 

length of 1-2 nm attributed to the adsorption of hydrated ions to the mineral surface. While there 

is little doubt that the presence of a solid surface significantly perturbs the structure of the water 

adjacent to the surface (such structurally perturbed water at an interface was even given a term 

“vicinal” water), there remains a significant controversy in the literature about the correct 

measurement and theorization of water-induced forces, either hydration (hydrophilic) or 

hydrophobic in origin. 
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7.3 MATERIALS AND METHODS 

7.3.1 Properties of polymaleic acid (PMA) 

The polymaleic acid (PMA) (in 50% active content by weight) was provided by Kroff Chemical 

Company (Pittsburgh, PA). The molecular weight of this monopolymer was 1000 g/mol 

(according to the chemical provider). The repeating unit of PMA is illustrated in Figure 7.3. 

PMA molecules contain the most dense carboxylic groups per backbone carbon atom (one 

carboxylate per backbone carbon). 

 

 

Figure 7.3 Repeating unit of polymaleic acid. 

 

7.3.2 Effect of PMA on Mineral Precipitation 

The effect of PMA on mineral precipitation processes over time was investigated in stirred batch 

reactors. The chemical composition of the working solutions is shown in Table 7.3. The 

components were added from 1-M stock solutions of CaCl2, MgCl2, NaHCO3, KCl, KH2PO4, 

and Na2SO4. The stock solutions were made with reagent grade or better quality chemicals. In 

the experiments with PMA treatment, predetermined amounts (ppm) of PMA were added from a 

5000-ppm stock solution at the start of experiment. For each experiment, 750 mL of mineral 

solution was prepared in a Pyrex cell reactor. The solution pH (7.5) and initial ionic strength (IS) 
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were maintained the same; variations in pH and IS due to PMA addition were corrected with 

NaOH, HCl, or NaCl. Temperature was maintained at 40°C and solution/suspension was stirred 

with a teflon-lined magnetic stirrer at 300 rpm. Solution conductivity was monitored 

continuously using an on-line conductivity meter (Fisher Scientific) and the suspension turbidity 

was measured periodically. The effect of PMA on the precipitation kinetics was analyzed based 

on the changes of the solution conductivity over time. 

After a “fast precipitation” took place (cf. Figure 7.4) in the absence of PMA, the mineral 

suspension was split into two equal volumes (375 mL each) and 5 ppm of PMA was added to 

one of the suspensions and let equilibrated for 48 hr before the examination of the PMA effect on 

the deposition of mineral particles. 

 

 
 

Figure 7.4 Effect of PMA addition on the precipitation reaction as measured by solution conductivity changes over 

time. 

The chemical composition of the supersaturated solution is provided in Table 7.3. Experimental condition: 750-mL 

solution in a Pyrex cell reactor, pH 7.5, 40°C, and 300 rpm. 
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Table 7.3 Initial concentrations of the chemical constituents in bulk solutions for mineral precipitation retardation 

studies with PMA (unit: mM) 

Component Ca Mg Na K HCO3 PO4 SO4 Cl 

Initial Concentration (mM) 4.0 1.6 19.0 4.8 12 4.8 3.5 11.2 
 

7.3.3 Mineral particle characterization 

Mineral precipitate was collected from each reactor on a 0.22-µm membrane filter paper to 

remove residual water, dried, and inspected under a scanning electron microscope (SEM, Philips 

XL30, FEI Co., Hillsboro, OR) for its morphology. The elemental composition of the precipitate 

was analyzed using EDS. The particle size distribution was determined using a Microtrac S3500 

system (Microtrac Inc., Montgomeryville, PA). A Malvern NanoSeries ZetaSizer (Nano-ZS, 

Malvern Instruments, Westborough, MA) was used to measure the zeta potentials of the mineral 

particles in prepared suspension. 

7.3.4 Association/complexation of PMA with K+, Ca2+, and Mg2+ 

In a series of 50-mL volumetric flasks, 5 ppm of PMA was added to each. The concentrations of 

K+, Ca2+, or Mg2+ were varied according to Table 7.4. The solution volume was then adjusted 

with DI water. After equilibrating for 3 hr, the concentration of free PMA (PMA that is not 

complexed) in each flask was measured colorimetrically at 505 nm using a commercial test kit 

(MCI analytical test procedure, Masters Company, Wood Dale, IL). Standard calibration curves 

of absorbance vs. PMA concentration were developed in DI water with known concentrations of 

PMA, which was added from a stock solution (5000 ppm PMA). A selected subset of samples 

were measured again after 12 hr, the changes in PMA concentration between 3 hr and 12 hr were 
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minimal. The free PMA measurement is based on complexation of the available carboxylate 

groups of PMA with the test reagent (a weak complexing agent) and subsequent colorization of 

the solution with the addition of a second reagent [17]. 

 

Table 7.4 Concentrations of cations tested for their association/complexation with PMA 

Electrolyte Concentration (mM) 
KCl 0 6 12 18 30 
CaCl2 0 2 4 6 10 
MgCl2 0 2 4 6 10 
Solution IS (I) 0 6 12 18 30 

 

7.3.5 Adsorption isotherm of PMA on SS surface 

Intertwined strands of stainless steel (SS) wire in the form of a sponge-like structure were used to 

provide the surface for PMA adsorption. The SS surface was cleaned before use with an 

acetone/ethanol mixture (1:1 volume ratio) and then with DI water. Known amounts of the SS 

wire (pre-weighed) were put into a Nalgene plastic (PE) bottle of 240 mL total volume (Table 

7.5). 230 mL of PMA solution was poured to the bottle. The solution pH was then adjusted to 7.5 

with NaOH or HCl. A series of bottles containing solutions of varied PMA initial concentrations 

were continuously agitated on a wrist-action shaker (Model 75, Burrell Scientific, Pittsburgh, 

PA). Samples were taken from each bottle at predetermined times to measure the concentrations 

of PMA remaining in the aqueous phase.  
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Table 7.5 Amount (weight) of stainless steel wire used in each adsorption isotherm test with different amount of 

PMA 

Test # 1 2 3 4 5 6 
Initial PMA concentration C0 
(ppm) 0 4 8 12 16 20 

Stainless steel wire (g/L) 110.4 106.7 108.7 109.2 107.5 134.1 
 

7.4 RESULTS AND DISCUSSION 

7.4.1 Retardation of mineral precipitation by PMA 

Figure 7.4 shows the different patterns of mineral precipitation as measured by the changes in 

solution conductivity with different doses of PMA addition. Without PMA, precipitation started 

at about 1.5 hr, and was essentially completed within a few minutes. With PMA addition, the 

onset of precipitation was delayed. Even with just 0.1 ppm of PMA, the precipitation started after 

4.8 hr, which is delayed by 3.3 hr compared to the case without PMA. With greater amounts of 

PMA added to the solution (0.5 ppm, 1 ppm, and 5 ppm), the induction times were delayed even 

further; with 5 ppm of PMA, precipitation started after 15.6 hr. Not only were the induction 

times delayed with PMA, but the precipitation rates (the slopes of the conductivity change with 

time) were also slower with greater PMA addition. When the PMA concentration was increased 

to 10 ppm, no “fast precipitation” was identified over the entire experimental period (50 hr). 

The effect of PMA on the delay of the onset of mineral precipitation can be explained by 

the reduction of the mineral solution supersaturation level in the presence of this organic 

polymer. PMA molecules dissolved in solution may effectively interfere with the diffusivity of 
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the mineral ions, thereby reducing the driving force and chances of clustering and nucleation. 

Also, the interactions between PMA molecules and newly-formed mineral surfaces may reduce 

the magnitude of coefficient 𝑛 in Equation (7) or (8), thus decreases the precipitation reaction 

rates. 

7.4.2 Solid characteristics and chemical composition of the precipitate 

For a more detailed evaluation of the retardation effect by PMA, the mineral precipitate from the 

experiments with no PMA and 5 ppm of PMA (Figure 7.5) was collected and analyzed. In 

addition, the mineral suspension without PMA addition at time zero was split into two equal 

volumes and 5 ppm of PMA was added to one of the suspensions for further examination of the 

PMA effect on pre-formed suspended particles. The SEM images of the mineral particles 

collected from the three suspensions (at 48 hr) are shown in Figure 7.6. In the absence of PMA 

(Figure 7.6-Left), the precipitate is comprised of multidispersed crystal pieces with highly 

irregular shapes. With PMA added after the precipitate had formed, the crystal solids tend to 

stick together to form clusters (Figure 7.6-Middle). In the case where PMA was added at the 

beginning of experiment (before any precipitation took place), two distinct morphologies can be 

identified, crystal and amorphous (Figure 7.6-Right). 
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Figure 7.5 Solution conductivity changes over time in the absence and presence of PMA (5 ppm, added at time 0). 

Experimental condition: 750-mL solution in a Pyrex cell reactor, pH 7.5, 40°C, and 300 rpm. After precipitation 

took place without PMA, the mineral suspension was split into two equal volumes (375 mL each) and 5 ppm of 

PMA was added to one of the suspensions for the examination of the PMA effect on the deposition of mineral 

particles. 

 

   
PMA: 0 ppm PMA: 5 ppm added post 

precipitation 
PMA: 5 ppm added at time zero 

(prior to precipitation) 
 

Figure 7.6 SEM images of the precipitated mineral particles collected under different PMA treatment. 

Capital letters on images indicate the spots (areas) for EDS analysis. 
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To further reveal the effect of PMA on mineral precipitation, the elemental compositions 

of the precipitate were determined by Energy Dispersive X-ray Spectroscopy (EDS, EDAX Inc., 

Mahwah, NJ). The relative signal intensities of the elements making up the precipitate are shown 

in Figure 7.7. The precipitate appears to be a mixture of calcium phosphates and carbonates. 

Surface adsorption of PMA that was added after bulk precipitation was evidenced by the 

elevated peak intensities of C and O in Figure 7.7 upper panel. In the case where PMA was 

added prior to bulk precipitation (Figure 7.7  lower panel), the elemental composition of the two 

distinct morphologies (Figure 7.6-Right) was different. In the amorphous solids, more PMA was 

incorporated than in the crystal structures. More importantly, with the amorphous formation, 

appreciable amounts of Mg were also incorporated, which was not observed in other cases. 

When curves (A) and (C) are compared in Figure 7.7, calcium carbonate formation is suppressed 

by PMA, suggesting that calcium phosphate is more dominant in the presence of PMA. 
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Figure 7.7 Elemental composition of the precipitated mineral particles collected after different PMA treatment. 

Capital letters for each curve correspond to the scanning spots (areas) indicated in Figure 7.5. 

 

7.4.3 Association/complexation of PMA with Mg2+, Ca2+, and K+ 

Figure 7.8 shows the concentrations of PMA that was free in solution, i.e., PMA not complexed 

with the cationic species present in solution at different concentration levels. PMA exhibited 

strong affinity toward Mg2+. At [Mg2+]0 = 10 mM (corresponding to solution I = 30 mM), more 

than 50% of the PMA (2.6 ppm) was in complexed form, whereas with Ca2+ only 30% of the 

PMA (1.6 ppm) was complexed. The strong affinity between Mg2+ and PMA was responsible for 

Mg incorporation into the mineral precipitates (Figure 7.7), which was not detected in the 

absence of PMA. 

It is known that ligands such as CO3
2- and PO4

3- exhibit different affinities for Ca2+ and 

Mg2+. Compared to Ca2+, Mg2+ has less affinity for inorganic ligands, as evidenced by the 
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smaller values of Ksp (the first two columns of Table 7.6). With regard to organic ligands that 

bear primarily carboxylate groups, Mg2+ cations tend to be more strongly associated with them 

than Ca2+ cations do, forming more stable complexes (the last three columns of Table 7.6). 

Furthermore, the carboxylate groups in humic acids (HAs) were confirmed to be responsible for 

HA complexation with divalent cations [18]. The HA fractions rich in carboxyl carbon may 

become smaller in size thus more diffusive when complexed with Mg2+ or Ca2+ as revealed by 

NMR studies [18]. The improved diffusivity contributes to the easier incorporation of the 

complexes into the mineral precipitates, effectively distorting the crystallization process. 

On the other hand, the amount of calcium or magnesium complexed with PMA was 

minimal compared to the total concentrations of the cations present in the bulk solution. The 

repeating unit (base unit) of PMA is -CH(COOH)-, which has a “molecular weight” of 58 g/mol. 

Accordingly, 1 ppm of PMA corresponds to 17.24 µM of the PMA base unit. In the test solution 

containing 5 ppm of PMA, there were 86.21 µM of the PMA unit. Assuming two units complex 

with one Ca2+ ion, only 1% of the Ca2+ present in solution will be complexed ([Ca2+]0 = 4.0 mM) 

even under a maximum complexation capacity of the PMA. This calculation suggests that the 

changes of calcium concentration due to PMA complexation were insignificant, and would not 

contribute significantly to the inhibition of calcium precipitation. 
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Figure 7.8 Solution concentrations of free PMA that was not complexed with cationic species. 

Initial PMA added: 5 ppm, solvent: DI water. Solution was equilibrated for 3 hr before PMA measurements. Error 

bars indicate triplicate preparation of test solutions. 

 

 

Table 7.6 Stability constants (complexation constants or solubility product constants) of ligands with calcium and 

magnesium (usually measured at 25°C, 1 atm, and I = 0) 

pK Ligand 
 

 CO3
2- PO4

3- CH3COO- 
 Carbonate Phosphate Acetate 
Ca2+ 8.31 44.2-55.63 1.25 
Mg2+ 5.02 25.24 1.35 
1 8.48 for calcite and 8.36 for aragonite in Mark Benjamin2; 8.34 for calcite and 8.22 for aragonite in 
Snoeyink3. 

2 Sneoyink3; 4.67 for MgCO3·3H2O in Morel and Hering4. 
3 Hydroxylapatite in Mark Benjamin2 and Morel and Hering4. 
4 Bobierrite Mg3(PO4)2·8H2O in Morel and Hering4. 
5 1:1 complex in Morel and Hering4. 
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7.4.4 Adsorption isotherm of PMA on SS surface 

The data shown in Figure 7.9 reveal an interesting phenomenon where the suspended particles 

formed in the presence of PMA (5 ppm) appear to be “sticky” to the reactor wall. When PMA 

was not added to the solution, turbidity increased after just one hour due to the formation of 

suspended solids in the bulk phase. Addition of 5 ppm of PMA from the start of the experiment 

delayed solids formation by 16 hr. However, a steady decrease in turbidity was observed after 20 

hr of contact to the point that the turbidity decreased to about 40% of the initial value observed 

after 20 hr. The turbidity was only recovered when the suspension was vigorously stirred to re-

suspend the mineral particles that had accumulated on the reactor wall. This raises a question, 

how did PMA increase mineral deposition on the reactor wall? Data from previous studies 

demonstrate that PMA addition to supersaturated solution helped mitigate mineral scaling on 

stainless steel disc specimens (Chapters 3-5). How does the stainless steel surface differ from the 

reactor wall (Pyrex glass) with regard to PMA adsorption, if any? To answer these questions, 

batch reactors of similar volume but made of different materials (i.e., stainless steel, Pyrex glass, 

and PE plastic) were used to study the potential adsorption of PMA to the reactor walls.Figure 

7.10 shows that within 12 hr of equilibration with 5 ppm of PMA initial concentration, PMA did 

not adsorb onto any of the reactors significantly. 
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Figure 7.9 Suspension turbidity changes over time in the presence and absence of PMA (5 ppm, added at time 0). 

Experimental condition: 750-mL solution in a Pyrex cell reactor, pH 7.5, 40 °C, and 300 rpm. * Solid circles show 

measurements after the suspension was vigorously stirred to re-suspend the mineral precipitates that had 

accumulated on the reactor wall. 
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Figure 7.10 Solution PMA concentration in batch reactors made of different materials. 

PMA added: 5 ppm, solvent: DI water, pH = 7.5 (adjusted with NaOH). Solution was equilibrated for 12 hr before 

taking measurements. Error bars indicate triplicate preparation of the test solutions. This Figure shows that PMA did 

not adsorb onto the reactor wall significantly. 

 

Moreover, the experimental data in Figure 7.11 show that no PMA adsorption to the 

stainless steel surface was observed after 60 hr of equilibration in an aqueous solution containing 

an initial PMA concentration of 12 ppm at pH 7.5.Figure 7.12 shows that no PMA adsorption to 

the stainless steel surface was observed when the initial PMA concentration ranged from 0-20 

ppm and the solution pH varied from 8.5 and 7.0. 

 

Table 7.7 Amount (weight) of stainless steel wire used in each adsorption isotherm test with different amount of 

PMA 

Test # 1 2 3 4 5 6 
Initial PMA concentration C0 
(ppm) 0 4 8 12 16 20 

Stainless steel wire (g/L) 110.4 106.7 108.7 109.2 107.5 134.1 
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 Figure 7.11 PMA concentration in aqueous solution (I = 5 mM KCl) with 109.2 g/L of stainless steel wire 

immersed. 

PMA initial concentration = 12 ppm, solution pH = 7.5, room temperature (23 ± 1°C). Data points are triplicate 

measurements at each time. 

 

The  pKa values of acrylic acid (AA) and maleic acid (MA) were reported to be 4.25 and 

1.83, respectively [19]. Another group reported a pKa value of acrylic acid to be 4.5 [20]. Wang 

et al. [21] reported a pKa value of 5.12 for PMA, which was determined  by a Gaussian 

distribution model in the simulation of the protonation/deprotonation behavior of the multiligand 

system of PMA. Using a Langmuir isotherm equation, the authors also observed a fairly low qm 

value of 0.369 mg C/m2 for PMA adsorption on goethite at pH 5.8. 

As for the charge properties of the stainless steel surface, literature information is rather 

limited. Although the deposition of self-assembled monolayers (SAMs) on solid supports and 

particularly metal surfaces has been extensively studied, only a few reports are available dealing 

with SAMs on stainless steel. It is generally proposed in these reports that the innate SS surface 

is of oxide nature with Me-O-Me and Me-OH groups covering the surface [22-24]. However, no 
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quantitative characterization of the SS surface in terms of its charge behavior as a function of pH 

is available in the literature. One study measured the PZC value of nanoscale zerovalent iron 

(NZVI) to be 7.7 [25] but its relevance to a smooth surface of stainless steel may be limited 

despite the fact that both surfaces contain predominantly iron atoms. A study measured the zeta 

potential of stainless steel surfaces over the water pH of 8-11 [26] and found that the zeta 

potential of the SS surfaces varied from -15 mV to -35 mV. 

Based on the literature values it suggests that, in circumneutral pH ranges of our interests, 

PMA adsorption to steel surfaces can be minimal due to the electrostatic repulsion between the 

negatively charged PMA molecules and the negatively charged metal surface. 

 

 
 

 
Figure 7.12 PMA equilibrium concentration as a function of initial concentration in aqueous solution (I = 5 mM 

KCl) containing stainless steel wire (Table 7.7). 

Solution pH = 8.5 (○) and 7.0 (■), room temperature (23 ± 1°C). Measurements were made after 48 hr of 

equilibration. Error bars show the range of triplicate measurements. Dashed line indicates the 1:1 slope. 
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7.4.5 Size distribution and zeta potential of the precipitate 

The particle size distribution (PSD) of suspensions with and without PMA was measured with a 

laser scattering particle size analyzer (Microtrac S3500 system, Montgomeryville, PA) and the 

data are shown in Figure 7.13. Without PMA, the peak size (in terms of particle volume fraction) 

appears at 28 µm. When PMA was added post precipitation, the peak size was shifted to about 

40 µm, which was probably due to the inter-particle bridging effect of PMA molecules resulting 

in particle aggregation. In the case where PMA was added at time zero, the PSD curve is more 

dispersed, with two distinct peaks appearing at 12 µm and 44 µm. The peak at 44 µm very likely 

indicates the crystal structures depicted in Figure 7.6-Right and the peak at 12 µm corresponds to 

the amorphous solids. 

 

 
 

Figure 7.13 Variation in particle size distribution of the mineral suspension with different PMA treatment. 

Initial chemical composition of the supersaturated solution is provided in Table 7.3. 
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The zeta potential of the precipitate exhibited distinct values with different PMA 

treatment (Figure 7.14). Without PMA, the particle zeta potential was neutral to slightly 

negative, -2.92 ± 8.61 mV (peak ± deviation, calculated by the Zetasizer program). When PMA 

was added post precipitation, the particles were more negatively charged, -14.3 ± 6.17 mV, 

confirming the particle association with negatively charged PMA molecules. In the case where 

PMA was added at time zero, the zeta potential is more dispersed, with two distinct peaks 

appearing at -15.91 mV and -3.21 mV. The more negative peak indicates stronger association of 

PMA with the mineral particles, corresponding to the more amorphous solids that contain more 

PMA than the crystalline solids (Figure 7.6-Right). 

 

 
 
 

Figure 7.14 Changes in zeta potential of the mineral particles obtained from the mineral suspension with different 

PMA treatment. 
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The electrical repellency between particles affected by PMA surface adsorption is 

manifest in the data shown on Figure 7.15. It is clear that much less deposition on stainless steel 

specimens was observed in the suspension treated with PMA (5 ppm) after bulk precipitation. In 

the other case where 5 ppm of PMA was added at time zero, more deposits were collected on the 

specimen surface, which was consistent with the observation of reactor wall accumulation of 

mineral solids (Figure 7.9). Although PMA addition at time zero effectively retarded mineral 

precipitation, the precipitate formed in the presence of PMA became more “sticky” toward 

surfaces in contact with the suspension, which is undesirable for scaling control. The 

phenomenon was likely due to the formation of amorphous solids (smaller particle sizes in 

Figure 7.13) in the presence of PMA and the broadening of the zeta potential into both the 

positive and negative charge ranges (Figure 7.14). Both of these processes favored solid 

deposition on surfaces. Overall, adding PMA after mineral precipitation has occurred a better 

approach to prevent scaling. 
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Figure 7.15 Mineral deposition on stainless steel specimens with different PMA treatment. 

In case (a) and (b) the specimens were immersed at time zero and withdrawn at 48 hr; in case (c) the specimens were 

immersed immediately after the PMA (5 ppm) was added after bulk precipitation and kept in the suspension for 48 

hr. Error bars indicate the measurement ranges of triplicate specimens. 

 

7.5 CONCLUSIONS 

The addition of PMA to a supersaturated mineral solution mitigated the mineral precipitation and 

deposition via several mechanisms. PMA delayed the onset of the mineral precipitation even at 

very low dosage (less than 1 ppm). At high doses (> 5-10 ppm) of PMA, not only did the “fast 

precipitation” phase become gradually less and less pronounced, but the precipitation rates were 
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also significantly reduced. The effect of PMA on mineral precipitation was similar to lowering 

the supersaturation of the mineral solution, which not only prolongs the induction time for 

precipitation, but also reduces the precipitation rates. 

Magnesium exhibited stronger associations with PMA molecules than calcium, resulting 

in its incorporation in the amorphous solids in the presence of PMA. The interactions between 

Mg/Ca and PMA suppressed the formation of calcium carbonate. Consequently, calcium 

phosphate was more abundant in the precipitate formed in the presence of PMA. 

The antideposition effect of PMA worked well with pre-formed suspended solids. 

Surface adsorption of PMA onto mineral particles increased the negative charge of the solids and 

rendered them less favorable for deposition on likely-charged substrate surfaces made of 

stainless steel. On the other hand, if the suspended solids were not preformed, PMA tended to 

incorporate into the mineral particles during the precipitation process to significantly alter the 

particle morphologies and surface charge distributions to the point that it appeared to lose much 

of its effect on deposition mitigation. The finding has significant implications in scaling control 

practices in that the protocol for PMA addition should be carefully evaluated. Under conditions 

when mineral precipitation takes place in the bulk, PMA should be better added after the fast 

precipitation took place to avoid the formation of PMA-incorporated mineral particles. 
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8.0  ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) BASED 

CHARACTERIZATION OF MINERAL DEPOSITION FROM PRECIPITATION 

REACTIONS 

The study of mineral deposition on surfaces, such as that in cooling systems, has often relied on 

chemical equilibrium-based precipitation calculations, and simple measurements of mass gain 

from mineral accumulation on conducting surfaces. While these methods generally provide an 

initial estimate of the deposition potential or a gross measure of deposit formation, measurement 

of instantaneous rate of deposition would be useful for many kinds of scientific analyses and 

practical applications. An accurate and convenient approach for monitoring the rate of mineral 

deposition on metals in real time was developed and involves use of an electrochemical cell 

employing the metallic collecting surface as a working electrode. In this configuration, the 

working electrode serves as both the surface for mineral deposition and a sensor for probing 

subtle changes attributable to the growth of mineral deposits in the metal-mineral-water 

interface. The electrical impedance of the interface was measured by Electrochemical Impedance 

Spectroscopy (EIS). The interfacial capacitance obtained from the EIS data was used as a 

measure of surface coverage by mineral scale. An equivalent-circuit approximation was adopted 

to evaluate the distributed dielectric permittivity of minerals, which was reported as the 

capacitance of constant-phase element (CPE). The results show that the CPE capacitance 

correlated very well with the mass of mineral deposits accumulated on the metal surface. 
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Moreover, the characteristics of different minerals evaluated in this study, i.e., calcium 

carbonate, calcium sulfate, and calcium phosphate, did not affect the measurements of the CPE 

capacitance significantly. Rather, the CPE capacitance was sensitive to small changes in the 

mineral mass deposited on the electrode (< 0.1 mg). Unlike traditional methods for measurement 

of mineral deposition, the EIS allows in situ semi-continuous measurements of overall mineral 

deposition, and its sensitivity provides a means of early detection of mineral deposition. This 

study also showed that it is possible to use much narrower ranges (0.1 Hz or 1 Hz ± 10% of the 

frequency specified) of AC scanning frequencies, as opposed to using the entire six decades of 

frequencies (10 mHz to 10 kHz) to save measurement time and EIS device cost, without 

sacrificing measurement sensitivity. 

8.1 INTRODUCTION 

Predicting and monitoring mineral formation in water is a long-standing challenge in municipal 

and industrial water and wastewater systems. Deposition (scaling) of the minerals on heat 

exchanger, pipe and reactor surfaces can lead to myriad serious problems, including loss of heat 

transfer efficiency, clogging of filters, obstruction of flow, localized corrosion attacks, excessive 

wear of metal parts, unscheduled shutdowns, and ultimately, system failures. Over the last 

century, saturation and scaling indices, from the Langelier Saturation Index [1] to the Puckorius 

Scaling Index [2], were developed and constantly modified to predict the behavior of calcium 

carbonates (in some cases, calcium phosphates as well), in an effort to protect water distribution 

systems from mineral scaling and corrosion [1-4]. However, these equilibrium-based indices 

have been demonstrated to be of limited utility due to the inherent lack of kinetic considerations 



157 

and unable to account for variations in water quality [6-8]. The ability of equilibrium-based 

indices to predict precipitation accurately for actual water systems is limited and often not 

validated through experimental observations. 

Despite significant research progress, there remains a great need for improved 

measurements and models of the kinetics of mineral deposition at solid surfaces under conditions 

of complex water chemistry. Often, large anomalies exist between actually observed deposition 

intensities and rates estimated by predictive models based on scaling indices or bulk precipitation 

reactions [4, 9]. The existence of these anomalies is partly due to the limited availability of 

methods that can be used to describe and monitor the deposition processes. Existing methods that 

rely on measurements of mineral mass gain [10, 11] or heat transfer loss [12, 13] arising from 

mineral surface accumulation are generally insensitive to small changes in scale deposition. 

The Electrochemical Impedance Spectroscopy (EIS) technique has gained remarkable 

interest and application in a broad array of fields, including coatings and paintings [14, 15], 

corrosion [16-18], batteries [19-21], fuel cells [22-24], self-assembled layers [26-29], polymer 

degradation [30, 31], and membrane fouling [32, 33]. EIS has also been used in mineral 

deposition studies [34-41]. However, nearly all of the reported studies interpreted the EIS data 

based on the construction of distinctive, often complex electrical circuit analogies, many of 

which are difficult to connect to meaningful physicochemical properties of deposits. In addition, 

corrosive metals (e.g., mild steel) were sometimes used as the working electrode, which 

complicates the analysis of the EIS signals because of corrosion interference [37, 41]. Moreover, 

mineral deposition in these systems was often influenced by applied potentials which induced 

local pH changes at the solid-liquid interface [21, 36, 38-41]. 



158 

The objective of this study was to evaluate the use of EIS as a technique for in situ 

monitoring of the rate of mineral deposition in aqueous systems. Stainless Steel (SS) materials 

were used to preclude corrosion influence on EIS measurements. Sufficiently low electrical 

potentials were applied to minimize the probability of inducing redox reactions that may cause 

local pH changes. Capacitance values of a single constant-phase element (CPE) parameter based 

on a simple electrical circuit equivalence were obtained from mineral deposition experiments. 

The changes of the CPE capacitance over time were correlated to the mineral mass deposited, 

thereby establishing the physical meaning of the CPE parameter. This technique not only enables 

rapid and convenient tracking of mineral deposition processes, but also holds potential for in situ 

study of fundamental aspects of mineral deposition on metal surfaces. 

8.2 THEORETICAL BACKGROUND 

At the metal-solution interface, an electrical double layer usually forms owing to the differential 

of chemical energies between the metal surface and the solution. The chemical energy 

differential is commonly measured as electrochemical potentials (Figure 8.1a). When an electric 

signal (e.g., a sinusoidal potential wave) is applied to the interface, the response signal (e.g., a 

varying current) can exhibit a capacitive character. The behavior of the double layer, by analogy, 

can thus be approximated by that of a simple capacitor [42]. 
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Figure 8.1 Schematic representations of the electrical double layer at the metal-solution interface and their 

corresponding equivalent circuit diagrams. 

Charges on metal surface are depicted as positive, but negative charges are also possible (with corresponding 

counter charges in the solution side). Cdl = double-layer capacitance, Rp = polarization (charge transfer) resistance, 

Rs = solution resistance due to ionic diffusion, CPE = constant-phase element (non-ideal) capacitance. 

 

For an alternating current (AC) signal, like a sine waveform, Ohm’s law takes the 

following form: 

𝑉(𝜔) = 𝐼(𝜔) × 𝑍(𝜔)      ( 1 ) 

where 𝑉, 𝐼, and 𝑍 are frequency-dependent potential (volt), current (amp), and impedance (Ω), 

respectively. The angular velocity, 𝜔 (rad/sec), is given by 

𝜔 = 2𝜋𝑓         ( 2 ) 
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where 𝑓 is the signal frequency in Hz. 

In principle, the impedance, 𝑍, may originate from a system element that is resistive, 

capacitive, or inductive in nature, with an inductive impedance rarely encountered in solution-

based electrochemical systems [42]. Resistive impedance, 𝑍𝑅, is independent of the frequency 

and thus equivalent to the resistance in the direct current (DC) mode. In a resistance-only system, 

the response signal is always in phase with the excitation signal, and the resistance (or, the real 

component of the impedance) constitutes the entire impedance. 

Capacitive impedance, 𝑍𝐶 , can be expressed as [43]: 

𝑍𝐶 = 1
𝑖𝜔𝐶

       ( 3 ) 

where, the imaginary unit 𝑖 = √−1 indicates a 90° phase angle shift between the excitation and 

response signals, and the impedance is constituted entirely of the imaginary component of the 

impedance (e.g., the impedance of an ideal capacitor). The capacitance, 𝐶  (farad), can be 

evaluated from the relation 

𝐼 = 𝐶 𝜕𝑉
𝜕𝑡

         ( 4 ) 

Eq (3) indicates that, unlike the resistive impedance, the magnitude of the capacitive impedance 

depends on the frequency. 

The capacitive impedance of the electrical double layer can be determined by EIS 

measurements. In EIS, measurements of electrical current are carried out on a system in which a 

periodic AC potential is applied over a broad range of frequencies—hence the name impedance 

spectroscopy. 

Analysis of the EIS data yields insightful information about the metal-solution interface 

with regard to its structural features [34] and possible chemical reactions taking place near the 
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metal electrode [21, 36, 38-41]. The electrode interface undergoing electrochemical reactions is 

analogous to an electric circuit comprising a certain combination of resistors, capacitors, and 

inductors. By using established AC circuit theories, one can take advantage of this analogy to 

probe property changes at the interface. One example is represented on Figure 8.1b, which is a 

more realistic depiction of Figure 8.1a. In this example, the solid surface is smooth but the 

electrical layer on the solution side has to be modified to reflect the ionic diffusion and 

interfacial charge transfer, which are approximated by a solution resistance, 𝑅𝑆  (Ω), and a 

polarization resistance, 𝑅𝑃 (Ω), respectively. This particular type of equivalent electrical circuit 

(EEC) is called a simplified Randles model [42]. Experimental EIS data can be fitted to EEC 

models such as the Randles model in a fairly straightforward manner. However, a challenging 

task is to establish physical meanings from the fitted model parameters. This requires knowledge 

of the electrochemical cell under study and the reaction mechanisms involved, both built on a 

fundamental understanding of the behavior of the cell elements. 

With surface deposition (Figure 8.1c), the electrochemical picture becomes more 

complicated and the Randle’s model no longer describes the system adequately. Impedance 

results obtained from surfaces covered by a deposit layer often exhibit frequency dispersions. 

The frequency dispersion can be attributed to a capacitance dispersion expressed in terms of a 

constant-phase element (CPE), which replaces the ideal capacitor in the Randle’s model 

[42, 44, 45]. The impedance of a CPE is given by: 

𝑍𝐶𝑃𝐸 = 1
𝑌0(𝑖𝜔)𝛼      ( 5 ) 

where, 𝑌0 is the CPE constant, referred to as the CPE capacitance (with units that depend on the 

power law relationship) and the exponent 𝛼  is generally used to represent the degree of 

capacitive dispersion (i.e., values further away from unity indicate more dispersive capacitance). 
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In addition, the phase angle shift, represented as 𝑖𝛼, is between 0° and 90°. The inclusion of CPE 

for modeling is often intended to account for distributed time constants which originate from 

several physicochemical processes taking place at the interface [44, 46, 47]. The processes most 

relevant to mineral deposition include surface roughening and chemical heterogenization due to 

the mineral deposit coating. Similar to the quantification of simple capacitance [42, 44, 45], the 

CPE capacitance can be related to several coating properties, including the dielectric constant, 𝜀𝑟 

(unitless), of the coating material, the surface area, 𝐴 (m2), and the coating thickness, 𝑑 (m): 

𝑌0 ∝ 𝜀𝑟
𝐴
𝑑

      ( 6 ) 

The EIS methods have been employed previously to characterize properties of coatings on 

metal surfaces [14, 15]. The method was employed in this work in a similar way as a sensitive 

and in situ method to characterize the surface coating by mineral deposition. The presence of a 

mineral deposit coating alters the electrical properties of the working electrode-solution interface, 

which is detected by EIS and reflected in the changes of the CPE capacitance. 

8.3 EXPERIMENTAL 

8.3.1 Materials and Methods 

Solutions were made in deionized (DI) water (resistivity > 18 MΩ-cm) with the addition of 

chemical constituents (reagent grade or better). Calcium was provided as CaCl2, phosphate as 

Na2HPO4, carbonate as Na2CO3, sulfate as Na2SO4, and nitrate as NaNO3. Solution pH was 
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adjusted to 7.5 with 0.1 M HCl or NaOH. The initial concentrations of the mineral ions 

employed in the various experiments are listed in Table 8.1. 

 

Table 8.1 Test solutions used in both EIS and mineral mass measurements at pH 7.5 and 40°C 

The amounts of equilibrium precipitation were calculated by MINEQL+. Solutions with the same potential 

production of mineral solids were used. However, different amounts of deposit for different minerals were collected 

under the experimental conditions employed. 

Test Solution 

# 

Mineral 

 

[Ca]T
* 

mM 

[Anion]T
* 

mM 

Expected Precipitate 

Mass Concentration 

mg/L 

1 Ca(NO3)2 11.4 400 -- 

2 CaSO4 11.4 225 385 

3 CaCO3 11.4 4.3 386 

4 Ca5(PO4)3(OH) 11.4 2.3 386 

* Total concentrations added. 

 

The cell configuration for mineral deposition experiments in a stirred batch reactor with 

accompanying EIS measurements is depicted in Table 8.2. The system components were selected 

such that they were chemically inert to avoid unnecessary reactions that may complicate the 

electrochemical measurements. The materials that were put in contact with a test solution were 

limited to Pyrex, PVC, teflon, graphitic carbon, or stainless steel (SS). UNS 316 type stainless 

steel (Metal Samples, Munford, AL) was used as the working electrode (WE) material because 

of its high corrosion resistivity. Deposition was measured on the surface of a stainless steel 

cylinder WE with a surface area of 4.32 cm2 (excluding the blocked area under the teflon gasket). 

A saturated calomel electrode (SCE) was used as a reference electrode (RE) and was placed 

inside a Luggin Capillary to minimize solution interference. A high-density graphite rod was 
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used as the counter electrode (CE). A temperature probe immersed in the working solution was 

used to maintain solution temperature by adjusting a thermostat on a heated stir plate. The 

solution was kept at 40 °C and stirred at 300 rpm with a teflon-lined magnetic stir bar. An extra 

port (not shown on Figure 8.2) on the Pyrex lid of the reactor cell of the system was used for 

solution pH and conductivity measurements. 

 

Table 8.2 CPE model parameters evaluated as calcium phosphate deposition took place from 1 hr to 52 hr in batch 

reactor experiments (cf. Figure 8.5). 

CPE model 
Parameter 1 hr 52 hr 

GOF 3.9 × 10-4 2.6 × 10-4 

Rp 1 × 1035 kΩ 1 × 1035 kΩ 

Rs 9.7 Ω 10.3 Ω 

Y0 4.1 × 10-4 2.7 × 10-4 

α 0.885 0.857 
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Figure 8.2 Configuration of the experimental system for mineral deposition studies by EIS in batch reactor 

experiments. 

 

The electrodes were connected to a potentiostat (Series G300, Gamry, Warminster, PA) 

capable of producing AC signals in the frequency range of 10 µHz to 300 kHz. The associated 

EIS300 software (Echem Analyst, version 6.0) was used for data acquisition, processing, and 

equivalent circuit model fitting. 

For concomitant EIS and mineral mass deposition measurements in a flow-through 

system, a bench-scale recirculation system was developed (Figure 8.3) in which pipe sections 

were modified to accommodate the three-electrode configuration for EIS measurements, and SS 

circular disc specimens (surface area 5.61 cm2) for mass gain measurements (see inset of Figure 

8.3b). The solution was circulated through the PVC pipe at a flow velocity of 0.57 m/s and SS 
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disc specimens were periodically removed to measure the mass of accumulated mineral deposit 

with time. 

 

 

 

Figure 8.3 Customized bench-scale water recirculation system for simultaneous measurements of EIS and mineral 

mass deposited. 

a) Schematic of the three electrode system for EIS measurements in bench recirculating experiments. b) Photograph 

of the water recirculating system. Inset shows circular stainless steel disc specimen used to collect mineral deposits. 

 

The chemical equilibrium model MINEQL+ [48] was used to predict the total mass 

concentration of precipitate that will form at equilibrium under the experimental conditions 

employed. 

8.3.2 EIS Experiments 

The volume of the Pyrex cell shown in Figure 8.2 was 900 mL, in which 700 mL of working 

solution was maintained at 40 °C and stirred at 300 rpm. DI water was added to the cell before 

chemical addition. The electrodes were then immersed in the DI water to allow temperature 
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equilibration and the removal of gas bubbles formed on the WE surface. Chemicals were 

introduced sequentially from 10× concentrated stock solutions. To avoid possible pre-experiment 

chemical reactions, the CaCl2 stock solution was added last. While other chemicals were added 

all at once with a 26-mL glass pipette, the Ca solution was added more slowly using a syringe 

pump to avoid potential local precipitation at the point of addition. When the addition of 

chemicals was completed and the solution pH was adjusted to 7.5 with HCl or NaOH, all the 

ports of the cell lid were sealed with Parafilm to prevent airborne particles and atmospheric CO2 

from entering the system. Solution conductivity was continuously monitored until bulk 

precipitation took place, as indicated by a fast decrease in conductivity measurements. EIS 

measurements were started when the bulk precipitation was occurring. Triplicate experiments 

were carried out for each precipitation condition with different minerals. 

For each EIS measurement, the intrinsic electric potential of the WE-solution interface 

(or the open circuit potential, OCP) was determined first and then the AC potential was set at ± 

10 mV (rms) around the OCP. Excessive AC perturbations were avoided to minimize the electric 

current generated at the WE surface that may cause surface reactions. A frequency range of 10 

mHz to 10 kHz was used to ensure data quality for subsequent model fitting. The low end of 

frequency measurements was set at 10 mHz so that the total measurement time was less than 3 

min. The electrochemical system was a dynamic sample and it was important to make real-time 

measurement quickly. The measurement time of 3 min was comparatively very short during the 

mineral deposition process, which usually took hours and days. 

For the experiments involving concomitant mineral mass determination, the SS disc 

specimens were cleaned before use by ultrasonic wash in an acetone/ethanol solution (1:1 

volume ratio) for 5 min, rinsed with DI water and air-dried in a laminar flow hood. At 
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predetermined time intervals during an experiment, the specimens were removed from the 

circulating water through the sampling ports. The bulk water remaining on the disc surface was 

carefully removed by paper tissue without disturbing the solid deposit on the surface. The discs 

were then air-dried under laminar airflow for at least 48 hr and the mass of each disc was 

measured using an analytical balance (Mettler AE163, detection limit 0.01 mg). Final weighing 

was performed only when a constant mass was achieved (mass measurement variation < 0.05 

mg/hr). Three measurements were taken for each disc specimen and the average was used as the 

reported mineral mass on the disc. 

8.4 RESULTS AND DISCUSSION 

8.4.1 Changes of CPE Capacitance over Time due to Mineral Deposition 

The batch reactor experimental system depicted on Figure 8.2 was used to obtain EIS data at 

predetermined times while mineral deposition took place on the surface of the stainless steel (SS) 

working electrode (WE). Figure 8.4 shows representative EIS measurements after 1 hr of mineral 

deposition in the batch reactor system containing calcium and phosphate (i.e., test solution #4 in 

Table 8.1). For illustration, the following detailed discussion of EIS modeling is based on the 

data collected from the test solution #4. 
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Figure 8.4 Representative EIS measurement on the stainless steel WE surface in the batch reactor system when the 

Ca-P deposition took place for 1 hr. 

This measurement corresponds to the number 4 experiment with Ca-P in Table 8.1. Data points represent EIS 

measurement results. Dashed lines are model fitting with the Randle’s circuit (cf. Figure 8.1b) and solid lines are 

model fitting with the CPE model (cf. Figure 8.1c). EIS experimental conditions: AC potential perturbation ±10 mV 

biased at the system’s open circuit potential (OCP); frequency scan from 10-2 to 104 Hz; data sampling at 10 

points/decade.
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Before model fitting, the quality of the EIS data was evaluated with the Kramers-Kronig 

module in the Echem Analyst software (Gamry, Warminster, PA). Only the data that were K-K 

compliant, i.e., linear, causal, and stable, were used for model fitting. The equivalent circuit was 

fit to the data using the Simplex algorithm. The EIS300 overlays the fit onto the data and 

generates a goodness-of-fit (GOF) coefficient that related to the residual errors after the model 

fitting. To obtain useful information from the EIS data, different equivalent-circuit models were 

applied to the data. With the Randle’s model, the fit was unsatisfactory as evidenced by a 

calculated GOF coefficient of 4% (a smaller value of GOF coefficient is desirable for a better fit). 

On the other hand, the CPE model fitted the data better (solid lines on Figure 8.4), which was 

also evidenced by a much smaller GOF coefficient, 0.04%. Several CPE model parameters were 

obtained from the fit. An enormous magnitude of the polarization resistance (𝑅𝑃 = 1×1035 kΩ) 

agreed with the stainless steel used as the electrode material (i.e., extremely high polarization 

resistance); the capacitance (𝑌𝑜) was around 4×10-4 F/cm2, which is reasonable in that values in 

the range of 10-4–10-3 F/cm2 are often reported in the literature [42]. 

To detect changes at the electrode surface during mineral deposition, EIS data were 

obtained at different times and corresponding CPE capacitance values were calculated using the 

CPE model. Figure 8.5 shows the changes of EIS at two representative times of 1 hr and 52 hr 

for the batch reactor experiments with test solution #4. The corresponding CPE model 

parameters are provided in Table 8.2. The GOF coefficients are satisfactorily small, indicating 

good model fitting with the CPE model. A slight increase in solution resistance, 𝑅𝑠, is expected 

because of the decrease of solution conductivity due to mineral precipitation. Changes in the 

CPE capacitance (𝑌𝑜) reflect changes incurred by mineral deposition at the electrode surface. 

Figure 8.6 shows the entire time course of changes in 𝑌𝑜 for calcium phosphate deposition. 
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Figure 8.5 EIS measurements in batch reactor tests with test solution #4 at two different times. 

Unfilled symbols are results of measurements made at 1 hr, while filled symbols are measurements made at 52 hr. 

 

Similarly, in the batch reactor experiments with other test solutions (test solutions #2 and 

#3), the EIS measurements were able to track the progress of mineral deposition with time (test 

solution #1 was used as a control experiment). It is not clear, however, whether the EIS is 

sensitive to the characteristics of different mineral deposits. This question cannot be answered 

without a connection of the model parameter with the physical properties of the mineral layer 

deposited, such as the surface area exposed to solution, or the deposit layer thickness. 

Unfortunately, neither the thickness nor the exposed area of the layer is well defined for the 

mineral deposits, particularly during early stages of deposition when trace amounts are deposited 

to only form a rough, nonuniform, and porous layer. This makes both the layer thickness and the 

cover ill defined and difficult to measure experimentally. For this reason, we measured instead 
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the cumulative mineral mass deposited when the EIS data were collected, and correlated the 

changes of CPE capacitance to the mineral mass deposited. Details of the correlation are 

discussed in the next section. 

 

 

Figure 8.6 Decrease of CPE capacitance 𝒀𝟎 due to calcium phosphate deposition on the stainless steel working 

electrode in batch reactor tests with test solution #4. 

Error bars indicate the standard deviation of triplicate experiments. 
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A water recirculating system (Figure 8.3) was used to obtain simultaneous measurements of (a) 
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mineral. For each individual experiment, six disc specimens were used to provide substrate 

surface for mineral deposition. Each experiment was repeated three times. At predetermined time 

intervals when the EIS measurements were taken, the pre-weighed SS circular discs were 

withdrawn from the test solution for final weighing, which was conducted in triplicate. In 

parallel to the mineral mass measurements, an extra disc immersed in DI water (batch mode only) 

was subjected to the same cleaning, drying, and weighing procedure to check for potential 

artifacts due to specimen processing. No substantial mass changes were detected on this control 

disc before and after each experiment, ensuring that air-borne deposits and the cleaning steps did 

not interfere with the mineral mass determination. 

Figure 8.7 shows the data collected from the recirculating system experiments with test 

solution #4 (calcium phosphate)—loss of CPE capacitance vs. mineral mass deposited. A linear 

regression of the data was applied. An analysis of residual errors (not shown) of the regression  

indicated that the distribution of errors was random around zero, not skewed to either direction, 

thereby indicating that a normal distribution of the EIS parameter (i.e., loss of the CPE 

capacitance) with respect to the mineral mass accumulation is statistically reasonable. 
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Figure 8.7 Loss of CPE capacitance (%) vs. mineral mass deposited (mg) for test solution #4. 

Data were collected for Ca-P deposition on the stainless steel surface in a water recirculating system (40 °C, pH 7.5, 

3 gpm of flowrate or 0.57 m/s flow velocity). 

 

The linear regression model was used to develop a relationship between the loss of the 

CPE capacitance due to mineral deposition and the mass of the mineral deposits accumulated on 

the SS surface over time. For example, the loss of CPE capacitance due to Ca-P accumulation is 

given by 

Loss of CPE capacitance (%) = 61.2 × mineral mass deposited + 8.2  ( 7 ) 

where the capacitance loss is expressed as percentage and the mineral mass is in mg on the total 

area of a disc specimen (5.61 cm2). The relatively large ratio of capacitance loss to mineral mass 

deposited (the slope) indicates that EIS measurement can be a sensitive technique to detect small 

changes in surface mass deposition. 
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To assess the statistical significance of the responses of the CPE capacitance to changes 

in deposition, the mean ± 95% confidence interval for the CPE capacitance loss as a function of 

mineral mass deposited is also presented in Figure 8.7. Sixteen out of the 18 data points fall 

closely “within” the 95% confidence interval, suggesting that the linear regression is a 

reasonable model for the relationship between the mineral mass measurements and the EIS 

measurements of the CPE capacitance loss. Furthermore, the significance of the slope obtained 

by the linear regression was evaluated by an F test based on the analysis of variance (Table 8.3). 

The small p-value (much smaller than 0.05) indicates that the regression is robust, meaning that 

the linear relation between the CPE capacitance loss and the mineral mass deposited is 

statistically strong. 

 

Table 8.3 Analysis of Variance (ANOVA) for linear regression of the the EIS parameter, loss of CPE 

capacitance, and the mineral mass deposited ǂ. Data given in Figure 8.7 

Source 
Degree of 

Freedom 

Sum of 

Squares* 

Mean 

Squares 
F value p-value 

Regression 1 1225.7 1225.7 65.2 4.92E-07 

Residual 16 300.8 18.8 

  Total 17 1526.5 

 

    

ǂ F-test follows standard procedures outlined in Introduction to the Practices of Statistics by 

Moore and McCabe, W. H. Freeman and Company, New York, 1998. 

* R2 = 1225.7/1526.5 = 0.8029 and adjusted R2 = 0.7906. 
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8.4.3 Effects of Mineral Deposit Composition on CPE Capacitance 

Following the same experimental procedures as described with the calcium phosphate solutions, 

the changes in CPE capacitance, 𝑌𝑜, during the deposition of different calcium minerals, and the 

mineral mass deposited, were measured under identical experimental conditions in the 

recirculating system tests. Starting with supersaturated solutions, the precipitation reactions of 

calcium sulfate, calcium carbonate, and calcium phosphate were expected to generate 

comparable amounts of mineral solids, as calculated by the chemical equilibrium model 

MINEQL+. The tests with solutions of calcium nitrate, which is highly soluble, served as a 

control. The EIS measurements and mineral mass deposition data for calcium carbonate and 

calcium sulfate were then subjected to similar statistical analyses. The impact of mineral 

deposition on the CPE capacitance reduction, i.e., the linear regression between CPE capacitance 

and mineral mass, is summarized on Figure 8.8 for different mineral scales evaluated in this 

study. The p-values for the F tests, obtained for the linear relationship between CPE capacitance 

loss and mineral mass deposited, were 3.36 × 10-7 and 5.02 × 10-7 for calcium carbonates and 

calcium sulfate, respectively. 

Interestingly, the chemical properties of the mineral scale did not appear to impact the 

EIS measurements significantly. The relatively constant b values across the three different 

minerals suggest that the characteristics of each individual mineral did not influence the EIS 

measurements significantly. This finding reinforces the direct relationship between the CPE 

capacitance and the mass of mineral deposits. We note that the supersaturated mineral solutions 

used in this study were designed to produce the same amount of precipitates at equilibrium 

(Table 8.1). However, different amounts of mineral deposits were collected on the SS disc 
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specimens within similar experimental periods (less than 60 hr), which produced different CPE 

behavior in EIS. Even so, the correlation between the CPE capacitance and the mineral mass 

deposited was essentially constant for the different minerals tested. Hence, the EIS method can 

be used to replace the traditional gravimetric method to detect mineral deposition on a surface 

with more sensitivity for mineral mass but with indiscrimination toward different minerals, at 

least for common calcium minerals, which is convenient if one cares primarily about the total 

amount of deposits on a surface. 

 

 

Figure 8.8 Reduction of CPE capacitance normalized to mineral mass deposited per unit surface area for different 

mineral deposits studied. 

Error bars indicate ± 95% Confidence Interval (C.I.). 
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8.4.4 Frequency Range Analysis 

The EIS data obtained in this study were based on the impedance measurements across a broad 

range of frequency, i.e., 10 mHz to 10 kHz, which can only be accomplished with an EIS system 

capable of producing AC signals in such a wide range. However, the EIS method for mineral 

deposition detection may still be viable when the impedance measurements are performed for 

narrower ranges of frequency, and perhaps even at a single AC frequency. Thus, simpler EIS 

instruments that produce a narrow range of AC frequency may be used for mineral mass 

detection, thereby saving both measurement time and equipment cost. 
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Figure 8.9 Analysis of the frequency-dependent accuracies of EIS measurements. 

The data points for analysis were randomly selected from the entire experimental range for calcium carbonate 

bench-scale recirculating experiments. For each data point, the CPE model was fitted to the selected frequency 

ranges and the 𝑌0 values were obtained and compared to the 𝑌0 value obtained based on the entire frequency range 

(10 mHz to 10 kHz). In the lower panel, the frequency ranges used for the re-fitting are ±10% of the specific 

frequencies listed. 
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Figure 8.10 Standard deviation of the errors of the 𝒀𝟎 values obtained for CaCO3 system EIS measurements. 

The data were according to Figure 8.9 at the specific frequencies (±10%) as compared to the 𝑌0 value obtained 

based on the entire frequency range (10 mHz to 10 kHz). 
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To examine this proposition, the EIS data for CaCO3 deposition were examined as an 

example. The CPE capacitance of four randomly selected measurements out of the total of 18 

measurements over the full frequency range (i.e., 6 decades from 10 mHz to 10k Hz) were re-

evaluated based on narrower frequencies. Figure 8.9 (upper panel) shows that the 𝑌0  values 

obtained using 2-decade frequency ranges (10 mHz – 1 Hz, 1 Hz – 100 Hz, and 100 Hz – 10 kHz) 

were very similar to 𝑌0 values obtained from fitting the entire data range. However, when the 

model fitting frequencies were further narrowed to near single-frequencies (Figure 8.9 lower 

panel), the errors of 𝑌0 values were significantly larger, especially for the higher frequencies. 

Indeed, at higher frequencies, capacitive properties of the deposit layer, such as 𝑌0, become more 

responsive to frequency shifts [42]. Figure 8.10 summarizes the errors for all the three minerals 

tested under single frequency measurements at indicated frequencies ± 10%. The data indicate 

that EIS measurements at 0.1 Hz or 1 Hz frequency range would produce 𝑌0 values only slightly 

different from those measured based on the entire six decades of frequencies. These much 

narrower frequency ranges can be potentially used with a customized simple EIS device for the 

detection of mineral mass deposition, without sacrificing measurement accuracy. 

8.5 CONCLUSIONS 

The Electrochemical Impedance Spectroscopy (EIS) method was applied to study mineral 

deposition from precipitation reactions in aqueous solutions. The values of constant-phase 

element (CPE) capacitance were obtained from the EIS data for three calcium minerals: calcium 

carbonate, calcium sulfate, and calcium phosphate—the most commonly occurring mineral 

solids in municipal and industrial water processes, such as cooling water systems and water 
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distribution networks. The CPE parameter was successfully correlated, with statistical 

verification, to the amount of the mineral mass deposited. Furthermore, the correlation proved to 

be constant across the three minerals tested, indicating the usefulness of this EIS technique as a 

new, more sensitive, in situ detection method to replace the traditional gravimetric measurements 

of mineral mass deposited on surfaces in water systems, even for systems with multiple mineral 

deposits. In addition, the possibility of conducting the EIS measurements within narrow 

frequency ranges was examined, and it was found that narrow frequency ranges can be used to 

obtain CPE capacitance values without losing measurement accuracy. 
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9.0  EXPANDED APPLICABILITY OF ELECTROCHEMICAL IMPEDANCE 

SPECTROSCOPY (EIS) FOR MINERAL DEPOSITION MONITORING UNDER 

BROAD WATER CHEMISTRIES 

An EIS method for the detection and quantification of mineral deposition has been established in 

Chapter 8. Different minerals of common interests have been tested in simple aqueous solutions 

containing solely the involved mineral constituents. In this chapter, the applicability of the EIS 

method for mineral deposition detection is expanded under broad water chemistries in solutions 

containing multiple minerals. With a two-mineral system of calcium carbonate and phosphate, 

the linear relationship between the changes of the CPE capacitance obtained from EIS and the 

mineral mass deposited on the surface of disc specimens was proved to be valid. This linear 

relationship still held even with a synthetic municipal wastewater (MWW) containing a variety 

of dissolved species. Besides the validation of the EIS method with multiple minerals, the 

method was also evaluated under the influence of polymaleic acid (PMA), one of the most 

effective antiscaling chemicals tested in cooling systems using treated MWW. The presence of 

PMA in solution did not show significant impacts on the EIS method. However, chlorine-based 

biocides substantially altered the impedance signals collected using EIS and made the subsequent 

data processing for the evaluation of the CPE capacitance difficult. Monochloramine was less 

detrimental than free chlorine thanks to its less aggressive oxidation power. To obtain reliable 
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modeling outputs from the EIS data collected in the presence of chlorine biocides, narrower scan 

ranges around 1-10 Hz should be used. 

9.1 INTRODUCTION 

In Chapter 8, an accurate and convenient approach for monitoring the rate of mineral deposition 

on metals in real time has been developed by means of an electrochemical cell employing the 

same metal material as a working electrode. The electrical impedance of the metal-solution 

interface was measured by Electrochemical Impedance Spectroscopy (EIS). The interfacial 

capacitance obtained from the EIS data was used as a measure of surface coverage by mineral 

scale. An equivalent-circuit approximation was adopted to evaluate the distributed dielectric 

permittivity of minerals, which was reported as the capacitance of constant-phase element (CPE). 

The results show that the CPE capacitance correlated very well with the mass of mineral deposits 

accumulated on the metal surface immersed in simple solutions containing single minerals. 

Moreover, the characteristics of different minerals evaluated in this study, i.e., calcium 

carbonate, sulfate, and phosphate, did not significantly affect the measurements of the CPE 

capacitance. Rather, the CPE capacitance was sensitive to small changes in the mineral mass 

deposited on the electrode (< 0.1 mg). It is established that the EIS, unlike traditional methods, is 

a nondestructive method that allows in situ semi-continuous measurements of overall mineral 

deposition. 

The objective of this chapter was to expand the applicability of the EIS method for 

mineral deposition under broad water chemistries and in solutions containing multiple minerals. 

First, a two-mineral system of calcium carbonates and phosphates was tested for the linear 
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relationship between the changes of CPE capacitance and the mineral mass deposited on the 

surface of disc specimens. Similar experiments were then carried out in a synthetic municipal 

wastewater (MWW) containing a variety of dissolved solids. Besides the validation of the EIS 

method with multiple minerals, the method was also evaluated under the influence of polymaleic 

acid (PMA), one of the most promising antiscaling chemicals tested in cooling systems using 

treated MWW. The primary concern with PMA is that some of the PMA added in solution may 

adsorb onto the surface of the working electrode and thus interfere with the EIS data collection. 

Besides PMA, chlorine-based biocides were also tested to check for their potential interferences 

with the electrode. Both free chlorine and monochloramine were tested. 

9.2 EXPERIMENTAL SECTION 

Materials and Methods. Solutions were made in DI water (resistivity > 18 MΩ-cm) with the 

addition of chemical constituents (reagent grade or better). Calcium was provided as CaCl2, 

magnesium as MgCl2, phosphate as Na2HPO4, carbonate as Na2CO3, sulfate as Na2SO4, nitrate 

as NaNO3. Solution pH was adjusted to 7.5 with 0.1 M HNO3 or NaOH. For the two-mineral 

system, the initial concentrations of the mineral ions are listed in Table 9.1. For the synthetic 

municipal wastewater, the chemical recipe is provided in Table 9.2. 

The cell configuration for EIS measurements of mineral deposition is depicted in Figure 

8.2a. The experimental conditions employed in this chapter were exactly the same as those 

described in Chapter 8. 
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Table 9.1 The 2-Mineral Test Solution Used in Both EIS and Mineral Mass Measurements at pH 7.5 and 40°C. 

The Amount of Equilibrium Precipitation Was Calculated by MINEQL+ (version 4.6) 

# Mineral [Ca]T
* 

mM 
[Anion]T 

mM 
Expected Precipitates 

mg/L 
1 CaCO3 5.7 2.2 193 

2 Ca5(PO4)3(OH) 5.7 1.2 193 
* Total concentrations added. 

 

 

Table 9.2 Chemical Recipe for Synthetic Municipal Wastewater 

Component Ca Mg Na K HCO3 PO4 SO4 Cl NH4 (as N) 

Total Concentration 
(mM) 7.6 7.2 26.9 0.7 13.4 0.2 2.8 31.1 7.0 

Note: The recipe reflects average values of secondary MWW quality from several sources. 

 

For concomitant EIS and mineral mass measurements, the batch reactor system modified 

based on the batch setup is shown in Figure 8.3. Detailed experimental conditions are described 

in Chapter 8. 

EIS Experiments. The volume of the Pyrex cell used for batch tests was 900 mL, in 

which 700 mL of working solution was maintained at 40 °C and stirred at 300 rpm. DI water was 

added to the cell before chemical addition. The electrodes were then immersed in the DI water to 

allow temperature equilibration and the removal of gas bubbles formed on the WE surface. 

Chemicals were introduced sequentially from 10× concentrated stock solutions. To avoid 

possible preemptive chemical reactions, the CaCl2 stock solution was added last. While other 

chemicals were added with a 25-mL glass pipette, the Ca solution was added more slowly using 

a syringe pump to avoid potential local precipitation at the point of addition. When the addition 

of chemicals was completed and the solution pH was adjusted to 7.5 with HNO3 or NaOH, all 
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the ports of the cell lid were sealed with Parafilm to prevent airborne particles and atmospheric 

CO2 from entering the system. Solution conductivity was continuously monitored until bulk 

precipitation took place, as indicated by a fast decrease in conductivity. EIS measurements were 

started when the bulk precipitation was occurring. Triplicate experiments were carried out for 

each precipitation condition with different minerals. 

For each EIS measurement, the intrinsic electric potential of the WE-solution interface 

(or, the open circuit potential, OCP) was determined first and then the AC potential was set at ± 

10 mV (rms) around the OCP. Excessive AC perturbations were avoided to minimize the electric 

current generated at the WE surface that may cause surface redox reactions and change the local 

pH. A frequency range of 10 mHz to 10 kHz was used to ensure data quality for subsequent 

model fitting. The low end of frequency measurements was set at 10 mHz so that the total 

measurement time was less than 3 min [1]. 

For the experiments involving concomitant mineral mass determination, the SS disc 

specimens were cleaned before use by ultrasonic wash in an acetone/ethanol solution (1:1 

volume ratio) for 5 min, rinsed with DI water and air-dried in a laminar flow hood. At 

predetermined time intervals during an experiment, the specimens were taken out of the 

circulating water through the sampling ports. The water remaining on the disc surface was 

carefully removed with paper tissue, without disturbing the solid deposit on the surface. The 

discs were then air-dried for at least 48 hr and the mass of each disc was measured using an 

analytical balance (Mettler AE163, detection limit 0.01 mg). Final weighing was performed only 

after a constant mass was achieved (variations between mass measurements < 0.05 mg/hr). Three 

measurements were taken for each specimen and their average was used as the mineral mass on 

the disc. 
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Influence of Antiscalants and Chlorine Biocides on EIS. The potential influence of 

antiscalants on the EIS results was studied by adding polymaleic acid (PMA) to the Pyrex cell 

batch reactor containing 10 mM of KCl solution at pH 7.5. The standard 3-electrode setup 

(Figure 8.2) was used. The reference electrode (RE) was a standard Ag/AgCl electrode. Chlorine 

biocides, in the form of free chlorine (HOCl/OCl-) or monochloramine (NH2Cl), were also tested 

with the same batch reactor setup. Solution temperature was maintained at 40°C. The 

electrochemical measurements were performed after 10 min and 5 hr of the addition of either 

PMA or a biocide. The solution was stirred with a teflon-lined magnetic stirrer at 300 rpm. The 

EIS signals collected in the presence of the additives were compared with the signals collected in 

the absence of the additives. The influence of the chemical additives on EIS is determined by the 

extent of data distortion incurred due to the addition of the chemicals. 

9.3 RESULTS AND DISCUSSION 

EIS Applicability in Two-Mineral Systems. In Chapter 8, calcium carbonate, calcium 

phosphate, and calcium sulfate were tested individually to establish the EIS method as a new 

approach to detecting mineral deposition. Figure 9.1 shows the linear relationship between the 

mineral mass deposited and the changes of CPE capacitance evaluated from the EIS data for 

aqueous systems supersaturated with both calcium carbonate and calcium phosphate. The linear 

regression line fits the experimental data reasonably well. Ten of the sixteen data points collected 

from repeating experiments fall within the 95% confidence interval. Also, the regression 

residuals are reasonably random around zero, not skewed to either direction, indicating that the 

linear relationship between the two variables is statistically sound. 
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Figure 9.1 Scatter plot (left) and residuals plot (right) of the data from simultaneous EIS and mineral mass 

measurements (CaCO3 + CaP). 

Data were collected for CaCO3 + CaP deposition on the stainless steel surface in a water recirculating system (40 

°C, pH 7.5, 3 gpm of flowrate or 0.57 m/s flow velocity). 

 

EIS Applicability in Synthetic Municipal Wastewater. Figure 9.2 shows the linear 

relationship between the mineral mass deposited and the changes of CPE capacitance evaluated 

from the EIS data for a synthetic municipal wastewater pre-concentrated four times. Following a 

similar statistical analysis procedure as that used in Figure 9.1, the linear regression appears to be 

reasonably strong in the case of synthetic municipal wastewater. 
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Figure 9.2 Scatter plot (left) and residuals plot (right) of the data from simultaneous EIS and mineral mass 

measurements (MWW). 

Data were collected for mineral deposition on the stainless steel surface in a water recirculating system using a 

synthetic municipal wastewater (40 °C, pH 7.5, 3 gpm of flowrate or 0.57 m/s flow velocity). 

 

Figure 9.3 summarizes the linear relationship between the EIS parameter (i.e., the CPE 

capacitance) and mineral mass for the five mineral aqueous systems tested in Chapters 8 and 9. 

The b value, which is the ratio of the reduction in CPE capacitance (in %) and the mineral mass 

deposited on specimen discs (in mg/cm2), corresponds to the slope of the regression line in data 

plots such as those depicted in Figure 9.1 andFigure 9.2. The relatively constant b values across 

different mineral solids suggest that the chemical characteristics of the deposit layer do not 

actually play an important role in determining the EIS signal. The EIS signal correlated very well 

with the amount of mineral solids deposited on the surface of the electrode. As a result, the EIS 

method can be used to replace the traditional gravimetric method with regard to mineral scale 

detection. 
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Figure 9.3 CPE capacitance vs. mineral mass deposited: the ratio (b value) of reduction of the CPE capacitance and 

the mineral mass deposited per surface area for different minerals. 

Error bars indicate ± 95% Confidence Interval (C.I.). 

 

Influence of PMA on EIS. Figure 9.4 shows the EIS at the stainless steel working 

electrode (WE) surface before and after PMA addition (5 ppm) in a 10 mM of KCl solution. 

Compared to the EIS collected without PMA, the addition of PMA (5 ppm) did not effect any 

significant changes in EIS, even after 5 hr of contact with PMA. The capacitive impedance 

became slightly greater in the presence of PMA only toward the end of the low AC frequencies 

(the Nyquist plot of Figure 9.4). This slight increase of the capacitive impedance is expected in 

that the PMA molecules present near the electrode surface in solution can serve as a diffusional 

barrier that increases charge transfer resistance, which is a major contributor to the capacitive 

impedance [2]. However, this influence did not impact the CPE evaluation in the Bode plot 

(Figure 9.4), which produced CPE capacitance values in the range of 40.26 ± 0.12 µF/cm2 in the 

three cases tested. 
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Figure 9.4 EIS at the stainless steel WE surface before and after PMA addition (5 ppm) in aqueous solution. 

Solution IS I = 10 mM KCl at pH 7.5, 40 °C, and 300 rpm. EIS experimental conditions: AC potential perturbation 

±10 mV biased at the system’s open circuit potential (OCP); frequency scan from 10-2 to 104 Hz; data sampling at 10 

points/decade. a) Bode plot, and b) Nyquist plot. 
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Influence of Chlorine Biocides on EIS. Figure 9.5 shows the EIS at the stainless steel 

working electrode (WE) surface with different chlorine biocide additions in a 10 mM KCl 

solution. Compared to the EIS collected without chlorine, the addition of either 1 ppm of free 

chlorine or 2 ppm of monochloramine substantially altered the EIS response curves. The 

alteration is apparent toward both ends of the AC scanning frequencies, i.e., < 0.1 Hz or > 1 kHz. 

The EIS in the presence of free chlorine deviated from the reference EIS (i.e., EIS collected in 

the absence of chlorine) to a greater extent than in the presence of monochloramine. This 

deviation pattern suggests that the interference of the chlorines on EIS is related to the oxidation 

power of the biocide, with free chlorine being more powerful than monochloramine. The 

standard oxidation potential of HOCl/Cl- (or OCl-/Cl-) is greater than that of NH2Cl/Cl-, i.e., 

𝐸𝐻0(free chlorine) = 1.5~1.6 V [3, 4] vs. 𝐸𝐻0(monochloramine) = ~1.4 V [5, 6], and the measured 

Oxidation Reduction Potential (ORP) values of water solutions containing free chlorine can be 

0.25~0.30 V greater than those containing monochloramine [7]. 
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Figure 9.5 EIS at the stainless steel WE surface with or without chlorine biocides. 

I = 10 mM KCl at pH 7.5, 40 °C, and 300 rpm. EIS experimental conditions: AC potential perturbation ±10 mV 

biased at the system’s open circuit potential (OCP); frequency scan from 10-2 to 104 Hz; data sampling at 10 

points/decade. Unfilled data are impedance (vertical axis on the left) and filled data are phase angle (vertical axis on 

the right). Measurements were taken after 10 min of biocide addition. 

 

In either case, the addition of the oxidative biocides significantly changed the redox 

potential of the aqueous solution, which translated to the fluctuations in the electrochemical 

properties of the electrode-water interface. Moreover, the concentrations of the chlorine was 

observed to be unstable in the aqueous solutions and decayed quickly (i.e., more than 40% decay 

in 5 hr for free chlorine and about 20% decay for monochloramine under the experimental 

conditions employed in this study) further adding to the rather erratic signal of EIS toward the 

ends of the AC frequency scan for both free and combined chlorine. 
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Although the EIS data obtained from the AC scan over the entire frequency range of 10 

mHz-10kHz with the addition of chlorine biocides became unreliable, it was observed that the 

EIS over narrower ranges, around 1-10 Hz particularly, appeared to be still consistent with the 

EIS measured in the absence of biocides. Chapter 8 has already established that EIS in the 

narrow AC frequency range does not affect the accuracies of the evaluation of the CPE 

capacitance for the purpose of mineral deposition detection. As such, narrower scan ranges 

around 1-10 Hz are recommended in order to obtain reliable modeling outputs from the EIS data 

collected in the presence of chlorine biocides. 

9.4 CONCLUSIONS 

In a two-mineral aqueous system of calcium carbonate and phosphate, the linear relationship 

between the changes of the CPE capacitance in EIS and the mineral mass deposited on the 

surface of stainless steel disc specimens was proved to be valid. This linear relationship still held 

even in water representative of municipal wastewater (MWW) containing a variety of dissolved 

mineral solids and other common species (e.g., NH4
+). Moreover, the EIS parameter (the CPE 

capacitance) responded primarily to the amounts of mineral solids deposited, rather than to any 

specific chemical properties of the individual minerals. This indiscriminating correlation 

between CPE and mineral mass is a valuable trait of the EIS method for mineral scaling 

detection. 

Besides the validation of the EIS method in aqueous systems producing multiple mineral 

deposits, the method was further evaluated under the influence of polymaleic acid (PMA) or 

chlorine. PMA has shown its effective antiscaling properties tested in cooling systems using 
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different impaired waters, including secondary-treated MWW, passively-treated abandoned mine 

drainage, and coal-fired power plant ash sluicing pond effluent. The presence of PMA in solution 

did not show any significant impacts on EIS. However, chlorine-based biocides substantially 

altered the impedance signals collected using EIS and made the subsequent data processing for 

the evaluation of CPE capacitance difficult. EIS data processing over the entire AC frequency 

range became impossible in the case of free chlorine due to signal fluctuations at both ends of the 

scanning frequencies, i.e., < 0.1 Hz or > 1 kHz. The presence of monochloramine in solution was 

less detrimental to steady EIS data collection than free chlorine, but still led to significant 

challenges in obtaining the CPE capacitance based on the overall frequencies. To obtain reliable 

modeling outputs from the EIS data collected in the presence of chlorine biocides, narrower scan 

ranges around 1-10 Hz should be used instead. 
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10.0  SUMMARY AND KEY CONTRIBUTIONS 

10.1 SUMMARY 

The US total water withdrawal for human use reached 410 billion gallons a day in 2005, of 

which 85% was freshwater. Since then, thermoelectric power generation has become the single 

largest use of freshwater, surpassing agriculture. Given the increasing water shortage and 

growing energy demand, fierce competition for water for cooling in thermoelectric power plants 

is inevitable. To replace freshwater, alternative water sources, if abundant and reliable, can be 

used for cooling to help sustain power production in the future. However, complicated 

chemistries of many alternative waters and changing operating conditions in open recirculating 

cooling pose challenges for the use of traditional chemical approaches to simultaneously control 

mineral scaling, corrosion, and biofouling. This dissertation work evaluated three nontraditional 

water sources for use in power plant cooling systems, with a focus on understanding the 

mechanisms, kinetics, and inhibition of mineral precipitation and deposition (scaling). 

Secondary-treated municipal wastewater (MWW) is a promising alternative as power 

plant cooling-system makeup water because of its wide availability, fairly consistent quality, and 

geographical proximity to power plants. Polymaleic acid (PMA), when dosed at 10 mg/L, 

effectively reduced scaling in this water by more than 90%, even at four cycles of concentration 

(CoC 4). However, when biofouling was not well controlled, scaling was accelerated due to 
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mineral incorporation into biofilm. PMA was compromised by free chlorine added for biofouling 

control. Monochloramine was less reactive with PMA than free chlorine. Phosphorous-based 

corrosion inhibitors were not appropriate as they precipitated with calcium. Chemical 

equilibrium modeling for scaling prediction was challenging in recirculating cooling systems 

using MWW because of kinetic limitations and complex water chemistries involved. 

Two other alternative waters of impaired quality, passively-treated abandoned mine 

drainage (AMD) and clarified ash pond water (APW), were also evaluated for their feasibility as 

cooling system makeup water. PMA was effective in suppressing scaling in both waters. In 

clarified APW, which is available in many coal-fired power plants, mineral scaling was much 

less severe than in the mine drainage or MWW without scaling control. The addition of 10 mg/L 

of PMA helped to reduce scaling by 80% in laboratory water recirculating systems. In passively-

treated (to remove Fe/Mn) AMD, PMA decreased the settling of suspended solids in the pipe 

flow sections of pilot-scale cooling towers. In the absence of PMA, significant amounts of solids 

settled in cooling tower sumps where flow velocity was minimal. Besides the flow effect, 

different surface materials accumulated different amounts of scale. PVC surfaces yielded more 

deposition than stainless steel. This observation implies that the severity of scaling problems can 

vary in different sections of a cooling system because of the varied flow patterns and surface 

materials. 

For reliable predictions of the pH behavior of recirculating cooling water, which is 

important for proper cooling system operations, MINEQL+ based chemical modeling that 

considered the processes of degassing and kinetically-limited solids formation was able to 

capture the underlying mechanisms influencing the pH changes observed in pilot-scale cooling 

towers. The initial sharp increase of water pH from about 7.2 to 8.3 was well explained by the 
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CO2 degassing mechanism. Continued pH increase up to 8.7 with increasing CoC was 

attributable to a combined effect of ammonia stripping and kinetically-limited carbonate 

precipitation. By using the knowledge of the makeup water quality and potential gas exchange, 

as well as mineral precipitation constraints, the new modeling approach greatly improves the 

ability to forecast the cooling water pH at various CoC, without measuring the alkalinity of the 

recirculating water. 

In light of the effective scaling control by PMA in all the impaired waters studied, the 

antiscaling mechanisms of PMA were systematically investigated. Results show that the 

antiscaling mechanisms of PMA for mineral precipitation in bulk liquid were fundamentally 

different from those employed to control mineral deposition on substrate surface. Mineral 

precipitation in the bulk liquid was significantly delayed by PMA, even at very low dosing (< 1 

ppm). Addition of PMA at high doses (> 5-10 ppm) completely eliminated a “fast precipitation” 

phase. Also, the rates of the “fast precipitation” were significantly reduced in the presence of 

PMA. Chemical analysis of the precipitates indicated that magnesium exhibited strong 

associations with PMA molecules, resulting in its incorporation in the newly-formed amorphous 

solids. The antideposition effect of PMA worked well to control surface deposition of pre-

formed mineral solids in suspension. Surface adsorption of PMA onto those suspended particles 

increased the negative charges of the solids and rendered them less prone to deposition on 

negatively-charged surfaces. If the mineral solids were not pre-formed, PMA would participate 

in the precipitation process to alter the particle morphologies and surface charge distributions. 

However, these alterations appeared to cause losses of the antideposition ability of PMA. 

As demonstrated in the studies with the three impaired waters, simple measurements of 

mineral mass gain on scaled surfaces can be crude, inconvenient, and time-consuming. Also, the 



200 

mineral mass gain measurements cannot be performed in real time. A more accurate and 

convenient approach for monitoring mineral deposition rates in real time was developed in this 

study. The electrical impedance of the metal-mineral-water interface was measured by 

Electrochemical Impedance Spectroscopy (EIS). The CPE capacitance obtained from the EIS 

measurements correlated very well with the mass of mineral deposits and was sensitive to small 

changes in the mineral mass deposited on the electrode (< 0.1 mg). The sensitivity of the EIS 

provides a new method for early detection of mineral deposition. Further analysis showed that 

narrower ranges (0.1 Hz or 1 Hz ± 10% of the frequency specified) of AC scanning frequencies 

can be used without sacrificing measurement sensitivity. This trait not only saves the 

measurement time and the EIS device cost, but proves to be particularly useful when the water 

contained chlorine biocides, which caused unstable EIS readings at frequencies < 0.1 Hz or > 1 

kHz. To obtain reliable modeling outputs from the EIS data collected in the presence of chlorine 

biocides, narrower scan ranges around 1-10 Hz can be used. 

The applicability of the EIS method for mineral deposition detection was further 

expanded to broader water chemistries and in solutions containing multiple minerals. The linear 

relationship between the changes of the CPE capacitance and the mineral mass deposited was 

proved to be valid in two-mineral systems (calcium carbonate and phosphate) and synthetic 

municipal wastewater containing a variety of dissolved species. Moreover, the presence of PMA, 

added in the solution as an antiscaling agent to mitigate scale formation, did not show significant 

interference with the EIS approach. This electrochemical method is, therefore, potentially very 

useful for convenient and sensitive scaling detection under practically-relevant cooling water 

conditions. 
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10.2 KEY CONTRIBUTIONS 

This dissertation work contributes to our improved understanding of the kinetics, mechanisms, 

and inhibition of mineral precipitation and deposition in the context of wastewater reuse in 

industrial cooling systems. The results presented here enable a better prediction of the behavior 

of key water chemical parameters that influence mineral precipitation and deposition in 

recirculating cooling systems, and provide a new convenient and sensitive method for in situ 

scaling detection and rate monitoring. The results also help to guide the selection of antiscaling 

chemicals for effective control of mineral scaling in wastewater reuse. The specific contributions 

of this dissertation are summarized below: 

 Assembled an overview of the challenges of escalating water demands for energy 

production and the opportunities of using pre-treated wastewater in power plant 

cooling systems. 

 Provided scientific evidence and understanding, through theoretical, laboratory, 

and pilot-scale studies, of the mineral scaling behaviors in three promising sources 

of impaired water as alternative makeup water for power plant cooling. Scale 

formation in secondary-treated municipal wastewater under typical cooling tower 

operation was mainly due to high pH and high levels of suspended solids that were not 

sufficiently removed after secondary clarification. Good control of biofouling, which 

accelerated scaling through adsorption of minerals onto biofilm and co-precipitation of 

minerals with biosolids, was a critical issue. Scale formation in passively-treated 

abandoned mine drainage revealed the influence of flow patterns and surface materials, 

which resulted in varied degrees of scaling severity in different sections of a cooling 

tower system. Scale formation in clarified ash pond water, which represents an internally 
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available cooling water source in many coal-fired power plants, was the least among the 

three waters tested. Polymaleic acid worked effectively in mitigating scaling in all three 

impaired waters. 

 Proposed and validated a new approach for reliable pH prediction that accounts for 

complicated cooling water chemistries and kinetic limitations. The approach built on 

the computation power of the chemical equilibrium model MINEQL+ and extended its 

utility for accurate pH prediction in cooling water systems. 

 Investigated the antiscaling mechanisms of polymaleic acid and obtained important 

insights. Scaling mitigation by polymaleic acid was achieved through two distinct 

mechanisms: the retardation of mineral precipitation via competitive interactions with 

crystallizing species and the stabilization of suspended mineral particles via surface 

adsorption of the charged polymer molecules. An inadvertent effect of PMA, as revealed 

in this study, was that the amorphous mineral solids that incorporated PMA during 

precipitation appeared to favor surface deposition. 

 Developed a new electrochemical method for convenient and sensitive detection of 

mineral scaling and in situ measurements of scaling rates. This method is based on 

Electrochemical Impedance Spectroscopy to replace a traditional gravimetric method for 

mineral mass determination. Its broad applicability was established under practically-

relevant cooling water chemistries and cooling system operations. 
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11.0  FUTURE DIRECTIONS 

Given the largely exploratory nature of the dissertation work and the encouraging results 

obtained, exciting and promising opportunities for future research are many. To broaden the 

scope of the exploration in the areas of mineral deposition monitoring and control, the future 

work in the following three principle directions should be the most fruitful: 

 Development of EIS-based sensor technologies for mineral scaling monitoring 

 Elucidation of mineral-polymer interactions for improved scaling mitigation 

 Engineering of substrate surfaces for mineral deposition inhibition 

 

Along the first direction, it will be practically meaningful to further explore the use of the 

electrochemical techniques in characterizing processes at solid-solution interfaces, which can be 

built on the electrochemical sensor that was developed for in situ detection of mineral deposition 

in cooling water systems. 

− Combine the EIS data with other electrochemical measurements using the same 

experimental setup to obtain other information about mineral scaling process, such as the 

porosity and chemical heterogeneity, thereby to broaden the utility of the EIS method. 

− Test the robustness of the EIS method under other practically relevant conditions and 

water chemistries, such as in the presence of non-oxidizing biocides and surface-coating 

based corrosion control chemicals. 
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− Identify the most widely applicable AC scanning frequencies to minimize interferences 

of chemical additives, and design portable EIS systems that measure mineral scaling over 

those frequencies. 

− Reconfigure the EIS electrode setup to measure scaling/fouling  across membrane filters. 

 

Along the second direction, mineral interactions with organic polymers, either artificial 

polymers with well-defined structures and molecular sizes or natural organic matter, are 

ubiquitously important phenomena that influence many processes in both natural and 

engineering systems, processes that have been observed but not fully understood. To further 

study these interactions, specifically, future work may focus on the following: 

− Formulate a theoretical framework based on classical nucleation theories or molecular 

dynamics to explain the experimentally observed precipitation retardation effects of PMA 

or other polymer antiscalants. 

− In membrane filtration, investigate the interactions between mineral and organic 

constituents in feed solutions and on membrane surfaces or inside the pore structures to 

improve the understanding of the role of such interactions in the sorption and separation 

capacities of membranes. 

− Investigate the role of minerals present in the extracellular polymeric substances in bio-

adhesion. The underlying hypothesis is that the attractive forces between a cell and a 

surface may be derived primarily (or at least partially) from the mineral properties of both 

the cell membrane and its substrate. 
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Along the third direction, although a substantial amount of research has been devoted to 

the thermodynamics and kinetics of mineral precipitation and dissolution in bulk solutions, 

mineral precipitation in the bulk is different from surface deposition with respect to both reaction 

rates and crystal characteristics. It is generally accepted that there is much to be desired in our 

understanding of the interactions between mineral species (either ions or particles) and substrate 

surfaces. However, current practice in scale deposition control is still primarily focused on 

solution chemistry adjustment through chemical addition. In contrast, novel modification of 

substrate surfaces as an alternative scale deposition control strategy needs to be explored. 

Surface engineering-based scale inhibition can be a more sustainable approach because it does 

not involve bulk addition of chemicals, many of which may bear environmental and health 

consequences. Preliminary investigation (data reported elsewhere) demonstrated that the scale 

deposition process can be preferentially initiated with heterogeneous precipitation over 

homogeneous nucleation in the presence of a stainless steel surface in a synthetic MWW solution 

that is supersaturated with respect to calcium carbonate and phosphate. This finding supports the 

hypothesis that the surface properties play a significant role in the precipitation behavior of 

aqueous systems. 

Because scale deposition is ultimately a surface phenomenon, a more accurate description 

of it would rely on a more fundamental understanding of the properties of surfaces that serve as 

deposition substrates. Such an improved understanding can very well lead to the novel 

engineering of surfaces to achieve surface properties that offer more effective and robust 

inhibition mechanisms against scale deposition. 

− Alter the hydrophobicity of substrate samples by varying their surface chemical 

composition and investigate effects of surface hydrophobicity on scaling process. 
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− Tune the polarity and density of surface charges on substrate samples and investigate 

their effects on scaling process. 

− Tailor the surface morphology of samples in both micrometer and nanometer scales and 

investigate effects of surface morphology on scaling process. 

 

Other areas of interest for future work are more closely geared toward practical 

applications pertaining to scaling control in cooling systems. They include: 

− Compare the differences in mineral scaling behavior on heated vs. unheated surfaces to 

obtain the temperature effect on scaling. 

− Evaluate scale-caused losses of heat transfer efficiencies in heat exchangers to establish 

guidelines or “action criteria” for proper scaling control in heat exchangers. 

− Place the scale collecting specimens at different locations within the recirculating water 

to test effects of flow patterns/hydrodynamics on scaling process. 
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