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Impaired metabolism of fatty acids is associated with obesity and type 2 diabetes (T2D).  Based 

on evidence in lean adults, the expected response of skeletal muscle to aerobic training is an 

increase in the oxidation of fatty acids.  However, considerably less is known about the response 

of fat oxidation to aerobic training in those with obesity and/or T2D.  PURPOSE:  1) To 

determine if sedentary overweight adults with and without type 2 diabetes exhibit significant 

improvements in fatty acid metabolism at rest and during physical activity due to endurance 

training.  2) To compare changes in the oxidation of intramuscular triacylglycerols (IMTG) 

during sub-maximal exercise between those with and without T2D.  METHODS:  13 (10 

without T2D, 3 with T2D) overweight (BMI: 28-40 kg/m2) men and women aged 28-55 

completed an 8-week aerobic exercise intervention.  Pre and post intervention, all subjects 

underwent a DEXA, maximal graded exercise test, and indirect calorimetry with non-radioactive 

labe led isotopes palmitate and acetate to determine energy expenditure, fat oxidation, and source 

of fatty acids for oxidation at rest and during exercise.  RESULTS:  VO2max improved by an 

average of 14% (40.8+1.6 to 46.5+1.7ml/kg LBM/min) in the OW group (p<0.01) and 13.4% 

(34.8+4.5 to 38.0+1.7 ml/kg/LBM/min) in the T2D group (p=0.10).  A non-significant increase 

in whole bod y fat oxidation during exercise was measured in bo th the OW (6.2% ) and T2D 

(5.1%) group.  There were no changes in whole body fat oxidation at rest in either group.  Before 

and after intervention, IMTG oxidation during exercise was 4.13 + 
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1.7 and 5.5 + 2.3 uMol/kg 

University of Pittsburgh, 2008
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LBM/min in OW and 3.42 + 1.9 and 2.41 + 2.8 uMol/kg LBM/min in T2D.  These changes were 

not significant due to the intervention (p=0.62).  CONCLUSIONS:  Eight weeks of moderate 

intensity aerobic exercise results in increased cardiorespiratory fitness but not a significant 

increase in whole body fatty acid oxidation during rest and exercise in overweight adults with or 

without type 2 diabetes.  Moreover, oxidation of fatty acids from IMTG was not enhanced by the 

8-week intervention. 
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1.0  INTRODUCTION 

The most plentiful source of energy within the body is fat.  Found as adipose triglycerides, 

within lipoproteins, as plasma free fatty acids, and within muscle cells themselves, fat provides 

the primary source of energy for skeletal muscle during fasting and resting states and during low 

to moderate intensity exercise.  A defect or decreased tendency of skeletal muscle to oxidize 

fatty acids in favor of the oxidation of carbohydrate is a characteristic and perhaps a contributor 

to obesity and insulin resistance (Kelley, D. E. et al. 1999).  As a lean, healthy individual 

becomes more physically fit, the capacity of skeletal muscle to oxidize fatty acids during 

exercise increases.  An unknown is if this characteristic of lower fatty acid oxidation with obesity 

and insulin resistance can be preferentially altered with an increase in physical activity.  

Therefore, the purpose of this investigation was to examine the effects of physical activity 

training on fatty acid oxidation in obese adults with and without type 2 diabetes (T2D).  This 

study was a sub- investigation of a larger clinical trial in the Division of Endocrinology, 

Department of Medicine, at the University of Pittsburgh.   

The recent dramatic rise in obesity and T2D is a global health pandemic.  Recent data 

from the Centers for Disease Control approximates that over 65% of Americans are either 

overweight or obese, and greater than 13 million Americans are living with T2D (CDC et al. 

2004).  The cornerstones of T2D and obesity treatment are lifestyle modifications, such as 

increasing physical activity and reducing caloric intake.  While caloric restriction is most 
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effective in reducing body weight, exercise is essential for maintaining weight loss (Kayman, S. 

et al. 1990; Wing, R. R. and Hill, J. O. 2001).  The differing effects of reducing caloric intake 

versus increasing physical activity on fat oxidation may explain this divergent effect, yet the 

physiological basis underpinning this important effect of treatment is not known.   

Weight los s alone may decrease absolute rates of fat oxidation along with resting 

metabolic rate (Kelley, D. E. et al. 1999; Christiansen, M. P. et al. 2000).  Alternatively, when 

non-obese adults perform endurance physical activity, skeletal muscle increases its ability to use 

fat as a substrate for oxidation (Romijn, J. A. et al. 1993; Martin, W. H., 3rd 1997; Christiansen, 

M. P. et al. 2000).  This increase in skeletal muscle fat oxidation may positively impact 

metabolic pathways, increasing the success of weight loss and weight maintenance efforts.  

Whether this adaptation occurs at the same rate in obese individuals, and particularly individuals 

with T2D, is not yet recognized.  A reduced-calorie diet and regular physical activity are 

essential for combating obesity and its related diseases; therefore, understanding the mechanisms 

that make individuals most successful is vital.  This sub- investigation was undertaken to answer 

unresolved questions regarding the metabolism of fatty acids during endurance activity in people 

who are obese and overweight with T2D.  Furthermore, this investigation sought to determine 

whether any po tential up-regulation of fatty acid oxidation was primarily attributable to plasma 

or non-plasma sources.   

1.1 RATIONALE 

Obesity is a prime risk factor for hepatic and skeletal muscle insulin resistance as well as for  

T2D.  There is accumulating evidence that obesity’s role in contributing to the development of 
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insulin resistance and T2D is, in part, due to the accumulation of lipid within and around muscle 

cells (Kelley, D. E. et al. 2002).  Previous research also points to a decrement or disturbance in 

skeletal muscle’s ability to oxidize fatty acids both at rest and during physical activity (Kelley, 

D. E. et al. 2002).  Because fatty acids are a significant substrate for skeletal muscle during 

fasting, resting, and moderate intensity physical activity, a disturbance in fatty acid oxidation 

within skeletal muscle could have a profound effect on total body homeostasis.  To date, research 

has not  shown whether these disturbances are caused by obesity or  whether they perhaps  

predispose some individuals to becoming overweight, but the known negative health 

consequences are evident.  For this reason, it is imperative to investigate fatty acid metabolism 

differences and discover whether lifestyle modifications, such as an increase in physical activity, 

can reverse any possible defects. 

Zurlo’s (Zurlo, F. et al. 1990) observational study of Pima Indians, a popul ation with a 

known significantly increased incidence of obesity and T2D, found an association of reduced 

fatty acid metabolism and obesity.  This three year follow up study concluded that a decreased 

ratio of fat to carbohydrate oxidation was associated with weight gain, independent of physical 

inactivity and may contribute to the familial aggregation of obesity seen in this population.  

Zurlo’s observations came nearly 30 years after Randle proposed the theory of a lipid- induced 

impairment of glucose metabolism that could cause insulin resistance (Randle, P. J. et al. 1964).  

This “glucose-fatty acid cycle” and whether impairments in fatty acid or glucose metabolism are 

the primary culprit of insulin resistance continue to be debated today (Unger, R. H. 2008).   

Physical activity is the only known, non-pharmacological, method of increasing fatty acid 

oxidation within muscle cells.  The expected response of muscle tissue to an increase in regular 

aerobic activity is an increased reliance on fatty acids as the primary fuel substrate, thus sparing 
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glycogen stores.  Current literature is not decisive as to whether muscle substrate oxidation in 

overweight individuals or those with T2D responds to physical activity training in this expected 

manner.  This lack of any conclusive pattern in these populations is likely due to differences in 

length and intensity of the exercise intervention, testing conditions, pos sible gender differences, 

as well as concurrent alterations in caloric and macronutrient intake that may alter substrate 

oxidation.  Because an increase in physical activity theoretically may be an excellent treatment 

for the lipotoxicity associated with obesity and T2D, answering this question is imperative.   

A second, much more clearly documented benefit of regular physical activity is a non-

insulin dependent uptake of plasma glucose by myocytes in individuals with type 2 diabetes 

(Goodyear, L. J. et al. 1992).  To treat damaging hyperglycemia, most pharmaceuticals either 

increase beta cell production and the release of insulin or target insulin dependent receptors of 

myocyte and hepatocyte cells, allowing a greater influx of glucose into the mitochondria for 

oxidation.  If indeed the primary cause of many cases of insulin resistance and T2D seen with 

obesity is due to a defect in fatty acid delivery, uptake, or oxidation, and not glucose metabolism, 

the best approach to treating these conditions would indeed be methods that target fatty acid 

oxidation directly, such as physical activity. 

In addition to conflicting reports regarding fatty acid utilization in people with 

overweight and T2D, there are further gaps in the literature. At the commencement of this 

project there were limited reports on fatty acid utilization after endurance training in overweight 

subjects and no repor ts in subjects with T2D.  Furthermore, it is not known if any seen changes 

are attributable to an increased uptake and oxidation of plasma free fatty acids or whether non-

plasma fatty acids, i.e. fatty acids stored within myocytes as intramuscular triacylglycerols 

(IMTGs) are mobilized for this purpose.  The goal of this study was to address the unanswered 
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question of the effect of endurance training on substrate oxidation in subjects with T2D and to 

offer clarity to conflicting data in obesity.  Results of this study may lead to a better 

understanding of the abnormal metabolism of lipids attributed to obesity and T2D and whether 

physical training can positively alter any defects.  Such information may provide a better insight 

into the disease processes, identifying alternate targets for prevention and treatment options for 

overweight, obesity, and T2D.   

1.2 PURPOSE 

In this prospective intervention study, we examined the extent to which an 8-week endurance 

physical activity program increases the capacity of skeletal muscle to oxidize fatty acids during 

exercise in overweight  adults with and without T2D.  By studying overweight  subjects with and 

without T2D, we intended to examine whether having T2D further limits one’s ability to oxidize 

fatty acids more than obesity may alone.  We specifically tested whether these improvements 

came predominantly from non-plasma fatty acids sources, i.e. increases in IMTG oxidation or 

simply from a greater uptake and oxidation of plasma fatty acids. 

1.2.1 Specific Aims  

The primary aims of this project were to: 

1. Determine if sedentary overweight adults with and without T2D exhibit significant 

improvements in fatty acid oxidation at rest and during physical activity due to endurance 

training.  



 6 

 

2. Compare changes in non-plasma fatty acid oxidation during sub-maximal exercise 

between previously sedentary overweight  adults with and without T2D after endurance 

training.   

 

The secondary aims of this project were to: 

1. Compare changes in fitness due to endurance training in previously sedentary overweight 

adults with and without T2D. 

2. Compare changes in body weight and composition due to endurance training in 

previously sedentary overweight adults with and without T2D. 

1.2.2 Research Hypotheses  

Primary Hypo theses: 

1. Overweight adults with T2D will have improvements in fatty acid oxidation, both at rest 

and during exercise with endurance training but not to the same extent as overweight  

adults without T2D. 

 

2. Overweight adults with T2D will have improvements in non-plasma fatty acid oxidation 

with endurance training but not to the same extent as overweight adults without T2D.  

 

Secondary Hypo theses: 

1. Overweight adults with and without T2D will have significant improvements in fitness 

due to endurance training.  
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2. Overweight adults with and without T2D not have significant changes in body weight or 

body composition due endurance training. 

 

1.3 SIGNIFICANCE 

 

A recent study estimates that T2D is now the 5th leading cause of mortality worldwide with over 

2.9 million deaths caused by diabetes in the year 2000 (Roglic, G. et al. 2005).  In the US, the 

prevalence of T2D has more than doubled over the last 20 years (Flegal, K. M. et al. 2002).  

Obesity, defined as a body mass index (BMI) of greater than or equal to 30 kg/m2, has increased 

at a similar rate.  While there are many risk factors of T2D in addition to obesity (age, family 

history of T2D, ethnicity, impaired glucose tolerance, increased waist to hip ratio, and physical 

inactivity) the rapid acceleration of T2D and obesity are highly correlated.  It is well accepted 

that increasing rates of obesity have contributed significantly to the escalating incidence of T2D.  

Research by Mokdad et al shows a positive relationship between increasing BMI and increased 

risk of T2D (Mokdad, A. H. et al. 2003).  This relationship is expressed as an increasing odds 

ratio in which adults who are normal weight (BMI <25 kg/m2), overweight (BMI 25.0-29.9 

kg/m2), obese class 2 (BMI 30-39.9 kg/m2) and obese class 3 (BMI> 40 kg/m2) have odds ratios 

for developing T2D of 1.00, 1.59, 3.44, and 7.37 respectively. 

Weight loss via a reduced calorie diet is an accepted safe and potent tool for managing 

glucose in adults with T2D.  The positive effects of decreasing weight by as little as 5-10% are 

well documented and benefit all genders and ethnicities.  Specifically, a reduced calorie weight 
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loss diet improves glucose control and reduces the risks associated with diabetic cardiovascular 

disease, including unsafe blood lipids, blood pressure and central adiposity (Schaumberg, D. A. 

et al. 2005).  The benefits of increased physical activity exclusive of weight loss are also well 

evidenced with improvements in glycemic control, body composition, blood lipids, blood 

pressure, cardio-respiratory fitness and fibrinolytic functioning (Boule, N. G. et al. 2001; Di 

Loreto, C. et al. 2005).  Furthermore, the National Weight Control Registry has shown that long-

term maintenance of weight loss is strongly related to the amount of physical activity sustained 

over time (Wing, R. R. and Phelan, S. 2005).   

While total energy balance is the ultimate determinant of weight maintenance, obesity, a 

family history of obesity and prior-obesity alter the control of metabolic pathways that regulate 

energy storage and expenditure (Ranneries, C. et al. 1998; Blaak, E. E. et al. 2000; Kanaley, J. A. 

et al. 2001).  Increasing skeletal muscle fat oxidation via physical activity may positively impact 

these pathways to improve and maintain weight loss.  The effect of endurance activity on rates of 

fat oxidation in obese adults with and without T2D has not been elucidated.  This sub-

investigation was undertaken to answer this previously unknown question. 

In the fasted state, lean individuals oxidize a higher propor tion of fat than obese 

individuals (Lean, M. E. and James, W. P. 1988; Zurlo, F. et al. 1990), and skeletal muscle 

increases its reliance on fat as a substrate versus glucose during sub-maximal exercise (Carter, S. 

L. et al. 2001).  The effect of a single bout of exercise on the rate of fat oxidation in overweight 

adults is unclear, with reports of increased rates, no change, and decreased rates (Ranneries, C. et 

al. 1998; Ezell, D. M. et al. 1999; Mensink, M. et al. 2005).  Few studies have tested the effects 

of endurance training on fat oxidation in the obese.  One such project reported greater reliance on 

fat oxidation during fasting conditions after a 16 week weight loss and endurance exercise 
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intervention (Goodpaster, B. H. et al. 2003).  This project did not measure fat oxidation during 

exercise bouts nor did it include individuals with T2D.  A review of the literature finds no studies 

that examine the effect of endurance training on fat oxidation during exercise in individuals with 

T2D. 

Current literature suggests that adults with T2D may not have the same metabolic 

adaptations as their non-diabetic counterparts, in part due to mitochondrial defects associated 

with T2D (Schrauwen, P. et al. 2002; Menshikova, E. V. et al. 2005).  In 2002, Kelley et al 

demonstrated that mitochondria of insulin resistant T2D subjects were smaller and had reduced 

oxidative capacity when compared to insulin-sensitive subjects without T2D (Kelley, D. E. et al. 

2002).  Weight loss without an increase in physical activity does not appear to improve this 

impaired capacity to oxidize fats.  This finding may therefore be an indication as to why weight 

maintenance following weight loss in the absence of regular physical activity is so difficult to 

achieve.  Thus, the contribution of this 8-week exercise intervention is to provide a further 

understanding of how physical activity affects muscle’s ability to oxidize fatty acids in 

overweight adults with and without T2D.  This information may contribute to our understanding 

of the potentially powerful role of exercise in the prevention and treatment of obesity and T2D. 
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2.0  REVIEW OF THE LITERATURE 

The intention of this study was to determine whether 8 weeks of physical endurance training 

increases the capacity of skeletal muscle to oxidize fatty acids in overweight adults with and 

without T2D.  We then compared the two groups to determine if the presence of T2D further 

inhibits fatty acid oxidation compared to obesity alone.  This study also sought to determine if 

any improvements seen in fatty acid oxidation were from an increased oxida tion of IMTGs or  

simply from a greater uptake and oxidation of plasma fatty acids.  Such information may 

contribute to a better understanding of the role of physical activity in the prevention and 

treatment of obesity and T2D as well as provide insight as to why physical activity may be so 

vital in preventing the regain of weight after a significant weight loss.  The following review of 

the literature provides support for the importance of these research questions. 

 

2.1 OBESITY AND TYPE 2 DIABETES 

The prevalence of overweight and obesity in both adults and children in the United States 

is a leading public health concern (NTF 2000; Flegal, K. M. et al. 2005).  For both clinical and 

research purposes, overweight and obesity are most often defined in terms of body mass index or 

BMI.  A person’s BMI is his weight in kilograms divided by the square of his height in meters.  
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A BMI > 25 kg/m2 is defined as overweight and a BMI > 30 kg/m2 is defined as obese.  The 

importance of addressing weight and its health effects on a national level was evidenced by the 

2001 release of the Surgeon General’s Call to Action to Prevent and Decrease Overweight and 

Obesity.  The US government has targeted efforts to treat and prevent overweight and obesity in 

many different forums including in public schools, in the work place, directly to families and 

communities, through the media, and via health care providers.  One such initiative was the 2003 

US Preventative Services Task Force recommendation that clinicians screen all adult patients for 

obesity and offer intensive counseling and behavioral intervention to maintain a significant 

weight loss (USPSTF 2003). 

This national emphasis on treating and preventing overweight  and obesity in our 

population has unfortunately not yet reversed the prevalence rate among the majority of the US 

population.  Despite these public health efforts, the most recent data published from the National 

Health and Nutrition Examination Survey (NHANES) in April, 2006, concludes that the 

prevalence of overweight among children and adolescents has actually continued to rise as has 

the prevalence of obesity among men (Ogden, C. L. et al. 2006).  The percent of children and 

adolescents who are at risk of becoming overweight or are overweight was 28.2% in 1999-2000 

and increased to 33.6% in 2003-2004.  Similarly, the prevalence of obesity among men has 

increased to 31.1% in 2003-2004, up from 27.5% in 1999-2000.  This most recent data estimates 

that 66.3 % of all US adults are either overweight or obese with 32.2% falling into the obese 

category.  The prevalence of overweight and obesity in women remained stable during this six 

year time period.  

Similarly, the prevalence of T2D has more than doubled in the United States over the last 

20 years.  From 1980 through 2002, the number of Americans with diabetes increased from 5.8 
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million to 14.7 million (Centers for Disease Control.  14 May, 2004).  In 1998, King et al, made 

projections on the worldwide prevalence of diabetes if the current rapid rate of increase 

continues.  By the year 2025, the authors estimate that the worldwide prevalence of diabetes will 

topp le 300 million (King, H. 1998).  The treatment of diabetes and its complications has created 

an enormous burden on our medical and economic systems.  The total annual economic cos t of 

diabetes in 2002 was approximately $132 billion, or one out of every 10 health care dollars spent 

in the United States (American Diabetes Association, June 2005).  Heart disease and stroke are 

the most life-threatening consequences of diabetes and occur at twice the rate in people with 

diabetes compared to those without.  In fact, more than 65 percent of deaths in patients with 

diabetes are attributed to heart and vascular disease (Centers for Disease Control, 2000).  

Discovering and understanding the most effective methods to prevent and treat T2D and obesity 

is vital to controlling these costs and improving the health of our population.   

 

2.1.1 Health Risks of Overweight, Obesity, and Type 2 Diabetes 

Scientists and clinicians have attempted to quantify the health risk of overweight and 

obesity in a variety of ways from economic costs, to years of life lost, to specific rates of 

morbidity and mortality.  Regarding morbidity and mortality, it is evidenced that as BMI 

increases over 20 kg/m2, so does the risk of morbidity from many health conditions as does the 

risk of mortality (NIH 1998).  Some health conditions that are strongly correlated with increasing 

BMI include hypertension, type 2 diabetes, coronary heart disease, stroke, gallbladder disease, 

osteoarthritis, sleep apnea, and some types of cancers (NTF 2000).  Add itiona lly, several studies 

show that having a BMI of 30 kg/m2 or greater increases the risk of death from all causes by 50-
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100% compared with adults with a BMI between 20-25 kg/m2 (Troiano, R. P. et al. 1996; NIH 

1998).  In 1991, over 280,000 deaths were attributable to obesity among US adults (Allison, D. 

B. et al. 1999).  In 2004, an analysis of the two major risk factors for obesity, poor nutritional 

intake and physical inactivity, accounted for over 400,000 annual deaths in the United States 

(Mokdad, A. H. et al. 2004). 

Data from the National Health Interview Survey demonstrated that from 1997 to 2003, 

the incidence of diagnosed diabetes increased from 4.9 to 6.9 per 1000 people, an increase of 

41% (Geiss, L. S. et al. 2006).  After adjusting for education and income level, smoking status, 

gender, and physical inactivity, the authors concluded that age, race/ethnicity, and BMI were all 

major predictors of new incidence of type 2 diabetes.  Similarly, a study by Daousi C et al 

conducted in the United Kingdom concluded that of patients in a community care setting, those 

with a BMI >30 kg/m2, had significantly poorer glycemic control, higher blood pressures, and 

worse lipid profiles.  They were also on more medications than those with a BMI< 30 kg/m2 

(Daousi, C. et al. 2006).  These find ing are consistent with previous landmark studies that 

demonstrated that a change in lifestyle behaviors (i.e. decreased caloric intake and increased 

physical activity) that results in decreased body weight can significantly decrease the incidence 

of type 2 diabetes (Tuomilehto, J. et al. 2001) (Knowler, W. C. et al. 2002). The Diabetes 

Prevention Program, a multi-center, randomized clinical trial with over 3,000 adults of both 

genders and multiple racial and ethnic groups, demonstrated that improved lifestyle behaviors 

can reduce the incidence of T2D by 58% (Knowler, W. C. et al. 2002).  Both decreased caloric 

intake and increased physical activity were emphasized in the diabetes prevention program, and 

research concluded that bo th behaviors played a role in preventing t he onset of T2D.  The current 
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study will add to the understanding of the role of physical activity and specifically the oxidation 

of fatty acids in treating obesity and T2D. 

 

2.1.2 Management of Type 2 Diabetes with Lifestyle Changes 

The benefits of tightly controlling glucose levels in individuals with T2D have been 

confirmed many times and were most clearly documented in the landmark UK Prospective 

Diabe tes Study (1998).  Compared with conventional care, long-term intensive treatment and 

control of hemoglobin A1c (HbA1c) resulted in a 25% risk reduction in all microvascular 

endpo ints.  Significant reductions in macrovascular disease risk were not seen in this project; 

however, and it should be noted that weight management was not a goal of this clinical trial.  

Recently, a follow up to the Diabetes Control and Complications Trial established that intensive 

glucose management in patients with type 1 diabetes does reduce many of the risk factors 

associated with cardiovascular disease, such as LDL cholesterol, triglycerides, and several 

inflammatory markers (Nathan, D. M. et al. 2005). 

A reduced calorie diet is a safe and potent tool for managing glucose in adults with T2D.  

Many sources have documented the benefits of decreasing body weight by as little as 5-10 

percent in both genders and all ethnicities.  Specifically,  a reduced calorie diet results in 

improvements in glucose control as measured by fasting glucose, HbA1c, and insulin sensitivity.  

Weight loss also improves many of the risk factors associated with diabetic cardiovascular 

disease including blood lipids and blood pressure. 

The benefits of increased physical activity exclusive of weight loss in the treatment of 

T2D have also been well evidenced.  A meta analysis reviewing the effect of exercise on 
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glycemic control in adults with T2D demonstrated an overall mean difference in HbA1c of 

0.66% between exercise and control groups, a reduction that if sustained over time would result 

in significant reductions in diabetic complications (Boule, N. G. et al. 2001).  Physical activity 

has additional cardio protective benefits including favorable changes in body composition, blood 

lipids, blood pressure, cardio respiratory fitness, and fibrinolytic functioning (Ruderman, 1995).  

DiLoreto et al (2005) most recently punctuated this in a post hoc analysis of a physician based, 

randomized intervention in which increased amounts of moderate walking resulted in decreases 

in all markers of glycemic control and cardiovascular risk factors as well as significant decreases 

in money spent on managing diabetes and other health conditions.  In add ition to having 

favorable effects on specific disease risk factors, physical activity is directly related to the long-

term maintenance of a weight loss.  The relationship of regular physical activity and weight loss 

maintenance, as evidenced by the National Weight Control Registry and other long-term clinical 

trials is discussed below.  All of these data indicate that a lifestyle approach of incorporating 

both a reduced caloric intake and an increase in physical activity is a safe and powerful tool in 

the management of T2D.   

 

2.1.3 The Role of Physical Activity in Weight Loss Maintenance  

Significant weight loss via a reduced calorie diet is possible for people who are 

overweight, obese, and/or diagnosed with T2D.  The maintenance of a significant weight loss 

over a long period of time however remains a clinical and public health challenge.  Even well 

controlled weight loss studies in which subjects are given long term support show a significant 

amount of weight regain over time (Vogels, N. et al. 2005) (Leser, M. S. et al. 2002). 
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The National Weight Control Registry (NWCR), established in 1994, is the largest 

prospective study of long-term successful weight loss maintenance. Because maintaining weight 

loss seems so elusive, the NWCR was developed to identify and investigate the characteristics of 

people who have succeeded at long-term weight loss. The NWCR is currently tracking over 

5,000 adults who have lost significant (30+lbs) amounts of weight and kept it off for long 

periods of time (1 year+).  The importance of physical activity in the maintenance of weight loss 

is evident in the NWCR population.  Successful weight maintainers in the NWCR report 

expending an average of 2,800 kcal/week in physical activity, with more than 90% of successful 

NWCR participants reporting this high level of physical activity.  One report analyzing weight 

loss maintenance after 1 year of enrolling in the NWCR concluded that time spent in physical 

activity is a significant predictor of weight maintenance and that alternatively low physical 

activity is a predictor of weight regain (McGuire, M. T. et al. 1999). 

In addition to observational data supporting the importance of exercise in weight 

maintenance, other studies have also found a strong correlation between phys ical activity and 

weight maintenance (Donnelly, J. E. et al. 2003).  A meta-analysis of 6 randomized controlled 

trials compared the effects of a reduced calorie diet alone versus a reduced calorie diet with an 

exercise program on weight loss and subsequent weight maintenance after one year (Wing, R. R. 

1999).  Study participants in the reduced calorie diet and exercise arm fared better at maintaining 

their weight than the reduced calorie diet only group in all 6 studies, though only two of the 6 

studies reached a statistically significant difference between the groups.  A larger meta-analysis 

that included both observational, as well as randomized controlled trials also concluded that 

although statistical significance could not be reached, subjects who included a regular physical 

activity program in their lifestyle tended to maintain a greater weight loss, and the level of 
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activity was proportional to the amount of weight loss maintained (Fogelholm, M. and 

Kukko nen-Harjula, K. 2000).  Although high levels of physical activity are associated with long-

term success of weight maintenance (Jakicic, J. M. and Otto, A. D. 2005; Jakicic, J. M. and Otto, 

A. D. 2005), the exact physiologic mechanism beyond its contribution to a caloric deficit is not 

known.  Because physical activity in the only known safe method for increasing total fat 

oxidation, perhaps a significant increase in physical activity can compensate for any impairment 

in fat oxidation that exists in obese or post-obese individuals. 

2.2 FATTY ACID OXIDATION 

Because maintaining a significant weight loss seems to be so elusive for many patients, scientists 

have begun to investigate whether metabolic differences exist between people that make weight 

loss maintenance more difficult for some.  One such consequence of weight loss reported by 

several researchers is a reduced capacity for fat oxidation after weight loss (Bryson, J. M. et al. 

1996) (Kelley, D. E. et al. 1999).  Such a reduction could at least in part explain why maintaining 

weight loss is so difficult and why physical activity, besides creating a caloric deficit, appears to 

be so crucial for weight loss maintenance.  Prior to reviewing literature regarding the oxidation 

of fatty acids in specific states such as during exercise, in overweight versus non-overweight 

individuals and in the presence of diagnosed T2D, it is important to review the metabolic process 

of fatty acid oxidation.   
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2.2.1 Overview of Fatty Acid Oxidation  

Endogenous triacylglycerols provide the largest amount of stored fuel in the body.  While 

triacylglycerols are stored primarily in adipose tissue, they are also present in significant 

amounts in skeletal muscle and plasma.  In a lean adult male, endogenous triacylglycerols 

represent an enormous amount of energy, approximately 133,840 kilocalories.  This large fuel 

source is utilized at its highest rate during periods of fasting, such as overnight, and during 

prolonged bouts of moderate intensity physical activity. 

For fatty acids to be used as energy by the body’s muscles, triacylglycerols must be 

hydrolyzed from adipose tissue, muscle or plasma.  These fatty acids must then be transported to 

skeletal muscle and taken up by mitochondria for oxidation.  The majority of free fatty acids 

(FFA) released from adipose tissue are transported across the muscle membrane via transport 

proteins while a much smaller amount diffuse across the membrane.  Once in the cytosol, FFAs 

from adipose tissue or from within skeletal muscle itself must join with fatty acid binding 

proteins (FABP) for transport to the surface of the outer mitochondrial membrane.  FFAs are 

then converted to a fatty acyl carnitine compound by binding with coenzyme A (CoA).  Finally, 

fatty acyl carnitine is moved across the outer mitochondrial membrane via carnitine 

palmitoyltransferase I (CPT-I) and then across the inner mitochondrial membrane via carnitine 

palmitoyltransferase II (CPT-II).  Once inside the mitochondria, the carnitine is removed, the 

CoA is rebound, and the fatty acyl-CoA molecules are free to enter the beta-oxida tion pa thway.  

Beta-oxidation of fatty acids is a cyclic set of 4 reactions in which two carbons are removed in 

each cycle.  For each two carbons cleaved from the chain, 5 adenosinetriphosphate (ATP) 

molecules are produced.  These ATPs are a result of the formed reducing equivalents FADH2 

and NADH entering the electron transpor t chain.  Each cycle of reactions also produces an 
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acetyl-CoA molecule that produces an additional 12 ATP molecules via the tricarboxylic (TCA) 

cycle.  (Refer to Figure 1.) 

 

 

Figure 1:  Fatty acid trans port into the mitochondria and subsequent beta-oxidation 

Keins B Physiol Rev 2006;86:205-243. 

 

During periods of fasting, such as overnight, adipose tissue provides the majority of the 

body’s energy needs by releasing fatty acids into the blood stream for oxida tion (Klein, S. et al. 

1986).  Hormones that stimulate and inhibit hormone sensitive lipase (HSL) regulate this process 

of lipolysis.  During such periods, the amount of fatty acids released from adipose tissue is 

significantly greater than the amount of oxidized fatty acids.  The liver re-esterifies those fatty 

acids not oxidized back into triacylglycerols. 

During exercise, the control of skeletal muscle fat metabolism appears to be regulated at 

4 possible sites (Kiens, B. 2006).  The first site of control is the lipolysis of fatty acids from 
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adipose tissue and its subsequent delivery to muscle.  The second site is the movement of FFAs 

across the muscle membrane into the cytosol.  The third site of control is the regulation of HSL 

activity and the fourth is the regulation of FFAs across the mitochondrial membrane by carnitine 

palmitoyltransferase 1 (CPT-1).  

 

2.2.2 Fat Oxidation During Aerobic Activity in Non-Overweight Individuals  

During low and moderate intensity exercise in healthy, lean individuals, skeletal muscle 

metabolism gradually increases its reliance on fat oxidation (Jeukendrup, A. E. et al. 1998) 

(Horowitz, J. F. and Klein, S. 2000).  This increase during prolonged bouts of moderate physical 

activity is estimated to be 5-10 times greater than the rate of fatty acid oxidation at rest (Krogh 

A, L. J. 1920).  The increased demand for fatty acids for energy is supplied by both an estimated 

2-3 fold increase in the lipolysis of fatty acids from adipose tissue (Wolfe, R. R. et al. 1990) 

(Klein, S. et al. 1994) as well as a decrease in the amount of released fatty acids that are 

reesterified by the liver (Wolfe, R. R. et al. 1990) as blood flow is largely redirected to 

exercising muscles for delivery of oxygen as well as released fatty acids. This metabolic shift 

during an acute bout of exercise has been well described in healthy individuals (Schaumberg, D. 

A. et al. 2005) (Boule, N. G. et al. 2001) as well as in obesity and T2D (Colberg, S. R. et al. 

1996) (Mensink, M. et al. 2001) (Kang, J. et al. 1999) (Borghouts, L. B. et al. 2002). 

As exercise intensity increases from rest, the absolute contribution of fat to total energy 

production increases.  The absolute contribution of fat to total energy production peaks between 

50-65% of maximal oxygen uptake (VO2max) and decreases as exercise intensity nears 

approximately 85% of VO2max.  Aerobic training significantly enhances the body’s ability to 
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use fat as a fuel source during moderate intensity activity even further.  This adaptive response is 

possible for several reasons.  First, there is an increase in capillary density from training that 

allows a greater blood flow to reach exercising muscle, thus increasing the delivery of fatty 

acids.  Aerobic training also increases the density of mitochondria in skeletal muscle, providing a 

greater capacity to oxidize fat (Holloszy, J. O. 1967).  There is also an increase in the enzyme 

CPT-1, the enzyme that transports fatty acids across the outer mitchondria membrane (Mole, P. 

A. et al. 1971) as well as an increase in fatty acid binding proteins that regulate myocyte fatty 

acid transport (Turcotte, L. P. et al. 1999).  This adaptive response to training has been shown to 

a significant degree in athletes (Jansson, E. and Kaijser, L. 1987) as well as in sedentary non-

obese adults (Kiens, B. et al. 1993), and the elde rly (Sial, S. et al. 1998).  A few studies have 

found a positive response in obese adults (van Aggel-Leijssen, D. P. et al. 2001; van Aggel-

Leijssen, D. P. et al. 2002) and pe rhaps even in adults with impaired glucose tolerance (Mensink,  

M. et al. 2005).  (This study will be discussed in more detail later.)  Whether endurance training 

improves the ability of people with T2D to utilize fatty acids for energy during physical activity 

has not yet been repor ted.  

 

2.2.2.1 Non-plasma, Intramuscular Triacylglycerol Oxidation 

In addition to fatty acids from plasma and adipose tissue, intramuscular triacylglycerols 

(IMTGs) may also provide an additional source of fatty acids for oxidation to exercising muscles 

(Klein, S. et al. 1994).  Using stable isotope technology, several researchers have noted the 

possible contribution of this additional fuel source.  The initial proof of this additional active fuel 

source during prolonged activity was evidenced by reports from several investigators showing 

the rate of fatty acid disposal (uptake from plasma) is actually lower than the rate of fatty acid 
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oxidation during the first 120 minutes of moderate intensity exercise (Kanaley, J. A. et al. 1993; 

Martin, W. H., 3rd et al. 1993; Romijn, J. A. et al. 1993).  This negative ba lance suggests that 

fatty acids are coming from another energy source, presumably IMTGs.  Coined the “athelete’s 

paradox,” it has been shown that the amount of IMTG stored in the muscles of endurance 

athletes is similar to that stored as IMTG in obese individuals (Goodpaster, B. H. et al. 2001) 

(van Loon, L. J. and Goodpaster, B. H. 2006).  However, the cause for the existence of such a 

large amount of IMTGs in sedentary obese adults has not been determined.  This large fat 

reserve may be the result of increased delivery or uptake of plasma FFAs to muscle tissue in 

obese individuals.  However, it is also important to examine the capacity of skeletal muscle to 

oxidize FFAs.  The “health” of the muscle may determine if excess FFAs will be disposed and 

oxidized or directed towards intracellular storage.  Therefore, it is conceivable that one of the 

reasons for excess fat accumulation in skeletal muscle in T2D is the possibility of deficient 

oxidative capacity in this tissue, specifically in regards to utilization of IMTGs.  (Refer to Figure 

2.) 
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Figure 2:  Rates of lipolysis, fatty acid uptake, and fatty acid oxidation at rest and during 4 h of 

treadmill exercise.  Source:  Horowitz JF and Klein S  Am J Clin Nutr 2000;72:558S-563  Rates of lipolysis (3 x 

the glycerol rate of appearance in p lasma), fatty acid uptake, and fatty acid oxidation at rest and during 4 h of 

treadmill exercise performed at 45% of maximal oxygen uptake in untrained subjects. 

 

The use of labeled isotope fatty acid tracers have permitted estimates of the portion of 

fatty acids used for energy from sources other than plasma.  These non-plasma fatty acids from 

triglycerides can be estimated as the difference between total fat oxidation, as measured by 

indirect calorimetry, and plasma FFA oxidation as measured by a labeled carbon fatty acid 

infusion.  Early research suggests that during the first two hours of exercise, IMTGs provide as 

much as 50% of the fatty acids used for oxidation by exercising muscle in young, healthy lean 

subjects (Martin, W. H., 3rd et al. 1993; Stellingwerff, T. et al. 2007).  Interestingly, Boon found 

a much lesser contribution of IMTGs to total fatty acid oxidation and no differences between 
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long-term exercising endurance trained males and matched sedentary subjects when studying 

older (58+2 years), but not elderly, adults (Boon, H. et al. 2007).   

 

2.2.3 Obesity and T2D are Associated with a Decline in Fat Oxidation 

Previous research strongly indicates that there is a decline in FFA oxidation with obesity 

and T2D (Kelley, D. et al. 1994; Kelley, D. E. et al. 1999).  Several examples depicting reduced 

rates of fat oxidation post weight loss were described earlier.  Because these two conditions of 

obesity and T2D frequently occur together, it is possible that bo th share disturbances in fat 

metabolism.  Some scientists have theorized that a decline in FFA oxidation leads to increased 

fat storage within adipose tissue and skeletal muscle, thereby promoting obesity and insulin 

resistance, a hallmark characteristic of T2D (Blaak, E. E. 2004).  While weight loss does 

improve insulin resistance in obese adults with and without T2D, it does not seem to improve 

this impaired capacity to utilize fat for energy.  This has been demonstrated in obese subjects 

after weight loss during beta adrenergic stimulation (Blaak, E. E. et al. 1994) as well as at rest 

(Kelley, D. E. et al. 1999) and in adults with obesity and T2D during exercise (Blaak, E. E. et al. 

2001).  This may be an indication as to why exercise helps to maintain weight loss and may even 

suggest that impairments in fat oxidation are a primary cause of obesity rather than a 

consequence (Blaak, E. E. and Saris, W. H. 2002).  Also supporting this theory is a prospective 

study of Pima Indians that found that a decreased reliance on fat as a fuel source, as measured by 

24 hour RQ, is a risk factor for weight gain (Zurlo, F. et al. 1990).   Thus, a thorough 

understanding of how physical activity affects muscle’s ability to oxidize fat in people with 
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obesity and T2D will provide important data concerning the role of exercise in the prevention 

and treatment of these diseases. 

2.2.3.1 Imtramuscular Triacylglycerol Utilization During Exercise in Obesity and Type 2 

Diabetes 

Two separate cross sectional studies revealed no differences in total fat oxidation during 

a single bout of moderately intense exercise but rather a difference in the source of fatty acids 

used for oxidation when comparing obese adults with lean adults matched for age and aerobic 

capacity (Horowitz, J. F. and Klein, S. 2000) (Goodpaster, B. H. et al. 2002).  The population of 

the first study was women with abdominal obesity while the second study evaluated obese men.  

Both projects reported significantly higher non-plasma, i.e. IMTG, fatty acid oxidation during 

exercise in obese adults, indicating a variance from the “normal” pattern of substrate oxidation 

during exercise in lean adults.  The additive effect of having T2D was compared with non-

diabetic obese matched controls in a similar study of fat oxidation during a single bout of 

moderate intensity exercise (Blaak, E. E. et al. 2000).  Again, total rates of fat oxida tion were 

similar between the two groups, but those with T2D had significantly lower rates of FFA 

appearance and disappearance compared with control subjects at rest and during exercise.  

Similarly, the oxidation of plasma fatty acids was significantly lower in T2D than in controls at 

rest and during exercise while rates of non-plasma fatty acids was greater in T2D in both 

conditions.  This was the first study to show an additional impairment in the oxidation of plasma 

fatty acids with T2D over obesity.  The authors hypothesize several reasons for this impairment.  

First, the lower rate of appearance of FFA may be explained by an increased re-esterification 

within adipose tissue.  Second, people with T2D may have an increase in muscle lipolysis, which 

may flood the muscle with FFA, thus decreasing the blood tissue concentration gradient, 
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resulting in a lower plasma fatty acid uptake and oxidation.  Lastly, T2D may cause a 

disturbance in plasma fatty acid transport across the cytoplasm.  This last hypothesis is supported 

by Blaak’s evidence of a reduced concentration of fatty acid binding proteins in the skeletal 

muscle of adults with T2D (Blaak, E. E. et al. 2000) as well as data showing increased lipid 

droplet concentration in myocytes of individuals with T2D.  These droplets located very near the 

mitochondria are not reliant on cytosolic transport (Hoppeler, H. 1999). 

 

2.2.4 Effects of Weight Loss on Fatty Acid Oxidation 

Larson et al. compared resting metabolic rate (RMR) and respiratory quotient (RQ) in 

post obese individuals with a weight stable control group matched for age and body weight.  

After adjusting for fat- free mass, fat mass, age, and gender, energy expenditure (i.e. RMR), was 

not significantly different between the groups.  Post obese subjects, however, did have 

significantly higher RQs over a 24-hour period compared with control subjects.  This suggests 

that post-obese individuals have lower rates of fat oxidation, predisposing a greater rate of fat 

storage, which may contribute to the tendency to regain lost weight (Larson, D. E. et al. 1995).  

Postprandial fat oxidation has also been shown to be reduced in post obese adults measured by 

RQ compared with subjects matched for age and weight (Raben, A. et al. 1994).  Astrup et al 

also found a significant difference in fat oxidation between post-obese and matched control 

subjects after each group consumed a high fat diet (Astrup, A. et al. 1994).  In this study, control 

subjects appropriately increased their ratio of fat to carbohydrate oxidation after following a high 

fat diet for three days while post-obese subjects did not.  This low capacity for fat oxidation 

could contribute to a positive fat balance and weight regain, especially when eating a fat-rich 
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diet.  Faraj et al conducted a more detailed study in which post-obese women that were 2-3 years 

post-gastric banding were age and weight matched with control subjects (Faraj, M. et al. 2001).  

This study evaluated fat metabolism using a labeled fatty acid (oleate) isotope tracer.  The post-

obese subjects did not increase their enrichment of non-esterified fatty acids (NEFA) in 

circulation after 8 hours, while NEFAs were markedly increased in control subjects.  This 

suggests a tendency towards peripheral fat storage in the post-obese subjects.  Post-obese 

subjects also had lower postprandial insulin, leptin, and acylation-stimulating protein levels. 

Individuals with T2D can achieve the same amount of weight loss as those without T2D; 

however, a study looking at weight maintenance after a behavioral weight loss intervention 

suggests that those with T2D may have a more difficult time maintaining that weight loss 

(Guare, J. C. et al. 1995).  In this pa rticular study, women with T2D lost an average of 7.4 k g in a 

16-week behavioral weight loss program.  Age and weight matched controls lost an average of 

6.4 kg .  At the year one follow-up, those with T2D had regained 5.4 kg compared with 1.0 kg in 

the control group.  While this only suggests that having T2D may predispose an individual to 

weight regain, other research suggests this may not be due solely to differences in behaviors.  

One such study which examined obese adults with and without T2D 5 years after a weight loss 

program concluded that both groups had significant weight regain and reduced resting fat 

oxidation as well as reduced metabolic flexibility during a hyperinsulinemic clamp after weight 

regain.  Those with T2D, however, had a significantly lower RQ during the hyperinsulinemic 

clamp study than those without T2D (Poynten, A. M. et al. 2003).  Because a regular exercise 

program appears to be crucial for successfully maintaining weight loss long term, it is important 

to investigate whether some people with obesity and/or T2D have impairments in fatty acid 

oxidation that may predispose them to regain lost weight.  In doing so,  it is also of importance to 
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examine the effects of an endurance exercise-training program on fat oxidation during exercise 

as well as at rest. 

 

2.2.5 Exercise Training Effects on Fat Oxidation in the Presence of Obesity and Type 2 

Diabetes 

Little is known about substrate oxidation after endurance training in obesity or T2D and 

much of the data is conflicting.  Following are a few of the key studies.   Please note that there is 

a lack of available research regarding endurance training without a concurrent weight loss 

intervention, which prevents the separate analys is of the two interventions on metabo lic changes.  

At least two separate studies have shown that endurance training can blunt the decline in resting 

fat oxidation that normally occurs with weight loss (Nicklas, B. J. et al. 1997) and (van Aggel-

Leijssen, D. P. et al. 2001).  More recently, a  study by Mensink e t al concluded that a combined 

lifestyle intervention of weight loss and aerobic activity prevented the further deterioration of 

impaired fat oxidation during exercise in adults with impaired glucose tolerance (Mensink, M. et 

al. 2005).  In this intervention, 9 adults with impaired glucose tolerance and 7 matched control 

subjects participated in a 12 month program that included regular individual meetings with a 

dietitian to reduce caloric intake and increase physical activity to at lest 30 minutes of walking/5 

days/week.  While control subjects saw a decline in their capacity to oxidize fatty acids over 

time, as measured by indirect calorimetry, those in the intervention group, a lthough they did not 

significantly improve, did maintain their baseline ability to oxidize fatty acids even with a small 

amount of weight loss. 
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Current literature provides conflicting results of the effect of endurance training on fat 

metabolism during exercise.  An eight-week exercise training intervention at 45% of VO2max in 

obese men resulted in an increased total fat oxidation without a change in lipolysis or FFA 

availability (Kempen, K. P. et al. 1995) as did a similar study at 40% VO2max that fur ther 

showed not only an increase in total fat oxidation in obese men, but that the increase was largely 

due to an increase in non-plasma fatty acid oxidation (van Aggel-Leijssen, D. P. et al. 2002).  

These two s tudies are contrasted with at least one other published work in which fat oxidation 

during exercise in obese women after exercise training was not increased, but rather only 

carbohydrate oxidation was increased (Kanaley, J. A. et al. 2001). 

To date, there are no published data investigating the effects of endurance training on fat 

oxidation during physical activity in individuals with T2D.  Nor have there been many published 

studies on the effects of endurance training o n fat oxidation in ind ividuals with obesity without 

the confounding factor of weight loss.  The results of this proposed study more clearly define the 

metabolic benefits that obese adults with and without T2D may expect from exercise training.  

2.3 SUMMARY 

Significant weight loss via a reduced calorie diet is possible for obese people with and 

without T2D.  However, regardless of the presence of diabetes, maintaining a significant weight 

loss remains a clinical and public health challenge.  Even well controlled long-term weight loss 

studies (in which subjects are given long term support) report a significant amount of weight 

regain over time. 
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This observation has led scientists to investigate whether metabolic differences exist that 

make weight loss maintenance more difficult for some people.  One such consequence of weight 

loss reported by several researchers is a reduced capacity for fat oxidation after weight loss.  

Such a reduction could in part explain why maintaining weight loss is so difficult and why 

physical activity, besides creating a caloric deficit, appears to be so crucial for weight loss 

maintenance.  As physical activity is the only known proven safe method for increasing the 

body’s ability to utilize stored fat for energy, this study may also provide metabolic insights into 

alterations in fatty acid metabolism associated with obesity and T2D. 

 During a session of prolonged moderate physical activity, skeletal muscle gradually 

increases its reliance on fat oxidation.  In healthy individuals aerobic training enhances this 

metabolic adaptation; however, whether individuals with T2D respond to exercise training with 

similar metabolic adaptations remains to be determined.  To date, there are no published 

prospective studies comparing rates of fat oxidation during physical activity before and after 

endurance training among individuals with obesity and T2D.  This project tested the hypothesis 

that adults with T2D will not see the expected increase in total or plasma fatty acid oxidation, 

measured by indirect calorimetry and a labeled isotope tracer, compared with people without 

T2D.  Knowing whether physical training can positively alter the abnormal metabolism of lipids 

associated with obesity and T2D will contribute to a more clear understanding of the diseases 

and provide further insight into the possible benefits of increased physical activity. 
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3.0  METHODS 

3.1 INTRODUCTION 

Whether obese individuals with and without T2D can improve their ability to oxidize 

fatty acids with endurance physical training remains to be shown.  Therefore, the purpose of this 

study was to examine changes in fatty acid oxidation during exercise after obese adults with and 

without T2D complete an 8-week endurance physical activity program.  This study also 

examined whether any seen changes in total fatty acid oxidation were derived from plasma or 

non-plasma fatty acid sources. 

3.2 SUBJECTS 

Sedentary overweight men and women were recruited to participate in this sub-

investigation of a larger clinical trial.  No distinction was made based on race or ethnicity.  To be 

eligible for the trial subjects were between the ages of 28 to 55, overweight or obese, and with or 

without T2D.  This specific age range was chosen because the parent investigation included 

methods for comparing mitochondria within skeletal muscle between the groups.  An age too 

young or too old could confound the effect of aerobic training on mitochondrial enzyme activity.  

Younger people were excluded because common mitochondrial abnormalities are unlikely to be 
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manifested yet, and older adults may bear too many mitochondrial mutations as a result of aging 

(Pesce V, e. a. 2001; Short K, e. a. 2005).  Another requirement was that subjects had to be  

previously sedentary as de fined by self- reported physical activity of less than 3 sessions of no 

more than 20 minutes per week for the previous six months.  

The BMI of eligible subjects was 28.0-39.9 kg/m2, with a maximum weight of 350 lbs. 

due to testing equipment maximum specifications.  The lower BMI range (28.0 kg/m2) was 

chosen to eliminate subjects that may have undiagnosed impaired glucose tolerance.  Including 

such subjects may mask a clear difference between those with and without T2D.  In add ition this 

helped to further differentiate these two subject groups from the lean control group in the parent 

project, which had an upper limit BMI of 25 kg/m2. To determine eligibility for subjects with 

T2D, a diagnosis of T2D was determined from either two separate fasting glucose measurements 

of > 126 mg/dl, confirmation of diagnosis from the subject’s physician if treated by diet and 

exercise alone, or proof of prescription medication for the treatment of T2D.   

We recruited subjects from the local area using a variety of methods.  Our primary 

method of recruitment was via several telephone audix announcements to University of 

Pittsburgh and University of Pittsburgh Medical Center employees.  We also posted Institutional 

Review Board approved flyers throughout the Oakland area and utilized the Obesity and 

Nutrition Research Center’s subject database.   

The following criteria determined eligibility of individuals in the main trial.  The same 

criteria were thus applied to individuals in this sub-investigation.   
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3.2.1 Exclusion Criteria 

1. Participating in regular physical activity of at least 20 minutes on three separate days per 

week during the previous six months prior to screening. 

2. Weight change > 3kg in the preceding month. 

3. Planned or established pregnancy. 

4. Presence of severe cardiorespiratory disease or any other condition that precludes 

exercise. 

5. Presence of any systemic or organ disease that might significantly affect insulin 

resistance or cause muscular disease. 

6. Symptomatic diabetic neuropathy. 

7. Resting systolic blood pressure > 150 mmHg or a resting diastolic blood pressure > 95 

mmHg either with or without medication. 

8. HbA1c > 10%. 

9. Treatment with any of the following medications:  beta blockers (due to blunting effect of 

heart rate response to exercise), insulin, oral glucocorticoids, fibrates, niacin, and any 

weight-loss drug. 

10. Exclusion laboratory criteria: hematocrit <34%; platelets count <70,000/uL, serum 

creatinine >1.5 mg/dl; HbA1c >10%; serum TSH <0.1 or >8 mU/ml; ALT > 2.5 x times 

the upper limit of the laboratory’s normal range; alkaline phosphatase >150 IU, fasting 

triglycerides >450 mg/dl, cholesterol >300mg/dL, fasting blood glucose >200, presence 

of proteinuria grade 2+ or more on urine sediment analysis. 

11. Any other physical complication that would prevent optimal participation in the 

moderate-intensity walking component of the study. 
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3.3 EXPERIMENTAL DESIGN 

This prospective experimental study examined whether an 8-week physical activity program 

increased the capacity of skeletal muscle to oxidize fatty acids during exercise in overweight and 

obese adults with and without T2D.  This research project was conducted as a sub- investigation 

of a larger research project entitled, “Mitochondrial Dysfunction in Type 2 Diabetes Mellitus and 

Capacity for Fat Oxidation During Exercise” (Principal Investigator:  Frederico Toledo, MD.)  

Both projects utilized the same subjects while analyzing different physiological markers.  For 

this reason, the inclusion and exclusion criteria for this dissertation project reflect criteria of the 

larger parent project.  Specific reasons are explained within this chapter as each criterion is 

discussed. Subjects in both groups defined below underwent a series of baseline assessments 

(described in section 3.4) prior to entering the 8-week aerobic exercise intervention.  All 

assessments were repeated after the completion of the 8-week program.   

 

Overweight Group (OW):  Subjects without T2D, BMI between 28-40 kg/m2. 

T2D Group:  Subjects with T2D, BMI between 28-40 kg/m2. 

 

The University of Pittsburgh Institutional Review Board approved the larger clinical trial 

as well as the assessments for this sub-investigation.  Prior to participating in screening 

assessments for this study, each participant signed an informed consent. Prior to enrollment, 

subjects successfully completed a physical examination with a physician, a maximal graded 

exercise test, which was reviewed by a cardiologist, and preliminary blood work to ensure safety 

in beginning a physical activity program.  For safety reasons, subjects taking medications with 
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the potential to cause hypoglycemia were required to monitor their blood glucose levels using a 

glucose meter. 

The assessments for this trial were performed at baseline and completion of the exercise 

intervention and included measures of resting and exercising total fatty acid oxidation, as well as 

the utilization of stable isotopes to determine the contributing source of the fatty acids.  In 

addition to these measures, participants underwent evaluations of body weight, body 

composition and aerobic fitness at baseline and post-exercise training.  These assessments are 

described in detail below (see section 3.4.)  

Please see Appendix A:  Study Flow Sheet for detailed schedule of testing visits. 

3.3.1 Exercise Intervention 

 The basic exercise intervention prescription was the same for all subjects.  Each subject’s 

goal was to progress to a minimum of 4-5 aerobic exercise sessions of 45 minutes duration per 

week by the eighth and final week.  The subjects began with 20-30 minute sessions 4-5 days per 

week and increased gradually to 45 minutes as able.  This progression was monitored and 

supported by an exercise physiologist (EP).  During the 8-week aerobic training program, 

participants came at least twice a week to the Obesity and Nutrition Research Center (ONRC) 

Exercise Room for supervised exercise sessions with an EP.  A minimum of two required visits 

per week was chosen to facilitate adherence to the program as well as respect participants’ 

schedules. Sessions were conducted either one on one or with two subjects and one EP. 

The recommended primary mode of activity for all subjects was walking, because 

walking is a natural, easy, affordable, and low injury risk form of exercise.  Moreover, moderate 

intensity walking is known to increase mitochondrial activity in obesity and T2D (Toledo, F. G. 
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et al. 2007).  Continuous walking was encouraged.  However, given daily time constraints and 

research demonstrating the benefits of short bouts of activity (Jakicic, J. M. et al. 1995) 

participants were allowed to count 10 minute “bouts” of walking throughout the day to reach 

their 45-minute goal.  Participation in other forms of aerobic exercise, such as biking and 

swimming that were maintained for a period of at least 10 minutes was acceptable.  We 

encouraged all subjects to use a stationary bicycle for a portion of each session at the ONRC 

exercise room as all exercise-testing sessions were completed on a cycle ergometer. 

Participants learned how to use the heart rate monitor at the ir first session and encouraged 

to exercise at a level that maintained their heart rate in the target range of 50-70% of their 

predetermined maximum heart rate.  We calculated individual target ranges from the maximum 

heart rate attained during the initial maximal graded exercise test.  This range coincides with the 

rating of perceived exertion (RPE) of “somewhat hard” (Dunbar, C. C. et al. 1992).  Introduced 

to the Borg 15 Point Rating o f Perceived Exertion Scale at the time of their maximal exercise test 

during screening, participants were taught to “anchor” their exertion level of “somewhat hard.”  

We also encouraged them to reevaluate what “somewhat hard” meant to them each session.  

Together, these two tools allowed participants to maintain the appropriate heart rate during 

physical activity training to produce maximum metabolic improvements.  This was especially 

important given the relatively short length of the intervention (8 weeks).  Additionally, learning 

to use the RPE scale may have helped participants maintain appropriate intensity of activity after 

the study ended.  We instructed subjects not to participate in “hard” or vigorous physical activity 

for safety reasons as well as and to maintain the integrity of the study.   

All subjects had an exercise diary to record time spent in physical activity, mode of 

activity, intensity, and blood glucose if appropriate for those with T2D.  This information was 
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collected each week.  Only sessions that included all required data (mean heart rate and duration) 

were included in caloric expenditure calculations.  

3.4 ASSESSMENT COMPONENTS 

Subjects completed a set of exercise tests at baseline to assess fitness and rates of fatty acid 

oxidation at rest and during sub-maximal exercise.  They repeated this battery of tests after the 8-

week training phase to assess changes in fitness and the bod y’s ability to oxidize fatty acids due 

to the intervention.  These tests included a maximal graded exercise test, a 60-minute sub-

maximal exercise test with the fatty acid palmitate, a 60-minute sub-maximal exercise test with 

acetate, and a dual energy x-ray absorptiometry (DEXA) scan to determine fat- free mass.   

3.4.1 Maximal Graded Exercise Test (VO2max) 

Subjects completed a graded exercise test (GXT) to assess cardio-respiratory fitness 

(VO2max) at baseline and completion of the intervention.  All exercise tests were conducted at 

the ONRC Exercise Physiology Lab at UPMC-Montefiore Hospital under the direction of a 

physician and an EP.  The test was an incremental modified Bruce protocol on an electronically 

braked cycle ergometer (Bosch ERG 601, Germany).  This 6-12 minute GXT protocol is well 

suited for overweight adults.  We recorded heart rate, blood pressure, and electrical activity of 

the heart prior to, during and immediately following the test. Prior to beginning the maximal 

exercise test, the Borg RPE Scale was presented to participants as described earlier.  Resistance 

began at 25 watts for women and 50 watts for men, and was increased by 25 watts every 2 
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minutes until subjects reached volitional fatigue.  Subjects breathed through a mouthpiece 

connected to a two-way breathing valve (Hans Rudolph, Kansas City, MO) during the test, and 

expired air was collected via open-circuit spirometry into a 5-liter mixing chamber (Rayfield 

RMC-1, Waitsfield, VT) containing a bi-directional turbine to measure expiratory flow.  We 

used a customized computer program to analyze and integrate signals for the determination of 

oxygen consumption (VO2) every 30 seconds.  During screening, the test was stopped and 

subjects excluded from further participation if there was >2mm ST-segment depression on the 

electrocardiogram or evidence of cardiovascular instability, such as hypotension, dangerous 

arrhythmias or angina.  A collaborating cardiologist reviewed the electrocardiogram for study 

eligibility.  

3.4.2 Sub-max imal Exe rcise Tests 

To assess the body’s ability to oxidize fat during exercise, subjects returned to the 

Exercise Laboratory after completing the VO2max test for two additional baseline exercise tests.  

There were no less than 48 hours between any of the three exercise tests.  These two sub-

maximal exercise tests, repeated after the training intervention, were 60-minute cycle ergometer 

exercise sessions completed after an overnight fast, one with a 13C-palmitate and one with a 13C-

acetate infusion.  At 50% of their pre-determined VO2max, these sessions quantified rates of 

total fat oxidation during sub-maximal exercise using gas exchange indirect calorimetry and 

differentiated plasma versus non-plasma sources of fatty acids using a palmitate isotope tracer 

infusion.  The second 60-minute cycle test with 13C-acetate was used to correct for any labeled 

substrate that was “trapped” in the TCA cycle and thus unaccounted for with the 13C-palmitate 

infusion. 
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 Because meal composition can affect rates of fat oxidation, we admitted the subjects to 

the General Clinical Research Center (GCRC) the evening pr ior to each sub-maximal test.  They 

ate a standard dinner (10 kcal/kg; 50% carbohydrate, 30% fat, 20% protein) and fasted until 

completion of the study the next morning.  Providing a standard meal ensures a consistent dietary 

fat intake for all subjects and also ensures adequate physical rest in the hours prior to each 

exercise test. We instructed subjects to avoid strenuous physical activity for 48 hours prior to 

each exercise test and to eat at least 200 g of carbohydrate for the 48 hours preceding each study 

to ensure adequate glycogen stores for the exercise test.  We collected a 12-hour urine collection 

in this overnight period for estimation of protein oxidation. 

3.4.2.1 Tracer Methods  

To determine rates of non-plasma free fatty acid oxidation, we administered a 13C-

labelled palmitate tracer infusion during the first of the two sub-maximal exercise tests.  13C-

labeled palmitate is a non-radioactive isotope of the fatty acid palmitate, the basic molecular 

building block of fats.  Because 13C-labeled palmitate converts into carbon dioxide (CO2) by 

cells, this enables the tracing of its metabolic fate after oxidation using mass spectroscopy 

chemical analysis. The carbon-13 isotope (13C) is an atomic-weight variant of the element 

carbon, which is not radioactive and is naturally present in organic compounds  in nature.  

Approximately 16% of naturally occurring palmitate contains at least one 13C atom.  In contrast 

to other stable isotopes, such as deuterium, 13C has no known side effects because it is 

metabolically indistinguishable from natural carbon-12.  

Prior to beginning the exercise test, two peripheral veins were cannulated, one for the 

infusion of the palmitate tracer, the second for blood sampling.  The arm to be used for blood 

sampling was kept warm with a hearting pad to help maintain the flow of blood to the vein 
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throughout the exercise test.  Before beginning the tracer infusion resting blood and breath 

samples were collected for biochemical determinations and background 13CO2 and 13C-palmitate 

enrichment.   

A priming dose of approximately 18 µmol/kg NaH13CO3 was infused to shorten the time 

required to achieve equilibration of recovered expired 13CO2.  The dosage of 13C-palmitate (in a 

human albumin solution) was adjusted to patient weight, yielding approximately 0.15  

µmol/kg/min.  This infusion ran for a minimum of 30 minutes prior to exercise initiation to 

achieve the equilibrium of the isotope in plasma.  We measured resting energy expenditure and 

substrate utilization prior to beginning the exercise test via indirect calorimetry.  We also 

collected baseline blood and breath samples prior to exercise to measure resting rates of FFA 

oxidation.  Seated on the cycle ergometer, each subject cycled for approximately 60 minutes at a 

work rate corresponding to 50±10% of his or her predetermined VO2max.  This was determined 

using a work rate-VO2 regression equation obtained during the incremental VO2max test.  Since 

VO2 during exercise was precisely determined after the first 15 minutes of exercise, the work 

rate was monitored and either increased or decreased to precisely maintain 50% of VO2max.  

This work rate was then held constant throughout the remainder of the 60 minutes.   

During the 60-minute exercise test, we collected data at 4 intervals:  15, 30, 45 and 60 

minutes.  At each time point, blood samples were collected to measure plasma free fatty acid 

(FFA) and 13C-palmitate enrichment.  Substrate oxidation was measured via indirect calorimetry.  

For each time point determination, subjects breathed through a mouthpiece connected to the two-

way breathing valve for 5 minutes. In order to allow for sufficient gas exchange equilibrium with 

the dead-space in the tubing, only the average of the last 2 minut es of VO2 and carbon dioxide 

production (VCO2) data were used.  At the completion of each indirect calorimetry 
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measurement, a separate breath sample collected determined breath 13C/12C enrichment.  We 

measured VO2 and VCO2 production from whole bod y gas exchange indirect calorimetry and 

then calculated rates of total lipid and carbohydrate oxidation.  The gas analyzer was calibrated 

prior to each test.  Subjects were given water and cooled by a fan throughout the tests.  

The measurement of palmitate oxidation using tracer methodo logy is an estimate; a 

significant portion of the labeled isotope can be lost or “trapped” in the Krebs cycle.  Measuring 

acetate recovery during a separate, but similar exercise test can correct for this loss (Wolfe, R. R. 

et al. 1990; Sidossis, L. S. et al. 1995).  Many scientists use an estimated acetate correction 

factor.  To provide the most accurate measurement of palmitate oxidation, particularly since our 

sample size is modest, we chose to conduct a second sub-maximal exercise test using 13C-labe led 

acetate for each subject.  Further, the acetate recovery factor may be reduced in subjects with 

T2D compared to those without diabetes (Blaak, E. E. et al. 2000) as well as high inter-subject 

variability (Schrauwen, P. et al. 1998).   

This second sub-maximal exercise test followed the same protocol as the palmitate test; 

however, the infused labeled tracer used was 13C-labeled acetate.  The acetate test was performed 

no sooner than 48 hours and no more than a week after the palmitate test and was completed at 

baseline and post- intervention by all subjects.  We measured the recovery of acetate with a 

continuous infusion of non-radioactive 13C-labeled acetate (0.08 µmol/kg) and subsequent breath 

samples at the same 4 time intervals.  To eliminate a possible training effect from the palmitate 

to the acetate test, the order of the isotope infusions between subjects was alternated.  For 

example, subject 1 received palmitate/acetate pre and post intervention and subject 2 received 

acetate/palmitate pre and pos t intervention.  
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3.4.2.2 Indirect Calorimetry and Fatty Acid Oxidation Calculation 

Systemic net carbohydrate and fat oxidation rates were calculated from the indirect 

calorimetry data with the equations of Frayn et al. (Frayn, K. N. 1983).  To estimate protein 

oxidation, urea nitrogen was measured in overnight 10-12h urine collections.  We calculated free 

fatty acid oxidation from total fat oxidation, assuming 860 g/mol as the average molecular 

weight of triglyceride.   

To determine whether predicted increases in fat oxidation came from an increase in 

plasma or non-plasma FFAs, we utilized the stable- isotope tracer methodology described above.  

These samples were then analyzed by mass spectroscopy to assess the 13C/12C isotop ic 

enrichment of expired CO2 by the ONRC Stable Isotope Lab, which routinely performs these 

assays.  We used the following equation to calculate the percent of the infused tracer (palmitate) 

that was oxidized:   

 

 % Infused tracer oxidized = V13CO2  = (ECO2 - Ebkg) x VCO2 x 100 / (16 x F x c) 

 

Where, V13CO2 is the expired CO2 production (ml/min; 1 mmol CO2=22.4 mL); ECO2 is 

the breath 13C/12C ratio at a given time and Ebkg is the background 13C/12C ratio at rest. F is the 

palmitate infusion rate, and c is the acetate recovery factor.   

 

The acetate correction factor was calculated as follows: 

 

 c = (ECO2 - Ebkg) x VCO2 / (2 x acetate infusion rate) 

 



 43 

Next, plasma FFA oxidation was calculated by: 

 

 Plasma FFA oxida tion = FFA Rd * % infused pa lmitate oxidized 

 

Where FFA Rd equals the rate of palmitate disposal, which was calculated with Steele’s 

equations, based on the relative enrichment of plasma labeled/non- labeled palmitate and the 

known rate of labeled palmitate infusion (Wolfe, R. R. 2005).  Triglyceride fatty acid oxidation 

was estimated as the difference between total fat oxidation from indirect calorimetry minus  

plasma FFA oxida tion from labeled pa lmitate. 

3.4.2.3 Body Weight and Body Composition   

Each participant completed a DEXA scan prior to beginning and upon conclusion of the 

training phase to determine lean body mass.  Because DEXA technology quantifies lean body 

mass, this information allowed us to normalize fat oxidation rates for each subject based on his 

or her total lean body mass.  The DEXA scan, which takes about 15 minutes to complete, was 

operated by the ONRC and was performed on the 8th floor of UPMC-Montefiore Hospital.  

ONRC staff calibrated the DEXA scanner each day for quality assurance using a calibration 

block.  Additionally, the DEXA was calibrated monthly using an aluminum spine phantom.  All 

females of childbearing potential had a urine pregnancy test that was verified as negative pr ior to 

this procedure. 

Body weight was also assessed via the DEXA scan as part of the body composition 

analysis.  Subjects were encouraged to maintain their regular dietary patterns and weight 

throughout the exercise intervention.  Body weight was measured bi-weekly throughout the 
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intervention to ensure participants were not altering their dietary intake.  Weight as assessed on 

the day of the pre and post-DEXA scan was used in data analyses as evidence of weight stability. 

3.5 STATISTICAL ANALYSIS 

Statistical analyses were performed using JMP (Cary, NC) statistical software, version 7.0.1, 

with a defined statistical significance of p<0.05.  Data presented to describe the characteristics of 

study participants in bo th groups (age, BMI, fasting glucose, etc) were analyzed using 

independent t-tests.  T-tests were also used to assess any differences between the OW and T2D 

groups in resting and exercising RQ and rates of total fatty acid and glucose oxidation prior to 

beginning the intervention.  Analyses were conducted to determine if the data were normally 

distributed prior to conducting additional analyses.   

 Two-way repeated measures analysis of variance (ANOVA) (group x time) was used to 

assess changes in the outcomes variables (total and source of fatty acid oxidation) after subjects 

completed the intervention.  Linear regression analysis was used to examine the relationship 

between exercise adherence and changes in substrate utilization.   

3.5.1 Power Analysis 

The power analysis for this study assumed a power level of 0.80 and a P value <0.05 for 

significance.  To detect an improvement of at least 3.0 mg/kg/min in the rate of fat oxidation 

with the exercise intervention using paired t-test, and estimating a standard deviation of change 

to be 3.0, it was anticipated that 13 subjects per group would be required to detect differences in 
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fat oxidation rates with training.  A similar study with 13 participants found a 24% increase 

(p<0.05) in fat oxidation during exercise after 12 weeks of endurance training (Pruchnic, R. et al. 

2004).  It was further estimated that data may be lost from no more than 20% of subjects due to 

failure to complete the testing and an additional 10% data loss from poor muscle biopsy samples 

in the parent project.  Thus, it was estimated for this project that 18 subjects must be recruited 

per group to achieve approximately 13 data-complete subjects within each group.  

 

3.5.2  Retention 

 In combination with the parent project, “Mitochondrial Dysfunction in Type 2 Diabetes 

and Capacity for Exercise,” study participants were compensated $300 after completing all 

baseline assessments.  Subjects were compensated an additional $300 after successfully 

participating in the intervention and completing the post-intervention assessments.  These funds  

were approved and provided by the primary funding source, National Institutes of Health, 

National Institute of Diabe tes and Digestive and Kidney Diseases, and the University of 

Pittsburgh Institutional Review Board.   
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4.0  RESULTS 

Sixteen previously sedentary adults participated in this experimental study that included an 8-

week aerobic physical activity program.  Participants underwent the assessments described above 

both prior to and on completion of the program.  The independent variables in this trial were the 

presence or absence of T2D and exercise training.  The primary dependent variable was change 

in whole body fat oxidation, with change in plasma fatty acid and IMTG oxidation as secondary 

variables.  The results of this study are presented in 4 main sections.  First, a description of the 

study participants at baseline followed by an analysis of adherence to the exercise intervention, 

i.e. changes in fitness, and its effects on body weight and composition.  Next, a comparison of 

substrate utilization at rest before and after the 8-week exercise intervention.  The final section 

addresses the primary hypothesis that T2D further inhibits the oxidation of fatty acids by skeletal 

muscle during moderate intensity exercise beyond overweight or obesity alone.  Changes in the 

source of fatty acids; i.e. plasma free fatty acids vs. non-plasma free fatty acids, are discussed 

within this section as well.   

4.1 SUBJECTS:  CHARACTERISTICS AND RETENTION 

The subjects in this trial were 16 adults (11 females and 5 males) with and without T2D 

participating in a larger clinical trial at the University of Pittsburgh, School of Medicine, 
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Division of Endocrinology.  Subjects were between 39 and 55 years of age with a BMI of 28-39 

kg/m2.  This included 10 subjects in the overweight (OW) group and 6 subjects in the T2D 

group.  

While 16 subjects successfully passed the screening exams and were enrolled into this 

research study, three subjects were lost to follow up prior to completing the post-intervention 

assessments.  All analyses on the outcome variables include only subjects that completed the 

intervention and assessments.  Thus, baseline data are presented on 16 subjects and analysis of 

all other measures includes 13 subjects.  This consists of 10 subjects in the OW group and 3 

subjects in the overweight with T2D group.  One participant in the T2D group was unable to 

complete the post-VO2 max test due to illness; therefore the number of participants in this group 

is 2 for this pre-post comparison of VO2max.  This study remains ongoing and add itional 

subjects with T2D will be recruited to increase statistical power. 

 At baseline, there were no significant differences comparing these two groups for 

participant age, body weight, BMI, waist circumference, or fasting glucose.  There were 

significant differences between the groups in VO2max and hemoglobin A1c (HbA1c) 

measurements.  All subjects were otherwise healthy and had successfully completed all 

screening requirements.  Detailed baseline subject characteristics are shown in Table 1. 
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Table 1.  Baseline Characteristics 

 
All Subjects 

N=16 

Overweight 

N=10 

Overweight with T2D 

Enrol led 

N=6 

Completers 

N=3 

Age (years) 48.4+1.6 48.9+5.7 
47.7+2.5 

(p=0.69) 

48.67+3.8 

(p=0.95) 

Weight (kg) 90.9+5.1 88.2+5.9 
95.5+7.8 

(p=0.46) 

101.1+9.7 

(p=0.31) 

BMI (kg/m2) 32.9+1.2 31.8+1.3 
34.7+1.3 

(p=0.17) 

36.6+1.4 

(p=0.08) 

VO2max 

(ml/kgLBM/min) 
38.5+1.6 40.8+1.5 

34.6+2.1* 

(p=0.03) 

34.8+4.5 

(p=0.12) 

Waist (cm) 105.7 103.9+4.7 
108.6+6.0 

(p=0.55) 

113.9+7.3 

(p=0.35) 

Fasting glucose 

(ml/dL) 
101.8+3.0 93.6+3.9 

115.5+14.3 

(p=0.09) 

98.7+0.7 

(p=0.51) 

HbA1c (%) 5.8+0.13 5.5+0.12 
6.3+0.2* 

(p=0.004) 

6.1+0.3* 

(p=0.05) 

Gender 
11 female/5 

male 

7 female/3 male 

(70% female) 

4 female/2 male 

(67% female) 

2 female/1male 

67% female 

4.2 FITNESS TRAINING, BODY WEIGHT AND COMPOSITION 

We hypothesized that aerobic training increases total fatty acid oxidation in both groups, but not 

to the same extent.  It is thus imperative to verify all subjects did indeed participate in the 

prescribed exercise program and become more physically fit during the 8-week exercise 

intervention by VO2max criteria.  Data presented regarding activity during the 8 weeks includes 
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twice weekly-supervised exercise sessions at the ONRC exercise facility as well as self-reported 

data from participants.  If participants were unable to provide the details of an unsupervised 

exercise session, such as heart rate or lengt h of session, the session was omitted from the 

analysis.  Data are presented first regarding adherence to the prescribed plan and caloric 

expenditure during exercise.  As a separate measure of fitness, participants completed a VO2max 

test on the cycle ergometer following the same protocol used at baseline.  These results are 

presented below. 

4.2.1 Participation in the Exercise Intervention 

 Adherence to the supervised exercise sessions was excellent with only 5 total missed 

supervised sessions among the 13 participants that completed the trial.  While on average, the 

participants fell slightly short of the recommended 4-5 total sessions per week and minimum of 

180 minutes per week; the adherence was similar between the two groups.  An overview of their 

participation in the exercise program and energy expended during exercise is given be low in 

Table 2.  Adherence of individual subjects to the recommended minutes of exercise per week is 

shown graphically in Figure 3.  
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Table 2:  Adherence to the Prescribed Exercise Intervention 

Values are means + S EM; HRmax = Maximal Heart Rate  

 Sessions/Week Minutes/Week Kcal/Week % HRmax 

OW (N=10) 3.9+0.3 155.6+11.8 937.4+54.9 80.1+2.0 

 LAB SELF    

Weeks 1-4 2.7+0.4 1.3+0.3 159.2+15 949.5+20.2 80.0+2.3 

Weeks 5-8 2.6+0.1 1.1+0.2 152.0+12.2 925.2+60.3 80.2+2.4 

T2D (N=3) 3.6+0.5 142.9+11.6 971+313.9 79.3+5.5 

 LAB SELF    

Weeks 1-4 2+0.6 1.4+0.8 138.7+20.2 917.5+320.9 79.1+6.6 

Weeks 5-8 2+0.9 1.8+1.1 147.1+15.3 1024.5+325.2 79.5+5.7 

p-va lue 0.62 0.45 0.86 0.87 

 

 

Figure 3:  Average Weekly Minutes of Exercise by Individual Participants During the 8-Week 

Intervention 

 



 51 

4.2.2 Fitness Response to the Exercise Intervention 

 Participants in both groups improved their maximal oxygen consumption (VO2 max) as 

assessed from pre and post maximal effort graded exercise tests (Figure 4).  Prior to entering the 

exercise intervention, the OW group had an average VO2max of 40.8+1.6 ml/kg LBM/min 

(N=10), while the T2D group measured 34.8+4.5 ml/kg LBM/min (N=3).  After the exercise 

intervention, average VO2max for  the OW and T2D groups were 46.8+1.7  ml/kg LBM/min 

(N=10) and 38.0+1.7 ml/kg LBM/min (N=2) respectively.  Expressed as a percent change, the 

OW and T2D groups increased their VO2max by 14% and 13.4% respectively.  This increase in 

maximal oxygen consumption was significant in the OW group (p<0.05) but did not reach 

significance in the T2D group (p<0.15).  This is also evidenced by an increased time to 

exhaustion during the post- intervention GXT by bo th groups.  The OW group increased by 

15.9% (142 seconds, N=10) and the T2D group improved by 7.5% (108 seconds, N=2).  This 

change was significant (p<0.01) in the OW group, but not in the T2D group (p=0.10).  Maximal 

heart rate and RPE achieved during the graded exercise tests were unchanged from pre to post in 

both groups indicating that subjects gave maximal and equivalent effort on each test.   
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Figure 4:  Change in Maximal Oxygen Consumption 

Values are means + SEM; LBM = lean body mass 

 

 

 

4.2.3 Body Weight and Composition Changes 

A change in body weight due to a change in caloric intake may cause a change in the 

amount of total triglyceride or glucose required during rest or exercise as well as the ratio of the 

substrates.  For this reason, we asked participants not to change their dietary intake during the 

exercise intervention to best see the effect of the exercise intervention alone on substrate 

utilization.  Body weight and lean tissue were assessed in the fasting state prior to and after the 

8-week intervention by DEXA scan.  Both are reported below in Figure 5.   

After the 8-week intervention, body weight change in the OW and T2D groups was -0.67 

+ 0.95 kg and +0.8 + 1.16 kg respectively.  Average change in lean body mass in the OW and 
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T2D groups was +0.71 + 0.42 kg and +0.66 + 0.43 kg respectively.  Neither change in body 

weight (p=0.94) or amount of lean tissue (p=0.12) after the intervention was significant. 

 

Figure 5:  Change in Weight and Lean Body Mass (LBM) 

Values are means + SEM 

 

 

4.3 ASSESSMENTS MEASURED DURING REST 

Prior to beginning each 60-minute sub-maximal exercise test on the cycle ergometer, participants 

rested quietly in a reclined chair for at least 30 minutes.  Measurements of oxygen consumption 

(VO2) and carbon dioxide production (VCO2) were taken via indirect calorimetry approximately 

10 minutes prior to beginning the exercise session and just prior to beginning the exercise 
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session.  Measurements from both time points were averaged and this average was used in the 

following analyses.   

Resting metabolic rate (RMR) did not change significantly in either of the groups after 

the 8-week intervention.  RMR in the OW group went from 1586+104 to 1621+106 kcal/24 

hours, and the T2D group went from 1746+232 to 1867+157 kcal/24 hours.  This increase was 

not significant (p=0.34) nor was there an interaction effect of group and intervention (p=0.60).  

Percent of total calories derived from fat during the resting period varied widely between 

subjects.  RMR was measured using the same mouthpiece as during exercise, not a separate 

canopy system.  On average, the T2D group obtained a greater portion of their energy from fat 

sources than the OW group both pre and post.  There was a slight decrease in RQ in the OW 

group and an increase in RQ in the T2D group after the intervention.  These changes were not  

significant and are shown in Table 3.  

 Prior to intervention, there were no significant differences between the OW and T2D 

groups in resting RQ (p=0.28), resting total triglyceride (TG) oxidation (p=0.18), or resting total 

glucose oxidation (p=0.27).  A test of the main effect of the intervention (time) on these resting 

measurements revealed no significant change in RQ (p=0.59), total TG oxidation (p=0.62), or 

total glucose oxidation (p=0.60) during the resting period after participants completed the 8-

week intervention.  Additionally, there was no interaction effect of group and intervention for 

any of the three measurements; RQ (p=0.38), total TG (p=0.44), and total glucose (p=0.43).  

Results of these measurements are given in Table 3.  
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Table 3:  Resting Measurements Before and After Intervention 

Values are means + SEM. TG: triglyceride. 

 
OW 

N=10 
 

T2D 

N=3 
  

 Pre Post Pre Post p-va lue 

RQ 0.82+0.03 0.81+0.02 0.75+0.00 0.79+0.02 0.59 

TG (mg/min) 54.28+14.4 57.99+5.3 94.52+12.6 78.17+16.2 0.62 

Glucose 
(mg/min) 

111.24+41.6 101.61+29.5 19.81+0.7 66.72+16.9 0.60 

Energy f rom 

Fat (%) 
45.8+2.0 49.5+6.2 70.2+2.1 53.7+9.2 0.52 

 

4.4 ASSESSMENTS MEASURED DURING SUB-MAXIMAL EXERCISE 

To assess any change in fatty acid utilization during exercise it was necessary that subjects 

attained a steady state of substrate oxidation.  Measurements of total TG and glucose oxidation 

during 10 minutes of rest prior to the exercise test through the 60-minute sub-maximal session in 

which participants received the palmitate infusion are shown in Figure 6.  This clearly displays 

the expected rise in TG oxidation over the first 30-minutes of the exercise period and then a 

leveling off as subjects reach a steady state of fatty acid oxidation.  This level is held over the 30-

60-minute time period in both groups.  All analyses regarding the effect of the intervention on 
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substrate utilization during exercise are calculated from the 30, 45, and 60-minute time points in 

which this steady state was obtained.   

 

Figure 6:  Total triglyceride and glucose oxidation at rest and during sub-maximal exercise. 

Values are means + SEM; TG = triglyceride 

 

 

4.4.1 Substrate Utilizat ion During Exe rcise Prior to Intervention 

 To compare exercising substrate utilization between the two groups prior  to the 8-week 

intervention, average values for RQ, total TG, and total glucose utilization were calculated from 

the 30, 45, and 60-minute time points.  An independent t-test found no significant differences 

between the two groups in these measures.  Average RQ for the OW group was 0.85 + 0.01 and 

0.83 + 0.01 for the T2D group (p=0.29).  Average total TG oxidation in the OW and T2D groups 
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was 247.17 + 28.5 mg/min and 278.92+36.8 mg/min respectively (p=0.51).  Similarly, no 

differences were found between the groups in total glucose oxidation (p=0.52), with the OW and 

T2D groups averaging 673.9 + 98.9 mg/dl and 565.94 + 

4.4.2 Proportion of Total Energy Derived from Fat and RQ 

127.7 mg/min respectively.   

 The trend in proportion of energy derived from fat during the 30 to 60 minute time period 

during the sub-maximal exercise tests was consistent yet not significant in both study groups 

(p=0.47).  Prior to intervention, the OW group derived 45.3+3.5 % of total energy expenditure 

from fat and the T2D group derived 48.4+5.5% .  After intervention, the OW group was utilizing  

fat for 48.2+3.6% and the T2D group 50.8+7.0% of total energy expenditure.  This is a 6.2% 

increase in the OW group and 5.1% increase in the T2D group.  This change in fat oxidation was 

not significant (p=0.47) nor was it different between the two groups (p=0.96).  This increase in 

proportion of energy derived from fat is depicted in Figure 7. 

 Change in RQ dur ing the 60-minute sub-maximal exercise test is shown in Figure 8.  No 

significant main effect of the intervention (time) on change in RQ was detected at the 30 

(p=0.75), 45 (p=0.81) or 60-minute (p=0.07) time points.  Additionally, there was not a 

significant interaction effect of group and intervention at the 30 (p=0.69), 45 (p=0.86) or 60-

minute (p=0.53) time points.  Average values for each time point, pre and post, are given  in 

Appe ndix A. 

 

 

Figure 7:  Change in Percent Energy Derived from Fat During Exercise 

Values are means + SEM 
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Figure 8:  Respiratory Quotient During Exercise 

Values are means + SEM 
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4.4.3 Change in Total Triglyceride Oxidation 

 Change in total TG oxidation is shown in Figure 9.  Total TG oxidation was calculated 

for each data collection point during the pre and post 60-minute sub-maximal exercise tests in 

which the participants received the stable isotope palmitate.  Repeated measures ANOVA 

showed no significant change after 8-weeks of exercise training in either the OW or the T2D 

group at 30 (p=0.88), 45 (p=0.77), or 60–minute time points (p=0.09) due to the intervention.  

Additionally, there was not an interaction effect of group and intervention at 30 (p=0.72), 45 

(p=0.80) or 60- minutes (p=0.86).  Average values for each time point, pre and post, are given in 

Appe ndix A. 

 

Figure 9:  Change in Total Triglyceride Oxidation During Exercise 

Values are means + SEM 
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4.4.4 Non-Plasma Fatty Acid Oxidation  

 Subjects in the OW group derived 4.13 + 

 

1.7 uMol/kg LMB/min of total fatty acids from 

non-plasma or IMTG stores during exercise at baseline.  Following the intervention this went to 

5.5 + 2.3 uMol/kg LBM/min.  Prior to intervention the T2D group oxidized 3.42 + 1.9 uMol/kg 

LBM/min of IMTG during exercise.  After intervention, IMTG oxidation was measured at 2.41 + 

2.8 uMol/kg LBM/min in the T2D group.  This change was not significant (p=0.62) nor was 

there an interaction effect of group and intervention (p=0.53).    

 Utilization of plasma FFAs by the OW group was 14.6 + 2.8 uMol/kg LBM/min prior to 

intervention and 14.4 + 2.2 uMol/kg LBM/minute during exercise after the intervention.  

Oxidation of plasma FFAs by the T2D group went from 12.86 + 3.9 to 14.33 + 2.7 uMol/kg 

LBM/min after participating in the exercise intervention.  These changes due to intervention 

were not significant (p=0.92) nor were there an interaction effect of group and intervention 

(p=0.51).  Contribution of oxidized fatty acids from IMTG and plasma sources are shown in 

Figure 10. 
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Figure 10:  Proportion of IMTG and Plasma Fatty Acids Oxidized During Exercise 

Values are means + SEM 

 

 

 

4.4.5 Change  in Total Glucose Oxidation 

 No significant differences were detected in total glucose utilization after exercise training 

at the 30 (p=0.80), 45 (p=0.49), or 60-minute (p=0.07) time points.  While the T2D group tended 

to oxidize less total glucose than the overweight group throughout the 30-minute steady state 

period, an interaction effect of group and intervention was not evident at any of the three time 

points (p=0.63,p=0.48, p=69).  Average values for all pre and post- intervention time points are 

shown in Appe ndix A.   
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5.0  DISCUSSION 

5.1 INTRODUCTION 

Prior research concerning the response of fatty acid oxidation to chronic exercise training has 

been largely limited to healthy, non-obese individuals.  Trials with overweight and obese 

subjects have found equivocal results that may be due to variations in study methods , such as 

length and intensity of the intervention and testing conditions. Peer reviewed data on this topic 

with the added condition of T2D is extremely limited.  Because impaired fatty acid oxidation is 

associated with both diseases, obesity and T2D, discovering whether any impairment can be 

positively affected by aerobic activity is of key significance.  This study therefore was 

undertaken to extend the current body of knowledge to those with T2D.  We also sought to 

determine if having T2D contributes an additional impairment to fatty acid oxidation beyond that 

of overweight or obesity alone.  Using stable isotope tracer methods we further investigated the 

contribution of plasma vs. non-plasma fatty acids to overall fat oxidation.   

Two groups of overweight, previously sedentary adults were compared in this project 

before and after participating in an 8-week moderate intensity exercise intervention:  those with 

T2D and those without.  It was hypot hesized that both groups would have an increase in total and 

non-plasma fatty acid oxidation, but that those with the co-morbidity of T2D would have a 

blunted increase compared to those without T2D.  
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5.2 SUBJECT RECRUITMENT AND RETENTION 

To provide adequate power for statistical analysis this study was originally slated to recruit 18 

subjects in each group allowing for normal participant attrition.  Recruitment and subsequent 

time to complete the study was lengthier than expected, leading to a smaller enrollment than 

planned.  For this reason, recruitment remains ongoing and all attempts to achieve adequate 

power based on subject number will be made. 

 As part of the larger clinical trial, subjects were asked to attend five separate visits prior 

to beginning the exercise intervention and four separate visits after completing the intervention.  

This included a screening visit, a maximal graded exercise test, a muscle biopsy and DEXA scan, 

and two separate overnight stays with the sub-maximal exercise tests with isotope infusion the 

following morning.  These visits were then repeated post- intervention without the screening visit.  

This rigorous schedule was a significant participant burden that may have affected recruitment 

and retention efforts.  This is reflected by the finding that 35 volunteers attended screening visits 

to achieve 16 subjects successfully enrolled in the study.  Thus, future investigations will need to 

plan for additional resources and strategies to recruit subjects into such a time intensive study in 

this population group.   

 Ten adults were enrolled into the OW group and six into the T2D group.  Regrettably, 3 

subjects from the T2D group were lost to follow up during the intervention, which is 50 percent 

of the subjects in this group.  This dropout rate is significantly greater than the 10% to 20% 

dropout rates typically observed in intervention studies with a similar duration of intervention.  

These participants withdrew from the study due to unwillingne ss to complete supervised exercise 

sessions and/or inability to schedule the post- intervention measurements according to protocol, 



 64 

which again may reflect the concern when conducting research that requires a significant time 

commitment from participants related to supervised sessions and lengthy assessment periods.   

A smaller than planned sample size leaves the study underpowered for some of the 

intended statistical analyses.  For the purpose of this dissertation project, analyses were carried 

out and results reported as intended.  These questions will be reanalyzed after more subjects have 

completed t he trial.   

5.3 AEROBIC EXERCISE INTERVENTION 

Prior to beginning the intervention, the two groups were not significantly different in age, 

weight, or waist circumference and genders were represented equally in both groups.  Subjects in 

the T2D group were, however, significantly less physically fit than their OW counterparts as 

measured by VO2max during screening procedures.  There was not a correlation between 

VO2max and total TG or IMTG oxidation.  In spite of this initial difference in fitness, after 

intervention both groups exhibited a similar increase in VO2max with the OW group improving 

maximal oxygen consumption by 14% and the T2D group by 13.4%.  This increase in VO2max 

is similar to other studies of previously sedentary individuals tested on cycle ergometers after an 

intervention of similar length (Hoppeler, H. et al. 1985) and exhibits that the exercise 

intervention was successful in eliciting an improvement in fitness. 

Subjects were asked to not change their caloric or macronutrient intake during the testing 

procedures and throughout the intervention.  This eliminated the possible confounder of a change 

in body weight or substrate availability due to dietary intake.  Both groups remained weight 
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stable and exhibited only small changes in body composition.  This is expected with a relatively 

short intervention period of 8 weeks.   

5.4 RESTING MEASUREMENTS 

Small changes in resting energy expenditure (REE) can have profound effects on bod y weight  

over the course of a year or more.  Long-term (25 weeks) aerobic exercise has been shown to 

increase in REE in the absence of weight loss in overweight subjects (Hunter, G. R. et al. 2006).  

Both groups, but not all subjects, were found to have a non-significant increase in REE after 

participating in 8 weeks of activity.  This increase was not directly correlated with time spent in 

physical activity or caloric expenditure during exercise.  Resting measurements were taken using 

the same methods and equipment for indirect calorimetry as during the exercise intervention; a 

separate canopy was not used in these measurements.  

 Percent of energy derived from fat varied greatly between subjects and this variation may 

have been exacerbated by our choice of equipment for resting measurements.  While changes 

were not significant in either group, the T2D group tended to increase carbohydrate and decrease 

fat oxidation at rest.  Conversely, the OW group responded with a moderate increase in percent 

of calories derived from fat and thus a slight decrease in RQ.  Differences were not found 

between the two groups in these measurements, however.  These findings are similar to those of 

van Aggel-Leijssen et al which found no change in total fat oxidation at rest following 12 weeks 

of aerobic activity (van Agge l-Leijssen, D. P. et al. 2002). 

Women typically derive a significantly greater portion of total energy from fat compared 

to men. However because genders were represented equally with approximately 70% females in 
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each group, this was not an issue.  Statistical tests conducted also confirmed that gender was not 

a cofounder.  Though current literature shows that phases of the menstrual cycle do not affect 

substrate oxidation (Jacobs, K. A. et al. 2005), attempts were made to measure all pre-

menopausal women (n=2) in the follicular phase to reduce intra-subject variability.   

5.5 SUBSTRATE OXIDATION DURING EXERCISE 

Neither group exhibited a significant change in total fatty acid oxidation due to the 8-week 

intervention.  Expressed as percent change, the OW and T2D groups oxidized 6.2% and 5.1% 

respectively more energy from fat during exercise after participating in the intervention.  This 

failure to suppor t the main hypothesis was not due to a failure of the participants to adhere to the 

prescribed exercise program as evidenced by a significant increase in VO2max in the OW group 

and a similar yet non-significant change in the T2D group.  The lack of significance in T2D is 

likely due to the small sample size (n=3) of participants for analysis.  Improvements in fitness 

are further validated by similar HRmax and RPE values at the termination of the pre and post 

maximal graded exercise tests in both groups.   

 Previous research regarding changes in exercising fat metabo lism in obe sity and T2D 

after endurance training varies in their findings.  A recent study by Wolf et al utilized a similar 

exercise protocol in overweight women and reported 12% increase in total fat oxidation (Wolf, 

D. L. 2006).  The intervention however was 16 weeks in length and only inc luded women.  Our 

results are consistent with that of Kanaley et al who reported no significant changes in total fat 

oxidation after 16 weeks of moderate intensity aerobic exercise (70% VO2max) in obese women 
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(Kanaley, J. A. et al. 2001).  This study did report a significant increase in carbohydrate 

oxidation.  

While the intensity of the interventions in the studies described above were very similar 

and found conflicting results, other research suggests that training intensity may be an important 

factor in governing fatty acid oxidation.  When obese men were randomized to either 40% or 

70% VO2max training regime for 12 weeks only the lower intensity group displayed an increase 

in exercising fat oxidation (van Agge l-Leijssen, D. P. et al. 2002).  Most recently, a study in 

which the exercise intervention was tailored to target maximal fat oxidation (LIPOXmax) for each 

individual found a significant increase in fat oxidation in overweight adults with T2D after 10 

weeks of LIPOXmax exercise training (Bordenave, S. et al. 2008).  The authors report average 

intensity in which subjects achieved LIPOXmax was 37% VO2max.  A critical methodological 

issue may be the pairing of the appropriate training and testing intensity to maximize the 

response of fat oxidation.   

Analysis of our study did not find a  relationship between training intensity and change in 

TG oxidation.  However, participants trained at a high intensity of approximately 80% of 

maximal heart rate with no participants exercising at an average training HR below 69% of their 

predetermined HRmax.  Whole bod y and non-plasma fatty acid oxidation were measured at 50% 

of VO2max, however the more vigorous intervention in this study may not have specifically 

affected fat oxidation.  Additionally since training intensity varied little among participants this 

limits the ability to correlate intensity with other measurements.  Because Kanaley et al found a 

relationship between a similarly high training intensity and glucose oxidation this was also 

analyzed but found to be not statistically significant in either group or when groups were 

combined. 
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 Length of intervention may also be critical for inducing metabolic flexibility during 

exercise.  This study was 8 weeks in length while other exercise interventions tend to be 10-24 

weeks in duration.  Eight weeks was chosen in this project in part to reduce participant burden 

and drop out and because it is known that 8 weeks is sufficient time to elicit mitochondrial 

changes, the pr imary aim in the parent trial.  Bordenave’s study in men with T2D found an 

increase in whole body fat oxidation with 10 weeks of training (Bordenave, S. et al. 2008).  The 

training intensity was individualized to target the intensity in which maximal fat oxidation was 

measured for each subject in a sub-maximal test prior to intervention.  Taken together with Wolf 

et al’s (Wolf, D. L. 2006) positive response of fat oxidation when overweight women trained at a 

high intensity for 16 weeks and with Van Aggel-Leijssen’s (van Aggel-Leijssen, D. P. et al. 

2002) comparison of training at 40% and 70% VO2max for 12 weeks, it is plausible that exercise 

must be sustained for a longer intervention period at high intensities to achieve a measurable 

change in fat oxidation.  

Lastly, our participants completed the baseline and post- intervention sub-maximal 

exercise tests at the same absolute workload.  Because this workload was not adjusted to reflect 

improvements in fitness, i.e. higher maximal oxygen consumption, subjects were likely tested at 

a significantly lower intensity post- intervention.  This lower intensity would elicit lower total 

energy and thus lower total triglyceride needs than at baseline.  This may have led to an 

underestimation of change in total triglyceride oxidation. 

5.5.1  Contribution of Non-Plasma Fatty Acids to Total Fat Oxidation 

 IMTG oxida tion accounted for approximately 22% and 20% of fatty acids oxidized 

during physical activity in the OW and T2D groups respectively.  This proportion did not change 
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significantly after intervention.  Because no significant change in whole body fat oxidation was 

seen after 8 weeks of aerobic exercise it is reasonable that the source of fatty acids was not 

altered as well.   

 Whether moderate exercise training can increase IMTG breakdown and oxidation 

remains controversial.  The “athlete’s paradox” contrasts obese subjects with highly trained 

endurance athletes and finds both with similar IMTG stores (Goodpaster, B. H. et al. 2001).  It is 

presumed that the athlete readily utilizes IMTG as a substrate during exercise while this same 

depot contributes to insulin resistance in obesity.  A published review of the literature suggests 

that those with T2D have a reduced capacity to mobilize and/or oxidize IMTG (van Loon, L. J. 

C. 1997).  A more recent study demonstrates an increase in IMTG content in previously 

sedentary insulin-resistant overweight adults after 16 weeks of exercise training (Dube, J. J. et al. 

2008).  This is preceded by the examination of an acute bout of exercise comparing men with 

long-term diagnosis of T2D with healthy matched controls (Boon, H. et al. 2007).  In this study, 

Boon et al. did not find evidence of an impaired mobilization or oxidation of IMTG in T2D 

subjects.   

Disagreement among findings of impairment or conversely the ability to mobilize IMTG 

in obese and T2D subjects likely are due to methodo logical differences among published reports.  

These variances are like ly not  only due to exercise intervention variances such as intensity and 

duration as discussed in regards to whole body fat oxidation, but also to laboratory techniques for 

measuring and quantifying IMTG content and utilization.   
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5.6 LIMITATIONS 

The primary limitation of this study is the small number of subjects, particularly in the T2D 

group.  The time and physically intense pre and post-testing regimen were likely a significant 

participant burden that limited recruitment and retention of subjects.  Efforts remain underway to 

recruit further subjects and increase the statistical power of these analyses.  A second limitation 

of this study is the method used to measure resting energy expenditure.  Because of the length 

and nature of the sub-maximal exercise tests with isotope  tracers and other required procedures 

in the larger clinical trial, we did not feel it realistic to require a separate RMR measurement 

using the more accurate canopy.  Other limitations may be the length of the exercise intervention 

at 8 weeks as well as the moderately high intensity of the intervention.  A longer intervention 

period may elicit greater mobilization of IMTG and an overall greater shift towards 

preferentially oxidizing fatty acids.  Likewise, it may be that maximal fat oxidation is occurring 

at lower intensity than this intervention was conducted.  Therefore a more controlled intervention 

at an intensity that specifically targeted maximal fatty acid oxidation may have elicited a stronger 

response. 

5.7 CONCLUSIONS 

In conclusion, 8 weeks of aerobic exercise did not significantly increase the reliance on fatty 

acids as an energy source at rest or during physical activity in adults who are overweight with or 

without T2D.  Likewise, the intervention did not alter the contribution of non-plasma fatty acids 

to the total fatty acid poo l in either group as quantified using stable isotope technology.  A 



 71 

correlation was not found between fitness, time spent in exercise, or caloric expenditure during 

exercise and change in these parameters.   

 

5.8 RECOMMENDATIONS FOR FUTURE RESEARCH 

The primary goa l for further research is to first increase the sample size of both the OW and T2D 

groups to adequately answer the proposed questions.  Prior to enrolling more participants 

however, a few directions should be considered to answer the proposed questions in a timely 

manner.  Because there are limited publications regarding the response of total fat oxidation to 

endurance training in the presence of obesity and T2D, it may be reasonable to enroll additional 

participants to complete the sub-maximal tests without using isotope technology, only indirect 

calorimetry.  While this would only measure total fat oxidation and not the source of fatty acids 

being oxidized, this may be a time and cost effective solution.  This would reduce not only the 

time to complete the study by eliminating two overnight stays per participant as well as the need 

for intravenous access during the tests, but also drastically reduce the cost, participant risk, and 

staff needed to complete these tests. This may be prudent given that if no change is seen in total 

fat oxidation it is unlikely that a significant change in the source of fatty acids would be detected.   

 There are other considerations to ensure the integrity of the study as we move forward.   

These include the progression of participants in their weekly minutes spent in physical activity 

toward the minimum goal of 180 minutes per week by the end of the 8-week intervention.  It is 

also suggested that all participants be required to progress through the 8-week intervention in a 
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more uniform manner so that during week 1, all participants complete 20 minutes of exercise 

each session, 25 minutes in week 2, 30 minutes in week 3 and so on.  

 As there was a tendency for both groups to increase whole body fat oxidation and in light 

of the recently published repo rt by Bordenave et al., further research to de fine the most 

appropriate exercise prescription to enhance the oxidation of fatty acids is warranted.  This 

would include not only a further evaluation of exercise intensity, but also exercise mode and 

duration of exercise sessions.  Given the plausible varying effects of low vs. moderate vs. high 

intensity exercise on substrate utilization and accompanying improvements in insulin resistance, 

weight loss maintenance, and adherence, a subsequent evaluation of the long term benefits of 

each is warranted.   

 At the time this project was proposed and at its completion to this point, an obvious gap 

in the literature is a detailed time course of changes in substrate utilization due to aerobic 

exercise in lean, overweight and T2D subjects.  This lack of knowledge explains in part why 

researchers have employed such different methodo logy in length and intensity of the intervention 

and thus why these important questions remain unresolved.   A project that utilized indirect 

calorimetry at regular intervals throughout the aerobic exercise intervention would provide 

insight into when and if subjects become more metabolically flexible over time with endurance 

training.  A comparison should be made between previously sedentary adults who are lean, 

overweight, and overweight with T2D to best understand any differences between each 

condition. 
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APPENDIX A 

Average values of RQ, total TG, and total glucose during sub-maximal exercise 

before and after an 8-week aerobic exercise intervention. 

 

   OW 

N=10 

T2D 

N=3 

 

30 Minute 

Time point 

RQ Pre 0.86 0.83 

Post 0.84 0.83 

Total TG 

(mg/min) 

Pre 230.1 258.1 

Post 243.8 252.5 

Total Glucose 

(mg/min) 

Pre 705.4 576.9 

Post 654.8 591.9 

     

 

45 Minute 

Time point 

RQ Pre 0.84 0.84 

Post 0.84 0.83 

Total TG 

(mg/min) 

Pre 255.0 254.6 

Post 255.9 266.9 

Total Glucose Pre 645.5 675.2 
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(mg/min) Post 646.5 581.2 

     

 

60 Minute 

Time point 

RQ Pre 0.84 0.84 

Post 0.83 0.81 

Total TG 

(mg/min) 

Pre 256.4 267.1 

Post 279.9 295.6 

Total Glucose 

(mg/min) 

Pre 670.7 601.2 

Post 590.8 479.9 
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