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STATISTICAL METHODS FOR EXPLORING NEURONAL

INTERACTIONS

Mengyuan Zhao, PhD

University of Pittsburgh, 2010

Generalized linear models (GLMs) offer a platform for analyzing multi-electrode recordings

of neuronal spiking. We suggest an L1-regularized logistic regression model to detect short-

term interactions under certain experimental setups. We estimate parameters of this model

using a coordinate descent algorithm; we determine the optimal tuning parameter using

BIC, and prove its asymptotic validity. Simulation studies of the method’s performance

show that this model can detect excitatory interactions with high sensitivity and specificity

with reasonably large recordings, even when the magnitude of the interactions is small;

similar results hold for inhibition for sufficiently high baseline firing rates. The method is

somewhat robust to network complexity and partial observation of networks. We apply our

method to multi-electrode recording data from monkey dorsal premotor cortex (PMd). Our

results point to certain features of short-term interactions when a monkey plans a reach.

Next, we propose a variable coefficients GLM model to assess the temporal variation

of interactions across trials. We treat the parameters of interest as functions over trials,

and fit them by penalized splines. There are also nuisance parameters assumed constant,

which are mildly penalized to guarantee the finite maximum of the log-likelihood. We choose

tuning parameters for smoothness by generalized cross validation, and provide simultaneous

confidence bands and hypothesis tests for null models. To achieve efficient computation, some

modifications are also made. We apply our method to a subset of the monkey PMd data.

Before the implementation to the real data, simulations are done to assess the performance

of the proposed model.
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Finally, for the logistic and Poisson models, one possible difficulty is that iterative al-

gorithms for estimation may not converge because of certain data configurations (called

complete and quasicomplete separation for the logistic). We show that these features are

likely to occur because of refractory periods of neurons, and show how standard software

deals with this difficulty. For the Poisson model, we show that such difficulties arise possibly

due to bursting or specifics of the binning. We characterize the nonconvergent configura-

tions for both models, show that they can be detected by linear programming methods, and

propose remedies.
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1.0 INTRODUCTION

1.1 MULTI-ELECTRODE RECORDING AND NEURONAL

INTERACTIONS

An important goal in neuroscience is to understand the physiology of the brain and nervous

system of primates when they are engaged in various behavioral tasks. An essential part is the

interactions between neurons in relevant brain areas and their relationship to the behaviors

[8, 23, 43, 19, 52]. Multi-electrode recording systems have made feasible the simultaneous

recording of many neurons, allowing neuroscientists to better study neuronal interactions

under different conditions, even though they need not identify synaptic connections. At the

same time, these recordings present a great challenge to data analysts, in that conventional

procedures are often inadequate to handle the high dimensional data from these experiments.

The commonly used tools by neuroscientists to study neuronal interactions are the cross-

correlation histogram [41] and its variants. These include the joint peri-stimulus time his-

togram (JPSTH) [26], the snowflake plot [42, 16], the normalized JPSTH and the shuffle-

corrected cross-correlogram [1, 7]. However, these methods are commonly used to study two

or three neurons at a time, ignoring the possible contributions of other neurons. In addition,

those graphical methods are histogram-based, so when the bin size is chosen large, they may

not capture short-term interactions.

Brillinger introduced generalized linear models (GLMs) for the analysis of the firing rate

of a neuron as a function of the time since its last spike and spiking history of other neurons

[6]. Although he studied small networks (three neurons), GLMs offer a useful framework

for the analysis of tens, even hundreds of simultaneously recorded neurons. Since then,

much of the work in this area has focused on encoding, which fits a model of neural spiking
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given observed behavior [37, 55, 32]. The GLM approach has the following advantages: it

can handle all recorded neurons simultaneously; the potential triggers of a spike, such as

spike history, neural ensemble and body kinematics, can be incorporated into the analysis

simultaneously; and the corresponding parameters can be treated as an indication of the

interactions among neurons. Further, GLMs can be again generalized to adapt to point

process [37] or or state-space frameworks [32], where hidden inputs such as ‘common-input’

are modeled as stochastic processes. In addition, the use of GLMs for the encoding stage

has proved successful in decoding body movements from neural activity [24, 55], and bet-

ter than entropy methods in spike prediction of single neurons [56]. Modifications of the

GLM framework were also made. For example, to model a smooth spike-triggered effect,

the parameters are treated as smooth functions of time, instead of a discretization of the

lagged time [30, 38]. This modification sometimes is called ‘Markov interval models’ [30];

alternatively, Stevenson et al. [52] added a L2 penalization on the difference of the adjacent

parameters, which functions as a penalty on roughness.

Our interest in GLMs in this context is to assess neuronal interactions and their vari-

ations under different behavioral tasks. We interpret the sign of parameters in GLMs as

excitatory (positive), inhibitory (negative) or lack of (zero) interaction, so that a study of

those parameters should provide an estimate of the nature of the true underlying interac-

tions of neurons. Therefore, a sparse model, that is, one with a small portion of variables

in the original model, will be helpful to highlight the most prominent interactions among

all pairs of recorded neurons. In particular, subclusters of neurons that appear to be depen-

dent would then be good candidates for further study to better characterize the nature of

the interactions. One such attempt by Truccolo et al. [55] uses the AIC to select models.

However, it cannot automatically select the best subset among all variables, because it must

compare all candidate models, which is infeasible for large networks. Therefore, unless we

have postulated a network for testing a priori, an automatic model selection approach is

required to find the neural interactions. In addition, standard stepwise variable selection

methods are susceptible to nonconvergence because certain data configurations can lead to

infinite maximum likelihood estimates (MLEs) of an unregularized GLM [65].

The model selection method we consider here is a version of the lasso, specifically an L1-
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regularized logistic regression model. This approach has been used before in neuroscience,

but with the primary aim of decoding [37, 43]. More recently, Stevenson et al. used a

Bayesian formulation of L1 regularization to detect long-term neuronal interactions [52].

To assess the performance of the proposed method, we also do simulation studies. In

particular, we study its ability to detect nonzero coefficients when varying several important

factors. The simulations help by lending credibility of our findings in monkey data. Guided

by the simulation study, we implement the proposed method to three monkey data sets with

three different recording lengths. These results point to patterns of interactions among the

neurons under different conditions.

1.2 VARIATION OF NEURONAL INTERACTIONS ACROSS TRIALS

The GLM framework mentioned in the previous section is static, that is, the parameters

which encode the neuronal interactions are assumed constant both within one trial of the

experiment and across trials. However, these assumptions need validation. Eden et al. [17]

introduced a dynamic GLM model, where they modeled the parameters as a multivariate

autoregressive process within each trail. Gilson et al. (2009) [27] model the synaptic connec-

tivity via a dynamical system model, and study the steady states for spike-timing-dependent

plasticity.

In a typical multi-electrode recording experiment, for example, a monkey center-out task

for motor control, there are two temporal variables involved. One is the time within a trial,

and the other is the order of trials. Within a trial, the variation of neuronal interactions can

be due to the onset of the stimuli [9] or the plasticity [27]. Those studies mentioned so far are

mainly focused on modeling the neuronal dynamics within a trial, while trials are treated as

independent and identical replicates. However, the independence and identity of the trials

can be compromised by some uncontrolled conditions, such as monkey fatigue, adaptation in

training, or inputs from other brain areas. Furthermore, in some studies, temporal variation

across trials are more likely to happen than the temporal variation within a trial. For

example, in the study of the relationship between the PMd and the reach planning, only a

3



few hundreds milliseconds period in a trial is of interest, and the neuronal connectivity is

likely to be stationary in that very short period. On the other hand, the entire experiment

can last for hours for repeating trials. The assumption that the neuronal interactions are

stationary over hours is suspectable because of the many uncontrolled conditions that might

occur within these hours.

Therefore to account for the variation of the neuronal interactions, we propose a penalized

semi-parametric variable coefficients model. We treat interaction parameters from the GLM

framework as constant within a trial, but varying across trials. The functions of parameters

should be smooth, so they are assumed to be from a function space spanned by a basis

set, and there is a penalty on the roughness. We implement a B-spline here, although no

specific constrains on the choice of the basis is required. In addition, since the refractoriness

of neurons can cause infinite parameter estimates [65], we also add a mild L2 penalty for

nuisance parameters. The model is fitted by penalized regression spline technique introduced

by [62]. The tuning parameters for smoothness are selected via generalized cross validation

(GCV) criteria [15, 62]. Confidence bands for the smooth functions are provided based on a

Bayesian interpretation of penalized spline models [57, 51], where the more appropriate term

in Bayes statistics should be ‘credible bands’. Since the Bayesian credible bands for smooth

functions are found to perform well from a frequentist viewpoint [57, 51], we use the term

‘confidence bands’ instead in this dissertation. Because the confidence bands introduced

by Wahba and Silverman [57, 51] are based on the selected smoothing parameters, Wood

(2006) [62] calls them ‘conditional Bayesian confidence bands’. To further correct the bias

introduced by data, Wood (2006) [62] suggests the ‘unconditional Bayesian confidence bands’

by bootstraping samples of smoothing parameters first. The confidence bands should also be

constructed simultaneously. We follow a method introduced by Ruppert et al. (2003) [47],

where the bootstrap is also used. Finally, we use likelihood ratio test with approximated χ2

distribution to test the null model of stationary interactions, although we are aware of the

fact that it is an incompletely justified method introduced by Hastie and Tibshirani (1990)

and Wood (2006) [28, 62].

Again, to assess our method’s performance, we simulate a neuron with both single-input

and multi-inputs from other neurons. Simulation studies show that the variable parameters
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capture the simple variation structure of the interactions across trials, such as monotone

or quadratic variations. The confidence bands and hypothesis tests will further support

the existence of variations across trials. Two monkey data sets, among the three data sets

used in interaction detection, will be used again to see whether there are variations in the

interactions that were detected first by L1 regularization.

1.3 OTHER STATISTICAL ISSUES

In the application of the proposed L1-regularized logistic regression model and variable co-

efficients model, some other important statistical issues are concerned in both theory and

computation.

One concerns the possibility of non-convergence in optimizing the logistic regression

log-likelihood without regularization. Nonconvergence in fitting logistic regression was not

reported in papers [37, 55], but it poses challenges in our analysis. We found that, in

the logistic model the nonconvergence is due to a data configuration called ‘quasicomplete

separation’ of the design matrix [2, 50]. Quasicomplete separation is inevitable in spike train

data, because the refractoriness of neurons determines that two firings within a consecutive

milliseconds do not occur. Extending this work on nonconvergence to Poisson models, we

present the necessary and sufficient conditions for the existence of finite MLEs in Poisson

regression. We characterize the nonconvergent configurations for both models, show that

they can be detected by linear programming methods, and discuss possible remedies. In

both spike train data analyses introduced above, the possible nonconvergence is addressed

and appropriate treatments are implemented to remedy this issue.

Second, although the GLM with L1 regularization method sounds appealing in selecting a

sparse model, the efficiency of computation is a serious issue. Due to the non-differentiability

of L1-regularization term, conventional convex optimization algorithms have been modified

and new numerical algorithms have been proposed [18, 39, 46, 53]. However, more recent

research suggests a ‘coordinate descent’ algorithm in optimizing the convex loss function

plus regularization, with logistic regression with L1 regularization as a special case [21,

5



22]. A similar approach was also found by Wu and Lange [64]. This algorithm is simple

to implement but competitive with other well-known procedures in high dimensional lasso

problems [21, 22]. The corresponding R package, glmnet, which we implemented in model

fitting, is available on the web: http://cran.r-project.org/.

Third, since we do not have enough physiological facts to validate the detected inter-

actions, the theoretical properties of the L1-regularized logistic regression model become

important. The asymptotic properties of both the lasso in model selection [20, 66, 59] and

the BIC in tuning parameters selection [68, 58] are widely studied. Here we synthesize those

results to prove the validity of the proposed L1-regularized logistic model with BIC to select

tuning parameters.

And fourth, several computational issues arose in the variable coefficients model appli-

cations too. First, we may have tens to hundreds of neurons recorded, so that there are at

least tens or hundreds of smooth functions needed to fit, which is computationally inten-

sive. This effort can be reduced by doing the detection of interactions first. From results in

Stevenson et al. [52] and our interaction detection studies, neuronal interactions are found to

be sparse. So based on the sparse results, we can fit much smaller models instead. Second,

the minimization of GCV will be computationally intensive due to the large size of the ob-

servations (n = 10, 000 ∼ 100, 000). Although the method introduced by Wood (2008) [63]

will calculate the exact gradient and Hessian of the GCV, it involves heavy computation.

On the other hand, his earlier method [61] would be less intensive in computation, but the

suggested QR-decomposition of the design matrix X will be infeasible if X has an extremely

large dimension. To avoid this problem, based on the method in Wood (2004) [61], we use a

computationally efficient way to derive the gradient and Hessian of the GCV. Finally, since

both the point-wise unconditional Bayesian confidence bands and simultaneous confidence

bands required bootstrap samples [62, 47], we combine the two algorithms to reduce the

effort in sampling.
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1.4 ORGANIZATION OF THIS DISSERTATION

The dissertation mainly consists of three parts:

1. An L1-regularized logistic regression model for detecting neuronal interactions on monkey

reach data

2. A variable coefficients model for the variation of interaction across trials

3. Nonconvergence in logistic and Poisson models for neural spiking

as well as the future work:

1. Multi-stage model selection methods in neuronal interaction detection

2. Error-in-variables methods for tuning curves and spike count correlations

In Chapter 2, we introduce the monkey reach experiments and data used for analysis

(Section 2.1), and the GLM framework for spike train data (Section 2.2). In Chapter 3, we

describe the L1-regularized logistic model for detecting neuronal interactions (Section 3.1).

Computational methods (Section 3.2) and tuning parameter selection (Section 3.3) will be

elaborated. In the end of this chapter are the simulation studies (Section 3.4) and real data

analysis (Section 3.5). In Chapter 4, we describe the variable coefficients model for the

variation of interaction across trials (Section 4.1) and how to determine smooth parameters,

construct confidence bands and test the hypotheses (Section 4.2). The simulation studies and

real data analysis will follow (Section 4.3, 4.4). In Chapter 5, we first generally describe the

nonconvergence issue in GLM modeling (Section 5.1), and then move to the details for both

the logistic (Section 5.2) and Poisson models (Section 5.3). Remedies for the nonconvergence

are also provided (Section 5.4). In the end, the future work will be briefly sketched in Chapter

6.

7



2.0 EXPERIMENTAL METHODS AND GLM FRAMEWORK

2.1 THE MONKEY REACH EXPERIMENTS

The analysis done in this dissertation is involved with data from three experiments performed

by two monkeys named Larry and Ham. The three experiments have the same scheme in a

trial, but with two different reach tasks. In all three experiments, neurons from the dorsal

premotor cortex (PMd) were recorded, due to the role of PMd plays in reach planning [10, 5].

In each experiment, an adult male Rhesus monkey (macaca mulatta) participated. All

experimental procedures were approved by Stanford University’s Institutional Animal Care

and Use Committee. The animal performed either an instructed-delayed center-out (CO) or

reference frame (RF) reach task. The animal was extensively trained to perform the task

before experiments began. The monkey faced a vertically-oriented screen. Each trial began

at a square that indicates the touch point (TP). When the monkey touched the TP, a crossing

fixation point (FP) appeared for the monkey fixating the tracked eye to it. After the monkey

gazed at the FP, the reach target (a second square) appeared, and the monkey is required

to maintain his hand and eye position. Next, the TP and FP were extinguished and ‘go’ cue

appeared. The monkey reached his hand to the target. In sum, one trial consists of four

periods: fixation period (from the start to the finish of eye and hand fixation), pre-cue period

(from the end of fixation to the appearance of the target), delay period (from the appearance

of the target to ‘go’ cue) and reaching period (from ‘go’ cue to the acquire of the target);

See Figure 1A. The length of each period varies in the three different experiments. The

trials, the number of which also varies from three experiments, are repeated with complete

randomization of targets. See Table 1 for details.

The three experiments used two tasks, center-out task and reference frame task, which

8



are different in the placement of the TPs and targets. In the center-out task, the TP is in

the center and eight peripheral targets are equally placed; in reference frame task, the TP

is under ten targets, which are parallel placed in two parallel rows (Figure 1B).

Figure 1: A: the experiment scheme B: the target setup for two tasks

Neural data is recorded using a 96-electrode ‘Utah’ array (Blackrock Microsystems, Salt

Lake City, UT) surgically implanted into the PMd. Implantation was designed to target

cortical layer 5, where neurons that project to the primary motor cortex are located (though

electrode depth could not be confirmed.) After the recording, the spikes are sorted from the

whole voltage traces via the algorithm introduced by Santhanam et al. [48]. The snippets

that are suspected to be action potentials are clipped from the whole voltage traces, and

then they are aligned in the same axis relative to the trough (Figure 2A). The spikes were

automatically identified using a three-step process: noise whitening, dimensionality reduction

via principal components analysis, then a clustering algorithm (Figure 2B). Automatically

identified clusters were then assigned sort qualities by the authors.

To study the changing of neuronal interactions in different conditions, only two condi-

tions, reaches to left and to the right, were chosen for all three experiments. In the meanwhile,
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Figure 2: The spike sorting scheme: A) aligned snippets, B) two well-isolated neurons

only well-isolated neurons with mean firing rates greater than 3Hz in both conditions were

used in analysis. See Table 1 for details.

Table 1: Experimental parameters for the three data sets

Monkey Task Conditions Period Length (ms) # of neurons # of trials

Ham2005 RF up-left, bottom-right delay 500 18 12, 9

Larry2008 CO left, right pre-cue, delay 300, 300 41 574, 559

Ham2004 CO left, right delay 500 30 145, 146

2.2 GLM FRAMEWORK FOR MULTI-ELECTRODE RECORDING DATA

Multi-electrode recording data are often organized in the form of spike trains: discrete count-

valued time series with each value indicating the number of neuron firings (spikes) within
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the corresponding time interval. Depending on the type of experiment, the time courses of

extrinsic covariate information, such as stimuli or body kinetics, can also accompany the

spike trains. We suppose that all the spike trains and time courses are aligned onto the same

time axis.

We bin the time axis into T equal segments. Typically T is large enough so that, within

each bin of size ∆, at most one spike per neuron occurs in a cell, leading to binary outcomes;

∆ = 1 millisecond (ms) is often chosen [6, 55]. Large bin sizes that lead to count data are

also used [52]. We denote the spike train within the first t bins of neuron c as N c
1:t, the

number of spikes within tth bin of neuron c as ∆N c
t , history of all neurons and extrinsic

influences before tth bin as Ht and its conditional firing rate (number of spikes per second)

at bin t as λct , where c = 1, 2, ..., C, the number of neurons identified by the electrodes.

Assuming that the firing rate is constant in the time interval ∆, the distribution of ∆N c
t

conditioned on the history is typically considered as either Bernoullli if ∆N c
t is binary, or

Poisson if ∆N c
t is a count. In Bernoulli case:

P (∆N c
t |Ht) = [λct∆]∆N

c
t [1− λct∆]1−∆Nc

t ,

and in Poisson case:

P (∆N c
t |Ht) =

[λct∆]∆N
c
t

∆N c
t !

eλ
c
t∆.

Assuming that the spiking probability of a neuron at time t depends only on the history,

and not on the spiking of other neurons at the same time, the likelihood of all spike trains

is:

P (N1:C
1:T ) =

C∏
c=1

T∏
t=1

P (∆N c
t |Ht).

Further, if the experiment is repeated J times, we assume that the trials are independent

replicates, so the likelihood is

P (N1:C
1:K(1), ..., N1:C

1:T (J)) =
J∏
j=1

C∏
c=1

T∏
t=1

P (∆N c
t (j)|Ht). (2.1)

Next, we model the conditional firing rate, incorporating all covariates of interest:

g(λct∆) = βc +
P∑
p=1

βcp∆N
c
t−p +

∑
i 6=c

Q∑
q=1

βciq∆N
i
t−q + I(αc), (2.2)
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where g is any appropriate link function satisfying the standard requirements of a logistic or

Poisson model, such as the logit or log, respectively [34]. The first term βc in (2.2) denotes

the baseline firing rate. The second term models the effect of the the spiking history effect

of neuron c, with the coefficient βcp indicating the magnitude of effect at lag p, up to a P∆

ms lag. The third term captures neural ensemble effects, with βciq being the magnitude

of effect of neuron i on neuron c at lag q, this time up to a Q∆ ms lag. The last term I

denotes a function, linear in parameters α, of extrinsic covariate effects. For example, to

model the relationship between neuronal activity and monkey hand movement, I may follow

the velocity model [36, 55]:

I(α) = α1|Vt+τ | cos(φt+τ ) + α2|Vt+τ | sin(φt+τ ),

where |V | and φ are hand movement speed and direction, respectively, and τ is the time lag

between the neuronal activity and its consequent effect on movement.

To model the spike history and neural ensemble effects, the covariates ∆N c
t−p, ∆N i

t−q

in (2.2) can be substituted by N c
1:t−(p−1)W − N c

1:t−pW and N i
1:t−(q−1)W − N i

1:t−qW , where W

represents a multiple of ∆. This substitution is equivalent to constraining the βcp and βciq to

be constant in a larger time interval compared to ∆, so that the corresponding spike event

has a persistent effect.
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3.0 AN L1-REGULARIZED LOGISTIC MODEL FOR DETECTING

SHORT-TERM NEURONAL INTERACTIONS

3.1 L1-REGULARIZED LOGISTIC MODEL

To capture short-term interactions on the order of 5 ms, we build a model with high time

resolution, with ∆ = 1 ms and Q ≤ 5. Note that the use of a small bin size can enlarge the

data set considerably, particularly when the experiment duration of interest is small, say,

500 ms. When ∆ = 1 ms, each ∆N c
t is binary, leading to the logistic regression model:

log

(
λct∆

1− λct∆

)
= βc +

P∑
p=1

βcp∆N
c
t−p +

∑
i 6=c

βci1

(
Q∑
q=1

∆N i
t−q

)
+ I(αc). (3.1)

The parameter βci1 in (3.1) represents the short-term interaction between neuron c and

i within Q (≤ 5) ms, given the activity of all other neurons: a positive βci1 means that

neuron c will be excited within Q ms after neuron i fires, a negative βci1 means inhibitory

interaction, and zero means lack of interaction from neuron i to neuron c. In the last term, αc

are nuisance parameters for extrinsic effects, which can be conveniently excluded from model

when there are no stimuli or body movements. Note that there is no overlap of parameters

in (3.1) for each c, so the entire logistic model can be solved individually: first collect the

parameters βc, {βcp} and {βci1} into a large vector θc and maximize C individual likelihoods

L(θc, α̃c) = P (N c
1:T (1), ..., N c

1:T (J)) =
J∏
j=1

T∏
t=1

P (∆N c
t (j)|Ht). (3.2)

Note, however, that maximizing (3.2) itself will not give zero estimates of the interaction

parameters in general, so we use a selection method by zeroing out some βci1. Tibshirani [53]

introduced the lasso to select variables in the linear model. The theory of this L1-regularized
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model selection procedure has been studied [20, 18, 68], and it has been implemented widely

[54, 40]. Our approach selects a sparse model by minimizing the C individual L1-regularized

logistic models:

f(θc, α̃c|γc) = −logP (N c
1:T (1), ..., N c

1:T (J)) + γc

(∑
p

| βcp | +
∑
i 6=c

| βci1 |

)
. (3.3)

The L1-regularization can be also directly added to the whole log-likelihood (2.1). How-

ever, since there is no overlap in the parameters for different neurons, fitting C individual

L1-regularization logistic models leaves more flexibility in the choice of regularization param-

eter γ. In addition, decomposing the entire model into C models can decrease the dimension

of the model, so that computation becomes more efficient.

3.2 COORDINATE DESCENT ALGORITHM FOR OPTIMIZATION

Because the function f in (3.3) does not have the first derivative at βcp = 0 and βci1 =

0, a gradient-based method, like Newton-Raphson method, can not be applied directly.

Hence, there has been considerable effort on numerical optimization of the L1-regularization

problem. Tibshirani [53] offered an algorithm where the regularization term was seen as a

combination of linear constraints; however, it was proven to be computationally inefficient,

because
∑p

i=1 |βi| implies 2p linear constraints. Later, methods based on path algorithms

[18, 21, 22, 39, 45, 64] largely improved the computation time and the accuracy of the

estimates. The core steps of these path algorithms are:

1. Start estimating β, the vector of all parameters, without regularization, i.e. γ = 0,

or fully regularized, i.e. γ = γmax such that all parameters of interest have zero esti-

mates. The latter is usually the choice, since the parameters are not estimable without

regularization in many cases.

2. Increase or decrease the γ by ∆γ and update the estimate of β(γ+∆γ) from the estimate

of β(γ). It is achievable because at γ = 0, β̂ = β̂MLE and at γ = γmax, β̂ = 0, so we

have starting points for this iterative algorithm.
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3. Stop when γ = γmax or γ = 0.

The difference between various path algorithms is in how γ and β are updated, which

determines the complexity and efficiency of the algorithm.

Among these methods, the coordinate descent algorithm [21, 22, 64] has been known for

a long time but neglected. Recently it has recaptured researchers’ attention because of its

computational efficiency as well as its simple implementation in linear and logistic regression.

In addition, the coordinate descent algorithm is not specialized for log-likelihood function

with L1 regularization, but can apply to more general cases, like LAD-lasso, fused lasso and

elastic net [21, 22, 64].

The algorithm takes advantage of the ease in solving single-parameter lasso problems.

Suppose we fit a weighted linear regression model with only one predictor xβ and L1 regu-

larization γ|β|. Thus we minimize

f(β) =
1

2

n∑
i=1

wi(yi − xiβ)2 + γ|β|. (3.4)

If β > 0, noting that the MLE without regularization is β̂ =
∑

iwixiyi/
∑

iwix
2
i , we can

differentiate (3.4) to get

df

dβ
=

n∑
i=1

wi(yi − xiβ)(−xi) + γ

= (
n∑
i=1

wix
2
i )β −

n∑
i=1

wixiyi + γ

= (
n∑
i=1

wix
2
i )(β − β̂) + γ

This leads to the analytical solution β = β̂ − γ/
∑

iwix
2
i as long as β̂ − γ/

∑
iwix

2
i > 0.

Similarly, the solution when β < 0 is β = β̂ + γ/
∑

iwix
2
i with β̂ + γ/

∑
iwix

2
i < 0. In all,

the analytical form of the lasso estimate β̂l at γ is:

β̂l(γ) = S(β̂, γ) ≡


β̂ − γ/

∑
iwix

2
i , if β̂ > 0 and γ < |β̂|

β̂ + γ/
∑

iwix
2
i , if β̂ < 0 and γ < |β̂|

0, if γ ≥ |β̂|

(3.5)
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If we have more than one predictor, we can estimate βj independently, assuming other

β′s (≡ β(j)) are known and fixed. Then the response is no longer yi but the partial residual

rji = yi −
∑

k 6=j xikβk. Using (3.5) directly we get the estimate β̂j(γ|β(j)). Therefore, after

estimating βj, we move to the next parameter, so β can be iterated to convergence. After

we finish the estimation at γ, we increase (or decrease, depending on where you start) γ by

∆γ to estimate β̂
l
(γ + ∆γ), for which β̂

l
(γ) can be used as the initial value to speed up the

convergence.

The algorithm above is for linear regression, so adaptation is needed for logistic regression

with L1 regularization. Recalling the iterative reweighted least square (IRLS) estimation for

generalized linear models [34], the coordinate descent algorithm can be embedded within

each iteration of fitting weighted linear regression problems [22]. Here is the adaptation:

• OUTER LOOP: Increase (or decrease) γ.

• MIDDLE LOOP: Update the weights and pseudo-values in the current weighted linear

regression until β or the regularized log-likelihood converge.

• INNER LOOP: Use coordinate descent algorithm to fit the current regularized weighted

linear regression until β converges.

The merit of the coordinate descent algorithm lies in its simple implementation (in each

loop only additions and subtractions) and speed when there are a large number of parameters

[21]. Since β̂
l
(γmax) = 0, and when ∆γ is small enough, the difference between β̂

l
(γ) and

β̂
l
(γ + ∆γ) is tiny, the convergence should be fast [18, 21, 22, 39, 45].

3.3 BIC FOR CHOOSING TUNING PARAMETER

In addition to minimizing (3.3) under different γ, we need to decide how to choose the

optimal value of γ. There are several commonly used procedures, such as ‘BIC γ-selector’,

‘AIC γ-selector’ or cross validation. Here we call the ‘BIC γ-selector’ or ‘AIC γ-selector’

to distinguish them from the traditional BIC and AIC methods. BIC γ-selector is the one

considered in our analysis. First, it saves time in computation, compared to the extra model
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fits required by cross validation. Moreover, the BIC as a method to select tuning parameter

has been studied, and it is proven to be consistent in model selection [68, 58]. In our case, the

large sample will not be an issue, and there is additional support from the simulation studies

below. BIC γ-selector chooses the tuning parameter γ which gives smallest BIC value:

BIC(γ) = −2logL(β̂(γ)) + log(n)×#{nonzero parameters},

where β̂(γ) is the L1-regularized estimate of parameters for the tuning parameter γ.

All the theoretical studies that we are aware of about consistency of the BIC γ-selector

in model selection are for linear models with various types of regularization [68, 58, 44].

Nevertheless, the asymptotic results of BIC γ-selector in L1-regularized logistic models can

be derived based on those existing theorems. Let us call the models containing all the

covariates with non-zero parameters as ‘correct models’, the model containing all but only

the covariates with non-zero parameters as the ‘true model’, and models missing at least one

covariate with non-zero parameter as ‘wrong models’. Based on some regularity conditions

on link functions, data, and likelihood functions (see Appendix A), we have the following

theorem:

Theorem. For the L1-regularized logistic regression model given in (4) and (5) with a

logit link function, the BIC γ-selector will asymptotically select the correct model with the

smallest number of covariates among all the submodels β̂(γ) presents.

The Appendix A contains the proof and the details of theorems quoted in my proof.

We will briefly sketch the intuition here. Qian and Wu (2006) [44] showed that, in logistic

regression, the difference of the log-likelihoods between a correct model and the true model

is positive and of order O(log log n). And the difference of the log-likelihoods between the

true model and a wrong model is positive and of order O(n). Therefore, a penalization

of order O(log n), which BIC does, will asymptotically select the true model. Although

BIC(γ) is derived from L1-regularized estimates, the logic described above still holds, as

long as the difference between the L1-regularized log-likelihood of the true model and its

unregularized counterpart is of order o(log n). With regard to that, Theorem 1 in [20] shows

that the L1-regularized estimates can converge with order of o(n−
1
2 log n), and based on

a Taylor expansion, the difference of two log-likelihoods can be controlled to be of order
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o(log n). Therefore, the BIC γ-selector is consistent in model selection, in the sense that

it asymptotically gives the correct model with smallest number of covariates among all the

submodels β̂(γ) presents.

3.4 SIMULATION STUDY

3.4.1 Simulation setup

Before we turn to the analysis of the monkey motor cortex experiments, we describe a

simulation study to assess the performance of this L1-regularization logistic model. We

construct two types of network (Figure 3): a simple network consisting of parallel one-way

interactions between pairs of neurons, and a complex one with a hub-and-spoke structure.

Each simulated network will contain 30 neurons. We do not claim that either network is

biologically accurate. Rather, we use them because they do incorporate certain plausible

features such as communication between layers, common input, and recurrent loops. Next,

we choose parameter values to get realistic firing rates.

Figure 3: Two simulated networks

The interactions in the networks will be either excitatory or inhibitory, denoted by posi-
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tive or negative values on parameter βicq. To simulate the model ,we follow the approach in

Truccolo et al. (2005) [55], with βciq increasing (or decreasing) with q = 1, 2, 3 and βciq = 0

for q > 3 (Figure 4A,B). This choice models short-term dependence: the influence of an

action potential dampens as time passes, with an average duration of 3 ms. On the other

hand, to model refractoriness of a neuron, the spike history parameter βcp should be strongly

negative at the beginning and then rise to a positive value before decreasing to zero: see

Figure 4C. We further require βc to be between −6 and −3 to get a 3Hz-50Hz baseline firing

rate for each neuron. In our illustrations, we set βc = −4.6 to get a 10Hz baseline firing rate,

which is the average firing rate for real neurons.

Figure 4: Parameters for A) excitation, B) inhibition, and C) refractoriness

Here we set Q = 3, P = 60 and C = 30 in model (3.1). Since our focus is mainly on

illustrating the performance on the detection of neuronal interactions, we set I(αc) = 0 to

omit extrinsic effects. Thus, the model becomes:

log(
λck∆

1− λck∆
) = βc +

60∑
p=1

βcp∆N
c
k−p +

∑
i 6=c

βci1(∆N i
k−1 + ∆N i

k−2 + ∆N i
k−3). (3.6)

We choose this model setup because of our interest in detecting excitatory and inhibitory

interactions within a 3 ms range, rather than the details of the curves in Figure 4. Thus, we

pool the data within the next 3 ms together, and the parameters βci1 will be estimated by

our proposed L1-regularized logistic model with the BIC γ-selector, which would illustrate

the short-term neuronal interactions.

The performance of the proposed method will be assessed in several ways: the complexity

of the network (simple and complex), the strength of the interaction (|βci1| = 2, 3, 4), the
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size of the data set (5 s, 25 s, or 50 s recording periods), the type of interaction (excitation

or inhibition), and the subpopulation of neurons (partial network). For each combination

of model parameters, the simulation ran 50 independent replicates. The criteria are the

sensitivities (given in three types) and specificities, which are shown in the Tables 2-4.

3.4.2 Simulation results

We now summarize our main findings, with a focus on sensitivity and specificity for detecting

excitation and inhibition. We vary the network complexity, the interaction strengths, the

size of the data set (or recording time); we also assess the model’s performance when only a

subset of the simulated network is observed.

Table 2: Sensitivities and specificities for 2 types of network under 3 different |βci1|. The

baseline firing rate is 10 Hz and data length is 5 s.

Network |βci1| Sensitivity Specificity

total excitation inhibition

2 0.088 0.165 0 0.9994

Simple 3 0.403 0.755 0 0.9994

4 0.531 0.995 0 0.9994

2 0.1 0.15 0 0.9997

Complex 3 0.583 0.874 0 0.9987

4 0.665 0.996 0.02 0.9934

3.4.2.1 Complexity of the network From the Table 2, 3 and 4, we can see that,

although the complex network gives slightly higher sensitivities, there is no major difference

in sensitivities and specificities between two networks. Therefore, the complexity of the

network may not be an important issue when using proposed method to detect neuronal

interactions.
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Table 3: Sensitivities and specificities for the two types of network under 3 different |βci1|.

The baseline firing rate is 10 Hz and data length is 25 s.

Network |βci1| Sensitivity Specificity

total excitation inhibition

2 0.423 0.793 0 0.9997

Simple 3 0.533 1 0 0.9998

4 0.533 1 0.008 0.9992

2 0.589 0.881 0.004 0.9993

Complex 3 0.668 1 0.004 0.9993

4 0.679 1 0.036 0.9446

3.4.2.2 Interaction strength Fixing all other conditions, all three types of sensitivity

increase with the strength of neuronal interactions (Table 2,3 and 4). The strength of

neuronal interactions is indicated by the magnitude of βci1. When the data set is small (in 5

s data simulation), this increase is more obvious, especially in sensitivity to excitation. For

example, when βci1 = 2, the proposed method can only detect 15% of excitatory interactions,

but with βci1 = 3, it can detect at least 75 percent of them. In other words, if the excitatory

impulse increases the firing rate of a neuron from 10 Hz to 70 Hz (βci1 = 2), it is not large

enough to detect by our method; but if the firing rate is increased to 170 Hz (βci1 = 3) or

more (350 Hz for βci1 = 4), our method has satisfactory sensitivity.

Although 70 Hz may appear to indicate an active neuron, the transience (only 3 ms)

of the interactions prevents us from detecting this effect with a 5s recording period. The

probability of a spike in the next millisecond is only raised from 0.01 to 0.07. When the data

size is enlarged to 50 s, the excitations from 10 Hz to 70 Hz is more likely to be detected.

Nevertheless, note the increase in the sensitivities with the interaction strengths.

Turning to specificity, we note that although it decreases when βci1 = 4 in complex

network, it is still very high. For example, 0.9934 specificity corresponds to in average 5

false interactions in the entire network. Compared to 99.6% ability to detect the true 30
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Table 4: Sensitivities and specificities for the two types of network under 3 different |βci1|.

The baseline firing rate is 10 Hz and data length is 50 s.

Network |βci1| Sensitivity Specificity

total excitation inhibition

2 0.528 0.985 0.006 0.9997

Simple 3 0.535 1 0.003 0.9999

4 0.537 1 0.008 0.9997

2 0.675 0.999 0.028 0.9997

Complex 3 0.715 1 0.144 0.9959

4 0.738 1 0.214 0.9477

interactions, it is acceptable.

3.4.2.3 Size of the Dataset From the Table 2, 3, and 4, we can see that more data

yield more power of the proposed model to detect the neuronal interactions. For data of size

no shorter than 25 s, maintaining specificities in a high level, the proposed model can detect

more than 80% of the excitation interactions for both networks, even though the strength of

the interactions is small (βci1 = 2). If the strength of interactions is larger (βci1 = 3 or 4), all

of the excitatory interactions are detected. Also, compared to zero sensitivity in detecting

inhibition for 5 s data, a 50 s data set can detect a few inhibitory interactions (up to 20%,

if the strength is high enough).

3.4.2.4 Excitation and inhibition From Tables 2, 3, and 4 we found that inhibition

is hard to detect compared to excitation. We expect that this difficulty is because for firing

rates that are already low, further inhibition is limited by a floor at zero (e.g., 10 Hz rate

corresponds to 0.01 probability of a spike during a 1 ms bin). To verify this conjecture, we

simulated networks with higher baseline firing rates to show the increase in sensitivity for

inhibition. Table 5 shows the results. Given the same interaction strength and data length,
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higher baseline firing rate results in higher sensitivity in inhibition.

Table 5: Sensitivities and specificities for different baseline firing rates (BFR). |βci1| is fixed

at 2 and data length is 50 s.

Network BFR Sensitivity Specificity

total excitation inhibition

10Hz 0.528 0.985 0.006 0.9997

Simple 15Hz 0.56 1 0.057 0.9998

25Hz 0.867 1 0.714 0.9406

10Hz 0.675 0.999 0.028 0.9997

Complex 15Hz 0.713 1 0.14 0.9996

25Hz 0.973 1 0.918 0.9325

3.4.2.5 Subpopulation In practice the multi-electrode systems surely record only a

small portion of all neurons involved in the behavior under study, so it is also worth studying

the performance of our proposed method when only partial information of the entire network

is acquired. In the other words, when only spike trains of a subpopulation of neurons are

observed, whether our method can at least detect correct interactions between those observed

subpopulation of neurons. In this simulation study, we do not mimic the real network with

millions of neurons. Instead, we simulate a small network with certain sparse interaction

structure, and then we partially observe neurons. We can consider the missing neurons as

neuron ensembles other than single neurons.

Here we assess our method using two types of subpopulations from the complex network

above. The first one studies the performance when one hub and its related spokes are unob-

served. It maintains the overall structure of the entire network. The second one randomly

selects ten neurons unobserved from the entire network. In that case, the main structure of

the network is further destroyed. See Figure 5 for the two types of subpopulation and the

corresponding networks.

The results are shown in Figure 6. Under either subpopulation case, both the true
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Figure 5: A: the entire network. B: neurons 25-30 unobserved. C: randomly select 10 neurons

unobserved.

and estimated network matrix are given. The network matrix illustrates the subpopulation

network in Figure 5. All the neurons observed are aligned in order. In the true network

matrix, a binary value in (i, j)th element indicates whether neuron j has an either excitatory

or inhibitory influence to neuron i. In the estimated network matrix, a continuous value

in [0, 1] indicates the percentage that the proposed method detects an interaction over 50

runs. Since we only focus on interactions between distinct neurons, diagonal elements are

meaningless here and left as zero.

From Figure 6, we find that, although only a partial network is observed, the proposed

method is still able to detect the excitatory interactions between observed neurons 100% of

the time, despite the missing of hub neurons and the loss of structure. Inhibition remains

hard to detect (bright pixels in difference matrices). Out of 12 total inhibitions in both

subnetworks, nine are successfully detected in less than 15% of 50 runs, and the other three

are detect in less than 40% of 50 runs. False positives occur, but relatively rarely (gray

pixels in difference matrices). Only 5% (51 out of 1071) lack of interactions are at least once

detected as interactions, and among all these 51 positions where the false positives occur,

68% (35 out of 51) are detected as interactions in less than 10% of 50 runs. However, the

situation of false positives is worse (much brighter gray pixels) for second subpopulation than

that for the first. This may be due to the further difference between the observed population
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Figure 6: A: True and detected interaction matrices and their difference for subpopulation in

Figure 5B. B: True and detected interactions matrices and their difference for subpopulation

in Figure 5C.
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and the entire network.

3.4.3 Conclusion

In sum, the L1-regularized logistic model can successfully detect short-term excitatory neu-

ronal interactions, with very high specificity. Inhibition is more difficult to detect for low

baseline firing rates. The increase of the sample size and baseline firing rate will, of course,

raise the detection power. Our simulations indicate that at least 25s data will guarantee the

power of the proposed method, even when the strength of interaction is small.

On the other hand, complexity of the network does not appear to influence the perfor-

mance of the proposed method. And it is also robust to the omission of parts of the active

network; however, it would perform better, if the main structure (e.g., hub-and-spoke) of

the entire network can be retained in the observations. Our analysis of the monkey motor

cortex data below is guided by these findings.

3.5 MONKEY DATA RESULTS

The L1-regularized logistic model is applied to three data sets; see Table 1 in Section 2.1

for details of the experimental setup. We first apply the model to data Ham2005 and see

that neither condition shows interaction between neurons. However, it is not sufficient to

conclude no interaction, because there are only approximately 10 trials in each condition (12

and 9 trials respectively), which results in about in total 5 s recordings of the delay period.

The simulation studies show that in this amount of recordings, the sensitivity is extremely

low (Table 2). Therefore, Ham2005 does not give us much information about interactions

due to the small sample size.

Then we apply the model to Ham2004, where approximately 150 trials, or 75 s recording

in delay period, were used in both conditions. We find interactions in both conditions this

time. Because simulation studies show the high sensitivity in interaction detection for this

amount of recording data, we have confidence in the results. The number of the detected
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interactions in each condition are about in the same amount (67 and 65), which is 7% of

the total possible pairs. The network is given in the form of interaction matrices: (i, j)th

element indicates whether neuron j has an excitatory (white), inhibitory (black) influence or

lack of interaction (gray) to neuron i. To highlight the difference in interactions between the

two conditions, we permute the neuron orders by either the number of received excitations

(Figure 7), or the contrast of the mean firing rates between the two conditions (Figure 8).

The contrast is calculated by:

contrast =
rate left− rate right

min(rate left, rate right)

From Figure 7, there is no obvious difference in the pattern of the networks. There is

no neuron more involved in one condition relative to the other condition. From Figure 8,

neither left-tuned neurons (upper-left corner) nor right-tuned neurons (bottom-right corner)

show interactions to each other.

Figure 7: Interaction matrices for Ham2004. Ordered by numbers of received excitations

We also analyze a third data set, Larry2008. It contains about 500 trials in each con-

ditions, where about 150 s recordings in delay period and pre-cue period respectively are

used in the analysis. First, we show the detected interactions in delay period. Interaction
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Figure 8: Interaction matrices for Ham2004. Ordered by firing rate contrast

matrices are given in Figures 9 and 10, where neurons are permuted by orders of the number

of received excitations (Figure 9), and the contrast of the mean firing rates between the two

conditions (Figure 10). In the delay period, there are 382 and 428 interactions detected in

each conditions respectively, which is about 25% of the total pairs. From Figure 9, we found

different patterns in each condition. Neuron 35 to 38 (the neuron ID only represents the

order in the permutation) receive inputs from others in rightward reach, while they receive

almost none in the leftward reach. Neuron 11 to 14 receive more inhibitory inputs in left-

ward reach, while they receive more excitatory inputs in rightward reach. After permuting

them in the contrast of firing rate between conditions, we found the right-tuned neurons

(bottom-right corner) become more interactive in the rightward reach than in the leftward

reach (Figure 10). This phenomenon is not found for left-tuned neurons due to the small

number of them.

Next, we show the interactions on the pin map, the physical positions of the 96 electrodes,

in Figure 11 and 12. The dots in Figures 11 and 12 represent the position of the 96 electrode,

where solid ones are those with neurons detected, and hollow ones are those without neurons

detected. If an interaction is detected between two neurons, an undirected line is drawn

between the electrodes that the neurons belong to. Solid lines are for excitatory interactions,
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Figure 9: Interaction matrices for Larry2008 in the delay period. Ordered by numbers of

received excitations

Figure 10: Interaction matrices for Larry2008 in the delay period. Ordered by firing rate

contrast
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and dash lines are for inhibitory interactions. We found that the recorded neurons are

concentrated in the left and bottom. The four neurons in the upper right introduce more

inhibitions in the rightward reach. To highlight this, we only show inhibitory interactions in

the pin map in Figure 12.

Figure 11: Interactions on the pin map for Larry2008 in the delay period.

Further, we analyze neuronal interactions in the pre-cue period to compare the network in

the delay period. To make a better comparison, the interaction matrices in Figure 13 and 14

are shown with neurons in the same orders as in Figure 9 and 10 respectively. From Figure

13, we can see a great difference in the both the amount and the pattern of interactions

between the two conditions. There are only 80 detected interactions (5%) in the leftward

reach and 168 (10%) in the rightward reach. Neurons 5 to 15 in Figure 13 receive inputs

from other neurons in the rightward reach, while they hardly receive any in the leftward

reach. The neurons which are tuned either leftward or rightward now show no interactions

with each other (Figure 14).

Interactions are also plotted in the pin map (Figure 15). Inhibition does not occur in the

upper-right four neurons as in the delay period. Compared to the delay period, inhibitions

do not occur often in pre-cue period at all.
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Figure 12: Inhibitory interactions on the pin map for Larry2008 in the delay period.

Figure 13: Interaction matrices for Larry2008 in the pre-cue period. Neurons are in as the

same order as in Figure 9
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Figure 14: Interaction matrices for Larry2008 in the pre-cue period. Neurons are in as the

same order as in Figure 10

Figure 15: Interactions on the pin map for Larry2008 in the pre-cue period.
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3.6 DISCUSSION

In sum, the results from Ham2004 and Larry2008 show interesting features of the interac-

tions between neurons. Although these results are not strong enough to make any solid

physiological conclusions yet, the proposed method offer a tool to identify a sparse network

of short-term interacting neurons from the entire ensemble activity, going well beyond the

more classical study of pairwise interactions. The detected network, or particular interac-

tions between neurons of interest, can be highlighted by the model from raw data for further

examination. We have justified, to some extent, the adequacy of the L1-regularized logis-

tic model using both theoretical and simulation studies. Although computation for such

problems is quite heavy in general, our approach has several features that make computa-

tion feasible. First, we use regularization to avoid certain nonconvergence problems that a

naive implementation of GLM would encounter [65]. Second, we use the coordinate descent

algorithm, which is efficient and easily implemented. Third, we use the BIC γ-selector to

determine the tuning parameter. We recognize that cross-validation is common, but it is

much more computationally intensive because it requires repeated model fitting; in addition,

we provide a theoretical justification for the use of the BIC γ-selector. And fourth, we de-

compose the regression model into C individual sub-models, each with considerably smaller

dimensionality. This decomposition is especially effective when the number of neurons is

large, which is important as advances in technology allow for the simultaneous recording of

increasing numbers of neurons.

With current information about the experiments, we cannot well explain some inconsis-

tency between the results of two different monkeys. However, we note that the experiments

on Ham and Larry were made in different years. Also, the experimental parameters are

not totally consistent, not to mention the possible uncontrolled even unknown effects, like

fatigue, neuronal adaptation or circuit from outside the recorded area. We will continue the

collaboration with colleagues in neuroscience, and seek data where the proposed method can

shed more light on the physiology.
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4.0 A VARIABLE COEFFICIENTS MODEL FOR THE VARIATION OF

NEURONAL INTERACTIONS ACROSS TRIALS

4.1 VARIABLE COEFFICIENTS MODELS

In equation (2.2), the parameters are treated as constant with respect to both t and j. It

is probably true for βcp, because they represent the refractoriness, an intrinsic property of

neurons. However, the baseline firing rate parameter βc and interaction parameters βicq can

change within a trial or across trials. Here we focus on the across-trial variation of baseline

firing rates and neuronal interactions, and treat the corresponding parameters as functions

of j: βc(j) and βicq(j), j = 1, . . . , J . Thus, the generalized linear model (2.2) turns a variable

coefficient model [29].

For a better illustration of this approach, we reparametrize the model (2.2) with variable

coefficients into a general form. Assume there are T bins within each trial and J trials in

total. Assume the responses ytj, the count of spikes in bin t at trial j, has a Bernoulli or

Poisson distribution ftj(y) with mean µtj. Then we build a generalized linear model with

variable coefficients:

g(µtj) = θ0(j) +
N∑
i=1

θi(j)utij +
M∑
i=1

βivtij, (4.1)

where t = 1, . . . , T , j = 1, . . . , J .

In (4.1), θ0(j) is the variable intercept, and θi(j), i = 1, . . . , N represent N variable

coefficients for the interactions. Further, assume that all the variable coefficients θi(j),
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i = 0, . . . , N , are can be represented as linear combinations of a preassigned set of basis

functions Φ1(j), . . . ,ΦB(j):

θi(j) =
B∑
b=1

φibΦb(j).

The parameters βi, i = 1, . . . ,M , in the third term of (4.1), are constant, representing effects

other than neuronal interactions. Finally, the g(·) is the appropriate link function for either

logistic or Poisson models, depending on whether the responses are binary or count data.

Denote the response vector Y = (y11, . . . , yT1, . . . , y1J , . . . , yTJ)′, and the parameter vec-

tor Θ = (φ01, . . . , φ0B, . . . , φN1, . . . , φNB, β1, . . . , βM)′. Further, denote Ψj = (Φ1(j), . . . ,ΦB(j))

and

Uj =


1 u11j . . . u1Nj

...
...

...
...

1 uT1j . . . uTNj

 , and Vj =


v11j . . . v1Mj

...
...

...

vT1j . . . vTMj


Thus, the design matrix X has the form:

X =


U1 ⊗Ψ1 V1

...
...

UJ ⊗ΨJ VJ

 ,

where ‘⊗’ is the Kronecker product. With the response vector Y , the design matrix X,

the parameter vector Θ and distribution functions {ftj(·)}, we can explicitly write the log-

likelihood l(Θ|X, Y ); see [34] for details. In this augmented GLM problem, the sample size

is n = T × J and the number of parameters is p = B × (N + 1) +M .

Instead of maximizing the log-likelihood l(Θ|X, Y ), we optimize a doubly penalized ver-

sion of it. The first one is the smoothing penalty on the squared second derivatives of

{θi(j)}i, and the other one is the mild L2 penalty on {βi}i to avoid an infinite maximum

[65]. Therefore, we actually minimize:

−2l(Θ|X, Y ) +
N∑
i=0

λi

∫
θ̈2
i (j)dj + γ

M∑
i=1

|β2
i | (4.2)

Denoting S =
∫

Ψ̈′(j)Ψ̈(j)dj and I the identity matrix, expression (4.2) can be further

reduced to

−2l(Θ|X, Y ) + Θ′HΘ, with H = diag(λ0S, . . . , λNS, γI). (4.3)
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The minimization of (4.3) and the inferences can be done by IRLS algorithm [34, 62]. Here

I brief sketch this algorithm:

1. With an initial value Θ(0), compute the pseudo-values Z(0) and weight matrix W(0).

2. Denote Z∗(k) =
√
W(k)Z(k) and X∗(k) =

√
W(k)X(k). Update Θ by letting Θ(k+1) =

(X∗
′

(k)X
∗
(k) +H)−1X∗

′

(k)Z
∗
(k).

3. Use the new Θ(k+1) to compute the Z(k+1) and W(k+1).

4. Repeat step 2-3 until convergence.

We have the converged {Θ(k)} and use the last iteration as the estimation of parameters,

from which the variance of estimated parameters, degrees of freedom and sum of squared

residuals can be easily computed:

Θ̂ = lim
k

Θ(k),

V̂ (Θ̂) = lim
k

(X∗
′

(k)X
∗
(k) +H)−1X∗

′

(k)X
∗
(k)(X

∗′
(k)X

∗
(k) +H)−1,

d̂f = lim
k
tr(X∗(k)(X

∗′
(k)X

∗
(k) +H)−1X∗

′

(k)),

ŜSR = lim
k
‖ Z∗(k) −X∗(k)Θ ‖2 .

4.2 GCV, CONFIDENCE BANDS AND HYPOTHESIS TESTING

Since the second penalty in (4.2) is only for avoiding an infinite maximum, γ can be preas-

signed to a small value, say 0.1, such that (X∗
′

(k)X
∗
(k) + H) is invertible. On the other hand,

the tuning parameters λ̃ = (λ0, . . . , λN) should be selected by data, because we do not know

the actual degrees of smoothness. According to Wood (2006) [62], the optimal λ̃ can be

chosen by minimizing the generalized cross validation score:

GCV (λ̃) =
n× ŜSR
(n− d̂f)2

For small dimension of λ̃, say one or two, the optimization of GCV (·) can be done by a

grid search in λ̃ space. However, it will become less efficient, even infeasible, when the

dimension of λ̃ is large, which is the usual case when dealing with spike train data. Wood
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[61, 63] suggested the Newton-Raphson algorithm to optimize the GCV (·). For doing so,

he analytically evaluated the exact gradient and Hessian in Wood (2008) [63]. However, the

calculation of the exact gradient and Hessian involves heavy computation, and it is hard

to implement. An earlier method proposed by Wood (2004) [61] would be considered more

efficient by the author, where the inexact gradient and Hessian are calculated by treating the

weight function W and pseudo-values Z as invariants to λ̃ in each IRLS iteration. But Wood

(2004) [61] suggested a QR-decomposition of the design matrix X. This decomposition will

become computationally intensive, even infeasible, when the sample size n is extremely large.

Suppose n = 100, 000, which can happen in a real spike train data, thus the Q matrix will be

100, 000×100, 000 in dimension. In addition to the time required for a QR-decomposition of

a 100, 000× p matrix, the storage of the matrix Q will first become a serious issue. Assume

the Q stored in a double precision, which takes 8 bytes of memory per variable. The total

memory required by Q would be 80GB!

To avoid this problem, all matrices in the calculation should be confined to a manageable

size, and at most matrix multiplication, trace operation and inversion should be involved.

For example, avoid operations on n × n matrices, or store the diagonal weight matrix W

in vector form rather than a matrix. By doing this, the Newton-Raphson algorithm will be

feasible on an ordinary PC. The computer will calculate the inexact gradient and Hessian

in each IRLS iteration in a reasonable time. Please see Appendix B for the details of the

expressions of those derivatives.

Because the L2 penalty term in (4.3) can be treated as an improper Gaussian prior

(H may not have full rank) of the parameters from a Bayesian perspective, the point-wise

confidence bands for variable coefficients {θi(j)}i can be constructed by finding their posterior

mean and covariance matrix [51]. In the variable coefficients model (4.3), the posterior mean

is Θ̂ and covariance matrix is Vpost = (X∗
′

(k)X
∗
(k) + H)−1 [51, 62]. However, the posterior

mean and covariance matrix of the parameters are conditional on the selected smoothing

parameters λ̃. Since λ̃ are selected by data, bias can be introduced. Therefore, we construct

unconditional Bayesian confidence bands introduced by Wood [62], where we first bootstrap

samples of λ̃ so that we collect a pool of posterior means and covariance matrices under

different λ̃. Based on the unconditional means and covariance matrices, we further construct
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95% simultaneous confidence bands for θi(.) via the method introduced by Ruppert, Wand

and Carroll (2003) [47]. Since both methods are based on a parametric bootstrap [62, 47], to

construct the 95% simultaneously unconditional Bayesian confidence bands, we unified the

two algorithms so that the bootstrap samples can be efficiently used. Here is the outline of

the unified algorithm:

1. Get Θ̂ by fitting model (4.3) and minimizing the GCV score.

2. Loop from k = 1 to Nu

• Generate a response vector Y (k) from design matrix X, parameters Θ̂ and the cor-

responding distribution in some exponential family (Bernoulli or Poisson).

• With Y (k) and X, get Θ̂(k) and V
(k)
post by fitting model (4.3) and minimizing the GCV

score.

• store Θ̂(k) and V
(k)
post for later usage.

3. loop from l = 1 to Ns

• Randomly sample a number k from {1, 2, . . . , Nu}.

• Generate Θ(l) from N(Θ̂(k), V
(k)
post).

• Let θ
(l)
i (·) =

∑B
b=1 φ

(l)
ib Φb(·), andm

(l)
i = maxj{ |θ

(l)
i (j)−θ̂(l)i (j)|
σ(θ

(l)
i (j))

}, where θ̂
(l)
i (j) =

∑
b φ̂

(k)
ib Φb(j),

i = 0, . . . , N , and σ(θ
(l)
i (j)) can be computed from Ψj and V̂ (k).

• store θ
(l)
i (·) and m

(l)
i , i = 0, . . . , N .

4. Denote mi as the 95% quantile of {m(1)
i , . . . ,m

(Ns)
i }. The lower (upper) bound Li(·)

(Ui(·)) for θi(·) is the mean of {θ(l)
i (·)}l minus (plus) mi times the standard deviation of

{θ(l)
i (·)}l.

In practice, I choose Nu = 20 and Ns = 10, 000, as suggested by Wood [62] and Ruppert et

al. [47].

Although the simultaneous confidence bands give a range of the variable coefficients, it

is not valid to infer that the true curve is of a certain form just because the curve with that

form falls in the confidence bands [47]. Therefore, we need a hypothesis testing procedure

to infer the simpler structure of the the variable coefficients; for example, we test whether

the coefficient θi(j) is a constant in j. Under the penalized spline in GLM framework,

we use the likelihood ratio test introduced by Wood [62], assuming that the test statistic
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has a χ2 null distribution [28, 29, 62]. Letting subscript F stand for the full model and

subscript R for the reduced model, the likelihood ratio for the two candidate models is

LR = 2(l(Θ̂F |XF , Y ) − l(Θ̂R|XR, Y )). This test statistic LR approximately has the χ2

distribution with the degrees of freedom d̂fF − d̂fR [62].

4.3 SIMULATION STUDY

4.3.1 Single-input network

We did simulation studies to assess the adequacy of the proposed model. First we simulated

a neuron with one excitatory input; see Figure 16. Neuron Two was excited by Neuron

Figure 16: The simulated single-input network and the parameter setup

One, and their spiking activities function according to model (3.1). The baseline firing rates
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of both neurons are set to 25Hz at the beginning, while the baseline firing rate of Neuron

Two will decrease from 25Hz to 10Hz across trials, by letting β2 decrease exponentially. The

excitatory interaction from Neuron One will also decrease across trials by letting β211 decrease

exponentially from 4 to 2. The self-history effect parameters βcp are set constant across trials.

In this simulation, the recording period in one trial is 500 ms, and 100 trials are generated.

Using the simulated data, the coefficient curves are fitted by the variable coefficients model.

The confidence bands are also constructed. The results are shown in Figure 17. Solid lines

are the actual coefficient curves, dash lines in the middle are the fitted curves, and the dash

lines folding the fitted curves are 95% simultaneously confidence bands. We can see that the

Figure 17: The fitted curves of the baseline firing rate (left) and the excitatory interaction

(right) with confidence bands

fitted coefficient curves well capture the exponentially decreasing trend, and the confidence

bands suggest that the interaction from Neuron One is significantly positive all the time.

Further, we use the likelihood ratio test to verify the variation of the baseline of Neuron

Two and the excitatory interaction from Neuron One to Neuron Two across trials. We fit a

reduced model with a constant β211(j) for all j, and a reduced model with a constant β2(j)

for all j. The test statistics are respectively LR = 7560.7 − 7513.8 = 46.9 with degrees

of freedom 72.673 − 66.571 ≈ 6 and LR = 7563.0 − 7513.8 = 49.2 with degrees of freedom

72.673−67.9562 ≈ 5. The corresponding p-value for testing the variable baseline is < 0.0001,

and < 0.0001 for testing the variable interaction. Thus, the variation of the baseline and

interaction are both significant across trials.
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4.3.2 Multiple-input network

Next, we simulate a network where a neuron receives multiple inputs: see Figure 18, where

Neuron One interacts with six neurons. In the cortex, one neuron can interact with more

than 6 other neurons, but the results of interaction detection in previous chapter suggest a

lower dimensional problem. In the simulated network, Neuron Two, Three and Four excite

Neuron One, and Neuron Five, Six and Seven inhibit it. We also include a Neuron Eight

that has no interaction with Neuron One. The baseline firing rates of all eight neurons

are set to 25Hz and invariable across trials. The three excitatory interactions are set as 1)

exponentially decrease from 4 to 2; 2) exponentially increase from 2 to 4; 3) quadratic change

from 4 to 4 with a minimum at 2. Similarly, the three inhibitory interactions are set as 1)

exponentially decrease from -4 to -2; 2) exponentially increase from -2 to -4; 3) quadratic

change from -4 to -4 with a minimum at -2. See Figure 18 for details. Just as in the previous

simulation, the recording period in one trial is set to 500 ms, and the trials are repeated by

100 times.

Figure 18: The neuron with multiple inputs and the parameter setup

The coefficient curves are fitted by the variable coefficients model, and the confidence

bands are constructed. The results are shown in Figures 19, 20 and 21. Again, solid lines

stand for the actual curves, and dashed lines are for the fitted curves and confidence bands.

For excitatory interactions, the fitted coefficient curves well capture the variation and con-
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fidence bands suggest that the excitatory interactions are significantly positive all the time

(Figure 19). The fitted curves capture the variation in inhibition well too. However, the

confidence bands for inhibitory interactions are extremely wide, so that it is hard to infer

that the inhibitions are significant (Figure 20). For the constant baseline of Neuron One,

confidence bands suggest the range of baseline firing rate for Neuron One. The fitted curve,

although not completely flat, varies between -3.7 to -3.5 (Figure 21A). In the end, Neuron

Eight is supposed to be independent of Neuron One, and confidence bands show no signif-

icance in the existence of interaction between them. However, the fitted curve showed a

sinusoidal variation across the trials (Figure 21B). That could be just due to the error, and

we will use the likelihood ratio test to further study it.

Figure 19: The results for the three excitatory interactions

Figure 20: The results for the three inhibitory interactions

To further infer the variation of the interactions and the baseline firing rate across trials,

we do five groups of likelihood ratio tests to test: 1) the variation of the three excitatory

interactions, 2) the variation of the three inhibitory interactions, 3) the existence of the three
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Figure 21: The results for A) the baseline, and B) the independence to Neuron Eight

inhibitory interactions, 4) the variation of the baseline firing rate, and 5) the existence of the

interaction from Neuron Eight. See Table 6 for details. The p-values in Line One of Table 6

Table 6: The hypothesis testing results for the baseline and interactions

Test # test statistic degrees of freedom p-value

1) 77.31, 71.26, 93.75 5, 5, 5 < 0.0001, < 0.0001, < 0.0001

2) 10.94, 5.58, 19.62 2, 2, 2 0.0042, 0.061, < 0.0001

3) 320.61, 277.73, 278.68 3, 3, 3 < 0.0001, < 0.0001, < 0.0001

4) 7.57 6 0.27

5) 9.99 5 0.075

show that the three excitatory interactions are significantly variable across trials. The three

types of inhibitory interactions are also significantly variable, although this conclusion might

be less solid than that from excitations. Note p-value 0.061 in Line Two for the inhibition

from Neuron Six. Putting aside the argument about the variation in the three inhibitory

interactions, they at least significantly exist (non-zero) during all trials due to the p-values

in Line Three. The p-values 0.27 in Line Four and 0.075 in Line Five suggest a constant

baseline firing rate and no interaction from Neuron Eight, which comply with the simulated
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network.

In sum, the two simulation studies indicate the good performance of the variable coeffi-

cients model and the accompanying inference methods for the variation of the interactions

across trials. The fitted curves well capture some basic features of the variation, such as

monotone, quadratic or constant trends. Consistent with the results in interaction detec-

tion, the model works better for excitatory interactions than for inhibitory interactions.

Again, we speculate that it is because the baseline is so low that inhibition is not as obvi-

ous as excitations. Nevertheless, the likelihood ratio test can at least infer the significant

presence of inhibitory interactions. Comparing the confidence bands inference to likelihood

ratio tests, the former is more conservative. Therefore, in real data analysis, we will base

inferences primarily on the likelihood ratio test, with confidence bands as secondary.

4.4 MONKEY DATA RESULTS

Next we will apply the variable coefficients model to real monkey data. Section 2.1 has the

details of the experiments and data; Equation (3.1) and Section 4.1 detail the model and

parameters setup; and Section 3.5 gives the results of interaction detection, upon which the

following analysis is based.

First, we will use the variable coefficient model to examine single-input networks. In the

detected network of Larry2008, we noticed Neuron 38 is only inhibited by Neuron 13 over all

trials (Figure 22). Therefore, we study whether this inhibitory interaction is variable across

trials. The fitted curves and confidence bands are shown in Figure 22. We found that the

intercept β38 fluctuates between -5 to -4.5, which corresponds to the baseline firing rates

of Neuron 38 fluctuating from 6.7Hz to 11Hz. No obvious increase or decrease is found in

the baseline firing rate of Neuron 38. The likelihood ratio test indicates significant variation

(LR = 13591.21− 13554.14, df = 80.08− 67.21 and p-value = 0.0004). On the other hand,

the inhibitory interaction from Neuron 13 to Neuron 38 is quite insignificant across trials

due to the wide band of the confidence bands. From the fitted curve, we do not see a clear

trend. Therefore, we resort to likelihood ratio test. We further fit two reduced models, one
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with constant interaction, and the other without interaction. Together with the full model,

the three −2 logL are 13554.14 (full model), 13561.97 (constant interaction) and 13594.84

(no interaction). The degrees of the freedom for the three models are 80.08 (full model),

72.17 (constant interaction) and 71.17 (no interaction). The p-value for testing the variable

interaction is 0.4499, so there is no significant variation across trials in this interaction. The

p-value for testing the existence of the interaction is < 0.0001, so the inhibitory interaction

is significant.

Figure 22: Larry2008, Neuron 38. The network (up) and fitted curves with confidence bands

(bottom)

Another single-input network we chose for analysis is from Ham2004, a detected excita-
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tory interaction from Neuron 9 to Neuron 14 (Figure 23). The fitted curves and confidence

bands are shown in Figure 23. We found the baseline firing rate of Neuron 14 fluctuates

around -4.5, which correspond to 11Hz. But there is a decrease in the first 30 trials. The

likelihood ratio test also suggests significant variation across trials (p-value< 0.0001). As for

the interaction, the confidence bands are so wide that the excitatory interaction from Neuron

9 may not be significant. Thus, we further use two likelihood ratio tests to examine whether

the interaction is variable across trial and whether it significantly exist at all. The −2 logL

for the full model, constant interaction model and no interaction model are 8619.3, 8626.1

and 8629.7 respectively. The degrees of freedoms are 74, 70 and 69. The p-value for testing

the variable interaction model is 0.14, and 0.07 for testing the existence of the interaction.

This suggests that the excitatory interaction from Neuron 9 to Neuron 14 is weak.

Next, we examine the neurons with multiple inputs. We choose Neuron 9 in Ham2004

data. From the preliminary detection of interactions, Neuron 9 receives five excitatory

inputs from Neuron 3, 14, 16, 24 and 28, and one inhibitory input from Neuron 8 (Figure

24). Applying the variable coefficient model to this seven-neuron network, we get the curves

of the baseline of Neuron 9 and six interactions across trials (Figure 25). From the Figure

25, we find there is variation in the baseline firing rate of Neuron 9. It decreases during the

first 25 trials, then increases to a higher level, and maintains at that level during the last

50 trials. As for those interactions, the confidence bands are so wide that we can barely

infer any variation from it. However, noting the much wider confidence bands at first fifty

trials in all five excitatory interaction curves, we suspect instability in the first fifty trials.

To highlight that, we draw all fitted curves in the same coordinate without confidence bands

(Figure 26). From Figure 26, we can see all five excitatory interactions become stable after

the first fifty trials. They either increase or decrease during the first 50 trials. Three of

them even begin with inhibition. The only inhibitory interaction from Neuron 8 to Neuron

9 also shows variation. It is excitatory for the first fifty trials, but gradually decreases to an

inhibitory interaction in the next fifty trials. In the last fifty trials, the strength of inhibition

was rapidly enhanced. Therefore, we can see the neuronal activity vary across trials roughly

in three stages.

We also put the curves from Neuron 14 in our previous analysis with those of Neuron 9
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Figure 23: Ham2004, Neuron 14. The network (up) and fitted curves with confidence bands

(bottom).
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Figure 24: Ham2004, Neuron 9. The network.

(Figure 27). We can again see the baseline of Neuron 14 and the interaction from Neuron 9

to Neuron 14 also vary roughly in three stages.

We use likelihood ratio tests to further validate our findings about variation. See Table 7

for the results. From those p-values, we did not find much variation among the five excitatory

interactions. Even the existence of some of them (Neuron 3, Neuron 24) is not significant.

We suspect this phenomenon, together with the wide confidence bands, is due to the unstable

dynamics in the first fifty trials. Nevertheless, the variable coefficient model does successfully

elucidate the variation in interactions across trials, which is important for us in our search

for the physiological message it brings.

4.5 DISCUSSION

According to the simulation study, the variable coefficients model can effectively capture the

variation of interactions across trials. Monkey data Ham2004 also suggest a roughly three-

stage change of physiology across the one-day session, which arise our interest in exploring
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Figure 25: Ham2004, Neuron 9. The fitted curves with confidence bands.
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Figure 26: Ham2004, Neuron 9. All fitted curves in one coordinate.
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Figure 27: Ham2004, Neuron 9 and Neuron 14. All fitted curves in one coordinate.
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more on this issue. In the future, we plan to study different monkey data from Dr. Batista’s

lab, where two sessions — an early session during a certain experiment and then a later

session when we expect that the monkey has gotten used to the experiment. We hope to

find variations of interactions due to the this change in the monkey’s performance during

the experiment.

As for the methodology, among various works in this context, we are particularly inter-

ested in interpreting penalized splines into a generalized linear mixed-effect model (GLMM)

framework. If the L2 penalty term in (4.3) is treated as mixed effects, equation (4.3) is equiv-

alent to the likelihood of a GLMM [47]. In the GLMM framework, the smoothing parameters

λ̃ are related to the variances of the random effects, so they can be conveniently estimated

by restricted maximum likelihood (REML) [47]. This offers a new way to select smoothing

parameters. Compared to prediction-error-based methods such as GCV, the maximum-

likelihood-based methods such as REML tend to give much smoother estimates (Ruppert

et al. 2003, pp.122). In addition, under the GLMM framework, research about confidence

intervals and hypothesis tests has been widely done too. Krivobokova et al. (2010) [31]

offer a new way to construct simultaneous confidence bands instead of via Bayesian meth-

ods. A series of works by Crainiceanu and his colleagues focus on the exact likelihood ratio

tests with certain polynomial functions as null hypotheses [13, 14]. Although that work of

Crainiceanu and his colleagues is mainly based on polynomial basis spline, the idea is worth

pursuing in the future. For example, because the null distribution of the likelihood ratio

test we used in the previous sections is not theoretically justified, we can rely on parametric

bootstrap instead to get its sampling distribution, as suggested in Crainiceanu and Ruppert

(2004) [13].
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Table 7: The hypothesis testing results for the baseline and interactions of Neuron 9

Test test statistic degrees of freedom p-value

H0: β9 = c 595.86 9 < 0.0001

H0: β9,3,1 = c 3.00 5 0.7

H0: β9,3,1 = 0 6.15 6 0.4

H0: β9,8,1 = c 12.75 4 0.012

H0: β9,14,1 = c 8.97 4 0.06

H0: β9,14,1 = 0 8.97 5 0.007

H0: β9,16,1 = c 9.4 5 0.094

H0: β9,16,1 = 0 13.86 6 0.03

H0: β9,24,1 = c 3.7 4 0.45

H0: β9,24,1 = 0 10.57 5 0.06

H0: β9,28,1 = c 11.73 5 0.039

H0: β9,28,1 = 0 18.88 6 0.0044
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5.0 NONCONVERGENCE IN LOGISTIC AND POISSON MODELS FOR

NEURONAL SPIKING

5.1 THE NONCONVERGENCE PROBLEM

The GLM framework, of which the logistic and Poisson models are most popular, is now

well established in quantitative studies in neuroscience [6, 37, 55]. In particular, the log-

likelihoods that arise in GLMs are typically concave. Thus, maximum likelihood estimates

(MLEs) and their corresponding confidence intervals are usually efficiently computed using

iterations of least squares calculations, which are well understood [34]. Typical criteria

for stopping the iterations require sufficiently small (relative or absolute) changes in the

parameter values, in the log-likelihood values, or a combination of the two [3].

These algorithms, however, are not foolproof. They are susceptible to either nonconver-

gence or false convergence (criterion met, but the final value is far from optimal). In general,

these difficulties can arise for several reasons: the log-likelihood may be multimodal, the

covariates may be close to collinear, or the sample size may not be large enough compared

to the number of parameters. Throughout this chapter, we assume that the sample size is

larger than the number of parameters to be estimated. We argue below that for logistic

and Poisson regression these difficulties arise, instead, because the log-likelihood achieves

its maximum at an infinite value of a regression coefficient. For the logistic model, these

data configurations are known as complete separation (CS) and quasi-complete separation

(QCS) [2, 50, 49]. For the Poisson model, we characterize the configurations under which

the maximum likelihood estimate (MLE) is not finite. For both models, we show how to use

linear programming methods to detect these configurations.

There are theoretical studies that give rather general conditions for the existence and
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uniqueness of MLEs for exponential families, which underlie GLMs [4]; however, they do

not deal with the specifics encountered in this context. Our aim here is to provide a formal

treatment of this topic and to provide criteria for detecting difficulties that are readily

implemented. We start with the logistic model, for which we define CS and QCS, and

describe their geometry. We describe the relationship between a neuron’s refractory period

and convergence difficulties due to binning conventions. We then show how commonly used

software (MATLAB, SAS) deals with such difficulties. We turn to analogous matters for

the Poisson model. We also state and prove conditions under which regression parameter

estimates are infinite, and provide a numerical example which models bursting activity. We

conclude with a discussion of the merits of several possible remedies. We put technical details

such as formal proofs and the linear programming formulation in the Appendix.

5.2 INFINITE MLE IN LOGISTIC REGRESSION

We start with the logistic model for spike train data analysis. The logistic regression models

for spike train data were introduced in section 2.2; see equation (2.2). For our purposes, a

generic form of this model suffices. For a binary outcome Y with values 0 or 1, intercept

term and covariates x = (x1, . . . , xs)
′, and parameter vector β = (β1, . . . , βs)

′, the logistic

model for P (Y = 1|x) = p(x) is

logit[p(x)] =
s∑
i=1

βixi = β′x (5.1)

Henceforth, we assume that x1 ≡ 1, so that β1 is the intercept.

5.2.1 Complete and quasi-complete separation

Silvapulle (1981) and Albert and Anderson (1984) studied the problem of determining when

the MLEs of the regression parameters are finite [2, 50]. In short, the MLEs are finite if and

only if neither CS nor QCS holds. Albert and Anderson’s geometric interpretation of these

configurations is easy to state. First define x− = (x2, . . . , xs)
′. Then, CS means that there is
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perfect prediction through a linear combination: that is, there is some vector a and a scalar

b such that a′x− > b (a′x− < b) corresponds to Y = 1 (Y = 0), so that the two outcomes

are separated by a plane. QCS allows for overlap at the boundary of the two regions: thus,

a′x− ≥ b (a′x− ≤ b) corresponds to Y = 1 (Y = 0). Figure 28 depicts these two cases, along

with the other possible configuration, overlap, for which no plane in the covariate space

separates the two outcomes.

Figure 28: The configurations

The relevance of CS and QCS to the analysis of spike trains is given in the following

proposition, whose proof is in the Appendix C.

Proposition: If the refractory periods prevent spikes in consecutive bins, then CS or QCS

will occur.

In particular, this proposition applies to the choice of 1 ms bin size. This proposition is

quite general: it depends only on the refractory period, and not on other aspects of the

model. When the number of covariates is at most three, an inspection of plots of the data

is enough to decide which of CS, QCS, or overlap holds. However, when C, the number

of neurons involved is large, the dimensionality is high enough to make graphical methods

infeasible, and the determination of a and b difficult. For such cases, analytic approaches are

necessary. Silvapulle gave a characterization of the configuration of covariates that yield a

finite MLE: see the Appendix C. A linear programming characterization of these conditions

is the following: first partition the design matrix thus: X = (X0, X1)′, where the superscript
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corresponds to the value of the response. Then consider the linear inequality array in the

variable a:  X0

−X1

 a ≤ 0

If there are nontrivial (nonzero) solutions to this inequality, then QCS or CS obtains. For

details of how to use linear programming procedures to determine the existence of nontrivial

solutions for linear inequalities see the Appendix E.

5.2.2 An example

Suppose that in the logistic model (5.1) we ignore network and stimulus effects, and focus

only on the neuron’s spiking history. Suppose further that for a particular bin size, the

refractory period prevents spikes in two consecutive bins. The spike train then plays the role

of both the covariate and outcome. Let x indicate the presence of a spike in a particular bin

and y indicate the presence of a spike in the next bin. Then, the following data are possible:

x: 0 0 0 0 0 0 0 0 1 1 1 1

y: 1 1 1 1 0 0 0 0 0 0 0 0

Note that as the likelihood function does not depend upon the order of the (x, y) pairs.

We have sorted the data in this example according to the y values; this sorting makes it

clear that QCS holds, with the sets x ≤ 0 and x ≥ 0 quasi-separating the two outcomes.

The MATLAB code and output using the glmfit command are:

MATLAB Code:

>> y=[1,1,1,1,0,0,0,0,0,0,0,0]’;

>> x=[0,0,0,0,0,0,0,0,1,1,1,1]’;

>> b=glmfit(x,y,’binomial’,’link’,’logit’)

MATLAB Output:

Warning: Iteration limit reached.

> In glmfit at 355

b = -0.0000, -102.5661

Given QCS data, MATLAB appropriately gave a warning that the iteration limit was

reached; its estimate of the slope coefficient, −102.57, is large. While this warning is a good
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feature of MATLAB, it is of limited use because it does not identify QCS as the cause of the

lack of convergence. Other software packages are uneven on this matter. For example, con-

sider the LOGISTIC and GENMOD procedures in SAS. The LOGISTIC procedure correctly

stated that ‘Quasi-complete separation of data points detected’; thus, it checks for QCS and

provides a warning when needed. However, the GENMOD procedure — which monitors both

changes in parameter estimates and a function of the log-likelihood, and it terminates when

either criterion is met — converged falsely and gave test statistics for assessing goodness of

fit. Albert and Anderson have shown that the log-likelihood is always bounded above; thus,

iterations for maximizing the log-likelihood asymptote towards that bound when either CS

or QCS hold. This example shows that the use of a second convergence criterion can still

lead to false convergence. It is likely that MATLAB uses changes in the successive parameter

estimates: in this case, the MLE of β1 is at infinity, to which the estimates are tending.

5.3 THE POISSON MODEL

A common fix for nonconvergence in the logistic model is to enlarge the bin size so that a bin

allows more than one spike per bin. In that case, Poisson regression is an appropriate model.

Here we show that nonconvergence can occur for the Poisson model too. We again work with

a generic form of the model: reordering the data, we have n independent count responses yi

for i = 1, ..., n, with yi = 0 for i = 1, ..., r and yi > 0, for i = r+ 1, ..., n. Suppose that yi has

a Poisson distribution with mean µi, and that the corresponding s-dimensional covariates

and intercept are given in the vector xi. Writing ηi = x′iβ, the relationship between response

and covariates is given by the link function

g(µi) = x′iβ = ηi

The standard Poisson link between the mean and covariates is g(t) = log(t). However,

other functions arise in specific circumstances: for example, Paninski [37] considers g that is

logarithmic in one region and linear in another. For technical reasons, here we assume that

g is an increasing twice-differentiable function with the entire real line as its range. Let li(β)
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be the log-likelihood for the ith pair (xi, yi). Then the log-likelihood function for the entire

data set is (up to an additive constant)

l(β) =
n∑
i=1

li(β) =
n∑
i=1

[yi log µi − µi] =
n∑

i=r+1

[yi log µi − µi]−
r∑
i=1

µi

=
n∑

i=r+1

[yi log g−1(xiβ)− g−1(xiβ)]−
r∑
i=1

g−1(xiβ) = S1 − S2 (5.2)

To fully characterize the existence of the MLE for the Poisson model, we need certain

algebraic preliminaries for the n× s design matrix X = (x′1, . . . , x
′
n)′. First, assume that X

has full rank, that is, rank(X) = s; next, let X0 = (x′1, . . . , x
′
r)
′ denote the r × s part of the

design matrix corresponding to the zero spike counts (recall that yi = 0 for i = 1, . . . , r);

and let X+ = (x′r+1, . . . , x
′
n)′ denote the (n − r) × s matrix corresponding to positive spike

counts. Suppose that rank(X+) = s− q with q = 0, 1, . . . , s. If X+ is not of full rank, then

there is an s × q matrix Γ, with rank q such that X+Γ = (0, ..., 0)′. Finally, call a vector

a in Rs ‘negative’ and write a < 0 if each component of a is nonpositive and at least one

component is negative; otherwise call a ‘nonnegative’, and write a ≮ 0.

Given the log-likelihood in (5.2) and the algebraic preliminaries, we now sketch an in-

tuitive argument that leads to a characterization of the existence of a finite MLE for Pois-

son regression. First, for any data configuration, the maximum must have finite values

for ηi, i = r + 1, . . . , n because positive counts preclude zero estimates of µi; hence, S1 in

(5.2) is well behaved. Note that if X+ does not have full rank, solutions of the equation

X+β = (ηr+1, . . . , ηn)′ can allow infinite β’s. Next, for the
∑r

i=1 g
−1(xiβ) component there,

the infinite components in β can cause either g−1(−∞) = 0, which maximizes the log-

likelihood, so the maximum is at infinity; or g−1(∞) = ∞, which makes the log-likelihood

equal to −∞, so a maximum at infinity is precluded. Hence, the criterion must involve

X0. Next, in order to guarantee that S1 is unchanged when we examine the influence of

the infinite β components on S2, we note that X0Γ corresponds to the part orthogonal to

the subspace spanned by X+. We now state the necessary and sufficient condition for the

existence of a finite MLE; the proof is in the Appendix D.
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Theorem. For the Poisson regression model given in (5.2) with a link function g as de-

scribed above, the MLE is finite if and only if X0Γa ≮ 0 for any a ∈ <q. This condition is

equivalent to X0b ≮ 0 for any b ∈ <s satisfying X+b = 0.

In practice, we first find the basis matrix Γ of the complementary space spanned by X+.

We then determine whether the linear inequality array X0Γa ≤ 0 has nontrivial solutions a.

As shown in the Appendix E, this inequality can be verified by linear programming. Note

that this condition is distinct from the CS and QCS, neither of which necessarily implies an

infinite MLE for Poisson regression.

Consider the following example of a bursting neuron with 3 ms bins which leads to the

following spike counts: 0, 0, 3 ,0, 0, 3, 0, 0, 3, 0, 0, 3, 0. In that case, we have

x: 0 0 0 0 0 0 0 0 3 3 3 3
Y : 3 3 3 3 0 0 0 0 0 0 0 0

which yield the following MATLAB output:

>> y=[3,3,3,3,0,0,0,0,0,0,0,0]’;

>> x=[0,0,0,0,0,0,0,0,3,3,3,3]’;

>> b=glmfit(x,y,’poisson’,’link’,’log’)

Warning: Weights are ill-conditioned. Data may be badly scaled, or

the link function may be inappropriate.

> In glmfit at 321

Warning: Iteration limit reached.

> In glmfit at 355

b = 0.4055 -34.2639

Our theorem applies to this data set thus: first, from

X+ =

 1 1 1 1

0 0 0 0

′ and X0 =

 1 1 1 1 1 1 1 1

0 0 0 0 3 3 3 3

′

it is easy to see that Γ = (0, 1)′, from which

X0Γa = (0, 0, 0, 0, 3a, 3a, 3a, 3a)′.

Since any a < 0 satisfies X0Γa < 0, a finite MLE does not exist. In addition, note that

applying the Poisson model to the numerical example in Section 5.2.2 also fails to yield a
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finite MLE; the reason for that is given by this Theorem, not by CS or QCS, which applies

to the logistic model.

5.4 REMEDIES

We now discuss several remedies that are available when nonconvergence occurs. These

include varying the bin size and the use of regularization; these methods stay within the

GLM family, so the interpretation of parameters remains unchanged. And although in this

paper we do not intend to compare modeling approaches, we will also briefly consider here

the use of alternatives such as projections for dimension reduction, and splines.

Analyses are typically not done entirely with 1 ms bins. Rather, it is quite common to

use larger bin sizes [19]. They can, in fact, avoid problems with refractoriness. However,

expanding bin size can also have difficulties. First, the theorem above shows that the use of

larger bins does not prevent nonconvergence due to an infinite MLE. In addition, there are

no general guidelines on how to determine the size of bins.

Other simple remedies include fixing a troublesome parameter to a predetermined value

or to omit the corresponding covariate entirely. Both of these suggestions are risky: the

first because it assumes knowledge about the value of the parameter, and inferences may be

highly sensitive to it; the second because the covariate may well be important in the model.

Another approach [37] uses regularization, which in effect imposes a bound on the mag-

nitudes of the regression coefficients, and does a constrained optimization. This approach

often has a Bayesian interpretation [52]. In either case, there are tuning parameters for reg-

ularization (equivalently, Lagrange multipliers or specification of a prior distribution) which

can be determined by cross-validation or other standard model selection procedure. The

advantage of this approach is that (with only minimal continuity conditions) it guarantees

the existence of bounded parameter estimates. Although the actual computation of the

regularized parameter estimates can be challenging, recent developments have made such

calculations feasible [22].

Moving slightly away from the standard GLM framework, one can also use projection
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methods to reduce the dimensionality of the covariates. A common example is regression on

principal components [12]. Formally, instead of the n×s design matrix X we use XA, where

A is an s × m orthogonal projection matrix onto an m-dimensional space (m < s). Such

dimension reduction techniques are typically used for purposes other than dealing with the

convergence issue. For example, principal components analysis projects X onto a subspace

such that XA contains the largest variance in the data. These methods can effectively avoid

noncovergence if the projected design matrix XA satisfies the conditions for the existence

of finite MLEs given above. For Poisson regression, for instance, if rank(X+) = s − q and

A is such that X+A is of full rank, then the MLEs will be finite for the new design matrix

XA. However, projection for the purpose of remedying nonconvergence problems can lose

information, making statistical inference harder. For example, consider the logistic case

with the data configuration depicted in Figure 29A. The data are completely separated, so

Figure 29: Projection can avoid CS/QCS, but miss important information in data

at least one of the components of the MLE is infinite, leading to nonconvergence. In fact,

the magnitude of β̂1 should be very large, because the covariate x1 is highly informative for

distinguishing between the two outcomes. If the data are projected onto a line to achieve

convergence by introducing overlap (Figure 29B), the parameter estimate from the projected

data would be near zero, because the new covariate contributes much less information for

62



distinguishing between the two outcomes. In this case, although projection remedies the

convergence problem, it loses useful information.

Moving in another direction from GLM, Kass and Ventura [30] model the probability of

spiking on the times since previous spikes through a Markov interval process using splines.

Although the motivation and interpretations of spline models are different from GLMs, they

share many computational features, such as the least squares matrix algebra above [62]. In

particular, instead of X and β above, spline methods solve an MLE problem with X∗ being

values of basis functions and β∗ being the corresponding weights for the basis functions.

In principle, if X∗ satisfies certain conditions given above, nonconvergence can occur for

splines too. However, since X∗ is a transform of X which changes the data configuration,

the nonconvergence problem should be a minor issue here. Of course, as with the projection

matrix A above, the choice of basis functions is also application specific.
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6.0 FUTURE WORK

6.1 MULTI-STAGE MODEL SELECTION METHODS IN DETECTING

NEURONAL INTERACTIONS

Despite the fact that L1 regularization methods are widely used, theoretical studies have

shown that it is not consistent in parameter estimation [20, 66], and under certain data

configurations, the consistency of model selection is also not guaranteed [66, 35]. This fact

will undermine the consistency of BIC γ-selector: if the true model is not included at all,

of course BIC will not select the true model, although it asymptotically gives the model

with the smallest number of variables among all correct models. To fix the problem, that

is, to achieve the so-called ‘oracle property’ [20], various modifications are made. One way

is to consider other regularization terms. For example, adaptive lasso [66] adds weights on

each L1-regularized parameters. Smoothly clipped absolute deviation (SCAD) penalty [20]

only regularizes the parameters in a neighborhood of zero, and its regularization function is

smoother than pure L1 regularization. There is also the ‘elastic net’ [67, 22], a combined

L1 and L2 regularization. In other studies, multi-stage model selection is considered from

a different point of view. Before totally throwing away the L1 regularization, the model

selected by L1 regularization is found more often to be oversized than undersized [35, 59]. So

the good news is that we still have the true model buried in a smaller set of variables, and we

can further select the model with a considerably smaller set of variables. Meinshausen and

Yu (2009) [35] suggest a further hard threshold on parameters estimated by L1 regularization.

We remove the variables whose magnitude is lower than the appropriately chosen threshold.

Wasserman and Reoder (2009) [59] also suggest that based on the variables selected by L1

regularization, we fit an ordinary regression model and then use a traditional t-test to further
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prune the variables (in principle, it is still a threshold method). They prove the consistency

of this multi-stage method.

In our work on detecting interactions with L1-regularized logistic models, we also found

that it tends to give an oversized model (compare the almost 100% percent sensitivity to

90% specificity). The magnitude of parameters that are supposed to be zero are relatively

smaller than the those with nonzero magnitudes of interactions. Therefore, the multi-stage

methods with a threshold after L1 regularization seem appealing in this context. We will

continue our studies of the multi-stage model selection techniques on spike train data by

doing the following:

1. Adapt the existing methods to L1-regularized logistic model. For example, the likelihood

ratio test may replace the t-test in the second stage, provided the infinite MLEs in spike

train data models [65].

2. Consider multi-stage model selection methods other than Meinshausen and Yu (2009)

and Wasserman and Roeder (2009) [35, 59].

3. Use simulation studies to assess the performance of various multi-stage methods, and

compare to that of the L1-regularized logistic models.

4. Implement on real data.

5. Study the asymptotic properties of those methods to justify results from a theoretical

perspective.

6.2 ERROR-IN-VARIABLES METHODS FOR TUNING CURVES

In center-out experiments studying primate motor or visual cortex, the firing rates of well-

isolated single neurons are found to vary with the direction [11, 25]: the firing rate of a single

neuron peaks at a certain direction, called the ‘preferred direction’, and decreases when the

direction moves away from the preferred direction (Figure 30). A function describing the

relationship between the firing rate and direction is called a ‘tuning curve’ (Figure 30B). Dif-

ferent neurons have different preferred directions and shapes of tuning curve. Independently

repeating trials in the same direction many times, Georgopoulos et al. fit the tuning curve
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Figure 30: (Georgopoulos et al. 1982) A: Spike trains of one neuron in multiple trials under

eight movement directions. B: Tuning curve of the neuron in A.

by a nonlinear regression model [25]:

y = b0 + b1cos(θ − θ0) + ε (6.1)

where y is the firing rate in a trial, and θ0 is the preferred direction.

According to the cosine tuning curve, the relationship between the activity of a single

neuron and body movement is clear: a hand movement in 0◦ direction maximally excites

neurons with 0◦ preferred direction and inhibits neurons with 180◦ preferred direction. How-

ever, when it comes to the neuronal interaction, this cosine tuning curve model becomes

inadequate to explain this. We address the following question: when a hand movement is in

the ρ1 direction, will the neuron with ρ2 preferred direction be excited/inhibited by neurons

with ρ3 preferred direction, or will there be no correlation at all? If so, how and to what

extent?

One such attempt was made in a primate visual cortex experiment by studying in pairs

of neurons the relationship between spike counts correlation coefficient, movement direction

and preferred directions of the pair of neurons [11]. In this experiment, the monkey was
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required to saccade top-or-bottom in one context and left-or-right in the other context.

Spike counts for recorded neurons were measured in each period of the entire trial (Figure

31A). The preferred direction of each neuron was predetermined by an eight-target center-out

task. Two types of direction triplets (saccade direction and preferred directions of a pair of

neurons) were studied: same-pool and different-pool (Figure 31B). The results indicate that

Figure 31: (Cohen and Newsome 2008) A: Behavioral task. B: Scheme for the categorization

of same-pool and different-pool.

the spike counts correlation coefficient of two neurons is tuned for both the angle between two

preferred directions (∆PD) and the type of direction triplets (Figure 32), which illustrates

the potential dependence of neuronal correlations on the experimental contexts.

In this work, the analyses are mainly based on graphical methods and elementary sta-

tistical techniques. The sources of the spike count correlations must be carefully specified.

A detailed model that fully takes the advantage of equation (6.1) might be useful here.

Therefore, we will pursue a study of a generalized nonlinear model with measurement error:

Ey = b0 + b1cos(θ + η − θ0) (6.2)

where y is Poisson distributed spike count of a single neuron with rate b0+b1cos(θ+η−θ0), and

η describes the measurement error in movement direction, which could be concluded in the

inaccuracy of monkey’s movement or unknown factors that influence the correct judgement
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Figure 32: (Cohen and Newsome 2008) A: Histogram of context-dependent differences in

correlation coefficients when ∆PD is either < 135◦ or > 135◦. B: Mean correlation coefficient

as a function of ∆PD during stimulus or target period for the same-pool or different-pool

condition.
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of the neuron. When it comes to the spike count correlation of two neurons, the correlation

can come from the two correlated Poisson random variables (correlation in firing rate), or

the correlated η’s (correlation in movement directions). We hope to use such modeling to

interpret the correlation: when the input is ambiguous with error, the closer the movement

direction and preferred directions are, the more importance in coordination of those two

neurons to double-confirm that they made the correct decision.
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APPENDIX A

PROOF OF THEOREM IN SECTION 3.3

The proof quotes two lemmas and theorems in Qian and Wu (2006) [44], one theorem in

Fan and Li (2001) [20] and one theorem in Park and Hastie (2007) [39]. To make them

hold here, we inherit the conditions (C.1)-(C.14) in Qian and Wu (2006) [44] and conditions

(A)-(C) in Fan and Li (2001) [20]. We refer the reader to those papers for the details.

Without elaborating those conditions, we rephrase the quoted lemmas and theorems as the

lemmas below for my context. Intuitively, the conditions (C.1)-(C.6) are requirements for

link functions in general, which apply for the logit link [44]. The conditions (C.7)-(C.13) are

requirements for covariates, where no observation should dominate when sample size goes

to infinite. The condtions (C.14) and (A)-(C) are requirements for log-likelihood functions,

where classic likelihood theory can apply.

Let β0 be the true values of a collection of P parameters, of which only p are nonzero.

Here we assume both p and P finite and not varying with sample size n. Denote the log-

likelihood function for logistic regression as l. C and W are sets of all correct models and

all wrong models respectively. β̂c stands for the unregularized MLEs under the assumption

of model c ∈ C, and β̂w stands for the unregularized MLEs under the assumption of model

w ∈ W . β̂(γ) stands for the L1-regularized estimates at γ. If there is a subscript c or w

under β̂(γ), it means that the nonzero estimates in β̂(γ) consist of model c or w.

Lemma 1 (Theorem 2 in Qian and Wu (2006)). Under (C.1)-(C.14), for any correct

model c ∈ C

0 ≤ l(β̂c)− l(β0) = O(log log n), a.s..
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Lemma 2 (Theorem 3 in Qian and Wu (2006)). Under (C.1)-(C.14), for any wrong

model w ∈ W

0 < l(β0)− l(β̂w) = O(n), a.s..

Lemma 3 (Theorem 1 in Fan and Li (2006)). Under (A)-(C), there exists a local

maximizer β̂(γ) for L1-regularized log-likelihood such that ‖ β̂(γ)−β0 ‖= Op(n
−1/2 + γ/n).

Lemma 4 (Lemma 4 in Qian and Wu (2006)). Under (C.1)-(C.14), we have each

component of ∂l
∂β

(β0) equal to O(
√
n log log n) a.s..

Lemma 5 (Lemma 6 in Qian and Wu (2006)). Under (C.1)-(C.14), there exists two

positive numbers a1 and a2 such that the eigenvalues of −∂2l/∂β∂β′ at β0 are bounded by

a1n and a2n a.s. as n goes to infinity.

Lemma 6 (Lemma 1 in Park and Hastie (2007)). If the intercept in logistic model

are not regularized, when γ > max | ( ∂l
∂β

)j | ,j = 1, . . . , P , the intercept is the only non-zero

coefficient.

Proof of the Theorem. Let γ1 > γ2. Denote m1 as the model consist of d1 nonzero

parameters in β̂(γ1), and m2 as the model consist of d2 nonzero parameters in β̂(γ2). We

have d1 < d2. Therefore,

BIC(γ1)−BIC(γ2) = −2l(β̂(γ1)) + d1 log n− [−2l(β̂(γ2)) + d2 log n]

= (d1 − d2) log n+ 2[l(β̂(γ2))− l(β̂(γ1))]

= (d1 − d2) log n

+2[l(β̂(γ2))− l(β̂m2
) + l(β̂m2

)− l(β̂m1
) + l(β̂m1

)− l(β̂(γ1))]

If m1,m2 ∈ C, by Lemma 1, we have (d1−d2) log n = O(log n) < 0 and l(β̂m2
)−l(β̂m1

) =

O(log log n) > 0. By the definition of maximum likelihood, we also have l(β̂(γ2))− l(β̂m2
) <

0. Therefore, as long as l(β̂m1
) − l(β̂(γ1)) = o(log n), BIC(γ1) − BIC(γ2) < 0 and the

correct model m1 with smaller number of parameters is selected.

If m1 ∈ W and m2 ∈ C, by lemma 2, we have (d1 − d2) log n = O(log n) < 0 and

l(β̂m2
) − l(β̂m1

) = O(n) > 0. Again by the definition of maximum likelihood, we have
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l(β̂m1
)−l(β̂(γ1)) > 0. Therefore, as long as l(β̂(γ2))−l(β̂m2

) = o(n), BIC(γ1)−BIC(γ2) > 0

and the correct model m2 is selected.

Thus, it is required to show that, for any c ∈ C, we have l(β̂c) − l(β̂c(γ)) = o(log n).

Because l(β̂c) − l(β0) = O(log log n), it suffices to show l(β0) − l(β̂c(γ)) = o(log n). By a

Taylor expansion, we have

l(β)− l(β0) = (β − β0)′
∂l(β0)

∂β
+

1

2
(β − β0)′

∂2l(β0)

∂β∂β′
(β − β0) + o(‖ β̂(γ)− β0 ‖2).

So by lemma 3, 4 and 5, we have

l(β0)− l(β̂c(γ)) = O(1/
√
n+ γ/n)O(

√
n log log n) +O(n)O((1/

√
n+ γ/n)2).

When γ = o(
√
n log n), it achieves l(β0)− l(β̂c(γ)) = o(log n).

Finally, because Lemma 6 says that, when γ > max | ( ∂l
∂β

)j |= O(
√
n log log n), it gives

null model with only the intercept, so we do not need a tuning parameter γ exceeding

o(
√
n log n). Therefore, l(β0)− l(β̂c(γ)) = o(log n) is achievable for all correct models given

by β̂(γ). Therefore, the BIC γ-selector selects the correct model with smallest number of

parameters among all the submodels β̂(γ) presents.
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APPENDIX B

THE EXPRESSIONS OF THE INEXACT GRADIENT AND HESSIAN OF

THE GCV

Let Z∗ = limZ∗(k) and X∗ = limX∗(k). In practice, Z∗ and X∗ are taken from the last

iteration of the IRLS algorithm. Further, denote A = (X∗)(X∗
′
X∗ + H)−1X∗

′
, ρ(λ̃) =

(Z∗ − AZ∗)′(Z∗ − AZ∗) and ξ(λ̃) = n− tr(A). Thus, GCV = nρ/ξ2 and

∂GCV

∂λi
= −2nρ

ξ3

∂ρ

∂λi
+
n

ξ2

∂ρ

∂λi
∂2GCV

∂λi∂λj
= −2n

ξ3

∂ξ

∂λj

∂ρ

∂λi
+
n

ξ2

∂2ρ

∂λi∂λj
− 2n

ξ3

∂ξ

∂λi

∂ρ

∂λj

+
6nρ

ξ4

∂ξ

∂λj

∂ξ

∂λi
− 2nρ

ξ3

∂2ξ

∂λi∂λj

Treating X∗ and Z∗ as invariants to λ̃, we also need the first and second partial derivatives

of ρ and ξ

∂ξ

λi
= −∂tr(X

∗′X∗(X∗
′
X∗ +H)−1)

∂λi

= −tr(X∗′X∗∂(X∗
′
X∗ +H)−1

∂λi
)

= tr(X∗
′
X∗(X∗

′
X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1)

∂ρ

λi
= −2(Z∗ − AZ∗)′X∗∂(X∗

′
X∗ +H)−1X∗

′
Z∗

∂λi

= 2(Z∗ − AZ∗)′X∗(X∗′X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1X∗

′
Z∗
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∂2ξ

λiλj
= ∂

∂ξ

∂λi
/∂λj

= −tr(X∗′X∗((X∗′X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1 ∂H

∂λj
(X∗

′
X∗ +H)−1

+(X∗
′
X∗ +H)−1 ∂H

∂λj
(X∗

′
X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1))

∂2ρ

λiλj
= ∂

∂ρ

∂λi
/∂λj

= −2(Z∗ − AZ∗)′X∗((X∗′X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1 ∂H

∂λj
(X∗

′
X∗ +H)−1

+(X∗
′
X∗ +H)−1 ∂H

∂λj
(X∗

′
X∗ +H)−1∂H

∂λi
(X∗

′
X∗ +H)−1)X∗

′
Z∗

From the final expressions of those derivatives, (X∗
′
X∗+H)−1 and ∂H

∂λi
are p×p matrices

and (Z∗−AZ∗) and X∗
′
Z∗ are 1×p vectors. So the calculation of the first and second partial

derivatives of ρ and ξ is not computationally intensive. Besides, (X∗
′
X∗+H)−1, (Z∗−AZ∗)

and X∗
′
Z∗ are precomputed in IRLS, and ∂H

∂λi
is a block diagonal matrix containing only S.

Therefore, no extra matrix evaluation is needed.

In the end, the Newton-Raphson search is usually preformed in the log λ scale [61, 62], so

the gradient and Hessian with respect to log λi can be computed via following relationship:

∂GCV (.)

∂ log λi
=

∂GCV (.)

∂λi
λi,

∂2GCV (.)

∂ log λi∂ log λj
=


∂2GCV (.)
∂λi∂λj

, if i 6= j

∂2GCV (.)
∂λi∂λj

+ ∂GCV (.)
∂λi

λi, if i = j
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APPENDIX C

SILVAPULLE’S THEOREM AND INFINITE MLE FOR SPIKE TRAIN

DATA

C.1 SILVAPULLE’S THEOREM

Consider the pairs {(xi, yi) : 1 ≤ i ≤ n}, with yi = 0 or 1 and xi ∈ Rs; suppose that the

outcomes are sorted so that y1 = · · · = yr = 1 and yr+1 = · · · = yn = 0. Define the sets

S =

{
r∑
i=1

kixi|ki > 0

}
and F =

{
n∑

i=r+1

kixi|ki > 0

}
.

For the logistic model, the MLE of β is finite and unique if and only if S ∩ F 6= ∅.

C.2 PROOF OF PROPOSITION IN SECTION 5.2.1

The design matrix has the following form:

y

x1

x2

·

·

·


=



1 1 · · · 1 0 · · · 0 0 · · · 0

1 1 · · · 1 1 · · · 1 1 · · · 1

0 0 · · · 0 0 · · · 0 1 · · · 1

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·


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Here, y represents a neuron’s spiking; x1 ≡ 1 represents the intercept term; x2 represents

the same neuron’s spiking one bin earlier. The refractory period prohibits y = x2 = 1; all

other cases are possible. In this case,

S =

{(
r∑
i=1

ki, 0, . . .

)
|ki > 0

}
and F =

{(
n∑

i=r+1

ki,

n∑
r+s

ki, . . .

)
|ki > 0

}
.

The second components of S and F are zero and positive, respectively. Thus, S ∩ F = ∅,

and by Silvapulle’s theorem, the MLE of β is not finite.
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APPENDIX D

PROOF OF THEOREM IN SECTION 5.3

Our notation is from equations (4) and (5), and the algebraic preliminaries after equation

(5). We begin with several lemmas. The first two below are from the first two lemmas in

Wedderburn (1976) [60], restated to suit our notation.

Lemma 1. In (5), li(β)→ −∞ for i = r + 1, ..., n, when ηi → ±∞.

Lemma 2. The log-likelihood function l(β) has a maximum which is attained at some

η = (η1, ..., ηn), with −∞ ≤ ηi ≤ ∞ for all n.

Lemma 3. Suppose that l attains a maximum at η. Then all components of η+ =

(ηr+1, . . . , ηn) are finite.

proof. If not, then by Lemma 1, at least one li(β) = −∞ for i = r + 1, . . . , n. Thus,

l(β) = −∞, which contradicts the attainment of the maximum of l.

Lemma 4. Suppose that X0Γ 6= 0. Then X0Γa = 0 if and only if a = 0..

proof. Because X has rank s and X+ has rank s − q, the part of X0 in the orthogonal

complement of the row space of X+ must have rank q. Next, Γ has rank q and it spans that

complementary space. Therefore, rank(X0Γ) = q, so that X0Γa = 0 if and only if a = 0.

Proof of the Theorem. If r(X+) = r(X) = s, Γ degenerates to the zero vector, so

X0Γa ≡ 0. Thus, by definition, X0Γa ≮ 0. By Lemma 3, there is an η+ = X+β with all

finite components; since X+ has full rank, β also has all finite components, and the MLEs

exist.

Next, if r(X+) = s − q < s = r(X), then by Lemma 2, there is an η which maximizes

the log-likelihood l; and by Lemma 3, η+ has all finite components. By solving X+β = η+,
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we have β = Γa+ β0, where a is any q× 1 vector and β0 has all components finite. For that

β we have

l(β) =
n∑

i=r+1

li −
r∑
i=1

g−1(xiΓa+ xiβ0). (D.1)

If X0Γa ≮ 0 for any a ∈ <q, then by Lemma 4, X0Γa 6= 0 unless a = (0, ..., 0), so X0Γa

must contain a positive component. Suppose that x1Γa > 0 without loss of generality.

If we multiply a by a positive constant k, then x1Γka → ∞ as k → ∞, in which case

g−1(x1Γka+x1β0)→∞ and l(β)→ −∞. This implies that if |a| → ∞, l(β) will move away

from the maximum. Therefore, the β attaining the maximum must be finite.

Finally, if there is an a such that X0Γa < 0 and we multiply a by a positive constant

k, then xiΓa < 0 implies g−1(xiΓka + xiβ0) → 0 as k → ∞, for i = 1, . . . , r. Next, when

xiΓa = 0 for any i = 1, . . . , r, then g−1(xiΓka+ xiβ0) remains constant as k →∞; the same

holds for i = r + 1, . . . , n. Therefore, there exists a direction in which l will increase when

|a| → ∞ in that direction; thus, the log-likelihood attains its maximum at some β which has

at least one infinite component. In this case, the MLEs do not exist.
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APPENDIX E

INEQUALITY ARRAYS AND LINEAR PROGRAMMING

Consider the problem of determining if there are nontrivial solutions to the general linear

inequality array

Aa ≤ 0, (E.1)

where A is an m × n matrix and a ∈ <n. We begin with two reductions. First, if A does

not have full rank, then the inequality reduces to an same problem with lower dimension.

In particular, if A has rank r, we can use the singular value decomposition

A = UDV ′ = U

 D11 0

0 0

V ′,

where D11 is an r × r diagonal containing the (positive) singular values of A. Thus, the

problem is equivalent to the use of the m × r matrix Ã = U(D11, 0)′ in place of A. And

second, if m ≤ n, with rank(A) = m, then the equation Aa = (−1, . . . ,−1)′ has at least one

nontrivial solution, which in turn satisfies (E.1). Thus, we henceforth assume that m > n,

that A has full rank, and proceed with the following steps.

1. Add n slack variables s, so that (E.1) is equivalent to the new problem:

Aa+ s = (A, I)

 a

s

 = 0, with s ≥ 0, (E.2)

where I is the n × n identity matrix, and s ≥ 0 means that all components of s are

nonnegative.
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2. Decompose A into an n×n matrix A1 and (m−n)×n matrix A2; we assume that A1 has

full rank, which we can achieve by permuting the rows of A first. Thus (E.2) becomes

 A1 I 0

A2 0 I




a

s1

s2

 = 0, with s1, s2 ≥ 0. (E.3)

3. Solving (E.3), we have a = −A−1
1 s1 and s2 = A2A

−1
1 s1, s1, s2 ≥ 0. Thus, (E.1) or (E.3)

has nontrivial solutions if and only if there are nontrivial solutions for

A2A
−1
1 s1 ≥ 0, with s1 ≥ 0. (E.4)

4. Solve a standard linear program: maximize
∑

i s1i, subject to A2A
−1
1 s1 ≥ b, s1 ≥ 0,

where b = (−1, . . . ,−1)′ (this choice of b places the optimum s1 in the interior of the

search space). This linear program can be solved via simplex algorithm [33]. If (E.4)

has nontrivial solutions, the maximum will be unbounded, in which case the MLEs of

the corresponding logistic or Poisson model do not exist; otherwise, the algorithm will

converge to a finite maximum, in which case the MLEs exist.
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