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Deciphering the role of tlx in dorsal neural progenitors and its contribution to brain 

structure and behavior 

Emily A. Drill, Ph.D. 

University of Pittsburgh, 2009

 

Tlx (Nr2E1) is an orphan nuclear receptor transcription factor expressed in neural progenitor 

cells (PCs) in the forebrain throughout development and in regions of adult neurogenesis.  Tlx 

regulates proliferation in both embryonic and adult PCs.  Loss of tlx leads to abnormalities in 

limbic structures resulting in alterations in emotional and cognitive behaviors.  However, the 

precise role of tlx in the developing forebrain and how tlx contributes to the normal development 

of adult anatomy and behavior are not fully understood.  Tlx is expressed in PCs throughout the 

dorsal and ventral telencephalon and the diencephalon that give rise to structures including the 

cerebral cortex, hippocampus, amygdala, septum, striatum, and hypothalamus.  Detailed 

examination of tlx expression revealed that within the dorsal PC population tlx is expressed 

specifically in radial glial progenitors but is absent from intermediate progenitor cells (IPCs).  

However, in the absence of tlx IPCs are reduced throughout development, suggesting that tlx 

promotes the production of IPCs.  To examine the role of tlx specifically in dorsal PCs we 

generated mice with a conditional mutation of tlx in cortical, Emx1-expressing PCs (tlxcKO).  In 

these animals functional recombination of the floxed tlx allele occurs prior to embryonic day 

12.5.  TlxcKO animals show similar changes in PCs as nulls, indicating a requirement for tlx 

within dorsal PCs.  The cerebral cortex of tlxcKO animals is reduced in surface area and thickness 

from birth, persisting into adulthood.  As in tlx null mutants, superficial layers are specifically 

affected and caudal functional cortical areas, including visual cortex, are disproportionately 
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reduced.  Other dorsally-derived structures, including the hippocampus, specific nuclei of the 

amygdala, and the septum are reduced, whereas ventrally-derived structures are relatively 

unaffected.  These animals exhibit a subset of the behavioral abnormalities observed in nulls, 

with the primary phenotype being a reduction in anxiety.  Together, these findings suggest an 

important role for tlx in the regulation of dorsal PCs.  I propose that tlx promotes divisions that 

produce IPCs, and that disruption of this population leads to specific alterations in adult brain 

structure and behavior.  This model allows us to begin to make connections between early 

development and behavior.   
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1.0  INTRODUCTION 

The brain begins as a single layer of proliferating cells that divide and differentiate in a precisely 

timed and spatially regulated manner to produce all of the neurons and glial cells that make up 

this complex structure.  This process requires precise control over the maturation of progenitor 

cells (PCs), regulating their cell cycle, the types of divisions that they make, the progeny 

produced, and finally the appropriate migration, maturation, and connectivity of differentiated 

cells.  This control is mediated during development by a complex network of intrinsic and 

extrinsic factors (reviewed by (Gupta et al., 2002; Schuurmans and Guillemot, 2002; Guillemot 

et al., 2006; Miller and Gauthier, 2007)).  Severe perturbations to these developmental processes 

can lead to gross cortical malformations such as microcephaly and lissencephaly (Lian and 

Sheen, 2006).  However, more subtle developmental changes are thought to underlie 

neuropsychiatric disorders such as autism, schizophrenia, bipolar disorder, and anxiety disorders 

(Lewis and Levitt, 2002; Rush, 2003; Levitt et al., 2004; Courchesne et al., 2007; Serene et al., 

2007).  Identifying the mechanisms that regulate PCs during development is critical in 

understanding both the normal development of brain structure and behavior, and the underlying 

pathology of behavioral abnormalities. 

This study investigates the role of tlx in the development of the mouse forebrain.  Tlx is 

an orphan nuclear receptor expressed in regions of neurogenesis in the developing and adult 

forebrain (Monaghan et al., 1995; Stenman et al., 2003a; Shi et al., 2004; Liu et al., 2008).  The 
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human homologue of tlx, NR2E1, has been linked to developmental disorders including bipolar 

disorder, schizophrenia, and microcephaly (Jackson et al., 1998; Kumar et al., 2007; Kumar et 

al., 2008).   Mice lacking functional tlx expression exhibit abnormalities in limbic structures, 

resulting in alterations in emotional and cognitive behaviors (Monaghan et al., 1997; Yu et al., 

2000; Roy et al., 2002; Young et al., 2002; Land and Monaghan, 2003; Stenman et al., 2003a; 

Stenman et al., 2003b; Miyawaki et al., 2004; Shi et al., 2004; Zhang et al., 2006; Belz et al., 

2007; Zhang et al., 2008).  These abnormalities are a consequence of alterations in the properties 

of PCs during development and in the adult brain (Roy et al., 2002; Stenman et al., 2003b; Roy 

et al., 2004; Shi et al., 2004; Zhang et al., 2006; Li et al., 2008; Liu et al., 2008; Zhang et al., 

2008).  This study dissects the complex role of tlx in the developing brain, identifying a role for 

tlx in a subset of forebrain progenitors thereby regulating the development of specific brain 

structures and behaviors. 

1.1 FOREBRAIN DEVELOPMENT 

1.1.1 Patterning of the telencephalon during development 

Development of the nervous system begins with the formation of the neural plate, a 

specialization of the ectoderm.  Through a process termed neurulation the neural plate folds 

upwards and fuses to form the neural tube (reviewed by (Colas and Schoenwolf, 2001)).  The 

neural tube is divided along its anterior-posterior axis into four domains: the forebrain, the 

midbrain, the hindbrain, and the spinal cord (reviewed by (Foley and Stern, 2001)).  The 

anterior-most region, the forebrain, is further divided into the telencephalon, which gives rise to 
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structures including the cerebral cortex, hippocampus, amygdala, septum, and basal ganglia or 

striatum, and the diencephalon, which gives rise to structures including the thalamus and 

hypothalamus.  Together these structures make up the limbic system, a set of structures 

important for the regulation of emotional behavior, learning, and memory (Kandel et al., 1995). 

The telencephalon is classically divided into the dorsal pallium and ventral subpallium.  

More recently these domains have been further subdivided on the basis of specific molecular 

profiles, identifying distinct progenitor populations that produce cells destined for specific 

structures (Figure 1).  The dorsal pallium can be further subdivided into: the medial pallium, 

which gives rise to the hippocampus; the dorsal pallium, which will become the neocortex; the 

lateral pallium, which generates olfactory cortex; and the ventral pallium, which contributes cells 

to parts of the amygdala (Puelles et al., 2000; Yun et al., 2001).  Similarly the ventral 

telencephalon is divided into the lateral and medial ganglionic eminences (LGE and MGE), 

which give rise to the striatum as well as interneurons that migrate into both the striatum and 

dorsal structures (de Carlos et al., 1996; Anderson et al., 1997; Puelles et al., 2000; Yun et al., 

2001).  These regions are generated through the expression of secreted signaling molecules that 

regulate the expression of homeodomain and basic helix-loop-helix (bHLH) transcription factors 

(reviewed by (Wilson and Rubenstein, 2000; Schuurmans and Guillemot, 2002).  Cells of the 

anterior neural plate are exposed to sonic hedgehog (Shh) during gastrulation, initially specifying 

these cells with a ventral telencephalic identity (Gunhaga et al., 2000).  However, as the neural 

plate folds dorsal cells are exposed to Wnt and Fgf8 signaling, suppressing ventral cell fates and 

inducing dorsal telencephalic character (Gunhaga et al., 2003).  Shh induces expression of 

ventral telencephalic markers, including nkx2.1, gsh2, and dlx2 (Gaiano et al., 1999; Corbin et 

al., 2000; Xu et al., 2005).  Specification of the dorsal telencephalon is influenced by bone 
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Figure 1.  Regionalization of the embryonic telencephalon 

This schematic coronal section through the E12.5 telencephalon shows dorsal and ventral subdomains and a partial 

list of their progeny.  Figure adapted from (Schuurmans and Guillemot, 2002). 

 

morphogenic proteins (BMPs) and Wnts, which have been shown to maintain pallial identity and 

suppress ventral telencephalic gene expression (Furuta et al., 1997; Backman et al., 2005).  Wnt 

signaling is also important in the development of the hippocampus (Galceran et al., 2000; Lee et 

al., 2000b).  Thus, a number of signaling molecules interact to establish different telencephalic 

regions; what are the downstream effectors that generate this regional identity within the cell? 

Many homeodomain proteins have been shown interact to impart dorsal and ventral 

telencephalic identity.  These include pax6, which maintains a dorsal telencephalic identity; in 

pax6 mutants subpallial genes extend into the ventral pallium (Stoykova 2000, Torreson 2000, 

Yun 2001).  In mice with a mutation in gsh2, which is expressed in both the LGE and MGE, 

dorsal cortical makers such as pax6 extend ectopically into the subpallium (Corbin et al., 2000; 

Toresson et al., 2000; Yun et al., 2001).  Similarly, nkx2.1 acts downstream of Shh to specify an 

MGE fate and inhibits an LGE fate (Sussel et al., 1999; Xu et al., 2005).  bHLH family 

transcription factors, including Neurogenin1 and 2 in the dorsal telencephalon and Mash1 in the 
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ventral telencephalon, are also important in determining dorsal versus ventral fate (Casarosa et 

al., 1999; Fode et al., 2000).  Together, these and other genes interact to regionalize the 

telencephalon into distinct dorsal and ventral regions.  The region where the dorsal and ventral 

telencephalon meet, referred to as the cortico-striatal boundary (or pallio-subpallial boundary), 

has been shown to contribute to specific nuclei of the developing amygdala (Puelles et al., 2000; 

Stoykova et al., 2000; Molnar and Butler, 2002; Carney et al., 2006).  Pax6, gsh2, and tlx have 

been shown to interact in establishing this region (Corbin et al., 2000; Stoykova et al., 2000; Yun 

et al., 2001; Stenman et al., 2003a), although the precise regulation of this domain and its 

functional importance are still not entirely clear. 

1.1.2 Neural cell types in the developing cortex 

Progenitor cells in the telencephalon produce three main types of cells, neurons and two types of 

glial cells, oligodendrocytes and astrocytes, each of which derive from specific domains.  Within 

the dorsal telencephalon progenitors mature over time, first generating excitatory glutamatergic 

neurons in a precisely timed manner and then transitioning into the production of astrocytes 

(Bayer and Altman, 1991; Levers et al., 2001).  Additional populations of cells, primarily 

GABAergic inhibitory interneurons and oligodendrocytes, originate in ventral regions of the 

telencephalon and migrate into the developing cortex.  This produces an adult cerebral cortex 

that is organized into six layers generated in an inside-out manner, each with distinct 

morphologies and connections (Angevine and Sidman, 1961).  Many factors have been identified 

that regulate the proliferation, differentiation, and migration of these different populations of 

cells. 
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Glutamatergic projection neurons are born in the proliferative zone of the dorsal 

telencephalon and migrate radially outwards towards the pial surface.  The first wave of post-

mitotic neurons that migrates away from the ventricular zone (VZ) at E11 forms a layer known 

as the preplate.  The second wave of migrating neurons splits the preplate to form the marginal 

zone (superficial) and subplate (deep) (Bayer and Altman, 1991; Price et al., 1997).  Subsequent 

waves of migrating neurons exit the VZ and migrate past earlier-born layers of neurons (with the 

exception of the marginal zone, which will form superficial layer I) to form more superficial 

cortical layers (Angevine and Sidman, 1961; Rakic, 1974; Hevner et al., 2003).  Normal 

migration depends on many different genes, including reelin, doublecortin (dcx), lissencephaly 1 

(lis1), and cdk5 (D'Arcangelo et al., 1995; Gilmore et al., 1998; Hirotsune et al., 1998; Pilz et al., 

1998; Cahana et al., 2001; Gupta et al., 2002; Bai et al., 2003).  Laminar fate is closely tied to 

cell cycle number, with superficial layers born during the last four cell cycles, approximately 

E14 to E17 (Takahashi et al., 1999).  The ability of PCs to contribute to different layers becomes 

increasingly restricted over time; heterochronic transplant studies have shown that early 

projection neuron precursors are multipotent and can contribute to any cortical layer, whereas 

later projection neurons become increasingly restricted to producing late-born superficial layer 

neurons (McConnell, 1988; McConnell and Kaznowski, 1991; Frantz and McConnell, 1996; 

Desai and McConnell, 2000).  The ability of projection neurons to switch their layer commitment 

depends upon the progenitor cell completing the late part of its cell cycle in the host environment 

(McConnell and Kaznowski, 1991).  Similarly, heterotopic transplant studies indicate that PCs 

also lose their ability to acquire different areal fates at later embryonic stages (Levitt et al., 

1997).   
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Cortical layers can be distinguished by the expression of a number of different molecular 

markers (Hevner et al., 2003; Guillemot et al., 2006).  Many of these genes play important roles 

at different stages during the specification and differentiation of these cortical layers; here I will 

highlight a few examples.  The bHLH transcription factors Ngn1 and Ngn2 are important to 

specify a cortical, glutamatergic fate in early-born deep-layer neurons but are not required to 

specify upper-layer cortical neurons (Schuurmans et al., 2004).  Genes Cux2 (Zimmer et al., 

2004) and Svet1 (Tarabykin et al., 2001) identify populations of precursors in the subventricular 

zone (SVZ) fated to give rise to upper cortical neurons.  Finally, Fezl, expressed weakly in early 

VZ progenitors and highly in layer V cells in the cortical plate, is important for the normal 

projections characteristic of layer V subcerebral projection neurons (Chen et al., 2005; 

Molyneaux et al., 2005).  Cells in the cortex are also specified with an areal fate, which will be 

further described in Chapter 3. 

GABAergic cortical interneurons derive from PCs in the ganglionic eminences of the 

ventral telencephalon (de Carlos et al., 1996; Anderson et al., 1997).  Within the ventral 

telencephalon the LGE gives rise to neurons of the olfactory bulb and striatum, the MGE to 

cortical interneurons as well as hippocampal and striatal interneurons, and the caudal ganglionic 

eminence (CGE) to cortical interneurons as well as neurons of the hippocampus, amygdala, and 

striatum.  Genetic, transplant, and cell tracing experiments suggest that the MGE is the source of 

most cortical interneurons (Lavdas et al., 1999; Sussel et al., 1999; Anderson et al., 2001; 

Wichterle et al., 2001).  Interneurons expressing the calcium-binding proteins parvalbumin and 

somatostatin derive primarily from the MGE and require expression of MGE genes Nkx2.1 and 

Lhx6 (Xu et al., 2004; Butt et al., 2005; Xu et al., 2005; Liodis et al., 2007).  In contrast, 

interneurons expressing calretinin originate mostly in the CGE (Xu et al., 2004; Butt et al., 
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2005).  Most cortical interneurons follow a restricted route of tangential migration to the cortex.  

Early during migration, as they leave the proliferative zone, cortical and striatal interneurons are 

sorted by semaphorin-neuropilin interations; only cortical interneurons express neuropilins, and 

therefore avoid migrating through the striatum due to a chemorepulsive signal composed of class 

3 semaphorins (Marin et al., 2001).  As interneurons approach the cortico-striatal boundary 

migration seems to be guided by a combination of diffusible attractive factors and a migration 

pathway defined by increasingly permissive substrates (Marin et al., 2003; Wichterle et al., 

2003).  Interneurons initially avoid the cortical plate, migrating through the marginal zone, 

intermediate zone, and subventricular zone (SVZ) (Lavdas et al., 1999; Wichterle et al., 2001; 

Polleux et al., 2002; Tanaka et al., 2003).  Interneurons within the IZ and SVZ migrate 

tangentially predominantly in a lateral to medial direction but also exhibit both radial and non-

radial migration towards the pial surface, eventually migrating into the cortical plate to reach 

their final location (Polleux et al., 2002; Tanaka et al., 2003).  Similar to cortical projection 

neurons, cortical interneurons tend to populate the cortex in an inside-out manner (Fairen et al., 

1986; Peduzzi, 1988; Valcanis and Tan, 2003; Hevner et al., 2004). 

Oligodendrocytes are the myelin-forming cells in the central nervous system.  

Oligodendrocytes in the cerebral cortex originate from several distinct regions during 

development.  The earliest oligodendrocytes arise from ventral precursors in the anterior 

entopeduncular area (or preoptic area), medial to the MGE (Spassky et al., 1998; Olivier et al., 

2001; Tekki-Kessaris et al., 2001; Kessaris et al., 2006; Nakahira et al., 2006).  Ventral 

oligodendrocyte precursor identity is specified at least in part by Shh signaling and by activity of 

the transcription factor Mash1 to induce expression of genes including platelet-derived growth 

factor receptor α (PDGFα) and Olig2 (Nery et al., 2001; Tekki-Kessaris et al., 2001).  A second 
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wave of oligodendrocytes originates from the LGE and CGE, and postnatally a third wave 

originates from progenitors in the dorsal cortex, specified by FGF2 signaling (Gorski et al., 

2002; Kessaris et al., 2006; Naruse et al., 2006; Yue et al., 2006).  Differentiation of 

oligodendrocyte precursors is regulated by an intrinsic timing mechanism by which protein 

levels of the cyclin dependent kinase inhibitors p27Kip1 and p57Kip2 increase over time, promoting 

differentiation when a critical level is reached (Temple and Raff, 1986; Durand et al., 1997; Gao 

et al., 1997; Dugas et al., 2007). 

Astrocytes have many roles in cortex, including regulation of synaptogenesis and 

synaptic plasticity, sequestering of neurotransmitters, and maintenance of the blood-brain barrier 

(He and Sun, 2007).  At the end of neurogenesis (approximately E18), dorsal PCs that initially 

give rise to excitatory neurons switch to the production of astrocytes (Voigt, 1989; Gorski et al., 

2002).  The onset of gliogenesis is regulated by the convergence of several signaling pathways, 

including IL-6 cytokine, BMP, Notch, and epidermal growth factor (EGF)/FGF signaling 

(reviewed by (Miller and Gauthier, 2007)).  The IL-6 cytokine family includes ciliary 

neurotrophic factor (CNTF), leukemia inhibitor factor (LIF), and cardiotrophin-1 (CT-1).  These 

cytokines act via the JAK-STAT signaling pathway to promote astrocyte formation in vivo 

(Barnabe-Heider et al., 2005) or in vitro (Bonni et al., 1997; Rajan and McKay, 1998).  

Furthermore, mice with mutations of components in the cytokine downstream signaling pathway, 

coreceptors LIFRβ and gp130, show profound deficits in the generation of astrocytes (Ware et 

al., 1995; Koblar et al., 1998; Nakashima et al., 1999b).  STATs bind directly to the promoters of 

astrocytic genes gfap and s100β, interacting with coactivators p300/CBP to promote transcription 

(Bonni et al., 1997; Nakashima et al., 1999a; Namihira et al., 2004).  BMP and Notch signaling 
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have also been shown to promote gliogenesis, at least in part through interaction with the 

activated JAK-STAT pathway (Nakashima et al., 1999a; Ge et al., 2002).   

Overall these findings have shown that glutamatergic neurons, GABAergic neurons, 

oligodendrocytes, and astrocytes have distinct spatial and temporal origins, with their generation 

regulated by complex signaling mechanisms involving both intrinsic and extrinsic factors.  

Although many of these factors involved in the specification and maturation of different 

populations of neurons and glia have been identified, the precise mechanisms are still not 

understood.  Furthermore many of these cells with distinct origins converge in the dorsal 

telencephalon to form the adult cortex; this raises the additional question of to what degree there 

is interaction during development to coordinate production of these diverse populations. 

1.1.3 Neural progenitor cells 

All of the neurons and glia in the central nervous system are derived from neural PCs, 

proliferating cells with a limited capacity for self-renewal.  Although the role for PCs in 

generating the neurons of the cerebral cortex has been recognized for some time (see 

(McConnell, 1995) for a review), more recent studies using novel molecular markers, cell 

lineage analysis, time-lapse imaging, and other techniques have changed our view of PCs and 

their role in neurogenesis and gliogenesis.  Neural progenitors are a heterogeneous population of 

cells, differing in their molecular profiles and their responsiveness to environmental signals 

(reviewed by Lillien 1998).  Prior to neurogenesis the neural tube is made up of a single layer of 

multipotent PCs known as neural epithelial cells (reviewed by (Gotz and Huttner, 2005)).  These 

cells are highly polarized along the apical-basal axis, with nuclei that move up and down this 

axis during the cell cycle, a process known as interkinetic nuclear migration; the bodies of cells 
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undergoing mitosis are found at the apical surface adjacent to the ventricle while cells in S-phase 

are at the basal side of the progenitor region.  At the onset of neurogenesis these progenitors 

transition into a more fate-restricted progenitor population known as radial glial cells (RGCs) 

(Williams and Price, 1995; Alvarez-Buylla et al., 2001).  RGCs maintain radial processes to the 

pial and ventricular surfaces although their cell bodies remain in a layer adjacent to the ventricle 

known as the ventricular zone (VZ) where they go through interkinetic nuclear migration similar 

to neural epithelial cells (reviewed by (Rakic, 2003)).  It was traditionally thought that during 

neurogenesis RGCs functioned as supporting cells and as a substrate for radially migrating 

neurons.  However, it has now been well established that RGCs are proliferating cells that not 

only have the capacity to produce neurons and glia but in fact directly or indirectly give rise to 

the majority of cortical neurons (Malatesta et al., 2000; Hartfuss et al., 2001; Noctor et al., 2001; 

Heins et al., 2002; Noctor et al., 2002; Malatesta et al., 2003; Anthony et al., 2004).  RGCs have 

a unique molecular profile that changes as they mature during neurogenesis (Hartfuss et al., 

2001).  From E12 all RGCs express the progenitor marker RC2, while a subset also express one 

or both of the astrocyte markers brain-lipid-binding protein (BLBP) and astrocyte-specific 

glutamate transporter (GLAST).  As neurogenesis progresses some RGCs lose their RC2 

expression but maintain BLBP and GLAST expression, and the proportion of RC2 positive cells 

that also express BLBP and GLAST increases.  By the onset of gliogenesis all PCs express 

GLAST and BLBP while only about two thirds also express RC2 (Hartfuss et al., 2001).  

Interestingly, these different subpopulations of PCs showed differences with respect to cell cycle 

length (Hartfuss et al., 2001).  At the end of neurogenesis RGCs begin to retract their processes, 

translocate outside the VZ, and transform into astrocytes (Voigt, 1989; Edwards et al., 1990).   
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 A secondary proliferative population appears in mice at the onset of neurogenesis 

(Haubensak et al., 2004; Attardo et al., 2008; Noctor et al., 2008).  These cells, termed 

intermediate progenitor cells (IPCs), are derived from PCs in the VZ and are characterized by a 

multipolar morphology and basal mitosis away from the ventricle (Haubensak et al., 2004; 

Miyata et al., 2004; Noctor et al., 2004; Attardo et al., 2008; Noctor et al., 2008).  From E13.5 

these cells are located basal to the VZ in a layer called the subventricular zone (SVZ) (Bayer and 

Altman, 1991; Bystron et al., 2008).  IPCs were initially thought to produce mostly upper layer 

neurons (Tarabykin et al., 2001) but more recent studies have suggested that IPCs make a 

significant contribution to all cortical layers (Haubensak et al., 2004; Englund et al., 2005; Sessa 

et al., 2008; Kowalczyk et al., 2009).  The control over production, proliferation, and 

neurogenesis of IPCs is not yet well understood; several factors that have been identified will be 

further discussed in Chapter 4.  Furthermore, although IPCs have been shown to be involved in 

neurogenesis in the cortex, cerebellum, and hippocampus (Hevner et al., 2006) the role of IPCs 

in the development of other structures in the brain and in the normal expression of behavior have 

only begun to be explored.  In this thesis we will address this broader role for IPCs. 

1.1.4 Progenitor cell fate decisions 

Throughout development, the cell cycle length, division type, and cell fate of progenitors is 

continuously changing (summarized in Figure 2).  Numerous intrinsic and extrinsic factors 

interact to regulate these properties, influencing the decisions of whether to proliferate or 

differentiate, and whether to produce neurons or glia.  Early during development divisions are 

predominantly proliferative, with neurogenic divisions appearing at the onset of neurogenesis 

(Haubensak et al., 2004).  The antiproliferative gene Tis21 has been shown to be transiently  
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Figure 2.  Progenitor cell divisions during development 

As progenitor cells mature during development their division type and progeny fate change.  Early during 

development progenitors primarily undergo symmetric proliferative divisions (P-P), expanding the progenitor 

population.  At the onset of neurogenesis asymmetric neurogenic (P-N) and asymmetric intermediate progenitor-

producing (P-IP) divisions appear.  Neurons produced by both progenitor types are thought to contribute to deep 

layers.  These IPs seed a secondary proliferative population in the subventricular zone (SVZ), apparent by mid-

neurogenesis.  IPs predominantly undergo symmetric neurogenic divisions (N-N) and produce most neurons of the 

superficial cortical plate.  At the end of neurogenesis apical progenitors transition into astrocytes.  A = astrocyte, CP 

= cortical plate, IP = intermediate progenitor, N = neuron,  P = progenitor, SVZ = subventricular zone, VZ = 

ventricular zone.  Adapted from a figure by S. Harrison. 

 

upregulated during G1 in PCs that are fated to undergo neurogenic divisions (Iacopetti et al., 

1999).  As neurogenesis progresses the proportion of cells leaving the cell cycle through 

neurogenic divisions increases, depleting the PC population beginning from mid-neurogenesis 

(Caviness et al., 1999; Noctor et al., 2004).  Neurogenesis is closely tied to the cell cycle number 

and cell cycle length; with each cell cycle the length of G1 and the proportion of cells exiting the 
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cell cycle increase (Takahashi et al., 1995b; Caviness et al., 1999; Takahashi et al., 1999).  More 

recently it has been shown that neurogenic progenitors have a longer cell cycle than those 

undergoing proliferative divisions and that IPCs, which are neurogenic (Haubensak et al., 2004; 

Miyata et al., 2004; Noctor et al., 2004), have a longer G2 phase (Calegari et al., 2005).  

Experiments altering the length of the cell cycle suggest that increasing the length of G1 or 

blocking the progression from G1 to S can promote neurogenesis, indicating that the length of 

the cell cycle has an instructive role in PC fate ((Calegari and Huttner, 2003); reviewed by 

(Ohnuma and Harris, 2003; Gotz and Huttner, 2005)). 

The apical-basal polarity of VZ PCs (neural epithelial cells and RGCs) is proposed to 

have an important role in generating symmetric versus asymmetric divisions (reviewed by (Gotz 

and Huttner, 2005)).  VZ progenitors are highly polarized along the apical/basal axis, with 

certain transmembrane proteins, such as prominin-1, expressed in a putative “stem cell 

microdomain” localized at the apical surface adjacent to the ventricle.  It has been shown that in 

symmetric proliferative divisions this small domain is bisected by the cleavage plane during 

mitosis and is divided between the two cells, whereas in asymmetric neurogenic divisions the 

cleavage plane bypasses this domain, which is then inherited in its entirety by the daughter 

progenitor (Kosodo et al., 2004).  Many intrinsic factors have been shown to influence the 

decision to make either proliferative asymmetric divisions or neurogenic symmetric divisions, 

including the transcription factors Emx2 (Heins et al., 2001), which promotes a proliferative fate, 

and Pax6 (Heins et al., 2002), which promotes neurogenic divisions. 

The Notch signaling pathway acts extrinsically to maintain the proliferative state of PCs.  

(reviewed by (Yoon and Gaiano, 2005)).  Ligands expressed on the surface of differentiating 

neurons, including Delta, bind to the Notch receptor of neighboring cells.  This releases the 
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intracellular domain of Notch, which translocates into the nucleus where it interacts with the 

CBF1 protein complex (also known as RBP-J or CSL) to activate transcription of pro-progenitor 

genes including basic helix-loop-helix (bHLH) family members such as Hes1 and Hes5 (Jarriault 

et al., 1995; Ohtsuka et al., 1999).  These suppress expression of proneural bHLH genes 

including Mash1 and the Neurogenins.  In the absence of Notch signaling these proneural genes 

are expressed, restricting progenitors to a neuronal fate and initiating neurogenesis (Nieto et al., 

2001; Bertrand et al., 2002).  It has recently been shown that although both RGCs and IPCs 

respond to Notch receptor activation these two populations differ in their responsiveness to 

CBF1 signaling (Mizutani et al., 2007).  In RGCs, Notch signals through CBF1 as described 

above, and loss of signaling promotes neurogenesis via a conversion to IPCs.  Notch signaling 

seems to have a role in maintaining the proliferative state of IPCs through a CBF1-independent 

mechanism (Mizutani et al., 2007). 

During the development of the murine cortex neurons are generated first, in a specific 

inside-out laminar sequence, followed by the production of astrocytes (Bayer and Altman, 1991).  

It has been demonstrated using clonal analysis of single PCs that this specific timing, both 

production of deep layer neurons followed by the superficial layer neurons and production of 

neurons prior to glia, is intrinsically regulated (Qian et al., 2000; Shen et al., 2006).  However 

extrinsic environmental signals also play a key role; for example, as previously discussed 

progenitors become increasingly restricted in their ability to produce neurons of different layers 

(McConnell, 1988; McConnell and Kaznowski, 1991; Frantz and McConnell, 1996; Desai and 

McConnell, 2000).  A more recent study using constitutively active Notch signaling to force PCs 

to remain as proliferative PCs for several cell cycles demonstrated that once this Notch activity 
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was removed these PCs produced neurons with a laminar fate that matched the developmental 

stage, bypassing the generation of earlier-born neurons (Mizutani and Saito, 2005). 

The generation of a neuronal fate is mediated within a cell by the expression of 

transcription factors.  A transcription factor cascade involving the sequential expression of Pax6, 

Tbr2, NeuroD1, and Tbr1 has been proposed to control glutamatergic neurogenesis in the 

embryonic dorsal telencephalon as well as the developing cerebellum and adult dentate gyrus 

(Hevner et al., 2006).  These transcription factors (see Figure 3) show sequential but overlapping 

expression in populations from PCs in the VZ to mature neurons in the cortical plate; Pax6 is 

expressed in the VZ, Tbr2 in the upper VZ and SVZ, NeuroD in the upper SVZ and lower 

intermediate zone, and Tbr1 in the upper intermediate zone and cortical plate (Gotz et al., 1998; 

Lee et al., 2000a; Hevner et al., 2001; Englund et al., 2005; Hevner et al., 2006).  Within the 

forebrain Ngn2 regulates the program of glutamatergic differentiation in deep-layer neurons, 

including the expression of Tbr1 and Tbr2, while Pax6 and Tlx have been proposed to have a 

similar role in the specification of upper-layer neurons ((Schuurmans et al., 2004); reviewed by 

(Guillemot et al., 2006)).  More recently Ngn2 has further been shown to have a role in the 

generation of IPCs, thus influencing upper layers as well (Britz et al., 2006; Hevner, 2006; 

Kowalczyk et al., 2009).  

At the end of neurogenesis dorsal PCs switch to making glia.  As previously described, 

this involves signaling from a variety of extrinsic signaling pathways, most notably IL-6 

cytokines such as CT-1 (Barnabe-Heider et al., 2005).  The extrinsic environment is critical for 

this neurogenic to gliogenic switch; for example, embryonic PCs taken at an age when they 

would normally produce neurons will instead produce astrocytes when cultured over a postnatal 

cortical slice (Morrow et al., 2001).  However, this ability to induce astrocyte differentiation is 
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Figure 3.  Transcription factor expression in neural progenitors 

As cortical progenitor cells mature from radial glia to intermediate progenitor cells (IPC) to postmitotic neurons they 

express an overlapping series of transcription factors (colored bars).  Postmitotic neurons also express neuron-

specific class III β-tubulin (Tuj1).  G1, S, G2, M indicate phases of the cell cycle.  CP = cortical plate; IZ = 

intermediate zone; SVZ = subventricular zone; VZ = ventricular zone.  Figure adapted from (Hevner, 2006). 

 

age dependent (Takizawa et al., 2001; Namihira et al., 2004), suggesting that there are intrinsic 

factors that prevent premature gliogenesis.  Indeed it has been shown that the promoters of genes 

expressed in glia, including gfap and s100β, as well as genes in the JAK-STAT pathway itself 

are methylated during early development, preventing the binding of the transcriptional activators 

(Takizawa et al., 2001; Namihira et al., 2004; Fan et al., 2005; He et al., 2005).  As development 

progresses this repression is relieved to allow transcription of these genes and, hence, an 

astrocyte fate.  A second mechanism involved in repressing gliogenesis is mediated by 

neurogenic bHLH proteins (Nieto et al., 2001; Sun et al., 2001; He et al., 2005).  Ngn1 in 

particular has been shown to bind to and sequester p300/CBP, preventing it from binding to 
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STAT3, thereby preventing transcription of gliogenic genes (Sun et al., 2001).  Thus, the 

downregulation of these neurogenic bHLH proteins is a critical step in the neurogenic to 

gliogenic transition. 

Together, these studies highlight the important role of progenitor cell maturation in the 

development of the cortex, a role that is critical throughout the developing brain.  Over time PCs 

mature, changing their intrinsic potential to generate different types of cells as well as changing 

how they respond to the external environment.  These factors combine to precisely regulate the 

progression from proliferation to neurogenesis to gliogenesis.  In the next section I will highlight 

several examples of how changes in the properties of PCs can lead to developmental problems. 

1.1.5 Consequences of disruption of progenitor cell development 

Disruption to the normal development of neural progenitor cells can lead to a wide variety of 

human developmental disorders.  Analysis of the genes involved and the underlying molecular 

mechanisms has led to a better understanding of the etiology of these disorders; several examples 

will be described in which PC proliferation, neurogenesis, or gliogenesis are disrupted.  

Mutations in abnormal spindle-like microcephaly-associated (ASPM) protein are a common 

cause of human microcephaly (Bond et al., 2002; Bond et al., 2003).  This neurodevelopmental 

disorder is characterized by reduced brain size at birth and mild to moderate mental retardation 

(Woods et al., 2005).  Studies in mice have revealed that ASPM is important in maintaining the 

cleavage plane in dividing neuronal PCs to allow for symmetric proliferative divisions; 

mutations result in an increase in asymmetric neurogenic divisions (Fish et al., 2006).  This 

suggests that microcephaly may result from a premature transition from proliferative to 

neurogenic divisions, thus depleting the PC pool.  Specific behavioral abnormalities can also 
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arise from alterations in the development of specific populations of cells; mutation of the gene 

encoding Urokinase Plasminogen Activator Receptor disrupts the development of a subset of 

interneurons and results in increased anxiety and spontaneous seizures in adult mice (Powell et 

al., 2003).  Mutations that result in increased activity of the shp-2 (ptpn11) gene have been 

associated with Noonan Syndrome, which is associated with learning disabilities and mental 

retardation (Allanson, 2007).  Shp-2 encodes a protein tyrosine phosphatase that promotes 

neurogenesis and represses gliogenesis, in part through negative regulation of the JAK-STAT 

pathway (Lehmann et al., 2003; Gauthier et al., 2007).  Increased activation of shp-2 in a mouse 

model of Noonan syndrome showed enhanced neurogenesis and decreased astrogenesis, leading 

to the hypothesis that perturbation of the transition from neurogenesis to gliogenesis, which 

results in an imbalance of the ratio of these cell types in patients with Noonan Syndrome, may 

underlie cognitive problems (Gauthier et al., 2007).   

Animal models have also provided insight into more complex cognitive developmental 

disorders such as schizophrenia.  Prenatal treatment with the mitotic inhibitor 

methylazoxymethanol acetate (MAM), which transiently halts proliferation, leads to defects in 

limbic structures including the cerebral cortex, entorhinal cortex, and hippocampus, and results 

in cognitive abnormalities that mimic symptoms of schizophrenia (Talamini et al., 1999; 

Flagstad et al., 2004; Gourevitch et al., 2004; Flagstad et al., 2005; Featherstone et al., 2007).  

Another prominent developmental model that has been used to study schizophrenia, the neonatal 

ventral hippocampal lesion (NVHL) model, takes a different approach in re-creating 

schizophrenia-like behaviors (reviewed by (Tseng et al., 2008a)).  These two models converge 

somewhat with recent evidence that in both cases a subset of cortical interneurons are affected 

(Tseng et al., 2008b; Lodge et al., 2009); there is substantial evidence that interneurons are 
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affected in human patients with schizophrenia (reviewed by (Lewis et al., 2005)).  Although the 

precise mechanisms underlying schizophrenia are still unclear, the ability of these different 

models to mimic aspects schizophrenia seems to confirm the idea that this disorder is a 

disruption of neural activity that can result from alterations in multiple different cell types or 

brain structures (Lewis and Levitt, 2002; Tseng et al., 2008a). 

1.2 THE ROLE OF TLX IN NEURAL DEVELOPMENT 

Tlx (Nr2E1) is a transcription factor expressed in the developing mouse forebrain (Monaghan et 

al., 1995).  Tlx is a homologue of the tailless gene originally identified in Drosophila, in which it 

is necessary for the development of the most anterior part of the brain, the protocerebrum, as 

well as the posterior gut (Strecker et al., 1988; Pignoni et al., 1990; Younossi-Hartenstein et al., 

1997).  In addition to mouse, homologues have also been identified in chickens (Yu et al., 1994), 

Xenopus (Hollemann et al., 1998), zebrafish (Kitambi and Hauptmann, 2007), and humans 

(Jackson et al., 1998).  Tlx belongs to the orphan nuclear receptor family (Yu et al., 1994; 

Monaghan et al., 1995), part of the nuclear receptor superfamily characterized by a central DNA-

binding domain containing two conserved zinc-fingers and a putative C-terminal ligand binding 

domain (Mangelsdorf et al., 1995).  Although in Drosophila tailless was originally thought to act 

as both a transcriptional activator and repressor, more recent studies suggest that it acts as a 

dedicated repressor, activating genes indirectly through repression of repressors (Moran and 

Jimenez, 2006).  Similarly, in vertebrates tlx has been demonstrated to act as a transcriptional 

repressor (Yu et al., 1994; Yu et al., 2000; Miyawaki et al., 2004; Shi et al., 2004; Zhang et al., 

2006; Sun et al., 2007; Yokoyama et al., 2008; Zhang et al., 2008).  
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In mice, tlx is first expressed in the developing forebrain adjacent to the neuroepithelium 

from E8 and in the dorsal midbrain from E8.75.  At E12.5 and E13.5 tlx is expressed in dorsal 

PCs in a high rostral/lateral to low caudal/medial gradient, as well as in PCs in the ventral 

telencephalon and in parts of the diencephalon adjacent to the third ventricle (Monaghan et al., 

1995; Stenman et al., 2003a).  Tlx expression persists in PC populations into adulthood 

(Monaghan et al., 1995; Shi et al., 2004; Liu et al., 2008).  However, the pattern of tlx expression 

and the specific cell types that express tlx have not previously been characterized in detail.  To 

better understand the role of tlx in forebrain development a knock-out mouse was generated by 

replacing exons 2 and 3, encoding the two zinc fingers, with the lacZ gene (Monaghan et al., 

1997).  Tlx-deficient mice survive to adulthood, but exhibit distinct behavioral abnormalities 

including severe aggression, abnormal maternal instincts, impaired spatial learning, impaired 

memory for fear, and late-onset epilepsy (Monaghan et al., 1997; Roy et al., 2002; Young et al., 

2002; Belz et al., 2007; Zhang et al., 2008).  Tlx null animals show reductions in forebrain-

derived structures including the cerebral cortex, the hippocampus, the entorhinal cortex, the 

amygdala, the striatum, the olfactory bulbs, and the eyes (Monaghan et al., 1997; Yu et al., 2000; 

Roy et al., 2002; Land and Monaghan, 2003; Stenman et al., 2003a; Stenman et al., 2003b; 

Miyawaki et al., 2004; Roy et al., 2004; Shi et al., 2004; Land and Monaghan, 2005; Uemura et 

al., 2006; Zhang et al., 2006).  Further analysis shows that the adult cortex is reduced in 

thickness by approximately 20% due to a specific reduction in superficial cortical layers (Roy et 

al., 2002; Land and Monaghan, 2003). 

The reduced cortex observed in tlx null animals arises from alterations in PC proliferation 

and neurogenesis during development (Roy et al., 2002; Roy et al., 2004).  Early during 

neurogenesis (E9.5 to E14.5), tlx mutants show precocious neurogenesis coupled to a decrease in 
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the length of the cell cycle.  At mid-neurogenesis the cell cycle begins to slow down (as it does 

in wild-type animals) but by E16.5 the cell cycle has lengthened to become longer than that of 

PCs in wild-type littermates.  As a result of the premature neurogenesis and early decrease in cell 

cycle length, the cortical plate of tlx null animals initially shows an increase in cell number, but 

by E16 begins to show a decrease relative to wild-type.  Progenitors in the VZ show a significant 

depletion at E14 only in caudal regions, but the SVZ is reduced in number at all rostrocaudal 

levels.  Superficial cortical layers are specified prematurely, but only after the proper number of 

cells are committed to deep layers (Roy et al., 2004).  This phenotype matches that described by 

Caviness et al. (Caviness et al., 2003), in which the level of the cell cycle protein p27 was 

manipulated in order to increase the Q fraction during early neurogenesis (E12 to E14).  This 

indicates that a specific reduction in superficial layers could result from an early increase in the 

proportion of cells that differentiate.  However, Schuurmans et al. (Schuurmans et al., 2004) 

propose that tlx acts in conjunction with Pax6 to specify the differentiation of upper cortical 

layers.   

The role for tlx in proliferation and neurogenesis is still not clear.  Expressing tlx in tlx-

null adult neural stem cells rescues the ability of these cells to maintain a proliferative stem cell 

phenotype (Shi et al., 2004), which could indicate an instructive role for tlx in promoting 

proliferation.  Tlx has been shown to regulate the expression of several cell cycle genes, 

including p21, p27Kip1, and cyclinD1, and the tumor suppressor gene pten, suggesting that tlx 

might exert its effect at the G1 to S transition of the cell cycle (Miyawaki et al., 2004; Zhang et 

al., 2006; Sun et al., 2007; Li et al., 2008; Yokoyama et al., 2008; Zhang et al., 2008).  

Transcriptional repression by TLX is mediated at least in part by interactions through its ligand-

binding domain with corepressors such as atrophin1, histone deacetylases, and the histone 
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demethylase LSD1 (Zhang et al., 2006; Sun et al., 2007; Yokoyama et al., 2008).  In addition, tlx 

is known in vertebrates to repress Pax2 (Yu et al., 2000) and the glial genes GFAP, S100β, 

AQP4 (Shi et al., 2004).  The Drosophila homolog tailless is known to suppress expression of 

empty spiracles, the homolog of vertebrate Emx genes (Hartmann et al., 2001).  Finally, tlx has 

been shown to genetically interact with pax6 in formation of the pallio-subpallial boundary 

(Stenman et al., 2003a) and in the formation of upper cortical layers (Schuurmans et al., 2004). 

In Drosophila, numerous proteins and pathways that regulate tailless expression have 

been identified, including Tramtrack69, which represses tailless, and bicoid and Torso signaling, 

which activate tailless (Pignoni et al., 1992; Chen et al., 2002; Chen et al., 2009).  Less is known 

about the regulation of tlx in vertebrates, although some evidence has come from two recent 

studies.  Tlx has been shown to be suppressed by the microRNA miR-9 through the TLX 3’ 

untranslated region (Zhao et al., 2009).  TLX in turn seems to be able to repress one of the three 

loci that encode miR-9.  This suggests that miR-9 and tlx mediate neural stem cell proliferation 

and differentiation through a negative feedback loop that may allow a rapid transition from PC to 

differentiated cell (Zhao et al., 2009).  In addition, in retinal astrocytes Bmp7 and Shh signaling 

have been shown to act on TLX at the Pax2 promoter to relieve repression (Sehgal et al., 2009). 

NR2E1, the human homologue of tlx, resides within a 6q21-22 locus for bipolar disorder 

and schizophrenia (Jackson et al., 1998; Kohn and Lerer, 2005; Kumar et al., 2008).  Expression 

of NR2E1 is observed in fetal and adult forebrain (Jackson et al., 1998; Kumar et al., 2008), 

similar to the expression pattern observed in other vertebrates.  Association analysis indicates 

significant association of NR2E1 with bipolar disorder types I and II (Kumar et al., 2008).  This 

study further identified eight candidate mutations specific to families or patients with bipolar 

disorder, schizophrenia, psychopathy, or mental retardation with psychosis.  Interestingly none 
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of these mutations are thought to result in protein coding changes; instead they are proposed to 

regulate transcription, with four of the mutations located in putative neural transcription factor 

binding sites (Kumar et al., 2008).  Mutations at the NR2E1 locus have also been identified in 

patients with unexplained congenital microcephaly, and again these mutations are likely 

regulatory rather than protein-coding (Kumar et al., 2007).  As previously described, tlx null 

mice exhibit significant reductions in forebrain structures that could be analogous to human 

microcephaly (Monaghan et al., 1997; Roy et al., 2002; Land and Monaghan, 2003; Stenman et 

al., 2003b; Shi et al., 2004).  One patient also exhibited optic nerve hypoplasia (Kumar et al., 

2007), similar to deficits in the optic nerve observed in tlx null animals (Yu et al., 2000; Young 

et al., 2002).  The human and mouse homologues have been shown to be functionally equivalent, 

as expression of the human NR2E1 gene in tlx null mice can rescue defects in the brain 

development and behavior (Abrahams et al., 2005).  Furthermore, highly conserved regulatory 

elements in non-coding regions, including within the first intron, were identified by comparison 

of the human, mouse, and puffer fish sequences (Abrahams et al., 2002).  Together these data not 

only highlight the important role of NR2E1 in the development of the human brain but further 

indicate significant similarity with the role of tlx in the developing mouse brain.  Thus, better 

understanding of the role of tlx during development will yield important insight into the 

developmental mechanisms and pathology of human neural disorders. 

1.3 OUTLINE OF STUDY 

The goal of this study is to examine how changes in the development of specific PC populations 

affect the structure of the adult brain and associated behavioral tendencies.  I will focus 
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specifically on the transcription factor tlx in the development of the forebrain, with particular 

emphasis on the dorsal telencephalon.  I will examine the role of tlx in specific cellular 

populations in order to begin to unravel to complex role of tlx in forebrain development.  First, 

Chapter 2 will provide a detailed examination of the expression of tlx during development, 

identifying the cellular subtypes that express tlx.  Chapter 3 will examine the role of tlx in the 

development of functional cortical areas.  In Chapters 4 and 5 I will utilize a conditional knock 

out of tlx in order to determine the role of tlx specifically in the regulation of PCs in the dorsal 

telencephalon (Chapter 4) and the consequences of this region-specific disruption on the 

development of adult brain structures and behavior (Chapter 5).  Finally, in the last chapter (6), I 

will discuss a model of tlx function in the dorsal telencephalon as it relates to the development of 

structure and behavior, and I will describe possible future directions. 
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2.0  TLX EXPRESSION 

2.1 INTRODUCTION 

Tlx is an orphan nuclear receptor transcription factor expressed in the developing mouse 

forebrain.  Tlx mRNA expression is first detected in the developing forebrain adjacent to the 

neuroepithelium at embryonic day 8 (E8) and in the dorsal midbrain at E8.75 (Monaghan et al., 

1995).  At E12.5 and E13.5 tlx is expressed in dorsal progenitor cells (PCs) in a high 

rostral/lateral to low caudal/medial gradient, as well as in PCs of the ventral telencephalon and in 

parts of the diencephalon adjacent to the third ventricle (Monaghan et al., 1995; Stenman et al., 

2003a).  Tlx expression persists in PC populations through development and into adulthood 

(Monaghan et al., 1995; Shi et al., 2004; Liu et al., 2008).  Due to the lack of a commercially 

available antibody against TLX that could be used for immunohistochemistry these studies have 

either examined the expression of tlx mRNA or have utilized the lacZ gene that is fused in frame 

to exon two in the tlx-null locus (Monaghan et al., 1997) to examine β-galactosidase expression 

under the control of the tlx promoter.  Recently, Shi and colleagues (Li et al., 2008) have 

developed an antibody against TLX and have shown that at E14.5 TLX is co-expressed with PC 

markers nestin and RC2 but not neuronal markers doublecortin or NeuN.  TLX-positive cells 

also express the S-phase marker BrdU and the proliferative marker Ki67, confirming the 

expression of TLX in proliferating cells (Li et al., 2008).  In this study I have made a detailed 
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characterization of the spatial and temporal pattern of tlx mRNA and protein expression in the 

developing mouse forebrain in order to better understand the role of tlx in cortical development. 

2.2 METHODS 

2.2.1 Animals 

Wild type embryos and postnatal animals were obtained from timed-pregnant CD1 mice from 

Charles River Laboratories (Wilmington, MA).  Heterozygous animals were obtained from 

crossings of tlx heterozygotes (SVE129 x C57BL/6J).  Genotyping was performed by PCR as 

previously described (Monaghan et al., 1997).  Briefly, a tail piece was digested in non-ionic 

detergent and proteinase K (Sigma, 0.3ng/μl) overnight at 56°C.  Following heat inactivation at 

96°C 50ng of DNA was amplified.  Tlx PCR was performed using the following primers and 

conditions: Tlx1: 5’-GCC TGC TCT TTA CTG AAG GCT-3’, Tlx2: 5’-ATT GGG TCC AGA 

CAT GGC CCT-3’, Tlx3: 5’-GTT CAT GTT GAC TTC CAA ACA-3’; 94°C for 10 minutes, 35 

cycles of 94°C for 30 seconds, 65°C for 1 minute, and 72°C for 1 minute, followed by 72°C for 

10 minutes.  PCR products were 210bp for the wild type allele and 325bp for the null allele.  

Embryos were collected via caesarean section at embryonic ages from E10.5 to E18.5.  The 

morning of the vaginal plug was designated E0.5; the day of birth was designated P0.  The care 

and handling of these animals was in accordance with the University of Pittsburgh Institutional 

Animal Care and Use committee and NIH guidelines.   

 Embryonic brains were processed by immersion fixation in cold 4% paraformaldehyde 

(PFA) pH7.4 (Sigma, St. Louis, MO); E10.5 for 2 hours, E12.5 to E13.5 for 4-5 hours, E16.5 to 
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E18.5 overnight.  Postnatal brains were fixed by transcardial perfusion with cold PBS followed 

by 4% PFA pH7.4, dissected from the skull, and immersion fixed overnight.  Brains were 

processed through a graded sucrose series (10-20-30%) at 4°C.  Adult brains were sectioned 

coronally on a freezing-sliding microtome at 50μm and collected in PBS.  All other brains were 

embedded in a 1:1 mixture of 30% sucrose and Tissue-Tek O.C.T. compound (EMS, Hatfield, 

PA) and sectioned on a cryostat sagitally or coronally at 14μm (E10.5 brains and E13.5 CD-1 

brains) or 20μm. 

2.2.2 In situ hybridization 

DIG-labeled riboprobe against tlx (Monaghan et al., 1995) was prepared using a DIG RNA 

labeling kit according to the manufacturer’s directions (Roche Diagnostics, Indianapolis, IN).  In 

situ hybridization on frozen sections was performed as previously described (Schaeren-Wiemers 

and Gerfin-Moser, 1993) with the following modifications.  The sections were treated with 

proteinase K (0.5 μg/ml in 50mM Tris pH 7.5 and 5mM EDTA) at 37°C for 3 min (E12.5 and 

E13.5), 4.5 min (E16.5), or 7.5 min (P0-P8) followed by post-fixation in 4% PFA prior to pre-

hybridization.  The hybridization buffer was modified to contain 50% formamide, 5X SSC, 5X 

Denhardt's solution, 250 μg/ml tRNA, and 250 μg/ml herring sperm DNA.  Hybridization and 

post-hybridization washes were performed at 61°C.  In addition, following hybridization the 

sections were treated with RNase A (20 μg/ml, in 0.5M NaCl, 10mM Tris pH7.5, 5mM EDTA) 

at 37°C for 30mins.  After color detection slides were rapidly dehydrated through an ascending 

series of ethanols to xylene and coverslipped with DPX (Fluka Chemical, Ronkonkoma, NY). 
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2.2.3 Immunohistochemistry 

Cryosections were washed in PBS and 0.1% Triton-X-100 (Fisher Scientific, Pittsburgh, PA) in 

PBS, blocked in 10% heat-inactivated normal goat serum (HINGS) (Jackson ImmunoResearch, 

West Grove, PA) in PBS, and incubated with primary antibody overnight at 4°C.  Antibodies 

used were chicken anti-β-galactosidase (LacZ; 1:500; Abcam, Cambridge, MA); mouse anti-

GFAP (1:400; Sigma); guinea pig anti-GLAST (1:4000; Chemicon, Temecula, CA); mouse anti-

NeuN (1:500; Chemicon); rabbit anti-Pax6 (1:500; Covance, Berkeley, CA); rabbit anti-Sox10 

(1:500; CeMines, Golden, CO); rabbit anti-Tbr2 (1:1000; Chemicon); rabbit anti-Tlx (1:1000; a 

gift from Y. Shi, (Li et al., 2008)); mouse anti-Tuj1 (1:1000; Sigma).  For fluorescent detection 

of the signal tissue was washed with PBS, blocked with 10% HINGS or 10% heat inactivated 

normal donkey serum (HINDS) in PBS, and incubated with the appropriate Cy3 (1:400; Jackson 

ImmunoResearch) and/or Alexa Fluor 488 (1:1000; Invitrogen, Carlsbad, CA) secondary 

antibody.  Sections were counterstained with 1,6-diamidino-2-phenylindole dihydrochloride 

(DAPI; Sigma) before mounting in fluoromount G (Southern Biotechnology Research, 

Birmingham, AL). 

Adult sections were washed in 50% methanol/50% PBS/1% hydrogen peroxide followed 

by three washes with 0.1% Tween 20 (Fisher Scientific) in PBS.  Sections were blocked 

overnight at 4°C with 10% HINGS in PBS.  Sections were incubated with rabbit anti-Tlx 

(1:1000; a gift from Y. Shi (Li et al., 2008)) overnight at 4°C.  The sections were subsequently 

washed in 0.1% Tween 20 in PBS, incubated with anti-rabbit biotinylated secondary antibody 

(1:500; Vector Laboratories, Burlingame, CA) and processed using the Vectastain(r) Elite ABC 

kit (Vector Laboratories) according to the manufacturer’s instructions.  After rinsing in PBS 

sections were incubated in 0.7mg/ml 3,3’-diaminobenzidine tetrahydrochloride (DAB; Sigma) 
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with 0.01% hydrogen peroxide.  DAB stained sections were washed in PBS, mounted on slides, 

counterstained with 0.5% cresyl violet (Nissl; Sigma), dehydrated through alcohols, washed in 

xylene, and coverslipped with DPX.  β-galactosidase staining was performed on frozen sections 

as previously described (Parrish et al., 2004).  Sections were counterstained with cresyl violet or 

nuclear fast red (Fluka Chemical), dehydrated, and coverslipped with DPX. 

 Sections were visualized on a Nikon 400 (Melville, NY) fluorescent microscope, 

photographed with a Photometrics (North Reading, MA) Cool Snap digital camera and IP Lab 

software (Biovision Technologies, Exton, PA).  Where indicated sections were imaged using a 

Nikon DF0200 confocal microscope.  Composite images were prepared using Photoshop 6.0 

(Adobe Systems, San Jose, CA).  Contrast, color, and brightness were adjusted in Photoshop. 

2.3 RESULTS 

2.3.1 Tlx expression in the developing forebrain 

Tlx mRNA is expressed in the developing forebrain from E8 (Monaghan et al., 1995).  Previous 

studies have shown that the tlx gene is expressed in the PCs of the dorsal telencephalon in 

decreasing rostral to caudal and lateral to medial gradients at midgestation (Monaghan et al., 

1995; Stenman et al., 2003a).  Interestingly, cellular deficits in the absence of tlx are more severe 

caudally (Roy et al., 2004); therefore, we wanted to determine whether this gradient of transcript 

persists through development.  Although tlx mRNA continues to be expressed in PCs at later 

embryonic and early postnatal ages (Monaghan et al., 1995), the expression pattern has not been 

characterized in detail.  We therefore examined tlx mRNA expression in the dorsal telencephalon 
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of mice from E13.5 - P8.  We initially used two different approaches to examine tlx expression in 

the developing brain.  First, we used in situ hybridization with riboprobes directed against the 

entire coding sequence, as previously described (Monaghan et al., 1995) (Figure 4A-M, Figure 

5).  Second, we took advantage of the β-galactosidase gene that is fused in frame to exon two in 

the tlx-null locus (Monaghan et al., 1997).  This places β-galactosidase expression under the 

control of the tlx promoter, allowing us to detect tlx-dependent cells with β-galactosidase staining 

in heterozygous and mutant animals (Figure 4N, O).  β-galactosidase expression is similar to tlx 

expression obtained by in situ hybridization at embryonic ages and shows similar expression in 

PCs postnatally.   

As previously reported (Monaghan et al., 1995), at E13.5 tlx mRNA is expressed in 

dorsal PCs in decreasing rostral to caudal and lateral to medial gradients of transcript per cell 

(Figure 4A-D).  Interestingly, tlx is expressed only in a subpopulation of PCs, in some areas 

showing a pattern suggestive of radial clones (Figure 4M).  At E16.5 tlx appears to be evenly 

expressed in the progenitor domain with no apparent rostral-caudal gradient (Figure 4E-H).  At 

this age tlx is still expressed only in a subpopulation of cells in the VZ and scattered cells in the 

SVZ.  From E18.5 tlx is expressed in the progenitor domain with no apparent gradient (Figure 

4I-L, N, O).  At the postnatal ages examined tlx is expressed in most cortical PCs, no longer 

showing the distinct clonal pattern observed at earlier ages.  Tlx mRNA expression is also 

observed in the progenitor domain in the developing striatum (Figure 4A, E, I, asterisks).  The 

PC population, and therefore the total number of cells expressing tlx, decrease by birth.  

However, examination of individual cells under high power indicates that the amount of tlx 

mRNA transcript per cell does not appear to differ from E16.5 to P8.  Tlx mRNA expression is 

also observed throughout development in  
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Figure 4.  Tlx mRNA expression in the developing cortex 

In situ hybridization for tlx in coronal (A, E, I, M) and sagittal (B-D, F-H, J-L) sections at E13.5 (A-D, M), E16.5 

(E-H) and P0 (I-L).  At E13.5 tlx is expressed in a high ventral to low dorsal gradient (A) and a high rostral to low 

caudal gradient (B-D) in cortical progenitor cells (PCs).  Tlx is also expressed in the rostral migratory stream (B, 

arrow).  C and D are higher power images of areas outlined in B, showing the difference in tlx expression in rostral 

and caudal regions.  At E16.5 (E-H) there is no apparent gradient in tlx expression in cortical PCs.  G and H are 

higher power images of areas outlined in F, showing the equivalent expression of tlx in rostral and caudal regions.  

Expression is maintained in cortical PCs at P0 (I-L).  K and L are higher power images of areas outlined in J, 

showing the equivalent expression of tlx in rostral and caudal regions.  M is a magnified view of the area boxed in 
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A, showing that tlx is expressed in a subset of PCs at E13.5.  Arrowheads indicate regions of high tlx expression; 

arrows indicate regions of low or absent tlx expression.  N and O show β-galactosidase staining in coronal sections 

of tlx null embryos at E18.5 (N) and P6 (O).  Expression of β-galactosidase from the tlx locus mimics tlx expression 

as shown by in situ hybridization.  Tlx is also expressed in the lateral cortical stream (I, N, O, arrows).  Asterisks in 

A, E, I indicate the developing striatum.  Scale bar (in O) = 280μm in A; 460μm in B; 150μm in C, D; 400μm in E; 

550μm in F; 60μm in G, H, K, L; 500μm in I; 620μm in J; 85μm in M; 470μm in N; 650μm in O.  D = dorsal; M = 

medial; R = rostral. 

 

both the rostral migratory stream (Figure 4B, arrow) and in cells migrating in the lateral cortical 

stream (Figure 4I, N, O arrows).  

We further examined the expression of tlx mRNA in ventral regions of the developing 

telencephalon.  At E13.5 tlx is highly expressed in the lateral ganglionic eminence (LGE) and 

septal neuroepithelium (S) and more weakly expressed in the medial ganglionic eminence 

(MGE) (Figure 4A, Figure 5A).  Expression persists in the proliferative domain of the 

developing septum (S) at E16.5 (Figure 5B) and at P0 (Figure 5C).  In addition, tlx-expressing 

cells were observed outside of the proliferative domain at P0 in the region of the lateral septum 

(Figure 5C, arrows).  We also observed tlx expression outside of the proliferative regions in the 

developing amygdala at E16.5 and at P0 (Figure 5D, E).  Cells expressing tlx mRNA were 

observed throughout the amygdala, with clusters of tlx-positive cells concentrated in the regions 

of the medial amygdalar nucleus (M), the cortical amygdalar area (CoA), and the basal complex 

(BC), the latter of which includes the lateral, basolateral, and accessory basal or basomedial 

nuclei.   

Although characterizing mRNA expression provides important information about the 

transcriptional regulation of tlx, this does not tell us whether TLX protein is present in these 

same populations, as mRNA might not be translated or protein might persist after 
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Figure 5.  Tlx mRNA expression in the developing septum and amygdala 

In situ hybridization for tlx in coronal sections shows staining in the developing septum (A-C) and amygdala (D, E) 

during development.  At E13.5 tlx mRNA is highly expressed in the septal neuroepithelium (S) and lateral 

ganglionic eminence (LGE) and more weakly expressed in the medial ganglionic eminence (MGE) (A).  Tlx 

expression persists in the septal proliferative zone (S) at E16.5 (B) and P0 (C).  At P0 tlx mRNA expression is also 

observed in cells outside of the proliferative zone (arrows) in the region of the lateral septum (LS) (C).  Tlx mRNA 

expression is observed in cells in the region of the developing amygdala at E16.5 (D) and P0 (E) in the regions of 

the basal complex (BC), the medial amygdalar nucleus (M), and the cortical amygdalar area (CoA).  MS = medial 

septum.  Scale bar (in E) = 200μm in A-E. 
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downregulation of transcription.  Furthermore, protein expression, unlike mRNA expression, can 

show the subcellular localization of TLX.  Therefore, information about TLX protein expression 

is critical for understanding where tlx is functionally relevant.  It has been shown that at E14.5 

TLX protein is present in nestin- and RC2-positive neural precursors in the telencephalon but not 

doublecortin- or NeuN-positive differentiated neurons (Li et al., 2008).  However, the temporal 

and spatial pattern of TLX protein expression in the developing cerebral cortex has not been 

described in detail.  Here we used an antibody specific to TLX to characterize TLX protein 

expression in the forebrain from E10.5 to the adult.  This antibody was generated against the 

TLX ligand binding domain (amino acids 180-385) (Li et al., 2008).  It was shown by Western 

blot to detect a 46-kDA protein in neural stem cells, E14.5 brain lysates, and 3T3 cells stably 

transfected with tlx, but not in parent cells that have no endogenous tlx expression (Li et al., 

2008).  In our own studies this antibody did not label any cells in brains from tlx null animals, 

which lack TLX protein expression, at any age examined (E10-P8, data not shown), further 

indicating that this antibody does detect the TLX protein. 

Early during development TLX protein expression appears similar to tlx mRNA 

expression as previously described and shown in Figure 4 and Figure 5.  TLX is highly 

expressed in the proliferative region adjacent to the ventricle from E10.5 (data not shown).  At 

E13.5 TLX is robustly expressed by PCs throughout the forebrain (Figure 6).  In the dorsal 

telencephalon TLX is expressed in a decreasing lateral to medial gradient (Figure 6A) similar to 

the gradient observed in mRNA expression (Figure 4A).  Higher magnification examination of 

the dorsal telencephalon shows that TLX is unevenly expressed in cells within the VZ, with the 

strongest expression observed in dividing cells at the ventricular surface (Figure 6A, B).  TLX 

expression is primarily nuclear; however, cells in M-phase in all regions examined express TLX 
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Figure 6.  TLX expression at E13.5 

TLX immunohistochemistry (red) in coronal sections through the telencephalon at E13.5 (A-E).  In the dorsal 

telencephalon TLX is expressed in a high lateral to low medial gradient in progenitor cells (A), with expression 

extending medially into the hippocampal neuroepithelium (H).  (A) High expression is observed in progenitor cells 

in the lateral ganglionic eminence (LGE), with lower expression in the medial ganglionic eminence (MGE) and 

septal neuroepithelium (S).  TLX is also expressed by a subpopulation of cells in the ventral differentiating field 

(arrows, A, E).  Higher magnification of the dorsal telencephalon (B) shows that TLX in unevenly expressed 

throughout the progenitor population, with particularly high expression in dividing cells at the ventricular surface.  

Higher magnification images of other regions indicate that TLX is similarly unevenly expressed in the proliferative 

zone of the hippocampal neuroepithelium (C), the corticostriatal boundary (D) and the lateral ganglionic eminence 

(E).  Sections are counterstained for DAPI (blue).  Scale bar (in E) = 200μm in A; 40μm in B; 60μm in C-E.  CP = 

cortical plate; VZ = ventricular zone; D = dorsal; M = medial.   
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in a perinuclear pattern, excluded from the chromosomal material.  TLX similarly shows uneven 

expression in the hippocampal neuroepithelium (H, Figure 6A, C), and at the corticostriatal 

boundary (Figure 6A, D).  In the ventral telencephalon, TLX protein is highly expressed in the 

lateral ganglionic eminence (LGE, Figure 6A, E) and more weakly expressed in the medial 

ganglionic eminence (MGE) and septal neuroepithelium (S) (Figure 6A), corresponding with the 

described pattern of tlx mRNA expression (Figure 4A and Figure 5A).  Uneven TLX expression 

is observed in the PC population of the LGE (Figure 6E).  Although TLX expression is primarily 

restricted to progenitor domains at E13.5, TLX is expressed by a subset of cells in the 

differentiating field of the ventral telencephalon (Figure 6A, E, arrows). 

 

 

Figure 7.  TLX expression at E16.5 

At E16.5 TLX protein expression (red) is observed throughout the progenitor population in dorsal (A, B) and ventral 

(A) telencephalon.  High power magnification of the dorsal cortex (B) shows that TLX is expressed by most cells in 

the ventricular zone (VZ) but only a subset of cells in the subventricular zone (SVZ).  Cells expressing TLX (red) 

are also observed throughout the region of the developing amygdala at E16.5, as shown in coronal sections (C).  

Approximate locations of the basal complex (BC), the medial amygdalar nucleus (M), and the cortical amygdalar 

area (CoA) are indicated.  Sections are counterstained for DAPI (blue).  Scale bar (in C) = 150μm in A, C; 40μm in 

B. 
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TLX protein continues to be expressed primarily in the progenitor domain at E16.5 

(Figure 7A), similar to the tlx mRNA expression previously described (Figure 4E).  At mid-

neurogenesis a second proliferative population, the subventricular zone (SVZ), arises in the 

developing cortex basal to the VZ (Bystron et al., 2008).  We examined these two PC 

populations at higher magnification in the dorsal cortex and observed that, whereas TLX is 

expressed in most cells in the VZ, TLX is expressed only by a subset of cells in the SVZ, 

primarily at the VZ/SVZ boundary (Figure 7B).  At E16.5, TLX expression is also observed 

ventrally in cells outside the progenitor domain in the region of the developing amygdala (Figure 

7C).  TLX-expressing cells are scattered throughout the amygdala but are more concentrated in 

the regions of the medial amygdalar nucleus (M), the cortical amygdalar area (CoA), and the 

basal complex (BC), similar to the pattern observed with mRNA expression (Figure 5D). 

At E18.5 TLX continues to be expressed throughout the PC population, although 

increasing numbers of cells expressing TLX outside the progenitor domain are also observed 

(Figure 7A-C).  TLX expression is observed in PCs adjacent to the lateral ventricles throughout 

the telencephalon, shown at both intermediate levels through somatosensory cortex (Figure 8A) 

and caudal levels through auditory and visual cortex (Figure 8B).  TLX expression is also 

observed in the PC domain of the diencephalon adjacent to the third ventricle (Figure 8B, 

arrowhead).  As seen with tlx mRNA expression and β-galactosidase staining, cells expressing 

TLX protein are observed in the lateral cortical stream (Figure 8A, A’).  At E18.5 TLX-

expressing cells are also apparent throughout the developing hippocampus (Figure 8A, B, B’) 

and amygdala (Figure 8B, B”).  Within the amygdala the pattern of TLX protein expression 

appears similar to that of tlx mRNA (Figure 5E).  High power examination of TLX staining in 

the dorsal cortex at E18.5 (Figure 8C) reveals that TLX is evenly expressed in most cells in the 
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Figure 8.  TLX expression at birth 

TLX immunohistochemistry (red) on coronal sections at intermediate (A, A’) and caudal (B-B”) levels of the E18.5 

brain.  TLX is expressed by cells throughout the proliferative regions adjacent to the ventricles, including cells 

adjacent to the third ventricle (B, arrowhead).  TLX expression is observed in the lateral cortical stream (A’, higher 

power magnification of boxed area in A; arrows).  TLX expression is also observed in cells in the developing 

hippocampus (B’) and amygdala (B”).  Within the amygdala expression is observed in cells in the regions of the 

basal complex (BC), the medial amygdalar nucleus (M), and the cortical amygdalar area (CoA).  Higher power 

magnification of the dorsal cortex at E18.5 shows that most cells in the ventricular zone (VZ) are positive for TLX 

(red), while only a subset of cells in the subventricular zone (SVZ) and a few cells outside of the proliferative region 

(arrows) are positive for TLX (C).  By postnatal day 0 TLX is expressed by numerous cells outside the proliferative 

region (arrows) although TLX is still expressed by cells in the VZ and SVZ (D).  Sections are counterstained for 

DAPI (blue).  AH = Ammon’s horn, DG = dentate gyrus.  Scale bar (in D) = 300μm in A, B; 85μm in A’; 100μm in 

B’, B”; 45μm in C, D. 
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Figure 9.  TLX expression at P6 

Staining for Tlx (red) at P6 shows expression in a subset of cells adjacent to the ventricle (A, C, arrowheads) as well 

as outside of the ventricular zone in the dorsal cortex (A-C, arrows).  Tlx-expressing cells are also scattered 

throughout the hippocampus (D), particularly in the subgranular zone of the dentate gyrus (arrows).  Sections are 

counterstained with DAPI (blue).  Scale bar (in D) = 100μm in A; 60μm in B, C; 90μm in D. 

 

 

Figure 10.  TLX is expressed in neurogenic regions in the adult 

Tlx-expressing cells (brown) are visible in the subventricular zone (A) and subgranular zone of the dentate gyrus 

(B).  Sections are counterstained for Nissl (blue).  Scale bar = 50μm. 
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VZ and a subset of cells in the SVZ, as well as in cells outside of the proliferative domain 

(Figure 8C, arrows).  By P0 even more cells expressing TLX are observed outside of the 

progenitor domain throughout the depth of the cortical plate (Figure 8D, arrows).  Continuing 

this trend, at P6 cells expressing TLX are observed in the progenitor domain adjacent to the 

ventricle (Figure 9A, C, arrowheads) as well as outside of this region (Figure 9A-C, arrows).  

TLX-positive cells are also scattered throughout the hippocampus at P6 (Figure 9D) but 

concentrated in the subgranular zone of the dentate gyrus (arrows). 

It has previously been shown that in the adult the tlx promoter drives gene expression in 

neural stem cells in the subventricular zone of the lateral ventricle and the subgranular zone of 

the dentate gyrus, the primary regions of neurogenesis in the adult brain (Shi et al., 2004; Liu et 

al., 2008).  We similarly observed expression of the TLX protein in a subset of cells in both of 

these regions in the adult (Figure 10A, B).  Overall, the presence of tlx mRNA and protein in 

PCs throughout development and in the adult support a role for tlx in regulating PC proliferation 

and neurogenesis.  The nuclear localization of the TLX protein further confirms its role as a 

transcriptional regulator.  Expression of TLX protein outside of the proliferative domains, 

particularly in the developing amygdala, suggests a possible novel role for tlx in specific 

populations of differentiated cells. 

2.3.2 Tlx is expressed by a subset of progenitors but not by mature neurons 

So far we have shown that throughout development TLX protein is expressed in the cells in the 

PC domain; however, TLX appears to be expressed in only a subset of cells, particularly in the 

SVZ where only sparse staining was observed.  We therefore characterized the TLX-expressing 

cells in the dorsal cortex by examining colocalization of TLX with various PC and neuronal 
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markers.  In some cases double immunohistochemistry using the TLX antibody was not possible; 

therefore, in order to determine whether β-galactosidase expression under the control of the tlx 

promoter mimics that of endogenous TLX protein and could therefore be used for double 

immunostaining experiments, we first examined the co-expression of TLX and β-galactosidase in 

heterozygous animals (Figure 11).  Whereas TLX protein is localized to the nucleus (Figure 11A, 

D), β-galactosidase is localized throughout the cytoplasm reaching into cellular processes (Figure 

11B, E).  However, at both E12.5 (Figure 11A-C) and P0 (Figure 11D-F) TLX and β-

galactosidase appear to localize to the same cells. 

 

 

Figure 11.  TLX and β-galactosidase are co-expressed in heterozygous animals 

TLX (red) and β-galactosidase (green) are co-expressed in tlx +/- animals at E12.5 (A-C) and at P0 (D-F).  Images 

were taken on a confocal microscope.  Scale bar (in F) = 30μm in A-C; 40μm in D-F. 

 

In order to verify that the TLX-expressing cells located in the VZ during development are 

PCs, we examined co-expression of TLX and the radial glia marker glutamate-aspartate 

transporter (GLAST) (Shibata et al., 1997; Hartfuss et al., 2001).  At E13.5 TLX co-localizes 
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with GLAST (Figure 12A-C), indicating that TLX is expressed by radial glia.  We confirmed 

this by examining co-expression of β-galactosidase and the radial glia marker Pax6 (Gotz et al., 

1998) at E12.5 in tlx heterozygous animals.  At this age β-galactosidase and Pax6 appear to show 

nearly complete co-expression (Figure 12D-F), further indicating the TLX is expressed by radial 

glia progenitors.  This significant overlap of TLX with markers of radial glia PCs, together with 

its expression confined mostly to proliferative domains during early development, suggest that 

TLX is not expressed by differentiated neurons.  In order to directly examine this idea we 

performed double immunostaining with an antibody against TLX and an antibody against the 

neuronal marker Tuj1.  At E12.5 TLX does not show any co-expression with Tuj1 (Figure 12G-

I).  Similar results were obtained at E14.5 and E18.5 (data not shown), although occasionally a 

cell near the ventricle showed low levels of both TLX and Tuj1, which could reflect residual 

TLX expression in a cell that had just left the cell cycle to differentiate into a neuron.   

 We have shown that TLX is expressed in the radial glia PCs that populate the VZ; 

however, in the SVZ TLX expression is only observed in a subset of cells.  A secondary 

proliferative population of cells known as intermediate progenitors (IPCs) are located primarily 

in the SVZ, although they are also found in the VZ, and can be identified by expression of the 

transcription factor Tbr2 (Englund et al., 2005).  Double-immunostaining against β-galactosidase 

and Tbr2 at E12.5 shows that although some cells in the VZ show possible co-expression, most 

Tbr2-positive cells do not also express β-galactosidase (Figure 12J-L).  Similarly at E14.5 

(Figure 12M-O) and at E16.5 (data not shown) most Tbr2-positive cells do not express β-

galactosidase, although some cells in the VZ show possible co-expression.  Overall these data 

indicate that in the embryonic dorsal telencephalon TLX is expressed by radial glia PCs but is 

downregulated in IPCs and in differentiated neurons. 
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Figure 12.  TLX is expressed by a subset of progenitors but not by neurons during development 

TLX (red) is co-expressed with the radial glia marker GLAST (green) in the dorsal cortex at E13.5 (A-C).  β-

galactosidase (red) expressed under the control of the tlx promoter is co-expressed with ventricular zone progenitor 

marker Pax6 (green) at E12.5 in tlx +/- dorsal cortex (D-F).  TLX (red) is not co-expressed with the neuronal marker 

Tuj1 (green) at E12.5 (G-I).  β-galactosidase does not significantly overlap with intermediate progenitor cell marker 

Tbr2 (green) at E12.5 (J-L) or E14.5 (M-O).  Section C is counterstained with DAPI (blue).  Images D-O were taken 

on a confocal microscope.  Scale bar (in O) = 50μm in A-C; 35μm in D-L; 30μm in M-O. 

 44 



2.3.3 Tlx is expressed by oligodendrocytes and astrocytes at early postnatal ages 

Expression of TLX was observed in a subset of cells outside of the progenitor domain in the 

dorsal telencephalon from E18.5.  In order to determine whether these cells are differentiated 

neurons we performed double-immunostaining against TLX and the neuronal marker NeuN.  At 

P0 most cells in the dorsal cortex that express TLX do not express NeuN (Figure 13A-C).  

Furthermore, the nuclei expressing TLX appear smaller than those of the NeuN-positive neurons, 

which suggests that these TLX-positive cells may be glial cells.  There are two populations of 

glial cells in the cortex, oligodendrocytes and astrocytes.  We examined Sox10 as a marker of 

oligodendrocytes (Kuhlbrodt et al., 1998).  Significant co-expression of Sox10 and β-

galactosidase was observed in heterozygous tlx brains at P0 in the progenitor domain (Figure 

13D-F, arrowheads) and in a subset of cells in the differentiating field (Figure 13D-F, arrows).  

Although most cells that express β-galactosidase appear to express Sox10, only a subset of 

Sox10-positive cells outside the progenitor domain express β-galactosidase.  Because Sox10 is 

expressed by glial progenitors as well as mature oligodendrocytes (Kuhlbrodt et al., 1998), this 

finding could suggest that TLX is predominantly expressed in immature or undifferentiated 

oligodendrocytes.  To identify astrocytes we performed double immunostaining against TLX and 

the astrocyte marker GFAP.  Although GFAP is not yet highly expressed at P0, a few cells co-

expressing TLX and GFAP were observed in the dorsal cortex (Figure 13G-I, arrows).   

At P8, co-expression of β-galactosidase and Sox10 is still observed in some cells near the 

ventricle (Figure 14A-C, arrows), although many cells in the cortex that express Sox10 do not 
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Figure 13.  At P0 TLX is coexpressed with markers of glia but not neurons 

TLX (red) is not co-expressed with the mature neuronal marker NeuN (green) in the dorsal cortex at P0 (A-C).  β-

galactosidase expressed under the control of the Tlx promoter (red) is co-expressed with the oligodendrocyte marker 

Sox10 (green) in cells in the tlx +/- dorsal cortex (D-F; arrows) as well as adjacent to the ventricle (D-F; 

arrowheads) at P0.  The double-stained cell indicated by the yellow arrow is shown at higher power in the inset, 

upper right (D-F).  Co-expression of Tlx (red) and the astrocyte marker GFAP (green) was observed at P0 in cells in 

the dorsal cortex near the pial surface (G-I; arrows).  Section C is counterstained with DAPI (blue).  Images D-I 

were taken on a confocal microscope.  Scale bar (in I) = 50μm in A-C; 35μm in D-F; 30μm in G-I.
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also express β-galactosidase.  Co-expression of TLX and GFAP was also observed in cells in the 

dorsal cortex at P8 (Figure 14D-F, arrows).  Many of these cells have a stellate shape, consistent 

with a mature astrocyte phenotype.  Together these data suggest that in the early postnatal brain 

TLX is expressed in glial progenitors and in a subset of oligodendrocytes but not in mature 

neurons. 

 

 

Figure 14.  At P8 TLX is co-expressed with markers of glia 

Co-expression of β-galactosidase expressed under the control of the tlx promoter (red) and oligodendrocyte marker 

Sox10 (green) was observed in the dorsal cortex of tlx +/- animals at P8 (A-C).  Co-expression of TLX (red) and 

astrocyte marker GFAP (green) was observed in cells in the wild-type dorsal cortex at P8 (D-F).  Arrows indicate 

examples of double-labeled cells.  Sections are counterstained with DAPI (blue).  Scale bar (in F) = 50μm in A-F. 
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2.4 DISCUSSION 

In this study we have characterized the expression of tlx mRNA and protein during development, 

focusing primarily on the dorsal telencephalon.  As shown in this chapter and as previously 

described, tlx is expressed in progenitor domains throughout development and in the adult 

(Monaghan et al., 1995; Stenman et al., 2003a; Shi et al., 2004; Li et al., 2008; Liu et al., 2008).  

As described here, tlx expression is observed in regions that give rise to forebrain structures 

including the cerebral cortex, hippocampus, amygdala, septum, and striatum.  We have further 

determined that through most of embryonic development tlx expression within the dorsal cortex 

is restricted to apical radial glial PCs, showing little co-expression with the IPC marker Tbr2 or 

the neuronal marker Tuj1.  However beginning at birth tlx expression is observed outside of the 

progenitor domain, showing co-expression with glial markers.  

At E13.5 tlx mRNA is expressed in a subset of PCs within both the dorsal and ventral 

telencephalon, with a pattern that in some regions was suggestive of radial clones.  Although a 

similar clonal pattern of TLX protein was not observed, TLX did appear to be expressed at 

varying levels within the VZ, with high expression in dividing cells at the ventricle.  This could 

suggest that TLX protein is regulated with respect to the cell cycle, and perhaps that cells 

expressing different levels of TLX indicate different subpopulations of PCs.  A similar columnar 

expression pattern has previously been observed in telencephalic PCs; there, the pattern reflected 

differential Notch signaling activity (Mizutani et al., 2007).  This pattern distinguishes radial 

glial PCs, which respond to Notch signaling through CBF1, from IPCs, in which CBF1 activity 

 48 



is reduced (Mizutani et al., 2007).  We have shown that tlx regulates the transcription of hes1 

(Drill and Monaghan, unpublished results), a bHLH transcription factor activated by Notch 

signaling (Jarriault et al., 1995).  This suggests a possible link between tlx and the Notch 

signaling pathway that may relate to differences between radial glial PCs and IPCs.  Although 

most cells that express the IPC marker Tbr2 do not seem to co-express tlx, particularly in the 

SVZ, there does appear to be some overlap in cells in the VZ.  This is similar to the pattern of 

co-expression of Pax6 and Tbr2, which are thought to be expressed sequentially in glutamatergic 

neurogenesis, with Pax6 downregulated in the transition from a radial glial progenitor to an IPC 

(Englund et al., 2005).  A similar role for tlx in the transition from a radial glial progenitor to an 

IPC will be further examined in Chapter 4. 

As shown previously and confirmed in this study, tlx mRNA is expressed in the dorsal 

telencephalon in decreasing rostral to caudal and lateral to medial gradients at midgestation.  

Here, we have shown that this graded mRNA expression results in a similar high lateral to low 

medial gradient of TLX protein expression at E13.5; examination of the rostral to caudal 

expression pattern of TLX protein was inconclusive (data not shown).  However, by E16.5 these 

expression gradients are no longer observed.  The purpose of this early graded expression pattern 

is unclear, although it does reflect the normal rostral to caudal and ventral to dorsal gradient of 

neurogenesis in the cortex (Bayer and Altman, 1991).  Regional cortical identity is established in 

part through early gradients of transcription factors in PCs (Rash and Grove, 2006; O'Leary and 

Sahara, 2008), and loss of tlx has been shown to have different effects across cortical regions 

(Roy et al., 2004).  The subsequent chapter (Chapter 3) will therefore investigate the role for tlx 

in the development of cortical areas. 
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Several subsets of TLX-positive cells were observed outside of the progenitor domain.  

As early as E13.5 cells were observed in the differentiating field of the ventral telencephalon.  

Cells expressing both tlx mRNA and protein were observed in the region of the developing 

amygdala at E16.5 and E18.5/P0, as well as in the lateral cortical stream; this latter population of 

migrating cells derives from the corticostriatal boundary and has been shown to contribute to the 

amygdala, including the basolateral nucleus (Puelles et al., 2000; Stoykova et al., 2000; Molnar 

and Butler, 2002; Stenman et al., 2003a; Carney et al., 2006).  The lateral, basolateral, and 

interstitial nuclei of the amygdala have previously been shown to be altered in adult tlx null 

animals, attributed at least in part to abnormalities in the cortico-striatal boundary (Stenman et 

al., 2003a). The identification in this study of tlx-expressing cells in the differentiating field of 

the amygdala with a pattern indicative of specific nuclei suggests a particular function for tlx 

within the amygdala itself, possibly a novel role in differentiated cells.  However, further 

analysis will be necessary in order to characterize these tlx-positive cells.   

From birth, cells expressing TLX were observed in the dorsal cortex outside of the 

progenitor domain.  Double-immunostaining indicated that these cells are glia, expressing the 

glial markers Sox10 and GFAP.  Tlx expression has previously been observed in Muller glial 

cells and transiently in proangiogenic astrocytes in the retina, where it has a role in regulating 

astrogenesis (Miyawaki et al., 2004; Uemura et al., 2006).  However, in adult neural stem cells 

tlx has been shown to bind to the promoters of genes expressed in glia, such as GFAP, and 

repress their transcription (Shi et al., 2004), and astrocytes are increased in the tlx null brain from 

birth (Kuznicki and Monaghan, unpublished results; (Shi et al., 2004)).  Co-expression of TLX 

and GFAP at early postnatal ages suggests that at this stage of development TLX may not repress 

transcription of gfap.  Perhaps TLX does not bind to the gfap promoter because it is sequestered 
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away from the binding site or blocked by competitive binding from another DNA-binding 

protein.  Even if TLX is bound to the gfap promoter perinatally, it could require co-factors to 

mediate transcriptional repression that are not available at that stage of development.  Tlx 

expression may persist from radial glial progenitors to mature glial cells, whereas it is 

downregulated in intermediate progenitors and differentiated neurons, in order to maintain the 

proliferative capacity of glia in the adult.  Overall these findings give us a framework with which 

to interpret the phenotype that arises from disruption of the tlx allele. 
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3.0  TLX REGULATES EXPANSION OF VISUAL CORTICAL AREAS 

3.1 INTRODUCTION 

The adult cerebral cortex is divided into different functional areas that serve specialized roles in 

processing and integrating sensory input.  Each area is characterized by distinct cytoarchitecture 

and connectivity.  Studies in both rodents and primates have suggested that these differences 

arise during development through regional and temporal control of proliferation (Dehay et al., 

1993; Polleux et al., 1997a; Polleux et al., 1997b; Kornack and Rakic, 1998; Lukaszewicz et al., 

2005; Lukaszewicz et al., 2006).  These area-specific profiles are regulated by two major 

mechanisms: intrinsic molecular regionalization of cortical progenitor cells (PCs) and extrinsic 

influence from incoming thalamocortical fibers.  Together, these mechanisms are proposed to 

regulate both the tangential expansion of cortical regions and the differential depth of cortical 

layers (Rakic, 1988; O'Leary and Nakagawa, 2002).  However, it is not fully understood how 

these area-specific proliferative profiles are generated. 

Beginning as early as embryonic day 8 (E8) signaling molecules, including FGFs, Wnts, 

and BMPs secreted from structures at the border of the cortex, begin to establish gradients of 

gene expression that influence rostral-caudal, medial-lateral, and dorsal-ventral axes (Mallamaci 

and Stoykova, 2006).  Fgf8 and Fgf17 secreted from the anterior neural ridge are required for 

rostral-caudal patterning (Fukuchi-Shimogori and Grove, 2001; Garel et al., 2003; Cholfin and 
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Rubenstein, 2007), while Wnts secreted from the cortical hem regulate dorsal-ventral patterning 

of the cortex (Backman et al., 2005) as well as hippocampal development (Galceran et al., 2000; 

Lee et al., 2000b).  Wnts have also been proposed to regulate the expansion of caudal cortical 

areas (Muzio et al., 2005).  Together, these secreted signaling molecules influence transcription 

factors within PCs to establish graded expression patterns across the ventricular zone (VZ) of the 

cortex (Bishop et al., 2000; Mallamaci et al., 2000; Muzio et al., 2002; Garel et al., 2003; Storm 

et al., 2006).  Four key transcription factors, Emx2, Pax6, COUP-TFI, and Sp8, are expressed in 

cortical PCs in opposing gradients and play a critical role in the rostral-caudal arealization of the 

developing cortex (Bishop et al., 2000; Mallamaci et al., 2000; Zhou et al., 2001; Muzio et al., 

2002; Armentano et al., 2007; Sahara et al., 2007; Zembrzycki et al., 2007).  In addition to their 

role in regional specification, Emx2, Pax6, and COUP-TFI have been shown to influence early 

cortical expansion through the regulation of proliferation and differentiation (Mallamaci et al., 

2000; Heins et al., 2001; Estivill-Torrus et al., 2002; Quinn et al., 2007; Faedo et al., 2008).   

At mid-neurogenesis (E14.5 in mice), thalamic axons begin to arrive at the cortical plate 

(Molnar and Blakemore, 1995).  Studies using heterotopic transplantation suggest that by this 

time cortical cells are already committed to their areal identity (Gitton et al., 1999; Gaillard et al., 

2003).  Indeed, area-specific differences in the cell cycle have been observed early during 

development prior to the arrival of thalamocortical projections (Polleux et al., 1997b), suggesting 

an early intrinsic regulation of proliferation.  However, thalamocortical projections have been 

demonstrated in vitro to release a factor that promotes proliferation of cortical progenitors 

(Dehay et al., 2001), indicating a mechanism by which these inputs may further influence the 

development of area-specific neuronal profiles. Thus, both early intrinsic and late extrinsic 

mechanisms appear to operate in area-specific control of the cell cycle in PCs.  Evidence from 
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studies of gbx2 and mash1 mutant mice, which fail to develop thalamocortical projections, 

suggests that molecular regionalization of the cortex can occur in the absence of thalamic input 

(Miyashita-Lin et al., 1999; Nakagawa et al., 1999).  Extrinsic input from incoming 

thalamocortical fibers is therefore thought to contribute primarily to the refinement of the 

cortical map, evident in the development of sharp boundaries between areas and the specific 

cytoarchitecture of functional cortical areas (O'Leary and Nakagawa, 2002).   

Tlx is a transcription factor expressed in PCs of the developing cortex from E8, with 

expression persisting in PC populations into adulthood (Monaghan et al., 1995; Stenman et al., 

2003a; Shi et al., 2004).  We previously generated mice carrying a targeted disruption in the tlx 

gene.  Tlx-deficient animals survive but exhibit a variety of anatomical and behavioral 

abnormalities (Monaghan et al., 1997; Yu et al., 2000; Roy et al., 2002; Land and Monaghan, 

2003; Stenman et al., 2003a; Stenman et al., 2003b; Miyawaki et al., 2004; Roy et al., 2004; Shi 

et al., 2004; Land and Monaghan, 2005; Uemura et al., 2006; Zhang et al., 2006).  In the absence 

of tlx, the cortex is reduced in both surface area and depth, with the reduction in thickness due to 

a specific reduction in superficial cortical layers (Monaghan et al., 1997; Roy et al., 2002; Land 

and Monaghan, 2003).  Occipital regions show a slightly greater reduction in the total depth of 

the cortex, 22% as opposed to 20% in frontal and parietal cortex (Land and Monaghan, 2003).  

These deficits arise from alterations in PC proliferation and neurogenesis during development 

(Roy et al., 2002; Roy et al., 2004).  From E12.5 to E14.5 tlx mRNA is expressed in dorsal PCs 

in a high rostral/lateral to low caudal/medial gradient (Monaghan et al., 1995; Stenman et al., 

2003a).  In Chapter 2 we confirmed these gradients at E13.5, but found that from E16.5 through 

early postnatal development tlx expression no longer appears to vary along these axes.  

Interestingly, in the VZ caudal progenitor cells are more sensitive to the loss of tlx, showing a 
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greater reduction in PC number and rate of proliferation from E14.5 to E18.5 (Roy et al., 2004).  

However, the sub-ventricular zone (SVZ) is reduced at all rostro-caudal levels (Roy et al., 2004).  

We hypothesized that these regional alterations in PC proliferation and differentiation during 

development would translate to area-specific changes in functionally defined cortical areas.  In 

order to test this hypothesis we examined markers of specific regional populations of neurons 

and progenitors during cortical development.  We show that in the absence of tlx caudal 

functionally defined areas, including visual cortex, are specifically reduced. 

3.2 METHODS 

3.2.1 Animals 

Wild-type, heterozygous, and mutant animals were obtained from crossings of heterozygous 

mice (SVE129 x C57BL/6J) from the 12th generation backcross to C57BL/6J mice.  Additional 

animals were obtained from the 2nd generation backcross with the SVJ129 strain.  Animals were 

genotyped by PCR as previously described in Section 2.2.1 (Monaghan et al., 1997).  For all 

experiments, homozygous mutant embryos or mice were compared with wild-type or 

heterozygous littermates; we observed no significant difference between wild-type and 

heterozygous animals in the experiments in this study or in previous studies from E14.5 through 

adulthood (Land and Monaghan, 2003; Roy et al., 2004).  The morning of the vaginal plug was 

designated E0.5; the day of birth was designated P0.  The care and handling of these animals was 

in accordance with the University of Pittsburgh Institutional Animal Care and Use committee 

and NIH guidelines. 
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 Embryonic brains were processed by immersion fixation in either cold 4% 

paraformaldehyde (PFA) pH7.4 (Sigma, St. Louis, MO) or cold Carnoy’s fixative; E12.5 to 

E14.5 for 4-5 hours, E16.5 to E18.5 overnight.  Postnatal brains were fixed by transcardial 

perfusion with cold PBS followed by 4% PFA pH7.4 and immersion fixed overnight. Some 

postnatal brains were dissected following perfusion and immersion fixed overnight gently 

flattened between glass slides.  Brains intended for whole mount in situ hybridization were 

processed through a graded methanol series (25-50-75-100%) and stored in 100% methanol at -

20°C until use.  All other brains fixed with PFA were processed through a graded sucrose series 

(10-20-30%) at 4°C.  Flattened cortices were then sectioned tangentially to the pial surface and 

successively through each cortical layer on a freezing-sliding microtome at 30μm (P8) or 50μm 

(6 weeks) and collected in PBS.  All other PFA-fixed tissue was sectioned on a cryostat sagitally 

or coronally at 14μm (E13.5 CD-1 brains) or 20μm (all other tissue) and frozen until use.  

Embryos fixed in Carnoy’s fixative were processed through increasing concentrations of 

alcohols and embedded in paraffin.  Sagittal sections were cut at 10μm. 

3.2.2 In situ hybridization 

The following digoxigenin (DIG)-labeled riboprobes were used: Cadherin6 (full-length coding 

region; obtained by RT-PCR from mouse brain using primers: forward 5’-CCA AGC AAA GAA 

CAT TAA GGA AG-3’, reverse 5’-TTA AGA GTC TTT GTC ACT GTC CA-3’), Cadherin8 (a 

gift from M. Takeichi), Emx2 (Simeone et al., 1992), EphA7 (a gift from R. Klein), Id2 (1 kb 

fragment from +105 to +1062; obtained by RT-PCR from mouse brain using primers: forward 

5’-CTC TAC AAC ATG AAC GAC TGC TAC TC-3’, reverse 5’-CAA TCA ACA TTC AAT 

AAA CAC ACT TG-3’),  Wnt2b (a gift from M. Takeichi), and Wnt3a (a gift from A. 
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McMahon).  Probes were prepared using a DIG RNA labeling kit according to the 

manufacturer’s directions (Roche Diagnostics, Indianapolis, IN).  The Cadherin8 was 

hydrolyzed to 400-bp fragments prior to use as previously described (Schaeren-Wiemers and 

Gerfin-Moser, 1993).  Whole mount in situ hybridizations were performed as previously 

described (Wilkinson, 1992).  Hybridization was done overnight at 70°C and the probe was used 

at a concentration of 1μg/ml.  In situ hybridization on frozen sections was performed as 

described in Section 2.2.2. 

3.2.3 Immunohistochemistry 

Sets of paraffin-embedded sections were taken at several lateral to medial levels for processing 

by immunohistochemistry.  Sections were dried at 56°C, de-paraffinized in xylene, rehydrated 

through a graded ethanol series, and washed in PBS.  Antigen retrieval was performed by boiling 

the slides in 0.01M sodium citrate (pH 6.0); slides immersed in solution were microwaved for 3 

minutes at full power followed immediately by 5 minutes at 50% power.  Slides were then 

washed in 0.1% Triton-X-100 (Fisher Scientific) in PBS and blocked with 10% heat-inactivated 

normal goat serum (Jackson ImmunoResearch, West Grove, PA) in PBS.  Sections were 

incubated with rabbit anti-Pax6 (1:500; Covance) overnight at 4°C. The tissue was then washed 

with PBS, incubated with Cy3 secondary antibody (1:400; Jackson ImmunoResearch), and 

counterstained with 1,6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma) before 

mounting in fluoromount (Southern Biotechnology Research, Birmingham, AL). 

Tangential sections through P8 cortices were washed in 50% methanol/50% PBS/1% 

hydrogen peroxide followed by three washes with 0.1% Tween 20 (Fisher Scientific) in PBS.  

Sections were blocked overnight at 4°C with 10% heat inactivated normal goat serum/1% bovine 
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serum albumin (Fisher Scientific, Pittsburgh, PA) in PBS.  Sections were incubated with rabbit 

anti-serotonin (1:20,000; ImmunoStar, Inc., Hudson, WI) for 48 hours at 4°C.  The sections were 

subsequently washed in 0.1% Tween 20 in PBS, incubated with α-rabbit biotinylated secondary 

antibody (1:200; Vector Laboratories, Burlingame, CA) and processed using the Vectastain(r) 

Elite ABC kit (Vector Laboratories) according to the manufacturer’s instructions.  After rinsing 

in PBS, sections were incubated in nickel enhanced 0.7mg/ml 3,3’-diaminobenzidine 

tetrahydrochloride (DAB; Sigma) with 0.01% hydrogen peroxide.  DAB stained sections were 

washed in PBS, mounted on slides, dehydrated, and coverslipped with DPX. 

Tangential sections through layer IV of the cortex taken from 6 week old animals were 

stained for cytochrome oxidase activity as previously described (Land and Monaghan, 2003).  

All stained sections were visualized using a Nikon (Melville, NY) fluorescent microscope and 

photographed using a Photometrics (North Reading, MA) Cool Snap digital camera and IP Lab 

software (Biovision Technologies, Exton, PA). 

3.2.4 Measurements 

For quantification of whole mount in situs, images of the whole brain were taken at a constant 

magnification on a Nikon dissecting microscope using a Photometrics Cool Snap digital camera 

and IP Lab software.  For both the left and right hemispheres of each animal, the total cortex, 

motor cortex, and primary visual cortex were outlined using Photoshop 6.0 (Adobe Systems, San 

Jose, CA) and the areas calculated using ImageJ (NIH, Bethesda, MD).  Measurements for the 

right and left hemispheres were averaged within each individual animal, and these values were 

used to calculate the proportion of total cortical area occupied by motor cortex and by visual 

cortex.  The values from three pairs of control and mutant littermates were then compared using 
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a paired t-test.  All outlines and measurements were done blind to genotype.  To confirm the 

results, areas were outlined by a second investigator blind to genotype and similar results were 

obtained by statistical analysis.  Statistical analysis was done using InStat (GraphPad Software, 

San Diego CA).  All values are written and graphed as mean ± SEM.   

Id2 expression was used as a marker for caudal cortex, with layer V expression defining a 

caudal region extending to the border between somatosensory and motor cortex.  For each brain, 

in situ hybridization was performed on representative sagittal sections taken at three medial to 

lateral levels through one cortical hemisphere.  For quantification, one section each from four 

control and four mutant brains were matched for medial-lateral position.  To draw boundaries, 

sections were examined under a 40X objective to identify Id2 expressing versus non-expressing 

cells and boundaries were drawn using Photoshop on corresponding images taken with a 4X 

objective.  The total length of the cortex was defined as the distance from the caudal pole to the 

rostral edge of the cortex at the boundary of the olfactory bulb, as traced along the pial surface of 

the section.  This line was bisected by a perpendicular line drawn at the rostral boundary of layer 

V Id2 expression.  The proportion the total length caudal to this boundary was calculated for 

each animal and controls and mutants compared using an unpaired t-test.  All boundaries and 

measurements were determined blind to genotype. 

Quantification of serotonin immunostaining and cytochrome oxidase staining followed 

methods described in Hamasaki et al., (2004).  Sequential images were taken of serial sections of 

the right cortical hemisphere through layer IV as defined by the presence of histologically 

identifiable whisker barrels.  Images were taken at a constant magnification on a dissecting 

microscope as described above.  For each animal, multiple adjacent sections were aligned to 

specific whisker-related barrels.  For each section, the total cortex, posteromedial barrel subfield 
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(PMBSF), auditory cortex, and primary visual cortex were outlined using Photoshop and 

consensus outlines from multiple sections were determined for each animal.  If an area could not 

be outlined in its entirety it was excluded from calculations.  To analyze lengths, a straight line 

was drawn from the frontal pole to the occipital pole, and a line perpendicular to the first was 

drawn through whisker barrel C3.  Areas and lengths were measured using ImageJ software, and 

statistical analysis was done using GraphPad.  Measurements of area and length were compared 

between three to five control and three to five mutant animals using an unpaired t-test.  Cortices 

obtained from C57BL/6J backcrossed animals and SVJ129 crosses were compared at P8 using 

serotonin immunostaining.  No significant differences were observed for any measures tested, 

including the proportion of total cortical area occupied by primary visual cortex as compared 

between either controls of each strain (p>0.5, n=3) or mutants (p>0.5, n=3).  Therefore data from 

both strains were pooled for all calculations. 

3.3 RESULTS 

3.3.1 Caudal cortical areas are specifically reduced perinatally 

In Chapter 2 we showed that tlx is expressed in a high rostral/lateral to low caudal/medial 

gradient in the dorsal telencephalon at E13.5, with this gradient no longer apparent from E16.5.  

However, caudal PCs are more sensitive to the loss of tlx than rostral PCs, showing a greater 

reduction in number and rate of proliferation (Roy et al., 2004).  To determine how the region-

specific effects on cortical PCs in the absence of tlx impact the development of functional 

cortical areas, we examined the transcription pattern of genes hypothesized to be associated with 
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the development of functional areas (Bulfone et al., 1995; Suzuki et al., 1997; Miyashita-Lin et 

al., 1999; Nakagawa et al., 1999; Rubenstein et al., 1999).  By P0 developing cortical areas can 

be identified by the distribution of genes expressed in region-specific patterns (Suzuki et al., 

1997; Miyashita-Lin et al., 1999; Rubenstein et al., 1999).  We first examined cadherin8 

expression in whole cortices at P0 (Figure 15A-C).  Cadherin8 is expressed throughout the 

cortex in layer V, but developing motor and visual areas also show high expression in layers 

II/III and IV (Suzuki et al., 1997; Nakagawa et al., 1999).  At P0 a region of darker staining 

clearly demarcates a rostral motor region (Figure 15A, arrowheads).  The total surface area of the 

cortex (both hemispheres) is reduced by 25% in tlx -/- animals (control: 30.7mm2 ± 1.1mm2; tlx-

/-: 23.0mm2 ± 0.7mm2; p<0.05, n=3).  Details of all measurements are outlined in the methods 

section.  Cadherin8 staining in control animals indicates that the motor region occupies 21.0% ± 

0.8% of the total cortical surface area whereas in mutant animals the motor region occupies 

29.3% ± 1.3%, an increase of 39.5% (p<0.05, n=3; Figure 15A-C).  Interestingly, the actual size 

of the motor cortex is not altered between control and mutant brains (p>0.5, n=3), supporting the 

hypothesis of a caudal-specific reduction in functional cortical areas.  

To compare cortical areas in more detail, we examined the expression of the region-

specific marker Id2 in sequential sagittal sections through control and mutant cortices at P0.  Id2 

is a helix-loop-helix protein expressed in layers II/III, V, VI, and the subplate (Neuman et al., 

1993).  This layer-specific expression varies regionally and can be used to map developing 

functional areas.  Id2 expression in layer V has previously been shown to be restricted to caudal 

regions of the cortex, with a rostral boundary at the border between somatosensory and motor 

cortex (Bulfone et al., 1995; Rubenstein et al., 1999; Figure 16A, C).  In tlx -/- animals the region 

caudal to this boundary occupies a significantly smaller proportion of the total rostral-caudal  
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Figure 15.  Visual cortex is reduced perinatally in tlx -/- animals while rostral motor cortex is relatively 

unaffected 

Whole mount in situ hybridization for Cadherin8 at P0 (A, B) and P8 (D, E).  (A-C) At P0 motor cortex (M, 

arrowheads) occupies a significantly greater proportion of the total cortical area in tlx -/- animals (B) as compared to 

controls (A), quantified in C.  (D-F) At P8 primary visual cortex (V1) occupies a significantly smaller proportion of 

the total cortical area in tlx -/- animals (E) as compared to controls (D), quantified in F.  *p<0.05.  Scale bar (in E) = 

0.75mm in A, B; 1mm in D, E. 

 

cortical length, 51.8% ± 0.8% as compared to 56.3% ± 0.7% in controls (p<0.01, n = 4; Figure 

16A, B, boundary indicated by solid arrowhead, C, D, boundary indicated by line).  Id2 is also 

expressed superficially (layers II/III) in both a rostral and a caudal domain, the boundaries of 

which vary across the medial-lateral axis (Bulfone et al., 1995; Rubenstein et al., 1999; Figure 

16A, E).  At the level shown in Figure 16, the rostral superficial expression domain extends into 

somatosensory cortex whereas the caudal superficial expression domain is restricted to occipital 

cortex (Figure 16A, B, boundaries indicated by open arrowheads, E, F, boundaries indicated by 
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lines).  In tlx -/- animals both boundaries are shifted farther caudally, such that the caudal 

superficial domain is reduced and the rostral superficial domain extends proportionately farther 

caudally.  These results were verified by examining an independent marker of caudal cortex, 

 

 

Figure 16.  Caudal regions are reduced at P0 in the absence of tlx 

In situ hybridization of sagittal sections through control (A, C, E, G, I) and tlx deficient (B, D, F, H, J) animals at P0.  

(A, B, C, D) Id2 expression in layer V demarcates the boundary between the somatosensory and motor cortex (black 

arrowhead).  This boundary is shifted caudally in the tlx -/- cortex (B).  C and D are higher power images of the 

areas labeled with a black arrowhead in A and B respectively, showing the termination of id2 expression in layer V 

(lines).  (A, B, E, F) Id2 expression in layer II/III subdivides the cortex in three rostral to caudal domains, a caudal 

high expression domain, an intermediate domain (open arrowheads), and a rostral high expression domain.  The 

intermediate domain is shifted caudally in tlx -/- animals (B).  E and F are higher power images of the areas labeled 

with open arrowheads in A and B respectively, with lines at the boundaries of superficial layer II/III (S) id2 

expression. (G, H) EphA7 is highly expressed in layer IV of caudal cortex (rostral limit marked by arrowhead).  This 

region is reduced in tlx -/- cortex (H) as compared to controls (G).  (I, J) High Cadherin6 expression in layers II/III, 

IV, and V demarcates parietal cortex (limits marked by arrowheads).  This is reduced in the tlx -/- cortex (J) as 

compared to controls (I).  Scale bar (in J) = 400μm in A, B, G-J; 170μm in C-F.  D = dorsal; R = rostral. 
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ephA7.  At P0 the ephA7 receptor tyrosine kinase is expressed in layer IV with the highest 

expression levels in occipital cortex and very low expression in somatosensory cortex (Mori et 

al., 1995; Yun et al., 2003).  In the absence of tlx the caudal cortical region demarcated by high 

ephA7 expression is shifted caudally (Figure 16G, H, arrowheads; n=2).  Together these findings 

suggest that although rostral motor areas are relatively unaffected at P0 caudal cortical areas are 

reduced in size. 

So far, these data show that at P0 in the absence of tlx caudal cortical regions are reduced 

whereas rostral motor cortex is relatively unaffected.  To determine whether intermediate areas 

are reduced we examined the expression of cadherin6, which is expressed in layers II/III, IV, and 

V with much higher expression levels in parietal cortex (Suzuki et al., 1997; Nakagawa et al., 

1999).  This high expression domain is reduced in length in tlx -/- animals (Figure 16I, J, 

arrowheads; n=3).  Together, our data suggest that although rostral motor areas are relatively 

unaffected at P0, intermediate parietal cortex and caudal cortical areas are reduced in size. 

Cortical areas continue to develop after birth, and by P8 cadherin8 expression in whole 

mount preparations can be used to distinguish motor areas as well as visual cortex (Suzuki et al., 

1997).  At P8 there is no significant difference in the proportion of total cortical area occupied by 

motor cortex in control and mutant animals (control: 22.5% ± 1.4%; mutant: 27.0% ± 1.0%; 

p=0.122, n=3), although as at P0 the absolute area of the motor cortex appears similar between 

genotypes (Figure 15D-F, arrows).  Primary visual cortex occupies a significantly smaller 

proportion of the total cortical area in mutant animals, 10.7% ± 1.1% as compared to 14.3% ± 

0.7% in control animals, a reduction of 25.2% (p<0.05, n=3; Figure 15D-F).  To verify these 

findings we examined cortical areas using serotonin immunostaining on tangential sections 

through flattened cortices at P8 (Figure 17).  This marks the terminations of thalamocortical 
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axons in layer IV of primary sensory areas including primary somatosensory cortex, primary 

visual cortex (V1), and primary auditory cortex (Fujimiya et al., 1986).  Serotonin staining at P8 

shows that in tlx deficient animals V1 occupies a significantly smaller proportion of the total 

cortical area, 5.2% ± 0.3% as compared to 8.2% ± 0.6% in control brains, a reduction of 36.6% 

(p<0.005, n=5; Figure 17A-C).  However more intermediate structures such as the posteromedial 

barrel subfield (PMBSF; part of somatosensory cortex) and primary auditory cortex are reduced 

proportionately to total cortical area (PMBSF p>0.5, n=3; auditory p>0.5, n=5).   

We observed that the PMBSF appeared to be shifted medially in tlx deficient animals, 

possibly indicating changes in the medial-lateral axis.  To examine this more directly we 

measured the medial-lateral position of the PMBSF.  We arbitrarily chose the C3 barrel as the 

focal point for measurements due to its central location and because it was easily identifiable on 

several consecutive sections.  To quantify the percent of the cortex located medial to the C3 

barrel, we first defined a rostral-caudal axis as a straight line from the frontal pole to the occipital 

pole, and then drew a line perpendicular to this axis through the center of the C3 barrel (Figure 

17D).  In tlx deficient animals, the proportion of cortex medial to barrel C3 is significantly 

reduced, 39.4% ± 0.3% as compared to 42.7% ± 0.7% in controls, a 7.7% reduction (p<0.005, 

n=5).  The segment of the rostral-caudal line posterior to C3, which bisects auditory cortex, 

occupies the same proportion of total rostrocaudal length in control and mutant animals (p>0.1, 

n=5), verifying our observation that auditory cortex is reduced proportionately to total cortical 

area.  This suggests that the caudomedial cortex shows a greater reduction than caudolateral 

cortex. 

Together, these results indicate that perinatally motor cortex is the same size in tlx 

deficient animals as in control animals and that the reduction in surface area reflects a reduction  
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Figure 17.  Primary visual cortex is disproportionately reduced in tlx deficient animals at P8 

At P8 primary visual cortex is disproportionately reduced in the tlx deficient animals while auditory cortex and the 

posteromedial whisker barrel field are reduced proportionately to the reduction in total cortical area.  Serotonin 

immunostaining on tangential sections through flattened tlx +/+ (A) and tlx -/- (B) cortex.  (C) The regions 

compared between wild-type and mutant animals (posteromedial whisker barrel field, PMBSF; auditory cortex, A; 

primary visual cortex, V1) are outlined in white on the left.  Quantification is shown on the right.  (D) Caudomedial 

cortex is selectively reduced while caudolateral cortex is reduced proportionate to reduction in total cortical area.  

The medial distance M is defined as the length from barrel C3 to the medial edge of the cortex (white line).  The 

caudal distance C is defined as the distance from the occipital pole to the point of intersection with the medial-lateral 

axis (white line), defined in the text.  Quantification is shown on the right.  ** p<0.005.  Scale bar (in B) = 1mm in 

A, B.  R = rostral, L = lateral. 
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in parietal and occipital cortex.  Primary visual cortex, located the farthest caudally and medially 

of the functional areas examined, shows the greatest reduction. 

3.3.2 Caudal cortical areas are reduced in the adult tlx -/- animal 

It has previously been shown that in tlx deficient adult animals the primary somatosensory cortex 

whisker barrels are located in a central location along the rostral-caudal axis and the organization 

of the barrels into rows and arcs is similar to that of wild-type animals (Land and Monaghan, 

2003).  However, the size of different functional cortical areas was not examined.  To determine 

whether the changes in functionally distinct areas observed perinatally persist in the adult we 

examined cytochrome oxidase staining in tangential sections through cortical layer IV of brains 

from 6 week old mutant and control animals.  Cytochrome oxidase is an enzyme enriched in 

thalamocortical axon terminals in layer IV of the cortex, with higher expression in primary 

sensory areas (Wallace, 1987).  In the mutant cortex, the PMBSF and primary auditory cortex are 

reduced proportionate to the reduction in total cortical area (PMBSF: p>0.1, n=4; auditory: 

p>0.1, n=4; Figure 18A-C).  However, primary visual cortex (V1) shows a disproportionately 

greater reduction in the adult mutant cortex, occupying 6.0% ± 0.6% of the total cortical area in 

mutant animals as compared to 8.6% ± 0.4% in controls, a 30.2% reduction (p<0.05, n=3; Figure 

18A-C).  Thus, the pattern of reduction in functional areas observed perinatally persists in the 

adult, with caudal cortical areas such as visual cortex most severely affected.   

As observed at P8, the PMBSF appeared to be shifted medially.  Quantifying this as 

described previously, we found that in tlx deficient adults the proportion of the cortex medial to 

barrel C3 is significantly reduced, 30.3% ± 1.1% as compared to 39.4% ± 2.9% in controls, a 

23.1% reduction (p<0.05, n=4; Figure 18D).  The proportion of the rostral-caudal line posterior  

 67 



 

Figure 18.  The specific reduction in visual cortex persists in the adult tlx -/- brain 

Cytochrome oxidase staining on tangential sections through flattened tlx +/+ (A) and tlx -/- (B) cortex of six-week 

old animals.  (C) The regions compared between wild-type and mutant animals (posteromedial whisker barrel field, 

PMBSF; auditory cortex, A; primary visual cortex, V1) are outlined in white on the left.  Quantification is shown on 

the right.  (D) The disproportionate reduction of caudomedial cortex is maintained in the adult.  The medial distance 

M is defined as the length from barrel C3 to the medial edge of the cortex (white line).  The caudal distance C is 

defined as the distance from the occipital pole to the point of intersection with the medial-lateral axis (white line), 

defined in text.  Quantification is shown on the right.  * p<0.05.  Scale bar (in B) = 1mm in A; 0.6mm in B.  R = 

rostral, L = lateral.
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to barrel C3 is not significantly reduced (p>0.5, n=4), consistent with our observations that 

auditory cortex is proportionately reduced in the tlx deficient adult cortex.  These data indicate 

that in the tlx deficient adult caudomedial functional areas continue to show the greatest 

reduction. 

3.3.3 Early arealization is not altered in tlx -/- animals 

To determine whether the caudal-specific reduction observed in tlx -/- animals is mediated by 

changes in early regional patterning, we examined the expression of early areal markers of the 

dorsal cortex at E12.5, before mutant animals begin to show a reduction in the size of the cortex.  

Pax6 is expressed in a high rostral to low caudal gradient (Stoykova and Gruss, 1994).   

Immunostaining against Pax6 shows a similar gradient in both control and tlx null animals at 

E12.5 (Figure 19A, B; n=3).  Emx2 is expressed in an opposing high caudal to low rostral 

gradient (Gulisano et al., 1996; Mallamaci et al., 1998).  In situ hybridization with a probe 

directed against emx2 shows a similar caudal to rostral gradient in control and tlx null animals at 

E12.5 (Figure 19C, D; n=3).  Because we did not observe any gross differences in the expression 

pattern of these early markers, we conclude that cortical regions are appropriately specified at 

E12.5.  This suggests that the deficit in functional areas observed in tlx null animals is the 

consequence of later developmental mechanisms. 

In addition to a reduction in the size of caudal cortical structures, we observed a reduction 

in medial cortex in tlx null animals at P8 (Figure 17D) and in the adult (Figure 18D).  Several 

members of the Wnt family are expressed by cells in the cortical hem, at the medial edge of the 

telencephalon, and are involved in early area patterning and neurogenesis (Grove et al., 1998; 

Lee et al., 2000b; Chenn and Walsh, 2002; Hirabayashi et al., 2004).  Recently these Wnts have 

 69 



 

Figure 19.  Early rostral-caudal patterning is not altered in tlx-deficient animals 

Pax6 protein expression shows a high rostral (open arrowhead) to low caudal (black arrowhead) gradient (A, B) and 

emx2 mRNA transcripts are expressed in a high caudal (black arrowhead) to low rostral (open arrowhead) gradient 

(C, D) in sagittal sections through E12.5 embryos.  These gradients appear similar in tlx -/- animals (B, D) as 

compared to controls (A, C).  Wnt2b (E, F) and wnt3a (G, H) expression demarcate a medial domain in the cortical 

hem in coronal sections of E12.5 embryos (limits marked by arrows).  The expression domain of wnt2b and wnt3a is 

smaller in tlx -/- animals (F, H) as compared to controls (E, G).  Scale bar = 200μm in A, B; 180μm in C, D; 100μm 

in E-H.  D = dorsal, R = rostral. 

 

been proposed to play a specific role in the expansion of caudal cortical areas (Muzio et al., 

2005).  To determine whether changes in wnt expression at the cortical hem could contribute to 

the observed caudomedial reduction, we examined the expression of wnt2b (Figure 19E, F, 

boundaries marked by arrows; n=2) and wnt3a (Figure 19G, H, boundaries marked by arrows; 
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n=5) in control and tlx -/- cortices at E12.5.  In tlx null animals both wnt2b and wnt3a are more 

weakly expressed and do not extend as far dorsally as in mutant animals, although this is difficult 

to quantify.  These findings suggest that changes in expression of wnts in the cortical hem may 

be involved in the reduced expansion of caudal and medial cortex in tlx -/- animals. 

3.4 DISCUSSION 

Regional regulation of PCs during development is one mechanism that is important in generating 

differences in functional cortical areas.  In the absence of tlx caudal cortical areas, such as visual 

cortex, are reduced to a greater extent than the reduction in total cortex, while rostral areas are 

relatively unaffected.  Medial areas, such as somatosensory cortex, show an intermediate 

phenotype; these areas are reduced at P0 and from P8 show a proportionate reduction relative to 

total cortical area. Furthermore, there are no obvious abnormalities in thalamocortical 

innervation in tlx mutants during development or in the adult (Land and Monaghan, 2003), 

although we cannot exclude effects due to more subtle changes in thalamocortical input.  Our 

findings suggest that tlx has a regional role in cortical PCs to regulate the development of 

functional cortical areas. 

3.4.1 Tlx regulates expansion of caudal cortical progenitors 

Cortical areas are established in two phases.  The first is an early intrinsic phase that involves 

regionalization of the VZ by expression of secreted signaling molecules, including FGFs and 

Wnts, and transcription factors, including Pax6, Emx2, COUP-TF1, and Sp8.  During the second 
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phase, or refinement phase, input from thalamocortical fibers contributes to the transition within 

the cortex from broad regionalization to distinct areas defined by unique cytoarchitecture and 

molecular profiles (O'Leary and Nakagawa, 2002; Rash and Grove, 2006; O'Leary and Sahara, 

2008).  Throughout both of these phases, the size and the specific cytoarchitecture of different 

functional areas are determined by regulating PC output.  Evidence from both rodents and 

primates has shown differences between cortical areas in cycle kinetics and in the proportion of 

PCs that make proliferative versus differentiative divisions (Dehay et al., 1993; Polleux et al., 

1997b; Lukaszewicz et al., 2005).  For example, in primates areas 17 (primary visual cortex) and 

18 can be histologically distinguished by a greater number of supragranular neurons in area 17 

(Rockel et al., 1980).  This results from higher rates of neuronal production in area 17 due to a 

shorter cell cycle and a higher rate of proliferative divisions (Kornack and Rakic, 1998; 

Lukaszewicz et al., 2005).  These areal differences are mediated through the regulation of 

important regulators of cell cycle control, cyclin-dependent kinase inhibitor p27Kip1 and cyclin E 

(Lukaszewicz et al., 2006).  Although expression of p27Kip1 and other cell cycle regulators have 

not been examined with respect to different functional areas in rodents, manipulating levels of 

p27Kip1 in mice has been shown to alter the proportion of progenitors the exit the cell cycle 

(Caviness et al., 2003; Tarui et al., 2005).  This manipulation leads to changes in the number of 

neurons specifically in superficial layers (Caviness et al., 2003; Tarui et al., 2005), suggesting a 

mechanism that could mediate differences in layer size between functional areas in mice.  These 

findings are consistent with the hypothesis that in rodents areal differences in cell cycle 

parameters and the resulting cytoarchitecture are mediated by differences in cell cycle regulators.  

Tlx has been shown in the retina and cortex to regulate proliferation through regulation of key 

cell cycle proteins including p27Kip1, Pten, and cyclinD1 (Miyawaki et al., 2004; Zhang et al., 
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2006; Sun et al., 2007; Li et al., 2008; Zhang et al., 2008).  We hypothesize that tlx similarly acts 

through regulation of cell cycle proteins to promote proliferation in cortical PCs during 

development, playing a key role in the normal expansion of caudal functional areas. 

During early cortical development the cortex is largely composed of a proliferative 

population of cells known as radial glia, which divide at the ventricular surface to produce 

progenitors and neurons (Malatesta et al., 2000; Noctor et al., 2001; Noctor et al., 2002).  At 

mid-neurogenesis a second proliferative population appears.  Termed intermediate progenitors, 

these cells are characterized by abventricular mitosis and are located predominantly within the 

subventricular zone (Haubensak et al., 2004; Miyata et al., 2004; Noctor et al., 2004).  It is 

hypothesized that intermediate progenitors are the major source of cortical neurons (Haubensak 

2004, Englund 2005, Sessa 2008, Kowalczyk 2009).  In tlx deficient animals, the VZ is reduced 

in cell number only in caudal cortical regions, whereas the subventricular zone containing 

intermediate progenitors is reduced from E16.5 at all rostrocaudal levels (Roy et al., 2004).  

Further examination of this phenotype using molecular markers to specifically identify VZ 

progenitors and intermediate progenitor cells reveals a specific reduction in intermediate 

progenitors in the caudal cortex, as discussed in more detail in the following chapter (Chapter 4).  

This suggests a dual role for tlx during development.  An early role in regulating proliferation 

and neurogenesis in the caudal VZ could result in reduced tangential expansion of the PCs that 

give rise to caudal cortex, leading to a disproportionate reduction in the surface area of caudal 

functional areas.  Later, tlx may have a broader role in the expansion of the intermediate 

progenitor population in the SVZ across the entire rostrocaudal axis, leading to the reduction in 

the thickness of superficial layers observed across all cortical areas. 
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3.4.2 Early rostrocaudal patterning is not altered in the absence of tlx 

The changes in functional cortical areas that we observed in the tlx mutant could result from 

interactions with early transcription factors that determine the regionalization of the developing 

cortex, such as Pax6 and Emx2 (Bishop et al., 2000).  Tlx has been shown to interact genetically 

with pax6 in the formation of the pallio-subpallial boundary (Stenman et al., 2003a) and in the 

formation of upper cortical layers (Schuurmans et al., 2004), and furthermore pax6 null animals 

exhibit cell cycle changes early during development similar to those observed in tlx null animals 

(Estivill-Torrus et al., 2002; Roy et al., 2004).  The Drosophila homolog tailless is known to 

suppress expression of empty spiracles, the homolog of the vertebrate emx genes (Hartmann et 

al., 2001).  In addition, emx2 null mice exhibit a similar cortical phenotype to tlx null animals, a 

specific reduction in caudal cortical areas (Bishop et al., 2000).  However, contrary to the tlx null 

phenotype the absence of pax6 or emx2 leads to greater deficits where the gene is normally more 

highly expressed (Bishop et al., 2000).  Here we have shown that the absence of tlx does not 

affect the expression patterns of pax6 or emx2 at E12.5, which suggests that cortical regions are 

specified appropriately at this age.  However, one alternate possibility that we have not yet 

explored is that the high rostral expression of tlx acts to limit the expression of anterior 

patterning signals such as Fgf8 or Fgf17 (Fukuchi-Shimogori and Grove, 2001; Garel et al., 

2003; Cholfin and Rubenstein, 2007), which would control the expansion of anterior cortical 

regions.   

Expansion of the expression domain of Fgf8 has been shown to suppress expression of 

WNT proteins in the cortical hem (Shimogori et al., 2004).  We did observe a reduction in the 

expression domains of wnt2b and wnt3a in the cortical hem at E12.5.  Wnt3a is involved in 

regulating the expansion of the caudomedial region of the cortex that gives rise to the 
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hippocampus, with an important role in the development of the dentate gyrus (Lee et al., 2000b).  

Interestingly this hippocampal structure is specifically reduced in the tlx null adult (Monaghan et 

al., 1997).  Emx2 has also been shown to be required for the growth of the hippocampus (Tole et 

al., 2000), and animals deficient for emx2 exhibit a pronounced downregulation of Wnt3a in the 

cortical hem (Muzio et al., 2002).  Although there is not an obvious difference in emx2 

expression at E12.5 in the absence of tlx, there may be subtle differences that were undetected 

but are nonetheless sufficient to contribute to the hippocampal phenotype.  It has recently been 

suggested that Wnt signaling acting in combination with Emx2 also plays a role in the expansion 

of occipital cortex (Muzio et al., 2005), which could indicate that altered regulation of Wnts in 

the cortical hem contributes to the reduction of caudal and medial cortex observed in tlx deficient 

cortex postnatally.  Further studies will be necessary to determine whether tlx is directly involved 

in Wnt signaling, indirectly affects Wnts through possible suppression of Fgfs, or whether the 

reduced wnt2b and wnt3a domains are simply the result of decreased progenitor proliferation in 

the cortical hem. 

3.4.3 Functional implications 

It has been shown in other systems that visual input at the appropriate developmental age can 

influence the proportion of the cortex occupied by primary visual cortex (Wiesel and Hubel, 

1963; Berardi et al., 2000).  In primates, embryonic bilateral enucleation leads to a reduction in 

the size of primary visual cortex without a reduction in total cortical area (Rakic, 1988; Dehay et 

al., 1996).  Conversely, recent evidence has shown that altering in the size of somatosensory and 

motor cortex during development diminishes performance at sensorimotor tasks (Leingartner et 

al., 2007).  In this study the authors examined the behavior of animals with either reduced levels 

 75 



of emx2 (heterozygous for the null allele) or elevated emx2 (with an emx2 transgene under the 

control of the progenitor-specific nestin promoter).  These manipulations resulted in either an 

expansion or reduction in motor and somatosensory cortex, respectively, and in both cases 

sensorimotor behavioral performance was affected (Leingartner et al., 2007).  Differences in 

proliferation are apparent in tlx null animals prior to ingrowth of thalamic axons, suggesting that 

the caudal-specific reduction observed here is independent of thalamic input.  Indeed, as 

described in subsequent chapters conditional deletion of the tlx allele only in dorsal PCs results 

in a disproportionate reduction of primary visual cortex similar to that observed in null animals 

but does not appear to cause any significant visual impairment, as conditional animals perform 

normally in a visual placing task and in a visible version of the Morris water maze (see Chapter 

5).  We cannot rule out subtle deficits in vision in these mice, as it may be that altering the size 

of visual cortex does not show as much of a behavioral impact as altering somatosensory or 

motor cortex because mice rely less on vision than on other senses.  However, our findings 

suggest that although there may be an ideal size for some functional areas, a reduced primary 

visual area is sufficient for normal visual function in mice. 
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4.0  A ROLE FOR TLX IN REGULATING THE PROPERTIES OF DORSAL 

PROGENITORS 

4.1 INTRODUCTION 

Projection neurons in the cerebral cortex are generated in a precisely timed manner from 

progenitor cells (PCs) located adjacent to the ventricle in the ventricular zone (VZ) and 

subventricular zone (SVZ) (Bystron et al., 2008).  Early during development, this population 

consists of multipotent PCs termed neural epithelial cells (Rakic, 2003).  At the onset of 

neurogenesis a proliferative population appears known as radial glia progenitor cells (RGCs) or, 

alternatively, as apical PCs.  These bipolar cells extend processes to the ventricular and pial 

surfaces and divide at the ventricular surface to produce PCs, neurons, and later glia, directly or 

indirectly giving rise to the majority of cortical neurons (Malatesta et al., 2000; Hartfuss et al., 

2001; Noctor et al., 2001; Heins et al., 2002; Noctor et al., 2002; Malatesta et al., 2003; Anthony 

et al., 2004).  In mice, cortical neurons are generated between E11 and E17, during which time 

these apical PCs go through eleven cell cycles (Takahashi et al., 1995b).  At each division the 

progenitor can either undergo a proliferative division, to make two progenitors, or an asymmetric 

neurogenic division, to make a progenitor and a neuron (McConnell, 1995).  Early during 

development, divisions are predominantly proliferative, with neurogenic divisions appearing at 

the onset of neurogenesis (Haubensak et al., 2004).  As neurogenesis progresses, the proportion 
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of cells leaving the cell cycle through neurogenic divisions increases, depleting the PC 

population from mid neurogenesis (Caviness and Takahashi, 1995; Noctor et al., 2004).  At the 

end of neurogenesis (E18.5 in the mouse), RGCs begin to retract their processes, translocate 

outside the VZ, and transform into astrocytes (Voigt, 1989; Edwards et al., 1990). 

A secondary proliferative population appears as early as E11.5 in mice (Haubensak et al., 

2004; Attardo et al., 2008; Noctor et al., 2008), with this population distinguishable as the SVZ 

by E13.5.  These cells, termed intermediate progenitor cells (IPCs) or basal PCs, are generated 

by asymmetric divisions of apical PCs to produce an apical PC and an IPC that migrates to the 

SVZ (Haubensak et al., 2004; Miyata et al., 2004; Noctor et al., 2004; Attardo et al., 2008; 

Noctor et al., 2008).  IPCs are characterized by a multipolar morphology and basal mitosis away 

from the ventricle (Haubensak et al., 2004; Miyata et al., 2004; Noctor et al., 2004), and they 

express a unique set of genes, including Svet1, Tbr2, and Cux1/2 (Tarabykin et al., 2001; Nieto et 

al., 2004; Zimmer et al., 2004; Englund et al., 2005).  IPCs can undergo a limited number of 

symmetric proliferative divisions (1-3) to produce more IPCs, but they mainly undergo 

symmetric divisions to produce neurons (Haubensak et al., 2004; Miyata et al., 2004; Noctor et 

al., 2004).  IPCs were initially thought to produce specifically upper-layer neurons, as this 

population undergoes significant expansion from mid-neurogenesis when upper layer neurons 

are being born, and genes such as Svet1 and Cux1/2 that are expressed by IPCs are similarly 

expressed by upper layer neurons (Tarabykin et al., 2001; Nieto et al., 2004; Zimmer et al., 2004; 

Bystron et al., 2008).  Although IPCs are critical for the production of upper layer neurons, more 

recent studies have suggested that IPCs make a significant contribution to all cortical layers 

(Haubensak et al., 2004; Englund et al., 2005; Sessa et al., 2008; Kowalczyk et al., 2009). 
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Regulation of the type of division made by PCs, and thus the generation of different 

subtypes of progenitors, is clearly critical for the normal development of the cerebral cortex.  

Neurogenesis is closely tied to the cell cycle number and cell cycle length; with each cell cycle 

the length of G1 and the proportion of cells exiting the cell cycle increase (Caviness et al., 1999).  

Experiments altering the length of the cell cycle suggest that increasing the length of G1 or 

blocking the progression from G1 to S can promote neurogenesis (reviewed by (Ohnuma and 

Harris, 2003; Gotz and Huttner, 2005).  Many molecules have been identified that influence the 

decision to proliferate or differentiate, including β-catenin (Chenn and Walsh, 2002), Emx2 

(Heins et al., 2001), Hes1 (Ishibashi et al., 1994; Ishibashi et al., 1995), Ngn1 (Sun et al., 2001), 

Pax6 (Heins et al., 2002), and Sox2 (Graham et al., 2003; Bani-Yaghoub et al., 2006).  Less is 

known about what specifically influences the production of IPCs.  Tbr2 has recently been 

suggested to promote IPC-producing divisions, with inactivation of Tbr2 favoring a shift from 

these PC-IPC divisions to neurogenic PC-neuron divisions (Arnold et al., 2008; Sessa et al., 

2008).  Ngn2 has also been shown to promote the generation of IPCs from apical PCs as part of a 

transcription factor cascade involved in glutamatergic neurogenesis (Miyata et al., 2004; Britz et 

al., 2006; Hevner, 2006; Kowalczyk et al., 2009).  Conversely, stabilized β-catenin expression in 

neural progenitors expands the RGC population, delaying the maturation of apical PCs into IPCs 

(Wrobel et al., 2007).  However, the precise control of IPC generation is still unclear.   

In this study, we examined the role of the transcription factor tailless (tlx) in progenitor 

cell regulation in the developing dorsal cortex.  Tlx is expressed in forebrain PCs from E8, with 

expression persisting in progenitor populations into adulthood (Monaghan et al., 1995; Shi et al., 

2004).  Evidence from many systems, including adult neural stem cells, the developing retina, 

and the embryonic telencephalon, provide evidence for a role for tlx in regulating proliferation 
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(Stenman et al., 2003b; Roy et al., 2004; Shi et al., 2004; Zhang et al., 2006; Sun et al., 2007; 

Yokoyama et al., 2008; Zhang et al., 2008; Zhao et al., 2009); however, the precise nature of this 

regulation is unclear.  As discussed in Chapter 2, in developing dorsal telencephalon tlx is 

expressed in apical PCs but appears to be downregulated in Tbr2 positive IPCs.  Our lab has 

previously shown that in the absence of tlx the depth and surface area of the cortex is reduced as 

a result of alterations in PC proliferation and neurogenesis during development (Monaghan et al., 

1997; Roy et al., 2002; Land and Monaghan, 2003; Roy et al., 2004).  Early during neurogenesis 

(E9.5-E14.5), tlx null animals show precocious neurogenesis coupled to a decrease in the length 

of the cell cycle.  At mid neurogenesis, the cell cycle begins to slow down, and by E16.5 the cell 

cycle has lengthened to become longer than that of PCs in control littermates.  PCs in the VZ are 

significantly depleted in caudal regions from E14.5, but by E18.5 this reduction is no longer 

apparent.  SVZ cells, which were histologically distinguished from E16.5, are significantly 

reduced at all levels (Roy et al., 2004).  This reduction in the SVZ suggests a likely decrease in 

the IPC population.  In this study, we have used new molecular markers for apical PCs and IPCs 

to more specifically examine changes in these populations in the absence of tlx.  Our findings 

show that Tbr2 positive IPCs are reduced throughout development, suggesting a role for tlx in 

the decision to produce IPCs.   

Neurons in the cortex are derived from PCs in both the dorsal telencephalon, which gives 

rise to glutamatergic projection neurons, and the ventral telencephalon, which gives rise to 

GABAergic interneurons (Marin and Rubenstein, 2001; Rice and Curran, 2001; Schuurmans and 

Guillemot, 2002).  Loss of tlx has been shown to affect both dorsal and ventral PCs (Roy et al., 

2002; Stenman et al., 2003b; Roy et al., 2004).  Furthermore, interneurons derived from ventral 

PCs migrate through the SVZ and intermediate zone, where they have been shown to 
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molecularly interact with dorsal PCs (Marin and Rubenstein, 2001; Tiveron et al., 2006).  In 

order to identify the role of tlx specifically in dorsal PCs we generated mice with a conditional 

knockout of tlx in the dorsal cortex under the control of Emx1-Cre driven recombination.  We 

observed similar changes in PC number and proliferation in these conditional mutants as in null 

animals, which suggests that these effects are due to a requirement for tlx in dorsal PCs and do 

not depend on ventral influence. 

4.2 METHODS 

4.2.1 Animals 

Embryos were obtained from crossings of tlx flox/flox, tlx flox/-, and Emx1-Cre tlx +/- animals 

(Monaghan et al., 1997; Gorski et al., 2002; Belz et al., 2007).  Control animals include the 

genotypes tlx +/-, tlx flox/+, tlx flox/-, Emx1-Cre+ tlx +/-, and Emx1-Cre+ tlx flox/+.  Although a 

transient intermediate phenotype of premature neurogenesis was observed in tlx +/- animals at 

E9.5, no differences were observed between wild-type and heterozygous animals after E11.5 

(Land and Monaghan, 2003; Roy et al., 2004), which suggests the existence of a threshold 

requirement for tlx only during the earliest stages of neurogenesis.  Genotyping was performed 

by PCR as follows: A tail piece was digested in non-ionic detergent and proteinase K (Sigma, 

0.3ng/μl) overnight at 56°C.  Following heat inactivation at 96°C 50ng of DNA was amplified.  

Tlx PCR was performed as previously described in Section 2.2.1 (Monaghan et al., 1997).  Tlx-

flox animals were a gift from G. Schütz (Belz et al., 2007) and were genotyped using the 

following primers and conditions; LoxP 399: 5’-CCT TGT GCC TCC TCT GTC TC-3’, LoxP 
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401: 5’-TCC TTG CAG TCT CTG GGC-3’, LoxP 499: 5’-TTC CCC CTG TTA AAT GCA AG-

3’; 94°C for 5 minutes, 40 cycles of 94°C for 30 seconds, 63°C for 30 seconds, and 72°C for 1 

minute, followed by 72°C for 10 minutes.  PCR products were 181bp for the wild type allele, 

312bp for the floxed allele, and 369bp for the recombined floxed allele.  Emx1-Cre animals were 

a gift from K. Jones (Gorski et al., 2002) and were genotyped using the following primers and 

conditions; Cre 159: 5’-TCG ATG CAA CGA GTG ATG AG-3’, Cre 160: 5’-TTC GGC TAT 

ACG TAA CAG GG-3’, OIMR42: 5’-CTA GGC CAC AGA ATT GAA AGA TCT-3’, 

OIMR43: 5’-GTA GGT GGA AAT TCT AGC ATC ATC C-3’; 94°C for 5 minutes, 30 cycles of 

94°C for 30 seconds, 60°C for 1 minute, and 72°C for 1 minute, followed by 72°C for 10 

minutes.  PCR products were 300bp for the control band and 400bp for the Cre allele. 

 Embryos were collected via caesarian section at embryonic ages from E12.5 to E18.5 and 

processed for cryosectioning or paraffin sectioning as described in Section 3.2.1.  Pregnant dams 

were injected with 5-bromo-2-deoxyuridine (BrdU) (50μg/g body weight), dissolved in sterile 

0.9% NaCl and 0.007M NaOH, 60 minutes prior to embryo harvest.  A single injection at 50μg/g 

body weight results in labeling of 100% of cells in S phase from 15 minutes to two hours 

following injection, without cell toxicity (Miller and Nowakowski, 1988; Nowakowski et al., 

1989; Takahashi et al., 1992). 

4.2.2 Immunohistochemistry 

Immunohistochemistry on frozen and on paraffin sections was performed as described in 

Sections 2.2.3 and 3.2.3.  Antibodies used were mouse anti-BrdU (1:25; Amersham Biosciences, 

Piscataway, NJ); rat anti-Ctip2 (1:500; Abcam); rabbit anti-Cux1 (1:500; Santa Cruz 

Biotechnology, Santa Cruz, CA); mouse anti-GFAP (1:400; Sigma); rabbit anti-Pax6 (1:500; 
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Covance); rabbit anti-Tbr1 (1:1000; Chemicon); rabbit anti-Tbr2 (1:1000; Chemicon); rabbit 

anti-Tlx (1:1000; a gift from Y. Shi, (Li et al., 2008)); mouse anti-Tuj1 (1:1000; Sigma). 

4.2.3 Cell counts 

For quantification of PC number, paraffin sections from caudal regions of the dorsal cortex were 

stained and imaged as described above.  PCs were defined either by lack of expression of 

neuronal marker Tuj1 (E12.5) or by expression of PC subtype markers Pax6 or Tbr2 (E12.5, 

E14.5, E18.5).  For all analyses a 150μm (E12.5 and E14.5) or 200μm (E18.5) wide region of the 

dorsal cortex from three non-adjacent sections was counted by an observer blind to genotype.  

The mean of the three sections per animal was compared between genotypes.  For proliferation 

studies sections were co-labeled with BrdU and the markers described above.  The number of 

PCs and the proportion of PCs that co-label with BrdU (labeling index) were quantified and 

analyzed as described previously (Roy et al., 2004).  Statistical analysis was done using SPSS 

14.0 (SPSS Inc., Chicago, IL).  Data were compared using an unpaired t-test (E12.5) or by one-

way ANOVA followed by Dunnett post-hoc analysis (E14.5, E18.5).  All values are expressed as 

mean ± SEM.  Graphs were generated using GraphPad Prism 4 (GraphPad Software, San Diego, 

CA). 
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4.3 RESULTS 

4.3.1 Functional deletion of tlx occurs by E12.5 in tlxcKO animals  

In the absence of tlx, alterations in proliferation and neurogenesis are observed in both dorsal and 

ventral PCs (Roy et al., 2002; Stenman et al., 2003b; Roy et al., 2004).  Cortical neurons derived 

from both of these PC populations are reduced in tlx null animals, as shown by a loss of 

superficial cortical neurons as well as specific populations of GABAergic neurons (Monaghan et 

al., 1997; Roy et al., 2002; Land and Monaghan, 2003).  Early during neurogenesis (E9.5-E14.5) 

dorsal PCs show precocious neurogenesis coupled to an increased rate of proliferation.  At mid-

neurogenesis the rate of proliferation begins to slow down, and by E18.5 has lengthened to 

become longer than that of PCs in wild type littermates in the caudal VZ and in the SVZ at all 

rostro-caudal levels.  Late PCs (E15.5-birth) become depleted, particularly in the SVZ (Roy et 

al., 2004).  It is unclear whether these changes reflect a role for tlx solely in dorsal PCs or 

whether dorsal PCs are influenced by changes in ventral telencephalon.  In order to address this 

question we generated mice with a conditional knockout of tlx in the dorsal cortex. This was 

achieved by crossing mice with a conditional tlx allele in which exon 2 is flanked by loxP sites 

(Belz et al., 2007; Figure 19A) to the Emx1-IRES-cre line, which has been shown to drive 

recombination in the dorsal pallium from E10.5 (Gorski et al., 2002).  Exon 2 of tlx encodes part 

of the zinc-finger DNA-binding domain (Monaghan et al., 1995), and as a result deletion of this 

exon is expected to prevent the protein from binding to DNA and mediating transcription.  When 

crossed to the R26R reporter strain Emx1-Cre driven recombination is observed in dorsally-

derived PCs and projection neurons but not in ventrally-derived cortical interneurons (Gorski et 

al., 2002).  The conditional tlx mutant mice used in this study will be referred to as tlxcKO.   
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Tlx is expressed in the dorsal telencephalon from E8 (Monaghan et al., 1995).  Emx1 is 

expressed from E9.5 (Simeone et al., 1992), while Emx1-Cre driven recombination is observed 

from E10.5 (Gorski et al., 2002).  Therefore in tlxcKO animals there will likely be some early 

expression of tlx in the dorsal telencephalon prior to Cre-mediated deletion.  In order to 

determine whether cre-mediated recombination of the floxed tlx allele had occurred in embryonic 

tlxcKO brains, we first examined the tlx locus using genomic PCR on tissue from the dorsal and 

ventral telencephalon at E12.5 (Figure 20A); lines in Figure 20B indicate the regions from which 

tissue samples were collected.  Band 2 corresponds to the non-recombined floxed allele, depicted 

in the upper part of Figure 20A, and is present in every tissue sample.  Band 1, which 

corresponds to the recombined floxed allele, is detected only in the presence of the Emx1-Cre 

transgene.  Samples from the dorsal telencephalon do not show complete recombination at least 

in part because they also include tissue from outside of the brain.  The recombined band 

corresponding to the floxed allele present in the sample from the ventral telencephalon likely 

reflects the small areas of recombination observed near the corticostriatal boundary (Gorski et 

al., 2002) (also see Figure 20C, arrow).  In order to verify that Cre-mediated deletion of the tlx 

floxed allele results in the absence of protein, we stained for TLX protein expression in the 

telencephalon at E12.5 (Figure 20B, C).  Staining for TLX reveals that, while TLX expression 

extends into the dorsal cortex in control animals (Figure 20B), in tlxcKO animals TLX expression 

is restricted to the ventral telencephalon (Figure 20C) (n=3).  Patchy expression of TLX is 

observed at the corticostriatal boundary (arrow, Figure 20C).  This TLX antibody was generated 

against the ligand-binding domain of the protein (Li et al., 2008), and therefore the observed  
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Figure 20.  Emx1-Cre mediated recombination of the tlx floxed allele occurs by embryonic day 12.5 

Cre-mediated recombination of the tlx floxed allele results in excision of exon 2, as diagrammed in the upper part of 

A.  Primers used for genomic PCR are indicated in red; triangles indicate loxP sites. Genomic PCR on dorsal and 

ventral forebrain collected from E12.5 embryos (A, bottom) shows the recombined floxed allele (Band 1) in the 

telencephalon of tlxcKO (Emx1+ tlx F/-) animals but not in that of animals without the Emx1-Cre allele (tlx F/- shown 

here).  The band corresponding to the non-recombined floxed allele (Band 2) is present in all samples; Band 3 is a 

non-specific PCR product.  The regions from which dorsal (D) and ventral (V) tissue samples were collected for 

PCR are indicated in B.  Tlx protein expression (red) in the cortex of control (B) and tlxcKO (C) animals at E12.5.  

Tlx is absent from cells in the dorsal cortex of tlxcKO animals with patchy expression at the corticostriatal boundary 

(arrow).  Staining for neuronal markers Tuj1 (green) and Tbr1 (red) in the dorsal cortex at E12.5 shows an increase 

in differentiated neurons in tlxcKO animals (E) as compared to controls (D).  Sections are counterstained with DAPI 

(blue).  Scale bar (in E) = 200μm in B, C; 50μm in D, E. 
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absence of TLX protein expression in conditional mutants indicates that Cre-mediated 

recombination of the floxed allele results in a truncated TLX protein.  In addition, the complete 

deletion of tlx apparent in the dorsal telencephalon suggests that tlx and Emx1-Cre must show 

complete overlap in cells in this region. 

We have shown that TLX protein is absent from the dorsal telencephalon of tlxcKO 

animals at E12.5, which suggests that Cre-mediated recombination of the tlx allele occurs prior 

to this age.  To determine whether functional recombination of tlx has occurred by E12.5 we 

stained for the neuronal markers Tuj1 and Tbr1.  Complete deletion of tlx results in an early 

increase in the size of the preplate that is apparent at E12.5 (Roy et al., 2004).  We observed a 

similar increase in differentiated neurons in the preplate in tlxcKO animals as compared to 

controls (Figure 20D, E) (n=2); whereas the preplate in controls generally contained two to three 

layers of cells, the preplate in tlxcKO animals contained three to four layers of cells with more 

Tuj1-positive cells apparent in the VZ.  This finding indicates that functional recombination of 

the tlx floxed allele has occurred in the dorsal telencephalon prior to E12.5, early enough in 

tlxcKO animals to show a phenotype by this age. 

4.3.2 Tlx expression in dorsal progenitor cells regulates progenitor cell dynamics 

In tlx null animals, total PCs are decreased from E12.5 in intermediate and caudal regions, 

coupled to an increase in the rate of the cell cycle (Roy et al., 2004).  To determine whether this 

is the result of the absence of tlx specifically from dorsal PCs, we counted the number of PCs in 

tlxcKO and control brains at E12.5.  These and all subsequent counts were done in caudal regions 

of the dorsal cortex, which have been shown to be most sensitive to the loss of tlx (Roy et al., 

2004).  At this age total PCs were identified as DAPI-stained cells that do not label with the pan-
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neuronal marker Tuj1 (Figure 21A, B).  Total PCs were reduced in number by 12% in tlxcKO 

animals (283.1 ± 12.4 in controls versus 250.2 ± 2.3 in tlxcKO animals, n=5, p<0.05; Figure 21C), 

similar to the 12% reduction in caudal PCs previously reported for tlx null animals (Roy et al., 

2004).  Previous studies identified a significant reduction in cells in the SVZ from E16.5 (Roy et 

al., 2004), which suggests a particular deficit in the production of intermediate progenitor cells 

(IPCs).  With the molecular markers now available we were able to examine this population 

much earlier during development.  At E12.5, Tbr2 expression labels IPCs as well as a subset of 

preplate neurons (Figure 21D, E) (Bulfone et al., 1999; Englund et al., 2005).  Tbr2-positive cells 

are reduced by 35% in tlxcKO animals as compared to controls (80.2 ± 10.3 in controls versus 

52.1 ± 2.3 in tlxcKO animals, n=4, p<0.05; Figure 21C).  Given that the preplate has been shown 

to be increased in the absence of tlx, this reduction is likely due to a decrease in IPCs; this 

conclusion is supported by comparing the absolute reduction of total PCs and Tbr2-positive cells, 

both approximately 30 cells.  However, to directly test the hypothesis that apical PCs are not 

altered at E12.5 we counted Tbr2-negative PCs as an approximation of the apical PC population.  

Although the Tbr2-negative population showed a slight reduction in number, the difference was 

not significant (230.5 ± 6.8 in controls versus 216.3 ± 7.3 in tlxcKO animals, n=4, p=0.20; Figure 

21C).  These results therefore suggest that at E12.5 Tbr2-positive IPCs are significantly reduced 

in the tlxcKO dorsal telencephalon while apical PCs are unaffected. 

Changes in the size of the PC population could result from changes in proliferation, 

differentiation, or cell death.  Previous studies have associated this reduction in the PC 

population with an early increase in neurogenesis and in the rate of proliferation (Roy et al., 

2004).  To determine whether PCs in tlxcKO animals show changes in proliferation, timed-

pregnant dams were given short-term injections of BrdU, a thymidine analog that is incorporated 
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into cells in S phase (Miller and Nowakowski, 1988; Nowakowski et al., 1989; Takahashi et al., 

1992).  This was used to determine the proportion of cells in S-phase during the labeling period 

(defined as the labeling index, LI).  No significant difference in the LI of total PCs was observed 

at E12.5 in tlxcKO animals as compared to controls (n=5, p=0.40; Figure 21F).  Previous studies 

have found no changes in cell death in tlx null animals (Roy et al., 2004; Li et al., 2008); 

therefore, although cell death was not examined in tlxcKO animals, we propose that it is unlikely  

 

 

Figure 21.  Progenitor cells are decreased in tlxcKO animals at E12.5 

Sections through control (A, D) or tlxcKO (B, E) brains at E12.5 show staining for BrdU (green) to label proliferating 

cells and either Tuj1 (red, A, B) to label cortical neurons or Tbr2 (red, D, E) to label intermediate progenitor cells 

and a subset of preplate neurons.  Both total progenitor cells (Tuj1-negative) and Tbr2-positive cells are significantly 

decreased in number at E12.5 (C).  The labeling index of total progenitor cells is not altered in tlxcKO animals as 

compared to controls (F).  Sections are counterstained with DAPI (blue).  *p<0.05.  Scale bar (in E) = 30μm. 
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to be altered.  Hence, we propose that the observed reduction in Tbr2 positive cells, coupled with 

the increase in differentiated neurons, is due to a change in differentiation; we hypothesize that at 

this age neurogenic divisions are being made at the expense of IPC-producing divisions. 

In tlx null animals the PC population continues to be depleted as the brain develops, with 

the reduction in total PC number even greater by E14.5.  Previous studies of PC number and 

proliferation did not differentiate between the VZ and SVZ until E16.5, as these populations can 

be difficult to distinguish earlier using histological methods due to mixing of these populations at 

the boundary (Takahashi et al., 1995a).  Furthermore, the SVZ is a mixed population, containing 

migrating excitatory and inhibitory interneurons in addition to IPCs (Marin and Rubenstein, 

2001; Tarabykin et al., 2001; Haubensak et al., 2004; Noctor et al., 2004; Bystron et al., 2008).  

Therefore, we used molecular markers to specifically identify apical PCs and IPCs in both tlxcKO 

and tlx null animals as compared to controls.  Apical PCs can be identified using the marker 

Pax6 (Figure 22A-C) (Gotz et al., 1998), and by E14.5 IPCs can be identified using the marker 

Tbr2 (Figure 22E-G) (Englund et al., 2005).  Neither Pax6-positive cell number nor Tbr2-

positive cell number showed a significant effect of genotype as determined by one-way ANOVA 

(Pax6: F2,6=2.43, p=0.17, n=3; Tbr2: F2,6=1.31, p=0.34, n=3; Figure 22D).  The n of three may 

be too low to see a significant effect, as there appears to be a trend towards a decrease in Tbr2-

positive cells in both conditionals and nulls (control: 150.0 ± 9.5; tlxcKO: 126.0 ± 8.6; null: 132.0 

± 13.9).  Proliferation was examined by determining the LI, as previously described.  No 

difference in LI was observed for either Pax6-positive or Tbr2-positive cells (Pax6: F2,6=1.49, 

p=0.30, n=3; Tbr2: F2,6=1.86, p=0.23, n=3; Figure 22H).   

At E18.5 reductions in cell number are observed in the SVZ of tlx null animals at all 

rostrocaudal levels, while changes in VZ cell number are only observed at intermediate levels  
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Figure 22.  Progenitor cells at E14.5 

Sections through control (A, E), tlxcKO (B, F), and tlx null (C, G) brains at E14.5 show staining for BrdU (green) to 

label proliferating cells and either Pax (red, A-C) to label ventricular zone progenitors or Tbr2 (red, E-G) to label 

intermediate progenitors.  No significant differences by genotype were observed either for number of Pax6- or Tbr2-

positive cells (D) or labeling index (H).  Sections are counterstained with DAPI (blue).  Scale bar (in G) = 30μm. 

 

(Roy et al., 2004); this is consistent with our observations at E12.5 and E14.5 that Tbr2 positive 

IPCs seem to be specifically affected in the absence of tlx.  Interestingly, in tlx null animals the 

rate of proliferation, which is increased early, slows down such that by E18.5 cells in the caudal 

VZ and all regions of the SVZ are cycling more slowly than those of control littermates (Roy et 

al., 2004).  We examined PC number and proliferation at E18.5 in the dorsal cortex of both tlxcKO 

and tlx null animals using Pax6 as a marker for apical PCs (Figure 23A-C) and Tbr2 as a marker 

for IPCs (Figure 23E-G).  No significant difference by genotype was observed for the total 
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number of Pax6-positive cells (F2,9=1.673, p=0.24, n=4; Figure 23D).  However Tbr2-positive 

IPCs did show a significant effect of genotype (F2,9=8.15, p<0.01, n=4; Figure 23D).  Post-hoc 

analysis identified a significant 32% decrease in Tbr2-positive cells in tlx null brains as 

compared to controls (p<0.01, n=4), whereas the 18% decrease in tlxcKO brains as compared to 

controls is not quite significant (p=0.09, n=4) (control: 40.4 ± 3.1; tlxcKO: 33.2 ± 2.0; null: 27.4 ± 

1.3).  Although Pax6-positive cells did not differ in cell number, a significant effect of genotype 

was observed for the LI (F2,9=7.70, p<0.05, n=4; Figure 23H).  Post-hoc analysis showed a 

significant 29% decrease in the LI of Pax6-positive cells in tlxcKO animals as compared to 

controls (p<0.01, n=4) and a 21% decrease in tlx null animals as compared to controls (p<0.05, 

n=4) (control: 0.21 ± 0.01; tlxcKO: 0.15 ± 0.01; null: 0.16 ± 0.01). 

 Overall these studies indicate that tlxcKO and tlx null animals show similar changes in PC 

number and proliferation during development, which suggests that these effects are due to a 

requirement for tlx in dorsal PCs.  This study used molecular markers to specifically identify and 

characterize apical PCs and IPCs.  To summarize, total PCs are reduced at E12.5 in tlxcKO 

animals as compared to controls, similar to the decrease previously reported for tlx null animals.  

At later ages no difference in the cell number of Pax6-positive apical PCs was observed, while 

Tbr2-positive IPCs seem to be reduced throughout development.  A significant decrease in LI 

was observed in Pax6-positive cells at E18.5 for both tlxcKO and tlx null animals as compared to 

controls, suggesting that the cell cycle of apical PCs is longer.  Together with the finding that tlx 

is not coexpressed with Tbr2 (see Chapter 2), these results suggest that tlx has a role in dorsal VZ 

PCs in promoting divisions that produce IPCs. 
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Figure 23.  Progenitor cells at E18.5 

Sections through control (A, E), tlxcKO (B, F), and tlx null (C, G) brains at E18.5 show staining for BrdU (green) to 

label proliferating cells and either Pax (red, A-C) to label ventricular zone progenitors or Tbr2 (red, E-G) to label 

intermediate progenitors.  Although no difference was observed in number of Pax6-positive cells, Tbr2-positive 

cells were significantly reduced in tlx null animals as compared to controls (D).  The labeling index of Pax6-positive 

cells was significantly decreased in both tlxcKO and tlx null animals as compared to controls (H).  No significant 

differences were observed in the labeling index of Tbr2-positive cells.  Sections are counterstained with DAPI 

(blue).  * p<0.05; ** p<0.01.  Scale bar (in G) = 30μm. 

4.3.3 Deletion of tlx from dorsal progenitors results in decreased cortical thickness by 

birth 

The reduction in the number of IPCs observed in both tlxcKO and tlx null animals led us to 

hypothesize that the cortical plate would be reduced in size, with superficial layers specifically 

affected.  Indeed, it has previously been shown that, although lamination in the cortical plate of 

tlx null animals appears to be normal, the cortex is decreased in thickness at all rostrocaudal 
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levels from E16.5 with superficial layers specifically affected (Roy et al., 2002; Land and 

Monaghan, 2003; Roy et al., 2004).  However a reduction in ventrally-derived interneurons 

could contribute to this decrease.  To determine the role of tlx specifically in dorsal PCs in the 

formation of the cortical plate, we examined cortical thickness and lamination of both tlxcKO and 

tlx null animals at E18.5 using several layer-specific markers (Figure 24).  The transcription 

factor Tbr1 is strongly expressed by glutamatergic cells in the subplate and layer VI of the 

cerebral cortex (Figure 24A-C) (Bulfone et al., 1995; Hevner et al., 2003; Kolk et al., 2005).  

Ctip2 is a C2H2 zinc finger protein highly expressed by a subset of cells in layer V (Figure 24A-

C) (Avram et al., 2000; Arlotta et al., 2005).  No difference was observed in the expression 

pattern of these genes, and these layers appear similar in size in both tlxcKO and null animals as 

compared to controls (Figure 24A-C; n=3), which indicates that deep layers are appropriately 

specified.  We examined superficial layers using immunostaining against the transcription factor 

Cux1, which at E18.5 is expressed by cells in upper cortical layers II/III and IV as well as cells 

in the intermediate zone and proliferative region (Figure 24D-F) (Nieto et al., 2004; Zimmer et 

al., 2004).  The position of Cux1-positive cells is similar across all genotypes, which indicates 

that superficial layers are appropriately specified (Figure 24D-F; n=3).  However, superficial 

layers appear reduced in size in both tlxcKO and null animals as compared to controls.  Therefore, 

as predicted, the cortex is reduced in thickness at E18.5 in both conditional and null mutants, 

with superficial layers specifically affected.   

 As PCs mature they produce cells in a specific order, first deep layer neurons, then upper 

layer neurons, and finally astrocytes (Bayer and Altman, 1991).  At the end of neurogenesis near 

birth, as PCs transition into the production of glia, we observed co-expression of tlx with markers 

of glia (Chapter 2), which suggests a possible role in gliogenesis.  Furthermore, we have shown  

 94 



 

Figure 24.  Cortical thickness and lamination at E18.5 

At E18.5 the thickness of the cerebral wall is similarly reduced in both tlxcKO (B, E) and tlx null (C, F) animals as 

compared to controls (A, D).  Deep layers, as shown by Tbr1 (green, A-C) staining of subplate and layer VI cells 

and Ctip2 (red, A-C) staining of layer V cells, appear similar in size for all genotypes.  Superficial layers, as shown 

by Cux1 (red, D-F) staining for superficial layers II/III and IV, is reduced in size in both tlxcKO and tlx null brains as 

compared to controls.  Sections are counterstained with DAPI (blue).  Scale bar (in F) = 50μm. 

 

 

Figure 25.  GFAP is prematurely expressed in the cortex in the absence of tlx 

In controls animals at E18.5 GFAP expression (red) is only detected in midline glia (arrow).  In both tlxcKO (B) and 

tlx null (C) animals GFAP expression is detected throughout the ventricular zone of the dorsal cortex (lateral extent 

of expression marked by arrowhead).  Scale bar (in C) = 100μm. 
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here that at E18.5 the cell cycle is increased in apical PCs in both tlxcKO and tlx null animals, 

which indicates that the PCs that produce astrocytes are in some way altered in the absence of 

tlx.  It has previously been shown that astrocytes are increased in the subventricular zone and the 

dentate gyrus of adult tlx null animals (Shi et al., 2004).  Results from our lab show that this 

effect is of developmental origin, as in the absence of tlx, radial glia prematurely express mature 

glial markers and a significant increase in astrocytes is apparent from as early as postnatal day 2 

(Kuznicki and Monaghan, unpublished results).  In order to determine whether this is due to a 

role for tlx in dorsal progenitors, we examined the expression of the astrocyte marker glial 

fibrillary acidic protein (GFAP) at E18.5.  Whereas GFAP expression is restricted to midline glia 

in controls (Figure 25A, arrow), GFAP is expressed by radial glia in the dorsal VZ in both tlxcKO 

and tlx null brains, extending across to the corticostriatal boundary (Figure 25B, C, arrowheads) 

(control, tlxcKO n=3; null, n=2).  This finding suggests that the premature activation of GFAP in 

radial glia is due to the absence of TLX from dorsal PCs. 

4.4 DISCUSSION 

The formation of the mature cerebral cortex requires precise control of generation and 

proliferation of different subtypes of neural progenitor cells (PCs).  In the absence of tlx changes 

in both dorsal and ventral PC number and proliferation during development lead to reductions in 

adult structures including the cerebral cortex and hippocampus (Monaghan et al., 1997; Roy et 

al., 2002; Land and Monaghan, 2003; Stenman et al., 2003b; Roy et al., 2004).  In this study we 

have shown that absence of tlx specifically from dorsal PCs results in a reduction in total PC 

number at E12.5, with Tbr2-positive intermediate progenitor cells (IPCs) reduced throughout 
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embryonic development.  Proliferation of Tbr2-positive cells was not altered in the absence of 

tlx, although a significant decrease in LI was observed in Pax6-positive cells at E18.5 in tlxcKO 

and tlx null animals as compared to controls.  By E18.5, these changes in PC dynamics have 

resulted in a reduction in the thickness of the cortical plate, specifically superficial layers.  

Together with the finding that tlx is not coexpressed with Tbr2 (see Chapter 2), this outcome 

suggests that tlx has a role in dorsal apical PCs in the decision to produce IPCs and in the normal 

development of the cerebral cortex. 

At all ages examined, similar changes in PC number and proliferation were observed in 

both tlxcKO and tlx null animals.  Animals of both genotypes furthermore showed a reduction in 

cortical thickness by E18.5 as compared to controls, with superficial cortical layers specifically 

affected, and premature expression of astrocyte marker GFAP.  This suggests a requirement for 

tlx expression specifically in dorsal PCs, and further indicates that ventrally-derived cells do not 

have a significant impact on PC dynamics during embryogenesis in tlx null animals.  Specific 

changes in cell number and proliferation have previously been described in tlx null animals 

throughout development (Roy et al., 2004).  Unlike this previous study, which histologically 

identified the VZ and from E16.5 the SVZ, we used the molecular markers Pax6 and Tbr2 to 

specifically identify apical PC and IPC populations, respectively.  This is an important difference 

because, in addition to IPCs, the SVZ also contains radially migrating glutamatergic neurons and 

tangentially migrating interneurons (Marin and Rubenstein, 2001; Tarabykin et al., 2001; 

Haubensak et al., 2004; Noctor et al., 2004; Bystron et al., 2008).  Furthermore, recent evidence 

has shown that some Tbr2-positive IPCs are located within the VZ (Englund et al., 2005; Noctor 

et al., 2008; Kowalczyk et al., 2009).  However, despite these differences, similar changes in PC 

number were observed for each study.  At E12.5 we identified a 12% reduction in total PCs in 
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tlxcKO animals, similar to the 12% reduction previously reported in tlx null animals (Roy et al., 

2004).  We found that this reduction is due at least in part to a significant reduction in Tbr2-

positive IPCs.  By E14.5 Tbr2-positive cells seem to be reduced while Pax6-positive apical PCs 

are unaffected, although increasing the N and confirming these findings by examining the late 

G2-M phase marker phosphohistone H3 (Zeitlin et al., 2001) will help to elucidate these results.  

A 23% decrease in the number of cells in the VZ at E14.5 was previously reported in nulls, 

although at this age the SVZ was not separately quantified (Roy et al., 2004).  At E18.5 we 

identified a significant decrease in the Tbr2-positive population (18% in conditional animals, 

32% in null animals, as compared to controls), with no change in apical Pax6 positive 

progenitors.  This result again matches the previously reported 21% decrease in the SVZ of tlx 

null animals at E18.5 (Roy et al., 2004).   

Our findings differ from those previously reported with respect to proliferation, as 

determined by the labeling index (LI).  The LI can be affected due to changes in either the rate of 

the cell cycle or in the number of cells that are cycling.  The LI was previously shown to be 

significantly increased in the caudal VZ at E12.5 and E14.5 in tlx null animals as compared to 

controls, but significantly decreased in both the VZ and SVZ by E18.5 (Roy et al., 2004).  This 

was interpreted to indicate that the cell cycle is faster during early neurogenesis but slows to 

become slower than that of control PCs by E16.5.  We observed a significant decrease in the LI 

of Pax6 positive cells at E18.5, with no change in the LI of Tbr2 positive cells.  No significant 

changes were observed at any other age.  At early stages, differences between our results for 

conditional anumals and previously reported changes in the LI for nulls could be due to the fact 

that tlx is not knocked out quite as early in conditionals.  Early expression of tlx in tlxcKO animals 

might therefore result in a less robust phenotype.  In support of this hypothesis, the early increase 
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in neurogenesis does not seem as dramatic in conditional mutants as in tlx null mutants.  At 

E14.5 our data show a trend towards a decrease in the LI in both populations.  A recent study 

from another group found a similar decrease in the LI of total PCs at E14.5 (Li et al., 2008), 

supporting our current results.  This second study identified PCs using the proliferative marker 

Ki67, whereas Roy and colleagues identified the proliferative region histologically (Roy et al., 

2004).  The total cell counts used by Roy and colleagues to calculate the LI at E14.5 could 

therefore have included migrating neurons and interneurons.  A decrease in migrating 

interneurons in tlx null brains could decrease the total cell count, resulting in an increase in the 

calculated LI.  Overall, the increased length of the cell cycle in apical PCs later during 

neurogenesis in tlx mutants, together with the premature expression of GFAP at E18.5, suggests 

that in the absence of tlx PCs mature faster. 

Tlx is expressed in apical Pax6-positive PCs but not Tbr2-positive IPCs (see Chapter 2), 

but in the absence of tlx the most significant effect is the reduction of IPCs throughout 

development.  We therefore propose that tlx has an important role during development in 

determining the type of division made by apical PCs, in particular promoting divisions that 

produce IPCs.  Early during development, we have shown that neurons are increased, IPCs are 

reduced, and apical PCs are unaffected in both number and rate of the cell cycle.  Based on these 

findings we propose that early during neurogenesis tlx acts to promote the production of IPCs 

(Figure 26).  It has been shown that knocking out the transcription factor Tbr2 results in a 

phenotype strikingly similar to that observed in tlx mutants.  Inactivation of Tbr2 has been 

suggested to favor a shift from IPC-producing divisions to neurogenic divisions, resulting in an 

early increase in neurogenesis followed by a later decrease in neuronal production due to the 

reduced number of proliferative IPCs (Arnold et al., 2008; Sessa et al., 2008).  The cortex in  
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Figure 26.  Tlx promotes the production of IPCs early during development 

Early during neurogenesis in tlxcKO animals neurons (N) are increased, intermediate progenitor cells (IP) are 

reduced, and radial glia progenitors (P) are unaffected in cell number and proliferation.  We propose that tlx has a 

role in promoting the production of intermediate progenitor cells, and in the absence of tlx neurons are produced at 

the expense of intermediate progenitors. 

 

Tbr2 mutants is reduced in surface area and thickness, with a specific reduction in superficial 

cortical layers although in one study reductions were also seen in deep layers (Arnold et al., 

2008; Sessa et al., 2008).  The olfactory bulbs, commissures, and dentate gyrus are reduced, and 

adult animals exhibit severe aggression and hyperactivity (Arnold et al., 2008).  These findings 

support the hypothesis that much of the phenotype observed in the absence of tlx could be 

explained by a role in promoting divisions that produce IPCs.  We plan to test this hypothesis 

using 24 hour BrdU injections to examine PC divisions at E14.5.  Li and colleagues examined 

cell cycle exit using a similar method, injecting BrdU on E14.5 and quantifying cell cycle exit 24 

hours later on E15.5, and observed a decrease in the proportion of PCs that re-entered the cell 

cycle in tlx null animals (Li et al., 2008).  However, they quantified total PCs rather than PC 
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subtypes, so their results could either indicate that fewer cells are re-entering the cell cycle as 

apical PCs, or that fewer IPCs are being generated.  We hypothesize that in the absence of tlx a 

greater proportion of PCs will produce neurons (Tuj1-positive cells) at the expense of producing 

IPCs (Tbr2-positive cells). 

By the end of neurogenesis (E18.5) the number of apical radial glia PCs is still 

unaffected, whereas both IPCs and neurons are reduced.  This could reflect a continued role for 

tlx in promoting divisions that produce IPCs over those that produce neurons directly (Figure 

27).  However, we have also shown that at this age apical PCs cycle more slowly.  This would  

 

 

Figure 27.  Tlx promotes the production of IPCs throughout neurogenesis 

During late neurogenesis in tlxcKO animals, intermediate progenitor cells (IP) and neurons (N) are decreased while 

apical radial glia progenitors (P) are unaffected in number.  In addition at this later stage radial glia progenitors cycle 

more slowly.  We propose that tlx has a role during late neurogenesis in promoting the production of intermediate 

progenitors, as described during early neurogenesis.  This is likely due to a role in both influencing cell division type 

and, either directly or indirectly, regulating proliferation. 
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also contribute to decreased production of both IPCs and neurons, because a progenitor cycling 

more slowly would divide fewer times and produce fewer progeny.  It is not clear whether this 

change in the cell cycle is due to a direct role for tlx or is a secondary effect of early changes in 

PCs.  Regardless, our data indicate that there is an important role for tlx in the production of IPCs 

throughout development (Figure 27). 

How might tlx influence PC divisions?  Tlx has been shown in the retina and cortex to 

regulate proliferation through the transcriptional repression of cell-cycle proteins, including 

cyclin-dependent kinase inhibitors p21 and p27Kip1, and the tumor suppressor gene Pten 

(Miyawaki et al., 2004; Zhang et al., 2006; Sun et al., 2007; Li et al., 2008; Yokoyama et al., 

2008; Zhang et al., 2008).  These proteins negatively regulate stem cell proliferation in part 

through the repression of downstream targets such as CyclinD1, which is important for the G1 to 

S transition of the cell cycle (Sherr and Roberts, 1995).  In tlx null animals these negative cell 

cycle regulators are upregulated, and CyclinD1 is decreased (Miyawaki et al., 2004; Zhang et al., 

2006; Sun et al., 2007; Li et al., 2008; Yokoyama et al., 2008; Zhang et al., 2008).  Repression 

by TLX is mediated by interactions through its ligand-binding domain with co-repressors, such 

as atrophin1, histone deacetylases (HDAC3 and HDAC5), and the histone demethylase LSD1 

(Zhang et al., 2006; Sun et al., 2007; Yokoyama et al., 2008).  An increase in p21 expression has 

been shown to correlate with exit from the cell cycle during cortical development (Siegenthaler 

and Miller, 2005).  Foxg1 haploinsufficient mice exhibit a decrease in the production of Tbr2-

positive IPCs that is associated with an increase in the expression of p21 predominantly in the 

VZ (Siegenthaler et al., 2008).  The number of apical PCs is unaffected, leading the authors to 

conclude that p21 expression promotes neurogenic divisions at the expense of IPC-producing 

divisions.  These results suggest that repression of p21 by TLX in apical PCs is one potential 
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mechanism by which TLX could promote the production of IPCs.  Repression by TLX of 

p27Kip1, which is also known to promote cell cycle exit (Caviness et al., 2003; Tarui et al., 2005), 

could be a factor as well. 

In addition to an important role in the production of IPCs tlx appears to have an 

additional role in delaying the maturation of RGCs, as evidenced by the premature expression of 

glial markers in the absence of tlx.  This premature gene expression is coupled to an increase in 

the length of the cell cycle in apical RGCs at E18.5.  It is unclear whether this later phenotype is 

due to a direct role for tlx or a secondary effect due to an altered environment.  Tlx has been 

shown in the retina to directly regulate astrogenesis (Miyawaki et al., 2004; Uemura et al., 2006), 

which suggests that tlx may have a similar function in regulating astrogenesis in the embryonic 

cortex.  Although tlx has been shown to suppress transcription of glial genes such as GFAP in 

adult neural stem cells, the observed coexpression of tlx with these same glial markers (Chapter 

2) suggests that tlx may prevent premature gliogenesis through other mechanisms.  Ngn1, which 

promotes neurogenesis through its function as a transcriptional activator, has been shown to 

repress gliogenesis by binding and sequestering p300/CBP, a complex necessary for the 

transcription of gliogenic genes, and by suppressing the JAK-STAT glial signaling pathway (Sun 

et al., 2001).  Tlx could similarly have a dual role, perhaps preventing gliogenesis through an as 

of yet unidentified mechanism apart from its role as a transcriptional repressor. 

 Here we have identified tlx as an important regulator of the production of intermediate 

progenitor cells as well as the maturation of RGCs in the dorsal telencephalon.  Although tlx is 

not coexpressed with IPC marker Tbr2, Tbr2-positive cells are significantly reduced from E12.5.  

We propose that during development tlx acts in apical PCs through regulation of cell cycle 
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proteins to promote divisions that produce IPCs, thus indirectly regulating the number of neurons 

in the cerebral cortex. 
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5.0  TLX EXPRESSION IN DORSAL PROGENITORS IS REQUIRED FOR THE 

DEVELOPMENT OF DORSALLY DERIVED STRUCTURES AND FOR THE 

NORMAL EXPRESSION OF ANXIETY 

5.1 INTRODUCTION 

Alterations in brain development leading to abnormalities in brain structure, connections, and 

function have been associated with a wide variety of neuropsychiatric disorders, including 

schizophrenia, autism, and mood disorders such as anxiety and depression (Holmes et al., 2003a; 

Levitt et al., 2004; Chen et al., 2006a; Chen et al., 2006b; Clapcote et al., 2007; Courchesne et 

al., 2007; Geschwind and Levitt, 2007; Serene et al., 2007; Chubb et al., 2008; Tseng et al., 

2008a).  Although modeling symptoms of these and other disorders in rodents have identified 

many structures and neurotransmitter systems that are involved in specific behaviors, the precise 

mechanisms underlying the development of behavior are still unclear.  Many of the studies 

identifying brain regions involved in behavior have either used lesions, which can disrupt not 

only the targeted cells but fibers that pass through the area or other connected cells due to the 

indirect effects of cell death, or localized drug injection (Moser and Moser, 1998; Bannerman et 

al., 2004b; Sheehan et al., 2004).  Importantly, such perturbations in a fully developed adult 

animal may not entirely reflect the developmental mechanisms that underlie pathological 

behavior. 
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In order to examine how subtle changes during development can lead to the deficits in 

specific brain structures and behaviors, we focused on the role of the nuclear receptor tlx 

(Nr2e1).  Disruption of the tlx locus in mice results in a broad array of both anatomical and 

behavioral deficits reflecting the critical role for tlx in the development of adult brain structures 

derived from these regions.  In the absence of tlx, alterations in progenitor cell proliferation and 

neurogenesis during development results in a reduction in the surface area and thickness of the 

cerebral hemispheres, with the 20% reduction in thickness due to a specific reduction in 

superficial cortical layers (Monaghan et al., 1997; Roy et al., 2002; Land and Monaghan, 2003; 

Roy et al., 2004).  As described in detail in Chapter 3, caudal areas of the cortex, such as primary 

visual cortex, are disproportionately reduced relative to the reduction in total surface area.  

Similarly, the striatum is reduced in size due to impaired proliferation in the ventral 

telencephalon during development (Stenman et al., 2003b).  Loss of tlx also results in a reduction 

in limbic and rhinencephalic structures, including the olfactory, infrarhinal, and entorhinal 

cortex, the islands of Calleja, the amygdala, and the dentate gyrus (Monaghan et al., 1997; 

Stenman et al., 2003a; Shi et al., 2004).  Within the amygdala, the lateral and basolateral nuclei 

are substantially decreased in size and the morphology of the interstitial nucleus is altered, but 

the size of the central nucleus seems relatively normal (Stenman et al., 2003a).  Granule cells in 

the tlx null dentate gyrus are reduced in number and connect abnormally to CA3, resulting in an 

ectopic infrapyramidal mossy fiber projection (Monaghan et al., 1997).  Dentate gyrus granule 

cells also show changes in dendritic structure and impairment in long-term potentiation, both of 

which are observed in the dentate gyrus but not in area CA1 (Christie et al., 2006).  Hence, 

global deletion of tlx during development leads to profound changes in adult anatomy, in 

particular many limbic structures. 
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The limbic system is important for the control of emotional behavior as well as learning 

and memory (Kandel et al., 1995).  The disruption to many components of the limbic system as 

well as other brain structures in tlx-deficient animals results in distinct behavioral abnormalities, 

including severe aggression, hyperexcitability, abnormal maternal instincts, reduced anxiety, 

reduced spatial learning, deficits in contextual and cued fear conditioning, and late-onset 

epilepsy (Monaghan et al., 1997; Roy et al., 2002; Young et al., 2002; Belz et al., 2007; Zhang et 

al., 2008).  Study of behavior in tlx-deficient animals is complicated by defects in the 

development of the retina and the optic nerve that result in severe visual deficits (Yu et al., 2000; 

Young et al., 2002; Miyawaki et al., 2004; Zhang et al., 2006).  To identify behaviors that result 

from changes in the brain itself, as opposed to behaviors that result from blindness, Belz and 

colleagues (2007) generated tlx mutant mice with intact vision by using a calcium/calmodulin-

dependent protein kinase II alpha (CAMKIIα) gene-driven Cre recombinase to delete tlx from 

the developing brain but not the eye.  CAMKIIα-Cre driven recombination was observed 

throughout the brain from embryonic day 12.5 (E12.5) but was absent from the eye, and in 

mutant animals tlx mRNA was strongly reduced at E12.5 and hardly detectable by E14.5.  The 

brains of CAMKIIα-tlxcKO conditional animals showed the same structural abnormalities as 

previously observed in null animals, however eye morphology and vision appeared normal (Belz 

et al., 2007).  These mice retained the severe aggression and reduced anxiety observed in tlx null 

mutants but did not show any impairment in either contextual or cued fear conditioning or spatial 

learning as assayed by the Morris water maze (Belz et al., 2007).  The finding that blindness of 

the tlx null mutants was the cause of poor performance in fear conditioning was confirmed by 

another group using a Nestin-driven Cre, which drives recombination in progenitors throughout 

the developing CNS as early as E9 (Zimmerman et al., 1994; Tronche et al., 1999).  These 
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Nestin-tlxcKO conditional mutants showed normal retinal morphology and vision but deficits in 

brain development similar to null mutants (Zhang et al., 2008).  However, despite intact vision 

these mice showed impaired performance in the Morris water maze similar to that of tlx null 

animals (Monaghan et al., 1997; Zhang et al., 2008).  This difference could be due to tlx being 

deleted earlier in Nestin-tlxcKO animals (promoter drives expression from E9, but knockout not 

characterized in detail (Zimmerman et al., 1994)) than in CAMKIIα-tlxcKO animals (E12.5), 

resulting in a more severe phenotype.  In addition, the Nestin-tlxcKO mice were tested with a more 

challenging version of the Morris water maze than the CAMKIIα-tlxcKO mice, which could also 

explain this discrepancy.  The CAMKIIα-tlxcKO mice were trained for one day on a visible 

platform version of the Morris water maze followed by training with a hidden platform, with a 

trial length of 120 seconds (Belz et al., 2007).  Nestin-tlxcKO mice began with hidden platform 

training, and were allowed only 40 seconds per trial to find the hidden platform (Zhang et al., 

2008).  This suggests that mice deficient for tlx in the developing brain can show some degree of 

spatial learning but it is impaired.  Overall, tlx has been shown to have an important role in the 

development of a variety of behaviors.  However, the precise nature of this role, and the link 

between anatomical and behavioral abnormalities in the absence of tlx, have not yet been 

determined. 

In addition to its role during development, tlx has also been shown to regulate the 

proliferation of adult neural stem cells in both the subgranular zone of the dentate gyrus and the 

subventricular zone (Shi et al., 2004; Liu et al., 2008; Zhang et al., 2008).  Adult neurogenesis 

has been implicated in a variety of neurological disorders and treatments, with a particular role in 

learning and memory (Sahay and Hen, 2007; Kaneko and Sawamoto, 2009).  In order to examine 

the role of tlx-expressing adult neural stem cells in behavior Zhang and colleagues (2008) used a 
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tamoxifen-inducible Cre to remove tlx in the adult animal, resulting in reduced proliferation and 

neurogenesis in the dentate gyrus but otherwise normal brain morphology.  These animals 

exhibit normal contextual fear conditioning and anxiety but show delayed learning in the Morris 

water maze task as well as the reversal version of the task.  Given the role for tlx in maintaining 

adult neural stem cells (Shi et al., 2004; Liu et al., 2008; Zhang et al., 2008), these results suggest 

that these tlx-positive neural stem cells have a role in spatial learning. 

During development tlx is expressed throughout the forebrain, with expression identified 

in PCs in the dorsal and ventral telencephalon and in the diencephalon as well as in a subset of 

cells in the differentiating field (Chapter 2) (Monaghan et al., 1995; Stenman et al., 2003a).  

Consequently, global disruption of tlx affects a wide variety of structures derived from these 

different regions, including from the dorsal telencephalon the cerebral cortex, the hippocampus, 

and parts of the amygdala; from the ventral telencephalon the striatum, cortical interneurons, and 

the amygdala; and from the diencephalon the hypothalamus (Monaghan et al., 1997; Roy et al., 

2002; Land and Monaghan, 2003; Stenman et al., 2003a; Stenman et al., 2003b; Roy et al., 2004; 

Shi et al., 2004)(Monaghan et al., unpublished results).  All of the tlx mutants generated 

previously have knocked out tlx from PCs throughout the forebrain.  The association between 

distinct behavioral abnormalities and specific anatomical deficits is therefore still very much 

unclear.  Our goal in this study was to dissect the developmental and anatomical origin of 

specific behaviors by generating mice in which tlx is deleted only from a subset of cells, 

specifically from the dorsal telencephalon.  We therefore hypothesized that dorsally-derived 

structures, such as the cerebral cortex and the hippocampus, would be specifically affected.  Loss 

of tlx from dorsal PCs could also indirectly affect structures derived from other parts of the brain 
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through changes in development or in connectivity.  It will thus be important to consider these 

possible effects when interpreting the anatomical and behavioral phenotype of dorsal tlx deletion. 

 We generated mice in which tlx is deleted from dorsal cortical PCs using Emx1-Cre 

driven recombination (tlxcKO; described in chapter 4).  Emx1 expression is observed as early as 

E9.5, with Emx1-driven Cre recombination evident from E10.5 (Gorski et al., 2002).  Crossing 

these Emx1-Cre mice to the R26R reporter strain shows extensive, reproducible Cre-mediated 

recombination in derivatives of the lateral, dorsal, and medial pallium (Gorski et al., 2002).  

Extensive recombination was observed in the hippocampus, entorhinal cortex, and parts of the 

piriform and endopiriform cortex as well as in excitatory neurons and glia but not GABAergic 

neurons in the cerebral cortex.  In the septum, recombination was observed in the 

septohippocampal, septofimbrial, and lateral septal nuclei, with no recombination observed in the 

medial septal area.  In the amygdala, recombination was observed primarily in the lateral, 

basolateral, and basomedial nuclei, with little to no recombination in other areas.  Little 

recombination was observed in subcortical structures, such as the striatum or in regions outside 

of the telencephalon (Gorski et al., 2002). 

 Here we show that Emx1-Cre mediated deletion of tlx from dorsal progenitors results in 

deficits in a subset of the structures affected in the adult null mutant, including the cerebral 

cortex, the hippocampus, the basolateral amygdala, and the septum, with other structures such as 

the striatum and the hypothalamus relatively unaffected.  These conditional mutants exhibit 

behavioral abnormalities including reduced anxiety, reduced depression-like behavior, and 

impaired behavioral flexibility.  However, these animals do not show the hyperexcitability or 

severe aggression characteristic of null mutants, and show no deficits in spatial learning.  This 

 110 



provides a developmental model that allows us to refine our views on the association between 

specific brain structure and behavior. 

5.2 METHODS 

5.2.1 Animals 

Animals were obtained from crossings of tlx heterozygote, tlx flox/flox, and Emx1-Cre tlx +/- 

animals (Monaghan et al., 1997; Gorski et al., 2002; Belz et al., 2007).  Control animals include 

the genotypes tlx flox/+, tlx flox/-, and Emx1-Cre tlx flox/+.  Genotyping was performed by PCR 

as described in Sections 2.2.1 and 4.2.1.  Mice were housed in groups of 2-5 under standard 

laboratory conditions on a 12-hour light/dark cycle with light onset at 7am.  Standard mouse 

food pellets and water were available ad libitum.  The care and handling of these animals was in 

accordance with the University of Pittsburgh Institutional Animal Care and Use committee and 

NIH guidelines. 

 Postnatal brains were fixed by transcardial perfusion with cold PBS followed by 4% PFA 

pH7.4, dissected from the skull, and immersion fixed overnight.  Brains were processed through 

a graded sucrose series (10-20-30%) at 4°C.  Adult brains were sectioned coronally on a 

freezing-sliding microtome at 50μm and collected in PBS.  A subset of brains was dissected 

following perfusion and immersion fixed overnight gently flattened between glass slides.  

Flattened cortices were then sectioned tangentially on a freezing-sliding microtome at 30μm. 
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5.2.2 Immunohistochemistry 

Sections were washed in 50% methanol/50% PBS/1% hydrogen peroxide followed by three 

washes with 0.1% Tween 20 (Fisher Scientific) in PBS.  Sections were blocked overnight at 4°C 

with 10% HINGS in PBS and then incubated with primary antibody overnight at 4°C.  

Antibodies used were mouse anti-calbindin (1:1000; Sigma); rabbit anti-calretinin (1:2500; 

Chemicon); rabbit anti-CGRP (1:2000; Abcam); rabbit anti-Cux1 (1:1000; Santa Cruz 

Biotechnology); rabbit anti-DARPP-32 (1:500; Chemicon); rabbit anti-GABA (1:1000; Sigma); 

mouse anti-GFAP (1:1000; Sigma); rabbit anti-GFAP (1:1000; Sigma); mouse anti-parvalbumin 

(1:2000; Sigma); rabbit anti-Tbr1 (1:2000; Chemicon); rabbit anti-Tbr2 (1:2000; Chemicon); 

rabbit anti-serotonin (1:20,000; ImmunoStar, Inc.); rabbit anti-vasopressin (1:2000; Chemicon).  

The sections were subsequently washed in 0.1% Tween 20 in PBS, incubated with biotinylated 

secondary antibody (1:500; Vector Laboratories) for 1.5 hours and processed using the 

Vectastain(r) Elite ABC kit (Vector Laboratories) according to the manufacturer’s instructions.  

After rinsing in PBS, sections were incubated in 0.7mg/ml 3,3’-diaminobenzidine 

tetrahydrochloride (DAB; Sigma) with 0.01% hydrogen peroxide, in some cases nickel 

enhanced.  DAB stained sections were washed in PBS, mounted on slides, counterstained with 

0.5% cresyl violet (Nissl; Sigma), dehydrated through alcohols, washed in xylene, and 

coverslipped with DPX.   

 All sections were visualized on a Nikon 400 (Melville, NY) fluorescent microscope, 

photographed with a Photometrics (North Reading, MA) Cool Snap digital camera and IP Lab 

software (Biovision Technologies, Exton, PA).  Composite images were prepared using 

Photoshop 6.0 (Adobe Systems, San Jose, CA).  Contrast, color, and brightness were adjusted in 

Photoshop. 
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5.2.3 Measurements 

For whole brain measurements, PFA-fixed brains were imaged on a Nikon dissecting microscope 

and photographed with a Photometrics Cool Snap digital camera and IP Lab software.  Total 

brain area, cortical hemispheres, and olfactory bulbs were outlined, and the surface areas 

calculated using Photoshop 6.0.  Quantification of serotonin staining on tangential sections was 

performed as described in Section 3.2.4 following methods used in (Hamasaki et al., 2004).  

Cortical thickness was measured as previously described (Land and Monaghan, 2003).  Briefly, 

the thickness of cortical layers was measured along a radial line extending from the pial surface 

to the white matter in parietal and occipital regions, defined histologically.  Layers were 

identified histologically using either Nissl-stained sections or sections stained with laminar 

markers Tbr1 or Cux1.  All analyses were performed by an observer blind to genotype.  

Statistical analysis was performed using unpaired t tests with SPSS 14.0 software (SPSS, Inc., 

Chicago, IL).  All values are expressed as mean ± SEM. 

5.2.4 Behavioral experiments 

Mutant and control mice were matched for sex and age, and littermates were housed together in 

groups of 2-5.  Experimental animals were between 3 and 14 months (see Table 1 for cohort 

details, including order of experiments).  Prior to the start of behavioral testing, animals were 

handled daily for 5 days.  Behavioral analyses were carried out between noon and 7pm.  The 

home cage was brought to the test room at least 15 minutes before each experiment, and each 

apparatus was cleaned with Quatricide PV (Pharmacal Research Laboratories, Inc., Naugatuck, 

CT) before releasing each animal.  Mice were observed in a clean cage for 3 minutes to examine 
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general physical characteristics (whiskers, presence of bald spots) and behavior (wild running, 

freezing, posture, excessive grooming).  Mice were tested for eye blink, ear twitch, and whisker-

orienting reflexes.  Vision was informally tested using the visual placing task, in which mice are 

lowered by their tail towards the edge of a table, and if they extend their forepaws prior to 

touching the table it is assumed they can see. 

Activity and motor function were assessed by placing the animals into a test arena  

equipped with infra-red light beams and sensors for a 15 minute test period (arena size: 10 inches 

by 10 inches, with infra-red beams spaced 0.6 inches apart; Coulbourn Instruments, Whitehall, 

PA).  The box is housed in a sound-attenuating chamber, and no illumination was provided.  

Data was collected using Tru Scan 2.0 software (Coulbourn Instruments).  Measures analyzed 

include number of movements, total time spent moving, total distance traveled, average 

ambulatory velocity, frequency of rearing (vertical plane entries), and frequency of “stereotypic” 

movement.   

Motor function was also examined using a rotarod treadmill (IITC Life Science, 

Woodland Hills, CA).  Mice were placed on the stationary rod for 60 seconds to acclimatize to 

the equipment, followed by 5 minutes in the home cage.  Mice then were given two 3-minute 

learning trials with a 5-minute inter-trial interval during which the rod moved at 10rpm and mice 

were replaced if they fell.  This was followed by three test trials for a maximum length of 5 

minutes with 5-minute inter-trial intervals.  During each trial the speed of the rod increased 

gradually from 5rpm to 40rpm, reaching maximum speed at 260 seconds.  The latency to fall was 

recorded, and the average of the three test trials calculated for each mouse to be compared by 

genotype.  Trial data was thrown out if the mouse fell in less than 10 seconds (occurred rarely).   
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Acoustic startle reactivity and prepulse inhibition were examined as described by Geyer 

and Dulawa (Geyer and Dulawa, 2003) using the StartleMonitor apparatus and software from 

Kinder Scientific (Poway, CA).  Continuous background noise level was set at 65dB.  For 

acoustic startle, the maximal response was measured following 40msec bursts of semi-randomly 

presented sound intensities of either no pulse, 78dB, 82dB, 86dB, 90dB, 100dB, 110dB, or 

120dB separated by inter-trial intervals ranging from 8 to 23 seconds with an average of 15 

seconds.  Data were averaged for each intensity level and compared across genotype by repeated 

measures ANOVA.  For prepulse experiments 120dB pulses were used.  The experiment was 

organized into four blocks, with the first and last blocks consisting of six 120 dB pulse-only 

trials and blocks 2 and 3 consisting of a mix of no-pulse, pulse-only, and prepulse + pulse trials.  

During prepulse + pulse trials, 20msec prepulses 4, 8, or 16dB above background noise level 

(69dB, 73dB, or 77dB) were presented 100msec prior to a 40msec pulse at 120dB.  Data were 

combined from blocks 2 and 3 and were averaged for each intensity level and compared across 

genotype by repeated measures ANOVA.  Percent prepulse inhibition was calculated as 100 x 

[(pulse-only) – (prepulse + pulse)] / (pulse-only). 

Anxiety was tested using the light-dark box paradigm.  The same chamber used for 

activity monitoring was divided in half using a dark insert with a small hole to allow mice to 

move between sides (Coulbourn Instruments).  The light half of the box was brightly illuminated.  

Mice were placed in the light half of the chamber and allowed to freely explore for 5 minutes.  

Time spent in each half (light or dark) was determined using Tru Scan 2.0 software and 

compared across genotype by unpaired t-tests. 

Nose pokes were examined by placing mice into an open 41cm by 32cm chamber for 10 

minutes.  Nose pokes into small holes (1.1cm) equally spaced 2cm above the floor along two 
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opposite walls of the chamber (5 holes on each wall) were counted by an observer hidden from 

view.  Mice were recorded and tracked using LimeLight (Actimetrics Software, Wilmette, IL).  

Nose pokes were compared across genotypes using an unpaired t-test. 

The apparatus used for the elevated plus maze consisted of four arms, 35cm long by 

5.2cm wide, oriented in a cross shape elevated above the ground and constructed out of smooth 

white plastic.  Two opposing arms were enclosed by 15cm walls, with the other two arms left 

open.  Lamps were positioned at either end of the open arms in order to enhance the difference 

between open and closed arms; average light intensity was approximately 180 lux at the ends of 

open arms, 110 lux at the center of the maze, and 35 lux at the ends of the closed arms.  Mice 

were placed on an open arm facing the center and allowed to freely explore the maze for 5 

minutes.  LimeLight software was used to track the mice and determine the number of visits to 

each arm and time spent in each arm.  The percent time spent in the open arms, closed arms, and 

center were calculated and compared across genotype using unpaired t-tests. 

For the forced swim task, mice were placed in a plastic cylinder (20cm diameter) filled 

with water (22.5-23°C) up to a height of 10cm.  Mice were observed for 6 minutes to determine 

the percent of time spent floating, with data reported for the last 4 minutes of the task.  Floating 

was defined as immobility in the water, except for movements necessary for the animal to keep 

its head above water, as opposed to active swimming or attempts to escape.  Limelight software 

was used to record and track the mice. 

The Morris water maze, including spatial acquisition and spatial reversal, was conducted 

as described by Vorhees and Williams (Vorhees and Williams, 2006).  A blue plastic tank 4 feet 

in diameter was filled with water (22.5°C ± 0.5°C), which was made opaque by a combination of 

whole milk and non-toxic white paint (RichArt, Northvale, NJ).  A circular white platform 10cm 
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in diameter was located in the center of one of the four virtually divided quadrants submerged 

0.5cm below the surface of the water.  Distal cues, such as a dark curtain, a shelf, and a printed 

rectangular pattern taped to a white wall were provided as spatial references and remained 

constant throughout the experiment.  Mice were given four 1-minute training trials per day with 

4-minute inter-trial intervals during which mice were returned to the home cage.  Four different 

start positions were used, with the mice released from each these four positions in a different 

semi-random order on each training day.  Mice were allowed to swim for up to 1 minute, after 

which mice were placed on the platform if they had not yet reached it on their own.  Once on the 

platform, mice were left for 15 seconds before being returned to their home cage.  During probe 

trials, the mice were allowed to swim for 1 minute without the platform.  The SMART video 

tracking system (Panlab, Barcelona, Spain) was used during training and probe trials to record 

and analyze the latency to reach the platform, swim path, average distance from target, velocity, 

and time spent in each quadrant.  For reversal learning the hidden platform was moved to the 

opposite quadrant from the original location without changing any distal cues.  Mice were 

trained as with spatial learning, with four new start positions.  For the visible version of the water 

maze (after spatial and reversal training and testing) the water was lowered to 33.5cm (halfway 

down the tank) so that spatial cues would not be easily visible.  The platform was positioned so 

that it was visible above the waterline.  Mice were given three trials of the visible version of the 

water maze, with a novel platform location and start site for each trial.    

Spontaneous alternation was tested as described by Ragozzino et al. (Ragozzino et al., 

1998).  The apparatus used was a radial arm maze made by Lafayette Instrument Company 

(Lafayette, IN) and modified to function as a four-arm plus maze with arms 25cm in length.  The 

surface of the maze was constructed out of black coated aluminum with 20cm walls made of 
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clear polycarbonate.  The test was conducted under low overhead illumination.  Mice were 

placed in the center of the maze and allowed to freely explore for 15 minutes, during which 

LimeLight software was used to track the mice and determine the number and sequence of arm 

entries, with an entry defined by the placement of all four paws in the arm.  An alternation was 

defined as a set of five consecutive arm entries that included entry into all four arms, with 

percent alternation calculated as the proportion of actual alternations divided by the total number 

of five-arm sets (total number of arm entries minus four).  Repetitive or perseverative behavior 

(triplets) was defined as sets of three consecutive arm entries during which the same arm was 

entered twice, with percent triplets defined as the proportion of triplets divided by the total 

number of three-arm sets (total number of arm entries minus two). 

 Statistical analysis was performed using SPSS 14.0 software (SPSS, Inc.).  Data were 

compared between genotypes using t-tests or ANOVA followed by Dunnett’s post-hoc analysis 

as indicated.  All values are expressed as mean ± SEM.  Graphs were generated using GraphPad 

Prism 4 (GraphPad Software). 

5.3 RESULTS 

5.3.1 Cortical surface area is reduced in tlxcKO animals postnatally with a 

disproportionate reduction in caudal areas 

In the complete absence of tlx, many adult brain structures are altered, resulting in a complex 

behavioral phenotype.  In order to examine the role of tlx in the development of a subset of brain 

structures and to identify the behavioral abnormalities associated with these changes, we 
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generated mice with a conditional deletion of tlx in dorsal progenitor cells using Emx1-Cre 

driven recombination; these mice will be referred to as conditional mutants or tlxcKO.  Emx1 

expression initiates at E9.5 (Gorski et al., 2002), and, as we showed in Chapter 4, functional 

deletion of tlx occurs by E12.5 (Figure 20).  Just before birth (E18.5), the cerebral cortex of 

tlxcKO animals is visibly reduced in surface area and thickness (Chapter 4 and data not shown).  

Conditional mutant animals are born in normal Mendelian ratios and are indistinguishable from 

littermates, with no significant difference in adult body weight (data not shown).  Examination of 

the gross anatomy of the brain of adult tlxcKO animals revealed that total brain surface area is 

decreased by 7.1% (p<0.05, n=6; Figure 28).  This is largely due to a 15.3% decrease in the 

surface area of the cerebral hemispheres (C), 52.1mm2 ± 1.4mm2 as compared to 61.6mm2 ± 

1.4mm2 in controls (p<0.001, n=7; Figure 28), which exposes more of the superior colliculi (SC).  

The olfactory bulbs (O) also show a 26.3% decrease in area, 6.0mm2 ± 0.3mm2 as compared to 

8.1mm2 ± 0.4mm2 in controls (p<0.001, n=6; Figure 28).  Similar to tlx null animals, the gross 

morphology of the cerebellum appears relatively unaffected.  These data suggest that, as 

expected, absence of TLX from dorsal progenitors specifically affects forebrain-derived 

structures.   

In tlx null animals, the surface area of the cerebral cortex is reduced, with a 

disproportionate reduction in caudal cortical areas ((Monaghan et al., 1997; Land and Monaghan, 

2003); Chapter 3).  In order to determine whether this disproportionate reduction is an intrinsic 

effect due to the loss of TLX from dorsal progenitors, we examined functional cortical areas in 

tlxcKO animals at P8.  Serotonin immunostaining, which marks the terminations of 

thalamocortical axons in layer IV of primary sensory areas including primary somatosensory 

cortex, primary visual cortex (V1), and primary auditory cortex (Fujimiya et al., 1986), was used 
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Figure 28.  Cortical surface area is reduced in tlxcKO animals 

Similar to tlx-/- mice, the whole brain is reduced in surface area in tlxcKO adults as compared to controls (tlx F/+ 

shown here).  The hemispheres of the cerebral cortex (C, outlined in red) are reduced in size, exposing more of the 

superior colliculi (SC, outlined in red).  The olfactory bulbs (O or OB) are also significantly reduced in size in tlxcKO 

animals as compared to controls.  The gross morphology of the cerebellum (Cb) is relatively unaffected.  

Quantification is shown in the right.  * p<0.05; *** p<0.001.  Scale bar = 0.5cm. 

 

on tangential sections through flattened cortices to determine the relative proportion of total 

cortical area occupied by each of these sensory areas.  The proportion of total cortical area 

occupied by primary visual cortex (V1) in tlxcKO animals is decreased by 29.3%, 5.2% ± 0.5% as 

compared to 7.4% ± 0.6% in control brains (p<0.05, n=4; Figure 29A-C).  More intermediate 

structures, such as the posteromedial barrel subfield (PMBSF; part of somatosensory cortex) and 

auditory cortex (A), are reduced proportionately to total cortical area in tlxcKO animals (PMBSF 

p=0.68, n=4; auditory p=0.54, n=3).  These results are similar to those observed for null animals, 

which showed a 36.6% decrease in the proportion of total cortex occupied by V1 and 
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proportionate reductions in the PMBSF and auditory cortex (see Chapter 3).  These findings 

suggest that tlx is required in dorsal progenitors for the normal expansion of caudal cortical 

areas, although we cannot rule out a contribution from ventral regions to account for the small 

difference in size of V1 in conditionals as compared to nulls.  Furthermore, as tlx should be 

expressed normally in the developing eye in tlxcKO animals, our findings suggest that the 

reduction in primary visual cortex is likely not due to deficits in development of the retina or 

optic nerve or reduced visual input but rather due to intrinsic changes in cortical development. 

 

 

 

Figure 29.  Primary visual cortex is disproportionately reduced in tlxcKO animals 

Serotonin immunostaining on tangential sections through flattened control (A) and tlxcKO (B) P8 cortex.  Primary 

visual cortex (V1) is disproportionately reduced in the tlx deficient animals while auditory cortex (A) and the 

posteromedial whisker barrel field (PMBSF) are reduced proportionately to the reduction in total cortical area 

(quantified in C).  The regions compared between wild-type and mutant animals are outlined in white, with total 

cortical area outlined in black.  * p<0.05. Scale bar (in B) = 1mm in A, B. R = rostral, L = lateral. 

 121 



5.3.2 Cortical thickness is reduced but glia are increased in tlxcKO animals 

In tlx null animals the cerebral cortex is reduced in thickness due to a specific reduction in 

superficial cortical layers (Roy et al., 2002; Land and Monaghan, 2003).  To determine whether 

this phenotype is due to a requirement for tlx is dorsal progenitors, we examined cortical 

thickness in tlxcKO animals.  The cortex was examined on adult coronal sections stained with 

Nissl alone or with either an antibody against Cux1, a transcription factor expressed by cells in 

upper cortical layers II/III and IV (Nieto et al., 2004), or an antibody against Tbr1, a transcription 

factor highly expressed by glutamatergic cells in layer VI and more weakly expressed by cells in 

layers II/III and IV and a small subset of cells in layer V (Bulfone et al., 1995; Hevner et al., 

2003; Kolk et al., 2005).  The total thickness of the cerebral cortex (from the white matter to the 

pial surface) is reduced by 13.4% in parietal regions (1319.7μm ± 33.8μm in controls versus 

1142.2μm ± 38.6μm in tlxcKO animals, n=4, p<0.05) and by 9.3% in occipital regions (869.9μm ± 

27.4μm in controls versus 788.9μm ± 17.7μm in tlxcKO animals, n=4, p<0.05) (Figure 30).  We 

separately quantified the thickness of superficial layers (II/III and IV) and deep layers (V and 

VI), identified by histological examination in combination with layer-specific Tbr1 and Cux1 

staining.  We found that the reduction in cortical thickness in tlxcKO animals is due to a specific 

reduction in superficial cortical layers in both parietal (p<0.001, n=4) and occipital regions 

(p<0.001, n=4) (Figure 30).  No significant difference in the thickness of deep cortical layers was 

observed in the regions examined (parietal p=0.85, n=4; occipital p=0.14, n=4).   

In addition to changes in excitatory neurons, tlx null adults have previously been shown 

to have reductions in specific populations of cortical GABAergic interneurons, in particular 

calretinin- and somatostatin-expressing cells (Monaghan et al., 1997; Roy et al., 2002).  The 

Emx1-Cre that we used to generate our conditional mutants is not expressed in GABAergic cells  
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Figure 30.  Cortical thickness is reduced due to a specific reduction in superficial cortical layers 

The cerebral cortex of adult tlxcKO mice is reduced in thickness as compared to controls at both parietal and occipital 

levels.  Cux1 expression (brown or black) in superficial layers II/III and IV shows that superficial layers are 

specifically affected.  Sections are counterstained for Nissl (blue).  * p<0.05; *** p<0.001.  Scale bar = 100µm. 

 

in the cerebral cortex (Gorski et al., 2002), which derive from progenitor populations in the 

ventral forebrain (de Carlos et al., 1996; Anderson et al., 1997).  However, cells in the dorsal 

cortex could influence the migration or maturation of cortical interneurons, and thus indirect 

changes in interneuron populations might be observed in tlxcKO animals.  Immunostaining against 

GABA to label all interneurons did not reveal any gross differences in number or distribution of 

GABA-positive cells in parietal or occipital regions of tlxcKO cortex as compared to controls 

(Figure 31A-D; n=2), although this was not quantified.  Specific interneuron populations were 

identified using the expression of the calcium binding proteins calbindin, parvalbumin, and 

calretinin (Kubota et al., 1994; Gonchar and Burkhalter, 1997).  Visual inspection revealed no 

differences in interneurons in tlxcKO parietal cortex expressing calbindin (Figure 31E, F; n=5) or 

parvalbumin (Figure 31G, H; n=1), populations that are similarly unaltered in tlx null animals 

(Monaghan et al., 1997; Roy et al., 2002).  Although calretinin-positive cortical interneurons are  
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Figure 31.  Interneurons are relatively unaltered in the tlxcKO adult cortex 

GABA expression (black) in the cerebral cortex of adult control (A, C) and tlxcKO (B, D) animals at parietal (A, B) 

and occipital (C, D) levels shows no difference in total interneurons.  Expression of calbindin (E, F; brown) and 

parvalbumin (G, H; black), in adult control (E, G) and tlxcKO (F, H) parietal cortex shows no difference in these 

interneuron populations.  Calretinin (I-K, brown) expression in adult parietal cortex is relatively unaltered in tlxcKO 

(J) animals as compared to controls (I), whereas calretinin is significantly reduced in tlx null cortex (K).  Sections E-

K are counterstained for Nissl (blue).  Scale bar (in K) = 100μm. 
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Figure 32.  GFAP+ glia are increased in both the tlxcKO and tlx null adult cortex 

GFAP expression (black) in coronal sections from control (left column; A, D, G, H), tlxcKO (center column; B, E, I, 

J), and tlx null animals (right column; C, F, K, L) shows in increase in glia in the cerebral cortex of both conditional 

and null mutants.  D, E, and F are higher power images of the boxed areas in A, B, and C, respectively.  G-L are 

high power images of the boxed areas in D-F as indicated.  Sections are counterstained with Nissl (blue).  Scale bar 

(in L) = 1mm in A-C; 200μm in D-F; 50μm in G-L. 

 125 



decreased in null animals (Figure 31K) (Monaghan et al., 1997; Roy et al., 2002), no difference 

was observed in this population in tlxcKO animals as compared to controls (Figure 31I, J; n=4).  

These findings suggest that deletion of tlx from dorsal progenitors does not indirectly alter 

development of cortical interneurons. 

The third cell type present in the cerebral cortex in addition to excitatory neurons and 

interneurons is glia.  Although the cerebral cortex is reduced in the absence of tlx, astrocytes 

have been shown to be increased from birth, with greater numbers still apparent in the adult (Shi 

et al., 2004) (Kuznicki and Monaghan, unpublished results).  As described in Chapter 4, 

premature expression of the astrocyte marker glial fibrillary acidic protein (GFAP) was observed 

in the dorsal VZ of both tlxcKO and null brains at E18.5 (Figure 25).  Examination of GFAP 

expression in the adult reveals a similar increase in GFAP-positive cells in the cerebral cortex of 

both tlxcKO and tlx null animals as compared to controls (Figure 32A-F; n=4).  In control cortex 

GFAP positive cells are located primarily in the white matter and deep cortical gray matter, with 

few positive cells in the upper cortical layers (Figure 32D).  In both the conditional and null 

mutant brains GFAP-positive cells are observed throughout the cortical layers (Figure 32E, F).  

Higher power examination of GFAP staining at both the pial and ventricular surface indicates 

that for all genotypes the GFAP positive cells appear to have fine processes extending from the 

main processes in a stellate shape, consistent with a mature astrocyte phenotype (Figure 32G-L).  

Together these results suggest that tlx is involved in repressing gliogenesis, a role intrinsic to 

dorsal progenitors. 
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5.3.3 Dorsally-derived structures, including the hippocampus, amygdala, and septum, are 

reduced in tlxcKO animals 

In addition to the cerebral cortex, many other structures are derived from Emx1-expressing cells, 

as shown by crossing Emx1-Cre mice to the R26R reporter strain (Gorski et al., 2002).  These 

structures include the hippocampus and parts of the amygdala and septum, of which the former 

two have been shown to be affected in tlx null knock out animals (Monaghan et al., 1997; 

Stenman et al., 2003a; Shi et al., 2004).  Here we will analyze each structure in turn to identify 

any anatomical deficits as a result of the dorsal-specific deletion of tlx.  We first examined the 

hippocampus, which shows extensive Cre-mediated recombination in Emx1-Cre animals (Gorski 

et al., 2002).  In order to examine the hippocampus as a whole, this structure was dissected from 

the brains of adult control and tlxcKO mice.  Visual examination of the whole hippocampus with 

dissecting microscope showed a reduction in width in tlxcKO animals as compared to controls 

across the entire length of the hippocampus (Figure 33; n=2). 

 

 

Figure 33.  The whole hippocampus is reduced in conditional mutant animals 

The hippocampus of tlxcKO mice (right) is decreased in size as compared to controls (left) across its length from the 

septal (S) to the temporal (T) pole.  Scale bar = 1mm. 
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We more carefully examined this general reduction in size of the hippocampus through 

histological examination of coronal and horizontal sections through the adult brain.  For coronal 

sections, every twelfth section was stained with an antibody against the calcium binding protein 

calbindin to specifically label granule cell somata and molecular layer dendrites (Sloviter, 1989).  

Visual examination revealed an overall reduction in the dorsal hippocampus of both tlxcKO and 

tlx null animals as compared to controls (Figure 34A-C; n=5).  Both conditional and null mutants 

showed a marked reduction in the size of the dentate gyrus, with the infrapyramidal blade 

particularly affected (DGi, Figure 34A-C; n=5).  In order to specifically examine dorsal and 

ventral regions of the hippocampus, we prepared a series of horizontal Nissl-stained sections 

through the hippocampus (every fourth section) from dorsal (Figure 34D-F) to ventral (Figure 

34M-O) levels.  Visual examination of these horizontal sections indicated a reduction at all 

levels in both tlxcKO and null animals as compared to controls (Figure 34D-O; control, tlxcKO, 

n=2; null, n=1).  The dentate gyrus appears reduced at all levels, whereas the subiculum (S) 

shows a more pronounced reduction at more ventral levels.  Overall this pattern suggests a role 

for tlx in dorsal PCs in the development of the hippocampus, in particular of the dentate gyrus.   

The subgranular zone (SGZ) of the dentate gyrus is one of the primary regions of adult 

neurogenesis (reviewed by (Duan et al., 2008)).  Therefore, in light of the reduction in the 

dentate gyrus in tlxcKO adults and the known role of tlx in the maintenance of adult neural stem 

cells (Shi et al., 2004; Liu et al., 2008; Zhang et al., 2008), we decided to look specifically at 

markers of adult neurogenesis in the SGZ of the dorsal hippocampus.  Initial examination of 

higher power images of Nissl staining of the dentate gyrus revealed that granule cells, in addition 

to being fewer in number, are less tightly packed in tlxcKO animals as compared to controls 
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Figure 34.  The hippocampus is reduced in size in tlxcKO animals 

Staining for calbindin (black) in coronal sections through adult dorsal hippocampus (A-C) shows a reduction in the 

size of the dentate gyrus in both tlxcKO (B) and tlx null (C) brains as compared to controls (A), with the 

infrapyramidal blade (DGi) particularly affected.  Nissl staining (blue) on a series of horizontal sections through the 

adult hippocampus from dorsal (D-F) to ventral (M-O) levels shows a reduction in size at all levels for both tlxcKO 

(center column; E, H, K, N) and tlx null (right column; F, I, L, O) animals as compared to controls (left column; D, 

G, J, M).  Horizontal images are taken from every sixteenth section through the hippocampus of control and tlxcKO 

animals, approximately every twelfth section of tlx null animals at anatomically-matched levels.  This plane of 

sectioning also reveals the greater reduction of the infrapyramidal blade of the dentate gyrus (DGi) relative to the 

suprapyramidal blade (DGs) at more dorsal levels (G-I).  S = subiculum.  Sections in A-C are counterstained for 

Nissl (blue).  Scale bar (in O) = 535μm in A-C; 500μm in D-O. 

 

(Figure 35A-F).  Generation of new neurons from SVZ precursors can be divided into distinct 

developmental stages that can be identified by the expression of various markers (reviewed by 

(von Bohlen Und Halbach, 2007; Duan et al., 2008)).  A subset of GFAP-expressing cells 

located in the SGZ has been shown to be an early radial glia-like precursor population that 

divides to give rise to new granule cells in the adult dentate gyrus (Seri et al., 2001).  Numerous 

radial glia-like GFAP positive cells, with cell bodies at the border of the granule cell layer and a 

single apical dendrite, are apparent in the SGZ of the control dentate gyrus (Figure 35A, A’, 

arrows).  In contrast, although high GFAP expression is observed in the tlxcKO hippocampus, 

these GFAP positive cells have a stellate shape suggestive of mature astrocytes and are not as 

specifically localized to the SGZ (Figure 35B, B’; n=3).  These early precursors give rise to 

transient amplifying cells (or intermediate progenitor cells, IPCs) that express the transcription 

factor T-box brain gene 2 (Tbr2) (Hodge et al., 2008).  Tbr2-positive cells are located in the SGZ 

of the control dentate gyrus (Figure 35C, C’, arrows) but are absent from the tlxcKO dentate gyrus  
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Figure 35.  Adult neurogenesis in the dorsal SGZ is impaired 

Immunostaining (black) against markers for neurons at different stages of adult neurogenesis on coronal 

sections through the dorsal hippocampus of control (left columns; A, A’, C, C’, E, E’) and tlxcKO (right 

columns; B, B’, D, D’, F, F’) adults.  Radial glia-like GFAP-expressing cells in the SGZ (arrows) are 

reduced in tlxcKO adults (B, B’) as compared to controls (A, A’), although GFAP positive astrocytes are 

increased in the tlxcK dentate gyrus.  Tbr2-expressing cells are observed in the SGZ of controls (C, C’, 

arrows) but are absent from tlxcKO animals (D, D’).  Calretinin+ cells in the SGZ are reduced in tlxcKO 

adults (F, F’) as compared to controls (E, E’, arrows).  A’ is a higher power image of the boxed region in 

A, etc.  Sections are counterstained for Nissl (blue).  Scale bar (in F’) = 100μm in A-F; 18μm in A’-F’. 

 

(Figure 35D, D’) (n=2).  These cells in turn give rise to immature postmitotic granule cells, that 

transiently express the calcium-binding protein calretinin (Liu et al., 1996; Brandt et al., 2003).  

There are numerous calretinin-positive cells located in the SGZ of control animals (Figure 35E, 

E’, arrows) whereas there are few in tlxcKO animals (Figure 35F, F’) (n=4).  Calretinin-positive 

fibers, however, are apparent in the inner molecular layer of both genotypes.  Together, these 
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data indicate that tlx is required in dorsal progenitors for the development or maintenance of 

adult neural stem cells in the SGZ.  

The amygdala is also affected in tlx null animals, with the lateral (LA) and basolateral 

(BLA) nuclei substantially reduced relative to controls (Monaghan et al., 1997; Stenman et al., 

2003a).  These nuclei derive in part from the cells at the cortico-striatal boundary, a region that 

shows partial recombination in Emx1-Cre animals crossed to the R26R reporter strain (Gorski et 

al., 2002) as well as in tlxcKO animals (Figure 20, Chapter 4).  In Chapter 2, we showed 

expression of tlx in the amygdala in the developing embryo, which could indicate an additional 

role for tlx in the development of this structure.  Furthermore, the amygdala is highly 

interconnected both between amygdaloid nuclei and with many other brain structures, receiving 

significant input from the cerebral cortex, entorhinal cortex, perirhinal cortex, hippocampus, 

thalamus, and hypothalamus, with efferent connections to many of these same structures 

(reviewed by (Sah et al., 2003)).   Therefore, in addition to a direct role for tlx in the 

development of the amygdala, there could be indirect effects in tlx null animals due to changes in 

connecting structures.  Only a subset of cells within the amygdala (specifically within the 

LA/BLA nuclei and the corticomedial nuclei) and a subset of connecting structures derive from a 

dorsal, Emx1-expressing lineage (Gorski et al., 2002).  We examined the amygdala of tlxcKO and 

control animals using immunostaining for specific cell populations on every twelfth section of 

coronally cut adult brains.  Because the size of the amygdalar nuclei can vary along the rostral-

caudal axis, sections were carefully matched for anatomical level.  We found that the teardrop 

shape of the LA/BLA is clearly defined in tlxcKO animals but appears reduced in size by visual 

inspection as compared to controls (Figure 36A-J).  Staining for Tbr1, to label pallial-derived 

glutamatergic cells (Puelles et al., 2000) (Figure 36A-D; n=2), or for calbindin, to label a subset 
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Figure 36.  The basolateral nucleus of the amygdala is reduced while the central and interstitial nuclei are 

unaffected 

Tbr1 expression (A-D; black) in excitatory neurons in the basolateral (BLA) and lateral (LA) amygdala (outlined in 

red in A, B) shows a decrease in the size of the BLA in tlxcKO animals (B, D) as compared to controls (A, C).  

Calbindin expression (E-H; black) shows that the central nucleus (Ce) of the amygdala appears similar in control (E, 

G) and tlxcKO (F, H) brains, whereas the BLA/LA (outlined in red in E, F) is decreased in size.  DARPP-32 

expression (I, J; brown) in the interstitial nucleus (I) and parts of the Ce delineates the teardrop shape of the BLA 

and LA.  The BLA/LA appears reduced in tlxcKO (J) animals as compared to controls (I), whereas the interstitial 

nucleus appears to be unaltered.  CGRP expression (K, L; brown) in the Ce shows no difference between control (K) 

and tlxcKO (L) animals.  Sections in A-J are counterstained for Nissl (blue).  Scale bar (in L) = 300μm in A, B, E, F; 

150μm in C, D, G, H, K, L; 220μm in I, J. 

 

of interneurons as well as some pyramidal-like cells (Kemppainen and Pitkanen, 2000) (Figure 

36E-H; n=3), showed a qualitative reduction in the size of the LA/BLA.  Staining for the 

phosphoprotein DARPP-32, which outlines the teardrop shape of the BLA/LA, also shows a 

reduction in these nuclei (Figure 36I, J; n=3).  The central nucleus (Ce), which can be identified 

by expression of calbindin (Figure 36E-H; n=2) or calcitonin gene-related peptide (CGRP) 

(Figure 36K, L; n=2) appears similar in tlxcKO and control animals.  The interstitial nucleus (I), 
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which shows altered morphology in tlx nullanimals (Stenman et al., 2003a), appears similar in 

control and tlxcKO animals, as shown by DARPP-32 expression (Figure 36I, J; n=3).  Overall 

these data show that loss of tlx from dorsal progenitors directly or indirectly leads to a reduction 

in but not absence of pallial-derived nuclei of the amygdala. 

The septum has been implicated in many of the behaviors characteristic of tlx null 

animals, including aggression, fear, anxiety, spatial learning, and maternal instincts (reviewed by 

(Chozick, 1985; Sheehan et al., 2004)).  Furthermore, as shown in Chapter 2, during 

development tlx is expressed in regions that will give rise to the septum (Figure 5 and Figure 6).  

However, the septum has not been specifically studied in tlx null animals.  Therefore, we 

examined the septum in both tlxcKO and null animals as compared to controls.  Every twelfth 

brain section cut in the coronal plane and every fourth section cut in the horizontal plane were 

stained with Nissl, and sections through the septum matched histologically for visual 

comparison.  A reduction in the size of the septum (S) in both tlxcKO and tlx null animals as 

compared to controls was observed in coronal (Figure 37A-C; n=4) and horizontal (Figure 37D-

F; control and tlxcKO, n=2; null, n=1) sections, although this was not quantified.  Interestingly, the 

reduction in the septum in conditional mutants appears less severe than in null mutants, which 

could be explained by the finding that only a subset of cells in the lateral septum derive from an 

Emx1-expressing lineage (Gorski et al., 2002).  Also apparent in these sections is a reduction in 

the thickness of the corpus callosum in both tlxcKO and tlx null animals as compared to controls 

(CC; Figure 37A-F; (Land and Monaghan, 2003)).  However, the ventral hippocampal 

commissure appears relatively similar for all genotypes (vhc; Figure 37D-F). 
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Figure 37.  The septum is reduced in conditional and null mutant animals 

Coronal (A-C) and horizontal (D-F) sections through control (A, D), tlxcKO (B, E), and tlx null (C, F) adult brains 

show a reduction in the size of the septum (S) as well as a reduction in the thickness of the corpus callosum (CC) in 

both conditional and null mutants.  The ventral hippocampal commissure (vhc) appears relatively normal (D-F).  

Sections are stained for Nissl (blue).  Scale bar (in F) = 300μm. 

 

5.3.4 Ventrally-derived structures, including the striatum and hypothalamus, are 

relatively unaltered 

Tlx is required for the normal development of the lateral ganglionic eminence, leading to a 

smaller striatum in tlx null animals (Stenman et al., 2003b).  In order to determine whether 

changes in dorsal PCs and their derivatives has a secondary effect on the development or 

maturation of the ventrally-derived striatum, we examined this region in tlxcKO animals using 

staining against DARPP-32 (Figure 38A-C; n=3), which labels the patch compartment (Ouimet 

et al., 1984), and calbindin (Figure 38D-F; n=3), which labels the matrix compartment (Gerfen et 
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al., 1985).  Although the striatum is reduced in size in tlx null animals (Figure 38C, F), it appears 

relatively normal in tlxcKO animals (Figure 38B, E) as compared to controls (Figure 38A, D).  

The islands of Calleja appear as dense Nissl-stained patches in both the control and tlxcKO brains 

but are absent in tlx null brains (IC, Figure 38A-C).  The anterior wings of the anterior 

commissure are reduced in both conditional and null mutant brains as compared to controls (AC, 

Figure 38A-F).   

 

 

Figure 38.  The striatum is relatively unaffected in tlxcKO animals 

DARPP-32 (A-C; black or brown) and calbindin (D-F; black or brown) expression show that while the adult 

striatum is reduced in tlx -/- animals (C, F) as compared to controls (A, D), the striatum appears relatively normal in 

tlxcKO animals (B, E).  The anterior wings of the anterior commissure (AC) are reduced in both tlxcKO animals (B, E) 

and nulls (C, F).  The islands of Calleja (IC) are visible as dense Nissl-stainined patches (blue) in control (A) and 

tlxcKO (B) animals but are absent in tlx null animals (C).  Sections are counterstained for Nissl (blue).  Scale bar (in 

F) = 500μm. 
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Figure 39.  The hypothalamus is relatively unaffected in tlxcKO animals 

Vasopressin staining (A-C, brown) shows that whereas the paraventricular nucleus (Pv) is disorganized in tlx null 

animals (C) as compared to controls (A) it appears relatively normal in tlxcKO animals (B).  Nissl staining (blue) 

through the hypothalamus at two different levels shows that the Pv, the ventromedial nucleus (Vm) and the arcuate 

nucleus (Arc) appear similar in control (D, F) and tlxcKO (E, G) animals.  Sections in A-C are counterstained for 

Nissl (blue).  Scale bar (in G) = 300μm. 

 

 Similarly, although the hypothalamus does not derive directly from an Emx1 lineage, its 

development could be influenced through changes in the circuitry of the tlxcKO brain.  In the 

absence of tlx, abnormalities are seen in the hypothalamus, including abnormal localization of 

the vasopressin-expressing cells in the paraventricular nucleus of the hypothalamus (Pv, Figure 

39C; Monaghan et al., unpublished results).  In contrast, the paraventricular nucleus appears 
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similar in tlxcKO and control animals as shown by staining for vasopressin (Figure 39A, B; n=2) 

or Nissl (Figure 39D, E; n=4).  The ventromedial (Vm) and arcuate (Arc) nuclei of the 

hypothalamus also appear unaltered in tlxcKO animals as compared to controls (Figure 39F, G).  

Overall, these data indicate that structures derived from the ventral telencephalon and the 

diencephalon (specifically the striatum, the central nucleus of the amygdala, and the 

hypothalamus) are relatively unaffected in tlxcKO animals.  Although we cannot rule out indirect 

effects, such as altered connections, it appears that the structures that are affected in tlxcKO 

animals are those that derive from the dorsal PCs from which tlx is deleted. 

5.3.5 TlxcKO animals are indistinguishable from littermates during handling or in tests of 

basic motor or sensory function 

Here we have shown that dorsal specific deletion of tlx leads to reductions in only a subset of the 

brain structures altered in the complete absence of tlx.  To determine how this impacts the 

behavior of tlxcKO animals, we screened adult conditional mutants using a variety of behavioral 

paradigms, focusing primarily on the behaviors that have previously been shown to be altered in 

tlx null mutants.  All animals used in this study have been backcrossed for at least 7 generations 

to C57Bl/6 mice, and thus are effectively on a C57Bl/6 background (animals with the tlx null or 

floxed allele have been backcrossed for more than 10 generations, animals with the Emx1-Cre 

allele for 7 generations).  This is the genetic background that has primarily been used to study 

behavior in tlx null animals (Monaghan et al., 1997; Roy et al., 2002; Young et al., 2002; Belz et 

al., 2007).  Although tlx null animals are difficult to handle from birth, exhibiting severe 

aggression and hyperexcitability (Monaghan et al., 1997; Young et al., 2002), tlxcKO animals 

were indistinguishable during handling or home cage observation.  Furthermore, although adult 
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tlx null males will mutilate or kill littermates and must therefore be housed individually, tlxcKO 

adult males could be housed in littermate groups.  This absence of signs of aggression suggests 

that in tlx null animals aggressive behavior is mediated by changes in ventrally-derived 

structures.  We first assessed general and sensorimotor behavior by observing each mouse in an 

empty cage for three minutes.  Conditional mutant mice showed no gross differences during this 

observation period in locomotion, posture, ear twitch reflex, or whisker response.  tlxcKO and 

control mice were then put through a battery of tests in order to examine behaviors including 

basic motor and sensory function, anxiety and depressive-like behaviors, and spatial learning, as 

outlined in Table 1.  The second cohort of animals tested showed abnormal results in the light-

dark experiment due to an undetermined technical error; therefore, their data were excluded from 

this analysis and the data reported here will be pooled from cohorts 1 and 3 pooled together, 

unless otherwise specified. 

To determine whether tlxcKO animals show any differences in activity level, each mouse 

was tested in an activity monitor chamber in near-darkness for fifteen minutes.  No difference 

from controls was observed in any measure recorded, including total distance traveled (p=0.31, 

n=19; Figure 40A) and vertical plane entries (p=0.58, n=19; Figure 40B), indicating that these 

animals are not hyperactive.  Motor coordination and balance were normal in tlxcKO mice, as 

indicated by similar latency to fall in the rotarod test (p=0.74, n=19; Figure 40C).  Auditory 

reflexes were evaluated using acoustic startle response.  tlxcKO mice did not differ from controls 

in maximum startle response over the range of sound levels tested (F1,34=0.006, p=0.94, n=18; 

Figure 40D).  Although it was not examined in tlxcKO animals, we do not expect the development 

of the retina to be altered because Emx1-driven Cre expression is not observed in the eye 
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Table 1.  Cohort information and behavior test sequence for tlxcKO animals 

Cohort 1 Cohort 2 Cohort 3 

Age: 12-14 months Age: 3-4 months Age: 4-6 months 

n = 7 n = 7 n = 12 

7 male, 7 female 7 male, 7 female 20 male, 4 female 

Activity monitor Light-dark Activity monitor 

Elevated plus maze Nose poke Elevated plus maze 

Spontaneous alternation Elevated plus maze Spontaneous alternation 

Light-dark Spontaneous alternation Light-dark 

Nose poke Activity monitor Nose poke 

Rotarod Rotarod Rotarod 

Acoustic startle/PPI Forced swim Acoustic startle/PPI 

Forced swim Water maze (w/reversal) Forced swim 

 Acoustic startle/PPI Water maze (w/reversal)

 

(Gorski et al., 2002).  We qualitatively tested vision using the visual placing task, in which mice 

are lowered by their tail towards the edge of a table, and, if they extend their forepaws prior to 

touching the table, it is assumed they can see.  Both tlxcKO and control animals showed this 

forepaw extension.  Furthermore, tlxcKO animals showed similar performance to controls in a 

visible-platform version of the Morris water-maze (data not shown).  Therefore, we conclude 

that tlxcKO animals have no major deficits in basic motor function, sensory function, or startle 

reflex and have relatively intact vision.   

Prepulse inhibition (PPI) of the startle response, the phenomenon by which a weak 

prepulse suppresses the response to a startling stimulus, is regulated by many forebrain structures 

that require tlx for normal development, including the hippocampus, amygdala, medial prefrontal 

cortex, striatum, and ventral pallidum (Swerdlow et al., 2001).  However, PPI has not previously 

been examined in tlx mutant animals.  PPI is considered to provide a measure of sensorimotor  
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Figure 40.  TlxcKO animals show no deficits in basic motor or sensory function 

TlxcKO animals show no statistical difference from controls in either the distance traveled (A) or number of vertical 

plane entries (B) during fifteen minutes of activity monitoring in a dark chamber.  No difference was observed in 

latency to fall on the rotarod task (C), indicating that tlxcKO animals have no deficits in motor function.  tlxcKO 

animals showed similar responses to control animals in the acoustic startle task (D), indicating no differences in 

auditory function.  Activity monitor, rotarod, n=19/genotype.  Acoustic startle, n=18/genotype. 

 

Figure 41.  TlxcKO animals show no deficits in prepulse inhibition 

TlxcKO animals show no statistical difference from controls in prepulse inhibition as shown by average startle 

magnitude (A) and percent prepulse inhibition (B).  As expected, animals showed increased inhibition with 

increasing prepulse intensity.  NoStim indicates trials with no pulse (background noise level only).  120db indicates 

trials with a 120 decibel pulse alone (no prepulse).  69dbPP indicates trials with the 120 decibel pulse preceded by a 

69 decibel prepulse.  N=18/genotype. 
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gating, a neural mechanism that inhibits processing of extraneous information.  PPI, which can 

be experimentally measured in human subjects as well as in animal models, is reduced in patients 

with a variety of different cognitive disorders, including schizophrenia, bipolar disorder (during 

the manic phase), and several anxiety disorders (Geyer, 2006).  tlxcKO animals performed 

similarly to controls in the PPI paradigm, showing similar results for the average maximal startle 

response over different prepulse levels (F1,34<0.001, p=0.99, n=18; Figure 41A) and for percent 

inhibition at different prepulse levels (F1,34=0.308, p=0.58, n=18; Figure 41B).  These findings 

suggest that sensorimotor gating is intact in the absence of tlx from dorsal progenitors. 

5.3.6 Anxiety and depression-like behavior are reduced in tlxcKO animals 

Tlx has been shown by several groups to be required for the normal expression of anxiety, 

independent of vision (Roy et al., 2002; Young et al., 2002; Belz et al., 2007; Zhang et al., 2008).  

However, it is not known which deficits in the brain contribute to this reduced anxiety.  In order 

to determine whether the brain abnormalities present in tlxcKO animals are sufficient to cause this 

reduced anxiety, we tested anxiety in these animals using several paradigms.  The light-dark box 

produces a natural conflict situation between the aversion of rodents to brightly illuminated areas 

and the tendency to explore (Bourin and Hascoet, 2003).  The time spent in the light half of the 

box is indicative of the level of anxiety of the animal, with animals that are less anxious spending 

more time in the light.  TlxcKO animals spent significantly more time in the aversive light half of 

the light-dark box, 42.6% ± 2.1% as compared to 33.4% ± 2.5% for controls (p<0.01, n=19; 

Figure 42A), which suggests that that these animals are less anxious than controls.  We tested 

exploratory or novelty-seeking behavior by counting the number of nose pokes made by the 

animals into holes in the side of an open-field chamber.  TlxcKO animals made significantly more  
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Figure 42.  Anxiety is reduced in tlxcKO animals 

TlxcKO animals spent significantly more time than controls in the aversive light half of a light-dark chamber during a 

5-minute test (A).  tlxcKO animals made significantly more nose-pokes into holes in the side of an open-field chamber 

during a 10-minute test (B).  No significant differences were observed in time spent in open or closed arms of an 

elevated plus maze during a 5-minute test (C).  * p<0.05; ** p<0.01.  Light-dark, nose pokes, n=19/genotype.  EPM 

n=18/genotype. 

 

nose pokes, 61.0 ± 4.4 as compared to 48.7 ± 3.7 for controls (p<0.05, n=19; Figure 42B).  

Although this test does not directly address anxiety, a similar task examining head dipping in a 

novel environment fitted with a hole-board has been shown to be sensitive to anxiogenics and 

anxiolytics (Takeda et al., 1998).  A second commonly used test of anxiety, the elevated plus 

maze, is based on the aversion of rodents to open spaces (Bourin et al., 2007).  This maze is 

generally constructed as a raised “plus”, with two opposing arms that are enclosed on the sides 

by walls and two opposing arms that are open.  Mice generally prefer the closed arms; increased 

time spent in the open arms is used as a measure of reduced anxiety.  TlxcKO animals did not 

show a significant difference from controls in time spent in closed (p=0.80, n=18) or open arms 

(p=0.61, n=18) (Figure 42C).  Despite these results, we conclude based on the differences 

observed in the light-dark and nose poke tests that tlxcKO animals exhibit reduced anxiety. 

 Although depression-like behaviors have not been tested in animals lacking functional tlx 

expression, anxiety and depression show high co-morbidity in humans and are thought to involve 
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many overlapping brain structures and circuits (Gorman, 1996).  We examined depression-like 

behavior in our mice using the forced swim test.  In this test animals are forced to swim in a 

small cylinder from which there is no escape; typically, after initial vigorous activity, animals 

will adapt a nearly immobile posture that is termed “behavioral despair”, as it is thought to 

indicate that the animal has given up hope of escape (Porsolt et al., 2001).  Treatment with 

antidepressants has been shown to reduce immobility, which suggests that time floating 

correlates with levels of “depression”.  TlxcKO animals spent significantly less time floating, 

36.4% ± 4.4% as compared to 50.6% ± 2.9% for controls (p<0.05, n=18; Figure 43).  These data 

suggest that tlxcKO animals show both reduced anxiety and reduced depression. 

 

 

Figure 43.  TlxcKO animals show reduced depressive-like behavior 

TlxcKO animals spend significantly less time floating in the forced swim test.  Results are shown for the last 4 

minutes of a 6 minute test.  * p<0.05.  N=18/genotype. 

 

5.3.7 TlxcKO animals show normal spatial learning but deficits in behavioral flexibility 

Similar to tlx null animals, tlxcKO animals have a significantly reduced hippocampus, and there is 

some indication that adult neurogenesis is impaired.  Although the impaired vision in tlx null 
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animals has been shown to have a significant impact on their ability to perform the spatial 

learning task in the Morris water maze, there is evidence that tlx in the developing brain and in 

the adult does have a role in more challenging testing paradigms (Belz et al., 2007; Zhang et al., 

2008).  In order to determine whether the deficits in brain structure observed in tlxcKO affect 

spatial learning in these animals we tested them using a hidden-platform version of the Morris 

water maze (Vorhees and Williams, 2006).  We tested the second cohort of animals using a five-

day training protocol followed by a probe trial 24 hours later on the sixth day, during which the 

hidden platform was removed and mice were tracked for 60 seconds.  TlxcKO animals performed 

similarly to controls during training, as determined by two-way repeated measures ANOVA 

(F1,8=2.34, p=0.16, n=5; Figure 44A) and showed significant memory retention for the platform 

location during the probe trial, with no difference between genotypes for time spent in the target 

quadrant (p=0.44, n=7; Figure 44B) or average distance from target (p=0.45, n=7).  To examine 

the ability of these animals to extinguish their initial learning of the platform location in order to 

learn a new location (reversal learning), we then trained this same cohort for five days with the 

platform in the opposite quadrant followed by a probe trial on the sixth day.  Again tlxcKO 

animals performed similarly to controls during training (F1,12=0.286, p=0.60, n=7; Figure 44C) 

and showed similar retention of the new platform location during the probe trial, with no 

difference between genotypes for the time spent in the new target quadrant (p=0.20, n=7; Figure 

44D) or average distance from target (p=0.50, n=7).  Overall the results from this initial cohort of 

animals indicated that despite the reduction in the hippocampus tlxcKO animals are still capable of 

spatial and reversal learning. 
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Figure 44.  No deficits in spatial learning were observed using a one-probe water maze protocol 

TlxcKO and control mice were trained on a hidden platform Morris water maze for 5 days (A).  Memory was tested 

with a probe trial conducted on day 6 (B).  No difference in spatial learning was observed, and animals of both 

genotypes showed a significant preference for the target quadrant during the probe trial (4; B, diagram).  This was 

followed by 5 days of reversal training (C) with a probe trial conducted on day 6 (D).  No significant differences 

were observed either during training or during the probe trial, with animals of both genotypes showing a preference 

for the target quadrant (2; D, diagram).  Dotted lines indicate chance level (25%).  N=7/genotype. 

 

Experiments testing the role of tlx in adult neurogenesis showed that knocking out tlx in 

the adult using a tamoxifen-inducible Cre resulted in delays in spatial and reversal learning 

although these animals did show similar learning to controls by the end of training (Zhang et al., 

2008).  Therefore, with the third cohort of animals we used a longer water maze training 

paradigm with more probe trials conducted during the training period.  Animals were trained for 

eight days, with probe trials conducted two hours before training on days 3, 5, and 7 with a final 

probe trial on day 9 (Figure 45A, arrows).  TlxcKO animals performed similarly to controls during 
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training as determined by two-way repeated measures ANOVA (F1,20=1.231, p=0.28, n=11; 

Figure 45A).  Animals of both genotypes showed similar memory retention for the platform 

location during the final probe trial on day 9, with no significant difference in time spent in the 

target quadrant (p=0.73, n=11; Figure 45B) or average distance from target (p=0.64, n=11) (data 

shown here for the first 30 seconds of the probe trial).  tlxcKO animals also showed similar 

learning to controls as indicated by time spent in the target quadrant over successive probe trials 

(Figure 45C).  Animals of both genotypes first showed significant memory retention for the 

platform location by day 7, as determined by paired t-test comparison of time spent in the target 

quadrant versus average time spent in non-target quadrants (control p<0.01, n=11; mutant 

p<0.05, n=11; data reported for full 60 seconds of probe trial). 

This cohort of animals (cohort 3) was next tested for reversal learning using a six day 

training paradigm with a probe trial two hours before training on day 4 and a final probe trial on 

day 7.  tlxcKO animals showed significant overall impairment during reversal training 

(F1,20=5.902, p<0.05, n=11; Figure 45D), although post-hoc contrasts did not indicate significant 

differences by genotype on any individual day.  tlxcKO animals did not appear to have learned the 

new target location by day 4, spending significantly less time in the target quadrant than controls 

(p<0.01, n=11; Figure 45E) and showing a greater average distance from the target (p<0.05, 

n=11) (data reported for the first 30 seconds of the probe trial).  The reduced time spent in the 

new target quadrant was in part due to increased time spent in the old target location (quadrant 

4), although this time was not significantly different from that of controls (p=0.17, n=11).  By 

the final probe trial on day 7 tlxcKO animals appeared to have successfully learned the new target 

location, as indicated by a similar amount of time spent in the target quadrant as compared to 

controls (p=0.23, n=11; Figure 45F).  Animals of both genotypes spent significantly more time in 
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Figure 45.  Spatial learning is normal but tlxcKO animals show deficits in behavioral flexibility 

TlxcKO and control mice were trained in a hidden platform Morris water maze for 8 days (A).  Memory was tested 

with probe trials conducted 2 hours before training on days 3, 5, 7 with a final trial on day 9 (A, arrows).  Animals 

of both genotypes showed significant preference for the target quadrant (4) by the final probe trial (B), and both 

showed similar improvements in memory over the different probe trials (C).  This was followed by 6 days of 

reversal training (D) with probe trials conducted 2 hours before training on day 4 and on day 7 (arrows).  tlxcKO 

animals were significantly impaired in learning during reversal training as compared to controls (p<0.05).  By the 

day 4 reversal probe trial (E) control animals spent significantly more time in the target quadrant (2) but tlxcKO 

animals spent a chance amount of time.  By the final reversal probe on day 7 (F) tlxcKO animals spent a similar 

amount of time to controls in the target quadrant but still spent significantly more time in the previously learned 

target quadrant (4).  The platform was located in quadrant 4 during training (B, diagram) and in quadrant 2 during 

reversal training (E, diagram).  Dotted lines indicate chance level (25%).  * p<0.05; ** p<0.01.  N=11/genotype. 
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the target quadrant as compared to the average of the non-target quadrants (control p<0.01, 

n=11; mutant p<0.01, n=11).  However, tlxcKO animals spent significantly more time in the old 

target quadrant (quadrant 4) than controls during the day 7 probe trial (p<0.05, n=11; Figure 

45F) and continued to show a greater average distance from the reversal target location (p<0.05, 

n=11).  Overall, these results indicate that despite significant hippocampal reduction, tlxcKO 

animals have intact spatial learning.  These animals do however show impaired reversal learning. 

We further examined spatial learning in tlxcKO animals using a spontaneous alternation 

task.  Spontaneous alternation is a measure of exploratory behavior but performance depends on 

spatial working memory (Lalonde, 2002).  Lesion studies have implicated numerous brain 

regions in spontaneous alternation, including the prefrontal cortex, hippocampus, septum, 

striatum, and cerebellum (Lalonde, 2002).  We used a variant of the task described by Ragozzino 

et al. (Ragozzino et al., 1998) in which mice are released into a 4-arm plus-maze and allowed to 

freely explore for 15 minutes, with the order of arm entries recorded.  tlxcKO animals showed no 

significant difference from controls in percent alternation, defined as the percent of 5-arm sets 

that include entries into all 4 arms (p=0.28, n=19; Figure 46A).  We also analyzed perseverative 

or repetitive behavior, defined as the percent of 3-arm entries in which the same arm was entered 

twice (percent triplets).  No significant difference in percent triplets was observed between 

genotypes (p=0.043, n=19; Figure 46B).  These results support the conclusion that spatial 

learning is normal in tlxcKO animals. 
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Figure 46.  TlxcKO animals show no deficits in spontaneous alternation 

TlxcKO and control animals were put into a 4-arm radial maze and allowed to freely explore for 15 minutes.  The 

order of arm entry was recorded.  tlxcKO animals show no statistical difference from controls in percent alternation 

(A; sets of 5 arm entries that include entries into all 4 of the arms) or percent triplets (B; sets of 3 arm entries that 

only include entry into 2 different arms).  N=19/genotype. 

5.4 DISCUSSION 

In this study we have used mice in which tlx has been specifically knocked out in dorsal 

progenitors from early stages of neurogenesis in order to examine the developmental connection 

between brain structure and behavior.  Whereas mice completely lacking functional tlx 

expression exhibit a variety of structural and behavioral abnormalities, only a subset of these are 

observed when deletion of tlx is restricted to dorsal progenitors, as summarized in Table 2.  

tlxcKO animals show reductions in many dorsally-derived structures, including the cerebral 

cortex, the hippocampus, the lateral/basolateral nuclei of the amygdala, the septum, and in fiber 

tracts, including the corpus callosum and the anterior commissure.  Ventrally-derived cortical 

interneurons as well as structures including the striatum and the hypothalamus appear to be 

relatively unaffected.  These animals show reduced anxiety and depression-like behavior but do 

not exhibit the severe aggression or hyperactivity characteristic of tlx null animals.  TlxcKO 
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animals show normal spatial learning but some deficits in reversal learning, which suggests an 

impairment in behavioral flexibility.  Our findings indicate that tlx has a role in dorsal 

progenitors in the development of specific brain structures and consequently the normal 

development of specific behaviors.   

 

Table 2.  Anatomical and behavioral deficits in tlx null versus tlxcKO animals 

Brain structure Null tlxcKO Behavior Null tlxcKO 

Cortex: surface area ↓ ↓ Aggression ↑ -- 

Cortex: thickness ↓ ↓ Maternal Instincts ↓ Not tested

Glutamatergic neurons ↓ ↓ Hyperexcitable ↑ -- 

GABAergic neurons ↓/-- -- Motor coordination Not tested -- 

Glia ↑ ↑ Anxiety ↓ ↓ 

Hippocampus ↓ ↓ Depression Not tested ↓ 

Amygdala ↓ ↓/-- Spatial learning ↓ -- 

Septum ↓↓ ↓ Reversal learning Not tested ↓ 

Striatum ↓ -- Fear conditioning ↓ Not tested

Hypothalamus Disorganized -- Acoustic startle Not tested -- 

Corpus callosum ↓ ↓ PPI Not tested -- 

Olfactory bulbs ↓ ↓ Epilepsy ↑ -- 

Eye ↓ -- Vision ↓ -- 

5.4.1 Tlx has an important role in the hippocampus for the normal development of 

anxiety 

The hippocampus has been implicated in many behaviors, including spatial learning, anxiety, 

and depression, but it has become clear that different regions of the hippocampus have distinct 

roles in the expression of behavior coupled with differences in patterns of connectivity and 
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neuronal constitution (Moser and Moser, 1998; Bannerman et al., 2004b; Sahay and Hen, 2007).  

Here we have shown that in tlxcKO animals the entire hippocampus is reduced in size, with the 

dentate gyrus particularly reduced at dorsal levels, but the overall size reduction more 

pronounced at ventral levels.  Whereas the dorsal hippocampus (septal pole) has a preferential 

role in learning and memory, the ventral hippocampus (temporal pole) has been implicated in 

emotional behaviors such as anxiety and depression (Moser and Moser, 1998; Bannerman et al., 

2004b; Sahay and Hen, 2007).  Unlike the dorsal hippocampus, ventral hippocampus projects to 

prefrontal cortex.  The ventral hippocampus is also closely connected to the lateral, basolateral, 

and central nuclei of the amygdala, the bed nucleus of the stria terminalis, and other structures 

associated with the hypothalamic-pituitary-adrenal (HPA) axis (Moser and Moser, 1998; 

Bannerman et al., 2004b; Sahay and Hen, 2007).  Lesions of the ventral hippocampus have been 

shown to lead to a reduction in anxiety but have no effect on spatial learning (Moser et al., 1993; 

Kjelstrup et al., 2002; Bannerman et al., 2004b; McHugh et al., 2004).  We have shown that tlx 

has a role in the normal development of the ventral hippocampus, and we propose that, in the 

absence of tlx, the reduction in this region contributes to the reduced anxiety observed in tlxcKO 

animals in the light-dark box and open-field nose poke tasks.   

Numerous lesion studies as well as studies using acute drug microinfusion have shown 

that the dorsal hippocampus has a preferential role in spatial learning in memory (Moser et al., 

1993; Moser et al., 1995; Moser and Moser, 1998; Bannerman et al., 2004b).  Despite significant 

changes in the dorsal hippocampus of tlxcKO animals, spatial learning appeared to be intact as 

examined in the water maze and spontaneous alternation tasks.  This is possibly due to some 

extent to intact vision in these conditional mutants, as it has previously been suggested that the 

deficiencies in spatial learning in the complete absence of tlx are due at least in part to blindness 
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of these animals, although these results are somewhat unclear (Belz et al., 2007; Zhang et al., 

2008).  However, it has also been shown using lesion studies in rats that as little as 26% of the 

dorsal hippocampus is sufficient to support learning in the water maze (Moser et al., 1995).  

Furthermore, whereas the reduction in the tlxcKO hippocampus is most pronounced in the dentate 

gyrus, it has been suggested that the size of CA1 but not the dentate gyrus is crucial to spatial 

learning (Volpe et al., 1992; Olsen et al., 1994).  Thus, our results support the conclusion that 

animals can show normal spatial learning with substantial dorsal hippocampal reduction.   

Tlx has been shown to regulate the proliferation of adult neural stem cells, and deletion of 

tlx either from early developmental stages or acutely in the adult leads to loss of proliferation and 

neurogenesis (Shi et al., 2004; Liu et al., 2008; Zhang et al., 2008).  Acute deletion of tlx from 

the adult brain using inducible Cre-mediated recombination results in delays in spatial learning 

(Zhang et al., 2008).  As expected, neurogenesis is impaired in the dorsal hippocampus of tlxcKO 

animals, indicated by a decreased number of GFAP-positive and calretinin-positive cells in the 

SGZ and an absence of Tbr2-positive cells.  However, we did not observe any difference in 

spatial learning as compared to controls.  The role of adult neurogenesis in spatial learning is 

somewhat unclear, as other studies have failed to find any impairment (Shors et al., 2002; Snyder 

et al., 2005; Saxe et al., 2006).  Zhang and colleagues (Zhang et al., 2008) argue that the training 

protocol is critical in order to observe this subtle learning deficit as, in contrast to previous 

studies, hidden platform testing preceded visible platform testing in their protocol.  In our study 

we similarly began with hidden platform testing, although other small differences in training, 

such as a longer trial duration (we used 1 minute as opposed to 40 seconds) could explain the 

normal learning observed with tlxcKO animals.  The most important difference between these 

studies, however, is that in tlxcKO animals tlx is deleted in dorsal progenitors from an early 
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developmental stage, which allows for the possibility of developmental compensation in learning 

mechanisms.   

 TlxcKO animals showed delayed acquisition of the new platform location during the 

reversal phase of the water maze, exhibiting perseveration in the original platform location, 

which indicates a deficit in behavioral flexibility.  Reversal learning has been shown to be 

impaired by lesions to orbitofrontal cortex or dorsal striatum (Divac et al., 1967; Ragozzino et 

al., 2002; Schoenbaum et al., 2002; McAlonan and Brown, 2003; Clarke et al., 2008).  There is 

also evidence that the basolateral amygdala has a role downstream from orbitofrontal cortex in 

associative encoding, although lesions of the basolateral amygdala alone do not affect behavioral 

flexibility (Schoenbaum et al., 1999; Paton et al., 2006; Stalnaker et al., 2007).  Since we have 

shown that the striatum appears relatively normal in tlxcKO animals, we propose that the changes 

in the cerebral cortex and basolateral amygdala are sufficient to cause impaired behavioral 

flexibility. 

5.4.2 The septum has a key role in mediating emotional behavior 

The septum has a critical role in regulating both emotional and cognitive behavior (Chozick, 

1985; Sheehan et al., 2004).  “Septal rage syndrome”, as demonstrated decades ago in rats with 

septal lesions (Brady and Nauta, 1953; King, 1958), manifests as a profile of hyperexcitability, 

aggression, and increased startle response very similar to the behavior observed in tlx null 

animals (Monaghan et al., 1997; Roy et al., 2002; Young et al., 2002).  Further studies have 

confirmed these results and identified an important role for the septum in many other behaviors.  

The medial septum, which makes substantial cholinergic and GABAergic projections to the 

hippocampus, is important for spatial learning (Kelsey and Landry, 1988; Decker et al., 1995; 
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Bannerman et al., 2004a; Sheehan et al., 2004).  The lateral septum mediates the aggressive 

behavior observed in septal lesion animals and has a critical role in fear and anxiety, but it is not 

clear exactly how the lateral septum regulates these behaviors (Decker et al., 1995; Treit and 

Menard, 1997; Bannerman et al., 2004a; Degroot and Treit, 2004; Sheehan et al., 2004).  The 

lateral septum can be subdivided into different regions based on cytoarchitecture, connectivity, 

and neurotransmitter expression (Risold and Swanson, 1997b, a).  However, most studies have 

failed to examine these different subregions, and the lesion studies that have established the role 

of the septum generally target the entire lateral septum, if not the medial septum as well.  In this 

study we have identified a significant reduction in the size of the septum in the absence of tlx, 

with a lesser reduction in tlxcKO animals.  Although we have not yet identified the specific cell 

populations that are affected, we can speculate given that Emx1-driven Cre is not expressed in 

the medial septum (Gorski et al., 2002) that the lateral septum is reduced in tlxcKO animals.  We 

further predict that, similar to the cerebral cortex, later-born cells are specifically affected; the 

lateral septum is born after the medial septum and develops in an outside to inside manner 

(Bayer, 1979).  Septal lesions produce anxiolytic effects similar to what we observed in tlxcKO 

animals (Decker et al., 1995; Treit and Menard, 1997; Bannerman et al., 2004a; Degroot and 

Treit, 2004; Sheehan et al., 2004).  This suggests that normal development of the lateral septum 

in conjuction with the ventral hippocampus is necessary for the normal expression of anxiety.  

Further analysis will allow us to identify specific populations of cells in the septum that are 

absent and therefore potentially involved in the normal expression of anxiety.   

The septum and hypothalamus are two of the key regions that show differences between 

tlx null animals (which are very aggressive) and tlxcKO animals (which do not show signs of 

aggression and have a normal startle response).  It has been proposed that the rostral part of the 
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lateral septum (LSr) is specifically involved in mediating defensive as well as agonistic 

behaviors via inhibition of circuits mediating these actions (Risold and Swanson, 1997b).  The 

LSr has dense bidirectional connections with the medial hypothalamus, in particular the anterior, 

dorsomedial ventromedial, and dorsal premammillary nuclei, which have been implicated in 

forms of aggressive behavior (Canteras et al., 1997; Risold and Swanson, 1997b; Haller et al., 

2006).  The medial hypothalamus could directly affect the motor components of defensive 

response through downstream projections to parts of the brainstem including the periaqueductal 

gray (Risold and Swanson, 1997b).  Neurons in these hypothalamic nuclei show c-Fos 

immunoreactivity following defensive or agonistic behaviors, and bilateral lesions of the dorsal 

premammillary nucleus abolishes defensive responses in rats (Canteras et al., 1997; Haller et al., 

2006).  We propose that this circuit involving the LSr and the medial hypothalamus mediates the 

aggressive behavior observed in tlx null animals. 

5.4.3 Contributions of other brain areas 

Unlike the ventral hippocampus, the amygdala seems to be involved more in fear than in anxiety 

(Bannerman et al., 2004b).  Lesion studies support a role for the amygdala in fear conditioning 

but not in anxiety (Treit et al., 1993a; Treit and Menard, 1997; Kjelstrup et al., 2002; McHugh et 

al., 2004), although studies involving localized drug infusions have yielded mixed results (Treit 

et al., 1993b; Pesold and Treit, 1995; Sajdyk et al., 2002a; Sajdyk et al., 2002b).  Similarly, small 

lesions to specific amygdalar nuclei support a role for the amygdala in fear but find no effect on 

aggression (Oakes and Coover, 1997; Nader et al., 2001).  TlxcKO animals show a reduction in the 

size of the lateral and basolateral nuclei of the amygdala, although the cellular composition of 

these regions seems similar to that of controls.  Although we did not examine fear conditioning 
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in this study, we predict based on the findings that blindness is the cause of poor performance in 

both contextual and cued fear conditioning in tlx null animals (Belz et al., 2007; Zhang et al., 

2008) that we would not observe any deficits in tlxcKO animals.  It is possible that the reduced 

number of cells present in the amygdala of tlxcKO animals is sufficient to perform normally in the 

production of fear and anxiety.  However, given the substantial connections between the 

lateral/basolateral nuclei and the ventral hippocampus (Pitkanen et al., 2000), we cannot rule out 

a contribution to the observed behavioral abnormalities. 

 In addition to reduced anxiety, tlxcKO animals also showed a reduction in depression-like 

behavior, as shown by decreased time spent floating during the forced-swim test.  Anxiety 

disorders and depression show high co-morbidity in human patients and can in many cases be 

treated with similar drugs, which suggests similar underlying neurobiological mechanisms 

(Gorman, 1996).  Indeed, studies using animal models have identified numerous factors involved 

in both anxiety and depression, such as the serotonin transporter, brain-derived neurotrophic 

factor, and neuropeptide Y receptors (Holmes et al., 2003b; Holmes et al., 2003a; Lira et al., 

2003; Chen et al., 2006b; Zhao et al., 2006; Painsipp et al., 2008).  The ventral hippocampus, 

which we suggest is critical for the normal development of anxiety, contains many serotonergic, 

dopaminergic, and noradrenergic terminals (Gage and Thompson, 1980; Verney et al., 1985).  

Many other brain structures affected in tlxcKO animals have also been implicated in depression, 

including the cerebral cortex, amygdala, and septum (Sheline, 2003; Sheehan et al., 2004; Sahay 

and Hen, 2007).  Additionally, a reduction in astrocytes in the prefrontal and anterior cingulate 

cortex has been reported in human patients with major depression (Johnston-Wilson et al., 2000; 

Webster et al., 2001; Cotter et al., 2002), and it has recently been shown that pharmacological 

ablation of glia can produce depressive-like behavior in rats (Banasr and Duman, 2008).  These 
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findings raise the intriguing possibility that the increased glia observed in tlxcKO animals is 

somehow beneficial, contributing to the observed reduction in depression-like behavior. 

5.4.4 Conclusions 

We have identified a critical role for tlx in dorsal progenitors in the development of forebrain 

structures including the cerebral cortex, hippocampus, amygdala, and septum, and in the 

development of anxiety, depression, and behavioral flexibility.  Our data support a role for the 

development of the ventral hippocampus and lateral septum in the normal expression of anxiety 

and possibly depression.  Our studies also suggest that reductions in specific types of cells in the 

cerebral cortex and basolateral amygdala are sufficient to cause impairments in behavioral 

flexibility.  The absence of severe aggression phenotype in tlxcKO animals suggests that 

aggression is mediated by a distinct subregion of the septum in conjunction with the 

hypothalamus.  Further studies to identify the specific cells in the septum that are affected in null 

and conditional tlx mutants will help to elucidate the precise role of septum in anxiety and 

aggression.  Overall, this study provides a developmental model in which changes to specific 

regions of the brain can be correlated with behavioral abnormalities. 
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6.0  DISCUSSION 

The development of the mature functioning brain is controlled by the precise regulation of the 

neural progenitor cells that give rise to all of the neurons and glia in the central nervous system.  

The normal development of adult behaviors depends upon these early processes, and changes in 

the proliferation, neurogenesis, or gliogenesis of PCs have a lasting impact on brain structure and 

behavior.  Neural PCs are a heterogeneous population that matures over the course of 

development, tightly controlled by a complex system of intrinsic and extrinsic factors.  The 

connection between this early regulation of PCs and the development of the adult brain and 

behavior is still not fully understood.  Identifying early developmental processes that regulate 

specific behavioral changes will lend important insight into the pathology of human 

neuropsychiatric disorders.  The transcription factor tlx is a highly conserved gene that is 

expressed in forebrain PCs and is critical for the normal development of the vertebrate brain, 

with loss of function resulting in significant structural and behavioral abnormalities.  Here I have 

provided evidence that tlx is expressed in a subset of PCs in the developing forebrain, and has a 

role specifically within PCs of the dorsal telencephalon in the development of a specific set of 

brain structures and behaviors.  This allows us to begin to make connections between early 

development and behavior. 

I first characterized tlx expression in the developing forebrain.  During neurogenesis tlx is 

expressed in PCs in regions that give rise to structures including the cortex, the hippocampus, the 
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septum, the striatum, and the hypothalamus, and in a subset of cells in the ventral differentiating 

field in the region of the developing amygdala, although further characterization will be needed 

to identify these cells.  Within the dorsal telencephalon I showed that TLX protein is restricted 

primarily to radial glial cells (RGCs) in the VZ, overlapping significantly with RGC marker 

Pax6 (Gotz et al., 1998).  In contrast TLX is only expressed in a subset of cells in the SVZ; 

although some TLX-expressing cells in the VZ and lower SVZ may also express the intermediate 

progenitor cell (IPC) marker Tbr2 (Englund et al., 2005) most Tbr2-positive cells in the SVZ do 

not express tlx.  This pattern is reminiscent of the pattern of co-expression of Pax6 and Tbr2, 

which are thought to be expressed sequentially in early glutamatergic neurogenesis, with Pax6 

downregulated in the transition from a RGC to an IPC (Englund et al., 2005).  I propose that tlx 

is similarly down-regulated during the RGC to IPC transition.  This raises the question of 

whether tlx has a role in the production of IPCs. 

Although expression of tlx is restricted to RGCs, my findings demonstrate that in both tlx 

null and dorsal-specific conditional tlxcKO mutants Tbr2-expressing IPCs are reduced throughout 

embryonic development, beginning as early as E12.5.  This suggests that tlx acts within RGCs in 

the dorsal telencephalon to influence the production or maturation of IPCs.  Furthermore, I 

showed that in both tlxcKO and tlx null animals that the number of RGCs, estimated by absence of 

Tbr2 at E12.5 and directly identified by Pax6 expression at E14.5 and E18.5, does not differ 

from that of controls.  As shown in both this study in tlxcKO animals and previous studies of tlx 

null animals (Roy et al., 2002; Roy et al., 2004), absence of tlx results in premature neurogenesis 

and an early increase in differentiated neurons relative to controls.  This phenotype could be 

explained by a change in the type of division made by RGCs.  IPCs are generated by asymmetric 

divisions of RGCs to produce an RGC and an IPC (Haubensak et al., 2004; Miyata et al., 2004; 
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Noctor et al., 2004; Attardo et al., 2008; Noctor et al., 2008).  A shift from these IPC-producing 

divisions (RGC-IPC) to asymmetric neurogenic divisions (RGC-N) would increase the 

production of neurons and decrease the production of IPCs but should not affect the number of 

RGCs.  IPCs add a secondary source of proliferating PCs (Haubensak et al., 2004; Miyata et al., 

2004; Noctor et al., 2004), amplifying neuronal production particularly from mid-neurogenesis.  

Therefore, although a switch to neurogenic divisions would initially result in more neurons, as 

development progresses fewer neurons would ultimately be produced.  Inactivation of Tbr2 has 

been suggested to favor such a shift in RGC divisions, and results in a phenotype strikingly 

similar to that observed in tlx null and conditional mutants (Arnold et al., 2008; Sessa et al., 

2008).  Although it does not explain the entire phenotype observed in the absence of tlx, my 

findings indicate that tlx promotes the production or maturation of IPCs, and in the absence of tlx 

RGCs undergo neurogenic divisions at the expense of IPC-producing divisions.  This model is 

summarized in Figure 47.   

 

 

Figure 47.  A role for tlx in the production of IPCs 

Tlx has a role within radial glia progenitors (P) in promoting the production of intermediate progenitors (IP) 

throughout neurogenesis. 
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Within the dorsal VZ, tlx is expressed unevenly; in situ hybridization for tlx mRNA 

shows a columnar expression pattern, with subsets of cells that do not appear to express tlx 

mRNA, whereas TLX protein appears to be expressed in most RGCs but at varying levels.  This 

expression pattern could reflect different subpopulations of RGCs with different properties.  PCs 

responsive to CBF1-mediated Notch signaling show a columnar pattern similar to that of tlx 

mRNA that seems to reflect a role for this signaling pathway in maintaining progenitors as RGCs 

(Mizutani et al., 2007).  Notch signaling through CBF1 activates pro-progenitor bHLH genes 

such as hes1 and hes5 (reviewed by (Yoon and Gaiano, 2005)).  Data from our lab indicate that 

tlx regulates the transcription of hes1 (Drill and Monaghan, unpublished results) which suggests 

a possible link between tlx and the Notch signaling pathway.  Interestingly, unpublished data 

from our lab suggests that at E13.5 only a subset of RGCs express β-galactosidase, which is 

knocked into the tlx null locus and therefore expressed under the control of the tlx promoter, and 

that the proportion of RGCs that express β-galactosidase is increased in tlx null animals as 

compared to heterozygotes (Kuznicki and Monaghan, unpublished results).  One possible 

explanation is that this β-galactosidase-negative population reflects those RGCs that have 

committed to IPC-producing divisions and downregulated tlx expression.  Thus, in tlx null 

animals fewer RGCs undergo IPC-producing divisions and the β-galactosidase-negative 

population is reduced.  Future studies could examine this hypothesis through clonal analysis in 

culture to identify differences in the progeny of β-galactosidase-positive PCs as compared to β-

galactosidase-negative PCs.  Cells would be collected from E13.5 dorsal cortex and FACS sorted 

for a general progenitor marker and the presence or absence of β-galactosidase, then each 

population cultured at clonal density for a week.  IPCs have a more limited capacity for 

proliferation than RGCs; IPCs can undergo proliferative divisions to produce more IPCs, but 
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they mainly undergo symmetric divisions to produce neurons (Haubensak et al., 2004; Miyata et 

al., 2004; Noctor et al., 2004).  Therefore, if the β-galactosidase-negative population corresponds 

to those PCs fated to produce IPCs I predict that this population will exhibit smaller clone sizes 

that include fewer glial cells as compared to the β-galactosidase-positive population. 

My results suggest that tlx is necessary for the normal production of IPCs; but does tlx 

expression directly promote the production of IPCs?  Overexpression of Tbr2 has been shown to 

promote an IPC fate and inhibit cell cycle exit (Sessa et al., 2008).  Preliminary results from 

experiments in which I used in utero electroporation to overexpress tlx in the E13.5 dorsal 

telencephalon did not seem to promote an IPC fate in transfected cells, as determined by Tbr2 

expression, instead affecting migration or maturation of neurons (Drill and Monaghan, 

unpublished results).  However, these experiments were done using a constitutively active 

promoter to express tlx, and although our data suggest that tlx promotes divisions that produce 

IPCs, down-regulation of tlx might be an important step in the actual transition from an RGC to 

an IPC.  Further experiments using in utero electroporation to overexpress tlx under the control 

of a progenitor-specific promoter such as the Nestin promoter (Zimmerman et al., 1994) or to 

knock down tlx using siRNA in a subset of cells at specific developmental stages could help 

identify the role of tlx in IPC development.  Tlx might influence IPC production in conjunction 

with pax6, which is required cell autonomously for the normal expression of tbr2 (Quinn et al., 

2007).  This proposed combined regulation of IPC development could explain the synergistic 

function of tlx and pax6 in the formation of upper cortical layers (Schuurmans et al., 2004).  

The data presented in this thesis demonstrate that tlx is important in the generation of 

IPCs.  Currently, little is known about the specific role for IPCs in the normal development of 

adult brain structure and behavior; tlx mutants therefore provide a unique opportunity to link 
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perturbations in IPCs with an adult phenotype.  In order to focus on specific aspects of the 

complex phenotype observed in null animals, I examined the anatomy and behavior of adult 

tlxcKO animals in which tlx is deleted only from dorsal PCs.  These conditional mutants exhibit a 

subset of the changes in brain structure that have been observed in tlx nulls, including reductions 

in the surface area and thickness of the cerebral cortex, the hippocampus, the lateral/basolateral 

nuclei of the amygdala, the septum, and the corpus callosum.  Ventrally-derived cortical 

interneurons as well as structures including the striatum and hypothalamus appear to be 

relatively unaffected, which suggests a limited role for dorsal input in the gross development of 

ventral structures.  A common theme of the abnormalities in tlxcKO animals is the greater 

reduction in later born structures.  Within the cerebral cortex, later-born superficial layers are 

specifically affected.  Caudal functional cortical areas are disproportionately reduced, which 

could reflect the rostral to caudal gradient of neurogenesis within the cortex (Bayer and Altman, 

1991).  Although the hippocampus is reduced in overall size, the most severe change is observed 

in the dentate gyrus, specifically the infrapyramidal blade, which is born later than the 

suprapyramidal blade during early postnatal development (Altman and Bayer, 1990).  The 

septum also develops in a precisely timed manner, with the medial septum born first, followed 

by the lateral septum generated in an outside to inside laminar pattern (Bayer, 1979).  Although 

additional study will be necessary to identify the specific septal nuclei affected by the loss of tlx, 

we speculate that the medial septum is not affected given that Emx1-driven Cre recombination is 

only observed in the lateral septum (Gorski et al., 2002).  I propose that this reduction in later-

born cells and structures in tlx mutants is the result of the depletion of PCs, particularly IPCs, 

later during development, rather than a requirement for tlx in the direct specification of cells that 

contribute to these precise structures.  In support of this hypothesis, Tbr2 conditional mutants 

 164 



show similar reductions in the surface area and thickness of the cerebral cortex, specifically 

superficial cortical layers, and in the dentate gyrus, where the infrapyramidal blade shows the 

greatest reduction (Arnold et al., 2008).   

IPCs have been primarily examined with respect to the development of the cerebral 

cortex.  Interestingly, Tbr2, which is used as a molecular marker for IPCs in the dorsal 

telencephalon (Englund et al., 2005), is also expressed during development in a subset of cells in 

the dorsal part of the septum and in cells that give rise to pallial-derived nuclei of the amygdala 

(Bulfone et al., 1999).  As I have shown, tlx expression is observed in these same regions.  In 

tlxcKO animals patchy expression of tlx is observed in the region corresponding to the ventral 

pallium, which sends cells to the amygdala, and preliminary results suggest that tlx expression 

may also be absent from the dorsal part of the septal neuroepithelium (data not shown).  This 

raises the intriguing possibility that IPCs have a critical role in the development of these 

structures as well as the cerebral cortex.  Together, these findings suggest that the deficits in the 

amygdala and the septum in tlxcKO animals may be the result of deficits in IPCs in these regions, 

identifying a novel role for IPCs in telencephalic development. 

The developmental and anatomical deficits in conditional tlx mutants lead to a relatively 

small set of behavioral abnormalities, specifically reduced anxiety and depressive-like behavior 

and deficits in behavioral flexibility.  This allows us to make predictions about the structures and 

circuits involved in generating these behaviors.  I propose that the reduced anxiety and 

depression in tlxcKO animals results from deficits in the ventral hippocampus and the septum.  

Previous studies linking these regions with anxiety have generally used models derived from 

perturbation of the adult brain through lesions or localized drug injections (Moser and Moser, 

1998; Bannerman et al., 2004b; Sheehan et al., 2004).  In contrast, our study provides an 
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important model of the underlying developmental mechanisms.  Anxiety and depression are 

symptoms associated with a wide variety of neuropsychiatric disorders.  Anxiety disorders alone 

have a lifetime prevalence of 28.8% in the general population, and show high comorbidity with 

other disorders, including major depressive disorder and bipolar disorder (Gorman, 1996; 

McIntyre et al., 2006; Stein, 2006).  Notably, the human tlx homologue NR2E1 is significantly 

associated with bipolar disorder types I and II (Kumar et al., 2008). 

TlxcKO animals do not display any signs of the aggression readily apparent in tlx null 

animals, although formal testing has not been done.  This absence of aggression led us to 

hypothesize that the aggressive phenotype of null animals is mediated by brain structures or 

circuits unaffected in conditional mutants.  I propose that this aggression is mediated by a circuit 

involving the septum, particularly the rostral part of the lateral septum, and the hypothalamus.  

Future studies using different Cre lines to generate additional conditional tlx mutants may be able 

to isolate this and other behaviors and provide important information about the underlying 

pathology.  Aggression in humans is still poorly understood, and few animal models of 

aggression of developmental origin have been characterized (Miczek et al., 2007).  Regulation of 

serotonin neurotransmission, and of the serotonin receptor 1A in particular, have been linked to 

both anxiety and aggression (Holmes et al., 2003a; Furmark et al., 2004; Zhao et al., 2006; 

Caramaschi et al., 2007; Miczek et al., 2007).  Examination of serotonin transmission or receptor 

expression in tlx null and conditional mutants may help to further elucidate the mechanism of 

these altered behaviors. 

Tlx null animals exhibit losses of distinct interneuron populations (Monaghan et al., 1997; 

Roy et al., 2002).  However, no gross changes in interneuron populations were observed in tlxcKO 

animals, which suggests that there is limited influence from the dorsal telencephalon in the 
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regulation of interneuron production and maturation.  Although NR2E1 has been linked with 

schizophrenia (Jackson et al., 1998; Kohn and Lerer, 2005; Kumar et al., 2008), tlxcKO animals 

did not exhibit any deficits in pre-pulse inhibition, which is reduced in patients with 

schizophrenia and is a standard test for animal models of the disorder (Swerdlow et al., 2001; 

Geyer, 2006).  Deficits in interneurons seem to be a critical component of human 

neuropsychiatric disorders such as schizophrenia (Lewis et al., 2005).  To examine the potential 

link between tlx and schizophrenia, I propose that conditional mutant mice be generated in which 

tlx is deleted from the ventral telencephalon and tested for a schizophrenia-like phenotype in 

behavioral paradigms including pre-pulse inhibition.  This could be done using a Cre line such as 

Nkx2.1-Cre (Xu et al., 2008), which will target interneurons derived from the MGE including 

parvalbumin- and somatostatin-expressing cells.  Another Cre line that could be used is l12b-

Cre, which drives expression of Cre recombinase under the control of a Dlx1/2 regulatory 

element thereby targeting most cortical interneurons as well as cells in the striatum and amygdala 

(Potter et al., 2009); however, as Cre expression in these animals is not detected in most cells 

until they have reached the SVZ, it is possible that tlx will not be deleted early enough to show 

an effect. 

In this study I demonstrated that caudal and medial functionally-defined areas of the 

cortex in tlx null animals show a disproportionate reduction relative to the overall reduction in 

cortical surface area.  In particular, primary visual cortex is specifically reduced; this same 

reduction is observed in the tlxcKO animals, which have grossly normal vision and should have 

normal expression of tlx in the developing eye.  This indicates that the reduction in visual cortex 

is therefore not due to the abnormal development of the optic nerve and retina in tlx null animals 

(Yu et al., 2000; Young et al., 2002; Miyawaki et al., 2004; Zhang et al., 2006).  Rather, I 
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propose that this reduction in surface area is due to changes in the expansion of the PC 

population leading to the depletion of later-born caudal areas.  However, additional markers will 

need to be examined to confirm that tlx does not interact with signaling molecules, such as FGFs 

or Wnts, to affect area specification, particularly in light of the observed reduction in the 

population of Wnt-expressing cells in the cortical hem.  Overall, this raises the interesting 

question of whether a smaller visual cortex matters; does it have any effect on function?  

Although these animals show no gross visual deficits, more stringent tests of vision may still 

reveal subtle differences.  Alternatively, it could be that the remaining cells in the smaller visual 

cortex are sufficient for normal function, perhaps implying redundancy in the normal adult visual 

system. 

My findings described in this thesis suggest a role for tlx in the maturation of dorsal PCs 

and in the decisions they make during development.  I propose that tlx acts within dorsal RGCs 

to promote divisions that produce IPCs, a secondary population of proliferating cells that have 

recently been shown to have an integral role in producing most of the neurons in the developing 

cerebral cortex.  Normal expression of tlx in the dorsal telencephalon is important for the 

development of specific aspects of the adult brain and behavior.  Association of NR2E1 with 

human disorders suggests that this gene is important for human behavior, although interestingly, 

all mutations that have been identified appear to affect transcriptional regulation of tlx (Kumar et 

al., 2007; Kumar et al., 2008).  Therefore, an important next step in elucidating the role of tlx in 

the development of behavior and in particular its relevance to neurological disorders will be to 

determine how it is regulated throughout development.  One initial approach would be to 

determine whether any Drosophila genes that have been shown to regulate tailless expression 

have mammalian homologues and, if so, whether they have a similar role in regulating tlx in 
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mice.  A second approach would be to use a DNA affinity capture assay (Gadgil et al., 2001; 

Park et al., 2005) to isolate and identify transcription factors or other associated proteins that 

bind to the tlx promoter in embryonic neural tissue.  Characterization of identified transcription 

factors that regulate tlx in the developing mouse telencephalon will provide important insight 

into the mechanisms that underlie development in the human brain. 

In this study, we have identified an important role for tlx in the production of 

intermediate progenitor cells in the dorsal cortex.  Loss of tlx disrupts this specific subset of 

progenitors, leading to specific alterations in adult brain structure and behavior.  Given that the 

primary developmental deficit in the absence of tlx is a reduction in intermediate progenitor 

cells, this suggests a potential novel role for this progenitor population in the development of 

structures outside of the cerebral cortex, including the hippocampus, basolateral amygdala, and 

lateral septum.  Although we have not modeled a single human disorder, we have identified a 

developmental model of a behavioral endophenotype, anxiety, that is common to many 

neuropsychiatric disorders.  With a model such as this, which goes from early neurogenesis to 

adult anatomy and behavior, we can begin to identify the processes that underlie both normal and 

pathological behaviors.  Ultimately, improving our understanding of how behavior develops, and 

what happens when this system is perturbed early in life, will help us to better manage human 

developmental neuropsychiatric disorders. 
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APPENDIX A: ANTIBODIES USED FOR IMMUNOHISTOCHEMISTRY 

Table 3.  Antibodies used for immunohistochemistry 

Target Host Company Dilution Cells/Structure Labeled Reference 
β-galactosidase 
(β-gal) 

chicken Abcam 1:500 Expressed under the 
control of the tlx 
promoter in the null allele 

(Monaghan et 
al., 1997) 

Calbindin mouse Sigma 1:1000 Cortical interneuron 
subpopulation; granule 
cell somata in the DG of 
the hippocampus; 
interneurons and some 
pyramidal cells in the 
amygdala; matric 
compartment of the 
striatum 

(Gerfen et al., 
1985; 
Sloviter, 
1989; Kubota 
et al., 1994; 
Gonchar and 
Burkhalter, 
1997; 
Kemppainen 
and Pitkanen, 
2000) 

Calretinin rabbit Chemicon 1:2500 Cortical interneuron 
subpopulation; immature 
postmitotic granule cells 
in the hippocampus 

(Kubota et 
al., 1994; Liu 
et al., 1996; 
Gonchar and 
Burkhalter, 
1997; Brandt 
et al., 2003) 

CGRP 
(Calcitonin 
gene related 
peptide) 

rabbit Abcam 1:2000 Central nucleus of the 
amygdala 

(Kawai et al., 
1985; Yasui 
et al., 1991) 

Ctip2 (COUP 
TF-interacting 
protein 2) 

rat Abcam 1:500 A subset of cells in 
cortical layer V 

(Avram et al., 
2000; Arlotta 
et al., 2005) 

Cux1 (Cut-like 
homeobox 1) 

rabbit Santa Cruz 1:500 
(Embryo)
1:1000 
(Adult) 

Upper cortical layers 
II/III and IV; IZ and SVZ 
in the embryo 

(Nieto et al., 
2004; 
Zimmer et al., 
2004) 
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Target Host Company Dilution Cells/Structure Labeled Reference 
DARPP-32 
(dopamine- and 
cAMP- 
regulated 
phosphoprotein) 

rabbit Chemicon 1:500 Interstitial nucleus and 
parts of the central 
nucleus of the amygdala; 
patch compartment of the 
striatum 

(Ouimet et 
al., 1984) 

GABA (γ-
aminobutyric 
acid) 

rabbit Sigma 1:1000 Interneurons (general 
marker) 

(Houser et al., 
1983) 

GFAP (Glial 
fibrillary acidic 
protein) 

mouse Sigma 1:400 
(Embryo)
1:1000 
(Adult) 

Astrocytes; adult neural 
precursors in the dentate 
gyrus 

(Bignami et 
al., 1972; 
Uyeda et al., 
1972; Seri et 
al., 2001) 

GFAP (Glial 
fibrillary acidic 
protein) 

rabbit Sigma 1:1000 
(Adult) 

Astrocytes; adult neural 
precursors in the dentate 
gyrus 

(Bignami et 
al., 1972; 
Uyeda et al., 
1972; Seri et 
al., 2001) 

GLAST 
(Glutamate 
transporter) 

guinea 
pig 

Chemicon 1:4000 Radial glia progenitors (Shibata et 
al., 1997; 
Hartfuss et 
al., 2001) 

NeuN 
(Neuronal 
nuclei) 

mouse Chemicon 1:500 Mature neurons (general 
marker) 

(Mullen et al., 
1992) 

Parvalbumin mouse Sigma 1:2000 Cortical interneuron 
subpopulation 

(Kubota et 
al., 1994; 
Gonchar and 
Burkhalter, 
1997) 

Pax6 (Paired-
box-containing 
gene 6) 

rabbit Covance 1:500 Radial glia progenitors (Gotz et al., 
1998) 

Serotonin rabbit Immunostar 1:20,000 Terminations of 
thalamocortical axons in 
layer IV of primary 
sensory cortical areas 
(P8) 

(Fujimiya et 
al., 1986) 

Sox10 (SRY-
box containing 
gene 10) 

rabbit CeMines 1:500 Precursors and 
oligodendrocytes 

(Kuhlbrodt et 
al., 1998) 

Tbr1 (T-box 
brain gene 1) 

rabbit Chemicon 1:1000 
(Embryo)
1:2000 
(Adult) 

Glutamatergic cells in the 
subplate and layer VI of 
the cortex, weakly 
expressed by cells in 

(Bulfone et 
al., 1995; 
Puelles et al., 
2000; Hevner 
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Target Host Company Dilution Cells/Structure Labeled Reference 
layers II/III and IV and a 
few cells in V; pallial-
derived glutamatergic 
cells in the amygdala 

et al., 2003; 
Kolk et al., 
2005) 

Tbr2 (T-box 
brain gene 2) 

rabbit Chemicon 1:1000 
(Embryo) 
1:2000 
(Adult) 

Intermediate progenitor 
cells in the embryonic 
cortex and adult 
hippocampus 

(Englund et 
al., 2005; 
Hodge et al., 
2008) 

Tlx rabbit Gift from 
Y. Shi 

1:1000 Tlx protein (Li et al., 
2008) 

Tuj1 (Neuron-
specific class III 
β-tubulin) 

mouse Sigma 1:1000 Early pan-neuronal 
marker 

(Lee et al., 
1990) 

Vasopressin rabbit Chemicon 1:2000 Paraventricular nucleus 
of the hypothalamus 

(Caffe and 
van Leeuwen, 
1983) 
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