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Wounds in diabetes are difficult to heal. Current standard strategy employs series of medical 

treatments to clean and remove the infected tissue, and keep moisture with adequate blood 

supply. However, the standard treatments may not be sufficient enough. According to ADA, 

there are an increasing number of amputation cases in diabetes. In this thesis, recent development 

of therapies in wound healing is reviewed and results of using a TGF-β1 plasmid DNA or stem 

cells in genetically diabetic mouse model are reported.  

In previous study, we have found that the diabetic wound healing has been improved by 

intradermally injecting TGF-β1 plasmid DNA.  This finding supports the feasibility of using 

naked DNA as a therapeutic approach for treating diabetic wounds. Since naked DNA approach 

yields low efficiency of gene transfer, we seek strategies that can enhance the gene expression. 

Hydrogel as well as electroporation which involves an application of electric pulses has been 

shown to enhance gene transfection. On the other hand, electrical stimulation (ES) which 

involves the application of a different condition of electric pulses from electroporation or 

hydrogel wound dressing has been shown to improve wound healing. In this thesis project, we 

develop a more effective strategy to improve diabetic wound healing by combining the available 

wound therapy and gene therapy. 

However, application of exogenous single cytokine gene may not be sufficient for severe wound 

problems. Owing to the self renewal and multipotent characteristics of stem cells, stem cells may 

have the potential to differentiate into some of the essential cells in wound healing such as 

 iv



macrophages, keratinocytes and fibroblasts. We develop a strategy to topically apply three 

different types of stem cells individually with the thermosensitive hydrogel in an attempt to 

improve wound repair.  

Three new strategies in this thesis project are reported. (1) Intradermal injection of TGFβ-1 

plasmid DNA followed by electroporation or (2) Topical application of TGFβ-1 plasmid DNA 

with themosensitive hydrogel made of PEG-PLGA-PEG triblock copolymer. (3)  Topically 

application of the thermosensitive hydrogel with three different types of stem cells: muscle 

derived stem cell, mesenchymal stem cells or hematopoietic stem cells.  
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1.0 INTRODUCTION  

 

 
Wound healing impairment is a complication of diabete mellitus, which affects dominately the 

people in the developed countries. There are two common types of diabetes: Type I (10%) and 

Type II (90%). According to American Diabetes Association (ADA), 18,000,000 people were 

diagnosed with diabetes in the United States in 2002 and 15% (approximately 2,400,000) will 

develop ulcers and risk of amputation (Pecoraro et al 1990). There has been an increasing 

number of amputations among diabetic patients. According to a recent statistics report by ADA 

in 2001, 84,000 more cases of amputation among diabetics are performed each year, or 

approximately 2-fold increase each year. Furthermore, the morbidity and mortality associated 

with diabetic foot ulcers is substantial. 39-68% of patients who have an amputation will die 

within 5 years.  

The incidence of amputation in diabetic patients is attributed to single or multiple causes. 

There are seven individual potential causes: ischemia, infection, neuropathy, poor wound 

healing, minor trauma, cutaneous ulceration and gangrene. 72% of the amputations occur with a 

combination of potential causes, from minor trauma, cutaneous ulceration and wound healing 

failure. Among all the individual causes, poor wound healing is one of the main causes that 

contribute to the amputation (81% of the amputation cases) (Pecoraro et al 1990).   
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1.1 

1.1.1 

1.1.1.1 

BIOLOGY OF WOUND HEALING 

 
Normal wound healing 

 

Normal (acute) wound healing involves a cascade of sequential biological processes (Enoch and 

Price 2005). Cellular and biochemical activities including phagocytosis, cell migration, cell 

proliferation, collagen synthesis and cytokine production are well coordinated in normal wound 

healing. Those activities occur in 4 major overlapping steps: inflammation, re-epithelialization, 

granulation tissue formation and tissue remodeling (Singer et al. 1999, Martin 1997).  

Inflammation  
 
 
Tissue injury can cause leakage of blood from damaged blood vessels. The formation of a blood 

clot reestablishes hemostasis and provides a provisional matrix through which cells can migrate 

during the repair process. The clot acts as a reservoir of cytokines and growth factors. Vasoactive 

mediators and chemotactic factors generated at the site of the wound attract neutrophils to 

cleanse the bacteria and foreign particles. In response to specific chemoattractants such as TGF-β 

produced by platelets, monocytes also migrate to the wound site and later become activated 

macrophages stimulated by the binding to the extracellular matrix (Singer and Clark 1999, 

Dipietro et al 2001). Macrophage seems to play a vital role in regulating inflammation and 

initiation of wound repair (Riches 1996). The binding of macrophage to extracellular matrix 

induces the production of many important cytokines that are necessary for tissue repair such as 

transforming growth factor (TGF)-β, interleukin-1 (IL-1), TGF-α, platelet derived growth factor 

(PDGF). For example, TGF-β-1 and β-2 are related to induce keratinocyte migration while 

PDGF is related to induce fibroblast proliferation (Singer and Clark 1999). Moreover, 

macrophages are also important in the phagocytosis of any remaining damaged cell debris 
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(Brown 1995). After 2-3 days, the number of neutrophils begins to decline but macrophages 

continue to accumulate at the wound site.   

1.1.1.2 Re-epithelialization 
 
 
Reepithelialization is the process to regenerate epithelium. Within hours, keratinocytes at the 

edges of the wound begin to migrate to cover the wound (Singer and Clark 1999). The 

provisional matrix formed at the wounds helps keratinocyte migration. Furthermore, growth 

factors such as TGF-β1 enhance the motility of keratinocytes through the wound by stimulating 

their expression of integrins. Concomitantly, the expression of tissue-type plasminogen activator 

(tPA) and urokinase type plasminogen activator (uPA) is also upregulated in the keratinocytes. 

These activators are necessary to transform plasminogen into plasmin, an enzyme that lyses the 

fibrin clot thereby facilitating keratinocyte migration across the wound. Matrix metalloproteinase 

family such as MMP9 can also facilitate the epithelial regeneration probably by digesting the 

provisional matrix (Mohan et al 2002). One or two days after injury, keratinocytes at the wound 

edge begin to proliferate behind the previous migrating ones (Clark 1996). The growth factors 

regulating the proliferation and motility of keratinocytes are part of the epidermal growth factor 

(EGF) family comprising EGF, TGF-α and heparin binding-epidermal growth factor (HB-EGF). 

Their major sources of production include platelets, macrophages and keratinocytes. In addition, 

keratinocyte growth factor (KGF) is produced by fibroblasts and has also been characterized as 

having mitogenic effects on keratinocytes (Singer and Clark 1999). 
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1.1.1.3 

1.1.1.4 

Formation of granulation tissue  
 
 
Approximately 3 or 4 days after injury, dermal fibroblasts begin to migrate into the provisional 

matrix where they proliferate and contribute to new extracellular matrix production (Clark 1993). 

As previously mentioned, the degradation of the provisional extracellular matrix is required to 

permit fibroblasts and endothelial cells to move into the wound space. In order to do so, an active 

proteolytic system of enzymes including plasminogen activator and various members of the 

matrix metalloproteinase family (MMPs) such as, MMP2 and MMP 9 (Arumugam et al 1999) 

play an important role. After injury, the fibroblasts stimulated perhaps by TGF-β1 will be 

responsible for the synthesis of a rich collagen matrix, which will replace the provisional matrix 

and give the wound tensile strength. During the formation of the granulation tissue, angiogenesis 

occurs to form new blood vessels/ capillaries to support the formation of granulation tissue. 

Macrophages provide a good source of cytokines such as acidic fibroblast growth factor (aFGF), 

basic fibroblast growth factor (bFGF), TGF-β and vascular endothelial growth factor (VEGF) 

which can stimulate wound angiogenesis (Wiseman et al 1988, Bates and Jones 2003, Tonessen 

et al 2000). When most of the provisional extracellular matrix is replaced by collagen in the 

granulation tissue, the formation of new blood vessels stop and those new blood vessels will be 

degenerated (Tonesen et al 2000).  

Tissue remodeling 

 
Tissue remodeling involves the continuous synthesis, degradation and reorganization of collagen. 

During this process, random deposited collagen in the granulation tissue remodels to a more 

organized structure. Type III collagen is the main component but is replaced with type I collagen 

as the wound matures. This remodeling process contributes to developing the tensile strength 
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(Clark and Singer 1999). MMPs are apparently essential in collagen degradation (Clark and 

Singer 1999) in addition to the degradation of the provisional extracellular matrix. For example 

MMP-2 and MMP-9 in the gelatinase subgroup of the MMPs, have been known to denature 

collagens (Birkedal-Hansen 1995) such as collagen type I (Corbel et al 2000). 

 

1.2 

1.2.1 

1.2.2 

PATHOLOGIC WOUND HEALING CONDITIONS IN DIABETES 

 
The relationship between pathophysiologic and impaired wound healing in diabetes is not 

completely understood. However, alterations of the cellular and biochemical activities have been 

implicated in the failure of wound healing in diabetes. As a result, the entire wound healing 

process is disrupted: abnormal cellular infiltration, defective cytokine production and impaired 

tissue remodeling have all been found in diabetic wounds (Brown et al 1997). 

 
Abnormal cellular activity 

 
 
As discussed in the previous session, both macrophages and fibroblasts are essential cells in the 

normal wound healing process. Macrophages and fibroblasts both demonstrated defective 

migration or proliferation in diabetic wounds (Lerman et al. 2003, Wetzler et al 2000). It was 

also shown that the infiltration of macrophages and neutrophils was prolonged in diabetes 

(Wetzler et al 2000). Furthermore, in diabetes, the macrophages produce in a reduced level of 

cytokines (Zykova et al 2000). 

 
Defective cytokine production  

 
The dysfunction of macrophages and fibroblasts in cytokine production or extracellular matrix 

regulation contributes to the impairment of wound healing. Macrophages in diabetics 
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demonstrated a decreased release of many potent chemokines such as tumor necrosis factor-

alpha (TNF-α) and interleukin-1beta (IL-1β). Both fibroblasts and macrophages demonstrated a 

decreased release of vascular endothelial growth factor (VEGF), a potent angiogenic factor 

(Zykova et al 2000). It has been suggested that type II diabetic patients have defective signaling 

of IL-1β and IFN in macrophages and neutrophils. 

 
1.2.3 

1.3 

Impaired tissue remodeling  

 
When the wound matures, collagen should replace the provisional matrix thereby promoting 

tensile strength (Veves et al 2002) and wound contraction (Veves et al 2002). In the diabetic 

condition, collagen deposition is reduced due to decreased synthesis and accelerated degradation 

(Bowersox 1986, Seibold et al. 1985). On the contrary, provisional matrix components such as 

chondroitin sulfate and fibronectin excessively accumulate and extendedly exist in the wound 

bed (Loots el al. 1998). Diabetic fibroblasts have been shown to produce reduced levels of 

collagen (Seibold et al. 1985). Excessive MMP-9 (Lerman et al 2003) and MMP 2 (Wall et al 

2003) was also found in diabetic wounds with increased concentrations of 14-fold and 6 fold 

respectively compared with the concentrations in the non-diabetic wounds (Lobmann et al 2002). 

 
 

RECENT DEVELOPMENT OF WOUND THERAPIES 

 
Foot ulcer is a common problem resulting from diabetes (Boulton 2004). Foot ulcer can be only 

a loss of epidermis or can extend to dermis and deeper layers such as bone and muscle (Boulton 

2004). Standard management can include a series of treatments: debridement, sufficient 

application of dressings, frequent dressing changes, and efforts to reduce the pressure points on a 

patient’s feet. The purpose of the series treatments is to clean or remove the infected tissue as 
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well as to keep a moist wound environment with adequate blood supply.  If the necrotic or 

infected tissue is thick, patients may need deeper debridement by surgery, which creates more 

pain and a larger open wound. Commonly for diabetic patients, multiple debridements may be 

necessary.  The effectiveness of this complicated procedure varies. As mentioned before, there 

has been an increasing number of death associated-amputation cases which are mainly caused by 

the wound healing failure. Furthermore, the cost of treating poorly healing wounds is 1.5 billions 

dollars in US per year. These facts urge researchers to develop new, more effective wound 

treatments for diabetic patients.  

New technologies for diabetic patients who do not respond to conventional methods 

employ living cell constructs and growth factor proteins. However, the efficacy in clinical 

applications is not uniform. Furthermore, these technologies require frequent application and 

they mostly show promise in wound healing when they are used with standard wound care 

techniques. The technologies include living cell constructs, Graftskin (Apligraf; Organogenesis, 

Inc) (Curren and Plosker 2002) and Dermagraft (Dermagraft; Advanced Tissue Sciences) 

(Marston et al 2003)as well as a protein construct becaplermin (Regranex; Ortho-McNeil) 

(Smiell et al 1999). Apligraf is made from bovine collagen and living fibroblasts and 

keratinocytes derived from human infant foreskin. In a controlled clinical trial, 47 % of the non-

healing patients treated with Apligraf along with standard therapy showed improved wound 

closure, compared with 19% of the patients treated with standard therapy (Curran and Plosker 

2002).  Dermagraft is a cryopreserved human fibroblasts-derived dermal substitute. Dermagraft 

is made from extracellular matrix, a bioabsorbable scaffold and human fibroblasts derived from 

neonatal foreskin tissue. Dermagraft demonstrates less wound closure improvement in clinical 

trial than Apligraf.  In a different controlled clinical trial, 30% Dermagraft treated patients 
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showed complete wound closure; while 19% of the conventional therapy treated patients showed 

complete wound closure (Marston et al 2003).  The therapeutic effect of the two living cell 

constructs varies more than that of the growth factor therapy; the clinical outcome of these 

constructs show 15- 20 % increase in improving diabetic wound healing compared to treating 

with saline soaked gauze, a control conventional therapy approved by the FDA (Hansbrough et 

al 1997, Philips 1993, Veves et al 2001).  RegranexTM, the first bioengineered product approved 

by the FDA for treating diabetic ulcers, is a topical gel consisting of platelet-derived growth 

factor (PDGF). PDGF is the only growth factor protein commercialized to date and approved for 

use in diabetic ulcers. Again, the clinical outcome shows that the effectiveness is not uniform. 

Although one clinical study found that approximately 57.5% of the patients treated with 

RegranexTM had resulted in complete healing compared with 36% of placebo-treated patients 

(Smiell et al 1999), another study showed only 28% of the treated patients with complete wound 

closure (Niezgoda et al 2005). This disappointing clinical experience may limit the ability of 

other growth factor proteins to reach the marketplace.  

 
 

1.4 TRANSFORMING GROWTH FACTOR-BETA (TGF-β) in WOUND HEALING 

 
Although the clinical outcome of growth factor therapy has not yet yielded a totally satisfactory 

result in the PDGF study described above, growth factor approach is still believed to be 

important in treating nonhealing wounds. In chronic wounds such as those occurring in the lower 

extremities of individuals with diabetes, there is a significant deficiency of growth factors, 

proteins that mediate the growth and proliferation of cells or growth factor receptors. Beer et al 

(1997) demonstrated a reduced expression PDGF A and B and of PDGF A-type receptor in 

wounded and unwounded diabetic skin. Insulin-like growth factor (IGF)-I was found to be 

8 



 

reduced by 42 % in wound fluid and by 48% in serum in diabetes-related impairment (Bitar and 

Labbad, 1996). Decrease of transforming growth factor-beta (TGF-β) expression is predominant 

in diabetic wound. A 55% reduction of TGF-β expression in diabetic wound fluid has also been 

shown in the study of Bitar and Labbad (1996). 

TGF-β family plays an important role and is multifunctional in wound healing (Martin et 

al 1993, Frank et al 1996). All three isoforms TGF-β1, 2 and 3 are found in wounds (Frank et al 

1996). However, studies have found that only TGF-β3 (Schmid et al 1993) and TGF-β1 (Kane et 

al 1991) expresses constuitively in human intact skin. Exogenous application of TGF-β1, 2 and 3 

has been shown to enhance wound closure, reepithelialization and angiogenesis (Grose and 

Werner 2004, Hebda 1988). In addition to the enhanced wound repair, exogenous TGF-β3 has 

been shown to correlate to reduce scar formation (Ferguson and O’Kane 1999). Interestingly, 

another study showed that exogenous TGF-β3 increased the granulation tissue formation but not 

reduce the scarring within the dose which can enhance wound repair (Wu et al 1997). 

Furthermore, TGF-β family is known as potent modulator of the synthesis of various growth 

factors (Strutz et al 2001, Abboud 1993, Miyazono et al 2001).  While TGF-β induces the 

synthesis of PDGF (Abboud 1993. Janat et al 1992), fibroblast growth factor (FGF) (Strutz et al 

2001) and IGF-I (Simmons et al 2002), TGF-β inhibits the synthesis of epidermal growth factor 

(EGF) (Miyazono et al 2001).  

The lack of TGF-β1 may suggest the tendency of disrupted wound healing such as in the 

case of the chronic wounds. TGF-β1 was not found in chronic wounds but in acute wounds 

(Schmid et al 1993, suggesting that the use of exogenous TGF-β1 for treating chronic wound 

treatment may be attractive. TGF-β1 is a potent cytokine and is produced in macrophages and 
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platelets in response to wound healing and has been shown to have multiple functions in wound 

healing. On the other hand, TGF-β1 is known as a chemokine for different cells such as 

macrophages, myofibroblasts, keratinocytes and fibroblasts, which are substantial cells in 

inflammation phase, wound contraction, reepithelialization and tissue remodeling, respectively.  

In a study from Lanning’s group (Lanning et al 2000), TGF-β1 has been shown to induce 

myofibroblast production, resulting in a significantly reduced wound size in a non-contractile 

fetal rabbit model. Sidhu et al (1999) demonstrated that TGF-β1 increased migration of 

myofibroblasts, fibroblasts and macrophages and enhanced collagen content as well as 

reepithelialization (Sidhu 1999). TGF-β1 is known to be an inhibitor of keratinocytes 

proliferation in vitro (Yang et al 1996, Hashimoto 2000, Haber et al 2003). Interestingly, TGF-

β1 perhaps can induce keratinocyte proliferation in vivo (Fowlis et al 1996). Fowlis et al showed 

that an overexpression of TGF-β1 may promote the epidermal cell growth in TGF-β1 transgenic 

mouse model (Fowlis et al 1996). In addition, TGF-β1 induces keratinocyte migration by up-

regulating the synthesis of laminin 5, which has a dual function in keratinocyte adhesion or 

migration (Decline et al 2003). Since an enhanced formation of capillary by TGF-β1 was found 

in vitro (Sakuda et al 1992), TGF-β1 is possibly a potent chemokine for endothelial cells. In 

summary, TGF-β1 is beneficial to wound healing by enhancing reepithelialization, wound 

contraction, collagen deposition and neovascularization. For these reasons, TGF-β1 was 

employed in this thesis project. 
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1.5 CUTANEOUS DELIVERY OF NAKED DNA IN THE WOUND ENVIRONMENT 

 
To date, only PDGF-BB is approved by FDA for treating diabetic ulcers, yielding only a limited 

improvement of healing in patients. The disappointing clinical outcome is perhaps due to the 

inherent difficulties in delivering the growth factors which are high molecular weight and liable 

molecules in sufficient quantities and duration of activity. This may be due to the proteins’ short 

half life, degradation by wound proteases and difficulty to maintain the level of active protein in 

the wound above the therapeutic threshold. All of the limitations support the discovery of a better 

alternative to protein therapeutics. Growth factor gene therapeutics has therefore attracted 

attention as a cost-effective alternative to protein therapeutics. It is speculated that a gene therapy 

approach will prolong the availability of therapeutic proteins, yielding improved healing 

responses. Overexpression of a therapeutic gene is not necessary after wound healing is 

complete. Thus, only temporary gene expression is required for wound repair in wound healing, 

which is not as the case in gene therapy for the inherited diseases. Therefore, gene therapy for 

wound healing may be more easily achieved. 

The choice of gene transfer strategies in wound healing depends on whether the 

modification of gene expression is temporary or permanent. Long-term genetic modification can 

be achieved by most of the viral vectors such as retrovirus, adeno-associated virus and the HIV-

based lentivirus. On the other hand, the majority of the nonviral vectors and some of the viral 

vectors such as adenovirus and herpes simplex virus can achieve temporary genetic modification. 

In wound healing, as mentioned, a permanent genetic modification is not necessary. Thus, most 

of the viral vector strategies may not be suitable to deliver therapeutic genes in wounds. 

Furthermore, using viral vectors in transient genetic modification may not be preferred. Since 

viral transfection strategies are based on the natural ability of viruses to infect cells, the 
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transfection efficiency could be associated with increased antigenicity owing to the viral 

sequence for replication. One example is the adenovirus. The strong immunogenicity of viral 

vectors revealed from clinical experiences presents a risk to compromise the wound repair, 

particularly in the nonhealing wounds where inflammation is disrupted. In order to reduce the 

immunogenicity, researchers have developed a new generation of helper dependent viral vectors, 

in which all the viral coding sequences have been removed. However, more animal and clinical 

studies are necessary to test whether or not the immunogenicity is successfully reduced.   

Nonviral gene transfer strategies evade some of the drawbacks associated with the viral 

gene transfer strategies. In particular, there is no concern of viral integration and replication. It is 

therefore believed to have lower cytotoxicity and antigenicity compared with viral gene transfer 

strategies. The efficiency varies widely from 5%- 20% and up to 90% depending on the target 

cells and tissues. Examples of nonviral gene transfer techniques include: the simplest approach 

which is direct injection of plasmid DNA, physical methods of hydrodynamic pressure, 

electroporation, particle bombardment or microseeding and chemically methods using liposome 

polymers and proteins.  

The success of a gene delivery method depends on whether a gene is able to transport to 

the cells of the target tissue for gene expression. Skin is one of the attractive targeted tissue for 

therapeutic delivery (Spirito et al 2001, Pfutzner and Vogel 2000). Skin is the most accessible 

organ and it is therefore believed that a relatively simple and minimally invasive method, such as 

local injection and topical application, is feasible. However, due to the complexity of skin 

structure, gene transfer strategy in skin is more limited than expected. In fact, diffusion of 

macromolecules was shown to be increasingly hindered by high level of collagen type I (Pluen et 

al 2001), one of the major extracellular matrix proteins in skin, in particular, during the process 

12 



 

of wound healing. Thus, transport of large-sized molecules such as plasmid DNA without 

accompanying of vectors could be favorable. Indeed, it has been shown that delivery of naked 

DNA is relatively efficient compared with delivery of DNA in liposome or in the form of 

lipoplex (lipid /DNA complex) (Sawamura et al 1997, Udvardi et al 1999, Meuli et al 2001). 

Following the diffusion in the extracellular environment, internalization of DNA is a crucial 

process for allowing the transgene to be expressed in the cells. Both keratinocytes and 

fibroblasts, which are essential cells in wound repair, are able to internalize naked DNA 

(Udvardi et al 1999, Kamiya et al 2002). Therefore, the delivery of exogenous naked DNA to 

skin appears to be feasible.  

 

1.6 METHODS FOR DELIVERING NAKED DNA TO SKIN 

 
The simplest approach to non-viral vectors is direct injection of naked DNA. The promise of 

direct injection of naked DNA was found in Wolff’s study (Wolff et al 1990) on the expression 

of a reporter gene following direct intramuscular injection of DNA. Their study revealed that the 

reporter gene delivered with the naked DNA could lead to a long-term expression of the gene in 

the muscle. Several experiments have since been conducted to introduce naked DNA into skin by 

direct injection (Hengge et al 1995; Ciernik et al 1996; Eriksson et al 1998). Injection of 

plasmids encoding the β-galactosidase (Lac Z) reporter gene into the superficial dermis of 

porcine skin resulted in a visible expression of the encoded protein.  The expression of the 

reporter gene lasted for three days, whereas the expression of the encoded protein was visualized 

for up to three weeks (Hengge et al 1995).  

Without the protection of vectors, DNA tends to be degraded easily and the efficiency of 

gene transfer can be low. Although long-lasting gene expression is not necessary, enhanced gene 
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expression efficiency is important because sufficient gene expression is required to overcome the 

therapeutic threshold. Various physical approaches have been developed in an attempt to 

increase the gene transfer efficiency in the target tissues.  

Hydrodynamic pressure by rapidly injecting large volume of DNA solutions through the 

tail vein (so called hydrodynamics-based intravenous injection) induced gene expression in the 

kidney, spleen and heart, but primarily in the liver (Liu et al 1999). Hydrodynamic pressure is 

commonly used in systemic administration of therapeutics while only local administration of 

therapeutics is necessary in the case of wound healing.   

Several other physical approaches have been developed to increase gene transfer 

efficiency. Jet injection of a low volume of DNA solution in pressurized air was employed as the 

driving force for efficient gene transfer in tumor (Walther et al 2002). Electroporation is one of 

the most common techniques used in laboratory. Electroporation involves the uses of brief 

electric pulses to induce the formation of transient pores in the membrane of the host cell 

(Neumann et al 1999). Such pores appear to act as passageways through which the naked DNA 

can enter the host cell (Neumann et al 1999, Nishikawa et al 2001). Gene gun is a particle 

mediated approach to enhance gene delivery. Gene gun uses particle bombardment to shoot 

DNA-coated microscopic pellets through the cell membrane (Nishikawa et al 2001). Compared 

to the performance of electroporation in gene delivery, the application of gene gun has been 

limited to superficial tissues due to the short penetration depth (<0.5mm in murine muscle) into 

tissue (Zelenin et al 1997). Furthermore, the high pressure may cause mechanical damage of 

tissue. Until recently, a significant improvement in tissue penetration has been achieved using a 

new design of gene gun by Dileo et al (2003). The gene gun which delivers DNA-coated gold 

14 



 

beads at a high pressure allows the transgene accessing to subcutaneous tissues, such as muscle 

or tumors, and consequently achieving longer-term gene expression (Dileo et al 2003).  

 
1.6.1 Electrical-mediated gene delivery  

 
Electroporation has demonstrated success in preclinical trials of gene therapy (Bjordal et al 2003, 

Evans et al 2001). Enhancement of gene transfer using electroporation is generally about 100-

1,000 fold greater than the delivery of naked DNA alone. Optimization of electrical parameters 

such as voltage, duration of each pulse and number of pulses, for in vivo electroporation is 

important to gene delivery. Voltage that is optimal in one tissue may not be optimal in another. 

For example, an electric voltage of 200V in a tumor was used to enhance 100 fold gene 

expression whereas 100V was necessary in muscle (Cichon et al 2002). In addition to the 

voltage, the duration and number of pulses are also necessary for optimization because intense 

application of electric pulses causes local inflammation and tissue damage. Electroporation has 

been reported to increase gene transfer in liver and muscle (Aihara and Miyazaki 1998, Suzuki et 

al 1998). Due to the complexity of the skin, a harsh condition of electroporation is required to 

accomplish effective gene transfer.  Most studies used an electric field strength that ranged from 

700-2000V/cm (Titomirov et al 1991, Heller et al 2001). However, typical applied transdermal 

voltage is 50-150V (Vanbever et al 1996). Higher voltage may cause local heating within the 

skin and could lead to tissue damage. Indeed, high current and voltage applied to the skin can 

cause tissue damage and electrolysis (Pliquett 1999). Electroporation has an attractive potential 

in wound healing. Investigators have shown that electrical stimulation (ES) can accelerate wound 

closure of chronic ulcers (Houghton et al 2003, Gardner et al 1999) and diabetic foot ulcers 

(Baker et al 1997). In addition, many applications of ES for wound-related treatments have been 
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long used in clinics with an excellent safety record (Crevenna et al 2001). In Chapter 2, we will 

report the feasibility of a proper electric condition that can combine electrical and gene therapies 

to treat diabetic wound healing without damaging the tissue. 

 
1.6.2 Topical gene delivery using biodegradable polymer  

 
A topical delivery method is ideally suited for wound healing because it is minimally invasive 

and capable to treat for a large surface area. In addition, topical delivery is easy to apply and can 

be done in an outpatient setting. Biodegradable polymers have been used as topical drug carriers 

with encouraging results (Puolakkainen et al 1995, Sawada et al 1990). Polymers can protect the 

drug or gene from degradation. Biodegradable polymers themselves will be degraded in a 

relatively brief period and surgical removal is not necessary. Hydrogels composed of 

hydrophobic and hydrophilic block copolymers are especially suitable as the potential use of 

hydrogels are broad due to their flexible release kinetics, which are mediated by adjusting the 

hydrophobic portion or hydrophilic portion of the block copolymer. Some drugs or proteins such 

as TGF-β1 require transient administration to accelerate wound healing since persistent TGF-β1 

administration causes excessive extracellular matrix component accumulation resulting in skin 

fibrosis or scar formation (Ito et al 2001). In contrast, antitumor drugs such as doxorubicin 

require prolonged and sustained release. However, most of biodegradable polymers are not 

convenient for formulating with drugs since many of the polymers are solid at room temperature. 

Thus, a thermosensitve hydrogel made of a triblock copolymer poly [ethylene glycol-b-(D, L-

lactic acid-co-glycol acid)-b-ethylene glycol] (PEG-PLGA-PEG), which is liquid at room 

temperature but forms a viscous gel at the body temperature due to its gel-sol transition, is 

advantageous. In addition to the potential for drug delivery, some polymers such as 
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glucosaminoglycan, have demonstrated to be a suitable wound dressing.  However, no one has 

combined the characteristics of wound dressing and gene carrier in a delivery system, to the best 

of our knowledge. In Chapter 3, we will report the feasibility of the thermosensitive hydrogel, 

PEG-PLGA-PEG, to combine the wound dressing and gene carrier in diabetic wound healing. 

 

1.7 

1.7.1 

STEM CELL-MEDIATED THERAPY 

 
Wound healing involves regeneration of macrophages, keratinocytes and fibroblasts for the 

recovery. Since stem cells are capable of self-renewal and multipotency/pluripotency, it is 

therefore hypothesized that stem cells can improve the wound healing. 

 
Characteristic of stem cells 

  
Stem cells have the capacity to self-renew and display long-term proliferation capacity. Stem 

cells can generate different types of cells. There are two types of stem cells: those from 

embryonic/fetal origin and those from adult origin. Embryonic stem cells are long known to be 

pluripotent (Gerecht-Nir and Itskovitz-Eldor 2004, Tiedemann et al 2001). However, major 

concerns of embryonic stem cells including embryonic stem cell-associated tumor formation 

(Chambers and Smith 2004, Andrews 2002) and immune rejection upon differentiation (Drukker 

et al 2002). There is also an ethical concern in using embryonic stem cells for therapeutic 

applications. Today, researchers have begun investigating adult stem cells because their 

multipotent characteristics have been recently identified. For example, it has been found that 

hematopoietic stem cells can differentiate to neurons, blood cells and macrophages.  It has been 

found that muscle-derived stem cells can differentiate into adipogenic, osteogenic, chrondrogenic 
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and hematopoietic lineages (in vitro or in vivo) (Shen et al 2004, Sinanan et al 2004, Cao et al 

2003).  

 
1.7.2 Muscle-derived stem cells (MDSC) 

 
Cell-based therapy has been proposed as a direct way for regenerating muscle.  Satellite cells 

isolated from skeletal muscle may have potential in treating Duchenne muscular dystrophy 

(Bachrach et al 2004, Morgen and Patridge 2003). The disrupted muscle regeneration in 

Duchenne muscular dystrophy is perhaps correlated to the altered proliferation (Maier and 

Bornemann 1999) or differentiation (Schuierer et al 2005) of satellite cells. Satellite cells lie 

between the muscle fiber and the basement membrane and are typically quiescent (Morgen and 

Patridge 2003, Menasche 2003). However, it is reported that satellite cells can proliferate and 

fuse with the myotube in vitro (Bischroff 1975). In response to injury, the satellite cells can 

proliferate and differentiate to regenerate muscle (Morgen and Patridge 2003). In addition to the 

ability to regenerate myogenic lineage (Bachrach et al 2004), satellite cells can commit to 

adipogenic and osteogenic lineages (Asakura et al 2001, Wada et al 2002), indicating that 

satillete cells are multipotent. Recently, preplate technique was used to isolate a population of 

cells from skeletal muscle of postnatal animals and was found apparently different from the 

satillete cells (Qu et al 2002). The cells has been called LTP cell and the phenotype of LTP cells 

preserved for more than 200 passages (Deasy et al 2005). Furthermore, the LTP can differentiate 

into various lineages from muscle to neurons, osteogenic cells, endothelial cells, and 

hematopoietic cells. Another group also found that MDSC could have the hematopoietic 

potential supporting the mulitpotency of MDSC (Howell et al 2002). Transplantation of MDSC 

has been shown to restore partially the dystrophin expression (Gussoni et al 1999) and prevent 
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early cell death after skeletal muscle transplantation. Qu et al (2002) also found that the MDSC 

were almost negative for the expression of MHC-1 (0.5%), which plays an essential role in the 

immune rejection following transplantation. 

MDSC may have a higher proliferation rate suggesting that MDSC transplantation may 

be an attractive approach to regenerate muscle (Qu-Peterson et al 2002). MDSC displays several 

characteristics of bone marrow derived stem cells, including the antigen Sca-1, a marker which 

presents in subpopulations of hematopoietic cells with stem cell-like characteristics (Gussoni et 

al. 1999). MDSCs may have a potential to differentiate to skin cells. It has been demonstrated 

that MDSCs can differentiate to myofibroblasts in the muscle injury site where TGF-β1 is 

overexpressed (Li et al 2002).  

To summarize, the studies on MDSC have been shown as a promising approach for 

regenerating muscle and possibly other tissues including skin.  

 
1.7.3 Bone marrow-derived stem cell (BMDSC) 

 
There are three kinds of stem cells in the bone marrow cavity, hematopoietic stem cell (HSC), 

mesenchymal stromal cell (MSC) and endothelial progenitor cells (EPC). Stem cells are less than 

0.1 % of all nucleated cells in bone marrow. All bone marrow stem cells are derived from the 

mesoderm and are all round in morphology. While HSC and MSC shares common 

morphological characteristics, HSC and MSC is different in adherence properties.  For example, 

HSC are non-adherent whereas MSC are adherent (Turksen 2004). The isolation of MSC is 

based on their adherence properties whereas HSC can be isolated using CD34 (Engelhardt et al 

2002). Recently, HSCs were also found in CD34- fraction (Engelhardt et al 2002, Turksen 2004). 

In contrast to MDSC, bone marrow- derived stem cells have been studied since the 60s 
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(Cudkowicz et al 1964, Lewis et al 1964).  Bone marrow–derived stem cells were studied 

extensively because they are relatively easy to harvest from patients. With the advanced 

techniques and instruments, the harvest of MDSCs is relatively non-invasive and can be achieved 

by using a simple syringe. 

 
1.7.4 

1.8 

 Stem cell therapy in wound healing   

 
Keratinocytes, fibroblasts and macrophages all have an important role in wound healing.  While 

the majority of the mature cells have a limited self renewal capability, stem cells are able to be 

self-renewed and pluripotent/ multipotent. Stem cells would be a valuable cell source for 

regenerating tissues in wound healing. Stem cells have been used in different wound healing 

studies. Several types of stem cells such as BMDSCs, HSCs or MDSCs have been shown to 

enhance the healing in bone, cartilage, muscle or skin after injury (Evangelos et al 2003, Peng et 

al 2003, Stocum 2001). BMDSCs are able to be recruited and incorporated into a cutaneous 

wound site (Badiavas et al 2003). In their study, they injected bone marrow derived stem cells 

intravenously and found the stem cells incorporating into the hair bulge region at the wound site 

and differentiating into epithelial cells.   

 
 

ORGANIZATION OF DISSERTATION 

 
At the beginning of this thesis project, we found that the diabetic wound healing has been 

improved by a simple approach which is a direct injection of naked DNA. Chesnoy et al (2002) 

have shown that intradermal injection of TGF-β1 plasmid DNA significantly enhances the 

diabetic wound repair. This finding supports the feasibility of using naked DNA as a therapeutic 

approach for treating diabetic wounds. Since naked DNA approach yields low efficiency, we 
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seek strategies that can enhance the therapeutic level of gene expression and comtribute to 

improvements in wound healing.  One of the primary goals in this thesis project is to develop a 

more effective strategy to improve diabetic wound healing compared with the conventional 

methods for treating wounds such as electrical stimulation (ES) and hydrogel wound dressing. 

Additionally, we use muscle derived stem cells in an attempt to improve wound repair as the 

stem cells may have the potential to differentiate into essential cells in the wound such as 

macrophages, keratinocytes and fibroblasts. The following are the three specific aims in this 

thesis project: 

1) To test a positively synergistic effect on wound healing using electroporation for delivering 

TGF-β1 gene.  Based on the findings that electroporation can enhance gene transfer (Aihara and 

Miyazaki 1998, Suzuki et al 1998) and electric therapy can accelerate wound recovery in 

diabetic patients (Baker et al 1997), it is hypothesized that using electroporation to deliver the 

TGF-β1 gene at the condition where both electroporation and electric therapy will synergistically 

accelerate the wound healing. Two different types of electrodes i.e. caliper and syringe 

electrodes will be tested to deliver TGF-β1 gene to the wound. In Chapter 2, we will discuss this 

topic in detail.  

2) To test whether wound repair synergistically accelerates using thermosensitive hydrogel as a 

carrier of TGF-β1 gene.  

There is growing evidence that wet and moist environments result in improved wound healing of 

full and partial thickness wounds (Svensjo et al 2000, Vogt et al 1995, Chen et al 1992). A 

hydrogel dressing is an available treatment for providing a moist environment in the wound 

(Vogt et al 2001, Eisenbud et al 2003). In addition, hydrogels have been shown to be effective 

drug delivery systems, for growth factors (Iwakura A et al 2003, Hatano et al 2003) and DNA 
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(Li et al 2003) in animal models (Amant et al 1999, Vogt et al 2001, Reimer et al 2000) and in 

clinical trials. Based on all these facts, it is hypothesized that using thermosensitive hydrogel, 

PEG-PLGA-PEG as a wound dressing and as a vehicle to deliver TGF-β1 gene improves 

synergistically wound repair. In Chapter 3, we will describe the feasibility of the thermosensitive 

hydrogel as a gene delivery vehicle and wound dressing in the diabetic wounds. 

3) To test whether using thermosensitive hydrogel to assist the delivery of muscle derived stem 

cells accelerate wound repair. 

Previously we have found that the thermosensitive hydrogel promotes cell proliferation. 

Together with the finding of muscle derived stem cells differentiating into myofibroblasts (Li et 

al 2002), which are one of important cells in wound contraction, it is hypothesized that the 

muscle derived stem cells possibly accelerate the wound healing and differentiate to essential 

cells in wound healing such as keratinocytes, fibroblasts or macrophages. In Chapter 4, we will 

discuss the approach using muscle derived stem cells in diabetic wound healing in detail.  
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2.0 WOUND CLOSURE STUDY AND HISTOLOGIC EVALUATION OF THE 
SYNERGISTIC EFFECT OF ELECTROPORATIC THERAPY AND DELIVERY OF 
TGF-β1 ON DIABETIC WOUND HEALING 

  

(Lee PY, Chesnoy S, Huang L. Electroporatic delivery of TGF-beta1 gene works synergistically 

with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol. 

123(4):791-8, 2004.) 

 

2.1 ABSTRACT 

 
Electrical stimulation is a therapeutic treatment for wound healing. Electroporation, a type of 

electrical stimulation, is a well-established method for gene delivery. Since both processes 

involve electrical treatment at the wound site, we hypothesize that proper conditions can be 

found with which both electrical and gene therapies can be additively applied to treat diabetic 

wound healing. For the studies of TGF-β1 local expression and therapeutic effects, full thickness 

excisional wound model on db/db mouse was used. We measured TGF-β1 cytokine levels using 

ELISA at 24 h postwounding and examined wounds histologically using H&E, picrosirius, anti 

BrdU and anti factor VIII-related antigen staining. Furthermore, wound closure was evaluated by 

wound area measurements at each day for a total of 14 days. We found that syringe electrodes 

were more effective than the conventional caliper electrodes. Furthermore, diabetic skin was 

more sensitive to the electroporative damage than the normal skin. The optimal condition for 

diabetic skin was 6 pulses of 100V/cm with the duration of 20ms. Under such conditions, the 

healing rate of electrically treated wounds was significantly accelerated. Furthermore, when the 

TGF-β1 gene was delivered by electric pulses, the healing rate was further enhanced. Five to 
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seven days postapplication of intradermal injection of plasmid TGF-β1 followed by 

electroporation, the wound bed showed an increased reepithelialization rate, collagen synthesis 

and angiogenesis. Our data indicate that the electric effect and gene effect were synergistic in the 

genetically diabetic model. 

 

2.2 INTRODUCTION 

 
For decades, investigators have attempted to treat problems related to wound impairment by 

electrical stimulation (ES). Most of the ES applications are safe and effective. For example, ES 

has long been used in clinics for wound-related pain control (Bjordal et al 2003, Evans et al 

2001) and neuromuscular rehabilitation with an excellent clinical safety record (Crevenna et al 

2001). Bjordal et al reported that electrical nerve stimulations reduced analgestic consumption in 

postoperative patients in an average of 35.5%. Chronic heart failure patients were not observed 

with heart abnormalities during administration of ES on the thigh muscle (Crevenna et al 2001), 

suggesting that ES can be highly safe to apply in patient. Furthermore, electric pulses can 

accelerate the healing of diabetic ulcer (Baker et al 1997). In other human studies, ES has been 

shown to accelerate healing of various types of chronic wounds (Gardner et al 1999). 

Electroporation is a type of electrical treatment which can enhance cell permeability to 

allow penetration of macromolecules such as DNA (Banga and Prausnitz 1998).  It has been 

reported to increase gene transfer in liver and muscle (Aihara and Miyazaki 1998, Suzuki et al 

1998). Delivery of chemotherapeutic agents for cancer using electroporation has progressed to 

Phase II clinical trials (Jaroszeski et al 1999, Heller et al 1999). Due to the complexity of the 

skin, the harsh condition of electroporation, ranged from electric field strength of 400-

2,000V/cm, was primarily used to accomplish effective gene transfer (Titomirov et al 1991, 
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Heller et al 2001). Typical transdermal voltage for drug delivery is 50-150V (Vanbever et al 

1996). High current and voltage applied to the skin can cause tissue damage and electrolysis 

(Pliquett 1999). 

Administration of exogenous growth factors has been successfully used to accelerate the 

pathologic wound healing in animal models. Topical application of PDGF shortens the 

prolonged inflammatory phase in genetically diabetic mice (Beer et al 1997). A single dose of 

TGF- β in a collagen vehicle can restore the diabetes-related decrease in tensile strength of 

collagen (Bitar and Labbad 1996). Broadley et al (1989) also reported that injection of TGF-β 

induced accumulation of granulation tissue, and collagen production and maturation. However, 

one disadvantage of the application of the growth factor is the high expense. Another problem is 

the need to have continuous or repeated delivery of the growth factor, which becomes inactivated 

in the wound. Instead of using growth factors, an alternative approach is to administer a gene that 

encodes the growth factor (Yao and Eriksson 1989). The contribution of growth factor gene 

therapy to problematic wound healing appears as successful as the growth factor itself, although 

no direct comparison has been reported. Subcutaneous injection of interleukin-6 plasmid to mice 

restores abnormal wound healing (Gallucci et al 2001). In a dermal ulcer model, topical 

application of PDGF embedded in collagen sponges promotes reepithelialization, wound closure 

and new granulation tissue formation (Tyrone et al 2000). In our previous study, intradermal 

injection of TGF-β1 gene accelerated wound closure (Chesnoy et al 2003). TGF-β1 is a 

multifunctional growth factor. TGF-β1 is a chemokine for fibroblasts, and enhances wound 

contraction rate, extracellular matrix production in vivo (Lanning et al 2000, Mustoe et al 1991) 

and the formation of capillaries in vitro (Sakuda et al 1992). TGF-β1 influences tissue repair by 

activation of Smad signaling (Dijke et al 2003). TGF-β1 signals through heteromeric complexes 
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of type II and type I transmembrane Ser/Thr kinase receptors which then initiate phosphorylation 

cascades involving receptor-regulated Smads, a co-Smad, and inhibitory Smads.  

 

 

Figure 2.1 The signaling of TGFβ. TGF-β1 signals through heteromeric complexes of type II and type I 
transmembrane Ser/Thr kinase receptors which then initiate phosphorylation cascades involving receptor-regulated 
Smads, a co-Smad, and inhibitory Smads. 

 

 
We hypothesized that proper conditions could be found in which both electrical and gene 

therapies could be additively applied to treat diabetic wound healing without damaging the 

tissue. The first step of our study was the optimization of parameters such as applied voltage, 

pulse duration, number of pulses and type of electrodes. We then examined if the condition 

optimal for TGF-β1 gene transfer at the wound site could also benefit healing due to its electric 

effect. 
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2.3 

2.3.1 

2.3.2 

METHODS 

 

Animal Model 

 
Female mice (C57BL/6 or C57BKS.Cg-m +/+ Leprdb (type II diabetes)) in 7-9 weeks old, were 

obtained from Jackson Laboratories (Bar Harbor, Maine). C57BKS.Cg-m +/+ Leprdb mice have 

been used as a model for wound healing in diabetics, especially for studies involving cytokines 

and growth factors (Greenhalgh et al 1990, Okumura et al 1996). Mice homozygous for the 

diabetes spontaneous mutation (Leprdb) become identifiably obese around 3 to 4 weeks of age. 

Elevations of plasma insulin begin at 10 to 14 days and elevation of blood sugar at 4 to 8 weeks. 

All mice were housed in the animal facility at the University of Pittsburgh. All animal protocols 

were approved by IACUC of the University of Pittsburgh.   

 
Preparation of Plasmids    

 
Human TGF-β1 cDNA in pcDNA3.1/GS (Invitrogen Corporation, Carlsbad, CA) was amplified 

in TOP10 competent cells (Invitrogen Corporation, Carlsbad, CA). The plasmid DNA was 

isolated by alkaline lysis and purified by ion exchange column chromatography (Qiagen Inc. 

Valencia, CA). Plasmid pNGVL-luc, which encodes luciferase as a reporter protein (National 

Gene Vector laboratory) was obtained similarly. 
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2.3.3 

2.3.4 

2.3.5 

Wounding Protocol and Treatment 

 
A total of 36 C57BL/6 and 136 C57BKS.Cg-m +/+ Leprdb mice were anesthetized by inhalation 

of Isoflurane and randomly divided into different control and treatment groups. Forty 

micrograms of plasmid pNGVL-luc (dissolved in 50µL 1.5X PBS) intradermally injected into 

the skin of C57BKS.Cg-m +/+ Leprdb or C57BL/6, followed by electroporation using a caliper 

(BTX Gentronics, Inc. San Diego, CA) or a syringe (Liu and Huang 2002) electrodes for 

optimization of the electric conditions. Intradermal injection of plasmid pNGVL-luc was also 

conducted for comparison.  Two 7 x 7mm full thickness excisional wounds were created in 

parallel on the back of each mouse after the mice were anesthetized. Human recombinant 

plasmid TGF-β1, (30µg dissolved in 50µL PBS), was intradermally injected to the lateral sides 

of a wound followed by electroporation using a syringe electrode. Control mice received no 

treatment, electroporation only, intradermal injection of empty plasmid with or without 

electroporation, or intradermal injection of plasmid TGF-β1 without electroporation.  

 
Measurement of luciferase reporter gene expression 

 
Six mice (n=12 wounds) in each group were sacrificed and skin biopsies were collected and 

homogenized. Luciferase gene expression (activity) was measured using a luminometer. The 

activity was presented as relative unit per mg soluble tissue protein (RLU/mg protein).     

 
 Local expression of TGF-β1 using immunoassay 

 
 At 24 h post-application, three mice (n= 6 wounds) in each group were sacrificed and wound 

biopsies were harvested and homogenized with protease inhibitor (Roche Diagnostics). TGF-β1 
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protein concentration was measured with human TGF-β1 ELISA kit (R&D Systems) following 

the supplier’s protocol. 

 
2.3.6 

2.3.7 

2.3.8 

Wound closure analysis 

 
 Six mice in each group were examined. Area of wounds was measured using a caliper at each 

day, for a total of 14 days, and evaluated as percentage of wound closure using the equation:  

% wound closure = 100 x (wound area at day 0 – wound area at day n) /wound area at day 0 

Histology 

 
Three mice from each group were sacrificed and skin biopsies were harvested at days 3, 5 and 7 

postwounding.  The harvested tissue was formalin-fixed and embedded in paraffin. Sections of 

4µm thickness were prepared using a microtome, then deparaffinized, hydrated and stained with 

Hematoxylin and Eosin for observing the morphology and picrosirius red staining using a 0.1% 

picrosirius red solution (Sweat et al 1964). 

 
Cell proliferation using anti 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry 

 
 At day 3 postwounding, BrdU (Sigma, St Louis, MO) labeling was performed by 

intraperitioneal injection at a dose of 50 mg/kg at 3 h prior to sacrifice. Paraffin sections were 

taken from specimens at the wound site.  The sections were deparaffinized, hydrated, pretreated 

with 2N HCl and trypsin (Sigma). BrdU immunochemical staining was performed by incubation 

of a rat monoclonal anti-BrdU antibody (Accurate Chemical& Scientific Corp, Westbury, NY) 

for 18 h at 37°C. Sections were then incubated with biotinylated mouse adsorbed rabbit anti-rat 

IgG and were peroxidase-labeled with Vetastain Elite ABC Kit (Vector Laboratories, 

Burlingame, CA). The immunoprecipitate was visualized by 3,3’-diaminobenzidine 

29 



 

tetrahydrochloride (DAB) chromogen and Gill 1X hematoxylin (Fisher Scientific) counterstain.    

Sections were observed under a microscope (Nikon, Japan), and positively stained cells were 

counted in 3 representative fields at 200X magnification.  

 
2.3.9 

2.3.10 

2.4 

2.4.1 

Angiogenesis using anti-factor VIII related antigen immunohistochemistry 

 
Paraffin sections were taken from specimens at the wound site at day 7 post-wounding.  Factor 

VIII related antigen immunochemical staining was performed with incubation of rabbit 

polyclonal antisera for Factor-VIII antigen. All other steps were performed as the same as 

mentioned in the method for anti-BrdU staining.  Sections were observed at 200X magnification.  

 
Statistical analysis 

 
 Data were expressed as means ± standard deviation (SD) and analyzed by two-tailed Student’s t-

test using the PRISM software program (GraphPad Software, San Diego, CA, USA). The alpha 

value (Type I error) adjustment was done by using Bonferroni correction in case of multiple 

comparisons. 

 

 

RESULTS 

 
Optimization of electroporative condition 

 
In vivo electroporative gene delivery is commonly accomplished using two kinds of electrodes: 

calipers and syringe electrodes, a special type of needle electrode. The design of the syringe 

electrode has been previously described (Liu and Huang 2002). To compare caliper and syringe 

electrodes in the effectiveness on gene delivery, we intradermally injected 40µg of luciferase 
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reporter gene to C57BL/6 or C57BKS.cgmLeprdb mice followed by electroporation using caliper 

or syringe electrodes. We found that the syringe electrodes were more effective in gene transfer 

compared with the caliper electrodes. In Figure 2.1A, the luciferase gene expression in the 

syringe-electroporated skin was 10 fold higher compared with the caliper- electroporated when 

the same applied voltage and duration (100V in 20ms) were used. Therefore, in our further 

experiments, we decided to use the syringe electrodes.  
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Figure 2.2 Luciferase expression in the normal (A) or diabetic (B) skin 24 h postapplication of electroporation using 
either caliper (white bars) or syringe electrodes (black bars). * p<0.001, comparing data of 100V using syringe 
electrode with 50V or 0V in (B). n = 6. 
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To optimize the electroporative condition for the syringe electrodes, we tested different 

applied voltage and found that 100V in the duration of 20ms with 6 pulses were the optimal 

conditions for gene transfer in the skin tissue (Fig. 2.1B). Higher voltage did not induce a 

corresponding increase in the gene expression.  Furthermore, when we compared the luciferase 

gene expression of two skin types (diabetic and normal), the diabetic skin demonstrated a 10-fold 

higher expression compared with the normal skin at these conditions. Bubbles, a sign of 

electrolysis, were observed surrounding the electrodes in the diabetic skin when 200V/cm field 

strength was applied. This observation did not appear in the normal skin, suggesting that the 

diabetic skin is more sensitive to electroporation in mouse model. 

 

 

***

*

Figure 2.3 TGF-β1 cytokine level 24 h after the following treatments: electroporation only [E], intradermal 
injection of empty plasmid [ID(TGF)] or plasmid with TGF-β1 gene [ID(empty)], electroporation following 
intradermal injection of plasmid with [ID(TGF)+E] or without TGF-β1 gene [ID(empty)+E]. ***p<0.001, 
comparing treatment of TGF-β1 gene by electric pulses with all other treatments. *p<0.05, comparing treatment of 
TGF-β1 gene by intradermal injection with E, [ID(empty)+E], [ID(empty)], or [untreated] .  n = 6. 
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2.4.2 

2.4.3 

Local expression of TGF-β1 at the wound bed 

 
Next, we transfected the diabetic skin tissue with our therapeutic gene, TGF-β1, using the 

optimized conditions. To measure the skin transfection by the plasmid, we used an ELISA kit, 

which was coated with TGF-β1 receptor to detect human TGF-β1. As shown in Figure 2.2, 

intradermal injection of plasmid TGF-β1 gave a significantly (p<0.05) higher expression of 

TGF-β1 compared with the untreated, electroporation alone or intradermal injection of the empty 

plasmid. Intradermal injection of plasmid TGF-β1 followed by electroporation produced a two-

fold higher cytokine level compared with the intradermal injection of plasmid TGF-β1 alone, 

suggesting that electroporation enhanced the gene transfer as previously reported (Heller et al 

2000). On the other hand, the untreated tissue produced low level of TGF-β1 cytokine. 

Furthermore, wound treated with intradermal injection of empty plasmid or electroporation alone 

also produced TGF-β1 cytokine as low as the untreated. These low levels of activity might arise 

from the cross reactivity of the antibody with endogenous murine TGF-β1.   

 
Wound healing parameters 

 
Wound healing is a multiple step process. In order to investigate the progress of wound healing, 

wound healing phases such as reepithalization, wound closure, collagen synthesis and 

angiogenesis were examined in the diabetic skin.  
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Figure 2.4 Wound morphology shown by H&E staining at day 5 postwounding following the treatment without 
electroporation (A, C & E) or with electroporation (B, D & F). No plasmid (A & B), empty plasmid alone (C & D) 
or with TGF-β1 gene (E & F). The leading end of epithelial tongue is indicated by black arrows. Epithelial tissue, 
granulation tissue or smooth muscle are indicated respectively by E, G or SM. Magnification X 100. 
 
 

2.4.3.1 Reepithelialization  
 
 
Reepithelialization is a process involving keratinocyte migration followed by keratinocyte 

proliferation. At day 5 postwounding, H& E staining showed that the leading end of epithelium, 

(i.e. the epithelial tongue schematically shown in Fig. 2.4A), of all wounds migrated toward the 

center (from left to right in Fig. 2.3). Epithelial tongue (indicated by arrow in Fig. 2.3) moved the 

fastest in the wound treated with plasmid TGF-β1 injection followed by electroporation. The 

electric treatment appears to induce the fibroblast migration.  As can be seen in Figure 2.3, cell 

density in the granulation tissue (schematically shown in Fig. 2.4A) in the wound treated with 

electroporation alone (Fig. 2.3B) was higher than the untreated (Fig. 2.3A). The majority of the 

observed cells in the granulation tissue were spindle-like, similar to the shape of fibroblasts.  

Anti-BrdU immunohistochemical staining further showed that epithelial cells were the most 
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actively proliferated in the electro-TGF-β1 gene treated wound. Cell proliferation was also 

significantly induced by simple plasmid TGF-β1 injection. On the contrary, other treatments 

produced comparable level of cell proliferation as the untreated.   

When we investigated the epidermal cell proliferation at the edge of the wound, the 

proliferation rate (Fig 2.4B) at region 2 (Fig 2.4A) was higher than at region 1, which is the 

leading edge of the epithelial tongue. The difference tends to be significant (p < 0.05) in the 

actively proliferated wound bed which was received the plasmid TGF-β1. In both locations, the  

 

 

 
Figure 2.5 Immunostaining for Brdu-positive keratinocytes at the wound edge of epithelium at day 3 postwounding 
following different treatments. (A) Schematic drawing of a wound indicating the location of cell counts taken 
(Regions 1 and 2). (B) BrdU-positive cell count at region 1 (     ) or at region 2(     ) following different treatments. 
(n = 3). Region 1 indicates the area of migrating cells. Region 2 indicates the area of proliferating cells. 
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wound treated with intradermal injection of TGF-β1 gene followed by electroporation induced 

higher proliferation than other treatments. Intradermal injection of plasmid TGF-β1 also induced 

proliferation significantly (p<0.05) in both positions compared with the untreated, 

electroporation, intradermal injection of the empty plasmid with or without electroporation.   

2.4.3.2 Wound Closure 
 
 
 

 

*

 

Figure 2.6 Wound closure at day 5 postwounding of the untreated (Control) following the applications of 
electroporation alone (PBSe), intradermal injection of TGF-β1 with (TGFe) or without electroporation (TGF). n=12. 
* p<0.05, comparing the treatment of TGF-β1 gene with or without electric pulses. 

 

 
Wound contraction is the process to minimize open area by pulling the neighboring tissue 

towards the wound center. Myofibroblasts differentiated from fibroblasts generate the contractile 

force (Feugate et al 2002, Jester et al 1999). It occurs faster than reepithelialization because no 

cell proliferation is involved. We measured the wound contraction rate by percentage wound 
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closure until wound was completely closed at day 14 (Fig. 2.5). When compared with the 

untreated group, electroporation alone or intradermal injection of plasmid TGF-β1 with or 

without electroporation induced wound contraction during the 14 days. Wound closure rate was 

significantly (p<0.05) accelerated at early

wound bed compared with TGF-β1 gene

effect of electroporation combined with TG

in the early phase of wound healing.     

 

2.4.3.3 Collagen synthesis 
 
 
 

Figure 2.7 Collagen formation shown by picrosi
following the treatment of electroporation (B, D&
(A&B), injection of empty plasmid (C&D) of plasm
indicated as glowing yellowish orange. Epidermal
marked as E, G, A and SM, respectively. Magnifica
 stage (day 2- 5) in the electro-TGF-β1 gene treated 

 treated wound bed. This suggests that the additive 

F-β1 gene treatment on wound closure occurred only 

0.2 mm0.2 mm
 

rius staining and polarized microscopy at day 5 postwounding 
F) or without electroporation (A,C&E). No injection of plasmid 

id with TGF-β1 gene (E&F). Unwounded skin (G). Collagen is 
 tissue, granulation tissue, adipose tissue and smooth muscle are 
tion 200X. 
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At day 5 after treating with intradermal injection of plasmid TGF-β1 with or without 

electroporation, a high intensity of collagen was found in the newly formed granulation tissue at 

the epithelial tongue, with the former greater than the latter (Fig. 2.6). Picrosirius/polarized light 

microscopy reveals regions of organized collagen which increases as the wound matures. The 

collagen organization in the electric-gene treated wound appeared the most mature, as it 

resembled the unwounded skin at day 5 (Fig. 2.6 F&G). In addition, we observed that the 

collagen organization in the smooth muscle layer (white arrow, Fig. 2.6D) is more dispersed 

from the granulation tissue.  

2.4.3.4 Angiogenesis 
 
 
Angiogenesis is a process for new capillary growth and one of its components is endothelial cell 

migration (Veves et al 2002). At day 7, sections of harvested wound bed were stained with anti-

factor VIII related antigen to identify endothelial cells in the newly synthesized granulation 

tissue in the wound. A higher density of endothelial cells was found in the electro-TGF-β1 gene 

treated wound than all other treatments. In the wound bed treated with simple injection of TGF-

β1 gene, stained endothelial cells could be observed in one of the three representative fields 

(black arrow, Fig 2.7E). On the other hand, with electroporation, more intensely stained 

endothelial cells were observed in all three fields (Fig. 2.7F). The number of stained endothelial 

cells found in different treatment groups is shown in Fig. 2.7G. Only electro TGF-β1 gene 

therapy appeared to enhance endothelial cell migration significantly (p<0.05), suggesting an 

enhanced angiogenesis.   
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5 DISCUSSION 

 
f the combination of gene and electric therapies to treat 

e, we assessed various conditions in which both TGF-β1 

ould occur. We applied electric pulses immediately after 

. We found that 6 pulses of 100V/cm in 20 ms duration 
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with the syringe electrodes was the most effective condition and accomplished transfection level 

of approximately 107 RLU/mg protein. Compared with the condition used by most of other 

investigators, 700V/cm – 1,200V/cm, our condition used < 700V/cm to reach a comparable 

transfection level (Heller et al 2001). This is important since the diabetic skin as shown in Figure 

2.1 is more sensitive to electroporation than the normal skin in this mouse model. The use of a 

milder condition was necessary to prevent tissue damage. 

Next we determined if our optimal condition could result in the therapeutic effects of 

TGF-β1 gene transfer and electrical therapy. We investigated several well-recognized wound 

healing parameters such as reepithelialization, wound closure, collagen deposition and 

angiogenesis with our diabetic excisional wound model. We used the same syringe for the 

injection of TGF-β1 gene and the application of 6 pulses of 100V/cm in 20 ms duration without 

withdrawing the needle. In this experimental setting, we determined that electric pulses alone 

could induce cell migration (Fig 2.3) and wound closure (Fig 2.5). Simple injection of TGF-β1 

plasmid could induce reepithelialization, wound closure, collagen deposition and angiogenesis.  

As we expected, the application of electric pulses along with the delivery of TGF-β1 plasmid 

further enhanced all wound healing parameters. An increase of reepithelialization rate, wound 

contraction, collagen synthesis and angiogenesis was found in the wound 5-7 day post-

application of intradermal injection of TGF-β1 followed by electroporation. Not surprisingly, the 

improvements in reepithelialization rate, collagen synthesis and angiogenesis were greater than 

the additive effects of gene and electric treatments. There was a clear synergism between the two 

treatments.  

TGF-β1 is a multifunctional cytokine and the response is complicated in wound healing. 

It is a potent chemokine for fibroblasts. TGF-β1 enhances granulation tissue and collagen 
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formation. The effect of TGF-β1 on reepithelialization is complicated. TGF-β1 is a potent 

inhibitor of keratinocyte proliferation in vitro (Garlick et al 1996, Garlick and Taichman 1994). 

One possible reason is that TGF-β1 pathway is a negative feedback mechanism for epidermal 

growth factor-induced proliferation of human keratinocyte (Yamasaki et al 2003). Interestingly, 

in a steroid-impaired rabbit wound model, application of TGF-β1 enhanced reepithelialization 

(Beck et al 1991). Another study also shows that TGF-β1 probably can induce keratinocyte 

proliferation in vivo (Fowlis et al 1996). Fowlis et al showed that overexpression of TGF-β1 

promoted the epidermal cell growth in TGF-β1 transgenic model (Fowlis et al 1996), suggesting 

the complicated biological activity of TGF-β1. In addition to keratinocyte proliferation, 

keratinocyte migration is important in reepithelialization. TGF-β1 can induce keratinocyte 

migration by up-regulating the synthesis of laminin 5, which has a dual function in keratinocyte 

adhesion and migration (Decline et al 2003). Taken together, TGF-β1 is beneficial to wound 

healing. Indeed, the therapeutic effect of plasmid TGF-β1 has been fully documented by our 

group (Chesnoy et al 2003). Our data is consistent with the previous findings.  

Electrical stimulation has been known as a cell migration promoter. Studies showed that 

electrical field stimulates macrophage, corneal epithelial cells and fibroblast migration (Cho et al 

2000, Wang et al 2003, Brown and Loew 1994). Our results also showed that electroporation 

induces cell migration (Fig 2.3B). The induction is associated with an alteration of cell 

movement including cell crawling and possibly cell rolling without changing the cell 

morphology (Cho et al 2000). The mechanism of electric field –induced migration is not yet 

clearly elucidated, but integrin-dependent signaling may be involved in electric field-induced 

macrophage migration (Cho et al 2000). Furthermore, the electric stimulation also enhances the 

activation of ERK1/2, a signaling molecule in the MAP kinase pathway (Wang et al 2003).  
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In our study, we found that the actively migrating keratinocytes at the leading end (region 

1, Fig.2.4A) do not proliferate. Instead, most of the proliferation occurred in the vicinity of 

leading end (region 2, Fig. 2.4A). A previous study reported that reepithelialization is temporally 

and spatially coordinated: keratinocyte migrates into the wound followed by transiently burst 

proliferation at wound margin, and the actively migrating keratinocytes do not proliferate 

(Garlick and Taichman 1994). Thus, our data are consistent with previous findings. 

In conclusion, we have developed an innovative strategy for therapeutic treatment of 

diabetes-induced wound impairment with a combination of electric and gene therapies which 

may have a significant implication for clinical applications.  
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3.0 THERMOSENTIVE HYDROGEL AS A TGF-β1 GENE DELIVERY VEHICLE 

ENHANCES DIABETIC WOUND HEALING 

 

 
(Lee PY, Li Z, Huang L. Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle 

enhances diabetic wound healing. Pharm Res. 20(12):1995-2000, 2003.) 

 

 

3.1 ABSTRACT 

 
This chapter is to report the feasibility to accelerate diabetic wound healing with TGF-β1 gene 

delivery system using a thermosensitive hydrogel made of a triblock copolymer, PEG-PLGA-

PEG. Two 7x7mm full thickness excisional wounds were created in parallel at the back of each 

genetically diabetic mouse. The hydrogel containing TGF-β1 gene was administered to the 

wound and formed an adhesive film in situ. Controls were either untreated or treated with the 

hydrogel without DNA. We used a commercial wound dressing, Humatrix®, either with or 

without DNA, to compare the therapeutic effect with the thermosensitive hydrogel. We found 

that the thermosensitive hydrogel alone is slightly beneficial for reepithelialization at early stages 

of healing (day 1- 5), but significantly accelerated reepithelialization, increased cell proliferation 

and organized collagen were observed in the wound bed treated with thermosensitive hydrogel 

containing TGF-β1 gene.  The accelerated reepithelialization was accompanied with enhanced 

collagen synthesis and more organized extracellular matrix deposition. Humatrix® alone or 

43 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lee+PY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Li+Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Huang+L%22%5BAuthor%5D


 

mixed with TGF-β1 gene, had little effect. In conclusion, thermosensitive hydrogel composed of 

PEG-PLGA-PEG triblock copolymer provides excellent wound dressing activity and delivers 

TGF-β1 gene to promote wound healing in a diabetic mouse model. 

 

 

3.2 INTRODUCTION 

 
Of the growth factors, TGF-β family members play a central role in tissue repair.  The biological 

activities of TGF-β1 in the wound healing process have been previously reported. Lanning et al. 

(2000) showed TGF-β1 induces myofibroblast production, resulting in a significantly reduced 

wound in a non-contractile fetal rabbit model. Sidhu et al. (1999) demonstrated TGF-β1 locally 

improved neovascularization, increased migration of myofibroblasts, fibroblasts and 

macrophages and produced higher collagen content, resulting in an accelerated 

reepithelialization.   

Exogenously administered growth factors can compensate for decreased expression of 

endogenous growth factors such as TGF-β1 (Jude et al 2002) and PDGF (Beer et al 1997), to 

overcome impaired wound healing in diabetes (Greenhalgh et al 1990). We have recently shown 

that plasmid TGF-β1 delivered by intradermal injection of naked DNA effectively accelerated 

wound healing in a genetically diabetic mouse model (Chesnoy et al 2003). Accelerated collagen 

deposition and cell proliferation were observed in the plasmid TGF-β1 treated wound.   

Use of biodegradable polymer implants to deliver naked DNA to muscle (Wang et al 2002) and 

canine osteotomy model (Bonadio et al 1999) results in a sustained transgene expression. 

However, persistent overproduction of growth factors may cause adverse effect. For example, 
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transient TGF-β1 administration accelerates wound healing, yet persistent TGF-β1 

administration causes excessive extracellular matrix component accumulation resulting in skin 

fibrosis (Border et al 1994). 

In this study, we have tested the ability of a thermosensitive hydrogel to deliver naked 

DNA to the wound surface. We have previously characterized the hydrogel made of a triblock 

copolymer, PEG-PLGA-PEG, for naked DNA delivery at the wound site (Li et al 2003). Upon 

water evaporation at the skin temperature, the liquid copolymer solution formed an adhesive film 

in situ. Adherent interaction prevents wound desiccation as well as reduces the risk of bacterial 

infection. In addition to the wound dressing effect, the hydrogel serves as a DNA-release carrier. 

Here, we report the findings of using the triblock copolymer as a TGF-β1 gene delivery hydrogel 

for diabetic wound healing. 

 

 

3.3 

3.3.1 

MATERIALS AND METHODS 

 
Animal 

 
 C57BKS.Cg-m +/+ Leprdb female mice, 9 weeks old, were used as a model for genetically 

diabetic mice (Jackson Laboratories, Bar Harbor, Maine). Mice homozygous for the diabetes 

spontaneous mutation (Leprdb) become identifiably obese around 3 to 4 weeks of age. Elevation 

of plasma insulin begins at 10 to 14 days and elevation of blood sugar at 4 to 8 weeks. The mice 

were housed in the animal facility at the University of Pittsburgh. All animal protocols were 

approved by IACUC of the University of Pittsburgh. 
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3.3.2 

3.3.3 

Synthesis of in situ hydrogel solution 

We have synthesized a triblock co-polymer, poly [ethylene glycol-b-(D, L-lactic acid-co-glycol 

acid)-b-ethylene glycol] (PEG-PLGA-PEG), according to published procedure (Jeong et al 2000, 

Jeong et al 1999) with Mw = 29,659, Mn = 15,732 and polydispersity = 1.877. Briefly, the 

triblock copolymer was prepared by ring opening polymerization of D, L-lactide (LA) and 

glycolide (GA) onto monomethoxy poly (ethylene glycol) (mPEG, Mw = 750 Da), followed by 

coupling of the resulting diblock copolymer (mPEG 750-PLGA) using hexamethylene 

diisocyanate (HMDI). The resulting triblock copolymer was dried in a pressurized oven. The 

structure and composition of resulting products were confirmed by 1H nuclear magnetic 

resonance (NMR) spectra recorded at 30°C with a Burker DPX-300 spectrometer using 

chloroform (CDCl3) as a solvent.  An aqueous solution (30%, w/v) of the triblock copolymer 

flows freely at room temperature, but form an adhesive hydrogel film at the wound site. 

 

CH3O(CH2CH2O)x[(COCH2O)y(COCH(CH3)O)z]OCNH(CH2)6NHCO[(O(CH3)CHCO) z (OCH2CO) y](OCH2CH2)xOCH3 

PEG  PLGA   Urethane                       PLGA    PEG 

x,y,z = 1,1,3 
 

Plasmids 

 
Human TGF-β1 cDNA in pcDNA3.1/GS or empty plasmid, pcDNA3.1/GS, (Invitrogen 

Corporation, Carlsbad, CA) was amplified in TOP10 competent cells (Invitrogen Corporation, 

Carlsbad, CA). The plasmid DNA was isolated by alkaline lysis and purified by ion exchange 

column chromatography (Qiagen Inc. Valencia, CA). 
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3.3.4 Wounding protocol and treatment  

 
The mice were anesthetized by inhalation of isoflurane. Two 7x7mm full thickness wounds were 

created in parallel on the back of each mouse. Human recombinant TGF-β1 plasmid or the empty 

plasmid, in an optimized dose 200µg (dissolved in 20µL PBS), was mixed with 50µL of PEG-

PLGA-PEG (30% w/v). TGF-β1 plasmid was also mixed with Humatrix® (Care-Tech® 

Laboratories, St Louis, MO) prior to the application of treatment. Humatrix® is a commercial 

wound dressing primarily consists of chondroitin sulfate.The mixture was spread evenly with a 

sterile pipette tip on the wound and left uncovered.  Control mice (n = 6) received either no 

treatment, or a 70µL of one of the polymer wound dressings alone.    
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igure 3.1 Structure of chondroitin sulfate 

.3.5 Wound closure analysis  

rea of the wound was measured using a caliper at each day, in a total of 14 days, and evaluated 

s percentage of wound closure using the equation: 

 wound closure = 100 x (wound area at day 0 – wound area at day N) /wound area at day 0 
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3.3.6 

3.3.7 

3.3.8 

Histology  

 
Skin biopsies were harvested at day 5.  The harvested tissue was formalin-fixed, dehydrated, and 

embedded in paraffin. Sections of 4mm thickness were then deparaffinized, dehydrated and 

observed either the morphology with H&E staining following or collagen with picrosirius red 

staining (Sweat et al 1964). 

 
Cell proliferation using anti 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry 

 
At day 5 postwounding, BrdU (Sigma, St Louis, MO) labeling was performed by intraperitoneal 

injection at a dose of 50 mg/kg at 3 h prior to sacrifice. Paraffin sections were taken from 

specimens at the wound site.  Sections were deparaffinized, hydrated, pretreated with 2N HCl for 

20 min at 37C° and incubated with 0.01% trypsin at 37°C for 3 min. BrdU immunochemical 

staining was performed by incubation of a rat monoclonal anti-BrdU antibody (Accurate 

Chemical& Scientific Corp, Westbury, NY) for 18 h at 37°C. Sections were then incubated with 

biotinylated mouse adsorbed rabbit anti-rat IgG and peroxidase-labeled with Vetastain Elite 

ABC Kit (Vector Laboratories, Burlingame, CA). The immunoprecipitate was visualized by 3, 

3’-diaminobenzidine tetrahydrochloride chromogen and Gill 1X hematoxylin (Fisher Scientific, 

Pittsburgh, PA) counterstain. Positively stained cells were counted in 7 representative fields with 

400X magnification. 

 
Statistical analysis 

 
All statistics are performed in PRISM software for Student t test.   
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Figure 3.2: Time lapse of gene expression in mice, which received free luciferase cDNA (no vehicle), or luciferase 
cDNA+PEG-PLGA-PEG (vehicle). n=4. **p< 0.02.   

 
 
 

3.4 

3.4.1 

RESULTS 

 
 Expression of gene released from the hydrogel made of PEG-PLGA-PEG 

 
A 30% aqueous PEG-PLGA-PEG solution formed a hydrogel 45 min after its application to the 

wound due to evaporation of water at the wound site. Therefore, the film of PEG-PLGA-PEG 

covered the entire area of the wound. With the modified triblock copolymer as a vehicle, we 

proceeded to evaluate the efficiency of gene expression, which can be seen in Figure 3.1. At day 

1, the PEG-PLGA-PEG vehicle significantly enhanced the gene expression compared to no 

vehicle (0.1M sodium phosphate buffer). Maximum gene expression was seen at day 1 and then  
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decreased on the following days. This demonstrates that the hydrogel formed by the modified 

polymer is a fast release vehicle, which is ideal for TGF-β1 gene therapy, as TGF-β1 is a 

cytokine that exerts its activity in the early phase of wound healing.  

 
3.4.2 Wound closure 

  
We examined whether plasmid TGF-β1 can elicit therapeutic effect. First, we examined the 

wound closure until the wound completely reepithelialized (at day 14 post-wounding). In the 

early healing stages (day 1- day 5), we observed significantly accelerated reepithelialization 

when the plasmid TGF-β1 was delivered by the triblock copolymer hydrogel. Furthermore, the 

wound dressing effect of the hydrogel was slightly beneficial for reepithelialization in early 
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Figure 3.3:  Wound closure presented as % closing of the wounds in untreated mice or mice treated with Humatrix, 
PEG-PLGA-PEG, 200µg TGF-β1 gene with Humatrix or PEG-PLGA-PEG. Large wounds (7x7 mm) were used. 
n=5. **p<0.01, *p<0.05. 
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Figure 3.4 Wound closure presented as % closing of the wound in the untreated mice or mice treated with sodium 
phosphate buffer (Buffer) or 200µg of empty plasmid with (Buffer + TGF) or without TGF-β1gene in sodium 
phosphate buffer (Buffer + empty).  Large wounds (two 7x7 mm) were used. n=5.  

 
 

 

***

*

*

*

 

Figure 3.5 Wound closure presented as % closing of the wound in the untreated mice or mice trated with PEG-
PLGA-PEG dissolved in sodium phosphate buffer (gel) or 200µg of empty plasmid mixed with PEG-PLGA-PEG 
which is dissolved in sodium phosphate buffer (gel+empty).  Large wounds (two 7x7 mm) were used. n=5. *p<0.05 
when untreated compared with gel or gel+empty.  
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healing stages. Wound bed treated with hydrogel containing plasmid TGF-β1 produced 56% 

wound closure at day 5 while only 30% wound closure was found in animals treated with the 

hydrogel alone and 12% with no treatment. The closure rate of the wound treated with the empty 

plasmid in hydrogel was not different from the hydrogel alone. Wound treated either with 

plasmid TGF-β1 or empty plasmid in buffer did not demonstrate significantly accelerated wound 

closure. Since the activity of gene has been shown independent of plasmid or oligonucleotide 

form (Hofman et al 2001), the increased closure rate in wound treated with plasmid TGF-β1 in 

hydrogel in comparison with in saline suggests that hydrogel is a suitable gene vehicle. On the 

contrary, both Humatrix® (a commercial wound dressing primarily consists of chondroitin 

sulfate) containing plasmid TGF-β1 and Humatrix® alone did not produce significantly 

beneficial effect on reepithelialization in the early stage. Reepithelialization was complete at day 

9 in the wound bed treated with the hydrogel containing the plasmid TGF-β1, at day 11 either 

with Humatrix® containing plasmid TGF-β1 or both wound dressings alone and at day 14 

without any treatment.  

Figure 3.2 demonstrates the formation of an adhesive film at 1 h after the treatment in 

wounds treated with triblock copolymer hydrogel (B&D in upper panels). In wounds treated with 

Humatrix®, only an opaque viscous liquid covered the wound (A&C in upper panel). Gross 

morphology at day 5 shows that reepithelialization in wounds treated with plasmid TGF-β1 in 

hydrogel was the fastest among any other treatments, such as hydrogel alone or Humatrix® with 

or without plasmid TGF-β1 (Figure 3). Moreover, scab rejection was found at day 5 in the 

wounds treated with the hydrogel but not in those treated with Humatrix®, indicating that the 

hydrogel is capable of retaining moisture.   

52 



 

 
 
3.4.3 Histological examination 
 

H & E staining demonstrated a visibly accelerated migration of epithelium (shown with black 

arrow in Figure 3.3) in the wound bed treated with synthetic hydrogel containing plasmid TGF-

β1. Under the same region of the wound bed, the migration of epithelial tongue was significantly 

slower in wounded tissue treated with either Humatrix® containing the gene, or controls, which 

was either one of the wound dressings alone or untreated. Furthermore, visibly thicker 

granulation tissue (marked with “G” in Figure 3.3) was observed in the wound bed with the 

treatment of the synthetic hydrogel containing plasmid TGF-β1 than other treatment. 
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Figure 3.6: Hydrogel mediated TGF-β1 gene therapy on the morphology of wounded skin at day 5 postwounding. 
H&E staining of the wound bed from untreated skin (A), skin treated with wound dressing alone, either Humatrix®  
(B) or the synthetic hydrogel (D), skin treated with TGF-β1 gene in either Huamtrix® (C) or the synthetic hydrogel 
(E). Black arrows indicate the end of epithelial tongue. Granulation tissue was indicated by G. Magnification 
(100X). 
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Figure 3.7: Collagen deposition at day 5 postwounding shown by picrosirius red. Skin section were collected from 
unwounded animal (A), wounded mice which are untreated (B), or treated with PEG-PLGA-PEG alone (C) or with 
TGF-β1 gene (D). Reddish orange color indicates collagen. Black arrow indicates well-aligned, basket weaved 
pattern, collagen. 40X magnification.  

 
 

In Figure 3.4, basket-weave collagen organization was solely found in the wound bed 

treated with the synthetic hydrogel containing plasmid TGF-β1. This collagen pattern resembled 

the unwounded dermis (shown with black arrow in Figure 3.4). 

Active fibroblast proliferation undergoes during wound healing to synthesize 

extracellular matrix and wound contraction. Because wound closure at day 5 showed the greatest 

difference between both hydrogel formulations, we expected hydrogel formulated with TGF-β1 

gene increased fibroblast proliferation at that time. Actively proliferating fibroblasts in the 

granulation tissue were identified with anti-BrdU antibody. In the center of wound bed at day 5, 

there were few stained cells in the granulation tissue of the animals with no treatment or treated 

with Humatrix® with or without plasmid TGF-β1. However, the number of actively proliferated 

cells was noticeably higher in the wound bed treated with the synthetic hydrogel alone or with 
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plasmid TGF-β1 (p<0.0001) (Figure 3.5), with the latter higher than the former (p < 0.05). 

However, the enhancement of fibroblast proliferation between both hydrogel formulations is not 

as high as in wound closure, suggesting that fibroblast proliferation is not the sole factor for 

reepithelialization.   
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Figure 3.8: Cell proliferation at the wound bed measured by immunostaining of BrdU positive cells at day 5. The 
group treated with copolymer hydrogel, with or without TGF-β1 gene, is significantly different from all other 
groups. * p<0.01. n =7 
 

 
 
 

3.5 DISCUSSION  

 
Hydrogels promote wound healing by moist retention to maintain homeostatic environment. 

However, hydrogels may be inconvenient in application. Most of the commercial hydrogels, 

such as Humatrix® need several re-applications daily with an overlying occlusive wound 

dressing. Moreover, occlusive self-adhesive membrane requires some degree of expertise and 
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causes pain during changes. The thermosensitve hydrogel alleviates the necessity of repeated and 

complicated applications. Furthermore, the potency of the hydrogel as a wound-healing promoter 

appears not to be inhibited by drying. The liquid copolymer left uncovered and formed a 

hydrogel in situ at 45 minutes after topical application, followed by formation of an adhesive 

film. The film was intact until 3 days after application to prevent wound fluid evaporation, and 

thereafter biodegraded. The biodegradation of the hydrogel is necessary because hydrogel 

becomes less useful when homeostatic environments recover with the coverage of clots and skin 

cells. In our study, the wound after a single treatment with the hydrogel compared with 

Humatrix® was visibly smaller even at day 5 post-application, suggesting that the copolymer film 

is a better wound-healing promoter than Humatrix.  

The DNA release from the hydrogel (PEG-PLGA-PEG triblock copolymer) is driven by 

diffusion and biodegradation as previously described (Li et al 2003). The copolymer-hydrogel 

slowly releases the entrapped DNA with a half-life of approximately 5 days at 37°C (Li et al 

2003). When the DNA was amalgamated with triblock copolymer and delivered to the wound, an 

early and transient gene expression occurs and peaks at day 1 (Figure. 3.1). We believe some 

other mechanisms induce the rapid release of DNA to skin cells. One mechanism may be 

initiated by the inflammation condition in the wound site. In a previous report, enhanced 

biodegradation was observed with localized pH change, which usually occurs during acute 

inflammation and infection (Zaikov 1985).  

TGF-β1 is used in this experiment because TGF-β1 is a chemokine for fibroblasts. When 

plasmid TGF-β1 formulated with the copolymer, accelerated reepithelialization, increased 

fibroblast proliferation, and organized and mature collagen fibers were observed at the early 

stages of the healing process. One biological effect of TGF-β1 is to enhance reepithelialization. 
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During wound healing, fibroblasts stimulated by the TGF-β1 signaling migrate to the injured 

tissue and synthesize collagen (Frank et al 1996). Tensile strength increases as collagen matures. 

The granulation tissue bed, mainly comprised of collagen and proliferating fibroblasts, serves as 

a foundation for keratinocyte migration resulting in an enhanced reepithelialization.  

Skin fibrosis, characterized by disorganized collagen formation (Ito et al 2001) and 

epidermal architecture (Christner et al 2000) is the possible adverse effect reported from 

cutaneous delivery of TGF-β1. From previous studies, the pathologic fibrosis and scar occurs 

mostly due to persistent presence of TGF-β1 caused by sustained release or reapplication in vivo 

or in vitro (Lanning et al 1996, Bettinger et al 1996). Therefore, transient expression with single 

dose using our copolymer as a vehicle appears to be advantageous in wound healing. Indeed, 

none of these pathologic conditions were observed in our studies. Instead, TGF-β1 expression 

resulting in robust therapeutic effect was observed with our new DNA delivery system at the 

early stages of wound healing.  

Since endogenous TGF-β1 expression peaks in the early stages of normal wound healing 

process (Theoret et al 2002), and the robust therapeutic effects were observed at the early stages 

of wound healing, our copolymer hydrogel delivery system seems to mimic the temporal 

sequence of the endogenous TGF-β1. While the mechanism of the transient expression is not 

clear, our copolymer system seems to be ideally suitable for delivering TGF-β1 gene for 

promotion of wound healing. 

Diabetes mellitus is one of the major contributors to chronic wound healing problems. 

When diabetic patients develop an ulcer, they become at high risk for major complications, 

including infection and amputation. These patients show prolonged inflammation, impaired 

neovascularization and defective collagen formation. It is reported that deficiency of endogenous 
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growth factors is the underlying mechanism. Therefore, our new DNA delivery method might be 

advantageous for wound healing in diabetic patients in future.  

In conclusion, the thermosensitive triblock copolymer, PEG-PLGA-PEG is a wound-

healing promoter, which is clearly superior to the commercially available wound dressing, 

Humatrix®. The further formulation of the thermosensitive hydrogel with a growth factor gene 

might be highly applicable in treating problematic wound healing. 
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4.0 THERMOSENSITIVE HYDROGEL ASSISTS MUSCLE DERIVED STEM 
CELLS TO ACCELERATE DIABETIC WOUND HEALING  

 

 

4.1 ABSTRACT 

 
Muscle derived stem cells (MDSC) have been shown to enhance muscle regeneration and bone 

healing. PEG-PLGA-PEG is a biodegradable and biocompatible triblock copolymer which forms 

a thermosensitive hydrogel and promotes cell proliferation in the cutaneous wound of the db/db 

diabetic mice. We applied the MDSCs with the PEG-PLGA-PEG in db/db mice and performed 

the wound closure study until the wounds were completely closed. Furthermore, the histological 

studies were performed at days 5, 9, 14 post-wounding including immunofluorescence to observe 

the localization and differentiation pattern of the β-gal engineered MDSCs, and picrosirius red 

staining to observe collagen. From the results, MDSCs accelerated the wound healing only when 

the PEG-PLGA-PEG was applied on MDSCs. Furthermore, the hydrogel could enhance the 

engraftment for the MDSCs; 30 % of the transplanted MDSCs were found at day 9 and 15% 

remained when the wound was closed at day 20. From the double immunofluorescent study, we 

found that some MDSCs differentiated into fibroblasts and endothelial cells. In conclusion, we 

demonstrated the potential of MDSCs in improving diabetic wound healing and the 

differentiation pattern of MDSCs at the diabetic cutaneous wound environment.  
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4.2 INTRODUCTION 

 

The development of stem cells as a new method for tissue regeneration has become attractive in 

the past few years. Due to ethical issues and the tumor induction potential associated with the 

embryonic stem cells, there is an increasing recognition of the importance of multipotent post-

natal stem cells in tissue regeneration. Several types of stem cells have been used to regenerate a 

variety of tissues including bone, skeletal muscle, cardiac muscle and skin (Peng and Huard 

2004, Arinzeh et al 2005, Kocher et al 2001, Orlic et al 2001, Orlic et al 2001) and improve the 

function of the new tissue (Penn et al 2004). Hematopoietic stem cells (HSCs) can differentiate 

into neurons, blood cells and macrophages (Shen et al 2004, Sinanan et al 2004) while postnatal 

muscle derived stem cells (MDSCs) can differentiate into adipogenic, osteogenic, chrondrogenic 

and hematopoietic lineages (Cao et al 2003).  

Recently, adult stem cells have been shown to enhance wound repair. Bone marrow 

derived stem cells, HSCs or MDSCs have been documented to accelerate the healing in bones, 

cartilage, muscle or skin after injury (Badiavas et al 2003, Badiavas and Falanga 2003, Peng et al 

2003, Stocum 2001). Bone marrow derived stem cells (BMDS) are recruited and incorporated 

into cutaneous wound sites (Badiavas et al 2003). In the study of Badiavas et al (2003), the 

researchers injected bone marrow derived stem cells intravenously and found the cells 

incorporating into the hair bulge region at the wound site and differentiating into epithelial cells.  

However, there was little incorporation of BMDS at the wound site in the genetically diabetic 

db/db mouse model (Stepanovic et al 2003). If BMDS is used in the cutaneous wound healing, 

the efficiency of skin regeneration might be hindered by low efficiency of the cell engraftment to 

the wound site. On the other hand, the MDSCs might be suitable for the cutaneous wound 
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healing, as they can remain in the engraftment site for a prolonged period and differentiate into 

myofibroblasts (Li et al 2004), essential cells for wound contraction (Darby et al 1990).  

PEG-PLGA-PEG is a biocompatible and biodegradable triblock copolymer that forms a 

thermosensitive hydrogel under the appropriate conditions (Jeong et al 2000, Jeong et al 2000, Li 

et al 2003). The polymer solution is in a liquid state at room temperature and becomes a viscous 

gel and then eventually a thin film when applied to the cutaneous wounds (Lee et al 2003). The 

triblock copolymer displays a relatively low cytotoxicity compared with poly-L-lysine (Li et al 

2003). PEG-PLGA-PEG has been shown the potential to sustain drug release in bladder (Tyagi 

et al 2004). Recently, PEG-PLGA-PEG has been shown to enhance reepithelialization and assist 

cell proliferation (Lee et al 2003) in wound healing. 

In this study, we report the findings of using the thermosensitive hydrogel with three 

different stem cells, HSCs, MSCs or MDSCs in diabetic wounds. A db/db mouse model, which 

is a relevant model for the impaired wound healing in diabetes, have been used in this study 

(Tsuboi et al 1992). The first step of our study was to test the wound closure activity of the three 

stem cells with the application of the hydrogel. We then examined engraftment activity and 

differentiation pattern at the diabetic wound bed.  

 

 

4.3 

4.3.1 

RESULTS 

 
Wound closure effect by MSC, HSC and MDSC 

 
We tested the MSC, HSC and MDSC for the capability of enhancing wound healing in the db/db 

mouse. As previously reported, HSC and MSC can promote wound healing (Badiavas et al 2003,  
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Figure 4.1 (a) Wound closure effect of MDSCs, HSC or MSC mediated by PEG-PLGA-PEG hydrogel copolymer. 
Wounds were untreated, treated with PEG-PLGA-PEG or with MDSC, MSC or HSC overlaid by sodium phosphate 
buffer alone (MDSC+buffer, MSC + buffer or HSC+buffer, respectively) or with PEG-PLGA-PEG hydrogel  
(MDSC+ gel, MSC+gel or HSC+gel, respectively) (b) Wound closure effect by two different application protocols, 
topical application or injection using MDSCs. Wounds were left untreated (untreated), treated topically with PEG-
PLGA-PEG hydrogel alone or with the PEG-PLGA-PEG applied on the MDSCs (cell + gel) or intradermal injection 
of MDSCs at wound edges followed by the topical application of PEG-PLGA-PEG (cell injection -> gel). (c) 
Wound closure effect of the mixing and overlaying protocols using MDSC and the PEG-PLGA-PEG hydrogel. 
Wounds were untreated, treated with PEG-PLGA-PEG (gel), MDSC mixed with the sodium phosphate buffer (cell+ 
buffer) without or with the hydrogel (cell + gel) and MDSC overlaid by the hydrogel (cell ->gel).n=4. * p<0.05. 
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Badiavas and Falanga 2003, Stocum 2001). We evaluated the wound closure rate after the 

application of various stem cells followed by overlaying with the sodium phosphate buffer with 

or without PEG-PLGA-PEG. As shown in Fig. 4.1, the wound closure rate of all stem cell-buffer 

treated wounds was not significantly increased compared with the untreated. With the overlaid 

PEG-PLGA-PEG hydrogel, the wound closure of MDSC treated wounds was greatly enhanced 

while the wound closure of other stem cell treated wounds was not significantly enhanced 

compared with the untreated (Fig.4.1a). To see if the protocol we used was optimized for the 

application of MDSC, we tested several methods in our wounding model including injection of 

MDSC with the topical application of the hydrogel on the wound (Fig. 4.1b), MDSC mixed with 

the hydrogel polymer (Fig 4.1c) or the topical application of MDSC followed by overlaying with 

the hydrogel copolymer (Fig. 4.1b). We found that the latter (hydrogel overlaying method) was 

more favorable for wound healing application in our model. 

The morphology of the wound showed that the migration of epithelial tongue was 

achieved faster in the wound treated with MDSC overlaid by the hydrogel than the wound left 

untreated (arrows, Fig. 4.2), suggesting that the former promoted reepithelialization. 

 

64 



 

Clot

Adipose

Adipose

A B

Clot

Adipose

Adipose

BA

Clot

Adipose

Adipose

B

4.3.2 

BAA 

U 

U  

Figure 4.2 The morphology at day 5 postwounding using H& E staining in the wound left untreated (A) and the 
wound treated with MDSC with the coverage of PEG-PLGA-PEG (B). Arrows indicated the leading end of the 
epithelial tongue. U indicated the unwounded portion. The epithelium migrated from the unwounded to the wounded 
tissue toward the left.  

 
 
 

The engraftment of MDSC mediated by thermosensitive hydrogel, PEG-PLGA-
PEG 

 

To observe if the hydrogel plays a role in enhancing the engraftment of MDSC, we evaluated the 

percentage of the MDSC remained at the wound bed when the cells were overlaid by the 

copolymer hydrogel or by a clinically used hydrogel, HumatrixR. Since MDSCs were stably 

transduced with a β-gal gene, we measured the β-gal activity of the harvested wound tissue. 

During the wound healing, we found that the β-gal activity in the wound bed treated with PEG-

PLGA-PEG and MDSCs was higher than all other groups (Fig. 4.3). 
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Figure 4.3 The percentage of MDSC remained at the wound bed evaluated by β-gal assay. The wound was treated 
with the MDSC overlaid by Humatrix (MDSC+ H), 1:1 mixture of Humatrix with the PEG-PLGA-PEG hydrogel 
(MDSC+ gel/H) or sodium phosphate buffer alone (MDSC+Buffer) or with the PEG-PLGA-PEG hydrogel 
(MDSC+gel). β-gal assay was evaluated at day 0, 5, 9 or 20 (complete reepithelialization) postwouding. Data was 
presented after normalization of the background from the untreated wound. n=5. * p<0.05. 

   
 

Up to 30% of the original β-gal activity was detected in the wound at day 9. When the 

wound was completely closed (at day 20 postwounding), 15 % of the β-gal expressing MDSCs 

still remained while no detectable level of β-gal activity was found in the wound bed covered by 

the mixture of Humatrix and hydrogel polymer (1:1 ratio) or Humatrix alone (Fig. 4.3), 

suggesting that the copolymer hydrogel facilitated the engraftment of the MDSCs. Furthermore, 

22% of the original β-gal activity at day 3 postwounding increased to 30% at day 9, suggesting 

that the copolymer hydrogel might facilitate the proliferation of the MDSCs. 
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Figure 4.4 Anti β-gal immunostaining of skin sections at 14 days postwounding.  (A) Untreated. Wound treated 
with PEG-PLGA-PEG hydrogel (B), MDSC overlaid with Na phosphate buffer alone (C) or with PEG-PLGA-PEG 
hydrogel (D). Blue indicates nuclei counterstained by hematoxylin. Grey indicates positively stained β-gal cells (red 
circles). 200x field. 

 

 

67 



 

A B

C D

A B

C D

 

Figure 4.5 Double immunofluorescence of anti-β-gal (green) and anti-smooth muscle actin (red) in skin wounds at 
day 9 postwounding. (A&B) untreated. (C&D) skin was treated with MDSC overlaid with PEG-PLGA-PEG 
hydrogel. Magnification in 20x field (A&C) or in 40x field in the dermal layer (B&D). Nuclei were counterstained 
with Hoechst and appeared in blue. Arrows indicate the cell stained positively with both anti-β-gal and anti alpha 
smooth muscle actin while arrowheads indicate the cell stained positively with anti-β-gal. 

 
 
 
4.3.3 The differentiation of MDSC at the wound bed 

 
To localize the engrafted MDSC in the wound bed, we have used immunofluorescence with anti- 

β-gal antibody (Fig. 4.4). At day 14 postwounding, no visible β-gal positive cells appeared in the 

untreated wound (A), wounds treated with hydrogel alone (B), or MDSC in Na phosphate buffer 

(C).  But the β-gal positive cells were abundantly found in wounds treated with MDSC in 

hydrogel (D); the cells exclusively localized in the dermis layer of the wound bed (Fig. 4.4D).  

From the morphology and the dermis location of β-gal positive cells, we predicted some of the  
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Figure 4.6 Double immunofluorescence of anti-β-gal (green) and anti-F4/80 (A&B), anti-PECAM (C&D) or anti-
reticular fibroblasts (E&F) respectively (red) was performed on sections of skin wound at day 9 postwounding. (A, 
C &E) untreated. (B, D&F) wounded skin was treated with MDSC overlaid by PEG-PLGA-PEG hydrogel. 
Magnification in 400x field in the dermal layer (B&D). Nuclei were counterstained with Hoechst and appeared in 
blue. Arrows indicate the cell stained positively with both anti-β-gal and antibody for cell markers while arrowheads 
indicate the cell stained only positively with anti-β-gal. Panel II demonstrates a zoom in of Panels IB, D &F (from 
left to right, respectively).  Nuclei were counterstained with Hoechst and appeared in blue. Arrows indicate the cell 
stained positively with both anti-β-gal and antibody for cell markers while arrowheads indicate the cell stained only 
positively with anti-β-gal. Panel III α- smooth muscle actin (data from Fig 4.5), F4/80, reticular fibroblasts or 
PECAM-positive cell count that is β-gal positive in (n=5) representative fields. * p<0.05. 
 
 
 
stem cells might have differentiated into fibroblasts (Fig. 4.4 D). To confirm this, we performed 

the double immunofluorescence for β-gal either with α-smooth muscle actin or reticular 

fibroblast (Fig. 4.5, Fig. 4.6 I F). We found that there were many β-gal positive cells (green) in 

the dermis of the wound bed at day 9 postwounding. The results also showed that some β-gal 

positive cells were indeed α-smooth muscle actin (approximately 10%, Fig 4.6 III) or reticular 

fibroblast (approximately 25%, Fig 4.6 III) positive (arrows in Fig. 4.5B, arrow in Fig 4.6 I F), 
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confirming the hypothesis that MDSC had differentiated into fibroblasts.  Furthermore, we also 

wanted to identify if the stem cells differentiated into other cell types such as macrophages or 

endothelial cells which are essential cells appeared in the dermal layer in wound healing. Thus, 

we performed double immunofluorescence for β-gal either with F4/80 or PECAM. The result 

showed that some β-gal positive stem cells (approximately 10%, Fig 4.6 III) were PECAM 

positive (arrows in Fig. 4.6 I D) while no β-gal positive cells were noticeably F4/80 positive 

(arrowheads in Fig 4.6 I B). The data suggest that some of the stem cells may have differentiated 

into endothelial cells but not macrophages. In each set of the double immunofluorescence study, 

there were many β-gal positive cells that were not α- smooth muscle actin, reticular fibroblast, 

F4/80 or PECAM positive  (Fig. 4.5 arrowheads, Fig 4.6 arrowheads), suggesting the presence of 

the quiescent, undifferentiated stem cells in the dermis layer of the healed wound.  

 
4.3.4 Collagen deposition at the wound site treated with MDSC 

 
Collagen in granulation tissue could be produced by dermal fibroblasts (Gabbiani et al 1979, 

Kayne 1981). If more fibroblasts ere present in the dermis, it would be possible to observe 

thicker and more mature collagen deposition in the dermis layer at the wound bed. To evaluate 

the collagen deposition, we performed the picrosirius red staining on the sectioned skin wounds. 

Compared to the untreated wound or the wound treated with MSC, more dispersed glowing 

orange staining appeared in the granulation tissue in MDSC-hydrogel treated wound bed (Fig. 

4.7), indicating thicker and more mature granulation tissue collagen formation (Berry et al 1998) 

in the MDSC-hydrogel treated wound bed. The amount of collagen in the wound bed was further 

quantified by using Metamorph program to analyze the microphotograph in Figure 4.7. The   
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Figure 4.7 Collagen deposition at the wound site mediated by MSC or MDSC. (A) Untreated wound, or wound 
treated with MSC (B) or MDSC (C) followed by covering of the copolymer hydrogel. Glowing orange indicates 
collagen Magnification 200x. G indicates the granulation tissue. 

 
 

result indeed indicates that MDSC promoted collagen deposition, probably due to increased 

dermal fibroblasts from the differentiation of MDSC.  

 

 

4.4 DISCUSSION 

 
We have tested several different types of stem cells in combination with the thermosensitive 

hydrogel composed of the polymer, PEG-PLGA-PEG, for treating impaired wound healing in a 

diabetic mouse model. Compared to HSC and MSCs, which have been previously documented to 

regenerate tissue successfully (Satoh et al 2004, Wang et al 2004), MDSC may have a higher 

potential in accelerating the wound closure. This study is the first to demonstrate that MDSC can 

enhance cutaneous wound healing. Furthermore, MDSC only significantly accelerated wound 

closure when MDSCs were covered with the thermosensitive hydrogel made of copolymer, 

PEG-PLGA-PEG. We predicted that the improved wound closure by MDSC and exclusively 

with the hydrogel might be because the hydrogel enhanced the MDSC engraftment. Indeed Fig 

4.3 showed the enhancement of the engraftment of the MDSC promoted by the hydrogel. When 
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we compared the hydrogel with sodium phosphate buffer, pure Humatrix or Humatrix-PEG-

PLGA-PEG mixture, greater amounts of MDSC remained in the wound when the cells were 

treated with the PEG-PLGA-PEG hydrogel. Throughout the wound healing until the wound was 

closed, 15% or more of MDSC remained in the wound bed when we used the hydrogel. The 

amount of MDSC was undetectable at the time of complete wound closure when we used the 

sodium phosphate buffer, pure Humatrix or Humatrix-PEG-PLGA-PEG mixture. Many reports 

showed that failure of cell transplantation was associated with the fact that the cells were not able 

to survive in the recipients (Murry et al 2002). While our system showed a 30% of MDSC 

remained at day 9 postapplication, a myocardial muscle repair study showed a 10 % of 

embryonic stem cells remained at day 4 and a drop to 1% at day 10 at the transplanted site 

(Murry et al 2002). Using fibroblast grafting in skin wound model, no cells remained at day 7 

postwounding (Price et al 2004). The increased engraftment of MDSC may be due to the 

presence of large component of PEG in the copolymer hydrogel. PEG has been associated with 

the capability to reduce immune cell attack and has been shown to be favorable for cell survival 

(Lee et al 2004, Lacasse et al 1998) (already checked. No spelling problem).  

PEG-PLGA-PEG is apparently a good scaffold for MDSC compared to Humatrix and the 

mixture of Humatrix with PEG-PLGA-PEG. We observed that there was an increase of MDSC 

at the wound site (22% of the implanted cells remained at day 0 and 30% at day 9) during the 

wound healing process when the PEG-PLGA-PEG was used at the time the wound was closed 

(Fig 4.3). This would suggest that the PEG-PLGA-PEG might have the capability to promote the 

cell proliferation of MDSC. This is consistent with the finding of the ability of the polymer to 

promote proliferation of skin cells (Lee et al 2003).  
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Another novel finding is about the differentiation potential of the MDSC to the cells 

which are essential for cutaneous wound healing.  Our result suggests that some of the MDSC 

can differentiate into fibroblasts and relatively smaller population of endothelial cells during 

wound healing (Fig. 4.5). There are three possibilities that may cause the differentiation of 

MDSCs into fibroblasts and endothelial cells: (1) The thermosensitive hydrogel induces the 

differentiation of the MDSCs. (2) The wound environment containing growth factors and the 

neighboring skin cells promote the differentiation of MDSC to fibroblasts. (3) The MDSC from 

the wild type animals correct the deficiency of cytokines (Bitar and Labbad 1996) such as FGFs, 

which commonly occurs in the diabetic wound. The increased level of these cytokines may 

induce the differentiation into fibroblasts or even endothelial cells. 

Fibroblasts are highly populated in the dermis layer during the healing process. One of 

the functions of fibroblasts is to produce collagen (Kayne 1981, Wiencke et al 1968), which 

gives tensile strength to the wound and promotes cell migration (Scott et al 1985, Hou et al 

2000).  In our results, we found that collagen deposition in the wound treated with MDSC and 

PEG-PLGA-PEG was thicker at day 5 post-wounding compared to the untreated wound or the 

wound treated with MSC. The observation of thicker collagen deposition supports that MDSC 

are highly possible to differentiate into fibroblasts. More importantly, the results suggest that the 

differentiated fibroblasts are highly possibly mature as collagen is mostly produced by the 

mature fibroblasts.  This observation can be significant in treating diabetic wound healing in the 

db/db mice as it is well known that collagen synthesis and growth factor production is impaired 

in the db/db model (Brown et al 1997, Bitar and Labbad 1996). 

Since MDSC can be readily transduced with viral vectors (Cao et al 2003, Li et al 2002), 

gene therapy using MDSC is an attractive approach. Gene therapy with growth factor genes is 
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potentially attractive for skin wound healing as shown in our previous findings (Chesnoy et al 

2002, Lee et al 2003, Lee et al 2004). Due to the self-renewal property of the MDSC and the 

differentiation capacity to skin cells, MDSC may be a good source to produce the growth factor 

proteins. The stem cell/gene therapy might further improve the wound healing by treating 

multiple defective wound healing processes. This approach offers the advantage of the release of 

a growth factor protein at the wound site and alleviates the necessity for repeated application of a 

protein. The increased engraftment of stem cells in our system may result in further applications 

not limited to wound healing. Many disease states might be treatable with the protein products 

generated by the engrafted stem cells.  

 

 

4.5 

4.5.1 

4.5.2 

METHODS 

 
Animals 

 
Female mice of C57BL/6 or C57BKS.Cg-m +/+ Leprdb (a model for type II diabetes) in 7-9 

weeks old were obtained from Jackson Laboratories. (Bar Harbor, Maine). Mice homozygous for 

the diabetes spontaneous mutation (Lard) become identifiably obese around 3 to 4 weeks of age. 

Elevations of plasma insulin begin at 10 to 14 days and elevation of blood sugar at 4 to 8 weeks. 

Twenty-six weeks old genetically diabetic mice (db/db) (Jackson laboratory, 40g) were used in 

the study. All mice were housed in the animal facility at the University of Pittsburgh.  

 
Wounding protocol and treatments 

 
All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at 

University of Pittsburgh. Two 7x7mm excisional wounds were created on the back of 
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anesthetized mice using a pair of scissors. The wound were treated with the 105 of MDSC cells 

in 0.1 M sodium phosphate buffer, 32% PEG-PLGA-PEG triblock copolymer solution in 0.1M 

sodium phosphate buffer, Humatrix or a 1:1 mixture of the Humatrix with the PEG-PLGA-PEG 

copolymer solution. 

 
4.5.3 

4.5.3.1 

4.5.3.2 

Stem cell preparation 

Muscle derived stem cell  
 
 
The muscle derived stem cells were given by Dr. Huard’s lab and was prepared by preplating 

technique as described (Qu et al 2002). Briefly, harvested muscle from the forelimb and the 

hindlimbs was minced using a razor. Cells were enzymatically dissociated with 0.2% collagenase 

XI and subsequently the muscle cell extract was preplated on the collagen coated flasks. 

According to the time needed for the cells to adhere, the cells were isolated. Preplate 1(PP1) 

represents a population of cells that adhere in the first hour after isolation. PP2 represents in the 

next 2h. PP3 represents in the next 18 h. The cells obtained at 24 hours interval was represented 

by PP4-6. Clone FN12A5.6E of pp6 after passage 11 was used in our experiment and had been 

used in other applications (Lee et al 2001).  β-gal has been shown to localize in the nucleus of 

MDSC using the monoclonal anti-β-gal antibody (Sigma Aldrich, St Louis, MO) (Lee et al 

2000).  

Mesenchymal stromal cells (MSC) from bone marrow 

  
The mouse MSCs were obtained from the Tulane University. They prepared the cells as 

previously described (Peister et al 2003). Briefly, MSCs were obtained from femurs and tibiae of 

C57BL/6 mice. The femurs and tibiae were harvested and immersed into complete isolation 
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medium (CIM consists of IMDM supplemented with 9% Fetal bovine serum, 9% Horse Serum, 

100U/mL penicillin, 100mg/mL streptomycin and 12mM L-glutamine) before exposing the 

marrow by clipping the ends of each tibia and femur. The marrow was collected by 

centrifugation followed by resuspension in CIM and filtrating through a 70µm nylon filter. Since 

MSCs are adherent, the adherent cells are collected and cultured. 

4.5.3.3 

4.5.4 

4.5.5 

Hematopoietic stem cell (HSC) 
 
 
HSCs from C57Bl/6 female mice were obtained from Dr. Tao Cheng’s laboratory. They 

prepared the HSCs as described (Stier et al 2002). Briefly, bone marrow was obtained from the 

mice and the procedure for exposing the marrow was similar as described for the preparation of 

MSCs. The isolation of HSC was performed by immunoprecipitating with Sca1 microbeads. 

Cells with a selection for Sca1+ were collected.    

  
Triblock copolymer PEG-PLGA-PEG 

 
Triblock copolymer, PEG-PLGA-PEG was synthesized according to published procedure (Jeong 

et al 1999, Jeong et al 2000). The triblock co-polymer, was characterized with Mw = 29,659, Mn 

= 15,732 and polydispersity = 1.877 (Li et al 2003). An aqueous solution (32%, w/v) of this 

polymer flows freely at room temperature, but forms an adhesive hydrogel film at the wound site 

in approximately 30 min. 

 
β-gal assay 

 
Biopsies of the entire wounded tissue were harvested followed by homogenization, 4 freeze-thaw 

cycles and centrifugation. The supernatant of cell lysate from centrifugation was collected for the 
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evaluation of the β-gal activity using a β-gal assay kit (Invitirogen, Carlsbad, CA) according to 

the vender’s protocol.  

 
4.5.6 

4.5.7 

Histology 

 
The harvested tissue of entire wound site was formalin-fixed and embedded in paraffin. Sections 

of 4µm thickness was prepared using a microtome, then was deparaffinized, hydrated and the 

staining was performed either with Hematoxylin and Eosin for observing the morphology, 

picrosirius red for collagen staining using 0.1% picrosirius red solution as previously described 

(Lee et al 2004). Collagen was analyzed from Figure 4.7 microphotograph with the Metamorph 

software provided by the CBI at the University of Pittsburgh. 

 
Double immunostaining for β-gal and different cell markers 

 
The double staining was performed by an incubation of the deparaffinized sections or frozen 

sections with a mixture containing a mouse biotinylated monoclonal anti-β-gal antibody diluted 

to 1:100 in PBS (Sigma Aldrich, St Louis, MO) and a cy3-conjugated anti-alpha smooth actin 

muscle or antibody for other cell markers, rat anti F4/80, rat anti PECAM or rabbit anti reticular 

fibroblasts diluted to 1:1000 in 0.5% BSA (Sigma Aldrich, St Louis, MO) for overnight at 4°C. 

Sections were then incubated with streptavidin conjugated Alexa 488 at the concentration of 

1:500 in PBS (Molecular Probes).  For staining for F4/80, PECAM or reticular fibroblasts, 

sections were incubated with secondary antibody, either Alexa 596 conjugated anti rat or Alexa 

555 anti rabbit respectively, at the dilution of 1:500 in 0.5% BSA for 1h. Sections were then 

observed under a fluorescent microscope (Nikon, Japan) at 200X and 400X magnification. 
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Double positive cells were counted in 5 representative fields and presented as percentage of β-

gal-positive cells. 

 
4.5.8 Statistical analysis 

 
Data were expressed as means ± standard deviation (SD) and analyzed by two-tailed Student’s t-

test using the PRISM software program (GraphPad Software, San Diego, CA, USA).  
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5.0 CONCLUSION AND FUTURE DIRECTION 

 

5.1 GENERAL DISUSSION 

 
The conventional clinical approach for treating diabetic wound healing largely employs a series 

of palliative treatments involving removal of infected tissue and moisture retention. Unlike the 

conventional therapy such as saline soaked gauze, new technology is bioactive instead of 

palliative.  Furthermore, those new technologies such as growth factors, bioengineered skin are 

designed in an attempt to correct the problematic wound environment instead of treating 

symptoms. Growth factor therapy, the first FDA approved therapeutic approach for treating 

diabetic ulcer, is a direct way to correct the decreased level of growth factors in diabetic wounds.  

However, the challenge is to maintain the level of therapeutic proteins at sufficient time and 

amount. Thus, patients need to receive multiple injections until the wound heals.  Gene therapy is 

an attractive option to protein therapy as the introduction of a gene rather than its product is 

potentially more efficient to correct the growth factor levels and less expensive.  Although there 

are limited gene delivery methods available to sustain a long-term gene expression, transient 

gene expression is relatively desirable in treating wounds as the expression of the introduced 

gene is not necessary after complete healing. Furthermore, skin is an attractive target for gene 

delivery due to the easy accessibility. Thus, it is highly feasible to choose the least invasive but 

the most effective way from a wide variety of modalities to introduce certain genes into the 

wounds. In particular, topically application or simple injection can be feasible. To date, most of 

the work related to growth factor gene therapy has been conducted in animals; however, certain 
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approaches may be feasible in humans. For example, introduction of naked plasmid DNA 

yielded promising results in a clinical trial (Isner et al 1998). The data indicates the importance 

of naked plasmid DNA approach as an alternative to treat non-healing wounds.  

Bioengineered living cell constructs such as Dermagraft and Apligraft is another way to 

correct the abnormal environment. Clinical result shows those living cell constructs improve the 

wound healing in some patients. However, unlike growth factor therapy, living cell constructs 

are not as widely accepted by clinicians (Falanga et al 2004). This may be due to the fact that the 

cells in the construct will die before the wounds heal (Philips et al 2002). Although the 

mechanism is not fully understood, it is possible that the cells may release the growth factors and 

serve to protect the wound, which are applying the same concepts as wound dressing and growth 

factor therapy. Stem cells may be a good alternative because of their self-renewal ability. 

Furthermore, the multipotent characteristic of stem cells potentially allows the regeneration of 

epidermal, dermal and vascular components in skin.  

In this thesis project, several strategies were taken to improve wound healing in diabetes. 

All of the approaches were developed to use a physical treatment to benefit biological therapy 

(either nonviral gene therapy or cell therapy) with a protocol of single administration. For gene 

therapy approaches, we used a simple and safe technique, naked DNA. To improve the gene 

expression, we used electroporation as the first approach (Chapter 2) and a thermosensitive 

hydrogel composed of PEG-PLGA-PEG as the second approach (Chapter 3). The third approach 

used stem cells with the PEG-PLGA-PEG thermosensitive hydrogel (Chapter 4). 
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5.2 DELIVERY OF TGF-β1 BY ELECTROPORATION   

 
A prior study from our lab reports a promising treatment approach by simple injection of TGF-

β1 naked plasmid DNA (Chesnoy et al 2003). As mentioned, TGF has multiple functions in 

wound healing.  Intradermal injection of TGF-β1 followed by applying electric pulses at the 

optimal condition yields an increased gene expression of TGF-β1 and synergistic improvement 

in diabetic wound healing compared with saline treated wounds.  Multiple processes of wound 

healing including angiogenesis, re-epithelialization and wound closure can be observed a 

synergistic improvement in recovery. We also found that diabetic skin was more sensitive to the 

electric condition. Using 100V/cm, the gene expression was 10 fold higher compared with the 

normal skin. Applying 200V/cm or higher to the diabetic skin, we observed electrolysis which 

did not occur the normal skin. The corresponding higher sensitivity might be due to the 

difference in the diabetic cell structure or the difference in chemical components in the diabetic 

wound environment. Further studies will be needed to determine the difference of cellular or 

biochemical components in diabetic wound environment using cells harvested from the diabetic 

skin.  Those further studies may give more insight on the biology and the biochemistry in 

diabetic wound environment.  

Not only may the derivation occur between the diabetic and normal wound environment, 

but the mechanism of action about electric pulse may vary in different cell types even in the 

same wound environment. Based on our result that the therapeutic effect of electric pulses on 

wound closure was larger than angiogenesis and reepithelialization, the action of electric pulses 

may vary from keratinocytes, fibroblasts to endothelial cells. Further studies need to be 

conducted to determine the difference of the action in different cell types using different types 

harvested from the skin.   
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5.3 

5.4 

DELIVERY OF TGF-β1 BY THERMOSENSITIVE HYDROGEL  

 
Previous study has shown the promising approach of using thermosensitive hydrogel made of 

PEG-PLGA-PEG to enhance naked DNA delivery (Li et al 2003).  Given that hydrogel wound 

dressings can enhance wound healing in humans, it is logical to select the hydrogel for 

improving diabetic wound healing. The treatment of the wound with the hydrogel mode of the 

copolymer, and TGF-β1 plasmid synergistically enhanced scab rejection, reepithelialization, 

collagen synthesis and wound closure in the early phase of wound healing. However, we used a 

high loading of DNA (200µg) for topical application using PEG-PLGA-PEG. In further studies, 

we suggest to lower the loading amount of DNA by enhancing the delivery efficiency of DNA, 

i.e. maximize the amount of DNA uptake by the cell. For example, to increase the hydrophobic 

of polymer surfaces to make more cells accessible to DNA.  More cells attached to the polymer 

may allow more cells to be transfected by DNA. Since hydrogel wound dressings allow the 

topical application, a patient-friendly administration mode, this simple and effective strategy is 

attractive as it could be feasible in an outpatient setting. 

 

STEM CELL DELIVERY USING THE THERMOSENSITIVE HYDROGEL  

 
From this study, we report that MDSC (muscle-derived stem cells) uniquely improved the wound 

closure with the thermosensitve hydrogel, PEG-PLGA-PEG, which functions to promote the 

survival of stem cells.  Furthermore, we find that it is highly possible that some of the MDSCs 

differentiate to fibroblasts in the wound environment. 

Cell development and cell differentiation are influenced by stimuli in tissue 

microenvironment (niche) including neighboring cells, extracellular matrix and growth factors. 
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For example, mesenchymal stem cells (MSC) will differentiate to airway epithelial cells (AEC) 

when coculturing with AEC (Wang et al 2005). Growth factors could be another influencing 

factor to drive stem cell differentiation (Chang et al 2003). The diabetic wound environment is 

known to have a decreased expression of multiple growth factors such as IGF, TGF-β, FGF EGF 

TNF-α IL-1β and VEGF (Bitar et al 1996, Zykova et al 2000). It is possible that such an altered 

wound environment drives the differentiation of MDSC into fibroblasts. Another possibility is 

that that the diabetic wound environment consists of some growth factors or extracellular matrix 

that is uncommon in the normal wound environment to induce the differentiation of MDSC to 

skin cells. Further studies will be necessary to identify the novel component(s) or the change of 

the biochemical and cellular conditions in diabetic wound environment. So far, MDSC promotes 

skin repair as well as bone and muscle regeneration (Qu et al 2002, Li et al 2004). However, the 

control of the stem cell differentiation and the underlying mechanism has not yet to be fully 

elucidated. Thus, the proposed study may contribute to the tissue engineering by creating an 

effective and regulated regenerative therapy for skin ulcers through the understandings of the 

biology of the stem cell. 

Since MDSC can be readily transduced with viral vectors (Cao et al 2003, Li et al 2002), 

gene therapy using MDSC is also an attractive approach. By transducing the stem cells with 

growth factor; or cytokine genes in particular leptin gene which play an important role in wound 

healing, the stem cell/gene therapy may further improve the wound healing by treating multiple 

defective wound healing processes. As shown in our previous findings, gene therapy for growth 

factors is very attractive for skin wound healing (Chesnoy et al 2002, Lee et al 2003, and Lee et 

al 2004). Due to the self-renewal property of the MDSC and the differentiation capacity to the 

cells which are essential for wound healing, MDSC may be a good source to produce the growth 
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factor proteins. This approach offers the advantage of the release of a growth factor protein at the 

wound site and alleviates the necessity for repeated application of a protein. The prolonged 

presence of stem cells in our system may also allow the application not limited to wound healing. 

Many disease states might be treatable with the protein products generated by the engrafted stem 

cells.  
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	Figure 4.6 Double immunofluorescence of anti-β-gal (green) and anti-F4/80 (A&B), anti-PECAM (C&D) or anti-reticular fibroblasts (E&F) respectively (red) was performed on sections of skin wound at day 9 postwounding. (A, C &E) untreated. (B, D&F) wounded skin was treated with MDSC overlaid by PEG-PLGA-PEG hydrogel. Magnification in 400x field in the dermal layer (B&D). Nuclei were counterstained with Hoechst and appeared in blue. Arrows indicate the cell stained positively with both anti-β-gal and antibody for cell markers while arrowheads indicate the cell stained only positively with anti-β-gal. Panel II demonstrates a zoom in of Panels IB, D &F (from left to right, respectively). Nuclei were counterstained with Hoechst and appeared in blue. Arrows indicate the cell stained positively with both anti-β-gal and antibody for cell markers while arrowheads indicate the cell stained only positively with anti-β-gal. Panel III α- smooth muscle actin (data from Fig 4.5), F4/80, reticular fibroblasts or PECAM-positive cell count that is β-gal positive in (n=5) representative fields. * p<0.05.
	Figure 4.7 Collagen deposition at the wound site mediated by MSC or MDSC. (A) Untreated wound, or wound treated with MSC (B) or MDSC (C) followed by covering of the copolymer hydrogel. Glowing orange indicates collagen Magnification 200x. G indicates the granulation tissue.
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