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Type 1 diabetes (T1D) is associated with numerous complications. These include renal and 

cardiovascular disease which are the leading causes of morbidity and mortality in T1D. Renal 

complications also increase the risk for cardiovascular disease. Early detection and treatment 

of their risk factors may help to prevent or at least delay these complications. This dissertation 

examines potential risk factors for altered measures of pulse wave analysis (PWA), which have 

been linked to cardiovascular events and mortality in other populations. It also examines how 

PWA measures relate to prevalent cardiovascular and renal complications in T1D.  

Prospective analyses of potential risk factors for increased arterial stiffness indices, 

augmentation index (AIx) and augmentation pressure (AP), and decreased estimated myocardial 

perfusion, i.e. subendocardial viability ratio (SEVR), showed autonomic neuropathy, smoking 

history, low HDL cholesterol and poorer glycemic control, to be associated with altered PWA 

measures 18 years later.  

Next, cross-sectional analyses between PWA measures and prevalent CVD showed AP 

and SEVR to be significantly related to coronary artery disease and coronary artery calcification, 

respectively, although age was the major predictor of both. AP was also higher, although not 

significantly, and SEVR significantly lower in those with peripheral vascular disease.  
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Finally, SEVR, but not AIx nor AP, was significantly associated with the presence of 

microalbuminuria (MA), and preferentially entered multivariate models over brachial blood 

pressure measures. SEVR was also related to degree of albuminuria in those within the normo- 

and MA range, and was significantly associated, multivariately, with low renal function.  

This dissertation thus yields significant Public Health findings by identifying factors 

(AN, smoking, glycemic control, lipid levels) that may delay increased arterial stiffness (AIx and 

AP) and decreased myocardial perfusion (SEVR). As it additionally shows that these same PWA 

measures are altered in the presence of CVD and renal damage in T1D a potential role for PWA 

measures, especially SEVR, in risk stratification and early intervention for T1D complications is 

apparent.  
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1.0  INTRODUCTION 

Diabetes is the 6th leading cause of death in the United States and the majority of people with 

diabetes die from its complications. Diabetes also contributes to the development of heart disease 

and stroke, the first and third leading causes of death. In fact, heart disease and stroke account for 

about 65% of deaths in people with diabetes [1].  Complications of diabetes can be prevented or 

at the very least delayed; therefore early detection is very important.  

 Increased arterial stiffness (or reduced arterial compliance), is a marker of vascular aging 

and is also associated with cardiovascular risk [2-6]. Arterial stiffness measures increase with 

age [7] as well as in the presence of diabetes [8-10] and end-stage renal failure[11, 12]. 

Microalbuminuria (MA) has been associated with increased arterial stiffness in the general 

population[13] which may be one of the pathways underlying the associations of MA with 

advanced atherosclerosis and cardiovascular mortality. MA is also a marker of early diabetes 

renal disease, itself a risk state for CAD [13, 14]. As changes in arterial stiffness indices can be 

detected prior to the development of clinical disease, markers of arterial stiffness may therefore 

be useful in predicting risk for a number of complications of diabetes. This paper will focus on 

the relatively new technology of radial tonometry to obtain pulse wave analysis (PWA) and 

resulting arterial stiffness indices, augmentation index (AIx) and augmentation pressure (AP) as 

well as subendocardial viability ratio (SEVR), an estimate of myocardial perfusion. In particular 

it will focus on: 
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1. Examining the relationship between risk factors assessed ~18 years prior earlier and PWA 

measures in type 1 diabetes (T1D). 

2.  Determining the relationship between PWA measures and prevalent cardiovascular 

disease (CVD).  Specifically, coronary artery disease (CAD), coronary artery calcification 

(CAC,  a subclinical marker of CAD) and lower extremity arterial disease (LEAD) will be 

assessed. 

3. Examining the relationship PWA measures have with early nephropathy 

(microalbuminuria) and with renal function, both estimated glomerular filtration rate 

(eGFR) utilizing the Modification of Diet in Renal Disease (MDRD) equation and 

Cystatin C measures, in T1D.  
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2.0  BACKGROUND 

2.1 PATHOPHYSIOLOGY OF DIABETES MELLITUS 

Diabetes Mellitus (DM) is a group of metabolic diseases which occurs when the body fails to 

properly metabolize glucose.  In the United States, the National Diabetes Data Group (NDDG) 

criteria for diagnosis and classification of diabetes are used.  Diabetes is diagnosed if an 

individual meets one of three criteria: 1) symptoms of diabetes (polydipsia, polyuria, 

unexplained weight loss) and a casual (without regard to last time of meal) plasma glucose 

concentration of ≥200 mg/dl, 2) a fasting plasma glucose (FPG) (at least 8 hours) ≥126 mg/dl, or 

3) an oral glucose tolerance test (OGTT) 2-hour value ≥200 mg/dl[15]. Individuals with FPG 

levels between 100 and 126 mg/dl are considered to have impaired fasting glucose (IFG).  A 2-

hour post load glucose level between 140 and 199 mg/dl is considered IGT.  Both IFG and IGT 

are referred to as “pre-diabetes”. Individuals with pre-diabetes are at increased risk for 

developing diabetes and cardiovascular disease[16].  

 To maintain glucose homeostasis there must be balance between glucose uptake and 

utilization by the cells and production of glucose by the liver. In a normal fasting state, low 

circulating insulin levels lead to the production of glucose by the liver via gluconeogenesis and 

glycogenolysis, a reduction in synthesis of glycogen as well as a reduction in the uptake of 

glucose by cells requiring insulin for uptake. Postprandially, the increased circulating glucose 
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levels stimulate the secretion of insulin by the beta cells of the islet of Langerhans of the 

pancreas.  The insulin is secreted into the portal venous system, where some is removed by the 

by the liver. The remainder enters the circulatory system, eventually binding to insulin receptors 

of skeletal muscle and fat cells where it aides in the translocation of glucose into cells and thus 

lowers blood glucose levels. The inability to appropriately metabolize glucose in diabetes 

mellitus,  can be due to the failure of the pancreas to produce insulin, as is the case in T1D 

(T1D), or to the inability of the cells to use insulin (insulin resistance) as occurs in Type 2 

diabetes and its early prediabetes state. Failure in either of these areas results in high levels of 

circulating glucose, hyperglycemia.  

 T1D occurs in individuals who are genetically predisposed to the disease. Greater than 

90% of Type 1 cases occur due to autoimmune destruction of beta cells over time. Though 

initiation of this autoimmune response may be triggered by an environmental or infectious 

stimulus, there are many hypotheses as to how and why this occurs, but no solid evidence for 

specific risk factors have been established therefore T1D is currently considered not 

preventable[17]. The autoimmune destruction of the beta cells leads to a reduction and 

eventually, a complete absence of insulin production and secretion. In order for cells to 

metabolize glucose, exogenous insulin must be administered.  

 Type 2 diabetes is thus characterized by peripheral insulin resistance, impaired insulin 

secretion and excessive hepatic glucose production.  The peripheral cells become resistant to 

insulin thereby impairing glucose utilization. The liver also becomes insulin resistant which 

results in decreased uptake of glucose as well as decreased inhibition of hepatic glucose 

production. With reduced insulin sensitivity in peripheral tissues and an increased hepatic 

production of glucose, the result is a state of hyperglycemia. During the initial stage of insulin 
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resistance however, the pancreas will increase its production and secretion of insulin to 

compensate.  Eventually the beta cells become exhausted and production levels of insulin 

decrease[18]. Typical treatment of Type 2 diabetes includes lifestyle/behavioral changes such as 

diet and exercise as well as insulin sensitizing agents.  However, some Type 2 patients will 

eventually need insulin therapy as the beta cells fail to meet the increased demand. It is thought 

that Type 2 diabetes results from a combination of insulin resistance and a beta cell defect, for 

many more subjects have insulin resistance than diabetes. Insulin resistance is often related to 

age and/or obesity. Type 2 diabetes is a very preventable disease. It is usually preceded by 

impaired glucose tolerance (IGT) and approximately 20-50% of people with IGT will progress to 

Type 2 diabetes within 10 years.  Screening of individuals for IGT followed by lifestyle 

interventions could prevent, or at the very least delay the onset of the disease[19-21].  

2.2 DIABETES EPIDEMIOLOGY 

Approximately 20.8 million people in the United States, 7% of the population, have diabetes.  

An estimated 14.6 million are diagnosed; 6.2 million undiagnosed while a further 54 million 

have pre-diabetes (impaired glucose tolerance (IGT) or fasting glucose (IFG))[1].  The World 

Health Organization (WHO) estimated the global prevalence of diabetes to be 171 million (2.8% 

of the population) in the year 2000 and projects that by 2030, 366 million (4.4% of the 

population) people worldwide will have diabetes [22].  The rates of diabetes have increased 

dramatically in the past few decades and will continue to increase due to the aging of the 

population and to the obesity epidemic.  Type 1 accounts for only 5-10% of diabetes cases 

however, the incidence rates of both Type 1 and Type 2 are increasing worldwide[23].  In 1993, 
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T1D affected about 1.4 million people in the U.S. and 10-20 million worldwide[24]. Type 1 

diabetes is the main chronic disease affecting children. The current estimate of Type 1 

worldwide prevalence in children 0-14 years of age is 440,000, or 0.02% of that population with 

an annual increase in incidence of 3%[23]. One in every 400-600 children/adolescents in the 

U.S. has T1D.  Current estimates of U.S. Type 1 annual incidence rates in youth are 14.3, 22.1, 

25.9 and 13.1 per 100,000 for age groups 0-4, 5-9, 10-14 and 15-19, respectively[25]. 

 Development of T1D has both environmental and genetic components. The rates of 

diabetes vary by race and ethnicity as well as by geographical location.  For instance, the highest 

incidence rates of T1D among children ≤14 years, are in Scandinavia with the annual incidence 

in Finland at 41.1 per 100,000. In Sweden, the annual incidence rate among the same age group 

is  range is 31.7 per 100,000, while in Lithuania it is 7.8 per 100,000, one of the lowest rates in 

Europe [23]. The lowest incidence rates known are in China and Japan (1 to 3 per 100,000). 

Accurate estimates of incidence rates of Type 1 in African countries are currently not available. 

Known prevalence rates in African countries are quite low however, this is not necessarily due to 

low incidence, but more likely to high mortality in these areas.  

 The frequency of high-risk HLA alleles (HLA-DR3 and HLA-DR4), which are found in 

about 95% of Type 1 patients, is greater in Caucasians [26-28]. However, studies of 

monozygotic twins show a only a moderate concordance (about 50% or less) and the risk to a 

first degree relative of someone with type 1 is about 5%[29]. In the U.S. the highest incidence 

rates are among Non-Hispanic whites, followed by African Americans, Hispanics, then 

Asian/Pacific Islanders; the lowest incidence rates are in American Indians [25]. The growing 

incidence of T1D is apparent in Non-Hispanic white children as well as in Hispanic and African 
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American children [30, 31]. There is also a seasonality effect in T1D as it is diagnosed more 

frequently in winter and autumn months. This is particularly the case during puberty[32].  

 Both genetic susceptibility and lifestyle factors contribute to the development of Type 2 

diabetes.  There is a strong genetic predisposition to Type 2. The concordance in monozygotic 

twins is approximately 70% [33]. History of Type 2 in a first-degree relative doubles ones risk of 

diabetes and the lifetime risk of Type 2 for a child of two diabetic parents is about 80% [33, 34]. 

However, behavioral and lifestyle factors such as obesity, poor diet and sedentary lifestyle, are 

major contributors to the development of Type 2.  Certain racial/ethnic groups are more 

predisposed to type 2 diabetes than others therefore incidence rates can vary greatly by group 

within one population. Rates of Type 2 diabetes are highest in the Pacific Islands, intermediate in 

the U.S. and India and lowest in China and Russia.  In the U.S., the racial/ethnic group with the 

highest prevalence of Type 2 diabetes is American Indians/Alaska Natives. 15.1% of this group, 

who are 20 years of age or older, has Type 2 and they are 2.2 times more likely than non-

Hispanic whites to have diagnosed -diabetes. 13.3% of non-Hispanic blacks, 9.5% of 

Hispanic/Latino Americans and 8.7% of non-Hispanic whites have Type 2 diabetes[35]. So 

while the rates of T1D are higher in Caucasians, at least within the U.S. rates of Type 2 diabetes 

are much lower in the same population.  

 In the U.S, the total economic cost of diabetes in the year 2002 was estimated to be $132 

billion.  Direct costs were estimated to be $92 billion a drastic increase from the $44 billion spent 

in 1997. Approximately 20% of all health care costs are due to diabetes. A large portion of the 

costs associated with diabetes is due to chronic complications[36].  Beyond the monetary cost 

there is also the personal cost; persons with diabetes have two times the prevalence of physical 
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disability compared to those without diabetes[37].  With the increased incidence of diabetes, 

finding methods to prevent or delay chronic complications is of great importance.    

 

2.3 TYPE 1 DIABETES COMPLICATIONS 

Chronic hyperglycemia leads to chronic complications of diabetes. Many of these complications 

are vascular in nature including microvascular complications such as nephropathy, retinopathy 

and neuropathy as well as macrovascular complications such as peripheral vascular disease, 

coronary artery disease (CAD) and cerebrovascular disease.   

2.3.1 Neuropathy 

Diabetes causes damage to the body’s nerves. Diabetic neuropathies are a family of nerve 

disorders and are classified as 1) peripheral - affecting the limbs, often called Distal Symmetric 

Polyneuropathy (DSP), 2) autonomic – affecting the autonomic nervous system and associated 

organs/functions, 3) proximal - sometimes called lumbosacral plexus neuropathy and affects the 

thighs, buttocks, or hips or 4) focal – muscle pain or weakness caused by sudden weakness of 

one nerve, or a group of nerves. Approximately 50% of people with diabetes will develop some 

form of neuropathy. The most common form is DSP [22] affecting approximately 60% of those 

with T1D over the age of 30 [23]. The risk for diabetic neuropathy increases with increasing 

diabetes duration [24, 25]. 
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2.3.1.1 Peripheral Neuropathy 

 Peripheral neuropathy damages nerves in the arms and legs, typically affecting the feet 

and legs prior to affecting the hands and arms.  Symptoms of peripheral neuropathy include 

numbness/insensitivity, a tingling, burning, or prickling sensation, sharp pains or cramps, 

extreme sensitivity to touch, loss of balance and coordination. Peripheral neuropathy may also 

cause muscle weakness and loss of reflexes.  Due to numbness, sores may occur on the feet and 

go unnoticed. Infection of sores may occur and can spread into the bone resulting in a need for 

amputation. Distal symmetric polyneuropathy (DSP) is the most common form of diabetic 

neuropathy usually developing in the feet. Signs of DSP during clinical examination can include 

signs of sensory loss, initially vibratory and later touch and pain, signs of motor loss such as 

weakness and atrophy, depressed or unelicitable tendon reflexes [26]. 

 In The Pittsburgh Epidemiology of Complications (EDC) Study, by 30 years of diabetes 

duration, over two thirds were affected by DSP [24]. The incidence density of DSP in this study 

was 1.2 per 100 patient years among those with diabetes duration less than 20 years, but 3.83 

among those with duration 20-30 years. The cumulative incidence of DSP in this population at 

20 years ranged from approximately 20-30% while the 25 year cumulative incidence ranged 

from 35-50% (depending on diagnosis cohort: 1965-1969, 1970-1974 and 1975-1980; earlier 

cohort has the highest rate)[27]. Risk factors for DSP in the EDC Study were diabetes duration, 

poor glycemic control (HbA1c level), current smoking, height and hypertension [28].  The 

EURODIAB study, a Type 1 population sampled from 31 populations throughout Europe, found 

an overall prevalence of peripheral neuropathy of 28%. In this study, age (mean = 32.7 ± 10.2 

years), diabetes duration (mean = 14.7 ± 9.3 years) and HbA1c level (mean = 6.7 ± 1.9%), were 

significantly associated with peripheral neuropathy. When adjusting for both age and HbA1c, 
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rates ranged from 11% in those with a diabetes duration of <7 years to 23% in those with 

diabetes duration of 8-14 years, to 38% with a 15 year duration[29]. Diastolic blood pressure and 

total cholesterol were also shown to be independent risk factors for DSP [30].  

2.3.1.2 Autonomic Neuropathy 

 Autonomic neuropathy occurs in diabetes due to damage to the nerve fibers of the 

autonomic nervous system. The autonomic nerve fibers include those that innervate the blood 

vessels and the heart and therefore a common form of autonomic neuropathy is Cardiovascular 

Autonomic Neuropathy (CAN). When damage occurs to these nerve fibers , abnormalities in 

central and peripheral vascular dynamics and heart rate occur[31]. Reduction in heart rate 

variability is the earliest indicator of heart rate. Patients with CAN cannot adequately regulate 

cardiac output or redirect blood flow therefore they tend to have exercise intolerance and 

orthostatic hypotension [32]. Also, since the nerves innervating the heart are affected they can 

also have asymptomatic ischemia and painless myocardial infarction[33]. Relative risk of 

mortality associated with CAN (defined as presence of >2 abnormal quantitative autonomic 

function tests) is was found to be 3.65 (95% C.I.:2.66-4.47) in a pooled estimate of 15 studies 

[34]. 

 In the Pittsburgh EDC Study, incidence density per 100 person-years of symptomatic 

autonomic neuropathy was 0.83 (0.62-1.1) and 0.36 (0.07-1.1) in those with a diabetes duration 

of <20 and 20-30 years, respectively. The overall incidence density was 0.78 (0.59-1.0) per 100 

person-years. Age of onset adjusted cumulative incidence of symptomatic autonomic neuropathy 

ranged from 11-21% in those with diabetes duration of 20 years and from 18-25% in those with 

diabetes duration of 25 years. Incidence of autonomic neuropathy varied by diagnosis cohort, 

which in the EDC study were 1965-1969, 1970-1974, and 1975-1980. Therefore, given the same 
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diabetes duration (20 years), those diagnosed with diabetes later (i.e. between 1975 and 1980) 

were significantly less likely to have incident autonomic neuropathy (cumulative incidence = 

11%) than those diagnosed earlier (i.e. between 1965 and 1969; cumulative incidence = 21%) 

[35].  Autonomic neuropathy is often asymptomatic. However, the presence of asymptomatic 

CAN can be diagnosed by assessing heart rate variability (HRV) using the expiration-to-

inspiration ratio [36]. In the Pittsburgh EDC Study, when CAN was diagnosed by as an abnormal 

(≤1.1) expiration-to-inspiration ratio during deep breathing, the incidence-density over a mean 

follow-up time of 4.7-years was 5.9 /100 person-years. Age (relative risk [RR]=2.15, p=0.0001), 

HbA1 (RR=1.50, p=0.0002) and nephropathy (albumin excretion >200 μg/min) (RR=2.46, 

p=0.0001) were all significant independent predictors of CAN. When nephropathy was not 

available to multivariate models, hypertension was significantly predictive as well[37].  

2.3.2 Eye Complications 

The eye complications associated with diabetes are 1) diabetic retinopathy - damage to the blood 

vessels in the retina, 2) cataract – the clouding of the eye’s lens, cataracts tend to develop at an 

earlier age in people with diabetes; 3) glaucoma – the increase in fluid pressure inside the eye 

which can lead to optic nerve damage and loss of vision. Retinopathy is the  most prominent eye 

associated complication in T1D.  

2.3.2.1 Diabetic Retinopathy 

Retinopathy is the most common eye disease in diabetes and is caused by changes in the 

blood vessels to the retina such as swelling and leakage of fluids or abnormal development of 

blood vessels on the surface of the retina. During the initial, asymptomatic stage, there is 

12 



decreased retinal blood flow, loss of pericytes and thickening of the retinal basement membrane. 

As the disease progresses, microaneurysms, increased vascular permeability and retinal ischemia 

are present. During advanced stages, fibrovascular proliferation and macular edema occur[38].   

Although improved management of diabetes and glycemic control in recent decades has 

led to a decline in microvascular complications, diabetes is still the leading cause of blindness 

among adults in the U.S. with diabetic retinopathy causing 12,000-24,000 incident cases of 

blindness annually[39]. Diabetic retinopathy is the most common diabetic eye disease and is 

caused by changes in the blood vessels of the retina which usually do not begin to occur until 

after 3-5 years of diabetes duration [40].  

There are various stages of progression of retinopathy. The first stages are the non-

proliferative stages.  In mild non-proliferative diabetic retinopathy (NPDR),  microanerysms are 

present due to weakened capillary walls from pericyte (small cells that can differentiate into 

fibroblasts or smooth muscle cells and are potential blood flow regulators) loss and endothelial 

cell damage.  During this stage, “dot-blot” hemorrhages (ruptures in the capillary walls of the 

deep retinal layers), may also be present. “Hard Exudates” may also form, which are made up of 

lipids leaked from retinal capillaries. In Moderate NPDR, there are microaneurysms as well as 

dilatation of venules (venous beading) and “cotton wool spots” (slowing or halting of movement 

of materials in nerve fibers) due to poor perfusion. Macular edema may also occur at this stage 

due to leaking aneurysms. In severe NPDR, there is noticeable capillary loss, retinal ischemia, 

and greater than 20 intraretinal hemorrhages in each of the four quadrants, venous beading in at 

least two quadrants, or prominent intraretinal microvascular abnormalities in at least one 

quadrant, but no signs of proliferative disease. Finally, in proliferative diabetic retinopathy 

(PDR), there is neovascularization (forming of new but weak blood vessels) and/or 
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vitreous/preretinal hemorrhages[41].  During this stage, severe macular edema can occur, and if 

it is located near the fovea centralis (the center of the macula region of the retina which is 

responsible for sharp central vision), resulting vision loss. The new vessels formed in PDR are 

prone to spontaneous bleeding. They may also undergo fibrosis and contraction resulting in 

detachment of the retina and therefore potential vision loss. Secondary, or Neovascular 

Glaucoma, may also occur due to neovascularization which is accompanied by fibrous tissue that 

blocks drainage of fluid causing its accumulation within the eye and an increase in pressure [38].  

A recent study of a multi-ethnic cohort in the U.S. shows the prevalence rate of 

retinopathy among adults 45-85 with diabetes to be 33.2% and that prevalence is higher among 

blacks (36.7%) and Hispanics (37.4%) than in whites (24.8%) and Chinese (25.7%). Predictors 

of retinopathy were longer diabetes duration, higher fasting glucose level as well as a greater 

waist-hip ratio[42]. In Type 1 diabetes specifically, the crude prevalence of diabetic retinopathy 

was estimated to be between 75-82%. 1 in 300 persons 18 or older have retinopathy due to T1D 

and 1 in 600 has advanced retinopathy that threatens their vision [43]. In the Pittsburgh EDC 

study, prevalence of retinopathy (background or worse) in Type 1 participants age 18-29 years 

ranged from 57% in those with diabetes duration of 5-9 years to 100% in those with duration of 

20-29 years. Prevalence rates of retinopathy increased with increasing duration and with age as 

prevalence rates in those 30 years or older ranged from 93 to 100%[24].  Independent risk factors 

for retinopathy in the EURODIAB study were age, duration of diabetes, HbA1c, as was 

previously stated, as well as weight, current smoking, severe ketoacidosis, macroalbuminuria, 

background and proliferative retinopathy [29]. 
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2.3.3 Nephropathy 

In the United States, diabetic nephropathy is the most common cause of kidney failure, 

accounting for approximately 44% of new cases in 2002 [44, 45]. In the early stages of diabetic 

nephropathy, thickening of the glomerulus (a cluster of blood vessels in the kidney responsible 

for filtering blood and forming urine) occurs. When this occurs, the kidney allows more albumin 

(protein) into the urine resulting in what is called microalbuminuria when the amounts are small 

and later in macroalbuminuria as nephropathy progresses.  Risk factors for nephropathy include 

poor glycemic control, hypertension and lipid levels [27, 46-50].  

 Approximately one third of those with Type 1 develop microalbuminuria and about 15-

25% will develop proteinuria within the first 20 years of diabetes duration[51, 52].  Diabetic 

nephropathy is a major predictor of premature death among Type 1 patients[51, 53] . In The 

Pittsburgh EDC Study, the prevalence rate of microalbuminuria in those ages 18-29 with 

diabetes duration of 5-9 years was 13%. In this same group, prevalence of macroalbuminuria was 

about 2%. By 30 year duration, prevalence of overt nephropathy (AER>200μg/min or renal 

failure) was approximately 40%. Rates of both micro- and macroalbuminuria increased with 

increasing diabetes duration until macroalbuminuria surpassed micro at diabetes duration of 25-

29 years (microalbuminuria ~20%, macroalbuminuria ~18% in females and ~50% in males). In 

the older age group of ≥ 30 years, prevalence rates of macroalbuminuria were significantly 

higher than those of the younger age group with similar diabetes duration [24].  

Microvascular complications are risk factors for cardiovascular disease in T1D, specifically 

microalbuminuria and diabetic retinopathy[54-57].  
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2.3.4 Cardiovascular Complications 

Cardiovascular disease (CVD) occurs with greater frequency in those with diabetes mellitus, a 

finding particularly striking in women [58] whom traditionally are more protected from CVD 

than men.  Atherosclerosis is responsible for the development of many cardiovascular 

complications.  Atherosclerosis is a slow, progressive disease that starts in childhood. It is the 

development of plaques in the walls of arteries which can result in the overall narrowing of the 

arteries or, if the plaque breaks away from the vessel wall, a clot, both of which can restrict 

blood flow to tissues supplied by the specific vessel affected.  Plaque is composed of fat, 

cholesterol, calcium, and other substances found in the blood.  Two major types of plaques exist, 

hard/stable plaques and soft/unstable plaques. Hard plaque causes thickening and hardening of 

vessels while soft plaque is more likely to cause a blood clot.  

 Development of plaques is associated with lipid levels and lipoprotein size. Lipid profiles 

in those with well-controlled T1D without nephropathy or cardiovascular disease, are similar or 

better compared to levels in those without diabetes [59]. However, poor glycemic control[59], 

central obesity, and cigarette smoking[60] are associated with important lipid abnormalities. 

Presence of higher albuminuria levels in T1D have been found significantly associated with 

higher total and LDL cholesterol, triglycerides, and Apo B levels, and lower HDL cholesterol, 

HDL/LDL cholesterol ratio and Apo A/Apo B ratio [46]. Elevated levels of low density 

lipoprotein (LDL) cholesterol, total triglycerides, very low density lipoprotein (VLDL), 

triglycerides and lower level of high density lipoprotein (HDL) cholesterol are associated with 

coronary artery disease in both men and women T1D [61].   The cardiovascular complications of 

T1D include coronary artery disease (CAD), peripheral vascular disease (PVD), cerebrovascular 

disease, all of which are affected by atherosclerosis.  

16 



2.3.4.1 Coronary Artery Disease 

 Heart disease is the leading cause of diabetes-related deaths [45].   Coronary artery 

disease (CAD) is increased tenfold or greater in those with T1D [62-64]. CAD occurs when 

atherosclerosis results blockages of the coronary arteries . As plaques increase in size, coronary 

arteries narrow and less blood can flow through them. Reduced blood flow means reduced 

perfusion of the heart with oxygen-rich blood. Lack of oxygen to the muscle can result in angina 

(chest pain or discomfort), ischemic ECG changes and/or myocardial infarction (when a blood 

clot forms at the site of plaque in a coronary artery and blood supply is acutely cut off or greatly 

reduced to part of the heart muscle). If the muscle cells of the heart do not receive oxygen, 

permanent damage can occur. Over time, CAD can weaken the heart muscle and contribute to 

heart failure when the heart cannot pump blood effectively to the rest of the body, and 

arrhythmias (changes in the normal beating rhythm of the heart). 

 Incidence density of hard CAD (CAD death, history of MI confirmed by ECG Q-waves 

or hospital records or angiographic stent) in participants of the Pittsburgh EDC study were 0.17 

per 100 patient years for those with diabetes duration less than 20 years and 0.98 per 100 patient 

years with duration 20-30 years. The overall incidence density was 0.36 per 100 patient years 

after 12 years of follow-up.  At 20, 25, 30 years duration cumulative incidence rates were 3.5%, 

8%, 15%, respectively[35].  

 The DCCT found that intensive insulin therapy reduces risk of incident cardiovascular 

disease compared to conventional therapy. Results in epidemiologic studies examining the 

relationship between glycemic control (as determined by glycosylated hemoglobin) and CAD in 

T1D have varied. Lehto et al showed a significant independent association between HbA1 and 

CAD events in men (not women) in their cohort of older-onset T1D participants without renal 
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disease after controlling for traditional risk factors[65]. The Wisconsin Epidemiologic Study of 

Diabetic Retinopathy (WESDR) showed a relationship between HbA1 level and heart disease 

mortality but no significant association with myocardial infarction or angina specifically[66]. In 

the EURODIAB study, HbA1 was not significantly associated with CAD when adjusted for 

traditional CV risk factors beyond age and diabetes duration[67]. Selvin et al reported in their 

meta-analysis that HbA1c was not significantly associated with risk of CAD[68]. However, in 

another meta-analysis improved glycemic control did significantly reduce incident CAD in 

T1D[69]. In the Pittsburgh EDC Study, there was no significant relationship between baseline 

HbA1c and incident CAD at the 10-year [70] or at the 16-year follow-up however, in the 16-year 

follow-up, a positive change in HbA1c from baseline to measurement prior to CAD event was 

significantly associated with CAD risk even after adjustment for traditional risk factors [71].  

 Univariate risk factors for CAD at the most recent (16 year) Pittsburgh EDC follow-up 

were baseline age, diabetes duration, systolic and diastolic blood pressure (and the presence of 

hypertension), serum creatinine, total  and LDL cholesterol levels, triglyceride level, albumin 

excretion rate, presence of nephropathy and smoking status were all positively, significantly 

associated with incident CAD while HDL cholesterol was negatively associated[71]. In 

multivariate analyses, only lower HDL-cholesterol level, higher non-HDL level, longer diabetes 

duration and positive change in HbA1c and AER, and negative change in BMI between baseline 

and follow-up were significantly predictive of CAD. A report of the 10-year follow up from the 

EDC study also showed that insulin resistance (as measured by estimated glucose disposal rate 

(eGDR)) is associated with incident hard CAD (history of MI, fatal CAD, and coronary 

revascularization or coronary artery occlusion ≥50% by angiography) events. There is little sex 

difference in morbidity of CAD in T1D [72], however CAD risk factors do differ by sex[73].  
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For men in EDC, diabetes duration, HDL cholesterol, fibrinogen, hypertension, and smoking 

were significantly associated with incidence of CAD. When nephropathy status was available to 

the model it replaced hypertension, fibrinogen, and smoking. For women, duration, hypertension, 

waist-hip ratio, physical activity, and depressive symptomatology were all significant predictors 

of CAD multivariately[73].   

A major predictor of CAD in T1D is nephropathy[74-78]. The relative mortality from 

CVD is increased 40-fold in T1D patients with nephropathy compared with the general 

population[79].  The association between renal damage and cardiovascular disease may be due to 

its negative effect on prothrombotic factors. The presence of microalbuminuria (small amounts 

of the protein albumin in urine) is associated with increased fibrinogen and coagulation factor 

VIIc in T1D. These factors are more elevated in those with macroalbuminuria compared to those 

micro- and normoalbuminuria [80].  Levels of apo(a) in T1D patients with either 

microalbuminuria or macroalbuminuria but no CAD are comparable to CAD patients without 

diabetes. But in T1D patients without microalbuminuria apo(a) levels are normal[81]. Potentially 

atherogenic lipoprotein profiles are also associated with the presence of albuminuria in T1D. 

Jensen et al found that plasma total cholesterol, very low density lipoprotein (VLDL) cholesterol, 

low density lipoprotein (LDL) cholesterol, triglyceride and fibrinogen levels increase with 

increasing urinary albumin excretion but that HDL cholesterol levels were unaffected by 

albuminuria [82]. In the DCCT/EDIC study, medium, and small VLDL were associated with 

albumin excretion rate (AER) in both men and women. Large VLDL and intermediate density 

lipoprotein (IDL) was associated with AER in men only. This study also found that LDL particle 

concentration and ApoB were positively associated with AER, that there was a borderline 

inverse association between LDL diameter and AER in men and that small HDL was positively 
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associated with AER[83]. In the Pittsburgh EDC cohort, lipid mass and particle concentrations 

VLDL subclasses, small LDL, medium LDL, and medium HDL were significantly higher in 

CAD cases compared to non-cases, and large HDL was decreased[78]. Another factor that may 

link albuminuria and CAD is its association with left ventricular (LV) dysfunction. Guglielmi et 

al found that increased LV mass, higher wall thickness to radius ratio and impaired LV 

relaxation are significantly higher in microalbuminuric T1D patients compared to those with 

normoalbuminuria and to controls [84].   

2.3.4.2 Peripheral Vascular Disease 

 Peripheral Vascular Disease (PVD) is a disease of blood vessels, often leading to 

narrowing of blood vessels that are outside the heart and brain. Lower-Extremity Arterial 

Disease (LEAD) is a specific type of PVD in which the lining of blood vessels in the legs and 

feet become damaged, leading to buildup of cholesterol and other lipids, causing the arterial wall 

inner lining to thicken. As the atherosclerosis worsens, the arteries become narrowed or blocked, 

causing blood flow to decrease. Reduce blood flow to tissues causes can lead to foot ulcers 

(possibly resulting in amputation) as well as specific symptoms of claudication: discomfort, 

cramps, or pain in the hips, thighs or calves with walking. The ankle-brachial index (ABI) is 

used to measure to determine if PAD/LEAD is present.  ABI is measured by taking the brachial 

and ankle systolic pressures. The higher systolic pressure of the anterior tibial or posterior tibial 

measurement for each foot is then divided by the highest brachial systolic pressure to obtain an 

ankle brachial pressure ratio. An ABI less than 1.0 is considered abnormal and symptoms of 

claudication typically occur when ABI is less than 0.9.  In persons with diabetes, calcification of 

the arteries can occur which hardens the arteries and in turn elevate ABI[85]. Determining the 
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presence of LEAD in T1D often takes into account ABI, history of claudication and lower 

extremity amputation.  

 In The Pittsburgh EDC study population traditional cardiovascular risk factors that 

multivariately predicted incident LEAD were diabetes duration, HbA1, LDL cholesterol and 

smoking status[86]. Further evaluation showed that increased albumin excretion rate (AER), the 

presence of hypertension, and increased heart rate were significantly associated with 10-year 

incidence of LEAD in both males and females. Diabetes duration, HbA1 and AER were 

predictors in males only, while estimated glucose disposal rate (eGDR) and diabetes duration 

were predictive in females[87].  PVD is a strong predictor of  cardiovascular events [88, 89] and 

is twice as common among those with diabetes[90, 91]. 

2.3.4.3 Cerebrovascular Disease 

 Cerebrovascular disease is a disease of the blood vessels, especially the arteries that 

supply the brain. It is usually caused by atherosclerosis and can lead to a stroke. Stroke is an 

interruption of blood supply to part of the brain. This interruption is usually caused by blockage 

of the arteries or blood vessels that lead to the brain, termed Ischemic Stroke. Ischemic stroke is 

the most common type of stroke and is a result of atherosclerosis.  The build-up of plaque over 

time causes abnormal blood flow and possibly clots. Clots are referred to as cerebral thrombus if 

they are stationary in the brain or cerebral embolism if they break loose from elsewhere and 

move through the circulatory system to the brain. Hemorrhagic stroke is a second type of stroke 

which is caused by the bursting of weak blood vessels in the brain[92].  The risk of stroke in 

patients with T1D has been assessed in epidemiological studies. In a multinational study, 

increased risk of stroke mortality was observed among individuals with type 1 and type 2 

diabetes, but there was considerable variation among countries[93, 94]. Risk of total stroke, but 
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not hemorrhagic stroke mortality, in a U.K. T1D cohort was increased compared to those among 

the general population [95]. Total stroke mortality was also found to be 4.8-fold higher in women 

with T1D than in nondiabetic women [96]. In the Nurses’ Health Study, T1D was associated with 

a 6.3-fold higher risk of ischemic stroke and a nearly 4-fold higher risk of hemorrhagic stroke 

than women without diabetes, even after controlling for age, BMI, and other cardiovascular risk 

factors[97].  

 The WHO multinational study of vascular disease in diabetes showed that independent 

risk factors for stroke in T1D are systolic blood pressure and proteinuria in both men and 

women. Additionally, probable ECG changes significantly increased risk in T1D men [93].  
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2.4 VASCULAR AGING AND ARTERIAL STIFFNESS 

2.4.1 The Vasculature 

The arterial tree of the vascular system functions to deliver oxygenated blood from the left 

ventricle of the heart through the aorta to large arteries, then to the arterioles and finally the 

capillaries of tissues and organs. In doing so, it also regulates the flow of blood so that there is 

continuous flow during systole (the contraction of the heart’s ventricles) and diastole (the 

relaxation period) as well as the reflection of blood back towards the heart for reoxygenation and 

coronary perfusion.  The aorta, large arteries, and the arterioles are made up three layers; 1) a 

connective tissue outer layer (adventitia); 2) a middle layer of smooth muscle (media); and 3) an 

inner layer of endothelial cells and some subendothelial connective tissue (intima).  The aorta 

and the large arteries contain a large amount of elastic tissue, so after stretched during systole by 

the ejection of blood from the left ventricle, the vessels are able to recoil during diastole.  This 

arterial recoiling is important as it helps to propagate the blood forward throughout the arterial 

tree and also allows for coronary perfusion during diastole.  Arterioles are different from the 

aorta and large arteries because they contain less elastic tissue but more smooth muscle thereby 

creating resistance and slowing down blood flow[98]. The peripheral resistance created by the 

arteries and arterioles cause a reflected wave back to the heart. The pulse-wave velocity, the 

speed at which the forward pressure wave created by the contraction of the left ventricle is 

transmitted from the aorta to the vascular tree, as well as the distance to peripheral reflecting 

sites, determine the timing of the wave reflection. In healthy, young individuals the reflection 
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wave typically reaches the heart during diastole which aides in coronary perfusion.  Also, this 

wave reflection limits the pressure to the periphery where damage to the microcirculatory beds 

might occur [99]. Increases in arterial stiffness, i.e. increases in the rigidity of arterial walls 

[100], increases the speed at which forward and reflected waves travel [101]. Therefore, reflected 

waves occur earlier, eventually occurring during systole rather than diastole, augmenting systolic 

blood pressure while lowering diastolic blood pressure creating a state of isolated systolic 

hypertension (ISH), thereby increasing cardiac afterload and decreasing coronary perfusion. 

Meanwhile, forward waves have increased pulsatile velocity flowing into microcirculation 

potentially causing damage. 

2.4.2 Arterial Stiffness Measures and Indices 

Many indices can be used to quantify arterial stiffness; terms and definitions of which are 

provided in Table 1 (adapted from O’Rourke, et al. [102] and Mackenzie et al. [100]).  Multiple 

factors can influence these indices, such as assumed values of cardiac output that are poorly 

validated; they may relate proximal diameter change to pressure change at distant sites; or they 

may be influenced by heart rate or cardiac contractility [100].  
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Table 1.  Definitions, formulae, units for measures of arterial stiffness, compliance or distensibility 

TERM DEFINITION FORMUAE UNITS 

Arterial Distensibility Relative diameter 

change for a pressure 

increment 

ΔD/ΔPxD mmHg-1 

Arterial Compliance Absolute diameter 

change for a given 

pressure increase at 

fixed vessel length 

ΔD/ΔP cm/mmHg 

Elastic Modulus Pressure change 

required for 100% 

stretch from resting 

diameter (fixed vessel 

length) 

ΔP*D/ΔD mmHg 

Young’s Modulus Elastic Modulus per 

unit area 

ΔP*D/ΔDxh mmHg/cm 

Stiffness Index Ratio of Ln(Systolic 

pressure / diastolic 

pressure) : relative 

change in diameter 

Β=Ln(Ps/Pd)/[Ds-Dd/Dd) No Units 

Augmentation Index Difference between the 

2nd and 1st systolic 

peaks as a percentage of 

pulse pressure 

[(P2-P1)/(PP)] x 100 % 
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Pulse pressure, the difference between systolic blood pressure (SBP) and diastolic blood 

pressure (DBP), is a well known surrogate marker for systemic arterial stiffness[103]. Although 

SBP and DBP tend to increase with age[104], after approximately the 5th decade of life ISH 

tends to occurs as does a decline in diastolic blood pressure resulting in greater pulse pressure 

(PP). PP is a simple measure of arterial stiffness as it can be measured by the use of a standard 

sphygmomanometer. However, PP is not the most accurate marker of arterial stiffness as it does 

not necessarily accurately reflect central pulse pressure[105]. Pulse pressure is a better predictor 

of coronary heart disease than SBP or DBP alone in hypertensive patients over 50 [106, 107].  

Central pulse pressure has been shown to be an independent predictor of all cause mortality in 

ESRD [108], and of cardiovascular events in those with hypertension[2].  

 The speed at which the forward pressure wave is transmitted from the aorta to the 

remainder of the arteries and arterioles is known as pulse-wave velocity. The measurement of 

PWV is determined by measuring the time it takes for the arterial waveform to pass two reading 

sites (typically carotid and the femoral arteries) a measured distance apart. This measurement 

gives information about the distensibility of the vessel being studied rather than information 

about systemic arterial stiffness [100]. There are invasive and non-invasive techniques for 

measuring PWV. Non-invasive carotid-femoral PWV is considered the “gold-standard” 

measurement of arterial stiffness [101].  PWV is considered the gold-standard because it is based 

on direct measurements of parameters linked to regional arterial stiffness and carotid-femoral 

PWV specifically, is considered clinically relevant as this measures pressure and stiffness within 

the aorta and large arteries which are closest to and most influential on the heart[101]. Also, 

many of the studies that have examined arterial stiffness measures in relation with adverse 

outcomes have utilized PWV, therefore the risk associated with higher PWV is more understood  
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than for other measures of arterial stiffness [109]. However, problems that arise with this PWV 

measurement include use of superficial arteries as central arteries are inaccessible, estimating 

actual distance between recording sites, reduced accuracy if sites are close in proximity [100]. 

Also, in the presence of metabolic syndrome, diabetes, peripheral artery disease and obesity, the 

femoral pressure waveform can be difficult to record accurately[110]. 

 As previously mentioned, numerous longitudinal studies have reported the independent 

predictive value of arterial stiffness for mortality and CVD. For example, aortic Pulse Wave 

Velocity (aPWV) has been show to predict all cause mortality in the elderly[111, 112], and in 

those with impaired glucose tolerance (IGT)[113], or cardiovascular mortality in those with end-

stage renal disease (ESRD)[3], hypertension[4], and in the general population[5, 6]. 

 Ultrasound technology is also used to measure arterial stiffness by measuring 

distensibility and compliance (the inverse of stiffness). This technique is limited to larger and 

accessible arteries such as the brachial, femoral, carotid arteries and the abdominal aorta and can 

be operator-dependent[100]. Simultaneous measurement of blood pressure during ultrasound of 

arteries is necessary. The use of ultrasound to measure arterial stiffness can be expensive and 

inconvenient due to the size and cost of equipment.  Studies that have utilized B-Mode 

Ultrasonography to measure distensibility (the inverse of stiffness), have shown that reduced 

distensibility (i.e. increased stiffness) is an independent predictor of cardiovascular outcomes. 

For instance, Tsivgoulis et al. showed in a case-control study, that reduced common carotid 

artery (CCA) distensibility was independently associated with ischemic stroke even after 

adjusting for blood pressure values, diastolic common carotid arterial diameter and height [114]. 

Stork et al. showed that the calculated Young’s Elastic Modulus from B-Mode measures of 

distensibility are predictive of cardiovascular mortality in elderly men[115].  Liao et al. also used 
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B-mode ultrasonography using its measurements to calculated Peterson’s Elastic Modulus, 

Young’s Elastic Modulus, and the beta stiffness index finding that after adjustment for age, 

gender, ethnicity, smoking status, HR, obesity and education, a lower modulus or higher beta 

stiffness index was significantly associated with risk for incident hypertension over a 6-year 

follow-up. These findings were independent of risk factors for hypertension and baseline blood 

pressure[116]. 

 There are multiple non-invasive devices available to measure and analyzed the arterial 

waveform.  Applanation tonometry is used to record pressure at either the radial or carotid artery.  

A transfer function is then used to derive central aortic waveforms which can be used to calculate 

central blood pressure, the amount of central systolic pressure due to pulse wave reflection 

(augmentation pressure (AP)) and augmentation index (AIx), the AP as a percentage of the pulse 

pressure (AIx=(AP/PP) X100) . Carotid AIx has been shown to independently predict all cause 

cardiovascular mortality in ESRD [117]. Pulse wave analysis is influenced by vasoactive 

drugs[118], AIx and AP increase with mean arterial pressure (MAP)[119], and are inversely 

related to body height[120] and heart rate[121]. Arterial stiffness increases with increasing age.  

A significant relationship between aging and arterial stiffness as measured by a variety of 

techniques, has been found in numerous cross-sectional studies and a recent study showed that 

the relationship to be curvilinear in nature[7].  Physiological factors attributed to the aging of the 

vasculature include progressive thickening of the intima-media[122]. Between 20 and 90 years 

of age, carotid intima medial thickness (CIMT) increases threefold[123]. This thickening is 

largely due to intimal hyperplasia[124]. However, the elasticity of the media is also reduced as 

elastin lamellae thin and become separated[125].  In the larger elastic arteries there is increase in 

both collagen content and covalent cross-linking of collagen reducing compliance.  Arterial 
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stiffness is also shown to increase due to atherosclerosis development, the slow buildup of 

plaques composed of fat, cholesterol, and especially calcium, on the inside of walls of the 

arteries[126].  Lack of physical activity[127], obesity[128], smoking[129], hypertension[130], 

hypercholesterolemia[131], impaired glucose tolerance[132], Type 2 diabetes[133], and T1D[10, 

134, 135] are associated with increased arterial stiffness as well. 

 Alterations in the function of endothelial cells lining the vasculature, termed “endothelial 

dysfunction”, also occur with increasing age. There is an increase in endothelin, a potent vaso-

constrictor and procoagulant[136]. Most important however, is the loss of active/bio-available 

nitric oxide (NO), which is essential in maintaining vascular tone and reactivity[137] as well as 

vasodilatation.  Oxidative stress, the build-up of oxygen free radicals, occurs with age and in the 

presence of cardiovascular risk factors such as hyperlipidemia, high blood pressure, smoking and 

diabetes. These oxygen free radicals directly inactivate NO [138] thereby reducing NO 

bioavailability causing endothelial dysfunction[139, 140].  

 Hyperglycemia induces endothelial dysfunction and reduces endothelium-dependent 

relaxation[141, 142] due to increased production of reactive oxygen species[143-145]. 

Mechanisms potentially involved in development of endothelial dysfunction due to 

hyperglycemia include increased formation of glucose-derived advanced glycation end-

products[146]; glucose-induced activation of protein kinase C isoforms[147]; and increased 

glucose into the aldose reductase pathway increasing production of sorbitol[148].  Endothelial 

dysfunction and arterial stiffness are both associated with diabetes however, studies examining 

the association between measures of endothelial dysfunction and measures of arterial stiffness 

show conflicting results [8, 149-152].  Berry et al. measured systemic arterial compliance and 

endothelium-dependent flow-mediated dilation (FMD) of the right brachial artery in a group of 
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T1D free of overt micro- and macrovascular complications and a group of control subjects.  

Although arterial compliance was 29% lower in the T1D group compared to controls, 

compliance was not significantly related to FMD in the T1D group[8]. In a group of participants, 

the majority with hypertension, arterial stiffness as measured by pulse wave analysis and FMD 

were not significantly correlated[152]. Nigam et al. did find a significant association between 

arterial stiffness and percent flow-mediated dilation in patients with risk factors for CAD and 

those with established CAD [149]. Nakamura et al. also found a significant association between 

FMD and both arterial compliance and distensibility in CHF patients[150]. Jadhay et al. showed 

that PWV was significantly associated with FMD of the brachial artery in a mixed group of 

participants with hypertension and/or type 2 diabetes.  

2.4.3 Arterial Stiffness and Type 1 Diabetes 

Isolated increased systolic blood pressure and decreased diastolic blood pressure with the 

resulting increase in pulse pressure appear to occur earlier in Type 1 diabetes indicating possible 

accelerated arterial aging [153]. Through measurement of pulse wave velocity, Berry et al 

showed that arterial compliance is reduced by approximately 29% in those with T1D compared 

to controls. The Type 1 participants of the study had no evidence of overt micro- or 

macrovascular disease. This study also measured flow mediated dilation (FMD), a measure of 

endothelial dysfunction, and examined whether there was a significant relationship between 

PWV and FMD; there was not[8].  Brooks et al utilized pulse wave analysis via radial 

applanation tonometry to measure arterial stiffness  indices in type 1 diabetes study participants 

and controls finding that T1D increased aortic AIx as well as reduced estimated myocardial  

perfusion (as determined using the subendocardial viability ratio (SEVR))[9].  Haller et al used 
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the same technique demonstrating that arterial stiffness indices were significantly higher in 

children with T1D compared to controls[10]. However, Ryden et al found arterial stiffness 

measured non-invasively by sonography of the abdominal aorta and common carotid arteries  to 

be significantly higher in women, but not in men, with T1D compared to controls[154]. These 

findings held true at a 7-year follow-up[155].  Age is significantly associated with pulse pressure 

in T1D as it is in the general population; however this association is stronger in the presence of 

micro- or macroalbuminuria and/or retinopathy[156]. Acute hyperglycemia is also associated 

with increased arterial stiffness in T1D[157] and insulin resistance in T1D seems to affect typical 

decreases in large artery stiffness associated with normal insulin action [158]. 

 Some studies have examined the potential link between endothelial dysfunction and 

arterial stiffness in T1D.  A cross-sectional examination within The EURODIAB study found 

that advanced glycation end products (AGE’s) were significantly associated with pulse pressure 

in T1D [135] suggesting a potential link between oxidative stress and endothelial dysfunction 

with arterial stiffness. However, Haller et al showed that superoxide dismutase activity and NO 

are not correlated with arterial stiffness 

2.4.4 Pulse Wave Analysis via Applanation Tonometry 

The SphymoCor Pulse Wave Analysis device (Atcor, Sydney, Australia) uses applanation 

tonometry to record peripheral arterial waveforms. These waveforms are used to derive central 

aortic waveforms by applying a generalized transfer function. Studies have shown that there 

exists good consistency between measured and derived waveforms as well as the values 

calculated from these waveforms[159, 160].   Pauca et al. compared SphygmoCor derived 

waveforms to directly measured aortic waveforms, finding a high correlation between the two 
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[161]. In the study, ascending aortic and radial artery pressure waves were recorded 

simultaneously in 62 anesthetized patients prior to the initiation of cardiopulmonary bypass. A 

generalized transfer function was used to generate ascending aortic pressure waveforms from the 

radial pulse. Estimated aortic pulse waveforms were compared with simultaneously recorded 

aortic waves. The two different waveforms were then compared for systolic, diastolic, mean, and 

pulse pressures. When radial estimated and directly measured aortic pressure waveforms were 

compared, there was good correspondence for systolic (mean 0.0±4.4 mm Hg), pulse (0.7±4.2 

mm Hg), mean (0.5±2.0 mm Hg) and diastolic (0.6±1.7 mm Hg) pressures.  

 Numerous variables associated with vascular stiffness can be obtained using the 

SphgymoCor device, which are detailed in Table 2. Studies show a high level of repeatability 

and reproducibility of SphygmoCor pulse wave analysis measurements.  Savage et al. examined 

intra-observer, inter-observer and long-term reproducibility of pulse-wave analysis utilizing the 

SphygmoCor device in patients with chronic renal failure and in health controls. This study 

found that measurements of central aortic mean blood pressure (MBP), indices of arterial 

stiffness and the subendocardial viability ratio (SEVR) showed excellent reproducibility in all 

the studies[162]. Wilkinson et al also found good inter-observer reproducibility of AIx measures 

using the SphygmoCor device in a mixed group of subjects with and without a wide range of 

cardiovascular risk factors [163].  Papaioannou et al. demonstrated good intra- and inter-observer 

reproducibility of pulse-wave analysis measures of AIx and reflection time intervals in those 

with low blood pressures [164]. Crilly et al. completed at repeatability study using inexperienced 

operators also finding excellent inter- and intra-observer reproducibility over time and across a 

range of AIx measures[126]. 
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Table 2. Measures obtained by the SphygmoCor Vx Pulse Wave Analysis Device 

PARAMETER DESCRIPTION FORMULAE UNITS 

Augmentation 

Pressure (AP) 

A measure of contribution the 

reflected wave makes to the 

systolic aortic pressure; 

Pressure difference between the 

1st peak  and the 2nd Peak AP = P2-P1 mmHg 

Augmentation Index 

(AIx) 

AP as a proportion of central 

pulse pressure (PP). AIx = (AP/PP)x100 % 

Subendocardial 

Viability Ratio 

(SEVR) 

Ratio of diastolic area/min 

(Tension Time Index (TTI)) 

and Systolic area/min (Diastolic 

Time Index (DTI)) SEVR = (DTI/TTI)x 100 % 

Ejection Duration 

(ED) 

The period of time from the 

start of the cardiac cycle (T0, 

aortic valve open) to the end of 

systole (incisura). ED =T(incisura)-T0 msec 

Aortic Systolic Blood 

Pressure (aSBP) 

Maximum pressure of the 

central waveform  mmHg 

Aortic Diastolic 

Blood Pressure 

(aDBP) 

Minimum pressure of the 

central waveform  mmHg 

Aortic Pulse Pressure 

(aPP) 

Difference between aortic 

systolic and diastolic pressures aPP = aSBP-aDBP mmHg 

HR 

The average heart rate over the 

captured 10-second data capture 

period  bpm 

End Systolic Pressure 

(ESP) Pressure at end of systole  mmHg 
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3.1 ABSTRACT 

BACKGROUND:  Cardiovascular disease occurs earlier age and with greater frequency in Type 

1 diabetes (T1D).  Arterial stiffness indices (augmentation index (AIx) and augmentation 

pressure (AP)), are increased in T1D and are associated with CAD risk.  Subendocardial viability 

ratio (SEVR), an estimate of myocardial perfusion and an indicator of potential for myocardial 

ischemia, is significantly reduced in T1D. Autonomic neuropathy (AN), a known T1D 

complication, affects blood pressure and heart rate regulation and is an independent risk factor 

for cardiovascular morbidity and mortality. We therefore evaluated the predictive value of AN 

for AIx, AP and SEVR in T1D. 

METHODS:  Baseline autonomic nerve function was measured in participants in The Pittsburgh 

EDC Study of childhood onset T1D by heart rate variability during deep breathing. The ratio of 

R-R interval length during expiration to inspiration (E/I ratio) was calculated. Other 

cardiovascular and diabetes factors were also assessed. Pulse wave analysis (PWA) was 

performed using SphgymoCor Px on 144 participants at 18 year examination.  Multivariate 

regression was performed for each PWA measure with baseline factors and adjustment for 

concurrent potential confounders.  

 RESULTS: Lower baseline E/I ratio and HDL-cholesterol, and smoking history were associated 

with higher AIx and AP, and lower SEVR at follow-up (18 years later).  Higher baseline HbA1 

was also associated with higher AP and lower SEVR.  

CONCLUSIONS: AN is associated with increased arterial stiffness indices and decreased 

estimated myocardial perfusion in T1D some 18 years later. This association persists after 

adjustment for potential confounders as well as baseline HbA1, HDL-c and smoking history, 

which were also associated with these PWA measures.  
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3.2 INTRODUCTION 

Cardiovascular disease (CVD) occurs with greater frequency and at an earlier age in those with 

diabetes mellitus, a finding particularly striking in women [58]. These observations are 

especially true for those with type 1 diabetes (T1D), in whom coronary artery disease (CAD) is 

increased tenfold or greater [62, 63]. Much of what is understood regarding risk for CAD in T1D 

revolves around presence and severity of atherosclerosis and its risk factors 

(dyslipidemia/hyperlipidemia). Blood flow dynamics and arteriosclerosis, or arterial stiffening, 

indices of which are measured in a variety of ways [165], are also important risk factors for 

cardiovascular events and mortality [4, 166-168]. Interestingly, in case-control studies, arterial 

stiffness indices are shown to be increased in T1D [9, 10, 169]. Indices of arterial stiffness can be 

measured noninvasively with pulse waveform analysis (PWA)[163, 170, 171],[172] using 

applanation tonometry (external application of a micromanometer-tipped probe over a peripheral 

artery) [159, 173]. Via PWA, a variety of indices and hemodynamic parameters can be derived 

including augmentation pressure (AP) and augmentation index (AIx), both of which provide 

information about the effects of early wave reflection on central blood pressure, as well as 

subendocardial viability ratio (SEVR), the ratio of the area under the time-pressure curve during 

diastole (an estimate of myocardial perfusion) to the area under the curve during systole (an 

estimate of cardiac workload) and an indicator of potential for myocardial ischemia [174].  

Currently, few data are available concerning risk factors for increased arterial stiffness in 

T1D. Autonomic neuropathy (AN) is a T1D complication that predicts cardiovascular events and 

mortality [175]. The autonomic nervous system is responsible for regulating heart rate and 

vascular tone and therefore may contribute to increased arterial stiffness in T1D. Therefore the 

aim of the present study is to examine the association between autonomic nerve function and 
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indices of arterial stiffness, AIx and AP, and with SEVR, an estimate of myocardial perfusion, in 

a T1D population.  

3.3 METHODS 

Participants in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study, an 18-

year prospective investigation of patients with childhood-onset (age <17 years) T1D were 

selected for study. Individuals were either diagnosed or seen within 1 year of diagnosis at 

Children’s Hospital of Pittsburgh between 1950 and 1980 and were on insulin therapy at initial 

discharge [27, 176]. Initial evaluation in the EDC study occurred between 1986 and 1988 then 

followed by biennially. Full examination at 18 years included PWA. The EDC Study 

population has been shown to be epidemiologically representative of the T1D population of 

Allegheny County, Pennsylvania [177]. The study protocol was approved by The University 

of Pittsburgh Institutional Review Board.  

Physical activity was assessed using a survey previously described [178]. A summary 

estimate of energy expenditure was derived and expressed as kcal/min.  Self-reported alcohol 

consumption (average drinks/week), current and ever smoker status (at least 100 cigarettes 

during lifetime) and medication (coded according to ATC/DDD codes) use were obtained. 

Medications of interest in these analyses were those potentially effecting pulse wave reflection 

indices (i.e. angiotensin converting enzyme inhibitors (ACEI), angiotensin II receptor blockers 

(ARBs), calcium channel blockers (CCBs), beta-blockers (BB) and nitrates [179].  

Systolic and diastolic blood pressures (SBP and DBP) were measured using a random 

zero sphygmomanometer, according to the Hypertension Detection and Follow-Up Program 
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protocol, after a 5-minute rest [180].  Hypertension (HTN) was defined as blood pressure of 

≥130/80 mmHg or the use of antihypertensive medication for the purpose of lowering blood 

pressure.  Height was measured in cm and weight in kg. BMI was calculated from height and 

weight and expressed as kg/m2. Waist and hip circumferences were measured 2 times, and a 

third if the first two were not within 0.5 cm of one another. The means of waist and of hip 

measurements were used to calculate waist-to-hip ratio (WHR). Total cholesterol (TC) levels 

were measured enzymatically [181, 182]. High-density lipoprotein cholesterol (HDL-c) levels 

were determined by means of a precipitation technique (heparin and manganese chloride) with 

modification [183] of the Lipid Research Clinics method [184]. Non-HDL cholesterol was 

calculated by subtracting HDL-c cholesterol level from TC level.  

 Complete blood counts (CBC) were determined using the Coulter S-Plus IV. Urinary 

creatinine concentrations were measured using an Ekachem 400 analyzer (Eastman Kodak Co, 

Rochester, NY).  For the first 18 months, blood samples were analyzed for hemoglobin A1 

(HbA1; microcolumn cation-exchange; Isolab, Akron, OH). For the remainder of the baseline 

clinic visits, automated high-performance liquid chromatography (Diamat; Bio-Rad, Hercules, 

CA) was performed. Serum creatinine was assayed using an Ectachem 400 Analyzer (Eastman 

Kodak Co, Rochester, NY)[185] and urinary albumin was measured by immunonephelometry 

[186, 187]. Albumin excretion rates (AER) were calculated using urinary albumin levels from at 

least 2 validated timed sample collections. Heart rate response to deep breathing, expiration-

inspiration ratio (E/I) was used to test for autonomic neuropathy (AN). An E/I <1.1 was 

considered abnormal [188].  

 Certain medications are known to affect measures of arterial stiffness including 

angiotensin converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARB), beta 
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blockers, calcium channel blockers and nitrates. In order to account for the potential confounding 

effect of use of these medications a “Pulse Wave Drug” (PWD) variable was created.  PWD use 

was coded as 0 no use of these medications was reported and 1 if use of one or more of the 

medications were used.  

Of those EDC study participants examined at baseline (n=658), 22.7% (n=150) had died 

by the 18-year follow-up (November 2004 – November 2006), 78 had moved out of area, 101 

declined exam, 19 were lost to follow-up leaving 318 eligible for 18 year exam, 309 for which 

data was available for this analysis. Pulse waveform analysis (PWA) testing began part way 

through the 18-year examination period (January 2006), after which 189 subjects were seen and 

144 (76%) had PWA. The PWA population thus 144 men and women in attendance at the 18-

year follow-up clinic visit after January 1 2006.  Aortic augmentation index (AIx), aortic 

augmentation pressure (AP) and subendocardial viability ratio (SEVR) were derived using 

waveforms measured at the radial artery using the SphygmoCor Vx version 7.01 (AtCor 

Medical, Sydney, Australia). In brief, a high-fidelity micromanometer with a frequency response 

of >2 kHz (Millar Instruments, Houston, TX) was placed on the right radial artery, and gentle 

pressure was applied until a consistent waveform was produced. After at least 20 sequential 

waveforms had been acquired, measurement was stopped. Central pressure values were 

estimated from radial measurements using the software’s mathematical transfer function [159, 

189]; the accuracy and reliability of which have been validated [163, 172]. The pressure wave 

created by left ventricular contraction propagates forward until meeting sites of resistance which 

reflect the wave backward. Stiffer artery walls result in earlier wave reflection [168, 171]. When 

the reflected wave returns during systole rather than diastole, systolic pressure is increased or 

“augmented”.  Augmentation pressure (AP) is a measure of how much the early reflected wave 
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contributes to central systolic pressure. Augmentation index (AIx) represents the level of 

augmentation measured and is expressed as a percentage of the pulse pressure (AIx = AP/PP). 

Heart rate is inversely associated with AIx and AP [121]. Subendocardial viability ratio (SEVR), 

the ratio of the diastolic area under the curve (AUC) of an arterial pulse wave to the systolic-

AUC [190, 191] is a ratio of myocardial perfusion (as coronary artery perfusion takes place 

primarily during diastole) to myocardial contraction, and is a tonometric, non-invasive measure 

of myocardial perfusion relative to cardiac workload. The SphygmoCor device provides a quality 

index (QI) which represents reproducibility of the waveform. If PWA produced results with a 

QI<80 the measure was repeated. Measures with a QI ≥ 80 were included in this study. 

Distributional characteristics and normality of all variables were assessed. Student’s t-test 

and One-Way ANOVA were used to compare continuous normally distributed variables between 

groups while Mann-Whitney U and Kruskal-Wallis tests were used for variables not meeting the 

parametric assumptions (AP, TG, serum creatinine, AER, WBC). The χ2 test was used to 

compare categorical variables between groups. 

Pearson’s and Spearman’s correlations were used for bivariate correlations for normal 

and non-normal variables, respectively. Linear regression models were created for AIx, AP and 

SEVR, for which all categorical variables (medication use, smoking history) were coded as 

either 0 or 1, 1 representing the use/presence. Sex was also categorized as 0 (males) and 1 

(female).  All continuous variables were standardized to the population prior to multivarate 

analyses. Linear regression for augmentation pressure used natural logarithmically transformed 

AP (LnAP) as model residuals were not normally distributed. Forward regression was completed 

in a stepwise manner, for each PWA measure with baseline variables adjusting for concurrent 

potential confounders (even if not statistically significant). All statistical analyses were 
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conducted using SPSS 15.0 for Windows (SPSS, Chicago, IL).  Due to the limited sample size 

factors with p-values <0.10 are reported.  

3.4 RESULTS 

Characteristics of the PWA study population (n=144, 46.6%) and the remaining EDC population 

examined at the 18 year follow-up (n=165, 53.4%) are listed in Table 3.  The mean±SD age and 

diabetes duration for the PWA population at baseline were 25.9±7.38 and 17.6±6.70, 

respectively, which did not significantly differ from the remaining EDC population. The only 

baseline factor that differed significantly between PWA participants and non-participants was 

mean heart rate (76.0±12.3 vs. 73.1±11.1; p=.04). At follow-up, those with PWA measures still 

had significantly higher mean heart rate compared to non-participants as well as lower mean 

WHR and mean AER (data not shown).  PWA participants also had a borderline significantly 

greater percentage of reported current smokers (15% vs. 8%, p=0.05) but not ever smokers 

(40.0% vs. 31.7%, p=.13). They also had greater mean±SD alcoholic drinks/week (2.6±6.1 vs. 

1.81±5.22, p=0.09) than non-PWA EDC participants.   

 AIx and AP were highly correlated (r=0.897 p<.001). Both factors were also significantly 

correlated with height, HR and age (p<0.01). SEVR was not significantly correlated with AIx 

(r=-.058, p=.49), but was negatively correlated with AP (r=-.214; p=.01). SEVR was also 

significantly, negatively correlated with age (r=-.292, p<0.001), heart rate (r= -0.665, p<.001), 

and positively with height (r= 0.229, p<.01) in the PWA population. AIx and AP remained 

significantly correlated with height after adjustment for sex, but SEVR did not.  
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 Unadjusted correlations between PWA measures and baseline variables are described in 

Table 4. Baseline E/I ratio, heart rate, energy expenditure in sports activities were all negatively 

associated with Aix and AP and positively associated with SEVR.  Non-HDL-c was positively 

associated with AP, but not AIx and negatively with SEVR as was AER. BMI was related only 

to AIx, in a positive direction. AIx and AP were higher in females and SEVR lower compared to 

males (Table 4). This was also the case between those with a history of smoking compared to 

those without. 

Ninety (62.5%) of the 144 PWA study participants reported PWD use. Most, 88.9% 

(n=80), were using an ACEI and/or ARB’s. Of the 16 participants taking beta blockers, 10 

(62.5%) were also taking ACEI/ARBs; 13 of the 18 reporting calcium channel blocker use and 4 

of the 5 participants reporting nitrate use were also taking ACEI/ARB.   

In multivariate analyses relating baseline PWA measures while adjusting for concurrent 

potential confounders (age, heart rate, height, sex, PWD use), lower E/I ratio and HDL-c and 

history of smoking were associated with increased follow-up AIx and Ln(AP) (Table 5). Higher 

baseline HbA1 was also associated with increased AP. The baseline factors associated with 

decreased SEVR were lower E/I ratio, higher HbA1 and having a smoking history.  When 

models were adjusted for ACEI/ARB use instead of PWD use, results were similar. However, 

ACEI/ARB use was more significantly related to PWA measures than was the more inclusive 

PWD use variable (data not shown).  
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3.5 DISCUSSION 

The main outcome of interest of this study is that baseline autonomic neuropathy, as measured 

by E/I ratio, is a potent predictor of arterial stiffness, as measured by both augmentation index 

and augmentation pressure, and of reduced estimated myocardial perfusion, as measured by 

SEVR, in childhood onset Type 1 diabetes, some 18 years later. Along with autonomic 

neuropathy, know cardiovascular risk factors such as reduced HDL-c and cigarette smoking were 

also predictive of increased stiffness indices AIx and AP. Poorer glycemic control (higher 

baseline HbA1) in this T1D population was also associated with higher AP and with reduced 

SEVR.  

The current results indicate that autonomic neuropathy may exert a pathophysiological 

role in the development of arterial stiffening. E/I ratio was predictive, multivariately, of AIx and 

LnAP.  Our finding that E/I and arterial stiffness indices are linked is consistent with the finding 

by Ahlgren et al. that there was a significant correlation between E/I ratio and aortic stiffness, 

measured as aortic distensibility using ultrasonography, in females with T1D [192]. In our sex 

adjusted analyses, E/I was related to all three PWA measures. In sex-stratified analyses (data not 

shown), E/I remained significantly associated with AP and SEVR in females but not in males. 

However, due to the limited sample size, stratified analyses are not conclusive. In T1D, diabetic 

autonomic neuropathy is associated with increased all-cause mortality [193] and specifically 

cardiovascular fatality as well as non-fatal cardiovascular events, especially in those with 

nephropathy [175]. Cardiovascular autonomic neuropathy (CAN) is shown to be associated with 

left ventricular hypertrophy and diastolic dysfunction in T1D [194]. As arterial stiffness indices 

are shown to contribute to left ventricular diastolic dysfunction [195], arterial stiffness may be a 

link between AN and cardiovascular disease.  T1D patients without nephropathy, retinopathy or 
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neuropathy have preserved vascular function [196, 197] which suggests an intimate relationship 

between vascular dysfunction and these complications.   

Lower HDL-c, a traditional cardiovascular risk factor, but not higher non-HDL-c, was 

independently predictive of AIx and LnAP. In a study of healthy subjects, Duprez et al. showed 

that low HDL-c was significantly correlated to AP and AIx in women, but not in men [198]. 

However, the study examined only univariate correlations. The results of the present study 

showed that baseline HDL-c was correlated with both AIx and LnAP in partial correlations and 

in multivariate, sex-adjusted models. In sex-stratified analyses, lower HDL-c remained 

significantly associated with higher AIx and higher AP in women and with higher AP in men.  

Having a history of smoking was significantly associated with all three outcomes.  This 

finding is not surprising as cigarette smoking is an established cardiovascular disease risk factors 

[199] and is known to be associated with arterial stiffness indices, particularly in those with 

hypertension [200].  A higher baseline HbA1 was associated with increased AP and decreased 

SEVR in the present study. This is consistent with the notion that the formation of advanced 

glycation end products (AGEs) is one of the primary mechanisms thought to be involved arterial 

stiffening, especially in those with diabetes. Arterial wall exposure to AGEs can cause cross-

linking of collagen molecules which in turn reduces arterial elasticity [109]. Advanced glycation 

end-products (AGEs) are shown to be associated with increased arterial AIx in persons with 

hypertension [201]. Schram et al showed that AGEs, pentosidine, Nepsilon-

(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine, were all significantly associated with 

increased pulse pressure in those with T1D in a cross-sectional analysis, although HbA1c was 

not [135]. In our study, concurrent HbA1c also was not significantly associated with PWA 
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measures (data not shown). Baseline HbA1 level may better represent early exposure to 

hyperglycemia leading to AGE exposure.  

Many of the factors associated with augmentation index were also associated with 

augmentation pressure in this study. This is not surprising as AIx is merely AP/PP x 100. AP is 

the measure of contribution that the wave reflection makes to the systolic arterial pressure, and it 

is obtained by measuring the reflected wave coming from the periphery to the centre.  As the 

reflected wave returns earlier in the cardiac cycle, there is a disproportionate rise in SBP and 

therefore an increase in PP. It has been shown that AIx increases with age in healthy population 

until approximately 55 years of age, but that AP steadily increases with age without reaching a 

plateau [202]. The difference is due to the positive association between PP and age.  At a certain 

point it seems that AP is a better representation of vascular aging than AIx because widening 

pulse pressures result in lower AIx. This may be the case in those with T1D as its presence is 

associated with accelerated vascular aging [153]. As poorer glycemic control is associated with 

increased PP [135] this may explain why baseline HbA1 was associated, multivariately, with AP 

but not with AIx.  

This study is not without limitations. For one, the limited sample size; in an attempt to 

make up for this limitation, p-values ≤ 0.10 were represented. Another limitation is the lack of 

pulse wave analysis measurement at baseline. Due to this, the factors found significant in this 

study can only be considered potential predictors of the arterial stiffness indices measured, and 

should be studied further in prospective study of T1D populations. Blood glucose level has been 

shown to acutely affect arterial stiffness measures in T1D[157] however, blood glucose 

measurements at the time of measurement were not taken in this study.  Another thing that could 

be considered a potential limitation is that pulse wave analysis was used and not pulse wave 
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velocity, the accepted gold standard [101]. PWV is considered the gold-standard because it is 

based on direct measurements of parameters linked to regional arterial stiffness and carotid-

femoral PWA specifically, is considered clinically relevant as this measures pressure and 

stiffness within the aorta and large arteries which are closest to and most influential on the heart 

[101].  However, pulse wave analysis is an easy to implement, quick, well-tolerated and reliable 

technique that can be reasonably implemented in a clinical setting. Central pressure measures 

derived from PWA are correlated with PWV measures, are already shown to be altered in the 

presence of T1D [9, 169] are associated with adverse outcomes [112, 117]. 

Another limitation is that this population is essentially a survivor population and that 

those who were unable to attend or deceased at the 18 year clinic visit may represent those with 

greatest risk for complications and possibly those most affected by increased arterial stiffness. 

Also, compared to those at the 18-year follow-up but without PWA measures, the subpopulation 

in the present study had significantly lower follow-up AER measures and waist-to-hip ratio and 

therefore may represent a healthier segment of our T1D population (data not shown). However, 

these limitations are more likely to hinder finding significant relationships between baseline 

factors and follow-up PWA measures than demonstrate false relationships.  

 This is the first study to examine multiple potential risk factors for arterial stiffness in a 

type 1 population. The findings of this study are significant in that it has found that certain 

modifiable and/or treatable risk factors, such as cigarette smoking, poor glycemic control, and 

low HDL-c levels, are associated with increase indices of arterial stiffness and lower estimated 

myocardial perfusion later in life in T1D. The results of this study also confirm that that the use 

of anti-hypertensive medications, specifically ACEI/ARB, are associated with lower arterial 

stiffness indices, but also shows that they do not necessarily improved coronary artery perfusion. 
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Early testing and treatment for autonomic neuropathy may also be effective in reducing arterial 

stiffness and in turn cardiovascular morbidity and mortality in those with T1D.   

In summary, this study demonstrates that, along with traditional cardiovascular risk 

factors associated with structural changes in arteries (low HDL, smoking, poor glycemic 

control), historical measurements of E/I ratio, a measure of autonomic neuropathy, are predictive 

of increased augmentation index and augmentation pressure (indices of arterial stiffness) and 

lower subendocardial viability ratio (an estimate of myocardial perfusion) in T1D. These results 

suggest that autonomic neuropathy plays role in development of arterial stiffness and may be the 

potential link between these factors and cardiovascular events in type 1 diabetes.  
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Table 3.  Baseline characteristics of The Pittsburgh EDC Study Pulse Wave Analysis population compared to the 

remaining 18-year follow-up participants 

 PWA  

Study Population 

N=144 

Remaining 18-year  

EDC Populationa 

N=165 

Female (%) 50.7 (73) 52.1 

Age (years) 25.9±7.38 26.7±7.50 

Diabetes Duration (years) 17.6±6.70 18.7±7.34 

Systolic Blood Pressure (mmHg) 111.4±13.1 110.2±12.5 

Diastolic Blood Pressure (mmHg) 71.8±10.1 70.6±10.1 

Hypertension (%) 22.2 19.4 

Heart Rate (bpm) 76.0±12.3 73.1±11.1** 

HbA1 (%) 10.1±1.69 10.1±1.71 

Non-HDL-c (mg/dL) 127.2±39.9 128.1±36.7 

HDL-c (mg/dL) 54.0±11.0 55.6±14.1 

Triglyceride (mg/dL) 94.1±81.9 90.3±53.2 

Waist-to-Hip Ratio 0.82±0.07 0.82±0.07 

Body Mass Index (kg/m2) 23.5±3.10 23.4±3.37 

Serum Creatinine (mg/dL) 0.90±0.36 0.93±0.78 

AER (μg/min) 238.5±653.8 229.0±734.3 

Expiration-to-Inspiration Ratio 1.14±0.12 1.13±0.12 

WBC (x10-9/L) 6.25±1.76 6.20±1.64 

Energy Expenditure (kcal/wk) 930.3±1324.9 1112.6±1626.4 

Ever Smoker (%) 34.5 28.0 

Prevalent CAD (%) 4.2 3.6 

Abbreviations: Epidemiology of Diabetes Complications, EDC; high-density lipoprotein,  
HDL-c, kilocalories, KCAL; albumin excretion rate, AER; white blood cell count, WBC. 
Data presented mean±SD or %.  
aThose included in PWA study compared to the remaining Pittsburgh EDC study population at 
the 18-year follow-up; continuous variables using t-test or Mann-Whitney U for non-parametric 
variables (E/I Ratio, WBC, AER, Energy Expenditure, Serum Creatinine, Fibrinogen) and 
categorical using χ2. 
** p<0.05 
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Table 4. Correlations (or mean±SDa) between baseline factors and follow-up pulse wave analysis measures 

(augmentation index, augmentation pressure and subendocardial viability ratio) 

 AIx AP SEVR 

Expiration:Inspiration Ratio  -.18** -.32**** .47**** 

Heart Rate (beats per minute) -.20** -.16* -.44**** 

Systolic Blood Pressure (mmHg) -.09 -.03 -.11 

Diastolic Blood Pressure (mmHg) -.00 -.01 -.03 

HbA1 (%) .02 .06 -.12 

NonHDL-c (mg/dl) .11 .153* -.164* 

HDL-c (mg/dl) .10 .05 .03 

Waist-to-Hip Ratio -.04 .02 .05 

Body Mass Index (kg/m2) .19** .11 -.12 

Albumin Excretion Rate (µg/min) .10 .19** -.22*** 

Serum Creatinine .11 .11 -.05 

White Blood Cell Count .11 .12 -.07 

Energy Expenditure -.28**** -.29**** .20** 

Males (n=71)a 19.4±11.5 7.66±6.36 149.7±29.8 

Females (n=73)a,b 26.5±9.18 10.4±6.42 135.8±31.2 

Never Smoker (n=93)a 22.0±11.5 8.42±6.85 145.8±31.1 

Ever Smoker (n=49)a,c 25.3±9.59* 10.3±5.71 135.1±30.6 

AIx, Augmentation Index; AP, Augmentation Pressure; SEVR, subendocardial viability ratio. 
*p<.10,**p<.05,***p<.01,****p<.001. 
a mean ± standard deviation of AIx, AP and SEVR for categorical variables.  
b males compared to females: AIx: p<.001; AP: p=.003; SEVR: p=.01. 
c never smokers compared to ever smokers: AIx: p=.09; AP: p=.01; SEVR: p=.05. 
Pearson’s correlations used for all normally distributed variables and comparisons with 
categorical (sex and ever smoker status) variables. Spearman’s correlations for correlations of 
any non-normal variables (AP, Albumin Excretion Rate, Energy Expenditure, White Blood Cell 
Count, Alcohol Intake) 
 



Table 5. Baseline predictors of AIx, LnAP and SEVR in multivariate linear regression analysis post potential confounder adjustment 
 AIx Ln(AP) SEVR 

 β Se p β se p β se p 

Concurrent Age .187 .077 .02 .068 .013 <.001 -.293 .067 <.001 

Concurrent HR -.434 .066 <.001 -.063 .011 <.001 -.674 .055 <.001 

Female Sex .494 .194 .01 .073 .032 .03 -.377 .150 <.001 

Concurrent Height -.322 .094 .001 -.043 .015 .01 -- -- -- 

PWD Use -.289 .142 .04 -.039 .026 .05 .077 .118 .52 

 Δr2 β se p Δr2 β Se p Δr2 β se p 

HDL-c .054 -.242 .071 .001 .053 -.046 .013 .001 -- -- -- -- 

E/I Ratio .023 -.171 .081 .04 .035 -.026 .015 .05 .009 .126 .067 .06 

Ever Smoker .013 .247 .136 .07 .017 .046 .022 .04 .046 -.410 .108 <.001 

HbA1 -- -- -- -- .019 .026 .011 .02 .022 -.129 .055 .02 

MODEL .494  <.001 .527  <.001 .679  <.001 

Variables are standardized to the population (variable-mean)/standard deviation. 
Base models with concurrent age, heart rate (HR), height, sex and use of medications with potential affect on pulse wave analysis 
measures (PWD use: Angiotensin Converting Enzyme Inhibitors, Angiotensin II Receptor Blocker, Calcium Channel Blocker, 
Beta Blocker, and/or Nitrate use). 
Baseline variables available for forward regression: systolic blood pressure, diastolic blood pressure, NonHDL-c, HDL-c, white 
blood cell count, albumin excretion rate, serum creatinineHbA1, body mass index, waist-to-hip ratio, Energy expenditure in sports 
at baseline, Expiration-to-Inspiration Ratio (E/I), serum creatinine.  
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4.1 ABSTRACT 

BACKGROUND: Type 1 Diabetes (T1D) is associated with a high risk for and mortality from 

premature coronary artery disease (CAD). Coronary artery calcification (CAC), a subclinical 

marker of CAD, is shown to predict CAD events as is lower extremity arterial disease (LEAD). 

Pulse Wave Analysis (PWA) arterial stiffness indices are associated with cardiovascular disease 

(CVD) risk factors and outcomes in various populations. Availability of data regarding the 

relationship between these measures and CVD in T1D is limited. 

METHODS: PWA was performed using the Sphygmocor Px device on 144 participants in The 

Pittsburgh EDC Study of childhood onset T1D.  The cross-sectional association between arterial 

stiffness indices augmentation index (AIx) and augmentation pressure (AP) and estimated 

myocardial perfusion via subendocardial viability ratio (SEVR), and prevalent CAD, electron 

beam computed tomography measured CAC and  low (<0.90) ankle-brachial index (ABI). 

RESULTS: Higher AP (but not AIx) and lower SEVR were univariately associated with low 

ABI, prevalent CAD and high CAC score. AP and SEVR’s association with CAD and CAC did 

not remain significant, multivariately, after the addition of age. After exclusion of nitrate use, 

higher AP was significantly associated with increased risk for hard CAD events over brachial 

blood pressure measures and age, multivariately and lower SEVR was associated with high 

CAC. Lower SEVR was also associated with low ABI, multivariately. 

CONCLUSIONS: Central pressure augmentation and decreased myocardial perfusion are 

associated with the presence of low ABI in T1D, consistent with the physiologic process 

underlying the development of early return of the reflected pulse wave.  These factors are also 

altered in the presence CAD however, age (partially reflecting T1D duration in our early onset 

population) remains an important determinant of CAD, including subclinical CAD. Medication 
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use, in particular nitrates, complicates cross-sectional analyses. Exclusion of nitrate use showed 

that augmentation pressure is in fact associated with hard CAD in T1D and low SEVR with 

CAC.  Prospective studies are needed examine the predictive value of PWA arterial stiffness 

indices in T1D populations 

4.2 INTRODUCTION 

Type 1 diabetes (T1D) is associated with high risk (10-fold or greater) of, and increased 

mortality from, premature coronary artery disease (CAD) [62, 63]. This increased risk is 

especially apparent in women with T1D, virtually eliminating the traditional female advantage 

seen in the absence of diabetes [72, 73]. In T1D, the atherogenic process appears to start earlier 

and occur more rapidly thereby leading to early mortality and morbidity [72, 203] . Traditional 

factors shown to be associated with increased risk for both CAD and with lower extremity 

arterial disease (LEAD), (a type of peripheral vascular disease), in T1D include altered 

lipoprotein metabolism, nephropathy and hypertension [73, 86, 203-205].  Coronary artery 

calcium (CAC) measured using electron beam tomography can be used as an indicator of 

atherosclerotic burden [206], and in those with T1D, CAC has been correlated with CAD [207]. 

Persons with T1D are also at increased risk for LEAD, risk for which is higher in females than in 

males with T1D [205]. Vascular stiffness can be measured in a variety of ways. One way is via 

pulse wave analysis to measure the pulse waveform and timing of reflected waves. Increased 

arterial stiffness increases the velocity of forward blood flow in arteries as well as that of 

reflected waves. Increased blood flow velocity and earlier reflection of pulse waves results in 

earlier arrival (within the cardiac cycle) of reflected waves to the aorta causing central pressure 
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augmentation. This augmentation pressure (AP) can be measured non-invasively using 

applanation tonomentry and quantified as augmentation index (AIx) which is the AP expressed 

as a percentage of the aortic pulse pressure (PP) (AIx=AP/PP x100). The subendocardial 

viability ratio (SEVR), also known as The Buckberg index, can also be determined using radial 

applanation tonometry. SEVR is an estimate of myocardial perfusion and a measure of the 

propensity to cardiac ischaemia. It is calculated by dividing the diastolic time-pressure (area 

under the pressure curve) by systolic time-pressure and is expressed as a percentage. AIx, which 

has been shown to be elevated in T1D [9, 169], has also been found to correlate with traditional 

CAD risk factors [131][208, 209], coronary atherosclerosis[210, 211], cardiovascular outcomes 

[117, 212] and extracoronary atherosclerosis in those with CAD [213].   

As arterial stiffness indices such as augmentation pressure, augmentation index and/or 

pulse wave velocity have been associated with both CAD [117, 210, 214], CAC [215, 216] and 

lower ankle-brachial index (ABI), (a measure of LEAD) [213, 217]. Since these relationships 

have yet to be explored in a T1D population, the aim of this study is to examine, cross-

sectionally, the relationships between indices of arterial stiffness and myocardial perfusion as 

measured using applanation tonometry, and prevalent coronary artery disease, coronary artery 

calcification, and low ABI in population with childhood onset type 1 diabetes. 

4.3 METHODS 

Participants in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study, an 18-

year prospective investigation of patients with childhood-onset (age < 17 years) T1D were 

selected for study. Individuals were diagnosed, or seen within 1 year of diagnosis, at 
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Children’s Hospital of Pittsburgh between 1950 and 1980 and were on insulin therapy at 

initial discharge [27, 176]. Initial evaluation in the EDC Study occurred between 1986 and 

1988 and biennial reexamination followed for 10 years, followed by a more limited, survey, 

follow-up then another full clinical examination at 18 years. The 18 year examination included 

pulse wave analysis measures via radial applanation tonometry. The EDC Study population 

has been shown to be epidemiologically representative of the type 1 diabetes population of 

Allegheny County, Pennsylvania [177]. The study protocol was approved by The University 

of Pittsburgh Institutional Review Board.  

 Questionnaires concerning demographic, health care, self-care, and medical history 

information were sent to participants prior to clinic examinations. Smoking history (at least 

100 cigarettes in lifetime), current smoker status and medications use were obtained. All 

medications were coded according to ATC/DDD codes. Medications with potential effects on 

pulse wave reflection measures (angiotensin converting enzyme inhibitors (ACEIs), 

angiotensinogen receptor II blockers (ARBs), calcium channel blockers (CCBs), beta-blockers 

(BB) and nitrates) were of particular interest and use of 1 or more of these medications was 

categorized as use of a “pulse wave drug” (PWD). The other type of medication of interest 

were antilipidemic agents.  

During clinic visits, systolic and diastolic blood pressures (SBP and DBP) were 

measured using a random zero sphygmomanometer, according to the Hypertension Detection 

and Follow-Up Program protocol, after a 5-minute rest [180].  Hypertension (HTN) was 

defined as blood pressure of ≥130/80 mmHg or the use of antihypertensive medication for the 

purpose of lowering blood pressure.  Height (in cm) and weight (in kg) were measured and 

BMI calculated and expressed as kg/m2.  Waist and hip circumferences were twice and a third 
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time if measurements were not within 0.5 cm. The mean of waist measurements and that of 

hip measurements were used to calculate waist-to-hip ratio (WHR).  

Total cholesterol and triglycerides were measured enzymatically [181, 182]. High-

density lipoprotein (HDL) cholesterol level was determined by means of a precipitation 

technique (heparin and manganese chloride) with modification [183] of the Lipid Research 

Clinics method [184]. Non-HDL cholesterol was calculated by subtracting HDL cholesterol 

level from total cholesterol level. Blood samples were analyzed for hemoglobin A1C using the 

DCA 2000 analyzer (Bayer Diagnostics, Tarrytown, NY).  

Soft coronary artery disease was determined as EDC physician-diagnosed angina or 

ischemic electrocardiogram changes (Minnesota codes 1.3, 4.1 to 4.3, 5.1 to 5.3, and 7.1).  

Hard CAD events were defined as myocardial infarction confirmed by Q waves on 

electrocardiogram (Minnesota codes 1.1 or 1.2) or hospital records or angiographic stenosis of 

50% or greater, coronary artery bypass surgery, angioplasty, or ischemic electrocardiogram 

changes (Minnesota codes 1.3, 4.1 to 4.3, 5.1 to 5.3, and 7.1).  During the 10, 16 and 18- year 

follow-up exams, electron beam tomography with a GE-Imatron ultrafast computed 

tomographic scanner (GE-Imatron, San Francisco, California) was used to assess CAC. Scans 

were triggered by electrocardiographic (ECG) signals at 80% of the RR interval and obtained 

in 3-mm contiguous sections of the heart. At year 10, only one CAC score was measured, 

while at years 16 and 18 two CAC scores were used, the means of which were calculated. The 

most recent CAC score (or mean of scores) was selected for the present study.  CAC scores 

were also categorized as 1) None/Mild:  0-99, 2) Moderate: 100-399, 3) Severe : ≥400 for 

univariate and linear trend analyses and as presence of clinically significant CAC (≥100 mm3) 

for multivariate analyses. 
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Resting ankle-brachial systolic blood pressures were taken in the supine position with a 

Doppler blood-flow detector. The right and left tibialis posterior and dorsalis pedis pressures 

were compared with the arm pressure, and an ankle-to-brachial index (ABI) was calculated 

using the arm pressure measurement taken closest in time to the ankle pressure.  An ankle-

brachial index (ABI) of <0.9 on either side at rest was considered to be evidence of LEAD. An 

ABI of >1.3 was considered as high ABI. A broader definition of LEAD comprised of low 

ABI (<0.9), a history of claudication as determined by the ROSE questionnaire[218] or self-

reported history of amputation for vascular cause.  

Of those EDC study participants examined at baseline (n=658), 22.7% (n=150) had died 

by the 18-year follow-up (November 2004 – November 2006), 78 had moved out of area, 101 

declined exam, 19 were lost to follow-up leaving 318 eligible for 18 year exam, 309 for which 

data was available for this analysis. Pulse waveform analysis (PWA) testing began part way 

through the 18-year examination period (January 2006), after which 189 subjects were seen and 

144 (76%) had PWA. The PWA population thus 144 men and women in attendance at the 18-

year follow-up clinic visit after January 1 2006. Aortic augmentation index (AIx), aortic 

augmentation pressure (AP) and subendocardial viability ratio (SEVR) were derived using 

waveforms measured at the radial artery using the SphygmoCor Vx version 7.01 (AtCor 

Medical, Sydney, Australia). In brief, a high-fidelity micromanometer with a frequency response 

of >2 kHz (Millar Instruments, Houston, TX) was placed on the right radial artery, and gentle 

pressure was applied until a consistent waveform was produced. After at least 20 sequential 

waveforms had been acquired, measurement was stopped. Central pressure values were 

estimated from radial measurements using the software’s mathematical transfer function [159, 

189]; the accuracy and reliability of which have been validated [163, 172]. The pressure wave 
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created by left ventricular contraction propagates forward until meeting sites of resistance which 

reflect the wave backward. Stiffer artery walls result in earlier wave reflection [168, 171]. When 

the reflected wave returns during systole rather than diastole, systolic pressure is increased or 

“augmented”.  Augmentation pressure (AP) is a measure of how much the early reflected wave 

contributes to central systolic pressure. Augmentation index (AIx) represents the level of 

augmentation measured and is expressed as a percentage of the pulse pressure (AIx = AP/PP). 

Heart rate is inversely associated with AIx and AP [121]. Subendocardial viability ratio (SEVR), 

the ratio of the diastolic area under the curve (AUC) of an arterial pulse wave to the systolic-

AUC [190, 191] is a ratio of myocardial perfusion (as coronary artery perfusion takes place 

primarily during diastole) to myocardial contraction, and is a tonometric, non-invasive measure 

of myocardial perfusion relative to cardiac workload. The SphygmoCor device provides a quality 

index (QI) which represents reproducibility of the waveform. If PWA produced results with a 

QI<80 the measure was repeated. Measures with a QI≥80 were included in this study. 

Distributional characteristics and normality of variables was assessed. Binary 

categorical variables were coded as 0 or 1, including sex for which females were 1. Student’s 

t-test, for parametric, and the Mann-Whitney U test, for variables not meeting the non-

parametric assumptions (augmentation pressure, triglyceride level, albumin excretion rate, 

serum creatinine) were used to compare continuous variables between cases and non-cases. χ-

square test was used to examine the differences in binary categorical variables (i.e.: sex, 

medication use, smoking status), between cases and non-cases.  Pearson’s and Spearman’s 

correlations were used, as appropriate, to univariately compare CAC scores with pulse wave 

reflection measures (AIx, AP, SEVR). CAC scores were also categorized as none/minimal (0-

99), mild/moderate (100-399), and severe (≥400) and PWA measures AIx and SEVR were 
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compared between groups using one-way ANOVA with the Bonferroni correction. AP, as it 

was non-parametric was compared across CAC categories with the Kruskal-Wallis test. All 

continuous variables were standardized by subtracting the mean and dividing the by their 

standard deviation of the study population. Logistic regression was performed, in a stepwise 

manner, separately for prevalent CAD, low ABI and high CAC score.  

4.4 RESULTS 

Cross-sectional characteristics of the PWA population from the Pittsburgh EDC Study are 

detailed in Table 6, along with sex comparisons.  Although crude comparisons of AIx, AP and 

SEVR showed significant differences between the sexes, height adjusted comparisons did not. 

Males and females were of similar age, diabetes durations, and had similar heart rates, BMI’s, 

HbA1c, WBC, and Non-HDL-c levels and coronary artery calcification scores. Percentage 

with hypertension or with a smoking history also did not significantly differ between males 

and females. However, males did have significantly higher SBP and DBP, lower HDLc, and 

greater waist-to-hip. Overall, 22.9% (n=33) of the population had prevalent CAD (soft or hard 

events), 12.5% (n=18) with a history of hard and 10.4% (n=15) with a history of soft events.  

The percentage of males with any type of CAD was higher than in females, but this was not 

statistically significant (28.2% vs. 17.8%). However, the percentage of hard events was 

significantly higher in males compared to females (18.3% vs. 6.8%, p=.04). CAC scores were 

available for 138 (68 males, 70 females) of the 144 PWA participants. Fifty (34.7% of those 

with CAC scores) of the participants had a CAC score ≥100 mm3. The percentage of females 

with CAC score ≥100 mm3 did not significantly differ from males (32.9% vs. 36.6%, p=.63). 
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Sixteen participants (11.1%) had an ABI <0.90 and 29 (20.1%) had a high ABI.  Presence of 

low ABI differed by sex as 11 (68.8%) of the 16 cases were female, however this difference 

was not statistically significant (p=.13). Presence of high ABI also differed by sex with males 

representing 20 (71.4%) of the 28; this did reach statistical significance at p=.006. 

Table 7 shows the rate of medication use by CAD status. Those with prevalent CAD of 

any type were more likely to be taking a drug with potential effects on PWA measures (78.8% 

vs 57.7%). ACEI/ARB medication use was fairly prevalent throughout the study population 

and did not significantly differ between those with and without CAD.  A greater percentage of 

those with hard CAD reported use of every type of PWD medication that did those with soft 

CAD: ACEI/ARB – 72.2% vs. 40.0%, p=.06; beta-blocker – 33.3% vs. 26.7%, p=.68; calcium 

channel blocker – 27.8%, p=.94; nitrates – 22.2% vs. 6.7%, p=.22. Eleven of those with hard 

CAD reported use of 2 or PWD medications compared to only 3 of those with soft CAD.  

4.4.1 Pulse Wave Analysis Measures and Coronary Artery Disease 

Augmentation index showed no significant univariate associations with any cardiovascular 

outcome (Figure 1). Univariately, lower SEVR was associated with any and soft CAD and 

with increasing CAC score category but not significantly with hard CAD (Table 7 and Figure 

2). Augmentation pressure, although higher in cases of all outcomes (Figure 3), was borderline 

significant when comparing any CAD to non-cases and with increasing CAC category but was 

not significant by CAD type (Table 8).  

 In multivariate logistic regression for any type of CAD, per standardized unit increase in 

AP there was an associated 87% increased risk (OR=1.87; 95%CI: 1.17-3.00; p=.009) for CAD 

in models adjusted for potential confounders (height, heart rate, PWD use). When allowing for 
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other variables associated with CAD to enter models, age enters and eliminates the significant 

association between AP and prevalent CAD.  Multivariate models for specific CAD type showed 

a similar occurrence for soft CAD (2.5 times risk for CAD per standard unit increase of AP) but 

no significant association between AP and hard CAD even in the model adjusted only for 

potential confounders (data not shown). Multivariate models with SEVR also showed similar 

results for CAD; per standard unit decrease in SEVR there was a 40% increased risk of any CAD 

(p=.07), a 45% increased risk for soft CAD (p=.009) but no significant association with hard 

CAD (p=.77) in confounder adjusted models. The addition of age to multivariate models again 

diminished the statistical significance of the SEVR-CAD relationship.  Due to the potential 

confounding affect of PWD use, multivariate models were performed after excluding each of the 

PWD except for ACEI/ARB use as the majority of participants (60%) reported its use and use 

was not significantly different between CAD cases (57.6%) and non-cases (55.5%). All of the 

models produced results similar to those already discussed except for those which excluded 

nitrate use. Higher AP (OR=2.57; 95%CI:1.03-6.42) was significantly related to hard CAD, 

multivariately, when those taking nitrate medication (n=4) were excluded (Table 8). AP actually 

entered multivariate the model preferentially over brachial measures of systolic and diastolic 

blood pressure as well as over age. Results were similar when diabetes duration was available 

instead of age. Without the availability of AP, age and sex are the major determinants of hard 

CAD in this population. A univariate comparison shows that in those using nitrate (n=5) 

medications, AP is lower (8.80 ± 10.2) than in those not (9.05 ± 6.42). SEVR was still not 

significantly associated, multivariately, with hard CAD when those with nitrate use were 

excluded, but was associated with having high CAC score (Table 9).  
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Multivariate models for high (≥100 mm3) CAC score were similar to those for clinical 

CAD. AP was borderline significant (OR=1.55; 95%CI: 0.96-2.49; p=.07) in confounder 

adjusted models with entrance of age having the same effect on the relationship. AP models 

adjusted for prevalent CAD showed no significant association between AP and high CAD. 

SEVR was significantly associated with having a high CAC score in confounder adjusted models 

(OR=0.46; 95%CI: 0.26-0.81) with age reducing the statistical significance (OR=0.61; 

95%CI:0.33-1.13; p=.12). CAD adjustment did not significantly alter SEVR models for high 

CAC.  

4.4.2 Pulse Wave Analysis Measures and Ankle-Brachial Index 

Cross-sectional characteristics of the PWA population by ABI category are described in Table 

10. AIx was not significantly different across ABI categories (Table 10 and Figure 1).  

Univariately, AP (p=.08) and SEVR (p=.07) were borderline significantly different by ABI 

category. The most noticeable difference in AP and SEVR was in those with low ABI (Figures 3 

and 2, respectively). Other factors that differed across ABI category were age and diabetes 

duration (those with low ABI being the oldest and having the longest duration) and diastolic 

blood pressure (again lowest in those with low ABI). Waist-to-hip ratio was also borderline 

significantly different by ABI category with the normal group having the lowest WHR. 

Medication use was not statistically different by ABI category, however, a greater percentage 

(81.3%) of those with low ABI were on at least one of the PWD medications.  

 Multivariate models for Low ABI, excluding those with high ABI showed that the AP 

confounder adjusted model, per standardized unit increase in AP, there was a 66% increase risk 

for low ABI (OR=1.66; 95%CI: 0.95-2.90; p=.08). However, when adjusted for age, the 
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association between AP and low ABI was not significant (Table 11a). SEVR, however, was 

significantly associated with low ABI and preferentially entered heart rate adjusted multivariate 

models over brachially measured systolic and diastolic blood pressure (Table 11b). PWD use 

was not significantly associated with low ABI and did not significantly alter models when 

adjusted for. When a broader definition of lower extremity arterial disease was used (including 

claudication and/or amputation), PWA measures were not significantly associated with presence 

of LEAD multivariately.  

4.5 DISCUSSION 

This study found that augmentation pressure, measured non-invasively using radial 

applanation tonometry, is significantly associated with prevalent coronary artery disease in 

T1D. It was specifically associated with hard CAD, definition for which comprises of 

myocardial infarction, a coronary blockage of at least 50% or history of revascularization 

(coronary artery bypass graph or angioplasty), when use of nitrate medications (n=4 hard 

CAD cases) was excluded. We also found that lower estimated myocardial perfusion, SEVR, 

is associated with presence of high CAC (≥100), again when those reporting nitrate use were 

excluded. This was the case even when adjusting for age and prevalent hard CAD. Another 

finding was that AP was higher in those with low ABI and remained statistically significant 

until the model was adjusted for prevalent CAD. However, reduced SEVR remained 

significantly associated with presence of low ABI, multivariately.  

In some of our multivariate models for CAD and high CAC, the addition of age 

eliminated the significant associations between pulse wave analysis measures and disease.  
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Age is a major risk factor for CAD as is diabetes duration in T1D[219].  Diabetes duration 

childhood onset in T1D and age are highly correlated, r=.825 in the current study population. 

Diabetes duration has been shown to be closely tied to coronary artery calcification 

progression in T1D in The Pittsburgh EDC Study [220] and age is a known risk factor for 

degree of CAC [221] Arterial stiffness indices are also very much associated with age [108, 

222] and in studies of those with T1D, longer diabetes duration is significantly related to 

higher values of arterial stiffness measures[192, 223]. Given the relationship between age and 

T1D duration, and the association both have with CAD, CAC and arterial stiffness indices, it 

is not entirely surprising that the addition of age to multivariate models for CAD and CAC 

would impact the relationship between the indices and outcomes.  Interestingly, SEVR was 

similar between those with hard CAD compared to those with soft or no CAD even though we 

would expect worse CAD to be associated with lower SEVR. However, this may be due to the 

fact that revascularization is included in the definition of hard CAD in our study. There was 

pervasive use of medications that are known to influence PWA measures in this T1D 

population, particularly in those whom had a history of hard CAD events. Approximately 90% 

of those on PWD’s were on an ACEI or ARB which are shown to be very effective, compared 

to other antihypertensive agents, in reducing values of arterial stiffness indices [224].  

However, since a good proportion of non-cases reported ACEI/ARB use. Use of other 

medications types, such as calcium channel blockers, beta-blockers and nitrates was more 

common among those with CAD, particularly with hard CAD. Therefore, we chose to 

examine the relationship between PWA measures and CAD in their absence. Exclusion of 

calcium channel blockers and beta-blockers each resulted in models similar to those produced 

when they were included. However, it was by excluding those on nitrates, only 4 participants 
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with hard CAD, that significant changes to multivariate models occurred. Administration of 

exogenous nitrate has been shown to increase vasodilatation, arterial compliance and decrease 

systolic blood pressure [225]. Stokes et al found, in a double-blind randomized cross-over 

study in elderly hypertensives, that administration of isosorbide mononitrate (ISMN) 

decreased not only brachial systolic and diastolic ambulatory blood pressures, but also 

decreased aortic SBP and augmentation pressure [226]. Stokes et al later confirmed the effect 

ISMN on pulse wave analysis measures in a another study which showed ISMN to decreased 

SBP by 16 mmHg, pulse pressure by 13 mmHg and AIx by 4% in a group of older 

hypertensive patients[227]. 

Presence of a low ABI is associated with increased cardiovascular risk [88, 89] and 

cardiovascular and all-cause mortality risk in T1D[228]. Previous studies have shown 

significant association between AIx and ABI in multivariate analyses [213, 217]. While our 

findings show no significant relationship between low ABI and AIx in our T1D population, 

we did find a relationship with augmentation pressure and SEVR.  AIx is the expression of 

augmentation pressure as a percentage of pulse pressure and its effectiveness in the 

representation of increased pulse wave reflection and arterial stiffness in older populations has 

been questioned [202]. As there is potentially accelerated vascular aging in those with T1D 

[153], AIx may not be a suitable index of arterial stiffness in this population either.  LEAD is 

due to atherosclerosis in the arteries of leading to or within the legs. It is logical that 

atherosclerotic changes in lower peripheral vessels contributes to earlier reflection of the pulse 

wave and to an increase in central systolic pressure augmentation. The earlier the timing of the 

wave reflection, the greater the AP, the higher the central systolic pressure therefore the 

greater the pressure the heart must pump against. Overtime, this increased pressure leads to a 
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reduction in diastolic pressure and duration and it is in diastole that coronary perfusion takes 

place. The findings of the current study are consistent with this physiologic process in that 

reduced diastolic pressure leads to impaired coronary perfusion, i.e. lower SEVR. 

 The cross-sectional design of this study is one of its limitations and a potential reason 

that PWA measures were not significantly associated with all CAD outcomes. A prospective 

design using pulse wave analysis measurements to predict CAD events or CAC progression 

within a T1D population may be more effective in elucidating the relationship between arterial 

stiffness indices and these outcomes. Most participants who had CAD or high values of CAC 

reported PWD use, which is to be expected, but is also a limitation of the study.  The use of 

these types of medications may explain the lack of association between PWA measures and 

some of the CVD outcomes. The limited sample size of our study population is another 

limitation as a greater sample may have yielded more significant results. A larger sample sized 

would have also allowed for stratification by medication use, age (younger vs. older) or 

diabetes duration (shorter vs. longer), as well as sex, which may have contributed to a greater 

understanding of associations.   

In summary, augmentation pressure, an index of arterial stiffness, and subendocardial 

viability ratio, an estimate of myocardial perfusion, are associated with hard CAD and high 

CAC, respectively, in our T1D population.  These factors are also associated with presence of 

low ABI, although AP’s association is diminished by age adjustment. This is the first study to 

examine the association pulse wave reflection measures and prevalent cardiovascular disease 

in a Type 1 diabetes population. Pulse waveform analysis is an easy to implement, non-

invasive measure of arterial stiffness indices and further research into the association between 

these indices and disease in T1D is necessary.  
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Table 6. Cross-sectional characteristics, and sex comparisons, of The Pittsburgh EDC Pulse Wave 
Analysis Study Population 

 
 Males Females Total 

Augmentation Index (%)  21.3 (18.6-24.1)a 24.7 (22.0-27.3) 23.0±11.0 

Augmentation Pressure (mmHg) 8.55 (6.86-10.2)a 9.49 (7.83-11.2) 9.03±6.51 

Subendocardial Viability Ratio (%) 143.7 (135.6-151.2)a 140.7 (132.6-148.7) 142.2±31.1 

Age (years) 45.5±7.70 44.0±7.14 44.7±7.43 

Diabetes Duration (years) 37.1±6.37 35.7±7.06 36.4±6.74 

HbA1c (%) 7.52±1.39 7.37±1.36 7.44±1.37 

Systolic Blood Pressure (mmHg) 119.1±16.9 112.2±15.5** 115.6±16.5 

Diastolic Blood Pressure (mmHg) 69.2±8.38 63.9±9.29**** 66.5±9.21 

Heart Rate (bpm) 77.7±13.2 77.45±12.9 77.6±13.0 

Hypertension (% (n)) 23.9 (17) 17.8 (13) 20.8 (30) 

NonHDL-c (mg/dl) 114.5±15.1 113.3±33.3 113.9±32.7 

HDL-c (mg/dl) 52.2±15.1 64.9±16.1**** 59.2±16.6 

Body Mass Index (kg/m2) 26.9±4.45 27.7±5.14 27.3±4.81 

Waist-to-Hip Ratio  0.91±0.07 0.82±0.09**** 0.87±0.9 

Serum Creatinine (mg/dl) 1.21±0.70 0.96±0.29** 1.08±.054 

White Blood Cell Count (mg/dl) 6.49±1.96 6.38±2.07 6.44±2.01 

CAC Score (mm3) 275.6±554.9 227.9±449.9 251.4±503.1 

Ever Smoker (% (n)) 44.3 (31) 36.6 (26) 39.6 (57) 

Any CAD (% (n)) 28.2 (20) 17.8 (13) 22.9 (33) 

Hard CAD (% (n)) 18.3 (13) 6.8 (5)** 12.5 (18) 

Low ABI (% (n)) 7.0 (5) 15.1 (11) 11.1 (16) 

High ABI (% (n)) 31.8 (21) 11.9 (8) 20.1 (29) 

PWD use (% (n)) 69.0 (49) 56.2 (41) 62.5 (90) 

Anti-Lipidemic Med (% (n)) 49.3 (35) 41.7 (30) 45.5 (65) 

Abbreviations: coronary artery disease, CAD; ankle-brachial index, ABI; pulse wave drug use, 
PWD.aheight adjusted mean (95% confidence interval) compared between males and females. 
*p<.10, ** p<.05, ** p<.01, ****<.001.  



 

Table 7. Characteristics of CAD cases and non-cases and CAC score category within EDC PWA study population. 
 No CAD Any CAD Soft CAD Hard CAD CAC Score 

     0-99 100-399 ≥400 

n (%) 111 (77.1) 33 (22.9) 15 (10.4) 18 (12.5) 88 (61.1) 24 (16.7) 26 (18.1) 

AIx (%) 22.4±9.82 25.1±14.2 25.0±13.0 25.1±15.5 22.4±10.6 24.0±8.14 24.9±14.4 

AP (mmHg) 8.09±4.67 12.2±10.1* 13.8±10.7 10.8±9.61 7.98±5.83 9.29±4.51 12.4±10.5*b 

SEVR (%) 144.5±32.4 134.2±25.2* 123.7±23.4** 143.0±18.7 147.3±33.0 136.2±29.6 130.6±24.3**b 

Heart Rate (bpm) 77.7±12.5 77.3±14.9 78.4±14.9 76.4±15.3 77.4±13.9 78.2±9.81 76.9±12.2 

Age (years) 43.1±6.61 49.8±7.59**** 51.0±8.29*** 48.9±7.06*** 42.3±6.57 46.3±6.60 51.4±6.24****b

T1D Duration (years) 34.8±5.89 41.3±7.08**** 43.1±8.42*** 39.7±5.54*** 34.4±6.10 38.6±5.55 41.6±6.62****b

Systolic BP (mmHg) 113.6±15.1 122.1±19.6*** 125.9±16.7*** 118.9±21.6 113.4±15.5 117.2±15.4 120.9±14.6*b 

Diastolic BP (mmHg) 67.2±9.05 64.1±9.47* 61.9±9.43** 66.0±9.36 67.6±9.18 65.5±8.10 62.9±10.1*b 

Non-HDL-c (mg/dL) 115.8±34.2 107.5±26.8 111.8±31.0 103.9±23.1 116.6±33.3 101.9±23.5 111.9±32.7 

HDL-c (mg/dL) 59.5±15.9 57.8±18.3 61.3±21.3 54.3±15.0 60.5±16.8 57.0±17.0 57.0±12.9 

HbA1c (%) 7.41±1.46 7.55±1.05 7.61±0.95 7.49±1.15 7.51±1.47 7.30±1.26 7.33±1.17 

Waist-to-Hip Ratio 0.86±0.09 0.91±0.09*** 0.90±0.11* 0.92±0.07*** 0.86±0.09 0.88±0.11 0.91±0.08**b 

BMI (kg/m2) 27.0±4.58 28.7±5.90* 28.8±5.28 28.6±6.52 27.2±4.64 27.6±6.05 27.30±4.01 

S. Creatinine (mg/dL) 1.03±0.32 1.26±0.94 1.06±0.26 1.42±1.24 1.01±0.28 1.11±0.53 1.30±1.00**b 

WBC (x10-9/L) 6.31±2.09 6.89±1.62 * 6.30±1.66 7.38±1.47** 6.20±2.07 6.78±1.98 6.88±1.92 

PWD Use  (% (n)) 57.7 (64) 78.8 (26)** 73.3 (11) 83.3 (15)** 48.9 87.5 88.5**** 

ACEI/ARB  (% (n)) 55.5 (61) 57.6 (19) 40.0 (6) 72.2 (13)a 0.0 4.2 15.4***b 

Beta blocker  (% (n)) 5.5 (6) 30. 3 (10)**** 26.7 (4)** 33.3 (6)*** 46.6 83.3 61.5 ***b 
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Table 7 continued  

 No CAD Any CAD Soft CAD Hard CAD CAC Score 

     0-99 100-399 ≥400 

Calcium Channel  

Blocker (% (n)) 
8.2 (9) 27.3 (18)*** 26.7 (4)* 27.8 (5)** 3.4 29.2 26.9 ****b 

Nitrates  (% (n)) 0.0 (1) 15.2 (5)*** 6.7 (1) 22.2 (4)**** 0.0 4.2 15.4***b 

Abbreviations: Coronary Artery Disease, CAD; Coronary Artery Calcification, CAC; Augmentation Index, AIx; Augmentation 
Pressure AP; Subendocardial Viability Ratio, SEVR; Type 1 Diabetes, T1D; Body Mass Index, BMI; White Blood Cell Count, WBC; 
Angiotensin Converting Enzyme Inhibitor, ACEI; Angiotensin II Receptor Blocker (ARB). CAD cases compared to those without 
CAD. aACEI/ARB use different (p=.06) by CAD type (hard versus soft). bsignificant linear trend. 
*p<.10, ** p<.05, ** p<.01, ****<.001. 
 

 

 

 



 

Table 8. Multivariate logistic regression model for hard CAD (myocardial infarction, >50% blockage, 
revascularization) in The Pittsburgh EDC Pulse Wave Analysis study population 

Variable OR 95%CI p 

Female Sex 0.15 0.03-0.74 .02 

Augmentation Pressure 2.34 1.04-5.28 .04 

Heart Rate  1.16 0.58-2.28 .68 

Height 0.85 0.44-1.64 .63 

Excludes those reporting nitrate use (n=4). Odds ratios are per standardized unit.  
Variables available to the model: augmentation pressure, age, brachial systolic blood pressure, 
bracial diastolic blood pressure, waist-to-hip ratio, HDL-c, NonHDL-c, sex, HbA1c, anti-
lipidemic agent use, PWD use, smoking history, albumin excretion rate.   
Model adjusted for potential confounders: heart rate and height 

 

 

 

 
Figure 1. Augmentation Index (mean and standard error) by prevalent coronary artery disease 

(CAD), coronary artery calcification  (CAC) score and ankle-brachial index (ABI) categories in The 

Pittsburgh EDC Pulse Wave Analysis study population 
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Figure 2.  Subendocardial Viability Ratio (mean and standard error) by prevalent coronary artery 
disease (CAD), coronary artery calcification  (CAC) score and ankle-brachial index (ABI) categories in The 

Pittsburgh EDC Pulse Wave Analysis study population 
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Figure 3. Augmentation Pressure (mean and standard error) by prevalent coronary artery disease 

(CAD), coronary artery calcification  (CAC) score and ankle-brachial index (ABI) categories in The 
Pittsburgh EDC Pulse Wave Analysis study population 

 
 
 
 
 

Table 9. Multivariate logistic regression model for high coronary artery calcification score (≥100) in The 
Pittsburgh EDC Pulse Wave Analysis study population 

 OR 95%CI p 

Subendocardial Viability Ratio 0.57 0.31-1.07 .08 

Heart Rate 0.73 0.39-1.38 .34 

Age 2.29 1.38-3.81 .001 

Prevalent Hard CAD 7.03 1.65-29.9 .008 

Excludes those reporting nitrate use (n=4). Odds ratios are per standardized unit.  
Variables available to the model: subendocardial viability ratio, age, brachial systolic blood 
pressure, bracial diastolic blood pressure, waist-to-hip ratio, HDL-c, NonHDL-c, sex, HbA1c, 
anti-lipidemic agent use, PWD use (use of at least one: ACE inhibitor, angiotensin II receptor 
blocker, calcium channel blocker, beta-blocker), smoking history, albumin excretion rate.  
Model adjusted for potential confounder: heart rate 
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Table 10. Cross-sectional characteristics of The Pittsburgh EDC pulse wave analysis study population by 

ankle-brachial index category 
 ABI<0.9 0.9<ABI<=1.3 ABI>1.3 

n (%) 16 (11.1) 100 (69.4) 28 (19.4) 

Augmentation Index (%) 27.3±12.0 23.1±10.7 20.4±11.1 

Augmentation Pressure (mmHg) 12.3±7.84 8.77±5.83 8.11±7.64* 

Subendocardial Viability Ratio (%) 126.2±26.1 143.8±32.1 145.5±28.1* 

Heart Rate (bpm) 75.8±12.6 76.9±12.9 80.9±13.8 

Age (years) 49.7±7.61 43.5±7.41  46.0±6.00** 

Diabetes Duration (years) 41.0±6.07 35.2±6.71 37.9±5.88** 

Systolic Blood Pressure (mmHg) 117.6±17.2 114.3±16.8 118.8±15.6 

Diastolic Blood Pressure (mmHg) 60.1±8.59 66.8±9.47 69.3±6.86*** 

Non-HDL-c (mg/dL) 110.2±31.8 115.7±31.9 109.6±36.5 

HDL-c (mg/dL) 57.6±18.8 59.5±16.5 58.7±16.5 

HbA1c (%) 6.99±1.27 7.41±1.33 7.83±1.52 

Waist-to-Hip Ratio 0.89±0.11 0.86±0.09 0.89±0.09* 

Body Mass Index (kg/m2) 29.4±6.48 27.2±4.83 27.2±4.18 

Serum Creatinine (mg/dL) 1.39±1.31 1.04±0.35 1.03±0.24 

White Blood Cell Count (x10-9/L) 7.52±2.80 6.26±1.82 6.43±1.97 

PWD Use  (% (n)) 81.3 (13) 58.0 (58) 67.9 (19) 

ACEI/ARB  (% (n)) 68.8 (11) 52.5 (99) 19.6 (28) 

Beta blocker  (% (n)) 12.5 (2) 10.1 (10) 14.3 (4) 

Calcium Channel Blocker (% (n)) 25.0 (4) 12.1 (12) 7.1 (2) 

Nitrates  (% (n)) 12.5 (2) 2.0 (2) 3.6 (1) 

Abbreviations:“Pulse Wave Drug” (PWD): Use of at least one of the other medications listed below PWD use. 
Angiotensin Converting Enzyme Inhibitor, ACEI; Angiotensin II Receptor Blocker (ARB) 
*p<.10, ** p<.05, ** p<.01, ****<.001. 
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Table 11. Multivariate models for low ABI (<0.9), excluding those with high ABI (>1.3) in The Pittsburgh 
EDC Pulse Wave Analysis in Type 1 diabetes study population 

Table 11a: Augmentation Pressure and Low ABIa 

Variable OR 95%CI P 

Augmentation Pressure 1.27 0.67-2.42 .47 

Heart Rate  0.91 0.48-1.73 .78 

Height 0.80 0.44-1.45 .46 

Age 2.38 1.24-4.57 .009 

Body Mass Index 1.61 1.24-4.57 .10 

Table 11b: Subendocardial Viability Ratio and Low ABIb 

 OR 95%CI P 

Subendocardial Viability Ratio 0.36 0.15-0.86 .02 

Heart Rate 0.43 0.19-1.09 .08 

Prevalent CAD 6.04 1.73-21.1 .005 

Body Mass Index 1.61 0.94-2.75 .08 

Odds Ratios are per standardized unit.  
aAugmentation pressure along with heart rate and height, were forced into a base model.  
bheart rate entered followed by forward regression allowing for SEVR other variables listed 
here. Variables available to both models forward regression: age, systolic blood pressure, 
diastolic blood pressure, body mass index, sex, history of smoking, HDL-c, Non-HDL-c, 
HbA1c, albumin excretion rate, waist-to-hip ratio, anti-lipidemic agent use. PWD use (use of a 
“pulse wave drug”, 1 or more of the following: ACE Inhibitor, Angiotensin II Receptor 
Blocker, Calcium Channel Blocker, Beta Blocker, Nitrate).  
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5.1 ABSTRACT 

BACKGROUND: Diabetic nephropathy, a major type 1 diabetes (T1D) complication is a potent 

risk factor for cardiovascular disease (CVD). Known risk factors do not entirely account for its 

development and progression, and its relationship with CVD is not wholly understood. 

Microalbuminuria, an early marker of renal damage, is a major predictor of future CV mortality 

and morbidity in T1D.  Therefore, we examined the relationship between arterial stiffness 

indices, which are shown to predict CVD, and microalbuminuria in T1D and assessed their 

association with renal function.  

METHODS: Pulse wave analysis was measured using the Sphygmocor Px device on 144 

participants in The Pittsburgh EDC Study of childhood onset T1D.  Arterial stiffness indices 

augmentation index (AIx) and augmentation pressure (AP) as well as subendocardial viability 

ratio (SEVR, an estimate of myocardial perfusion) were each analyzed, cross-sectionally, in 

relation to prevalent microalbuminuria (and degree of albuminuria) and renal function. Albumin 

excretion rates (AER) were calculated from timed samples; microalbuminuria was defined as 

AER 20-199 μg/min. Renal function was assessed by two techniques, calculated estimated 

glomerular filtration rate (eGFR) and by serum Cystatin C.  

RESULTS: AP and SEVR were each univariately associated with AER, eGFR and Cystatin C. 

SEVR was independently related to the presence of microalbuminuria and degree of albuminuria 

within normo- and micro-albuminuric participants. Reduced SEVR was independently associated 

with low eGFR (<60 ml/min/1.73m2) and high Cystatin C (≥1.0 mg/l). 

CONCLUSION: Decreased SEVR and increased AP are each related to both early renal damage 

and poor renal function in T1D. SEVR is a better predictor of AER than traditional brachial 
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blood pressure measures in those without clinical proteinuria indicating a potential use for early 

detection, intervention and risk stratification in T1D.  

5.2 INTRODUCTION 

Diabetic nephropathy (DN) is a major complication of type 1 diabetes (T1D)[35] and is 

the most common cause of end-stage renal disease (ESRD) [229, 230]. Known risk factors for 

DN in T1D include poor glycemic control, age and diabetes duration, dyslipidemia [231] and 

elevated blood pressure (brachial systolic and mean arterial pressure [50, 52]). However, these 

factors do not entirely explain the risk of nephropathy development on its progression. DN is 

linked to other complications of T1D such as retinopathy [232, 233] and cardiovascular disease 

[66, 76, 77] in T1D populations while in the general population reduced renal function has been 

associated with greater cardiovascular mortality [234-236], increased left-ventricular mass in 

men [237], and subclinical atherosclerosis[238-240]. Albuminuria (measure of renal damage) is 

also associated with increased risk of clinical cardiovascular disease (CVD) and mortality in a 

variety of populations [234, 241-243]. Despite extensive studies, the underlying mechanism 

relating renal function and/or renal damage to cardiovascular complications are not completely 

understood.  

Augmentation Index (AIx), a index of arterial stiffness, has been linked to progression to 

ESRD in patients with chronic kidney disease [244] and was recently shown to be associated 

with GFR in hypertensive patients [245]. Pulse wave velocity (PWV), a measure of arterial 

stiffness is also shown to be significantly and independently correlated with eGFR (estimated 

with the Modification of Diet in Renal Disease (MDRD) equation) [246, 247]. PWV is also 



 

shown to increase in a stepwise manner with advancing stage of CKD (stages 1-5) [248]. 

Measures of arterial stiffness are also associated with left ventricular diastolic function [195], 

cardiovascular events, mortality [113, 249-251] and risk [195].  Pulse wave analysis (PWA) 

utilizing applanation tonometry measures variables associated with the forward propagation and 

reflection of the pulse wave providing indices of arterial stiffness.  The pressure wave created by 

left ventricular contraction propagates forward until meeting sites of resistance which reflect the 

wave backward. Stiffer artery walls result in earlier wave reflection [168, 171]. When the 

reflected wave returns during systole rather than diastole, as occurs when there is increased 

stiffness, systolic pressure is increased or “augmented”. Augmentation pressure (AP, in mmHg) 

is a measure of how much the early reflected wave contributes to central systolic pressure. AIx 

(in %), represents the level of augmentation measured and is expressed as a percentage of the 

pulse pressure (PP= systolic – diastolic blood pressure; AIx=(AP/PP)x100). Subendocardial 

viability ratio (SEVR), the ratio of the diastolic area under the curve (AUC) of an arterial pulse 

wave, divided by the systolic –AUC [190, 191] is an estimate of myocardial perfusion.  The 

association between PWA measures and measures of renal function and/or renal damage, have 

yet to be explored in a T1D population. Therefore, the aim of this study is to examine the 

relationship between PWA measures, AIx, AP and SEVR and measures of renal function (eGFR 

and Cystatin C) and renal damage (albumin excretion rate (AER)) in a population with childhood 

onset T1D.  
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5.3 METHODS 

A cross-sectional study at the 18-year follow-up of participants in The Pittsburgh 

Epidemiology of Complications (EDC) study with childhood-onset (age <17 years) T1D was 

completed. Individuals were diagnosed with T1D, or seen within 1 year of diagnosis, at 

Children’s Hospital of Pittsburgh between 1950 and 1980 and were on insulin therapy at initial 

discharge [27, 176]. Initial evaluation in the EDC Study occurred between 1986 and 1988 and 

biennial reexamination followed for 10 years, then followed up by survey and finally a full 

reexamination at 18 years, during which pulse wave analysis via applanation tonometry was 

performed. The study protocol was approved by The University of Pittsburgh Institutional 

Review Board.  

Questionnaires concerning demographic, health care, self-care, and medical history were 

sent to participants prior to clinic visit. Self-reported smoking history (at least 100 cigarettes in 

lifetime), current smoker status and medication use were obtained. All medications were coded 

according to The World Health Organization’s Anatomical, Therapeutical, Chemical 

Classification/Defined Daily Doses (ATC/DDD) codes. Medications with potential effects on 

pulse wave analysis measures (angiotensinogen converting enzyme inhibitors (ACEI), 

angiotensin II receptor blockers (ARB), calcium channel blockers (CCB), beta blockers (BB), 

and nitrates) [165] were of particular interest and use of 1 or more of these medications was 

categorized as pulse wave drug (PWD) use.  

During clinic visits, brachial systolic and diastolic blood pressures (SBP and DBP) were 

measured using a random zero sphygmomanometer, according to the Hypertension Detection 

and Follow-Up Program protocol, after a 5-minute rest [180]. Hypertension was defined as a 

blood pressure ≥130/80 mmHg or the use of antihypertensive medications for the purpose of 
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lowering blood pressure. Height (in cm) and weight (in kg) were measured and body mass index 

(BMI) calculated and expressed as kg/m2. Waist and hip circumferences were measured twice 

and if not within 0.5 cm, then a 3rd time. Means of waist and means of hip measurements were 

used to calculate waist-to-hip ratio (WHR).  

Total cholesterol was measured enzymatically [181, 182]. High-density lipoprotein 

cholesterol (HDL-c) levels were determined by a precipitation technique (heparin and 

manganese chloride) with modification [183] of Lipid Research Clinics method [184]. Non-

HDL-c levels were calculated by subtracting HDL-c from total cholesterol.  Blood samples were 

analyzed for hemoglobin A1c (HbA1c) using the DCA 2000 analyzer (Bayer Diagnostics, 

Tarrytown, NY).  Estimated glucose disposal rate (eGDR, a measure of insulin sensitivity) was 

calculated using a regression equation derived from hyperinsulinemic-euglycemic clamp studies 

of 24 subjects chosen to represent the full spectrum of insulin resistance, represented by using 

insulin resistance risk factors: eGDR = 24.4 - 12.97(WHR) - 3.39(HTN) -0.60(HbA1c) [36]. 

Both urinary and serum albumin were measured by immunonephelometry [186, 187]. 

Serum creatinine was assayed using an Ectachem 400 Analyzer (Eastman Kodak Co, Rochester, 

NY). Estimated glomerular filtration rate (eGFR) was calculated using the Modification of Diet 

in Renal Disease (MDRD) equation [252]: 175 x serum creatinine (mg/dl)-1.154 x age-0.203 x 

[0.742 if female] x [1.21 if black]. Renal function categories were created based on MDRD 

eGFR calculations as follow: No renal insufficiency (eGFR≥90ml/min/1.73m2), mild renal 

insufficiency (eGFR 60-89), moderate insufficiency (30-59), severe insufficiency (15-29) and 

ESRD (<15). Cystatin C is measured turbidimetrically on an Olympus AU 640 using reagents 

purchased from DakoCytomation N. America, Inc. (Carpiteria, CA).  In brief, samples are 

incubated at room temperature for 5 minutes with rabbit anti-cystatin C (antibodies coupled to 
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polystyrene particles).  The increase in absorption at 540 nm is measured.  Blanks, controls and 

standards (0.4 to 8.0 mg/L) are run simultaneously with all samples.  The intra- and inter-assay 

coefficients of variation are 1.7% and 2.2%, respectively. Cystatin C was categorized as high if 

>1.0 and normal if <1.0 mg/l. Albumin excretion rates (AER) were calculated using urinary 

albumin levels from at least 2 validated timed sample collections. Degree of albuminuria was 

categorized as normo- (AER<20 µg/min), micro- (20-200 µg/min) or macro-albuminuria (> 200 

µg/min). Those reporting a history of renal transplant or dialysis were considered to have a 

history of renal failure and were excluded from this analysis.  

Of those EDC study participants examined at baseline (n=658), 22.7% (n=150) had died 

by the 18-year follow-up (November 2004 – November 2006), 78 had moved out of area, 101 

declined exam, 19 were lost to follow-up leaving 318 eligible for 18 year exam, 309 for which 

data was available for this analysis. Pulse waveform analysis (PWA) testing began part way 

through the 18-year examination period (January 2006), after which 189 subjects were seen and 

144 (76%) had PWA. The PWA population thus 144 men and women in attendance at the 18-

year follow-up clinic visit after January 1 2006. Aortic augmentation index (AIx), aortic 

augmentation pressure (AP) and subendocardial viability ratio (SEVR) were derived using 

waveforms measured at the radial artery using the SphygmoCor Vx version 7.01 (AtCor 

Medical, Sydney, Australia). In brief, a high-fidelity micromanometer with a frequency response 

of >2 kHz (Millar Instruments, Houston, TX) was placed on the right radial artery, and gentle 

pressure was applied until a consistent waveform was produced. After at least 20 sequential 

waveforms had been acquired, measurement was stopped. Central pressure values were 

estimated from radial measurements using the software’s mathematical transfer function [159, 

189]; the accuracy and reliability of which have been validated [163, 172]. The pressure wave 
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created by left ventricular contraction propagates forward until meeting sites of resistance which 

reflect the wave backward. Stiffer artery walls result in earlier wave reflection [168, 171]. When 

the reflected wave returns during systole rather than diastole, systolic pressure is increased or 

“augmented”.  Augmentation pressure (AP) is a measure of how much the early reflected wave 

contributes to central systolic pressure. Augmentation index (AIx) represents the level of 

augmentation measured and is expressed as a percentage of the pulse pressure (AIx = AP/PP). 

Heart rate is inversely associated with AIx and AP [121]. Subendocardial viability ratio (SEVR), 

the ratio of the diastolic area under the curve (AUC) of an arterial pulse wave to the systolic-

AUC [190, 191] is a ratio of myocardial perfusion (as coronary artery perfusion takes place 

primarily during diastole) to myocardial contraction, and is a tonometric, non-invasive measure 

of myocardial perfusion relative to cardiac workload. The SphygmoCor device provides a quality 

index (QI) which represents reproducibility of the waveform. If PWA produced results with a 

QI<80 the measure was repeated. Measures with a QI≥80 were included in this study. 

Distributional characteristics and normality of variables were assessed. AP, AER, 

cystatin c were all non-parametric. Student’s t-test (for paramentric) and the Mann-Whitney U 

test (for non-parametric) were used to compare continuous variables between two groups. One-

way ANOVA (parametric) or Kruskal-Wallis tests (non-parametrtic) were use for comparisons 

among >2 groups and the χ2 test was used for categorical variables. Pearson’s and Spearman’s  

correlations were used as appropriate. Linear and logisitic regression were performed in a 

stepwise manner for continuous and binary outcomes, respectively. A significance level of 0.10 

was used as the cut-off for entry into models (due to limited sample size).  All continuous 

variables were standardized by subtracting the mean and dividing the by their standard deviation 

of the study population.  Models were adjusted for potential confounders of PWA measures 
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(height and heart rate for AIx and AP and heart rate only for SEVR).  Age and sex were not 

available to multivariate models for MDRD eGFR as both of these factors are involved in its 

calculation. Analyses were completed using SPSS v15 for Windows.  

5.4 RESULTS 

Of the 144 EDC participants with PWA measures, 11 were excluded from present 

analyses due to history of renal failure (transplant or dialysis). Mean age±SD and T1D duration 

for the remaining 133 were 44.3±7.37 and 36.1±6.65. Of the 133, 130 had available AER 

measurements, variables were available for calculation of MDRD eGFR for 129, and 118 had 

Cystatin C measures.  

5.4.1 Pulse Wave Analysis Measures and Microalbuminuria 

Ninety-one of the 130 with AER measures were normoalbuminuric, 25 had 

microalbuminuria (MA) and 14 had macro. Systolic and diastolic blood pressures increased 

significantly with increasing albuminuria category as did HbA1c, WHR and, as expected so did  

serum creatinine, cystatin c and eGFR (Table 12). eGDR decreased with increasing albuminuria 

category. BMI, although showed a borderline significant, positive linear trend with albuminuria 

category, did not significantly differ among the groups. 

AIx, did not significantly differ by albuminuria category, and did not show a significant 

linear trend (Table 12 and Figure 4). AP increased with increasing albuminuria category (p=.07) 

with a significant, positive, linear trend (p=.01) (Table 12 and Figure 5). SEVR differed 
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significantly by albuminuria category (p=.002) and showed a significant, negative, linear trend 

(p=.002) (Table 12 and Figure 6). In unadjusted, univariate correlations, only SEVR was 

correlated, negatively, with AER (r= -.35; p<.001). After adjustment for heart rate (and height 

for AP and AIx), SEVR remained significantly correlated with LnAER (r= -.22; p=.01) and 

LnAP was positively correlated (r=.28; p=.001) (Table 13).  

To determine if PWA measures were associated with early renal damage, multivariate 

logistic regression was performed excluding those with macroalbuminuria. AP did not remain 

significantly associated with presence of MA in multivariate models. It also was not significantly 

associated with LnAER in linear regression analysis.  However, each standardized unit decrease 

in SEVR was associated, multivariately, with a 65% increased risk for MA (Table 14). In fact, 

SEVR preferentially entered multivariate models for MA, over brachial SBP and DBP measures. 

Lower eGDR was also associated with presence of MA, multivariately (OR=0.35; 95%CI: 0.17-

0.73; p=.005). Adjustment for PWD use or just ACEI/ARB use, did not significantly alter 

models and neither was significantly associated with MA. In linear regression for LnAER, 

among those within the normo- and micro-albuminuric range, SEVR was again significant and 

entered the model over SBP and DBP. Lower HDL-c was also associated with increased LnAER 

in this model (Table 15). Factors associated with increased LnAER in the total population (with 

macroalbuminuric participants included) were increased SBP and Non-HDL-c (data not shown).  

5.4.2 Pulse Wave Analysis Measures and Renal Function 

Participant characteristics by renal function categories, both eGFR and Cystatin C, are described 

in Table 16 and Figures 4 through 6 illustrate means (standard error) of AIx, AP and SEVR, 

respectively by renal function categories.  
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Modification of Diet in Renal Disease Estimated Glomerular Filtration Rate 

 AIx, AP and SEVR were all significantly correlated with MDRD eGFR in univariate and 

in heart rate and height adjusted correlations. (Table 13). Increased AIx (p=.09), AP (p=.03), age, 

SBP, WHR, AER, serum creatinine and Cystatin C accompanied decreased eGFR category 

(Table 16).  SEVR, although showing a significant borderline linear trend (p=.07), declining with 

decrease in eGFR category, did not differ significantly between the groups (p=.17).  

Augmentation pressure showed, negative, linear trend (p=.005), as did AIx (p=.02), increasing 

with decreasing eGFR category (Table 16, Figure 5 and 4, respectively). A comparison between 

those low eGFR (<60) and those with normal to mildly impaired renal function (≥60) showed a 

significant difference in AIx (p=.02), AP (p=.006), but not SEVR (p=.13) between the two 

groups. However, multivariately, lower SEVR was associated with a 56% increased risk for low 

eGFR (<60), was selected over brachial SBP and DBP measures, and remained significantly 

associated with low eGFR when adjusted for heart rate and ACEI/ARB medication use. No other 

factors were significantly associated with eGFR in this model (Table 16). Adjustment for PWD 

use instead of ACEI/ARB use did not significantly alter the model. Neither AIx nor AP were 

significant in multivariate models for low eGFR. Linear regression for eGFR in the total 

population showed similar results for AIx, AP and SEVR. However, SBP diminished the 

statistical significance of the SEVR-eGFR relationship in that model.  

 

Cystatin C 

Cystatin C was significantly correlated with AP and SEVR, but not with AIx, in 

univariate and heart rate and height adjusted correlations (Table 13). Those with high Cystatin C 
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(≥1.0) did however have significantly higher AIx (28.1±12.1 vs. 21.3±10.6; p<.05, Figure 4) and 

AP (13.6±9.98 vs. 7.71±4.88; p<.01, Figure 5), compared to those with normal Cystatin C levels 

(<1.0). SEVR, although about 10 units lower in those with higher Cystatin C, was not 

significantly different between the groups (Figure 6).  Other factors univariate associated, with 

high Cystatin C were older age (but not longer diabetes duration), lower eGDR, higher SBP (but 

not DBP), and expectedly, higher AER , serum creatinine and eGFR (all p<.001).  Results of 

logistic regression for Cystatin C were similar to those seen for low eGFR.  AP, although 

significant when heart rate and height adjusted only, did not remain significant multivariately. In 

multivariate models for high Cystatin C with SEVR available; for each standardized unit 

decrease in SEVR there was a 69% increased risk for high Cystatin C (Table 18). A model with 

brachial SBP and DBP was also run in which both SEVR and SBP were significantly associated 

with high Cystatin C. However, the model with hypertension status was more significant that 

with SBP. Adjustment for PWD use instead of ACEI/ARB use did not substantially change the 

model. Neither age, nor sex, entered models for Cystatin C. 

5.5 DISCUSSION 

The prominent findings of the present study are that pulse wave analysis measures, augmentation 

pressure (an index of arterial stiffness) and subendocardial viability ratio (an estimate of 

myocardial perfusion) are associated with both renal damage, even at the microalbuminuric 

level, and with poor renal function, in our Type 1 diabetes population.  The relationship SEVR 

had with both renal function and renal damage remained present in multivariate models, and 

SEVR was preferred over brachial SBP and DBP as a predictor of albumin excretion rate, 
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microalbuminuria in those with no to mild renal damage. It was also preferred over SBP and 

DBP in the multivariate model for high Cystatin C and that for low eGFR.  

 Univariately, AIx was not associated with AER (continuously or categorically), was only 

borderline significant in its associated with eGFR (continuously and categorically) and was 

associated with high Cystatin C compared to normal but not with Cystatin C continuously. In the 

Hoorn Study, there were significant increases in aortic AIx with increasing albuminuric quartile 

(measured using urinary albumin-to-creatinine ratio (ACR) in a general population[253]. 

However, after adjusting for age, sex, glucose tolerance status and mean arterial pressure, AIx 

was no longer significantly associated with ACR. This study also found no significant 

relationship between AIx and eGFR (also MDRD calculated), which is consistent with the 

findings of the present study.  It is important to note, however that The Hoorn Study did find an 

association between other measures of vascular stiffness and both ACR and eGFR. In the present 

study, higher augmentation pressure was associated with higher AER and higher albuminuric 

category and with eGFR and Cystatin C. The difference in the associations of AIx and AP with 

renal damage and renal function may be due to the notion that AIx has limitations in its use as an 

arterial stiffness index due to its calculation: AP ÷ PP. Simultaneous rises in both AP and PP can 

result in a stable AIx, thereby reducing its usefulness as a surrogate for change in central 

pressure waveforms [254]. This limitation is especially apparent in older populations, for which 

AP may be a more suitable measure of arterial stiffness [202], and may be pronounced in T1D 

populations due to higher pulse pressures and accelerated vascular aging [153, 254].  

To date, no studies have examined the relationship between SEVR and renal function or 

renal damage. Our finding suggest that, estimated myocardial perfusion is reduced in those with 

greater damage and reduced function. This is even true when comparing microalbumuric T1D 
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participants to those within the normal range. This finding is consistent with the fact that 

albuminuria, even at the micro level, is associated with CAD in T1D and other populations [54, 

67, 76, 255, 256]. 

In our renal function analyses, we looked at both eGFR and Cystatin C due to the current 

use of eGFR in clinical practice and due to recent findings that Cystatin C may be superior to 

serum creatinine in assessing GFR, especially in T1D populations[257-259].  AP was associated 

with eGFR and Cystatin C, but the addition of SBP to the multivariate models eliminated the 

statistical significance of the association. This is not surprising since AP represents the increase 

of central systolic blood pressure due to early return of the reflected pulse wave which would be 

represented in an increase in brachial SBP. In the absence of brachial BP measures, AP remains 

significantly associated with eGFR and Cystatin C.  Yoshida et al. found an association, albeit 

weak, between increased brachial-ankle PWV, another measure of arterial stiffness, and eGFR in 

those with normal to mild (MDRD calculated eGFR ≥60 but less than 90 ml/min/1.73 m2) renal 

function impairment[260]. Wang et al found a stepwise increase in PWV with decreasing CKD 

category[248]. Although, we also found an association between arterial stiffness as measured 

with AP, and renal function, the only significant association was found when comparing those 

with normal and mild impairment to those with moderate to severe impairment. In other 

regression models, linear in the entire or portions of the population (no to mild impairment, 

moderate to severe) and logistic for mild impairment compared to normal function, neither AP 

nor SEVR was associated with the eGFR outcomes.  

Chade et al.  showed that low eGFR (MDRD calculated <60 ml/min/1.73 m2) was 

univariately associated with coronary microvascular dysfunction (defined as coronary flow 

reserve (CFR) <2.5, evaluated using intracoronary adenosine)[261]. This is consistent with our 
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finding that SEVR is associated with eGFR. However, in Chade et al’s multivariate analysis, the 

association did not remain significant. The attenuation of the association between renal function 

and reduced CFR was adjustment for age and gender.  In our own multivariate analysis detailed 

in Table 17, we did not make age or sex available to the eGFR models. Since age and sex are 

used in the calculation of MDRD eGFR, adjustment for these factors is redundant. When we ran 

models allowing for these two variables, they did enter the models with over inflated odds ratios. 

By not allowing age and sex to distort the analysis, we find that SEVR is associated with renal 

function as measured by eGFR, which is confirmed by the analysis for Cystatin C which did 

allow for both age and sex and SEVR was significantly related to high Cystatin C.  

In summary, higher augmentation pressure and lower subendocardial viability ratio are 

associated with both renal damage and renal function in T1D. Of great importance is the positive 

relationship between SEVR in those with no or mild renal damage, during which SEVR was a 

better predictor of AER than SBP. These findings underscore the importance of measuring and 

understanding more aspects of the entire pulse wave rather than only brachial SBP and DBP. 

Pulse wave analysis can be quickly and easily measured in a clinical setting and can provide 

additional information for renal complication risk stratification than SBP and DBP alone.  Early 

medication intervention to reduce arterial stiffness in those with higher risk such as with ACEI’s 

or ARB’s may prevent renal complications in T1D. Additional, prospective research should be 

completed to confirm these cross-sectional findings.  
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Table 12. Characteristics of The Pittsburgh EDC Pulse Wave Analysis population by Albuminuria Category 

 

 

Normo 

(n=91) 

Micro 

(n=25) 

Macro 

(n=14) 

Total 

(n=130) 

Augmentation Index % 22.1±11.0 21.1±10.1 26.1±12.1 22.9±11.0 

Augmentation Pressure (mmHg)b** 7.54±4.62 8.84±7.13 13.7±10.4 8.90±6.5 

Subendocardial Viability Ratio (%)b*** 149.3±26.5 126.7±30.3 131.6±35.6 142.0±31.3

Age (years) 43.3±6.57 46.8±8.69 44.2±7.41 44.5±7.30 

Diabetes Duration (years) 35.2±6.09 39.1±7.38 35.1±6.77 36.2±6.71 

Sex (% male) 46.2 60.0 57.1 48.9 

HbA1c (%)c*** 7.33±1.15 8.00±1.70 8.28±1.30 7.56±1.33 

eGDR (mg/kg/min)d**** 8.33±1.97 6.82±2.27 5.56±2.21 7.74±2.26 

Systolic Blood Pressure (mmHg)d**** 109.3±11.5 115.7±13.1 139.5±15.5 115.1±15.9

Diastolic Blood Pressure (mmHg) c**** 65.4±8.23 63.3±9.12 75.6±11.7 66.4±9.22 

Heart Rate (bpm) 76.7±13.0 82.6±12.4 79.9±14.0 77.8±13.0 

Non-HDL-c (mg/dL) 111.1±27.3 107.0±34.0 144.9±52.8 114.0±33.0

HDL-c (mg/dL) 60.3±16.7 55.5±15.8 57.115.9 59.2±16.5 

Body Mass Index (kg/m2)a 26.7±4.34 27.3±4.89 28.9±3.99 27.1±4.50 

Waist-to-Hip Ratiob*** 0.85±0.09 0.91±0.09 0.90±0.7 0.87±0.09 

Serum Creatinine(mg/dL)d**** 0.93±0.17 1.12±0.42 1.32±0.39 1.08±0.54 

eGFR (ml/min/1.73 m2) d**** 78.4±15.1 69.7±19.9 56.7±18.0 74.5±17.7 

Cystatin Cd**** 0.80±0.12 0.98±0.34 1.24±0.50 0.95±0.43 

Abbreviations: estimated glucose disposal rate, eGDR; estimated glomerular filtration rate, 
eGFR. *<.10, **<.05, ***<.01, ****<.001.   
asignificant linear trend <.10  
bsignificant linear trend <.05  
csignificant linear trend <.01  
dsignificant linear trend <.001 
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Figure 4. Augmentation Index (mean and standard error) by albuminuria and renal function categories in 

The Pittsburgh EDC Pulse Wave Analysis Population 
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Figure 5. Augmentation Pressure (mean and standard error) by albuminuria and renal function categories in 

The Pittsburgh EDC Pulse Wave Analysis study population 
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Figure 6. Subendocardial Viability Ratio (mean and standard error) by albuminuria and renal function 

categories in The Pittsburgh EDC Pulse Wave Analysis study population 
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Table 13.  Bivariate correlations and heart rate adjusted partial correaltions between Augmentation 
Index, Augmentation Pressure, Subendocardial Viability Ratio and Albumin Excretion rate, Estimated 

Glomerular Filtration Rate and Cystatin C in The Pittsburgh EDC study 
 Albumin Excretion Rate 

(μg/min) 

MDRD eGFR 

(ml/min/1.73 m2) 

Cystatin C 

(mg/l) 

AIx -.074 -.210** .108 

AP .050 -.252*** .209** 

SEVR -.354**** .212** -.186** 

Heart Rate Adjusted Correlations 

 LnAERb MDRD eGFR Cystatin C 

AIx .138 -.175** .170 

LnAPa,b .281*** -.249*** .273*** 

SEVRa -.223** .257*** .283*** 

Abbreviations: Modification of Diet in Renal Disease, MDRD; estimated glomerular filtration 
rate, eGFR; Augmentation Index, AIx; Augmentation Pressure, AP, Subendocardial Viability 
Ratio, SEVR. 
*<.10, **<.05, ***<.01, ****<.001.  
aalso height adjusted, b Due to use of Pearson’s partial correlations, AER was natural 
logarithmically transformed because non-parametric 

 

 

 
Table 14. Logistic regression model for microalbuminuria in The Pittsburgh EDC Pulse Wave Analysis study 

population 
Variable OR 95%CI p 

Subendocardial Viability Ratio 0.35 0.17-0.73 .005 

Estimated Glucose Disposal Rate 0.52 0.30-0.89 .017 

Heart Rate  0.72 0.38-1.38 .32 

Odds Ratios are per standardized unit.  
Variables available to the model: age, subendocardial viability ratio systolic blood pressure, 
diastolic blood pressure, waist-to-hip ratio, estimated glucose disposal rate, HDL-cholesterol, 
Non-HDL-cholesterol, Smoking history, ACE inhibitor/Angiotensin II receptor blocker use, 
heart rate, body mass index, anti-lipidemic agent use 
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Table 15. Linear regression model for albumin excretion rate in those within the normal and micro-
albuminuric range. 

 β standard error p 

Subendocardial Viability Ratio -11.3 3.71 .003 

HDL-c -6.56 2.64 .015 

Heart Rate -5.76 3.68 .13 

All variables are standardized to the population 
Variables available to the model: age, subendocardial viability ratio systolic blood pressure, 
diastolic blood pressure, waist-to-hip ratio, estimated glucose disposal rate, HDL-cholesterol, 
Non-HDL-cholesterol, Smoking history, ACE inhibitor/Angiotensin II receptor blocker use, 
heart rate, body mass index, anti-lipidemic agent use



 

Table 16. Cross-sectional characteristics by renal function categories in The Pittsburgh EDC Pulse Wave Analysis Study Population 
 Estimated Glomerular Filtration Rate Cystatin c 

 >90 

(n=29) 

60-89 

(n=75) 

30-59 

(n=22) 

15-30 

(n=3) 

 <1.0 

(n=98) 

≥1.0 

(n=20) 

Augmentation Index 19.9±10.8b* 22.3±10.8 27.2±9.38 27.0±9.85 21.3±10.6** 28.1±12.1 

Augmentation Pressure 7.00±5.11c** 8.24±5.97 11.8±7.71 12.7±5.78 7.71±4.88*** 13.6±9.98 

Subendocardial Viability Ratio 147.2±24.1b 143.1±32.2 138.2±36.4 106.7±19.1 143.9±29.4 133.6±42.1 

Age 40.6±4.37 b**** 44.2±7.83 49.6±5.98 47.7±6.20 43.7±7.12*** 49.2±6.58 

Diabetes Duration 33.9±5.34 c*** 35.2±6.70 40.1±7.02 33.2±6.07 36.0±6.33 37.9±7.20 

Sex (% male) 58.6* 53.3 27.3 33.3 55.1 40.0 

HbA1c 7.71±1.62 7.52±1.27 7.41±0.97 7.53±1.32 7.53±1.28 7.56±1.34 

Estimated Glucose Disposal Rate 7.88±2.36 7.93±2.09 7.54±2.11 5.37±3.08 7.94±2.09** 6.64±2.51 

Systolic Blood Pressure 108.5±13.4c*** 114.4±14.3 118.2±20.7 136.7±9.50 112.4±14.3** 124.3±19.3 

Diastolic Blood Pressure 67.2±7.07 65.7±9.30 65.3±11.0 75.7±16.3 65.6±8.42 66.7±13.9 

Heart Rate 78.0±13.1 79.1±13.7 74.7±10.6 86.7±8,08 79.0±12.9 74.2±13.1 

Non-HDL-c 111.3±28.1 116.3±33.1 109.6±37.44 100.0±51.1 111.5±31.9 119.2±40.8 

HDL-c 59.3±17.2 60.0±16.7 57.5±15.8 47.7±6.43 58.6±16.3 57.2±16.1 

Body Mass Index 26.5±4.46a 26.9±4.39 28.5±4.86 29.3±3.16 26.7±4.26 27.1±4.20 

Waist-to-Hip Ratio 0.86±0.07b*** 0.86±0.09 0.88±0.10 0.94±0.13 0.87±0.09 0.90±0.10 

Albumin Excretion Rate 9.73±12.9d**** 129.4±442.3 195.4±396.9 646.9±734.8 96.7±385.8**** 669.1±1563.1

Serum Creatinine 0.80±0.10d**** 0.97±0.13 1.24±0.25 2.33±0.51 0.94±0.16**** 1.42±0.50 

Cystatin C 0.74±0.08d**** 0.82±0.12 1.09±0.24 1.87±0.25 -- -- 

MDRD eGFR -- -- -- -- 78.9±14.1**** 49.0±14.6 

Comparisons between MDRD eGFR categories: *<.10, **<.05, ***<.01, ****<.001.  
   asignificant linear trend <.10, bsignificant linear trend <.05, csignificant linear trend <.01, dsignificant linear trend <.001
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Table 17. Multivariate logistic regression model for low estimated glomerular filtration rate (eGFR<60) in 
The Pittsburgh EDC Pulse Wave Analysis Study 

 Odds Ratio 95%CI p 

Subendocardial Viability Ratio 0.44 0.22-0.89 .02 

Heart Rate 0.42 0.20-0.88 .02 

ACEI/ARB Use 3.57 1.18-10.8 .02 

All variables are standardized to the population and odds ratios are expressed as per standardized 
unit.  
Variables available to the model: subendocardial viability ratio, systolic blood pressure, diastolic 
blood pressure, hypertension status (BP>130/80 or use of medication to reduce blood pressure), 
waist-to-hip ratio, estimated glucose disposal rate, HDL-cholesterol, Non-HDL-cholesterol, 
Smoking history, ACE inhibitor/Angiotensin II receptor blocker (ACEI/ARB) use, heart rate, 
body mass index, anti-lipidemic agent use 
 
 
 
 
 
 
 
 
 
Table 18. Multivariate logistic regression model for high Cystatin C (≥1.0 mg/l) in The Pittsburgh EDC Pulse 

Wave Analysis Study 
 Odds Ratio 95%CI p 

Subendocardial Viability Ratio 0.31 0.13-0.73 .007 

Heart Rate 0.20 0.07-0.57 .003 

Hypertension 6.35 1.88-21.5 .003 

ACEI/ARB Use 5.65 1.21-26.4 .03 

All variables are standardized to the population and odds ratios are expressed as per standardized 
unit.  
Variables available to the model: subendocardial viability ratio, hypertension status (BP>130/80 
or use of medication to reduce blood pressure), waist-to-hip ratio, estimated glucose disposal 
rate, HDL-cholesterol, Non-HDL-cholesterol, smoking history, ACE inhibitor/Angiotensin II 
receptor blocker (ACEI/ARB) use, heart rate, body mass index, anti-lipidemic agent use 
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6.0  FINAL DISCUSSION 

6.1 SUMMARY AND CONCLUSIONS 

This is the first study to assess potential risk factors (gathered 18 years earlier) for abnormal 

pulse waveform measures (i.e. augmentation index (AIx) and augmentation pressure (AP)) and 

decreased subendocardial viability ratio (SEVR). It is also the first to examine the association 

between these measures and prevalent cardiovascular and renal disease in a T1D population.  

These data document important associations of autonomic neuropathy with both arterial stiffness 

(AIx and AP) and estimated myocardial perfusion (SEVR). They also show that the relationships 

between measures of arterial stiffness and cardiovascular disease are complex due to age, 

diabetes duration and the pervasive use of various medications. It also showed that renal function 

and renal damage, even within the normo- and microalbuminuric range, are  associated with a 

reduced SEVR and increased AP. 
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6.2 GENERAL FINDINGS 

6.2.1 Participant Characteristics 

The aim of this study was to understand the arterial stiffness measure relationships to 

complications and risk factors within a population not previously well examined in this regard, 

those with type 1 diabetes. Therefore, analysis was completed in The Pittsburgh Epidemiology of 

Diabetes Complications Study, a prospective study in a population with childhood onset Type 1 

diabetes that has been followed for approximately 18 years. At the time of pulse wave analysis, 

the population involved in this aspect of the study was comprised of 73 female and 71 male 

participants. Males had higher blood pressures, lower estimated glucose disposal rate (insulin 

sensitivity), lower HDL-c, better renal function (lower eGFR), but more renal damage (higher 

AER), and a greater percentage with coronary artery disease (Table 19).  Compared to the 

remaining EDC population (those without PWA measures who attended the 18 year follow-up 

clinic visit), our PWA population had higher mean heart rate, smaller waist-to-hip ratio and 

lower albumin excretion rate. A greater percentage of those not in the PWA study had CAD 

compared to those included (30.9% versus 23.1), although this difference did not reach statistical 

significance. Due to these differences, our PWA may represent a somewhat healthier portion of 

the overall EDC study population at the 18 year follow-up.  An important factor included in the 

analyses was the reported use of medications potentially affecting PWA measures. ACE 

inhibitors (ACEI), angiotensin receptor blockers (ARB), beta-blockers, calcium channel blockers 

and nitrates may exhibit some effect on arterial stiffness indices [179] and coronary artery 

perfusion[262-264].  Of the 144 PWA participants, 90 (62.5%) were on at least one of the 
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aforementioned medications, especially use of ACE inhibitors, reported by 55% (n=79). Another 

14.7% (n=21) reported ARB use, 5 of which were also using an ACEI resulting in 56% (n=80) of 

the PWA population taking either an ACEI or ARB. Wide use of ACEI/ARB medications in the 

present study population is not surprising due to their effectiveness in treating hypertension and 

the known protective effect against renal damage [265, 266].  Both ACEI and ARB medications 

are also shown to be effective in reducing arterial stiffness [267].  Both act on the renin-

angiotensin-aldosterone system (RAAS), the system responsible for the regulation of blood 

pressure.  ACEI’s inhibit the conversion of angiotensin I to angiotensin II (AngII). AngII causes 

vasoconstriction, stimulates the release of aldosterone (acts on kidney to increase sodium 

retention and potassium excretion) from the adrenal cortex and stimulates the release of 

vasopressin (aka: anti-diuretic hormone; acts on kidneys to increase water retention).  All of 

these AngII actions work to increase blood pressure therefore it follows that ACE inhibition 

would cause BP reductions.  ARB’s, on the other hand, block the action of AngII thereby 

reducing blood pressure as well. ACEI have been shown to reduce arterial stiffness independent 

of BP reduction[268] as has ARB use [269]; use of ACEI in conjunction with ARB shows 

synergistic and possibly additive effects on systemic arterial stiffness[270] and in coronary artery 

perfusion [263]. Beyond the aforementioned effect of ACEI on blood pressure, in animal models 

treatment with ACEI is shown to cause reduction in size of the medial (muscular) layer of 

arteries due to reversal of smooth muscle hypertrophy [271] and to decrease the collagen (but not 

elastin) density in arteries  [272] both of which contributed to reductions arterial stiffness seen in 

ACEI treatment.  ACEI and ARB are also shown to improve endothelial function by increasing 

the bioavailability of nitric oxide (NO)[273], a potent vasodilator and regulator of vascular tone.  
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6.2.2 Risk Factors for  Pulse Wave Analysis Measures 

 Previous studies have suggested that indices of arterial stiffness are significantly higher in those 

with T1D and SEVR is significantly lower, compared to non-diabetic controls [9, 10, 169].  

Duprez et al. studied associations between pulse wave analysis measures and traditional 

cardiovascular risk factors in a non-diabetic population (69% male; mean age 50±12 years) with 

low cardiovascular risk (determined via Framingham Risk Score). The study results showed that 

both AIx and AP were significantly and positively associated with age, SBP, pulse pressure and 

Framingham Risk Score (comprised of age, sex, smoking history, BP, total and HDL cholesterol 

levels and blood glucose or history of diabetes) in both men and women. DBP and mean arterial 

pressure (MAP) as well as total and HDL cholesterol levels were also positively associated with 

AIx and AP in women, but not in men. Interestingly, in the male participants of Duprez et al 

study, total cholesterol, LDL-c, and BMI were all significantly and negatively associated with 

AIx and AP. This was the only published study available that has examined potential risk factors 

for PWA measures; it was in healthy, non-diabetic persons of middle age (50±12), was cross-

sectional in nature and looked only at univariate correlations.  In order to understand what factors 

contribute to increased AIx and AP and decreased SEVR in a T1D population, the present 

research examined the relationship between factors at baseline and the follow-up measures.  We 

too found that AIx and AP were univariate associated with Non-HDL-c (but not HDL-c), systolic 

and diastolic BP in cross-sectional analyses (Table 20).  However, in the adjusted model for AIx, 

only ever smoker status, DBP, and estimated glucose disposal rate were significant while only 

ever smoker status and SBP were independently associated with AP. Of greater interest are the 

significant, independent associations found between baseline HDL-c, E/I ratio and ever smoker 

status and both AIx and AP, as well as the positive association between  baseline HbA1 and AP 
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in our adjusted models. Arterial stiffness indices and SEVR are significantly affected by age 

[104, 274]. They also tend to be higher in women compared to men[275], which is partially, but 

not entirely, due to shorter stature [276] since height is inversely related to timing of pulse wave 

reflection [120]. Pulse wave reflection, specifically, is also dependent on heart rate. Wilkinson et 

al showed that there is an inverse linear relationship between heart rate and AIx/AP. This 

relationship occurs because faster HR decreases the absolute duration of systole shifting the 

occurrence of reflected wave return to diastole, reducing central pressure augmentation [121].  

Due to the potential confounding effects of age, sex, height and heart rate, the final models 

relating other potential risk factors were adjusted for these variables. Resulting models showed 

that the prominent risk for all 3 measures was reduced ECG monitored deep breathing 

expiration-to-inspiration ratio, a measure of heart rate variability. Lower E/I ratios are indicative 

of autonomic neuropathy [277]. Ahlgren et al showed similar results relating E/I to ultrasound 

derived aortic stiffness measures in women with T1D in cross-sectional analyses.  Taskiran et al 

showed that in T1D, the presence of autonomic neuropathy was associated with decreased 

myocardial perfusion reserve as measured using perfusion reserve index assess from MRI during 

induced vasodialation. This finding is in agreement with that from the present study showing AN 

to be associated with SEVR. Autonomic neuropathy involves damage to the nerves that comprise 

those from the brain and spinal cord to organs such as the heart and to blood vessels.  Our 

finding, that a lower E/I ratio was independently predictive of higher AIx and AP and lower 

SEVR measured some 18 years later is particularly important as it suggests that neutrally 

mediated changes in vascular function may underlie the pathophysiology of increased vascular 

stiffness.  However, our findings also show that both having a history of cigarette smoking and 

poor glycemic control (higher HbA1) at baseline were also predictive of AP and SEVR. 
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Smoking is a known risk factor for cardiovascular disease [278] and has previously been shown 

to be associated with arterial stiffness measures[129, 200, 209, 279, 280]. Rehill et al. suggest 

that the connection between smoking and systemic arterial stiffness is impaired basal arterial 

tone, an index of endothelial dysfunction [280].  Smoking is associated with reduced 

bioavailability of nitric oxide (NO), which is synthesized in the endothelium of arteries and 

causes vasodilatation and contributes to resting arterial tone and smooth muscle cell proliferation 

[281].  The relationship between AP and history of cigarette smoking therefore is biologically 

plausible and consistent with findings in prior research. The relationship between SEVR and 

smoking history is also consistent as AP affects SEVR and according to Guo et al, cigarette 

smoke affects the wall properties of not only peripheral arteries, but also coronary arteries [282]. 

Alterations in the extracellular matrix of the media and adventitia of arteries have also been 

shown to be associated with increased arterial stiffness [283, 284]. These alterations can be due 

to advanced glycosylation end-product (AGE) accumulation on matrix proteins due to poor 

glycemic control [285]. Therefore, our finding that higher baseline HbA1 is associated with 

increased AP may be due to the influence of AGE’s .  Glycemic control has also been shown to 

be associated with incident coronary artery disease events in T1D [71, 256], which is in 

agreement with the association between poorer control at baseline and higher follow-up SEVR in 

the current study.  The present study also showed that lower HDL-c was associated with higher 

AP and AIx. As low HDL-c is a known risk factor for atherosclerosis, it is therefore reasonable 

that indices are arterial stiffness are elevated as atherosclerosis contributes to increased stiffness. 

The results of the present research suggest that risk factors for increased arterial stiffness include 

those affecting functional (AN) as well as structural (oxidative stress due to smoking, AGE 

accumulation due to poor glycemic control, and atherosclerosis due to low HDL-c) aspects of 
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arteries and that these factors, along with increased peripheral arterial stiffness, also contribute to 

reduced myocardial perfusion.  

6.2.3 Pulse Wave Analysis and Prevalent Cardiovascular Disease (CVD) 

We are not aware of any study to date that has explored the association between pulse wave 

analysis measures and prevalent or incident CVD in T1D. Numerous studies have however 

shown PWA measures to be higher in populations that have greater risk for CVD including those 

with diabetes [9, 169, 286] and those with renal disease [117, 246, 248].  A few studies have 

published on the relationship between these measures and CVD outcomes either incident or 

prevalent. Those that have been done have not been in T1D. Weber et al. completed PWA in 

male patients undergoing coronary angiography for either diagnosis or exclusion of coronary 

artery disease (CAD) finding that higher AIx and AP were univariately (4th vs. 1st quartile) 

associated with presence of CAD. However, multivariate analysis for CAD was completed only 

with the AIx variable showing that it was also multivariately (controlling for age, height, 

hypertension status, HDL-c and ACEI, beta-blocker and statin use) associated with the prevalent 

CAD[211]. Both AP and AIx were also shown to be independent predictors of major adverse 

cardiovascular events and cardiovascular mortality in those with preexisting CAD [251]. The 

findings of the present study show that AIx was not significantly associated with prevalent CAD 

(any, hard or soft) but that increased AP was associated with presence of hard CAD when those 

reporting nitrate use were excluded. For both AIx and AP as well as for SEVR, the addition of 

age diminished the statistical significance of their associations with the CAD outcomes. As 

previously discussed, AP increases with age and SEVR decreases with age. In type 1 diabetes, 

especially in childhood onset T1D, age and diabetes duration are highly correlated. Type 1 
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diabetes has been shown to be associated with accelerated vascular aging [153] therefore, age, 

essentially representing both age and diabetes duration in those with childhood onset T1D, seems 

to be the prominent factor associated with increased arterial stiffness, reduced coronary artery 

perfusion and CAD, so much so that it is difficult to decipher the relationship in this cross-

sectional analysis. Due to the limited sample size, stratification by shorter and longer duration or 

older and younger age did not shed any light on this issue.  In this T1D population, age may  

better represent vascular age than in non-diabetic populations. Therefore, the addition of age to 

multivariate models and the subsequent reduction in statistical significance of AP and SEVR 

does not deem the relationship between AP and CAD, and that between SEVR and CAD, 

biologically insignificant.  

Another interesting finding in this CAD analysis was the impact of medications. Those 

with soft CAD had significantly lower SEVR than those without, yet those with hard CAD were 

comparable to those without CAD. A potential explanation for this is the more pervasive use of 

medication in those with hard CAD. In fact, the percentage of those with soft CAD on 

ACEI/ARB (40%) was less than in those without CAD (55.5%).  A greater percentage, 61.1%, of 

those with CAD reported use of at least to different PWD medications compared to 20.0% of 

those with soft CAD and 12.7% of those without CAD. This finding suggests that a more 

pervasive use of medications and the use of multiple medications in those with hard CAD are 

effective in reducing arterial stiffness and improving myocardial perfusion. One type medication 

that seemed very influential, at least on AP, was nitrate use even though only 5 participants 

reported use. Those taking nitrate medications had a mean±SD AIx of 20.1±18.1, AP of 

8.80±10.2 and SEVR of 142.2±21.9 compared to 12.1±10.7, 9.04±6.397 and 142.2±31.5 in those 

not on nitrate medication, respectively. These differences did not reach statistical significance of 
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course, as there were only 5 persons on nitrate medication. However, it is interesting that 

although 4 of them had Hard CAD the means of the arterial stiffness indices were lower than the 

remainder of the population and that these means were also comparable than those for the non-

CAD participants (AIx: 22.4±9.82; AP:8.09±4.67; SEVR: 144.5±32.4).  

The presence of high CAC score was associated with a significant increase in AP 

(10.9±8.25 vs. 7.98±5.03). Coronary artery calcification was also associated AP and with SEVR 

univariately however, the relationship between AP and high CAC score did not remain 

significant multivariate, again due to the addition of age. However, lower SEVR remained 

significantly associated with high CAC once those taking nitrates were excluded from analyses. 

This finding is consistent with that by Hata et al that CAC is a predictor of ischemic heart disease 

[221] and makes biological sense in that the greater the burden of calcification/atherosclerosis in 

coronary arteries the worse the perfusion of the heart.  Finally, both AP and SEVR were 

associated with presence of low ABI. This finding is consistent with the fact that PWA measures 

are of reflected waves which are reflected back to the aorta from the periphery. If follows that the 

presence of vascular disease in the lower extremities would cause earlier timing of the reflected 

wave.  

6.2.4 Pulse Wave Analysis Measures and Renal Damage and Function 

As previously mentioned, autonomic neuropathy was associated with all of the PWA measures 

examined in this study. Interesting, Maguire, et al found that autonomic nerve testing predicted 

the development of microalbuminuria at 12 year follow up in a cohort of adolescents with 

T1D[287]. Our finding that AP and SEVR were related to albuminuria is consistent with those of 

Maguire et al.  Chico et al found that autonomic neuropathy was associated with silent 
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myocardial ischemia especially in the presence of microalbuminuria[288] which is in agreement 

with the association between AN and SEVR. It also is consistent with the proposed connection 

between all aspects of this study which will be discussed shortly.   

While renal function relates to the ability of the kidneys to filter the blood, renal damage 

is reflected by the excretion of protein (albumin) in urine at concentrations which would not 

normally be excreted. Albuminuria is a widely recognized and potent risk factor for coronary 

artery disease in those with diabetes [54, 67, 255]. It has been shown, that renal damage typically 

precedes renal function loss in The Pittsburgh EDC population[289], though occasionally 

reduced renal function is seen without preceding albuminuria. The strongest association found in 

this renal analysis was the association between SEVR and albuminuria, specifically at the low 

end.  However, SEVR was also related to presence of poor renal function by both methods used 

to estimate renal function, MDRD eGFR and Cystatin C levels. The pathophysiology behind 

albuminuria-cardiovascular disease connection may involve arterial stiffness.  Greater stiffness 

could potentially cause increased rate of blood flow to the kidneys resulting in kidney damage. 

This damage in turn causes an increase in blood pressure which contributes to further increases 

in arterial stiffness. It may follow that earlier and earlier return of reflected waves due to arterial 

stiffness cause a decrease in time in diastole, thereby reducing coronary artery perfusion 

resulting in coronary ischemia and/or infarction.  

 

6.2.5 The Connections 

The proposed relationship between autonomic neuropathy, arterial stiffness indices and 

subendocardial viability ratio, kidney damage and coronary artery are illustrated in Figure 1. 
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Autonomic neuropathy causes vascular dysfunction reducing the ability to regulate vascular tone. 

This factor causes an increase in arterial stiffness and perhaps increased or more rapid blood 

flow to the kidneys causing kidney damage. Kidney damage results in higher blood pressure 

levels further increasing arterial stiffness. Autonomic neuropathy (AN) is also associated with 

impaired ability to regulate heart rate. Inability to properly regulate HR is most likely why AN 

was associated with lower SEVR, because this inability may result in reduce the time in diastole.  

The notion that arterial stiffness, due to either functional or structural changes in arteries 

caused by autonomic neuropathy and smoking, poor glycemic control or hypertension, causes 

kidney damage which in turn increases arterial stiffness which contributes to even greater 

increases in blood pressure (particularly systolic), may be the explanation as why AP was related 

renal outcomes until the addition of SBP to multivariate models. Greater decreases in SEVR, on 

the other hand, are most likely due to prolonged stiffness that results in isolated systolic 

hypertension and may be why SEVR maintains its statistical significance. 
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Figure 7.  The proposed relationship between autonomic neuropathy, arterial stiffness, renal disease 

and coronary artery disease in Type 1 diabetes.  
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6.3 STRENGTHS 

This study is one of few that has examined pulse wave analysis in a T1D population, the only 

that has looked at its relationship with prevalent cardiovascular disease and one of few that as 

studied these measures in relation to renal function. Subendocardial viability ratio has been one 

measure obtained through pulse wave analysis that is extremely lacking in the research literature. 

This study also examined SEVR and illustrating its importance in cardiovascular and renal 

disease.  Perhaps the greatest strength is the ability to related risk factors measured 18 years 

earlier to current PWA measures. This allows for the evaluation of variables as potential risk 

factors for later increased arterial stiffness and reduced coronary perfusion.   

Finally, another strength of this study was that the majority of the measurements used in 

this research were obtained by one technician for whom intra-observer reproducibility analysis 

showed excellent reproducibility.  

6.4 LIMITATIONS 

This study had a limited sample size of 144 men and women, which did not allow for stratified 

analyses.  The sex-differences in risk factors associated with augmented central pressure or 

SEVR or their relationship with cardiovascular and renal disease could therefore not be 

examined properly. The pervasive use of medications, particularly those that may potentially 
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affect PWA measures, also makes it difficult to be certain what is occurring patho-

physiologically. Again, the limited sample size did not allow for assessment within those not 

using medications as the majority reported use. Additionally, the lack of pulse wave analysis at 

baseline did not allow for adjustment of baseline stiffness or perfusion measures in the analysis 

of potential risk factors. Finally, the cross-sectional nature of the complications analysis does not 

allow for the establishment of a temporal relationship between PWA measures and complications 

and therefore these relationships must be assessed in a prospective study to evaluate true 

causality. The cross-sectional design may also have prevented appropriate assessment of the 

relationship between PWA measures and coronary artery disease in T1D.  

Although the fact that this T1D cohort has been followed for so long is a strength, it is 

also a limitation in that it is essentially a survivor cohort, therefore it excludes those with the 

worse complications of the disease. Also, pulse wave analysis was not carried out on all EDC 

participants who returned for the 18 year visit. Cross-sectional analysis shows that although 

participants were specifically selected, those who ended up in the PWA represent a slightly 

healthier portion of the 18-year EDC population with lower albumin excretion rates and smaller 

waist-to-hip ratios.  

 In renal analysis, our glomerular filtration rate was estimated using the Modification of 

Diet in Renal Disease formula and not measured directly. However, Cystatin C was also 

examined showing similar results. Albumin excretion rates and serum creatinine levels (used to 

calculate eGFR) were not available for all participants in the PWA study population and Cystatin 

C was available for less than either AER or serum creatinine. Insulin sensitivity was estimated 

using the calculated estimated glucose disposal rate rather than measured using euglycemic 

clamp studies. 
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Finally, also due to the limited sample size, refinement of the relation between both age 

and duration on arterial stiffness was unable to be assessed. Stratification by older and younger 

age or shorter and longer duration may have helped to understand how each affected PWA 

measures and their relationship with complications.  

6.5 FUTURE RESEARCH 

With regard to repeatability and reproducibility, studies should be completed that examine what 

factors are associated with variability of PWA measures within an individual. These studies 

should be of substantial size and in a variety of populations of males and females, within 

different racial/ethnic groups and various disease states (diabetes, hypertension, renal disease, 

etc).  

Future prospective studies with baseline pulse wave analysis are necessary to confirm the 

findings in this research.  Specifically, the assessment of if PWA measures predict 

cardiovascular and renal outcomes is of great importance.  Studies with larger sample sizes are 

needed to compare and contrast the relationship between risk factors and complications with 

PWA measures in males and females.  Previous studies have found arterial stiffness differences 

between males and females [274, 276, 290-293], therefore there may be potential sex-differences 

in their relationship with disease outcomes. There may also be different risk factors for increase 

arterial stiffness or reduced coronary perfusion by sex which should also be addressed in future 

research.   
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6.6 CLINICAL UTILITY OF PULSE WAVE ANALYSIS 

Pulse wave analysis allows for quick, non-invasive, measurement and monitoring of a variety of 

features of the pulse wave and estimates central pressure changes. Radial tonometry is simple 

and well-tolerated in a clinical setting, more so than are other techniques for measuring arterial 

stiffness (i.e. PWV, ultrasonography). Recently, The Conduit Artery Functional Endpoint Study 

(CAFÉ) study showed that improvement in PWA measures obtained via radial applanation using 

the Sphygmocor, not brachially measured blood pressures, were associated with reduced risk for 

cardiovascular outcomes[2].  Systolic and diastolic blood pressures vary throughout the arterial 

tree, and brachially measured pressures are ineffective in detecting pressures and pressure 

changes in the aorta due to the reflected pulse wave as brachial pressures are less effected by 

reflected waves. Reductions in brachial systolic pressures do not necessarily signify reductions at 

the aorta, essentially where it counts with respect to cardiovascular outcomes.  Carotid-femoral 

pulse wave velocity is currently considered the gold standard due to its direct measurement of 

factors related to arterial stiffness and primarily due to the large amount of epidemiological data 

linking it to cardiovascular  outcomes. However, if a technique is not used clinically, due to 

inconvenient implementation, it cannot aid in risk stratification or early intervention.  There is a 

reason that measurement of brachial blood pressures have been the means by which hypertension 

has been diagnosed and treated for decades even though it has been known for some time that it 

is suboptimal; it is a matter of convenience.  Pulse wave analysis has the potential to be 

implemented clinically because it requires little set-up, is well tolerated by patients as it only 

requires application of a tonometer to the inside of their wrist, and measurement is an easily 

acquired skill require little expertise. Granted, additional studies should be completed, just as 

they have been for PWV, to more fully understand how PWA measures relate to and predict 
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clinical outcomes. Guidelines for the methodological issues (i.e. manner in which measurements 

should be obtained, what factors should be considered at the time of measurement (known 

factors include height and heart rate, but blood glucose, time since meals or medication may also 

influence measures) as well as clinical implications, should be published.  

6.7  CONCLUSION AND PUBLIC HEALTH SIGNIFICANCE 

In conclusion, autonomic neuropathy, history of smoking and poorer glycemic control, are 

predictive of increased central pressure augmentation an index of arterial stiffness. These factors 

are also independently associated with poorer coronary perfusion in T1D.  Higher central 

pressure augmentation and lower coronary perfusion are associated with lower-extremity arterial 

disease, renal function and renal damage in this population. SEVR is also associated with higher 

coronary artery calcification burden, and is more significantly associated with degree of renal 

damage than systolic blood pressure in those with no or mild albuminuria.  Confirmation of these 

findings in a larger sample with sex stratified analyses may give rise to better risk stratification 

for complications in those with T1D.  Also, the findings of this research suggest that early 

treatment of autonomic neuropathy, better glycemic control, improvement of lipid profiles and 

smoking cessation within those with T1D may result in slower vascular aging and perhaps 

subsequent cardiovascular outcomes in this already high risk group.   Confirmation of the 

findings regarding renal function and damage in T1D may give rise to better assessment of risk 

and the use of renal protective medications sooner. 
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Table 19. Cross-sectional characteristics (and sex comparisons) of The Pittsburgh EDC Pulse Wave 
Analysis study population and the remaining 18-year EDC follow-up population 
 Female 

N=73 
Malea 
N=71 

PWA Study 
Population 

N=144 

Remaining EDC 
Populationb 

N=165 
Female NA NA 50.7 52.1 
Age (years) 43.9±7.12 45.4±7.76 44.7±7.46 45.3±7.58 
Diabetes Duration (years) 35.7±7.12 37.1±6.40 36.4±6.78 37.3±7.41 
Height (cm) 160.6±8.00 174.6±6.66**** 168.1±8.78 167.5±10.1 
SBP (mmHg) 112.2±15.5 119.06±16.9** 115.6±16.5 118.2±17.0 
DBP (mmHg) 63.9±9.29 69.2±8.38**** 66.5±9.21 66.3±12.1 
HR (bpm) 75.7±12.7 76.1±12.1 75.9±12.3 73.1±11.1** 
HbA1c (%) 7.37±2.10 6.83±2.20 7.44±1.37 7.57±1.44 
eGDR (mg/kg/min) 8.53±1.88 7.65±1.76**** 7.69±2.31 7.06±2.34** 
Non-HDL (mg/dL) 112.8±33.0 115.4±32.5 114.1±32.7 119.5±39.2 
HDL (mg/dL) 64.9±16.1 53.2±15.1**** 59.2±16.6 58.3±16.2 
TG (mg/dL) 80.7±43.9 91.0±54.8 85.8±49.7 88.2±46.6 
WHR 0.82±0.09 0.92±0.07**** 0.87±0.09 0.90±0.09** 
BMI (kg/m2) 27.7±5.14 26.6±5.15 27.2±4.59 27.1±4.50 
Serum Creatinine 0.96±0.29 1.21±0.70 1.08±0.54 1.18±0.74 
eGFR (mL/min/1.73m2)  72.3±19.8 80.2±21.6** 76.1±20.1 74.4±26.1 
Albumin Excretion Rate 78.5±249.4 351.5±1115.9** 212.1±809.4 653.4±2593.4** 
WBC 6.40±2.1 6.50±2.0 6.44±2.01 6.46±1.93 
Ever Smoker (%) 37.1 42.9 40.0 31.7 
PW Medicationsd (%) 45.6 54.4 48.1 51.9 
Hypertension (%) 42.3 57.7 42.6 57.4 
E:I Ratio 1.15±0.12 1.13±0.13 1.14±0.12 1.13±0.12 
CAD (% with) 16.7 29.6* 23.1 30.9 
AIx (%) 24.7(1.38)c 21.3(1.36)c 23.0±11.0 NA 
AP (mmHg) 9.53(0.84)c 8.51(0.86)c 9.03±6.51 NA 
SEVR (%)  138.9(4.06)c 145.5(4.13)c 142.2±31.1 NA 
Abbreviations: Epidemiology of Diabetes Complications, EDC; systolic blood pressure, SBP; 
diastolic blood pressure, DBP; heart rate, HR; eGDR, estimated glucose disposal rate; high-
density lipoprotein, HDL, triglyceride, TG; waist-to-hip ratio, WHR; body mass index, BMI; 
kilocalories, KCAL; albumin excretion rate, AER; glomerular filtration rate, GFR; white blood 
cell count, WBC; low-density lipoprotein, LDL; blood pressure, BP; hypertension, HTN; 
augmentation index, AIx; augmentation pressure, AP; subendocardial viability ratio, SEVR. 
Data presented mean±SD or % 
a females and males compared within PWA population 
bThose included in PWA study compared to the rest of the Pittsburgh EDC study population.  
cheight adjusted mean(SE) 
dthose potentially affecting PWA measures: calcium channel blockers, ACE inhibitors, 
angiogensin receptor blockers, beta blockers, nitrates. 
* p<0.10; **p<0.05; ***p<0.01; ****p<0.001 
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Table 20. Cross-sectional correlations between pulse wave analysis measures (AIx, AP and SEVR) and other 
factors measured at the 18-year follow-up examination in The Pittsburgh EDC Pulse Wave Analysis study 

population 
 AIx LnAP SEVR 

Systolic Blood Pressure (mmHg) .265*** .560**** -.437**** 

Diastolic Blood Pressure (mmHg) .396**** .292**** -.040 

HbA1c (%) .161* .160* .011 

Body Mass Index (kg/m2) .033 .089 -.161* 

Waist-to-Hip Ratio .159* .156* -.168** 

HDL-cholesterol (mg/dL) -.060 -.072 .157* 

eGDR -.160* -.267*** .203** 

White Blood Cell Count .266*** .289*** -.083 

Albumin Excretion Rate .111 ..272*** -.248*** 

E:I Ratio -.193** -.242*** .250*** 

Ever Smoker (%) .117 .138 -.284*** 

PWD Use (%) -.168** -.128 .031 
* p<0.10; **p<0.05; ***p<0.01; ****p<0.001 
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APPENDIX A. REPEATABILITY STUDY 

Assessments of the repeatability of measures obtained by the SphymoCor pulse wave analysis 

device have previously been performed in various populations and are detailed in Appendix B.  

All of the studies listed found good to excellent intra- and/or inter-observer reproducibility for 

various measures obtained via applanation tonometry PWA measures.  

As part of the present research, a small repeatability study was completed. The 

parameters studied for repeatability were AIx, AP and SEVR however, data on other variables 

measured by PWA are included in the tables.  

Intra-observer  

 A small sample of participants from the Epidemiology of Diabetes Complications (EDC) 

study whom have Type 1 diabetes mellitus to determine the inter- and intra-observer 

reproducibility of variables obtained via applanation tonometry using the SphygmoCor  device 

(AtCor, Sydney, Australia). For the intra-observer part of the study, 1 observer recorded 2 

different measurements, 5 minutes apart on 17 different EDC participants. Table 21 shows 

descriptive data for SphgymoCor variables obtained during the intra-observer study.  The mean 

intra-observer difference was 0.42±9.51% for AIx, 0.42±2.53 mmHg for AP and 2.59±9.68% for 

SEVR. Figures 8 through 10 show the Bland-Altman plots for the individual data points. As 

illustrated in the graphs, all data points fell within 2 SD for AIx and SEVR, and all but 1 for AP. 

The coefficient of variation (CV) was for 20.3 for AIx, 26.0 for AP, and 7.8 for SEVR (Table 

21).  
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Table 21. Intra-observer repeatability study on participants with type 1 diabetes (n=17) in The 
Pittsburgh Epidemiology of Diabetes Complications Study 

Variable Grand Mean S.D. Mean Difference 

S.D. of  

 Difference 

Coeff. Of 

Variation 

Aortic SBP 106.0 10.4 0.42 1.6 1.5 

Aortic DBP 67.1 9.0 -0.06 1.3 1.9 

HR 85.0 16.8 0.77 3.5 4.15 

AIX 23.5 10.6 0.42 4.8 20.3 

AIXHR75* 27.6 7.9 0.87 4.2 15.2 

AP 9.6 5.4 0.41 2.5 26.0 

APHR75* 11.6 5.7 0.87 2.2 19.0 

ED 286.5 27.2 0.94 7.4 2.6 

EDPER 40.1 5.6 0.42 1.3 3.2 

SEVR 124.7 35.0 -2.6 9.7 7.8 

ESP 94.4 9.5 0.53 2.2 2.33 

*Calculated only for those with a HR 55-110 bpm (n=15) 
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Figure 8. Bland-Altman plot for Augmentation Index (AIx) to show intra-observer reproducibility.  

Mean±SD difference (n=17): 0.42 ± 4.76% 
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Figure 9. Bland-Altman plot for Augmentation Pressure (AP) to show intra-observer reproducibility. 

Mean±SD difference (n=17): 0.42 ± 2.53 mmHg 
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Figure 10. Bland-Altman plot for Subendocardial Viability Ratio (SEVR) to show intra-observer reproducibility.  

Mean±SD difference (n=17): 2.59 ± 9.68%   
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Interobserver 

 Table 22 contains the results of the inter-observer repeatability part of the study. Two 

different observers obtained SphygmoCor measurements on 7 different EDC participants within 

30-45 minutes of each other. Each observer measured radial blood pressure using a cuff prior to 

completing the applanation tonometry.  The mean±SD inter-observer differences were 

8.57±11.2% for AIx, 4.57±3.74 mmHg for AP, and 5.43±9.88% for SEVR.  Bland-Altman plots 

for inter-observer reproducibility (Figures 11-13) show that 2 of 7 data points lay outside 2 SD 

for AIx and AP, and 1 of 7 for SEVR. The coefficients of variation were 44.0, 42.9 and 6.74  for 

AIx, AP and SEVR, respectively, in the inter-observer analysis (Table 22). A limitation of the 

inter-observer study is that 3 measurements from one of the two observers were “Inconclusive” 

with an error indicating that the “Aortic T1 is out of range”.  Inconclusive measures indicate that 

some “noise” exists in the measurement and the measurement is not entirely clear.  To correct for 

this error, the measurement should be retaken as recommended by the company. However, the 

observer with inconclusive measurements was not the primary observer in this research study. 

The other observer for whom the intra-observer analysis was completed, was the primary PWA 

technician and completed over 90% of the measurements used in the present study. This observer 

showed excellent intra-observer reproducibility as previously discussed.  
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Table 22.  Inter-observer repeatability variability in The Pittsburgh EDC Pulse Wave Analysis Repeatability 
Study 

Variable Grand Mean S.D. Mean Difference 

S.D. of 

Difference 

Coeff. Of 

Variation 

SBP 127.43 15.9 -6.57 8.14 6.39 

DBP 83.43 8.20 3.14 6.20 7.43 

Aortic SBP 116.71 12.6 -5.14 5.93 5.08 

Aortic DBP 84.29 8.32 2.57 6.27 7.44 

HR 80.57 17.2 0.29 3.40 4.22 

AIX 25.43 13.1 -8.57 11.2 44.0 

AIXHR75* 27.92 10.3 -10.2 10.7 38.3 

AP 8.71 5.77 -4.57 3.74 42.9 

APHR75* 9.62 4.54 -5.33 3.60 37.4 

ED 285.57 33.8 -3.14 7.82 2.74 

EDPER 37.64 4.34 -0.43 1.27 3.37 

SEVR 146.71 30.0 5.43 9.88 6.74 

ESP 108.07 10.0 -3.86 4.95 4.58 
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Figure 11. Bland-Altman plot for Augmentation Index (AIx) to show inter-observer reproducibility.  

Mean±SD difference (n=6): 8.57 ± 11.2% 
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Figure 12. Bland-Altman plot for Augmentation Pressure (AP) to show inter-observer 

reproducibility.  Mean±SD difference (n=6): 4.57 ± 3.74 mmHg 
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Figure 13. Bland-Altman plot for Subendocardial Viability Ratio (SEVR) to show inter-observer 

reproducibility.  Mean±SD difference (n=6): 5.43 ± 9.88% 
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Biologic Variability Over Time 

In order to study variability over time, two different individuals were selected to have 

repeated measures on different days at varying times.  Since the SEVR variable has a defined 

cut-off value (150%), potential participants were screened and one with normal SEVR (>150%) 

and one with low SEVR (<150%) were selected. The person with the normal SEVR was a 26 

year old, healthy female without diabetes, no history of cardiovascular or renal disease who was 

not taking medications at the time and had a BMI of 18.5 kg/m2. The “abnormal” participant was 

a 50 year old woman, with a 26.4 kg/m2 BMI, without diabetes but with a history of 

hypertension, reporting use of an anti-hypertensive agent. The pulse wave analysis measures for 

each participant are presented in Table 23. As expected, mean values for AIx and AP were 

higher in the individual with abnormal screening values measurements compared to the one with 

normal values, while SEVR was lower. As illustrated in Figures 14 and 15, AIx and AP seemed 

to vary more over the 6 different time points in the individual with abnormal values. The highest 

AIx and AP values in this individual were at a BP of 130/68 mmHg and HR of 70 bpm 

(Measurement 2, Table 23b). By comparing measurement 2 to measurement 1 in this same 

individual, during which the HR was the same (70 bpm), DBP was very similar (68 mmHg) but 

SBP was much lower (110 mmHg), it can be seen that it was the increase in SBP that 

corresponded to the increased AP and AIx as well as a decreased SEVR (Figure 16).  SEVR 

seemed to vary more in the participant with normal screening values as shown in Figure 16. 

Interestingly, the lowest value in this individual was 145% at measurement 4, less than the 150% 

cut-off for normal. This SEVR measurement occurred when SBP/DBP were also at their lowest 

(92/52 mmHg) for this individual. It is worth mentioning that this measurement was taking 

within less than 10 minutes of this person eating a meal.  However, AIx and AP at this 
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measurement were similar to that in most other measures. AIx and AP in this individual were 

lowest when this person’s blood pressure and heart rate were at their highest, 106/84 mmHg and 

70 bpm, respectively. However, the BP was well below the cut-off for hypertension and the 

measurement corresponded with this individual’s lowest pulse pressure (PP=22 mmHg).  The 

highest PP in the abnormal individual (68 mmHg) corresponded with that persons highest AP (13 

mmHg) and AIx (27%) measures and her lowest SEVR (107%) and her lowest PP (40 mmHg, 

which is actually equal to the highest in the normal individual) corresponded to her lowest AP 

and AIx and highest SEVR.  

To summarize, there seems to be variability of PWA measures within an individual at 

different time points and variability may depend on the degree of arterial stiffness in an 

individual. Additional studies, with more than two individuals, should be performed to 

understand what factors affect these measures within an individual. 



 

Table 23. Pulse Wave Analysis measures over time in one normal and one abnormal (based on SEVR) participant. 
21a. Normal subject (SEVR >150% at screening) 

 

SBP DBP aSBP aDBP HR AIX AP 

AIX 

HR75 

AP 

HR75 ED ED% SEVR ESP 

Measure 1 106 84 98 84 70 8 1 6 1 313 37 161 95 

Measure 2 104 64 92 65 64 17 4 11 3 303 32 183 86 

Measure 3 98 58 86 59 67 13 3 9 2 302 34 169 80 

Measure 4 92 52 80 53 70 17 5 14 4 313 37 145 74 

Measure 5 104 64 94 65 60 18 5 11 3 336 33 175 88 

Measure 6 106 68 94 69 62 14 3 8 2 305 31 193 89 

Mean 101.7 65.0 90.7 65.8 65.5 14.5 3.50 9.83 2.50 312.0 34.0 171.0 85.3 

SD 5.57 10.86 6.53 10.52 4.18 3.73 1.52 2.79 1.05 12.71 2.53 16.88 7.37 

21b. Abnormal Subject (SEVR<150% at screening) 

Measure 1 110 70 97 70 84 14 4 19 5 267 38 141 89 

Measure 2 130 68 116 70 88 27 13 33 17 291 43 107 104 

Measure 3 128 70 114 71 79 23 10 25 11 299 39 123 102 

Measure 4 112 64 97 65 93 16 5 25 9 272 42 114 86 

Measure 5 130 76 118 77 85 24 10 29 13 296 42 115 108 

Measure 6 128 74 113 76 98 18 7 30 13 266 44 108 102 

Mean 123.0 70.3 109.2 71.5 87.8 20.3 8.17 26.8 11.3 281.8 41.3 118.0 98.5 

SD 9.36 4.27 9.58 4.42 6.79 5.09 3.43 4.92 4.08 15.14 2.34 12.65 8.85 

 

125 



 

AIx Over Time in Participant with Abnormal and 
Participant with Normal PWA Screening Values
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Figure 14. Augmentation Index (AIx) at 6 different time points, over a 2 week period in non-diabetic 

participants, one with abnormal PWA values at screening and one with normal values 
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Figure 15. Augmentation Pressure (AP) at 6 different time points, over a 2 week period in non-

diabetic participants, one with abnormal PWA values at screening and one with normal values. 
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Figure 16. Subendocardial Viability Ratio (SEVR) at 6 different time points, over a 2 week period in 

non-diabetic participants, one with abnormal PWA values at screening and one with normal values.  
 
 



 

APPENDIX B. REPEATABILITY STUDIES FOR THE SPHYGMOCOR DEVICE 

Table 24. Repeatability studies for the SphygmoCor Pulse Wave Analysis device 

Author Primary Aim Study Population Sample Size 

Indices 

evaluated Results 

Frimodt-Moller, M et al  

Nephrol Dial Transplant 

2007 Nov 7 epub 

Evaluate intra- and 

inter-observer and 

day-to-day 

reproducibility of 

PWA and PWV  

Pre-dialysis patients with 

CKD stages 3-5 

Mean GFR = 

25.3ml/min/1.73m(2) 

19       AIx 

SEVR 

aPP 

Mean inter-observer 

differences: 

AIx: 0.9±15.8% 

SEVR: -0.9±15.2% 

aPP:1.4±13.3mmHg 

Mean day-to-day 

differences: 

AIx: 2.6±11.2%,  

SEVR: -0.4±24.7% 

aPP:0.3±20.9 mmHg 

Mean Intra-observer 

differences: 

AIx: 1.9±10.6%,  

SEVR: -1.1±17.4% 

aPP:0.3±4.0 mmHg 
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Table 24 Continued 

Author Primary Aim Study Population 

Sample 

Size 

Indices 

evaluated Results 

Crilly M et al 

Vasc Med 

2007;12(3):189-197 

Assess within- and 

between-observer 

repeatability of 

ED%, AIx@75 and 

SEVR% 

Ambulant patients in 

sinus rhythm 

20  

(16 male) 

AIx@75 

ED% 

SEVR% 

Inter-observer difference (mean of 2 

readings):  

ED% - 0.3±2.0 

AIx@75 1.0±3.9 

SEVR%: 1.7±14.2 

Inter-observer based on 1 

measurement:  

ED% - 0.3±3.3 

AIx@75 1.7±6.9  

SEVR%: 0.6±22.6 

Intra-observer difference: 

Observer 1 

ED% 0.0±5.4 

AIx@75 1.5±7.0 

SEVR%: 1.7±39.0 

Observer 2 

ED%  0.1±3.8 

AIx@75 0.1±8.0 

SEVR%: 0.6±23.3 
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Table 24 Continued 

Author Primary Aim Study Population 

Sample 

Size 

Indices 

evaluated Results 

Papaioannou TG et al 

J Clin Monit Comput 

2004;18(2):137-44 

To assess 

reproducibility  of 

aortic AIx in patients 

with low blood pressure 

Patients with 

cardiogenic shock 

due to acute MI who 

underwent 

mechanical assistance 

with intraaortic 

balloon pump 

19 AIx AIx range:30-184% 

Intra-observer difference: 

0.10±5.82% 

Savage MT et al 

Clin Sci (Lond). 

2002;103:59-65 

To assess the 

reproducibility of PWA 

in patients with chronic 

renal failure 

Patients with chronic 

renal failure (71 pre-

dialysis, 67 dialysis 

and 27 transplant), 

and 27 healthy 

controls 

188 aMBP 

AIx 

SEVR 

Inter-observer difference 

AIx:0±3% 

MBP: 1±4 mmHg 

SEVR: 1±29% 

Intra-observer difference 

AIx:0±4% 

MBP: 0±3 mmHg 

SEVR: 0±18% 

Wilkinson IB et al 

J Hypertens 

1998;16(12 Pt2):2079-84 

To determine the 

reproducibility of pulse 

wave velocity and AIx 

measured using PWA 

Subjects with and 

without a range of 

CV risk factors 

24 PWV 

33 AIx 

PWV 

AIx 

AIx:  Range = -15.0-+45.0% 
 Mean±SD = 19.6±12.0% 

Intra-observer difference:  

AIx: 0.49±5.37% 

Abbreviations: Pulse-wave analysis (PWA), Pulse-Wave Velocity (PWV), Augmentation Index (AIx), Mean Blood Pressure (MBP), 
Sub-endocardial Viability Ratio (SEVR), Ejection Duration % (ED%), Augmentation Index at Heart Rate of 75 bpm AIx@HR75, 
aortic Pulse Pressure 
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