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sorption of molecules on single wall carbon nanotubes in the regime of physical 

ion was investigated by means of temperature programmed desorption (TPD) and 

 spectroscopy under ultrahigh vacuum conditions. 

Three adsorption sites could be resolved in the TPD spectra of a number of molecules, 

s CCl4, normal alkanes with 5-9 carbon atoms in the chain, and an unsaturated 

rbon, 1-heptene. The resolution of spectral features in the TPD spectra is especially 

nced in the case of normal alkane molecules. By comparison with theoretical simulations, 

ree adsorption sites were shown to correspond to: (1) to the nanotube interior; (2) the 

sites between adjacent nanotubes on the outside of the nanotube bundles; and (3) the 

 surface of the nanotubes. The nanotube interior has the highest binding energy, followed 

roove sites and exterior sites. 

When two different adsorbates, such as CCl4 and n-C9H20, are coadsorbed on nanotubes, 

orbate with higher polarizability (n-nonane) occupies the more highly-binding adsorption 

alitatively displacing the other adsorbate to sites with lower binding energies. 

By studying the dependence of the capacity of the adsorption sites on the shape and 

of the adsorbed molecules, it was shown that linear groove sites behave as a one-

ional adsorption space. In contrast, the interior adsorption sites, which have diameters 

tially larger than the size of the typical adsorbate molecules, behaved as a three-

ional adsorption space. 

iv 



When 1-heptene confined inside nanotubes was subjected to a flux of an aggressive 

chemical agent, atomic H, it was seen that the rate of reaction was 3-4 times slower compared to 

1-heptene on the exterior of the nanotubes. This demonstrates that the nanotube walls can 

provide shielding for interior-adsorbed species.  

Infrared spectroscopy showed that the ν3 vibrational mode of CF4 (the mode with the 

highest transition dipole moment) shifts to lower frequency upon adsorption on carbon 

nanotubes. The shift is greatest for the internally-adsorbed species (35 cm-1), while the exterior-

adsorbed CF4 shows a shift of 15 cm-1. This points at the stronger van der Waals interaction 

when the molecule is adsorbed in the interior. 
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1.0  INTRODUCTION  

The first experimental observation of carbon nanotubes by Iijima in 1991 [1] opened up a field of 

research that has since been seeing a flurry of scientific activity. Countless applications of 

nanotubes were proposed with a view to exploiting the unique electronic, mechanical, and 

adsorptive properties they possess.  

At present time, about 19,000 papers have been published on carbon nanotubes and about 

5% of these relate to their adsorption properties. Figure 1 shows the evolution of the total 

research activity on nanotubes since the birth of this field. A doubling of research activity occurs 

every 2-3 years, even 10 years after the discovery of this interesting allotrope of carbon.  
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Figure 1. Number of scientific publications on carbon nanotubes per year since their discovery (from the 

Chemical Abstracts database). 
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1.1 STRUCTURE OF CARBON NANOTUBES 

Carbon nanotubes are long cylindrical structures consisting of sheets of sp2-hybridized 

carbon. When the carbon atom is in the sp2 hybridization state, one s and two p orbitals are 

mixed, giving three orbitals pointing to the vertices of an equilateral triangle. These three orbitals 

are capable of producing σ bonds. The remaining p orbital, lying perpendicular to the triangle, 

can interact with identical p orbitals on other carbon atoms giving π bonds. Thus, a sheet-like 

structure can be formed from sp2-hybridized carbon. The sheets are commonly referred to in the 

literature [for instance, ref. 2] as graphene sheets when they are considered as separate entities. 

In graphite, a layered structure is formed from such graphene sheets. Each atom in graphite 

forms three σ bonds with its neighbors in the layer and contributes its p orbital to the delocalized 

π cloud. The resulting bond is 142 pm long with formal order of 1.33 [3]. In contrast to strong 

bonding in the layer, the bonds between the layers are weak van der Waals type.  

It was predicted as early as 1970 [4, 5], far before the first experimental observations, that 

stable closed shell structures with graphene-like connectivity must exist. The formation of such 

closed shell molecules, later called fullerenes, was indeed confirmed in the experiments of Kroto, 

Smalley and others in 1985 [6], who discovered the C60 molecule, a closed polyhedron. 

It follows from a consequence of Euler’s theorem that a closed polyhedron cannot consist 

entirely of hexagons and has to include exactly 12 pentagons [7]. Thus, if a closed structure is 

built from a finite graphene sheet, it must contain 12 pentagonal rings. The smallest stable 

structure of this type is C60, buckminsterfullerene, which has 12 pentagonal and 20 hexagonal 

faces. Although the number of pentagons is always 12, the number of hexagons is not limited, 

and one can imagine rolling up a graphene sheet (consisting only of hexagons) to form a cylinder 
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and creating a hemispherical surface containing a mixture of pentagons and hexagons at the ends 

of the cyllinder to close the shape. The hollow tubular structures of sp2-hybridized carbon that 

one obtains in this way are known as closed carbon nanotubes. Figure 2 shows schematic models 

of three nanotubes with different hexagon orientations.  

 

 
Figure 2. Schematic models of nanotubes: (a) - armchair (5,5) nanotube, (b) – zigzag (9,0) nanotube, (c) - 

chiral (10,5) nanotube. Schematics on the right show the relative orientation of hexagons with respect to the 

tube axis. Fullerene-like end caps are also shown. The images of the nanotubes are reproduced with 

permissions from M.S. Dresselhaus et al., Carbon 1995, 33, 883 [8]. Copyright 1995, Elsevier. 

The hexagon orientation with respect to the nanotube axis in combination with its 

diameter uniquely determines the nanotube structure. The most straightforward way of 

specifying the structure is the vector model [9]. The (two-dimensional) vector that joins two 

equivalent points on the graphene lattice is expressed as 

21 amanC ⋅+⋅=  (1) 
 

where n and m are integers and a1 and a2 are unit cell base vectors for the graphene sheet, shown 

in Figure 3. Vector C points from the (0,0) point in Figure 3 to other bold dots denoting different 

nanotubes. Integers in parentheses are (n,m) pairs. 
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Figure 3. Possible ways of folding a graphene sheet to obtain a carbon nanotube. The (n,m) pairs specify the 

vector joining two identical points on the nanotube. Vectors a1 and a2 are the unit cell base vectors of 

graphene. Reproduced with permission from M.S. Dresselhaus et al., Carbon 1995, 33, 883 [8]. Copyright 

1995, Elsevier. 

When the graphene sheet in Figure 3 is “rolled up” so that the (0,0) point joins the other 

point indicated by a pair of (n,m) integers, a nanotube is formed. The tubule thus generated has 

no distortions of the bond angles other than caused by the cylindrical curvature. 

The chiral angle θ is defined as the angle between vectors C and a1. Differences in the 

angle θ and tubule diameter give rise to differences in the properties of various carbon 

nanotubes. 

The so-called armchair configuration of the nanotube is obtained when n=m. When m=0, 

the configuration is referred to as zigzag. These two types of nanotubes are achiral, that is, they 

can be superimposed with their mirror images. All other nanotubes have lower symmetry and are 

chiral [10]. Since the chiral nanotubes can exist as both right- and left-handed enantiomers, they 

are optically active to polarized light propagating along the nanotube axis. 

In order to avoid giving different (n,m) indexes to identical nanotubes, which can occur 

due to symmetry of the graphene sheet, an additional requirement is introduced, that , and mn ≥

 4 



n and m must both be nonnegative. This results in the selection of “irreducible wedge” on the 

graphene sheet, shown in Figure 3 by an arc spanning 30o. 

The diameter d can be expressed in terms of integers n and m as 

π/3 22 nmnmad ++⋅⋅= , (2) 

where a is the distance adjacent carbon atoms (0.1421 nm in graphite). The chiral angle, θ, is 

given by 

)]2/(3tan[ nmmArc +=θ . (3) 

All zigzag tubes will have θ=0 ο according to this formula, while for armchair tubes θ=30ο. 

Initially the nanotubes were observed in the transmission electron microscopy (TEM) 

images of the soot formed on the negative electrode in an arc between two carbon electrodes in 

inert atmosphere [1]. Later an efficient method of synthesis capable of producing large quantities 

of nanotubes was developed [11, 12]. These were so-called multiwall carbon nanotubes 

(MWNTs), as they consisted of several nested tubes, with diameters typically between 2 and 20 

nm. The spacing between the layers is slightly larger than in graphite (0.340 versus 0.335 Å) due 

to geometrical constraints caused by curvature. Unlike in graphite, the layers are rotationally 

disordered, as it is in general not possible to create a matching nested structure. The length could 

reach several micrometers, giving an aspect ratio of the order of 103-104. 

Another type of nanotubes, containing just a single graphene cylinder, was first 

synthesized independently by Iijima and Ichihashi [13] and Bethune et al. in 1993 [14]. They are 

typically referred to as single wall carbon nanotubes (SWNTs). In SWNTs, unlike in MWNTs, 

no surfaces are closed to adsorption by graphite-like layering. The studies described in this 

dissertation used SWNTs. Unlike the multiwall nanotubes, which grow on the surface of the 

electrode, SWNTs grow in the gas phase and require a catalyst - a transition metal element such 
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as Ni, Co, Y or Fe. In the arc discharge synthesis method the metal is co-evaporated with 

graphite in the electric arc [15, 16]. SWNTs generally exhibit smaller diameters compared to 

MWNTs, usually in the range from 8 to 18 Å. It was theoretically predicted that the nanotubes 

should be stable down to the diameters of around 3-4 Å [17]. Below this diameter the strain 

produced by the curvature of the walls should make the structure unstable [18]. Confirming the 

predictions, experimental work has demonstrated the possibility of synthesis of 4 Å diameter 

nanotubes [19]. 

Considering that the strain energy is proportional to 1/d2, there is no theoretical limit on 

the upper radius of the nanotubes [20], although one should expect that the formation of very 

large tubes would be limited kinetically compared to the smaller diameter ones, since entropy per 

atom is smaller in larger tubes. At large radii, the properties of the nanotubes can be expected to 

asymptotically approach those of graphene.  

A very efficient method of synthesis of SWNTs involves laser vaporization of graphite 

mixed with metal catalyst in a 1200o C furnace [21, 22]. By using bimetallic Ni-Co catalyst, as 

much as 70% of the evaporated graphite could be converted into SWNTs. The SWNTs used in 

the experiments discussed here were produced by this method. 

Another group of methods that lead to the production of SWNTs is based on chemical 

decomposition of organic molecules on supported nanocrystalline catalytic particles (typically 

transition metals and their oxides). Significant progress was made with such molecules as C2H4, 

CO [23, 24] and CH4 [25]. These methods offer the advantage of being readily scalable to large 

volumes. The high pressure CO (“HiPco”) process is a gas-phase synthesis [26], however its 

mechanism is similar. CO gas with a small concentration of Fe(CO)5 is passed into the reaction 

zone kept at 800-1200oC. At this temperature Fe(CO)5 decomposes forming iron nanoclusters 
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that catalyze the CO disproportionation reaction leading to C and CO2. Carbon is deposited on 

the catalytic particles in the form of SWNTs. The HiPco process has the advantage of giving 

nanotubes with small diameters (down to 7 Å) that are essentially free of an amorphous carbon 

overcoating. 

During the formation phase, van der Waals forces between the individual nanotubes 

cause them to form ropes, or bundles, consisting of tens of axially aligned nanotubes [22, 27]. 

The structure of the bundle is a hexagonal array of nanotubes with a nanotube-nanotube spacing 

of around 3.4 Å, as has been verified by TEM and XRD studies [28, 29]. Figure 4 shows a 

typical SEM image of SWNT material. 

 

 

Figure 4. SEM image of SWNT material used in this work. Reproduced with permission from Kuznetsova et 

al., J. Chem. Phys. 2001, 115, 6691. Copyright 2001, American Institute of Physics. 

The “ropes” visible in the image are the entangled bundles of SWNTs. In the axial 

direction the structure of the bundles is similar to the structure of nematic crystals – when one 

nanotube ends, other nanotubes take its place giving bundles that can be centimeters long [30]. 
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Nanotubes in the bundle do not all have the same diameter, resulting in various imperfections in 

the bundle structure. 

1.2 MECHANICAL AND ELECTRONIC PROPERTIES 

Mechanical and electronic properties of nanotubes have attracted a large amount of interest. With 

Young’s modulus comparable to that of the diamond (1.1-1.3 TPa) [31], nanotubes show 

surprising flexibility under loads [32]. Even large deformations are not permanent, and once the 

deforming force is removed, the structure is fully restored. This elastic, rather then brittle, 

behavior for such a hard material indicates extreme strength (Figure 5). One of the consequences 

of a very high Young’s modulus of carbon nanotubes is very a high thermal conductivity (around 

3000 W/K*m) [33], resulting from a high phonon propagation velocity in the graphene-like 

structure.  

 

Figure 5. Simulated bending of a nanotube under a deforming force. Deformation is elastic rather than 

permanent. Reproduced with permission from B.I. Yakobson et al., Phys. Rev. Lett. 1996, 76, 2511 [32]. 

Copyright 1996, American Physical Society. 

Studies of the electron conduction by the nanotubes showed a ballistic transport of 

carriers (almost without scattering) [34] and capability to withstand current densities of up to 109 

A/cm2 [35]. 
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Nanotubes show either metallic or semiconducting behavior. A simple rule connects 

(n,m) integers with metallicity and semiconductivity: if (n-m) is divisible by 3, then the nanotube 

is metallic; if not, it is semiconducting.  It follows that of the possible nanotube structures, two 

thirds are semiconductors, while the rest are metallic (in particular, all armchair tubes are 

metallic). Figure 6 shows the electronic density of states plots for two nanotubes – 

semiconducting (10,0) and metallic (9,0). The density of states for graphite, a zero band gap 

semiconductor, is shown for comparison by the dotted line. 

 

Figure 6. Electronic density of states (DOS) per unit cell of graphene lattice: (a) for a semiconducting (10,0) 

nanotube, and (b) for metallic (9,0) nanotube. DOS for the graphene sheet is shown for comparison (dotted 

line). The Fermi edge is at 0 energy. γ0 is the energy of the nearest-neighbor overlap integral for graphite. 

Reproduced with permission from T.D. Burchell (ed.),“Carbon Materials for Advanced Technologies”. 

Copyright 1996, Elsevier. 
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The (9,0) nanotube, unlike (10,0), has a finite density of states at the Fermi level. It must 

be expected that as the diameter of the nanotube increases, its electronic, mechanical and 

chemical properties must asymptotically approach those of graphene, as graphene can be thought 

of as an infinite-diameter nanotube. It is indeed observed that the band gap for semiconducting 

nanotubes decreases with diameter [36] (proportionally to 1/d), as does the density of states at 

the Fermi level for metallic nanotubes. For large diameters the distinction between the two types 

of tubes disappears as they approach the electronic structure of graphene. 

From the standpoint of applications [37, 38], it is important that either a synthetic method 

be developed capable of producing substantial quantities of nanotubes with given electronic 

properties, or a suitable separation procedure be found. The latter direction has recently started to 

show promise. Dielectrophoretic separation [39] employs the difference in relative dielectric 

constants of the two nanotube species, with metallic nanotubes being attracted to a set of 

electrodes while semiconducting ones remain in the solvent. Authors estimate that in their 

experiment about 100 pg of metallic nanotubes were separated from an initial 100 ng sample 

with this technique. A method developed by Papadimitrakopoulos and coworkers [40] is based 

on preferential physisorption of octadecylamine on semiconducting nanotubes in tetrahydrofuran 

suspension. The metallic nanotubes tend to precipitate out with increasing concentration of the 

suspension. The method could potentially be scaled up to produce gram quantities of nanotube 

material enriched in one type of nanotubes. Zheng et al. [41] took another approach. A 

systematic search enabled them to select a DNA sequence that self-assembles around the 

individual nanotubes in such a way that the interaction with the nanotube depends on the 

diameter and the electronic properties, which allowed separating the nanotubes with anion 

exchange chromatography. Optical adsorption and Raman spectroscopy showed that the early 
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fractions are enriched in small diameter and metallic nanotubes. Chen et al. [42] used preferential 

formation of charge-transfer complex of metallic nanotubes with bromine. The increased density 

of bromine-containing nanotube material allowed them to use a centrifugation-based separation 

procedure. With the most efficient separation parameters the authors could obtain samples that 

were 2.8 times richer in metallic nanotubes than the initial material. 

1.3 ADSORPTION ON CARBON NANOTUBES1 

Single wall carbon nanotubes (SWNTs) occupy an interesting place among carbonaceous 

adsorptive materials. On one hand, they offer chemically inert surfaces for physical adsorption, 

and their high specific surface areas are comparable to those of activated carbons (surface areas 

of up to 1600 m2/g have been reported [43, 44]. On the other hand, SWNTs are fundamentally 

different from activated carbons in that their structure at the atomic scale is far more well-

defined and uniform. While parameters such as the pore diameter distribution and adsorption 

energy distribution are needed to quantify adsorption on activated carbons, in the case of carbon 

nanotubes one can deal directly with various well-defined adsorption sites available to the 

adsorbing molecules. From the standpoint of structure, the relationship between carbon 

nanotubes and other carbonaceous adsorptive materials is similar to that between single crystals 

and polycrystalline materials.  

                                                 

1 This section is reproduced with modifications from a manuscript by P. Kondratyuk and J.T. Yates, Jr., titled 
“Molecular Views of Physical Adsorption Inside and Outside of Single Wall Carbon Nanotubes” which has been 
accepted for publication in the Accounts of Chemical Research, published by the American Chemical Society. 
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1.3.1 Adsorption sites on carbon nanotubes 

As mentioned before, SWNTs associate with each other due to attractive dispersive forces to 

form bundles, typically comprising tens or hundreds of individual nanotubes. Adsorption of 

molecules takes place on these bundles. Thus to gain insight into adsorption on SWNTS it is 

instructive to consider the structure of the bundle and the adsorption sites available to the 

adsorbate molecules (Figure 7).  

 
Figure 7. A schematic of a hexagonally packed SWNT bundle consisting of four (10, 10) nanotubes viewed 

end-on. Four types of adsorption sites are shown. 

Four types of adsorption sites can be identified: the nanotube interior sites, the sites on 

the exterior surface, the groove sites, and the interstitial sites. The groove sites are narrow 

troughs formed on the outside of the bundles where two nanotubes meet. The interstitial sites are 

channels between individual nanotubes inside the bundle. It has been theoretically predicted that 

only the smallest adsorbate molecules (such as H2, He and Ne) can access  the interstitial 

channels in a hexagonally packed bundle of typical SWNTs [45]. It has been further suggested 

that in non-ideally packed bundles the channels can become large enough for adsorption of other 

adsorbates [46]. However, experimental results indicate that the contribution of the interstitial 

channels to the total adsorptive capacity is negligible [47-49]. 
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The nanotube interior is expected to have a high binding energy toward adsorbing 

molecules because the closeness of the surrounding walls to the adsorbed molecule maximizes 

the attractive van der Waals interaction. On the contrary, on the nanotube exterior the walls 

curve away from the adsorbed molecules, meaning that the adsorption energy must be smaller 

compared to the interior, and compared to flat graphene. This intuitive picture is corroborated by 

molecular simulations [45, 50] and experimental results [51]. Simonyan et al. [50] calculated the 

potential energy of a Xe atom in the interior and on the exterior of a (10,10) single wall nanotube 

having a diameter of 13.6 Å. The plot of the potential energy versus distance from the nanotube 

center is shown in Figure 8. The difference between the adsorption energies for the interior and 

exterior surfaces was found to be about 800 K. An experimental estimate of the binding energy 

of Xe on untreated (closed) carbon nanotubes was recently provided by Rawat et al. [51]. The 

authors placed this value at 256 meV (2970 K), which is ~60% higher than the binding energy of 

Xe on a flat graphite surface. 

 

Figure 8. Interaction potential for a Xe atom in the vicinity of a (10,10) SWNT. The zero on the distance axis 

corresponds to the center of the nanotube. The curve on the left corresponds to a Xe atom inside the SWNT, 

while that on the right corresponds to a Xe atom outside of the SWNT. Reproduced with permission from V. 

Simonyan et al., J. Chem. Phys. 2001, 114, 4180 [50]. Copyright 2001, American Institute of Physics. 
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As far as the adsorption energies for the groove sites are concerned, theoretical and 

experimental work has shown that the adsorption energy for groove sites present on the exterior 

of the SWNT bundles lies in between the adsorption energies for exterior and interior sites [52].  

1.3.2 Molecular access into the nanotube interior 

In the synthesized material, nanotube ends are closed by hemispherical fullerene-like caps that 

block molecular access into the nanotube interior [7]. However, it is the nanotube interior that 

presents the most interest for the adsorption of molecules as far as potential practical applications 

are concerned, owing to its deep potential well and significant capacity [45, 53].  

Thus, an opening process is needed capable of removing the end caps to enable interior 

adsorption. Kuznetsova [54] observed that an aqueous phase acidic oxidative process developed 

by the Smalley group [55] and usually employed for nanotube purification also opens the end 

caps for Xe adsorption. This purification procedure is used to dissolve graphitic impurities and 

Ni-Co catalyst particles present in the as-synthesized SWNTs. The procedure consists of 

treatment with an aqueous solution of HNO3/H2SO4 followed by sonication in aqueous 

H2O2/H2SO4 [55]. Aside from opening the end caps, this procedure also results in the cutting of 

the SWNTs, decreasing the average length of the SWNTs in the sample. It was found that after 

purification both the capacity and the sticking coefficient of SWNTs toward Xe at 95 K were 

greatly enhanced. This effect can be seen in the temperature programmed desorption (TPD) 

traces of Xe for purified and unpurified material in Figure 9. The area under the TPD trace is 

directly proportional to the amount of Xe adsorbed on the SWNTs. After the oxidative treatment, 

the adsorption capacity of the SWNTs increased by a factor of ~12, while the sticking coefficient 
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– the probability that an incoming gas phase Xe atom will be adsorbed on the surface – increased 

by a factor of ~6.   

 

Figure 9. Temperature programmed desorption (TPD) of Xe on closed (c-SWNTs) and chemically opened 

SWNTs (o-SWNTs). The area of the desorption traces is proportional to the Xe coverage achieved at a given 

exposure to Xe(g). The capacity is significantly increased by opening the c-SWNTs, as is the initial sticking 

coefficient (not shown). Reproduced with permission from A. Kuznetsova et al., J. Chem. Phys. 2000, 112, 

9590 [54]. Copyright 2000, American Institute of Physics. 

Moreover, it was found that heating the chemically etched material to a high temperature 

(1073 K) increases the capacity and the sticking coefficient even further [54, 56]. Such heating is 

accompanied by the evolution of CH4, CO, H2 and CO2 gases from the SWNT sample. This 

implies that there are functional groups on unannealed oxidized SWNTs that somehow block the 

entry ports created by the oxidative chemical etching. Removing these functional groups through 

annealing maximizes the adsorptive capacity of SWNTs (Figure 10), leading to an increase in the 

adsorption capacity by a factor of ~20. 

 15 



The reason for such a noticeable effect of the chemical groups in question on the interior 

adsorption appears to be the large magnitude of the dipole moment they possess. Monte Carlo 

and molecular dynamics modeling of the Xe adsorption process [57] shows that if 1.5-3.0 D 

dipoles are placed around a wall opening leading into the nanotube interior, the kinetics of 

adsorption is slowed down. The dipole-induced dipole interactions of the Xe atoms with the 

functional groups cause clustering of the Xe atoms around the entry and prevent efficient 

adsorption into the interior. 

 

Figure 10. Removing the functional groups from oxidatively etched SWNTs increases the adsorptive capacity 

by a factor of ~20. The sticking coefficient (inset) is increased by approximately a factor of 3.5. Reproduced 

with permission from A. Kuznetsova et al., J. Chem. Phys. 2000, 112, 9590 [54]. Copyright 2000, American 

Institute of Physics. 

Evidence for the disappearance of specific functional groups from the SWNTs after 

heating in vacuum has been obtained by transmission IR spectroscopy. Carbonyl groups and C-O 

single bonds, as well as –OH groups, were detected by IR spectroscopy on oxidized SWNTs 

before heating [56]. As the temperature is gradually increased, these groups are destroyed 

(Figure 11). The presence and decomposition of these groups during heating to 1073 K was also 

verified with near-edge X-ray absorption fine structure spectroscopy (NEXAFS) [58]. This study 
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enabled the determination of the oxygen-to-carbon ratio, O/C, which was measured to be 5.5-

6.7% on the oxidized SWNTs. On the other hand, nanotubes that had not been treated with 

oxidizing acidic solutions had an O/C ratio of only 1.9%. It was found that the most stable 

groups containing oxygen involve C-O single bonds. Raman spectral measurements indicated 

that the carbon bond structure of the nanotubes themselves was not perturbed by the heating, as 

expected for a highly stable sp2-hybridized conjugated configuration.  

 

Figure 11. Decomposition of the functional groups introduced onto SWNTs by the oxidizing chemical etching, 

as observed by transmission IR spectroscopy in vacuum. Carbonyl and ester groups present on SWNTs 

decompose as the annealing temperature is increased. Reproduced with permission from A. Kuznetsova et al., 

Chem. Phys. Lett. 2000, 321, 292 [56]. Copyright 2000, Elsevier. 

A similar fraction of carbon atoms at defects, ~5%, was found for chemically etched 

nanotubes in a study where the defect density in the SWNT walls was determined experimentally 
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by titration with a reactive oxidizing molecule, ozone [59, 60]. Ozone readily reacts with carbon 

atoms at the vacancy defect sites, as well as carbon atoms at the nanotube ends. The reaction 

with a defect-free nanotube surface should, however, be far slower. By exposing nanotubes to 

ozone, then heating them to a high temperature (1273 K) to remove the oxygen-containing 

functional groups, and measuring the amount of carbon in the evolved CO2 and CO, one can 

estimate the percentage of carbon atoms located at defect sites. The experiment indicated that 

5±2.5% of the carbon atoms are located at defects. This defect density is far greater than the 

fraction of carbon atoms on the perimeter of the open ends of the nanotubes [59], indicating that 

reactions with defect sites in the SWNT walls will dominate the etching process either in 

oxidizing acidic etching solution or in O3. 

Ozone treatment and subsequent annealing to liberate CO and CO2 were also found to 

enhance the adsorptive capacity of the SWNTs for Xe. If many successive cycles of treatment 

with O3 and annealing to 973 K are carried out, the adsorptive capacity initially increases and 

then decreases [57]. The increase is explained by ozone expanding the diameter of entry ports 

already present on the walls of the nanotubes, as well as introducing new ones. After a certain 

point, however, the loss of carbon through CO and CO2 formation leads to a reduction in the 

adsorptive capacity (Figure 12). Through the entire ozone-etching process it is seen that when 

the SWNT sample is functionalized with oxygen-containing groups, it exhibits a lower 

adsorption capacity, due to blocking of the entry ports by strongly dipolar oxygen-containing 

functionalities. 
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Figure 12. Evolution of the Xe adsorption capacity of SWNTs with successive cycles of O3 etching and 

annealing at 973 K. The upper curve corresponds to adsorption capacity after annealing to remove blocking 

functional groups; the lower curve is the adsorption capacity after treatment with O3, but before annealing. 

Reproduced with permission from Kuznetsova et al., J. Chem. Phys. 2001, 115, 6691 [57]. Copyright 2001, 

American Institute of Physics. 

A variety of oxidation methods will result in the opening of the SWNTs. Jakubek and 

Simard [61] used oxidation in dry air at 475 K in order to open the nanotubes. Similarly to 

results described above, the surface area increased, and the microporous area approximately 

tripled after a 2 hour oxidation treatment.  

Mechanical ball milling with diamond particles has also been demonstrated to enhance 

molecular access into the SWNT interior as shown using adsorption isotherm measurements [62-

64]. Before the ball-milling procedure, the isotherms of CCl4 on SWNTs [63] show two steps 

that the authors attribute to groove and exterior site adsorption. They find that the adsorption 

energy on the exterior surface is less than the adsorption energy on graphite, in accordance with 

the intuitive understanding that the convex outer surface provides less coordination for the 

adsorbed molecules. After the ball milling, an additional step appears in the isotherm at very low 

partial pressures of CCl4, corresponding to interior adsorption. It was estimated that the 

proportion of open tubes after the ball milling was ~30% [62, 64].  
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Experiments of Matranga and Bockrath [65] as well as those by Lafi et al. [44], 

emphasize the importance of removing the functional groups from the entry ports into the 

nanotubes for molecular adsorption. Interestingly, Matranga reports that the controlled 

introduction of such blocking groups can be also used to lock small quantities of gases (SF6 and 

CO2) in SWNTs. After the functional groups are removed by heating, the gases can be adsorbed 

in the SWNTs at cryogenic temperatures. If the SWNTs with the molecules adsorbed inside are 

then treated with ozone, the adsorbed molecules will be prevented from exiting by the added 

functional groups. The authors report that samples of SWNTs with SF6 or CO2 blocked inside are 

stable in vacuum over periods of 24 hours and can withstand exposure to air.  

1.3.3 Changes in the adsorbates due to confinement 

Spatial confinement of molecules by their adsorption in SWNTs results in significant changes of 

their properties compared to the bulk phase. A number of examples have been described by our 

group as well as by other authors that suggest a possible use of nanotubes as atomic scale 

templates to produce specific arrangements of matter having special properties.  

It has been proposed that adsorption in carbon nanotubes can produce a system where the 

adsorbate will behave as one-dimensional fluid, both from the classical and quantum points of 

view [45, 66-68]. Evidence for such one-dimensional behavior was seen experimentally in the 

adsorption isotherms of Xe and Ar on SWNT bundles [66] and in the heat capacity of 4He 

adsorbed on SWNTs at 100 mK and 6 K [69]. 

Theoretical calculations have been reported [70, 71] predicting that He atoms or H2 

molecules will undergo Bose-Einstein condensation when adsorbed in the interstitial channels 

present in bundles of SWNTs.  
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When water molecules are confined inside of nanotubes at cryogenic temperatures, a new 

hydrogen-bonded structure results that has a characteristic infrared signature [72]. MC 

simulations show that water molecules inside SWNTs form a layered cylindrical structure 

(Figure 13). 

 

 

Figure 13. Structure of water inside a (10, 10) SWNTs at 123 K seen in a MC simulation, end view (A) and 

side view (B). Water molecules form heptagonal rings. Oxygen atoms are shown as red spheres, hydrogens 

that form inter-ring hydrogen bonds are blue, and those forming intra-ring bonds are green. The mesh 

structure in part B represents carbon-carbon bonds of the SWNT [72]. Reproduced with permission from O. 

Byl et al., J. Am. Chem. Soc. 2006, 128, 12090. Copyright 2006, American Chemical Society. 

In the case of a (10, 10) nanotube each layer is composed of seven water molecules 

hydrogen-bonded into a heptagonal ring. More narrow nanotubes produce water rings with a 

smaller number of water molecules. The hydrogen atoms not taking part in the intra-ring bonding 

make hydrogen bonds with neighboring rings, as demonstrated in the side view in Figure 13. 

Such layered structures are stable at temperatures up to 270 K in (10, 10) nanotubes, while for 

more narrow nanotubes the range of temperature stability is extended even higher. 
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MD simulations of water in SWNTs were performed to calculate the vibrational 

frequencies of OH bonds due to intra-ring and inter-ring hydrogens. The simulations indicate that 

the intra-ring hydrogen bonds are bulk-like, while the inter-ring bonds have a distorted geometry 

and are weakened as a result. The hydrogen atoms taking part in such weak bonds give rise to a 

distinct sharp OH stretching mode. This vibrational mode stands out from other OH stretching 

vibrations that result in a broad peak in experimental IR spectra, as shown in Figure 14. After the 

water molecules have been deposited on the SWNT surface at 123 K, annealing at 153 K allows 

the water molecules to diffuse into the SWNTs, leading to the appearance of the mode associated 

with the inter-ring hydrogen bonds at 3507 cm-1. The interior adsorption of H2O or N2 may be 

effectively blocked using n-nonane [72, 73]. 

 

 

Figure 14. The appearance of the vibrational mode due to water molecules confined in SWNTs in an ordered 

ring structure.  As the SWNTs with water deposited at 123 K are annealed, water molecules migrate into 

interior sites of SWNTs producing the 3507 cm-1 OH stretching mode [72]. Reproduced with permission from 

O. Byl et al., J. Am. Chem. Soc. 2006, 128, 12090. Copyright 2006, American Chemical Society. 
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1.4 MOLECULAR TRANSPORT IN NANOTUBES2 

With a view to an area of application in nanoporous membranes, a number of workers studied 

diffusion and molecular transport in nanotubes, both experimentally [74-76] and theoretically 

[77-82].  

Theoretical studies show that diffusion inside nanotubes should be rapid at low 

concentrations of molecules, mainly due to the smoothness of the potential along the nanotube 

wall, meaning that the diffusing molecule undergoes few scattering events. As the concentration 

increases, the molecules begin to scatter on each other and the diffusion coefficient decreases 

[79]. However, there are strong indications that even at high adsorbate density the diffusion of 

molecules inside SWNTs is significantly faster than in the bulk. As will be described in Chapter 

7, even at full loading the self-diffusion coefficient of n-heptane in SWNTs is about a factor of 

35 larger than the self-diffusion coefficient in bulk n-heptane at the same temperature [83]. This 

is the result of molecular ordering of the confined adsorbate in the nanotubes. N-heptane 

molecules tend to orient themselves parallel to the nanotube axis when they are adsorbed inside 

SWNTs. This makes translational motion along the nanotube axis less hindered, thus increasing 

the diffusion coefficient. A similar increase in diffusivity due to the formation of ordered 

structure is seen in the simulations of N2 diffusion in SWNTs [77], where an ordered row of 

molecules is formed in the nanotube center.  

When the motion of molecules is concerted rather than random, the smoothness of the 

potential along the nanotube walls provides a dramatic enhancement of transport properties over 
                                                 

2 This section is reproduced with modifications from a manuscript by P. Kondratyuk and J.T. Yates, Jr., titled 
“Molecular Views of Physical Adsorption Inside and Outside of Single Wall Carbon Nanotubes”, which has been 
accepted for publication in the Accounts of Chemical Research, published by the American Chemical Society. 
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those predicted by hydrodynamic flow equations. Majumder et al. [75] measured the flow rates 

through a membrane composed of aligned multiwall carbon nanotubes for several liquids (water, 

alkanes and alcohols). The flow rates were found to be four to five orders of magnitude more 

rapid than the hydrodynamic equations predict. Additionally, the flow rate did not correlate with 

the viscosity of the liquid. The authors attribute both of these effects to a nearly frictionless 

nanotube-liquid interface. 
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2.0  DESIGN AND OPERATION OF THE TPD EXPERIMENTAL APPARATUS3 

Here the experimental system is described that has been employed for the acquisition of all the 

temperature programmed desorption (TPD) data presented in this Dissertation. This computer-

controlled system has been designed with a view to the acquisition of large amounts of TPD 

data. The vacuum part of the system consists of a sample mounted on a rotation-translation 

manipulator, a shielded quadrupole mass spectrometer for the desorption flux measurement, and 

a collimated molecular beam doser for adsorbate delivery. A typical experiment involves a series 

of tasks: (1) dosing of the adsorbate onto the surface; (2) calibrating the mass spectrometer gain; 

(3) translating the dosed sample to the mass spectrometer position by using stepper motors on the 

rotation-translation manipulator; (4) linearly ramping the temperature of the sample to acquire 

the desorption spectrum; and (5) cooling the sample. In the system described here, these tasks are 

accomplished automatically via an attached computer system. 

The preparation of an SWNT sample is also described. The results of CCl4 adsorption on 

SWNTs are presented as a typical example of the system in operation. 

 

                                                 

3 This chapter is reproduced with modifications from: P. Kondratyuk, J.T. Yates, Jr.; Design and construction 
of a semiautomatic temperature programmed desorption apparatus for ultrahigh vacuum. J. Vac. Sci. Technol. A 
(2005), 23, 215-217. 
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2.1 BACKGROUND 

Temperature programmed desorption (TPD) occupies an important place in the range of 

techniques employed by surface science [84-86]. While a single TPD spectrum can be used to 

deduce some information about the adsorbate-surface and adsorbate-adsorbate interactions, 

usually a series of TPD spectra are acquired for varying gas exposures. In many cases this 

approach provides information about the kinetics of desorption as a function of coverage, and 

about the relative sticking coefficient as a function of coverage [87, 88].  

Here we show a series of TPD measurements made for CCl4 adsorption on a 30 µg 

quantity of single walled carbon nanotubes (SWNTs), supported on a gold surface, which can be 

heated by contact with two tungsten support wires. 

2.2 PARTS OF THE EXPERIMENTAL SYSTEM. 

The stainless steel ultrahigh vacuum (UHV) chamber is equipped with a 360 L/s ion pump, a 120 

L/s turbomolecular pump and a standard gas handling system. The base pressure after bakeout 

was 2×10-10 Torr. Figure 15 shows the arrangement of components inside the UHV chamber. 
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Figure 15. Schematic of the vacuum system. An enlarged view of the sample holder is shown on the right, 

with both SWNT and reference gold plates. Only one part of the sample holder is shown inside the chamber 

for clarity.  

Dosing of the adsorbate gas onto the sample is achieved by using a molecular beam doser 

consisting of an absolutely calibrated pinhole conductance that controls the total flux to the 

surface and a microcapillary array doser head that ensures an even distribution of the adsorbate 

across the sample [89-91]. By measuring the dependence of pressure on time in the gas line 

behind the pinhole one can calculate the absolute flux of molecules at the sample, which in the 

case of CCl4 was determined to be 8.7×1012 molecules Torr-1 cm-2 s-1. 

Figure 15 shows a schematic of the vacuum part of the system. The sample holder 

assembly, shown on the right in Figure 15, incorporates two 10×14 mm gold plates. One of them 

is used to support the deposited material (in this case, SWNTs), while the other is used as a 

reference to monitor the desorption from the gold surface itself. Depending on how the electrical 

connections are made, either one or the other can be connected to the temperature control circuit. 

In the following description, whenever the “sample” is mentioned, it is understood that the same 

can apply to the “reference” plate. The two gold plates are in thermal contact with a liquid N2 

filled cryogenic Dewar via two copper conductors, enabling cooling to about 90 K. They can be 
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ohmically heated to about 1100 K. Their temperatures are measured by a type K thermocouple 

attached directly to the gold plate. 

After dosing of the adsorbate with the molecular beam the sample (or reference) is 

rotated to the 3.0 mm opening of a shielded quadrupole mass spectrometer (QMS) and the 

sample temperature is linearly increased. The flux of the desorbing molecules as a function of 

increasing temperature can then be measured as the output signal of the QMS at a particular m/e 

ratio. An end cap of the QMS is electrically isolated from the shield and is biased to -100 V to 

prevent the electrons from the QMS ionization region from reaching the sample. 

Two stepper motors (type Nema 23, 1 A current rating) are installed on the manipulator, 

one on the rotational axis and the other on one of three translational axes (see the arrow showing 

the direction of movement for the translational axis in Figure 15). The stepper motors allow 

computer controlled positioning of the sample in front of the QMS or doser. The motors operate 

as an open loop control system, without position feedback to the computer. 

A schematic of the system representing the main functional blocks is given in Figure 16. 

A computer program on a PC integrates all control functions and acquires all data. It can be 

written in a variety of programming languages, for instance in LabView, the graphical 

programming language for laboratory use developed by National Instruments. A data acquisition 

(DAQ) board installed on the PC (National Instruments PCI-6036E) serves as a digital-to-analog 

and analog-to-digital converter. The 100 kHz timer function of the DAQ board is also utilized, as 

it gives a superior time resolution compared to the standard PC timer. 
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Figure 16. Functional modules of the automatic TPD system and the interrelations between them. 

Through the DAQ board the computer controls the power supply that feeds the heating 

current to the sample. The DAQ board also reads the amplified output of the thermocouple 

attached to the sample. Temperature control is accomplished as a part of the software program 

using the PID algorithm [92], which updates the power output ~18 times a second. The operation 

of the PID temperature control, as implemented here, is described in Appendix B. Temperature 

stability of around 0.1 K is achieved with this set-up, as well as an excellent linearity during the 

temperature ramping. 

The QMS (UTI 100C) receives the control input from the DAQ board as well, in the form 

of an analog signal (m/e setting) and digital signal (multiplier sensitivity range). The desorption 

flux reading recorded by the QMS is then returned to the computer. 

The stepper motors are driven by two motor control boards (Motion Group, model 

MS2.0), which in turn are run through the parallel port of the PC. The motors provide an angular 

resolution of 1.8o, translating into an angular resolution of 0.045o on the rotational axis of the 

manipulator when the gear ratios are taken into account. The resolution on the translational axis 
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is in the micrometer range, although lack of precision in the mechanical components probably 

degrades this resolution somewhat. Such resolution guarantees reproducible positioning of the 

sample in front of the QMS or doser. 

2.3 PREPARATION OF THE NANOTUBE SAMPLE 

The single walled nanotube samples were produced by R. Smalley and his collaborators [21, 22] 

using pulsed laser vaporization. A schematic of the pulsed laser vaporization setup is given in 

Figure 17. 

 
Figure 17. A schematic of an experimental setup for producing SWNTs by pulsed laser vaporization of 

graphite mixed with a metal catalyst. 

In such a setup, the graphite target positioned in the flow of Ar gas is irradiated with a 

pulsed high-power laser (in [22] the laser operated at 30 Hz with 300 mJ per pulse, 532 nm 

wavelength). The graphite target contains around 1.2 at. % of a metal catalyst, usually a Ni/Co 

mixture. The graphite target is placed in an oven so that its temperature can be maintained at 

around 1300 K. The SWNTs are formed in the plasma plume produced by the laser evaporating 

the graphite target. They are carried away by the flow of Ar gas and are collected on a water-

cooled collector surface. For Ni/Co as the catalyst, the yields of the nanotubes produced (relative 
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to the amount of evaporated carbon) were as high as 70% [22]. The most probable SWNT 

diameter in the sample was ~13.6 Å. 

 The as-produced material is contaminated with significant amounts of catalyst impurities 

and amorphous carbon. They were purified by reflux treatment in aqueous HNO3, HNO3/H2SO4 

and sonicated in H2O2/H2SO4 following procedures developed by the Smalley group[55]. The 

oxidizing acids and H2O2 primarily attack reactive metal particles and amorphous carbon, leaving 

the nanotube structure mostly intact. However, the nanotube ends (and to a small degree, walls, 

possibly at defect sites) are oxidized, leading to the opening and cutting of the SWNTs.  The 

purified nanotubes have a measured most probable length of 320 nm, with a range of lengths up 

to ~ 1500 nm.  

An approximately 36 µg sample of SWNTs was deposited on the Au support plate (area 

= 1.4 cm2) in air from a suspension in dimethylformamide (DMF) with a concentration of 12 

mg/L. The suspension was placed on the gold support plate kept at a temperature of 50-70° C 

and the solvent was allowed to evaporate. At this temperature the evaporation proceeds quickly 

enough to ensure even distribution of SWNTs across the gold support. At lower temperatures 

agglomeration of the nanotube material may occur. After the sample was placed into the UHV 

system, it was annealed at 1073 K for 10 min in order to decompose oxygen-containing 

functionalities that were shown to block molecular access into the SWNT interior [56]. 

2.4 STAGES OF THE TYPICAL EXPERIMENT. 

We employed the set-up described above for the study of CCl4 adsorbed on single walled carbon 

nanotubes (SWNTs). The experiment was conducted as follows. First the gas line was filled with 
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the adsorbate gas (CCl4) to the required pressure and the valves leading to the doser were 

opened. At this point the gas begins to be dosed into the system and continues to be dosed for the 

duration of the experiment. A steady, low background pressure exists throughout the experiment, 

and the molecular beam supplies a high local pressure on axis. The gas is pumped rapidly by the 

condensation on the cold parts of the Dewar and by the pumps. This ensures that when the 

sample is not positioned in front of the doser, very little adsorbate is delivered to the surface. We 

estimate that the amount of the adsorbate that the sample receives in this indirect way during the 

typical experimental cycle is only 1-2% of what is delivered when the sample is positioned in the 

molecular beam for dosing. 

The parameters of the experiment, such as the temperature ramp rate, the dosing 

temperature, dosing times etc., are then entered into the computer program and it is started. 

Figure 18 outlines the steps that the program goes through for a typical TPD experiment. It first 

moves the sample into the molecular doser beam and waits for the prescribed time to reach the 

needed exposure. 

 
Figure 18. Timing of consecutive steps of the experimental sequence. 
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In the course of our study it was found that a correction has to be made for a slow 

variation in the sensitivity of the QMS detector as the sequence of experiments progresses. By 

modifying the computer program, additional steps were introduced into each TPD experiment to 

accomplish calibration. They involved a careful measurement of the small background signal 

generated by the molecular beam doser and subsequent normalization of the TPD spectrum by 

this value.  

Thus after the adsorbate has been delivered to the surface the sample is rotated to the 

position where no dosing occurs and the routine that calibrates the mass spectrometer sensitivity 

is executed. The sample is then placed in front of the QMS opening and the TPD spectrum is 

recorded as the temperature is linearly ramped. When the TPD spectrum has been acquired, the 

program decreases the heating power fed to the sample and waits for it to reach the dosing 

temperature again. After this the next cycle of dosing, calibration and obtaining the desorption 

spectrum is begun. 

TPD spectra of CCl4 adsorbed on the nanotubes are shown in Figure 19 for a range of 

exposures. A number of overlapping features are observed to develop as the exposure increases. 
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Figure 19. TPD spectra of CCl4 adsorbed on SWNTs at 100 K for a range of exposures. The development of 

new features is observed as coverage increases. 

The area under the TPD curves is proportional to the amount of adsorbate desorbing from 

the sample. When the areas from Figure 19 are plotted versus the exposure to the adsorbate 

(Figure 20), a linear relationship is observed, indicating that CCl4 adsorption occurs in a 

reproducible fashion with a constant sticking coefficient. 
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Figure 20. Integrated area under the TPD spectra from Figure 5 versus exposure. The line is the best linear 

fit to the data. 
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3.0  PREFERENTIAL ADSORPTION INSIDE NANOTUBES COMPARED TO FLAT 

SUBSTRATE4 

It is shown that carbon nanotubes can take up adsorbate from supporting surfaces they are in 

contact with. This effect is due to stronger binding forces that the molecules experience on the 

nanotube adsorption sites. 

3.1 INTRODUCTION. 

Carbon single walled nanotubes (SWNTs) expose adsorption sites with high binding energies for 

physical adsorption compared to planar surfaces [50, 93]. These sites are the interior nanotube 

sites as well as the exterior groove sites present at the boundary between adjacent nanotubes. The 

inner surface of a nanotube, and the groove exterior sites between nanotubes, maximize 

attractive interactions for adsorbed molecules due to the enhanced surface proximity provided to 

an adsorbed molecule by the curved nanotube surfaces [45, 94]. By studying a sample of SWNT 

bundles held by van der Waals forces on a gold support surface, we have directly observed that 

                                                 

4 This chapter is reproduced with modifications from: P. Kondratyuk, J.T. Yates, Jr.; Nanotubes as molecular 
sponges: the adsorption of CCl4. Chem. Phys. Lett. (2004), 383, 314-316. 

. 
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the presence of high binding energy nanotube adsorption sites causes the nanotubes to act as 

molecular sponges, sweeping up weakly-bound adsorbed species on the gold support surface 

with high efficiency. 

3.2 EXPERIMENTAL METHODS. 

The sample of purified and cut SWNTs supported on a Au plate was prepared as 

described in Section 2.3. Such SWNTs have openings on the walls and at the ends that allow 

adsorbates to access the nanotube interior. Auger spectroscopy indicates that the Au is covered 

by a graphite layer which is at least 100 Å thick, as it is able to obliterate completely the 

underlying Au Auger spectrum.  A second blank Au plate with a similar graphite coating was 

used as a control and contained no SWNTs. A non-uniform deposit of nanotubes on the Au 

support surface could be seen by the eye, with Au regions visible through the deposit.  The two 

sample plates, mounted on a rotary manipulator, were loaded into an ultrahigh vacuum system 

which achieved a base pressure of 2×10-10 Torr after system bakeout. The sample (and its 

control) were heated in vacuum to 1073 K to remove the oxidized groups from the nanotubes, 

opening them for adsorption in their interior [56]. Adsorption of CCl4(g) onto these samples was 

achieved at 97 K by using a molecular beam doser which was absolutely calibrated for CCl4 

delivery, providing a flux of CCl4 to the sample of 8.7×1012 molecules Torr-1 cm-2 s-1. Following 

delivery of the adsorbate, the samples were rotated to a differentially-pumped quadrupole mass 

spectrometer with a 3.0 mm diameter gas sampling aperture, accurately located 1 mm from the 

sample plate as described previously [54]. The samples were heated from 97 K using a linear 

temperature program of 2.0 K s-1 to cause CCl4 desorption into the mass spectrometer. The CCl3+ 
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cracking fragment from the CCl4 was monitored at 117 a.m.u. The 0.5 mm thickness of the Au 

support plate, heated by contact with W resistive heater support wires, guarantees that thermal 

gradients do not occur across the sample. In the case of CCl4 desorption from the graphite-

covered Au, the leading edge of the profile was analyzed to determine the desorption activation 

energy.  

3.3 RESULTS AND DISCUSSION. 

Figure 21 shows a comparison between the thermal desorption kinetics of CCl4 from the 

graphitized-Au support surface and from the sample containing SWNTs on the Au support in ten 

experiments where the coverage is systematically increased. In each individual experiment the 

CCl4 dose was identical on the SWNT/Au and on the Au control surface. A dramatic effect is 

evident, in that the desorption of CCl4 at about 175 K from the graphitized-Au support is almost 

completely suppressed when nanotubes are present on the Au surface. 
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Figure 21. Temperature programmed desorption of CCl4 from single walled carbon nanotubes on a 

graphitized-Au support plate, and from a support plate without nanotubes. Desorption from SWNT/Au 
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occurs at higher temperature than from Au, and the presence of SWNTs on the Au completely suppresses 

desorption from the Au. The CCl4 adsorption energy on graphitized-Au as calculated from the leading edge 

kinetics of trace f is 44.2 kJ mol-1  

Figure 22 shows a schematic kinetic picture for the suppression of CCl4 desorption from 

the Au when SWNTs are present. An adsorbed CCl4 molecule migrates laterally on the Au 

surface until it encounters a deep potential well for adsorption at the nanotube, either at an 

interior site or at a strong-binding groove site. Thus the nanotubes act as efficient sinks for the 

mobile CCl4 molecules. As the temperature is raised above the CCl4 desorption temperature from 

Au, CCl4 desorption begins to occur from the nanotubes, at a temperature near 200 K. The 

desorption rate from the nanotubes maximizes at about 260 K. At these temperatures, the lifetime 

for CCl4 on Au will be very short, and the desorption rate will therefore be governed by the 

kinetics of desorption from the stronger binding sites on the SWNTs. 

 

 

Figure 22. Schematic of adsorption into nanotubes via a mobile species on the graphitized-Au support plate. 

A leading edge kinetic analysis of the desorption from the graphitized-Au (trace f in 

Figure 21) yields an activation energy for first-order CCl4 desorption of 44.2 kJ mol-1 (this value 

is somewhat higher than 32.6 kJ/mol given by Meyer and Feil [95] for CCl4 adsorption on 

Sterling FT graphite at 333 K). With this desorption energy and assuming a standard 
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preexponential factor of 1013 s-1, we calculate that the adsorption half-life of CCl4 on the 

graphitized-Au surface at 260 K will be only 2×10-4 s. 

We have not performed a kinetic analysis of CCl4 desorption from the nanotubes, since 

the presence of multiple adsorption sites with different energies will compromise an accurate 

kinetic fit. 

Since the sponge effect due to the nanotubes is dramatically clear and quantitatively 

complete, we believe that CCl4 molecules are able to migrate over macroscopic distances on the 

Au support before adsorbing at the nanotube sinks which have a total internal and external 

surface area of the order of 200 times that of the Au support surface.  Using an Einstein random 

walk model, we provide an upper limit estimate for the activation energy for surface migration 

for CCl4 on graphitized-Au, as shown below.  

Assume that adsorbed CCl4 migration from the Au surface to the nanotube surface sites 

begins at a temperature near 150 K, prior to substantial CCl4 desorption from Au and that 

migration to the nanotube sites is complete by 200 K, where CCl4 desorption begins from the 

SWNTs. At a temperature scan rate of 2 K s-1, this will require 25 s. Assume also that 

characteristic migration distances of ~1×10-3 m exist, which is the size of the clean Au regions 

observed by eye between clusters of SWNTs. Assuming a CCl4 jump distance, a = 3×10-10 m, a 

preexponential factor for surface migration of ν = 1012 s-1, and an activation energy for surface 

migration = Em, we may write the diffusion coefficient, D, in m2s-1, as  

 

)./(109)/( 82 RTEExpRTEExpaD mm −⋅×=−⋅= −ν   (1) 

 

The rms migration distance, x , for two-dimensional surface migration is  

 39 



 

( ) 32/1 101 −×≅= Dtx   m                             (2) 

                                                                     

Equations (1) and (2) permit a crude estimate of the order of magnitude of the activation energy 

for CCl4 surface migration on graphitized-Au at Em ≅ 1 kJ mol-1. This compares with the 

measured activation energy for CCl4 desorption from graphite-coated Au of 44.2 kJ mol-1. 

3.4 SUMMARY OF RESULTS. 

Nanotubes act as molecular sponges for molecules adsorbed on support surfaces in contact with 

the nanotubes which more weakly bind adsorbed molecules than the nanotubes. Quantitative 

transfer occurs from the support surface into the nanotubes. 

These results corroborate the potential applicability of carbon nanotubes or nanotube-

containing materials to the purpose of molecular storage or capture of toxic compounds. The key 

properties permitting such potential use are high specific surface area and the presence of high 

binding energy adsorption sites. 
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4.0  COMPETITION FOR INTERNAL, GROOVE AND EXTERNAL SITES IN 

COADSORBED N-NONANE AND CARBON TETRACHLORIDE5 

We show that thermal desorption kinetics clearly resolve adsorbates bound in different sites on 

single walled carbon nanotube bundles. The molecules n-C9H20 and CCl4 were compared and it 

was found that the nanotube internal sites exhibited the highest desorption temperature, whereas 

external groove sites exhibited the next highest desorption temperature for both molecules. When 

n-C9H20 and CCl4 coadsorb, the more strongly bound n-C9H20 quantitatively displaces CCl4 from 

internal sites to groove sites. Molecular shape governs the capacity of the different sites for the 

two molecules. 

4.1 INTRODUCTION. 

The nature of adsorption sites in and on carbon nanotubes, and how the adsorptive properties of 

the material can be enhanced by its modification, has been addressed in a number of studies [50, 

54, 61, 63, 64, 66, 96-101, and references therein]. The interest in adsorption on nanotubes stems 

                                                 

5 This chapter is reproduced with modifications from: P. Kondratyuk, J.T. Yates, Jr.; Desorption kinetic 
detection of different adsorption sites on opened carbon single walled nanotubes: the adsorption of n-nonane and 
CCl4. Chem. Phys. Lett. (2005), 410, 324-329.  
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partly from their relative uniformity as compared to such widely used materials as activated 

carbons, and the fact that the curvature of the nanotube walls results in high binding energy for 

molecules bound on internal adsorption sites, and in groove sites between adjacent nanotubes 

[45, 50]. 

Previous studies in this laboratory [57, 60] showed that etching with O3 can open both 

end cap and wall entry ports in closed nanotubes permitting adsorption into the nanotube interior. 

Vibrational spectroscopy experiments with the simultaneous adsorption of two molecules 

showed that a more polarizable Xe molecule displaces CF4 from the interior of the nanotubes 

[100]. 

In this chapter we present an investigation of the adsorptive properties of opened single 

walled carbon nanotubes (o-SWNTs) by temperature programmed desorption (TPD) of two 

dissimilar molecules, CCl4 and n-C9H20. Previously we have shown that TPD is a useful 

analytical method to observe adsorption in o-SWNTs [54, 102]. While CCl4 is a compact almost 

spherical molecule, n-nonane is a long chain alkane that is approximately twice as long as the 

diameter of a CCl4 molecule. This difference in molecular shapes leads to interesting 

configurational effects in the external linear groove sites in SWNT bundles. 

4.2 EXPERIMENTAL PROCEDURES. 

The single walled carbon nanotubes were produced by R. Smalley and collaborators using the 

pulsed laser vaporization technique [21, 22]. Purification by HNO3/H2SO4 treatment was 

employed to remove catalyst particles and graphitic impurities. The purification step also results 
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in chemical cutting and opening of the nanotubes, giving opened SWNTs with a most probable 

length of 320 nm [55]. Section 2.3 details the preparation and purification of the SWNT sample. 

The sample consisting of approximately 36 µg of nanotubes was deposited onto a 0.5 mm 

thick gold support plate from a suspension in dimethyl formamide. Prior to adsorption the 

sample is cooled to 100 K (or 120 K, in the case of n-C9H20) via thermal contact with a liquid 

nitrogen-filled tube which acts to support the sample holder. 

An identical gold plate containing no nanotubes was used as a blank reference to monitor 

the desorption from the gold itself compared to desorption from the nanotubes. Non-multilayer 

adsorption on the Au support plate was found to be less than 1% of that observed on the SWNT 

samples. 

Before adsorption experiments the sample and reference plate were annealed at 1073 K to 

decompose oxygen-containing functional groups that might be present on the nanotubes. Such 

groups had earlier been shown to prevent transport of the molecules into the interior of the 

nanotubes [56]. The annealing step also serves to remove adsorbed background gas molecules 

such as water that might have accumulated on the nanotube material left for extended periods of 

time in vacuum. 

Experiments were performed in an ultrahigh vacuum (UHV) chamber described in 

Chapter 2, which also discusses the procedure for automated exposure to the adsorbate and 

acquisition the TPD data. A collimated molecular beam doser with a limiting pinhole 

conductance [89, 90] was used to deliver the adsorbates to the surface. The delivery rate at the 

sample surface was 9.6×1012 molecules Torr-1 s-1 cm-2 for n-C9H20 and 8.8×1012 molecules Torr-1 

s-1 cm-2 for CCl4. The limiting doser conductance was absolutely calibrated with CCl4 and Xe 

using careful measurements of the rate of depletion of a standard volume. 
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4.3 RESULTS. 

Two types of experiments were carried out. One group of experiments involved probing the 

desorption kinetics of individual adsorbates as a function of exposure to the gas of interest, while 

the other focused on coadsorption of n-C9H20 and CCl4 to observe displacement effects. 

Temperature programmed desorption spectra obtained for increasing exposures of both n-

C9H20 and CCl4 are given in Figure 23 and Figure 24 respectively. Here, only one adsorbate is 

dosed onto the SWNTs. 
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Figure 23. Desorption of n-nonane from nanotubes for a range of exposures. Four resolved spectral features 

are evident, labeled A, B, C and D. The *- and ▪-labeled traces correspond approximately to the completion of 

filling of sites which contribute respectively to the A and B desorption processes. 

Four overlapping spectral peaks (labeled with letters A to D) can be seen in the nonane 

desorption spectra, indicating the presence of four accessible environments for adsorbed n-

nonane molecules, each desorption process having different characteristic desorption 

temperatures. As is often the case, at low exposures only the sites with high desorption 

temperatures are occupied. At higher exposures a sequence of desorption peaks at monotonically 

decreasing temperatures is observed. 
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Figure 24. TPD spectra of CCl4 adsorbed on nanotubes. Three overlapping spectral features can be associated 

with those observed in nonane desorption, while the fourth, labeled C, only starts to develop at the highest 

exposure. The *- and ▪-labeled traces correspond approximately to the completion of filling of sites which 

contribute respectively to the A and B desorption processes. 

When the adsorbed molecule is CCl4 instead of n-C9H20, three features are visible for the 

same exposures as in the n-C9H20 experiment. The fourth feature, C, only starts to develop at the 

highest exposure. All the features from CCl4 desorption are shifted to lower temperature 

compared to those from n-C9H20, probably due to the lower polarizability of the CCl4 molecule 

(α = 11.2 Å3 for CCl4 compared to 17.4 Å3 for n-nonane) [103] and consequently lower binding 

energy on the same adsorption site. The traces for CCl4 are also less well resolved compared to 

those of n-C9H20. 

In both cases the feature labeled D is the multilayer, or bulk adsorbate, desorption peak. It 

is easily identifiable by the characteristic overlap of the leading edges for various coverages, 

indicative of zero-order kinetics. Since the D feature is caused by the desorption of molecules 

lying on another layer of identical molecules, it is not characteristic of the adsorption sites 

present on the nanotubes. 

 45 



It is worth mentioning that the adsorbate molecules can be expected to eventually find the 

most energetically favorable unoccupied sites on the surface and desorb from them during the 

TPD process, even if initially they are adsorbed in a non-equilibrium fashion because of low 

dosing temperatures. This is due to the fact that the barriers for diffusion between the different 

sites on the nanotubes are smaller than the barrier to desorption from the surface, and thus the 

equilibrium on the sample is achieved before the desorption begins. A closely related effect is 

seen in the coadsorption experiments described below, where it was found that the TPD spectra 

are identical no matter what the order of dosing of the two adsorbates was. In that case, the 

equilibrium between two molecules on the surface was reached before the desorption of either 

molecule could begin. 
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Figure 25. Displacement of CCl4 (by n-C9H20) to sites with lower binding energy. Displacement occurs mainly 

from sites A to B. Inset: corresponding TPD traces of n-nonane. The n-C9H20 exposures are: (a) ε = 3.84×1014, 

(b) ε = 7.68×1014, (c) ε = 1.15×1015, (d) ε = 1.54×1015, (e) ε = 1.92×1015, (f) ε = 2.30×1015, (g) ε = 2.69×1015 (all 

units are molecules cm-2). 

The coadsorption experiments allowed us to assign the features A and B in the n-C9H20 

and CCl4 TPD traces to the same types of adsorption sites present on SWNTs. In these 

experiments the nanotubes were exposed to different amounts of n-C9H20. Then a constant dose 
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of CCl4 molecules (1.1×1015 molecules cm-2) was delivered to the surface. It was found that as 

the amount of the more strongly binding n-C9H20 was increased, occupying more and more type 

A sites, subsequently adsorbed CCl4 was progressively directed into B type sites, with A type 

sites remaining filled with n-C9H20. The displacement of CCl4 by n-nonane is independent of the 

order of addition of the adsorbate molecules. This sequential displacement of CCl4 to B and C 

desorption processes by n-C9H20 strongly suggests that features A and B correspond to the same 

nanotube adsorption sites for both CCl4 and n-C9H20. The desorption process labeled C for CCl4 

is seen to consist of two close-lying features, while for n-nonane only one feature is present, 

which likely indicates that the C process for the two molecules originates from different 

adsorption environments. 
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Figure 26. Displacement of CCl4 with higher exposures of nonane.  Sites A are now completely occupied by 

C9H20. Displacement occurs from B to C and D. Inset: corresponding TPD traces of nonane. The n-C9H20 

exposures are: (g) ε = 2.69×1015, (h) ε = 3.07×1015, (i) ε = 3.65×1015, (j) ε = 4.22×1015, (k) ε = 4.99×1015, (l) ε = 

5.95×1015, (m) ε = 7.10×1015, (n) ε = 8.64×1015, (o) ε = 1.06×1016 (all units are molecules cm-2). 

TPD spectra of CCl4 showing the displacement are given in Figures 25 and 26. The insets 

show TPD traces of nonane for identical dosing conditions. The displacement process in which 

nonane sequentially pushes CCl4 from A sites to B sites to C sites continues, even to the stage 

where multilayer CCl4 sites are occupied as may be seen by comparing Figure 25 (little D 

occupancy by CCl4) to Figure 26 (large D occupancy by CCl4). 

A schematic diagram illustrating the adsorption process observed in this work is given in 

Figure 27, where the displacement of weakly-bound CCl4 by more strongly bound n-C9H20 is 

also shown. 
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Figure 27. Schematic density of adsorption states (DOS) diagram for o-SWNTs. Addition of n-C9H20 leads to 

displacement of CCl4 adsorbed on internal sites to other types of sites (cf. Figures 25, 26). 

4.4 DISCUSSION. 

A comparison of adsorption traces for CCl4 and n-C9H20 (Figures 23 and 24) allows an 

assignment of the sites associated with two highest temperature features A and B in the spectra. 

Based on relative capacities of the A and B sites toward the two molecules that differ strongly in 

molecular shapes (to be discussed in more detail below), we assign the feature with the highest 

desorption temperature, A, to the molecules that are adsorbed inside of nanotubes, and feature B 

– to the molecules adsorbed in the external groove sites. The groove sites on the outer surface of 

SWNT bundles are formed by two adjacent nanotubes lying parallel to each other. These sites 

are known to have a high binding energy [104]. 

The molar volumes of liquid CCl4 and n-C9H20 at standard conditions are 0.096 L/mol 

and 0.178 L/mol respectively [103]. Thus, a n-C9H20 molecule occupies 1.85 times more volume 

than a CCl4 molecule in the liquid. 
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However, when the molecules are adsorbed on site A, the ratio of molar volumes is 

significantly different from its liquid phase value. We determined this ratio from the exposures to 

CCl4 and n-C9H20 needed to completely saturate site A (TPD spectra labeled with asterisks in 

Figures 23 and 24), assuming a unity sticking coefficient. The corresponding exposures are 

2.98×1015 CCl4 cm-2 and 2.15×1015 n-C9H20 cm-2, giving a ratio of 1.39. This deviation from the 

value for liquids, 1.85, means that the adsorbed CCl4 molecules occupy adsorption space less 

efficiently than in the liquid phase, relative to the corresponding values for n-C9H20. 

This less efficient occupation of space by CCl4 can be explained from considerations of 

molecular packing if the A site is assigned as the interior nanotube volume. It is known [105, 

106] that even the most efficient packing of spheres in a hollow cylinder only fills a small 

percentage of space when the diameter of the spheres is ~50-70% of the cylinder diameter. This 

situation corresponds closely to the packing of CCl4, that has van der Waals diameter of 6.08 Å, 

in nanotubes, which in our case have an accessible interior diameter of ~10.2 Å. However, 

relatively thin nonane molecules, with a cross-section of around 3.4 Å, can occupy even the 

confined interior space relatively efficiently. 

A similar analysis can be performed for the filling of sites B by the two molecules. The 

dark squares in Figures 23 and 24 indicate TPD traces assigned to the completion of filling of 

sites B for n-C9H20 and CCl4. For each molecule, the difference in exposures between the 

complete filling of sites A and complete filling of sites B is proportional to the number of 

molecules adsorbed on sites B. The difference in the exposures for CCl4 and n-C9H20 needed to 

completely fill site B be can also be qualitatively observed by comparing the areas under the B 

features in Figures 23 and 24 where the mass spectrometer sensitivity scale has been adjusted to 

make the areas of the A adsorption traces approximately the same for n-C9H20 and CCl4. The 
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ratio of the number of CCl4 molecules required to fill sites B to the required number of nonane 

molecules is 8.85×1015 CCl4 cm-2 / 3.83×1015 C9H20 cm-2 = 2.31. This means that n-C9H20 

molecules take up significantly more adsorption space on site B, opposite to the case of internal 

sites A. This suggests that the length of the molecule is the determining factor in the population 

of the B site by molecules, as the linear lengths of the molecules are significantly different, 12.4 

Å for nonane versus 6.08 Å for CCl4. This indicates that site B is a one-dimensional structure 

where molecules are arranged along the length of the site. A logical choice for such an 

adsorption site is the groove site on the outer surface of the nanotube bundle. 

We ascribe feature C to the adsorption on the exterior nanotube surface. The molecular 

simulations that served as a basis for this assignment are described in Chapter 5. 

 

4.5 SUMMARY. 

In conclusion, the following features for the adsorption of two dissimilar molecules, n-nonane 

and CCl4, on opened-SWNTs have been discovered: 

1. Internal single walled nanotube adsorption sites, having the highest binding 

energy for adsorbates, fill first for both n-nonane and CCl4. 

2. Groove sites fill in the second stage of adsorption of n-nonane and CCl4. 

3. The n-nonane molecule quantitatively displaces CCl4 from internal sites to 

groove sites due to its higher polarizability (and enthalpy of adsorption), 

compared to CCl4. 
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4. It has been shown that a logical filling of the various adsorption sites present 

on SWNTs in accordance with adsorption energies is observed in the sequence 

of desorption kinetic processes found at increasing coverages. This ladder of 

adsorption energy levels is also seen in the displacement of a weakly-bound 

molecule by a more strongly-bound molecule. 

5. Molecular packing effects have been observed to directly influence the 

adsorption capacities of the nanotube interior and groove sites.  
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5.0  MOLECULAR PACKING OF ADSORBATES IN THE NANOTUBE INTERIOR 

AND GROOVE SITES6 

Three well defined adsorption sites have been found on opened single wall carbon nanotubes by 

temperature programmed desorption measurements for several alkanes. A series of linear chain 

alkanes from pentane to nonane, as well as a branched alkane molecule, 2,2,4-trimethylpentane, 

were used to elucidate the effect of molecular length on the capacity of the adsorption sites. The 

two highest energy adsorption sites were assigned as the nanotube interior sites and groove sites 

on the outside of the nanotube bundles. Hybrid Monte Carlo simulations were performed to 

probe the molecular-level details of adsorption. Both in experiments and in the simulation, the 

groove sites were seen to behave as one-dimensional adsorption space, demonstrating an inverse 

dependence of capacity on the length of the adsorbed molecule. In contrast, the capacity of the 

internal sites was found to depend inversely on the volume occupied by the molecule. 

                                                 

6 This chapter is reproduced with modifications from: P. Kondratyuk, Y. Wang, J.K. Johnson, J.T. Yates, Jr.; 
Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular 
lengths. J. Phys. Chem. B (2005), 109, 20999-21005. The theoretical calculations of adsorption on SWNTs were 
carried out by Y. Wang and J.K. Johnson. 
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5.1 INTRODUCTION. 

Single wall carbon nanotubes (SWNTs) have attracted significant scientific interest as adsorption 

media since their discovery. They are known to have high binding energy adsorption sites in the 

interior as well as in the grooves between adjacent nanotubes on the outside surface of SWNT 

bundles [45, 50]. The high binding energies for physically adsorbed molecules inside of 

nanotubes and on groove sites, as compared to planar graphene sheets, stem from strong van der 

Waals interactions caused by the proximity of the curved nanotube walls to the adsorbate 

molecules in those adsorption sites. 

Molecular adsorption in the interior, in the groove sites, and on the exterior surface of the 

nanotubes has been observed in a number of studies employing various experimental techniques 

[54, 61, 63, 66, 96, 100, 107, 108]. In the case of interior sites, an oxidative treatment followed 

by annealing in vacuum is usually required to produce entry ports that allow the adsorbate 

molecules to access the nanotube interior [56]. Such entry ports can be created during the 

oxidative-acid purification of the nanotubes to remove graphitic impurities after synthesis. 

Oxidative treatment with gaseous O3 followed by annealing at 1073 K has also been shown to 

strongly enhance adsorption kinetics into the nanotube interior by introducing additional entry 

ports on the nanotube walls [57, 60]. 

Here we present a combined experimental and simulational study of the adsorption of 

five linear alkanes, n-pentane to n-nonane, and a branched alkane molecule, 2,2,4-

trimethylpentane, on SWNT adsorption sites. 

Adsorption of alkane molecules of different molecular length and shape on zeolites has 

been extensively studied [109-113]. It was found that generally the adsorption capacity depended 

inversely on the size of the molecule. However this effect was masked by the structural 
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peculiarities of zeolite adsorption sites, especially for shorter alkanes. In the case of carbon 

nanotubes the adsorption space contains no charge centers and is more uniform at the atomic 

scale. Thus a smoother dependence of adsorption capacity on molecular length was to be 

expected for the molecules we studied, as was observed.  

In this work, temperature programmed desorption (TPD) is the experimental tool used to 

characterize the adsorption of these six alkanes. Hybrid Monte Carlo simulations were also used 

to theoretically probe the molecular-level details of alkanes adsorbed on different sites on the 

SWNT bundles. As these molecules are chemically very similar and differ only in carbon chain 

length (linear alkanes) or chain connectivity (2,2,4-trimethylpentane), observing the capacities of 

different SWNT adsorption sites toward them allowed us to extract information about the density 

of molecular packing in these sites as well as effects of the adsorption site geometry. 

5.2 EXPERIMENTAL METHODS. 

Temperature programmed desorption experiments were performed in an ultrahigh vacuum 

(UHV) chamber described in Chapter 2. The system achieved a base pressure of 2.5×10-10 Torr 

after bakeout. 

The SWNTs used in the current experiments were produced by R. Smalley and 

collaborators using pulsed laser vaporization of graphite with a Ni-Co catalyst [21, 22]. Section 

2.3 deals with the synthesis and purification of the SWNTs in more detail. The nanotube sample 

employed here has been extensively studied before [100, 101, 102, 114]. 

The sample weighing approximately 36 µg was deposited in air from a suspension in 

dimethyl formamide onto a gold plate. 
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An identical gold plate containing no nanotubes was used as a reference to observe the 

adsorption on the support plate itself. Due to the much larger surface area that SWNTs provide 

for the adsorbate, the maximum non-multilayer adsorption on the support plate comprised less 

than 1% of the amount of molecules adsorbed on the SWNTs. 

The sample was annealed at 1073 K for 10 minutes before every set of experiments in 

order to decompose oxygen-containing functionalities that might have been present on the 

nanotubes. Functional groups at SWNT entry ports have earlier been found to prevent molecular 

access into the interior of the nanotubes [56]. 

Adsorbate delivery to the surface was accomplished by means of a collimated molecular 

beam doser with a limiting pinhole conductance [89, 115]. The limiting conductance was 

absolutely calibrated using Xe and CCl4 effusion and found to scale inversely as the square root 

of molecular weight, as predicted by the classical effusion equation which describes effusion 

leak rate for an ideal gas. The effusion rates for all alkanes were thus recalculated using the 

inverse square root of mass law from the CCl4 value. For n-pentane the dosing rate at the sample 

surface was calculated to be 1.27×1013 C5H12 molecule Torr-1 s-1 cm-2. 

All the data in this work was acquired with a semi-automatic computer controlled system 

built earlier specifically for large numbers of closely controlled temperature programmed 

desorption experiments. This system integrates the functions of sample translation between doser 

and QMS positions, temperature control and QMS signal recording. Its construction and 

operation are explained in detail in Chapter 2. 

After each temperature programmed desorption experiment an additional experiment that 

served to calibrate the sensitivity scale was carried out with the same adsorbate molecule. In the 

calibration a TPD desorption profile of a standard amount of the adsorbate (exposure=2.0×1015 
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molecules cm-2) was taken. The preceding TPD profile was then divided by the integrated 

intensity of the calibration measurement and multiplied by the number of molecules in the 

calibration exposure. This calibration procedure served a double purpose. First, it corrected for 

the slow sensitivity drift in the mass spectrometer due to sensitivity changes in the electron 

multiplier. Secondly, it allowed a direct comparison of TPD spectra between different adsorbate 

molecules to be made, because after this procedure the TPD profile reflected a physically 

relevant measure of the desorption rate, in molecules cm-2 K-1. 

This desorption rate is connected to the conventional kinetic rate, in molecules cm-2 s-1, 

by the temperature increase rate, dT/dt, during the desorption experiment. The temperature of the 

calibration exposure was always chosen to be low enough to ensure a unity sticking coefficient. 

5.3 THEORETICAL METHODS. 

We used the hybrid Monte Carlo (HMC) method [116] to perform the simulations on the 

nanotubes/alkane system. The HMC technique is reported to be more efficient than either MD or 

simple MC for simulating long-chain molecules [117, 118]. The multiple-time-step method [119] 

was used to integrate the intra-molecular degrees of freedom. The nanotube bundle used in the 

simulations consisted of two (10,10) nanotubes, each containing 20 unit cells (length 49 Å). The 

gap between the walls of the adjacent tubes was set to 3.2 Å. We chose this “minimal” SWNT 

bundle to reduce computational demands. The nanotube bundle was placed in the center of a 

cubic simulation cell 200 Å on a side. Periodic boundary conditions were applied in all three 

directions. Adsorption of alkanes on the interior, groove, and outside sites was studied. Real 

SWNT bundles will also have interstitial sites [46]; we have not considered these sites in this 

 57 



work, since we expect that the contribution due to interstitial adsorption to be negligible due to 

the large size of the alkane molecules. We used an atom-explicit model for nanotubes, taking the 

Lennard-Jones parameters for graphite (σ = 3.4 Å, ε = 28.0 K) [120] for the nanotube carbons. 

We used the transferable potentials for the phase equilibria (TraPPE) [121, 122] united atom 

model for alkane molecules. The alkane-alkane potential is divided into non-bonded (eq 1), bond 

stretching (eq 2), bond bending (eq 3) and torsion terms (eq 4)  as follows 
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We used standard Lorentz-Berthlot combining rules to calculate σij and εij,  

( )jjiiij σσσ +=
2
1                                                        (5) 

jjiiij εεε =                                                             (6) 

The potential parameters used are given in Table 1 and Table 2. The TraPPE model defines a 

united atom segment as a single CH3, CH2, CH, or C group. 

 
Table 1. Lennard-Jones Parameters for TraPPE-UA Field for normal alkanes. 

Pseudo-atom ε/kB [K] σ [Å] 
CH4 148 3.73 
CH3 98 3.75 
CH2 46 3.95 
CH 10 4.68 
C 0.5 6.4 
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We have calculated the number of segments of molecules adsorbed on the inside, groove, 

and outside sites. A segment is identified as being inside a nanotube if its (x,y) coordinates lie 

within the radius of either of the nanotubes (the area inside the solid circles representing the 

nanotubes in Figure 28) and the z coordinate lies in the range covered by the extent of the 

nanotubes in the simulation box. The z axis coincides with the nanotube axis in our simulation 

cell. Segments are identified as being in the groove site if they lie within a cylinder of radius 2.90 

Å centered in the nanotube groove sites (dashed circles in Figure 28). The center of the groove 

site cylinders are located a distance of 9.68 Å from the center of the nanotubes, on a vector 

directed 30º above and below the plane containing the nanotubes (see Figure 28). A segment is 

identified as adsorbed on the exterior sites of the nanotubes if it lies within an annular region 

defined by the radii 6.78 and 11.88 Å from the nanotube centers, and if the segment is not within 

the groove sites. The outside adsorption sites are schematically shown as the gray shaded region 

in Figure 28. All other segments that do not lie within one of these three sites are identified as 

being in the multilayer or the gas phase. 

 
Table 2. Bonded Parameters for the TraPPE-UA Force Field for normal alkanes. 

Stretch r0 [Å] kr/kB [K] 
CHx-CHy 1.54 130924.4893*

bend θ0 kθ/kB [K] 
CHx-(CH2)-CHy 114 62 500 
CHx-(CH)-CHy 112 62 500 
CHx-(C)-CHy 109.47 62 500 

torsion c0/kB [K] c1/kB [K] c2/kB [K] c3/kB [K] 
CHx-(CH2)-(CH2)-CHy 0 335.03 -68.19 791.32 
CHx-(CH2)-(CH)-CHy -251.06 428.73 -111.85 441.27 
CHx-(CH2)-(C)-CHy 0 0 0 461.29 
CHx-(CH)-(CH)-CHy -251.06 428.73 -111.85 441.27 

*This parameter is from OPLS-UA force field 
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We have performed two types of simulations, namely NVT and modified grand canonical 

Monte Carlo simulations for various nanotubes/alkane systems. The NVT simulations were used 

to find the coverages of molecules in the different bundle sites for each of the alkanes. The initial 

states for the NVT simulations were prepared by exposing the nanotube bundle to two liquid-like 

drops of alkane molecules, one at each end of the bundle. The molecules then occupied the 

interior, groove, external, multilayer sites, depending on the total number of molecules and the 

temperature. The liquid droplets were prepared from an isobaric-isothermal simulation of pure 

alkane molecules at 313.15 K and 60.0 MPa, where the starting configuration was a gas phase; 

the very high pressure was used to quickly reach a liquid-like density. The equilibration period 

was typically 200,000-400,000 HMC steps, where each step consisted of five MD long time 

steps followed by a HMC acceptance or rejection move. A typical value for the long time step in 

the MD run was around 15 fs. Five inner (short) time steps were taken for each long time step. 

The modified grand canonical ensemble simulations were designed to mimic the process of the 

TPD experiments and therefore we did not simulate a proper grand canonical ensemble. A 

typical TPD experiment is carried out by first dosing a system with a known amount of alkane. 

Then the system is heated and material desorbs into the vacuum with pressures on the order of 

10-4 Pa; molecules that desorb are pumped away so fast that no readsorption can take place. We 

have mimicked this process by starting from a pentane-saturated nanotube bundle, obtained 

through the first type of simulation, followed by grand canonical-type moves to delete the 

pentane at a pressure of 10-4 Pa. No attempt to create adsorbed molecules was made. Obviously, 

the equilibrium state for this type of simulation is a system with no adsorbed molecules. We are 

therefore not interested in the limiting distribution of this type of simulation. We use these 
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modified grand canonical simulations to probe, in an approximate way, the rate of desorption for 

pentane from each of the different sites on a SWNT bundle. 

 

 
Figure 28. Schematic showing interior, groove and exterior sites of a nanotube bundle. 

5.4 RESULTS AND DISCUSSION. 

5.4.1 Temperature programmed desorption experiments. 

As has been shown before [114], alkane molecules can be adsorbed in four distinct environments 

on single wall carbon nanotubes, resulting in four resolved features in temperature desorption 

spectra. Figure 29 shows the representative temperature programmed desorption (TPD) traces 

from three alkanes – pentane, n-nonane and 2,2,4-trimethylpentane. 
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Figure 29. TPD spectra of n-pentane, n-nonane and 2,2,4-trimethylpentane on SWNTs. Exposures are the 

same for all three compounds. They start at 2.16×1015 molecules cm-2 and increase in steps by a factor of 21/2. 

The n-pentane and n-nonane spectra look qualitatively very similar, displaying four 

prominent features, labeled with letters A to D, that correspond to four different adsorption 

environments with certain adsorption energies and entropies. TPD spectra of other linear alkanes 

(n-hexane, n-heptane and n-octane, not shown) present similar spectra, with the difference being 

the position and relative intensities of the four peaks as is seen also for n-pentane and n-nonane. 

Peak D can be easily identified. The overlapping leading edges of the D peaks in these 

spectra facilitate their assignment as multilayer peaks. They result from the desorption of bulk-

like adsorbate that forms on the SWNTs at high exposures to the hydrocarbon molecules and are 

not characteristic of nanotube adsorption sites. At the same time, none of the A, B or C features 

are present on the blank gold reference, meaning that these features originate from the adsorbate 

bound on the nanotubes. Thus, in the following we will limit our discussion to the A, B and C 

desorption features.  

It can be seen that for all three adsorbates features A and B are saturated at the highest 

exposures shown in Figure 29, while C continues to grow. Consequently, this exposure range 

should allow the determination of the capacities for sites A and B. 
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Based on the results of the molecular simulations of the TPD  process, as well as 

capacities of sites A and B toward molecules with different molecular lengths, we assign process 

A as desorption from the nanotube interior site. We assign process B as desorption from the 

grooves on the outside of SWNT bundles. We assign process C as desorption from the exterior 

nanotube surface. 

 

5.4.2 Simulation of the TPD process. 

Modified grand canonical simulations for the pentane/nanotube system were carried out at 

various temperatures, from 125 K to 350 K. The data after 5000 attempted Monte Carlo moves 

for each temperature are plotted in Figure 30. The starting state was chosen from the HMC 

simulations of the nanotube/pentane system at 125 K. The relationship between the number of 

pentane molecules deleted from the system for a fixed number of MC steps and temperature is 

related to the desorption rates deduced from TPD experiments. Both the experiments and 

simulations are driven by entropic and energetic considerations. Therefore, we believe the 

simulations provide information that can be useful for comparing with the TPD experiments. 

However, the simulations do not have a real time scale. If the simulations were run for a very 

large number of attempted moves then all the molecules would be deleted at any temperature. 
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Figure 30. Simulated TPD-like spectra (pseudo-desorption-rates) computed from molecular modeling. 

The relative changes in coverage on each of the three sites (interior, groove and exterior) 

as a function of temperature are plotted in Figure 30. The coverages are normalized by the initial 

number of molecules on each of the sites. From Figure 30 we see that n-pentane molecules on 

the exterior sites desorb more readily than molecules on the groove and interior sites. This is true 

for all temperatures. Moreover, n-pentane is completely depleted on the external sites at the 

lowest temperature (~175 K), the groove site is depleted at the next lowest temperature (~220 K) 

and the internal sites are depleted at the highest temperature (~270 K). These temperature trends 

are in qualitative agreement with the TPD data and corroborate that peak A corresponds to the 

internal sites, peak B to the groove sites, and peak C to the external sites of the nanotube 

bundles. Derivatives of the curves in Figure 30 would lead to TPD-like plots from the 

simulations. However, the statistical noise in the data does not justify taking the derivatives. 

Moreover, because there is no actual time scale, the MC data only give “pseudo-TPD” data. 

The choice of plotting the results after 5000 MC steps is arbitrary. We have also 

examined the simulations at 1500 and 10000 steps. The lines shift to the right (to higher 
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temperatures) for 1500 steps and to the left (to lower temperatures) at 10000 steps. However, in 

both cases the same general shape as seen in Figure 30 is observed. Thus, the temperature scale 

is somewhat arbitrary, since it depends on the number of MC steps chosen. Hence, the simulation 

data cannot be directly mapped onto experimental TPD data and are best termed “pseudo-TPD” 

data, as noted above. 

 

5.4.3 Measuring adsorption site capacities. 

We have shown earlier [114] that in the case of a CCl4 molecule, rather dissimilar from a normal 

alkane, A, B, and C desorption processes are also observed. Displacement experiments involving 

simultaneous adsorption of CCl4 and n-nonane showed that the features A and B, and possibly C, 

correspond to the same adsorption sites on nanotubes in the case of these two very dissimilar 

molecules. As the alkanes, which are the focus of the current study, are much more similar to 

each other in their adsorptive properties than n-nonane and CCl4, it can be concluded with a very 

high degree of certainty that different alkanes occupy the same three adsorption sites on the 

SWNT surface, and that desorption processes A, B and C are sampling the same sites for 

different hydrocarbons. 

Due to the use of the normalization procedure described in the experimental section, the 

areas under individual features accurately reflect the amount of adsorbate found on that site. 

Additionally, the areas under the TPD features can be compared directly for different molecules. 

In order to estimate the number of adsorbate molecules on adsorption sites A and B, the areas 

under these two peaks must be found. This task presents challenges, as a significant overlap of 

different peaks prohibits separation and straightforward integration. Modeling of the spectra as a 
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sum of first order desorption processes is also problematic due to the apparent shift of the peak 

positions to lower temperatures with increasing coverage, an effect not accounted for by the first-

order kinetics. 

In order to circumvent this difficulty in measuring the areas of desorption features A and 

B, we conducted a series of experiments where the dosing temperature of the alkanes was varied 

around the onset temperature of the two peaks instead of dosing at a low temperature where all 

molecules would be adsorbed either on nanotubes or into a multilayer. Such a procedure 

effectively prevents the adsorption on surface sites that desorb the adsorbate around or below the 

temperature of dosing. In these experiments the exposure was chosen to be large enough so that a 

stationary state on the surface was reached and no further accumulation of the molecules on the 

SWNTs occurred. 

Figure 31 demonstrates the n-pentane TPD spectra that result from five exposures near 

the onset temperature of the A peak and five exposures near the onset temperature of the B peak. 

The difference between two consecutive dosing temperatures within each set of five TPD spectra 

is 5 K. It can be seen that as the dosing temperature decreases, the A peak initially grows but the 

rate of growth slows down with each exposure and eventually a shoulder of the B peak starts to 

develop on the low temperature side of A. We take the area of the TPD trace No.3, where the 

rate of growth of A is suddenly slowed down and no B shoulder is visible, to be the area of the A 

peak. We believe that this method of removing the overlapping TPD intensity should correctly 

identify the initial coverage when the adsorption state in question is saturated. The main error in 

such an estimate comes from the inability to exactly identify the dosing temperature where the 

adsorption state being saturated stops growing. 
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Figure 31. Finding the capacity of adsorption sites A and B by varying the dosing temperature in the TPD 

experiments. n-Pentane is given as an example of the procedure that was also used for other alkanes in the 

study. 

A similar analysis can be conducted for site B. For n-pentane TPD spectra in Figure 31, 

spectrum No. 8 is then the sum of features A and B. The area of B can be found by subtraction. 

In only the case of 2,2,4-trimethylpentane, peak A splits into several broad overlapping 

features and starts to overlap more significantly with peak B. Due to this fact the area of the peak 

A could not be determined with the varying dosing temperature method. This method could still 

be used to determine the area of A plus B. Figure 32 shows the TPD spectrum of 2,2,4-

trimethylpentane on SWNTs at a dosing temperature where sites A and B are both saturated. 
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Figure 32. Finding the area of peak B in the case of 2,2,4-trimethylpentane. Extensive overlap of A and B can 

be seen. The trailing edge of B was fitted to a decaying exponential and all TPD intensity above the fit was 

assumed to belong to feature A. 

We estimated the area of A and B for 2,2,4-trimethylpentane by fitting a decaying 

exponential to the trailing edge of the B peak where the overlap with A is expected to be small. It 

appears likely that this way of separating A and B will have some error associated with it. The 

resulting relative error in the case of B should not be particularly large because of the large total 

value of the B area, but is very likely significant in the case of A. For this reason we do not 

include the area of A for 2,2,4-trimethylpentane in our further analysis. 

 

5.4.4 Groove site capacities. 

Figure 33 summarizes the capacities of site B toward linear alkanes and 2,2,4-trimethylpentane. 

For convenience it is represented not as a capacity plot but rather as an inverse capacity, thereby 

representing the relative space occupied by a molecule on site B. The space occupied in the B 
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site by an n-pentane molecule is taken to be 1. The error bars in Figure 33 represent the relative 

values that correspond to choosing two neighboring spectra in plots analogous to those in Figure 

31. It is likely that the actual errors are less than those given by the error bars. 
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Figure 33. Experimentally determined relative amounts of space occupied in the groove sites, B, by five linear 

alkanes and by branched 2,2,4-trimethylpentane. 

It is evident that an approximately linear relationship is observed for n-alkanes from C5 to 

C9, while the 2,2,4-trimethylpentane point clearly does not follow the trend expected for a C8 

molecule. A 2,2,4-trimethylpentane molecule occupies approximately as much space on site B as 

a hexane molecule, in accordance with its shorter carbon skeleton. 

The linearity of the plot shown in Figure 33 and the lack of fit of 2,2,4-trimethylpentane 

at the C8 position can be logically explained if site B is a one-dimensional adsorption site, where 

the length of the molecule determines the site’s capacity toward the molecule. A natural choice 

for such a one dimensional site is the groove site between individual nanotubes in the bundle. 

A 2,2,4-trimethylpentane molecule is significantly shorter than a n-octane molecule due 

to three branchings along the chain. Its main carbon chain is five atoms long, and this causes it to 

occupy less space in the groove site than a normal octane molecule. 
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We performed NVT simulations to investigate relationship between the capacities of the 

groove and interior sites of the nanotube bundle and the number of carbon atoms of the alkanes. 

We counted the number of segments on the interior sites and groove sites of the nanotube bundle 

during the course of the simulation. We then estimated the number of molecules in each of the 

sites by dividing the average number of segments in a site by the number of segments (carbon 

atoms) in the alkane molecule. The reciprocal of number of molecules per site is related to the 

capacities of these bundle sites. The relationship between the relative capacities of the groove 

site and number of carbon atoms for the different alkanes is shown in Figure 34. Note that data 

for the n-alkanes, shown as squares, lie on a nearly straight line, consistent with the experimental 

data in Figure 33. The circle point is for 2,2,4-trimethylpentane. The calculation of the number of 

molecules of 2,2,4-trimethylpentane in the groove site is based not on the number of carbon 

atoms in the chain, but on the number of carbon atoms in the backbone, i.e., five. This is because 

for 2,2,4-trimethylpentane, our definition of groove sites does not count the branched segments 

of a 2,2,4-trimethylpentane molecule as being in the groove sites since the branched segments lie 

outside the radius of the small dashed defining circle shown in Figure 28. We have confirmed 

this by analyzing snapshots from the 2,2,4-trimethylpentane simulations. 
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Figure 34. Relative space occupied in the groove sites for alkanes from molecular simulations. 

Representative snapshots from simulations for both n-octane and 2,2,4-trimethylpentane 

in the groove sites are shown in Figure 35. The n-octane molecules lie roughly parallel in the 

groove site, packed end-to-end. The 2,2,4-trimethylpentane molecules each occupy less space 

than the n-octane molecules, as can be observed from the snapshots. Also, the 2,2,4-

trimethylpentane molecules are more likely to rotate out of the groove site. 

 

 
Figure 35. Simulation snapshots of n-octane and 2,2,4-trimethylpentane adsorbed on the groove site. 
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5.4.5 Interior site capacities. 

The experimental data can be used to construct a plot similar to that shown in Figure 33 for the 

occupancy of the A site; this is shown in Figure 36. The 2,2,4-trimethylpentane point is not 

included because of significant uncertainty in its measurement. The uncertainty comes from a 

strong overlap of the A and B desorption peaks of 2,2,4-trimethylpentane, as explained in more 

detail in Section 5.4.3. 
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Figure 36. Experimentally determined relative occupation of space by alkane molecules in the interior of the 

nanotubes. 

Simulation data for the inverse capacity of the interior site as a function of number of 

carbon atoms of an alkane are plotted in Figure 37. The squares are for the n-alkanes and the 

circle point again represents 2,2,4-trimethylpentane. We again observe a roughly linear 

relationship between the inverse capacity of the interior site and the number of carbon atoms in a 

molecule, in agreement with the experimental data of Figure 36. We find that 2,2,4-

trimethylpentane lies on the same line as the n-alkanes and overlaps with n-octane, in contrast 

with the groove site data shown in Figures 33 and 34. This is because the capacity of the interior 
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sites is governed by the volume, not the length of the site. Each segment in a molecule occupies 

about the same volume, whether the molecule is linear or branched. Therefore, n-octane and an 

2,2,4-trimethylpentane occupy roughly the same amount of volume inside a nanotube. This is 

consistent with the observation that n-octane and 2,2,4-trimethylpentane have the same liquid 

molar volume to within 2% [123]. 
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Figure 37. Relative space occupied in the interior sites for alkanes determined from molecular simulations. 

5.4.6 Summary. 

The following conclusions about alkane adsorption on single walled carbon nanotubes have been 

reached: 

1) Three distinct adsorption sites are observed on single wall carbon nanotubes for alkane 

adsorption using temperature programmed desorption. 

2) On the basis of molecular simulations (and earlier displacement experiments), the highest 

binding energy adsorption site (site A) corresponds to adsorption inside nanotubes. 
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3) The second highest binding energy site (site B) corresponds to groove sites between 

adjacent nanotubes in bundles.  

4) Simulations find that desorption from the exterior surface of the nanotubes occurs at the 

lowest temperature, followed by desorption from the grooves and desorption from 

nanotube interior, which occurs at the highest temperature. 

5) The adsorbed molecules are packed in a one-dimensional manner in the grooves. The 

length of the molecule determines the capacity of the groove site. Both experiments and 

simulations find that a branched C8 molecule, 2,2,4-trimethylpentane, occupies less space 

in the groove than a linear C8 molecule and approximately as much space as a linear C6 

molecule. This is due to the shorter main chain of 2,2,4-trimethylpentane as compared to 

n-C8H18. 

6) Simulations show that in the interior of the nanotubes, a branched C8 molecule, 2,2,4-

trimethylpentane, occupies as much space as a linear n-C8H18 molecule. This is because 

the capacity of the interior site is governed by the molecular volume of the alkanes, either 

linear or branched. 
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6.0  EFFECTS OF MOLECULAR CONFINEMENT INSIDE NANOTUBES ON 

CHEMICAL REACTIVITY – ATOMIC H + 1-HEPTENE7 

It has been demonstrated that the confinement of physisorbed 1-heptene molecules inside of 

carbon single walled nanotubes (SWNTs) results in lowering of their reactivity to atomic 

hydrogen compared to 1-heptene molecules adsorbed on external SWNT sites. 

6.1 INTRODUCTION 

For a variety of molecules, the most energetically favorable adsorption site on carbon single 

walled nanotubes is the nanotube interior [45, 50, 93]. Such internally bound molecules may be 

discriminated from outside-bound molecules by several experimental methods [61, 63, 96, 100, 

107, 124-126]. In contrast to some other high area adsorption substrates (such as activated 

carbon), the adsorption sites on SWNTs are well defined and possess relatively narrow ranges of 

adsorption energies. This allows the selective population of particular nanotube adsorption sites 

to be accomplished by appropriately choosing the adsorption temperature. The nanotubes also 

have the advantage of being largely chemically inert, exposing unreactive graphite-like surfaces 

and binding molecules only by van der Waals forces. 
                                                 

7  This chapter is reproduced with modifications from a manuscript by P. Kondratyuk and J.T. Yates, Jr. with 
the same title which has been accepted for publication in the Journal of the American Chemical Society. 
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Since confined molecules adsorbed in the interior are more sterically shielded than those 

adsorbed on external adsorption sites, it can be expected that they will be less reactive toward 

reactants arriving from the outside. Here we study the relative rates of reaction of interior- and 

exterior-adsorbed 1-heptene undergoing hydrogenation by hydrogen radicals arriving from the 

gas phase. Extending the results described here to reactions in solutions may potentially open up 

uses for carbon nanotubes as a means of controlling molecular reactivity in synthetic chemistry. 

The area of supramolecular chemistry offers conceptually analogous cases of the 

shielding of molecules from chemical reactions. As reported by Körner et al. [127], a nanoscopic 

self-assembled cylindrical capsule derived from resorcinarenes was able to enclose dibenzoyl 

peroxide molecules preventing a reaction with reducing agents present in the ambient solution. 

Nanotubes consisting of amphiphilic molecules [128, 129], zeolites [130], as well as dendritic 

supramolecular assemblies [131] and ligand-created cavities [132, 133] have all been studied 

with a view to molecular encapsulation. 

 

6.2 RESULTS AND DISCUSSION 

The experiment was conducted in the UHV chamber described in Chapter 2, with the addition of 

a tungsten filament for the production of atomic H. Figure 38 shows the principal components of 

the system and their relative locations. 
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Figure 38. UHV apparatus for study of the adsorption and desorption of molecules on single walled carbon 

nanotubes, and for reactivity studies with atomic H, made from H2 (g) using a heated W filament. A blank 

gold plate serves as a reference. 

A sample of ~13.6 Å diameter SWNTs (mass = 24 µg) supported on a gold plate may be 

reproducibly positioned in front of a collimated and calibrated effusive beam doser for 

quantitative dosing of 1-heptene onto the nanotube sample [90, 134]. Before the temperature 

programmed desorption (TPD) experiments, the SWNTs are heated in vacuum to 1073 K, a 

procedure which removes carbonyl and ether groups which are initially present on SWNTs [56, 

58]. Adsorption on SWNTs, followed by TPD, reveals that a hierarchy of adsorption sites, 

having different binding energies, is present [52, 114]. Four sequential desorption processes are 

observed as the temperature is raised, as shown in Figure 39 for adsorbed 1-heptene. Increasing 

coverage leads to thermal desorption processes occurring at progressively lower temperatures as 

sites with lower adsorption energies become occupied. 
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Figure 39. Temperature programmed desorption of 1-heptene from single walled carbon nanotubes for 

increasing initial coverages. The adsorption site locations corresponding to each desorption process are 

indicated on the schematic of a nanotube bundle [52, 114], where the SWNT diameter and the end-on van der 

Waals diameter of the 1-heptene molecules are drawn approximately to scale. 

The highest temperature process corresponds to desorption from the nanotube interior, 

with the maximum rate of desorption at about 315 K. The next highest temperature process with 

rate maximum at about 230 K, corresponds to 1-heptene adsorbed in the exterior groove sites 

which exist between nanotubes held together in bundles by van der Waals forces [28]. The third 

from highest state corresponds to 1-heptene bound to the convex exterior SWNT wall sites [50], 

and the lowest temperature state corresponds to multilayer 1-heptene which forms on all exterior 

surfaces. The latter can be easily identified by the characteristic zero-order desorption kinetics 

that produces overlapping leading edges as the multilayer coverage is increased (not shown). 

Previous experiments have shown that this sequence of desorption states is observed for a 

number of hydrocarbons (linear and branched) [52], as well as for non-hydrocarbon molecules 

such as CCl4 [114]. In the case of hydrocarbons, the saturated occupation of the interior sites is 

controlled by the volume occupied by the adsorbing molecule, whereas the occupation of the 
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groove sites is governed by the molecule’s length [52], as would be expected for a one-

dimensional adsorption site. Control experiments from the clean gold reference were also carried 

out, to verify that all effects reported are due to 1-heptene adsorbed on the SWNTs. 

We have selected an aggressive chemical reaction to study the effects of molecular 

confinement of 1-heptene on the reaction rate. The reaction of atomic H with the terminal double 

bond in alkenes is nearly non-activated [135, 136]. The reaction occurs readily on condensed 

alkene films even below 100 K, preferentially producing secondary alkyl free radicals [137]. The 

free radicals then undergo disproportionation by abstracting a hydrogen atom from a neighbor 

radical species [138, 139], producing the alkane and regenerating the alkene, as shown in 

equations (1) and (2) for the case of 1-heptene. 

  (1) 31152115 CHHCHCHCHCHHC −⇒+=
••

  (2) 21153211531152 CHCHHCCHCHHCCHHCHC =+−⇒−
•

Thus, the production of heptane from 1-heptene may be used to monitor the reactivity of atomic 

hydrogen with the 1-heptene, and to measure the relative reactivity of interior-bound 1-heptene 

compared to exterior-bound 1-heptene. 

For the comparison to be carried out between the reactivities of the interior- and exterior-

bound 1-heptene, selective population of the adsorption sites in question must be accomplished. 

In the experiments described here, exclusive population of the nanotube interior was achieved by 

choosing the SWNT temperature to be 270 K during 1-heptene dosing. At this temperature only 

the interior sites were capable of retaining the adsorbate. Alternatively, when the 1-heptene 

adsorption temperature is set at 215 K, both the nanotube interior sites and the exterior groove 

sites become populated. Following such controlled adsorption, the SWNT samples containing 1-

heptene were then subjected to atomic H irradiation at 150 K. 
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Figure 40 shows a sequence of TPD measurements of the relative desorption rates 

(proportional to the amplitude of the mass spectrometer signal in a fast-pumped vacuum system 

as used here [86]) as increasing irradiation by atomic H occurs, for the case when both interior 

and groove sites are filled with 1-heptene. The atomic H is produced by a W filament at 1800 K 

which operates in 4.4×10-5 Torr (using a relative ion gauge sensitivity factor of 0.46 compared to 

N2) of continuously flowing H2 [140]. The rate of bombardment by atomic hydrogen at the 

sample position is estimated to be ~2×1013 H atoms cm-2 s-1. The sample temperature is 

automatically controlled by resistive heating of the Au support plate to maintain a constant 

temperature of 150 K during irradiation [141]. 
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Figure 40. Series of experiments in which an identical coverage of 1-heptene, present in the interior sites and 

on external groove sites, is irradiated with atomic H for varying exposures, εH. The consumption of 1-heptene 

(m/e=98 a.m.u.) and the production of heptane (m/e=100 a.m.u.) is observed. Corrections have been made for 

the mass spectrometer sensitivity for the two molecules, so that the relative molecular population of 1-heptene 

and heptane may be measured from the area of the TPD spectra shown. To compare the hydrogenation rates, 

an identical series of experiments was also conducted for the SWNT sample with 1-heptene adsorbed only in 

the interior sites (corresponding to the high-temperature peak in the figure). dT/dt = 2 K s-1. 

As 1-heptene is consumed, heptane is produced. Since hydrocarbon molecule migration 

between different sites occurs readily when the temperature is increased during the TPD 

measurement, the distribution between the groove sites and the interior for the two molecules 

will not reflect the relative rates of hydrogenation in the two sites. Thus, it is only the amount of 

heptane produced that is of interest in this experiment, not the distribution between the groove 

sites and the interior. 
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When the 1-heptene is exclusively contained in the interior sites of the SWNTs, a lower 

rate of reaction is observed, compared to experiments in which both interior and groove sites are 

occupied, as shown in Figure 41.  
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Figure 41. Fraction of 1-heptene converted to heptane by atomic H, using SWNTs containing 1-heptene in 

interior sites, compared to experiments involving the occupancy of interior and external groove sites.  

Figure 41 shows that the reactivity of molecules exclusively in interior sites is a factor of 

3.2±0.4 lower than that found for nanotubes exposing 1-heptene in both interior and exterior 

groove sites.  The single point shown in Figure 41, corresponding to a study of multilayer 1-

heptene reactivity with atomic H on the Au reference surface, shows that the conversion ratio for 

the reaction is even higher for the unconfined 1-heptene multilayer.  

These results show that confinement of a reactant molecule inside a single wall nanotube 

results in a substantial reduction of its reactivity with an aggressive gas phase reactant. The 

observation of some reactivity for the confined molecules is probably due to the chemical 

opening of the tubes needed for molecular adsorption into the interior [56, 60, 63]. These 

openings provide the pathways for the H radicals to access the interior-adsorbed molecules.  
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It is known that the nanotubes can themselves react with atomic H [142, 143]. Indeed, 

after exposures to H comparable to those in the experiments described above, but without any 1-

heptene adsorbed on the SWNTs, we find that chemisorbed hydrogen was present on the SWNT 

sample. When the SWNTs were heated to 800 K, H2 as well as hydrocarbons with between 1 and 

5 carbon atoms in the chain were evolved. Using the mass spectra of the evolved hydrocarbons 

and the experimentally measured QMS sensitivities towards hydrocarbons with different chain 

lengths, we estimated the amount of carbon lost per one cycle of hydrogenation at only 0.07% of 

the total number of carbon atoms in the SWNTs, meaning that nanotube hydrogenation can be 

neglected under these conditions. This amount of reacted carbon was about two orders of 

magnitude smaller than the amount of carbon in the adsorbed 1-heptene molecules. 

 

6.3 CONCLUSIONS 

It was found that nanotube walls prevent atomic H species from entering and undergoing 

reaction with the double bonds of confined alkene molecules. This observation suggests a new 

use for nanotubes in which molecular confinement is used to control the chemical reactivity of a 

molecule. 
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7.0  INTER- AND INTRA-TUBE SELF-DIFFUSION IN N-HEPTANE ADSORBED 

ON NANOTUBES8 

We have experimentally measured long-range self-diffusivity of normal heptane adsorbed on 

single walled carbon nanotubes at 275 K.  This was done by observing the displacement kinetics 

of heptane by a deuterium-labeled molecule, 1-deuteroheptane. We also performed MD 

simulations of heptane self-diffusion inside an individual nanotube under full loading. The 

experimentally measured diffusion coefficient (D = 7.7×10-12 cm2 s-1) was about 8 orders of 

magnitude lower than the diffusion coefficient inside an individual nanotube from the simulation 

(D = 8.2×10-4 cm2 s-1). Since heptane only adsorbs in the nanotube interior at 275 K, we 

conclude that the experimentally observed long-range transport is rate-limited by a very slow 

exchange of heptane between different nanotubes in the bulk SWNT sample. At the same time, 

the mixing of heptane inside individual nanotubes is fast. The reasons for slow diffusion between 

different tubes could be the potential energy barriers at the entry points into the nanotubes, as 

well as desorption-adsorption barriers for molecules migrating through the bulk. 

                                                 

8 This chapter is reproduced with modifications from: P. Kondratyuk, Y. Wang, J. Liu, J.K. Johnson and J.T. 
Yates, Jr.; Inter- and intra-tube self-diffusion in n-heptane adsorbed on carbon nanotubes. J. of Phys. Chem. C 
(2007), 111, 4578-4584. The computer simulations presented in this work were carried out by Y. Wang, J. Liu and 
J.K. Johnson. 
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7.1 INTRODUCTION 

From a practical standpoint, the transport properties of adsorbed molecules play an important 

role in determining the applicability of single wall carbon nanotubes (SWNTs) as adsorbents, as 

they control the rates of molecular uptake and release. While a number of studies have focused 

on molecular transport along the nanotube channels [144-149], few [150] have addressed the 

diffusion dynamics of the molecules in the bulk of the nanotube samples and none investigated 

the self-diffusion of adsorbates. On the other hand, self-diffusion in such well-studied media as 

zeolites has received a significant amount of attention [151-161]. 

Here we study experimentally the self-diffusion of heptane through a bulk SWNT 

sample. We compare the results to a molecular dynamics (MD) simulation of heptane diffusion 

inside an individual nanotube under the conditions of full heptane loading. Heptane was chosen 

due to the earlier findings that normal alkanes allow the different adsorption sites on SWNTs to 

be resolved by temperature programmed desorption (TPD) [52]. 

The temperature in the experiment was chosen such that only the interior adsorption sites 

could be populated while other types of sites remained unoccupied [52]. This allowed us to 

experimentally probe the dynamics of heptane exchange between different tubes.   

Several techniques have been used to determine the self-diffusion coefficients of 

adsorbed molecules in microporous solids, among them field-gradient NMR [151, 154, 155, 157, 

160], inelastic neutron scattering [161] and the use of isotopically labeled molecules [158, 159]. 

The latter is employed here. It is based on the displacement of the adsorbed molecules by 

isotopically labeled but otherwise identical molecules. The slower the diffusion, the more slowly 

will the displacement occur because of the accumulation of the labeled molecules in the outer 

layers of the microporous solid. 
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The SWNTs are a nanostructured material, and consequently, at the nanoscale the 

propagation of molecules does not obey the normal Gaussian law. This effect is well known for 

zeolites [151-153]. In particular, a molecule confined inside a zeolite cavity may experience 

rapid diffusion within the confining boundaries while hopping between different cavities may be 

very rare. The case of heptane on SWNTs is highly analogous. Under our experimental 

conditions the molecules were adsorbed only inside nanotubes. Thus two transport regimes were 

present, inside individual nanotubes and between different nanotubes. The experimentally 

measured diffusion coefficient corresponds to long-range transport and, consequently, diffusion 

between different nanotubes. This diffusion was found to be vastly slower than the diffusion 

inside individual nanotubes seen in the MD simulation. 

Various groups have simulated the diffusion of molecules adsorbed in the interior 

channels of SWNTs [144, 147, 162-168]. Previous simulation studies have shown that transport 

of small molecules can be much more rapid inside individual SWNTs than in other nanoporous 

materials [162, 169-171]. The transport of alkanes inside SWNTs has also been noted to be rapid 

[165, 166, 168]. 

7.2 EXPERIMENTAL 

7.2.1 System and Materials 

The experiments were performed in a stainless steel ultrahigh vacuum (UHV) system with a base 

pressure of 2×10-10 Torr after bakeout. A detailed description of the system is given in Chapter 2 

of this Dissertation. 
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The SWNTs were produced by R. Smalley and coauthors by pulsed laser vaporization of 

graphite impregnated with a Ni-Co catalyst [21, 22]. Production and purification of the SWNTs 

used here are discussed in Section 2.3. The average diameter and length of the nanotubes in the 

sample was 13.6 Å and 320 nm respectively. 

The nanotubes were deposited in air onto a gold support plate measuring 10×14 mm. The 

solvent was allowed to evaporate, leaving a nanotube deposit of ~36 µg. On the basis of the 

approximate density of compressed SWNTs of 1.33 g/mL [172] we estimate that the average 

thickness of the deposit was ~0.2 µm. 

Dosing of heptane and 1-deuteroheptane was accomplished with two calibrated pinhole 

conductance molecular beam dosers [89, 115]. 

Heptane was purchased from commercial sources and purified by two freeze-pump-thaw 

cycles. 1-deuteroheptane was synthesized from 1-iodoheptane and LiAlD4 and had a measured 

purity of 99%. Freeze-pump-thaw purification was likewise performed.  

 

7.2.2 Experimental procedures 

The displacement experiment involved first exposing the sample to a large amount of heptane at 

275 K. This exposure was large enough to completely saturate all available interior sites. We 

earlier showed that other types of sites remain unoccupied at this temperature [52]. 

Following the exposure to heptane the sample was immediately rotated to a second doser 

producing a required flux of 1-deuteroheptane. As there are no unoccupied sites remaining on the 

surface that could be filled at this temperature, a 1-deuteroheptane molecule could only adsorb if 

it displaced a heptane molecule. The gradual displacement of heptane was then allowed to occur 
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for a required period of time after which the sample was rotated away from the 1-deuteroheptane 

doser and its temperature was immediately dropped to avoid any desorption from the surface. 

The two molecular beam dosers were operated continuously during the experiments in 

order to minimize the delay between exposures to heptane and 1-deuteroheptane. When the 

sample was not directly in front of a doser, it only intercepted a small fraction of the molecular 

flux (~3%) due to the very fast pumping of heptane by the UHV system and by the cold parts of 

the sample holder at 77 K. The ~3% value was measured by positioning the sample away from 

the doser and measuring the amount of heptane (or 1-deuteroheptane) adsorbed on it after a 

certain time.  

After the exposures to heptane and 1-deuteroheptane the sample was positioned in front 

of a 3 mm diameter aperture of a shielded quadrupole mass spectrometer (QMS). The 

temperature was then linearly increased at a rate of 2 K s-1 and the signal of the QMS caused by 

the desorbing molecules was recorded simultaneously at m/e = 100 (almost exclusively due to 

heptane) and 101 (mostly 1-deuteroheptane, some contribution from heptane if it is present in the 

desorbing flux). The QMS shield was biased to -100 V to prevent the electrons from the QMS 

ionization chamber from impacting the sample [173].  

By knowing the QMS signal intensities at masses 100 and 101 a.m.u. during the TPD, 

one can calculate the fluxes of desorbing heptane and 1-deuteroheptane. To enable such a 

calculation, we experimentally measured the ratios of sensitivities of the QMS toward heptane 

and 1-deuteroheptane at the two masses. The ratios of sensitivities were found to be  = 

50.8,  = 12.7, and  = 1.0, where the subscripts H and D denote the sensitivities 

toward heptane and 1-deuteroheptane respectively, and superscripts 100 and 101 denote the mass 

100101 / DD II

101100 / HH II 101100 / DH II
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fragment in question. By also knowing the absolute sensitivity from calibration for one of the 

molecules (heptane), a linear system of two equations can be solved for the two unknown fluxes.  

Integration of the TPD spectra for heptane and 1-deuteroheptane allows the amounts of 

each molecule present on the surface at the time of the TPD measurement to be determined. 

These values were used for further analysis. 

It was found that because both heptane and 1-deuteroheptane dosers were on during 

exposure to either gas, the sample saw a small amount of exposure to the molecules from the 

doser in front of which it was not positioned. For instance, in one of the experiments it was found 

the sample was exposed to 96.6% of heptane and 3.4% of 1-deuteroheptane (“H mixture”) when 

it was positioned in front of the heptane doser, and 94.7% of 1-deuteroheptane and 5.3% of 

heptane (“D mixture”) when in front of the 1-deuteroheptane doser. Thus it is not the 

displacement of heptane by 1-deuteroheptane that occurs in this experiment, but rather the 

displacement of “H mixture” by “D mixture”. Because of the linearity of the diffusion equations, 

the displacement kinetics of both processes are identical. All that needs to be done to correct for 

the non-100% composition is to convert the amounts of heptane and 1-deuteroheptane into the 

amounts of the appropriate “H” and “D” mixtures. Such a correction was always made for the 

displacement data presented here and the results are given for simplicity as the displacement of 

heptane by 1-deuteroheptane. The derivation of the formulas for the conversion from the 

amounts of 1-deuteroheptane and heptane to the amounts of “H mixture” and “D mixture” are 

given in Appendix A.  

During the displacement experiments, a drift in the sensitivity of the QMS was seen over 

the course of hours and days. In order to correct for this slow drift, the sum of the amounts of 

heptane and 1-deuteroheptane was normalized to 2070×1012 molecules cm-2, the capacity of the 
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sample from a calibrated measurement. These changes in the QMS detector sensitivity were the 

dominant source of uncertainty in these measurements. 

The interpretation of the results in terms of self-diffusion is based on the premise that the 

system cannot distinguish between the two molecules, in other words, that all the thermodynamic 

properties for the adsorption of heptane and 1-deuteroheptane are identical. We tested this 

hypothesis by TPD and could not observe any measurable differences in the desorption kinetics 

of the two molecules. 

All the measurements presented here were performed using an automatic system 

described in Chapter 2. Short delays between the dosing operations and the TPD spectra 

acquisition helped ensure that the sample is exposed to the background flux of the adsorbates as 

little as possible. 

Before each series of experiments the nanotube sample was annealed at 1073 K for 10 

minutes to decompose the traces of oxygen functionalities that might be present on the nanotubes 

[56]. 

7.3 SIMULATION METHODS 

We have used molecular dynamics (MD) to study the diffusion and mobility of heptane 

molecules in both the bulk and adsorbed phases. The intra-molecular degrees of freedom were 

integrated using the multiple-time-step reversible reference system propagation algorithm [119]. 

The value of the long time step was 5 fs. Each long time step consisted of five inner (short) time 

steps. We used the transferable potentials for phase equilibria (TraPPE) [121] united atom model 

for heptane molecules, in which the CH3 and CH2 groups are defined as single united atom 
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segments. The total potential is a sum over four types of potentials, namely: non-bonded, bond 

stretching, bond bending, and dihedral torsion. Equations 1 to 4 give the functional form for each 

type of potential. 
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The bond stretching term was adopted from the OPLS-UA force field.  

Standard Lorentz-Berthlot combining rules were applied to calculate the cross terms, σij and εij, 

( )jjiiij σσσ +=
2
1                                                        (5) 

jjiiij εεε =                                                             (6) 

Potentials parameters used in the equations are shown in Tables 3 and 4. 

Table 3. Lennard-Jones Parameters for TraPPE-UA Field for heptane. 

Pseudo-atom ε/kB [K] σ [Å] 
CH3 98 3.75 
CH2 46 3.95 

 

Table 4. Bonded Parameters for the TraPPE-UA Force Field for heptane. 

Stretch r0 [Å] kr/kB [K] 
CHx-CHy 1.54 130924.4893*

bend θ0 kθ/kB [K] 
CHx-(CH2)-CHy 114 62 500 

torsion c0/kB [K] c1/kB [K] c2/kB [K] c3/kB [K] 
CHx-(CH2)-(CH2)-CHy 0 335.03 -68.19 791.32 

*This parameter is from OPLS-UA force field. 
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Equilibrium molecular dynamics (EMD) [174, 175] was used to calculate the heptane 

diffusion coefficients for both bulk and nanotube confined heptane molecules. We used the 

Nosé-Hoover thermostat [176] to correctly sample the canonical (constant temperature) 

ensemble. The bulk heptane phase consisted of 100 heptane molecules at a density of 0.7 g/ml. 

The nanotube system used to compute the self-diffusion coefficient of heptane within a SWNT 

consisted of a single (10, 10) nanotube, 295.14 Å (120 unit cells) long. The nanotube contained 

93 heptane molecules; this loading corresponds to a bulk phase pressure of 1.5×10-3 Torr. The 

density of heptane inside the SWNTs is not well defined, because it depends on how one 

calculates the volume of the nanotube. If we just take the nanotube radius and length to calculate 

the volume (πr2l) of the nanotube, the density we get is 0.36 g/ml, which is rather low for a liquid 

like phase. However, if we include the volume of the carbon atoms on the nanotube (through 

their van der Waals radius) and calculate the nanotube volume as the accessible volume (π(r-

σ/2)2l), the density of the heptane increases to 0.65 g/ml, which is close to the bulk liquid 

density. The system was periodic in the z-direction (along the nanotube axis). The self-diffusivity 

measures the mobility of a single tagged molecule moving through the system. The self-diffusion 

coefficient can be calculated from molecular simulations by using the Einstein relation [177] 

2

1

1( ) ( ) (0)
2lim

N

s i
t i

D c r t r
dNt→∞ =

= ∑ r r
i−  ,                                             (7) 

where c is the concentration of the molecules, d is the dimensionality of the system, N is the 

number of the molecules, t is the simulation time, and ir
r  is the vector of the center of mass of the 

ith molecule. For bulk phase systems, 2d = 6. For molecules adsorbed inside a nanotube, 

diffusion occurs only in one dimension (along the nanotube axis) in the limit of long time, so 2d 
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= 2. In addition, we consider only the displacement along the axis of the nanotube so that ir
r  is 

replaced by zi in eq 7.  

Nanotubes in our simulations are atom explicit and are held rigid. The Lennard-Jones 

parameters used for the carbon atoms in the nanotube were taken to be those for graphite (σ = 3.4 

Å, ε = 28.0 K) [120 ]. 

The MD simulations described above were carried out with fixed number of molecules in 

the simulation cell. The pressure of heptane in the bulk phase in equilibrium with the heptane 

adsorbed on the nanotubes is unknown in the MD simulations. We have therefore carried out a 

series of grand canonical Monte Carlo (GCMC) simulations [177] to find the equilibrium loading 

of heptane on the external and internal sites of a model SWNT bundle as a function of the gas 

phase pressure. We used the Towhee simulation package [122, 178], which is an implementation 

of the continuum configurational bias method [179], in our calculations. The chemical potential, 

rather than the pressure, is specified in GCMC simulations. We therefore performed additional 

bulk phase simulations to relate the chemical potentials to the bulk phase pressures.   

Simulations for adsorption of heptane on the external surface of a nanotube bundle used 

two parallel SWNTs, separated by 3.4 Å. Each nanotube had a length of 49.19 Å (20 unit cells). 

The bundle was placed in the center of a cubic simulation cell, 100 Å on a side. Molecules were 

not allowed to adsorb in the interior of the SWNTs in this case. Adsorption inside a SWNT was 

modeled by using an array of SWNTs and allowing adsorption only inside the nanotubes. A total 

of 6×106 configurations were used, with each configuration consisting of an attempted move, 

where a move is one of the following: insertion, deletion, translation, rotation, or molecule 

regrowth. The type of move was chosen with equal probability.  
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7.4 RESULTS AND DISCUSSION 

7.4.1 Efficient adsorption into internal sites 

We have reported earlier that linear alkanes afford an unexpected resolution of adsorption sites 

on SWNTs [52]. Figure 42 contains TPD spectra of heptane showing peaks for internal sites, 

groove sites on the outside of the bundles, and exterior sites according to our previous 

assignment. Multilayer heptane adsorption/desorption is observed at the highest exposures. 
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Figure 42. Heptane TPD spectra showing resolved peaks for interior, groove and exterior SWNT adsorption 

sites. The temperature used in the displacement experiment only allows the interior sites to be populated. The 

exposures to heptane ranged from 2.2×1015 to 24.3×1015 molecules/cm2. Consecutive exposures differed by a 

factor of 1.41. 

The sites identified as interior have the highest adsorption energy. They are the only sites 

that could adsorb heptane at the temperature in the experiments, 275 K. 

The first step in measuring the diffusion coefficient is filling the nanotube interior with 

the unlabeled molecule, heptane. The approach to equilibrium surface coverage versus the 

exposure to heptane is illustrated in Figure 43. The curve saturates at exposure of approx. 
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5000×1012 molecules cm-2. The saturation exposure used in further experiments was chosen to be 

slightly higher, 5800×1012 molecules cm-2, to guarantee that all interior sites were filled. 
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Figure 43. Approach to equilibrium surface coverage with increasing exposure to heptane at 275 K. The 

initial sticking coefficient is very close to unity. The solid line is the linear fit to the initial data points, the 

dashed line is the Langmuir-type approach to saturation. 

The initial sticking coefficient, C, is very close to 1 as measured by the initial slope of the 

saturation curve. The near unity value seen here can be rationalized in the following way. Even 

though the groove sites cannot retain heptane at 275 K over a long period of time (see Figure 

42), the residence time of heptane there is still more than sufficient to allow the molecules  to 

migrate and find the more strongly-binding internal sites. We estimate this residence time at 0.2 s 

from the groove site peak temperature (252 K) assuming the first-order desorption model and a 

preexponential factor of 1015 s-1 [180]. This pre-exponential factor is a logarithmic average of 

values for n-hexane and n-octane, which were calculated in an MD simulation of alkane 

desorption from Au(111) [180]. The pre-exponential factor and the peak desorption temperature 

can be used to find the adsorption energy. In turn, the adsorption energy, in combination with the 

pre-exponential factor, produces the abovementioned residence time on the surface of 

approximately 0.2 s. Thus the incoming heptane molecules first adsorb in the groove sites before 
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migrating to the interior sites that are inaccessible directly from the gas phase. A pre-adsorption 

migration stage in the grooves helps explain both the unity sticking coefficient and the fact that 

the adsorption proceeds faster than dictated by the Langmurian localized adsorption kinetics 

(dashed line in Figure 43), where the probability of adsorption for the incoming molecule would 

be (1-θ), θ being the fractional coverage. 

7.4.2 Self-diffusion through the 0.2 µm thick sample 

Once the saturation coverage has been reached, further addition of heptane (or 1-deuteroheptane) 

causes the displacement of previously adsorbed molecules. A typical result of an experiment 

where heptane is displaced with 1-deuteroheptane is shown in Figure 44. If the diffusion were 

infinitely fast, the displacement would follow the perfectly stirred reactor (PSR) model and the 

concentration of heptane would decay exponentially with exposure to 1-deuteroheptane. 

However, a finite rate of diffusion causes the 1-deuteroheptane to accumulate in the outer layers 

of the sample and the displacement proceeds more slowly because more incoming 1-

deuteroheptane molecules displace molecules of the same type, 1-deuteroheptane.  
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Figure 44. Displacement of heptane with 1-deuteroheptane at 275 K. Finite rate of diffusion causes the 

deviation from the first-order exponential decay dictated by the perfectly stirred reactor model (PSR). 

Increasing the delivery rate of 1-deuteroheptane makes the displacement less efficient per 

unit exposure as less time is available for the concentrations to equilibrate throughout the 

sample. Figure 45 provides experimental results that illustrate this point. Here, a more 

convenient semilogarithmic format is adopted. The y axis is the natural logarithm of the fraction 

of the total capacity occupied by heptane. The x axis is the exposure to 1-deuteroheptane in units 

of total capacity (1 c.u. = 2070×1012 molecules cm-2). On such a plot, the PSR model results in a 

line with a slope of -1 passing through the origin. This slope corresponds to the highest rate of 

displacement. Less efficient mixing causes the positive deviation of the slope from the PSR 

model. 
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Figure 45. Displacement of heptane with 1-deuteroheptane at three different dosing rates, Fi. Faster dosing 

rates result in less efficient displacement per unit exposure to 1-deuteroheptane. The line labeled PSR 

corresponds to perfectly stirred reactor model (F=0). The initial slopes, used to calculate the diffusion 

coefficient through the SWNT bulk, were found to be -1.0, -0.83, -0.70 for 1-deuteroheptane fluxes F1, F2, F3 

respectively. 

We will show later that slight non-linearity noticeable at higher exposures in Figure 45 is 

likely caused by the inhomogeneities in the thickness of the SWNT deposit. We will use the 

initial linear regions of the curves to determine the self-diffusion coefficient under these 

conditions. 

A straightforward physical model of the displacement process can be constructed in the 

following way. We will consider the SWNT deposit to have a uniform thickness of 0.2 µm and 

the transport of the molecules inside the deposit be governed by Fick’s law of diffusion. The 

incoming 1-deuteroheptane molecules displace the molecules in the outer layer of the deposit 

with 100% efficiency. The displaced molecules will be a mix of heptane and 1-deuteroheptane in 

the same fractional ratio as in the outer layer of the nanotube deposit. 

Physically, this means that the lifetime of the incoming molecules on the surface is large 

enough for them to mix perfectly with the molecules in the outer layer. Another consequence of 
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long initial residence time on the surface is the unity sticking coefficient, as mentioned before 

(Figure 43). 

In order to follow displacement kinetics in a system corresponding to such a model, a 

differential equation for diffusion with two appropriate boundary conditions must be solved. The 

boundary condition for the outer layer is that heptane flux through the boundary is proportional 

the concentration of heptane. The other boundary condition stipulates that there is no flux of 

heptane through the surface of the nanotube deposit adjacent to the gold plate. An analytical 

solution for this particular problem exists [181], however, it has a drawback of being non-

algebraic. For this reason we used a fairly straightforward finite differences approach, as 

described by Bard and Faulkner [182]. 

There are three parameters in this model: diffusion coefficient D, deposit thickness L, and 

the fraction of molecules replaced in the outer layer in unit time, α. The dimensionless ratio 

D/(αL2) fully defines the displacement kinetics. Several displacement curves produced by the 

model are shown in Figure 46 using the same coordinates as on the experimental plot in Figure 

45. The displacement curves in Figure 46 are nonlinear at low exposures. They become linear 

after exposures greater than approximately 1 c.u. Decreasing D/(αL2) leads to lower negative 

values of slope. 
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Figure 46. Displacement of heptane by 1-deuteroheptane as given by the coupled diffusion-displacement 

model. After an initial non-linearity, the amount of heptane remaining in the SWNTs decays exponentially 

with the addition of 1-deuteroheptane. The dimensionless ratio D/(αL2) (defined in the text) controls the 

kinetics of the process.  

The model allowed us to determine the diffusion coefficient. Knowing L (0.2 µm) and α 

(Fi’s from Figure 45 expressed in c.u.), we solve for the value of D such that the slope of the 

displacement curve given by the model in the linear region matches the initial slope of the 

experimental displacement curves. Two experimental curves from Figure 45 were employed in 

this analysis, F2 and F3. The value of D=7.7×10-12 cm2/s gave a good agreement with initial 

slopes of both experimental curves. This value compares to the bulk-phase D value for liquid 

heptane of 2.4×10-5 cm2/s at 275 K [183]. 

This value of diffusion coefficient is about eight orders of magnitude lower than that 

obtained for heptane inside a filled nanotube found from MD simulations, 8.2×10-4 cm2/s (see 

below). This indicates that the diffusion inside nanotubes is not the rate-limiting step in heptane 

mixing throughout the nanotube sample. As the heptane in the sample is partitioned into 

separate populations inside open nanotubes, it is logical to conclude that the slow diffusion 

observed in the experiment is caused by slow exchange of heptane between different nanotubes. 
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We speculate that this slow inter-tube exchange is caused by the relatively deep potential 

well for molecules residing in the interior of the nanotubes, as well as potential barriers for entry 

and exit from the nanotubes. Similar energy barriers were seen by Calbi and Riccardo [184] in 

the simulations of molecular hydrogen adsorption in the interstitial channels of closed (10,10) 

tubes. The authors observed that the effect of the barrier presence was a dramatic slowing in the 

kinetics of interstitial adsorption. 

In addition to the potential barriers for nanotube entry and exit, desorption-adsorption 

barriers must exist in our SWNT sample for molecular transport between different nanotube 

bundles. 

The α=F1 curve was not used in the analysis because of the insensitivity of slope to the 

value of D at high D/(αL2). We expected, however, the initial slope of this curve to be higher 

than the observed value of -1.0. 

The non-linearity at higher exposures in the experimental data can be explained by 

thickness inhomogeneities in the nanotube deposit. Thicker areas have a lower D/(αL2) and thus 

are more slowly depleted of heptane. Desorption from these thicker areas starts to dominate 

when the amount of remaining heptane becomes low. In the determination of the self-diffusion 

coefficient we used the slope at low exposures from the experimental curves where it is fairly 

constant.  

7.4.3 Adsorption of heptane on a model SWNT bundle 

We have computed adsorption isotherms for heptane adsorbing on the external and internal 

surfaces of a model SWNT bundle in order to estimate the external bulk phase pressure that 

corresponds to different loadings. The computed isotherms are plotted in Figure 47. The solid 
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circles represent adsorption on the external surface of the nanotubes; this would occur if the 

internal sites were blocked or if diffusion into the nanotube interior was kinetically limited. The 

graphic insets in Figure 47 are snapshots from the simulations, showing a typical coverage of 

heptane on the SWNT bundle. Considering only external adsorption, molecules first adsorb in 

the groove site and the density is seen to increase smoothly with increasing pressure. There is no 

evidence for a layering transition as might be expected on graphite [185, 186]. The first plateau-

like region from about 10-2 to 10-1 Torr corresponds roughly to groove site filling. The next rise 

in the isotherm is indicative of adsorption taking place on the external surface of the nanotubes. 

This is followed by a steep rise in coverage that marks the beginning of the multilayer. 
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Figure 47. Adsorption of heptane at 275 K on a model SWNT bundle containing two nanotubes. The filled 

circles are for adsorption only on the external surface of the nanotubes and the open squares indicate 

adsorption both on the internal and external sites. Representative snapshots from the simulations are shown 

as insets. 

The simulations indicate that at the experimental pressures of heptane (below 10-9 Torr) 

the interior sites can only be populated in a quasi-equilibrium fashion. However, one has to 

remember that during the dosing of the adsorbates the sample is exposed to far higher local 

pressures which permit the filling of the nanotube interior. The kinetics of desorption from the 
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interior is sufficiently slow (occurring on the timescale of tens of seconds) as compared to the 

rates of adsorbate delivery in these experiments. 

7.4.4 Self-diffusion inside individual SWNTs from MD simulations 

We have calculated the self-diffusion coefficient for bulk liquid heptane from EMD simulations 

at 275 and 298 K. The results from our calculations are given in Table 5. The experimental value 

of the liquid self-diffusivity at 298 K is also reported in Table 5. The simulation and the 

experimental values at 298 K are in excellent agreement, giving us confidence that the potential 

models used in the simulations for heptane are physically reasonable. The liquid self-diffusivity 

at 275 K calculated from our simulations is physically reasonable, being slightly smaller than the 

value at 298 K. We have estimated an experimental value for the self-diffusivity at 275 K from 

interpolation of existing experimental data [183]. Our simulation result is in reasonable 

agreement with the interpolated value, given the errors involved in the interpolation process.  

 

Table 5. Calculated and experimental [183] self-diffusion coefficients for bulk liquid heptane. 

Self-diffusion coefficient (Ds×105 cm2/s) 
Temperature (K) 

Simulations Experiments 

275 2.7 (0.1)* 2.4** 
298 2.9 (0.3) * 3.1 

 

*The numbers in the parenthesis are the estimated standard deviations, i.e., 2.7 (0.1) means 2.7±0.1. 
**interpolation value from experimental data. 
 

The self-diffusion coefficient for heptane inside a (10, 10) SWNT at liquid-like loadings 

has been computed from EMD simulations. The loading used in the simulations corresponds to a 

pressure of about 1.5×10-3 Torr, as indicated in Figure 47. The calculated value is 8.2±1.0×10-4 
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cm2/s, which is about a factor of 28 larger than Ds for bulk liquid heptane at the same 

temperature. The fast diffusion of heptane in SWNTs is consistent with results from simulations 

of other molecules [165, 166, 168] and can be attributed in part to the smooth nature of the 

surface of SWNT internal channels. In addition, the heptane molecules are more ordered inside a 

nanotube due to the confinement than in bulk phase. We note that the self-diffusivity of 

molecules in nanotubes has been shown to dramatically decrease with increasing loading in 

going from very dilute to liquid-like loadings [147, 162]. 

Previous simulations have demonstrated that the self-diffusivity of simple molecules in 

SWNTs in the limit of dilute loadings is dramatically affected by nanotube flexibility [144, 167]. 

This may also be the case for alkanes. However, self-diffusivities of small molecules at high, 

liquid-like loadings in flexible and rigid nanotubes are virtually identical, owing to the fact that 

self-diffusion becomes dominated by adsorbate-adsorbate collisions at high loading [144, 147, 

162, 167, 171]. 

7.5 SUMMARY 

At 275 K heptane molecules adsorbed on SWNTs form isolated islands inside open nanotubes. 

Experimentally measured long-range self-diffusion coefficient for heptane was found to be Ds 

=7.7×10-12 cm2/s in the 0.2 µm thick nanotube sample. Molecular dynamics simulations show 

that self-diffusion of heptane inside individual nanotubes (intra-tube diffusion) is about 8 orders 

of magnitude faster (Ds=8.2×10-4 cm2/s). This indicates that the experimentally observed slow 

diffusion is rate-limited by the exchange of heptane between different nanotubes (inter-tube 

diffusion). The diffusion inside individual nanotubes is also faster than the bulk diffusion at the 
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same temperature (Ds=2.4×10-5 cm2/s), which is likely the result of molecular ordering inside 

nanotubes due to confinement.  

We explain the slow inter-tube diffusion by the presence of significant potential barriers 

for the molecules migrating between different tubes. They are most likely the barriers at the 

points of entry into the nanotube interior, and the desorption-adsorption barriers for the transport 

of molecules between different bundles in the nanotube bulk. 
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8.0  A VIBRATIONAL SPECTROSCOPIC STUDY OF CF4 ADSORPTION ON THE 

EXTENAL AND INTERNAL SURFACES OF OPENED CARBON NANOTUBES9 

Infrared spectroscopy has been used to make the first experimental discrimination between 

molecules bound by physisorption on the exterior surface of carbon single-walled nanotubes 

(SWNTs) and molecules bound in the interior. In addition, the selective displacement of the 

internally bound molecules has been observed as a second adsorbate is added. SWNTs were 

opened by oxidative treatment with O3 at room temperature, followed by heating in a vacuum to 

873 K. It was found that, at 133 K and 0.033 Torr, CF4 adsorbs on closed SWNTs, exhibiting its 

ν3 asymmetric stretching mode at 1267 cm-1
 (red shift relative to the gas phase, 15 cm-1). 

Adsorption on the nanotube exterior is accompanied by adsorption in the interior in the case of 

opened SWNTs. Internally bound CF4 exhibits its ν3 mode at 1247 cm-1
 (red shift relative to the 

gas phase, 35 cm-1). It was shown that, at 133 K, Xe preferentially displaces internally bound 

CF4 species, and this counterintuitive observation was confirmed by molecular simulations. The 

confinement of CF4 inside single-walled carbon nanotubes does not result in the production of 

lattice modes that are observed in large 3D ensembles of CF4. 

                                                 

9 This chapter is reproduced with modifications from: O. Byl, P. Kondratyuk, S.T. Forth, S.A. FitzGerald, L. 
Chen, J.K. Johnson, J.T. Yates, Jr.; Adsorption of CF4 on the internal and external surfaces of opened single-walled 
carbon nanotubes: a vibrational spectroscopy study. J. Am. Chem. Soc. (2003), 125, 5889-5896. The author’s 
contribution centered on the interpretation and modeling of the IR spectrum of CF4 on SWNTs in terms of two sets 
of Fermi resonance-split peaks. 
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8.1 INTRODUCTION 

The synthesis of SWNTs normally produces closed structures where each tube is terminated by 

an end cap, which prevents adsorption within the interior [7, 187]. Oxidative chemical treatments 

[59, 188] must be applied to the closed SWNTs to open the end caps to access the interior of the 

nanotubes [56]. While oxidation in solution [HNO3 + H2O2 + H2SO4] has been found to be 

effective for opening closed SWNTs, we have developed a gas-phase ozone oxidation process, 

which is more easily controlled. This O3 oxidation procedure has been extensively investigated 

by IR spectroscopy in previous studies [60, 189]. Oxidation can remove the end caps of 

individual SWNTs as well as produce or enlarge vacancy defects on the nanotube walls. Both 

carbonyl groups and C-O-C functional groups are known to form at the rims and at defective 

wall sites by oxidation [56, 58, 60]. Heating to 773-1073 K removes these blocking groups (by 

evolution of CO and CO2 [54]), leaving open entry ports for gas adsorption into the interior [57]. 

Adsorption in the interior of a nanotube may also be accompanied by adsorption on the 

exterior surface under appropriate conditions of temperature and pressure [45, 47, 93, 190-193]. 

The study described in this chapter provides the first experimental detection of adsorbed 

molecules on both the interior and exterior sites on opened SWNTs as well as a method for 

selective displacement of the internally bound adsorbed molecules. This has been done by 

working at cryogenic temperatures and observing the adsorbed probe molecule by transmission 

infrared spectroscopy. It has been found that the vibrational mode observed is red shifted due to 

interaction with the nanotube surface. The red shift for interior molecules is larger than the shift 

for exterior adsorbed molecules. 
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Confinement of CF4 in pseudo-one-dimensional condensed structures inside the 

nanotubes used here does not result in the production of longitudinal optical (LO) and transverse 

optical (TO) lattice modes observed in 3D clusters of CF4. 

We have employed CF4(g) as a probe molecule for adsorption on opened single-walled 

nanotubes [93, 190]. CF4 exhibits an intense triply degenerate asymmetric stretching mode at 

1282 cm-1 [194]. Its almost spherical shape and polarizability (3.84 Å3) are similar to that of Xe 

(4.04 Å3), which was used in earlier experiments [50, 54, 56, 57]. The similar properties of CF4 

and Xe make them ideal for interesting adsorbed CF4 displacement experiments [195] to be 

reported in this work. 

8.2 EXPERIMENTAL SECTION 

A. Single-Walled Carbon Nanotubes. The SWNTs obtained from Professor R. Smalley’s 

group, Rice University, Houston, TX, were produced by means of the pulsed laser vaporization 

technique. The synthesis and purification of the SWNTs used here are dealt with in more detail 

in Section 2.3. About 25 µg of SWNTs was deposited onto CaF2 powder pressed into a tungsten 

grid. The surface density on the sample was ~65 µg/cm2. 

B. Vacuum System and IR Cell. This experiment was performed in a high vacuum 

system equipped with an infrared spectrometer. The stainless steel system is pumped by a 60 L/s 

turbomolecular pump and a 20 L/s ion pump. The pressure was measured with an ionization 

gauge (10-10-10-4 Torr range) and a capacitance manometer (10-3-103 Torr range). The system 

base pressure was 10-7 Torr after 20 h of baking out at 430-455 K. A UTI 100C quadrupole mass 

spectrometer was used for leak checking and monitoring the gas composition in the system. 
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Figure 48 shows the vacuum cell used for transmission IR studies. The cell is connected 

directly to the gas line. The SWNT sample is supported on the surface of a CaF2 spot produced 

from CaF2 powder hydraulically pressed at 15000 psi into a tungsten sample support grid. A 

second CaF2 spot is used as the reference. The grid is stretched between nickel clamps, which are 

electrically and thermally connected to copper power leads that enter the cell through a liquid N2 

cooled re-entrant dewar. The grid temperature range is 90 to ~1500 K. Temperature is measured 

with a type K thermocouple spot-welded to the top of the grid. Thermal control is accomplished 

electronically using LabView software, permitting accurate temperature programming as well as 

temperature stability to ~0.1 K at the temperature of 133 K, the adsorption temperature employed 

in this work. 

 

 
 

Figure 48. Transmission IR cell-cross-section. The cell is moved by means of horizontal and vertical Newport 

linear activators allowing precise alignment of the IR beam onto desired section of the sample grid. 

When there is an equilibrium pressure of CF4 in the cell (millitorr range), slight warming 

of the sample by thermal conduction through the gas phase occurs. This warming effect is 

automatically compensated by a slight reduction in heating power to the grid, achieving excellent 
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temperature regulation. A temperature gradient in the gas phase results in a slight gas density 

gradient as one moves vertically along the sample support grid. Thus, subtraction of the gas-

phase spectrum (in comparing sample and reference spectra) is not perfect, and a small gas-phase 

CF4 IR peak at 1282 cm-1 results as well as a small contribution at 1297 cm-1 (shoulder) and at 

1224 cm-1 (shoulder) from CF4 adsorption on CaF2. 

Condensation of CF4 occurs on the re-entrant dewar (dewar temperature 77 K) resulting 

in an equilibrium vapor pressure of CF4 of 3.3×10-2 Torr. This is therefore an upper limit of the 

gas pressure in this experiment. Lower CF4 adsorption pressures may be achieved by controlled 

dosing of small quantities of CF4 gas into the cooled cell. 

C. FTIR Measurements. Transmission IR spectra were measured with a Mattson 

Research Series FTIR spectrometer controlled from a PC. The spectrometer operates in the mid-

infrared spectral region from 500 to 4000 cm-1 and uses a wide-band MCT detector. All spectra 

were recorded at 4 cm-1 resolution with 500 scans for averaging. The support grid holding the 

SWNT sample in the adsorption cell could be accurately positioned horizontally and vertically 

(to 5 µm) in the IR sample compartment using computer-controlled drivers. IR spectra were 

recorded as follows: (1) SWNTs on a CaF2 support; (2) CaF2 support; (3) gas phase through the 

empty grid. In each case the spectra were ratioed to background spectra taken without CF4 in the 

system. 

Prior to each adsorption experiment a background set of spectra were measured. Upon 

adsorption of CF4 a second set of spectra were measured and ratioed to the background. Then 

appropriate differences were taken to obtain the spectrum of CF4 adsorbed on the SWNT sample. 

D. Controlled Oxidation Using Ozone. The SWNT sample was heated in a vacuum to 

873 K to remove the majority of the oxidized surface functionalities produced by the 

 110 



HNO3/H2SO4 purification process and was then subjected to a series of O3 exposures, followed 

by annealing to 873 K in vacuum. This cyclic oxidation/annealing procedure has previously been 

found to open the SWNT caps completely and to enhance the adsorption kinetics into the 

nanotube interior by opening sites on the nanotube walls and rims [54, 56, 57, 59, 60]. The cyclic 

procedure causes etching of the SWNT sample, and samples so treated are designated as etched. 

High-purity O3 was prepared and purified in an all-glass generator described previously 

[196]. We have found that O3 prepared in this manner will partially decompose upon admission 

to a stainless steel vacuum system. This effect may be minimized by prolonged passivation of the 

stainless steel surface with O3 at ~10 Torr pressure. For the experiment shown here, the O3 

treatment was carried out at room temperature in three stages: (stage 1) 30 min at 8 Torr and 298 

K; (stage 2) 19 h at 14.3 Torr and 298 K; (stage 3) 18 h at 15.5 Torr and 298 K. As we will show, 

initial ozonization produced functional groups at the entrance to the tubes, thus blocking 

adsorption of CF4 into the interior of SWNTs in agreement with previous Xe adsorption studies 

[54, 56]. The SWNTs were then opened by removal of the blocking functional groups through 

heating to 873 K in a vacuum for 30 min. This greatly enhanced the ability of the SWNTs to 

adsorb CF4. 

E. Xe Displacement Experiment. We employed Xe to preferentially displace adsorbed 

CF4 from the nanotube interior. This was done by filling the nanotubes with CF4 at 3.3×10-2 Torr 

and 133 K. Xe was then added in sequential doses, and the IR spectra of the adsorbed CF4 were 

recorded. 

F. Gases. CF4 (99.9% purity) was obtained in a cylinder from Aldrich Chemical Co. and 

was used without further purification. Xe (99.995%) was obtained from Matheson in a cylinder 

and was used without further purification. 
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8.3 SIMULATION METHODS 

A. Vibrational Calculations. The vibrational shifts due to adsorption have been investigated 

theoretically through quantum calculations using the Gaussian 98 software package [197]. Gas-

phase spectra of CF4 were computed at the levels of LDA theory with the 6-31G basis set. The 

calculated ν3 asymmetric stretching mode and ν4 deformation mode frequencies are 1264 and 

573 cm-1, respectively. Quantitative agreement between spectra calculated from LDA and 

experiment is not expected since LDA does not accurately account for electron correlation, 

which would account for much of the binding energy. We are also limited in accuracy by the size 

of the model nanotube and the size of the basis set we were able to use. The LDA calculations of 

CF4 adsorbed in the model nanotube gave average frequencies for the ν3 mode and ν4 mode of 

1246 and 571 cm-1, respectively. We have chosen to use a relatively small basis set (6-31G) to 

make the CF4-nanotube calculations tractable. The CF4-nanotube system was modeled by using a 

small cluster to represent the nanotube. We used three unit cells of a (9,9) SWNT, split the 

nanotube in half (along the plane of the nanotube axis), and terminated the dangling bonds with 

hydrogen atoms. The model nanotube fragment contained 40 carbon and 20 hydrogen atoms. 

The CF4 molecule was placed a distance of several angstroms from the concave (inside) surface 

of the nanotube, and the position of the CF4 molecule was optimized, holding the atoms in the 

nanotube fixed. Once the optimized geometry was found, we computed the vibrational spectrum. 

The optimization and frequency calculations were performed at the LDA/6-31G level of theory. 

B. Adsorption Calculations. We have computed the equilibrium amounts of CF4 and Xe 

adsorbed on carbon nanotube bundles as a function of Xe partial pressure from molecular 

simulations. The Grand canonical ensemble (constant µVT) Monte Carlo (GCMC) method [198] 
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was used to calculate adsorption isotherms. The GCMC algorithm consists of three types of 

moves, namely, translation of a single molecule, creation of a new molecule in the simulation 

cell, and deletion of a molecule. Moves were attempted randomly with probability 0.2 for 

translation and 0.4 each for creation and deletion. Simulations were typically equilibrated for two 

million moves, followed by data taken for one million moves. The maximum displacement step 

size was adjusted during equilibration to achieve approximately a 40% acceptance ratio for 

translations. We have used the Lennard-Jones (LJ) potential to account for all fluid-fluid and 

fluid-solid interactions. Parameters for Xe were taken from the literature [199]. The CF4 

molecule was treated as a single spherical particle. The LJ parameters were derived from 

viscosity data [123] and were previously used in molecular simulations of diffusion in zeolites 

[200]. The carbon parameters were taken from Steele [120, 201]. Lorentz-Berthelot combining 

rules were used for the cross-interactions. The LJ potential parameters are given in Table 6, 

where σ is the molecule diameter in angstroms and ε is the potential well depth such that ε/k is in 

units of kelvin, where k is the Boltzmann constant. The use of classical potentials to model the 

nanotube-fluid interactions precludes the modeling of electronic effects, such as the differences 

between metallic and nonmetallic nanotubes. 

 
Table 6. Lennard-Jones potential parameters used in the simulations. 

 Xe-Xe CF4 - CF4 C-C 

σ (Å) 4.1 4.66 3.4 

ε/k (K) 222.32 134.0 28.0 
 

Three different nanotube bundles were considered in this work. Two bundles were 

constructed by randomly placing nanotubes of various diameters in a box and then optimizing 

the spacing between the nanotubes as described by Simonyan and Johnson [202]. Each of these 
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two bundles contained 18 nanotubes. The third bundle was a perfect 3×3 array of (10,10) 

nanotubes. The numbers of each type of nanotube in each bundle are given in Table 7. Using the 

nomenclature of Table 7, bundles 1 and 2 are representative of heterogeneous bundles, i.e., 

bundles with a heterogeneous distribution of nanotube diameters. Bundle 3 is a homogeneous 

bundle since all nanotubes have the same diameter. Experimentally produced nanotubes are 

heterogeneous. Comparison of simulations on these two classes of bundles will serve to 

characterize any qualitative differences between adsorption on homogeneous and heterogeneous 

bundles. Smoothed potentials were used for the nanotubes in the bundles to increase the 

simulation efficiency. We have found that smoothing the potential has no effect on the 

adsorption isotherms [50]. The nanotubes in the simulation cell were all aligned in the z 

direction, and the lengths of the nanotubes were about 60 Å. The bundle was placed in a 

parallelepiped simulation cell that was 200 Å on a side in the x and y directions. Periodic 

boundary conditions were applied in all directions, and the potential cutoff was set to 25 Å. The 

size of the cell in the x and y directions was large enough so that the bundle was isolated (no 

periodic image interactions). 

 
Table 7. Number and types of nanotubes used in the three different bundles. 

Bundle Number of 
(8,8) tubes 

Number of
(9,9) tubes 

Number of 
(10,10) 
tubes 

Number 
of (11,11) 

tubes 

Number 
of (12,12) 

tubes 

Average 
Nanotube 
Diameter 

(Å) 

1 2 2 10 2 2 13.56 
2 4 10 2 2 0 12.35 
3 0 0 9 0 0 13.56 
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8.4 RESULTS 

A. Development of the CF4 IR Spectrum upon SWNT Etching by O3. Figure 49 shows a 

typical set of IR spectra obtained in these measurements and the results of taking appropriate 

differences to derive the IR spectrum of CF4 adsorbed on the SWNT sample. The CaF2 support 

exhibits a significant contribution to the composite IR spectrum due to CF4 adsorption on its 

surface, as seen in spectrum (b). Additional IR absorbance due to CF4 is observed for the SWNT 

sample, supported on CaF2, as shown in spectrum (a). Subtraction leads to spectrum (c), where 

contributions from adsorbed CF4 on the SWNT sample are observed, along with small features 

due to incompletely compensated gas-phase CF4. The prominent uncompensated gas-phase 

spectral feature is shown as a dashed peak centered at 1282 cm-1. 

 
Figure 49. Procedure for spectral subtraction for CF4 adsorbed at 133 K and 3.3×10-2 Torr. 

Figure 50 shows the infrared spectrum of adsorbed CF4 as increasing amounts of etching 

take place through repeated exposures to O3, followed by heating. Three etch cycles are 

presented. As the etching proceeds, enhanced IR intensity due to adsorbed CF4 is observed to 

occur at frequencies below 1275 cm-1. 
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Figure 50. Development of CF4 IR spectra during cycles of O3-induced oxidation followed by heating to 

873 K for 30 min. in vacuum. Pressure of CF4 equaled  3.3×10-2 Torr. 

Figure 51 shows a comparison of the development of the IR spectrum of CF4 for 

increasing coverage on the SWNT sample before etching by O3 and after three cycles of etching. 

Note that the absorbance scales differ by a factor of 2 for the spectral presentations. The spectra 

show the effects of increasing equilibrium pressures of CF4, established at a sample temperature 

of 133 K. The spectra shown in Figure 51A for the unetched SWNTs contain only two prominent 

spectral features for adsorbed CF4 at 1272 and 1253 cm-1. For the etched SWNT sample (Figure 

51B), in addition to the spectral features observed in Figure 51A, an additional pair of absorption 

bands are observed at 1262 and 1242 cm-1. As will be discussed later, the pairs of bands 

observed at different frequencies for the unetched and etched nanotubes are due to the Fermi 

resonance of the strong infrared-active ν3 mode and the first overtone of the ν4 mode, designated 

2ν4. 
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Figure 51. Development of the CF4 IR spectra for (A) external sites; and (B) for external plus internal sites. 

B. Displacement of Adsorbed CF4 by Xe. The resolution of the overlapping CF4 

spectral features has been experimentally confirmed through the displacement of CF4 by Xe. 

Figure 52 shows a high-coverage spectrum of CF4 obtained for the etched SWNT sample. 

Exposure to Xe at 133 K results in the selective disappearance of two IR bands together at 1262 

and 1242 cm-1. In contrast, the species responsible for the two bands at 1272 and 1253 cm-1 

either are not displaced or are more slowly displaced compared to the former band pair. We 

assign the two bands at 1262 and 1242 cm-1 to CF4 adsorbed in the interior of the etched SWNT 

sample, and the two bands at 1272 and 1253 cm-1 to CF4 species adsorbed externally on the outer 

SWNT surface. By varying the sequence of Xe and CF4 adsorption, it was found that the spectra 

represent identical equilibrium conditions achieved by gas adsorption in either sequence. 
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Figure 52. Xenon displacement of adsorbed CF4. Equilibrium Xe pressure was less than 1×10-3 Torr for (a)-

(d). The equilibrium pressure of CF4 was  3.3×10-2 Torr for all spectra. 

8.5 DISCUSSION 

A. Absence of LO-TO Splitting in IR Spectra of CF4 on SWNTs. The ν3 mode in CF4 has an 

exceptionally high infrared intensity [194]. This gives rise to a strong transition dipole-transition 

dipole coupling between ν3 modes of different CF4 molecules. As a result LO-TO splitting 

appears in the infrared spectra at high volumetric concentrations of oscillators. The splitting is 

strongly dependent on the arrangement of the oscillators. We have not observed LO-TO splitting 

in this work, implying that the concentration of CF4 molecules inside and on the exterior of the 

SWNT sample is not sufficiently bulklike to promote lattice mode production. 

Figure 53A shows the LO-TO mode splitting evolution in the Raman spectra of CF4 in an 

Ar matrix at 84.5 K taken as an example from the work of P. Nextoux et al. [203]. More 

examples of LO-TO splitting in the vibrational spectra of CF4 in the condensed phase can be 

found elsewhere [204-209]. At a very low concentration of CF4, spectrum (a), two peaks at 1272 

and 1257 cm-1 caused by the Fermi resonance interaction of ν3 and 2 ν4 are observed. The LO-
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TO splitting is very small in this case and reported to be 1.4 cm-1. In pure condensed CF4, 

spectrum (f), LO-TO splitting reaches 75.0 cm-1 with the LO band at 1320 cm-1 and TO band at 

1245 cm-1. 

Figure 53B shows the spectrum of CF4 adsorbed on unetched and etched nanotubes. The 

close similarity of the IR spectrum of CF4 adsorbed on SWNTs before etching to the Raman 

spectra of CF4 in an Ar matrix at the lowest concentration (see the inset in Figure 53B) implies 

that there is a similarly negligible amount of LO-TO splitting in the spectra of CF4 adsorbed on 

the external surface of nanotubes at these conditions. No evidence for LO or TO modes can be 

seen. As the nanotubes are etched the internal surface becomes accessible for adsorption. The IR 

spectra of CF4 adsorbed on the etched SWNTs (Figure 53B, upper spectrum) contain features 

from both the external and the internal CF4. Although the amount of CF4 adsorbed has increased 

somewhat compared to that of unetched nanotubes, the LO mode is not seen and the peak at 

1242 cm-1 cannot be considered to be the TO band because of its sharpness. 
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Figure 53. (A) LO-TO splitting evolution in Raman spectra of CF4 in an Ar matrix at 84.5 K with increasing 

concentration. (B) Infrared spectra of CF4 adsorbed at 133 K and 0.033 Torr on unetched and etched 

SWNTs. 

Thus, the mean size of adsorbed CF4 ensembles on the inner and outer surfaces of the 

SWNTs must be too small to produce the LO-TO modes characteristic of the condensed phase. 

B. Spectra of CF4 Adsorbed on SWNTs. In vibrational spectroscopy, perturbations 

between a fundamental and an overtone are frequently encountered, and are known as Fermi 

resonances [210]. In the case of the CF4 molecule, the Fermi resonance between the ν3 mode and 

the first overtone of the ν4 mode (2 ν4) has been observed in a number of studies [211-215]. As a 

result of the interaction the overtone, usually very weak, borrows intensity from the fundamental 

band and becomes visible, and at the same time the two bands are shifted further apart. Thus, the 

presence of a Fermi resonance complicates the appearance of the spectrum, so it is often useful 

to extract the “unperturbed” positions and intensities of the peaks. This was done in the present 

study in a way similar to that employed in ref [210]. For the spectra of CF4 on etched and 
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unetched nanotubes, Lorentzian-shaped profiles of ν3 and 2ν4 were found that upon numerically 

calculating the Fermi resonance interaction gave the best fits to the spectra observed. 

Figure 54A shows the spectrum of CF4 on unetched nanotubes, which corresponds to CF4 

adsorbed on the outer surface of nanotubes, and the Lorentzian profiles found for the ν3 and 2 ν4 

energy level distributions. The fit calculated from these two distributions approximates the 

experimental data well. The presence of the 2ν4 energy level redistributes the intensity of ν3 in 

the spectrum, creating an additional feature at 1253 cm-1 and a “hole” (sometimes referred to as 

the Evans hole in the literature) at 1257 cm-1. Note that, for CF4 molecules bound to the SWNTs 

exterior, the ν3 level is located to the higher frequency side of 2ν4. 
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Figure 54. Fermi resonance interaction of the fundamental ν3 mode with the 2ν4 mode for external and 

internal CF4 species on SWNTs. The fit was numerically calculated from the Lorentzian distributions, which 

were iteratively optimized for the fit to match the experimental spectrum. The interaction strength parameter 

was allowed to vary slightly to fit the data. It is 6.3 and 7.6 cm-1 for unetched (A) and etched (B) samples, 

respectively. 

CF4 on etched nanotubes should be adsorbed on both the outer surface and the inner 

surface, made accessible by the etching, whereas the spectrum for unetched nanotubes only 

contains the contribution from the outer CF4. To find the spectrum of only the inner CF4, one 

thus needs to subtract the spectrum for the unetched nanotubes from the spectrum for the etched 

nanotubes. As some of the SWNT surface is destroyed in the process of etching with ozone, the 

spectrum from the unetched nanotubes has to be multiplied by a coefficient smaller than 1 before 

the subtraction is carried out. We used a value of 0.75, chosen on the basis of the goodness of the 

fit to the resulting spectrum. It corresponds to the destruction of 25% of the outer surface during 
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ozonation. Figure 54B shows the spectrum of CF4 adsorbed on the inner surface of nanotubes 

resulting from this subtraction and the Lorentzian distributions of ν3 and 2ν4 that give the best fit 

to the data. The most striking difference when compared to the external CF4 distributions (Figure 

54A, bottom) is that ν3 shifts by 20 cm-1 to the red (now ν3 is to the lower energy side of 2ν4), 

whereas 2ν4 does not change its position. The reason for the shift of ν3 is the stronger interaction 

of the molecule with the surface when it is adsorbed in the interior of the nanotube. The LDA 

calculation also shows that the ν3 band is much more prone to shift when the molecule’s 

environment changes than the 2ν4 mode (as judged from the ν4 fundamental). The calculation 

indicates that, for the CF4 molecule adsorbed in the interior of the nanotube, the ν3 mode shifts 

by about -20 cm-1 compared to that in the gas phase, whereas the shift for ν4 is only -2 cm-1 

corresponding to a 2ν4 shift of about -4 cm-1. 

This analysis of the experimental spectra shows that the shift for the ν3 mode of CF4 

compared to gas-phase CF4 is -15 cm-1 for CF4 molecules bound to the nanotube outer surface 

and -35 cm-1 for CF4 molecules bound in the interior. 

 
Figure 55. Simulation of combined external and internal CF4 spectra on SWNTs. 

Figure 55 shows the addition of the fits for the external and internal CF4 spectra, resulting 

in a fit for the total composite spectrum of CF4 adsorbed on etched nanotubes. The coefficient of 
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0.75 is employed during addition. The shift of the ν3 mode to lower wavenumbers is in 

accordance with the red shift often observed for physically adsorbed species and for species 

bound inside inert matrixes. The band associated with the smaller ν3 red shift is assigned to 

externally bound CF4 molecules on this basis as well as on the basis of comparison of CF4 

spectra on etched and unetched nanotubes, and the band associated with the larger wavenumber 

shift is assigned to internally bound CF4, where a stronger interaction would be expected. 

C. Modeling of Xe Displacement of Adsorbed CF4 from SWNTs. The displacement of 

CF4 by Xe confirms the presence of four IR bands for the adsorbed CF4 species present on both 

the exterior and interior sites. It is seen in Figure 52 that Xe preferentially displaces internal CF4 

species, causing the bands at 1262 and 1242 cm-1 to disappear first as the Xe coverage is 

increased. The displacement experiments probe the thermodynamic factors responsible for Xe-

CF4 site exchange under equilibrium conditions, since similar infrared spectra are observed for 

either order of adsorption of CF4 and Xe. We know that Xe is thermodynamically favored as an 

internally bound species compared to CF4, causing preferential CF4 displacement by Xe from the 

SWNT interior. We have performed molecular modeling of CF4 and Xe coadsorption to observe 

whether preferential CF4 displacement occurs for the internally bound CF4 compared to 

externally bound CF4. Classical GCMC simulations were performed at 133 K, a constant partial 

pressure of CF4 of 3.3×10-2 Torr, and various values of Xe partial pressure. Simulations were 

performed on each of the three model bundles described in Table 7. The results from two 

simulations on heterogeneous and homogeneous bundles are shown in Figures 56 and 57, 

respectively. Simulations on the three different types of bundles are qualitatively similar. In each 

case Xe begins to adsorb inside the nanotubes, displacing CF4, at pressures below where there is 

appreciable Xe adsorption in the grooves on the external surface of the nanotubes. The partial 
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pressure at which Xe begins to displace internal CF4 is about 10-5 Torr. Xenon starts to adsorb on 

the outside of the nanotubes at about 10-4 Torr for the heterogeneous bundle and about 10-3 Torr 

for the homogeneous bundle. It is interesting to note that, even after Xe begins to adsorb on the 

outside of the nanotubes, very little CF4 is displaced by the Xe, even at the highest Xe partial 

pressure simulated (10-2 Torr). This observation agrees with the experimental results showing 

that the CF4 modes associated with adsorption inside the nanotube disappear in a facile manner, 

while the IR peaks for external adsorption are not substantially attenuated by Xe adsorption. The 

reason for this can be easily seen by observing snapshots of the simulation. Figure 58 shows 

snapshots for adsorption on exterior sites of bundle 3 at Xe partial pressures of 10-3 (left) and 

5×10-3 (right) Torr, both with a CF4 partial pressure of 3.3×10-2 Torr. Note that at the lower Xe 

partial pressure there are a number of CF4 molecules (shown in red) but only one Xe atom (blue). 

Note also that CF4 does not fill all the available external sites at this pressure. Hence, at the 

higher pressure (right) we observe a dramatic increase in the concentration of Xe atoms in the 

groove sites, while the number of CF4 molecules remains almost constant. The first Xe atoms to 

adsorb onto the external sites simply occupy empty sites rather than replacing CF4 molecules. At 

pressures higher than those sampled experimentally, Xe does displace CF4 on the external sites. 

This explains why external CF4 species responsible for the bands at 1272 and 1253 cm-1 persist 

at all experimental Xe doses. 
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Figure 56. Simulated equilibrium adsorption uptake of CF4 and Xe (per carbon atom) on heterogeneous 

nanotube bundle 1 (see Table 7) at 133 K as a function of Xe partial pressure. The CF4 pressure is held 

constant at 3.3×10-2 Torr. Squares (circles) represent the loading of CF4 molecules inside (outside) the 

nanotubes and up triangles (down triangles) represent Xe adsorption inside (outside) the nanotubes. Lines 

are drawn to guide the eye. The estimated statistical errors are on the order of the symbol sizes. 

 

Figure 57. Simulated equilibrium coverage of CF4 and Xe (expressed per carbon atom) on homogeneous 

nanotube bundle 3 (see Table 7) at 133 K as a function of Xe partial pressure. The CF4 pressure is held 

constant at 3.3×10-2 Torr. The symbols are the same as in Figure 56. The lines are drawn to guide the eye. 

Molecular simulations show that Xe and CF4 only adsorb inside the nanotubes and on the 

external groove of the perfectly packed homogeneous bundles (bundle 3). The interstitial 

channels in homogeneous bundles of (10,10) nanotubes are too small to allow adsorption of 

either gas. However, the heterogeneous bundles do not pack perfectly and hence have a few 

larger interstitial sites for gas adsorption. Simulation snapshots from homogeneous and 
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heterogeneous bundles are shown in Figure 59. Most of the interstitial channels in the 

heterogeneous bundle (right) are too small to accommodate adsorption of either Xe or CF4. 

However, there are a few interstices that are large enough to facilitate Xe, but not CF4, 

adsorption and other channels that are large enough to accommodate either molecule. This 

explains why the heterogeneous bundles (Figure 56) exhibit external Xe adsorption at lower 

pressures than the homogeneous bundles (Figure 57). Adsorption in the interstitial channels is 

counted as external site adsorption so that the upturn in external Xe site adsorption shown in 

Figure 57 is a result of Xe inside the interstitial channels. We expect that the nanotube bundles 

studied experimentally behave more like the heterogeneous bundles than the perfectly packed 

bundles, giving rise to some interstitial adsorption. 

 
Figure 58. Simulation snapshots for CF4-Xe coadsorption on the external groove sites at a Xe partial pressure 

of 10-3 Torr (left) and 5×10-3 Torr (right). In both cases the CF4 pressure is 3.3×10-2 Torr. Note that the 

number of Xe atoms (blue) increases dramatically with increasing Xe partial pressure, while the number of 

CF4 molecules (red) decreases only slightly. 

 127 



 

 
Figure 59. Simulation snapshots for CF4-Xe coadsorption on homogeneous bundles (left) and on 

heterogeneous bundles (right). Note that the interstitial channels in the homogeneous bundle are too small to 

allow adsorption of either Xe or CF4. The interstitial channels in heterogeneous bundles, such as bundle 1 

from Table 7 shown here (right), have some larger interstitial channels that allow adsorption of Xe and CF4. 

8.6 SUMMARY 

The following results have been obtained in our study of CF4 adsorption on unetched SWNTs 

and etched SWNTs. 

(1) The adsorption of CF4 on SWNTs at 133 K occurs on two adsorption sites: internal and 

external. On closed SWNTs, CF4 adsorbs only on the external sites, whereas on opened 

SWNTs, CF4 adsorbs on both external and internal sites. 

(2) Adsorbed CF4 on external sites of SWNTs manifests itself by two IR bands, at 1272 and 

1253 cm-1. CF4 adsorbed on internal sites exhibits two bands at 1262 and 1242 cm-1. The 

presence of two bands in both cases results from the Fermi resonance of the strong 

infrared-active ν3 fundamental with the first overtone of the ν4 mode. 
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(3) The larger shift from the gas-phase frequency of the ν3 mode of internal CF4 (shift -35 

cm-1, -2.7%) compared to the external CF4 (shift -15 cm-1, -1.2%) is due to the stronger 

interaction of CF4 with the interior walls of SWNTs. 

(4) Xe preferentially displaces CF4 adsorbed inside SWNTs as observed both experimentally 

and in equilibrium simulations. 

(5) The confinement of CF4 inside the single-walled nanotubes in pseudo-one-dimensional 

structures does not result in production of LO and TO lattice modes characteristic of large 

3D ensembles of CF4 in crystallized CF4. 
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9.0  ANALYTICAL FORMULAS FOR FERMI RESONANCE INTERACTIONS IN 

CONTINUOUS DISTRIBUTIONS OF STATES10 

Fermi resonance interaction between a distributed fundamental vibrational level and a distributed 

overtone is considered. The overtone is assumed to be spectrally inactive. Simple analytical 

expressions are derived for the resulting spectral profile in terms of the distribution functions for 

the fundamental and overtone. The formulas enable straightforward modeling of spectra with 

Fermi resonances. 

9.1 INTRODUCTION 

Fermi resonances occur frequently in vibrational spectra. The perturbation of the spectral bands 

caused by the Fermi resonance between two vibrational levels is well understood and can be 

satisfactorily modeled in instances when the levels are well localized as far as their energies are 

concerned [216]. However, in many practical situations bands have non-negligible widths, that 

is, vibrational levels are distributed over a finite energy range. This broadening can be caused by 

intermolecular interaction (especially for H-bonding molecules), short excited state lifetimes, 

                                                 

10 This chapter is reproduced with modifications from: P. Kondratyuk; Analytical formulas for Fermi resonance 
interactions in continuous distributions of states. Spectrochimica Acta (2005), 61A, 589-593. 
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interaction of vibrational modes with phonons, etc. [217]. In cases like these the equations 

governing the perturbation for the localized levels cannot be used. Aside from the full quantum-

mechanical approach (e.g. [218]), the solution, as described by Scherer [210], is to approximate 

the distributions of the interacting vibrational states as collections of discrete levels, and then 

calculate the contribution of each pair of levels from the two distributions. The end spectrum is 

then the sum of all such contributions. While workable, this approach normally requires the use 

of a programming language, as well as an understanding of the particular implementation that 

underlies the algorithm. 

The current paper presents analytical formulas that can be used to calculate the resulting 

spectrum from given distributions of the two levels. The advantages are the usual ones associated 

with the use of analytical forms. Practically any available multi-purpose mathematics software 

can be employed with these formulas (such as MathCad®, Mathematica® etc.).  

9.2 THEORY 

Fermi resonances appear whenever a fundamental vibrational level lies closely in energy to an 

overtone (or combination) level with the same wavefunction symmetry [216, 219]. The two 

levels are allowed to interact due to the presence of anharmonic terms in the Hamiltonian, and, 

consequently, the strength of such an interaction will depend on the magnitude of the normal 

modes’ anharmonicity constants [220]. The two original levels mix as a result of the resonance, 

producing two new levels with spectral intensity of the fundamental distributed between them. 

Since the overtone is spectrally inactive (or extremely weak) by itself, the resonance leads to the 

appearance of an additional peak in the spectrum. This is sometimes viewed as the overtone 
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“borrowing” intensity from the fundamental and becoming visible. A well-known example of 

Fermi resonance is the presence of two bands in the N-H stretching region of polyamides [221, 

222], where the two interacting modes are the N-H stretch fundamental and the first overtone of 

the N-H deformation mode. Vibrational spectrum of CF4 in the asymmetric stretch region 

(Figure 60) also shows a Fermi resonance. It comes from the interaction of the asymmetric 

stretching mode and the overtone of a deformation mode [100, 203].  
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Figure 60. Fermi resonance in the Raman spectrum of CF4 in liquid Ar at 84.5 K (from [203]). The weaker 

band on the low-frequency side of the asymmetric stretch fundamental is due to the resonance with the 

overtone of the deformation mode at 632 cm-1. 

A large amount of experimental and theoretical work has been devoted to Fermi 

resonances in the vibrational spectra of hydrogen-bonded compounds, especially water and 

hydrates [210, 215, 218, 223, 224], where such resonances are both common and pronounced. 

The interaction between the fundamental and the overtone can be viewed as a 

perturbation of the original non-interacting system [216]. According to the standard first order 

perturbation treatment, the new eigenstates of the system can be expressed as linear 

combinations of the old states: 

2
2

11 1 ϕββϕ −+=Ψ , 21
2

2 1 βϕϕβ −−=Ψ , (1) 
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where 1ϕ  and 2ϕ  are the original wavefunctions, 1Ψ  and 2Ψ are the new wavefunctions, and β  

is the mixing coefficient. The new energy eigenvalues of the system can be found by solving the 

secular equation 

0
2

1 =
−

−
EEw

wEE
,  (2) 

 
where E1 and E2 are the energies of states 1ϕ  and 2ϕ , E represents the new energy levels of the 

system, and the off-diagonal element w is the cross-interaction energy that determines the 

interaction strength between the two original levels. The solution for (2) is 

22
2121 4)(

2
1)(

2
1 wEEEEE +−±+= . (3) 

 
Figure 61 schematically shows the effect of the resonance on two infinitely narrow 

vibrational modes in a spectrum. State a is a fundamental possessing spectral intensity, while 

state b is a spectrally inactive overtone. This is shown in the figure by the dark shading of state 

a. 
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Figure 61. Effect of Fermi resonance on two interacting vibrational states, a and b. a is spectroscopically 

visible, b is not. Resonance results in two new eigenstates of the system, c and d, that are linear combinations 

of a and b. Both c and d are spectroscopically visible. Inset: relative location of states as a function of 

separation between a and b. 
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Fermi resonance results in the creation of two new eigenstates of the system, states c and 

d which, according to (3), are symmetrically displaced with respect to a and b to a new, larger 

separation S. From (3), S is given by 

22 4wS +∆= , (4) 
 

where ∆ is the separation between levels a and b.  

 The admixture coefficient of a in c and d is [cf. with (1)] 

S
f a

dc 22
1

,
∆

±= , (5) 

 
with (+) for c and (-) for d. Both of the new states are spectroscopically active due to admixture 

of a, with spectral intensity proportional to ( )2
,
a
dcf . As can be seen from (5), no spectral intensity 

is lost or gained when Fermi resonance is taken into account. 

Thus, it is straightforward to use expressions (4) and (5) to model Fermi resonances in the 

case of localized vibrational levels. However, if the levels in question are distributed, the notion 

of “frequency” of a vibrational band looses its meaning, prohibiting the use of (4) and (5). The 

next section contains a derivation of analytical expressions that can be employed if one or both 

of the interacting levels are distributed. Eq. (4) and (5) are the limiting case of those expressions 

when the width of the interacting distributions approaches zero. 

9.3 RESULTS AND DISCUSSION 

We assume that the distribution functions of the fundamental (spectroscopically visible) and 

overtone (invisible) levels are given. We will denote them Vis(x) and Inv(x) respectively. 
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If in Figure 61 state c is located at energy x, state b – at x1, then from Eq. (4) we can 

determine where state a must lie in order to contribute to the density of states at x. Equation 4 

becomes: 

22
12

21 4)()
2

(2 wxxx
xx

+−=−
+ ,  (6) 

hence, 

1

2

2 xx
wxx
−

−= . (7) 

Equation (7) is quadratic in x. Thus for given x1 and x2 there are two values of x that 

satisfy (7), corresponding to states c and d in Figure 61, as expected. Now knowing that every 

point of the resulting spectrum will contain a contribution from every possible x1, x2 being 

determined from Eq. (7), we put together an expression for the resulting spectrum as a sum of all 

such contributions. Denoting the resulting spectrum I(x), we obtain: 

11
1

2

)()( dxxInv
xx

wxVisxI ∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−= . (8) 

The above equation is the expression we seek. Derived from Eq. (4), it automatically satisfies 

another condition, Eq. (5). This will be shown in the following. 

Any function can be thought of as consisting of a large number of delta-functions, in the 

sense that if this collection of delta-functions is viewed with a finite resolution, it will approach 

the real function (and all of its properties) as the number of delta-functions in the approximation 

is increased. Thus, it is sufficient to show that (8) operates in accordance with Eq. (5) for 

distributions consisting of delta-functions. We will assume that the two distributions, Vis(x) and 

Inv(x), each contain only one delta-function. It can be concluded that the result will apply to 

distributions containing any number of delta-functions. 
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We note that if Inv(x) is a delta-function centered at x1 (state b in Figure 61), then the 

integral in Eq. (8) can be replaced with just one member of the sum, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
1

2

)(
xx

wxVisxI . (9) 

Remembering that Vis(x) is also a delta-function, positioned, for instance, at x2 (state a), 

from (9) we obtain that I(x) consists of two delta-functions, states c (at xc) and d (at xd) in 

accordance with (4). Although c and d are both infinitely narrow, the areas under c and d are 

different. If the area under Inv(x) is normalized to unity, then it can be shown that the areas 

under c and d are equal to the area under a times 
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respectively. Let Aa be the area under Vis(x), then  
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which demonstrates that Eq. (8) agrees with condition (5).  

Expression (8) has been verified against the method of Scherer [210]. In all cases the end 

spectra produced matched exactly when the resolution in the discrete method of [210] was 

sufficient. 

As mentioned in the preceding discussion, a simplified form of Eq. (8), Eq. (9), can be 

used in the case when the invisible level is localized rather than distributed. Fermi resonances of 

this type are frequently encountered in spectroscopy and known as Evans holes, because they 
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appears in spectra as characteristic narrow transmission windows in broad peaks [211, 212, 224]. 

Expression (9) is quite simple in that it only defines a mapping of the frequency axis onto itself. 

A form analogous to (9) can be obtained from (8) for the case when the overtone is 

distributed while the visible level is localized (a situation that is less significant practically). By 

making the substitution 
2

2

1 xx
wxx
−

−→  [from Eq. (7)], one obtains another form of (8), 

22
2

2

2

2

2 )(
)()( dx

xx
w

xx
wxInvxVisxI

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−= ∫
∞

∞−

. (11) 

Then if Vis(x) is localized at x2 (is a delta-function centered at x2), 
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Table 8 lists these formulas along with conditions for their use. 

Table 8. Expressions for spectral profiles with Fermi resonances in terms of unperturbed distributions Vis(x) 
and Inv(x). 

Applicability criteria Formula Notes 

Both levels are 
distributed 

(most general) 

 
 Eq. (8). 

Same as Eq. (11). 

Fundamental level is 
distributed, overtone is 

localized  

 
Eq. (9). 

x1 is the position of the 
overtone. 

Overtone is distributed, 
fundamental is 

localized  

 
Eq. (12). 

x2 is the position of the 
fundamental 

Vis(x) and Inv(x) are the original distributions of the fundamental and the overtone 
levels respectively. The area under Inv(x) has to be normalized to 1 for the spectral 

intensity to be conserved. 
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Figure 62 shows two examples of spectra calculated with Eq. (8) and (9). 61(A) is the 

case when both levels are distributed. The bold line, calculated with (8), is a fit to the 

experimental spectrum of CF4 from Figure 60 (shown in the background). The two unperturbed 
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distributions (not to scale with the main graph for clarity) are Lorentzians with positions and 

widths optimized to give the best fit to the experimental line. 
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Figure 62. (A) Spectral profile (bold line) calculated with Eq. (8) from two unperturbed Lorentzian 

distributions (below main graph, not to scale). The positions and widths of the Lorentzians were chosen for 

the spectrum to fit the experimental profile of CF4 from Figure 60 (noisy line). (B) Spectrum (bold line) 

resulting from a Gaussian-shaped fundamental (dashed line) resonating with a localized overtone level at the 

position indicated by the arrow (1290 cm-1). 

Figure 62(B) shows a situation when a visible Gaussian distribution (dashed line) is 

perturbed by a localized overtone state at x=1290 cm-1 (the position indicated by the arrow). Eq. 

(9) was used. The additional feature due to resonance is much sharper than in the case of a 

distributed overtone. It should be noted, however, that in practice, the finite resolution of 

spectrometers smoothens the sharp peaks and dips associated with such a Fermi resonance. 
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A few remarks can be made regarding the formulas in Table 8. Firstly, it is easy to notice 

that spectral profiles given by Eq. (9) and (12) are always analytical if the initial distributions of 

levels can be expressed analytically. Eq. (8) may or may not give an analytical result. 

Secondly, if the distributions are given as data points rather than analytical profiles, all of 

the formulas in Table 8 will work with a suitable interpolation procedure. The integration limits 

in (8) then can be replaced by the range where the function of the integration variable is defined 

and non-zero. 

9.4 SUMMARY OF RESULTS 

In conclusion, analytical formulas are presented that allow easy modeling of Fermi resonances in 

spectra when either the fundamental level or the overtone or both are distributions rather than 

localized levels. The formulas are especially simple when only one of the levels is distributed, 

always producing an analytical spectral profile if the initial distribution can be expressed 

analytically. Table 8 summarizes the results. 
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APPENDIX A  

CONVERSION EXPRESSIONS FOR QUANTITIES OF PURE AND MIXED 1-

HEPTANE AND 1-DEUTEROHEPTANE 

This appendix section deals with the conversion formulas needed to calculate the amounts of two 

mixtures of heptane and deuteroheptane (here referred to as H-mixture and D-mixture) that 

correspond to certain amounts of heptane and deuteroheptane measured in the experiment (see 

Chapter 7). The percentage composition of the two mixtures is also known from the experiment. 

It is determined by analyzing the composition of the adsorbed gas when the sample is positioned 

either in front of the effusive doser delivering heptane or the doser delivering deuteroheptane. 

The experimentally determined amounts of heptane and deuteroheptane will be denoted 

Ha and Da respectively. The fraction of heptane in heptane-rich mixture (H-mixture) will be 

denoted Hmr, while the fraction of deuteroheptane in the deuteroheptane-rich mixture (D-

mixture) will be denoted Dmr. The amounts of H-mixture and D-mixture sought will be denoted 

Hma and Dma. 

As no molecules are lost when we mentally regroup them form pure heptane and 

deuteroheptane into H-mixture and D-mixture, we can write, 

mamaaa DHDH +=+  (1) 

Also, by the above definition of fractions, 

)1( mrmamrmaa DDHHH −+⋅=  (2) 
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)1( mrmamrmaa HHDDD −+⋅=  (3) 

Eqns. (2) and (3) yield 

)21()21( mrmaaamrma HHHDDD −⋅+=+−⋅  (4) 

By substituting in the Dma from Eqn. (1), we obtain the expression for Hma: 

1
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In an analogous fashion, 

1
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H
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DH
H

DD  (6). 

Eqns. (5) and (6) are the conversion expressions sought. 
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 APPENDIX B 

PROPORTIONAL-INTEGRAL-DERIVATIVE TEMPERATURE CONTROL 

Proportional-integral-derivative (PID) algorithm [92] was employed in the TPD system to 

control the temperature of the sample by controlling the ohmic power produced on the tungsten 

wires supporting the sample (see Chapter 2 for the schematic of the TPD apparatus). The control 

output of the PID algorithm depends on the deviation of the temperature of the sample Tc from 

the setpoint temperature Ts and the temporal history of this deviation. Three terms contribute to 

the control output Sout(t): 

)()()()( tDtItPtSout ++=  (1) 

The three terms are called proportional, integral and derivative terms. The first term, P(t), is 

merely proportional to the temperature deviation, cs TTT −=∆ : 

)()( tTKtP p ∆⋅=  (2) 

where Kp is the proportionality constant. The I(t) is the integral term and is given by 

ττ dTKtI
t

i ∫ ∆⋅=
0

)()(  (3) 

where Ki is the proportionality constant and the integration is carried out over time up to the 

moment the control output is set. The integral term will keep adjusting the total output as long as 

there is a deviation from the temperature setpoint. When the integral term is the only term 

contributing to the control output in the PID algorithm, the temperature of the sample will 
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oscillate around the setpoint. However, if a proportional term is present, for some values of the 

constants Ki and Kp it will dampen the oscillations and the system will achieve temperature 

stability at the setpoint. Therefore, the algorithm can potentially work with only these two terms. 

However, the introduction of the derivative term results in more efficient dampening of the 

oscillations. The derivative term is given by 

t
TKtD d ∂

∆∂
⋅=

)()(  (4) 

where Kd is the proportionality constant. The derivative term counteracts rapid change in the 

temperature deviation, thereby reducing the time needed to stabilize the temperature. 
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APPENDIX C 

ION BOMBARDMENT MODIFICATION OF SWNT ADSORPTIVE PROPERTIES 

We have studied experimentally the effect of high-energy ion irradiation on the adsorption 

properties of SWNTs. This was done by comparing the TPD spectra of CCl4 adsorbed on 

SWNTs before and after ion irradiation. 

A number of studies of ion bombardment of fullerenes and carbon nanotubes [225-229] 

have show that ion irradiation results in significant change of structure in the material at the 

atomic level. Auger electron spectroscopy indicated that the π-bonding conjugation decreases 

after irradiation [226]. 

Figure 63 shows TPD spectra of CCl4 on untreated material for increasing exposures. 
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Figure 63. TPD traces for CCl4 adsorbed on annealed, untreated nanotubes for a range of exposures. 

 144 



As the exposure increases, the sites with progressively lower binding energy are 

populated by the adsorbate. We associate sites A with interior nanotube sites, sites B with groove 

sites and sites C with exterior nanotube surface. The D feature corresponds to multilayer 

desorption and is not associated with any SWNT adsorption sites. 

The comparison of CCl4 TPD spectra at one of the exposures (~7×1014 molecules cm-2) 

before and after irradiation with 3 keV Ar+ is given in Figure 64. 2.4×1017 ions in total were 

delivered during the first exposure to the ions, while the second exposure involved additional 

dosing of 3.0×1017 ions. We believe that about 10-30% of these ions were intercepted by the 

sample. 

 
 

Figure 64. Changes in the TPD spectra of CCl4 adsorbed on SWNTs after they were irradiated by 3 keV Ar+ 

ions. The irradiation was performed in two stages, with TPD spectra of CCl4 taken after each of them. 

It can be seen that before irradiation all the adsorbate is in the nanotube interior sites (site 

A). The groove sites (site B) feature is only a shoulder on the broader interior site peak. The 

multilayer peak (site D) is completely absent. After the first stage of irradiation the interior peak 

decreases in intensity, and the adsorbate is displaced into the groove sites. After the second stage 

of irradiation, hardly any of the interior site capacity remains and the adsorbate is adsorbed 

mostly on the groove sites and in the multilayer. Even though the occupancy of the groove sites 
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is increased, this fact does not indicate that the number of the groove sites increased. Rather, it is 

a consequence of the decrease in the number of available interior sites. The number of available 

groove sites also decreases, as witnessed by the increase in the amount of adsorbate in the 

multilayer. 

We tentatively attribute the destruction of the available interior surface area to the 

amorphization and graphitization of the nanotubes by the energetic Ar+ ions. Once the hollow 

structure of the nanotubes is destroyed, the area available for adsorption drops dramatically due 

to the denser structure of the resulting material. 
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