
ESSAYS ON ESTIMATION OF NON-LINEAR

STATE-SPACE MODELS.

by

Dharmarajan Hariharan

B.E. (Chemical Engineering) , Bangalore University, 1997

M.S. (Chemical Engineering), West Virginia University, 2001

Submitted to the Graduate Faculty of

the Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF ECONOMICS

This dissertation was presented

by

Dharmarajan Hariharan

It was defended on

July 11th 2008

and approved by

Jean-François Richard, Department of Economics

David N. DeJong, Department of Economics

James Feigenbaum, Department of Economics

Roman Liesenfeld, Universität Kiel

Dissertation Advisors: Jean-François Richard, Department of Economics,

David N. DeJong, Department of Economics

ii



ESSAYS ON ESTIMATION OF NON-LINEAR STATE-SPACE MODELS.

Dharmarajan Hariharan, PhD

University of Pittsburgh, 2008

The first chapter of my thesis (co-authored with David N. DeJong, Jean-François Richard and

Roman Liesenfeld) develops a numerical procedure that facilitates efficient likelihood evalu-

ation and filtering in applications involving non-linear and non-Gaussian state-space models.

These tasks require the calculation of integrals over unobservable state variables. We introduce

an efficient procedure for calculating such integrals: the EIS-Filter. The procedure approxi-

mates necessary integrals using continuous approximations of target densities. Construction

is achieved via efficient importance sampling, and approximating densities are adapted to

fully incorporate current information. Extensive comparisons to the standard particle filter are

presented using four diverse examples.

The second chapter illustrates the use of copulas to create low-dimensional multivariate

importance sampling densities. Copulas enable the problem of multivariate density approxi-

mation to be split into a sequence of simpler univariate density approximation problems for

the marginals, with the dependence accounted by the copula parameter(s). This separation of

the marginals from their dependence allows maximum flexibility in the selection of marginal

densities. Combined with the EIS method for refining importance sampling densities, copula

densities offer substantial flexibility in creating multivariate importance samplers. In a simu-

lation exercise, we compare the accuracy of the copula-based EIS-Filter to the particle filter

in evaluating the likelihood function and in obtaining filtered estimates of the latent variables.

Reliability of growth forecasts critically depend on being able to anticipate/recognize

shifts of the economy from recessions to expansions or vice versa. It is widely accepted
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that the processes that govern these shifts could be highly non-linear. In the third chapter

(co-authored with David N. DeJong, Jean-François Richard and Roman Liesenfeld), we study

regime shifts using a non-linear model of GDP growth. The model characterizes growth as fol-

lowing non-linear trajectories that fluctuate stochastically between alternative periods of gen-

eral acceleration and deceleration. Also, we introduce a non-stochastic rule-based recession-

dating method to forecast likely dates for the start of a recession and it length. Results indicate

that the model is capable of exhibiting substantially non-linear behavior in its regime-specific

latent process and hence is able to anticipate and detect regime-shifts accurately, improving

the quality of growth forecasts obtained from it.
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1.0 INTRODUCTION

Modern dynamic econometric models often incorporate key latent (unobservable) variables.

A wide range of such models can be characterized by an underlying state-space transition

model describing the dynamic stochastic process driving the latent variables, in combination

with a set of (measurement) equations that link the latent variables to observables. For exam-

ple, models of real business cycle activity highlight movements of observed output growth in

response to innovations in unobserved total factor productivity.

Likelihood-based inference, whether on model parameters or estimates of the latent vari-

ables (filtered values), requires integration with respect to the unobservables. Under restrictive

assumptions (combining linear equations with Gaussian errors), such integrals can be evalu-

ated analytically using the Kalman filter. Under more flexible assumptions, required integrals

must be calculated numerically.

Advances in computing power, coupled with the development of numerical Monte Carlo

integration techniques, provide powerful tools for the analysis of high-dimensional non-linear

and/or non-Gaussian state-space models. However, when applied to complex dynamic pro-

cesses, Monte Carlo methods can be highly inefficient because they may require delicate fine

tuning as well as very large number of draws to produce numerically accurate estimates of the

quantities of interest.

The object of my dissertation is to develop generic, fully automated, robust and numeri-

cally efficient numerical Monte Carlo integration techniques that can be successfully applied

to high-dimensional non-linear and/or non-gaussian state-space models.

Particle filters represent a landmark development in our ability to evaluate likelihood func-
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tions in non-linear and/or non-gaussian state-space models. These methods employ discrete

approximations to the densities of the state variables, with the recursive updating of these

distributions being a straightforward application of Bayes theorem. The generic simplicity of

particle filters explains their growing popularity across a wide range of disciplines. Unfortu-

nately, outliers and other potential pathologies can result in major inefficiencies that require

prohibitively large numbers of MC draws to obtain numerically accurate estimates of the like-

lihood function, and filtered values of the state variables.

In the first chapter we create continuous approximations to the densities of interest using

recently developed efficient MC techniques (Efficient Importance Sampling - EIS) to produce

substantially superior numerical approximations for relevant integrals. Our method typically

produces dramatic reductions in the number of draws required for accurate integration, and is

also robust to outliers and other pathological scenarios.

The relative accuracy of our EIS-based filter is demonstrated through four diverse exam-

ples. The first involves likelihood evaluation for a model featuring fat-tailed measurement

errors. The second involves obtaining filtered estimates of the latent volatility in a stochastic

volatility model. The third and the fourth examples highlight pathological situations involving

singular distributions and/or the partial observability of data: likelihood inference in an eco-

nomic growth model with a partly non-stochastic state-process; and filtering in the bearings-

only tracking problem.

Since likelihood evaluation in state-space models typically requires high-dimensional in-

tegration, a well-established method for overcoming the curse of dimensionality is to decom-

pose the total likelihood into a product of lower-dimensional conditional likelihoods. These

conditional likelihoods are then computed sequentially.

The second essay proposes the use of copulas to create low-dimensional multivariate im-

portance sampling densities that allow for maximum flexibility in the selection of marginal

densities. Copulas enable the problem of multivariate density approximation to be split into

a sequence of simpler univariate density approximation problems for the marginals, with the

dependence accounted for by the copula parameter(s). Combined with the EIS method for
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refining importance sampling densities, copula densities offer enormous flexibility in creating

multivariate importance samplers. For example, while a bivariate Gaussian density requires

the marginal densities to be Gaussian themselves, a bivariate meta-Gaussian copula can com-

bine arbitrary marginals via the normal quantile transform to create very general bivariate

densities.

The combined strengths of EIS and copula densities are illustrated via an application to a

dynamic stochastic general equilibrium (DSGE) model. In a simulation study, we show that

the copula-based EIS-Filter is capable of creating accurate importance sampling densities and

hence provide accurate likelihood values and filtered estimates of the unobserved variables.

Reliability of growth forecasts critically depend on anticipating/recognizing shifts of the

economy from recessions to expansions or vice versa. It is widely accepted that the processes

that govern these shifts could be highly non-linear. When combined with the decrease in

volatility of observed growth since the mid 1980’s (see Stock and Watson, 2002, for a thorough

investigation of a broad range of aggregate time series and a comprehensive literature review)

the task of predicting regime shifts has only become more challenging.

In the final essay, we study regime shifts using a non-linear model of GDP growth that

builds on the work of DeJong, Liesenfeld, and Richard (2005). The model characterizes

growth as following non-linear trajectories that fluctuate stochastically between alternative

periods of general acceleration and deceleration. Regime changes occur stochastically, with

probabilities determined by an observed indicator variable via a logistic link function. We

refer to the observed indicator variable as a “tension index”. In order to account for the fact

that no two regimes are alike, we model the parameters that dictate growth trajectories in

each regime as random variables that vary from regime-to-regime. The latent parameters also

include the volatility of growth in each regime. This treatment of the volatility parameter

as being a latent variable whose distribution is estimated can account for both high and low

volatility episodes as naturally arising due to particular realizations of the latent variable.

The increased non-linearity of the latent drift process governing growth in any given

regime allows for a better fit of the model and substantially enhanced sensitivity to fluctu-

3



ations in growth that might be indicative of regime-changes. The distributional characteriza-

tion of the parameters governing the latent drift process is sufficiently broad to withstand mild

trends in the latent parameters. Results from regime-break prediction and in-sample forecast-

ing exercises amply illustrates the benefits of the new model specification over the DeJong,

Liesenfeld, and Richard (2005) model.

4



2.0 AN EFFICIENT APPROACH TO ANALYZING STATE-SPACE

REPRESENTATIONS

2.1 INTRODUCTION

Likelihood evaluation and filtering in applications involving state-space models requires the

calculation of integrals over unobservable state variables. When models are linear and stochas-

tic processes are Gaussian, required integrals can be calculated analytically via the Kalman

filter. Departures entail integrals that must be approximated numerically. Here we introduce

an efficient procedure for calculating such integrals: the EIS filter.

The procedure takes as a building block the pioneering approach to likelihood evaluation

and filtering developed by Gordon, Salmond, and Smith (1993) and Kitagawa (1987). Their

approach employs discrete fixed-support approximations to unknown densities that appear in

the predictive and updating stages of the filtering process. The discrete points that collectively

provide density approximations are known as particles; the approach is known as the particle

filter. Examples of its use are becoming widespread; in economics, e.g., see Kim, Shephard,

and Chib (1998) for an application involving stochastic volatility models; and Fernandez-

Villaverde and Rubio-Ramirez (2007) for applications involving dynamic stochastic general

equilibrium models.

While conceptually simple and easy to program, the particle filter suffers two shortcom-

ings. First, because the density approximations it provides are discrete, associated likelihood

approximations can feature spurious discontinuities, rendering as problematic the application

of likelihood maximization procedures (e.g., see Pitt, 2002). Second, the supports upon which
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approximations are based are not adapted: period-t approximations are based on supports that

incorporate information conveyed by values of the observable variables available in period

t− 1, but not period t (e.g., see Pitt and Shephard, 1999). This gives rise to numerical inef-

ficiencies that can be acute when observable variables are highly informative with regard to

state variables, particularly given the presence of outliers.

Numerous extensions of the particle filter have been proposed in attempts to address

these problems. For examples, see Pitt and Shephard (1999); the collection of papers in

Doucet, de Freitas, and Gordon (2001); Pitt (2002); and the collection housed at http://www-

sigproc.eng.cam.ac.uk/ smc/papers.html. Typically, efficiency gains are sought through at-

tempts at adapting period-t densities via the use of information available through period t.

However, with the exception of the extension proposed by Pitt (2002), once period-t supports

are established they remain fixed over a discrete collection of points as the filter advances

forward through the sample, thus failing to address the problem of spurious likelihood discon-

tinuity. (Pitt employs a bootstrap-smoothing approximation designed to address this problem

for the specialized case in which the state space is unidimensional.) Moreover, as far as we are

aware, no existing extension pursues adaption in a manner that is designed to achieve optimal

efficiency.

Here we propose an extension that constructs adapted period-t approximations, but that

features a unique combination of two characteristics. The approximations are continuous;

and period-t supports are adjusted using a method designed to produce approximations that

achieve near-optimal efficiency at the adaption stage. The approximations are constructed

using the efficient importance sampling (EIS) methodology developed by Richard and Zhang

(2007) (henceforth RZ). Construction is facilitated using an optimization procedure designed

to minimize numerical standard errors associated with the approximated integral.

6
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2.2 OVERVIEW OF THE FILTERING PROBLEM

Let yt be a n×1 vector of observable variables, and denote {y j}t
j=1 as Yt . Likewise, let st be a

m×1 vector of unobserved (‘latent’) state variables, and denote {s j}t
j=1 as St . The objective

of filtering is to infer the behavior of st given Yt , and an assumed state-space representation;

likelihood evaluation obtains as a by-product of the filtering process.

State-space representations consist of a state-transition equation

st = γ(st−1,Yt−1,υt), (2.1)

where υt is a vector of innovations with respect to (st−1,Yt−1), and an observation (or mea-

surement) equation

yt = δ(st ,Yt−1,ut) , (2.2)

where ut is a vector innovations with respect to (st ,Yt−1). Hereafter, we refer to υt as structural

shocks, and ut as measurement errors.

Filtering is facilitated by interpreting (2.1) and (2.2) in terms of the densities f (st |st−1,Yt−1)

and f (yt |st ,Yt−1), respectively. The process is initialized with a marginal density f (s0), which

can be degenerate as a special case. From these densities, the goal is to construct f (st |Yt) ,

which can then be used to calculate, e.g., Et (st |Yt) .

From Bayes’ theorem, f (st |Yt) is given by

f (st |Yt) =
f (yt ,st |Yt−1)

f (yt |Yt−1)
=

f (yt |st ,Yt−1) f (st |Yt−1)
f (yt |Yt−1)

, (2.3)

where f (st |Yt−1) is given by

f (st |Yt−1) =
∫

f (st |st−1,Yt−1) f (st−1|Yt−1)dst−1, (2.4)

and f (yt |Yt−1) is given by

f (yt |Yt−1) =
∫

f (yt |st ,Yt−1) f (st |Yt−1)dst . (2.5)
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Note that the recursive structure of f (st |Yt) evident in (2.3) and (2.4) indicates that filtering can

be implemented via forward recursion, beginning with the known density f (s0) ≡ f (s0|Y0) .

Note also that since the likelihood function f (YT ) factors sequentially as

f (YT ) =
T

∏
t=1

f (yt |Yt−1) , (2.6)

where f (y1|Y0)≡ f (y1), likelihood evaluation obtains as a by-product of the filtering process.

In turn, filtering entails the approximation of the conditional (upon Yt) expectation of some

function h(st) (including st itself). In light of (2.3) and (2.5), this can be written as

Et (h(st)|Yt) =
∫

h(st) f (yt |st ,Yt−1) f (st |Yt−1)dst∫
f (yt |st ,Yt−1) f (st |Yt−1)dst

. (2.7)

2.3 THE PARTICLE FILTER AND LEADING EXTENSIONS

Since our procedure is an extension of the particle filter, we provide a brief overview here.

The particle filter is an algorithm that recursively generates random numbers approximately

distributed as f (st |Yt). To characterize its implementation, let sr,i
t denote the ith draw of st

obtained from the conditional density f (st |Yt−r) for r = 0,1. A single draw sr,i
t is a particle,

and a set of draws {sr,i
t }N

i=1 is a swarm of particles. The object of filtration is that of transform-

ing a swarm {s0,i
t−1}N

i=1 to {s0,i
t }N

i=1. The filter is initialized by a swarm {s0,i
0 }N

i=1 drawn from

f (s0|Y0)≡ f (s0).

Period-t filtration takes as input a swarm {s0,i
t−1}N

i=1. The predictive step consists of trans-

forming this swarm into a second swarm {s1,i
t }N

i=1 according to (2.4). This is done by drawing

s1,i
t from the conditional density f

(
st |s0,i

t−1,Yt−1

)
, i = 1, ...,N. Note that {s1,i

t }N
i=1 can be used

to produce an MC estimate of f (yt |Yt−1), which according to (2.5) is given by

f̂N(yt |Yt−1) =
1
N

N

∑
i=1

f (yt |s1,i
t ,Yt−1). (2.8)
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Next, f (st |Yt) is approximated by re-weighting {s1,i
t }N

i=1 in accordance with (2.3) (the

updating step): a particle s1,i
t with prior weight 1

N is assigned the posterior weight

w0,i
t =

f (yt |s1,i
t ,Yt−1)

N
∑
j=1

f (yt |s1, j
t ,Yt−1)

. (2.9)

The filtered swarm {s0,i
t }N

i=1 is then obtained by drawing with replacement from the swarm

{s1,i
t }N

i=1 with probabilities {w0,i
t }N

i=1 (i.e., bootstrapping).

Having characterized the particle filter, its weaknesses (well documented in previous stud-

ies) can be pinpointed. First, it provides discrete approximations of f (st |Yt−1) and f (st |Yt),

which moreover are discontinuous functions of the model parameters. The associated likeli-

hood approximation is therefore also discontinuous, rendering the application of maximization

routines problematic (a point raised previously, e.g., by Pitt, 2002).

Second, as the filter enters period t, the discrete approximation of f (st−1|Yt−1) is set.

Hence the swarm {s1,i
t }N

i=1 produced in the augmentation stage ignores information provided

by yt . (Pitt and Shephard, 1999 refer to these augmenting draws as “blind”.) It follows that if

f (yt |st ,Yt−1) - treated as a function of st given Yt - is sharply peaked in the tails of f (st |Yt−1),

{s1,i
t }N

i=1 will contain few elements in the relevant range of f (yt |st ,Yt−1). Thus {s1,i
t }N

i=1 rep-

resents draws from an inefficient sampler: relatively few of its elements will be assigned

appreciable weight in the updating stage in the following period. This is known as “sample

impoverishment”: it entails a reduction in the effective size of the particle swarm.

Extensions of the particle filter employ adaption techniques to generate gains in efficiency.

An extension proposed by Gordon, Salmond, and Smith (1993) and Kitagawa (1987) consists

simply of making N ′ >> N blind proposals {s1, j
t }N ′

j=1 as with the particle filter, and then ob-

taining the swarm
{

s0,i
t

}N

i=1
by sampling with replacement, using weights computed from the

N ′ blind proposals. This is the sampling-importance resampling filter; it seeks to overcome

the problem of sample impoverishment by brute force, and can be computationally expensive.

Carpenter and Fernhead (1999) sought to overcome sample impoverishment using a strat-

ified sampling approach to approximate the prediction density. This is accomplished by defin-

ing a partition consisting of K subintervals in the state space, and constructing the prediction

9



density approximation by sampling (with replacement) Nk particles from among the particles

in each subinterval. Here Nk is proportional to a weight defined for the entire kth interval;

also, ∑
K
k=1 Nk = N. This produces wider variation in re-sampled particles, but if the swarm of

proposals {s1,i
t }N

i=1 are tightly clustered in the tails of f (st |Yt−1), so too will be the re-sampled

particles.

Pitt and Shephard (1999) developed an extension that ours perhaps most closely resembles.

They tackle adaption using an Importance Sampling (IS) procedure. Consider as an example

the marginalization step. Faced with the problem of calculating f (yt |Yt−1) in (2.5), but with

f (st |Yt−1) unknown, importance sampling achieves approximation via the introduction into

the integral of an importance density g(st |Yt):

f (yt |Yt−1) =
∫ f (yt |st ,Yt−1) f (st |Yt−1)

g(st |Yt)
g(st |Yt)dst . (2.10)

Obtaining drawings s0,i
t from g(st |Yt), this integral is approximated as

f̂ (yt |Yt−1)≈
1
N

N

∑
i=1

f
(

yt |s0,i
t ,Yt−1

)
f
(

s0,i
t |Yt−1

)
g(s0,i

t |Yt)
. (2.11)

Pitt and Shephard (1999) referred to the introduction of g(st |Yt) as adaption. Full adap-

tion is achieved when g(st |Yt) is constructed as being proportional to f (yt |st ,Yt−1) f (st |Yt−1) ,

rendering the ratios in (2.11) as constants. Pitt and Shephard (1999) viewed adaption as com-

putationally infeasible, due to the requirement of computing f
(

s0,i
t |Yt−1

)
for every value of s0,i

t

produced by the sampler. Instead they developed samplers designed to yield partial adaption.

The samplers result from Taylor series approximations of f (yt |st ,Yt−1) around

st = µk
t = E

(
st |s0,k

t−1,Yt−1

)
. A zero-order expansion yields their auxiliary particle filter; a first-

order expansion yields their adapted particle filter. (Smith and Santos, 2006, study examples

under which it is possible to construct samplers using second-order expansions.)

These samplers help alleviate blind sampling by reweighting
{

s0,i
t−1

}
to account for in-

formation conveyed by yt . However, sample impoverishment can remain an issue, since the

algorithm does not allow adjustment of the support of
{

s0,i
t−1

}
. Moreover, the samplers are

10



suboptimal, since µk
t is incapable of fully capturing the characteristics of f (yt |st ,Yt−1) . Fi-

nally, these samplers remain prone to the discontinuity problem.

Pitt (2002) addressed the discontinuity problem for the special case in which the state

space is unidimensional by replacing the weights in (2.9) associated with the particle filter

(or comparable weights associated with the auxiliary particle filter) with smoothed versions

constructed via a piecewise linear approximation of the empirical c.d.f. associated with the

swarm
{

s0,i
t

}N

i=1
. This enables the use of common random numbers (CRNs) to produce like-

lihood estimates that are continuous functions of model parameters Hendry (1994).

2.4 THE EIS FILTER

EIS is an automated procedure for constructing continuous importance samplers fully adapted

as global approximations to targeted integrands. Section 4.1 outlines the general principle

behind EIS, in the context of evaluating (2.5). Section 4.2 introduces a class of piecewise-

continuous samplers for dealing with pathological cases. Section 4.3 then discusses a key

contribution of this paper: the computation of f (st |Yt−1) in (2.5) at auxiliary values of st gen-

erated under period-t EIS optimization. Section 4.4 discusses two special cases that often

characterize state-space representations: partial measurement of the state space; and degener-

ate transition densities. Pseudo-code is available at www.pitt.edu/∼dejong/wp.htm.

2.4.1 EIS integration

Let ϕt(st) = f (yt |st ,Yt−1) f (st |Yt−1) in (2.5), where the subscript t in ϕt replaces (yt ,Yt−1).

Implementation of EIS begins with the preselection of a parametric class K = {k(st ;at);at ∈

A} of auxiliary density kernels. Corresponding density functions g are

g(st ;at) =
k(st ;at)
χ(at)

, χ(at) =
∫

k(st ;at)dst . (2.12)

The selection of K is problem-specific; below we discuss Gaussian and piecewise-continuous

alternatives. The objective of EIS is to select the parameter value ât ∈ A that minimizes the
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variance of the ratio ϕt(st)
g(st |at)

over the range of integration. A (near) optimal value ât is obtained

as the solution to

(ât , ĉt) = argmin
at ,ct

∫
[lnϕt(st)− ct− lnk(st ;at)]

2 g(st ;at)dst , (2.13)

where ct is an intercept meant to calibrate ln(ϕt/k). Equation (2.13) is a standard least squares

problem, except that the auxiliary sampling density itself depends upon at . This is resolved

by reinterpreting (2.13) as the search for a fixed-point solution. An operational MC version

implemented (typically) using R << N draws, is as follows:

Step l + 1: Given âl
t , draw intermediate values {si

t,l}R
i=1 from the step-l EIS sampler

g(st ; âl
t), and solve

(âl+1
t , ĉl+1

t ) = argmin
at ,ct

R

∑
i=1

[
lnϕt(si

t,l)− ct− lnk(si
t,l;at)

]2
. (2.14)

The initial value â1
t can be chosen in a variety of ways, with minimal impact on convergence.

To avoid potential problems involving sample impoverishment, we employ a crude grid search

to locate the mode of ϕt(st). If K belongs to the exponential family of distributions, there exists

a parameterization at such that the auxiliary problems in (2.14) are linear. Convergence to a

fixed point is typically achieved within five to ten iterations.

To guarantee fast fixed-point convergence, and to ensure continuity of corresponding like-

lihood estimates, {si
t, j} must be obtained by a transformation of a set of common random

numbers (CRNs) {ui
t} drawn from a canonical distribution (i.e., one that does not depend on

at). Examples are standardized Normal draws when g is Gaussian, or uniform draws trans-

formed into draws from g by the inverse c.d.f technique (e.g., see Devroye, 1986).

At convergence, the EIS filter approximation of f (yt |Yt−1) in (2.5) is given by

f̂N(yt |Yt−1) =
1
N

N

∑
i=1

f
(
yt |si

t ,Yt−1
)

f
(
si

t |Yt−1
)

g(si
t ; ât)

, (2.15)

where
{

si
t

}N
i=1 are drawn from the (final) EIS sampler g(st ; ât). This estimate converges almost

surely towards f (yt |Yt−1) under weak regularity conditions (outlined, e.g., by Geweke, 1989).

Violations of these conditions typically result from the use of samplers with thinner tails than
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those of ϕt . RZ offer a diagnostic measure that is adept at detecting this problem. The measure

compares the MC sampling variances of the ratio ϕt
g under two values of at : the optimal ât ,

and one that inflates the variance of the st draws by a factor of 3 to 5.

2.4.2 A piecewise-continuous class of samplers

While kernels within the exponential family of distributions yield EIS regressions that are

linear in at , there exist potential pathologies of the integrand in (2.5) that they cannot repli-

cate efficiently (e.g., skewness, thick tails, and bimodality). Here we propose an approach

that provides high flexibility along one or two pathological dimensions, and as illustrated in

Example 4 below, can be combined with (conditional) Gaussian samplers along additional

better-behaved dimensions. It entails the use of samplers that provide piecewise log-linear

approximations to the integrand ϕt ; their parameters are the grid points a′ = (a0, ...,aR), with

a0 < a1 < ... < aR (the index t is suppressed for ease of notation). As we shall see, lnk (.;a)

then depends non-linearly on a. Furthermore, R must be sufficiently large for good approx-

imation. This prevents application of the least-squares optimization step (2.14). Instead we

implement near equal probability division of the domain of integration.

We first describe k(s;a) for a preassigned grid a, where the interval [a0,aR] covers the

support of ϕ(s). Note that while R + 1 represents the number of grid-points here, and R the

number of auxiliary draws used to construct g(st ; âl
t) in (2.14), this does not represent an abuse

of notation: for the piecewise-continuous sampler, use of R+1 grid-points translates precisely

into the use of R auxiliary draws.

The kernel k(s;a) is given by

lnk j(s;a) = α j +β js ∀s ∈ [a j−1,a j], (2.16)

β j =
lnϕ(a j)− lnϕ(a j−1)

a j−a j−1
, α j = lnϕ(a j)−β ja j. (2.17)
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Since k is piecewise integrable, its distribution function can be written as

K j(s;a) =
χ j(s;a)
χn(a)

, ∀s ∈ [a j−1,a j], (2.18)

χ j(s;a) = χ j−1(a)+
1
β j

[k j(s;a)− k j(a j−1;a)] , (2.19)

χ0(a) = 0, χ j(a) = χ j(a j;a). (2.20)

Its inverse c.d.f. is given by

s =
1
β j
{ln [k j(a j−1;a)+β j (u ·χR(a)−χ j−1(a))]−α j} , (2.21)

u ∈ ]0,1[ and χ j−1(a) < u ·χR(a) < χ j(a). (2.22)

The recursive construction of an equal-probability-division kernel k(s; â) is based upon

the non-random equal division of [ε,1− ε] with ui = ε +(2− ε) i
R for i = 1, ...,R− 1, with ε

sufficiently small (typically ε = 10−4) to avoid tail intervals of excessive length. It proceeds

as follows.

Step l + 1: Given the step-l grid âl , construct the density kernel k and its c.d.f K as

described above. The step-l +1 grid is then computed as

âl+1
i = K−1(ui), i = 1, ...,R−1. (2.23)

The algorithm iterates until (approximate) convergence.

The resulting approximation is highly adapted and computationally inexpensive. Given a

sufficiently large number of division points, it will outperform lower-dimensional parametric

classes of samplers. Piecewise-continuous samplers can be generalized to higher-dimensional

state spaces, though the curse of dimensionality can rapidly become acute. Thus in working

with multi-dimensional state spaces, it is advisable to begin with parametric families of dis-

tributions, and reserve the use of log-linear piecewise continuous approximations for those

dimensions along which the integrand is ill-behaved.
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2.4.3 Continuous approximations of f (st |Yt−1)

As noted, the EIS filter requires the evaluation of f (st |Yt−1) at any value of st needed for EIS

iterations. Here we discuss three operational alternatives for overcoming this hurdle (a fourth,

involving non-parametric approximations, is also possible but omitted here). Below, S denotes

the number of points used for each individual evaluation of f (st |Yt−1).

Weighted-sum approximations

Combining (2.4) and (2.3), we can rewrite f (st |Yt−1) as a ratio of integrals:

f (st |Yt−1) =
∫

f (st |st−1,Yt−1) f (yt−1|st−1,Yt−2) f (st−1|Yt−2)dst−1∫
f (yt−1|st−1,Yt−2) f (st−1|Yt−2)dst−1

, (2.24)

where the denominator represents the likelihood integral for which an EIS sampler has been

constructed in period t−1. A direct MC estimate of f (st |Yt−1) is given by

f̂S(st |Yt−1) =

S
∑

i=1
f (st |s0,i

t−1,Yt−1) ·ω(s0,i
t−1; ât−1)

S
∑

i=1
ω(s0,i

t−1; ât−1)
, (2.25)

where {s0,i
t−1}S

i=1 denotes EIS draws from g(st−1|ât−1), and
{

ω(s0,i
t−1; ât−1)

}S

i=1
denotes associ-

ated weights (both of which are carried over from period-t−1), with

ω(st−1; ât−1) =
f (yt−1|st−1,Yt−2) f (st−1|Yt−2)

g(st−1|ât−1)
. (2.26)

Obviously g(st−1|ât−1) is not an EIS sampler for the numerator in (2.24). This can impart a

potential loss of numerical accuracy if the MC variance of f (st |st−1,Yt−1) is large over the

support of g(st−1|ât−1). This would be the case if the conditional variance of st |st−1,Yt−1 were

significantly smaller than that of st−1|Yt−1. But the fact that we are using the same set of

draws for the numerator and the denominator typically creates positive correlation between

their respective MC estimators, thus reducing the variance of their ratio.

A constant weight approximation
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When EIS delivers a close global approximation to f (st−1|Yt−1), the weights ω(st−1; ât−1)

will be near constants over the range of integration. Replacing these weights by their arith-

metic means ω(ât−1) in (2.24) and ( 2.25), we obtain the following simplification:

f (st |Yt−1)'
∫

f (st |st−1,Yt−1) ·g(st−1; ât−1)dst−1. (2.27)

This substitution yields rapid implementation if additionally the integral in (2.27) has an ana-

lytical solution. This will be the case if, e.g., f (st |st−1,Yt−1) is a conditional normal density for

st |st−1, and g is either normal or piecewise continuous as described in Section 4.2. Examples

are provided in Section 5. In cases for which we lack an analytical solution, we can use the

standard MC approximation

f̂S(st |Yt−1)'
1
S

S

∑
i=1

f (st |s0,i
t−1,Yt−1). (2.28)

EIS evaluation

Evaluation of f (st |Yt−1) can sometimes be delicate, including situations prone to sample

impoverishment (such as when working with degenerate transitions, discussed below). Un-

der such circumstances, one might consider applying EIS not only to the likelihood integral

(“outer EIS”), but also to the evaluation of f (st |Yt−1) itself (“inner EIS”).

While outer EIS is applied only once per period, inner EIS must be applied for every value

of st generated by the former. Also, application of EIS to (2.4) requires the construction of a

continuous approximation to f (st−1|Yt−1). Two obvious candidates are as follows. The first is

a non-parametric approximation based upon a swarm {s0,i
t−1}S

i=1:

f̂S(st−1|Yt−1) =
1

Sh

S

∑
i=1

κ

(
st−1− s0,i

t−1

h

)
.

The second is the period-(t−1) EIS sampler g(st−1; ât−1), under the implicit assumption that

the corresponding weights ω(st−1; ât−1) are near-constant, at least over the range of integra-

tion. It is expected that in pathological cases, significant gains in accuracy resulting from inner

EIS will far outweigh approximation errors in f (st−1|Yt−1).
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2.4.4 Special cases

Partial measurement

Partial measurement refers to cases (e.g., see Examples 2 and 4) in which st can be parti-

tioned (possibly after transformation) into st = (pt ,qt), so that

f (yt |st ,Yt−1)≡ f (yt |pt ,Yt−1) . (2.29)

In this case, likelihood evaluation requires integration only with respect to pt :

f (yt |Yt−1) =
∫

f (yt |pt ,Yt−1) f (pt |Yt−1)d pt , (2.30)

and the updating equation (2.3) factorizes into the product of the following two densities:

f (pt |Yt) =
f (yt |pt ,Yt−1) f (pt |Yt−1)

f (yt |Yt−1)
; (2.31)

f (qt |pt ,Yt) = f (qt |pt ,Yt−1) . (2.32)

Stronger conditional independence assumptions are required in order to produce factor-

izations in (2.4). In particular, if pt is independent of qt given (pt−1,Yt−1), so that

f (pt |st−1,Yt−1)≡ f (pt |pt−1,Yt−1) , (2.33)

then

f (pt |Yt−1) =
∫

f (pt |pt−1,Yt−1) f (pt−1|Yt−1)d pt−1. (2.34)

Note that under conditions (2.29) and (2.33), likelihood evaluation does not require processing

sample information on {qt} . The latter is required only if inference on {qt} is itself of interest.

Degenerate transitions

When state transition equations include identities, corresponding transition densities are

degenerate (or Dirac) in some of their components. This situation requires an adjustment
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to EIS implementation. Again, let st partition into st = (pt ,qt) , and assume that the transi-

tion equations consist of two parts: a proper transition density f (pt |st−1,Yt−1) for pt , and an

identity for qt |pt ,st−1 (which could also depend on Yt−1, omitted here for ease of notation):

qt ≡ φ(pt , pt−1,qt−1) = φ(pt ,st−1) . (2.35)

The evaluation of f (st |Yt−1) in (2.4) now requires special attention, since its evaluation at a

given st (as selected by the EIS algorithm) requires integration in the strict subspace associated

with identity (2.35). Note in particular that the presence of identities raises a conditioning

issue known as the Borel-Kolmogorov paradox (e.g., see DeGroot, 1984, Section 3.10). We

resolve this issue here by reinterpreting (2.35) as the limit of a uniform density for qt |pt ,st−1

on the interval [φ(pt ,st−1)− ε,φ(pt ,st−1)+ ε] .

Assuming that φ(pt ,st−1) is differentiable and strictly monotone in qt−1, with inverse

qt−1 = ψ(pt ,qt , pt−1) = ψ(st , pt−1) (2.36)

and Jacobian

J (st , pt−1) =
∂

∂qt
ψ(st , pt−1) , (2.37)

we can take the limit of the integral in (2.35) as ε tends to zero, producing

f (st |Yt−1) =
∫

J (st , pt−1) f (pt |st−1,Yt−1) f (pt−1,qt−1|Yt−1) |qt−1=ψ(st ,pt−1)d pt−1. (2.38)

Note that (2.38) requires that for any st , f (st−1|Yt−1) must be evaluated along the zero-measure

subspace qt−1 = ψ(st , pt−1). This rules out use of the weighted-sum approximation introduced

above, since the probability that any of the particles s0,i
t−1 lies in that subspace is zero. We can

also approximate the integral in (2.38) by replacing f (st−1|Yt−1) by ω(ât−1)g(st−1|ât−1)

f̂ (st |Yt−1) =
∫

J (st , pt−1) f (pt |qt−1,Yt−1)g(pt−1,qt−1|ât−1) |qt−1=ψ(st ,pt−1)d pt−1. (2.39)

In this case, since g(.|ât−1) is not a sampler for pt−1|st , we must evaluate (2.39) either by

quadrature or its own EIS sampler.

One might infer from this discussion that the EIS filter is tedious to implement under de-

generate transitions, while the particle filter handles such degeneracy trivially in the transition

from
{

s0,i
t−1

}
to
{

s1,i
t

}
. While this is true, it is also true that these situations are prone to

significant sample impoverishment problems, as illustrated in Example 2.
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2.5 EXAMPLES

Here we present four examples that illustrate the relative performance of the particle, auxiliary,

adapted, and EIS filters. The first two focus on likelihood evaluation; the last two on filtering.

We begin with some lessons gleaned through these examples regarding the selection of the

three auxiliary sample sizes employed under the EIS filter: N, the number of draws used for

likelihood evaluation (e.g., see (2.15)); R , the number of draws used to construct EIS samplers

(e.g., see (2.14)); and S, the number of draws used to evaluate f (st |Yt−1).

First, the efficiency of the EIS filter typically translates into substantial reductions (relative

to the particle filter) in the number of draws N needed to reach given levels of numerical

accuracy: often by two to three orders of magnitude. In all but the most well-behaved cases,

this translates into efficiency gains that more than compensate for the additional calculations

required to implement the EIS filter. More importantly, the EIS filter is far more reliable in

generating numerically stable and accurate results when confronted with ill-behaved problems

(e.g., involving outliers).

Second, in every case we have considered, EIS samplers can be constructed reliably using

small values for R (e.g., 100 has sufficed for the applications we have considered).

Third, as with any filter, the range st |Yt−1 must be sufficiently wide to accommodate

period-t surprises (outliers in st and/or yt). At the same time, the approximation grid must

be sufficiently fine to accommodate the realization of highly informative realizations of yt ,

which generate significant tightening of the distribution of st |Yt relative to that of st |Yt−1. Both

considerations push towards relatively large values for S. The particle filter implicitly sets

N = S. However, repeated evaluations of f (st |Yt−1) constitute a substantial portion of EIS

computing time, thus setting S << N can yield significant gains in overall efficiency. Indeed,

we typically we set S = 100. Note that it is trivial to rerun an EIS algorithm under different

values for S, thus it is advisable to experiment with alternative values of S in trial runs before

launching full-scale analyses in complex applications.
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2.5.1 Example 1: Univariate model with frequent outliers

This example is from Fernandez-Villaverde and Rubio-Ramirez (2004b). Let

st+1 = α+β
st

1+ s2
t
+υt+1 (2.40)

yt = st +ut , (2.41)

where υt+1 ∼ N
(
0,σ2

υ

)
and ut is t-distributed with ν degrees of freedom:

f (ut)∼
(
ν+u2

t

)−0.5(ν+1)
, Var(ut) =

ν

ν−2
for ν > 2.

In all cases, the parameters α and β are both set to 0.5; adjustments to these settings have

minimal impact on our results. Note that the expectation of st+1|st is highly non-linear around

st = 0, and becomes virtually constant for |st |> 10.

We consider two values for ν: 2 and 50. For ν = 2, the variance of ut is infinite and the

model generates frequent outliers: e.g., Pr(|ut | > 4.303) = 0.05. For ν = 50, ut is virtually

Gaussian: its variance is 1.042, and Pr(|ut | > 2.010) = 0.05. We consider four values for

συ: (1/3,1,3,10). Thus the parameterizations we consider cover a wide range of scenarios,

ranging from well-behaved (ν = 50,συ = 1/3) to ill-behaved (ν = 2,συ = 10).

We compare the relative numerical efficiency of five algorithms. The first three are the

particle, auxiliary, and adapted filters. These are implemented using N = 20,000 and N =

200,000. The remaining algorithms are the Gaussian and piecewise-linear EIS filters. These

are implemented using N = 100 and N = 1,000. Evaluation of f (st |Yt−1) is based on the

weighted-sum approximation introduced in Section 4.3.1 – see (2.25).

Results obtained using artificial data sets of size T = 100 are presented in Tables 2.1

(ν = 2) and 2.2 (ν = 50). Numerical accuracy is assessed by running 100 i.i.d. likelihood

evaluations obtained under different seeds. Means of these likelihood evaluations are inter-

preted as ‘final’ likelihood estimates; MC standard deviations of these means provide a direct

measure of the stochastic numerical accuracy of the final likelihood estimates.
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Table 2.1 reports relationships between MC standard deviations and computing time, along

with MC means of likelihood evaluations. The tables report a convenient measure of the

relative time efficiency of filters i and j:

RT Ei, j =
TiVi

TjVj
,

where Ti represents computing time per function evaluation, and Vi the MC variance associated

with filter i. In the tables, i represents the particle filter; for ratios less than one, the particle

filter is the relatively efficient estimator. Reported ratios are based on N = 200,000 for the

particle, auxiliary and adapted filters, and N = 1,000 for the EIS filters.

Note first that RTEs obtained for the auxiliary particle filter range from 0.7 to 1.1 across

all cases considered. Thus roughly speaking, regardless of whether the model is well- or

ill-behaved, the efficiency gains it generates are offset by associated increases in required

computing time, which are on the order of 40%.

Next, for well-behaved cases, RTEs of the adapted particle filter are good; e.g., for συ =

1/3, efficiency ratios are 8.2 for ν = 2 and 11.6 for ν = 50. However, its performance de-

teriorates dramatically as συ increases. Indeed, results are not reported for (ν = 2,συ = 10;

ν = 50,συ = 3;) and (ν = 50,συ = 10), since in these cases estimated likelihood values di-

verge pathologically. This reflects the general inability of local approximations to provide

reliable global approximations of f (yt |st ,Yt−1) when relevant ranges for st become too large.

In the present case, problems become critical for Taylor expansions around inflection points

of the non-log-concave Student-t density (yt = µk
t ±
√

ν). Note that these are precisely points

where second derivatives with respect to st are zero, which implies that the use of second-

order approximations (e.g., as advocated by Smith and Santos, 2006) would fail to provide an

effective remedy in this application.

As expected, RTEs of the Gaussian EIS filter are also poor given ν = 2, especially when

συ is large. For ν = 50, the Gaussian EIS filter performs well, with impressive RTEs for large

values of συ (reaching 284 for συ = 10).

The piecewise-linear EIS filter outperforms the particle filter in all cases, with the payoff

to adoption increasing with συ. For ν = 2, its RTE ranges from 1.6 to 2,001 as συ increases
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from 1/3 to 10; for ν = 50, its RTE ranges from 2.3 to 1,401. An RTE of 1,400 implies that

the particle filter requires approximately 1 hour and 15 minutes (the time required to process

approximately 38.4 million particles) to match the numerical accuracy of the piecewise-linear

filter with N = 1,000 (which requires 3.18 seconds). These results reflect the payoffs associ-

ated with the flexibility, in addition to the global nature, of approximations provided by the

piecewise-linear filter.

In sum, the particle, auxiliary, and adapted filters perform well under well-behaved scenar-

ios. In these cases, their relative numerical inaccuracy is often offset by their relative speed.

However, expansions in the range of st , along with the presence of outliers, can lead to dra-

matic reductions in RTEs, and in the case of the auxiliary and adapted filters, can also lead to

unreliable likelihood estimates. The EIS filters provide insurance against these problems and

exhibit superior RTEs in all but the most well-behaved cases. But while numerical efficiency

is an important feature of likelihood approximation procedures, it is not the only important

feature. In pursuing ML estimates, continuity with respect to parameters is also critical. The

next example highlights this feature.

2.5.2 Example 2: A dynamic stochastic general equilibrium model

Following Sargent (1989), likelihood-based analyses of dynamic stochastic general equilib-

rium (DSGE) models have long involved the application of the Kalman filter to log-linear

model approximations (e.g., see DeJong, Ingram, and Whiteman, 2000; Otrok, 2001; Ireland,

2004; and the survey by An and Schorfheide, 2007). However, Fernandez-Villaverde, Rubio-

Ramirez, and Santos (2006) have shown that second-order approximation errors in model

solutions map into first-order effects on the corresponding likelihood function, due to the

accumulation over time of approximation errors. Fernandez-Villaverde and Rubio-Ramirez

(2005) document the quantitative relevance of this phenomenon in an empirical analysis in-

volving estimates of a neoclassical growth model obtained using the particle filter.

Here we demonstrate the performance of the EIS filter by estimating the structural param-

eters of a simple growth model via maximum likelihood. Regarding the model, let qt , kt , ct , it ,
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and at represent output, capital, consumption, investment, and total factor productivity (TFP).

Labor is supplied inelastically and fixed at unity. The model is of a representative agent who

seeks to maximize the expected value of lifetime utility

U = E0

∞

∑
t=0

β
t ln(ct),

subject to

qt = atkα

t (2.42)

qt = ct + it (2.43)

kt+1 = it +(1−δ)kt (2.44)

ln(at+1) = ρ ln(at)+υt+1. (2.45)

Regarding parameters, α is capital’s share of output, δ is capital depreciation, ρ determines

the persistence of innovations to TFP, and the innovations υt ∼ N(0,σ2). The state variables

(at ,kt) are unobserved, and the distribution of (a0,k0) is known. The solution of this problem

can be represented as a policy function for consumption of the form c(at ,kt) . For the special

case in which δ = 1, c(at ,kt) = (1−αβ)atkα
t . This is the case studied here.

We take qt and it as observable, subject to measurement error. Combining equations, the

measurement equations are

qt = atkα

t +uqt , (2.46)

it = atkα

t − c(at ,kt)+uit (2.47)

= αβatkα

t +uit ,

and the state-transition equations are (2.45) and

kt+1 = atkα

t − c(at ,kt) (2.48)

= αβatkα

t .

Examination of (2.45) to (2.48) suggests reparameterizing the state variables as zt = ln(at)

and lt = ezt kα
t , where lt denotes (unobserved) output, and st = [lt zt ]

′ denotes the state vector.
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The transition process (2.45) then takes the form of a Gaussian AR(1) in zt , and the identity

(2.48) can be rewritten as

lt = ezt (αβlt−1)
α . (2.49)

Note that this example combines the two special cases discussed in Section 4.4. First,

there is partial measurement, in that yt is independent of zt conditionally on lt (and Yt−1):

yt |st ,Yt−1 ≡ yt |lt ,Yt−1 ∼ N2

 1

αβ

 lt ,

 σ2
q 0

0 σ2
i

 . (2.50)

Second, (2.49) represents a degenerate Dirac transition, with inverse

lt−1 = ψ(st) =
1

αβ

(
lte−zt

) 1
α (2.51)

and Jacobian

J(st) =
∂ψ(st)

∂lt
=

1
α2β

(
l1−α

t e−zt
) 1

α . (2.52)

In view of (2.50), the likelihood integral simplifies into a univariate integral in lt whose

evaluation requires only an EIS sampler for lt |Yt . Nevertheless, in period t + 1 we still need

to approximate f (zt |lt ,Yt) in order to compute f̂ (yt |Yt−1). To capture the dependence between

zt and lt given Yt , it proves convenient to construct a single bivariate EIS sampler for zt , lt |Yt .

Whence the likelihood integral

f (yt |Yt−1) =
∫

f (yt |lt ,Yt−1) f (st |Yt−1)dst (2.53)

is evaluated under a Gaussian EIS sampler g(st |ât). Next, f (st |Yt−1) is approximated accord-

ing to (2.39), where we exploit the fact that the Jacobian J(st) does not depend on zt−1:

f̂ (st |Yt−1) = J(st)
∫

f (zt |zt−1)g(ψ(st),zt−1|ât−1)dzt−1. (2.54)

Note that the integrand is quadratic in zt−1|st , so standard algebraic operations amounting

to the completion of a quadratic form in zt−1 yield an analytical solution for f̂ (st |Yt−1). Thus

under the implicit assumption that the EIS weights ω(st ; ât) are near constant (to be verified

empirically), we have derived a particularly fast and efficient EIS implementation based on a

bivariate Gaussian outer EIS, and an inner analytical approximation for f (st |Yt−1).
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Model estimates are based on artificial data simulated from the model. Parameter values

used to simulate the data are as follows: α = 0.33, β = 0.96, ρ = 0.8, σ = 0.05, σq = 0.014,

σi = 0.02. The first four values are typical of this model calibrated to annual data; and given

σ, the latter two values represent approximately 5% and 20% of the unconditional standard

deviations of qt and it . The unconditional mean and standard deviation of at implied by ρ and

σ equal 1.0035 and 0.08378.

To begin, we compute likelihood values at the true parameter values using 20,000 and

100,000 particles for the particle filter, and 100 and 1,000 auxiliary draws for the EIS filter

(with R held fixed at 100). We do so for 100 MC replications, applied to a single data set of

sample size T = 100. Results are reported in Table 2.3.

RTEs computed using as a numeraire the particle filter with N = 20,000 are 55.44 (for

N = 100 under the EIS filter) and 217.728 (for N = 1,000). That is, the time required for the

particle filter to attain the same standard of numerical accuracy exceeds the time required by

the EIS filter with N = 1,000 by a factor of approximately 217 (the time required to process

approximately 8.7 million particles). This difference in efficiency is due to the fact that the

bivariate Gaussian EIS samplers g(st |ât) provide close (global) approximations of the densi-

ties f (st |Yt−1). Indeed, on a period-by-period basis, ratios of standard deviations to the means

of the weights
{

ω

(
s0,i

t ; ât

)}N

i=1
range from 1.14e-8 to 3.38e-3. Such small variations validate

our reliance on (2.54) to approximate f (st |Yt−1).

Next, we apply both the particle and EIS filters to compute maximum likelihood estimates

(MLEs) for θ = (α,β,ρ,σ,σq,σi), under simulated samples of size T=40, 100 and 500. Using

(2.47), the stepwise MLE of β given α is given by β̂ = i/αl, where i and l denote sample

means of it and lt . MLEs for the remaining parameters are obtained via maximization of the

concentrated log-likelihood function. Results for the particle filter are based on N = 20,000;

results for the EIS filter are based on N = 200 and R = 100. Note from Table 2.3 that comput-

ing times for a single likelihood evaluation are approximately the same under both methods

(on the order of 5.5 seconds for T = 100), while MC estimates of the log-likelihood function

are much more accurate under the EIS filter (which has an RTE of approximately 55 given
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these settings for N and R).

Figure 2.1 plots estimated log-likelihoods for a representative data set along the α dimen-

sion for T = 100 for both the particle and EIS filters; all other parameters are set at their ML

values. Note that the surface associated with the particle filter is particularly rough relative to

that associated with EIS.

We employ the Nelder-Mead simplex optimization routine for all MLE computations. Fol-

lowing RZ, we use i.i.d replications (30 in the present set-up) of the complete ML algorithm in

order to produce two sets of means and standard deviations for MLEs. The first are statistical

means and standard deviations, obtained from 30 different samples {yt}T
t=1 under a single set

of auxiliary draws {ui}N
i=1. These characterize the finite sample distribution of the MLEs. Un-

der the EIS filter, we also compute the asymptotic standard deviations obtained by inversion

of a numerical Hessian. As in Fernandez-Villaverde and Rubio-Ramirez (2007), we find that

Hessians computed under the particle filter are unreliable and often fail to be positive definite.

The second are numerical means and standard deviations, obtained under 30 different sets of

CRNs for a fixed sample {yt}T
t=1. These constitute our most accurate MC estimates of the

MLEs and accordingly, the numerical standard deviations we report are those for the means.

Results are given in Table 2.4. Highlights are as follows. (1) Log-likelihood functions

are tightly peaked, as statistical standard deviations attest. (2) For T = 40, MLEs of α are

upward biased (by about 4 standard deviations), thus we also report root mean-squared errors.

(3) Under the EIS filter, there is close agreement between finite sample (MC) and asymp-

totic (Hessian) statistical standard deviations, especially as T increases. This highlights the

numerical accuracy and reliability of EIS filter computations (including Hessians). (4) As T

increases, numerical standard deviations (which are
√

30 larger than those reported for the

mean MLEs) approach corresponding statistical standard deviations. This does not create a

problem for the EIS filter (which employs CRNs), but contaminates the computation of sta-

tistical standard deviations under the particle filter. For this example, N would need to be

increased dramatically in order for the particle filter to provide reliable estimates of statistical

standard deviations.
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In sum, MLEs derived using the EIS filter (N = 200, R = 100) are numerically and sta-

tistically significantly more reliable than those derived under the particle filter (N = 20,000).

They are also obtained relatively more rapidly (by a factor of 25% to 50%).

2.5.3 Example 3: Stochastic Volatility

The stochastic volatility (SV) model is given by

yt = utβexp(st/2) (2.55)

st+1 = φst +υt , (2.56)

where ut and υt are independent Gaussian random variables with variances 1 and σ2; β rep-

resents modal volatility; and φ and σ2 determine the persistence and variance of volatility

shocks. This model was introduced by Taylor (1982, 1986) in attempts to account for the

time-varying and persistent volatility exhibited by financial returns data, in addition to fat-

tailed behavior. Many alternative procedures have been proposed to estimate this model effi-

ciently, and to infer the behavior of (scaled) volatility (e.g., see Jacquier, Polson, and Rossi,

1994; Ghysels, Harvey, and Renault, 1996; Pitt and Shephard, 1999; Kim, Shephard, and

Chib, 1998; and Liesenfeld and Richard, 2003). Thus it provides a natural testing ground for

us as well.

Filtered values for volatility are obtained by replacing h(st) by exp(st/2) in (2.7). These

are obtained using Gaussian EIS samplers. Due to ease of implementation in the present

context, we construct separate samplers for the numerator and denominator of (2.7).

Consider the approximation of the denominator: the period-t likelihood f (yt |Yt−1). Let

gt(st ;ad,t) denote the EIS sampling density used to approximate the integrand ϕt(st) =

f (yt |st ,Yt−1) f (st |Yt−1). The associated log kernel is parameterized as

−2lnk(st ;ad,t) = αd,ts2
t −2βd,tst , (2.57)

where ad,t = (αd,t ,βd,t). The corresponding Gaussian sampler has mean µd,t = βd,t/αd,t and

variance σ2
d,t = α

−1
d,t . Thus the auxiliary regression for the computation of âd,t consists of a
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bivariate OLS regression of simulated values of lnϕt(st) on simulated values of s2
t , st and a

constant.

We use a constant-weight approximation to approximate the prediction density f (st |Yt−1);

the approximation obtains as

f (st |Yt−1)≈
∫

f (st |st−1,Yt−1)g(st−1; âd,t−1)dst−1. (2.58)

Since f (st |st−1,Yt−1) is a conditional normal density for st |st−1,Yt−1, and g(st−1; âd,t−1) is a

normal density for st−1, the integral in (2.58) has an analytical solution given by a Gaussian

density for st with mean φµ̂d,t−1 and variance φ2σ̂2
d,t−1 + σ2

υ. Assuming f (s1|Y0) = f (s1), the

initial values are µ̂d,0 = 0 and σ̂2
d,0 = σ2

υ/(1−φ2).

Given an EIS sampler for the denominator, the Gaussian EIS kernel for the numerator in

(2.7), denoted by k(st ; ân,t) and designed to approximate h(st) ·ϕt(st), is obtained analytically,

since in the present context lnh(st) is a linear function in st . In particular, optimal values for

the mean and variance of the sampler for the numerator (µ̂n,t , σ̂
2
n,t) are given by σ̂2

n,t = σ̂2
d,t and

µ̂n,t = σ̂2
n,t(µ̂d,t/σ̂2

d,t + 1/2). Hence the construction of the optimal sampler for the numerator

is obtained without incurring additional computing costs.

Based on these EIS samplers, a consistent MC estimate of the filtered values obtains as

Ê (exp(st/2)|Yt) =

N
∑

i=1
wn,t

(
s̃0,i

n,t

)
N
∑

i=1
wd,t

(
s̃0,i

d,t

) , (2.59)

where wn,t(st) = exp(st/2) ·ϕt(st)/g(st ; ân,t) and wd,t(st) = ϕt(st)/g(st ; âd,t). The sets {s̃0,i
n,t}

and {s̃0,i
d,t} denote swarms of iid draws from g(st ; ân,t) and g(st ; âd,t), generated under a single

set of CRNs.

We demonstrate the performance of the EIS filter for the SV model in an application to

sets of artificial data simulated from the model. Performance is characterized relative to that

of the particle filter, using the exact experimental design used by Pitt and Shephard (1999) to

characterize the performance of their auxiliary and adapted filters.
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The model is parameterized as φ = 0.9702, συ = 0.178, and β = 0.5992; the sample size

is T = 50. We draw R = 40 different data sets {Y i
T}40

i=1, all based on one simulated trajectory

of the latent variable {st}50
t=1. In the measurement-error series, we artificially insert a single

outlier: u21 = 2.5. For each data set we produce 100 i.i.d. MC estimates of the filtered values

for volatility using EIS-1K and PF-20K, where the numbers following the acronyms indicate

the number of particles (computing times are similar given these settings). For each procedure,

the 100 MC estimates are obtained using 100 different CRNs. Comparing MC estimates

generated by these procedures with “true” values of the filtered means yields Mean Squared

Error (MSE) comparisons identical to those used by Pitt and Shephard (1999).

Let ˜̀i
t , (i : 1→ 40, t : 1→ 50) denote “true” filtered means for volatility. These must be

computed with high numerical accuracy in order to validate the MSE comparisons that follow.

Exploiting the relatively high numerical accuracy of EIS (highlighted below), we estimate

“true” filtered means as the arithmetic means of 100 i.i.d. EIS-10K estimates. Corresponding

standard deviations are several orders of magnitude lower than those of the estimates we pro-

pose to compare. In order to reach similar precision using the particle filter, we must use the

arithmetic means of 100 i.i.d. PF-4 million estimates. We ran this experiment to verify that

“true” values produced by both EIS and PF estimators are numerically identical. The latter

number far exceeds the PF-120K value employed by Pitt and Shephard (1999), but turns out

to be needed in order to eliminate significant and persistent biases characterizing PF estimates

of filtered means (illustrated below).

MSE comparisons are constructed as follows. Let ¯̀i, j
t,k denote the MC estimate of the

filtered mean, for data set i, for replication j, at time t, for procedure k = {EIS-1K,PF-20K}.

The log mean squared error (LMSE) for procedure k, at time t is obtained as

LMSEt,k = ln

{
1
40

40

∑
i=1

[
1

100

100

∑
j=1

(
¯̀i, j
t,k− ˜̀i

t

)2
]}

. (2.60)

Figure 2.2 (bottom panel) depicts LMSEs for the five procedures against time. As ex-

pected, the move from estimates obtained using the particle filter to those obtained using the

EIS filter leads to a large reduction in LMSEs: the average difference between PF-20K and
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EIS-1K is 1.9 on log scale. These differences are far larger than those reported by Pitt and

Shephard (1999), (see Figure 4 in Pitt and Shephard, 1999) in their comparison of the particle

filter with their adapted particle filter, both implemented using the same number of particles.

In particular, their adapted filter yields a maximal reduction of 1.0 (0.8) on log scale relative

to the particle filter using 2K (4K) particles. Note also that the EIS filter is considerably less

susceptible to the injected outlier in the measurement error process than is the particle filter.

To identify the source of the large differences in LMSEs, we computed separately MC vari-

ances and squared biases for EIS-1K and PF-20K. Logged variances and logged MSE/variance

ratios are plotted for both procedures in Figure 2.2 (top panels). The logged MSE/variance

ratio can be interpreted as a “bias multiplier”, indicating the extent to which biases amplify

differences in logged variances in yielding corresponding LMSEs. Figure 2.2 indicates that

in nearly all periods the logged MC variance for the EIS filter is substantially smaller than

for the particle filter. Further, EIS-1K exhibits logged MSE/variance ratios close to zero for

all time periods, indicating near-complete absence of bias. In contrast, for PF-20K this ratio

is significantly larger than zero in approximately half of the time periods. Note in particular

the comparably large value of the ratio for PF-20K in the time period infected by the outlier

(t = 21). These results indicate that, in addition to MC variance, bias represents a significant

component of the large differences in LMSEs generated by the adoption of EIS.

2.5.4 Example 4: Bearings-Only Tracking

The bearings-only tracking problem has received much attention in the literature on particle

filters, and raises challenging numerical issues. References include Gordon, Salmond, and

Smith (1993), Carpenter and Fernhead (1999), and Pitt and Shephard (1999); we consider

here the scenario described by Gordon, Salmond, and Smith (1993).

A ship moves in the (x,z) plane with speed following a bivariate random walk process.

Let λt =
(

xt , zt ,
·
xt ,

·
zt

)′
denote the quadrivariate latent state variable (shortly we shall

re-parameterize, and revert to the use of st to denote the state). The discrete version of the
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model we consider first is characterized by the transition

λt+1 =

 I2 I2

0 I2

λt +σ

 1
2I2

I2

ut , (2.61)

with ut ∼ iidN (0, I2) . The initial state vector is distributed as

λ1 ∼ N (µ1,∆1) , (2.62)

with (µ1,∆1) known and ∆1 diagonal.

An observer located at the origin of the (x,z) plane measures with error the angle θt =

arctan(zt/xt). The measured angle yt is assumed to be wrapped Cauchy with density

f (yt |θt) =
1

2π

1− r2

1+ r2−2r cos(yt−θt)
, (2.63)

with 0≤ (yt ,θt)≤ 2π and 0≤ r ≤ 1. Accordingly, we shall introduce a (partial) reparameter-

ization in polar coordinates. Let

λt = (αt , βt)
′

αt = (xt , zt)
′

βt =
( ·

xt ,
·
zt

)′
,

αt = ρte(θt) , θt ∈ [0,2π] ,

with e(θt) = (cosθt , sinθt)
′ and ρt =

(
x2

t + z2
t

)1/2 ≥ 0. The following notation will be used

for the transformed state vector:

st = h(λt) = (θt , ρt , β
′
t) = (θt , δ

′
t) . (2.64)

Note that (2.61) is based on a discretization over a time interval that coincides with the

interval between successive measurements. It implies that the transition from λt to λt+1 is

degenerate. We reinterpret this transition as the combination of a proper bivariate transition

αt+1|λt ∼ N (Aλt ,Ω) (2.65)

and a Dirac transition

βt+1 ≡ φ(αt+1,λt) = 2(αt+1−αt)−βt , (2.66)

31



with A = (I2, I2) and Ω = 1
4σ2I2. Below we shall consider an alternative version of the

model discretized on a finer grid than that defined by observation times. This produces a

non-degenerate transition, and allows for observations that are spaced unequally over time.

The degenerate version just described is numerically challenging on three counts. First,

measurement is non-informative on three out of the four state components. Second, under

parameter values typically used in the literature, the density of θt |Yt is much tighter (though

with fat tails) than that of θt |Yt−1. This situation yields ”sample impoverishment”, and thus

(very) high numerical inefficiency for the particle filter. Finally, the degenerate transition

creates additional numerical problems since it implies a zero-measure support in R4 for the

density f (λt+1|λt).

Despite these challenges, we can implement an EIS version of the particle filter that can

accommodate these pathologies. While conceptually simple, the algebra of our implemen-

tation is somewhat tedious. The text presents the broad lines of our implementation; full

technical details are regrouped in the Appendix.

EIS computation of f (yt |Yt−1)

We momentarily take as given that f (st |Yt−1) can be computed for any st (as described

below). The period-t likelihood function is then given by

`t ≡ f (yt |Yt−1) =
∫

f (yt |θt) f (st |Yt−1)dst . (2.67)

Note that while f (st |st−1) is degenerate, f (st |Yt−1) is not. In the absence of observations,

f (st) would be quadrivariate Normal. The observation yt only measures θt , thus we shall

implement a (sequential) EIS sampler g(st ;at) as the product of a trivariate Gaussian density

for δt |θt and a univariate piecewise loglinear density for θt . For ease of notation, the auxiliary

EIS parameter at is deleted from all subsequent equations.

The conditional EIS sampler g(δt ;θt) is constructed as follows (accounting for the trans-

formation from λt to st): (i) We draw a swarm
{

λ̃
1,i
t

}N

i=1
. Specifically, the period-(t−1) EIS

swarm
{

s̃0,i
t−1

}N

i=1
is transformed into a swarm

{
λ̃

0,i
t−1

}N

i=1
by means of the inverse transfor-

mation λt = h−1 (st). Then λ̃
1,i
t is drawn from the (degenerate) transition density f

(
λt |̃λ0,i

t−1

)
associated with (2.61).
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(ii) We construct an auxiliary quadrivariate EIS Gaussian kernel kλ,t (λt) approximating

f (λt |Yt−1). To do so, we use the swarm
{

λ̃
1,i
t

}N

i=1
to construct an auxiliary OLS regression of{

ln f
(

λ̃
1,i
t |Yt−1

)}N

i=1
on
{

λ̃
1,i
t

}N

i=1
and the lower triangle of

{(
λ̃

1,i
t

)(
λ̃

1,i
t

)′}N

i=1
, for a total of

14 regressors plus one intercept. Let µt denote the unconditional mean of this quadrivariate

kernel and Pt its precision matrix. The kernel is then written as

kλ,t (λt) = exp
{
−1

2
(λ′tPtλt−2λ

′
tqt)
}

, (2.68)

with qt = P−1
t µt .

(iii) We introduce the transformation from λt to st = h(λt), with Jacobian ρt > 0. Let

ks,t (st) = ρtkλ,t
(
h−1

t (st)
)
. (2.69)

The conditional EIS sampler for δt |θt is then given by

gt (δt |θt) =
ks,t (st)
χt (θt)

, (2.70)

with

χt (θt) =
∫
∆

ks,t (st)dβtdρt , (2.71)

where ∆ = R2×R+.

(iv) The likelihood integral in (2.67) is rewritten as

`t =
∫

[ f (yt |θt)χt (θt)]
f (st |Yt−1)
ks,t (st)

gt (δt |θt)dδtdθt . (2.72)

The next EIS step consists of approximating the product f (yt |θt)χt (θt) on [0,2π] by a

piecewise loglinear EIS sampler gt (θt). Equation (2.72) is rewritten as

`t =
∫

ws,t (st)gt (δt |θt)gt (θt)dst , (2.73)

with

ws,t (st) =
[

f (yt |θt)χt (θt)
gt (θt)

]
f (st |Yt−1)
ks,t (st)

. (2.74)
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Its EIS-MC estimate obtains as

̂̀t =
1
N

N

∑
i=1

ws,t

(
s̃0,i

t

)
, (2.75)

where
{

s̃0,i
t

}N

i=1
denotes a swarm of i.i.d.N. draws (under CRNs) from the EIS sampler

g(δt |θt)gt (θt).

In view of the structure of the problem (non-observability of 3 out of 4 Gaussian state

variables, and flexibility of the piecewise loglinear sampler along the fourth), we anticipate

close fit between the numerator and denominator of ws,t (st) as given in (2.74). Relatedly, we

anticipate dramatic reduction in the MC sampling variance of filtered values relative to that of

estimates obtained under the particle filter and commonly used extensions.

EIS computation of f (λt+1|Yt)

Having just discussed EIS for period t, it is notationally more convenient to discuss the

computation of f (λt+1|Yt) rather than that of f (λt |Yt−1). The reason for initially discussing

f (λt+1|Yt) rather than f (st+1|Yt) is simply that Gaussian algebraic manipulations are more

transparent under the λ parametrization. Moreover, f (st+1|Yt) obtains directly from f (λt+1|Yt)

via the transformation st+1 = h(λt+1) with Jacobian ρt > 0. Relatedly, the weights ws,t (st) in

(2.74) can trivially be transformed into weights for λt . Let

wλ,t (λt) = ws,t
(
h−1 (st)

)
=

f (λt |Yt−1)
kλ,t (λt)

[
f (yt |θt)χt (θt)

gt (θt)

]
θt=θt(αt)

, (2.76)

with θt (αt) = arctan(zt/xt). Whence the density f (λt |Yt) , given by

f (λt |Yt) =
f (λt |Yt−1) f (yt |θt (αt))

`t
, (2.77)

can be rewritten as

f (λt |Yt) =
wλ,t (λt)

`t
kλ,t (λt)

gt (θt)
χt (θt)

|θt=θt(αt). (2.78)

Under a non degenerate transition from λt to λt+1, f (λt+1|Yt) obtains as

f (λt+1|Yt) =
∫

R4
f (λt |Yt) f (λt+1|λt)dλt . (2.79)
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In the present case, however, we have to properly account for the fact that the transition from

λt to λt+1 is degenerate. As discussed above, degeneracy is addressed by replacing βt in (2.78)

by the inverse of the Dirac transition in (2.66):

φ
−1 (λt+1,αt) = βt = 2(αt+1−αt)−βt+1, (2.80)

and integrating only with respect to αt . Furthermore, since wλ,t (λt) is expected to be near

constant over the support of λt , we can safely rely upon a ”constant weight” approximation

whereby the ratio wλ,t (λt)/`t in (2.78) is set equal to 1. Whence f (λt+1|Yt) can be accurately

evaluated by the following bivariate integral:

f (λt+1|Yt) =
∫ gt (θt)

χt (θt)
kλ,t (λt) f (αt+1|λt) |θt=θt(αt),βt=φ−1(λt+1,αt)dαt . (2.81)

Numerically efficient evaluation of this integral requires the following additional steps:

(i) Combine analytically kλ,t (λt) and f (αt+1|λt) into a Gaussian kernel in (αt+1,λt);

(ii) Introduce the transformation from αt into (ρt ,θt) with Jacobian ρt > 0;

(iii) Given (λt+1,θt), integrate analytically in ρt > 0;

(iv) Given λt+1, use gt (θt) as a natural sampler and compute the integral using the draws

of θt obtained in the previous round.

Note that the sequence of operations just described must be repeated for any value of λt+1

for which f (λt+1|Yt) is to be evaluated for period-(t +1) EIS evaluation of `t+1. However, as

illustrated below, the numerical efficiency of the EIS procedures we have just described results

in dramatic reductions in the number of MC draws required to reach a preassigned level of

numerical accuracy, and thus in significant reductions in overall computing time relative to

the particle filter.

Filtered Values

Filtered values for {λt}N
i=1 are defined as

E (λt |Yt) =
∫

λt f (λt |Yt)dλt . (2.82)
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Substituting (2.78) for f (λt |Yt) and introducing the transformation from λt to st produces the

following operational expression for the filtered values of λt :

E (λt |Yt) =
1
`t

∫
h(st)ws,t (st)gt(δt |θt)gt(θt)dst . (2.83)

EIS estimates of these filtered values obtain as

̂E (λt |Yt) =

N
∑

i=1
h(s̃0,i

t )ws,t

(
s̃0,i

t

)
N
∑

i=1
ws,t

(
s̃0,i

t

) . (2.84)

Filtered values of st are obtained by replacing h(st) by st in (2.83) and (2.84). Note that,

in contrast with the evaluation of f (λt+1|Yt) , we do not implement here the ”constant weight”

approximation under which wλ,t (λt)/`t is be set to 1 in (2.83) and filtered values simplify into

the arithmetic mean of
{

h
(

s̃0,i
t

)}N

i=1
. As discussed, e.g., by Geweke (1989), the reason for

preferring the ratio form in (2.84) is that the use of CRNs in the evaluation of the numerator

and denominator typically induces positive correlation between their respective MC estimates,

thereby reducing further the MC variance of the ratio.

A non-degenerate version of the problem

The singularity of the transition in (2.61) is a (spurious) consequence of a model specifi-

cation that assumes measurements at each division point of the grid used for discretization of

the random walk for speed. We now consider the case in which a finer grid for discretization

is used relative to that used for measurement, while also allowing for measurements made at

varying time intervals.

For ease of notation, we focus on two successive measurements separated by D discretiza-

tion intervals. Equation (2.61) then must be transformed into a transition density for λt+D|λt

by implicit marginalization with respect to the state sequence {λt+ j}D−1
j=1 . The random walk

process for speed is given by

βt+1 = βt + εt+1, εt ∼ N
(
0,σ2I2

)
, (2.85)

36



and position is discretized as

αt+1 = αt +
1
2

(βt +βt+1) . (2.86)

It follows that

βt+D = βt +ut+D, (2.87)

αt+D = αt +Dβt +υt+D, (2.88)

with

ut+D =
D

∑
j=1

εt+ j, υt+D =
1
2

D

∑
j=1

[2(D− j)+1]εt+ j. (2.89)

The covariance matrix of (ut+D,υt+D) obtains by application of standard formulae for the

sums and sums of squares of natural numbers - see e.g. Gradshteyn and M.Ryzhik (1965). It

follows that the transition density from λt to λt+D is given by

λt+D|λt ∼ N
(
ADλt ,σ

2VD
)
, (2.90)

with

AD =

 I2 DI2

0 I2

 , VD = D ·

 4D2−1
12 I2

D
2 I2

D
2 I2 I2

 . (2.91)

The case D = 1 obviously coincides with the degenerate transition in (2.61). The general-

ization from (2.61) to (2.90) does not affect EIS evaluation of the likelihood function. How-

ever, the evaluation of f (λt+D|Yt) now requires four-dimensional integration, and is given by

f (λt+D|Yt) =
∫ gt (θt)

χt (θt)
kλ,t (λt) f (λt+D|λt)dλt . (2.92)

The numerical evaluation of equation (2.92) parallels that of equation (2.81) with the addi-

tional (analytical) integration with respect to βt .

Application

We demonstrate our methodology in an application designed essentially along the lines

of that constructed by Gordon et al. (1993), and modified by Pitt and Shephard (1999). For

the singular and non-singular cases, σ in (2.61) and (2.90) is set to 0.001; and r in (2.63)
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is set to 1− (0.005)2. The initial latent vector λ1 is normally distributed with mean vector

(−0.05,0.2,0.001,−0.055) and diagonal covariance matrix with standard deviations

(0.05,0.03,0.0005,0.001) . In the non-singular case, the number Dt of discretization inter-

vals between measurements t and t +D is drawn from a multinomial {2,3, ...,11} with equal

probabilities pi = 0.1, i = 2, ...,11. (Actually, the non-singular case need not be restricted to

integer values of Dt , and we have verified that solutions for the non-singular case converge to

those for the singular case as Dt tends towards 1.)

We set T = 10, and draw two sets of latent vectors {λs
t}

10
t=1 , one for the singular case

(s = 1) and one for the non-singular case (s = 2). Both sets are linear transformations of a

single set of N(0,1) draws.

As in Pitt and Shephard (1999), we draw R = 40 different data sets
{

Y s,i
T

}40

i=1
based on

the latent vectors {λs
t}

10
t=1 for s = 1,2. For each data set, we produce 100 i.i.d. estimates of

the filtered means (differing by the seeds initializing the MC draws) using EIS-1K and PF-

40K (computing times associated with these procedures are similar with PF-40K requiring

0.439 seconds and EIS-1K 0.492 seconds per function evaluation). As in the SV example,

comparing estimates generated by these procedures with “true” filtered means for the latent

variables yields LMSE comparisons analogous to those employed by Pitt and Shephard (1999)

to demonstrate the gains in precision and efficiency yielded by their extensions of the particle

filter. (Details regarding the construction of LMSEs in this case correspond precisely with

those described for the SV application.)

Graphs of MC variances and squared biases are presented in Figure 2.3, and LMSEs in

Figure 2.4, both for the singular case (similar results were obtained for the non-singular case,

and thus are not reported). Note the large reductions in LMSEs yielded by the move from

PF to EIS estimates: differences average between 4 and 6 on the log scale. These differences

are once again much larger than those reported by Pitt and Shephard (1999): their auxiliary

particle filter yielded reductions averaging between 0.5 and 1 relative to the particle filter.

Regarding the source of the large differences in LMSEs we obtain, differences in logged

variances are typically of the order of 2 to 2.5 in favor of EIS (corresponding roughly to a
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10-fold reduction in variance), except for t = 1. Logged bias ratios are virtually all close to

zero for EIS filter, while they typically lie between 1 and 4 (and as high as 10 for t = 1) for

the particle filter. Thus biases remain significant for the particle filter even using 40K draws,

and are the dominant component of the large differences in LMSEs generated by the adoption

of EIS. This is a manifestation of the “sample impoverishment” problem that results from the

very tight distribution of λt |Yt relative to that of λt |Yt−1 along the θt dimension.

2.6 CONCLUSION

We have proposed an efficient means of facilitating likelihood evaluation and filtering in ap-

plications involving non-linear and/or non-Gaussian state space representations: the EIS filter.

The filter is adapted using an optimization procedure designed to minimize numerical standard

errors associated with targeted integrals. Resulting likelihood approximations are continuous

in underlying likelihood parameters, greatly facilitating the implementation of ML estimation

procedures. Implementation of the filter is straightforward, and the payoff of adoption can be

substantial.
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2.7 TABLES AND FIGURES

Figure 2.1: Conditional Log Likelihood for α
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Figure 2.2: MSE decompositions, Stochastic Volatility Model.
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Figure 2.3: Log Variance and Log Bias Ratio, Singular Case.
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Figure 2.4: Log-Avg.MSE Comparisons, Singular Case. Panel (a)→ x, (b)→ z, (b)→ ẋ, (b)→ ż.
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Table 2.1: Table 1. Univariate Model with Frequent Outliers, ut ∼ t(2)

STANDARD PARTICLE FILTER
συ = 1

3 συ = 1 συ = 3 συ = 10
N Mean Stdv. Time Mean Stdv. Time Mean Stdv. Time Mean Stdv. Time

20000 -195.846 0.0183 2.065 -213.593 0.0512 2.083 -263.541 0.1089 2.054 -368.542 0.2117 1.995
200000 -195.843 0.0057 22.119 -213.591 0.0159 22.593 -263.534 0.0339 24.269 -368.532 0.0700 22.798

AUXILIARY PARTICLE FILTER
20000 -195.839 0.0162 2.907 -213.605 0.0461 2.912 -263.531 0.1117 2.930 -368.545 0.2285 2.906

200000 -195.840 0.0055 31.811 -213.601 0.0159 32.343 -263.526 0.0335 32.075 -368.520 0.0697 32.285
Relative Time Efficiency 0.748 0.699 0.775 0.713

ADAPTED PARTICLE FILTER
20000 -195.839 0.0059 2.710 -213.600 0.0306 2.730 -263.635 0.3902 2.740

200000 -195.840 0.0017 29.945 -213.604 0.0113 29.935 -263.543 0.1312 29.778
Relative Time Efficiency 8.182 1.497 0.0543

PIECEWISE-EIS PARTICLE FILTER (R=100, S=100)
100 -195.845 0.0409 0.552 -213.595 0.0788 0.5392 -263.530 0.0344 0.549 -368.516 0.0107 0.550

1000 -195.845 0.0139 2.262 -213.602 0.0261 2.180 -263.526 0.0108 2.228 -368.521 0.0049 2.241
Relative Time Efficiency 1.644 3.846 107.32 2001.93

GAUSSIAN-EIS PARTICLE FILTER (R=100, S=100)
1000 -195.825 0.043 0.717 -213.815 0.145 0.860 -266.016 0.459 1.699 -372.937 0.5117 2.278
1000 -195.819 0.038 2.530 -213.601 0.087 2.287 -264.156 0.459 4.265 -370.858 0.5110 4.491

Relative Time Efficiency 0.199 0.325 0.031 0.095
Note: Means and standard deviations are based on 100 Monte Carlo replications; Relative Time Efficiency is based on N=200,000 for the SPF and N=1,000 for the EIS filter.
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Table 2.2: Table 2. Univariate Model with Frequent Outliers, ut ∼ t(50)

STANDARD PARTICLE FILTER
συ = 1

3 συ = 1 συ = 3 συ = 10
N Mean Stdv. Time Mean Stdv. Time Mean Stdv. Time Mean Stdv. Time

20000 -141.169 0.0240 2.127 -166.151 0.0687 2.134 -241.043 0.1166 2.053 -356.860 0.2797 2.026
200000 -141.166 0.0077 23.131 -166.149 0.0195 22.915 -241.038 0.0350 22.485 -356.821 0.0750 22.533

AUXILIARY PARTICLE FILTER
20000 -141.138 0.0199 2.878 -166.153 0.0564 2.806 -241.052 0.1203 2.794 -356.879 0.2464 2.803

200000 -141.139 0.0064 31.423 -166.147 0.0172 31.752 -241.037 0.0350 31.806 -356.811 0.0763 31.234
Relative Time Efficiency 1.067 0.929 0.707 0.697

ADAPTED PARTICLE FILTER
20000 -141.168 0.0063 2.629 -166.144 0.0425 2.643

200000 -141.170 0.0020 29.892 -166.145 0.0159 30.015
Relative Time Efficiency 11.590 1.157

PIECEWISE-EIS PARTICLE FILTER (R=100, S=100)
100 -141.167 0.0485 0.5156 -166.147 0.0727 0.568 -241.046 0.0325 0.513 -356.803 0.0173 0.587

1000 -141.164 0.0167 2.0878 -166.128 0.0248 2.324 -241.038 0.0109 2.099 -356.796 0.0061 2.388
Relative Time Efficiency 2.330 6.075 109.97 1401.81

GAUSSIAN-EIS PARTICLE FILTER (R=100, S=100)
1000 -141.171 0.051 0.833 -166.160 0.087 0.791 -241.088 0.034 0.865 -356.868 0.0215 0.896
1000 -141.175 0.029 2.049 -166.159 0.047 1.996 -241.046 0.020 2.576 -356.812 0.0116 3.308

Relative Time Efficiency 0.782 1.976 25.493 284.197
Note: Means and standard deviations are based on 100 Monte Carlo replications; Relative Time Efficiency is based on N=200,000 for the SPF and N=1,000 for the EIS filter.
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Table 2.3: DSGE Model

STANDARD PARTICLE FILTER
N Mean Stdev Time Rel. Time Efficiency

20000 438.561 0.206 5.7651 1.000
100000 438.545 0.0774 29.036 1.417

GAUSSIAN-EIS PARTICLE FILTER (R = 100)
200 438.621 0.0278 5.731 55.440

1000 438.633 0.0083 16.414 217.728
Note: Means and standard deviations are based on 100 Monte Carlo replications; Relative Time Efficiency is based on N=20,000 for the SPF.
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Table 2.4: MLE Comparisons

.
STANDARD PARTICLE FILTER (N=20000)

True Stat. Moments Num. Moments
T=40 True Mean S.D.a S.D.b RMSE Mean S.D.c S.D.d

α 0.33 0.34559 5.888E-03 1.667E-02 0.34826 3.158E-03 5.765E-04
β 0.96 0.91989 1.843E-02 4.414E-02 0.93891 8.490E-03 1.550E-03
ρ 0.8 0.82840 2.899E-02 4.058E-02 0.81292 1.735E-02 3.168E-03
σ 0.05 0.04802 4.363E-03 n/a 4.792E-03 0.05184 1.384E-03 2.527E-04
σl 0.014 0.01462 4.118E-03 4.165E-03 0.01588 6.831E-04 1.247E-04
σi 0.02 0.01955 2.030E-03 2.080E-03 0.02149 4.275E-04 7.804E-05

T=100
α 0.33 0.33404 5.701E-03 6.987E-03 0.33922 3.027E-03 5.527E-04
β 0.96 0.91995 1.568E-02 4.301E-02 0.94024 9.035E-03 1.650E-03
ρ 0.8 0.79697 1.961E-02 1.984E-02 0.82860 1.698E-02 3.100E-03
σ 0.05 0.05413 3.348E-03 n/a 5.316E-03 0.05085 1.246E-03 2.275E-04
σl 0.014 0.01350 2.958E-03 3.001E-03 0.01416 6.052E-04 1.105E-04
σi 0.02 0.01991 1.259E-03 1.262E-03 0.02030 3.544E-04 6.470E-05

T=500
α 0.33 0.33162 5.440E-03 5.739E-03 0.33399 3.498E-03 6.386E-04
β 0.96 0.95501 1.523E-02 1.611E-02 0.95049 9.930E-03 1.813E-03
ρ 0.8 0.81776 1.599E-02 2.459E-02 0.80170 1.759E-02 3.212E-03
σ 0.05 0.05238 2.579E-03 n/a 3.717E-03 0.05365 1.899E-03 3.468E-04
σl 0.014 0.01361 1.717E-03 1.849E-03 0.01400 4.898E-04 8.942E-05
σi 0.02 0.01971 5.413E-04 6.368E-04 0.01922 2.604E-04 4.754E-05

GAUSSIAN-EIS PARTICLE FILTER (N=200)
T=40 True Mean S.D.a S.D.b RMSE Mean S.D.c S.D.d

α 0.33 0.34071 2.389E-03 1.974E-03 1.097E-02 0.34868 1.652E-03 3.016E-04
β 0.96 0.93364 1.085E-02 n/a 2.851E-02 0.94006 4.442E-03 8.110E-04
ρ 0.8 0.81669 1.562E-02 1.145E-02 2.286E-02 0.81811 9.791E-03 1.788E-03
σ 0.05 0.04879 3.193E-03 3.009E-03 3.416E-03 0.05425 9.340E-03 1.705E-03
σl 0.014 0.01535 2.276E-03 2.107E-03 2.646E-03 0.01594 2.415E-04 4.410E-05
σi 0.02 0.01984 1.586E-03 1.544E-03 1.594E-03 0.02155 2.349E-04 4.289E-05

T=100
α 0.33 0.33380 4.635E-03 3.977E-03 5.996E-03 0.33601 1.577E-03 2.880E-04
β 0.96 0.92038 1.557E-02 n/a 4.337E-02 0.93960 4.441E-03 8.109E-04
ρ 0.8 0.79867 1.764E-02 1.432E-02 1.769E-02 0.82182 9.667E-03 1.765E-03
σ 0.05 0.05083 3.284E-03 3.312E-03 3.388E-03 0.05041 9.492E-03 1.733E-03
σl 0.014 0.01407 2.998E-03 2.919E-03 2.999E-03 0.01448 2.471E-04 4.512E-05
σi 0.02 0.01990 1.163E-03 1.214E-03 1.167E-03 0.02183 2.144E-04 3.914E-05

T=500
α 0.33 0.33032 2.235E-03 2.243E-03 2.385E-03 0.33095 1.395E-03 2.547E-04
β 0.96 0.95610 7.478E-03 n/a 8.830E-03 0.95744 7.988E-03 1.458E-03
ρ 0.8 0.81082 6.408E-03 6.199E-03 1.275E-02 0.80102 7.142E-03 1.304E-03
σ 0.05 0.05108 1.064E-03 1.088E-03 1.559E-03 0.05031 4.068E-03 7.428E-04
σl 0.014 0.01400 7.206E-04 6.825E-04 7.623E-04 0.01400 2.193E-04 4.003E-05
σi 0.02 0.01997 2.295E-04 2.262E-04 2.444E-04 0.01998 1.891E-04 3.453E-05

a. Finite Sample S.D., b. Asymptotic S.D., c. S.D. of a single Draw, d. S.D. of the mean.
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3.0 EFFICIENT IMPORTANCE SAMPLING WITH COPULAS

3.1 INTRODUCTION

Dynamic econometric models with latent variables are extensively utilized in economics. Ex-

pressed in the state-space form, they are characterized by a transition process describing the

evolution of a set of underlying latent (state) variables and a set of measurement equations

that relate the observations to the latent variables. For example, state-space models are uti-

lized in macroeconomic research of real business cycle activity (e.g. Dynamic Stochastic

General Equilibrium or DSGE models Markov-Switching models for business-cycle turning

points etc.)

Likelihood evaluation for parameter estimation and conditional moments of the state vari-

ables (filtering/smoothing) requires the integration of the joint density of observable and state

variables with respect to the state variables. In the context of linear models with Gaussian

errors, these integrals can be computed analytically. With the growing interest in sophisti-

cated nonlinear and non-Gaussian models, development of widely applicable, efficient and

robust numerical integration methods has become an important issue in current research.

For example, methods like the extended Kalman filter, the second-order filter, Fourier series

based methods, Gaussian sum filter etc., approximate non-Gaussian densities with parametric

functions or several Gaussian densities. Kitagawa (1987) proposed a non-Gaussian filter and

smoother to compute the marginal posterior density of the state variables which approximates

the target density with a piecewise approximation.

The development of a Monte-Carlo filter and smoother (called the “Particle Filter”, see
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Kitagawa 1996 and Gordon, Salmond, and Smith 1993) represents an important advance in

the likelihood-based analysis of very general state-space models. Arbitrary non-Gaussian den-

sities in the likelihood-integral are approximated by many “particles” which are considered to

constitute a discrete approximation to these distributions. These discrete approximations also

serve as importance samplers for the Monte-Carlo (MC) integration over the state-space. As

noted by Kitagawa (1998) and Fernandez-Villaverde and Rubio-Ramirez (2007), the particle

filter is susceptible to sampling errors (especially in the presence of outliers), causing large er-

rors and non-smoothness of the computed likelihood values. DeJong, Hariharan, Liesenfeld,

and Richard (2007) create a new approach to filtering and likelihood evaluation by combining

efficient methods for constructing importance sampling densities (called “Efficient Impor-

tance Sampling” or EIS, see Richard and Zhang, 2007) with the sequential structure of the

particle filter to create a new class of methods called “EIS-Filter”. The superior accuracy and

smoothness of likelihood values obtained with the EIS-Filter is due to fact that the impor-

tance sampling densities closely “mimic” the integrands, minimizing the numerical error of

the computed likelihood-integral.

However, in many modeling scenarios, standard parametric densities (e.g. Gaussian) may

not serve as good importance samplers. In multivariate problems of moderate dimensions, one

or more of the constituent univariate margins may exhibit pathologies like asymmetric tails,

multi-modality etc. Thus, it may be desirable to create a multivariate importance sampler by

combining (possibly) disparate univariate distributions for the margins into a joint distribution.

Copula distributions are perfectly suited for this objective.

A Copula is a function that connects several univariate marginal distributions of individual

random variables to form a multivariate distribution. A very readable introduction to copula

distributions can be found in Trivedi and Zimmer (2005). Importantly, the choice of marginal

distributions need not affect the choice of the copula. Also, the marginal distributions can

be arbitrarily dissimilar (possibly belonging to different families of distributions), making the

copula a very flexible method for characterizing joint distributions.

Copulas have been extensively utilized in time-series applications in both finance and
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economics. A broad review of copula-based models for both multivariate and univariate time-

series can be found in Patton (2007). Beyond time-series applications, copulas have also

been used in applications involving quantile regressions (Bouyé and Salmon 2002), count

data (Heinen and Rengifo 2003), model selection (Smith 2003), a semiparametric study of

auctions (Brendstrup and Paarsch 2007), semiparametric density approximation for bounded

data (Bouezmarni and Rombouts 2007) etc. Other references include Trivedi and Zimmer

(2006), Chib and Winkelmann (2001) and Cameron, Li, Trivedi, and Zimmer (2004).

The flexibility afforded by copula distributions make them ideally suited to serve as impor-

tance sampling densities for the MC integration of the likelihood integral in in very general

state-space models. As noted by Patton (2007), copula based methods are not suitable for

high-dimensional problems. Creating flexible and parsimonious high-dimensional copula dis-

tributions is an important area of current research. However, copula densities are a natural

choice when maximum flexibility is desired in capturing the marginal behavior of a few (say

one to four) univariate marginal random variables. Creating copula-based importance sam-

pling densities also provides the advantage of splitting the density approximation problem

into two components: modeling marginal behavior and then (as a second step) modeling the

dependence.

The primary focus of this paper is to illustrate the utility of copula-based importance sam-

plers and compare its performance to the particle filter via simulation studies. Building upon

the EIS-Filter developed by DeJong et al. (2007), this paper develops computational methods

to construct importance sampling densities using copulas. A pilot example involving the inte-

gration of a mixture of two bivariate normal random variables serves to illustrate the flexibility

of copula-based importance sampling densities in capturing pathologies like asymmetric tails,

bimodality etc. in the behavior of the marginal random variables. Also, the copula-based

EIS-Filter is utilized to estimate a dynamic stochastic general equilibrium (DSGE) model in-

volving investment-specific technological change (see Fisher, 2003 and Fernandez-Villaverde

and Rubio-Ramirez 2004a and 2007) and varying degrees capital utilization (see Chatterjee

2005).
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The remaining paper is organized as follows. The next section provides a brief intro-

duction to copulas and methods to estimate the dependence parameters. Section 3.3 pro-

vides a brief introduction to state-space models and associated likelihood functions. Effi-

cient Importance Sampling and the use of copulas to construct importance sampling densities

are illustrated in Section 3.4. Section 3.5 presents the two examples illustrating the use of

copula-based EIS-filter and comparing its performance to the EIS-filter with Gaussian sam-

plers (Gaussian-EIS) and the particle filter.

3.2 A PRIMER ON COPULAS

3.2.1 Basic Properties

Copulas provide a general approach for constructing joint distributions based on marginals

from possibly different families. Copulas are important in the study of dependence between

random variables since they allow us to separate the effect of dependence from effects of the

marginals distributions.

In simple terms, copulas are distribution functions with uniform marginals. The theorem

by Sklar (1973) (original article in French was published in 1959) establishes some fundamen-

tal properties of copulas as joint distributions. An m-dimensional function C : [0,1]m→ [0,1]

is a distribution function if it satisfies the following criteria:

1. C(1, ...,ui,1, ...,1) = ui ∀i≤ m and ui ∈ [0,1];

2. For any i≤ m, C(u1, ...,um) = 0 if ui = 0;

3. C is m-increasing. (The C-volume of any m-dimensional interval is non-negative).

Let X = [X1, ...Xm]′ be an m-dimensional random variable with joint distribution H and

continuous marginal distributions F1, ...,Fm. Sklar’s theorem shows that there exists a func-

tion C(F(X1;θ1), ...,F(Xm;θm);θc) that links the individual distribution functions to the joint

distribution H. Here, θi denotes the parameters associated with margin-i and θC represents the
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parameters associated with the copula alone. The joint distribution is given by

H(x1, ...,xm;θH) = C(F(X1;θ1), ...,F(Xm;θm);θc) , (3.1)

where θH represents the parameters of the distribution H. Since F(xi;θi)≡ ui∼Uni f orm(0,1)

for all i, the copula can also be written as

H(x1, ...,xm;θH) = C(u1, ...,um;θC), (3.2)

illustrating the connection between the univariate random variables Xi and the corresponding

margin of the copula ui.

Assuming that the copula is m times differentiable, the density can be written as

h(x1, ...,xm;θH) = f (x1;θ1) ... f (xm;θm)c(u1, ...,um;θC) (3.3)

where

c(u1, ...,um;θC) =
∂m

∂u1...∂um
C(u1, ...,um;θC). (3.4)

Hence, the joint density is simply the product of marginal densities and the copula density

c(u1, ...,um;θC). From the above expression for the copula density it is evident that the joint

log-likelihood reduces to being the sum of univariate log-likelihoods of each margin and the

copula log-likelihood lnc(u1, ...,um;θC).
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3.2.2 Basic Methods for Copula Estimation

From the above description, it is apparent that two sets of parameters require estimation: those

associated with the margins, and those associated with the copula. A direct approach is to es-

timate both sets using the full likelihood. However, copulas allow for this estimation problem

to be decomposed into two steps: first the marginals, then the dependence parameter(s) (see

Trivedi and Zimmer, 2005 for a more detailed discussion). This two-stage method exploits

the fact that the copula dependence parameter(s) are independent of the marginals. Also, the

marginals may be estimated using parametric or non-parametric methods (see Bouezmarni

and Rombouts 2007 for illustrative examples).

As shown by Joe (1997), it is often easier to work with the log-likelihood of each univariate

margin. That is, given a set of N draws from the multivariate distribution H, optimal parame-

ters for the density of the univariate margin-i are obtained by maximizing its log-likelihood

θ̂i = argmin
θi

N

∑
j=1

log f
(

x j
i ;θi

)
.

With the optimal parameters (for the margins) obtained one margin at a time, the full likeli-

hood can then be optimized with respected to the dependence parameters only. That is, it is

possible to maximize the total likelihood holding the marginal parameters fixed:

θ̂C = argmin
θC

=
m

∑
i=1

N

∑
j=1

log f
(

x j
i ; θ̂i

)
+

N

∑
k=1

c(u1, ...,um;θC).

This estimation approach is termed as inference functions for the margins (IFM), following

Joe (1997).
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3.3 STATE-SPACE REPRESENTATIONS AND LIKELIHOOD EVALUATION

A model expressed in state-space form is described by two sets of equations: the state-

transition process describing the evolution of the state variables over time and measurement

equations that connect the observed variables to the state variables. Let xt denote a m×1 vec-

tor of observable variables with the sequence {x j}t
j=1 being denoted as Xt . Correspondingly,

let st be a n×1 vector of unobserved state variables, and denote {s j}t
j=1 as St .

With the conditional expectation of the state variables represented as E(st |st−1,Xt−1) =

γ(st−1,Xt−1), the state-transition equations can be written as

st = γ(st−1,Xt−1,υt), (3.5)

with υt being a vector of innovations or structural shocks. Let E(xt |st ,Xt−1) = δ(st ,Xt−1)

denote the expectation of the observed variables conditional on concurrent state variables and

the past sequence of observables. The measurement equations can be written as

xt = δ(st ,Xt−1,vt) (3.6)

where vt represents the measurement errors. The initial state s0 is assumed to be distributed ac-

cording to the known density f0(s). The parameters in γ(·), δ(·),ut ,υt are collectively denoted

θ. We assume the required conditional independence assumptions that allow us to exclude the

lagged components of X in g(·) and h(·). For reasons of brevity, the parameter vector θ is

omitted in the following discussion. Given these conditional independence assumptions, the

likelihood function f (XT ) can be decomposed into the product

f (XT ) =
T

∏
t=1

f (xt |Xt−1) , (3.7)

where f (x1|X0) ≡ f (x1). The individual components are obtained by the integration of the

joint density of xt and st :

f (xt |Xt−1) =
∫

f (xt ,st |Xt−1)dst . (3.8)∫
f (xt |st ,Xt−1) f (st |Xt−1)dst . (3.9)
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Here, f (st |Xt−1) is computed by marginalization of the joint density of st and st−1:

f (st |Xt−1) =
∫

f (st |st−1,Xt−1) f (st−1|Xt−1)dst−1. (3.10)

Bayes’ theorem implies that the density f (st−1|Xt−1) can be written as

f (st−1|Xt−1) =
f (xt−1,st−1|Xt−2)

f (xt−1|Xt−2)
=

f (xt−1|st−1,Xt−2) f (st−1|Xt−2)
f (xt−1|Xt−2)

. (3.11)

where the numerator ( f (xt−1|st−1,Xt−2) f (st−1|Xt−2)) represents the integrand in the period-

(t − 1) equivalent of (3.9) and the denominator f (xt−1|Xt−2), the period-(t − 1) likelihood.

Given the need for integration in (3.8) and (3.10), the next section provides a brief overview

of efficient importance sampling (EIS).

3.4 EIS-FILTER WITH COPULAS

Given the need for integrating a non-negative function of the form

ℵ =
∫

ϕ(x)dx, (3.12)

EIS (Richard and Zhang, 2007) is a method for constructing importance sampling densities

that are both continuous and global approximations to the integrand. The EIS method begins

with the choice of a parametric family of importance sampling densities:

ℵ =
∫

ϕ(x)
g(x;a)

g(x;a)dx. (3.13)

The parameters that characterize g(x;a) are refered to as the ”auxiliary parameters” and op-

timality of EIS method is achieved by choosing optimal values for the auxiliary parameters

obtained as a solution to the minimization problem

(â, ĉ) = argmin
a,c

∫
[lnϕ(x)− co− lnk(x;a)]2 g(x;a)dx, (3.14)

where

g(x;a) =
k(x;a)
χ(a)

, χ(a) =
∫

k(x;a)dx, (3.15)
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and co is an intercept meant to calibrate ln(ϕ/k). The objective of the above minimization

problem is to minimize the variance of the ratio ϕ(x)
g(x;a) over the range of integration. Since the

auxiliary parameters also appear in the sampling density in (3.14), the minimization problem

is implemented as a fixed-point problem in a and co. That is, given current estimates al and

cl
o, updated estimates are obtained as solution to the least-squares problem.

(al+1,cl+1
o ) = argmin

a,c

R

∑
i=1

[lnϕ(xi)− co− lnk(xi;a)]2 . (3.16)

The draws {xi}R
i=1 are obtained using the current sampler g(x;al) and this procedure is repeated

until convergence in a and c0. Appendix B provides an extended description of EIS with a

Gaussian importance sampler.

Combining (3.16) with (3.3), we can write the least-squares problem as

(θl+1
1 , ...,θl+1

m ,θl+1
C ,cl+1

o ) = argmin
a,c

R

∑
i=1

[lnϕ(xi)− cl
o− lnc(u1, ...,um;θ

l
C)

− ln f (x1;θ1) ...− ln f (xm;θm)]2. (3.17)

where θi denotes the parameters associated with margin-i.

The flexibility of copula specifications can be successfully exploited by splitting the above

problem into its components: the estimation of auxiliary parameters associated with each

marginal density, and the estimation of parameters associated with the copula density θC. It is

important to note that this decomposition implies some loss of efficiency. Separate application

of the above refinement procedure to individual sub-problems may not obtain the optimal

properties of the combined approach. However, this potential loss of efficiency is offset by

the ability to combine diverse marginal distributions into a multivariate importance sampling

density. Also, the piecewise-continuous density approximation introduced in DeJong et al.

(2007) can be successfully exploited to create accurate univariate samplers for the margins,

while the copula accounts for the dependence.

An issue that is immediately apparent from the above description is the choice of the cop-

ula density. It is important to note that this choice is inherently problem-specific. For example,

a simple yet flexible copula is the meta-Gaussian distribution (see Kelly and Krzysztofowicz,
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1997; Fang, Fang, and Kotz, 2002). The meta-Gaussian density is constructed by combin-

ing the normal quantile transformation of the marginal random variables into a multivariate

Gaussian density. This density can represent the full range of linear dependence between the

co-variates while permitting arbitrary marginal distributions.

Let Φℜ represent the CDF of a multivariate Gaussian distribution with zero mean and

correlation matrix ℜ, and Φ represent the univariate Gaussian CDF. The meta-Gaussian dis-

tribution is given by

H(x1, ...xm;ℜ,θ1, ...,θm) = Φℜ

(
Φ
−1 (u1) , ...,Φ−1 (um) ;ℜ

)
(3.18)

where F(xi;θi) represent the univariate margin-i and ui = F(xi;θi). Let x̃i represent the trans-

formed versions of xi, that is

x̃i = Φ
−1 (F (xi;θi)) . (3.19)

The CDF and PDF of a 2-dimensional meta-Gaussian distribution are

H(x1,x2;ρ,θ1,θ2) = Φρ (x̃1, x̃2;ρ) , (3.20)

h(x1,x2;ρ,θ1,θ2) =
f (x1;θ1) f (x2;θ2)√

1−ρ2
exp

{
−
[
x̃2

1−2ρx̃1x̃2 + x̃2
2

]
2(1−ρ2)

}
, (3.21)

and ρ is the correlation between x̃1 and x̃2. Thus, (3.20) is a Gaussian CDF describing the

transformed variables x̃1 and x̃2. As emphasized by Kelly and Krzysztofowicz (1997), the

meta-Gaussian density imposes no restriction on the marginal distributions and provides a

convenient analytical expression for the joint density. Given correlation ρ and the marginal

distributions, drawing from the two-dimensional meta-Gaussian density reduces to drawing

from a bivariate Gaussian density with correlation ρ to obtain draws of the transformed vari-

ates x̃1 and x̃2; draws from the marginals can be obtained by reversing the transformation in

(3.19). A meta-t distribution can be defined analogously using the t distribution; see Demarta

and McNeil (2005) for a description of the t-copula and the meta-t distribution.

The following section illustrates the flexibility afforded by EIS with copula densities by

presenting a pilot application involving the integration of a mixture of two bivariate normal

densities. The accuracy of likelihood evaluation and filtering are evaluated via the likelihood
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analysis of a DSGE model. The main objective of this exercise being, the comparison of

the smoothness and numerical accuracy (of both likelihood evaluation and filtering) of the

copula-based EIS-filter to the particle filter.

3.5 EXAMPLES

3.5.1 Mixture of Bivariate Normals

Asymmetric tails, bimodality and other non-Gaussian behavior can be represented by a mix-

ture of two bivariate normal densities. Let µ1 and µ2 represent the mean vectors two bivariate

normal distributions with the identity matrix (I2) as their covariance matrices. Let p ∈ (0,1)

represent the mixture probability. The mixture normal density of x (= [x1,x2]′) is given by

f (x;µ1,µ2) = p
[

1
2π

exp
(
−1

2
(x−µ1)′(x−µ1)

)]
+ (1− p)

[
1

2π
exp
(
−1

2
(x−µ2)′(x−µ2)

)]
. (3.22)

Integration of such densities using the copula-based importance samplers serves as an

ideal showcase for the flexibility afforded by copula densities. As shown in Figures 3.1 and

3.3, Varying the means µ1 and µ2 can induce widely different marginal behavior. Setting µ1 =

[−1,0]′, µ2 = [0,2]′ and p = 0.3, we obtain a density with some asymmetric tail behavior as

depicted in Figure 3.1. The second specification (illustrated in Figure 3.3) with µ1 = [2,−2]′,

µ2 = [−2,3]′ and p = 0.6 exhibits pronounced bimodality.

The mixture density in both the specifications was integrated using the Gaussian-EIS pro-

cedure (see Appendix B for an algorithmic description of Gaussian-EIS) and using a bivariate

meta-Gaussian importance sampler. The first specification represents a relatively mild depar-

ture from Gaussianity, while the second specification represents a pronounced deviation from

Gaussian behavior. Equation (3.22) being a proper density, it integrates to 1 in both cases. The

piecewise-continuous density approximation introduced in DeJong et al. (2007) was utilized

to approximate the margins of the copula importance sampler. If the margins were also set
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to be Gaussian densities, the margins in equation (3.17) would be univariate Gaussian kernels

in addition to the copula density c(·) being a bivariate Gaussian kernel. Optimal auxiliary

parameters can be either be computed jointly or individually. The auxiliary regression would

continue to be of the sort illustrated in Appendix B.

The piecewise density approximation is “optimized” by using an initial approximation to

obtain an equal probability partition of the space of the state variable. Thus, with the margins

specified to be piecewise continuous densities, auxiliary least squares regressions are solely

utilized for the copula parameters (in the current example, ρ).

3.5.1.1 The meta-Gaussian Sampler: Piecewise Margins

We begin by initializing the correlation matrix of the bivariate meta-Gaussian density to be an

identity matrix (ρ = 0). The margins were set to being uniform densities on sufficiently broad

intervals in the space of x1 and x2. N draws of x̃ (= [x̃1, x̃2]′) were obtained from a bivariate

standard normal density. The draws of x̃ were transformed into draws of x (= [x1,x2]′) by the

normal quantile transform and the uniform marginals (as shown in equation 3.19).

Defining a uniformly spaced grid (with R intervals) on each margin, the univariate marginal

density at each node in the grid was approximated by univariate kernel density approximations

using the N draws of x. The computed integrand (normalized) served as weights in the kernel

density approximation. The KDEs were obtained using a Gaussian kernel. Both Silverman’s

rule-of-thumb bandwidth and the Sheather-Jones plug-in bandwidth selectors were used (see

Sheather 2004 for a practical description of density estimation using kernels). Practical ex-

perience suggests that mild oversmoothing is preferable to undersmoothed kernel density es-

timates. The rule-of-thumb bandwidth produced density estimates marginally smoother than

those using the Sheather-Jones plug-in bandwidth. Also, it was found beneficial to utilize

fairly large number of draws for the kernel density approximation (N was set to 1000 in the

current example). The value of R was set to 100.

Piecewise-linear approximants to the (log) of the computed density were constructed over

the uniformly spaced grid and converted to a density following the procedures outlined in

DeJong et al. (2007). This piecewise density was “refined” by inverting a uniformly spaced
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grid on the unit interval to obtain an equal-probability division of the domain of integration

in the univariate margins. The piecewise-continuous density thus constructed serve as the

marginal density in the meta-Gaussian approximation1 and were not revised any further.

3.5.1.2 The meta-Gaussian Sampler: Correlation Matrix

Having obtained the piecewise density approximations for the margins, the optimal correlation

parameter ρ was obtained using the iterated procedure outlined in Section 3.4. Initializing ρ to

be zero, 100 (size of auxiliary regression, denoted R in equation 3.16) draws of x̃ were obtained

from a bivariate normal density with zero mean and correlation ρ. Draws of x̃ were converted

to the marginal random variables x using the piecewise-continuous densities constructed above

and inverse of the transformation in (3.19).

The coefficient of x̃1x̃2 from the linear regression of log f (x;µ1,µ2) on a constant and the

cross-product x̃1x̃2 yields an updated value for the correlation parameter ρ. Note that the

updated value of ρ is obtained as the solution of a quadratic equation with two real roots,

with one of them being between (−1,1) and the other being its reciprocal. The computational

procedure is described in Appendix C.

3.5.1.3 Results

Table 3.1 presents the mean, standard deviation of the computed integral, and average com-

putational times obtained using 100 MC replications. In the first scenario (depicted in Figure

3.1), with some asymmetric behavior in the tails, Gaussian-EIS procedure with just 100 MC

draws produces accurate results and is much faster than the meta-Gaussian EIS sampler. With

the meta-Gaussian EIS Sampler, practical experience suggests the use of relatively large num-

ber of draws for the construction of the margins using kernels. The process of creating margins

using kernels consumes most of the computational time associated with the meta-Gaussian

EIS procedure. The iterative process for obtaining ρ converges within 5 to 10 iterations and

requires much less computational time relative to the process for the margins. However, as

1Codes for the Sheather-Jones plug-in bandwidth computation can be found at J. S. Marron’s web-site at
http://www.unc.edu/∼ marron/marron.html

60



Figure 3.1 indicates, the piecewise-approximations for the margins do reflect asymmetric tails,

capturing the non-Gaussian marginal behavior successfully. Figure 3.2 shows that the log-

EIS-weights (log of the ratio of the integrand to the sampling density) are clustered around

zero with both methods.

The second scenario (depicted in Figure 3.3) clearly illustrates the advantages of the meta-

Gaussian EIS sampler. Piecewise approximations for the margins clearly capture the bimodal-

ity in the margins. Also, the histogram of the log-EIS-weights in Figure 3.4 shows that the

bulk of draws are centered around zero. Since kernel density approximation typically implies

some smoothing, the sampler weights the low-probability region between the modes a little

higher than the target density; resulting in a small fraction of the draws with lower weights.

However, the impact of these low weights is minimal. Gaussian-EIS repeatedly captures one

of the two components in the bivariate mixture. Hence, the values of the integral computed

using Gaussian-EIS are close to the mixing probabilities used and nowhere near one. This is

also reflected in the lower panel of Figure 3.4 where the log-EIS-weights are clustered around

0.5.

A comparison of the computational times in Table 3.1 shows that the meta-Gaussian cop-

ula sampler is slower than Gaussian-EIS. Most of the additional time is used for the construc-

tion of the margins and reflects the cost of having greater flexibility in accurately capturing

highly non-Gaussian behavior of the margins. These results illustrate the advantages of us-

ing copulas in constructing importance samplers when flexibility in capturing complicated

marginal behavior is critical. The following section illustrates likelihood evaluation, parame-

ter estimation and filtering using a copula-based EIS and contrasts its performance to that of

the particle filter.

3.5.2 A DSGE Model

Recent papers in macroeconomic literature highlight the role of investment-specific techno-

logical change as an important source of business cycle fluctuations (see Fisher 2003 and,

Greenwood, Hercowitz, and Krusell 2000). Two important observations are often cited to
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highlight the role of investment-specific technological change: the relative price of capital

in terms of consumption goods has decreased nearly every year since the 1950s; and the

relative price of capital decreases faster during expansions than during recessions (Fernandez-

Villaverde and Rubio-Ramirez, 2004a).

Also of concern is the behavior of capital stock utilization and its implication on growth

and convergence of economies (Chatterjee, 2005). While capital accumulation is treated as

important for economic growth, there exist few studies that study the implications of the “in-

tensity of use” of capital in a dynamic framework. As mentioned by Chatterjee (2005), de-

cisions regarding intensity of capital utilization affect decisions regarding current output and

via its relation to the rate of depreciation, the future capital shock. Combining the approach of

Fisher (2003) and Chatterjee (2005), a DSGE model that allows for both investment-specific

shocks and capital utilization decision (which affects the depreciation rate) is presented below.

The aim is to estimate the parameters of the model by maximizing the associated likelihood

function. Also of interest are the optimal policy functions for both consumption and the cap-

ital utilization factor, and the interaction of this utilization factor with both kinds of (neutral

and technology specific) shocks.

Let Ct , It , Yt , Kt , At , Vt represent consumption, investment, output, capital stock, technology-

neutral shock, and an investment-specific shock respectively. The model is that of a rep-

resentative agent who seeks to maximize the expected value of lifetime utility by choosing

consumption Ct and the degree of capital utilization ut

maxE0

∞

∑
t=0

β
t log(Ct) (3.23)

subject to the resource constraint

Ct + It = At (utKt)
α , α ∈ (0,1) . (3.24)

The law-of-motion for capital is given by

Kt+1 = (1−δ(ut))Kt +VtIt , K0 is given, δ(u) ∈ (0,1) , (3.25)
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and the evolution of shocks over time is given by

At = e(γ+εa)At−1, γ≥ 0 (3.26)

Vt = e(v+εv)Vt−1, v≥ 0 (3.27)

where

εa ∼ N(0,σ2
a)

εv ∼ N
(
0,σ2

v

)
.

As mentioned by Fernandez-Villaverde and Rubio-Ramirez (2004a), this specification for the

shocks allows for the possibility of changes in the long run relative price of capital. The rate

of depreciation of the capital stock, δ(ut) is dependent on the capital utilization parameter.

This dependence is given by

δ(ut) = duφ, φ > 1, d > 0, 0≤ δ(u)≤ 1, (3.28)

where

δ
′(u) > 0, δ

′′(u) > 0.

Following Fernandez-Villaverde and Rubio-Ramirez (2004a) and Fisher (2003), the model

can be transformed into a stationary problem by normalizing with variables that are fully

known prior to the realization of the current shocks. Let

Zt =
(
At−1V α

t−1

) 1
1−α , (3.29)

and rescale variables by Y̆t = Yt
Zt

, C̆t = Yt
Zt

, Ĭt = It
Zt

, Ăt = At
At−1

, V̆t = Vt
Vt−1

, Z̆t = Zt
Zt−1

and, K̆t = Kt
ZtVt−1

.

Therefore,

Ăt = exp(γ+ εa) ,

V̆t = exp(ν+ εν) ,

Z̆t = exp
(

γ+αν+ εa +αεν

1−α

)
and,

ZtVt−1 = (At−1Vt−1)
1

1−α .
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With the above transformations at hand, the first-order conditions for the transformed

problem can be written as follows. The Euler equation is given by

Z̆t+1

C̆t
= βEt

1
C̆t+1

[
αĂt+1uα

t+1

(
K̆t+1

)α−1 +
1−δ(ut+1)

V̆t+1

]
. (3.30)

The remaining conditions include

Z̆t+1K̆t+1 = (1−δ(ut))
K̆t

V̆t
+ X̆t , (3.31)

dφuφ−1
t = αĂt

(
utK̆t

)α−1
, (3.32)

and

C̆t + Ĭt = Ăt
(
utK̆t

)α
. (3.33)

The existence of an optimal choice for the capital utilization rate in the above framework is

shown by Chatterjee (2005). The optimality condition for ut in (3.32) equates the marginal

benefit of utilizing capital to the marginal depreciation cost. Steady state values of the trans-

formed capital stock, investment and capital utilization rate are computed using the above

first-order conditions. The steady state values of Ăt , V̆t , and Z̆t are given by exp
(

γ+ σ2
a

2

)
,

exp
(

ν+ σ2
ν

2

)
and exp

(
γ+αν

1−α
+ σ2

a+α2σ2
ν

2(1−α)2

)
respectively. Combining the Euler equation in (3.30)

and the first-order condition for capital utilization factor yields the steady state value for cap-

ital:

K̆ =

(
αĂ
dφ

) α

φ(1−α)
αĂβ

(
V̆ φ−1

)
φ

(
V̆ Z̆−β

)


φ−α

φ(1−α)

. (3.34)

The first-order conditions for the capital utilization factor, law of motion for capital, the re-

source constraint and the production function provide the steady state values for other factors:

u =

(
αĂ
dφ

) 1
φ−α

K̆
α−1
φ−α (3.35)

Ĭ = K̆

(
V̆ Z̆ +duφ−1

V̆

)
. (3.36)
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3.5.2.1 Likelihood Evaluation and Filtering using the Copula EIS-Filter

In the remainder of the study, we work with the transformed (stationary version) of the DSGE

model described above. The variables Ăt , V̆t and K̆t are treated as unobserved. Output and

investment are treated as observables. Let xt = [y̆t , ĭt ]′ denote the observable variables. The

measurement equations of the state-space model are given by

y̆t = Ăt
(
utK̆t

)α +ηy (3.37)

and

ĭt = X̆t +ηi. (3.38)

Here, ηy ∼ N(0,σ2
y) and ηi ∼ N(0,σ2

i ) are the measurement errors. Let st = [Ăt ,V̆t , K̆t ]′ denote

the state variables.The state-transition equations are given by

Ăt = e(γ+εa) (3.39)

V̆t = e(v+εv) (3.40)

Z̆tK̆t = (1−δ(ut−1))
K̆t−1

V̆t−1
+ X̆t−1. (3.41)

The discount factor β, and other model parameters α, φ, d, γ, ν, σa, σv, σy, σi are

collectively referred to as θ. The likelihood function is given by

f (XT ;θ) =
T

∏
t=1

f (xt |Xt−1;θ) , (3.42)

where f (x1|X0;θ) ≡ f (x1;θ). The individual components are obtained by the integration of

the joint density of xt and st :

f (xt |Xt−1;θ) =
∫

f (xt |st ,Xt−1;θ) f (st |Xt−1;θ)dst . (3.43)

Here, the prediction density f (st |Xt−1;θ) is computed by marginalization of the joint density

of st and st−1:

f (st |Xt−1;θ) =
∫

f (st |st−1,Xt−1;θ) f (st−1|Xt−1;θ)dst−1. (3.44)
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In order to evaluate the smoothness and numerical accuracy of the copula-based EIS-

filter, a simulation study comparing it to the standard particle filter was conducted. The results

from these comparisons are presented below2. The parameters are estimated via maximum

likelihood using the EIS-Filter. Also, the accuracy of the EIS-Filter is compared to that of the

standard particle filter in a filtering exercise.

At any period t, computing the likelihood in (3.43) requires the evaluation of the optimal

choice for consumption and the optimal value for capital utilization parameter. The opti-

mal consumption function was approximated using Chebyshev polynomial approximations

defined over the space of the state variables (Ăt , V̆t and K̆t) (see Judd, 1998 or Miranda and

Fackler, 2002 for details).

3.5.2.2 Evaluation of the Prediction Density

Note that the period-t prediction density (3.44) requires the evaluation of an integral. DeJong

et al. (2007) present different methods for computing the prediction density, the simplest being

a weighted-sum of the transition density f (st |st−1) over draws of the st−1 from the previous

period’s importance sampling density.

Given values of K̆t−1,Ăt−1, V̆t−1, (3.41) represents a Dirac transition. It is possible to

partition the state-space into two parts (denoted pt and qt): with pt representing a set of

variables with non-degenerate transitions and qt |pt ,st−1,Xt−1 representing the conditionally

non-stochastic transition. In our model specification, the partition comprised of pt = [Ăt ,V̆t ]′

and qt = K̆t . It is important to note that this partition is not unique. It is possible to partition the

state-space into stochastic and non-stochastic components in multiple ways. We can express

qt as

qt = ξ(pt , pt−1,qt−1) . (3.45)

More specifically,

K̆t = ξ
(
Ăt ,V̆t , Ăt−1,V̆t−1, K̆t−1

)
.

2A study treating the capital utilization parameter as an unobserved variable and including time-varying volatilities
in the shock processes is under progress.
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The policy function for optimal consumption can be used for computing the non-stochastic

transition in capital stock and its derivatives. Following DeJong et al. (2007), we inter-

pret (3.45) as the limit of a uniform density for qt |pt ,st−1, on the interval [ξ(pt ,st−1)− ε,

ξ(pt ,st−1)+ ε] with ε→ 0. Under the assumption that ξ(pt ,st−1) is differentiable and strictly

monotone in qt−1, we can express the inverse transformation as

qt−1 = ς(pt ,qt , pt−1) (3.46)

with the associated Jacobian

J (pt ,qt , pt−1) =
∂

∂qt
ς(pt ,qt , pt−1) . (3.47)

Using (3.41), the Jacobian can be written as

J(K̆t−1) = V̆t−1Z̆t

[
1− K̆t−1

∂δ(ut−1)
∂ut−1

∂ut−1

∂K̆t−1
−δ(ut−1)+

∂X̆t−1

∂K̆t−1
V̆t−1

]−1

. (3.48)

Exploiting the fact that Ăt and V̆t are independent of past Ăt−1 and V̆t−1, the limit of the integral

in (3.45) with ε→ 0, gives us the following integral for the state-transition:

f (st |Xt−1;θ) = f (Ăt ;θ) f (V̆t ;θ)
∫

J
(
K̆t−1

)
f (st−1|Xt−1;θ) |K̆t−1=ς(K̆t ,pt−1)d pt−1. (3.49)

For any st , evaluation of (3.49) requires the evaluation of f (st−1|Xt−1) along the zero-measure

subspace K̆t−1 = ς
(
K̆t , pt−1

)
. Under the assumption that the EIS-weights are constant, we can

replace f (st−1|Xt−1;θ) with the previous period’s optimal importance sampler g(st−1|ât−1) to

give

f̂ (st |Xt−1;θ) = f (Ăt ;θ) f (V̆t ;θ)
∫

J
(
K̆t−1

)
g(st−1|ât−1) |K̆t−1=ς(K̆t ,pt−1)d pt−1. (3.50)

For a given K̆t , and a pair (Ăt−1,V̆t−1), the value of K̆t−1 can be obtained from (3.41). Since

δ(ut−1) and X̆t−1 are also dependent on K̆t−1, computation of K̆t−1 is accomplished using the

Newton-Raphson method by solving (3.41). The Jacobian of the non-stochastic transition in

capital can be computed using (3.48). Since the integral in (3.50) is defined over the spaces

of Ăt−1 and V̆t−1, numerical quadrature using the parameters of the marginal distributions of

Ăt−1 and V̆t−1 from g(st−1|ât−1) (two-dimensional Gauss-Hermite quadrature) was used in its
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computation. The use of numerical quadrature was found to be sufficiently accurate since

the Jacobian was almost always a “plane” in the two-dimensional space of (Ăt−1,V̆t−1). An

example of the computed Jacobian is illustrated in Figure 3.5.

3.5.2.3 Likelihood Evaluation

The general approach to creating the meta-Gaussian sampler is similar to the process utilized

in Example 1 above3. We begin with the initialization of the marginal densities and an ini-

tial correlation matrix for the copula. The marginal density of K̆t was approximated using a

piecewise-continuous approximation. The marginal densities for Ăt and V̆t were specified to

be log-normal.

Given a Gaussian approximation for the prediction density f (st |Xt−1;θ), linearization of

the measurement equations (illustrated in Appendix C) around the steady state values of y̆t and

ĭt provides a Gaussian approximation to the density of the state variables conditional on current

observations of y̆t and ĭt . The mean and variance of the capital stock were utilized to define

the initial set of uniformly spaced nodes in the space of K̆t (the lower and upper limits were

±5× standard deviations). The mean and variance of ln Ăt and lnV̆t were utilized to initialize

their respective margins. Converting the covariance matrix of the Gaussian approximation to a

correlation matrix (ℜ) provided a natural initialization for the meta-Gaussian copula density.

Having initialized the margins, N draws from a trivariate standard normal density were

transformed using the correlation matrix (ℜ) into draws of s̃t . These draws of s̃t were trans-

formed into st by the inverse of the transformation in (3.19) and the marginal densities speci-

fied above.

Analogous to the procedure employed in Example 1, the piecewise-continuous density

approximation for K̆t was created by approximating the marginal density at the nodes using

kernel density approximation. A Gaussian kernel with the Sheather-Jones plug-in bandwidth

was utilized for this purpose. An equal probability partition of K̆t was obtained by inverting the

piecewise-density as outlined in DeJong et al. (2007). The mean and variance of the univariate

3For an extensive description of the particle filter and its application to evaluate the likelihood function, refer to
DeJong et al. (2007).
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margins for Ăt and V̆t were updated using the least squares regression outlined in Appendix B.

Having updated the parameters of the margin, the correlation matrix was updated by a

trivariate analogue of the process outlined in Appendix C. That is, the least-squares problem

arises due to the approximation

ln f (xt |st ;θ) f (st |Xt−1;θ)−
3

∑
j=1

ln f (xt, j;θ j) ∝−1
2
(
s̃′tℜ

−1s̃t
)
. (3.51)

3.5.2.4 Initializing the Copula Sampler

Initializing the sampling distribution prior to the recursive EIS procedure is a non-trivial task.

Simple methods like a grid-search are too expensive to implement over multiple dimensions.

Building upon an approach currently being developed by DeJong et al., we create an approx-

imate joint distribution for the observable and state variables by linearizing the measurement

equation and combining it with a Gaussian approximation for the prediction density of the

state variables. A Gaussian density for the state variables conditional on current information

is obtained from the approximate joint distribution. Further details are provided in Appendix

D.

3.5.3 Results and Discussion

The time-0 distributions of Ă0 and V̆0 were specified to be normal centered at 1 and with a

standard deviation of 0.06. The distribution of K̆0 was set to N(K̆,(0.1)2), where K̆ is the

steady state capital stock computed with the parameters used to simulate the data generating

process. A data set containing two hundred observations was simulated in order to perform

maximum likelihood analysis. Further, ten data sets with each containing a single sequence

of 10 draws of the latent process and 10 sequences of observables obtained from the single

sequence of latent variables were also generated. The parameter values used to generate the

data were, α = 0.33, β = 0.96, γ = 0.001, ν = 0.002, φ = 2.5, d = 0.1, σa = 0.01, σv = 0.02,

σy = 0.06, σi = 0.04. An example of the simulated data is shown in Figure 3.2.

Table 3.1 presents the parameter estimates results from maximizing the likelihood function

using fifty and two hundred observations. The parameter estimates obtained using the smaller
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the data set are relatively less accurate with the estimates of parameters like σa, σy, and σi

changing substantially. Also, the asymptotic standard errors associated with the measurement

error and the volatility of the shocks are relatively large. As the sample size increases, the ML

estimates of the parameters do indeed get closer to the data generating parameters.

In order to compare the performance of the standard particle filter and the copula based

EIS-Filter, two studies were conducted. Firstly, accuracy of the two procedures in computing

the likelihood is compared by repeatedly computing the likelihood function for a given set of

parameter values. Table 3.2 presents results obtained by computing the likelihood function

using a data set containing fifty observations. Importantly, the reported times do not include

the time needed for the polynomial approximation of the consumption function as this cost

is common to both methods. Reiterating the results in DeJong et al. (2007) and elsewhere,

computation time scales linearly with the number of draws in the case of the particle filter.

However, with the EIS-Filter, we are required to choose three different numbers: the number

of draws (or quadrature points) to be used to compute the prediction density ( 3.10); the

number of draws used to construct the copula sampler for the period-t likelihood (3.8) and

the number of MC draws to compute the period-t likelihood. The first of these numbers was

fixed at 121 (11×11), and the second was fixed at 300. Hence the computational times of the

EIS-Filer does not scale linearly with the number of MC draws used to evaluate the integral.

As Table 3.2 indicates, the EIS-Filter is substantially more accurate than the particle fil-

ter. Comparing performance using the “Relative Time Efficiency” ratio measure introduced

in DeJong et al. (2007), we see that the value of this ratio varies between 4 and 25 in favor of

the EIS-Filter. For example, EIS-Filter with 200 MC draws has a time-efficiency ratio of 6.8

with respect to the particle filter with 80000 particles. That is, in order to achieve the accuracy

of the EIS-Filter using 100 MC draws, the particle filter would require nearly 300,000 parti-

cles. This result is reiterated by Figure 3.3 which shows the standard deviation of individual

period-t likelihoods. Even with an increasing number of particles, large standard deviations

continue to persist with the particle filter. In contrast, however, the standard deviations of in-

dividual likelihoods obtained using EIS-Filter are substantially more accurate even with 100
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MC draws. This reflects the fact that EIS-Filter is not susceptible to problems like sample

impoverishment typically associated with the particle filter.

In the second exercise, the filtering accuracy of particle filter was compared with that of the

EIS-Filter using copula densities. This exercise extends the experimental design used by Pitt

and Shephard (1999). For this purpose, ten different trajectories of the latent process (Ăt ,V̆t

and K̆t) were obtained with each trajectory containing ten data points. From each trajectory,

ten different sequences of the observable variables (y̆t , ĭt) were obtained, creating a total of

100 data sets. With each data set, a “pseudo-true” estimate of the filtered values of the latent

variables were obtained as the mean of 20 replications of the EIS-Filter with 10000 MC draws.

Note that the Pitt and Shephard (1999) experiment involved the simulation of mutiple

sequences of the observable variables from a simgle sequence of latent variables. In contrast,

we obtain sequences of observables from ten different realizations of the latent variables. This

is analogous to repeating the Pitt and Shephard (1999) exercise ten times to mitigate any

peculiarities in the results due to particular realizations of random variables. The sequence of

steps in this experiment were as follows. For each sequence of observable variables,

1. The estimated “pseudo-true” filtered values of the latent variables are computed.

2. Twenty different sets of filtered values of the latent variable are obtained using the particle

filter (with 80000 particles) or the EIS-Filter (with 300 MC draws).

3. The Mean Squared Error (MSE) of the filtered values are computed by averaging over the

squared difference between the above twenty estimates and the “pseudo-true” values.

Denoting ζ̆i
t as the estimated “pseudo-true” filtered value for data set i, and ζ

i, j
t,k denoting

the MC estimate of the filtered latent variable for data set i, replication j, time t and method k

(EIS-Filter or Particle Filter), The Mean Squared Error (MSE) is given by

MSEt,k =
1

100

100

∑
i=1

[
1
20

20

∑
j=1

(
ζ

i, j
t,k− ζ̆

i
t

)]
. (3.52)

Indeed, the EIS-Filter produces smaller mean squared errors. Aggregating over observa-

tions drawn from different realizations of latent variables ensures that these results are robust

to any peculiarities in the results due to particular realizations of random variables. As seen
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in Figure 3.4, the average difference (in log-scale) of the MSE values are around 1.0 for Ăt ,

while the average difference for K̆t and V̆t are nearly 2.0 and 2.5 respectively. Among the

latent variables, the Log-MSE values for K̆t are relatively higher than those of the rest.

3.6 CONCLUSION

This paper illustrates the use of copula densities (specifically, the meta-Gaussian copula) as

importance samplers for likelihood evaluation and filtering in general state-space models. The

example presented shows that the copula based importance Indeed, copula densities facil-

itate the construction of importance samplers with widely differing marginal distributions.

The likelihood function evaluated using copula based EIS-Filtering methods possess critical

properties such as, continuity with respect to underlying parameters and smoothness. These

properties successfully address the twin concerns of computational cost (of accuracy) and nu-

merical variance of the likelihood function that are significant with the use of the standard

particle filter (Fernandez-Villaverde and Rubio-Ramirez, 2007).
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3.7 TABLES AND FIGURES

Figure 3.1: Mixture of Two Bivariate Normals (Specification-I)
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Figure 3.2: EIS Weights (Specification-I)
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Figure 3.3: Mixture of Two Bivariate Normals (Specification-II)
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Figure 3.4: EIS Weights (Specification-II)
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Figure 3.5: Jacobian of the Dirac transformation in K̆t .
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Figure 3.6: Simulated Data.
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Figure 3.7: Accuracy of individual likelihoods.
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Figure 3.8: Log-MSE Comparisons.
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Table 3.1: Mixture of Two Bivariate Normals

Gaussian EIS meta-Gaussian Copula
Specification-I

N Mean Stdv Time Mean Stdv Time
100 0.9921 0.0246 0.0574 1.0169 0.0293 0.2041
200 0.9955 0.0159 0.0613 1.0104 0.0205 0.2131
500 0.9980 0.0120 0.0750 1.0086 0.0106 0.2192
1000 0.9993 0.0076 0.0959 1.0062 0.0083 0.2336
5000 0.9997 0.0031 0.2555 1.0061 0.0035 0.3658

Specification-II
Mean Stdv Time Mean Stdv Time

100 0.8467 1.6601 0.1027 1.0361 0.1191 0.4972
200 0.7000 0.2904 0.1069 1.0161 0.0678 0.5016
500 0.6894 0.2103 0.1238 0.9925 0.0523 0.5209
1000 0.6909 0.2040 0.1520 1.0087 0.0339 0.6342
5000 0.6809 0.1737 0.4091 0.9942 0.0299 0.8539
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Table 3.2: Maximum Likelihood Estimation

200 Observations 50 Observations
Parameter Std. Error Parameter Std. Error
Estimate Estimate

α 0.3334 7.769E-03 0.3431 8.314E-03
β 0.9526 1.147E-02 0.9622 1.701E-02
φ 2.505 1.482E-03 2.5007 2.276E-03
d 0.1802 2.371E-02 0.1857 6.808E-02
γ 0.0012 7.639E-03 0.00076 1.877E-02
ν 0.0025 7.147E-03 0.0019 1.748E-02

σa 0.0115 1.140E-02 0.0247 4.604E-02
σν 0.0406 7.956E-03 0.0497 1.056E-02
σy 0.0614 9.079E-03 0.0970 1.727E-02
σi 0.0386 8.547E-03 0.01945 2.071E-02
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Table 3.3: Computation Times

Particle Filter EIS-Filter
N Mean Stdv Time(s) N Mean Stdv Time(s)

10000 124.5688 0.0931 0.935 100 124.5843 0.01763 6.70
20000 124.5855 0.0703 1.848 300 124.5844 0.01281 7.91
40000 124.5843 0.0480 3.919 1000 124.5845 0.00443 17.59
80000 124.594 0.0330 8.189
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4.0 PREDICTING REGIME SHIFTS IN U.S. GDP GROWTH

4.1 INTRODUCTION

Success in forecasting GDP growth depends critically on the ability to anticipate shifts of the

economy between episodes of general expansion and contraction. The apparent non-linearity

of the process that governs these shifts, coupled with the decrease in the volatility of GDP

growth observed since the mid-1980s, renders the task of anticipating regime shifts as chal-

lenging. The central aim of this paper is to build a model that can accurately detect regime-

shifts in the U.S. business cycle and forecast both growth rates and potential regime-shifts.

As noted by Pagan (1999) the study of business cycle phase changes continues to be

an important issue in macroeconomic research. Three concerns that emerge repeatedly in

business cycle research are, (a)asymmetries in the mean-growth trajectory across regimes,

(b)asymmetry in the volatility of growth rates across regimes, and (c)the importance of non-

linearities in predicting turning points and capturing observed features of business cycles.

Many non-linear models attempt to capture the asymmetries in the behavior of GDP

growth across regimes. For example, the Beaudry and Koop (1993) model allows for a “cur-

rent depth-of-recession” variable to be triggered by negative growth rates, leading to a quick

uptick of growth rates after the end of a recession (bounce-back effects). Potter (1995) presents

a self-exciting threshold auto-regression (SETAR) model with two states. A negative growth

in the two preceding periods implied a switch between the two states. The model by Pesaran

and Potter (1997) incorporates a “floor” and a “ceiling” for growth rates: i.e., the growth rate

accelerates (decelerates) when it reaches floor (ceiling).
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In his seminal paper, Hamilton (1989) captures asymmetry in the mean of growth in busi-

ness cycle regimes using a two-state Markov-switching model of output. An early study of

conditional asymmetry in the variance of GNP growth was performed by French and Sichel

(1993). They model the conditional mean and variance of U.S. GNP using an asymmetric ex-

ponential GARCH specification and find that the conditional variance is typically the largest

around business cycle troughs. An extensive review and comparison of the ability of linear

and non-linear models to account for stylized facts regarding business cycle regimes can be

found in Hess and Iwata (1997b). They conclude that non-linearities confer little advantage

over linear models in reproducing the salient features of business cycle regimes observed in

data.

Also, there has been a dramatic reduction in the volatility of U.S. GDP growth since mid

1980s. This phenomenon is well documented in literature (references include Kim and Nelson

1999b, McConnell and Perez-Quiros 2000, Stock and Watson 2002 etc.) and is usually refered

to as the “Great Moderation”. Stock and Watson (2002) note two alternative perspectives

regarding the nature of volatiloty reduction; (a) an ongoing trend (Blanchard and Simon 2001)

and (b) a sharp break as suggested by Kim and Nelson (1999b).

Building on the work of DeJong, Liesenfeld, and Richard (2005) we develop a model

(henceforth the DHLR model) designed to allow for asymmetry in both mean-trajectory of

growth and its variance. The model characterizes GDP growth as following non-linear tra-

jectories that fluctuate stochastically between alternating episodes of general acceleration and

deceleration. Regime changes occur stochastically, with probabilities determined by an ob-

served indicator variable via a logistic link function. We refer to the indicator variable as a

“tension index” , which is constructed as a geometric sum of past deviations of actual GDP

growth from a corresponding “sustainable rate” (interpretable as the growth rate of potential

GDP).

Predicting regime-shifts is, in general, a difficult problem. In the context of the DeJong

et al. (2005) and DHLR models, detection of a regime-shift critically depends on both the

logistic link function and the ability of the non-linear drift process to detect subtle shifts in the
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general direction of GDP growth. The proposed (DHLR) model is a substantial improvement

over the DeJong et al. (2005) model with respect to the latter issue. With the observed decline

in volatility of growth, detecting changes in the general direction of growth requires substantial

flexibility in the behavior of the non-linear drift process to respond to subtle changes. The

motivation for the change can be traced back to the fact that the DeJong et al. (2005) model

repeatedly failed to identify the current contractionary regime. In sharp contrast, the DHLR

model indicates that the economy transitioned into contraction in 2003:III.

To account for the fact that no two business cycles are alike, we model the parameters that

dictate the non-linear trajectories as unobservable random variables that vary across regimes.

At the beginning of each regime, a new set of parameters is drawn from a fixed distribution.

These parameters consist of the initial value of the level, the velocity, and the acceleration of

the regime-specific non-linear trajectory (termed the “drift process”). This permits the model

to capture a wide range of behavior across regimes for the drift process, from nearly linear to

brief exponential bursts.

Our model allows for volatility of growth rates to differ across regimes. It is specified to

be a latent variable, whose regime-specific value is drawn from a known distribution at the be-

ginning of each regime. Thus, regimes with low volatility correspond to low realizations from

the associated distribution. As noted in later sections, results from our model also suggest a

sharp reduction in the volatility of GDP growth since the 1980s. However, it is difficult to

explicitly account for this trend in our model specification with only 17 available observations

for the volatility. While we are left with the possibility of a specification error in our model,

the increased “sensitivity” of the latent-drift process implies that our model adjusts to new in-

formation very quickly. Thus, despite beginning with a conservative forecast for the volatility

of growth in a new regime, the latent-process adapts quickly to new information and correct

its initial forecast as required. Also, a conservative initial-estimate for the volatility protects

us from making extreme assertions regarding the volatility of growth and leave the door open

for possible future increases.

We estimate the model via maximum likelihood using two alternate estimation procedures.
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The first conditions on a sequence of regime-change dates (the “optimal” sequence computed

in an iterative procedure described in later sections); the second is unconditional on any fixed

sequence of regime-change dates (results are obtained by integrating over all possible regime-

change dates). We study the ability of the model to anticipate and/or detect regime-shifts and

contrast its performance with that of the DeJong et al. (2005) model.

Marcellino (2008) presents an extensive comparison of the forecasting performance of

univariate time series models for U.S. GDP growth and inflation. Comparing the forecasting

accuracy of linear AR specifications, time-varying AR specifications, smooth transition AR

specifications, SETAR, Markov-switching and other models (using mean-squared-errors of

out-of-sample forecasts over a long time horizon), they report that nonlinear models confer

limited gains over well-specified linear models.

As the next section indicates, our model can be expressed as an ARMA(3,1) process with

a non-linear drift. In order to test the relative merits of a non-linear specification, we compare

the errors in one-period-ahead out-of-sample forecasts of GDP growth obtained from the non-

linear model to those from a linearized version (where the non-linear drift process is replaced

by a linear one). We also compare forecasting accuracy of our model with that of DeJong

et al. (2005) and random-walk-with-drift specifications. Importantly, the DHLR model and

the DeJong et al. (2005) have lower forecast errors relative to the linearized-DHLR model;

highlighting the added benefit of non-linearities in forecasting growth. The DHLR and DeJong

et al. (2005) models perform similarly during the long regimes. However, the DHLR model

is more accurate (lower MSE) in short regimes. Also, the DHLR model outperforms the

random-walk specification in all the regimes and in the overall comparison.

In addition to detecting changes in the general direction of GDP growth, forecasts of

growth from our model can also be utilized to anticipate the occurrence of recessions. We

propose a non-stochastic recession-dating rule that utilizes growth rates and changes in the

tension index to determine if a recession has begun, and (conditional on a recession having

begun), it if will end at a particular quarter.

The most widely accepted dating of recessions is that done by NBER. As noted by Chau-
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vet and Hamilton (2005) and Chauvet and Piger (2008), these dates are determined by the

NBER’s “Business Cycle Dating Committee” using a wide variety of economic indicators and

represent the consensus opinion of many individuals. Hence, they conclude that the NBER

dating method is neither transparent nor reproducible. While economic data are periodically

revised, the NBER announced dates have seen little revision. Often, these dates are announced

after a substantial delay (e.g., March 1991 and November 2001 business cycle troughs were

announced nearly two years after the event).

Both statistical and deterministic alternatives to the NBER dating methods can be found

in literature. Bry and Boschan (1971) show that it is possible “mimic” the NBER committee’s

judgements through a formal algorithm. Harding and Pagan (2002a) note the existence of dif-

ferent approaches to determine turning points in the business cycle. In the context of univari-

ate models they classify them as parametric and non-parametric methods. The non-parametric

methods include the Bry and Boschan (1971) and other rule-based approaches which eschew

a formal statistical model. The parametric class includes methods that utilize parameters es-

timated from a formal statistical model to determine turning points (e.g. Markov-switching

model of Hamilton 1989).

In a study comparing the quarterly analogue of the Bry-Boschan non-parametric method

(BBQ) and Markov-Switching models, Harding and Pagan (2002a) show that while both

methods perform reasonably well, recession-dating with MS models is sensitive to actual spec-

ification and the choice of critical values (in probability weights) utilized to make decisions

regarding turning points. Arguing in favor of the BBQ method they highlight its robustness to

data generating processes and the sample selected.

As seen in Figure 4.1, the tension index serves as a good barometer for recessions. Our

recession-dating method a hybrid between the parametric and non-parametric methods. The

simplicity of a rule-based recession-dating method makes it an attractive alternative to para-

metric probability models. For the purposes of forecasting, trajectories of growth are simu-

lated using the DHLR model as a data generating process. For each simulated trajectory, the

“optimal” quarter for the start of a recession is computed using the dating rule. Conditional
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on recession having started at the specific quarter, its terminal quarter is also determined via

the dating rule.

The results indicate that the DHLR model is capable of exhibiting substantially more non-

linear behavior in its regime-specific latent process and represents a major improvement over

the DeJong et al. (2005) model in its ability to anticipate and/or detect regime-shifts. The

current model also has lower forecast errors relative to the linearized version, the DeJong

et al. (2005), and the random-walk models. Forecasts of probability of regime-shifts, growth

rates, and probability of a recession in the near future all highlight the importance of increased

non-linearities of the proposed model.

4.2 THE MODEL

Our analysis builds upon on the non-linear forecasting model discussed in DeJong et al.

(2005). The mean specification is common to both versions, and has two key features: an

error correction mechanism (ECM) and regime-switching behavior. Regime switches are

manifested in the behavior of a stochastic drift component that fluctuates between periods

of general acceleration and deceleration. Regime changes are triggered by a tension index,

constructed as a geometric sum of past deviations of actual GDP growth gt from a corre-

sponding “sustainable” growth rate (interpreted as the growth rate of potential GDP). Letting

g∗t denote the sustainable rate, and yt the deviations yt = gt−g∗t , the tension index Gt is given

by

Gt =
∞

∑
i=0

δ
iyt−i , (4.1)

where 0 < δ < 1 measures the persistence of past deviations on current Gt . Since g∗t is unob-

servable, we specified g∗t as the sample mean of gt . By implication, gt tends to pass between

phases during which it alternately tends to outstrip and fall short of g∗t . Under the interpre-

tation of our model, neither phase is sustainable: both produce tension buildups (captured

by increases in the absolute value of Gt) that ultimately lead to regime changes. We model
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regime-change probabilities using the following logit specification:

πt = P(st+1 =−st |st ,Gt) =
1

1+ exp{β0−β1stGt}
, (4.2)

where the variable st indicates the regime prevailing in period t, being 1 if Gt is in an expan-

sionary regime and -1 otherwise. Thus as the absolute value of Gt increases, so too does the

probability of a regime change.

The model for GDP growth, in terms of its deviations from g∗t , is given by

yt = mt−νGt−2 + γyt−2 + εt , εt |σt ∼ N(0,σ2
t ) , (4.3)

where mt represents a stochastic latent regime drift (the rationale behind this lag-2 specifica-

tion follows the presentation of equations (4.5) and (4.6) below). Subtracting yt−2 from both

sides of (4.3) casts the model explicitly as an ECM representation, in which the term νGt−2

reflects an integral correction based upon cumulated past deviations from equilibrium, and

(1− γ)yt−2 represents a proportional correction following the terminology of Phillips (1954

and 1957).

The specification for the regime drift, which allows for jumps at dates featuring a regime

change and for different trajectories across the regimes, has the form

mt = m j + sta j

(
eτb j−1

b j

)
, τ ∈

{
0,1, ...

(
t( j)− t( j−1)−1

)}
, (4.4)

where the index j ( j : 1→ J) denotes the regime prevailing in period t, and t( j) denotes the

date at which j gives way to regime j + 1 (i.e. t( j) is the last period under regime j). The

variable m j represents the value of the regime drift in the first period of regime j, and the

exponential term dictates the curvature of the mt trajectory during regime j. Specifically,

a j represents the velocity
([dmt

dτ

]
τ=0

)
of the drift process at τ = 0, and a jb j the acceleration([

d2mt
dτ2

]
τ=0

)
. Both a j and b j are restricted to being non-negative. For very small values of b j

the ratio
(

eτb j−1
b j

)
is approximated using a second-order Taylor series expansion.

In contrast, the specification of mt in DeJong et al. (2005) model implies zero initial ve-

locity and acceleration. Of the two parameters governing the rate of change of mt (in DeJong

et al. (2005) model), one is regime-specific and the other (denoted “d”) is common to all the
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regimes. The DHLR model, however, allows for the initial velocities and accelerations of

mt to change across regimes. Also, all parameters governing the curvature of mt can differ

across regimes. These features provide the critical flexibility required by the non-linear drift

to respond to subtle shifts in the general direction of GDP growth.

Pre-multiplying by (1−δL), (4.3) can usefully be rewritten in the form of an (overidenti-

fied) ARMA(3,1) plus drift process

yt = nt +δyt−1 +(γ−ν)yt−2− γδyt−3 + εt−δεt−1 , (4.5)

where within regime j the variable nt is given by

nt = (1−δ)m j +
a j

b j
st

[
eτb j−δe(τ−1)b j− (1−δ)

]
. (4.6)

Its overidentification provides significant efficiency gains in the estimation stage at virtually

no loss of fit. Note that the selection of lag 2 for the ECM representation (4.3) allows us to par-

simoniously capture a non-zero coefficient on yt−3 in (4.5), which turns out to be statistically

significant.

In order to allow for variation in the drift proces mt across the J regimes, we assume

that a j, b j and m j are latent random variables. An extensive diagnostic analysis led to the

specification of a trivariate normal distribution for lna j, lnb j and m j with their mean vector

and covariance matrix treated as model parameters.

Given the fact that business cycle durations are highly variable, and can be either very short

(e.g., the double-dip recessions of 1979/1981) or very long (e.g., the extended expansion of

the 1990s), the drift process must be flexible and capable of exhibiting non-linear behavior. As

illustrated in Figure 4.2, (computational details follow) the drift process in some short-duration

regimes (e.g. 1954:I-1955:I and 2000:I-2001:III) is almost linear, while in other short regimes

(e.g. 1978:III-1980:II and 2001:IV-2003:III), it exhibits highly non-linear behavior. Likewise,

long-duration regimes like the 1984:II-1991:I regime exhibit pronounced acceleration towards

the end. However, other long-duration regimes (e.g. 1991:II-1999:IV) require much smaller

acceleration. Also, Figure 4.2 shows that all long-duration regimes exhibit a drift process

that grows very slowly before the “jump” as the regime nears it end. The top-right panel
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of Figure 4.2 illustrates the drift process since the mid-1980s (corresponding to the Great

Moderation period), highlighting the better fit of the new drift process relative to the drift

process in DeJong et al. (2005).

Finally, to capture the observed heterogeneity in GDP volatility, particularly with the Great

Moderation, we specify that the conditional variance of growth-rate innovations σ2
t is a log-

normal random variable whose mean and variance are treated as model parameters. Combined

with the distribution of lna j, lnb j, and m j, the density of the four latent regime-drift parame-

ters is written as [
lna j, lnb j,m j, lnσ

2
j

]′ ∼ N4
(
µΛ j ,ΣΛ j

)
, (4.7)

where Λ j denotes the four regime-drift parameters in regime- j. We explored many alternative

functional forms for the relationship between σ2
t and other regime-specific latent parameters,

but found that they did not deliver improved performance. Note that this specification is ca-

pable of accounting for discrete jumps in the innovation variance component of the model

in a way that is structurally stable (i.e., in a way that does not require the specification of

variance-regime dummies). This feature is critical for forecasting, since under a dummy vari-

able specification, an in-sample variance reduction automatically extends over the forecast

horizon. In contrast, by allowing for stochastic regime changes, the DHLR model does not

require that the volatility reduction be permanent: new regimes imply new variance levels.

To characterize estimation, let θ represent the vector of all model parameters, XT the data,

and {et}T
t=1 a vector of zeros and ones, where et = 1 indicates a regime change period (i.e.,

the next period is the beginning of a new regime). Let {t j}J
j=1 represent the vector of regime

change periods. The likelihood function can be written as

L(θ;XT ) =
J

∏
j=1

l j (θ) (4.8)

l j (θ) =
∫

f (X j,Λ j;θ)dΛ j, (4.9)

where XT = {X j}J
j=1 represents J blocks of the data each corresponding to one regime and

Λ j represents regime- j latent variables (lna j, lnb j, m j, lnσ2
j). Incorporating the distributional
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assumptions, each regime-likelihood can be written as

l j (θ) =
∫ 1

σ2
j
φ

(
xt−µt

σ j

)
π

et
t (1−πt)

(1−et) f (Λ j)dΛ j, (4.10)

where φ(.) represents the standard normal density and µt is given by

µt = mt−νGt−2 + γyt−2. (4.11)

The model parameters are estimated via maximum likelihood using two alternate methods.

The first method involves conditioning on the set of regime-change dates {t( j)}J
j=1. This is

accomplished using an iterative procedure which ensures the selection of a coherent set of

dates. The procedure begins with the specification of an initial sequence of regime-change

dates, for which we obtain conditional maximum likelihood (ML) estimates of θ. Next, the

estimated model is used to assess the validity of each of the chosen dates. For a given date,

this involves calculating the probability (according to the estimated model) that the date in

fact featured a regime-shift, relative to a sequence of alternative possibilities. These include

the possibility that the regime-shift occurred at an alternative date in a given neighborhood of

the chosen date, and that no regime-shift occurred during the time period in question.

To explain how this is done, let B0 be a J-vector containing the initial sequence of chosen

dates, the jth element of which is t( j). Also, let B0,− j denote a corresponding (J−1)-vector

constructed by excluding the jth element of B0. Next, let θ0 denote the ML estimate of θ

obtained using B0. Finally, let t1 = (t( j− 1) + 1), and t2 = (t( j + 1)− 1), so that [t1, t2]

represents the complete set of dates between the ( j− 1)st and ( j + 1)st regime-shift dates.

Then the probability that the jth regime-shift occurred at any point t over the range [t1, t2] is

given by

P(t( j) = t|B0,− j) =
L(θ0|t( j) = t)

L(θ0|t( j) = 0)+∑
t2
s=t1 L(θ0|t( j) = s)

, (4.12)

where L(θ0|t( j) = t) denotes the value of the likelihood function evaluated using θ0, con-

ditional on the augmentation of B0,− j with the additional regime-shift point t( j) = t, and

L(θ0|t( j) = 0) denotes the value of the likelihood function obtained without augmenting B0,− j.

To assess the validity of the jth regime-shift date specified under B0, we evaluated (13) for
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each date t in the range [t1, t2], as well as for t = 0. If t = t( j) was assigned the highest

probability it was validated; otherwise, t( j) was re-aligned to coincide with the date that was

assigned the highest probability. Once this process was completed for each of the J elements

of B0, we specified a second vector B1, obtained a second set of parameter estimates θ1, and

repeated the process. The procedure ends when the dates chosen in a given round represent

the most likely scenario according to the parameter estimates obtained during that round. In

our experience, this process typically converged within three rounds. This iterative procedure

is akin to the EM-type algorithms typically employed in estimated Markov-switching models

(as outlined, e.g., in Hamilton, 1994, and Diebold, Lee, and Weinbach, 1994). The regime-

shift dates identified in this manner and their associated probabilities are reported in Table

4.1.

The second estimation method integrates over all possible regime-shift scenarios and is

therefore unconditional. The procedure we employ is illustrated in DeJong et al. (2005). This

requires the integration of the likelihood function in (4.9) with respect to probabilities asso-

ciated with the vector representing regime-shift periods. In general, this is a computationally

expensive problem due to the need for evaluating the marginal likelihood over all 2T pos-

sible realization of the sequence {et}T
t=1. DeJong et al. (2005) implemented an importance

sampling procedure wherein sequences of {e∗t }
T
t=1 are drawn using the values of β̂0 and β̂1

and {êt}T
t=1obtained from the conditional likelihood estimation. Let h(.) and q(.) represent

a decomposition of the likelihood into a conditional density for Xt and a sequence of condi-

tional densities for et . Correspondingly, let θh and θq represent a partition of the parameters

associated with h(.) and q(.) respectively (θq = {β0,β1}). Here

q(et |Xt ;θq) = π
et
t (1−πt)

(1−et) , (4.13)

and h(.) represents components of (4.9) and (4.10) not associated with q(.). Trajectories of

{e∗t }
T
t=1 are simulated using the values of β̂0 and β̂1 from the conditional ML estimation. That

is, given the “optimal” sequence of {π̂t}T
t=1 from the conditional model and setting s1 = −1,

draws of st+1 conditional on st are drawn using the values {π̂t}T
t=1 and draws from the uniform

distribution U [0,1]. This sequence of {st}T
t=1 is easily converted to a sequence {et}T

t=1. It is
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immediately apparent that despite the use of importance sampling, unconditional estimation

is indeed a computationally expensive procedure.

Both conditional and unconditional estimation require the use of numerical integration

techniques to compute the likelihood function. For example, note from (4.10) that each regime

requires one integral over the four-dimensional space (lna j, lnb j, m j, lnσ2
j). To accomplish

this, we utilize the efficient importance sampling (EIS) procedure introduced by Richard and

Zhang (2007). The likelihood function is maximized using the Nelder and Mead (1965) Sim-

plex algorithm implemented in FORTRAN (using the AMOEBA algorithm of Press, Teukol-

sky, Vetterling, and Flannery, 1996).

The next subsection provides a brief description of the implementation of EIS in our prob-

lem, followed by a discussion of the results.

4.2.1 EIS and numerical integration of the likelihood function

The objective of EIS is to create importance sampling densities that are continuous, smooth

and provide close approximations of the integrand, thus providing integrals with high numeri-

cal accuracy. The key efficiency properties of EIS are obtained due to the process of iteratively

“refining” the parameters of the sampling density. A detailed description and comprehensive

examples can be found in Richard and Zhang (2007). Let the integral shown in (4.10) be

denoted as ϕ(xt ;θ,Λ j), i.e.,

l j (θ) =
∫

ϕ(xt ;θ,Λ j)dΛ j. (4.14)

The objective of importance sampling is to introduce a sampling density g(Λ j;αg) (αg rep-

resent the parameters of the sampling density and is commonly referred to as the “auxiliary

parameter”) from which it is much easier to obtain draws. The integral then can be written as

l j (θ) =
∫

ϕ(xt ;θ,Λ j)
g(Λ j;αg)

g(Λ j;αg)dΛ j. (4.15)

Let k(Λ j;αg) denote the kernel of the density g(Λ j;αg) and χ(αg) the integrating constant,

i.e., χ(αg) =
∫

k(Λ j;αg)dΛ j. The EIS procedure of Richard and Zhang (2007) obtains the
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optimal sampler parameters α̂g, which minimizes the variance of the ratio ϕ(xt ;θ,Λ j) f (Λ j)
g(Λ j;αg)

. That

is, the optimal sampler parameters are a solution to the minimization problem

α̂g, ĉg = argmin
αg,cg

∫
[lnϕ(xt ;θ,Λ j)− cg− lnk(Λ j;αg)]

2 g(Λ j;αg)dΛ j, (4.16)

where cg is an intercept meant to calibrate ln
(

ϕ(xt ;θ,Λ j)
g(Λ j;αg)

)
. Since the auxiliary parameters αg are

a part of the sampling density g(.), the above problem is computationally implemented as a

fixed-point problem. The computational steps can be summarized as follows.

1. Given a current estimate {αg,cg}n of the auxiliary parameters (the process begins with the

initialization of g(Λ j;αg) by choosing values of αg), R values of the latent variables are

drawn from g(Λ j;αn
g).

2. Updated values of {αg,cg} are obtained as the solution to the problem

{αg,cg}n+1 = argmin
αg,cg

R

∑
i=1

[
lnϕ(xt ;θ,Λi

j)− cg− lnk(Λi
j;αg)

]2
. (4.17)

3. The above steps are repeated until convergence in the values of the sampler parameters is

reached.

To obtain fast convergence, and to ensure continuity of corresponding likelihood estimates,

draws of
{

Λi
j

}R
i=1

are obtained by transforming a set of common random numbers (CRNs)

drawn from a canonical distribution (i.e., one that does not depend on αg). When convergence

is reached, the integral is given by

l̂ j (θ) =
1
N

N

∑
i=1

ωi, (4.18)

ωi =
ϕ(xt ;θ,Λi

j)
g(Λi

j; α̂g)
. (4.19)

When the sampling density is Gaussian, the minimization problem in (4.17) reduces to an

ordinary least squares problem. The above process can also be used to obtain smoothed values

of the latent variables. That is,

E(Λ j|Xt ,θ) =
∫

Λ jϕ(xt ;θ,Λ j)dΛ j∫
ϕ(xt ;θ,Λ j)dΛ j

. (4.20)
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Typically, draws from the EIS sampler g(Λ j; α̂g) are sufficient to compute the smoothed values

of the latent variables, i.e.,

Ê(Λ j|X j,θ) =

N
∑

i=1
Λ jωi

N
∑

n=1
ωn

. (4.21)

4.2.2 A Deterministic Procedure for Dating Recessions

Figure 4.1 shows that the local troughs in the tension index (Gt) tend to (mostly) coincide

with NBER-defined business cycle troughs. Thus the tension index appears to be a fairly

reliable indicator for NBER-defined recessions. Forecasts of growth from our model can

also be utilized to anticipate the occurrence of NBER-defined recessions. We propose a non-

stochastic recession-dating rule that utilizes growth rates and changes in the tension index to

determine if a recession has begun, and (conditional on a recession having begun), if it will

end at a particular quarter, automatically providing us its duration.

A popular rule-of-thumb method for dating recessions is the “two quarters of negative

growth” rule. An examination of quarterly growth data does show that each recession contains

at least two quarters of negative growth. Figure 4.1 shows that the starts of recessions typically

coincide with Gt decreasing rapidly. Also, all recessions were typified by Gt falling to a value

below −5. These two observations indicate that Gt has to decrease and become sufficiently

low for it to signify the possibility of a recession. In order to determine the change in Gt , it

was found to be optimal to utilize the difference in local averages of Gt . Thus, for each quarter

t, we compute a local change in average Gt as

∆Gt = G[t,t+3]−G[t−3,t], (4.22)

where G[t,t+3] represents the arithmetic mean of the tension index over the 4 period window

[t, t +3]. The rules of our procedure are summarized as follows.

• A period t can serve as a potential candidate for the start of a recession if at least two neg-

ative growth rates are observed in a four period forward-looking window in the windows
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[t, t + 3] are negative. For example, let t be the first period encountered with at least two

negative growth rates in the windows [t, t + 3]. Let t + k be the last contiguous period to

satisfy this criterion. That is, the sequence of dates t, t +1, ..., t +k serve as potential starts

for a recession.

• Given the sequence of potential start-dates ([t, t + k]), periods t + 3, t + 4, ..., t + k + 3 au-

tomatically serve as potential candidates for the end of the recession.

• Having identified a contiguous sequence of periods as potential start-dates, we choose the

optimal start-date according to the following criteria.

1. Periods with the tension index larger than -5 are eliminated.

2. Among the remaining periods, the one corresponding to minimum local change in

average tension index (∆G) is chosen as the optimal start-date. For the purposes of

illustration, let period t + j be the optimal start-date.

• Hence, the sequence of periods [t + j + 1, t + k + 3] serve as potential candidates for the

end of the recession. The optimal end-date for the recession is chosen as follows:

1. Periods with positive tension index values are eliminated.

2. Beginning with the last period in the remaining group of potential end-dates, we elimi-

nate periods with with contemporaneous growth rate greater than 2.75 and growth rate

greater than -5 in the preceding period. The first period not eliminated is the optimal

choice for the end of the recession.

Application of the above dating procedure to quarterly U.S. GDP data from 1950:III to

2008:I results in near accurate prediction of the starts and ends of recession. With the starts

of recessions, the algorithm was off by one quarter on three occasions (1969:III, 1979:IV

and 1981:IV were declared as starts for recessions whose NBER starts were 1969:IV, 1980:I

and 1981:III respectively). With the ends of recessions, the procedure was off on only one

occasion: the recession with the NBER dated end in 1991:I was determined to be at 1991:III

by our method.
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4.3 RESULTS

4.3.1 Estimation of Model Parameters and Smoothed Latent Drift Process

The sequence of regime-shift dates used to obtain the conditional ML parameter estimates are

illustrated in Table 4.1. Conditional and unconditional ML parameter estimates are reported

in Table 4.2. The data set consisted of quarterly U.S. GDP data (in chained 2000 dollars)

spanning third quarter of 1950 to the first quarter of 2008. A Monte Carlo sample size of

1000 was used to integrate over regime-shift dates in obtaining the unconditional estimates.

Computation of the likelihood function required the evaluation (using EIS) of one integral

for each regime. The size of the auxiliary regression (denoted R in the description above) was

500, and the Monte Carlo sample size used to compute the integral using the optimal sampling

density was also 500.

It is important to note that the data set used by DeJong et al. (2005) differs from that being

currently used. Hence, in the model comparisons that follow, the DeJong et al. (2005) model

was re-estimated using the new data set. Parameter estimates for the re-estimated model are

available upon request.

The parameter estimates (conditional ML) for γ and ν presented in Table 4.2 indicate a

strong error-correction effect. The autoregressive coefficient γ (0.3486 with std.err. 0.0391)

indicates non-trivial persistence for shocks. This implies a fairly strong proportional error

correction with an estimated ECM coefficient of 0.652 (1− γ). The second ECM coefficient

ν is estimated to be 0.2569 (s.e. 0.0483), indicating that past errors in the lagged tension

index also affect the GDP growth noticeably. These results are generally in line with those

obtained by DeJong et al. (2005), with coefficients (γ and ν) obtained from the current model

being slightly higher that those obtained from DeJong et al. (2005). Estimates characterizing

the distribution of lna j, lnb j, m j, lnσ2
j are also presented in Table 4.2. Note that there exists

strong (and statistically significant) correlation between lna j and lnb j. Correlations among

the remaining parameters are smaller. During model estimation, it was observed that the

correlation between lna j and lnb j is substantially higher in the relatively short regimes. The
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mean and variance of volatility parameter lnσ2
j were specified as being uncorrelated to the

parameters governing the latent drift process. The estimated mean of lnσ2
j is 2.0039. However,

the variance of this parameter estimated to be 1.0142 has relatively high asymptotic standard

error.

The smoothed means of the latent regime-parameters are illustrated in Figure 4.3. Note

that the last five values of lnσ2
j are lower than its mean value (2.0039), suggesting a definite

reduction in the volatility of GDP growth. However, it is difficult to explicitly account for

this trend in our model specification with only 17 available observations for the volatility.

We are left with the possibility of a specification error in our model. However, the increased

“sensitivity” of the latent-drift process implies that our model adjusts to new information very

quickly. While we may begin with a conservative forecast for the volatility of growth in a new

regime, the latent-process can adapt quickly to new information and correct its initial forecast

as required. A conservative initial-estimate for the volatility protects us from making extreme

assertions regarding the volatility of growth. Also, the model leaves the door open for possible

increases in the volatility of growth in the future.

The parameter estimates from unconditional estimation are also presented in Table 4.2.

In general, the parameters are fairly close to those obtained from the conditional estimation.

The two variables with significant differences (using standardized differences computed as

the ratio of the difference in the parameter estimates to the standard error of the conditional

estimates) are the covariance between lna j and lnb j, and the covariance between lnb j and m j.

The estimate of the former from the conditional model has significantly smaller standard error

relative to the standard error of the corresponding estimate from the unconditional model. The

latter (Cov(lnb j,m j)), however, is not statistically significant in either scenario. A comparison

of the parameters characterizing the latent-drift parameters reveals a general reduction in the

velocity and acceleration. This indicates a reduction in the curvature of the latent drift process.

As shown in Table 4.1, the probabilities associated with the “optimal” regime-shift dates

obtained by the conditional model are fairly high for most dates. Of the 17 regimes-change

dates, the associated probability of 10 were greater than 90%, 3 were between 80 and 90% and
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only 1 had probability weight less than 50% (1984:I). In contrast to the DeJong et al. (2005)

model, the current model assigns a 76% probability that a regime change occurred in the third

quarter of 2003. The DeJong et al. (2005) model does not detect a regime-shift at this quarter

with any significant probability. To understand this difference, the top-right panel in Figure 4.2

provides a comparison of the latent-drift processes and the ECM component of GDP growth.

While the latent-drift processes have similar trajectories in the two long regimes between

1984:II and 1999:IV, the last three regimes highlight the advantage of increased curvature of

the latent-drift in the DHLR model. The latent-drift in the DHLR model provides a better

fit to the ECM component, especially in the two short regimes between 2000:I and 2003:III.

In the short regime 2000:I-2003:III the latent-drift corresponding to the DHLR model begins

with a substantially higher initial velocity (as seen in the neighborhood of 2001:I) directly

contributing its superior fit and its detection of a regime-shift at 2003:III. In contrast, the

latent-drift process from DeJong et al. (2005) model is not sufficiently flexible to permit non-

zero initial velocities for its latent-drift process.

4.3.2 Evolution of Regime-Shift Probabilities

It is important to note that the set of optimal regime-shift dates in Table 4.1 were obtained

using the entire data set. In order to evaluate the ability of our model to anticipate future

regime-shift dates, we present the evolution of probabilities associated with there being a break

at the end-of-sample as new observations become available. For example, using the regime-

shift dates up to 1984:I and growth observations up to 1989:IV, the conditional model was

estimated. Probability of there being a regime-shift at each of the dates between 1984:II and

1989:IV (and there being none since 1984:I) was computed using the estimated parameters.

Including the next observation (1990:IV) for growth, the above exercise was repeated to obtain

the next set of regime-shift probabilities since 1984:I. Results from continuing this process

until 1992:IV, illustrates the ability of the model to anticipate the regime-shift at 1991:I (see

top-left panel of Figure 4.4). The entire exercise was repeated to predict each of the three

regime-shifts after 1991:I (1999:IV, 2001:III and 2003:III).
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The first panel in Figure 4.4 shows that the model predicts the regime-shift at 1991:I

very rapidly. At the very quarter it was realized, it received a probability weight of nearly

75%. By the next quarter, the probability of no regime-shift decreases to a small number.

Correspondingly, Figure 4.1 shows that the tension index turned very sharply around 1991:I.

However, the detection of the regime-shift at 1999:IV was not quite as rapid. The probability

of a regime-shift at 1999:IV (top-right panel of Figure 4.4) reaches a peak of nearly 85%

about seven quarters after that date. Despite the slow increase of the regime-shift probability,

alternative scenarios receive little weight. The regime-shift at 1999:IV also corresponds to

a long and slow upward evolution of the tension index as seen in Figure 4.1 with the local

peak not as pronounced as the local trough near 1991:I. The regime-shift at 2001:III received

a maximal probability of nearly 70% five quarters after the event. With all three of the above

regime-shift dates, we could have been fairly certain of there being a shift very rapidly as few

alternative dates received much weight.

Prediction probabilities for the regime-shifts were re-computed using DeJong et al. (2005)

model. Since a majority of the results do not change substantially from those reported in

the DeJong et al. (2005) paper, we do not report the new results (except for the regime-shift

at 2003:III). Figure 4.2 illustrates the behavior of the drift process in the DHLR model is

similar to that in the DeJong et al. (2005) model during long regimes. In short regimes, the

drift process in the DHLR model exhibits increased non-linearities. A direct implication of

the increased non-linearities is apparent when we compare the ability of the two models in

anticipating the regime-shift at 2003:III. Figure 4.5 illustrates the prediction probabilities of

the regime-shift at 2003:III using the DeJong et al. (2005) model. Compared to the lower-right

panel on Figure 4.4, it is immediately apparent that the DeJong et al. (2005) model does not

assign any substantial weight to a regime-shift at 2003:III. Even with the GDP data for 2008:I,

the probability accorded to a regime-shift at 2003:III is just a 1
2%. In contrast, the DHLR

model (lower-right panel, Figure 4.4) assigns a peak probability of nearly 80% by 2006:IV.

Note, from Figure 4.1, that the local peak in the tension index near 2003:III is substantially

muted when compared to other peaks. However, the improved fit of the non-linear mt process
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(Figure 4.2) permits the model to detect a regime-shift at 2003:III.

4.3.3 Comparison of Forecasting Performance

In addition to detecting shifts of the economy from regimes of general expansion to gen-

eral contraction (and vice-versa), we utilize the DHLR model to obtain forecasts of GDP

growth. In light of the interesting debate in literature regarding the benefit conferred by non-

linear models vis-à-vis forecasting, we present comparisons of forecasting performance of the

DHLR model with the linearized version of the DHLR model, the DeJong et al. (2005) model

and the random-walk model.

Along similar lines as Marcellino (2008), we obtain one-period-ahead out-of-sample fore-

casts of growth rate beginning from the first quarter of 1988 to the last quarter of 2007 (78

quarters). Beginning with the data set truncated at 1988:I, the DHLR model was estimated

and a one-period-ahead forecast for GDP growth was obtained by aggregating over 50000

simulated draws of growth. With the inclusion of a new observation for the growth, the model

was re-estimated and forecasts obtained from the re-estimated model. A similar procedure

was used for obtaining forecasts from the DeJong et al. (2005) model and the random-walk

models.

The linearized version of the DHLR model was created by replacing the non-linear mt

process with a linear approximation. Thus, for each of the terminal dates, the ECM component

of growth (yt + νGt−2− γyt−2) was computed using the parameters (ν,γ) obtained from the

DHLR model. To this, we fit a linear trend using ordinary least squares. The modified DGP

corresponds to an ARMA(3,1) process with a linear drift. As above, forecasts were obtained

by aggregating over 50000 simulated draws of one-period-ahead growth.

Forecasts from both the DeJong et al. (2005) and the linearized DHLR models are com-

puted conditional on the sequence of regime-shift dates obtained by the DHLR model; making

the forecast comparisons much more robust. Following conventional practice, we include the

drifting random-walk model in our comparison. The long horizon of 78 quarters comprises of

both long and short regimes. By 1988:I, the first of the two long regimes observed in the 1980s
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and 1990s was well underway. During this and the next regimes, the DHLR and DeJong et al.

(2005) models performed similarly when anticipating regime-shifts and this similarity is also

observed in their forecasting performances.

Table 4.3 reports the root-mean-squared-error (RMSE) and root-variance-squared-error

(RVSE) statistics of the forecast errors for each model. The RMSE values were computed as

the average of the squared differences between the point forecasts of growth and the actual

growth rates. RVSE was computed as the variance of the squared forecast errors. Since the

forecast period extended across regimes, the regime-wise comparisons are presented first and

the overall RMSE and RVSE can be found in the last two rows of the table. The DHLR and

DeJong et al. (2005) models perform similarly during the long regimes. The difference in

RMSE values between the two models is larger during the short regimes. The DHLR model

outperforms the random-walk specification in all the regimes and in the overall comparison.

Importantly, the DHLR model has lower forecast errors relative to the linearized version;

highlighting the added benefit of non-linearities in forecasting growth. We can also note that

the variance of the squared forecast errors of the DHLR model are substantially smaller than

those of the linearized version. Interestingly, the DeJong et al. (2005) model also outperforms

the linearized DHLR model, reiterating the importance of non-linearities in capturing the

trajectory of growth in different regimes.

4.3.4 Forecasting Future Growth Rates and Recessions

We present forecasts of future growth (conditional on a regime-shift having occurred at spe-

cific quarters) from both the DHLR and DeJong et al. (2005) models. Over an eight-quarter

horizon beginning from 2008:II, forecasts are obtained by simulating trajectories of growth

rate and regime-shift probabilities. For example, as the simulation of a sequence proceeds

from the start of the forecast horizon, regime-shift occurs at a quarter with the probability com-

puted using (4.2). Conditional on a regime-shift having occurred at a quarter, the latent-drift

process is re-initialized using new draws of the latent variables; and the simulation continues.

Half a million trajectories of growth were simulated and were classified on the basis of the
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occurrence of a regime-shift. Figure 4.6 illustrates the probabilities of a regime-shift occurring

during the eight quarters beginning with 2008:II using the DHLR model. This probability

represents the fraction of sequences that experienced a regime-shift at the specific quarter.

The probability of a regime-shift reaches a peak at the third quarter of 2009. The probability

of no regime-shift occurring during the eight-quarter horizon is just 2%. The lower panel in

Figure 4.6 illustrates the trajectory of mean-growth, conditional on regime-shifts. Conditional

on a regime-shift having occurred, the growth rate shifts to an upward trajectory. Also, later

regime-shifts tend to produce further decreases of the growth rate into negative territory before

the shift.

In contrast, the DeJong et al. (2005) model (Figure 4.7) predicts that a regime-shift is

highly unlikely (85% probability). Compared to the DHLR model, the conditional growth

trajectories generally show less severe negative growth rates before the shift and, correspond-

ingly, lower positive growth rates after a regime-shift. This difference in forecasting behavior

can be directly attributed to the behavior of the latent-drift process. As Figure 4.2 indicates,

the latent drift process of the DHLR model “dips” much lower than that of the DeJong et al.

(2005) model in the neighborhood of 2008. This increased curvature of the drift process leads

to the realization of more negative growth rates, leading to a decrease in the tension index

resulting in the higher possibility of a regime-shift.

Finally, we obtain forecasts of the probability of a recession in the near future by apply-

ing the deterministic recession dating procedure to forecast trajectories of growth and tension

index. For each simulated growth trajectory, the optimal start-quarter for a recession was com-

puted using the deterministic rule-based procedure. Conditional on a recession having started

at the above quarter, the optimal end-quarter was also computed, automatically providing us

the length of the regime.

Utilizing 500000 simulated trajectories of growth and the tension index (unconditional of

regime-shifts), the probabilities of a recession starting at 2008:II is found to be nearly 44%

by the DHLR model. As the top panel of Figure 4.8 indicates, the probability of the start of

a recession does not fall below 10% until the second quarter of 2009. The probability that no
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recession will occur is found to be around 15%. The lower panel in Figure 4.8 indicates that

the recession would most likely be four quarters long (41%). Correspondingly, the middle

panel shows most simulated recessions ending by 2010:III with the bulk of recession-end

quarters clustered around 2009:III.

As noted above, the DeJong et al. (2005) model predicts lower probabilities of a regime

shift and hence fewer trajectories with negative growth to cause a decrease in the tension index.

Thus, only the trajectories with a later regime-shift lead to lower growth rates and decreases

in the tension index. The top panel of Figure 4.9 shows that the DeJong et al. (2005) model

typically predicts recessions starting much later with the most probable quarter being 2010:II.

With typical recessions lasting 4-6 quarters (lower panel Figure 4.9), most recessions end in

the neighborhood of 2011:II.

4.4 CONCLUSION

We have presented a non-linear regime-switching model of GDP growth that exhibits sub-

stantial non-linearities required for the accurate detection and prediction of transitions of U.S.

economy from a recession to an expansion or vice versa. This increased non-linearity of the

latent drift process governing growth in any given regime allows for a better fit of the model

and substantially enhanced sensitivity to fluctuations in growth that might be indicative of

regime-changes. The distributional characterization of the parameters governing the latent

drift process is sufficiently broad to withstand mild trends in the latent parameters. Results

from regime-shift prediction and in-sample forecasting exercises amply illustrates the benefits

of the new model specification over the DeJong et al. (2005) model. We also present a deter-

ministic rule-based method for dating recessions. Forecasts using this method indicates that a

recession is highly likely in the next few quarters.
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4.5 TABLES AND FIGURES

Table 4.1: Regime-Shift Dates and Estimated Probabilities

Break Estimated Break Estimated
No. Date Probability No. Date Probability
1 1953:IV 0.991 10 1978:II 0.992

2 1955:I 0.949 11 1980:II 0.990

3 1958:I 0.998 1983:IV 0.365
12 1984:I 0.432

1959:I 0.141 1984:II 0.103
4 1959:II 0.859

13 1991:I 0.976
5 1960:IV 0.991

1997:III 0.100
1965.III 0.093 1998:IV 0.066

6 1965:IV 0.680 14 1999:IV 0.638

7 1970:IV 0.952 2001:II 0.035
15 2001:III 0.845

8 1973:I 0.898 2001:IV 0.061

9 1974.III 0.853 16 2003:III 0.766
2003:IV 0.075
2004:III 0.073

Note: Regime-Shift Dates are in Boldface, other dates that receive non-negligible probability weights are also listed.

107



Table 4.2: Parameter Estimates

Conditional ML Unconditional ML

Parameter Estimate Asym. Std. Error Estimate Asym. Std. Error
ν -0.2569 0.0483 -0.2489 0.1168
γ 0.3486 0.0391 0.3239 0.0629

β0 10.7660 0.8336 10.1935 1.1484
β1 1.2396 0.0830 1.2894 0.2285
δ 0.5869 0.1792 0.5784 0.2639

lna j -2.7822 0.2390 -2.9235 0.6969
lnb j -1.1173 0.2201 -1.3093 0.4154
m j 0.4116 0.1456 0.3098 0.1315

lnσ2
j 2.0039 0.2730 2.0150 0.5161

Cov(lna j, lnb j) 0.6262 0.0390 0.5797 0.2020
Cov(lna j,m j) 0.0042 0.0167 0.0173 0.01639
Cov(lnb j,m j) -0.0314 0.0380 -0.0799 0.1858

Var(lna j) 0.9045 0.2589 0.9287 0.3636
Var(lnb j) 0.4593 0.1599 0.4409 0.1629
Var(m j) 3.4960 0.4654 3.3574 0.5273

Var(lnσ2
j) 1.0142 0.5387 0.9717 0.5767

Log-Likelihood -611.35554 -604.903793

Note: The sequence of regime-shift dates used for Conditional Maximum Likelihood are reported in Table 4.1.
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Table 4.3: In-Sample Forecast Performance.

DHLR DLR (2005) mt -Linear Random Walk
1988:II to 1991:I

Root Mean Squared Error 2.169 2.175 2.653 2.476
Root Variance Squared Error 4.538 5.778 6.861 4.965

1991:II to 1999:IV
Root Mean Squared Error 1.637 1.718 2.065 2.196
Root Variance Squared Error 2.866 2.964 5.700 5.388

2000:I to 2001:III
Root Mean Squared Error 2.947 3.301 3.945 4.372
Root Variance Squared Error 7.186 9.938 8.350 15.992

2001:IV to 2003:III
Root Mean Squared Error 2.155 2.234 2.878 2.196
Root Variance Squared Error 8.065 8.613 10.617 5.380

2003:IV to 2007:IV
Root Mean Squared Error 1.525 1.628 2.265 2.221
Root Variance Squared Error 2.130 2.189 6.212 6.437

1988:II to 2007:IV
Root Mean Squared Error 1.904 2.013 2.503 2.509
Root Variance Squared Error 4.692 5.587 7.578 8.183

Forecast errors were computed using one-period-ahead forecasts of growth.
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Figure 4.1: Tension Index and NBER-Recessions
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Figure 4.2: Comparison of the Latent Drift Process mt .
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Figure 4.3: Smoothed Values of the Latent Variables.

Panel (A)→ a j , (B)→ b j , (C)→ m j , (D)→ lnσ2
j .
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Figure 4.4: Predicting regime shifts using the DHLR Model.
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Figure 4.5: Predicting the regime shift at 2003:III using the DeJong et al. (2005) Model.
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Figure 4.6: Forecasts of regime-shift probabilities and growth from the DHLR model.

Top Panel: Probability of a regime-shift at each quarter.
Bottom Panel: Mean forecast growth trajectories conditional on a regime shift at each quarter over the forecast horizon.

115



Figure 4.7: Forecasts of regime-shift probabilities and growth from the DeJong et al. (2005)

model.

Top Panel: Probability of a regime-shift at each quarter.
Bottom Panel: Mean forecast growth trajectories conditional on a regime shift at each quarter over the forecast horizon.
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Figure 4.8: Recession Dating using DHLR Model.

Top Panel: Probability of a recession beginning at each quarter (including the probability of no recession in the forecast horizon).
Middle Panel: Conditional on a recession having started, the probability of recession ending at a particular quarter.

Bottom Panel: Probabilities of recession lengths.
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Figure 4.9: Recession Dating using DeJong et al. (2005) Model.

Top Panel: Probability of a recession beginning at each quarter (including the probability of no recession in the forecast horizon).
Middle Panel: Conditional on a recession having started, the probability of recession ending at a particular quarter.

Bottom Panel: Probabilities of recession lengths.
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APPENDIX A

BEARINGS-ONLY TRACKING MODEL

A.1 SINGULAR CASE

Derivation of χt(θt)

For ease of notation we suppress t subscripts. The kernel gs (s) defined in (2.69) depends

upon the quadratic form

γ(s) =

 ρeθ

β

′P
 ρeθ

β

−2

 ρeθ

β

q. (A.1.1)

We partition P and q conformably with (ρe′
θ

β′) into

P =

 P11 P12

P21 P22

 , q =

 q1

q2

 . (A.1.2)

Standard Gaussian algebra operations (square completion in β and ρ successively) produce

the following expressions for γ(s) :

γ(s) = (β−bθ)
′P22 (β−bθ)+aθ (ρ− rθ)

2− s2
θ, (A.1.3)

bθ = P−1
22 (q2−ρP21eθ) , aθ = e′θP11.2eθ, (A.1.4)

P11.2 = P11−P12P−1
22 P21, (A.1.5)

rθ =
1
aθ

(
q1−P12P−1

22 q2
)′

eθ, s2
θ = aθr2

θ +q′2P−1
22 q2. (A.1.6)
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It follows that χ(θ) , as defined in (2.71), is given by

χ(θ) = 2π|P22|−1dθ exp
(

1
2

s2
θ

)
, (A.1.7)

dθ =
∫

∞

0
ρexp

(
−1

2
aθ (ρ− rθ)

2
)

dρ. (A.1.8)

Introducing the transformation of variables

φ =
√

aθ (ρ− rθ) , (A.1.9)

dθ can be written as

dθ =
1
aθ

∫
∞

−cθ

(φ+ cθ)exp
(
−1

2
φ

2
)

dφ (A.1.10)

=
1
aθ

[
exp
(
−1

2
c2

θ

)
+ cθ

√
π

2

(
1+ erf(

cθ√
2
)
)]

, (A.1.11)

with cθ = rθ

√
aθ > 0, and erf() denoting the error function

erf(z) =
2√
π

∫ z

0
exp(−φ

2)dφ. (A.1.12)

(The properties of erf() are discussed, e.g., in Abramowitz and Stegun, 1972). In deriving

(A.1.11), we have exploited the fact that rθ > 0.

CRN-EIS draws of (β,ρ,θ)

An EIS draw of (β,ρ,θ) obtains from a CRN draw (u1,u2,u3,u4), where (u1,u2) denotes

two U(0,1) draws and (u3,u4) two i.i.d.N(0,1) draws, through the following sequence of trans-

formations: (i) θ obtains from u1 by inversion of the cdf associated with the piecewise loglin-

ear EIS sampler m(θ). (ii) ρ|θ obtains from u2 by inversion of the cdf associated with

m(ρ|θ) =
1
dθ

ρexp
(
−1

2
aθ (ρ− rθ)

2
)

, ρ > 0. (A.1.13)

Details of this transformation are provided below. (iii) β|ρ,θ obtains from the transformation

β = bθ +L

 u3

u4

 , (A.1.14)

where L denotes the Cholesky decomposition of P−1
22 .
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Regarding step (ii), ρ|θ obtains from the transformation of (A.1.9), rewritten as

ρ =
1
√

aθ

(φ+ cθ) , (A.1.15)

where the density of φ|θ is given by

fφ (φ|θ) =
1

dθaθ

(φ+ cθ)exp
(
−1

2
φ

2
)

, φ >−cθ, (A.1.16)

with cdf
Fφ (φ|θ) = 1

dθaθ
{
[
exp
(
−1

2c2
θ

)
− exp

(
−1

2φ2
)]

+cθ

√
π

2

[
erf
(

φ√
2

)
+ erf

(
cθ√

2

)]
}

, (A.1.17)

accounting for the fact that erf(−z) =−erf(z). For the application described in Section 5.4, cθ

turns out to be significantly larger than zero, so that φ is nearly N(0,1). Thus for the inversion

of the CRN u2 ∼ U(0,1), we take as a starting value the corresponding (inverse) Gaussian

draw φ(0) ∼ N(0,1) and iterate once or twice by Newton

φ
(k+1) = φ

(k)−
F
(
φ(k)|θ

)
−u2

F
(
φ(k)|θ

) . (A.1.18)

Derivation of f (λt+1|Yt)

We again suppress t subscripts for ease of notation; accordingly, the index t +1 is replaced

by +1. The product gλ (λ) f (α+1|λ) in (2.81) depends on the quadratic form

δ(α+1,λ) = (λ′Pλ−2λ
′q)+(α+1−Aλ)′Ω−1 (α+1−Aλ) . (A.1.19)

It is transformed into a quadratic form in (α,λ+1) via the inverse Dirac transformation (2.80)

δ1 (α,λ+1) = δ(α+1,λ) |β=ψ(λ+1,α). (A.1.20)

This implies the following two transformations:

λ|β=ψ(λ+1,α) = C

 α

λ+1

 , (α+1−Aλ) |β=ψ(λ+1,α) = D

 α

λ+1

 , (A.1.21)

(A.1.22)
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with C and D respectively being 4×6 and 2×6 matrices partitioned in 2×2 blocks:

C =

 I2 0 0

−2I2 2I2 −I2

 , D = (I2 − I2 I2) .

Thus

δ1 (α,λ+1) =

 α

λ+1

′M
 α

λ+1

−2

 α

λ+1

′m, (A.1.23)

M = C′PC +D′Ω−1D, m = C′q. (A.1.24)

Note that δ1 (α,λ+1) is functionally similar to γ(s) in (A.1.1), with β replaced by λ+1.

Therefore, the subsequent transformations of δ1 (α,λ+1) are similar to those of γ(s) outlined

above, except that integration in (ρ,θ) is conditional on λ+1, since it is f (λ+1|Y ) that is now

being evaluated. M and m are partitioned conformably with
(
α′ λ′+1

)
as

M =

 M11 M12

M21 M22

 , m =

 m1

m2

 .

After transformation from α to (ρ,θ), δ1 (α,λ+1) becomes

δ∗ (ρ,θ+1,λ+1) = λ
′
+1M22λ+1−2λ

′
+1m2 +a∗θ (ρ− r∗

θλ
)2− c∗

θλ
, (A.1.25)

with

a∗θ = e′θM11eθ, r∗
θλ

=
1
a∗

θ

(m1−M12λ+1)
′ eθ, c∗

θλ
= r∗

θλ

√
a∗

θ
.

Regrouping (A.1.22) and integrating with respect to ρ, we obtain

f (λ+1|Y ) =
|Ω|− 1

2

2π
exp
{
−1

2
(λ′+1M22λ+1−2λ

′
+1m2)

}
(A.1.26)

×
∫ [ 1

χ(θ)
d∗

θλ
exp
(

1
2

c∗2
θλ

)]
m(θ)dθ,

where d∗
θλ

obtains from (A.1.11) by substituting
(
a∗

θ
,c∗

θλ

)
for (aθ,cθ) . Since m(θ) is typically

a tight density in our application, the variance of the terms between brackets under the integral

sign is expected to be minimal, and the integral in (A.1.26) can be estimated accurately by MC

using the same EIS draws from m(θ) used for the evaluation of `t .
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A.2 NON-SINGULAR CASE

The computation of χ(θ) and CRN-EIS draws of (β,ρ,θ) are the same as for the singu-

lar case. The derivation of f (λt+D|Yt) under the non-singular transition defined in (2.90)

is straightforward. As above, we suppress the index t, and replace t +D by +D. The product

gλ (λ) f (λ+D|λ) in (2.92) depends on the quadratic form

δ(λ+D,λ) = (λ′Pλ−2λ
′q)+(λ+D−ADλ)V−1

D (λ+D−ADλ) , (A.2.1)

which is rewritten as

δ(λ+D,λ) = (λ′P0λ−2λ
′q0)+λ

′
+DV−1

D λ+D, (A.2.2)

with

P0 = P+A′DV−1
D AD, q0 = q+A′DV−1

D λ+D.

The integration with respect to λ in (A.1.26) proceeds exactly as described in the singular

case, except that (P,q) are replaced by (P0,q0). Thus f (λ+D|Y ) is given by

f (λ+D|Y ) =
|VD|−

1
2

2π
exp
{
−1

2
(
λ
′
+DV−1

D λ+D
)}

(A.2.3)

×
∫ [ 1

χ(θ)
d0

θλ
exp
(

1
2
(
s0

θλ

)2
)]

m(θ)dθ,

where s0
θλ

and d0
θλ

are defined by (A.1.6) and (A.1.8), with (P,q) replaced by (P0,q0) . The EIS

evaluation of (A.2.3 ) parallels that of f (λ+|Y ) in (A.1.26).
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APPENDIX B

PSEUDO-CODE FOR GAUSSIAN EIS

Without loss of generality, let the integral being computed be denoted as

ℵ =
∫

ϕ(x)dx. (B.1.1)

With Gaussian-EIS, the importance sampler is a Gaussian distribution, i.e., g(x;a) in equation

(3.13) is a Gaussian density. The mean and variance of the sampler become the auxiliary

parameters.

Step 1: (Initialize Sampler g(x;a)) Choose the initial value of the auxiliary parameters al ,

l = 0 : the mean and variance of the gaussian density g(x;a).

Step 2: (Recursive Optimization) The objective is to obtain optimal values of the auxiliary

parameters. The following steps are repeated until convergence.

1. Draw R values of x from g(x;al); denote these draws as
{

xl
i

}R
i=1 .

2. Obtain updated values of al+1 as the solution to the least squares problem,

(a,co)l+1 = argmin
a,c

R

∑
i=1

[
lnϕ(xl

i)− co− lng(xl
i;a)
]2

, (B.1.2)

where co is an intercept meant to calibrate ln
(

ϕ(x)
g(x;a)

)
. (Details on the least-squares

problem are provided below.)

3. Check for convergence.
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Once convergence is reached, we have the optimal mean and variance of the EIS sampling

density: â. As emphasized by DeJong et al. (2007), draws of x from the importance

sampler are obtained by transforming a fixed set of random numbers from a canonical

distribution (in the present case, standard normal). The set of canonical draws are referred

to as “Common Random Numbers” or CRNs.

Step 3: (Likelihood Evaluation) Draw N values {xi}N
i=1from the optimal EIS sampling den-

sity g(x; â). The IS estimate of the integral and the EIS weights are given by

ℵ̂N =
1
N

N

∑
i=1

ω
i
t , (B.1.3)

ωi =
ϕ(xi)

g(xi; â)
. (B.1.4)

Details on the Auxiliary Regression in Gaussian-EIS

Let x be a j-dimensional variable with elements (x1,x2, ...x j). Then the auxiliary param-

eters a are the j× 1 vector of means and the j× j covariance matrix. Since the covariance

matrix is symmetric, the number of auxiliary parameters reduces to j + j( j +1)/2.

We take al as given, initialized by a0. Hereafter, we will drop the superscript l and describe

a single iteration of the auxiliary regression.

Let the mean vector associated with a be denoted by µ, and the precision matrix (the

inverse of the covariance matrix) by H. The setup of the LS problem arises from the approxi-

mation lnϕ(x) by a gaussian kernel:

lnϕ(x) ∝ −1
2
(x−µ)′H(x−µ)

∝ −1
2

(x′Hx−2x′Hµ) .

The term x′Hx can be written as,

(
x1 x2 . . x j

)


h11 h21 . . h1 j

h21 h22 . . h2 j

. . . . .

. . . . .

h j1 h j2 . . h j j





x1

x2

.

.

x j


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= h11
(
x2

1

)
+h22

(
x2

2

)
+ ...+h j j

(
x2

j

)
+2h21 (x2x1)+2h31 (x3x1)+ ...+2h j1 (x jx1)

+2h32 (x3x2)+2h42 (x4x2)+ ...+2h j2 (x jx2)

...

+2h j( j−1) (x jx j−1) .

From the above decomposition it is evident that the coefficients of the squares, pairwise

products and the individual components of x are in one-to-one correspondence with the means

and precision matrix of the gaussian approximation. Thus, the LS problem reduces to the

regression of lnϕ(x) on[
1,x2

1,x
2
2, ...,x

2
j , x1x2,x1x3, ...,x j−1x j, x1, ...,x j

]
. For a j-dimensional variable x, the num-

ber of regressors is
(

1+ j + j( j+1)
2

)
.

As a concrete example, consider a 3-dimensional problem where x = [x1,x2,x3]. The re-

gression reduces to

lnϕ(s) = λ0 +λ1
(
x2

1

)
+λ2

(
x2

2

)
+λ3

(
x2

3

)
+λ4 (x2x1)+λ5 (x3x1)+λ6 (x3x2)

+λ7x1 +λ8x2 +λ9x3.

Having obtained the LS estimates, the updated precision matrix is given by

h11 = −2λ1; h22 =−2λ2; h33 =−2λ3

h21 = −λ4; h31 =−λ5; h32 =−λ6.

The updated means can be obtained by using the coefficients (λ7,λ8,λ9):

µ = H−1


λ7

λ8

λ9

 .
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When st is univariate, the LS problem reduces to the regression

lnϕ(x) = λ0 +λ1x+λ2x2.

The updated mean and variance can be written as

σ
2 = − 1

2λ2
,

µ = −1
2

λ1

λ2
.
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APPENDIX C

EIS WITH THE META-GAUSSIAN SAMPLER (EXAMPLE 1)

As above, we denote the integral to be computed as

ℵ =
∫

ϕ(x)dx. (C.1.1)

The importance sampler (g(x;a) in equation 3.13) consists of two piecewise-continuous den-

sity approximations for the margins and the meta-Gaussian copula. The following sequence of

operations describes the process of computing the optimal meta-Gaussian importance sampler.

Step 1: (Initialize Sampler g(x;a))

1. The margins are initialized by choosing R uniformly spaced nodes in the space of each

margin over which the piecewise density approximation will be constructed.

2. The copula parameter (ρ) is initialized (typically to zero). R draws of x̃ (= [x̃1, x̃2]′)

are obtained from a bivariate normal density with zero mean and correlation ρ by the

transformation of a fixed set of random numbers (CRNs).

3. Draws of x̃1 and x̃2 are converted to x1 and x2 using the transformation in equation

(3.19). At this stage, the marginal distributions are simply uniform over the chosen

intervals.

Step 2: (Piecewise approximations for the margins) The procedure for creating the piecewise-

continuous density approximation is described in DeJong et al. (2007).
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1. The first step requires the computation of the target density at the R nodes in the

uniformly spaced grid in each margin. This is accomplished using kernel density

estimation.

2. Subsequent steps replicate the process outlined in DeJong et al. (2007).

Having created the piecewise density approximations for the margins, they remain fixed

and are not updated in the ensuing steps.

Step 3: (The optimal correlation ρ) With the distributions of the margins determined, the

optimal correlation parameter is computed by a process similar to the Gaussian-EIS out-

lined above. Given any value of the correlation parameter ρ, draws from the copula density

are obtained by the following procedure.

1. Draw R values of x̃ from a bivariate normal density with zero mean and correlation ρ

by the transformation of a fixed set of random numbers (CRNs).

2. Convert draws of x̃ to x using the inverse of the transformation in equation (3.19).

Analogous to the procedure outlined above, the setup of the LS problem arises from the

approximation lnϕ(x) by the bivariate meta-Gaussian density (3.21). Omitting the param-

eters associated with the marginals

lnϕ(x)− ln( f1(x1))− ln( f2(x2)) ∝
−1

2(1−ρ2)
[
x̃2

1−2ρx̃1x̃2 + x̃2
2

]
(C.1.2)

Practical experience suggested that the omission of the marginal densities did not ad-

versely affect the estimation of ρ. Hence, the least squares problem simplifies to the

regression

lnϕ(x) = λ0 +λ1x̃1x̃2 (C.1.3)

Updated values of ρ can be obtained by transforming the LS coefficient λ1. From the

above expression

λ1 =
ρ

1−ρ2 . (C.1.4)

The resulting quadratic equation in ρ has two real roots.

ρ =

√
4λ2

1 +1±1
2λ1

(C.1.5)
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It can be noted that one root is the reciprocal of the other. Hence, one of them is always

between −1 and 1. This process is repeated until convergence in ρ.

Step 4: (Likelihood Evaluation) Draw N values {xi}N
i=1from the optimal meta-Gaussian cop-

ula sampler using the procedure outlined above. The IS estimate of the integral and the

EIS weights are given by

ÎN =
1
N

N

∑
i=1

ω
i
t , (C.1.6)

ωi =
ϕ(xi)

g(xi; â)
(C.1.7)

where g(x; â) is the meta-Gaussian importance sampling density.
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APPENDIX D

INITIALIZING THE EIS PROCEDURE

The measurement equations for y̆t and ĭt can be linearized around their steady state values as

 y̆t

ĭt

=

 ψ0
y

ψ0
i

+

 M11 M12 M13

M21 M22 M23




K̆t

ln Ăt

lnV̆t

+

 ηy

ηi

 . (D.1.1)

Components of the matrix M are obtained using the derivatives of 3.37 and 3.38 with respect

to the state variables evaluated at steady state:

M11 =
[

∂

∂K̆t

(
Ăt(utK̆t)α

)]
ss

=
αy̆

K̆
(D.1.2)

M12 =
[

∂

∂Ăt

(
Ăt(utK̆t)α

)]
ss

[
∂Ăt

∂ ln Ăt

]
ss

= y̆ (D.1.3)

M13 =
∂Ăt(utK̆t)α

∂ lnV̆t
= 0 (D.1.4)

M21 =
[

∂ĭt
∂K̆t

]
ss

= M11−
[

∂c̆t

∂K̆t

]
ss

(D.1.5)

M22 =
[

∂ĭt
∂ ln Ăt

]
ss

= M12−
[

∂c̆t

∂Ăt

]
ss

Ă (D.1.6)

M23 =
[

∂ĭt
∂ lnV̆t

]
ss

=
[

∂c̆t

∂V̆t

]
ss

V̆ . (D.1.7)
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Hence, the linearized versions of the measurement equations can be written as

y̆t = ψ
0
y +M11K̆t +M12Ăt +ηy (D.1.8)

ĭt = ψ
0
i +M21K̆t +M22Ăt +M22V̆t +ηi, (D.1.9)

where, the constants ψ0
y and ψ0

i are given by

ψ
0
y = y̆(1−α− ln Ă) (D.1.10)

ψ
0
i = ĭ−M21K̆−M22 ln Ă−M23 lnV̆ . (D.1.11)

The derivatives of the consumption function with respect to latent variables can be computed

by finite difference of the Chebyshev polynomial approximation created earlier. The linearized

measurement equations provide an approximate conditional density for the observable vari-

ables. A density for the state variables conditional on the current observations can be obtained

by combining the approximate (Gaussian) measurement density obtained above.

The linear approximation to the measurement equations can be written as y̆t−ψ0
y

ĭt−ψ0
i

∼ N2 (Ψst ,Ξ) , (D.1.12)

where

Ψ =

 M11 M12 M13

M21 M22 M23

 , (D.1.13)

and

Ξ =

 σ2
y 0

0 σ2
i

 . (D.1.14)

Let the approximate density for the state variables be written as

f (st)≈ N3 (µ,Ω) . (D.1.15)

The joint density can then be written as

f


y̆t−ψ0

y

ĭt−ψ0
i

st

≈ N5

 Ψµ

µ

 ,

 Ξ+ΨΩΨ′ ΩΨ′

ΨΩ Ω

 . (D.1.16)
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Transforming the above density provides a conditional (Gaussian) density for the state vari-

ables with a mean

µ+ΨΩ [Ξ+ΨΩΨ
′]−1

 y̆t−ψ0
y

ĭt−ψ0
i

−Ψµ

 (D.1.17)

and variance

Ω−ΨΩ [Ξ+ΨΩΨ
′]−1

ΩΨ
′. (D.1.18)

Generally, utilizing a Gaussian approximation for the period-(t−1) filtering density ( f (st−1|Xt−1),

linearization of the state-transition equations provides a Gaussian approximation to the pre-

diction density depicted in equation (D.1.15). In the DSGE example presented, ln Ăt and lnV̆t

are independent of the past. Hence, corresponding Gaussian approximations are readily avail-

able. The transition in K̆t alone requires linearization and can be accomplished by a procedure

similar to that illustrated above.
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