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The distributed point polarizable water model (DPP2) [Ref 1] which was recently developed in 

our group, has explicit terms for induction, charge penetration, and charge transfer. It is a 

refinement of the DPP model [Ref 2] which was also developed in our group. The DPP2 model 

has been found to accurately describe the interaction energy in water clusters. In this work, we 

aim to further improve the accuracy of DPP2 in calculating the induction energy. There are two 

ways to model higher-order polarization effects, one is through distributed atomic dipole 

polarizabilities, the other is through single-center expansion with higher multipoles. We 

developed a fitting method which can map the distributed dipole polarizabilities into the dipole-

dipole (α), dipole-quadrupole (A) and quadrupole-quadruple (C) polarizabilities. DPP2 uses 

three distributed atomic polarizabilities αO , αH1 , αH2 which are located on oxygen and hydrogen 

atoms to describe induction effects. We show that the A and C values associated with the DPP2 

model differ appreciably from the results of high level ab-inito methods [Ref 3, 4, 5, 25]. We 

have explored several strategies for improving on the DPP2 results. We describe a 4-site 

polarizable model, in which we split the polarizability of oxygen onto its two lone-pair sites, and 

which gives results in good agreement with the ab-initio calculations.  
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1.0  INTRODUCTION 

When developing a force field, one needs to classify molecular interactions into different forces 

based on physical sense. This chapter will proceed as following: In section 1.1, I will introduce 

the traditional classification of intermolecular forces and their special features and describe the 

role the polarization energy play in a force field. In section 1.2, we provide a brief introduction to 

our DPP2 force field. In section 1.3, I will give the reasons why we are interested in developing a 

more accurate force field. 

 

1.1 CLASSIFICATION OF INTERMOLECULAR FORCES 

 

In classical models, intermolecular forces are classified as electrostatic energy, polarization 

energy, dispersion energy, repulsion energy, etc. These interactions can be separated into long-

range and short range interactions. The energies of long-range interactions behave as some 

inverse power of R, and the energies of short-range interactions decrease exponentially with 

distance.  

Long-range effects include electrostatic, induction and dispersion. Electrostatic effects 

arise from the straightforward classical interaction between the static charge distributions, which 
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are strictly pariwise additive.  Induction effects arise from the distortion of charge distribution in 

the external electric field and are always attractive. Induction energies are non-additive, since 

they do not behave linearly on the electrical field created by neighbor charges.  Dispersion 

effects arise from the correlated fluctuations of electrons on different sites. 

At short ranges where the molecular wavefunctions overlap significantly, exchange and 

repulsion are most important, and often taken together and described as exchange-repulsion.  

Penetration, charge transfer and damping are modifications of the long-range terms arising from 

the overlap of the wavefunctions. Charge transfer interactions are often included as a part of the 

induction energy. 

 

Table 1 Contributions to the energy of interaction between molecules  

Contribution  Additive?  sign  Comments  

Long-range(U~R
-n) 

    

Electrostatic  Yes  ±  Strong orientation dependence  

Induction  No  -   

Dispersion  Approx  -  Always present  

Short-range(U~e
-αR) 

    

Exchange  No  -   

Repulsion  No  +  Dominates at very short range  

Charge Transfer  No  -  Donor-acceptor interaction  

Penetration  Yes  -  Can be repulsive at very short range  

Damping  Approx  +  Modification of dispersion and induction  

______________ 

Note: This table is reproduced from A.J. Stone‟s Book “The Theory of Intermolecular Forces” 

[Ref 6]. 
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The relationship between induction energy and polarization energy is: In quantum 

chemistry, the total induction energy embodies several terms: polarization, nonclassical charge-

transfer, and exchange-induction energies, each with different physical origin [Ref 7-10]. A 

simple polarizable force field using distributed dipole polarizability approach can deal with the 

polarization part of the induction.  

1.2 INTRODUCTION TO DPP2 MODEL 

 

 

The DPP2 water model was recently developed in our group [Ref 1].  It has explicit terms for 

polarization, charge penetration, and charge transfer, besides electrostatics, dispersion, and 

exchange-repulsion. One of our purposes of developing this model is to accurately calculate the 

interaction energies of water clusters and to describe their vibrational spectroscopy, which is  

quite sensitive to polarization energy because of its dependence on the second derivatives of the 

energy. Also, when considering the non-additivity of polarization interactions, the larger the 

water cluster is, the greater the contribution the polarization energy will make to the total 

interaction energy. So in order to describe the vibrational spectroscopy properties of water, an 

accurate calculation of polarization energy is crucial. 
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1.3 THE IMPORTANCE OF ACCURATE C VALUES 

    

   “C” is the symbol for quadrupole-quadrupole polarizability. Similarly “A” is the symbol for 

dipole-quadrupole polarizability and “α” is the symbol for dipole-dipole polarizability. We will 

explain them in detail in Chapter 2.  Calculations using the ASP-W4 water model [Ref 11] and 

Orient Software develop by Dr. Anthony Stone, etc. [Ref 32] show that α, A, C contribute -2.17, 

-0.28, and -0.77 kJ/mol respectively of a total induction energy of -3.22 kJ/mol for water dimer 

at the equilibrium geometry [Figure1]. The details of the calculations will be described in 

Section 4.1. As a result we cannot neglect the C terms if we want to accurately calculate the 

induction energy.   

 

   

 

 

Figure 1  Energy contributions from α, A, and C polarizabilities of the water dimer as a 

function of the O-O distance, produced from ASP-W4 [Ref 11] model using Orient software 

developed by Dr. Anthony Stone, etc. [Ref 32]. 
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2.0      THEORY 

Multipole moments are used to describe the way in which the charge is distributed in a molecule. 

The theory of multipole moments and its two mathematical expressions will be introduced in 

Section 2.1.1 and 2.1.2.  There have been different multipole moments values reported for the 

same system, which has caused a lot of confusion. Section 2.1.3. shows that different definitions 

of origin lead to different values of multipole moments. The theory of polarization will be the 

major focus of this chapter.  I will first give the definitions of polarizabilities from a quantum 

mechanics view.  Then in Section 2.2.2 and 2.2.3 I will describe how the polarization energy is 

treated in a classical way. Taylor series expansions will be used here.  The quadrupole-

quadrupole polarizability could have up to 81 different components, but in general the number of 

unique non-zero component is much smaller. This will be shown in section 2.2.4. In section 2.2.5, 

I will talk about the advantages and disadvantages of single versus multicenter expansions. In the 

last section, I will introduce two practical methods to calculate the higher rank polarizabilites of 

water. 

2.1 MULTIPOLE MOMENTS 

  

This sections includes subsection 2.1.1, 2.1.2, and 2.1.3. 
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2.1.1 Cartesian tensor definition 

The most familiar multipole moment is the total charge: q =  ρ 𝐫 d𝐫, where ρ(r) is the 

charge density at position r. Since we will define dipole moments and other higher moments 

later, we do the sum of point charges here instead of integrating over electron distributions, 

q =  𝐞aa  , where ea is the point charge on particle a and the sum is taken over all the electrons 

and nuclei.  

 The next one is the dipole moment:  

                                              α a α

a

µ̂ e a                                                         (2.1) 

where ea is the charge on particle a, aα is the position of particle a and α stands for x, y, z. 

The definition of the quadrupole moment components are 

    

 2 2
zz a

a

3 1
Θ̂ e a ( cos θ )

2 2
   (2.2) 

 2 2
xx a x

a

3 1
Θ̂ e ( a a )

2 2
   (2.3) 

 2 2
yy a y

a

3 1
Θ̂ e ( a a )

2 2
   (2.4)    

 xy a x y

a

3
Θ̂ e a

2
a   (2.5) 

                                             xz a x z

a

3
Θ̂ e a a

2
                                                       (2.6)   

 yz a y z

a

3
Θ̂ e a a

2
   (2.7) 
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Notice that 

 xx yy zz
ˆ ˆ ˆΘ Θ Θ 0    (2.8) 

 as a direct consequence of the definition. If we use the Einstein summation, the expression for 

quadrupole moments are:      

 2
αβ a α β αβ

a

3 1
Θ̂ e ( a a a δ )

2 2
   (2.9) 

 

2.1.2 Spherical tensor expression 

We can also use spherical tensors to express multipole moments, which in some applications are 

more convenient to use.  

                                                         𝑄 𝑙κ =  eaa Rlk (𝐚)                                             (2.10) 

or 

 𝑄𝑙κ =  ρ r Rlk (𝐫)d3𝐫 (2.11) 

Here ρ(r) stands for the charge density at position r and Rlk (𝐫) is the regular spherical 

harmonics. We use the label κ to denote a member of the series 0, 1c, 1s, 2c, 2s…. Where there 

is a sum over κ in a quantity labeled by lκ, the sum runs over the values 0, 1c, 1s,…,1c, 1s. The 

definitions of spherical tensors can be found in appendix B in Stone‟s book [Ref 6]. The 

conversion formulas between cartesian and spherical tensors can be found in appendix E in 

Stone‟s book [Ref 6]. 
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2.1.3 Change of origin 

The values of multipole moments depend on our choice of origin when their lower rank 

multipole moments are non-zero. In many applications it is convenient to take the origin at the 

center of mass, but it is not necessarily the optimum choice for describing the electrostatic 

properties. For the example of water, taking the oxygen as the origin is another popular choice.  

McLean derived the conversion formulas for all µ, Θ, Ω, α, A, C, etc. in his paper published in 

1967[Ref12]. 

2.2 POLARIZATION THEORY 

This section includes 6 subsections. 

2.2.1 Definition of polarizabilities from perturbation theory 

 

By perturbation theory, the definitions of polarizablities are (details of those formulas can 

be found in Stone‟s book
6 

 page 21): 

 ααβ =  
 0|µ α |n  n|µ β |0 +  0|µ β |n  n|µ α |0 

Wn − W0

′

n
 (2.12) 

 Aα,βγ =  
 0|µ α |n  n|Θ βγ |0 +  0|Θ βγ |n  n|µ α |0 

Wn − W0

′

n
 (2.13) 
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 Cαβ ,γδ =
1

3
 

 0|Θ αβ |n  n|Θ γδ |0 +  0|Θ γδ |n  n|Θ αβ |0 

Wn − W0

′

n
 (2.14) 

“n” stands for the excited state n, “0” stands for the ground state, Wn is the eigenvalue of state n 

and W0 is the eigenvalue of the ground state. 

2.2.2 The energy of a molecule in a non-uniform electric field 

 

Consider a molecule in an external potential V(r). The electric field is Fα = −
∂V

∂rα
=

−∇αV . For a non-uniform electric field there is a field gradient Fαβ = −
∂2V

∂r∂ ∂rβ
= −∇∂∇βV . We 

can expand the potential in a Taylor series about a suitable origin and set of coordinate axes. 

 

 V 𝐫 = V 0 + rαVα 0 +
1

2
rαrβVαβ  0 +

1

3！
rαrβrγVαβγ  0 + ⋯ (2.15) 

Here we are using the Einstein summation convention where a repeated suffix implies 

summation over the three axes x, y and z.  The operator describing the energy of a molecule in 

the presence of this potential is 

 ℋ ′ =  eaV (𝐚)

a

 (2.16) 

Where the sum is taken over all the nuclei and electrons in the molecules; particle a is at position 

a carrying charge ea . Then 

 ℋ ′ = V(0)  ea + Va 0  ea

a

aα +
1

2
Vαβ  eaaαaβ + ⋯

aa

 (2.17) 



 10 

which we write as 

 ℋ ′ = 𝑀 𝑉 + 𝑀 𝛼Vα +
1

2
Vαβ M aβ  (2.18) 

Here we abbreviate Vα(0) to Vα , etc. and introduce the zeroth moment M, the first moment 𝑀𝛼 , 

the second moment 𝑀𝛼𝛽 , and so on. We can immediately identify the zeroth moment 𝑀 =  eαα  

with total charge q, and the first moment 𝑀 =  eαα α with the dipole moment µ α . 

The second moments are a little more complicated.  We are interested only in the energy of the 

interaction with the field (equation 2.18). We define a new quantity 𝑀 αβ
′ = 𝑀 αβ − 𝑘δαβ , where k 

is a constant and δαβ  is the Kronecker tensor. Then 

1

2
Vαβ𝑀 αβ

′ =
1

2
Vαβ𝑀 αβ −

1

2
𝑘δαβ Vαβ  

                                                                    =
1

2
Vαβ𝑀 αβ −

1

2
𝑘Vαα  

       =
1

2
Vαβ𝑀 αβ  (2.19) 

where the last line follows from Laplace‟s equation: 

 Vαα = ∇2V = 0 (2.20) 

This is true for any value of k. We now choose k so that 𝑀 αβ
′  becomes traceless: 𝑀 αα

′ ≡ 𝑀 xx
′ +

𝑀 yy
′ + 𝑀 zz

′ = 0. Then 𝑀 αα
′ − 𝑘δαα = 0, or 𝑘 =

1

3
𝑀 𝛼𝛼 =

1

3
 eαα a2 . (Remember that δαα = 3.) 

Then we have 

 𝑀 αβ
′ =  ea

a

 aαaβ −
1

3
a2δαβ  =

2

3
Θ αβ  (2.21) 

So by subtracting away the trace of 𝑀 𝛼𝛽 , which does not contribute to the electrostatic energy, 

we arrive at the quadrupole moment in the form given previously, except for a numerical factor. 
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 The higher moments are manipulated in a similar way. When we modify 𝑀 𝛼𝛽𝛾 so as to 

remove the trace terms that do not contribute to the electrostatic energy, we arrive at the octpole 

moment Ω αβγ  and so on. The operator describing the interaction becomes 

                            ℋ ′ = qV + µ αVα +
1

3
Θαβ Vαβ +

1

15
Ωαβγ Vαβγ + ⋯                                       (2.22) 

 

2.2.3 Classical treatment of polarizabilities 

The energy of a molecule in a static electric field is given by Buckingham[Ref13]  

 

W = W0 + W′ + W′′ + ⋯  

    = W0  

        +µαVα +
1

3
Θαβ Vαβ +

1

15
Ωαβγ Vαβγ + ⋯  

         −
1

2
ααβ VαVβ −

1

3
Aα,βγ VαVβγ −

1

6
Cαβ ,γδ Vαβ Vγδ − ⋯                                                     (2.23) 

 

The derivative of the energy with respect to field gives: 

 
∂W

∂Vξ
= µξ − αξβ Vβ −

1

3
Aξ,βγ Vβγ − ⋯ (2.24) 

 µξ
p = µξ + αξβ Fβ +

1

3
Aξ,βγ Fβγ + ⋯ (2.25) 

“p” here means “perturbed”. So when (
∂W

∂Vξ
)v → 0 , we get the static dipole moment µξ  (equation 

2.25), and indeed this is commonly used as its definition, as well as the basis for some methods 

of calculating it. From a physical sense, we can see that αξβ  describes the additional dipole 
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induced by an applied electric field Fβ, and Aξ,βγ  describes the dipole induced by an applied field 

gradient Fβγ . 

 

Similarly,  

 3
∂W

∂Wξη
= Θξη − Aα,ξη Vα − Cαβ ,ξη Vαβ − ⋯ (2.26) 

 Θξη
p = Θξη + Aα,ξη Fα + Cαβ ,ξη Fαβ + ⋯ (2.27) 

Equation 2.27 can be used to define the quadrupole moment.  A also describes the quadrupole 

induced by an electric field, and C describes the quadrupole induced by a field gradient. 

 

2.2.4 Symmetry in polarizabilities 

Table 2 Character table for C2v point group 

 

 

We can use standard group-theoretical methods to discover the number of non-zero 

components of a multipole moment of a given rank, or to determine whether a particular moment 

is non-zero. All the multipole moments and polarizabilities must vanish unless they are totally 

symmetric.  

 
E C2 (z) σv(xz) σv(yz) linear, 

rotations 

Quadratic 

A1 1 1 1 1 Z x
2
, y

2
, z

2
 

A2 1 1 -1 -1 Rz xy 

B1 1 -1 1 -1 x, Ry xz 

B2 1 -1 -1 1 y, Rx yz 
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                                  Table 3 Product table for C2v point group 

 A1 A2 B1 B2 

A1 A1 A2 B1 B2 

A2 A2 A1 B2 B1 

B1 B1 B2 A1 A2 

B2 B2 B1 A2 A1 

 

There are 27 A  and 81 C terms for water. A simple way to see which terms are non-zero is to 

use the direct product table for the C2v point group. Take αxx for example. Since x direction has 

B1 symmetry, the symmetry character of αxx is B1*B1=A1, which is totally symmetric. So αxx is 

non zero. But the symmetry character of Ax,xx is B1*A1=B1 which is not totally symmetric. So 

Ax,xx is zero. 

 

In this moment we establish that there are eight non-zero A components left: 

Ax:xz, Ax:zx, Ay:zy,Ay:yz; Az:xx, Az:xx, Az:yy, Az:zz 

Among them, based on symmetry, we have the following relationship: 

                                                Ax:xz=Ax:zx,  Ay:zy=Ay:yz,                                                    (2.28)  

From definitions, we have the following relationship: 

                                                           Az:xx+Az:yy+Az:zz=0                                                   (2.29) 

 

There are 21 non-zero C components: 

Cxx:xx, Cxx:yy, Cxx:zz, Cyy:xx, Cyy:zz, Cyy:zz, Czz:xx, Czz:yy, Czz:zz,  
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Cxy:xy, Cxy:yx, Cyx:xy, Cyx:yx, Cxz:xz, Cxz:zx, Cxz:xz, Czx:zx, Cyz:yz, Cyz:zy, 

Czy:yz, Czy:zy 

Among them, based on symmetry there are following relationships: 

Cxx:yy=Cyy:xx, Cxx:zz=Czz:xx, Cyy:zz=Czz:yy 

Cxy:xy=Cxy:yx=Cyx:xy=Cyx:yx,  

Cxz:xz=Cxz:zx=Cxz:xz=Czx:zx 

Cyz:yz=Cyz:zy=Czy:yz=Czy:zy                                                                                   (2.30) 

In addition: 

Cxx:xx+Cxx:yy(Cyy:xx)+Cxx:zz(Czz:xx)=0 

Cyy:xx(Cxx:yy)+Cyy:yy+Cyy:zz(Czz:yy)=0 

Czz:xx(Cxx:zz)+Czz:yy(Cyy:zz)+Czz:zz=0                                                                 (2.31) 

 

Those relationships will be used in our calculations later in Chapter 4. 

2.2.5 Single-center expansion versus  distributed polarizablities 

The polarizabilities describe changes in the charge redistribution perturbed by external 

fields.  A single-center multipole description of those charge changes is subject to the 

convergence problems, which means that higher rank multipole moments may not be negligible.   

A distributed treatment is expected to give better result here, especially when the molecule is 

large and the description of charges in local regions is important. 

A further consideration is the response of the molecular charge distribution to external 

fields from other molecules. Such fields are non-uniform, so that the strength of the field varies 

considerably from one part of the molecule to another. Taylor series describing the variation of 
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the field across the molecule converges poorly or not at all when the molecule is large. Here a 

distributed treatment automatically takes account of variations in the strength of the field, since 

we use the value of the field at each site rather than the value at some arbitrary origin, and the 

sphere of convergence around each site only has to extend far enough to enclose the region 

belonging to the site.   

 The distributed polarizabilities are not limited to atoms. It is also possible to attach 

meanings to bond or lone-pair polarizabilities. 

 

2.2.6 How to calculate polarizabilities in practice 

       Besides using perturbation theory to calculate the polarizabilities, there are also other 

methods to calculate them [Ref 3, 14]. Here we will give a brief introduction of Bishop‟s method 

whose C values will be used as benchmark in our work.  

 

 

Table 4 Geometry of the H2O molecule (Angstrom), from Bishop [Ref 3]. 

Atom x y z 

O 0.00000000 0.00000000 -0.0656945 

H1 -0.75753705 0.00000000 0.5213831 

H2 0.75753705 0.00000000 0.5213831 

 

Bishop placed a point charge Q or –Q at R distance away from the center of mass of 

water and at different orientations.  Then he uses MC SCF (multiconfigurational self consistent 
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field) calculations to get the values of perturbed dipoles and quadrupoles. Then he used 

equations such as the following (all the equations can be derived from equations 2.25 and 2.27 

above): 

 Cxx ,xx =  Θxx  −Q,
π

2
, 0 − Θxx  Q,

π

2
, 0  (

R3

6Q
) (2.32) 

 

Cyy ,yy =  Θxx  −Q, 0,0 + Θxx  −Q, π, 0 − Θxx  Q, 0,0 − Θxx  Q, π, 0 

+
6Q

R3
(Cxx, xx + Czz, zz) (

R3

6Q
) 

(2.33) 

 

Czz ,zz =  Θzz  −Q, 0,0 + Θzz  −Q, π, 0 − Θzz  Q, 0,0 

− Θzz  Q, π, 0  (
R3

12Q
) 

(2.34) 

 Cxy ,xy =  Θxy  −Q,
π

2
,
π

4
 − Θxx  Q,

π

2
,
π

4
  (

R3

6Q
) (2.35) 

 Cxz ,xz =  Θxz  −Q,
π

4
, 0 − Θxz  Q,

π

4
, 0 −

 2Q

R2
Ax,zx  (

R3

6Q
) (2.36) 

 Cyz ,yz =  Θyz  −Q,
π

4
,
π

4
 − Θyz  Q,

π

4
,
π

4
 −

Q

R2
Ay,zy  (

R3

6Q
) (2.37) 

In these equations, Θyz  −Q,
π

4
,
π

2
  for example, represents the yz component of the 

quadrupole moment when a charge Q is placed R from the origin, with polar angles of θ =
π

4
, 

ϕ =
π

2
 . For Bishop‟s results, please refer to Table 8. 

Maroulis [Ref14, 21-24] improved Bishop‟s method. Instead of putting only one point 

charge, he used several point charges to perturb the system, in order to create a certain electric 
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field at the orign, where either Fα is zero or Fαβ is zero. As a result, he only needs perturbed 

energies instead of perturbed multipole moments,  in order to calculate various polarizabilities.  
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3.0  INDUCTION ENERGY ASSOCIATED WITH DPP2 MODEL 

 

The DPP2 model, like the DPP [Ref 2], TTM2 [Ref 20], and AMOEBA [Ref 21] models, adopts 

the Applequist [Ref 26-28] approach and uses mutually interacting atom-centered point 

polarizable sites, with Thole-type damping [Ref 15] between the charges and induced dipoles 

and between the induced dipoles, to describe the polarization interactions. In the DPP, TTM2, 

and AMOEBA models the values of the atomic polarizabilities were taken from the work of 

Thole [Ref 15], while the damping coefficients were modified from Thole‟s work to better fit 

cluster energies. In the DPP model, the coefficient damping the interactions between the induced 

dipoles was adjusted so that the model gives three-body energies for the book, prism, cage, and 

ring isomers of (H2O)6 close to those from MP2/aug-cc-pVTZ [Ref 16, 17] calculations. 

Figure 2 DPP2 water with its parameters 
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Table 5 Geometry of  the H2O molecule (Angstrom) in the DPP2 model 

Atom x y z 

O 0.000000 0.000000 -0.065112 

H1 0.756848 0.000000 0.520901 

H2 -0.756848 0.000000 0.520901 

 

In the DPP2 model adjusted atomic polarizabilities (keeping the same damping constants 

as the DPP model) have been adopted to give, simultaneously, the best fit to the atomic 

polarizability components of the water molecule and the three-body energies (evaluated at the 

CCSD(T)/aug-cc-pV5Z level [Ref16, 17]) of the four low-lying isomers of the hexamer.  

       The atomic polarizabilities and damping constants are summarized in Table 6. Interestingly, 

the resulting values of the atomic polarizabilities are close to those used by Burnham et al. in 

their recently introduced TTM4-F water model [Ref 18].   In calculating the induction energies 

using the DPP2 model, the electric fields were evaluated using the charges defined in Eq 3.1. 

 qi
∗ = 2qi − {Zi − [Zi − qi][1 − exp  

λrij

(Zi−q i
Zi

)
 ]} (2.38) 

The charge penetration here uses a procedure of Piquemal et al. [Ref 29, 30]. However, 

the inclusion of charge penetration causes only small changes. For example, it leads to only 0.1 

kcal/mol in the polarization energies of the water hexamer. So in the remaining part, we do not 

take charge penetration effects into consideration. 

 

    Here we will give a brief description of the procedures used to calculate the polarization 

energies. The induced dipole µi on atom i with polarizability αi  is given by: 
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 µi = αi[𝐄i +  Tij

j≠i

µj] (2.39) 

The summation over j involves all other sites within the molecule which including this 

site i and other molecules which do not contain site i.   𝐄i is the electric field defined as 

 𝐄i =  f3(rij )
q j rik      

rik
2k≠i , (2.40) 

where the summation over k involves all partial charges on molecules other than the one 

containing site i, and rik  is the distance between sites i and k.  

The dipole tensor 𝐓ij  is a 3x3 matrix whose elements are: 

 Tij
βγ

= f5 rij 
3rij

β
rij
γ

rij
5 − f3(rij )

δβγ

rij
3 , (2.41) 

where β and γ denote the Cartesian components x, y, or z, and the Thole-type damping functions 

f3(rij ) and f5 rij  [Ref 15] are given by 

 f3 rij = 1 − exp⁡[−a
rij

3

 αiαj 
1
2

] (2.42) 

and 

  f5 rij = 1 − (1 + a
rij

3

 αiαj 
1
2

)exp⁡[−a
rij

3

 αiαj 
1
2

] (2.43) 

 

Separate values of the damping constant a are employed for the charge-dipole and dipole-

dipole interactions. The induced dipoles are solved iteratively, and the induction energies are 

given by 
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 Epol = −0.5  𝐄iµi

i

 (2.44) 

 

Table 6 Parameters in DPP and DPP2 model 

Model Parameter Value Unit 

DPP  αO 0.837 Å
3
 

DPP  αH 0.496 Å
3
 

DPP2 αO 1.22 Å
3
 

DPP2 αH 0.28 Å
3
 

DPP&DPP2 aDD(Dipole-Dipole Damping) 0.3  

DPP&DPP2 aCD(Charge-Dipole Damping 0.21  

DPP&DPP2 qH 0.5742 e 

DPP&DPP2 qM* -1.1484 e 

*Note: The M site is located on the C2V rotational axis, displaced 0.25 Å from the O atom 

towards the H atoms. 

 

. 
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4.0  DETAILS OF THE CALCULATIONS 

The details of the calculations will be introduced in this chapter. In section 4.1 we introduce how 

we got the results in Figure 1. In section 4.2 we show the details of our fitting method step by 

step. In section 4.3, we show the reasons why we cannot get the DPP2 associated A values using 

this fitting method. In the last section we show how to verify this fitting method.  

4.1 HOW TO ESTIMATE THE C CONTRIBUTION: 

 We use the Orient software developed by Dr. Anthony Stone, etc. [Ref 32] and use the 

ASP-W4 water force field [Ref 11]. Our system is water dimer and we turn the iteration off. In 

our calculation first we only use α polarizabilities when calculating the polarization energy E1; 

then we keep both α and A present and get polarization energy E2; finally we use all α, A and C 

polarizabilities and get the polarization energy E3. So the energy contribution from C term is Ec 

= E3 - E2; the energy contribution from A term is EA = E2 - E1; the energy contribution from α 

is E1. We performed our calculations at several different O-O distances with results being shown 

in Figure 1. 
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4.2 FITING METHOD 

There are several approaches to calculate A and C from ab-initio calculations [Ref 5, 6]. 

For example, Bishop used the perturbed moments with the weak field created by a point charge 

[Ref 5]; Maroulis used perturbed energies with special charge arrangements [Ref 6].  Based on 

these two methods we developed a strategy to extract the α, A and C values from DPP2 model. 

The procedures are as following: 

 

1) Put a point charge at different positions and calculate the induction energies 

.  

We put a point charge at x, y, z, xy, xz and yz directions separately and at 15Å, 20Å, 

25Å, 30Å, 35Å away from the origin. (xy, xz and yz means the bisections of x, y, z 

axes).  The electric field and field gradient at the origin caused by the external point 

charge is : 

Fx =
x

(x2+y2+z2)
3
2

i ,  Fy =
y

(x2+y2+z2)
3
2

j ,  Fz =
z

(x2+y2+z2)
3
2

k                                 (4.1) 

Fxy =
−3xy

(x2+y2+z2)
5
2

,  Fxz =
−3xz

(x2+y2+z2)
5
2

, Fyz =
−3yz

(x2+y2+z2)
5
2

, 

Fxx =
y2+z2−2x2

(x2+y2+z2)
5
2

,  Fyy =
x2+z2−2y2

(x2+y2+z2)
5
2

,  Fzz =
x2+y2−2z2

(x2+y2+z2)
5
2

,                                (4.2) 

 

We can calculate the induction energy of each configuration in step1 using the DPP2 

model.  The procedures are explained in detail in Chapter 3.  We denote the induction 

energy calculated in each configuration as Ex, Ey, Ez, Exy, Exz and Eyz.   
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2) Do multivariant regression 

 

With equation 2.23 and equations  2.30, 2.31 we obtain: 

Ez = E0 −
1

2
αzz Fz

2 −
1

3
Az,zz FzFzz −

1

3
Az,xx FzFxx −

1

3
Az,xx FzFxx  

−
1

6
Czz ,zz Fzz Fzz −

1

6
Cxx ,xx Fxx Fxx −

1

6
Cyy ,yy Fyy Fyy  

 −
1

3
Cxx ,zz Fxx Fzz −

1

3
Cyy ,zz Fyy Fzz −

1

3
Cxx ,yy Fxx Fyy  (4.3) 

        Since Fzz=-2Fxx, Fxx=Fyy,  

Ez = Ezα + EzA + EzC  

    = −
1

2
Fz

2αzz  

       −
1

3
FzFxx (Az,xx + Az,xx − 2Az, zz) 

           −
1

6
Fxx Fxx (4Czz, zz + Cxx ,xx + Cyy ,yy − 4Cxx, zz − 4Cyy, zz − 2Cxx, yy)               (4.4) 

Similarly: 

Ex = Exα + ExA + ExC  

             = −
1

2
Fx

2αxx −
1

6
Fzz Fzz (4Cxx, xx − 4Cxx, yy − 4Cxx, zz + Cyy ,yy + 2Cyy ,zz + Czz, zz)   

(4.5) 

Ey = Eyα + EyA + EyC  

               = −
1

2
Fy

2αyy −
1

6
Fzz Fzz (Cxx, xx − 4Cxx, yy + 2Cxx, zz + 4Cyy ,yy − 4Cyy ,zz + Czz, zz)  

(4.6) 

Exy = Exyα + ExyA + ExyC  
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2

y xx yy xx xx yy,yy yy,zz

1 1
F (α α ) F F (Cxx,xx 2Cxx,yy 4Cxx,zz C 4C 4Czz,zz 36Cxy,xy)

2 6
         

       (4.7) 

Exz = Exzα + ExzA + ExzC  

 

= −
1

2
Fz

2(αxx + αzz ) −
1

3
FxFxx (Az,xx + Az,zz − 2Az,yy + 6Ax,xz ) 

−
1

6
Fxx Fxx (Cxx, xx − 4Cxx, yy + 2Cxx, zz + 4Cyy ,yy − 4Cyy ,zz  

+Czz, zz + 36Cxz, xz ) 

 

                                                                                                                                      (4.8) 

Eyz = Eyzα + EyzA + EyzC  

 

= −
1

2
Fz

2(αyy + αzz ) −
1

3
FyFyy (−2Az,xx + Az,zz + Az,yy + 6Ay,yz )

−
1

6
Fyy Fyy (4Cxx, xx − 4Cxx, yy − 4Cxx, zz + Cyy ,yy + 2Cyy ,zz

+ Czz, zz + 36Cyz, yz) 

(4.9) 

Let  

Az = Az,xx + Az,xx − 2Az, zz 

Cz = 4Czz, zz + Cxx ,xx + Cyy ,yy − 4Cxx, zz − 4Cyy, zz − 2Cxx, yy 

Cx=4Cxx, xx − 4Cxx, yy − 4Cxx, zz + Cyy ,yy + 2Cyy ,zz + Czz, zz 

Cy = Cxx, xx − 4Cxx, yy + 2Cxx, zz + 4Cyy ,yy − 4Cyy ,zz + Czz, zz 

Cxy =  Cxx, xx + 2Cxx, yy − 4Cxx, zz + Cyy ,yy − 4Cyy ,zz + 4Czz, zz 

Axz = Az,xx + Az,zz − 2Az,yy + 6Ax,xz  

Cxz = Cxx, xx − 4Cxx, yy + 2Cxx, zz + 4Cyy ,yy − 4Cyy ,zz + Czz, zz + 36Cxz, xz 

Ayz = −2Az,xx + Az,zz + Az,yy + 6Ay,yz  
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Cyz = 4Cxx, xx − 4Cxx, yy − 4Cxx, zz + Cyy ,yy + 2Cyy ,zz + Czz, zz + 36Cyz, yz 

 

After we get these induction energies, we perform multivariant regression.  In the 

regression, the Y values are the induction energies for the different configuration. The 

variants are  −
1

2
Fα

2 , −
1

3
FαFαα , −

1

6
Fαα Fαα  at different distances as 15Å, 20Å, 25Å, 

30Å, 35Å. The regression here helps us to distinguish the induction energies as the 

sum of energy contributions from α term (Eα), A term (EA) and C term (EC).   

 

3) Solve a set of linear equations. 

 

After the regression, we get the values of αxx , αyy , αzz  directly.   We also get the 

values of Cx, Cy, Cz, Cxy, Cxz, Cyz, Az, Axz, Ayz. 

Let us make a matrix M 

M=

 

 
 
 
 
 
 

1 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 0 0
4 −4 −4 1 2 1 0 0 0
1 −4 2 4 −4 1 0 0 0
1 2 −4 1 −4 4 0 0 0
1 2 −4 1 −4 4 36 0 0
1 −4 2 4 −4 1 0 6 0
4 −4 −4 1 2 1 0 0 36 

 
 
 
 
 
 

                                                    (4.10) 

 Let C′ = (Cxx: xx Cxx: yy Cxx: zz Cyy: yy Cyy: zz Czz: zz) (4.11) 

 E′ = (0 0 0 Cx  Cy  Cz  Cxy  Cxz  Cyz  ) (4.12) 

So MC = E. After multiply each side a M
-1

, we get 

 C = M−1E (4.13) 
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Since M and E are all known, we can now get all the C values.  

 

But we run into problems when we use the same procedures to solve A values. We 

have five unknown A terms. But we have only four equations. Thus we cannot solve 

for all A components in this manner. We return to the A issue in the next section. 

 

4.3 Evaluating Dipole-Quadrupole polarizabilities 

In section 4.2, it was seen that we need more equations to solve A. Why would this 

happen? Is it a general result or just unique to C2v symmetry? Can we try to put the point charge 

in other orientations in order to get enough equations to solve A values? The answer is no. We 

will see the reasons clearly if we adopt the polar expressions. 

The dipole expression for the field and field gradient are: 

Fx =
sin θ cos ϕ

R2 , Fy =
sin θ sin ϕ

R2 , Fz =
cos θ

R2 ,                                                                  (4.14) 

Fxx =
sin 2 θ sin 2 ϕ+cos 2θ−2sin 2θcos 2ϕ

R3
, 

Fyy =
sin 2 θ cos 2 ϕ+cos 2θ−2sin 2θsin 2ϕ

R3
, 

Fzz =
sin 2 θ−2cos 2θ

R3 , 

Fxz =
−3 sin θcos ϕcos θ

R3 , 

Fyz =
−3 sin θsin ϕcos θ

R3
,                                                                                                   (4.15) 
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Let us express induction energy from A term as EA. We have  

−3R5EA =

2Ax, zx ∗  −3 sin θ cos ϕ sin θcosϕcosθ + 2Ay,zy ∗  3 sin θ sin ϕ sin θsinϕcosθ + Az, xx ∗

cosθ sin2 θ sin2 ϕ + cos2θ − 2sin2θcos2ϕ + Az,yy ∗ cosθ sin2 θ cos2 ϕ + cos2θ −

2sin2θsin2ϕ  + Az,zz ∗ cosθ(sin2 θ − 2cos2θ)                                                                     (4.16) 

Let  

C1 = −3sin2θcosθcos2ϕ, 

C2 = −3sin2θcosθsin2ϕ, 

C3 = cosθ, 

C4 = cos⁡θ(1 − 3cos2θ), 

Then equation 4.15 becomes 

−3R5EA = 2C1Ax, xz + 2C2Ay, zy +  C1 + C3 Az, xx +  C2 + C3 Az, yy + C4Az, zz 

 

= C1 2Ax, zx + Az, xx + C2 2Ay, zy + Az, yy + C3 Az, xx + Az, yy 

+ C4Az, zz 

(4.17) 

Let  

 2Ax, zx + Az, xx = EA1 (4.18) 

 2Ay, zy + Az, yy = EA2 (4.19) 

 Az, xx + Az, yy = EA3 (4.20) 

 Az, zz = EA4 (4.21) 

We know that Az, xx + Az, yy + Az, zz = 0, so after we know equation 4.20, equation 

4.21 adds no more valuable information here. For the three equations 4.18~4.20, we have four 
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unknowns. As a result, we can only get the value of Az,zz and the sum of other A components.  

We cannot get the individual  Ax:zx, Ay:zy, Az:xx, Az:yy values through this fitting method. 

 

4.4 HOW TO VERIFY THIS METHOD. 

So how good is this fitting method? We used ASP-W4 water force field to get all the 

induction energies we need in different distances and different directions. Then we calculate all 

the C values out using the procedures described in section 4.2 and compare them with their 

original values in ASP-W4 force field (polarizabilities in ASP-W4 are written in spherical 

expression and origin at Oxygen. We convert them into Cartesian expression here). As we can 

see from Table 7, the results we get from this fitting method are almost the same as their original 

values. This assures us that our fitting method works well. 

 

Table 7 C values from ASP –W4 and our fitting method
a
 

Cxx,xx Cxx,yy Cxx,zz Cyy,yy Cyy,zz Czz,zz Cxy,xy Cxz,xz Cyz,yz

ASP-W4 11.88 -6.81 -5.07 11.73 -4.92 9.99 7.79 13.02 7.02

FM 11.93 -6.83 -5.10 12.10 -4.86 9.96 7.86 13.14 7.04  

a: Units are in atomic units; origin is at center of mass. 
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5.0  RESULTS AND DISCUSSION 

The associated multipole polarizabilities of DPP and DPP2 differ appreciably from the ab-initio 

values given by Bishop. We tried different ways in order to improve the results. Changing the 

geometry does not help much.  When we change the polarizable site from oxygen to M site, 

results are improved to some extent. But the signs of three C components are still incorrect. The 

most exciting trial is when we split the polarizability of oxygen onto its two electron lone pairs. 

The results are much improved. We give our analysis on why such changes on the location of 

polarizability make the values in better agreement with ab-initio values based on a single center 

expansion. 

 

   

 

5.1 DPP AND DPP2 

As we can see from Table 8, DPP2 performs better than DPP. But neither is high 

successful at accounting for C. Not only is Cxx:zz in DPP more than five times bigger than the 

ab-initio result, but also three components in both the DPP and DPP2 models have the wrong 

sign. 
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Table 8 Values of C components of DPP1 and DPP2
a
 

 Cxx,xx Cxx,yy Cxx,zz Cyy,yy Cyy,zz Czz,zz Cxy,xy Cxz,xz Cyz,yz 

DPP 38.39 -9.87 -28.53 -7.49 17.36 11.17 9.78 40.82 -9.28 

DPP2 19.45 -5.25 -14.20 -2.39 7.63 6.57 4.52 22.67 -3.74 

DPP2G 19.49 -5.25 -14.24 -2.40 7.65 6.59 4.53 22.74 -3.75 

Bishop[3] 11.78 -6.85 -4.93 12.02 -5.17 10.10 8.48 11.06 4.72 

a: Units are in atomic units. Origin is at center of mass.  

 

 

5.2 CHANGE THE GEOMETRY 

As we can see in Tables 4 and 5, there are some differences between water geometry used in 

DPP2 and that used by Bishop. Could such differences lead to significant differences in the C 

values? Another calculation using the water geometry used by Bishop shows that this is not the 

case. The results are named DPP2G in Table 8.  
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5.3 CHANGE POLARAZIBILITY FROM OXYGEN TO M SITE 

When using distributed charges to describe the 

multipole moments of water molecule, it is found that 

though we can fit the individual charges to get very good 

molecular dipole moments which are closed to 

experimental values, but that is not possible to get the 

quadrupole moments right at the same time. After the charge is moved from oxygen to the M site, 

this problem is solved. So we try the same strategy here to try to achieve good α and C values at 

the same time.  In DPP2M, we changed the polarizability from oxygen to M site. In DPP2M2, 

we changed the polarizability on M site from 1.22 to 1.36 Å
3 

and  the polarizability on hydrogen 

from 0.28 to 0.22 Å
3
.  The results are improved by some extent, but not much. Some values are 

even worse. The sign errors still exist. 

 

Table 9 α and C values of polarizable M site DPP2 model
a
 

Bishop DPP2 DPP2M DPP2M2

αxx 9.24 10.51 10.20 10.48

αyy 7.91 9.20 9.07 9.59

αzz 8.55 9.70 9.21 9.71

Cxx,xx 11.78 19.45 18.29 13.24

Cxx,yy -6.85 -5.25 -3.78 -2.25

Cxx,zz -4.93 -14.20 -14.51 -10.99

Cyy,yy 12.02 -2.39 -2.82 -1.56

Cyy,zz -5.17 7.63 6.60 3.81

Czz,zz 10.10 6.57 7.92 7.18

Cxy,xy 8.48 4.52 3.54 2.05

Cxz,xz 11.06 22.68 21.54 16.76

Cyz,yz 4.72 -3.74 -2.90 -1.15  

Figure 3 Schematic structure of DPP2M model 
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a: Units are in atomic units; origin is at the center of mass 

 

5.4 FOUR-SITE POLARIZABLE MODELS  

       When we were using ASP-W4 model to verify our fitting method, we noticed that the EyC in 

equation 4.6 is positive for ASP-W4. However in DPP2 and in the other models above, EyC are 

negative.  The sign differences in EyC lead to the sign errors in Cyy:yy, Cyy:zz and Cyz:yz. So 

how can we improve our model in order to make EyC positive? 

 

      We know that the electron lone pairs on the oxygen atom point out of the water plane. This 

suggests making a model with out-of-plane dipole polarizable sites. 

 

 In the CPE2 model [Ref 19], the charge 

distribution is represented by a Gaussian basis 

function on each atom plus two dipole-like basis 

functions on the sites of the oxygen lone pairs. 

The lone-pair charge distributions are 

placed 0.65Å away from the oxygen 

nucleus, forming a dipole-oxygen-dipole angle of 109.47°. They apply this strategy to charge 

distributions. But can we also move polarizabilities to the electron lone pairs? In model “lone 

pair 4 site polarizable model 1” (LP4P1), we split the polarizability 1.22Å
3
 of oxygen to 0.66 Å

3
 

on each lone pair. The positions of the lone-pair polarizabilities are the same as the positions of 

Figure 4 Schematic structure of 4-site polarizable model 
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lone-pair charge distributions in CPE2 model. The distance from lone pair site to the oxygen is 

dL=0.61Å. The αL1-Oxygen- αL2 angle is 109.47°. As seen from in Table 11, all nine C 

components of LP4P1 now have correct signs as compared to the ab-initio results. The values are 

also much closer to Bishop‟s.  We also tried other parameters of such four polarizable sites 

model in order to compare the agreement with Bishop‟s results.  These sets of parameters used in 

models named from LP4P2 to LP4P7 are listed in Table 10. The results are listed in Table 11.  

Among these seven sets of parameters, LP4P7 give us the best results overall. 

 

Table 10 Parameters used in seven lone-pair 4-site polarizable  models
a
. 

Model LP4P1 LP4P2 LP4P3 LP4P4 LP4P5 LP4P6 LP4P7 

αH 0.28 0.28 0.28 0.28 0.22 0.22 0.22 

αL 0.61 0.5 0.5 0.61 0.68 0.61 0.61 

dL 0.61 0.61 0.5 0.5 0.61 0.61 0.5 

a: Units are in atomic units; origin is at the center of mass. 
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Table 11 α and C values of various 4 site polarizable DPP2 model 

Bishop DPP2 LP4P1 LP4P2 LP4P3 LP4P4 LP4P5 LP4P6 LP4P7

αxx 9.24 10.51 10.18 9.23 9.03 9.94 10.14 9.49 9.30

αyy 7.91 9.20 9.47 8.51 7.79 8.70 9.70 9.06 8.32

αzz 8.55 9.70 10.32 9.30 8.84 9.81 10.48 9.80 9.35

Cxx,xx 11.78 19.45 16.56 17.75 19.16 18.19 10.81 11.54 13.25

Cxx,yy -6.85 -5.25 -9.61 -8.92 -8.00 -8.39 -8.72 -8.26 -7.12

Cxx,zz -4.93 -14.20 -6.95 -8.84 -11.17 -9.80 -2.09 -3.28 -6.13

Cyy,yy 12.02 -2.39 16.44 12.01 7.18 10.43 20.30 17.49 11.43

Cyy,zz -5.17 7.63 -6.83 -3.10 0.82 -2.04 -11.58 -9.23 -4.31

Czz,zz 10.10 6.57 13.78 11.93 10.34 11.84 13.66 12.51 10.44

Cxy,xy 8.48 4.52 7.98 7.14 6.23 6.74 7.66 7.08 5.76

Cxz,xz 11.06 22.68 23.96 24.35 25.17 24.88 18.32 18.56 19.63

Cyz,yz 4.72 -3.74 8.86 5.92 2.35 4.61 11.92 10.10 5.79
Note: Units are in atomic units; origin is at center of mass. 
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6.0  CONCLUSION 

    In conclusion, we show that our fitting method can be treated as a general method for mapping 

distributed polarizabilities into multipole polarizabilities based on single center expansion. It is 

very accuracy and simple in reproducing the C components. Here we used the multivariant 

regression instead of using several external point charges to distinguish the energy contributions 

from α, A and C terms. From the better agreement of our 4-site polarizable model with ab-initio 

results in C components‟ values, we also show that adding polarizabilities on electron lone pairs 

of oxygen is necessary for developing more accurate water force field using distributed 

polarizabilities. In future work, one should test our four-site polarizable model on the water 

dimer and on other water clusters to see whether it can describe accurately the induction energies 

of these systems.  
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