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The purpose of this study was to examine preservice secondary mathematics teachers’ 

understandings about proportional reasoning prior to and upon completion of a practice-based 

methods course focused on proportional reasoning, their opportunities to learn the intended 

content, and their ability to apply what was learned in a new setting. Ten teachers completed a 

pre/posttest and pre/post interview that was designed to explore their ability to reason 

proportionally. All classes were videotaped so as to examine teachers’ opportunities to learn to 

reason proportionally and to utilize their understandings in a new setting. In addition, six 

teachers who were not enrolled in the course served as a contrast group and completed the 

pre/post instruments. 

The analysis of the data suggests that teachers learned important aspects of proportional 

reasoning from the course. Prior to the course, there were no differences between the 

understandings of the teachers enrolled in the course and those who were not. However, by the 

end of the course, teachers enrolled in the course utilized a broader range of solution strategies, 

significantly improved their capacity to distinguish between proportional and nonproportional 



 v

relationships, and significantly enhanced their understanding of the nature of proportional 

relationships, while those in the contrast group did not. 

In addition, the analysis of the class sessions made salient that all of the mathematics that 

teachers learned during the course was made public during multiple classes and by multiple 

teachers. The analysis also revealed that even teachers who remained mostly silent during class 

discussions still learned the same mathematics that more the vocal teachers learned. 

The results of the analysis of class sessions from a subsequent course on algebra revealed 

that the teachers who participated in the proportional reasoning course drew upon their enhanced 

understandings of proportional relationships when appropriate. This result suggests that teachers 

had not merely memorized discrete facts about proportional relationships, but had developed 

flexible understandings that allowed them to access their knowledge as they explored different 

mathematical ideas. Finally, the results of the study suggest that practice-based teacher education 

courses can be fruitful sites for helping teachers develop mathematical knowledge needed for 

teaching.    
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1. CHAPTER ONE: STATEMENT OF THE PROBLEM 

 
 

1.1. Introduction 

Teachers need a deep and broad understanding of the mathematics they teach (Ball & 

Cohen, 1999; Conference Board of the Mathematical Sciences [CBMS], 2001; Ma, 1999). Their 

content knowledge affects the mathematics that is discussed and produced in the classroom (Ma, 

1999; Sowder, Philipp, Armstrong, & Schappelle, 1998). In fact, Fennema and Franke (1992) 

note, “what a teacher knows is one of the most important influences on what is done in 

classrooms and ultimately on what students learn” (p. 147). Teachers make use of their content 

knowledge in ways that others who use mathematics do not. For example, teachers draw upon 

their knowledge of mathematics on a daily basis through the questions they ask and the feedback 

they provide their students (National Research Council [NRC], 2001). Teachers need to know 

how mathematics across grade levels is connected and consider how they might select and 

sequence tasks in ways that foster the development of key mathematical ideas (Hiebert et al., 

1997; NRC, 2001).  

Ma (1999) describes the kind of mathematics knowledge needed for teaching as a 

“profound understanding of fundamental mathematics (PUFM)” (p. 120). She notes that teachers 

who have a PUFM see connections among mathematical ideas, appreciate multiple perspectives 

of ideas and problems, and have a deep and broad understanding of the entire mathematics 

curriculum. In addition, teachers with a PUFM are not only able to efficiently carry out 

mathematical procedures such as subtraction with regrouping, but also are able to explain the 
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underlying rationale for procedures. By contrast, teachers who do not have a PUFM can carry 

out procedures fluently, but are unable to explain why the procedures work. Ma argues that these 

differences are important in terms of the potential for student learning – teachers with a PUFM 

create different plans for interacting with students than teachers without a PUFM (e.g., in 

confronting a student who exhibits a common misconception, teachers with a PUFM ask 

questions to help the student understand or uncover the mathematical ideas, whereas teachers 

without a PUFM help the student develop methods for carrying out the procedure). 

Recent recommendations made by the mathematics education community call for 

teachers to create classrooms in which students make sense of mathematics through solving 

challenging problems, using multiple strategies to solve problems, explaining and justifying their 

strategies, and engaging in discussions about how those strategies are mathematically related 

(National Council of Teachers of Mathematics [NCTM], 2000; NRC, 2001). In fact, many 

school districts are adopting curricula that embody these recommendations (CBMS, 2001). In 

order to meet the demands of these curricula and the community’s recommendations, teachers 

will need an extensive knowledge of mathematics. 

 

1.2. Limitations in Teachers’ Knowledge of Mathematics 

Although there is consensus that mathematics content knowledge is needed for teaching, 

research has documented that preservice and inservice elementary teachers have limited 

understanding of ideas central to the elementary curriculum, such as place value (Ball, 1988; Ma, 

1999), division (Ball, 1988; Borko et al., 1992; Eisenhart et al., 1993; Ma, 1999), and rational 

number (Cramer & Lesh, 1988). Although secondary teachers must complete far more 

mathematics courses for certification, they too appear to have limited understandings of the 
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mathematical ideas that span the K-12 curriculum. Secondary teachers’ knowledge of elementary 

mathematics topics such as place value and division are frequently characterized by a focus on 

procedures (Ball, 1988; Post, Harel, Behr, & Lesh, 1991) and their conceptions of more 

sophisticated mathematical ideas, such as slope and function, also appear to be fragile (Ball, 

1988; Even, 1993; Even & Tirosh, 1995; Wilson, 1994) and tend to mirror students’ limited 

conceptions (Even, 1993).  

One area of mathematics that appears to be particularly problematic for teachers at all 

levels (elementary, middle, and secondary) is proportional reasoning (Cramer, Post, & Currier, 

1993; Heinz, 2000; Post et al., 1991; Simon & Blume, 1994; Smith, Silver, Leinhardt, & Hillen, 

2003; Sowder, Armstrong, et al., 1998). Teachers who are unable to reason proportionally often 

exhibit the same misconceptions as students (Cramer et al., 1993; Simon & Blume, 1994). Even 

teachers who can successfully reason proportionally in many situations may have limited 

understandings that surface only when they encounter complex or unfamiliar proportionality 

problems (Post et al., 1991; Simon & Blume, 1994; Smith, Stein, Silver, Hillen, & Heffernan, 

2001).  

 

1.3. Mathematics Crucial to the Middle Grades: Proportional Reasoning 

The ability to reason proportionally is crucial to students’ mathematical development. In 

fact, the NCTM (1989) argues that proportional reasoning “is of such great importance that it 

merits whatever time and effort must be expended to assure its careful development” (p. 82). 

Proportional reasoning is so important because it brings together the mathematics explored in the 

elementary grades, and opens the door to high school mathematics and beyond. That is, 

proportional reasoning “is the capstone of children’s elementary school arithmetic; on the other 
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hand, it is the cornerstone of all that is to follow” (Lesh, Post, & Behr, 1988, pp. 93-94). 

Proportional reasoning is the capstone of work in the elementary grades because students shift 

from making additive comparisons (e.g., how many more…?) to making multiplicative 

comparisons (e.g., how much more…?) (Lamon, 1999; Sowder, Armstrong, et al., 1998). 

Proportional reasoning can also be viewed as the cornerstone of students’ future work because it 

lays the groundwork for the study of advanced mathematical ideas such as slope, probability and 

statistics, trigonometry, and calculus. 

A proportional relationship is just one type of relationship that can exist between two sets 

of quantities. It is a special class in which multiplication defines the relationship (Cramer et al., 

1993). For example, the relationship between the quantities in the situation “Four tents will 

house 12 scouts” (Carpenter et al., 1999, p. 25) is proportional because the quantities, tents and 

scouts, are related multiplicatively. That is, the number of scouts that can be housed by a number 

of tents will always be related by a factor of three. By contrast, in the situation “Sue and Julie 

were running equally fast around a track. Sue started first. When she had run 9 laps, Julie had run 

3 laps” (Cramer et al., 1993, p. 159), the relationship between the quantities is nonproportional. 

That is, the relationship between the number of laps that Sue has run and the number of laps that 

Julie has run is related by addition, or a constant difference – Sue is always 6 laps ahead of Julie.  

Proportional reasoning is often considered to be an integrative theme in middle grades 

mathematics (CBMS, 2001; NCTM, 2000). The NCTM (2000) recommends that students 

develop their capacity to reason proportionally in a variety of contexts that span the curriculum. 

Towards that end, proportionality problems permeate all five middle grades’ content strands 

(Number & Operations, Algebra, Geometry, Measurement, Data Analysis & Probability) in the 

NCTM’s (2000) Principles and Standards for School Mathematics. For example, students might 
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solve problems in which they determine the “better buy”; work with linear functions and notice 

that linear functions that are proportional and those that are not have different properties; 

determine if two figures are similar; build scale drawings; or determine the likelihood of an event 

based on outcomes of a sample of the population.  

In a review of research on ratio and proportion, Cramer et al. (1993) suggest that a 

“proportional reasoner” must be able to do the following: (1) solve a variety of problem types; 

(2) discriminate proportional from nonproportional situations; and (3) understand the 

mathematical relationships embedded in proportional situations. These abilities are briefly 

described in the following sections and are discussed in more detail in Chapter Two.  

 

1.3.1. Solve a Variety of Problem Types 

Cramer et al. (1993) identify three types of proportionality problems: missing value, 

numerical comparison, and qualitative. A missing value problem is one in which three of the four 

values in the proportion a/b = c/d are provided and the solver must determine the fourth, or 

missing, quantity (Lamon, 1989). For example, the problem “3 U.S. dollars can be exchanged for 

2 British pounds. How many pounds for 21 U.S. dollars?” is a typical missing value problem 

(Cramer et al., 1993, p. 159). Although cross multiplication is frequently used to solve this class 

of problems, Lamon (1999) argues that the ability to implement the cross multiplication 

procedure does not constitute proportional reasoning and that the use of alternative strategies 

might reveal a more sophisticated understanding of the relationships between the quantities. 

In numerical comparison problems, all four values in the proportion a/b = c/d are 

provided and it must be determined whether a/b is greater than, less than, or equal to c/d (Lamon, 

1989). For example, the following problem is a typical numerical comparison problem: “Richard 
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bought 3 pieces of gum for 12 cents. Susan bought 5 pieces of gum for 20 cents. Who bought the 

cheaper gum?” (Karplus, Pulos, & Stage, 1983a, p. 222). Numerical comparison problems are 

more difficult than missing value problems because the cross multiplication strategy (the strategy 

most likely taught to teachers during their own middle grades experience [CBMS, 2001]) is not 

helpful (Lamon, 1999).  

Qualitative problems “contain no numerical values but require the counterbalancing of 

variables in measure spaces” (Cramer et al., 1993, p. 166). For example, the following is a 

typical qualitative problem: “Mary ran more laps than Greg. Mary ran for less time than Greg. 

Who was the faster runner?” (Cramer et al., 1993, p. 166). These problems are difficult because 

neither cross multiplication nor alternative quantitative strategies are useful.  

 

1.3.2. Discriminate Proportional From Nonproportional Situations 

Cramer et al. (1993) argue that a proportional reasoner is able to distinguish between 

proportional and nonproportional situations. That is, a proportional reasoner would recognize 

whether the quantities in a problem situation were related additively, multiplicatively, or in some 

other way, and then apply an appropriate strategy. For example, consider a problem situated in 

the running laps context described earlier: “Sue and Julie were running equally fast around a 

track. Sue started first. When she had run 9 laps, Julie had run 3 laps. When Julie completed 15 

laps, how many laps had Sue run?” (Cramer et al., p. 159).  A proportional reasoner would 

recognize that the quantities in this problem are not related multiplicatively, and would therefore 

not apply a proportional strategy.  
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1.3.3. Understand the Mathematical Relationships Embedded in Proportional Situations 

A proportional reasoner also understands that proportional relationships are 

multiplicative in nature and can be expressed algebraically in the form y = mx. Graphically, these 

relationships are depicted by a straight line that passes through the origin. The m in the equation 

represents the slope of the line and is the unit rate, or constant factor that multiplicatively relates 

the quantities. In addition, all rate pairs in proportional situations are equivalent and appear on 

the line y = mx (Cramer et al., 1993). For example, the situation “3 U. S. dollars can be 

exchanged for 2 British pounds” is proportional because the relationship can be expressed 

algebraically as y = 2/3x. By contrast, the situation “A taxicab charges $1.00 plus 50 cents per 

kilometer”, is not proportional because the relationship is defined by both multiplication and 

addition: y = .50x + 1 (Cramer et al., p. 162).  

 

1.4. Teachers’ Opportunities to Become Proportional Reasoners 

In order for students to develop an ability to reason proportionally, teachers need to have 

an extensive knowledge of proportionality and be proportional reasoners themselves. By 

considering teachers’ opportunities to develop their capacity as proportional reasoners, we begin 

to understand why limitations in their knowledge exist. For example, their own school 

experience was often limited to a few days of instruction, and success was defined by correctly 

solving missing value problems using abstract procedures (e.g., cross multiplication). Teachers 

were not expected to make sense of or understand these strategies; but rather, to be able to use 

them fluently (CBMS, 2001). Teachers’ university experiences are typically no different. 

Although secondary teachers complete numerous mathematics courses, none of them focus 

specifically on proportional reasoning. In addition, preparation for teachers of the middle grades 
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is often overlooked. Few teacher preparation programs offer courses specifically targeted for 

middle grades teachers (CBMS, 2001). If teachers are to meet the demands of new curricula and 

develop a PUFM, they need different opportunities to develop their capacity as proportional 

reasoners.  

 

1.5. Recommendations for Teacher Education 

Howe (1999) argues that university mathematics courses serve the needs of professional 

mathematicians, not teachers of mathematics. Others (e.g., CBMS, 2001; Noddings, 1998; 

Schifter, 1993) suggest that mathematics majors who plan to teach do not need all of the 

mathematics courses that future mathematicians need, but rather they need alternative, rigorous 

courses designed to meet their specific needs. The CBMS (2001) calls for university 

mathematics courses that allow teachers to revisit the mathematics of their past and to make 

sense of mathematics. Others (e.g., Ball, 1990; Ma, 1999; Sowder, Armstrong, et al., 1998) argue 

that mathematics methods courses could be sites in which teachers strengthen their 

understanding of mathematics.  

Mathematics teacher educators (e.g., Sowder, Armstrong, et al., 1998; Schifter, 1993) 

agree that in order for teachers to come to know and understand mathematics in meaningful ways 

and be able to use this knowledge in ways that impact student learning, they must have 

opportunities to solve challenging mathematical tasks. Sowder and her colleagues make specific 

recommendations for middle grades teachers. In particular, they call for teachers to solve 

problems that move beyond missing value problems that are solved with cross multiplication, 

and instead require reasoning about and making sense of quantities and their relationships. In 
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addition, they recommend that teachers should encounter both proportional and nonproportional 

problems and compare and contrast them. 

Two recent teacher education experiences provide insights into the potential of such 

teacher education opportunities. Sowder, Philipp, et al. (1998) engaged five inservice middle 

school teachers in a two-year professional development program that focused on rational number 

and proportionality. Teachers participated in seminars in which they solved mathematics tasks, 

examined student work, and attended presentations given by mathematics teacher educators (e.g., 

Susan Lamon, Patrick Thompson). Sowder and her colleagues examined teachers’ content 

knowledge and the impact this knowledge appeared to have on their teaching and, ultimately, 

students’ learning. At the end of the professional development program, teachers understood the 

difference between proportional and nonproportional situations and had a conceptual 

understanding of the mathematics discussed during the seminars. In addition, as teachers’ content 

knowledge grew broader and deeper, their instructional practice also changed. Specifically, 

teachers’ lessons featured an increased focus on promoting conceptual understanding, a 

decreased emphasis on carrying out procedures, and a shift in classroom discourse (e.g., as 

teachers asked questions to probe students’ understanding and press students for explanations, 

students began to ask such questions of each other). Finally, teachers’ broadened content 

knowledge appeared to impact students’ understanding of mathematics. For example, student 

performance on a posttest measuring understanding of fractions and proportionality was 

considerably better than their performance on the pretest.  

In another teacher education experience, Smith et al. (2003) examined the learning that 

occurred as fourteen preservice elementary teachers and three secondary teachers (one 

preservice, two inservice) participated in a six-week mathematics methods course that focused 
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on proportional reasoning in the middle grades. During the course, teachers solved mathematical 

tasks and discussed alternative solution paths, examined student work on these tasks, and read 

and analyzed written narrative cases of teaching. Smith et al. examined teachers’ ability to 

distinguish between proportional and nonproportional situations and their understandings of the 

mathematical relationships embedded in proportional situations before and after their 

participation in the course. Prior to the course, teachers struggled to distinguish between 

proportional and nonproportional situations and had a limited understanding of the mathematical 

relationships embedded in proportional situations. By the end of the course, teachers were able to 

classify situations as either proportional or nonproportional and also had a deeper and more 

flexible understanding of the relationships in proportional situations.  

These two studies of teacher education experiences also provide evidence regarding the 

viability of what Ball and Cohen (1999) call a “practice-based” approach to teacher education. In 

particular, Ball and Cohen argue: 

[i]f teachers’ professional learning could be situated in the sorts of 
practice that reformers wish to encourage, it could become a key 
element in a curriculum….A practice-based curriculum could be 
compelling for teachers and would help them to improve students’ 
learning. (p. 6) 

 

In a practice-based approach, teacher educators identify the activities central to teaching and 

select or create materials that usefully depict that work (e.g., student work, mathematical tasks, 

written or video cases of instructional episodes). Teachers then use these practice-based 

materials to engage in tasks grounded in the activities of practice. For example, teachers might 

examine samples of student work to explore what students appear to understand (or not 

understand), or analyze a mathematical task to understand the mathematical territory it makes 

possible.  
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1.6. The Study 

The purpose of this study was to examine preservice secondary mathematics teachers’ 

understanding of proportionality prior to and upon completion of a practice-based methods 

course focused on proportional reasoning in the middle grades, their opportunities to learn the 

intended content, and their ability to apply what was learned in a new setting. In particular, the 

study sought to explore the following five research questions:  

1. What do preservice secondary mathematics teachers know and understand about 

proportional reasoning prior to participation in a course specifically focused on 

proportional reasoning? 

2. What do preservice secondary mathematics teachers know and understand about 

proportional reasoning immediately after participation in a course specifically focused on 

proportional reasoning?  

3. How do preservice secondary mathematics teachers who participated in a course 

specifically focused on proportional reasoning differ from preservice secondary 

mathematics teachers who did not participate in the course in their understandings about 

proportional reasoning?  

4. To what extent can teacher learning be accounted for by participation in a course 

specifically focused on proportional reasoning?  

5. To what extent do preservice secondary mathematics teachers who participated in a 

course specifically focused on proportional reasoning draw upon their understandings of 

proportional reasoning in a subsequent course? 

The first research question sought to document preservice secondary teachers’ current 

mathematical understandings. The second research question sought to document the impact of a 

practice-based course that interweaves content, pedagogy, and students’ understanding of 
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mathematics on teachers’ mathematical understandings. The third research question sought to 

document the impact of the practice-based course focused on proportional reasoning by 

comparing the understandings of two groups of teachers before and after the course was 

implemented. The fourth research question sought to account for the learning that occurred (as 

documented by research questions 1 and 2) by connecting particular learning outcomes to course 

activities. Finally, the fifth research question sought to examine whether and how teachers drew 

upon their understandings about proportional reasoning during participation in a practice-based 

mathematics methods course that focused on algebra as the study of patterns and functions. 

Through an analysis of two groups of preservice secondary teachers’ (the treatment 

group, who was enrolled in the course, and the contrast group, who was not enrolled in the 

course) responses to various mathematics tasks completed at the beginning and end of the 

semester in which the course was offered, the study examined teachers’ ability to reason 

proportionally. A pre/posttest and a pre/post interview that contained tasks drawn from the 

literature whose purpose was to examine teachers’ ability to: (1) solve a variety of problem 

types; (2) discriminate proportional from nonproportional situations; and (3) understand the 

mathematical relationships embedded in proportional situations, served as data sources to 

explore research questions 1, 2, and 3.  

In addition, the study sought to provide an explanation for the learning that occurred for 

teachers in the treatment group by examining the enactment of the course. Teachers’ work during 

the course - specifically, their public contributions during class discussions - was examined so as 

to illustrate that teachers had the opportunity to explore the mathematical ideas that they learned 

during the course. 
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Finally, the study examined how the teachers in the treatment group made use of their 

understandings about proportional reasoning in a subsequent course. Upon completion of the 

proportional reasoning course, these teachers began a practice-based mathematics methods 

course that focused on algebra as the study of patterns and functions. Since many of the 

functions that teachers examined in this course were linear functions, it was expected that 

teachers might draw upon their understandings about proportional reasoning in describing linear 

functions that were also proportional during the algebra course. 

 

1.6.1. Significance of the Study 

The study contributed to the literature base in several important ways. First, the study 

examined teachers’ ability to reason proportionally via a more comprehensive measure of 

proportional reasoning knowledge than previous studies have employed. Although studies have 

examined teachers’ ability to solve proportionality problems (Post et al., 1991), discriminate 

proportional from nonproportional situations (e.g., Simon & Blume, 1994), and understand the 

mathematical relationships embedded in proportional situations (Smith et al., 2003), no studies 

have described teachers’ understandings of all of these components. The study therefore 

provided a more complete picture of the extent to which preservice secondary teachers can 

reason proportionally prior to and upon completion of a practice-based course. The findings also 

contributed to the work done by Ball (1988), Ma (1999), and Smith et al. (2003) in describing 

what preservice teachers know and can do mathematically.   

In addition, although several studies have examined preservice elementary teachers’ 

understandings about proportional reasoning (e.g., Heinz, 2000; Simon & Blume, 1994), few 

studies have examined what preservice secondary teachers know and understand in this domain. 
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Although the study sought to examine teacher learning in a course similar to the one analyzed in 

Smith et al. (2003), the participants of this study were all preservice secondary teachers. By 

contrast, the Smith et al. study included only one preservice secondary teacher; the majority of 

the participants were preservice elementary teachers. Since secondary-certified teachers can also 

teach in the middle grades, it is important to examine their current understandings and the extent 

to which practice-based courses impact their learning.  

Finally, the results from the fifth research question served to explore the extent to which 

teachers were able to transfer knowledge learned in one setting to a novel setting. Since the goal 

of teacher preparation is for teachers to construct knowledge about mathematics, students as 

learners of mathematics, and mathematics pedagogy that can inform what they actually do in the 

classroom, it is important to understand whether and how teachers appear to draw upon 

understandings developed in one setting as they work in a new setting.  

 

1.6.2. Limitations of the Study 

There were a number of limitations to the study. First, all participants in this study were 

enrolled in one of two teacher education programs at a large, urban university that culminated in 

certification in 7-12 mathematics. In order to be accepted into these master’s-level programs, 

applicants needed to have a bachelor’s degree in mathematics (or the equivalent) and a minimum 

QPA of 3.0. Thus, these preservice secondary teachers may not have been typical middle school 

teachers, less than half of which hold a bachelor’s degree in mathematics (Grouws & Smith, 

2000).  

In addition, the study did not utilize a true experimental design (Campbell & Stanley, 

1963). Since teachers were already enrolled in the course (or not) depending on the teacher 
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education program in which they were enrolled, it was not possible to randomly assign teachers 

to the treatment in this study, enrollment in the proportional reasoning course. It is also important 

to note that while all teachers eligible to participate in the treatment group elected to participate 

in the study, only a subset of teachers eligible to participate in the contrast group elected to 

participate. As such, the contrast group may not have been representative of the population it 

aimed to represent. In addition, the size of both the treatment and the contrast group were small, 

with the treatment group consisting of ten teachers and the contrast group consisting of six 

teachers. 

Finally, only a subset of the interview items was asked on both the pre- and post-

interview. Several items were asked only on the pre-interview, and one item was asked only on 

the post-interview. Therefore, teachers’ work on the interview items was used to supplement 

information gathered from the pre/posttests regarding teachers’ ability to: (1) solve a variety of 

problem types; (2) discriminate proportional from nonproportional situations; and (3) understand 

the mathematical relationships embedded in proportional situations.  

1.7. Organization of the Document 

In the next chapter, three bodies of literature that were pertinent to the study are 

reviewed: (1) literature that describes what proportional reasoning is and what proportional 

reasoners should be able to do mathematically; (2) studies that examine students’ and teachers’ 

ability to reason proportionally; and (3) literature that describes experiences teachers should 

encounter in order to develop their ability to reason proportionally. In Chapter Three, the 

methodology for the study is described. Results of data analysis are reported in Chapter Four. 

Finally, the results of the study are briefly summarized and implications and recommendations 

for future study are discussed in Chapter Five. 
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2. CHAPTER TWO: REVIEW OF RELATED LITERATURE 

 
 

2.1. Introduction 

The purpose of this study was to examine preservice secondary mathematics teachers’ 

understanding about proportional reasoning prior to and upon completion of a practice-based 

methods course focused on proportional reasoning in the middle grades, their opportunities to 

learn the intended content, and their ability to apply what was learned in a new setting. In this 

chapter, three bodies of literature that were relevant to the study are reviewed. First, literature on 

proportional reasoning is used to define the domain and describe what it means to reason 

proportionally. Next, literature that examines students’ and teachers’ knowledge of 

proportionality is reviewed. Although this study examined teachers’ knowledge, reviewing the 

literature on students’ knowledge was necessary because much more research related to 

proportionality has been conducted with students. In addition, in recent years, students’ 

performance on assessments such as the National Assessment of Educational Progress (NAEP) 

and the Third International Mathematics and Science Study (TIMSS) indicate that U.S. students 

have a limited understanding of mathematics and of proportionality, in particular (Beaton et al., 

1996; Martin & Strutchens, 2000; Wearne & Kouba, 2000). These results suggest that teachers’ 

understandings may not be any more robust than their students’ knowledge. Thus, the literature 

on students’ knowledge of proportionally may have implications for examining teachers’ 

knowledge. Finally, literature that describes the mathematical experiences that teachers need to 
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encounter in order to develop their capacity as proportional reasoners is reviewed. The chapter 

concludes by summarizing the literature and highlighting implications for the study.  

 

2.2. What is Proportional Reasoning? A Framework for Examining Teachers’ 
Knowledge 

A proportional relationship is a special type of relationship in which multiplication 

defines the relationship between quantities (Cramer et al., 1993). Making the transition from 

additive to multiplicative reasoning is considered to be the hallmark of proportional reasoning 

development (CBMS, 2001; Inhelder & Piaget, 1958; Sowder, Armstrong, et al., 1998). 

However, the development of proportional reasoning comes slowly and some never fully 

develop this ability (Carpenter et al., 1999; Hoffer, 1992; Resnick & Singer, 1993; 

Steinthorsdottir, 2003; Tournaire & Pulos, 1985).  

Middle grades curricula typically devote only a few pages to proportional reasoning, and 

focus on helping students develop facility with strategies such as cross multiplication to solve 

missing value problems (CBMS, 2001). However, researchers (e.g., Lamon, 1999; Sowder, 

Armstrong, et al., 1998) agree that proportional reasoning entails much more than setting up a 

proportion and cross-multiplying. In particular, a proportional reasoner should be able to do the 

following: (1) solve a variety of problem types (Carpenter et al., 1999; Cramer et al., 1993; 

Heller, Ahlgren, Post, Behr, & Lesh, 1989; Karplus et al., 1983b; Lamon, 1993b; Noelting, 1980; 

Post, Behr, & Lesh, 1988; Steinthorsdottir, 2003); (2) discriminate proportional from 

nonproportional situations (CBMS, 2001; Cramer et al., 1993; Lamon, 1995; Sowder, 

Armstrong, et al., 1998); and (3) understand the mathematical relationships embedded in 

proportional situations (Cramer et al., 1993; Post et al., 1988). These three abilities served as the 

framework through which the instruments measuring teacher knowledge and learning were 
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developed and the data was analyzed. In this section, these three abilities are described both 

generally and in the context of examples. 

 

2.2.1. Solve a Variety of Problem Types 

 Missing value and numerical comparison problems are the two most common types of 

proportionality problems, both in the literature and in middle grades curricula (Karplus et al., 

1983a; 1983b; Lamon, 1999; Noelting, 1980; Vergnaud, 1988). Others (e.g., Heller et al., 1989; 

Post et al., 1991) identify an additional type of proportionality problem, qualitative problems. In 

the first part of this section, the strategies that can be used to solve missing value and numerical 

comparison problems and the ways in which researchers classify these strategies are discussed. 

In the latter part of this section, each of the three problem types is described in the context of an 

example. 

In any proportion between two measure spaces, there exist two multiplicative 

relationships: within-ratio and between-ratio (Vergnaud, 1983). Vergnaud defines measure 

spaces as the two quantities that are related proportionally. For example, in the problem, “4 tents 

house 12 scouts. How many scouts will 40 tents house?” (Carpenter et al., 1999, p. 25), the 

measure spaces are tents and scouts. In this example, the multiplicative relationship within 4 

tents and 12 scouts is three, and the multiplicative relationship between 4 and 40 tents is ten 

(Carpenter et al., 1999; Karplus et al., 1983a; 1983b; Steinthorsdottir, 2003; Vergnaud, 1988)1, 

as shown in Figure 1. 

 
 

                                                 
1 There is some disagreement in the use of the terms within and between in the literature. In this study, the terms 
were used so as to be consistent with the majority of the literature. Lamon (1993a), however, uses the terms in the 
opposite way. That is, Lamon would say that the multiplicative relationship between 4 tents and 12 scouts is three, 
and the multiplicative relationship within 4 and 40 tents is ten.  
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Figure 1. Illustrating within-ratio and between-ratio relationships. 

 
 
 
Note that in the tent/scout problem, both the multiplicative relationship within and between the 

quantities are integer. Note also that in any proportional situation, the multiplicative relationship 

within quantities remains constant (i.e., the multiplicative relationship between any number of 

tents and scouts is three). The within-ratio then also defines a functional relationship (i.e., the 

number of tents multiplied by three will determine the number of scouts that can be housed). The 

within-ratio is therefore sometimes referred to as the functional-ratio (Vergnaud, 1988). The 

between-ratio is sometimes referred to as the scalar ratio (Vergnaud, 1983) or the factor-of-

change (Post et al., 1988). 

Early research on students’ solution strategies to missing value and numerical 

comparison problems focused on identifying the relationship students used to solve a problem - 

within-ratio or between-ratio (Karplus et al., 1983a; 1983b; Vergnaud, 1983). Studies on 

students’ preference of using within or between strategies have been inconclusive. Karplus et al. 
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(1983a) argue that neither strategies based on within or between relationships are more “natural” 

than the other, but rather, that students will use whichever strategy makes use of an integer ratio, 

if one is present in a problem. Other studies (e.g., Vergnaud, 1983) found that between strategies 

are used more frequently by students; while still others (e.g., Karplus et al., 1983b) found that 

within strategies are preferred by students.  

Lamon (1993a; 1993b; 1994; 1995) argues that examining students’ thinking through a 

lens of unitizing and norming may paint a more complete picture of their understanding of 

proportional relationships. Lamon (1993a) uses the term unitizing to describe the construction of 

a reference unit or unit whole, and argues that the ability to unitize “appears critical to the 

development of increasingly sophisticated mathematical ideas” (p. 133). Thus, Lamon (1995) 

contends that students who can only conceptualize a case of 24 cans of soda as 24 individual 

cans have less mathematical power than students who are able to conceptualize that case of soda 

as two 12-packs, four 6-packs, and other useful groupings of cans of soda.  

Similarly, Lamon (1993a; 1994) argues that students have more mathematical power 

when they conceptualize ratios as units. For example, consider the following problem: 

Ellen, Jim, and Steve bought 3 helium-filled balloons and paid 
$2.00 for all three. They decided to go back and get enough 
balloons for all of the students in their class. How much did they 
have to pay for 24 balloons?  (Lamon, 1993a, p. 145) 

 

A variety of strategies can be used to solve Lamon’s (1993a) balloons problem. Lamon (1993a) 

suggests that the various ways in which students use ratio as a unit can provide a framework for 

analyzing students’ thinking. In particular, she argues that strategies in which the ratio is 

conceptualized as a composite unit – that is, viewing the cost for 24 balloons as 8 groups of the 

ratio 3:2, is a highly sophisticated strategy. By contrast, strategies that “build up” to the desired 



 

 21

ratio (e.g., pairs of 3 balloons and $2 are added to the initial ratio until the cost for 24 balloons is 

determined) are less sophisticated, even though the 3:2 ratio is viewed as a composite unit. Even 

less sophisticated are strategies that make use of the unit rate (i.e., determining the cost for one 

balloon, about 66 cents, and then multiplying the cost for one balloon by the desired number of 

balloons, 24) because they focus on only single units. Finally, the least sophisticated strategies 

are incorrect ones based on constant differences. 

Lamon (1993a; 1994) uses the term norming to describe the reinterpretation of a given 

situation in terms of a composite ratio unit. For example, Lamon (1993a) argues that norming 

can be used to determine the scalar- or functional-ratio in solving missing value proportion 

problems, as shown in Figures 2 and 3.  

 
 

Suppose the pharmacist gave you 7 ounces of medicine for $8.75. 
What would you expect to pay for a bottle containing 4 ounces? 

 
 

Figure 2. Using norming to determine the scalar ratio.   
Adapted from Lamon, S. J. (1993a). Ratio and proportion: Children’s cognitive and metacognitive processes. 
In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research, p. 
137. 
 
 
 
Thus, in the solution shown in Figure 2, the scalar ratio is determined by reinterpreting, or 

norming, 7 in terms of 4. That is, 7 is the composition of one 4 and three-fourths of 4. The 

Measure space 1 Measure space 2

4 ?
x 1 3/4 

7 8 3/4

7 = 1 (4) + 3/4 (4) 
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solution shown in Figure 3 illustrates how norming could be used to determine the functional 

ratio: 

 
 

 
 
Figure 3. Using norming to determine the functional ratio.  
Adapted from Lamon, S. J. (1993a). Ratio and proportion: Children’s cognitive and metacognitive processes. 
In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research, p. 
137. 
 
 
 

Therefore, Lamon (1993a; 1995) argues that examining students’ thinking through a lens 

of unitizing and norming is important because unitizing and norming encompass some of the 

critical relationships about ratios that students should understand. In addition, she argues that: 

[a]t the middle school level, one of the most salient differences 
between the students identified by researchers as proportional 
reasoners and nonproportional reasoners, is that proportional 
reasoners are adept at building and using composite units and that 
they make decisions about which unit to use when choices are 
available, choosing more composite units when they are more 
efficient than using singleton units. (Lamon, 1995, p. 169) 

 

Carpenter et al. (1999) and Steinthorsdottir (2003) refined and expanded upon Lamon’s (1993a; 

1993b; 1994; 1995) work on unitizing and norming to develop a four-level “hypothetical 

learning trajectory” that attempts to account for the degree to which students conceptualize the 

Measure space 1 Measure space 2

4 ?

7 8 3/4

x  1 1/4

8 3/4 = 1(7) + 1/4 (7)
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ratio as a composite unit, and therefore develop more advanced levels of proportional reasoning. 

This hypothetical learning trajectory is based on their analysis of fourth and fifth grade students’ 

solution strategies to missing value (Carpenter et al., 1999; Steinthorsdottir, 2003) and numerical 

comparison (Steinthorsdottir, 2003) problems. They argue that as students move along the 

trajectory, they are able to solve increasingly more complex proportionality problems, and their 

solution strategies become more mathematically sophisticated. The four levels of the trajectory 

identified in Carpenter et al. and Steinthorsdottir are next described in the context of Lamon’s 

(1993a) balloons problem: 

Ellen, Jim, and Steve bought 3 helium-filled balloons and paid 
$2.00 for all three. They decided to go back and get enough 
balloons for all of the students in their class. How much did they 
have to pay for 24 balloons?  (Lamon, 1993a, p. 145) 

 

Level 1. Students at level 1 cannot correctly solve proportionality problems. Their 

strategies are either based upon random calculations or constant differences. For example, a 

student at level 1 might solve the balloons problem by maintaining the constant difference of one 

between 3 balloons and $2, and conclude that 24 balloons will cost $23. 

Level 2. Students at level 2 view the ratio as an indivisible unit. Therefore, they are able 

to combine ratio units either by adding (e.g., as shown in Figure 4) or multiplying (e.g., scaling 

the 3:2 ratio up by 8), but cannot solve problems in which the ratio must be partitioned. Thus, 

students at level 2 are unable to solve problems in which the between-ratio is noninteger. In 

addition, students at level 2 are only able to solve problems that involve enlarging, or scaling up, 

the original ratio.  
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Figure 4. A solution to the balloons problem that uses a level 2 strategy based on addition. 

 
 
 

Level 3. Students at level 3 view the ratio as a reducible unit. This conceptualization 

allows students to solve a broader set of problems – including ones that have noninteger 

between-ratios. For example, consider if the balloons problem asked how much it would cost for 

25 balloons. A student at level 3 might use a ratio table (Lamon, 1999) to determine the cost, as 

shown in Figure 5. 

 
 

 
 
Figure 5. A solution to a modified balloons problem that uses a ratio table to determine the cost for 25 
balloons. 

 
 
 

+3 +3 +3 +3 +3 +3 +3

Balloons 3 6 9 12 15 18 21 24

Cost in dollars 2 4 6 8 10 12 14 16

+2 +2 +2 +2 +2 +2 +2

x8 ÷ 24 x25

Balloons 3 24 1 25
Cost in dollars 2 16 ~0.67 ~16.67

x8 ÷ 24 x25
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Alternatively, a student might reduce the 3:2 ratio to 1:0.67, and then multiply by 25 to 

determine the cost for 25 balloons. Although this strategy may appear to resemble the within-

ratio strategy, Carpenter et al. (1999) and Steinthorsdottir (2003) argue there exists a subtle but 

important difference between the two strategies. In the level 3 strategy, the student treats the 3:2 

ratio and the new 1:0.67 ratio as units, and multiplies the 1:0.67 unit by 25. By contrast, in the 

within-ratio strategy, 0.67 is the number that defines the relationship within 3 balloons and 2 

dollars, and 0.67 is then multiplied by 25 to determine the cost of 25 balloons. 

In addition, students at level 3 are able to solve problems that involve scaling down the 

original ratio. For example, a student at level 3 could solve a missing value problem of the form 

8/24 = 2/x, while a student at level 2 could not (because it involves reducing, or scaling down, 

the original ratio).  

Based on her work with fifth grade female students, Steinthorsdottir (2003) refined level 

3 to include an “emerging level 3” (p. 29). Students at emerging level 3 can only scale down 

ratios by whole numbers. By contrast, students at level 3 can solve problems that must be scaled 

down by numbers other than whole numbers (e.g., 15/10 = 6/x).  

Level 4. Finally, students at level 4 are able to solve the largest class of problems because 

they recognize both within- and between-ratios. Therefore, they frequently use the most efficient 

strategy – that is, the strategy that makes use of the integer ratio. Students at level 4 have a 

flexible set of solution strategies at their disposal.  

Steinthorsdottir (2003) tested the viability of the hypothetical learning trajectory 

proposed in Carpenter et al. (1999) by examining 26 fifth grade Icelandic girls’ solution 

strategies to missing value and numerical comparison problems prior to, during, and upon 

completion of instruction that embodied reform practices (e.g., students shared their solution 
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strategies with the class; the teacher scaffolded students’ learning through questioning). Similar 

to Carpenter et al.’s results with fourth and fifth grade students, Steinthorsdottir found that prior 

to instruction, about one-third of the students were at level 1 and used mainly additive, constant 

difference strategies to solve the problems. Another one-third of the students were at level 2, and 

the remaining one-third was at either emerging level 3 or level 3.  

In addition, Steinthorsdottir (2003) suggests that the transition from level 1 to level 2 

happens quickly for students. For example, two-thirds of the girls who were at level 1 prior to 

instruction were able to correctly solve the first problem explored during instruction. She 

attributes this movement to teacher scaffolding as the students worked on the problem and class 

discussions. Similarly, Steinthorsdottir found that students made the transition from level 2 to 

level 3 easily. However, the transition from level 3 to level 4 was slow and infrequent. Asking 

students to find multiple ways of solving problems appeared to facilitate students’ transition 

from level 3 to level 4.  

In the remainder of this section, an example of each type of proportionality problem 

(missing value, numerical comparison, and qualitative) is provided. In addition, appropriate 

solution strategies for solving these problems are described. 

2.2.1.1. Missing Value Problems 

A missing value problem is one in which three of the four values in the proportion a/b = 

c/d are provided and the solver must determine the fourth, or missing, quantity (Lamon, 1989). 

For example, in the problem “3 U.S. dollars can be exchanged for 2 British pounds. How many 

pounds for 21 U.S. dollars?” the fourth, or missing, quantity is 14 pounds (Cramer et al., 1993, p. 

159). Traditionally, students have been shown the cross multiplication procedure (i.e., setting up 

a proportion, cross multiplying, and solving for the missing value) to solve this class of problems 
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(CBMS, 2001). Although cross multiplication is the most efficient strategy for solving this class 

of problems, Lamon (1999) argues that the ability to implement this procedure does not 

necessarily constitute proportional reasoning. Alternative strategies, such as: building up (i.e., 

increasing the amount of dollars by 3 and pounds by 2 until 21 dollars and 14 pound is reached) 

(Hart, 1981); using a factor-of-change (i.e., noticing that there are seven times as many U.S. 

dollars, so there should be seven times as many British pounds) (Cramer et al., 1993); scaling up 

the 3:2 ratio by a factor of seven (Steinthorsdottir, 2003); or determining the unit rate (i.e., 

determining the number of British pounds that can be exchanged for every one U.S. dollar, and 

then multiplying that value by 21) call upon a deeper understanding of the relationships between 

the quantities.  

2.2.1.2. Numerical Comparison Problems 

A numerical comparison problem is one in which all four values in the proportion a/b = 

c/d are provided and it must be determined whether a/b is greater than, less than, or equal to c/d 

(Lamon, 1989). For example, numerical comparison problems in middle grades curricula are 

often situated in “better buy” contexts: “Richard bought 6 pieces of gum for 12 cents. Susan 

bought 8 pieces of gum for 15 cents. Who bought the cheaper gum?” (Karplus et al., 1983a, pp. 

222-223). For students and teachers for whom the cross multiplication strategy is their only tool, 

these problems are more difficult than missing value problems because the cross multiplication 

strategy is not helpful (Lamon, 1999). Alternative strategies, such as scaling up to a common 

amount of one of the quantities (i.e., scale Richard’s gum up by a factor of 4 -- Richard can buy 

24 pieces of gum for 48 cents, and scale Susan’s gum up by a factor of 3 -- Susan can buy 24 

pieces of gum for 45 cents, so Susan’s is cheaper) or determining the unit rate (i.e., Richard pays 

2 cents for every piece of gum and Susan pays slightly less than 2 cents for every piece of gum, 
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so Susan’s is cheaper) (Cramer et al., 1993), must be called upon in order to correctly solve the 

problem.  

Karplus et al. (1983a) report that students also use between-ratio strategies to solve 

numerical comparison problems. For example, to solve the problem, “Jane and Phyllis were 

running around the track after school. Jane finished 3 laps in 9 minutes. Phyllis finished 6 laps in 

15 minutes. Which girl was running faster, or were their speeds equal?” (pp. 222-223), the 

authors report that students use strategies such as the following, “3 times 2 is 6, 9 times 2 is 18, 

and Phyllis takes only 15 minutes, so she is faster” (p. 225). Karplus et al. note that this strategy: 

made use of the scale ratio of 2 to compare the numbers of laps and 
then the times. This procedure illustrates the between approach to 
proportional reasoning…and led to the time for Phyllis to complete 
her nine laps at Jane’s speed. This approach to comparison 
problems is also applicable to missing value problems and yield 
immediate closure for problems with equal ratios. With unequal 
ratio problems, however, it requires the additional inference that 
Phyllis’s shorter time implies a greater speed than Jane’s. (p. 226) 

 

Thus Karplus et al. (1983a) argue that in order to solve numerical comparison problems 

involving unequal ratios, students must be able to make qualitative comparisons - that is, 

comparisons that do not use numeric values. 

2.2.1.3. Qualitative Problems 

Qualitative problems contain no numerical values and ask in what direction a ratio will 

change when either one or both quantities of the ratio changes. For example, consider the 

following problem: “If Cathy ran less laps in more time than she did yesterday, her running 

speed would be: (a) faster; (b) slower; (c) exactly the same (d) there is not enough information to 

tell” (Heller et al., 1989, p. 211). In order to solve this problem, a student could not rely on 

strategies such as cross multiplication, but rather would need to interpret the meaning of two 
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ratios and compare them (Post et al., 1988). In this example, a student would need to understand 

that Cathy’s running speed can be represented by the ratio of the number of laps Cathy ran 

compared to the amount of time Cathy ran. If Cathy ran fewer laps in a longer amount of time, 

she must be running at a slower speed. This kind of thinking is quite different from the 

understandings required to carry out the cross multiplication procedure.  

Although qualitative problems are rarely present in middle grades curricula (Heller, Post, 

Behr, & Lesh, 1990), researchers argue that qualitative thinking is an important precursor to 

(Resnick & Singer, 1993) and component of (Heller et al., 1989; Post et al., 1988) proportional 

reasoning. For example, Post et al. argue that qualitative reasoning is an important means to 

check the feasibility of solutions and that students reason qualitatively by considering questions 

such as “Does this answer make sense? Should it be larger or smaller?” (p. 79). Through the 

consideration of such questions, students engage in important qualitative thinking that can 

facilitate the successful solving of proportionality problems.  

 

2.2.2. Discriminate Proportional From Nonproportional Situations 

A proportional reasoner must be able to distinguish between proportional and 

nonproportional situations. That is, a proportional reasoner must be able to determine if the 

relationship between quantities is multiplicative or not. For example, a proportional reasoner 

would recognize that there is a multiplicative relationship between tents and scouts in the 

situation “Four tents will house 12 scouts” (Carpenter et al., 1999, p. 25) and understand that 

there will always be three times as many scouts that can be housed by a number of tents. A 

proportional reasoner also recognizes that the relationship between the quantities in the situation, 

“Sue and Julie were running equally fast around a track. Sue started first. When she had run 9 
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laps, Julie had run 3 laps” (Cramer et al., 1993, p. 159) is not multiplicative. That is, the number 

of laps that the girls ran is related by a constant difference of six - Sue will always be six laps 

ahead of Julie.  

 

2.2.3. Understand the Mathematical Relationships Embedded in Proportional Situations 

Finally, a proportional reasoner must understand the mathematical relationships 

embedded in proportional situations. Specifically, one must understand four key ideas2: (1) 

proportional relationships are multiplicative in nature; (2) proportional relationships are depicted 

graphically by a line that contains the origin; (3) the rate pairs (i.e., x, y pairs) in proportional 

relationships are equivalent; and (4) proportional relationships can be represented symbolically 

by the equation y = mx, where the m is the slope, unit rate, and constant of proportionality 

(Cramer et al., 1993; Post et al., 1988). Understanding these relationships can help one 

distinguish proportional from nonproportional situations.  

For example, comparing the State Park and Zoo situations (shown in Figure 6) described 

in Smith et al. (2003) makes the mathematical relationships embedded in proportional situations 

salient. The four key understandings identified in Cramer et al. (1993) and Post et al. (1988) are 

next described in the context of Smith et al.’s park and zoo situations. 

                                                 
2 Smith, Silver, Leinhardt, and Hillen (2003) refer to these ideas as the four “key understandings.” This language is 
also used in this study.  
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State Park Zoo 

The cost of admission to the 

state park is $1.00 for each 

person in a vehicle plus $3.00 

for parking the vehicle. 

The cost of admission to the zoo 

is $5.00 per person. (There is no 

charge for parking.) 

 

 

Figure 6. The park and zoo situations.  
Taken from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the development of 
teachers’ understanding of proportionality in a practice-based course. Paper presented at the annual meeting of 
the American Educational Research Association, Chicago, IL, p. 42. 
 
 

2.2.3.1. Proportional Relationships Are Multiplicative in Nature 

In the zoo situation, the total cost for any number of people seeking admission can be 

determined by multiplying the number of people by 5. By contrast, the relationship between the 

total cost and the number of people seeking admission to the state park is not multiplicative. That 

is, there is no factor that can be multiplied by the number of people to predict the total cost of 

admission.  

2.2.3.2. Proportional Relationships Are Depicted Graphically By a Line That Passes 

Through the Origin  

Depicted graphically, the total cost for any number of people seeking admission to the 

zoo is a line that goes through the origin. By contrast, the solution to the state park problem, 

depicted graphically, is a line that intersects the y-axis at the point (0, 3). The line that depicts the 

zoo situation contains the origin because if no people visit the zoo, then there will be no cost. By 
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contrast, in the state park situation, even if no people visit the park, the parking fee of $3.00 must 

still be paid3. 

2.2.3.3. All Rate Pairs for a Proportional Situation Reduce to the Same Ratio, the Unit 

Rate 

In the zoo situation both quantities (the number of people and the total cost) are 

increasing and maintaining a constant ratio of 5 to 1 (e.g., $5 for 1 person; $10 for 2 people; $50 

for 10 people). In the state park problem, the $3.00 parking charge that is added on to the cost of 

admission for each group results in ratios that are not constant (e.g., the ratio of $4 for 1 person is 

not equivalent to the ratio of $5 for 2 people or to the ratio of $13 for 10 people).  

2.2.3.4. The m in the Equation y = mx Represents the Slope of the Line, the Unit Rate, 

and the Constant of Proportionality   

In the zoo situation, the total cost for any number of people can be predicted using the 

equation y = 5x. Five is the slope of the line, the unit rate (i.e., the cost per one person), and the 

constant of proportionality. The equation that depicts the relationship between quantities in the 

state park situation is y = x + 3. Although the quantities depicted in the state park situation are 

changing (increasing) at a constant rate, there is not a constant ratio that defines the relationship 

between quantities. 

In this section the understandings and abilities that comprise proportional reasoning have 

been briefly described. In the next section, the literature that examines students’ and teachers’ 

knowledge of proportionality is reviewed.  

                                                 
3 This particular example may not be realistic (because if no people go to the state park, why would they have to pay 
the parking fee?) However, consider an analogous situation: A cable company charges $25 a month for service plus 
a $50 installation fee (Hillen, 2004). In this example, one would still need to pay the installation fee, even if no 
television was watched. 
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2.3. Students’ and Teachers’ Knowledge of Proportionality 

Research has documented that students’ abilities to reason proportionally are typically 

limited. For example, proportionality has been documented as difficult for all students on the 

1995 TIMSS assessment and was the only content area in which the international average 

percent correct was below 50% for both seventh and eighth graders (Beaton et al., 1996). Similar 

results on the 1996 NAEP are reported for U.S. students. In particular, eighth and twelfth grade 

students struggled to solve all but the most routine proportionality problems (Martin & 

Strutchens, 2000; Wearne & Kouba, 2000).  

Research has documented similar limitations in teachers’ understanding of 

proportionality. For example, Post et al. (1991) found that “intermediate grades” teachers (i.e., 

grades 4, 5, and 6) correctly solved less than 70% of the problems in a set that included missing 

value, numerical comparison, and qualitative problems. Furthermore, their rationales or 

explanations for their solutions were typically limited to a description of the steps they had 

carried out to solve the problem (e.g., setting up a proportion, cross multiplying, and dividing).  

In this section, the literature that documents students’ and teachers’ ability to: (1) solve a 

variety of problem types; (2) discriminate proportional from nonproportional situations; and (3) 

understand the mathematical relationships embedded in proportional situations, is reviewed. The 

literature provides a detailed view of students’ ability to solve the two most common types of 

proportionality problems, missing value and numerical comparison, and the factors that influence 

students’ thinking on these two types of problems. Of particular interest is the phenomenon in 

which students successfully solve certain problems but resort to using faulty strategies, even if 

the problems vary only slightly. Although fewer studies have been conducted with teachers, the 

literature reveals that teachers encounter difficulties similar to those of their students.  
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2.3.1. Solve a Variety of Problem Types 

Numerous studies have investigated students’ ability to solve missing value and 

numerical comparison problems and the solution strategies that students use to solve these 

problems.  

2.3.1.1. Missing Value Problems  

Missing value problems are the most common, and often only, type of proportionality 

problem found in textbooks (CBMS, 2001). Students’ success in solving missing value problems 

is frequently dependent upon features of the problems, such as the numeric values and context. 

These features often increase (or decrease) the likelihood that students use incorrect additive, or 

constant difference, strategies (Hart, 1981; Kaput & West, 1994; Lawton, 1993; Rupley, 1981; 

Singh, 2000; Tournaire & Pulos, 1985). This section reviews studies that have documented how 

two problem features, numeric values and problem context, influence students’ ability to 

successfully solve proportionality problems.  

Numeric features. One numeric feature that influences whether students use multiplicative 

strategies is the presence of integer within-ratios and/or between-ratios. For example, in the 

problem “3 U.S. dollars can be exchanged for 2 British pounds. How many pounds for 21 U.S. 

dollars?” (Cramer et al., 1993, p. 159), the multiplicative relationship within quantities (i.e., 3 

U.S. dollars and 2 British pounds) is not integer but the relationship between quantities (i.e., 3 

U.S. dollars and 21 U.S. dollars) is integer. Middle grades students are most successful in solving 

proportionality problems in which at least one of these relationships is integer (Hart, 1981; Kaput 

& West, 1994; Rupley, 1981; Tournaire & Pulos, 1985). For example, Hart (1981) analyzed over 

2,000 middle school students’ written responses to a variety of missing value problems. Students 

were far more successful in solving problems in which the factor relating the quantities was 
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integer (80% of students were successful), rather than noninteger (20% of students were 

successful). Hart noted that many of the same students who successfully solved problems with 

integer ratios resorted to implementing additive strategies in solving problems with noninteger 

ratios. In particular, students were most successful in solving problems in which the factor 

relating the quantities was two. Such problems seemed to invoke a “doubling” strategy. Few 

students used a unit rate approach, and no students made use of the cross multiplication 

procedure.  

Kaput and West (1994) identify another numeric feature that affects students’ ability to 

successfully solve missing value problems. They found that problems in which there was a 

relatively small difference within the quantities in the original ratio invoked sixth grade students 

to use additive strategies. For example, in the problem, “Joan used exactly 15 cans of paint to 

paint 18 chairs. How many chairs can she paint with 25 cans?” (p. 268), there is a small 

difference between the numeric values of 15 and 18 (i.e., 15 x 1.2 = 18) . By contrast, students 

were more likely to successfully solve problems in which there was a relatively large difference 

in the quantities in the original ratio of the problem. For example, in the problem,  “Judy earns 

$63 in 6 weeks. If she earns the same amount of money each week, how much does she earn in 4 

weeks?” (p. 267), the difference between the quantities in the original ratio, 63:6, is larger than 

the previous example (6 x 10.5 = 63).  

Contextual features. A problem’s context also influences the likelihood that students use 

multiplicative strategies (Hart, 1981; Heller et al., 1989; Kaput & West, 1994; Lawton, 1993; 

Singh, 2000; Tournaire & Pulos, 1985; Vergnaud, 1988). For example, Heller et al. (1989) found 

that seventh grade students were more successful in solving missing value problems with 

familiar contexts (e.g., purchasing items) and less successful in solving those whose contexts 
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were unfamiliar (e.g., speed). Even slight variations of the context (e.g., purchasing gum versus 

purchasing records) impacted students’ success in solving the problems, with a greater number of 

students successfully solving problems set in more familiar contexts.  

Even older students’ success in using multiplicative strategies can be influenced by 

contextual features of a problem. For example, Lawton (1993) asked college students to solve a 

missing value problem of the form 4/6 = 6/x, but varied the context in which the problem was 

situated. Students were more likely to use proportional strategies in problems in which the 

quantities were distinctly different from one another (water being transferred from four melted 

ice cubes to a cylinder) than ones in which the quantities were less distinct (water that rises from 

four to six marks when transferred from a wide to a narrow cylinder). In solving the latter 

problem, nearly half the students used an additive strategy.  

One problem context that has been documented as particularly difficult is similarity 

(Hart, 1981, 1988; Kaput & West, 1994; Lamon, 1993b; Singh, 2000). Typically, missing value 

problems involving similarity present a figure and its enlargement, and ask the solver to 

determine the length of one of the sides of the enlargement. For example, Kaput and West (1994) 

found that the majority of sixth grade students solved the problem shown in Figure 7 incorrectly 

by making use of an additive strategy. 
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Figure 7. A typical similarity problem.  
Taken from Kaput, J. J., & West, M. M. (1994). Missing value proportional reasoning problems: Factors 
affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative 
reasoning in the learning of mathematics. Albany: State University of New York Press. p. 269. 
 
 
 

Although young children intuitively recognize when something is “out of proportion” 

(van den Brink & Streefland, 1979), older children often cannot identify a strategy other than an 

additive approach for solving such problems (Hart, 1988). The only item that Kaput and West 

(1994) found to be more difficult for students than the problem shown in Figure 7 was another 

similarity problem in which the figure with the missing value was smaller than the original 

figure. That is, instead of enlarging the original figure, the original figure was shrunk, or scaled 

down. Hart (1981) noted similar results in her study of over 2,000 middle grades students’ 

written solutions to missing value problems. Between twenty-five and fifty percent of these 

students used additive strategies on the four most difficult items on her written instrument -- 

three of which were similarity problems. In a more recent study, Singh (2000) interviewed Alice, 

a top sixth grade student (as identified by her teacher). Although Alice could solve missing value 

problems situated in a range of contexts (e.g., recipes, earning money) and containing both 

integer and noninteger ratios, she could not solve similarity problems correctly and instead 

implemented additive strategies.  

24 cm
9 cm

? cm

The two sides of Figure A are 9 cm high and 15 cm long. Figure B is the same shape but 
bigger. If one side of Figure B is 24 cm high, how long is the other side?

Figure A
Figure B

15 cm
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Thus it appears that students’ ability to successfully solve missing value problems is 

often affected by various features of the problems. These features often affect their ability to 

solve other types of proportionality problems, such as numerical comparison problems.  

2.3.1.2. Numerical Comparison Problems 

Similar to students’ ability to solve missing value problems, research has documented 

that the numeric features of numerical comparison problems frequently influence students’ use of 

multiplicative strategies (Karplus et al., 1983a; 1983b; Noelting, 1980). In order to solve 

numerical comparison problems, one not only needs to determine the correct answer but also 

make sense of the quantities used in the comparison.  

Numeric features. In solving numerical comparison problems, students frequently call 

upon additive strategies in situations in which the multiplicative relationship between the 

quantities is noninteger. For example, Noelting (1980) asked 321 students between the ages of 6 

and 16 to compare two orange juice mixtures made from different amounts of orange juice and 

water and to determine the mixture that would have the stronger orange taste. Certain pairs of 

mixtures were easier for students to determine the stronger orange taste than others (as defined 

by greater frequency of success). In particular, comparing recipes that had the same amount of 

orange juice (and different amounts of water) was easier than comparing recipes that had 

different amounts of both quantities. The most difficult pairs were ones in which both recipes 

were related by the same additive difference (e.g., 2 cups juice and 1 cup water versus 4 cups 

juice and 3 cups water – both recipes have one more cup of water than juice). Of the examples in 

which the quantities in both recipes were related by the same additive difference, the previous 

example was one of the easiest, because the number of cups of juice in the recipes is related by 

an integer scale factor of 2 (there is twice as much juice in the second recipe, but more than twice 
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as much water, so the first recipe is stronger). By contrast, the most difficult example in this 

group was comparing 5 cups juice and 7 cups water versus 3 cups juice and 5 cups water, 

because neither the between-ratio nor the within-ratio is an integer. Karplus et al. (1983b) had 

similar results when they interviewed sixth and eighth grade students about the sweetness of two 

lemonade mixtures made from sugar and lemon juice, finding that the presence of integer or 

equal ratios facilitated students’ use of proportional strategies and that additive strategies 

replaced proportional strategies on more difficult problems. 

Making sense of quantities. Numerical comparison problems are also more difficult than 

missing value problems because as one uses ratios to make comparisons, the meaning of those 

ratios must be interpreted. For example, Noelting’s (1980) orange juice problem can be solved 

by determining the unit rate. However, two unit rates can be found: the amount of juice for every 

one cup of water, or the amount of water for every one cup of juice. In the first case, the mixture 

with the larger value would correspond to the mixture with the stronger orange taste. 

Conversely, when using the unit rate of the amount of water for every one cup of juice, the 

mixture with the smaller value corresponds to the stronger mixture. In order to select the mixture 

with the stronger orange taste, one needs to identify what the comparisons mean in the context of 

the problem. This component of solving numerical comparison problems appears to be 

problematic for students.  

For example, only 23% of twelfth graders correctly answered and explained their solution 

to the cherry drink problem, a numerical comparison problem similar to Noelting’s (1980) 

orange juice tasks, that was an item on the 1996 NAEP: 

Luis mixed 6 ounces of cherry syrup with 53 ounces of water to 
make a cherry-flavored drink. Martin mixed 5 ounces of the same 
cherry syrup with 42 ounces of water. Who made the drink with 
the stronger cherry flavor? (Wearne & Kouba, 2000, p. 181) 
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The cherry drink problem could be considered difficult because of the noninteger ratios 

(however, students were allowed to use calculators). Another 26% of U.S. twelfth graders made 

appropriate comparisons using ratios, but either did not identify what their comparisons meant in 

the context of the problem or interpreted their comparisons incorrectly. For example, one viable 

strategy is to divide the water by the concentrate, calculating 8.8 for Luis’ mixture and 8.4 for 

Martin’s. However, without identifying that the 8.8 and 8.4 are the number of ounces of water 

for every one ounce of cherry concentrate, one cannot determine the stronger-tasting mixture. 

Other students made valid comparisons and attempted to interpret their comparisons, but did not 

do so correctly. For example, a valid strategy is to compare the amount of cherry concentrate to 

the amount of water for each mixture, yielding .113 and .119 for Luis and Martin, respectively. 

Although these values have several valid interpretations (e.g., the amount of cherry concentrate 

for every one ounce of water), an incorrect, but common, interpretation was that these values 

reflected the percent of cherry concentrate in the mixture. (This is incorrect because the 

concentrate was being compared to the water, rather than to the entire mixture.)  

In another problem on the 1996 NAEP, both eighth and twelfth graders had considerable 

difficulty solving a numerical comparison problem (shown in Figure 8) in which they were asked 

to defend both an additive and a multiplicative position. Only 1% of eighth graders and 3% of 

twelfth graders were able to create arguments to support both positions, and less than 25% of 

students at both grade levels could produce an argument for only one of the positions. Similar to 

their work on the cherry drink problem, many students were able to make comparisons using 

ratios but incorrectly interpreted the meaning of their comparisons (Wearne & Kouba, 2000). 
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In 1980, the populations of Town A and Town B were 5,000 and 6,000, respectively.  
In 1990 the populations of Town A and Town B were 8,000 and 9,000, respectively.  
 
Brian claims that from 1980 to 1990 the populations of the two towns grew by the same amount.  
Use mathematics to explain how Brian might have justified his claim. 
 
Darlene claims that from 1980 to 1990 the population of Town A had grown more.  
Use mathematics to explain how Darlene might have justified her claim.   

 
 
Figure 8. A problem in which students are asked to make both an additive and a multiplicative comparison. 
Taken from Wearne, D., & Kouba, V. L. (2000). Rational numbers. In E. A. Silver & P. A. Kenney (Eds.), 
Results from the seventh mathematics assessment of the national assessment of educational progress. Reston, 
VA: National Council of Teachers of Mathematics. p. 186.  
 
 
 

2.3.1.3. Range of Strategies 

One final, but important, component in solving missing value and numerical comparison 

problems involves having a range of strategies available for solving problems. Singh’s (2000) 

interview with sixth grader Alice illustrates what happens when students do not have a range of 

strategies available to them. Alice had been taught the unit rate strategy (i.e., determining how 

many or how much for one) and consistently tried to use this method even when solving 

problems in which the unit rate was noninteger, as in the problem, “To bake donuts Mariah needs 

8 cups of flour to bake 14 donuts. Using the same recipe, how many donuts can she bake with 12 

cups of flour?” (p. 284). Even when pressed to solve the problem in a different way, Alice could 

not do so. When asked to solve additional problems without using her school-taught unit rate 
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method, she reasoned additively. She then correctly solved the same problems using her unit rate 

strategy, but was unable to explain why her first, additive response was incorrect.      

By contrast, Karen, another sixth grader who had not been taught the unit rate strategy, 

was able to solve a range of missing value problems correctly and with considerable flexibility 

(Singh, 2000). Karen not only used different strategies, but also used different strategies 

depending on the particular problem on which she was working. For example, in solving the 

donut problem (described previously), Karen unitized the composite ratio unit of 8 cups to 14 

donuts to 4 cups to 7 donuts. She then “built up” this ratio to preserve the relationship between 

cups and donuts (i.e., 4 to 7; 8 to 14; 12 to 21). When presented with a problem in which 

building up would be cumbersome (e.g., How many donuts can Mariah bake with 160 cups of 

flour?), Karen utilized a “scaling up” strategy (i.e., there is 20 times more flour so she can bake 

20 times as many donuts). Karen was also successful in solving similarity problems involving 

both integer and noninteger ratios. Thus Karen was able to solve problems flexibly – that is, her 

strategy changed depending on the problem to one that was the most efficient.  

Although far fewer studies involving proportionality have been conducted with teachers, 

the results of these studies indicate that many teachers encounter the same struggles that students 

experience. For example, Post et al. (1991) administered a written instrument with approximately 

80 rational number and proportionality items (including missing value, numerical comparison, 

and qualitative problems) to over 200 inservice teachers at grades 4, 5, and 6. Nearly one-third of 

the teachers were not able to solve even half the items and the overall mean for the instrument 

was below 70 percent. In follow-up interviews with a subset of the teachers, Post et al. (1991) 

found that the teachers who correctly solved missing value problems used primarily procedural 

approaches, such as cross multiplication. In addition, teachers were frequently unable to provide 
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an explanation for their solution that went beyond a description of the steps they had taken to 

determine the solution (e.g., setting up a proportion and cross multiplying to determine the 

missing quantity). Finally, only 5% of teachers used estimation to determine if their solution 

made sense in the context of the problem. 

Post et al. (1991) also found teachers’ success with numerical comparison problems to be 

similar to that of students’ success. In general, teachers were more successful with comparing 

two ratios that were equivalent than those that were not. In addition, similar to Noelting’s (1980) 

findings with students, Post and his colleagues found that teachers were less successful with 

comparing noninteger ratios.  

Finally, familiarity with the problem context appears to positively influence teachers’ 

ability to successfully solve proportionality problems. During problem-centered interviews, 

Perrine (2001) found that teachers were more successful in solving both missing value and 

numerical comparison problems situated in familiar contexts. These findings echo those found 

by Heller et al. (1989) and Lawton (1993) in studies conducted with students. 

2.3.1.4. Qualitative Problems 

Few studies have examined students’ ability to solve qualitative problems and, to date, no 

studies have been conducted with teachers. The studies that have been conducted with students 

suggest that their ability to solve qualitative problems is limited (Heller et al., 1989; Heller et al., 

1990; Post et al., 1988). For example, Heller et al. (1989) found that 254 seventh grade students 

(who had received no instruction on proportional reasoning during the school year) solved an 

average of 75% of a set of qualitative problems correctly. In a similar study, Heller et al. (1990) 

found that over 800 seventh grade students (who had received no instruction on proportional 

reasoning during the school year) and eighth grade students (who had received instruction on the 
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cross multiplication procedure prior to the study) could correctly solve only about 60% of a set 

of qualitative problems.  

 

2.3.2. Discriminate Proportional From Nonproportional Situations 

Several studies suggest that students have a strong tendency to apply proportional 

strategies to problems that do not call for it. Van Dooren, De Bock, Depaepe, Janssens, and 

Verschaffel (2003) refer to this phenomenon as the “illusion of linearity” (p. 113). For example, 

De Bock, Verschaffel, and Janssens (1998) examined seventh grade students’ solutions to 

problems involving the relationships between the length and area of similar figures. Problems 

involving the relationship between the lengths of similar figures were proportional, while 

problems involving the relationship between the areas of similar figures were not proportional. 

For example, consider the following two problems: 

1. Farmer Gus needs approximately 4 days to dig a ditch around a 
square pasture with a side of 100 m. How many days would he 
need to dig a ditch around a square pasture with a side of     
300 m? 

2. Farmer Carl needs approximately 8 hours to manure a square 
piece of land with a side of 200 m. How many hours would he 
need to manure a square piece of land with a side of 600 m?           

(De Bock, Verschaffel, & Janssens, 1998, p. 68) 

 

Problem 1 is proportional because it focuses on length and perimeter, and the lengths and 

perimeters of similar figures are proportional. Therefore, since one side of the square has tripled, 

it will take the farmer three times as long to dig the ditch. By contrast, problem 2 is not 

proportional because it focuses on area, and the areas of similar figures are not proportional. That 

is, even though the length of the sides has tripled, the area has increased by a factor of nine, as 

shown in Figure 9. 
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Enlarged square piece of land with a side of 600 m.
Original square piece of land 
with a side of 200 m.

200 m

200 m

200 m

200 m

600 m

 
 
 
Figure 9. Diagram that shows that when the length of the side of a square triples, the area of the square 
increases by a factor of nine.  

 
 
 

De Bock et al. (1998) found that students had difficulty distinguishing between problems 

such as the ones shown above. Students scored an average of 92% correct on the proportional 

problems and an average of only 2% correct on the nonproportional problems. Nearly all of the 

students’ incorrect strategies to the nonproportional problems involved incorrectly applying 

proportional strategies. Of particular interest is that even when pressed to sketch a figure of the 

problem situation, students still applied proportional strategies to the nonproportional situations.  

In a similar study, De Bock, Van Dooren, Janssens, and Verschaffel (2002) interviewed 

seventh and tenth grade students as they solved a problem involving similar figures. The problem 

presented students with the enlargement of an irregular figure (a picture of Father Christmas, 

whose height and width were now three times as large as the original figure). Students were told 

the amount of paint needed to paint the original picture and asked how much paint was needed to 

paint the enlargement. Ninety-five percent of the students initially solved the problem incorrectly 

by applying a proportional strategy (e.g., three times as much paint is required, because the 

height and width are three times as large). Van Dooren et al. (2003) note that this phenomenon of 
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students “over-applying” proportional strategies to nonproportional situations is not limited to 

geometric contexts such as similarity. They report similar findings in examining students’ 

strategies in solving probability problems. 

Studies that examine teachers’ ability to discriminate between proportional and 

nonproportional situations indicate that teachers struggle to do so in situations that span a variety 

of contexts. For example, Cramer et al. (1993) found that thirty-two out of thirty-three preservice 

elementary teachers incorrectly solved the following problem: “Sue and Julie were running 

equally fast around a track. Sue started first. When she had run 9 laps, Julie had run 3 laps. When 

Julie had completed 15 laps, how many laps had Sue run?” (p. 159). Instead of recognizing that 

the number of laps that Sue and Julie ran is related by addition (Sue will always be 6 laps ahead 

of Julie), teachers set up a proportion, cross multiplied, and concluded that Sue had run 45 laps. 

Thus, teachers assumed that because the problem presented three quantities and required them to 

determine a fourth, that the solution required a proportional strategy. This phenomenon of “over-

proportional reasoning” is similar to De Bock et al.’s (1998; 2002) observations during 

interviews with students. Interestingly, this same group of teachers correctly solved another 

problem: “3 U.S. dollars can be exchanged for 2 British pounds. How many pounds for 21 U.S. 

dollars?” (p. 159). However, the teachers were unable to explain why this situation was 

proportional while the laps problem was not.  

2.3.2.1. Ratio as Measure 

There is evidence that teachers do not see ratio, a multiplicative comparison, as an 

appropriate method to measure a particular attribute (e.g., oranginess of a drink; steepness of a 

hill) and instead measure the attribute using an additive comparison. For example, Simon and 

Blume (1994) observed that few preservice elementary teachers identified ratio as an appropriate 
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measure of the steepness of ski ramps. During class discussions, teachers developed two ways to 

represent steepness: by the ratio of the height to the length of the base (a correct multiplicative 

approach), and by the difference between the height and length of the base (an incorrect additive 

approach). However, teachers had difficulty recognizing that the multiplicative approach was 

appropriate in this situation.  

Heinz (2000) observed a similar phenomenon in a study of preservice and practicing 

elementary teachers. In this study, teachers were asked to determine which was more lemony -- 

jar A which contained 3 lemon cubes and 2 lime cubes, or jar B which contained 4 lemon cubes 

and 3 lime cubes. In their initial work on the task, 58% of the teachers used an incorrect additive 

strategy to conclude that the mixtures were equally lemony.   

Smith et al. (2001) also found that at the beginning of a mathematics methods course, 

over 50% of preservice elementary and secondary teachers did not recognize ratio as an 

appropriate measure of the degree to which a rectangle is “square” and instead used additive 

strategies. For example, a 35 by 39 rectangle is more square than a 21 by 25 rectangle, even 

though in both figures the length is four units larger than the width. A ratio can be used to 

determine the “squareness” of a rectangle. Because the lengths of all sides of a square are 

equivalent, the ratio of the width to the length of a square is 1. Therefore, the rectangle whose 

ratio of width to the length (or length to the width) is closest to 1 would be the most square. 

These results are consistent with Simon and Blume’s (1994) pretest results on a similar problem, 

in which the majority of preservice elementary teachers (19 of 26 teachers) made use of an 

additive strategy; Heinz’s (2000) results in which nearly half of the preservice and practicing 

elementary teachers used a difference to measure squareness; and Perrine’s (2001) results in 

which six preservice elementary teachers all used a difference to determine the rectangle that was 
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the most square. Recognizing that the quantities are related multiplicatively and that comparing 

them additively is inappropriate is a crucial component of proportional reasoning, yet is an 

aspect of proportional reasoning that preservice teachers often lack. 

 

2.3.3. Understand the Mathematical Relationships Embedded in Proportional Situations 

To date, no studies have examined students’ understandings of the mathematical 

relationships embedded in proportional situations. There is, however, evidence that teachers do 

not understand these relationships. For example, prior to and upon completion of a methods 

course focused on proportional reasoning in the middle grades, Smith et al. (2003) presented pre- 

and inservice elementary and secondary teachers with six relationships (two of which were 

depicted as graphs, two as equations, and two as tables) and asked teachers to classify them as 

either proportional or nonproportional and to explain how they knew. Prior to the course, nearly 

70% (12 of 17) of the teachers could not correctly characterize any of the relationships. The most 

common misconception exhibited by this group of teachers was that all linear relationships are 

proportional. The remaining 30% (5 of 17) of the teachers were able to correctly classify some of 

the relationships. Most of these responses were supported by an appropriate rationale, the most 

common of which was that proportional relationships are depicted graphically by lines that 

contain the origin (key understanding 2).  

Upon completion of the course, nearly all the teachers were able to distinguish 

proportional situations from nonproportional ones. In addition, they had come to understand the 

nature of proportional relationships, as evidenced in their use of the four key understandings to 

justify their distinctions. Teachers’ use of the four key understandings also appeared to be 

flexible, as evidenced by their use of key understandings that took into account the nature of the 
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representation. For example, an explanation involving the understanding that proportional 

situations are depicted graphically by a line that contains the origin (key understanding 2) was 

frequently used to characterize the graphical relationships, and to a lesser extent to characterize 

the relationships presented as equations and tables. The argument used by the least number of 

teachers was that a proportional relationship can be represented symbolically as y = mx, where m 

is the slope, the unit rate, and the constant of proportionality (key understanding 4).   

In this section, the literature that examines students’ and teachers’ ability to reason 

proportionally has been reviewed. In the next section, the types of experiences that teachers need 

in order to develop their capacity as proportional reasoners are discussed. 

 

2.4. The Experiences Teachers Need in Order to Develop Their Ability to Reason 
Proportionally 

As noted in Chapter One, teachers’ opportunities to develop their ability to reason 

proportionally are typically quite limited, and emphasis is placed on achieving facility in 

implementing procedures such as cross multiplication (CBMS, 2001). In order to help their 

students develop a capacity to reason proportionally, teachers need more meaningful 

opportunities to explore the mathematical ideas they will teach (CBMS, 2001; Sowder, 

Armstrong, et al., 1998). In this section, two specific types of mathematical experiences that are 

recommended for teachers are described.  

First, teachers should have opportunities to explore and compare both additive and 

multiplicative situations (Lamon, 1995; Sowder, Armstrong, et al., 1998). In addition, Lamon 

and Sowder, Armstrong, et al. argue that teachers need opportunities to explore situations that 

can be viewed from both absolute (i.e., additive) and relative (i.e., multiplicative) perspectives. 

Lamon (1995; 1999) argues that the ability to make relative comparisons is an important type of 
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thinking required for proportional reasoning. Therefore, teachers should explore problems such 

as the following, which can be viewed appropriately from both an absolute and a relative 

perspective:  

Jo has two snakes, String Bean and Slim. Right now, String Bean 
is 4 feet long and Slim is 5 feet long. Jo knows that two years from 
now both snakes will be fully grown. At her full length, String 
Bean will be 7 feet long, while Slim’s length when he is fully 
grown will be 8 feet. Over the next two years, will both snakes 
grow the same amount? (Lamon, 1995, p. 174) 

 

One way to measure the change in the snakes’ growth is to consider their absolute, or actual, 

growth - they both grew three feet. Determining absolute change makes use of a constant, 

additive difference. Alternatively, the amount the snakes will grow (three feet) could be 

considered relative to their current length. Using a relative perspective, String Bean will grow 

3/4 of her current length, while Slim will grow 3/5 of his current length. Therefore, when making 

a relative comparison, the snakes do not grow the same amount. Measuring change relatively, as 

opposed to absolutely, requires using a ratio, which is a multiplicative comparison.  

Second, teachers should encounter a variety of situations in which ratio is involved 

because the understanding of ratio is critical in making the transition from additive to 

multiplicative reasoning (CBMS, 2001; Sowder, Armstrong, et al., 1998). In particular, teachers 

need to understand that ratio can be used to measure a particular attribute. This view of ratio is 

quite different from the typical ways that teachers encounter ratio (e.g., comparing two sets, such 

as comparing the number of boys to the number of girls in a classroom) (Sowder, Armstrong, et 

al., 1998). For example, a correct solution to Simon and Blume’s (1994) ski ramp problem 

(shown in Figure 10) makes use of a ratio to measure the steepness of the ramp. In this problem, 
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teachers must identify the relevant quantities (height of the hill and length of the base) and 

determine how these quantities should be related in order to describe steepness.  

 
 
In Kansas, there are no mountains for skiing. An enterprising group built a series of ski ramps 
and covered them with a plastic fiber that permitted downhill skiing. It is your job to rate them in 
terms of most steep to least steep. You have available to you the following measurements for 
each hill: the length and width of the base (measured along the ground) and the height. How 
would you determine the relative steepness of the hills using the information you have?  
 

 
Figure 10. The ski ramp problem.  
Taken from Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a component of understanding 
ratio-as-measure: A study of prospective elementary teachers. Journal of Mathematical Behavior, 13, p. 187. 
 
 
 

2.5. Summary 

Proportional reasoning is an important topic in the middle grades curriculum, yet presents 

challenges both to students and to the teachers who work with them. Reasoning proportionally 

requires one to make a shift from additive to multiplicative thinking. In particular, reasoning 

proportionally includes: (1) solving a variety of problem types (missing value, numerical 

comparison, qualitative); (2) discriminating proportional from nonproportional situations; and (3) 

understanding the mathematical relationships embedded in proportional situations.  

A proportional reasoner should not only be able to solve a variety of problems but also 

have “the mental flexibility to approach problems from multiple perspectives and at the same 

height

width of base
length of base
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time [have] understandings that are stable enough not to be radically affected by large or 

‘awkward’ numbers or by the context within which a problem is posed” (Post et al., 1988, p. 80). 

However, the literature suggests that students rarely use proportional reasoning consistently 

across sets of problems that call for multiplicative strategies. In particular, studies illustrate that 

even slight variations of problems dramatically influence students’ (in the middle grades and 

beyond) strategy selection. Although fewer studies have been conducted with teachers, the 

literature suggests that teachers experience similar difficulties. In addition, teachers tend to rely 

on procedural strategies such as cross multiplication that do not necessarily call upon a deep 

understanding of the relationships between the quantities in proportional situations.  

A proportional reasoner should also be able to distinguish between proportional and 

nonproportional situations. The literature suggests that both students and teachers have difficulty 

making this distinction. In particular, both students and teachers apply constant difference 

strategies to problems that require proportional strategies. Furthermore, students and teachers 

over-apply proportional strategies to situations in which the quantities are not related 

proportionally.  

Finally, teachers do not appear to recognize the mathematical relationships embedded in 

proportional relationships. When teachers are unable to recognize these relationships, they have 

difficulty identifying situations presented in multiple representations as proportional or not, as 

shown in Smith et al. (2003).  

In order to improve students’ ability to reason proportionally, teachers’ knowledge of 

proportionality must also be developed and refined. The purpose of this study was to examine 

preservice secondary teachers’ ability to: (1) solve a variety of problem types; (2) discriminate 

proportional from nonproportional situations; and (3) understand the mathematical relationships 



 

 53

embedded in proportional situations before and after participation in a course focused on 

proportional reasoning. In addition, this study sought to document teachers’ opportunities to 

learn the intended content and to examine the extent to which teachers drew upon their 

understandings in a new setting.  
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3. CHAPTER THREE: METHODOLOGY 

 
 

3.1. Introduction 

The purpose of this study was to describe preservice secondary mathematics teachers’ 

understandings about proportional reasoning (specifically, their ability to: (1) solve a variety of 

problem types; (2) discriminate proportional from nonproportional situations; and (3) understand 

the mathematical relationships embedded in proportional situations) prior to and upon 

completion of a practice-based methods course specifically focused on proportional reasoning. In 

addition, the study sought to provide an explanation for the learning that occurred during the 

course by examining the learning opportunities presented to teachers and their public work (in 

the form of oral contributions) within those opportunities. Finally, the study sought to examine 

the extent to which teachers applied their understandings about proportional reasoning during a 

subsequent course that focused on algebra as the study of patterns and functions.  

The study utilized a quasi-experimental design, in which data was collected on two 

groups of teachers: (1) the treatment group, who underwent the treatment, enrollment in the 

course; and (2) the contrast group, who was not enrolled in the course (Campbell & Stanley, 

1963)4. A pre- and posttest design approach was applied to this quasi-experiment, with both 

groups of teachers completing a pre/post written test and a pre/post interview. The sections that 

                                                 
4 A quasi-experimental design, rather than a “true experimental design,” was used because the teachers could not be 
randomly assigned to the treatment and contrast groups (Campbell & Stanley, 1963). The teachers were already 
enrolled in particular teacher certification programs that either required them to enroll in the course or not.  
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follow present the methodology for the study, beginning with a detailed description of the 

methods course that was the treatment in this quasi-experiment.  

 

3.2. Treatment 

The treatment in this quasi-experiment was a master’s level advanced mathematics 

methods course5 offered to students enrolled in Master of Arts in Teaching (MAT) and Master in 

Education (M.Ed.) programs6 in a school of education at a large, urban university. The course 

was taught by an experienced mathematics teacher educator and researcher. The course was 

offered during a fifteen-week semester in the spring of 2003 and met once per week for two and 

a half hours. The goal of the course was to help teachers construct (or reconstruct) their own 

understanding about proportional reasoning and proportional relationships and to develop their 

capacity for providing meaningful learning opportunities for the students with whom they work. 

From a mathematical perspective, the course was intended to help teachers: (1) recognize and 

gain fluency using an array of mathematical and linguistic representations related to 

proportionality; (2) distinguish between situations in which quantities have a multiplicative 

relationship and those that do not, and become proficient making or using comparisons between 

and among quantities when there is an underlying multiplicative relationship; (3) develop and 

become proficient using a repertoire of strategies to solve both commonly encountered problems 

and non-routine problems involving proportionality; and (4) characterize and describe the 

occurrence of proportionality in a range of topics in the middle grades mathematics curriculum. 

 
                                                 
5 The course was developed under the auspices of the ASTEROID (A Study in Teacher Education: Research on 
Instructional Design) project (NSF Award #0101799), principal investigator, Margaret S. Smith. 
6 The course was offered to both preservice teachers (enrolled in the MAT program) and inservice teachers (enrolled 
in the M.Ed. Program). However, only the preservice teachers participated in the study since the purpose of the 
study was to examine preservice teachers’ understandings.  
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3.2.1. Content of the Course 

Teachers enrolled in the course engaged in a variety of activities that depict the work of 

teaching, including solving and analyzing mathematical tasks drawn from middle-grades 

curricula, analyzing students’ mathematical understandings as shown in their written work, and 

analyzing and reflecting on teaching depicted in narrative and video cases. The course centered 

around a set of four narrative cases, each of which depicts an episode of instruction on rational 

numbers and proportionality in the middle grades (Smith, Silver, & Stein, 2005b)7. Additional 

tasks were drawn from a variety of sources, including a unit from The Connected Mathematics 

Project which focused on ratio, proportion, and percent (Lappan, Fey, Fitzgerald, Friel, & 

Phillips, 1998), the NCTM’s (2000) Principles and Standards for School Mathematics, and the 

required textbook for the course, Lamon’s (1999) Teaching Fractions and Ratios for 

Understanding: Essential Content Knowledge and Instructional Strategies for Teachers.   

The sequence of activities in which teachers engaged during the course is shown in 

Figure 11. The columns denote the activities that occurred during each class or were assigned for 

homework (activities that are shown above the line occurred during class; activities below the 

line were assigned for homework)8. Five types of activities (denoted by the different shapes), 

were used in the course: (1) solving and discussing mathematical tasks (rectangles); (2) 

analyzing and discussing samples of student work (hexagons); (3) analyzing and discussing cases 

of mathematics teaching (ovals); (4) reading about and discussing issues related to mathematics 

teaching (triangles); and (5) discussing mathematical ideas that did not directly stem from a 

mathematical task that teachers solved (diamonds).  

                                                 
7 The set of cases was developed under the auspices of the NSF-funded COMET (Cases of Mathematics Instruction 
to Enhance Teaching) project, whose purpose was to develop materials for teacher professional development in 
mathematics. The project was co-directed by Margaret S. Smith, Edward A. Silver, and Mary Kay Stein.  
8 During the last class (Class 15), teachers completed the posttest. No other course activities occurred during this 
class.  
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Figure 11. The course map that describes the activities in which teachers engaged during the course.  
Adapted from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the development of teachers’ understanding of proportionality in a 
practice-based course. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL, p. 10. 
 

Note. Columns denote activities that occurred during each class (or were assigned for homework) 
Activities above the line occurred during class; activities below the line and shaded in gray were assigned for homework 

The shapes indicate the type of activity in which teachers engaged, as shown below: 
Rectangles: Solving and discussing mathematical tasks 
Hexagons: Analyzing and discussing samples of student work 
Ovals: Analyzing and discussing cases of mathematics teaching 
Triangles: Reading about and discussing issues related to mathematics teaching 
Diamonds: Discussing mathematical ideas that did not directly stem from a mathematical task that teachers solved 
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Figure 12 uses color-coding to illuminate the particular activities in which teachers had 

opportunities to: (1) solve a variety of problem types (missing value problems are shaded in 

green; numerical comparison problems are shaded in purple)9; (2) distinguish proportional from 

nonproportional situations (shaded in yellow); and (3) understand the mathematical relationships 

embedded in proportional situations (shaded in pink). As shown in Figure 12, teachers had an 

opportunity to solve (or examine solutions to) missing value or numerical comparison problems 

in 9 of 14 classes. However, teachers had no opportunities to solve qualitative problems. In 

addition, teachers had opportunities throughout the course to discriminate between proportional 

and nonproportional situations. Finally, teachers had few opportunities to examine the 

mathematical relationships embedded in proportional situations. 

 

 

                                                 
9 Note that in Figure 12, several hexagons (which denote activities in which teachers analyzed and discussed student 
work) are shaded green or purple. This is due to the fact that by examining students’ solutions, teachers had 
opportunities to consider alternative ways of solving missing value and numerical comparison problems.  
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Figure 12. The color-coded course map that indicates teachers’ opportunities to solve a variety of problem types, discriminate proportional from 
nonproportional situations, and understand the mathematical relationships embedded in proportional situations. 
 
Note. Columns denote activities that occurred during each class (or were assigned for homework) 

Activities above the line occurred during class; activities below the line and shaded in gray were assigned for homework 

The shapes indicate the type of activity in which teachers engaged, as shown below: The color-coding indicates activities in which teachers had opportunities to explore the abilities 
described in the framework, as shown below: 

Rectangles: Solving and discussing mathematical tasks Green: Solve a variety of problems types (specifically, missing value problems) 
Hexagons: Analyzing and discussing samples of student work Purple: Solve a variety of problems types (specifically, numerical comparison problems)  
Ovals: Analyzing and discussing cases of mathematics teaching Yellow:  Distinguish proportional from nonproportional situations  
Triangles: Reading about and discussing issues related to mathematics teaching Pink: Understand the mathematical relationships embedded in proportional situations 
Diamonds: Discussing mathematical ideas that did not directly stem from a 

mathematical task that teachers solved 
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The activities were interwoven throughout the course so that teachers had multiple 

opportunities to explore the mathematical ideas in a variety of contexts. For example, teachers 

had multiple opportunities to develop a range of approaches to solve missing value problems. 

For instance, during the second class, teachers solved and shared their solution strategies to the 

tent/scout problem (“Four tents house 12 scouts. How many scouts will 40 tents house?” 

[Carpenter et al., 1999, p. 25]) and examined student responses to the tent/scout problem. These 

student responses varied with respect to correctness, strategy, and representation, and many 

differed from the strategies produced by the teachers. During Class 9, teachers solved and shared 

their solutions to the candy jar problems (shown in Figure 13) and read The Case of Marie 

Hanson (Smith, Silver, & Stein, 2005b), which highlighted a range of correct and incorrect 

solutions to the candy jar problems. Thus, through the exploration of student work depicted in 

written responses and cases, teachers were not only exposed to alternative ways of solving 

missing value problems but also had opportunities to analyze solution strategies for these 

problems. 
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Solve 
1.  Suppose you have a larger candy jar with the same ratio of Jolly Ranchers to Jawbreakers as shown in the candy 

jar above. If the jar contains 100 Jolly Ranchers, how many Jawbreakers are in the jar? 
 
2.  Suppose you have an even larger candy jar with the same ratio of Jolly Ranchers to Jawbreakers as shown in the 

candy jar above. If the jar contains 720 candies, how many of each kind of candy are in the jar? 
 
3.  Suppose you are making treats to hand out to trick-or-treaters on Halloween. Each treat is a small bag that 

contains 5 Jolly Ranchers and 13 Jawbreakers. If you have 50 Jolly Ranchers and 125 Jawbreakers, how many 
complete small bags could you make? 

 
 
Figure 13. The candy jar problems that teachers solved during Class 9.  
Taken from Smith, M. S., Silver, E. A., & Stein, M. K. (2005b). Improving instruction in rational numbers and 
proportionality: Using cases to transform mathematics teaching and learning. New York: Teachers College 
Press, p. 26. 
 
 
 
3.2.2. Norms and Practices of the Course 

An additional purpose of the course was to provide teachers with an opportunity to 

engage in mathematical activities, as students, in the very same ways in which they were being 

asked to teach. Therefore, the instructor posed challenging tasks that could be viewed from 

multiple perspectives, engaged teachers in discourse, and created a learning environment that 

supported and encouraged reasoning. In contrast to teachers’ typical experiences as students of 

mathematics, the instructor rarely “told” teachers anything; rather, she created opportunities for 

them to engage in an activity in which the idea she wanted them to explore was embedded. For 

example, when the instructor wanted teachers to come to understand the mathematical 

relationships embedded in proportional situations, she presented them with the park and zoo 
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situations (shown in Figure 6 in Chapter Two) and asked them to consider whether either 

situation was proportional and why. The instructor then compiled the teachers’ individual 

responses to the task and created a list of teacher-generated rationales for why the zoo situation is 

proportional but the park situation is not. In a subsequent class, the instructor asked teachers to 

consider the rationales on the list. Thus individual teachers had an opportunity to consider 

rationales other than the ones they had generated themselves and develop explanations regarding 

the appropriateness of each rationale.  

It is also important to note that the bulk of the instructor’s conversational turns functioned 

to structure, support, or continue the class discussions (e.g. launching the activity, calling on 

teachers who wished to contribute, acknowledging teacher contributions) or to revoice ideas 

stated by the teachers in the classroom for the purpose of clarification, refinement, or reiteration 

in the public conversational space (O’Connor & Michaels, 1996). As a general rule, the 

instructor did not introduce new ideas into the public space. 

Although teachers engaged in different types of activities during each class, activities 

were typically enacted in three phases: (1) teachers worked individually on the activity for about 

five to ten minutes; (2) teachers then discussed their individual ideas with a small group (which 

ranged in size between two and four teachers) to arrive at a consensus opinion or to decide that 

they had a fundamental disagreement that could not be resolved; and (3) teachers engaged in a 

public sharing and whole group discussion of ideas generated by the groups. During individual 

and small group work the instructor monitored teachers as they worked, asking questions to 

determine what they understood about the activity, providing support when they were 

experiencing difficulty (e.g., by helping teachers focus on salient features of the activity; by 

suggesting a starting point for teachers’ work), and making note of key aspects of teachers’ work 
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that would serve as a resource in the sharing phase of the lesson. Sharing took various forms 

including posting of problem solutions on newsprint for public viewing and future reference, 

individual or group presentations at the overhead projector stationed in the front of the room, or 

individual and group contributions offered in an ongoing discussion in which the instructor acted 

as moderator and recorder. During the whole group discussion the instructor pressed teachers to 

provide justification for their solutions, strategies, or claims; invited teachers to question the 

ideas being discussed; pressed teachers to make connections between different solutions and 

ideas; and ensured that the important mathematical and pedagogical ideas that were driving the 

lesson were brought to the fore. 

Thus, teachers in the course had an opportunity to experience firsthand a way of teaching 

whose focus was thinking and reasoning. Multiple strategies and perspectives were encouraged 

and teachers’ ideas, even if they were incorrect or controversial, were respected.  

 

3.3. Participants 

All participants in this study were enrolled in one of two fifth-year teacher education 

programs at a large, urban university that culminated in an Instructional 1 certification in 

secondary (7-12) mathematics. In order to be accepted into these master’s-level programs, 

applicants needed to have a bachelor’s degree in mathematics (or the equivalent) and a minimum 

QPA of 3.0. During the summer or fall semesters prior to data collection, all participants 

completed four core courses: a teaching lab in which they learned to plan mathematics lessons 

and three mathematics methods courses (one whose focus was curriculum, one whose focus was 

instruction, and one whose purpose was to help teachers learn how and when to use technology 

appropriately in their mathematics lessons). 
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The treatment group consisted of ten preservice secondary teachers (five females, five 

males) who were enrolled in a Master of Arts in Teaching (MAT) program. The treatment group 

included all ten teachers enrolled in the MAT program. In this program, teachers earn a teaching 

certificate and a master’s degree by completing a full-time, yearlong field placement (i.e., 

internship) in a public school classroom and by completing university coursework in the 

evenings. The advanced mathematics methods course focused on proportional reasoning 

described in the previous section was a required course in the MAT program. At the time the 

teachers in the treatment group began this course, they had completed summer courses as well as 

one semester of coursework and one semester of their teaching internship.  

The contrast group consisted of six preservice secondary teachers (all female) who were 

enrolled in a Professional-Year (PY) certification program. In this program, teachers earn a 

teaching certificate by completing university coursework during the fall semester and by 

completing a one-semester field placement (i.e., student teaching) in a public school classroom 

during the spring semester. The advanced mathematics methods course described in the previous 

section was not a required course for the PY program. At the time the study was conducted, 

teachers in the PY program were doing their student teaching. It is important to note that the 

contrast group consisted of only a subset of teachers enrolled in the PY program who elected to 

participate in the study. In addition, over half of the teachers in the contrast group were pursuing 

a teaching career as a second career (by contrast, only one teacher in the treatment group was 

pursuing teaching as a second career). As such, the contrast group was comprised of volunteers 

who may not have been representative of the population it aimed to represent.  
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3.4. Data Sources 

In this section, the data sources are described. A variety of data sources were collected in 

order to explore the five research questions [(1) What do preservice secondary mathematics 

teachers know and understand about proportional reasoning prior to participation in a course 

specifically focused on proportional reasoning?; (2) What do preservice secondary mathematics 

teachers know and understand about proportional reasoning immediately after participation in a 

course specifically focused on proportional reasoning?; (3) How do preservice secondary 

mathematics teachers who participated in a course specifically focused on proportional reasoning 

differ from preservice secondary mathematics teachers who did not participate in the course in 

their understandings about proportional reasoning?; (4) To what extent can teacher learning be 

accounted for by participation in a course specifically focused on proportional reasoning?; and 

(5) To what extent do preservice secondary mathematics teachers who participated in a course 

specifically focused on proportional reasoning draw upon their understandings about 

proportional reasoning in a subsequent course?]. Table 1 illustrates the match between the data 

sources and research questions. In the following sections, the data used to explore the research 

questions is described. 
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Table 1.  The Match Between the Data Sources and the Research Questions 

 
The Match Between the Data Sources and the Research Questions 

1 2 3 4 5
Pre/posttest X X X
Pre/post interview X X X
Written artifacts (i.e., 
overhead transparencies, 
posters) from class 
sessions

X

Pre/posttest, question 2 X

X

Videotapes of whole class 
discussions in which 
teachers accessed 
understandings of 
proportionality (Classes 7 
and 8)

Research question
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Videotapes of whole class 
discussions in which 
teachers explored the three 
ideas in the framework

X
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lg

eb
ra

 c
ou

rs
e

 
 
Note. Shading indicates data sources that were collected from both the treatment and contrast groups. 
 
 
 
3.4.1. Pre/Post Instruments 

The purpose of this study was to examine changes in teacher knowledge as a result of 

participation in a practice-based mathematics methods course focused on proportional reasoning. 

Pre/post measures are particularly useful to explore changes over time and differences between 

the treatment group and the contrast group (Creswell, 2002). This study utilized two pre/post 

measures: a pre/post written test and a pre/post interview.   
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3.4.1.1. Pre/Posttest 

The pre/posttest (shown in Appendix A) included twenty-four constructed-response 

mathematics tasks whose purpose was to examine teachers’ ability to: (1) solve a variety of 

problem types; (2) discriminate proportional from nonproportional situations; and (3) understand 

the mathematical relationships embedded in proportional situations. The tasks also prompted 

teachers to explain their thinking or justify their answers. The tasks were selected and/or adapted 

from the literature so as to represent a range of problem types, contexts, and numeric features 

and, as a collection, assess teachers’ ability to reason proportionally. Table 2 illustrates what 

each task was intended to illuminate.  

 
 

Table 2. The Match Between the Pre/Posttest Items and the Three Abilities 

 
The Match Between the Pre/Posttest Items and the Three Abilities 

Missing 
value

Numerical 
Comparison Qualitative

1-4 X
5 X  
6 X X
7-8 X
9 X
10 X
11-22 X X
23 X
24 X X

Task Number

Solve a Variety of Problem Types
Discriminate 

proportional from 
nonproportional 

situations

Understand the 
mathematical 
relationships 
embedded in 
proportional 

situations

 
 
 

For example, five tasks (1, 2, 3, 4 and 23) assessed teachers’ ability to solve missing 

value problems. In tasks 1-4, teachers were asked to solve missing value problems that were 

devoid of context. It was expected that teachers would correctly solve these proportions because 
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they can be easily solved using cross multiplication. However, the tasks also prompted teachers 

to solve each problem in two different ways. This data served to document whether teachers had 

additional solution strategies available to them, and if so, the types of strategies. The remaining 

missing value problem on the instrument (task 23) was situated in a context that has been well 

documented as difficult, similarity. This problem was also expected to be difficult for teachers 

since neither the within- nor between-ratios were integer in this problem.  

Both the treatment and contrast groups completed the pretest in the beginning of the 

spring semester and the posttest at the end of the same semester. The teachers were allowed as 

much time as they needed to complete the instrument, and most completed it in less than one 

hour.  

3.4.1.2. Pre/Post Interview 

 The semi-structured interviews (see Appendices B and C for copies of the interview 

protocols) each contained three items whose purpose was to examine preservice secondary 

teachers’ ability to: (1) solve a variety of problem types; (2) discriminate proportional from 

nonproportional situations; and (3) understand the mathematical relationships embedded in 

proportional situations. The interview items supplemented the data collected from the 

pre/posttest. For example, only one type of task on the pre/posttest captured teachers’ ability to 

understand the mathematical relationships embedded in proportional situations (see tasks 11-22 

in Appendix A). Therefore, a focus of the interviews was to explore teachers’ use of these 

relationships in a variety of tasks – specifically, as they defined a proportional relationship, 

created an example and nonexample of a proportional relationship, and examined a real-world 

situation. Table 3 illustrates what each question was intended to illuminate. 
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Table 3. The Match Between the Interview Items and the Three Abilities 

 
The Match Between the Interview Items and the Three Abilities 

Missing 
value

Numerical 
Comparison Qualitative

Pre
1a. Describe a proportional 
relationship X X
1b-c. Give an example of a 
proportional and 
nonproportional situation X X
2. Examining student work X
3. Problem Sort X

Post
1a-c. Reflecting on learninga

2. Snowfall X X
3a. Describe a proportional 
relationship X X
3b-c. Give an example of a 
proportional and 
nonproportional situation X X

Interview item

Solve a Variety of Problem Types
Discriminate 

proportional from 
nonproportional 

situations

Understand the 
mathematical 
relationships 
embedded in 
proportional 

situations

a Only teachers in the treatment group (i.e., enrolled in the course) were asked this item during the post-interview. 
This item was included on the interview as part of a larger research endeavor of which this study was a part. 
 
 
 

For example, item 2 on the post-interview (snowfall) examined teachers’ ability to 

recognize the mathematical relationships embedded in proportional situations. In this item, 

teachers were asked to examine data (presented in a paragraph, a table, and a graph) on two Iowa 

cities’ snowfall during a snowstorm. The relationship between the hours it snowed and the inches 

of snow on the ground was proportional for Cedar Rapids but was not proportional for Mason 

City since there were six inches of snow on the ground prior to the storm. Teachers were asked 

what they could determine from the table and the graph about each of these situations. As such, 

the question also provided teachers with an opportunity to spontaneously characterize the 

relationships depicted in the situations as proportional or not. If teachers did not spontaneously 
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comment on the proportionality of the relationships, they were explicitly asked if either of the 

situations represented a proportional relationship. When teachers commented on the 

proportionality of the relationships, they were pressed to explain and clarify any aspect of their 

response that was not clear or that lacked sufficient detail. 

Each teacher participated in two interviews, one early in the semester (between Class 3 

and Class 5), and one at the end of the semester, after the last class (Class 15). Teachers were 

permitted to write on the materials that accompanied each question. These materials were kept 

for analysis. Each interview was audio taped and was approximately one hour in length. The 

author and a doctoral student in mathematics education conducted the interviews. The doctoral 

student underwent two hours of training in using the interview protocols and also had previous 

experience in interviewing teachers about their understandings of proportionality. As shown in 

the interview protocols, the interviews were semi-structured, and allowed the interviewer to 

probe the teachers’ thinking. Probing was intended to press teachers to explain their thinking and 

clarify their responses. For example, questions such as, “What do you mean by…?” or “Can you 

say more about…?” were used to understand what teachers meant by particular phrases that were 

taken-as-shared during the course (e.g., “scaled up”; “constant of proportionality”).  

 

3.4.2. Data Related to the Proportional Reasoning Course  

In addition to the pre/post data, additional data related to the course was collected. First, 

the author attended and videotaped each class. Brief field notes were also taken, which noted the 

assignment of teachers to small groups and the amount of time spent on each activity. The 

purpose of the field notes was to aid in locating particular discussions on the videotapes. In 

addition, any written work that was made public during class (i.e., posters produced by the small 
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groups; overhead transparencies) was collected. Finally, each teacher’s notebook (which 

contained written assignments, handouts, and classwork) was photocopied. The purpose of 

collecting this data was to aid in exploring research question 4 (To what extent can teacher 

learning be accounted for by participation in a course specifically focused on proportional 

reasoning?). 

 

3.4.3. Data Related to the Algebra Course  

As noted previously, the ten teachers in the treatment group were also required to 

complete a subsequent course whose focus was algebra as the study of patterns and functions in 

the middle grades. The instructor of the proportional reasoning course also taught this course. 

The algebra course was similar to the proportional reasoning course with respect to the types of 

activities, assignments, discourse, and class norms. The algebra course was offered during a six-

week term during the summer of 2003, and met twice a week for three hours. The algebra course 

began two weeks after the end of the proportional reasoning course. The twenty-one teachers 

enrolled in the algebra course varied with respect to certification and subject matter preparation 

as shown in Table 4.  
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Table 4. The Programs and Certification of the Algebra Course Participants 

 

The Programs and Certification of the Algebra Course Participants 

Elementary
(K-6 all subjects)

Deaf Education 1 1 2
Total 13 7 1 21

Secondary (7-12 
mathematics)

Certification MAT M.Ed.

10 5

3 1 4

15

Doctoral Total

 
 
Note. Shading indicates the ten teachers in the treatment group. 
 
 

A variety of data were collected during the enactment of the algebra course in order to 

examine teachers’ understandings before, during, and after the course - pre/posttests, pre/post 

interviews, videotapes of each class session, and all written artifacts (i.e., overhead 

transparencies, posters). A small subset of this data was relevant to exploring the fifth research 

question, To what extent do preservice secondary mathematics teachers who participated in a 

course specifically focused on proportional reasoning draw upon their understandings about 

proportional reasoning in a subsequent course? In particular, teachers’ responses to question 2 

from the pre/posttest and transcripts10 from two class discussions11 served as data sources in 

examining research question 5. These sources are described in more detail in the following 

sections.  

                                                 
10 The video of each class session of the algebra course was transcribed as part of another research study. 
11 Teachers in the algebra course spontaneously introduced proportionality during three classes, as evidenced by the 
transcripts of each class. However, the instructor invited further discussion about proportionality during only two of 
these classes. Therefore these two classes were included in the analysis. 
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3.4.3.1. Pre/Posttest, Question 2 

  During the first and last class session of the algebra course, teachers completed a paper 

and pencil pre/posttest. Of particular interest to this study is question 2 (shown in Figure 14) in 

which teachers were presented with three different situations, asked to express the relationship 

between the quantities in each situation using various representations (e.g., verbal description, 

graph, equation, table), and asked to classify each of the relationships as: (1) a function or 

nonfunction, (2) linear or nonlinear, and (3) proportional or nonproportional. All three 

relationships described functions; two of which were linear (relationships a and c), one of which 

was also proportional (relationship a).  

 
 
 



 

 74

Question 2.  

For each of the situations below, specify the relationship between the quantities using a verbal 
description, numeric table, symbolic equation, and graph.  

a. You are buying a number of apples. The apples cost 30 cents each.  Specify the relationship 
between number of apples and total cost. 

Check off all the terms that apply to this relationship using the list below: 

 Function   Linear    Proportional 

 Nonfunction   Nonlinear   Nonproportional 

b. A video store charges $25 per month for unlimited rentals. Specify the relationship between 
the number of videos you rent in a month and the cost per video. 

Check off all the terms that apply to this relationship using the list below: 

 Function   Linear    Proportional 

 Nonfunction   Nonlinear   Nonproportional 

c. A cable company charges $25 a month for service plus a $50 installation fee.  Specify the 
relationship between the number of months you subscribe and total amount paid for 
installation and monthly service. 

Check off all the terms that apply to this relationship using the list below: 

 Function   Linear    Proportional 

 Nonfunction   Nonlinear   Nonproportional 
 
 
Figure 14. A pre/posttest item from the algebra course that asked teachers to characterize three relationships 
as proportional or not. 
Taken from Hillen, A. F. (2004). Accessing proportionality in the service of developing the concept of function. 
Poster presented at the annual meeting of the American Educational Research Association, San Diego, CA. 
 
 
 

3.4.3.2. Whole Class Discussion, Class 7 

During Class 7, teachers were asked to work in their small groups and create a real world 

situation that defined a functional relationship, as shown in Figure 15. The whole class 

discussion of this activity began with the instructor inviting groups to share their examples. 
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Ursula, one of the teachers in the treatment group, was in the first group to share their example. 

She spontaneously introduced the idea of proportionality to the class, and the instructor 

subsequently raised the idea of proportionality for further discussion (specifically, the differences 

between proportional and nonproportional relationships that can be seen in various 

representations, such as graphs, tables, equations, and verbal descriptions). This discussion lasted 

approximately 15 minutes.  

 
 

 
 
Figure 15. The activity that teachers worked on during Class 7 of the algebra course in which they 
spontaneously introduced proportionality.  

 
 
 

3.4.3.3. Whole Class Discussion, Class 8 

Teachers spontaneously revisited the idea of proportionality in Class 8 during a 

discussion about a task involving linear relationships situated in a “meal plan” context. Prior to 

the discussion during Class 8, teachers had determined “the best” of the following three meal 

plans: Regular Price (depicted by the equation y = 10x), Plan A (depicted by the equation y = 8x 

+ 4), and Plan B (depicted by the equation y = 6x + 12)12. During Class 8, teachers were asked to 

                                                 
12 Note that of the three meal plans, only the Regular Price Plan depicts a proportional relationship.  

• Sketch a graph illustrating the relationship;

• State the relationship using the language of functions;

• Build a chart with numbers that might go with your relationship;

• Explain the graph and chart as ways of presenting the same information 
in different forms;

• Explain how your example meets the formal definition of a function.

Use your example to do the following:
Make up a real-world situation that defines a functional relationship.
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consider the average cost per meal (i.e., the total cost divided by the number of meals) for each 

of the three plans. Teachers graphed the average cost per meal as a function of the number of 

meals for each plan, as shown in Figure 16 (Smith, Silver, & Stein, 2005a). During the part of 

the whole class discussion in which proportionality was raised, teachers were discussing why the 

graph of the cost per meal for the Regular Plan was a horizontal line. This discussion of 

proportionality lasted approximately 7 minutes.  

 
 

 
 
Figure 16. The cost per meal graph that teachers were discussing during Class 8 of the algebra course when 
they spontaneously revisited proportionality.  
Taken from Smith, M. S., Silver, E. A., & Stein, M. K. (2005a). Improving instruction in algebra: Using cases 
to transform mathematics teaching and learning. New York: Teachers College Press, p. 113. 
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3.5. Data Analysis 

In this section, the ways in which the data was analyzed is described. First, the analysis of 

the pre- and post data, which was used to examine the first three research questions [(1) What do 

preservice secondary mathematics teachers know and understand about proportional reasoning 

prior to participation in a course specifically focused on proportional reasoning?; (2) What do 

preservice secondary mathematics teachers know and understand about proportional reasoning 

immediately after participation in a course specifically focused on proportional reasoning?; and 

(3) How do preservice secondary mathematics teachers who participated in a course specifically 

focused on proportional reasoning differ from preservice secondary mathematics teachers who 

did not participate in the course in their understandings about proportional reasoning?] is 

described. Next the ways in which the data related to the proportional reasoning course, which 

was used to explore research question 4 (To what extent can teacher learning be accounted for by 

participation in a course specifically focused on proportional reasoning?) was analyzed is 

described. Finally, the ways in which the data related to the algebra course, which was used to 

explore research question 5 (To what extent do preservice secondary mathematics teachers who 

participated in a course specifically focused on proportional reasoning draw upon their 

understandings about proportional reasoning in a subsequent course?) was analyzed is described.  

 

3.5.1. Pre/Post Instruments 

3.5.1.1. Pre/Posttest  

The twenty-four mathematics tasks on the pre/posttest were coded along various 

dimensions, as shown in Table 5. 
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Table 5. Analysis of the Pre/Posttest Items 

 
Analysis of the Pre/Posttest Items 
 

Task
Rubric score that captured 
correctness and quality of 

explanation

Strategy used to 
solve problem

Correctly identified 
situation as proportional or 

nonproportional

Key understandings 
used

1-4 X
5 X
6 X X
7-8 X
9 X
10 X
11-22 X X
23 X X
24 X X
 

 

A scoring rubric was developed for the tasks in which teachers were asked to provide 

explanations. The rubrics scored teachers’ responses on a scale of 0 – 4 and sought to capture 

various related features of teachers’ responses such as correctness and quality of explanations 

(Lane, 1993; Silver & Lane, 1993). With respect to correctness, the rubrics described the extent 

to which teachers used a viable solution strategy and carried out that strategy. With respect to 

quality of explanation, the rubrics described the extent to which teachers justified their responses 

and made sense of quantities. For example, the rubric shown in Figure 17 was used to score 

responses to task 24. This rubric considers two characteristics of teachers’ responses: (1) whether 

a multiplicative strategy was used; and (2) if a multiplicative strategy was used, the extent to 

which the values that were calculated were interpreted correctly. The rubric scores are 

considered ordinal data because although they are ranked (i.e., a 4 is “better” than a 3, which is 

better than a 2, etc.), the intervals between each score are not necessarily equal (i.e., the 

difference between a 4 and a 3 is not necessarily the same as the difference between a 3 and a 2). 
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In addition to the scoring rubric, teachers’ responses to the missing value and numerical 

comparison problems (see tasks 1-4, 6, 23, & 24 in Appendix A) were coded by strategy (e.g., 

cross multiplication, within-ratio, between-ratio, building up).  

 
 
4 Makes use of a correct multiplicative strategy and writes an explanation that correctly interprets the values 

that were calculated. 
 

For example, the 455 feet by 508 feet size lot is the most square because the ratio of the width:length is .89 
(the ratio of the width:length of the 75 feet by 114 feet sized lot is .65; the ratio of the width:length of the 
185 feet by 245 feet sized lot is .75). A square’s width and length are the same, so the ratio of width:length 
of a square is always 1. Therefore the rectangle whose ratio of width:length is closest to 1 is the most 
square.  

 
3  Makes use of a correct multiplicative strategy and writes an explanation that vaguely interprets the values 

that were calculated. 
 

For example, the 455 feet by 508 feet size lot is the most square because the ratio of the width:length is .89 
(the ratio of the width:length of the 75 feet by 114 feet sized lot is .65; the ratio of the width:length of the 
185 feet by 245 feet sized lot is .75). The rectangle with the ratio closest to 1 is the most square.  

 
2 Makes use of a correct multiplicative strategy and either writes no explanation or writes an explanation that 

incorrectly interprets the values that were calculated. 
 

For example, the 455 feet by 508 feet size lot is the most square because the ratio of the width:length is .89 
(the ratio of the width:length of the 75 feet by 114 feet sized lot is .65; the ratio of the width:length of the 
185 feet by 245 feet sized lot is .75). 

 
1 Makes use of an incorrect strategy (most likely an additive strategy). 
 

For example, argues that the 75 feet by 114 feet sized lot is the most square because the difference between 
the sides is only 39, and the differences for the other lots are 53 and 60, respectively.  

 
0 No response 
 

Figure 17. Scoring rubric for task 24 on the pre/posttest.  
Adapted from work developed under the auspices of the ASTEROID project (NSF Award #0101799), 
principal investigator Margaret S. Smith. 
 
 
 

Finally, teachers’ responses to tasks 11-22 were coded in the same manner that Smith et 

al. (2003) coded similar pre/post tasks. That is, teachers’ work on tasks 11-22 was coded so as to 

indicate whether teachers correctly identified each situation as proportional or nonproportional 

and the nature of their rationales for each situation. In particular, teachers’ responses were coded 
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so as to indicate which, if any, of the four key understandings identified by Cramer et al. (1993) 

and Post et al. (1988) and described in Chapter Two [(1) proportional relationships are 

multiplicative in nature; (2) proportional relationships are depicted graphically by a line that 

contains the origin; (3) the rate pairs are equivalent in proportional relationships; and (4) 

proportional relationships can be represented symbolically by the equation y = mx, where the m 

is the slope, unit rate, and constant of proportionality] teachers used to justify their 

classifications.  

Teachers’ work was fully blinded so that the teacher who produced the response (and 

whether the response was produced at the beginning or end of the course) could not be identified. 

Two raters (the author and a doctoral student in mathematics education who had previous 

experience in coding teachers’ responses to items that measured their understandings about 

proportional reasoning) independently scored five percent of the responses for each item on the 

pre/post written test and the interviews to determine interrater reliability. The doctoral student 

underwent two hours of training in which the coding schema for each item (e.g., scoring rubrics) 

were discussed and examples and nonexamples of codes for each item were presented.  For each 

item, interrater reliability ranged from 80% - 100%. For example, interrater reliability for items 

that were coded for use of the four key understandings (tasks 11-22 on the pre/post written test; 

defining a proportional relationship, creating an example and nonexample of a proportional 

relationship, and the snowfall item on the interviews) was 100%. Interrater reliability for several 

items that were scored using rubrics that captured the extent to which teachers’ responses were 

correct and complete (tasks 6 and 24 on the pre/post written test) was 80%.    

Two types of analyses were conducted in order to explore the first three research 

questions. First, the pre/post data on the treatment and contrast groups was analyzed in order to 
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explore changes in the teachers’ knowledge over time. Second, the pre/post data on the treatment 

group and contrast group was compared in order to examine similarities and differences between 

the two groups. Differences between the two groups of teachers at the conclusion of the course 

were of particular interest in gaining insight about the impact of the course on teacher learning.  

Therefore, to analyze change in both the treatment and contrast groups over time, the 

matched-pair Wilcoxon test, which is used with ordinal data, was used to determine if there was 

a significant difference in teachers’ rubric scores. The extent to which teachers’ repertoire of 

strategies increased for particular tasks was described qualitatively by counting the number of 

strategies they used on the pretest and posttest, and noting whether they made use of any new 

strategies on the posttest. A dependent samples t-test was used to determine whether teachers 

used particular strategies significantly more frequently at the end of the course.   

In order to determine whether there was a significant change in teachers’ ability to 

characterize the relationships as proportional or not (measured by tasks 11-22), a dependent 

samples t-test was used. The extent to which teachers’ use of the four key understandings in 

making the distinction between proportional and nonproportional changed over time was 

described qualitatively, as reported in Smith et al. (2003). A dependent samples t-test was used to 

determine whether teachers drew upon more key understandings by the end of the course than at 

the beginning of the course. 

In order to examine differences between the groups both at the beginning and end of the 

course, quantitative analyses were used. In particular, the Mann Whitney U-Test was used to 

analyze teachers’ rubric scores. Fisher’s exact test was used to determine whether there was a 

significant difference between the two groups’ ability to characterize the relationships as 

proportional or not (measured by tasks 11-22) and other differences in the categorical data. 
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Independent samples t-tests were used to examine differences involving continuous data, such as 

the number of key understandings that teachers drew upon in explaining their classifications in 

tasks 11-22. In comparing the two groups at the beginning of the course, two-tailed tests were 

used. However, since it was expected that the treatment in this study would positively impact 

teachers’ mathematical understandings, one-tailed tests were used in comparing the two groups 

at the end of the course. The expectation that participation in the course would have a positive 

impact on teachers’ mathematical understandings was reasonable since a main goal of the course 

was to help teachers construct (or reconstruct) their mathematical knowledge, and as such, 

teachers were provided with multiple opportunities throughout the course to explore ideas central 

to proportional reasoning (as shown in Figure 12).  

3.5.1.2. Pre/Post Interview  

The interviews were transcribed and teachers’ responses were coded along various 

dimensions, as shown in Table 6. Rubrics were developed to capture various related features of 

teachers’ responses such as correctness and quality of explanations. For example, item 2 on the 

pre-interview (examining student work) asked teachers to make sense of five different student 

responses to a numerical comparison problem set in a mixture context (similar to Noelting’s 

[1980] orange juice problems). Teachers’ work on this item was coded so as to indicate the 

extent to which they were able to make sense of each student’s strategy.   
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Table 6. Analysis of the Interview Items 

 
Analysis of the Interview Items 

Interview item

Rubric score 
that captured 

correctness and 
quality of 

explanation

Distinguished 
between 

proportional and 
nonproportional 

situations

Correctly identified 
situation as 

proportional or 
nonproportional

Key 
understandings 

used

Pre 
1a. Describe a proportional 
relationship

X X

1b-c. Give an example of a 
proportional and 
nonproportional situation

X X

2. Examining student work X
3. Problem Sort X

Post
1a-c. Reflecting on learning
2. Snowfall X X
3a. Describe a proportional 
relationship

X X

3b-c. Give an example of a 
proportional and 
nonproportional situation

X X
 

 
 
 

Other items (e.g., item 3 on the pre-interview, item 2 on the post-interview) were not 

coded using rubrics. For example, item 2 on post-interview (snowfall) sought to examine 

teachers’ ability to distinguish between proportional and nonproportional situations and to 

recognize the mathematical relationships embedded in proportional situations and was coded as 

described in Smith et al. (2003). That is, teachers’ responses were coded so as to indicate 

whether they correctly identified the relationship for Cedar Rapids as proportional and Mason 

City as nonproportional and upon which of the four key understandings teachers drew in order to 

make this distinction.  

It is important to note that two items from the interviews were intended to provide 

evidence of teachers’ ability to discriminate proportional from nonproportional situations but 
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were not included for analysis. First, an item in which teachers were asked to describe a 

proportional relationship (see Appendix B for item 1a on Interview 1 and Appendix C for item 

3a on Interview 2) was not included because upon reviewing the data, this item did not elicit 

teachers’ understandings of the differences between proportional and nonproportional 

relationships; rather, the item elicited teachers’ understandings about proportional relationships 

(and as such, was still analyzed for teachers’ understandings of the mathematical relationships 

embedded in proportional situations, as intended). In addition, an item in which teachers were 

asked to examine a set of problems (see Appendix B for item 3 on Interview 1) was not included 

for analysis since this item was asked only on Interview 1. 

The interview data was also analyzed in two different ways: (1) an analysis of the 

pre/post data on the treatment and contrast groups to explore changes in teachers’ knowledge 

over time; and (2) a comparison of the pre/post data on the treatment and contrast groups to 

examine differences between the two groups. Data from items coded using rubrics was analyzed 

using the same statistical tests described for the analysis of the pre/posttest. The snowfall data 

was analyzed in similar ways as tasks 11-22 on the pre/posttest.  

 

3.5.2. Data Related to the Proportional Reasoning Course  

As noted previously, the data related to the proportional reasoning course was used to 

explore research question 4, To what extent can teacher learning be accounted for by 

participation in a course specifically focused on proportional reasoning? In particular, the 

mathematics that teachers came to know and understand (as evidenced from teachers’ work on 

the pre/posttest and pre/post interview) was used as a lens through which to code the videotapes 

of the class discussions.  
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In order to identify the class discussions to be analyzed, the author examined the entire 

written record of the course (i.e., all overhead transparencies, writing on the chalkboard, and 

posters) by watching each whole class discussion on videotape. Any whole class discussion in 

which the mathematics that teachers appeared to learn was evident in the written record was 

included in the analysis. For example, class discussions in which teachers presented solution 

strategies on an overhead transparency were included in the analysis. The analysis consisted of 

re-watching each identified class discussion and indicating the total number of “turns” spoken 

during each discussion (including the number of turns spoken by each of the ten teachers in the 

treatment group, the instructor, and the five other teachers [who were inservice teachers pursuing 

an M.Ed.] in the course), and the number of turns spoken that were related to the mathematics 

that teachers appeared to learn during the course. A turn was defined as an uninterrupted audible 

contribution by a speaker (either the instructor or a teacher). A new turn occurred with every new 

speaker (Inagaki, Hatano, & Morita, 1998; Smith et al., 2003).  

 

3.5.3. Data Related to the Algebra Course  

As noted previously, the data related to the algebra course was used to explore research 

question 5, To what extent do preservice secondary mathematics teachers who participated in a 

course specifically focused on proportional reasoning draw upon their understandings about 

proportional reasoning in a subsequent course? Since the purpose of research question 5 was to 

examine the extent to which the ten teachers in the treatment group drew upon their 

understandings of proportionality, only these teachers’ work was analyzed (i.e., the remaining 

eleven teachers in the algebra course were not included in this analysis).  
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3.5.3.1. Pre/Posttest, Question 2 

Teachers’ work on this question was coded so as to indicate whether or not teachers 

correctly identified the three relationships as proportional by checking the appropriate box 

(“proportional” or “nonproportional”). The number of teachers who correctly classified each of 

the relationships on the pretest and the posttest was reported. In addition, a dependent samples t-

test was used to determine whether there was a significant difference in the number of 

relationships teachers were able to correctly classify at the beginning and end of the algebra 

course. 

3.5.3.2. Whole Class Discussions, Class 7 and 8 

The whole class discussions in Class 7 and Class 8 were transcribed and organized into 

“turns” which indicated an uninterrupted contribution by a speaker (either the instructor or a 

teacher). A new turn occurred with every new speaker (Inagaki, Hatano, & Morita, 1998; Smith 

et al., 2003). The portion of the Class 7 discussion related to proportionality consisted of 178 

turns and lasted approximately 15 minutes. The portion of the Class 8 discussion related to 

proportionality consisted of 68 turns and lasted approximately 7 minutes.  

The four key understandings described in Cramer et al. (1993) and Post et al. (1988) 

provided a lens for analyzing the portions of the two class discussions related to proportionality: 

(1) proportional relationships are multiplicative in nature; (2) proportional relationships are 

depicted graphically by a line that contains the origin; (3) the rate pairs are equivalent in 

proportional relationships; and (4) proportional relationships can be represented symbolically by 

the equation y = mx, where the m is the slope, unit rate, and constant of proportionality. In 

particular, the nature of the argument or justification made public by the teachers was identified.  
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3.6. Summary 

The study sought to examine changes in teachers’ ability to reason proportionally using a 

quasi-experimental design. Two groups of teachers, the treatment group (who was enrolled in the 

proportional reasoning course), and the contrast group (who was not enrolled in the course), 

served as participants for the study. A pre/posttest in which teachers solved 24 mathematics tasks 

and a pre/post interview in which both groups of teachers solved mathematics tasks, discussed 

mathematical ideas, and examined students’ responses to mathematics tasks served as data 

sources for exploring research questions 1, 2, and 3. This data was analyzed to examine the 

extent to which the teachers’ ability to: (1) solve a variety of problem types; (2) discriminate 

proportional from nonproportional situations; and (3) understand the mathematical relationships 

embedded in proportional situations, changed over time. The data was analyzed to examine 

similarities and differences between the two groups at the beginning and end of the proportional 

reasoning course. In addition, data collected during the enactment of the proportional reasoning 

course (e.g., videotapes of each class session) served to examine research question 4. This data 

was analyzed so as to indicate the activities in which teachers had opportunities to learn the 

mathematics they appeared to learn (as indicated by the pre/post instruments), and who made 

public contributions related to those ideas. Finally, teachers’ work during a subsequent course 

served to examine research question 5. This data was analyzed so as to indicate how teachers 

drew upon their understandings of proportionality in a new setting. In the next chapter, the 

results of these analyses are presented. 
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4.  CHAPTER FOUR: RESULTS 

 
 

The purpose of this study was to examine preservice secondary mathematics teachers’ 

understandings about proportional reasoning prior to and upon completion of a practice-based 

methods course focused on proportional reasoning in the middle grades, their opportunities to 

learn the intended content, and their ability to apply what was learned in a new setting. In order 

to provide further evidence of the impact of the course on teachers’ learning, the study also 

examined a similar group of teachers’ (who were not enrolled in the course) understandings 

about proportional reasoning before and after the course.  

In this chapter, the results of the study are presented, and are also situated in Ball and 

colleagues’ (Ball et al., 2005; Ball, Bass, & Hill, 2004; Hill & Ball, 2004; Hill, Schilling, & Ball, 

2004) recent framework of mathematical knowledge for teaching. In this framework, Ball and 

her colleagues argue that teachers need two important types of content knowledge in order to 

successfully teach mathematics: common content knowledge and specialized content knowledge. 

Common content knowledge consists of the mathematical understandings that are expected of 

everyday users of mathematics. For example, solving a missing value problem draws on one’s 

common content knowledge. By contrast, specialized content knowledge consists of the 

mathematical understandings that are needed for teaching, and are beyond that of everyday users 

of mathematics. For example, teachers draw on their specialized content knowledge when they 

represent mathematical ideas or analyze students’ errors (Ball et al., 2005; Hill, Schilling, & 

Ball, 2004).  
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With respect to proportional reasoning, the three abilities that one needs to be a 

proportional reasoner [(1) solve a variety of problem types; (2) discriminate proportional from 

nonproportional situations; and (3) understand the mathematical relationships embedded in 

proportional situations] can be consider common content knowledge, since these are capacities 

that even students need to develop (NCTM, 2000). In addition, teachers also need to know and 

understand a variety of solution strategies. This can be considered an aspect of specialized 

content knowledge, since everyday users of mathematics do not necessarily need a broad 

repertoire of solution strategies13.  

 In this chapter, the results of the study are presented, beginning with the results that 

identify the common and specialized content knowledge that teachers in the proportional 

reasoning course appeared to learn during the course [i.e., results from the first two research 

questions: (1) What do preservice secondary mathematics teachers know and understand about 

proportional reasoning prior to participation in a course specifically focused on proportional 

reasoning?; and (2) What do preservice secondary mathematics teachers know and understand 

about proportional reasoning immediately after participation in a course specifically focused on 

proportional reasoning?]. In order to provide evidence that teachers’ participation in the course 

influenced their enhanced understandings of proportional reasoning, the similarities and 

differences between the understandings of teachers who completed the course and those who did 

not are examined. In addition, teachers’ opportunities to explore proportional reasoning during 

the course are explored. Finally, the extent to which teachers drew upon their understandings of 

proportional relationships during a subsequent course focused on algebra as the study of patterns 

and functions is described.  

                                                 
13 Ball and colleagues identify additional aspects of specialized content knowledge, such as analyzing students’ 
errors and providing mathematically careful explanations, but these aspects were not investigated in this study -- 
although teachers likely had opportunities to engage in these practices during the course. 
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4.1. Teachers’ Common and Specialized Content Knowledge Prior To and Upon 
Completion of the Proportional Reasoning Course 

In this section, research questions 1 and 2 are explored: (1) What do preservice secondary 

mathematics teachers know and understand about proportional reasoning prior to participation in 

a course specifically focused on proportional reasoning?; and (2) What do preservice secondary 

mathematics teachers know and understand about proportional reasoning immediately after 

participation in a course specifically focused on proportional reasoning? The purpose of these 

two research questions was to identify the mathematics that teachers appeared to learn from 

participating in the course. In this section, teachers’ understanding of proportional reasoning is 

discussed based on their work on a pre/posttest and a pre/post interview that examined their 

ability to: (1) solve a variety of problem types; (2) discriminate proportional from 

nonproportional situations; and (3) understand the mathematical relationships embedded in 

proportional situations.  

 

4.1.1. Solve a Variety of Problem Types 

The results indicated that even prior to the course, the ten teachers in the treatment group 

were able to correctly solve a variety of missing value, numerical comparison, and qualitative 

problems – an important aspect of common content knowledge of proportional reasoning. 

However, the results also indicated that teachers’ specialized content knowledge was somewhat 

limited, as evidenced by their narrow repertoire of strategies at the beginning of the course. 

Teachers appeared to enhance their specialized content knowledge by the end of the course, as 

evidenced their use of a broader range of strategies on the posttest. In this section, teachers’ 

solutions to missing value, numerical comparison, and qualitative problems are described in 

more detail.  
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4.1.1.1. Missing Value Problems  

The pre/posttest contained five missing value problems – four of which were not situated 

in a context (see tasks 1-4 in Appendix A), and one of which was situated in a context involving 

similar figures (see task 23 in Appendix A). It was expected that teachers would experience little 

difficulty in solving the four problems devoid of context in at least one way, since these 

problems could be solved using cross multiplication (a procedure well-known to most teachers). 

However, teachers were asked to solve these four problems in more than one way if they could. 

This aspect of the problems was expected to be challenging for teachers. In addition, the missing 

value problem that was situated in a context was expected to be difficult because the context, 

similarity, has been documented as being particularly difficult for students (Hart, 1981, 1988; 

Kaput & West, 1994; Lamon, 1993b; Singh, 2000).  

The results indicated that the ten teachers in the treatment group were able to correctly 

solve the five missing value problems on the pre- and the posttest14. However, the results also 

indicated that teachers tended to rely on procedural strategies such as cross multiplication at the 

beginning of the course. Teachers used a broader range of strategies to solve the five missing 

value problems on the posttest. In addition, the frequency with which teachers used cross 

multiplication and other algebraic strategies decreased by the end of the course. In this section, 

teachers’ solutions to missing value problems (tasks 1-4 and 23) are described in more detail.  

Tasks 1-4: Missing value problems devoid of context. As noted previously, all ten 

teachers in the treatment group correctly solved these four missing value problems on both the 

pre- and posttest. However, key differences are revealed upon examination of teachers’ solution 

strategies, as shown in Table 7. First, teachers’ work on the pretest is described, followed by a 
                                                 
14 One teacher, Elaine, correctly determined that x = 60/8 for task 3, but incorrectly reduced 60/8 to 15/4. However, 
her response was still considered to be correct since she used an appropriate multiplicative strategy to solve for x, 
and her error was in reducing the fraction.  
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description of teachers’ work on the posttest and a comparison of their work on the pre- and 

posttest.  

As shown in Table 7, cross multiplication was the prevalent strategy in teachers’ work on 

the pretest. In fact, all ten teachers used cross multiplication as one of their strategies to solve the 

four problems on the pretest. However, five teachers (Bert, Bruce, Elaine, Owen, and Ursula) 

were unable to solve some, or all, of the problems in a way other than cross multiplication. That 

is, if a teacher solved a problem in only one way, that way was always cross multiplication. 

Three of these teachers (Bruce, Elaine, and Owen) solved three of the four problems in two 

different ways, and one problem in one way, using cross multiplication. For Bert and Ursula, 

cross multiplication was the only strategy used to solve these four problems.  
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Table 7. Treatment Group Teachers’ Solution Strategies to Tasks 1-4 

 
Treatment Group Teachers’ Solution Strategies to Tasks 1-4 
 
 Task 1 

4/20=x/35 
Task 2 
2/7=6/x 

Task 3 
3/8=x/20 

Task 4 
9/15=12/x 

 Pre Post Pre Post Pre Post Pre Post 
Bert Cross multiplication 

 
Cross multiplication Cross multiplication Between-ratio Cross multiplication Cross multiplication Cross multiplication Between-ratio 

Bonnie Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Bruce Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Carl Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Christopher Cross multiplication 
 
Between-ratio 

Within-ratio 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Within-ratio 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Between-ratio 
 
Between-ratioa 

Cross multiplication 
 
Between-ratio 

Between-ratio 
 
Between-ratiob 

Elaine Cross multiplication 
 
Algebraic strategy 

Cross multiplication 
 
Between-ratio 
 
Between-ratioc 

Cross multiplication 
 
Algebraic strategy 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Algebraic strategy 

Cross multiplication 
 

Cross multiplication Cross multiplication 
 
Between-ratio 

Nanette Cross multiplication 
 
Algebraic strategy 

Cross multiplication Cross multiplication 
 
Algebraic strategy 

Cross multiplication Cross multiplication 
 
Algebraic strategy 

Cross multiplication Cross multiplication 
 
Algebraic strategy 

Cross multiplication 

Nora Cross multiplication 
 
Algebraic strategy 

Cross multiplication 
 
Within-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Algebraic strategy 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Cross multiplicationd 

Cross multiplication 
 
Between-ratio 

Owen Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Cross multiplication 
 
Between-ratio 

Ursula Cross multiplication Cross multiplication 
 
Between-ratio 

Cross multiplication Cross multiplication 
 
Between-ratio 

Cross multiplication Cross multiplication 
 
Between-ratio 

Cross multiplication Cross multiplication 
 
Between-ratio 

 
Note: Shading indicates tasks in which the teacher solved in only one way. 
a Christopher’s second strategy involved identifying the between-ratio, 2.5, in a different way than he had in his first strategy.   
b Christopher’s second strategy involved first reducing 9/15 to 3/5, and then identifying the between-ratio of 4.   
c Elaine’s third (and unsolicited) strategy involved reducing 4/20 to 1/5, and then identifying the between-ratio of 7.   
d Nora’s second strategy involved first reducing 9/15 to 3/5, and then using cross multiplication to solve the proportion 3/5 = 12/x.
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The second-most common strategy teachers used to solve tasks 1-4 on the pretest was the 

between-ratio strategy (see Figure 18 for an example of the between-ratio strategy to solve task 

2). Teachers also used an adaptation of the between-ratio strategy, in which they reduced one of 

the ratios in order to more easily identify the between-ratio, as shown in Figure 19. For the 

purposes of this study, the strategies illustrated in Figures 18 and 19 were both classified as 

between-ratio strategies. 

 

 
Figure 18. Example of a between-ratio strategy to solve task 2. 

 
 

 
 
Figure 19. Example of a between-ratio strategy to solve task 1 that first makes use of reducing one of the 
ratios. 
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Six teachers (Bonnie, Bruce, Carl, Christopher, Nora, and Owen) used a between-ratio 

strategy to solve at least one problem on the pretest. As shown in Table 7, for some teachers 

(Bonnie, Carl, and Christopher), the between-ratio strategy and cross multiplication were the two 

strategies used at the beginning of the course. For other teachers (Bert, Elaine, Nanette, and 

Ursula), the between-ratio strategy did not appear to be part of their repertoire at the beginning of 

the course15.  

The remaining strategies teachers used to solve the problems on the pretest can be 

classified as algebraic in nature. For example, Nora consistently used a “solve for x” strategy to 

solve three of the problems, as shown in Figure 20. Nanette also used an algebraic strategy to 

solve each of the four problems.  

 
 
Figure 20. Example of an algebraic strategy to solve task 3. 

 
 
 

                                                 
15 The claim that Bert, Elaine, Nanette, and Ursula did not appear to have the between-ratio strategy at their disposal 
at the beginning of the course is further strengthened by the fact that none of these four teachers used the between-
ratio strategy to solve task 23 (the other missing value problem) on the pretest. Of course, just because these four 
teachers did not use the between-ratio strategy on the pretest does not necessarily mean that it was not part of their 
repertoire.  

3 x
8 20

3 x
8 20

60
8

7.5

= x

= x

=

=20 20
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A subset of tasks 1-4 was specifically designed to explore whether teachers used 

strategies that were particularly useful for solving certain problems. For example, task 1, 

(4/20=x/35), contains an integer within-ratio (i.e., the multiplicative relationship between 4 and 

20 is 5). Thus it was expected that teachers might use a within-ratio to solve task 1, but not use a 

within-ratio strategy to solve, for example, task 2 (2/7=6/x) (because the multiplicative 

relationship between 2 and 7 is noninteger and thus more difficult to identify). However, despite 

the presence of an integer within-ratio in task 1, no teacher used a within-ratio approach to solve 

task 1 (or tasks 2, 3, & 4) on the pretest. This suggests that the within-ratio strategy may not have 

been an accessible strategy for this group of teachers prior to the course. 

Another problem, task 2 (2/7=6/x), was designed so as to examine whether teachers 

recognized the between-ratio relationship in the proportion (i.e., the multiplicative relationship 

between 2 and 6 is 3). Six of the ten teachers (Bonnie, Bruce, Carl, Christopher, Nora, and 

Owen) used a between-ratio strategy to solve task 2. However, the between-ratio strategy may 

have been particularly salient for these six teachers. Five of these teachers (Bonnie, Bruce, Carl, 

Christopher, and Owen) consistently used between-ratio strategies on three or four of the 

problems (as shown in Table 7) – even when the between-ratio was noninteger and therefore not 

particularly easy to identify. Therefore, although over half the teachers used the strategy for 

which task 2 was designed, it is not clear whether they used the between-ratio strategy because it 

was particularly useful for this problem, or because it was a strategy with which they were 

already familiar.  

Finally, teachers were more successful in solving the “easier” problems (tasks 1 and 2) in 

two different ways than more difficult problems (tasks 3 and 4) (easier problems contain integer 

between- or within-ratios, whereas difficult problems contain only noninteger ratios), as 
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indicated by the shading in Table 7. Eight teachers solved the easier two problems in two 

different ways. However, even teachers who were able to solve the easier two problems in two 

different ways could not solve the more difficult problems, task 3 (3/8=x/20) and task 4 

(9/15=12/x), in more than one way. For example, two teachers (Bruce and Owen) could only 

solve task 3 in one way - cross multiplication.  

Teachers’ work on the posttest differed with respect to solution strategies and the number 

of solutions teachers produced for each problem, as shown in Table 7. Although cross 

multiplication was not used significantly less on the posttest than on the pretest (t(9) = 1.41, p = 

.09 [one-tailed]), and eight teachers still used cross multiplication as one of their ways to solve 

each of the four problems, it is interesting to note that one teacher, Christopher, solved each 

problem in two different ways – neither of which was cross multiplication. The remaining 

teacher, Bert, solved each problem in only one way. Bert solved two of the problems using cross 

multiplication and two problems using a between-ratio strategy. Although Bert solved each 

problem on the posttest in only one way, it is interesting to note that on the pretest, he used 

cross-multiplication exclusively. Therefore it appears that Bert added a strategy to his repertoire 

– the between-ratio strategy16. The other teacher who solved the pretest problems using only 

cross multiplication, Ursula, solved all the problems on the posttest in two different ways. On the 

posttest, she solved all the problems using both cross multiplication and a between-ratio strategy. 

Thus, it appears that Ursula’s repertoire of strategies also grew to include between-ratio 

strategies by the end of the course. 

As noted previously, task 1 (4/20=x/35), was designed to examine teachers’ ability to 

recognize the within-ratio relationship in the proportion. On the posttest, two teachers 

                                                 
16 Bert’s work on all five missing value problems (tasks 1-4 and 23) reveals that he used only cross multiplication on 
the pretest. On the posttest, he used cross multiplication and the between-ratio strategy.  
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(Christopher and Nora) used a within-ratio strategy. In addition, task 2 (2/7=6/x), was designed 

in order to examine teachers’ ability to recognize the between-ratio relationship in the 

proportion. On the posttest, nine of the ten teachers used a between-ratio strategy as one of their 

ways to solve the problem. Teachers used the between-ratio strategy significantly more 

frequently on the posttest than on the pretest, t(9) = 3.36, p = .004 (one-tailed).  

Most teachers were able to solve tasks 1-4 in two different ways on the posttest. Seven of 

the teachers solved tasks 1-4 in two different ways. In addition, one teacher, Elaine, solved three 

of the four tasks in two different ways. Elaine solved task 3 (3/8=x/20) in one way, cross 

multiplication. It could be argued that task 3 is the most difficult of the four problems for two 

reasons: (1) task 3 contains neither an integer between-ratio (as in task 2) nor an integer within-

ratio (as in task 1); and (2) task 3 does not contain a ratio that can be reduced to yield an integer 

within- or between-ratio (as in task 4: 9/15=12/x can be rewritten as 3/5=12/x to reveal an 

integer between-ratio of 4). Interestingly, Elaine solved task 1 in three different ways, even 

though only two solution strategies were requested. Thus Elaine’s posttest work on tasks 1-4 

suggests that she had access to a variety of solution strategies, but selectively called upon 

strategies that were particular helpful in solving certain problems.  

Finally, two of the teachers, Bert and Nanette, solved all four problems in only one way. 

Although at first glance Bert did not appear to make any gains in the use of strategies for solving 

these tasks (he solved tasks 1-4 in only one way on both the pre- and posttest), it is interesting to 

note that he used cross multiplication exclusively on the pretest, but used cross multiplication 

and the between-ratio strategy on the posttest. Thus, Bert did appear to gain an additional 

solution strategy during the course. Nanette, on the other hand, solved tasks 1-4 in two different 

ways on the pretest (cross multiplication and an algebraic strategy), but on the posttest, solved 
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the tasks in only one way (cross multiplication). However, it is not surprising that Nanette did 

not use her algebraic strategy on the posttest, since such strategies were made public few times 

during the course17 and therefore did not appear to be valued. Of particular interest is that Ursula, 

who solved tasks 1-4 in only one way on the pretest, solved the tasks in two different ways on 

the posttest. Thus it appears that by the end of the course, the difficulty of the problem (as 

defined by the absence of integer within- or between-ratios) did not influence teachers’ ability to 

solve problems in two different ways.  

On the posttest, half of the ten teachers used a strategy that they had not used on the 

pretest -- three teachers used between-ratio strategies (Bert, Elaine, and Ursula) and two teachers 

used within-ratio strategies (Christopher and Nora). In addition, several teachers did not utilize 

algebraic strategies (that they did use on the pretest) on the posttest. As noted previously, 

Christopher did not use cross multiplication on the posttest. Elaine and Nora also did not use 

algebraic strategies. It is likely that these teachers did not forget how to implement such 

strategies; but rather, chose to use alternative strategies perhaps because they made more sense 

or were more efficient, or because the teachers were aware that the instructor valued strategies 

that they could explain. 

Finally, several teachers used appropriate mathematical language to describe their 

strategies on the posttest. For example, Bruce and Owen appropriately labeled one of their 

between-ratio strategies as “scaling” or “scaling up” and Ursula identified the scale factor in her 

between-ratio strategy. No such language was present in any teachers’ work on the pretest. 

Task 23: Missing value problem situated in a similarity context. As noted previously, the 

ten teachers in the treatment group were able to correctly determine the missing length of the 

enlarged photograph in task 23 and provide a valid explanation both prior to and upon 
                                                 
17 As evidenced in the video analysis for research question 4. 
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completion of the course. This is notable because this task is situated in a difficult context, 

similarity, and also because neither the within- nor between-ratios in the problem are integer, 

which also contributed to the task’s difficulty.  

Teachers’ solution strategies changed from the pre- to the posttest, as shown in Table 8. 

On the pretest, eight of the ten teachers set up a proportion (either 3/4=?/14 or 3/?=4/14) and 

cross-multiplied to determine the missing value. One additional teacher, Bruce, set up a 

proportion, but provided no other written evidence of how he determined the missing quantity 

(his written work included only the proportion and the answer, 10.5). The remaining teacher, 

Bonnie, used a between-ratio strategy (i.e., identified the scale factor, 3.5, and scaled up to the 

missing quantity), and correctly identified the 3.5 as the “scale factor.” 

On the posttest, significantly fewer teachers used cross multiplication to determine the 

missing dimension, t(9) = 3.00, p = .01 (one-tailed). In addition, significantly more teachers used 

the between-ratio strategy to determine the missing dimension, t(9) = 2.45, p = .02 (one-tailed). 

Only three of the ten teachers (Bert, Elaine, and Nanette) set up a proportion and cross-

multiplied to determine the missing length. An additional teacher set up a proportion, but 

provided no other written evidence of how he determined the missing quantity (Bruce, the same 

teacher on the pretest). The remaining six teachers used a between-ratio strategy. Three of the six 

teachers who used a between-ratio strategy (Carl, Christopher, and Nora) also identified the 3.5 

as the “scale factor” or “factor.” 
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Table 8. Treatment Group Teachers’ Solution Strategies to Task 23 

 
Treatment Group Teachers’ Solution Strategies to Task 23 

 Pre Post 
Berta Cross multiplication 

Cross multiplication
Cross multiplication 
Cross multiplication 
 

Bonnie Between-ratio Between-ratio 

Bruce Unclear Unclear 

Carl Cross multiplication Between-ratio 

Christopher Cross multiplication Between-ratio 

Elaine Cross multiplication Cross multiplication 

Nanette Cross multiplication Cross multiplication 

Nora Cross multiplication Between-ratio 

Owen Cross multiplication 
Between-ratio 
 

Between-ratio 

Ursula Cross multiplication Between-ratio 

 
a On both the pre- and posttest, Bert solved the task in two ways – by setting up two different proportions (original 

width:enlarged width = original length:enlarged length, and original width:original length = enlarged width: 

enlarged length), and cross multiplying to determine the missing dimension.    
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Summary. The shift from reliance on cross multiplication to between-ratio strategies 

suggests that some teachers may have learned an additional strategy, between-ratio (also known 

as scale factor or factor-of-change) to solve missing value problems, thus developing an aspect 

of their specialized content knowledge. (Of course, as noted previously, an alternative 

explanation of the shift from cross multiplication to the between-ratio strategy is that teachers 

learned that the instructor valued strategies that could be explained and that made sense to 

students. Therefore, teachers may have chosen not to use cross multiplication because it was not 

something they could easily explain18.) Finally, across the five missing value problems on the 

pretest, significantly more teachers used appropriate language (e.g., scale factor) in their 

explanations on the posttest than on the pretest, t(9) = 2.24, p = .03 (one-tailed).  

4.1.1.2. Numerical Comparison Problems 

The pre/posttest included two numerical comparison problems, task 6 and task 24 (see 

Appendix A), both of which were situated in a context. Task 6 was an adaptation of a classic 

numerical comparison task in which teachers were asked to compare the relative strength of two 

orange juice recipes. Teachers were asked to solve this problem in two different ways. Task 24 

presented teachers with dimensions for three rectangular plots of land and asked teachers to 

determine the plot that was the “most square.” Both of these tasks were expected to be difficult 

for teachers because neither contained integer within- or between-ratios. Task 24 was also 

expected to be difficult because previous studies indicate that teachers typically use incorrect 

additive strategies to solve it (Heinz, 2000; Perrine, 2001; Simon & Blume, 1994; Smith et al., 

2001).  

                                                 
18 As evidenced in the whole class discussion during Class 11 in which teachers discussed the rationale for cross 
multiplication.  
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In addition, item 2 on Interview 1 asked teachers to make sense of five students’ solutions 

to a numerical comparison problem situated in a context similar to the orange juice context used 

in task 6 on the pre/post written test (item 2 on Interview 1 involved mixing chocolate syrup with 

milk to make chocolate milk). This item was expected to be difficult for teachers because some 

of the students’ strategies may not have been ones the teachers produced themselves in solving 

such a task.  

The results indicated that the teachers had fairly well-developed common content 

knowledge, even prior to the course, as evidenced by most teachers’ ability to correctly solve the 

two numerical comparison problems on the pretest. However, the results also indicated that 

teachers’ range of strategies for solving numerical comparison problems was somewhat limited, 

as evidenced by teachers’ reliance on part-to-part ratios and some teachers’ limited capacity to 

make sense of alternative strategies prior to the course. Teachers appeared to enhance their 

specialized content knowledge by the end of the course, as evidenced their use of a broader range 

of strategies on the posttest. In this section, teachers’ ability to solve numerical comparison 

problems is discussed in the context of their work on tasks 6 and 23 prior to and after the course. 

In addition, teachers’ responses to item 2 on Interview 1 are used to provide further evidence of 

the extent to which teachers could make sense of quantities used to make comparisons prior to 

the course.  

Task 6: Comparing orange juice recipes. All ten teachers in the treatment group correctly 

determined that Luis’ mixture had the stronger orange flavor in at least one way on the pretest. In 

addition, eight of the ten teachers solved the problem correctly in two different ways. One 

teacher, Nanette, attempted to solve the problem in two different ways - one of which was 

correct and one of which was not correct, and one teacher, Elaine, solved the problem in only 
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one way. On the posttest, all ten teachers solved the problem correctly in two different ways19. 

This difference was not significant, t(9) = 1.50, p = .08 (one-tailed). 

Task 6 can be solved using two different types of ratios: part-to-part (i.e., comparing 

orange juice concentrate to water, or vice versa) and part-to-whole (i.e., comparing orange juice 

concentrate to the total mixture, or comparing water to the total mixture). The types of ratios that 

the teachers used to solve the problem on the pre- and posttest are shown in Table 9. As shown in 

Table 9, half of the teachers (Bruce, Elaine, Nanette, Nora, and Ursula) used part-to-part ratios 

exclusively on the pretest. As such, these five teachers may not have had strategies based on 

part-to-whole ratios in their repertoire. The difference between the types of ratios teachers used 

on the pretest and posttest was not significant, Χ 2(2, N = 10) = 5.00, p = .08.  

Teachers’ responses to item 2 on Interview 1 provide additional evidence for the claim 

that part-to-whole strategies may not have been part of the repertoire for some of these teachers. 

For example, Elaine was unable to make sense of Student D’s response (see Figure B.2 in 

Appendix B), which made use of a part-to-whole ratio: “I don’t know what they compared 

here… I don’t think that [pause] it’s a valid [pause] strategy” (Elaine, Interview 1, lines 141-

168). In addition, even though Nanette and Ursula made sense of the quantities Student D 

calculated, they both were unsure if such a strategy was valid. For example, Ursula commented, 

“So, they took three ounces of chocolate syrup over uh chocolate syrup plus chocolate milk for 

each one… But I’m not positive that’s right. I don’t know” (Ursula, Interview 1, lines 147-155). 

Only Nora and Bruce made sense of Student D’s solution without difficulty20, indicating that 

                                                 
19 On the posttest, one teacher, Elaine, stated that Martin had the strong mixture. However, her written work 
revealed that she thought that Martin used the 5 ounces of orange juice concentrate and 7 ounces of water (this was 
actually Luis’ mixture). Thus, Elaine did correctly determine the stronger mixture; she just labeled her response 
incorrectly.  
20 Prior to examining the student responses during Interview 1, Bruce decided to solve the chocolate milk problem 
and used the same strategy that Student D used.  
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Elaine, Nanette, and Ursula either had difficulty making sense of solutions they had not produced 

themselves, or difficulty making sense of part-to-whole strategies in general. By the end of the 

course, four of the five teachers who had not used part-to-whole strategies on the pretest (Bruce, 

Nanette, Nora, and Ursula) solved the problem on the posttest in two ways: one based on a part-

to-part ratio and the other based on a part-to-whole ratio. (The remaining teacher, Elaine, also 

made gains by the end of the course – she was able to solve the problem in two different ways, 

both of which were based on part-to-part ratios.)  

 

Table 9. Types of Ratios Used By Teachers in the Treatment Group to Solve Task 6 
 
Types of Ratios Used By Teachers in the Treatment Group to Solve Task 6 
 

a Elaine solved the problem in only one way, which made use of a part-to-part ratio.   
b Although one of Nanette’s strategies was incorrect, both her strategies made use of a part-to-part ratio. 

 

 
In addition, teachers’ ability to explain the quantities they used to determine the mixture 

with the stronger orange flavor significantly improved over time, T = 18, ns/r = 6, p < .05 (one-

tailed). A scoring rubric (shown in Figure 21) was used to capture the extent to which teachers 

correctly solved the problem using a multiplicative strategy and explained the quantities used to 

determine the stronger mixture. Since teachers were asked to solve the problem in two different 

Pre Post

2 Part-to-part strategies Bruce, Elainea, Nanetteb, 
Nora, Ursula

Elaine

2 Part-to-whole 
strategies

Bonnie, Carl

1 part-to-part and 1 
part-to-whole strategy

Bert, Bonnie, Carl, 
Christopher, Owen

Bert, Bruce, Christopher, 
Nanette, Nora, Owen, Ursula
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ways, each teacher received two scores, one for each of their solution strategies. All ten teachers 

scored a 2, 3, or 4 on both the pre- and posttest (with the exception of Elaine, who received one 

score of 0 on the pretest because she solved the problem in only one way), meaning that no 

teacher used an incorrect additive strategy to solve task 6. As shown in Figure 21, the differences 

between scores of 2, 3, and 4 are related to the extent to which teachers correctly explained the 

meaning of the quantities they calculated. Table 10 illustrates the rubric scores earned by 

teachers on the pre- and posttest for task 6.   

 
 

 
Figure 21. Scoring rubric for task 6. 

 
 

Rubric score Criteria for rubric score
Solves problem correctly, chooses Luis.
Uses a multiplicative strategy
Explains the quantities that were calculated correctly, clearly, 
etc.
Solves problem correctly, chooses Luis.
Uses a multiplicative strategy
Explains the quantities that were calculated vaguely
Solves problem correctly, chooses Luis.
Uses a multiplicative strategy
Does not explain the quantities that were calculated or 
explains them incorrectly

1 Solves problem additively and says that the drinks are the 
same strength (since they both have 2 more ounces of water 
than concentrate)

0 No response, or does not know how to explain

4

3

2
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Table 10. Quality of Treatment Group Teachers’ Explanations of the Quantities They Used to Determine the 
Mixture With the Stronger Orange Flavor on Task 6 
Quality of Treatment Group Teachers’ Explanations of the Quantities They Used to Determine 
the Mixture With the Stronger Orange Flavor on Task 6 
 
 Pre Post 

 Strategy 1 Strategy 2 Strategy 1 Strategy 2 

Bert 4 4 4 4 
Bonnie 4 3 4 4 
Bruce 4 2 4 4 
Carl 4 4 4 4 
Christopher 4 4 4 4 
Elaine 4 0 2 2 
Nanette 2 2 4 4 
Nora 2 4 4 4 
Owen 3 4 2 4 
Ursula 2 3 4 4 

 
 

The most common misconception on the pretest was interpreting a part-to-part ratio of 

orange juice concentrate to water as the percent orange juice (i.e., incorrectly stating that Luis’s 

mixture is 71% orange juice. The mixture is actually about 42% orange juice). One correct 

interpretation of the 71% would be that the orange juice concentrate is 71% of the amount of 

water in the mixture. The two teachers who used part-to-part ratios and calculated a percentage, 

Bruce and Nora, incorrectly interpreted the percents on the pretest. This misconception was also 

evident in teachers’ work on the pre-interview item. For example, Nora initially displayed the 

misconception as she examined Student A’s solution (shown in Figure B.2 in Appendix B), 

which made use of a part-to-part ratio. When pressed by the interviewer about what the 0.625 

meant, Nora replied, “It’s the percent of the whole mixture, isn’t it?” (Nora, Interview 1, line 

107). During the course of the interview, Nora eventually made a correct interpretation of the 

0.625 in Student A’s solution. Bruce also struggled to make sense of Student A’s solution, and 
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stated that he did not know what the values that Student A calculated meant. Nanette and Ursula 

also displayed the misconception on the interview. Both Nanette and Ursula stated that the 0.625 

meant that the mixture was 62.5% chocolate. 

This misconception appeared to fade by the end of the course. Only one teacher used a 

part-to-part ratio and converted to a percent on the posttest, Nanette. She correctly interpreted the 

meaning of the percents on the posttest. By contrast, on the pretest, Nanette made no attempt to 

interpret the meaning of any of the quantities she calculated, and on the interview, Nanette 

incorrectly interpreted the meaning of Student A’s part-to-part strategy.  

Item 2 on Interview 1 reveals additional difficulties teachers encountered as they 

attempted to make sense of quantities prior to the course21. Teachers’ interpretations of the five 

student solutions were scored using a rubric (similar to the one used for task 6, the orange juice 

task, shown in Figure 21) that captured the extent to which teachers described the quantities 

calculated by each student. This rubric was consistent with other rubrics used in the study; for 

example, a score of 4 reflected an explanation that was clear and complete, a score of 3 reflected 

explanations that were vague, a score of 2 reflected explanations that were incorrect, and a score 

of 0 was awarded when the teachers did not respond or said she didn’t know (a score of 1 was 

not used in this rubric because this score corresponds to the use of additive strategies, which was 

not possible in this item since the strategies were already provided). Table 11 shows the rubric 

scores earned by teachers on this interview item.  

As shown in Table 11, only two teachers (Bert and Christopher) correctly made sense of 

each of the five student solutions to the chocolate milk problem, thus earning a rubric score of 4 

                                                 
21 The purpose of this interview item was to examine teachers’ ability to make sense of quantities. Unfortunately this 
interview item was not included on Interview 2. However, teachers did complete two tasks at the end of the course 
(tasks 6 and 24 on the posttest) that indicated that most teachers were able to explain the meaning of quantities that 
they constructed by the end of the course.  
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for each student response. The remaining eight teachers were unable to correctly and completely 

make sense of at least two student solutions.  

 

Table 11. Quality of Treatment Group Teachers’ Explanations of the Quantities Students 
Used to Determine the Mixture With the Stronger Chocolate Flavor on Interview 1 

Quality of Treatment Group Teachers’ Explanations of the Quantities Students Used to 
Determine the Mixture With the Stronger Chocolate Flavor on Interview 1 
 

 
a Bonnie initially stated that Student A’s work could be thought of as a percentage of chocolate (which is incorrect) 

and as the number of ounces of chocolate per one ounce of milk (which is correct). Later, when she examined 

Student D’s work, she realized that Student D is a percentage of chocolate, and decided that Student A’s work 

cannot be thought of as percentage of chocolate.   
b Nanette and Ursula both struggled to make sense of Student D’s solution. In particular, they had difficulty 

determining where the 8 and 24 came from. Ultimately, they both correctly made sense of the solution, but they also 

both commented several times that they still were not sure if this solution was valid.   
c Nora was initially unable to make sense of Student A’s solution.  Later during her work on this interview item, she 

correctly made sense of the solution. 

 

 
Task 24: Comparing plots of land. On the pretest, nine of the ten teachers used 

multiplicative strategies and correctly identified the plot of land that would be the “most square.” 

The remaining teacher, Nanette, used an additive strategy and incorrectly solved the problem, 

 Student Responses 

 Student A Student B Student C Student D Student E 

Bert 4 4 4 4 4 
Bonnie 4a 2 4 4 4 
Bruce 0 4 3 4 4 
Carl 3 3 3 3 4 
Christopher 4 4 4 4 4 
Elaine 4 4 4 0 3 
Nanette 2 4 0 4b 0 
Nora 4c 0 4 4 0 
Owen 4 4 3 3 4 
Ursula 2 3 3 4b 3 
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therefore earning a 1 on the scoring rubric, as shown in Table 12. These results are quite 

different from previous findings, which indicate that at least fifty percent of secondary teachers 

solve this problem additively (Smith et al., 2001). The nine teachers who solved the problem 

correctly all used the same strategy to determine the rectangle that is the most square – 

calculating the ratio of the sides (either width:length or length:width) and selecting the ratio that 

was the closest to one. Six of these nine teachers (Bert, Bonnie, Christopher, Nora, Owen, and 

Ursula) also explained why they selected the rectangle whose ratio was closest to one – that the 

ratio of the sides of a square is always one. These six teachers earned the highest rubric score – a 

4. The remaining three teachers (Bruce, Elaine, and Carl) earned 3s on the rubric because they 

did not explain why they selected the rectangle whose ratio was closest to one.  

Table 12. Treatment Group Teachers’ Rubric Scores on Task 24 

 
Treatment Group Teachers’ Rubric Scores on Task 24 
 

 Pre Post 
Bert 4 4 
Bonnie 4 4 
Bruce 3 4 
Carl 3 4 
Christopher 4 4 
Elaine 3 4 
Nanette 1 3 
Nora 4 4 
Owen 4 4 
Ursula 4 4 

 
 
 

On the posttest, all ten teachers solved the problem correctly using a multiplicative 

strategy. Nine teachers (Bert, Bonnie, Bruce, Carl, Christopher, Elaine, Nanette, Owen, and 

Ursula) calculated the ratio of the sides and selected the ratio that was the closest to one. All nine 

of these teachers earned a 4 on the scoring rubric, except Nanette, who earned a 3. The remaining 
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teacher, Nora, determined the rectangle that was the most square by considering the amount that 

must be added if each rectangle was a square relative to the side of the square, as shown in 

Figure 22. Nora also earned a 4 on the scoring rubric. There was not a significant difference in 

the teachers’ rubric scores on the posttest versus the pretest, T = 10, ns/r = 4, p > .05 (one-tailed).  

 

 
 
Figure 22. Considering a rectangle as a square plus an amount added on. 

 
 
 

4.1.1.3. Qualitative Problems 

Two qualitative problems (see tasks 7 and 8 in Appendix A) were included on the 

pre/posttest. Although teachers had no opportunities to explore qualitative problems during the 

course, teachers had numerous opportunities to explore the characteristics of multiplicative 

relationships, which may have helped them in making judgments about the relationships between 

quantities in these problems.  

On the pretest, eight of the ten teachers solved both qualitative problems correctly and 

provided valid explanations. One teacher, Bert, correctly solved only task 8, and another teacher, 

Ursula, did not correctly solve either task 7 or 8. There was not a significant difference between 

the number of qualitative problems teachers solved on the pretest and the posttest, t(9) = 1.00, p 

75 39

75

114
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= .17 (one-tailed). The only difference in teachers’ work on the posttest was that Ursula correctly 

solved one of the qualitative problems, task 8. Bert still correctly solved only task 8 on the 

posttest.  

 

4.1.2. Discriminate Proportional From Nonproportional Situations 

A second aspect of common content knowledge with respect to proportional reasoning 

requires one to be able to discriminate proportional from nonproportional situations. Teachers’ 

ability to make this distinction was explored by examining their capacity to: (1) recognize when 

ratio was an appropriate measure for quantities; (2) classify relationships in a variety of 

representations as proportional or not; and (3) create examples and nonexamples of proportional 

situations. In this section, teachers’ ability to discriminate proportional from nonproportional 

situations is described.  

4.1.2.1. Ratio as Measure: Tasks 6, 9, 10, and 24 

Task 6 (see Appendix A) presented teachers with two recipes for making orange juice by 

mixing amounts of orange juice concentrate and water, and asked teachers to determine the 

recipe that would yield the mixture with the strongest orange flavor. In order to correctly solve 

the problem, teachers needed to recognize that a ratio was an appropriate measure of 

concentration. Teachers’ work on the pre- and posttest indicates that they understood this 

(although, as previously described, they were not able to interpret the ratio). No teacher solved 

the problem (on either the pre- or posttest) in a way that did not make use of a ratio.   

Task 9 (see Appendix A) examined teachers’ ability to recognize that a ratio was the 

appropriate measure of the shade of paint. In the task, Pat mixed blue and white paint until he 

had a shade of blue he liked. He needed another quart of paint, but didn’t want to change the 
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color, so he added 1 pint each of blue and white paint. Teachers were asked to comment on the 

effectiveness of Pat’s strategy. On both the pre- and posttest, nine of the ten teachers were 

successful in determining that Pat’s strategy for increasing the amount of paint without changing 

the color was ineffective. These nine teachers provided correct explanations as well. The 

explanations contained at least one of the following components: (1) an argument that Pat’s 

strategy would only work if his original ratio was 1:1; (2) a counterexample showing that Pat’s 

strategy would change the shade of paint (or a general argument that his strategy might change 

the shade, depending on the original shade); or (3) a general argument that Pat would need to 

maintain the ratio of blue to white. Only one teacher, Ursula, said that Pat’s strategy was 

effective both on the pre- and posttest. However, it appears that Ursula may have misunderstood 

or misread the problem, because she explains on the pretest, “It [Pat’s strategy] was a good idea 

b/c…the original ratio was 1-1.” Her explanation on the posttest also indicates that she believes 

that Pat’s original mixture contained 1 quart of blue paint and 1 quart of white paint. Thus it is 

not clear whether Ursula would have thought differently about Pat’s strategy had she understood 

that his original ratio was not necessarily 1 to 1. (Ursula’s pretest work on tasks 10 and 24 

indicate that she recognized ratio as appropriate for measuring other attributes, such as steepness 

and squareness.)  

Task 10 (see Appendix A) asked teachers how they would determine the steepness of ski 

ramps if the height, length of the base, and width of the base of the ramps were provided. Using 

ratios of height to length of the base, one could determine the steepness of the ramps (the width 

of the base does not affect the steepness of the ramp). On the pretest, all ten teachers correctly 

solved this task by explaining that a ratio of height to length of the base would measure 

steepness. On the posttest, nine teachers used this ratio to measure steepness. The remaining 
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teacher, Ursula, used the Pythagorean theorem, which would determine the length of the ramp, 

rather than the steepness of the ramp.  

As described previously, task 24 (see Appendix A) asked teachers to determine which of 

three rectangular plots of land was the most square. On the pretest, nine of the ten teachers used 

ratios to measure the squareness of each rectangle. The remaining teacher, Nanette, used an 

additive strategy, rather than a strategy that made use of a ratio. On the posttest, all ten teachers 

made use of ratios to measure the squareness of each rectangle.  

Thus, it appears that eight of the teachers saw ratio as an appropriate mechanism to 

measure attributes prior to and after the course. In addition, one of the teachers, Nanette, 

appeared to come to understand that ratio could be used to measure squareness of a rectangle by 

the end of the course. Finally, the remaining teacher, Ursula, appeared to understand that ratio 

could be used to measure steepness prior to the course; however, she did not use a ratio to 

measure steepness on the posttest.  

4.1.2.2. Classifying Relationships as Proportional or Nonproportional: Tasks 11-22 and 

the Snowfall Interview Item  

Tasks 11-22 (see Appendix A) presented teachers with 12 relationships (3 depicted in 

written language, 3 depicted as graphs, 3 depicted as equations, and 3 depicted as tables) and 

asked them to indicate which were proportional and explain how they knew. Three teachers 

(Bert, Christopher, and Owen) correctly classified all twelve of the relationships, and seven 

teachers incorrectly classified at least one relationship. Of the 120 relationships on the teachers’ 

pretests (10 teachers x 12 relationships), 22.5% of the relationships (27 relationships) were 

incorrectly classified. In addition, 2 relationships were not classified at all22. Therefore, 24% of 

                                                 
22 Nora did not classify two of the table relationships (tasks 20 and 21).  



 

  115

the relationships were incorrectly classified or not classified at all on the pretest. Table 13 

indicates the number of relationships that each teacher incorrectly classified (or did not classify) 

on the pretest. It is also interesting to note in the table that teachers’ incorrect classifications were 

not limited to a particular representation.   

 

 

Table 13. Number of Relationships That Each Teacher in the Treatment Group Incorrectly 
Classified on Tasks 11-22 

Number of Relationships That Each Teacher in the Treatment Group Incorrectly Classified on 
Tasks 11-22 
 

 Pre Post 
Teacher Number of 

relationships 
incorrectly 

classified/not 
classified 

Representation(s) 
of the 

incorrectly/not 
classified 

relationships 

Number of 
relationships 
incorrectly 

classified/not 
classified 

Representation(s) 
of the 

incorrectly/not 
classified 

relationships 
Bert 0 N/A 0 N/A 
Bonnie 4 Language, graphs, 

equations, tables 
0 N/A 

Bruce 4 Language, graphs, 
equations 

0 N/A 

Carl 5 Language, graphs, 
equations, tables 

1 Language 

Christopher 0 N/A 0 N/A 
Elaine 7 Language, graphs, 

equations, tables 
2 Graph, equation 

Nanette 2 Graphs, equations 0 N/A 
Nora 3a Language, tables 0 N/A 
Owen 0 N/A 0 N/A 
Ursula 4 Language, graphs, 

equations 
0 N/A 

Total number 
of relationships 
incorrectly 
classified/not 
classified 

29  3  

 
a Nora did not classify two of the relationships, and classified one relationship incorrectly. 
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In addition, 50% of the teachers (Bonnie, Bruce, Carl, Elaine, and Nanette) appeared to 

believe that all linear relationships are proportional prior to the course. The belief that all linear 

relationships are proportional is a common misconception that has been well documented in the 

literature (De Bock, Van Dooren, Janssens, and Verschaffel, 2002; De Bock, Verschaffel, and 

Janssens, 1998; Smith et al., 2003). All five of these teachers consistently classified all of the 

linear relationships as proportional in at least two of the four representations given on the pretest. 

Two of these five teachers (Carl and Elaine) consistently classified all linear relationships as 

proportional across all four representations, and two teachers (Bonnie and Bruce) did so across 

three of the four representations. The explanations these teachers produced support the claim that 

they believed all linear relationships were proportional. For example, Nanette supported her 

statement on the pretest that task 17 (the equation y = 3x + 4.5) is proportional by writing, 

“Because this is a linear function, x and y have a proportional relationship.” Bonnie, Bruce, Carl, 

and Elaine also wrote similar arguments in support of at least one of their classifications. 

Teachers correctly classified significantly more relationships as proportional or not on the 

posttest than on the pretest, t(9) = 4.21, p = .001 (one-tailed). Of the 120 relationships on the 

posttest, only three (2.5%) were incorrectly classified on the posttest. Eight of the ten teachers 

correctly classified all twelve relationships as proportional or not. One teacher, Elaine, 

incorrectly classified two relationships, and one teacher, Carl, incorrectly classified one 

relationship, as shown in Table 13.  

In addition, the misconception that all linear relationships are proportional appeared to 

have been mostly eliminated by the posttest. Significantly fewer teachers appeared to hold the 

misconception that all linear relationships are proportional at the end of the course than at the 

beginning of the course, Fisher’s exact test, p = .02 (one-tailed). Only one teacher, Carl, 



 

  117

incorrectly classified one linear, nonproportional relationship (task 13) as proportional because 

“the rates are constant.” However, it is interesting to note that Carl did correctly classify the 

other linear relationships presented as graphs, tables, and equations.  

The two relationships Elaine incorrectly classified were both quadratic relationships that 

contained the origin, presented as an equation (task 18) and graph (task 16). Elaine incorrectly 

classified these same tasks on the pretest. Interestingly, Elaine did not incorrectly classify the 

other quadratic relationship containing the origin (task 22) on either the pre- or posttest, as one 

might expect. Perhaps this is because task 22 was presented as a table, which allowed her to 

utilize key understanding 3 (the rate pairs in proportional relationships are equivalent) on the 

posttest to determine that in this case the rate pairs were not equivalent.  

Teachers’ work on the snowfall item on Interview 2 provided further evidence that they 

were able to distinguish proportional from nonproportional relationships by the end of the 

course. In this item, teachers examined data (presented in a paragraph, tables, and graphs) on a 

snowstorm that hit two cities in Iowa and were asked to discuss what they could tell from the 

data (see Figure C2 in Appendix C). The relationship between the number of hours it snowed 

and the amount of snow on the ground was proportional for Cedar Rapids, and was not 

proportional for Mason City. If teachers did not spontaneously identify Cedar Rapids as 

proportional, they were explicitly asked whether either of the relationships was proportional. 

Nine of the ten teachers correctly identified the proportional relationship in their work on this 

item23. Eight of these teachers did so spontaneously. Ursula did not spontaneously comment on 

the proportionality of the relationships, but was able to correctly identify Cedar Rapids as 

proportional when prompted by the interviewer.  

                                                 
23 One of the ten teachers, Nora, did not identify Cedar Rapids as proportional. Her work is discussed at the end of 
the next section.  
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4.1.2.3. Creating Examples of Proportional Situations: Task 5 and Interview Item  

Task 5 asked teachers to create a word problem that would require setting up and solving 

the proportion 3/8 = x/20. In order to write such a problem, teachers needed to create a context in 

which the quantities were related multiplicatively (i.e., proportionally). In addition, since the 

solution to the given proportion was x = 7.5, teachers needed to make sure that a noninteger 

solution made sense in the context (e.g., a solution of 7.5 inches would make sense, but a 

solution of 7.5 people would not). Table 14 presents the results for the ten teachers in the 

treatment group on task 5.  

As shown in Table 14, all ten teachers created missing value word problems in which the 

quantities were related multiplicatively both prior to and upon completion of the course. For 

example, eight teachers created situations in which they made the multiplicative relationship 

explicit (e.g., “For every 8 boxes of candy sold, $3 goes to the Make-A-Wish foundation [Bert, 

pretest]). The remaining two teachers (Christopher and Owen) created word problems based on 

situations in which the multiplicative relationship between quantities is more implicit. For 

example, the multiplicative relationship between height and shadow length in Owen’s word 

problem is not explicitly stated: 

Jamal, a basketball player, is 8 feet tall. He is standing next to a 
flagpole, which he knows to be 20 feet tall. He is wondering, 
“How long is the shadow made by the flagpole?” He asks his 
friend Susie to measure his shadow with the yardstick – it is 3 feet 
long. What is the answer to his question?                 (Owen, pretest) 
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Table 14. Rubric Scores for Word Problems Created by Teachers in the Treatment Group for Task 
5 

Rubric Scores for Word Problems Created by Teachers in the Treatment Group for Task 5 
 

 Pre Post 

Bert 3 1 
Bonnie 1 3 
Bruce 1 2 
Carl 1 1 
Christopher 3 2 
Elaine 0a 3 
Nanette 1 1 
Nora 2 1 
Owen 3 3 
Ursula 1 1 

 

Note.  Teacher’s word problems were scored using the following rubric: 

3: Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 makes 

sense in the context of the problem  

2:  Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 does not 

make sense in the context of the problem, but the teacher appears to recognize this issue, and addresses it 

by addending the problem using phrases such as: “Parts…are ok”, “Please round your answer”, etc.  

1: Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 does not 

make sense in the context of the problem. 

0: Word problem does not require setting up and solving 3/8=x/20. 

 
a Elaine’s word problem did involve two quantities that were related multiplicatively. However, the problem she 

created required setting up and solving 8/3 = x/20. 

 

 

 Despite all ten teachers creating word problems that required multiplicative solution 

strategies on the pretest and posttest, the extent to which they created word problems in which a 

noninteger solution made sense in the context of the problem varied on the pretest and posttest. 

As shown in Table 14, half of the ten teachers created word problems in which the answer did 

not make sense in the context of the problem, and therefore earned a rubric score of 1 on both the 

pretest and posttest. For example, consider the word problem Ursula created on the pretest:  
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In a typical math classroom, there are a total of 8 students. Three 
out of 8 students are female. If you walked into a math classroom 
that contained 20 students, how many female students would you 
expect to see?                (Ursula, pretest) 

 

In Ursula’s problem, an answer of 7.5 female students does not make sense. Other teachers 

appeared to recognize this issue and addressed it by stating that parts of quantities were 

permissible, as shown in the problem Nora created on the pretest, “Harry can buy 3 frogs for 8 

cents. How many frogs can he buy with 20 cents? (Parts of frogs are ok.)”  

 There was no significant difference between teachers’ work on task 5 at the beginning 

and end of the course, T = 4, ns/r = 6, p > .05 (one-tailed). All teachers created word problems in 

which the quantities were related multiplicatively – which is a key, and perhaps the most 

important, component of this task. The extent to which teachers created problems in which a 

noninteger solution made sense in the context was fairly limited. However, it is important to note 

that teachers had no opportunities to create word problems during the course.   

In addition, an item on Interview 1 and Interview 2 asked teachers to provide an example 

of a situation in which there was a proportional relationship between the quantities, and an 

example in which there was not a proportional relationship between the quantities. Teachers 

were also asked to explain why their examples represented (or did not represent) proportional 

relationships. Table 15 presents the results for the ten teachers’ examples and nonexamples of 

proportional relationships. As shown in Table 15, all ten teachers were able to create a valid 

example of a proportional relationship during Interview 1 and Interview 2. The most common 

examples that teachers created were situated in a recipe context, in which one wanted to make 

more than (e.g., twice as much) the amount that the recipe yields. Another common example 

involved heights and shadow lengths (similar to the word problem Owen created on the pretest). 
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Although teachers were able to create examples of proportional situations even early in the 

course, their ability to explain why their examples were valid significantly improved over time 

(as shown in their rubric scores), T = 15, ns/r = 5, p < .05 (one-tailed).  

 
 

Table 15. Rubric Scores for Examples and Nonexamples of Proportional Situations Created by 
Teachers in the Treatment Group  

Rubric Scores for Examples and Nonexamples of Proportional Situations Created by Teachers in 
the Treatment Group  
 

 
Note.  Teachers’ examples and nonexamples were scored using the following rubric: 

4: creates a proportional/nonproportional situation and explains why it is proportional (or not) (either by 

drawing on the 4 key understandings, or other means – e.g., saying that the ratio between the two quantities 

is constant, or that the unit rate stays the same) 

3: creates a proportional/nonproportional situation but explanation is vague or does not clearly explain why 

it’s proportional (or not)  

2: creates a situation in which there is not a relationship between the quantities – proportional or otherwise 

1:  incorrectly creates a proportional/nonproportional situation 

 
a Carl, Christopher, Nanette, and Nora were not pressed by their interviewers to explain why their examples were 

proportional. 
 
 

example nonexample example nonexample
Bert 4 2 4 4
Bonnie 4 4 4 4
Bruce 3 3 4 4
Carl 3a 2 3 2
Christopher 3a 4 4 4
Elaine 3 2 4 4
Nanette 3 1 3a 4
Nora 3a 4 4 4
Owen 4 4 4 4
Ursula 3 2 4 3

Interview 1 Interview 2
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As shown in Table 15, teachers were more successful in providing an example of a 

proportional relationship than a nonexample early in the course. For example, half of the ten 

teachers were unable to provide a nonexample of a proportional relationship during Interview 1. 

Four teachers (Bert, Carl, Elaine, and Ursula) provided a nonexample in which there was no 

relationship between the quantities (e.g., Ursula’s nonexample involved a person’s height and 

their eye color), or told the interviewer that they could not come up with a nonexample 

(Nanette). Teachers’ ability to provide nonexamples of proportional relationships and explain 

why they were not proportional significantly improved over time, T = 15, ns/r = 5, p < .05 (one-

tailed). By the end of the course, most teachers were able to provide a valid nonexample of a 

proportional relationship. Teachers’ nonexamples at the end of the course typically involved an 

additive component24, such as the nonexample provided by Bert: 

…well I guess, if you- say you have [pause] if you had a job where 
you got a signing bonus, [pause] And somebody asked you how 
much you made per hour. So, say your first paycheck included 
your signing bonus, [pause] the more hours that you work, the less 
per hour it would come out to.     (Bert, Interview 2, lines 483-488) 

  

 Summary. Even early in the course, teachers were able to create contexts and provide 

examples in which the quantities were related multiplicatively. However, the extent to which 

they could justify why their examples were proportional significantly improved by the end of the 

course. Teachers’ capacity to provide nonexamples of proportional situations was fairly limited 

early in the course. By the end of the course, most teachers were able to provide nonexamples 

and explain why they were not proportional. In order to justify why a relationship is proportional 

                                                 
24 This is not particularly surprising, since the ideas that proportional relationships are multiplicative rather than 
additive and can be represented by the equation y = mx are part of the four key understandings, which were made 
public during the course and appeared to be learned by teachers. In addition, key problems discussed during the 
course included an additive component (e.g., the park and zoo problems discussed during Class 11).  
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or not, one needs to understand the mathematical relationships embedded in proportional 

situations. Teachers’ understandings about these relationships are described in the next section.  

 

4.1.3.  Understand the Mathematical Relationships Embedded in Proportional Situations 

In this section, the last aspect of teachers’ common content knowledge with respect to 

proportional reasoning, their understandings of the mathematical relationships embedded in 

proportional situations, prior to and after the course are described. Three tasks were used to 

explore teachers’ use of the arguments based on Cramer et al.’s (1993) and Post et al.’s (1988) 

key understandings. First, tasks 11-22 (see Appendix A) presented teachers with 12 relationships 

(3 depicted in written language, 3 depicted as graphs, 3 depicted as equations, and 3 depicted as 

tables) and asked them to indicate which were proportional and explain how they knew. In 

addition, an item on Interview 1 and Interview 2 (see item 1 in Appendix B and item 3 in 

Appendix C) asked teachers to define a proportional relationship and to create an example and 

nonexample of a proportional relationship. Teachers were also pressed by the interviewer to 

explain why their examples reflected proportional (or nonproportional) relationships. Finally, the 

snowfall item on Interview 2 asked teachers to examine data on a snowstorm that hit two cities in 

Iowa and to discuss what they could tell from the data (see Figure C2 in Appendix C). The 

relationship between the number of hours it snowed and the amount of snow on the ground was 

proportional for Cedar Rapids, and was not proportional for Mason City. If teachers did not 

spontaneously identify Cedar Rapids as proportional, they were explicitly asked whether either, 

if any, of the relationships was proportional. Teachers were then pressed to explain how they 

knew either of the relationships was proportional.  
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4.1.3.1. Tasks 11-22 

The nature of teachers’ rationales for why the relationships in task 11-22 were 

proportional (in particular, tasks 12, 14, 19, and 20 are proportional) changed during the course. 

Table 16 illustrates the key understandings upon which teachers drew on the pre- and posttest to 

identify the proportional relationships. As shown in Table 16, prior to the course, 50% of the 

teachers wrote at least one explanation that was based on a misconception (e.g., the belief that all 

linear relationships are proportional). By the end of the course, no teacher provided an 

explanation based on a misconception.  

In addition, the number of key understandings teachers drew upon on the posttest was 

significantly greater than the number of key understandings they drew upon on the pretest, t(9) = 

4.31, p = .0009 (one-tailed). Teachers also drew upon understandings on the posttest that they 

had not used prior to the course. All teachers (except Nora) drew upon at least one understanding 

on the posttest that they had not utilized on the pretest, as shown in Table 17. Seven teachers 

drew upon at least two “new” understandings on the posttest. In addition, six teachers used an 

argument that the m in y = mx is the slope, the unit rate, and the constant of proportionality (i.e., 

key understanding 4) on the posttest. Only two teachers used such an argument on the pretest.  
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Table 16. Key Understandings Upon Which Teachers in the Treatment Group Drew to Identify Proportional Relationships in 
Tasks 11-22 

Key Understandings Upon Which Teachers in the Treatment Group Drew to Identify Proportional Relationships in Tasks 11-22  
 

 Pre Post 
 Task 12 

(language) 
Task 14 
(graph) 

Task 19 
(equation) 

Task 20  
(table) 

Task 12 
(language)

Task 14 
(graph) 

Task 19 
(equation)

Task 20 
(table) 

Bert 3, 4 4 3 3 3 2, 4 4 3, 4 
Bonnie Linears are 

proportional 
Linears are 
proportional 

Linears are 
proportional 

Linears are 
proportional 3 2, 4 4 3 

Bruce 3 3 Linears are 
proportional 3 1 2 2 2 

Carl Linears are 
proportional 

Linears are 
proportional 

Linears are 
proportional 

Linears are 
proportional 1 2 2 2 

Christopher 3 3 3 3 4 2 4 4 
Elaine As x increases, y 

increases 
Linears are 
proportional 

Linears are 
proportional 

Linears are 
proportional 3 2 3 3 

Nanette Incorrectly 
classified  

As x increases, y 
increases 

Linears are 
proportional 

Linears are 
proportional 2 2, 1 1 3, 4 

Nora 3 3 4 2, 3 4 2 2 3 
Owen 3 2 2 3 4 2 2 3 
Ursula Incorrectly 

classified  - 3 - 1 2 1 1 
 
Note.  Shading indicates that the teacher’s work indicates that they have a misconception about proportional relationships (i.e., either that all linear relationships 
are proportional, or that a relationship is proportional because as x increases, y also increases). 
 
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 
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Table 17. Key Understandings Upon Which Teachers in the Treatment Group Drew on the Posttest but Not 
on the Pretest 

Key Understandings Upon Which Teachers in the Treatment Group Drew on the Posttest but Not 
on the Pretest 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.   
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 

 
 
Finally, it is interesting to note that by the end of the course, teachers’ rationales appeared 

to be more connected with particular representations. For example, all ten teachers explained that 

task 14, presented as a graph, was proportional because proportional relationships are depicted 

by graphs of lines that contain the origin (key understanding 2) on the posttest. Teachers used 

this argument to a lesser extent to justify why the relationships presented in language, equations, 

and tables were proportional. Similarly, over half the teachers explained that task 20, presented 

as a table, was proportional because the rate pairs are equivalent (key understanding 3). Teachers 

drew upon this argument to a lesser extent to justify why the relationships presented in language 

and equations were proportional, and no teacher used this argument to justify why the graph was 

proportional.  

 Pre Post Key understandings that 
were utilized on the posttest 

but not on the pretest 
Bert 3, 4 2, 3, 4 2 
Bonnie None 2, 3, 4 2, 3, 4 
Bruce 3 1, 2 1, 2 
Carl None 1, 2 1, 2 
Christopher 3 2, 4 2, 4 
Elaine None 2, 3 2, 3 
Nanette None 1, 2, 3, 4 1, 2, 3, 4 
Nora 2, 3, 4 2, 3, 4 None 
Owen 2, 3 2, 3, 4 4 
Ursula 3 1, 2 1, 2 
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4.1.3.2. Item on Interview 1 and Interview 2: Defining a Proportional Relationship and 

Creating an Example and Nonexample of a Proportional Relationship  

Teachers’ work on an interview item in which they were asked to define a proportional 

relationship and create an example and nonexample of a situation in which there was a 

proportional relationship between the quantities provided additional evidence that they refined 

their understandings about the mathematical relationships embedded in proportional 

relationships during the course. As shown in Table 18, teachers drew upon significantly more 

key understandings on the posttest than the pretest in defining a proportional relationship and 

creating and justifying examples and nonexamples of proportional relationships, t(9) = 3.34, p = 

.004 (one-tailed).  
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Table 18. Key Understandings Upon Which Teachers in the Treatment Group Drew in Defining a 
Proportional Relationship and Creating an Example and Nonexample of a Proportional 
Relationship  

Key Understandings Upon Which Teachers in the Treatment Group Drew in Defining a 
Proportional Relationship and Creating an Example and Nonexample of a Proportional 
Relationship  
 

 Interview 1 Interview 2 

Bert 1 2, 3 
Bonnie 1 1, 2, 3 
Bruce 1, 2 1, 2, 3 
Carl None Nonea 

Christopher 3 3 
Elaine None 1, 2, 3 
Nanette None 1, 2, 3 
Nora 1 2 
Owen 2 1, 3 
Ursula None 2 

 

Note.   
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 
a However, Carl’s interviewer did not press him to explain why his example (and nonexample) did (or did not) 
represent a proportional relationship during Interview 2. 

 

4.1.3.3.          Item 2 on Interview 2: Snowfall 

For the snowfall item, teachers were asked to examine data (presented in a paragraph, 

tables, and graphs) on a snowstorm that hit two cities in Iowa and to discuss what they could tell 

from the data. The relationship between the number of hours it snowed and the amount of snow 

on the ground was proportional for Cedar Rapids, and was not proportional for Mason City. By 

engaging with this task, teachers had opportunities to use their knowledge flexibly across three 
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representations (written language, tables, and graphs). As such, this task was quite different from 

other tasks on the pre/posttest and interviews.  

As noted previously, nine of the ten teachers correctly identified the proportional 

relationship, Cedar Rapids, in the snowfall interview item. In addition, the nine teachers who 

correctly identified Cedar Rapids as proportional drew upon at least one of the four key 

understandings to explain why the relationship was proportional, as shown in Table 19. Two 

teachers (Bruce and Christopher) drew upon all four key understandings in their explanations, 

two teachers (Nanette and Owen) drew upon three of the understandings, three teachers (Bert, 

Bonnie, and Carl) drew upon two understandings, and three teachers (Elaine, Nora, and Ursula) 

drew upon one understanding in their explanations.  

The understanding that proportional relationships are depicted by graphs that contain the 

origin (key understanding 2) was drawn upon the most frequently, by nine teachers. The 

understanding that proportional relationships are multiplicative in nature (key understanding 1) 

was used by seven teachers. The understanding that m in the equation y = mx is the slope, unit 

rate, and constant of proportionality (key understanding 4) was used by four teachers. Finally, 

the understanding that the rate pairs of proportional relationships are equivalent (key 

understanding 3) was used by three teachers. 

It is interesting to note that all four teachers who drew upon key understanding 4 (the 

understanding that m in the equation y = mx is the slope, unit rate, and constant of 

proportionality), Bruce, Christopher, Nanette, and Owen, also spontaneously generated equations 

that represented the relationship between the number of hours it snowed and the amount of snow 

on the ground for Cedar Rapids (the proportional relationship). (Bruce and Owen also generated 

the equation for the nonproportional relationship, Mason City.) None of the remaining six 
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teachers generated equations to represent the relationships depicted in the snowfall item, nor did 

they draw upon key understanding 4 during the interview. This is not surprising, since the 

equation is particularly helpful in using key understanding 4.  

 

 

Table 19. Key Understandings Upon Which Teachers in the Treatment Group Drew in Their 
Work on the Snowfall Item  

Key Understandings Upon Which Teachers in the Treatment Group Drew in Their Work on the 
Snowfall Item  
 

Teacher Key understandings used 
Bert 2, 3 
Bonnie 1, 2 
Bruce 1, 2, 3, 4 
Carl 1, 2a 

Christopher 1, 2, 3, 4 
Elaine 2 
Nanette 1, 2, 4 
Nora 2 b 
Owen 1, 2, 4 
Ursula 1 

 

Note.   
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 
a Carl also attempted to use key understanding 3 (rate pairs are equivalent), but did not set up the ratios correctly. 
(Therefore this was not counted as a key understanding that he drew upon.) 
b Nora was the only teacher who was not able to determine that Cedar Rapids was proportional. In her work on the 
problem, however, it was clear that she understood that proportional relationships are depicted by lines that contain 
the origin (key understanding 2). 
 

 

It is also interesting to note that half the teachers (Bert, Bonnie, Bruce, Christopher, and 

Elaine) spontaneously made mathematical connections between the understandings in their work 

at the end of the course. For example, Bruce makes connections among the four key 



 

  131

understandings as he explains why Cedar Rapids is proportional and Mason City is not in the 

following excerpt. (“I” stands for “Interviewer”.) 

Bruce: …Cedar Rapids [pause] is [pause] proportional because the- um 
[pause] there’s no y-intercept, there’s no starting point. So, based 
on the hours, um, [pause] you can predict. So, the Mason City is 
not proportional. Because the proportion from one hour to the next 
[pause] is not the same…So 6.5 over 1, versus 7.5 over 3, versus 
8.5 over 5, [pause] there’s no constant of 
proportionality…There’s no proportional relationship. In Mason 
City…the hours to the snow, there’s no proportional 
relationship…between hours and snow…in Mason City. There is, 
or should be, [pause] I think, there should be, for the other one 
[Cedar Rapids].  

I: Why do you think there should be? 
Bruce: Because it should go through the- at the- I don’t if a dot’s put- it 

goes through the origin. Then there’s no y-intercept there, uh 
value throwing off the slope, the slope is the proportion 
between the hours and the inches. It’s a direct varian- it’s a 
direct uh relationship. It’s a direct multiplicative relationship. 
So I can see that from the table. I can see that from the graph. 

I: You can see what? 
Bruce: I can see, looking at the graph, that it’s not- that the y-intercept, but 

then I could look at the table, to prove that the proportionality 
between the two doesn’t- those…doesn’t exist.  

I: Ok. 
Bruce: So that’s how I used this. I look at the- I look at the graph, I see a 

y-intercept of about 6, so I go up here [the table], and prove to 
myself that there is no constant of proportionality between the 
hours it snowed and the inches on the ground for Mason City.  

(Bruce, Interview 2, lines 681-711, bold added to highlight the 
mathematical connections) 

 

In this excerpt, Bruce draws upon his understandings of the nature of proportional relationships 

to confirm his hypothesis that Cedar Rapids is proportional. In particular, he checks several rate 

pairs (key understanding 3) for Mason City and notes that there is not a constant of 

proportionality (key understanding 4). In addition, he notes that Cedar Rapids contains the origin 

(key understanding 2), which causes the relationship to be multiplicative (key understanding 1). 

Bruce also notices that the graph for Mason City has a y-intercept of 6, and uses that information 
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to “prove to [him]self” that there is no constant of proportionality for Mason City, thus 

connecting key understandings 2 and 4. Finally, Bonnie and Christopher made similar 

connections in their work on the snowfall item, and Bert and Elaine did so in their work to create 

an example and nonexample of a proportional relationship during Interview 2.  

Finally, one teacher, Nora, was unable to identify the proportional relationship (Cedar 

Rapids) on the snowfall item. However, her work on this interview item reveals that the source 

of the problem may have been the snowfall context, not necessarily an impoverished 

understanding of proportional relationships and their characteristics. For example, when asked 

by the interviewer if either of the situations reflected a proportional relationship, Nora 

responded, “Um, for a proportional relationship, [pause] you would have to have the graph go 

through zero, you have to go through the origin.” Thus, Nora knew that proportional 

relationships are depicted by linear graphs that contain the origin (key understanding 2). In 

addition, Nora was able to discuss key characteristics of proportional relationships during her 

work on this interview item; however, she was only able to do so when she shifted the contexts 

to the movie tickets and taxicab contexts from the pre/posttest (see tasks 11 and 12 in Appendix 

A), as shown in the following excerpt. (“I” stands for “Interviewer”.) 

Nora:  Um [pause] can’t- I don’t know- can I use a different 
situation? 

I:  Sure, if- if that seems to- 

Nora:  Ok.  

I:  if the snowfall is giving you a hard time. Sure. 

Nora:  Cause I know with the- this is movie tickets. [pause] For 
the movie tickets, no matter how many people you have, 
[pause]  

I:  Ok, so you’re drawing a little graph here 

Nora:  number of- number of people um for the x-axis, is the 
number of- er- [pause] ___ cost of [pause] all the tickets, 
___ the total cost. All the tickets cost the same amount, um 
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so zero tickets- um zero people would be zero dollars, but 
um one person would be five dollars if these are five dollar 
tickets.  

I:  Ok. Ok. Ok.  

Nora:  Two people would be ten dollars, so the graph would be 
linear and go through the origin. And for- it wouldn’t 
matter how many people [pause] you had, every ticket 
would still cost the same amount.  

I:  Ok. 

Nora:  So if you had um two people, it would cost ten dollars, and 
that would be five dollars per ticket, and if you had five 
people that would be twenty five um dollars, and it would 
still be five dollars per ticket. Whereas if you were in a 
taxicab, you have um [pause] the number of miles versus 
the total cost. 

I:  Ok.  

Nora:  Then, I have miles on the x-axis, um, even though you 
don’t go anywhere, it still costs you three dollars. [pause] 
Or something. Say that costs three dollars. And then for 
every additional- so it’s like, cost will be three dollars plus, 
I don’t know, twenty cents a mile. 

I:  Ok. 

Nora:  Um the more miles you go, the less it costs per mile. 
[pause] 

I:  Ok. So that- and that’s different than- 

Nora:  That’s different than this. 

I:  The movie tickets situation. 

Nora:  Right. Where, no matter how many people- no matter- 
no matter how far you go along the x-axis it’s still the 
same increase um. 

I:  It’s still this five dollar- 

Nora:  Still five dollars. 

I:  Ok, and here you said it would be changing, it would- 

Nora:  the cost would change per person-  

I:  Ok. 

Nora:  er- per mile.  

I:  Per mile. Ok.  

(Nora, Interview 2, lines 346-384, bold added for emphasis) 
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Thus, Nora is able to identify a key difference between relationships that are and are not 

proportional: the unit rate (in her examples, cost per person or cost per mile) is constant in 

proportional relationships; by contrast, the unit rate changes in nonproportional relationships. 

Unfortunately, Nora is unable to relate this work back to the snowstorm situations, as shown in 

the following excerpt.  

I:  …you think you can relate this back to the snowstorm? 

Nora:  Um [long pause] the difficulty I’m having is the increase is 
the same each hour. But I guess the level of snow is 
different. Ok, for Cedar Rapids. Um, it says that there was 
no snow on the ground as the- when the snow started, so 
I’m going to extend this line through the origin.  

I:  Ok. 

Nora:  Cause at time zero, there was no snow. So after two hours, 
um, is that right? Yeah. After two hours, um it had snowed 
three- there was three inches of snow on the ground. This is 
um Cedar Rapids and for Mason City, [pause] um for two 
hours- after two hours there was, where is it? Seven um 
inches of snow. Then after three hours, in Mason City 
[pause] huh. Hmm hmm hmm. And that would be- that 
doesn’t- I don’t think it makes any sense. [pause] Cause 
that would be for each one hour, that’d be one and a half 
inches of snow on the ground.  

I:  That’s for Cedar Rapids. 

Nora: For Cedar Rapids.  

I:  Ok. 

Nora:  And it wouldn’t matter [pause] cause after um four hours, 
in Cedar Rapids there is six inches on the ground, it’s the 
same- it’s one- it’s still one and a half inches um for every 
hour that it snowed. But since in Mason City there’s 
already snow on the ground, after two hours, there’s seven 
inches and so that’s like one, that’s three and a half inches 
per hour and mmm I’ll (do it with) four. At four, after four 
hours there was eight inches on the s- on the ground, so that 
would mean it was snowing two inches per- per hour, for 
every one hour. And [pause] I don’t think it makes any 
sense here. [pause] 

I:  What’s not making any sense? 
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Nora:  I don’t- I don’t know how to interpret the difference in the 
amounts of snowfall 

I:  Ok, this-  

Nora:  per hour.  

I:  this, per hour rate, ok.  

Nora:  Yeah, that doesn’t- I don’t think that makes any sense 
because I already know that it’s one half. Cause I- so I 
know it’s a constant [pause]  

I:  Ok. 

Nora:  rate, but it’s a constant rate of change but it’s- the ratio 
between the number of hours and the number of inches is 
not the same.  

I:  Ok. So it’s not giving you that one half that- 

Nora:  Right.  

I:  that you know that this line is representing. 

Nora:  Yeah. Yeah.  

I:  Ok. Now in the movie- er this is the taxi cab- 

Nora:  Mhm. 

I:  that- what’s happening? Or what’s happening there? 

Nora:  Well for the taxicab I know that for the number of as- as 
the number of minutes increased, the total cost for each 
minute went down. [pause] So [pause] can I say that the 
number of hours increased the total amount [pause] I think 
there’s a- I don’t know how to relate to cost, inches of 
snow on the ground. [laughs] 

I:  Ok.  

Nora:  I think that the total height, in each- for each hour it snows 
the total height [pause] doesn’t increase the same amount. 
[pause] I don’t know. [pause] It’s all cause the six inches. 
[laughs] 

I:  [laughs] 

Nora:  That was already there.  

I:  Ok, and that’s throwing it off? 

Nora:  I’m not sure, yeah. I’m not sure how to interpret this. But I 
don’t think- I think you have to have a linear 
relationship that goes through the origin- 

I:  for it to be  
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Nora:  proportion- 

I:  proportional. 

Nora:  Yeah.  

I:  Ok.    

(Nora, Interview 2, lines 386-444, bold added for emphasis) 

4.1.3.4. Tasks 11-22 and Interview Items (Defining a Proportional Relationship, 

Creating an Example and Nonexample of a Proportional Relationship, and Snowfall) 

 
By arranging all the data that examined teachers’ understandings of the mathematical 

relationships embedded in proportional situations together, differences between teachers’ use of 

the key understandings prior to and after the course can be noted. Table 20 shows the key 

understandings used by teachers on the pre-instruments (tasks 11-22 on the pretest and the 

Interview 1 item in which teachers defined a proportional relationship and created an example 

and nonexample) and the post-instruments (tasks 11-22 on the posttest, the Interview 2 item in 

which teachers defined a proportional relationship and created an example and nonexample, and 

the Snowfall item on Interview 2).  
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Table 20. Key Understandings Drawn Upon Which Teachers in the Treatment Group Drew 
Prior to and Upon Completion of the Course 

Key Understandings Upon Which Teachers in the Treatment Group Drew Prior to and Upon 
Completion of the Course 

 
Note.   
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 
 
 
 

As shown in Table 20, three teachers (Carl, Elaine, and Nanette) did not draw upon any 

of the four key understandings in their work prior to the course. By contrast, all ten teachers used 

at least two key understandings in their work at the end of the course – five of which utilized all 

four key understandings at the end of the course. In addition, Table 20 notes the understandings 

that teachers used on the post-instruments but not on the pre-instruments – that is, 

understandings that teachers appeared to learn during the course. Teachers drew upon 

significantly more understandings in their work at the end of the course than at the beginning of 

the course, t(9) = 3.67, p = .002 (one-tailed). As shown in Table 20, all but one teacher, Nora, 

utilized at least one key understanding at the end of the course that they had not used at the 

 Pre-instruments: 
Pretest (Tasks 11-
22) & Interview 1 

(Defining, Example, 
Nonexample) 

Post-instruments 
(Posttest (Tasks 11-22), 
Interview 2 (Defining, 

Example, Nonexample), 
Interview 2 (Snowfall) 

Key understandings 
that were utilized on 
the post-instruments, 

but not on the pre- 
instruments 

Bert 1, 3, 4 2, 3, 4 2 
Bonnie 1 1, 2, 3, 4 2, 3, 4 
Bruce 1, 2, 3 1, 2, 3, 4 4 
Carl None 1, 2 1, 2 
Christopher 3 1, 2, 3, 4 1, 2, 4 
Elaine None 1, 2, 3 1, 2, 3 
Nanette None 1, 2, 3, 4 1, 2, 3, 4 
Nora 1, 2, 3, 4 2, 3, 4 None 
Owen 2, 3 1, 2, 3, 4 1, 4 
Ursula 3 1, 2 1, 2 



 

  138

beginning of the course25. Seven teachers appeared to learn that proportional relationships are 

depicted graphically by lines that contain the origin (key understanding 2) by the end of the 

course. Six teachers appeared to learn that proportional relationships are multiplicative in nature 

(key understanding 1), five teachers appeared to learn that the m in y = mx is the slope, constant 

of proportionality, and unit rate (key understanding 4), and three teachers appeared to learn that 

the rate pairs in proportional relationships are equal (key understanding 3).  

 

4.1.4. Summary 

Teachers’ work on the pretest and pre-interview revealed that the ten teachers in the 

treatment group were able to do a lot of mathematics prior to the course. With only one 

exception (Nanette’s pretest solution to task 24, the plots of land problem), this group of teachers 

did not use incorrect additive strategies to solve the problems. This finding suggests that this 

particular group of teachers is not typical of teachers, many of which apply additive strategies to 

problems that call for multiplicative ones (Heinz, 2000; Simon & Blume, 1994; Smith et al., 

2001; Post et al., 1991). In general, this group of teachers was able to successfully solve a variety 

of proportionality problems and recognize when multiplicative strategies were appropriate. 

These teachers’ success in solving such problems can be attributed in part to the fact that they 

were about to be certified in secondary mathematics and had earned a bachelor’s degree or 

equivalent in mathematics.  

However, a closer look at teachers’ work on the pretest revealed that they relied heavily 

on the cross multiplication procedure to solve missing value problems. In addition, many 

teachers may have held a narrow view of the types of ratios that could be used to solve numerical 

                                                 
25 However, as shown in Table 21, Nora drew upon all four key understandings at the beginning of the course, and 
thus had no room for improvement.  



 

  139

comparison problems. Teachers’ work on the posttest suggests that their range of strategies for 

solving missing value and numerical comparison problems was broadened as a result of the 

course.  

In addition, teachers’ work on the pretest indicated that they understood that ratio is an 

appropriate measure of quantities such as squareness and steepness. This understanding is an 

important aspect of discriminating proportional from nonproportional situations. However, when 

specifically asked to classify relationships presented in a variety of representations as 

proportional or not, teachers struggled to do so on the pretest. In particular, half of the ten 

teachers appeared to believe that all linear relationships are proportional. By the end of the 

course, teachers’ capacity to determine whether or not relationships were proportional had 

significantly improved, and the misconception that all linear relationships are proportional was 

not present in teachers’ work at the end of the course.  

Teachers’ work on the pretest also revealed that they had limited understandings of the 

mathematical relationships embedded in proportional situations. Teachers drew upon 

significantly more key understandings in their work at the end of the course than they did at the 

beginning of the course, and all teachers (except Nora26) appeared to come to know or 

understand additional features of proportional relationships as a result of the course.  

 

                                                 
26 Recall that Nora drew upon all four key understandings at the beginning of the course (see Table 21), and 
therefore had no room for improvement with respect to utilizing additional key understandings at the end of the 
course. 
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4.2. Exploring the Impact of the Proportional Reasoning Course: Similarities and 

Differences Between Teachers Who Participated in the Course and Teachers Who Did Not 

In this section, the influence that the proportional reasoning course had on teachers’ 

learning is explored by comparing the understandings of teachers enrolled in the course and 

those who were not before and after the course was enacted. In making these comparisons, 

research question 3 (How do preservice secondary mathematics teachers who participated in a 

course specifically focused on proportional reasoning differ from preservice secondary 

mathematics teachers who did not participate in the course in their understandings about 

proportional reasoning?) is explored. As described in Chapter Three, both the treatment group 

(i.e., ten teachers who completed the proportional reasoning course) and the contrast group (i.e., 

six teachers who were not enrolled in the course, but were otherwise similar to the treatment 

group) completed the pre/posttest and pre/post interview. Results from these instruments 

indicated that teachers in both groups had similar understandings prior to the course, and that 

teachers in the treatment group enhanced their understandings of several aspects of proportional 

reasoning, as shown in Table 21.  

With respect to teachers’ ability to solve a variety of problem types, both groups were 

able to do so prior to the course, as shown in Table 21. As noted previously, by the end of the 

course, the teachers in the treatment group relied significantly less heavily on procedural 

strategies such as cross multiplication (in solving task 23, a missing value problem situated in a 

similarity context), and used the between-ratio strategy, which highlights the multiplicative 

relationship between quantities, significantly more frequently in solving all five missing value 

problems on the pre/posttest. By contrast, there was no change in the strategies used by the 

teachers in the contrast group by the end of the course. In addition, both the treatment and 
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contrast group were also similar with respect to their ability to discriminate proportional from 

nonproportional situations at the beginning of the course. For example, both groups recognized 

that ratio is an appropriate measure for attributes such as steepness and oranginess of an orange 

juice mixture. Both groups also had limitations in their ability to provide examples and 

nonexamples of proportional situations and to classify relationships as proportional or 

nonproportional. However, by the end of the course, the teachers in the treatment group 

demonstrated significant growth in their capacity to provide examples and nonexamples and to 

classify relationships as proportional or not. By contrast, the contrast group did not perform 

significantly better on these aspects. Finally, both groups used few key understandings to justify 

their examples and nonexamples of proportional situations and their classifications of 

relationships as proportional or not prior to the course. While the treatment group drew upon 

significantly more key understandings in their work at the end of the course, the contrast group 

did not. In the following sections, the similarities and differences between the treatment and 

contrast groups are described in more detail. 
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Table 21. Similarities and Differences Between the Treatment Group and Contrast Group Prior to and Upon 
Completion of the Proportional Reasoning Course 
Similarities and Differences Between the Treatment Group and Contrast Group Prior to and 
Upon Completion of the Proportional Reasoning Course 
 

 

Treatment Group Contrast Group
Before course:  Before course:  

iCould correctly solve iCould correctly solve
iReliance on cross multiplication iReliance on cross multiplication

After course:  After course:  
iGrowth in use of strategies that highlight 

multiplicative relationship (tasks 1-4; 
23)*

iNo growth in use of strategies that 
highlight multiplicative relationship**

iLess reliance on cross multiplication 
(task 23)*

iNo change in reliance on cross 
multiplication **

iGrowth in use of proportional reasoning 
language (e.g., "scaled up") in 
explanations*

iNo use of proportional reasoning language 
in explanations**

Before course: Before course: 
iRecognized when ratio is appropriate iRecognized when ratio is appropriate
iLimited capacity to provide example and 

nonexample of proportional relationship 
and explain why

iLimited capacity to provide example and 
nonexample of proportional relationship 
and explain why

iLimited capacity to classify relationships iLimited capacity to classify relationships
iHalf held misconception that all linear 

relationships are proportional
iNearly all did not hold misconception that 

all linear relationships are proportional

After course: After course: 
iGrowth in capacity to provide example 

and nonexample and explain why*
iNo growth in capacity to provide example 

and nonexample and explain why
iGrowth in capacity to classify 

relationships*
iNo growth in capacity to classify 

relationships**
iElimination of misconception that all 

linear relationships are proportional*
iNo change in number of teachers who 

held misconception
Before course: Before course: 

iLimited use of 4 key understandings iLimited use of 4 key understandings 

After course:  After course:  
iGrowth in use of 4 key understandings* iNo growth in use of 4 key 

understandings**

Note . 

** indicates that there was a significant difference between the treatment group and the contrast group  

1. Solve a variety of 
problem types

3. Understand the 
mathematical 
relationships 
embedded in 
proportional 

situations

2. Discriminate 
proportional from 
nonproportional 

situations

*   indicates that there was a significant difference between the treatment group at the end of the course and 
     the beginning of the course
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4.2.1. Solve a Variety of Problem Types 

4.2.1.1. Missing Value Problems  

Like the ten teachers in the treatment group, the six teachers in the contrast group 

correctly solved all five missing value problems on both the pretest and the posttest (tasks 1-4, 

which were not situated in a context, and task 23, which was situated in a similarity context [see 

Appendix A]). In addition, the teachers in the contrast group relied heavily on the cross 

multiplication procedure on both the pretest and posttest. However, unlike the teachers in the 

treatment group, the teachers in the contrast group did not utilize any new strategies on the 

posttest.  

Tasks 1-4: Missing value problems devoid of context.  As shown in Table 22, all six 

teachers in the contrast group used cross multiplication to solve the four missing value problems 

that were not situated in a context both on the pretest and posttest. These six teachers also 

utilized algebraic strategies (such as cross multiplication) and the between-ratio strategy on the 

pretest and posttest. Like the treatment group, teachers in the contrast group did not use cross 

multiplication with significantly less frequency on the posttest than on the pretest, t(5) = 1, p = 

.18 (one-tailed). However, unlike the treatment group, teachers in the contrast group did not use 

the between-ratio strategy significantly more on the posttest than on the pretest, t(5) = 1.46, p = 

.10 (one-tailed). In addition, teachers in the treatment group used the between-ratio strategy 

significantly more than teachers in the contrast group on the posttest, t(14) = 2.55, p = .01 (one-

tailed). It is also interesting to note that no teachers in the contrast group used strategies on the 

posttest that they had not used on the pretest. By contrast, five of the ten teachers in the treatment 

group used strategies on the posttest that they had not used on the pretest. However, the 

difference between the number of teachers in the treatment group and the number of teachers in 



 

  144

the contrast group who used strategies on the posttest that they had not used on the pretest was 

not significant, Fisher’s exact test, p = .057 (one-tailed). 

Task 23: Missing value problem situated in a similarity context. As shown in Table 23, 

all six teachers in the contrast group correctly determined the missing dimension in task 23 and 

provided a valid explanation on the pretest and posttest. On the pretest, these teachers used cross 

multiplication exclusively. On the posttest, five of the teachers used cross multiplication, and one 

teacher used a between-ratio strategy. (Note that this teacher also used the between-ratio strategy 

on the pretest to solve tasks 1 and 2, as shown in Table 22.)  

There was no significant difference between the teachers in the treatment group and the teachers 

in the contrast group in the use of cross multiplication to determine the missing dimension on the 

pretest, t(14) = 1.15, p = .27 (two-tailed). By contrast, on the posttest, significantly fewer 

teachers in the treatment group than teachers in the contrast group used cross multiplication to 

determine the missing dimension, t(14) = 2.26, p = .02 (one-tailed). 
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Table 22. Contrast Group Teachers’ Solution Strategies to Tasks 1-4 

Contrast Group Teachers’ Solution Strategies to Tasks 1-4 

Note. The dark gray shading indicates tasks in which the teacher solved in only one way. The light gray shading indicates tasks in which the teacher solved in 
two ways that both involved cross multiplication. In this case, the teacher’s first method would be to apply the cross multiplication procedure to the problem. 
Their second way would involve manipulating the original proportion (e.g., reducing one of the ratios; reducing the entire proportion) and then applying the cross 
multiplication procedure to the new proportion.  

 Task 1 
4/20=x/35 

Task 2 
2/7=6/x 

Task 3 
3/8=x/20 

Task 4 
9/15=12/x 

 Pre Post Pre Post Pre Post Pre Post 
Carrie Cross 

multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Emily Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 
 
Algebraic 
strategy 

Lynn Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Natalie Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 

Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Cross 
multiplication 
 
Cross 
multiplication 

Nicole Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 

Cross 
multiplication 
 
Algebraic 
strategy 

Cross 
multiplication 

Paige Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
 

Cross 
multiplication 
 
Between-ratio 

Cross 
multiplication 
 
 

Cross 
multiplication 
 
Between-ratio 
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Table 23. Contrast Group Teachers’ Solution Strategies to Task 23 
 
Contrast Group Teachers’ Solution Strategies to Task 23 
 

 Pre Post 
Carrie Cross multiplication 

 
Cross multiplication 

Emily Cross multiplication Cross multiplication 

Lynn Cross multiplication Cross multiplication 

Natalie Cross multiplication Cross multiplication 

Nicole Cross multiplication Cross multiplication 

Paige Cross multiplication Between-ratio 

 

4.2.1.2. Numerical Comparison Problems 

Task 6: Comparing orange juice recipes. All six teachers in the contrast group correctly 

determined that Luis’ mixture had the stronger orange flavor in two ways on the pretest and the 

posttest. As noted previously, task 6 can be solved using two different types of ratios: part-to-

part and part-to-whole. The types of ratios that the teachers in the contrast group used to solve 

the problem on the pre- and posttest are shown in Table 24. On the pretest, two teachers (Carrie 

and Natalie) used part-to-part ratios exclusively, and three teachers (Emily, Nicole, and Paige) 

used part-to-whole ratios exclusively. The remaining teacher, Lynn, solved the task using both 

types of ratios. Thus, the five teachers who used only one particular type of ratio on the pretest 

may not have held strategies based on the other type of ratio in their repertoire.  
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Table 24. Types of Ratios Used By Teachers in the Contrast Group to Solve Task 6 
 
Types of Ratios Used By Teachers in the Contrast Group to Solve Task 6 
 
 

 
 

The teachers’ responses to item 2 on Interview 1 provided additional evidence for the 

claim that certain strategies were not part of their repertoire. In particular, the two teachers who 

used only part-to-part ratios on the pretest (Carrie and Natalie) struggled to make sense of 

Student D’s response (see Figure B2 in Appendix B), which was based on a part-to-whole ratio, 

as shown in Table 25. Carrie was unable to make sense of Student D’s strategy, and although 

Natalie eventually did make sense of this strategy, she remained unsure if it was generalizable. 

For example, Natalie stated, “I think they [Student D] might have just gotten lucky” (Natalie, 

Interview 1, line 156). 

In addition, the three teachers who used part-to-whole ratios on the pretest (Emily, 

Nicole, and Paige) struggled to make sense of Student A and Student C’s responses (see Figure 

B2 in Appendix B), which were based on part-to-part ratios. As shown in Table 25, none of these 

three teachers were able to correctly make sense of the responses produced by Student A and 

Student C. Interestingly, the one teacher who used both part-to-part and part-to-whole ratios on 

the pretest, Lynn, was able to make sense of all five student responses on the interview. The 

difference between the types of ratios teachers used on the pretest and posttest was not 

significant, Χ 2(2, N = 6) = 1.53, p = .465. 

Pre Post
2 Part-to-part strategies Carrie, Natalie Carrie

2 Part-to-whole strategies Emily, Nicole, Paige Emily, Nicole

1 part-to-part and 1 part-
to-whole strategy

Lynn Lynn, Paige, Natalie
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As shown in Table 24, two of the teachers in the contrast group, Natalie and Paige, used 

ratios on the posttest that they had not used on the pretest (Natalie had not used part-to-whole 

ratios on the pretest; Paige had not used part-to-part ratios on the pretest). These gains in strategy 

use might be accounted for by their work on item 2 on Interview 1, in which they examined and 

attempted to make sense of strategies based on both part-to-part and part-to-whole ratios. 

Although these two teachers struggled to make sense of strategies based on ratios that they had 

not themselves used in solving task 6 on the pretest (as shown in Table 25), teachers may have 

learned these unfamiliar strategies simply by carefully considering their validity during their 

work on item 2 on Interview 1.  

Teachers’ ability to explain the quantities they used to determine the mixture with the 

stronger orange flavor significantly improved over time27, T = 15, ns/r = 5, p < 0.05 (one-tailed). 

As shown in Table 26, all six teachers scored a 2, 3, or 4 on both the pre- and posttest, meaning 

that no teacher used an incorrect additive strategy to solve task 6. There was no significant 

difference in the extent to which teachers in the treatment and contrast groups could make sense 

of the quantities they used to solve task 6 on the pretest, U = 25, p = .62 (two-tailed). The 

difference in the extent to which teachers in the two groups made sense of the quantities they 

used to solve task 6 on the posttest was not significant, U = 15, p = .058 (one-tailed).   

 

 

 

 

                                                 
27 It was certainly not expected that teachers in the contrast group would explain the quantities they used to solve 
task 6 significantly better on the posttest. It is interesting to note that their work on this task was the only instance in 
which they significantly improved on the posttest. Their experience in Interview 1, in which they were asked to 
make sense of students’ strategies to a similar problem (see item 2 on Interview 1) provided them with an 
opportunity to explain the meaning of the quantities. In addition, those doing their student teaching in middle 
schools may have had opportunities to work on proportional reasoning during the semester. These experiences may 
have impacted their capacity to make sense of quantities.  
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Table 25. Quality of Contrast Group Teachers’ Explanations of the Quantities Students Used to 
Determine the Mixture With the Stronger Chocolate Flavor on Interview 1 

Quality of Contrast Group Teachers’ Explanations of the Quantities Students Used to Determine 
the Mixture With the Stronger Chocolate Flavor on Interview 1 
 

 
Note. Scoring rubric: 

Rubric score Criteria for rubric score 
4 Explains the quantities that were calculated correctly  
3 Explains the quantities that were calculated vaguely 
2 Does not explain the quantities that were calculated or explains them 

incorrectly 
0 Does not know how to explain 

 
a Carrie and Natalie both were unsure about Student D’s strategy and struggled to make sense of the 8 and 13 (the 

total number of ounces in each mixture).  
b Nicole initially did not believe that Student A’s strategy would work. Eventually she decided that the strategy “is 

ok,” but still did not make sense of the values Student A calculated. 

 

 
 
 

 Student Responses 

 Student A Student B Student C Student D Student E 

Carrie 2 4 3 0a 3 
Emily 2 3 3 4 0 
Lynn 4 4 4 4 4 
Natalie 4 4 4 4a 4 
Nicole 2b 4 3 4 4 
Paige 2 4 3 3 4 
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Table 26. Quality of Contrast Group Teachers’ Explanations of the Quantities They Used to 
Determine the Mixture With the Stronger Orange Flavor on Task 6 

Quality of Contrast Group Teachers’ Explanations of the Quantities They Used to Determine the 
Mixture With the Stronger Orange Flavor on Task 6 
 

 Pre Post 

 Strategy 1 Strategy 2 Strategy 1 Strategy 2 

Carrie 4 2 4 3 
Emily 3 4 4 4 
Lynn 3 2 3 3 
Natalie 4 3 3 4 
Nicole 3 3 3 4 
Paige 3 2 4 2 

 
 

Unlike the treatment group, no teacher in the contrast group exhibited the misconception 

of interpreting a part-to-part ratio of orange juice concentrate to water as the percent orange 

juice. However, no teachers in the contrast group converted their ratios to percents. (Instead they 

scaled both ratios up so that they had a common amount of either orange juice or water.) An 

examination of the contrast group teachers’ work during the interview reveals that half of them 

did exhibit this misconception as they attempted to make sense of Student A’s strategy (see 

Figure B2 in Appendix B), which was based on a part-to-part ratio. Three teachers incorrectly 

identified the values that Student A calculated as the percentage of chocolate in the chocolate 

milk. There was no significant difference in the extent to which teachers in the treatment and 

contrast groups were able to make sense of the strategies produced by students, U = 32.5, p = .83 

(two-tailed).   

Task 24: Comparing plots of land. On the pretest, five of the six teachers in the contrast 

group used multiplicative strategies and correctly identified the plot of land that would be the 
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“most square.” The remaining teacher, Paige, used an additive strategy and incorrectly solved the 

problem, therefore earning a 1 on the scoring rubric. The five teachers who solved the problem 

correctly all used the same strategy to determine the rectangle that is the most square – 

calculating the ratio of the sides and selecting the ratio that was the closest to one. These five 

teachers also explained why they selected the rectangle whose ratio was closest to one (because 

the ratio of the sides of a square is always one), and therefore earned a 4 on the scoring rubric. 

On the posttest, all six teachers in the contrast group correctly solved the problem by calculating 

the ratio of the sides for each rectangle and selecting the rectangle whose ratio was closest to 

one. In addition, these teachers provided valid explanations for why they selected the rectangle 

whose ratio was closest to one, and earned 4s on the scoring rubric. There was not a significant 

difference between the rubric scores earned by the contrast group between the pretest and 

posttest, T = 1, ns/r = 1, p > .05. In addition, there was not a significant difference between the 

rubric scores earned by the treatment group and the contrast group on the pretest (U = 35.5, p = 

.59 [two-tailed]) or the posttest (U = 33, p = .39 [one-tailed]).  

Finally, no teachers in the contrast group used proportional reasoning language in their 

explanations on either the pre- or posttest. By contrast, over half the teachers in the treatment 

group used appropriate language (e.g., “scaled up”) in their explanations. Significantly more 

teachers in the treatment group used appropriate proportional reasoning language in their 

explanations than teachers in the contrast group did on the posttest, t(14) = 2.81, p = .007 (one-

tailed).  

4.2.1.3. Qualitative Problems 

All six teachers in the contrast group correctly solved and provided valid explanations for 

both qualitative problems on both the pretest and posttest. There was not a significant difference 
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between the treatment group and the contrast group in their ability to correctly solve these two 

qualitative problems on either the pretest, t(14) = 1.07, p = .30 (two-tailed), or the posttest, t(14) 

= 1.15, p = .13 (one-tailed).  

 

4.2.2. Discriminate Proportional From Nonproportional Situations 

4.2.2.1. Ratio as Measure: Tasks 6, 9, 10, and 24 

All six teachers in the contrast group correctly used ratios to solve tasks 6, 9, and 10 on 

both the pre- and posttest. That is, these teachers appeared to understand that ratio is an 

appropriate mechanism to measure attributes such as concentration of flavor, shades of paint, and 

steepness. In addition, as noted previously, five of the six teachers correctly used a ratio to 

measure squareness in task 24 on the pretest, and all six teachers used a ratio to measure 

squareness on the posttest. There was no significant difference between the contrast group and 

the treatment group in their ability to use ratios to solve this subset of tasks on either the pretest, 

Fisher’s exact test, p = .50 (two-tailed) or the posttest, Fisher’s exact test, p = .62 (one-tailed).  

4.2.2.2. Classifying Relationships as Proportional or Nonproportional: Tasks 11-22 

and the Snowfall Interview Item  

Two teachers in the contrast group correctly classified all twelve of the relationships 

presented in tasks 11-22 as proportional or nonproportional and four teachers incorrectly 

classified at least one relationship. Of the 72 relationships on the teachers’ pretests (6 teachers x 

12 relationships), 7 relationships (approximately 10%) were incorrectly classified by teachers in 

the contrast group on the pretest. Table 27 indicates the number of relationships that each teacher 

incorrectly classified on the pretest.  
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Table 27. Number of Relationships That Each Teacher in the Contrast Group Incorrectly 
Classified on Tasks 11-22  

Number of Relationships That Each Teacher in the Contrast Group Incorrectly Classified on 
Tasks 11-22  
 

 Pre Post 
Teacher Number of 

relationships 
incorrectly 

classified/not 
classified 

Representation(s) 
of the 

incorrectly/not 
classified 

relationships 

Number of 
relationships 
incorrectly 

classified/not 
classified 

Representation(s) 
of the 

incorrectly/not 
classified 

relationships 
Carrie 4 Language, graph, 

equation, table 
4 Language, graph, 

equation, table 
Emily 0 N/A 0 N/A 
Lynn 1 Language 0 N/A 
Natalie 1 Language 0 N/A 
Nicole 0 N/A 0 N/A 
Paige 1 Language 1 Language 
Total number 
of 
relationships 
incorrectly 
classified/not 
classified 

7  5  

 
 

There was not a significant difference between the treatment and contrast groups on the 

pretest with respect to their ability to correctly classify the relationships presented in tasks 11-22, 

t(14) = 1.60, p = .13 (two-tailed). In addition, there was not a significant difference in the 

number of teachers who appeared to believe that all linear relationships are proportional (as 

noted earlier, a common misconception) on the pretest between the two groups, Fisher’s exact 

test, p = .31 (two-tailed).  

On the posttest, four teachers in the contrast group correctly classified all twelve of the 

relationships presented in tasks 11-22 as proportional or nonproportional and two teachers 

incorrectly classified at least one relationship, as shown in Table 27. Of the 72 relationships on 

the posttest, five (7%) were incorrectly classified. The number of incorrect classifications that 
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teachers in the contrast group made on the posttest was not significantly less than the number of 

incorrectly classified relationships on the pretest, t(5) = 1.58, p = .08 (one-tailed). There was also 

not a significant difference between the number of correct classifications made by the treatment 

group and the contrast group on the posttest, t(14) = 0.94, p = .18 (one-tailed). Although this 

difference was not significant, it is important to note that the average number of correct 

classifications made by the contrast group on the pretest was 10.8 (out of a total of 12), while the 

average number of correct classifications made by the treatment group on the pretest was 9.1. 

Therefore, the contrast group had less room to improve their capacity to classification 

relationships as proportional or not than the treatment group. On the posttest, the average number 

of correct classifications made by the contrast group on the posttest was 11.2, while the average 

number of correct classifications made by the treatment group was 11.7. In addition, comparison 

of the difference scores (i.e., the number of correctly classified relationships on the posttest – the 

number of correctly classified relationships on the pretest for each teacher) between the two 

groups revealed that the treatment group experienced significantly more growth than the contrast 

group in correctly classifying relationships t(14) = 2.54, p = .01 (one-tailed). 

Teachers’ work on the snowfall item on Interview 2 provides further information about 

their ability to distinguish proportional from nonproportional relationships. Five of the six 

teachers in the contrast group correctly identified the proportional relationship in their work on 

this item. Four of these teachers did so spontaneously. Emily did not spontaneously comment on 

the proportionality of the relationships, but was able to correctly identify Cedar Rapids as 

proportional when prompted by the interviewer. The remaining teacher, Carrie, did not 

spontaneously comment on the proportionality of the relationships, and when prompted by the 

interviewer, stated that both relationships were proportional because they were both linear.  
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4.2.2.3. Creating Examples of Proportional Situations: Task 5 and Interview Item  

Table 28 presents the results for the six teachers in the contrast group on task 5, in which 

they were asked to create a word problem that would require setting up and solving the 

proportion 3/8 = x/20.  

 
 

Table 28. Rubric Scores for Word Problems Created by Teachers in the Contrast Group for Task 5 

Rubric Scores for Word Problems Created by Teachers in the Contrast Group for Task 5 
 

 Pre Post 

Carrie 3 3 
Emily 1 3 
Lynn 1 2 
Natalie 3 3 
Nicole 1 1 
Paige 1 3 

 
Note.  Teacher’s word problems were scored using the following rubric: 

3: Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 makes 

sense in the context of the problem  

2:  Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 does not 

make sense in the context of the problem, but the teacher appears to recognize this issue, and addresses it 

by addending the problem using phrases such as: “Parts…are ok”, “Please round your answer”, etc.  

1: Creates a word problem that does require setting up and solving 3/8=x/20. The answer of x=7.5 does not 

make sense in the context of the problem. 

0: Word problem does not require setting up and solving 3/8=x/20. 

 
 
As shown in Table 28, all six teachers created word problems in which the quantities 

were related multiplicatively both on the pretest and posttest. Like the treatment group, the extent 

to which an answer of 7.5 made sense in the context of teachers’ problems varied both on the 

pre- and posttest. There was no significant difference in the quality of the word problems 

produced by the contrast group between the pre- and posttest, T = 6, ns/r = 3, p > .05. In addition, 
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there was no significant difference between the treatment and contrast group on either the pretest 

(U = 31, p = .96 [two-tailed]) or the posttest (U = 42.5, p = .09 [one-tailed]).    

Table 29 presents the results for the six teachers in the contrast group on the interview 

item in which they were asked to create an example and nonexample of a proportional 

relationship. As shown in Table 29, their ability to provide both examples and nonexamples of 

proportional relationships and explain why on Interview 1 and Interview 2 was not significantly 

different (for examples, T = 3, ns/r = 2, p > .05; for nonexamples, T = 6, ns/r = 3, p > .05). There 

was also not a significant difference between the treatment and contrast groups in their ability to 

provide examples of proportional relationships (U = 37.5, p = .48 [two-tailed]) or nonexamples 

(U = 28, p = .87 [two-tailed]) on Interview 1. In addition, there was not a significant difference 

between the two groups in their ability to provide examples of proportional relationships (U = 

31, p = .48 [one-tailed]) or nonexamples (U = 20.5, p = .16 [one-tailed]) on Interview 2. A 

comparison of the difference scores (i.e., the posttest score – the pretest score for each teacher) 

for the examples also revealed no significant difference between the two groups, t(14) = 0.0, p = 

.50 (one-tailed). However, a comparison of the difference scores (i.e., the posttest score – the 

pretest score for each teacher) for the nonexamples revealed that the mean improvement for 

teachers in the treatment group was 0.9 on the rubric, while the mean improvement for teachers 

in the contrast group was only 0.5 on the rubric. [However, there was not a significant difference 

in the difference scores between the two groups, t(14) = 0.82, p = 21 (one-tailed).]  
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Table 29. Rubric Scores for Examples and Nonexamples of Proportional Situations Created by 
Teachers in the Contrast Group  

Rubric Scores for Examples and Nonexamples of Proportional Situations Created by Teachers in 
the Contrast Group  
 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  Teachers’ examples and nonexamples were scored using the following rubric: 

4: creates a proportional/nonproportional situation and explains why it is proportional (or not) (either by 

drawing on the 4 key understandings, or other means – e.g., saying that the ratio between the two quantities 

is constant, or that the unit rate stays the same) 

3: creates a proportional/nonproportional situation but explanation is vague or does not clearly explain why 

it’s proportional (or not)  

2: creates a situation in which there is not a relationship between the quantities – proportional or otherwise 

1:  incorrectly creates a proportional/nonproportional situation 

 
 
4.2.3. Understand the Mathematical Relationships Embedded in Proportional Situations 

4.2.3.1. Tasks 11-22 

On the pretest, there was no significant difference in the number of key understandings 

that teachers in the treatment and contrast groups drew upon to explain why the proportional 

relationships in tasks 11-22 were proportional, t(14) = 0.66, p = .52 (two-tailed). However, on 

the posttest, teachers in the treatment group drew upon significantly more key understandings 

than the contrast group in their explanations of why the proportional relationships were 

proportional, t(14) = 2.17, p = .02 (one-tailed). 

Table 30 illustrates the key understandings upon which teachers in the contrast group 

drew upon on the pretest and posttest to explain why the proportional relationships in tasks 11-22 

 Interview 1 Interview 2 
 example nonexample example nonexample 
Carrie 4 3 4 3 
Emily 1 1 3 2 
Lynn 4 4 4 4 
Natalie 4 1 4 2 
Nicole 4 4 4 4 
Paige 3 3 4 4 
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(in particular, tasks 12, 14, 19, and 20 are proportional) were proportional. As shown in Table 

30, on the pretest, only one teacher (Carrie) consistently explained that the proportional 

relationships were proportional because linear relationships are proportional. (Recall that in the 

treatment group, five of the ten teachers exhibited this misconception. However, there was not a 

significant difference between the two groups, Fisher’s exact test, p = .30 [two-tailed].) 

In addition, as shown in Table 31, the number of key understandings teachers in the 

contrast group drew upon on the posttest was not significantly greater than the number of key 

understandings they drew upon on the pretest, t(5) = 1.58, p = .08 (one-tailed). Two teachers 

drew upon one understanding on the posttest that they had not used on the pretest. 
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Table 30. Key Understandings Upon Which Teachers in the Contrast Group Drew to Identify Proportional Relationships in Tasks 11-22 
on Pre- and Posttest 

Key Understandings Upon Which Teachers in the Contrast Group Drew to Identify Proportional Relationships in Tasks 11-22 on Pre- 
and Posttest 
 

 Pre Post 
 Task 12 

(language) 
Task 14 
(graph) 

Task 19 
(equation) 

Task 20  
(table) 

Task 12 
(language) 

Task 14 
(graph) 

Task 19 
(equation) 

Task 20 
(table) 

Carrie Linears are 
proportional 

Linears are 
proportional 

Linears are 
proportional

Linears are 
proportional 

Linears are 
proportional

Linears are 
proportional

Linears are 
proportional

Linears are 
proportional

Emily  3 2 3 3 3 2 3 3 
Lynn 3 3 3 3 3 3 3 3 
Natalie 3 2 2 3 3 2 2 3 
Nicole 3 2 3 3 1 2 1 3 
Paige 3 None None 3 None 2 2 3 

 
Note.  Shading indicates that the teacher’s work indicates that they have a misconception about proportional relationships (i.e., either that all linear relationships 

are proportional, or that a relationship is proportional because as x increases, y also increases). 

 

Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 

.
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Table 31. Key Understandings Upon Which Teachers in the Contrast Group Drew on the Posttest, 
but Not on the Pretest 

Key Understandings Upon Which Teachers in the Contrast Group Drew on the Posttest, but Not 
on the Pretest 
 
 
 
 
 
 
 
 
 
 
 
Note.   

Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 

 

4.2.3.2. Item on Interview 1 and Interview 2: Defining a Proportional Relationship 

and Creating an Example and Nonexample of a Proportional Relationship  

The number of key understandings that teachers in the contrast group drew upon in 

defining and creating examples and nonexamples of proportional relationships did not increase 

significantly from the pretest to the posttest, as shown in Table 32, t(5) = 1.00, p = .18 (one-

tailed). There was not a significant difference between the number of key understandings used by 

the treatment group and the contrast group on Interview 1, t(14) = .367, p = .72 (two-tailed). 

However, teachers in the treatment group drew upon significantly more key understandings than 

teachers in the contrast group on Interview 2, t(14) = 1.82, p = .04 (one-tailed).  

 Pre Post Key understandings that 
were utilized on the posttest, 

but not on the pretest 
Carrie None None None 
Emily 2, 3 2, 3 None 
Lynn 3 3 None 
Natalie 2, 3 2, 3 None 
Nicole 2, 3 1, 2, 3 1 
Paige 3 2, 3 2 
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Table 32. Key Understandings Upon Which Teachers in the Contrast Group Drew in 
Defining a Proportional Relationship and Creating an Example and Nonexample of a 
Proportional Relationship on Interview 1 and 2 

Key Understandings Upon Which Teachers in the Contrast Group Drew in Defining a 
Proportional Relationship and Creating an Example and Nonexample of a Proportional 
Relationship on Interview 1 and 2 
 

 Interview 1 Interview 2 

Carrie None None 
Emily 3 3 
Lynn 3 3 
Natalie None 3 
Nicole 1 1 
Paige 1, 3 1, 3 

 
Note.   

Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 

 
 

4.2.3.3. Item 2 on Interview 2: Snowfall 

As noted previously, five of the six teachers in the contrast group correctly identified the 

proportional relationship, Cedar Rapids, in the snowfall interview item. In addition, the five 

teachers who correctly identified Cedar Rapids as proportional drew upon key understandings to 

explain why the relationship was proportional, as shown in Table 33. Teachers in the treatment 

group drew upon significantly more key understandings than the teachers in the contrast group 

on the snowfall item, t(14) = 1.78, p = .048. It is also interesting to note that no teachers in the 

contrast group drew upon more than two key understandings in their work on the snowfall item, 

while four of the ten teachers in the treatment group drew upon three or four key understandings 

in their work (as shown in Table 19).  
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Table 33. Key Understandings Teachers Upon Which Teachers in the Contrast Group Drew 
in Their Work on the Snowfall Item 

Key Understandings Upon Which Teachers in the Contrast Group Drew in Their Work on the 
Snowfall Item  
 

Teacher Key understandings used 
Carrie  None 
Emily 3 
Lynn 3 
Natalie 2, 3 
Nicole 1, 3 
Paige 1, 2 

 
Note. 

Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 

 

4.2.3.4. Tasks 11-22 and Interview Items (Defining & Creating Example and 

Nonexample, and Snowfall) 

By arranging all the data that examined the contrast group teachers’ understandings of the 

mathematical relationships embedded in proportional situations together, comparisons between 

these teachers’ use of the key understandings prior to and after the course can be made. Table 34 

shows the key understandings used by teachers in the contrast group on the pre-instruments 

(tasks 11-22 on the pretest and the Interview 1 item in which teachers defined a proportional 

relationship and created an example and nonexample) and the post-instruments (tasks 11-22 on 

the posttest, the Interview 2 item in which teachers defined a proportional relationship and 

created an example and nonexample, and the snowfall item on Interview 2).  
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Table 34. Key Understandings Upon Which Teachers in the Contrast Group Drew Prior to and 
Upon Completion of the Course 

Key Understandings Upon Which Teachers in the Contrast Group Drew Prior to and Upon 
Completion of the Course 

 
 
Note.   
Key Understandings 
1: multiplicative 
2: line through origin 
3: rate pairs equivalent 
4: m in y = mx is slope, unit rate, constant of proportionality 
 
 
 

As shown in Table 34, five of the six teachers in the contrast group did not draw upon 

any key understandings on the post-instruments that they had not also used on the pre-

instruments. That is, most teachers in the contrast group did not appear to learn any key 

understandings between the time they completed the pre- and post-instruments. Teachers in the 

contrast group did not draw upon significantly more understandings in their work on the post-

instruments than on the pre-instruments, t(5) = 1.00, p = .36 (two-tailed). Teachers in the 

treatment group appeared to learn significantly more key understandings during the course than 

teachers in the contrast group, t(14) = 3.78, p = .001 (one-tailed). It is also interesting to note that 

key understanding 4 was never used by the contrast group. By contrast, half of the ten teachers in 

the treatment group appeared to learn key understanding 4 as a result of participation in the 

 Pre-instruments: 
Pretest (Tasks 11-22) 

& Interview 1 
(Defining, Example, 

Nonexample) 

Post-instruments 
(Posttest (Tasks 11-22), 
Interview 2 (Defining, 

Example, Nonexample), 
Interview 2 (Snowfall) 

Key understandings 
that were utilized on 
the post-instruments, 

but not on the pre- 
instruments 

Carrie None None None 
Emily 2, 3 2, 3 None 
Lynn 3 3 None 
Natalie 2, 3 2, 3 None 
Nicole 1, 2, 3 1, 2, 3 None 
Paige 1, 3 1, 2, 3 2 
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course. Since key understanding 4 involves making sense of the m in the equation y = mx, its use 

provides an opportunity to make connections to algebra. In addition, key understanding 4 may 

help teachers make connections among the remaining key understandings. For example, the m in 

the equation y = mx is the slope, and it is also the multiplicative factor that relates the quantities 

(key understanding 1). In addition, the equation y = mx is a line that contains the origin (key 

understanding 2). Finally, the rate pairs of a proportional relationship all reduce to the unit rate 

(key understanding 3), which is also the m in the equation y = mx.  

 

4.2.4. Summary 

A comparison of the treatment group and the contrast group indicated that the groups had 

similar understandings about proportional reasoning prior to the course. However, by the end of 

the course, teachers in the treatment group had developed several aspects of common and 

specialized content knowledge. In particular, teachers in the treatment group used additional 

strategies for solving problems and relied less heavily on procedures such as cross multiplication. 

In addition, teachers in the treatment group improved their capacity to classify relationships as 

proportional or not and provide examples and nonexamples of proportional relationships. These 

teachers also improved their justifications of their classifications and examples and nonexamples 

by drawing on a greater number of key understandings of the mathematical relationships 

embedded in proportional situations at the end of the course. A natural question that is raised by 

examining the similarities and differences between the treatment and contrast groups is, Where 

did teachers in the treatment group have opportunities to develop their common and specialized 

content knowledge during the course? In the next section, this question is explored.  
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4.3. Examining Teachers’ Opportunities to Develop Common and Specialized Content 

Knowledge During the Proportional Reasoning Course 

In this section, research question 4, To what extent can teacher learning be accounted for 

by participation in a course specifically focused on proportional reasoning?, is explored. The 

mathematics that teachers in the treatment group appeared to come to know (as evidenced by 

research questions 1 and 2) was used as a lens through which to examine the videotapes of the 

whole class discussions that occurred during the course. Specifically, teachers’ work on the pre- 

and posttest and two interviews indicated that teachers appeared to learn the following by the end 

of the course: (1) strategies for solving missing value problems or numerical comparison 

problems and how to make sense of such strategies; (2) to classify relationships as proportional 

or nonproportional; (3) that not all linear relationships are proportional; and (4) the mathematical 

relationships embedded in proportional situations.  

The course map shown in Figure 23 highlights the 16 whole class discussions in which 

there was evidence in the written record (e.g., overhead transparencies, poster paper, chalkboard) 

that teachers had opportunities to engage with the mathematics that they appeared to learn. These 

class discussions were further analyzed so as to indicate the total number of turns, the number of 

turns related to the mathematics teachers appeared to learn, and who made these contributions 

during the discussions. The results of the analysis of the content of each discussion’s turns (i.e., 

the number of turns that were related to the mathematics that teachers appeared to learn) made 

salient that the mathematics that teachers appeared to learn during the course was in fact made 

public during multiple class discussions, thus providing all teachers who were present for the 

discussions an opportunity to learn. The results of the analysis of the teacher turns showed that 



 

  166

even teachers who were relatively silent during class discussions still appeared to learn 

mathematics. The results of these analyses are presented in the following sections.  
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Figure 23. The color-coded course map that indicates the whole class discussions in which there was evidence in the written record that teachers had 
opportunities to explore the mathematics that they appeared to learn during the course.  
Adapted from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the development of teachers’ understanding of proportionality in a practice-
based course. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL, p. 10. 
 

Note. Columns denote activities that occurred during each class (or were assigned for homework) 
Activities above the line occurred during class; activities below the line and shaded in gray were assigned for homework 

The shapes indicate the type of activity in which teachers engaged, as shown below: The color-coding indicates the activities in which there was evidence in the written record 
that teachers had opportunities to learn the mathematics, as shown below: 

Rectangles: Solving and discussing mathematical tasks Orange: Strategies for solving missing value and numerical comparison problems and 
how to make sense of such strategies 

Hexagons: Analyzing and discussing samples of student work Green: To classify relationships as proportional or nonproportional 
Ovals: Analyzing and discussing cases of mathematics teaching Purple: Not all linear relationships are proportional 
Triangles: Reading about and discussing issues related to mathematics teaching Pink: The mathematical relationships embedded in proportional situations 
Diamonds: Discussing mathematical ideas that did not directly stem from a 

mathematical task that teachers solved 
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4.3.1. Strategies for Solving Missing Value and Numerical Comparison Problems and 

How to Make Sense of Such Strategies 

As depicted by the orange shading in Figure 23, teachers had many opportunities to 

explore and make sense of strategies for solving missing value or numerical comparison 

problems. The class discussions in which strategies for solving these types of problems were 

made public and justified ranged in length from 9-47 minutes, and an average of 75% of the 

turns of these twelve discussions28 were related to solution strategies, as shown in Table 35.  

Tables 36-47 illustrate the total number of turns spoken during the twelve class 

discussions in which strategies for solving missing value and numerical comparison problems 

were presented and made sense of, who spoke these turns, and the solution strategies that were 

presented. Across the twelve discussions, each of the ten teachers presented at least one strategy 

for solving either missing value or numerical comparison problems, as shown in Table 48. Bert 

presented the most different29 strategies, five, across the twelve discussions. Bruce, Carl, and 

Owen each presented four different strategies30, Bonnie and Nora each presented three different 

strategies, Christopher and Ursula each presented two different strategies, and Elaine and 

Nanette each presented one strategy during the twelve discussions. 

As shown in Tables 36-47, a variety of solution strategies were presented during the 

twelve discussions. The strategy that was presented with the most frequency was the between-
                                                 
28 Note that there are 14 discussions highlighted in orange on the course map (shown in Figure 23), and only 12 
class discussions listed in Table 35. This discrepancy is due to the fact that two of the activities, examining student 
work from the tent/scout problem and examining student work from the orange juice problem, included artifacts in 
the written record that were related to strategies – actual student responses. However, the class discussions of these 
activities were not related to discussing and making sense of the strategies (e.g., in the tent/scout student work 
activity, teachers considered which response showed the greatest and least understanding). The student work from 
these activities was coded for particular strategies that were made public for teachers, and is discussed at the end of 
this section.  
29 “Different” strategies means that the strategies that each individual teacher presented were different from one 
another. For example, Bert presented five strategies during the twelve class discussions, and each of those strategies 
was different from the other. However, it is important to note that multiple teachers presented the same strategy 
(e.g., both Ursula and Carl presented cross multiplication).  
30 Carl presented a fifth solution, but it was a strategy that he had already presented (cross multiplication). 
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ratio strategy, which was presented ten times. It is therefore not surprising that there was a 

significant increase in the frequency with which teachers used this strategy on the posttest. 

Strategies that made use of the unit rate were presented five times. Algebraic strategies were 

presented five times, and cross multiplication was presented three times. Part-to-part and part-to-

whole strategies were each presented twice. A variety of solution strategies that were situated in 

particular representations were also presented. For example, the discussion of the graphing 

orange juice mixes problem in Class 8 elicited six different strategies for determining the 

“stronger” ratio that all made use of a graph (see Table 44). In addition, several strategies that 

used tables were presented during the course. Thus, a wide variety of solution strategies were 

made public and therefore available for those teachers present.  

In addition to presenting strategies, teachers also participated in these class discussions 

by making contributions that were related to the solution strategies. These contributions usually 

involved discussing why a particular strategy made sense or adding to the explanation of a 

strategy. As shown in Tables 36-47, all ten teachers made contributions related to strategies that 

they had not presented themselves. That is, across the twelve discussions, the teachers were 

actively involved in making sense of and explaining both strategies that were produced by 

themselves and others in the course. Of the ten teachers, Bert made the most contributions, 

contributing 87 turns that were related to solution strategies across eleven of the twelve 

discussions. By contrast, Ursula and Nanette were the most silent participants across the twelve 

discussions. Ursula contributed six turns that were related to solution strategies across four 

discussions, and Nanette contributed ten turns that were related to solution strategies across two 

discussions.  

 



 

  170

Table 35. Turns Related to Strategies for Solving Missing Value or Numerical Comparison 
Problems and How to Make Sense of Such Strategies During the Twelve Class Discussions 

Turns Related to Strategies for Solving Missing Value or Numerical Comparison Problems and 
How to Make Sense of Such Strategies During the Twelve Class Discussions 

 
Whole class discussion Length of 

whole class 
discussion 
(rounded to 

nearest 
minute) 

Total number 
of turns 

Percent of turns related to 
strategies for solving missing 
value problems or numerical 

comparison problems and how 
to make sense of such 

strategies 
 

Class 1: Tower problem 9 min 54 85% 
Class 2: Square problem 15 min 112 68% 
Class 2: Tower problem 10 min 80 43% 
Class 2: Snake, scout/tent, 
and age problems  

45 min 260 88% 

Class 3: Square problem 19 min 139 73% 
Class 4: Nora’s solution 
to square problem 

10 min 96 85% 

Class 4: Hunks and 
Chunks problem 

47 min 367 53% 

Class 6: Orange juice 
problem 

13 min 153 94% 

Class 8: Graphing orange 
juice mixes problem 

21 min 248 63% 

Class 9: Candy jar 
problems 

17 min 129 74% 

Class 10: Ratio tables 11 min 76 88% 
Class 11: Rationale for 
cross multiplication 

11 min 59 88% 

Across all twelve 
discussions 

228 min = 3.8 
hours 

1773 75% 
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Table 36. Analysis of the Discussion of the Tower Problem During Class 1 With Respect to 
Solution Strategies 

Analysis of the Discussion of the Tower Problem During Class 1 With Respect to Solution 
Strategies 

 
    
 Number 

of turns 
Number of turns related to 

strategies for solving missing 
value problems or numerical 

comparison problems and how to 
make sense of such strategies 

Strategies presented 

Bert 5 5  
Bonnie 0 0  
Bruce 0 0  
Carl 9 8 1. Between-ratio 

2. Informal measuring 
using the ladder 

Christopher 0 0  
Elaine 0 0  
Nanette 0 0  
Nora 0 0  
Owen 0 0  
Ursula 0 0  
Instructor 26 22  
Other 5 teachers 
in course (M.Ed. 
students) 

11 
 

8 3. Informal measuring using 
the crossbeams 

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

3 3  

Total number of 
turns 

54 46  

 
Note.  Bold indicates teachers in the treatment group. 

Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 
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Table 37. Analysis of the Discussion of the Square Problem During Class 2 With Respect to 
Solution Strategies 

Analysis of the Discussion of the Square Problem During Class 2 With Respect to Solution 
Strategies 
 
    
 Number 

of turns 
Number of turns related to 

strategies for solving missing 
value problems or numerical 

comparison problems and how to 
make sense of such strategies 

Strategies presented 

Bert 2 1  
Bonnie 2 2  
Bruce 0 0  
Carl 0 0  
Christopher 0 0  
Elaine 3 2  
Nanette 5 4  
Nora 14 10 4. Considering area added 

on to 35 x 35 versus 22 x 
22  

Owen 5 5 3. Counterexample: 1 x 5 
versus 450 x 470 

Ursula 0 0  
Instructor 50 33  
Other 5 teachers 
in course (M.Ed. 
students) 

22 
 

13 1. Ratio of length:width 
2. Additive  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

9 6  

Total number of 
turns 

112 76  

 
Note.  Bold indicates teachers in the treatment group. 

Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 
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Table 38. Analysis of the Discussion of the Tower Problem During Class 2 With Respect to 
Solution Strategies  

Analysis of the Discussion of the Tower Problem During Class 2 With Respect to Solution 
Strategies 
 
    
 Number 

of turns 
Number of turns related to 

strategies for solving missing 
value problems or numerical 

comparison problems and how to 
make sense of such strategies 

Strategies presenteda 

Bert 5 3  
Bonnie 0 0  
Bruce 0 0  
Carl 11 8  
Christopher 0 0  
Elaine 0 0  
Nanette 9 0  
Nora 2 0  
Owen 0 0  
Ursula 0 0  
Instructor 38 15  
Other 5 teachers 
in course (M.Ed. 
students) 

15 
 

8  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

0 0  

Total number of 
turns 

80 34  

 
Note.  Bold indicates teachers in the treatment group. 
a No strategies were presented during this discussion. The purpose of this discussion was to make sense of and 
connect several of the strategies presented during Class 1 (shown in Table 22).
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Table 39. Analysis of the Discussion of the Snake, Tent/Scout, and Age Problems During Class 2 
With Respect to Solution Strategies 

Analysis of the Discussion of the Snake, Tent/Scout, and Age Problems During Class 2 With 
Respect to Solution Strategies 
 
    
 Number 

of turns 
Number of turns 

related to strategies for 
solving missing value 
problems or numerical 
comparison problems 

and how to make 
sense of such 

strategies 

Strategies presented 

Bert 29 25 1. Additive (Snake) 
Bonnie 16 16 9. Unit rate and then between-ratio 

(like Nanette’s except not visual) 
(Scout/tent) 

Bruce 17 13 2. Multiplicative (i.e., using ratios to 
compare lengths) (Snake) 

Carl 3 3  
Christopher 11 11 4. Multiplicative (i.e., using ratios to 

compare lengths) (Snake) 
8. Visual between-ratio (Scout/tent) 

Elaine 5 3  
Nanette 6 6 6. Visual unit rate then between-ratio 

to (Scout/tent) 
Nora 5 4  
Owen 10 10 3. Multiplicative (i.e., using ratios to 

compare lengths) (Snake) 
Ursula 2 1 5. Cross multiplication (Scout/tent) 
Instructor 114 97  
Other 5 teachers 
in course (M.Ed. 
students) 

39 36 7. Algebraic strategy (Scout/tent)  
10. Guess & check (Age) 
11. Algebraic strategy (Age)  
12. Table (Age)  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

3 3  

Total number of 
turns 

260 228  

 
Note.  Bold indicates teachers in the treatment group. 

Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 
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Table 40. Analysis of the Discussion of the Square Problem During Class 3 With Respect to 
Solution Strategies 

Analysis of the Discussion of the Square Problem During Class 3 With Respect to Solution 
Strategies 
 
    
 Number of turns Number of turns related 

to strategies for solving 
missing value problems 
or numerical comparison 

problems and how to 
make sense of such 

strategies 

Strategies presenteda 

Bert 14 9  
Bonnie 0 0  
Bruce 0 0  
Carl 6 4  
Christopher 4 2  
Elaine 0 0  
Nanette 0 0  
Nora 7 6  
Owen 0 0  
Ursula 0 0  
Instructor 66 48  
Other 5 teachers 
in course (M.Ed. 
students) 

34 
 

25  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

8 8  

Total number of 
turns 

139 102  

 
Note.  Bold indicates teachers in the treatment group. 
a No strategies were presented during this discussion. The purpose of this discussion was to make sense of quantities 

used in solutions that were presented during Class 2 (shown in Table 23). 
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Table 41. Analysis of the Discussion of Nora’s Solution to the Square Problem During Class 4 
With Respect to Solution Strategies 

Analysis of the Discussion of Nora’s Solution to the Square Problem During Class 4 With 
Respect to Solution Strategies 
 
    
 Number of turns Number of turns related 

to strategies for solving 
missing value problems 
or numerical comparison 

problems and how to 
make sense of such 

strategies 

Strategies presenteda 

Bert 1 1  
Bonnie 0 0  
Bruce 0 0  
Carl - -  
Christopher - -  
Elaine 13 11  
Nanette 0 0  
Nora 6 6  
Owen 0 0  
Ursula 3 1  
Instructor 43 36  
Other 5 teachers 
in course (M.Ed. 
students) 

29 
 

26  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

1 1  

Total number of 
turns 

96 82  

 
Note.  Bold indicates teachers in the treatment group. 

Shading indicates teachers who were not present for class.   
 

a No strategies were presented during this discussion. The purpose of this discussion was to make sense of Nora’s 

strategy, which had been presented during Class 2 (shown in Table 37), and revisited during Class 3. 
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Table 42. Analysis of the Discussion of the Hunks and Chunks Problem During Class 4 With 
Respect to Solution Strategies 

Analysis of the Discussion of the Hunks and Chunks Problem During Class 4 With Respect to 
Solution Strategies 
 
    
 Number of 

turns 
Number of turns related 
to strategies for solving 
missing value problems 

or numerical comparison 
problems and how to 
make sense of such 

strategies 

Strategies presented 

Bert 25 13 3. Unit rate: Cost per ounce 
Bonnie 17 14 4. Cost per 4 ounces 
Bruce 7 1  
Carl - - - 
Christopher - - - 
Elaine 27 21 5. Cost per 4 ounces and added to 12-ounce 

box to compare 2 16-ounce boxes 
Nanette 9 0  
Nora 5 2  
Owen 18 10  
Ursula 0 0  
Instructor 143 70  
Other 5 teachers in 
course (M.Ed. 
students) 

85 
 

47 1. Unit rate: Cost per ounce via mental guess 
and check 

2. Unit rate: Cost per ounce of Super Chunks 
and determined cost for Mighty Hunks at 
the SC cost per ounce 

6. Cost per 4 ounces and added to 12-ounce 
box to compare 2 16-ounce boxes 

7. Comparing the sizes of the boxes and prices 
using percents 

8. Building up (using addition) to 24-ounce 
boxes 

9. Between-ratio: Scale up (using 
multiplication) to 48-ounce boxes 

10. More formal version of strategy 7 
Other talk (e.g., 
laughter, group 
responses, can’t tell 
who spoke) 

31 18  

Total number of 
turns 

367 196  

 
Note.  Bold indicates teachers in the treatment group. 

Shading indicates teachers who were not present for class.   
Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 
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Table 43. Analysis of the Discussion of the Orange Juice Problem During Class 6 With Respect to 
Solution Strategies 

Analysis of the Discussion of the Orange Juice Problem During Class 6 With Respect to Solution 
Strategies 
 
    
 Number of 

turns 
Number of turns related 
to strategies for solving 
missing value problems 

or numerical 
comparison problems 

and how to make sense 
of such strategies 

Strategies presenteda 

Bert 7 7  
Bonnie 9 9  
Bruce 11 11 4. Part to part; percents 
Carl 4 4  
Christopher 0 0  
Elaine 0 0  
Nanette 0 0  
Nora 10 10 3. Part to whole; percents 
Owen 15 15 2. Part to part; scale up to 120 

cups water 
Ursula 0 0  
Instructor 61 53  
Other 5 teachers 
in course (M.Ed. 
students) 

23 
 

22 1. Part to whole; common 
denominator of 40 cups of juice 

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

13 13  

Total number of 
turns 

153 144  

 
Note.  Bold indicates teachers in the treatment group. 

Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 

a Note that the strategies were produced by the small groups and written on posters, which were displayed on one of 

the classroom walls. During the discussion, the instructor selected the order in which the posters were discussed, and 

the particular teachers who presented the strategies. 
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Table 44. Analysis of the Discussion of the Graphing Orange Juice Mixes Problem During Class 8 
With Respect to Solution Strategies 

Analysis of the Discussion of the Graphing Orange Juice Mixes Problem During Class 8 With 
Respect to Solution Strategies 
 
    
 Number 

of turns 
Number of turns related to 

strategies for solving 
missing value problems or 

numerical comparison 
problems and how to make 

sense of such strategies 

Strategies presented 

Bert 11 11 4. Draw line y=x; mixtures that are above 
that line are less orangey 

Bonnie - - - 
Bruce 20 19 1. Use graph to show change in y for Mix A 

isn’t as much as change in y for Mix B, 
given same amount of change in x 

Carl 10 5  
Christopher 2 0  
Elaine 0 0  
Nanette 0 0  
Nora 10 4  
Owen 12 7 3. Line that’s closest to the axis for water is 

less orangey 
Ursula 0 0  
Instructor 100 62  
Other 5 teachers in 
course (M.Ed. 
students) 

47 
 

31 2. Fix concentrate and use graph to see which 
mixture has more water 

5. 100% concentrate would be a horizontal line; 
the line becomes more vertical as the mixture 
becomes less orangey 

6. Fix the water and use graph to see which 
mixture has less concentrate 

Other talk (e.g., 
laughter, group 
responses, can’t tell 
who spoke) 

36 17  

Total number of 
turns 

248 156  

Note.  Bold indicates teachers in the treatment group.  

Shading indicates teachers who were not present for class.  

  Strategies are numbered according to the order in which they were presented during the whole class 
discussion.
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Table 45. Analysis of the Discussion of the Candy Jar Problems During Class 9 With 
Respect to Solution Strategies 

Analysis of the Discussion of the Candy Jar Problems During Class 9 With Respect to Solution 
Strategies 
 
    
 Number of 

turns 
Number of turns related 
to strategies for solving 
missing value problems 

or numerical 
comparison problems 

and how to make sense 
of such strategies 

Strategies presented 

Bert 10 10 4. Algebraic: set up and solved 
equations (Problem 2) 

Bonnie - - - 
Bruce 16 13 5. Between-ratio (Problem 3) 
Carl 8 5 2. Cross multiplication (Problem 

1) 
6. Building up table (Problem 3) 

Christopher 0 0  
Elaine 0 0  
Nanette 1 0  
Nora 4 3  
Owen 4 4  
Ursula 3 3 1. Between-ratio (Problem 1) 
Instructor 51 37  
Other 5 teachers 
in course (M.Ed. 
students) 

20 16 3. Between-ratio with a table 
(Problem 2) 

7. Dividing total candy by number 
of candy in 1 bag (Problem 3) 
(Teachers decided this strategy 
would not work all the time) 

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

12 5  

Total number of 
turns 

129 96  

 
Note.  Bold indicates teachers in the treatment group.  

Shading indicates teachers who were not present for class.   
Strategies are numbered according to the order in which they were presented during the whole class 
discussion. 
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Table 46. Analysis of the Discussion of Ratio Tables During Class 10 With Respect to Solution 
Strategies 

Analysis of the Discussion of Ratio Tables During Class 10 With Respect to Solution Strategies 
 
    
 Number of 

turns 
Number of turns related 
to strategies for solving 
missing value problems 

or numerical 
comparison problems 

and how to make sense 
of such strategies 

Strategies presented 

Bert 0 0  
Bonnie 0 0  
Bruce 12 10  
Carl 5 2 1. Cross multiplication (to check 

the ratio table strategy) 
Christopher 2 2  
Elaine 4 1  
Nanette 0 0  
Nora 2 2  
Owen 0 0  
Ursula 2 1  
Instructor 46 31  
Other 5 teachers 
in course (M.Ed. 
students) 

10 6  

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

14 12  

Total number of 
turns 

76 67  

 
Note.  Bold indicates teachers in the treatment group.
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Table 47. Analysis of the Discussion of the Rationale for Cross Multiplication During Class 11 
With Respect to Solution Strategies 

Analysis of the Discussion of the Rationale for Cross Multiplication During Class 11 With 
Respect to Solution Strategies 
 
    
 Number of 

turns 
Number of turns related 
to strategies for solving 
missing value problems 

or numerical 
comparison problems 

and how to make sense 
of such strategies 

Strategies presented 

Bert 3 2 1. Algebraic solving for x 
Bonnie 3 2 4. Generalized between-ratio 

strategy using equivalent 
ratios 

Bruce 3 2  
Carl 0 0  
Christopher 0 0  
Elaine 1 0  
Nanette 0 0  
Nora 6 6 2. Algebraic solving for x 
Owen 0 0  
Ursula 0 0  
Instructor 26 23  
Other 5 teachers 
in course (M.Ed. 
students) 

4 4 3. Used balloons context to 
identify the between-ratio 

Other talk (e.g., 
laughter, group 
responses, can’t 
tell who spoke) 

13 13  

Total number of 
turns 

59 52  

 

Note.  Bold indicates teachers in the treatment group.  

Strategies are numbered according to the order in which they were presented during the whole class discussion.
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Table 48. Number of Different Strategies Presented by Teachers in the Treatment Group During 
the Twelve Discussions 

Number of Different Strategies Presented by Teachers in the Treatment Group During the 
Twelve Discussions 
 

  
 Number of different strategies 

presented during the twelve 
discussions 

Bert 5 
Bonnie 3 
Bruce 4 
Carl 4 
Christopher 2 
Elaine 1 
Nanette 1 
Nora 3 
Owen 4 
Ursula 2 

 
 

 

Finally, in addition to the whole class discussions, solution strategies for solving missing 

value and numerical comparison problems were made public during three course activities in 

which teachers examined student responses (as depicted by the orange shading in the two 

hexagons in Figure 2331). The two activities represented by hexagons engaged teachers in the 

analysis of sets of student work and served to foster teachers’ mathematics understandings as 

well as their understandings about students as learners of mathematics and teaching mathematics. 

For example, the set of ten student responses to the tent/scout problem (shown in Appendix D) 

varied with respect to strategy (i.e., unit rate, building up, between-ratio, incorrect additive) and 

representation (i.e., table, diagram, symbolic), and included some strategies (e.g., the solution 

produced by Student B in Appendix D) that had not been presented by teachers during the whole 

                                                 
31 The third activity in which teachers examined student responses to missing value or numerical comparison 
problems occurred when teachers read The Case of Marie Hanson (Smith, Silver, & Stein, 2005b). Since teachers’ 
reading of this case did not occur in the public space, this activity is not shaded in Figure 23. 
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class discussion in which they shared their own solutions. Thus, examining this set of student 

work might have introduced teachers to additional solution strategies that students might use. An 

additional purpose of the tent/scout student work activity was to help teachers come to see that 

not all incorrect strategies are “the same,” and to bring to light a common student misconception 

– applying additive strategies when multiplicative ones are needed (e.g., see the solutions 

produced by Students D and I in Appendix D).  

In the second activity involving a set of student work, teachers examined a set of twelve 

student responses to the orange juice problem, as shown in Appendix E. This set of student 

responses varied with respect to ratios used (i.e., part-to-part; part-to-whole), strategy (i.e., unit 

rate, percents, building up to a common amount of juice or water), and representation (i.e., 

diagram, table).  

One final instance in which teachers were exposed to students’ solutions to missing value 

problems occurred when teachers read The Case of Marie Hanson (Smith, Silver, & Stein, 

2005b), which depicted a middle-grades mathematics lesson in which students solved the candy 

jar problems (see Figure 13 in Chapter Three). As teachers read this case, they had an 

opportunity to examine a variety of student solutions to the candy jar problems; specifically, 

building-up (in the form of a table), unit rate, between-ratio, and cross multiplication.  

 
4.3.2. Classifying Relationships as Proportional or Nonproportional 

As depicted by the green shading in Figure 23, teachers had opportunities to classify 

relationships as proportional or nonproportional during two class discussions – the discussion of 

the similarities and differences among the snake, tent/scout, and age problems (Class 2) and the 

discussion of the park and zoo problems (Class 11). As shown in Table 49, the class discussions 
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ranged in length from 22-28 minutes, and approximately 72% of the turns of each of these two 

discussions were related to classifying relationships as proportional or nonproportional. 

 
 

Table 49. Turns Related to Classifying Relationships as Proportional or Nonproportional During 
the Two Class Discussions 

Turns Related to Classifying Relationships as Proportional or Nonproportional During the Two 
Class Discussions 
 
    
Whole class 
discussion 

Length of whole 
class discussion 

(rounded to nearest 
minute) 

Total number 
of turns 

Percent of turns related to 
classifying relationships 

as proportional or 
nonproportional 

Class 2: Similarities 
and differences 
among the snake, 
scout/tent, and age 
problems  

28 min 241 83% 

Class 11: Park and 
zoo problems 

22 min 247 60% 

Across all three 
discussions 

50 min 484 72% 

 
 
 

Seven teachers made contributions related to classifying relationships as proportional or 

nonproportional during Class 2, as shown in Table 50. Although Bruce and Ursula made 

contributions, none of them were related to classifying relationships as proportional or not. 

Nanette remained silent during the discussion. As shown in Table 51, during Class 11, seven 

teachers made contributions related to classifying relationships as proportional or not. Elaine, 

Nanette, and Ursula remained silent during the discussion of the park and zoo problems during 

Class 11.  
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Table 50. Analysis of the Discussion of the Similarities and Differences Among the Snake, 
Tent/Scout, and Age Problems During Class 2 With Respect to Classifying Relationships as 
Proportional or Nonproportional 

Analysis of the Discussion of the Similarities and Differences Among the Snake, Tent/Scout, and 
Age Problems During Class 2 With Respect to Classifying Relationships as Proportional or 
Nonproportional 
 

   
 Number of 

turns 
Number of turns related to 
classifying relationships as 

proportional or nonproportional 
Bert 32 25 
Bonnie 19 19 
Bruce 2 0 
Carl 10 7 
Christopher 12 12 
Elaine 5 5 
Nanette 0 0 
Nora 1 1 
Owen 10 10 
Ursula 1 0 
Instructor 88 62 
Other 5 teachers in course 
(M.Ed. students) 

40 38 

Other talk (e.g., laughter, 
group responses, can’t tell 
who spoke) 

21 21 

Total number of turns 241 200 
 
Note.  Bold indicates teachers in the treatment group. 
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Table 51. Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect 
to Classifying Relationships as Proportional or Nonproportional 

Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect to 
Classifying Relationships as Proportional or Nonproportional 
 

   
 Number of 

turns 
Number of turns related to 
classifying relationships as 

proportional or nonproportional 
Bert 25 17 
Bonnie 9 2 
Bruce 15 10 
Carl 8 3 
Christopher 4 1 
Elaine 0 0 
Nanette 0 0 
Nora 14 9 
Owen 19 5 
Ursula 0 0 
Instructor 83 58 
Other 5 teachers in 
course (M.Ed. students) 

34 22 

Other talk (e.g., laughter, 
group responses, can’t 
tell who spoke) 

36 22 

Total number of turns 247 149 
 
Note.  Bold indicates teachers in the treatment group. 
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The idea of classifying relationships as proportional or nonproportional appeared to be an 

important aspect of the discussions during these two class discussions – accounting for nearly 

75% of the total turns. In addition, the analysis of the two class discussions shows that eight of 

the ten teachers made contributions related to classifying relationships as proportional or 

nonproportional during the two class discussions. Only Nanette and Ursula made no 

contributions related to classifying relationships as proportional or nonproportional.  

 

4.3.3. Not All Linear Relationships are Proportional 

As depicted by the purple shading in Figure 23, teachers had opportunities to discuss the 

idea that not all linear relationships are proportional during two class discussions – the discussion 

of the similarities and differences among the snake, tent/scout, and age problems (Class 2) and 

the discussion of the park and zoo problems (Class 11). As shown in Table 52, the class 

discussions ranged in length from 22-28 minutes, and approximately 50% of the turns of each of 

these two discussions were related to the idea that not all linear relationships are proportional.  
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Table 52. Turns Related to the Idea That Not All Linear Relationships Are Proportional During 
the Two Class Discussions 

Turns Related to the Idea That Not All Linear Relationships Are Proportional During the Two 
Class Discussions  
 
    
Whole class 
discussion 

Length of 
whole class 
discussion 
(rounded to 

nearest 
minute) 

Total number 
of turns 

Percent of turns related to the 
idea that not all linear 

relationships are proportionala  
 

Class 2: Similarities 
and differences 
among the snake, 
scout/tent, and age 
problems 

28 min 241 46% 

Class 11: Park and 
zoo problems 

22 min 247 52% 

Across all three 
discussions 

50 min 484 49% 

 

a Note that some turns that were related to the idea that not all linear relationships are proportional were also 
related to classifying relationships as proportional or not (as shown in Table 49).  

 
 
As shown in Table 53, half of the teachers (Bert, Bonnie, Carl, Christopher, and Owen) 

made contributions related to the idea that not all linear relationships are proportional during the 

discussion of the similarities and differences among the snake, tent/scout, and age problems 

during Class 2. Four other teachers (Bruce, Elaine, Nora, and Ursula) made contributions during 

this discussion, but none of their contributions were related to the idea that not all linear 

relationships are proportional. Finally, the remaining teacher, Nanette, remained silent during 

this discussion.  

During Class 11, seven of the ten teachers (Bert, Bonnie, Bruce, Carl, Christopher, Nora, 

and Owen) made contributions related to the idea that not all linear relationships are 
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proportional, as shown in Table 54. The remaining three teachers, Elaine, Nanette, and Ursula, 

were silent during the discussion of the park and zoo problems during Class 11. 

 
 

Table 53. Analysis of the Discussion of the Similarities and Differences Among the Snake, 
Tent/Scout, and Age Problems During Class 2 With Respect to the Idea That Not All Linear 
Relationships Are Proportional 

Analysis of the Discussion of the Similarities and Differences Among the Snake, Tent/Scout, and 
Age Problems During Class 2 With Respect to the Idea That Not All Linear Relationships Are 
Proportional 
 

   
 Number of 

turns 
Number of turns related to the idea 
that not all linear relationships are 

proportional 
Bert 32 21 
Bonnie 19 19 
Bruce 2 0 
Carl 10 7 
Christopher 12 3 
Elaine 5 0 
Nanette 0 0 
Nora 1 0 
Owen 10 3 
Ursula 1 0 
Instructor 88 30 
Other 5 teachers in 
course (M.Ed. students) 

40 15 

Other talk (e.g., laughter, 
group responses, can’t 
tell who spoke) 

21 13 

Total number of turns 241 111 
 

Note.  Bold indicates teachers in the treatment group. 
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Table 54. Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect 
to the Idea That Not All Linear Relationships Are Proportional 

Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect to the 
Idea That Not All Linear Relationships Are Proportional 
  
 

   
 Number of 

turns 
Number of turns related to the idea 
that not all linear relationships are 

proportional 
Bert 25 16 
Bonnie 9 2 
Bruce 15 6 
Carl 8 3 
Christopher 4 1 
Elaine 0 0 
Nanette 0 0 
Nora 14 7 
Owen 19 5 
Ursula 0 0 
Instructor 83 49 
Other 5 teachers in course 
(M.Ed. students) 

34 16 

Other talk (e.g., laughter, 
group responses, can’t tell 
who spoke) 

36 23 

Total number of turns 247 128 
 
Note.  Bold indicates teachers in the treatment group. 
 

 

The analysis of the two class discussions shows that the idea that not all linear 

relationships are proportional was made public by many teachers during two class discussions. In 

addition, this idea appeared to be an important aspect of the discussions – approximately 50% of 

the total turns involved discussion of the idea that not all linear relationships are proportional.  

 



 

  192

4.3.4. The Mathematical Relationships Embedded in Proportional Situations 

As depicted by the pink shading in Figure 23, teachers had opportunities to discuss the 

mathematical relationships embedded in proportional situations during three class discussions – 

the discussion of the similarities and differences among the snake, tent/scout, and age problems 

(Class 2), the discussion of the graphing orange juice mixes problem (Class 8), and the 

discussion of the park and zoo problems (Class 11). Cramer et al. (1993) and Post et al. (1988) 

identify four relationships that are embedded in proportional situations: (1) proportional 

relationships are multiplicative in nature; (2) proportional relationships are depicted graphically 

by a line that contains the origin; (3) the rate pairs are equivalent in proportional relationships; 

and (4) proportional relationships can be represented symbolically by the equation y = mx, where 

the m is the slope, unit rate, and constant of proportionality.  

Table 55 shows the key understandings that emerged during each of the three class 

discussions, and across these three class discussions. As shown in the table, the class discussions 

ranged in length from 21-28 minutes. In each class discussion, between 39% and 63% of the total 

turns were related to the four key understandings. On average, nearly half (47%) of the total 

turns were related to the four key understandings. Each of the four key understandings was 

discussed during at least two class discussions. The idea that proportional relationships are 

depicted by lines that contain the origin (key understanding 2) was discussed with the greatest 

frequency during these three discussions (19%). The idea that the rate pairs of proportional 

relationships are equivalent was discussed the least (2%).  
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Table 55. Turns Related to the Four Key Understandings During the Three Class Discussions 

Turns Related to the Four Key Understandings During the Three Class Discussions 
 
    Number of turns related to the four key 

understandings 
Whole class 
discussion 

Length of 
whole class 
discussion 
(rounded to 

nearest 
minute) 

Total 
number 
of turns 

Percent of turns 
related to the 

four key 
understandings a 

1. 
Multiplicative 

2. Line 
through 
origin 

3. Rate 
pairs 

equivalent 

4. m is 
slope, 

unit rate 

Class 2: 
Similarities 
and differences 
among the 
snake, 
scout/tent, and 
age problems 

28 min 241 39% 36 31 0 26 

Class 8: 
Graphing 
orange juice 
mixes problem 

21 min 248 40% 1 89 2 2 

Class 11: Park 
and zoo 
problems 

22 min 247 63% 54 22 15 65 

Across all 
three 
discussions 

71 min 736 47% 91 142 17 93 

Percent of 
turns related 
to each key 
understanding 

   12% 19% 2% 13% 

 

Note.  Bold indicates teachers in the treatment group. 
 

a Note that some turns that were related to the four key understandings were also related to the idea that not all linear 
relationships are proportional and/or classifying relationships as proportional or not (as shown in Tables 49 and 52). 
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It is also interesting to note that eight of the ten teachers made contributions related to 

one or more key understanding during at least one of the three class discussions, as shown in 

Tables 56, 57, and 58. During Class 2 (see Table 56), seven of the ten teachers made 

contributions related to one or more key understanding. Two of these teachers (Bonnie and 

Christopher) made contributions related to two key understandings. During Class 8 (see Table 

57), four teachers made contributions related to one or more key understanding. Of these four 

teachers, Bert and Owen made contributions related to two or more key understandings. During 

Class 11 (see Table 58), seven teachers made contributions related to one or more key 

understanding. In particular, Bert, Bruce, and Nora made contributions related to at least two key 

understandings.  

Across all three class discussions, four teachers (Bert, Christopher, Nora, and Owen) 

made contributions related to at least three key understandings, as shown in Tables 56, 57, and 

58. In addition, three teachers (Bonnie, Bruce, and Carl) made contributions related to at least 

two key understandings during the three discussions. One teacher, Elaine, made contributions 

related to one key understanding during one of the three class discussions. Finally, two teachers 

(Nanette and Ursula) made no contributions related to the four key understandings during any of 

the three discussions32. 

                                                 
32 Ursula did make one contribution, but it was unrelated to the key understandings. Nanette was silent during the 
three discussions. 
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Table 56. Analysis of the Discussion of the Similarities and Differences Among the Snake, 
Tent/Scout, and Age Problems During Class 2 With Respect to the Four Key Understandings 

Analysis of the Discussion of the Similarities and Differences Among the Snake, Tent/Scout, and 
Age Problems During Class 2 With Respect to the Four Key Understandings 
 
  Turns related to the four key understandings 
 Number 

of turns 
1. 

Multiplicative 
2. Line 
through 
origin 

3. Rate pairs 
equivalent 

4. m is slope, unit 
rate 

Bert 32 6 0 0 0 
Bonnie 19 0 2 0 4 
Bruce 2 0 0 0 0 
Carl 10 0 0 0 7 
Christopher 12 0 4 0 2 
Elaine 5 7 0 0 0 
Nanette 0 0 0 0 0 
Nora 1 0 1 0 0 
Owen 10 0 2 0 0 
Ursula 1 0 0 0 0 
Instructor 88 13 12 0 7 
Other 5 
teachers in the 
course  

40 
 

6 8 0 5 

Other talk 
(e.g., laughter, 
group 
responses, 
can’t tell who 
spoke) 

17 4 2 0 1 

Total number 
of turns 

241 36 31 0 26 

 
Note.  Bold indicates teachers in the treatment group. 
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Table 57. Analysis of the Discussion of the Graphing Orange Juice Mixes Problem During Class 8 
With Respect to the Four Key Understandings 

Analysis of the Discussion of the Graphing Orange Juice Mixes Problem During Class 8 With 
Respect to the Four Key Understandings 
 
  Turns related to the four key understandings 
 Number 

of turns 
1. 

Multiplicative 
2. Line 
through 
origin 

3. Rate pairs 
equivalent 

4. m is slope, unit 
rate 

Bert 11 1 4 0 0 
Bonnie - - - - - 
Bruce 20 0 7 0 0 
Carl 10 0 2 0 0 
Christopher 2 0 0 0 0 
Elaine 0 0 0 0 0 
Nanette 0 0 0 0 0 
Nora 10 0 0 0 0 
Owen 12 0 2 1 1 
Ursula 0 0 0 0 0 
Instructor 100 0 33 1 1 
Other 5 
teachers in the 
course  

47 
 

0 30 0 0 

Other talk 
(e.g., laughter, 
group 
responses, 
can’t tell who 
spoke) 

36 0 8 0 0 

Total number 
of turns 

248 1 89 2 2 

 
Note.  Bold indicates teachers in the treatment group. 

Shading indicates teachers who were not present for class.  
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Table 58. Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect 
to the Four Key Understandings 

Analysis of the Discussion of the Park and Zoo Problems During Class 11 With Respect to the 
Four Key Understandings 
 
  Turns related to the four key understandings 
 Number 

of turns 
1. 

Multiplicative 
2. Line 
through 
origin 

3. Rate pairs 
equivalent 

4. m is slope, unit 
rate 

Bert 25 4 2 2 2 
Bonnie 9 0 0 0 3 
Bruce 15 6 1 0 0 
Carl 8 0 0 0 7 
Christopher 4 4 0 0 0 
Elaine 0 0 0 0 0 
Nanette 0 0 0 0 0 
Nora 14 2 1 0 11 
Owen 19 0 0 0 7 
Ursula 0 0 0 0 0 
Instructor 83 20 7 7 22 
Other 5 
teachers in the 
course  

34 
 

13 8 5 8 

Other talk 
(e.g., laughter, 
group 
responses, 
can’t tell who 
spoke) 

36 5 3 1 5 

Total number 
of turns 

247 54 22 15 65 

 
Note.  Bold indicates teachers in the treatment group. 
 
 

Finally, in addition to the whole class discussions, the four key understandings were 

made public in a different manner during teachers’ work on the park and zoo problems. Prior to 

the whole class discussion of these problems, teachers explored the park and zoo problems 

individually for homework. The instructor then compiled teachers’ responses into a handout 

(shown in Figure 24) that was distributed to the teachers prior to the whole class discussion. 
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During the whole class discussion, teachers were asked whether they agreed with all of the 

arguments for and against proportionality on the handout. The arguments on the handout were 

subsequently coded so as to indicate their relationship to the four key understandings. As shown 

in Figure 24, each of the key understandings was also made public via the handout.  

The analysis of the three class discussions shows that the four key understandings of 

proportional relationships were made public during multiple discussions. In addition, the key 

understandings were discussed frequently during these class discussions – nearly half the total 

turns in the three class discussions involved discussion of the key understandings. Thus, the 

teachers who were present for these class discussions33 had opportunities to grapple with the four 

key understandings.  

 

4.3.5. Summary 

As described in this section, teachers had opportunities throughout the course to grapple 

with mathematics that is at the heart of proportional reasoning. Although some teachers were 

more vocal than others during the course, all teachers had opportunities to share their thinking 

publicly, and all ten teachers in the treatment group made multiple public contributions during 

the course and shared at least one solution strategy. In addition, the analysis presented in this 

section illustrated that the mathematics that teachers appeared to learn (as identified by research 

questions 1 and 2) was made public during the course across multiple discussions and by 

multiple teachers in the course. In the next section, the work of the teachers in the treatment 

                                                 
33 Bonnie was not present for the discussion of the graphing orange juice mixes problem (Class 8). The idea that was 
discussed with the most frequency during this discussion was that proportional relationships are depicted by lines 
that contain the origin (key understanding 2). This understanding was made public during two other discussions, so 
Bonnie still had opportunities to consider this idea.  
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group during a subsequent course that focused on algebra as the study of patterns and functions 

is described. 
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State Park and Zoo Admission Problems: Arguments For/Against Proportionality 

 
Zoo Admission is proportional 

because… 
State Park Admission is not 

proportional because… 
If you choose any point on the 
graph, for example $35/7 people, it 
is equal to the ratio $5/1 person 
(Key understanding 3) 
 
 
 
The equation, y = 5x, can be written 
as y/x = 5 which represents a 
constant of proportionality (Key 
understanding 4) 
 
 
The cost is the same amount for 
each person no matter how many 
people 
 
There is a constant scale factor for 
the table (Key understanding 1) 
 
 
It goes through the origin; both 
quantities are 0 at the same time 
(Key understanding 2) 

If you choose two points on the graph, 
for example (1,4) and (7,10), they will 
not have the same ratio ($4/1 person ≠ 
$10/7 people) 
(Key understanding 3) 
 
 
The equation y = x + 3 cannot be 
written in that way (Key understanding 
4) 
 
 
 
The cost is less per person as the 
number of people increase 
 
 
The scale factor changes (decreases) 
throughout the table (Key 
understanding 1) 
 
It does not go through the origin; 
when the number of people is 0 the 
cost is $3 (Key understanding 2) 

 
 

Figure 24. Handout the instructor created based on teachers’ responses to the park and zoo problems coded 
for the four key understandings. 
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4.4.  How Teachers Drew Upon Their Understandings About Proportional Reasoning 

During a Subsequent Course 

In this section, the fifth research question, To what extent do preservice secondary 

mathematics teachers who participated in a course specifically focused on proportional reasoning 

draw upon their understandings about proportional reasoning in a subsequent course?, is 

explored. The purpose of this research question was to examine whether and how teachers drew 

upon their understandings about proportional reasoning during participation in a mathematics 

methods course that focused on algebra as the study of patterns and functions. As described in 

Chapter Three, the data sources used to explore this research question included teachers’ work 

on a pre/posttest item and transcripts from two whole class discussions in which teachers 

spontaneously introduced proportionality.  

 

4.4.1. Pre/Posttest, Question 2 

  As noted in Chapter Three, teachers were presented with three relationships and asked to 

characterize them as proportional or nonproportional. Their work on this question was coded so 

as to indicate whether they made the correct classification. Analysis of the pre- and posttest data 

produced by the ten teachers in the treatment group indicated that they were all able to correctly 

classify the relationships as proportional or not at the beginning and end of the algebra course.  

 

4.4.2. Whole Class Discussions, Class 7 and 8 

As noted in Chapter Three, the four key understandings described in Cramer et al. (1993) 

and Post et al. (1988) provided a lens for analyzing the portions of the two class discussions 

related to proportionality: (1) the relationship is multiplicative not additive; (2) the graph goes 
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through the origin, (3) the rate pairs are equivalent; and (4) the m in y = mx is the slope of the 

line, the constant of proportionality, and the constant factor that relates the quantities. In 

particular, the nature of the argument or justification made public by the teachers was identified.  

4.4.2.1. Class 7 

The mathematical idea of proportionality was spontaneously introduced during a whole 

class discussion around a task in which teachers were asked to think about real world situations 

that defined a functional relationship. In particular, teachers were asked to work with their small 

groups to: (1) sketch a graph of their relationship; (2) state the relationship using the language of 

functions; (3) build a chart or table with numbers that might go with their relationship; (4) 

explain the graph and the chart as ways of presenting the same information in different forms; 

and (5) explain how their example meets the requirements of the formal definition of a function. 

Teachers worked on this task individually for a few minutes and then in their small groups for 

approximately 10 minutes. The instructor then called the small groups together and engaged the 

teachers in a whole group discussion.  

The portion of the Class 7 discussion related to proportionality consisted of 178 turns and 

lasted approximately 15 minutes34. The teachers in the course spoke about 58% of these turns; 

the instructor spoke the remaining 42% of the turns. A total of 9 of the 18 teachers present during 

the discussion35 actively participated making at least one public contribution. Seven of the nine 

teachers who actively participated had previously completed the proportional reasoning course 

(either during the previous semester or a year prior to the algebra course). Four of these teachers 

- Bert, Bruce, Carl, and Ursula - were in the treatment group.  

                                                 
34 The entire whole class discussion consisted of 193 turns and lasted approximately 18 minutes. For the purposes of 
this analysis, only the portion of the discussion related to proportionality was used.  
35 Bonnie, Nora, and Owen were not present.  
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How proportionality was introduced in this class discussion. Proportionality was 

introduced during the whole class discussion when the instructor asked for volunteers to share 

their examples of real world functions with the class. The first group to volunteer, consisting of 

Bruce, Ursula, and Lisa36, nominated Ursula to go to the front of the room and present their 

example. The example that the group created was a car wash context, in which the relationship 

between the number of cars washed and the money that was earned ($5 per car) defined a 

functional relationship. In Ursula’s first statement to the class, she introduced the idea of 

proportionality: 

All right, so what we did was, we came up with washing cars as 
our example. So if you were having a car wash, the number of cars 
you washed and then the money earned from that. So part a is the 
graph, and so we just graphed hypothetically what it would look 
like. And our graph is also proportional. (Class 7, turn 271) 

 

 After Ursula’s statement, the instructor commented, “Oh! Oh, interesting!”37 and many 

teachers in the room began laughing and speaking to one another. However, at this point, the 

instructor did not press Ursula for clarification or explanation of what she meant by 

“proportional” and how she knew this. Instead, the instructor let Ursula continue her 

presentation, which included a description of the equation and a numeric table that depicted the 

relationship, and an explanation of why their relationship was a function. When she had finished, 

the instructor provided the teachers with an opportunity to question Ursula’s group or make 

comments about their example, which was a standard practice in this course. At this point, the 

                                                 
36 Ursula and Bruce were in the treatment group. Lisa was pursuing a certification in deaf education and had not 
taken the proportional reasoning course.  
37 A standard practice of the course was for the instructor to circulate among the small groups as they worked. 
However, the instructor spent no time with Bruce, Ursula, and Lisa’s group during the small group work during this 
activity. Thus, the instructor did not appear to know that proportionality would come up during this discussion.  
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instructor returned to Ursula’s statement that her group’s example reflected a proportional 

situation: 

I want to go back to a comment that Ursula made, uh, initially. 
About it being proportional...Some of you might have thought I’d 
go back there…Um, do you want to tell us- say a little more about 
that? (Class 7, turns 288-292) 

 

Key understandings that were made public during the discussion. Each of the four key 

understandings was made public as the class responded to the instructor’s request. Over 60% of 

the 178 turns in this discussion were related to the four key understandings. Of the turns related 

to the key understandings, teacher turns accounted for the majority of the turns spoken (teachers 

spoke 58% of the turns; the instructor spoke 42% of the turns).   

Table 59 illustrates the frequency with which the four key understandings were made 

public during the discussion. The understanding that graphs of proportional situations are linear 

and contain the origin (key understanding 2) was discussed with the greatest frequency – about 

one-third of the discussion. The idea that the rate pairs are equivalent in proportional situations 

(key understanding 3) comprised about 25% of the discussion. The understanding that m in the 

equation y = mx is the slope of the line, the constant of proportionality, and the unit rate (key 

understanding 4) comprised 10% of the discussion. The understanding that proportional 

relationships are multiplicative in nature (key understanding 1) was discussed the least, 

comprising 3% of the discussion38.  

                                                 
38 Since some turns were coded as relating to more than one key understanding, the percent in the previous 
paragraph, 60%, does not equal the total percent in this paragraph (34+25+10+3=72%). This is because about 10% 
of the turns were coded as relating to two key understandings.  
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Table 59. Key Understandings That Were Made Public During Class 7 of the Algebra 
Course 
 
Key Understandings That Were Made Public During Class 7 of the Algebra Course 
 
  Turns related to the four key understandings 
 Number 

of turns 
1. 

Multiplicative 
2. Line 
through 
origin 

3. Rate pairs 
equivalent 

4. m is slope, unit 
rate 

Bert 18 1 7 7 3 
Bonnie - - - - - 
Bruce 10 2 0 2 5 
Carl 7 0 2 5 1 
Christopher 0 0 0 0 0 
Elaine 0 0 0 0 0 
Nanette 0 0 0 0 0 
Nora - - - - - 
Owen - - - - - 
Ursula 8 0 3 0 0 
Instructor 75 2 27 16 8 
Other teachers 
(who 
completed 
proportional 
reasoning 
course) 

29 0 11 10 0 

Other teachers 
(who had NOT 
completed 
proportional 
reasoning 
course) 

5 0 1 3 0 

Other talk 
(e.g., laughter, 
group 
responses, 
can’t tell who 
spoke) 

26 0 10 1 0 

Total number 
of turns 

178 5 
(3% of the 
total turns) 

61 
(34% of the 
total turns) 

44 
(25% of the 
total turns) 

17 
(10% of the total 

turns) 
 
Notes:  Bold indicates teachers in the treatment group. Shading indicates teachers who were not present for the 
discussion.  Thirteen turns were related to 2 key understandings, and were coded as such.   
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Each key understanding was discussed by at least two different teachers in the treatment 

group (as shown in the columns of Table 59). Three teachers (Bert, Bruce, and Carl) made 

contributions related to at least three of the key understandings. This suggests that their 

understanding about the nature of proportional relationships was not limited to just having 

memorized a particular characteristic (e.g., rate pairs are equivalent in proportional 

relationships), but was more robust. Ursula’s contributions were all related to the idea that 

proportional relationships are depicted by a line that contains the origin.  

4.4.2.2. Class 8  

Proportionality was spontaneously introduced again during a whole class discussion 

about three linear relationships situated in a meal plan context. In particular, teachers were 

discussing why the graph of the actual cost per meal for the Regular Plan was a horizontal line 

(see Figure 16 in Chapter Three). The portion of the Class 8 discussion related to proportionality 

consisted of 68 turns and lasted approximately 7 minutes39. The teachers in the course spoke 

about 59% of these turns; the instructor spoke the remaining 41% of the turns. A total of 8 of the 

21 teachers enrolled in the course actively participated making at least one public contribution. 

Seven of the eight teachers who actively participated had previously completed the proportional 

reasoning course (either during the previous semester or a year prior to the algebra course). Six 

of these teachers - Bert, Bruce, Carl, Christopher, Nora and Ursula - were in the treatment group.  

Key understandings that were made public during the class discussion. Each of the four 

key understandings was made public during the portion of the Class 8 discussion that was 

analyzed. Over 85% of the 68 turns that made up the whole class discussion were related to the 

four key understandings. Of the turns related to the key understandings, teacher turns accounted 
                                                 
39 The entire whole class discussion consisted of 91 turns and lasted approximately 9 minutes. As with the Class 7 
discussion, only the portion of the Class 8 discussion related to proportionality was analyzed.  
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for the majority of the turns spoken (teachers spoke 58% of the turns; the instructor spoke 42% 

of the turns).   

Table 60 illustrates the frequency with which the four key understandings were made 

public during the discussion. The understandings that graphs of proportional situations are linear 

and contain the origin (key understanding 2) and that rate pairs are equivalent in proportional 

situations (key understanding 3) were discussed with the greatest frequency – about 30% of the 

discussion. The understanding that proportional relationships are multiplicative in nature (key 

understanding 1) comprised 22% of the discussion. The understanding that m in the equation y = 

mx is the slope of the line, the constant of proportionality, and the unit rate (key understanding 4) 

was discussed the least, comprising about 15% of the discussion. 

As shown in Table 60, of the six teachers in the treatment group who actively participated 

in the Class 8 discussion, five of them (Bert, Bruce, Carl, Christopher, and Nora) made 

contributions related to at least one of the four key understandings. Bert made contributions 

related to three of the four key understandings, and Bruce made contributions related to two of 

the key understandings. Carl, Christopher, and Nora’s contributions were each related to one key 

understanding.  

 



 

  208

Table 60. Key Understandings That Were Made Public During Class 8 of the Algebra 
Course 

Key Understandings That Were Made Public During Class 8 of the Algebra Course 
 
  Turns related to the four key understandings 
 Number 

of turns 
1. 

Multiplicative 
2. Line 
through 
origin 

3. Rate pairs 
equivalent 

4. m is slope, unit 
rate 

Bert 5 3 3 0 2 
Bonnie 0 0 0 0 0 
Bruce 7 0 2 0 3 
Carl 1 0 0 0 1 
Christopher 2 0 0 1 0 
Elaine 0 0 0 0 0 
Nanette 0 0 0 0 0 
Nora 7 0 7 0 0 
Owen 0 0 0 0 0 
Ursula 1 0 0 0 0 
Instructor 29 4 14 10 4 
Other teachers 
(who had 
completed 
proportional 
reasoning 
course) 

8 1 2 3 1 

Other teachers 
(who had NOT 
completed 
proportional 
reasoning 
course) 

7 0 0 7 0 

Other talk 
(e.g., laughter, 
group 
responses, 
can’t tell who 
spoke) 

3 0 1 2 0 

Total number 
of turns 

68 15  
(22% of the 
total turns) 

22  
(32% of the 
total turns) 

21  
(31% of the 
total turns) 

11  
(16% of the total 

turns) 
 
Note: Six turns were coded as relating to two key understandings. In addition, two turns were coded as relating to 
three key understandings.  Bold indicates teachers in the treatment group. 
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4.4.3. Summary 

Approximately two weeks after they completed the proportional reasoning course, the ten 

teachers in the treatment group began a six-week course that focused on algebra as the study of 

patterns and functions in the middle grades taught by the same instructor. At the beginning and 

end of the algebra course, all ten teachers in the treatment group were able to use an aspect of 

their newly-acquired common content knowledge to classify relationships as proportional or 

nonproportional. In addition, the teachers spontaneously introduced the idea of proportionality 

during their work in the algebra course, and drew upon their understandings of the nature of 

proportional relationships during two class discussions. In particular, over 6 of the 10 teachers 

(Bert, Bruce, Carl, Christopher, Nora, and Ursula) made public contributions that were related to 

the four key understandings of proportional relationships during these discussions.  

 

4.5. Summary of the Results of the Study 

The analysis presented in this chapter revealed that both the ten teachers in the treatment 

group and the six teachers in the contrast group knew and were able to do mathematics related to 

proportional reasoning prior to the course, and that there was no significant difference between 

the two groups at the onset of the study. For example, both groups had well-developed common 

content knowledge, as evidenced by their ability to correctly solve missing value, numerical 

comparison, and qualitative problems. In addition, both groups recognized ratio as an appropriate 

measure of attributes such as steepness, and many teachers in each group were able to 

discriminate proportional from nonproportional situations.  

However, a closer look at teachers’ work on the pretest reveals that they relied heavily on 

the cross multiplication procedure to solve missing value problems. By the end of the course, 
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half the teachers in the treatment group used strategies that they had not used at the beginning of 

the course to solve problems, and the teachers in the treatment group tended to rely less on cross 

multiplication and other algebraic strategies. By contrast, teachers in the contrast group utilized 

the same strategies they used on the pretest, and continued to rely on cross multiplication and 

algebraic strategies. These results suggest that teachers in the treatment group learned additional 

strategies for solving proportionality problems during the course, and thus enhanced an aspect of 

their specialized content knowledge. This claim is further strengthened by the analysis of the 

class discussions that occurred during the course, which illustrated that teachers in the course 

shared a variety of solution strategies, and therefore had opportunities to grapple with new 

strategies.  

In addition, teachers in the treatment group drew upon significantly more key 

understandings of proportional relationships by the end of the course than teachers in the contrast 

group did in their work on tasks in which they classified relationships as proportional or not, 

defined proportional relationships, and created examples and nonexamples of proportional 

relationships. These key understandings were made public during several discussions during the 

course.  

Finally, the teachers in the treatment group were still able to correctly classify 

relationships as proportional or not eight weeks after the end of the proportional reasoning 

course. In addition, in their work during a subsequent course focused on algebra, these teachers 

spontaneously (and appropriately) drew upon their understandings of proportional relationships 

and engaged in discussions that illustrated their understandings about the difference between 

proportional and nonproportional relationships and the mathematical relationships embedded in 
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proportional situations. In the next chapter, the results of the study are summarized and 

discussed. In addition, implications of the study and suggestions for future study are discussed.  
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5. CHAPTER FIVE: DISCUSSION 

 
 

5.1. Introduction 

This study investigated teachers’ understandings of proportional reasoning, a content area 

that is known to be difficult for both students and teachers (e.g., Heinz, 2000; Martin & 

Strutchens, 2000; Post, et al., 1991; Wearne & Kouba, 2000). The results of this study show that 

while teachers were able to solve a variety of proportionality problems prior to and upon 

completion of a course focused on proportional reasoning, they increased their understanding of 

proportionality as a result of their participation in the course.  

Specifically, a closer look at teachers’ work on the pre-instruments revealed that they did 

not have a particularly broad repertoire of solution strategies prior to the course. For example, 

teachers relied heavily on the cross multiplication procedure and other algebraic strategies to 

solve missing value problems. In addition, half of the ten teachers in the proportional reasoning 

course favored the use of part-to-part ratios to solve numerical comparison problems, and several 

of these teachers could not make sense of strategies that made use of an alternative type of ratio, 

part-to-whole ratios. By contrast, by the end of the course, teachers utilized a broader range of 

strategies for solving missing value and numerical comparison problems. In particular, teachers 

relied less heavily on the cross multiplication procedure and other algebraic strategies and 

instead favored within- and between-ratio strategies, which highlight the multiplicative 

relationship between quantities. Most teachers also used strategies based on both part-to-part and 

part-to-whole ratios by the end of the course.  
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In addition, teachers’ work on the pretest revealed that they had limited ability to 

distinguish between proportional and nonproportional relationships, and that half the teachers 

appeared to believe that all linear relationships are proportional. Of the teachers who could 

correctly identify relationships as proportional or not, their explanations were typically limited to 

one feature of proportional relationships (key understanding 3, that rate pairs of proportional 

relationships are equivalent, was used most frequently prior to the course). By the end of the 

course, teachers correctly identified significantly more relationships as proportional or not, and 

no teacher appeared to believe that all linear relationships are proportional. In addition, teachers 

appeared to have a more robust understanding of the nature of proportional relationships, as 

evidenced by their work in describing proportional relationships, providing examples of 

proportional and nonproportional relationships, and classifying relationships as proportional or 

nonproportional, which drew upon significantly more key understandings of proportional 

relationships than their work prior to the course.  

The results of the study also make salient that the proportional reasoning course in which 

teachers participated was a key factor in enhancing teachers’ understandings of proportionality. 

For example, all of the mathematics that teachers appeared to learn during the course (as 

indicated by their work on the pre/post instruments) was made public during multiple classes and 

by multiple teachers in the course. In addition, the results of the contrast group’s work on the 

pre/post instruments indicated that prior to the course, there was no significant difference 

between the understandings of the teachers enrolled in the course and those who were not. 

However, by the end of the course, teachers in the course used additional strategies to solve 

problems while the contrast group did not. In addition, teachers in the course had a deeper 

understanding of proportional relationships, as evidenced by their use of significantly more key 
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understandings than the contrast group in describing proportional relationships, providing 

examples of proportional and nonproportional relationships, and classifying relationships as 

proportional or nonproportional. Thus, teachers’ participation in the course appeared to be an 

important catalyst for the learning that appeared to occur during the course. 

Finally, the study also provides evidence that the teachers who participated in the 

proportional reasoning course were able to draw upon their understandings about proportionality 

in their work during a subsequent practice-based methods course, which focused on algebra as 

the study of patterns and functions40. In particular, results indicate that all ten teachers who 

participated in the proportional reasoning course were able to distinguish between proportional 

and nonproportional relationships both at the beginning and end of the algebra course (i.e., 

approximately two and eight weeks after the conclusion of the proportional reasoning course). In 

addition, over half of the ten teachers spontaneously drew upon their understandings of 

proportional relationships during two whole-class discussions in the algebra course in which 

teachers were exploring linear functions. These results suggest that teachers had not merely 

memorized discrete facts about proportional relationships (e.g., proportional relationships are 

depicted by lines that contain the origin), but had developed flexible understandings that allowed 

them to access their knowledge as they explored different (albeit mathematically related) ideas 

such as function.  

 

5.2. Teacher Learning From the Course: Mathematical Knowledge for Teaching 

So how does the mathematics that teachers learned during the proportional reasoning 

course contribute to their knowledge base for teaching? As noted in Chapter One, teachers’ 

                                                 
40 Recall that the six-week algebra course began two weeks after the conclusion of the proportional reasoning 
course. 
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knowledge of mathematics is an important factor in their ability to help their students learn 

mathematics (Ball, Lubienski, & Mewborn, 2001; Fennema & Franke, 1992). For example, 

teachers draw upon their own mathematical understandings as they identify mathematical goals 

for their students, select and sequence mathematical tasks, and ask questions that assess or 

advance their students’ understandings (Hiebert et al., 1997; NRC, 2001).  

As noted in Chapter Four, one way to characterize the knowledge that teachers draw 

upon in their work is as mathematical knowledge for teaching (Ball et al., 2005; Ball, Bass, & 

Hill, 2004; Hill & Ball, 2004; Hill, Schilling, & Ball, 2004). Ball and her colleagues argue that 

teachers need two important types of content knowledge in order to successfully teach 

mathematics: common content knowledge and specialized content knowledge. Common content 

knowledge is the “mathematical knowledge and skill expected of any well-educated adult” (Ball 

et al., 2005, p. 13). For example, one would draw upon their common content knowledge in 

order to solve a missing value problem. By contrast, specialized content knowledge is the 

“mathematical knowledge and skill needed by teachers in their work and beyond that expected of 

any well-educated adult” (Ball et al., 2005, p. 14). For example, teachers draw on their 

specialized content knowledge when they represent mathematical ideas in multiple ways, analyze 

errors, and evaluate alternative ideas (Ball et al., 2005; Hill, Schilling, & Ball, 2004).  

In addition, Ball and her colleagues (Ball et al., 2005; Ball, Bass, & Hill, 2004; Hill & 

Ball, 2004; Hill, Schilling, & Ball, 2004) argue that teachers also need knowledge of content and 

students and knowledge of content and teaching. Knowledge of content and students combines 

teachers’ content knowledge with their knowledge of students. For example, teachers draw upon 

their knowledge of content and students when they anticipate students’ solutions, errors, and 

common misconceptions. Knowledge of content and teaching combines teachers’ content 
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knowledge with their knowledge of teaching. For example, teachers use their knowledge of 

content and teaching as they sequence mathematical tasks. These two types of knowledge make 

up what Shulman (1986) has called pedagogical content knowledge (Ball et al., 2005). In 

reviewing the results of this study through a lens of mathematical knowledge for teaching, 

teachers appeared to develop the two types of content knowledge described by Ball and 

colleagues as a result of participating in the course: common content knowledge and specialized 

content knowledge.  

 

5.2.1. Common Content Knowledge 

The results of this study indicate that the preservice secondary teachers that were the 

focus of this study had considerable common content knowledge, even prior to the course. In 

general, these teachers did not make use of incorrect additive strategies to solve proportionality 

problems and were able to solve a variety of problem types on the pretest. By contrast, previous 

studies of preservice elementary teachers suggest that these teachers frequently apply additive 

strategies to problems that call for proportional strategies (Heinz, 2000; Simon & Blume, 1994). 

The findings of this study suggest that the preservice secondary teachers in this study, who hold 

a bachelor’s degree in mathematics (or the equivalent), have stronger common content 

knowledge than the preservice elementary teachers in other studies. This is not surprising, since 

preservice secondary mathematics teachers are typically successful in K-12 mathematics and 

complete numerous mathematics courses as undergraduates. By contrast, preservice elementary 

teachers often have minimal formal coursework in mathematics beyond their own K-12 

experience.  
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However, the findings of this study also indicate even that though teachers had a 

bachelor’s degree in mathematics (or the equivalent), they still appeared to learn some aspects of 

both common and specialized content knowledge during the course. For example, teachers in the 

course had limited ability to classify relationships as proportional or not prior to the course. In 

addition, they held a limited understanding of what it means for a relationship to be proportional. 

These mathematical ideas can be considered common content knowledge, since even students 

need to understand these ideas (NCTM, 2000). By the end of the course, teachers’ 

understandings about proportional relationships were more robust and flexible, as shown in their 

capacity to classify relationships as proportional or not and explain why by drawing upon the 

nature of proportional relationships. The finding that teachers developed common content 

knowledge that their students will also need during the course is particularly important in light of 

Hill, Rowan, and Ball’s (2005) recent findings that teachers’ mathematical knowledge for 

teaching impacts their students’ learning.  

 

5.2.2. Specialized Content Knowledge 

The results of this study also indicate that prior to the course, teachers’ specialized 

content knowledge was fairly limited. For example, prior to the course, teachers tended to rely on 

solution strategies such as cross multiplication. Teachers also had difficulty making sense of 

solution strategies that they had not produced themselves. As shown in the analysis of the video 

of the course, teachers made sense of and analyzed others’ strategies (i.e., strategies produced by 

other teachers in the course, and strategies produced by students in the middle grades) on 

multiple occasions throughout the course. As noted previously, the analysis of teachers’ work at 

the end of the course indicates that teachers drew upon additional strategies and relied less on 
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cross multiplication. The finding that teachers in the course learned additional strategies and how 

to make sense of strategies is particularly important because as teachers, making sense of 

students’ strategies and ideas is part of their everyday work. In order to teach for understanding, 

teachers need to be able to assess what their students know, and ask questions to advance their 

understanding.  

The results of the analysis of the whole class discussions also indicate that teachers had 

additional opportunities to develop their specialized content knowledge. For example, teachers 

need to understand why mathematical procedures such as cross multiplication work if they are to 

help their students develop meaning for such procedures. During the course, teachers had at least 

two opportunities to make sense of cross multiplication, through reading an article that highlights 

the relationship between a factor-of-change (i.e., scale factor or between-ratio) strategy and cross 

multiplication (Boston, Smith, & Hillen, 2003), and through a discussion in which teachers 

sought to explain why cross multiplication works. 

An additional aspect of specialized content knowledge involves coordinating multiple 

representations of mathematical relationships. Teachers had multiple opportunities to make 

connections among different representations during the course, as evidenced in the analysis of 

the whole class discussions. For example, when teachers worked on the graphing orange juice 

mixes problem, they had opportunities to make connections among the context of the problem 

and tables and graphs that they were asked to use in solving the problem.  
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5.3. Implications and Recommendations for Education 

 

5.3.1. Sites for Developing and Measuring Mathematical Knowledge for Teaching 

Hill, Schilling, & Ball (2004) suggest that teachers could develop mathematical 

knowledge for teaching through a variety of means, including teacher preparation. The 

proportional reasoning course that was the treatment in this study provides one model of how 

mathematical knowledge for teaching could be operationalized in a learning experience for 

preservice teachers. The course also provides a concrete exemplar of the types of practice-based 

learning opportunities that Ball and Cohen (1999) argue that teachers need. In addition, this 

study and other related studies (e.g., Smith et al., 2003; Steele, Hillen, Engle, Smith, Leinhardt, 

& Greeno, 2005) are beginning to provide information about course design and teacher learning. 

The results of this study suggest that teachers can further develop aspects of their mathematical 

knowledge for teaching (specifically, their common and specialized content knowledge) by 

completing practice-based mathematics methods courses in which teachers explore challenging 

mathematical tasks from curricula, examine students’ responses to such tasks, and analyze 

narrative and video cases of teaching. The results of this study also point to the importance of 

providing teachers with opportunities to revisit mathematical content that is critical to K-12 

mathematics so that they can develop or refine their own understandings. By providing a 

mathematical focus for the course, teachers had an opportunity to not only explore proportional 

reasoning ideas in a deep way, but also grapple with ideas about teaching mathematics and 

student learning more broadly.  

It is also important to note that the mathematics that teachers learned during the course 

was discussed during multiple classes and in various contexts over a sixteen-week semester. In 
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addition, the instructor never “told” the teachers anything; but rather, provided them with 

opportunities to explore ideas central to proportional reasoning and construct their own 

understandings through participation in a community of practice. The nature of the course and 

the finding that teachers learned important aspects of proportional reasoning during the course 

and could use their newly-acquired knowledge appropriately up to eight weeks later suggests that 

having multiple and varied opportunities to engage with specific mathematics content may be 

critical in promoting change in teacher knowledge.  

This study examined only one aspect of preservice secondary mathematics teachers’ 

mathematical knowledge for teaching proportional reasoning – their common and specialized 

content knowledge. Teachers likely had opportunities to develop or refine additional aspects of 

their mathematical knowledge for teaching during the course that were not examined in this 

study. For example, the course map (shown in Figure 23) indicates that less than half of the class 

discussions were related to common or specialized content knowledge. Therefore, a natural 

extension of this study would be to examine what teachers learned (or had the opportunity to 

learn) from engaging in the remaining class discussions (see unshaded class discussions in 

Figure 23). For example, given the opportunities teachers had to examine student thinking during 

the course (through interviewing a student, examining sets of written responses provided by the 

instructor, and reading narrative cases depicting middle grades mathematics lessons), teachers 

may have enhanced their understandings about student errors and misconceptions and their 

capacity to anticipate how students will approach tasks – that is, their knowledge of content and 

students (Ball et al., 2005). Future studies might develop and use items that measure teachers’ 

knowledge of content and students with respect to proportional reasoning (see Hill, Schilling, & 

Ball [2004] or Ball et al. [2005] for examples of similar items that focus on number concepts and 
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operations). Such items might focus on common student misconceptions, such as the use of 

additive strategies when multiplicative ones are needed.  

In addition, items that measure teachers’ knowledge of content and teaching with respect 

to proportional reasoning might be developed in order to further explore teachers’ learning 

during the course. Such items might have the potential to identify the learning that occurs from 

analyzing and discussing the four narrative cases that were used in the course. For example, one 

of the cases used in the course, The Case of Marie Hanson (Smith, Silver, & Stein, 2005b), 

makes salient the teacher’s thinking as she sequenced tasks and students’ responses to those tasks 

during the lesson (Stein, Engle, Hughes, & Smith, submitted). Analyzing and discussing this case 

might help teachers think deeply about the relationship between the sequence of content and the 

mathematical opportunities that are afforded to students, thus developing or refining their 

knowledge of content and teaching (Ball et al., 2005). 

Finally, the items currently being developed by Ball and colleagues’ Study of 

Instructional Improvement (Hill, Schilling, & Ball, 2004) will be helpful in describing 

mathematical knowledge for teaching. As additional items are developed that focus on particular 

content areas, such as proportional reasoning, researchers will have opportunities to use items 

that have proven reliability in conjunction with teacher education courses in order to examine 

teachers’ learning.  

 

5.3.2. The Role of Public Participation in Individual Learning 

The results of the study also indicate that even teachers who were mostly “silent” 

throughout the course appeared to learn the same mathematics as more vocal teachers. For 

example, Ursula, who was the most silent of the teachers in the course (she spoke the fewest 
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number of turns during the course and spoke in the fewest number of discussions41), appeared to 

learn the same mathematics as other teachers in the course, including those who were more vocal 

(e.g., Bert). For example, on the posttest, Ursula used two solution strategies that she had not 

used on the pretest: between-ratio strategies to solve the five missing value problems (see tasks 

1-4 and 23 in Appendix A); and a part-to-whole strategy to solve the orange juice numerical 

comparison problem (see task 6 in Appendix A). Ursula’s explanations of the quantities she used 

to compare the orange juice recipes in task 6 were also more clear and complete on the posttest 

than on the pretest. In addition, her capacity to classify relationships as proportional or not was 

fairly limited at the beginning of the course (she correctly classified less than 70% of the 

relationships in tasks 11-22 [shown in Appendix A]). By contrast, Ursula was able to correctly 

classify all twelve relationships as proportional or not at the end of the about proportional 

reasoning course (tasks 11-22 in Appendix A) and at the beginning and end of the subsequent 

algebra course (see Figure 14). Finally, Ursula drew upon two additional key understandings to 

provide a rationale for her classifications by the end of the course. 

It is also interesting to note that it was Ursula who first spontaneously introduced the idea 

of proportionality during Class 7 of the algebra course42, and when pressed by the instructor, 

drew upon the understanding that proportional relationships are depicted by lines that contain the 

origin (key understanding 2) to support her group’s claim that the function they created was 

proportional. This is notable because during the proportional reasoning course, Ursula remained 

                                                 
41 Nanette and Ursula both spoke in only five of the sixteen discussions that were analyzed. However, Ursula was 
identified as the “most silent” because Nanette spoke nearly three times as many turns as Ursula during the sixteen 
discussions. 
42 Recall that Ursula had been working a small group with Bruce and another teacher (who had not taken the 
proportional reasoning course), and that the group nominated Ursula to present their example to the class.  
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silent during all three discussions related to the key understandings43. Thus, when pressed to 

explain why a relationship was proportional, Ursula could do so. 

The finding that a silent teacher learned the same mathematics as the more vocal teachers 

in the course echoes Inagaki, Hatano, and Morita’s (1998) finding that there was no significant 

difference between silent and vocal fourth and fifth graders’ ability to add fractions of different 

denominators following a class discussion about this idea. Hatano and Inagaki (1991) argue that 

group discussions are important because: 

[a] group as a whole usually has a richer data base than any of its 
members for problem solving. It is likely that no individual 
member has acquired or has ready access to all needed pieces of 
information, but every piece is owned by at least one member in 
the group (p. 341) 

 

Thus, during group discussions, all participants – even silent ones – have the opportunity to 

“collect more pieces of information about the issue of the discussion and to understand the issue 

more deeply” (Hatano & Inagaki, 1991, p. 346). Inagaki and colleagues suggest that silent 

students are in fact actively participating in discussions, even though they are not speaking out 

(Hatano & Inagaki, 1991; Inagaki et al., 1998). Hatano and Inagaki describe active participation: 

…silent members may be actively participating. They can learn 
much by observing the ongoing discussion or debate carefully. 
This is often characterized as a vicarious process, but it is more 
than that. In a sense, these students are all trying to find an agent, 
someone who really speaks for them. A good agent or vocal 
participant can articulate what a silent member has been trying 
without success to say… (p. 346) 

 

                                                 
43 Ursula made one contribution during one of the three discussions related to the four key understandings. However, 
her contribution was not related to the four key understandings. 
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Thus, Ursula (and other relatively silent teachers, such as Nanette) most likely were actively 

engaged during the whole class discussions but nonetheless chose to remain silent during most 

class discussions.  

 The finding that a silent teacher learned the same mathematics as the more vocal teachers 

in the course is also important given the suggested role of public discourse in mathematics 

classrooms (NCTM, 2000). This finding suggests that successful class discussions (i.e., ones that 

have the potential to impact learning) are those in which important mathematical ideas are made 

public. Whether all participants make public contributions during such discussions appears to be 

less important. Of course, teacher educators who are orchestrating discussions with teachers (and 

similarly, teachers who are orchestrating discussions with students) should provide opportunities 

for all teachers to make public contributions. However, the findings of this study indicate that 

some teachers chose to remain relatively silent during class discussions, yet still learned 

important mathematics.  

 Future studies might examine the understandings of the vocal teachers compared to those 

of the silent teachers. For example, examining Bert’s (arguably the most vocal teacher in the 

course) and Ursula’s understandings of proportional reasoning would provide information on 

whether increased participation (in the form of public contributions) appears to impact their 

mathematical knowledge for teaching. It would also be interesting to examine the understandings 

of additional silent teachers. For example, comparing Ursula’s understandings to those of 

Nanette’s might provide insight into whether or not all silent teachers experience similar learning 

outcomes.  
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5.3.3. How Knowledge Influences Practice 

The ultimate goal in teacher education is to improve student learning outcomes. This 

study provides evidence that through participation in a practice-based methods course focused on 

proportional reasoning, teachers can and do learn mathematical knowledge for teaching during a 

course in their teacher education experience. Thus, this study should be seen as a first step in 

improving student learning. Future studies might investigate how teachers’ enhanced knowledge 

for teaching impacts their instructional practice, and ultimately, their students’ learning. Studies 

that examine teachers’ instructional practice could provide empirical evidence on the extent to 

which practice-based methods courses have an impact on teachers’ practice. Further studies 

might investigate how teachers’ mathematical knowledge for teaching influences students’ 

learning. For example, in a recent study, Hill, Rowan, and Ball (2005) found that teachers’ 

mathematical knowledge for teaching positively predicted student gains in mathematics 

achievement during the first and third grade. They note that the fact that teachers’ mathematical 

knowledge for teaching affects student gains in the first grade “suggests that teachers’ content 

knowledge plays a role even in the teaching of very elementary mathematics content” (p. 399). 

This suggests that teachers’ content knowledge might be even more critical when teaching at the 

middle grades, where complex mathematical ideas such as proportional reasoning are key 

components of the curriculum.   
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APPENDIX A 
 
 
 
 

PRE/POSTTEST 
 
Directions: Solve the following problems. Please show all your work. If you write something that 
you do not wish to include in your solution, please draw a single line through it (rather than 
erasing any of your work). You may use a calculator if you need one.  
 
For problems 1-4, solve for x. If you can, solve for x in two different ways.  
 

STOP. WHEN YOU ARE FINISHED WITH PROBLEMS 1-5, PLEASE HAND THEM IN 
AND PICK UP THE REMAINING PROBLEMS.  
 

1. 4 x
20 35

2. 2 6
7 x

3. 3 x
8 20

4. 9 12
15 x

3 x
8 20

=

=

=

=5.  Write a word problem that would require setting up and solving 

=
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6. Solve the following problem in two ways: 
Luis mixed 5 ounces of orange juice concentrate with 7 ounces of water to make orange 
juice.  Martin mixed 3 ounces of the same orange juice concentrate with 5 ounces of 
water.  Who made the drink with the stronger orange flavor? Explain how you know.  
 
Adapted from Wearne, D., & Kouba, V. L. (2000). Rational numbers. In E. A. Silver & 
P. A. Kenney (Eds.), Results from the seventh mathematics assessment of the national 
assessment of educational progress. Reston, VA: National Council of Teachers of 
Mathematics. p. 181. 

 
 
 
For problems 7-8, answer the questions shown below and explain how you made your selection.  
 
 
7. Mary ran more laps than Greg. Mary ran for less time than Greg. Who was the faster runner?  
 

a. Mary  
b. Greg  
c. Same  
d. Not enough information to tell 

 
Taken from Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and 
proportion: Research implications. In D. T. Owens (Ed.), Research ideas for the 
classroom. New York: Macmillan. p. 166. 

 
 
 
 
8. Devan makes a lemon-lime drink by mixing lemonade and limeade every day for her 

preschool students. If Devan used less lemonade and less limeade than she did yesterday, 
would her lemon-lime drink taste:  

 
a. More lemony than yesterday’s 
b. More limey than yesterday’s 
c. Exactly the same as yesterday’s 
d. Less lemony than yesterday’s 
e. Less limey than yesterday’s 
f. Not enough information to tell 

 
 
 



 

  228

9. Pat was painting his bedroom. He mixed blue and white paint until he came up with a shade 
of blue that he liked. He realized however that he was probably about one quart short of the 
amount of the paint that he needed. He wanted to increase the amount of the paint without 
changing the color, so he added equal amounts of blue paint and white paint: one pint of 
white and one pint of blue (2 pints = 1 quart). 

 
Comment on the effectiveness of Pat’s strategy for increasing the amount of his paint mixture 
without changing the color. Justify your statements.  

 
Taken from Heinz, K. R. (2000). Conceptions of ratio in a class of preservice and 
practicing teachers. Unpublished doctoral dissertation, The Pennsylvania State 
University, p. 150. 

 
 
 
10. In Kansas, there are no mountains for skiing. An enterprising group built a series of ski 

ramps and covered them with a plastic fiber that permitted downhill skiing. It is your job to 
rate them in terms of most steep to least steep. You have available to you the following 
measurements for each hill: the length and width of the base (measured along the ground) 
and the height. How would you determine the relative steepness of the hills using the 
information you have?  

 
 

Taken from Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a 
component of understanding ratio-as-measure: A study of prospective elementary 
teachers. Journal of Mathematical Behavior, 13, p. 187. 

 
 

height

width of base
length of base



 

  229

For problems 11-22, indicate (by writing either ‘yes’ or ‘no’) whether any of the relationships 
described below are proportional. Explain how you know.  
 
 
 11. _____ The relationship between the number of kilometers for a customer’s taxi ride and 

the cost of the trip, if the customer pays a $1.00 fee, plus $0.50 per kilometer for 
the taxi.  

 
 
 
 12. ______ The relationship between the number of movie tickets purchased and the total cost 

of the tickets, if each ticket costs $8.00.  
 
 
 
 13.______ The relationship between Jane and Sue’s positions on a marathon course if they 

run at the same pace but Jane ran 2 miles before Sue started.  
 

 

 
 

  14. ______

15. ______

x

y

x

y

16. ______

x

y
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20. _____

x y
4 6
6 9
8 12
10 15
12 18

21. _____
x y
4 10
6 14
8 18
10 22
12 26

22. _____
x y
0 0
4 8
6 18
8 32
10 50

 
Adapted from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). 
Tracing the development of teachers’ understanding of proportionality in a 
practice-based course. Paper presented at the annual meeting of the American 
Educational Research Association, Chicago, IL, p. 54. 

 
 

y = 3x + 4.5

y = 3x2

y = 2.5x

 18. ______

 17. ______

 19. ______
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23. Katie and Jacob are enlarging pictures for the school yearbook and want to make sure they do 
not distort any of the images. They have a photograph whose width is 3” and length is 4” and 
they need to make an enlargement of the photograph whose length is 14”. How long will the 
width of the enlargement be? Explain how you know.  

 

 
24. A new housing subdivision offers lots of three different sizes: 75 feet by 114 feet, 455 feet by 

508 feet, and 185 feet by 245 feet. If you were to view these lots from above, which would 
appear most square?  Which would be least square? Explain how you know.  

 
Taken from Heinz, K. R. (2000). Conceptions of ratio in a class of preservice and 
practicing teachers. Unpublished doctoral dissertation, The Pennsylvania State 
University, p. 150. 

3"
?"

14"4"
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APPENDIX B 
 
 
 
 

PRE-INTERVIEW PROTOCOL 
 

(Phrases in bold should be read exactly as they appear.) 
Thank you for participating in this interview. I have three questions44 for you today.  
 
1. a.   What does it mean to say that there is a proportional relationship among  

quantities? If you can, I’d like to first hear your thoughts on what a proportional 
relationship is without your using specific examples. 

 
Probes: In your own words, what is a proportion? What do we mean when we 

say two quantities are related proportionally? 
 

b. Now, I’d like for you to describe a situation in which there IS a proportional 
relationship between the quantities. If you can, describe a situation that was not used 
in class.  

 
Probes: If the teacher cannot think of such a situation, ask them to focus on a problem 

that we did in class that depicted a proportional situation. Use the class 
situation to see if the teacher can generalize the characteristics of the situation. 
For example, ‘Ok, now using what you know about the tents/scouts problem, 
can you think of or make up a situation in which there is a proportional 
relationship between the quantities? 

 
c. Now, I’d like for you to describe a situation in which there is NOT a proportional 

relationship between the quantities. Again, describe a situation that was not used in 
class. 

 
Probes: If the teacher cannot think of such a situation, ask them to focus on a problem 

that we did in class that depicted a nonproportional situation (i.e., age 
problem). Use the class situation to see if the teacher can generalize the 
characteristics of the situation. For example, ‘Ok, now using what you know 
about the Age problem, can you think of or make up a situation in which there 
is not a proportional relationship between the quantities? 

 
                                                 
44 All questions on the pre-interview were adapted from work developed under the auspices of the ASTEROID 
project (NSF Award # 0101799), principal investigator Margaret S. Smith. 
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2. I would like to you review a set of student responses to a mathematics problem (shown in 

Figure B1). Here is a copy of the problem. I’ll give you a few minutes to acquaint yourself 
with the problem.  

 
This is a set of five students’ responses to the problem. Each of the five students picked Carla 
as having the strongest chocolate-flavored drink.  

 
For each response, can you explain how you think each student knew that Carla had the 
stronger chocolate-flavored drink? 

 
If the teacher doesn’t explicitly talk about what the values mean – they might instead talk 
about how the student is using common denominators, or milk compared to syrup, etc., ask 
the following: 

 
Probe: What do these values mean in the context of the problem? 

 
 
3. During the second class, you solved a set of three problems: Snake, Tents/Scouts, and Age 

(shown in Figure B2). (Give the teacher the handout with the three problems.)  
 

(If the teacher is in the contrast group, say: I’d like you to review this set of three problems. 
I’ll give you some time to acquaint yourself with the problems.) 

 
a. How are these problems the same and how are they different? 
b. I would now like you to review a set of problems (shown in Figure B3). For each 

problem, A-H, you need to decide if the problem is most like Problem #1 (Snake), 
Problem #2 (Tents/Scouts) or Problem #3 (Age), or if it is not like any of these 
three problems. When you decide, I’d like you to check the appropriate box. Then 
I’d like you to explain what about the problem (A-H) makes it ‘like’ either Snake, 
Tent/Scout, or Age. As you examine each problem, I’d like you to think out loud 
– I’d like to hear how you’re thinking about each one. You can revise your 
thinking at any time. It is okay to change your mind.  
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Maria mixed 3 ounces of chocolate syrup with 5 ounces of milk to make chocolate milk. Carla 
mixed 5 ounces of the same chocolate syrup with 8 ounces of milk. Who made the drink with the 
stronger chocolate flavor? Explain how you know.  
 
 
 

 
 
Figure B 1. The mathematics problem and set of student responses for item 2 on the pre-interview. 

 

A  
Maria: 3/5= .6
Carla: 5/8 = .625

So Carla’s drink has a stronger chocolate flavor.
B
Maria: 3/5= 24/40
Carla: 5/8 = 25/40

So Carla’s drink has a stronger chocolate flavor.
C
Maria: 5/3 = 1.67
Carla: 8/5 = 1.6

So Carla’s drink has a stronger chocolate flavor. 
D
Maria: 3/8 = .375
Carla: 5/13 = .385

So Carla’s drink has a stronger chocolate flavor.
E  
          24                                        25 

          3                                           5
          5                                           8

So Carla’s drink has a stronger chocolate flavor.
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The snake problem 
Jo has two snakes, String Bean and Slim. Right now, String Bean is 4 feet long and Slim is 5 feet 
long. Jo knows that two years from now, both snakes will be fully-grown. At her full length, 
String Bean will be 7 feet long, while Slim’s length when he is fully grown will be 8 feet. Over 
the next two years, will both snakes grow the same amount? 
 

Taken from Lamon, S. J. (1999). Teaching fractions and ratios for understanding: 
Essential content knowledge and instructional strategies for teachers. Mahwah: NJ: 
Erlbaum. p. 12. 

 
 
The tent/scout problem 
Four tents will house 12 scouts. If there are 40 tents, how many scouts will have a place to sleep? 
 

Taken from Carpenter, T. P., Gomez, C., Rousseau, C., Steinthorsdottir, O., Valentine, 
C., Wagner, L., & Wyles, P. (1999). An analysis of student construction of ratio and 
proportion understanding. Paper presented at the annual meeting of the American 
Educational Research Association, Montreal, Canada, p. 25.  

 

The age problem 
Susan and Cathy are sisters. Susan was 4 years old when Cathy was ten. Susan is now 9 years 
old. How old is Cathy now? When will Cathy be twice as old as Susan? 
 
 
Figure B 2. The snake, tent/scout, and age problems for item 3 on the pre-interview. 
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A  
Replace the question mark with a number to make a true statement.  
 

9 =   12 
15 ? 

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
 
 
 
B 
Bob and Mary run laps together because they both run at the same pace. Today, Mary started 
running before Bob came out of the locker room. Mary had run 7 laps by the time Bob had run 3. 
How many laps had Mary run by the time Bob had run 12? 
 

Taken from Lamon, S. J. (1999). Teaching fractions and ratios for understanding: 
Essential content knowledge and instructional strategies for teachers. Mahwah: NJ: 
Erlbaum. p. 223. 

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
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C 
The table shows the values of x and y, where x is proportional to y.  
 

x 3 6 P 
y 7 Q 35 

 
What are the values of P and Q? 
 

Taken from International Study Center (2001). TIMSS 1999 mathematics items: Released 
items for eighth grade. Chestnut Hill, MA: Boston College. p. 40. 

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
 
 
 
D 
Bret’s family has an annual income of $30,000 and gave $400 to a charity. Barbara’s family has 
an annual income of $300,000 and gave $4,000 to a charity. Whose family gave more money to 
the charity? 
 

Adapted from O’Daffer, P., Charles, R., Cooney, T., Dossey, J., & Schielack, J. (1998). 
Mathematics for elementary school teachers. New York: Addison Wesley. p. 402.  

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
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E 
The cost of admission to the state park is $1.00 for each person in a vehicle plus $3.00 for 
parking the vehicle. Complete the chart below showing how much it will cost for admission 
based on the number of people in the vehicle. Explain how you completed the table. Examine the 
table. Describe at least three different patterns in the table. Write a rule to help you determine the 
cost given any number of people.  
 

Number of people Cost 
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  

 
Taken from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the 
development of teachers’ understanding of proportionality in a practice-based course. 
Paper presented at the annual meeting of the American Educational Research 
Association, Chicago, IL, p. 42. 

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
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F 
David and Diana are trying to lose some weight before swimsuit season. Four months ago, David 
weighed 250 pounds and Diana weighed 180 pounds. Today, David weighs 220 pounds, and 
Diana weighs 150 pounds. Who lost the most weight? 
 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
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G 
The cost of admission to the zoo is $5.00 per person. (There is no charge for parking.) Complete 
the chart below showing the cost for admission for different groups of different sizes. Explain 
how you completed the table. Examine the table. Describe at least three different patterns in the 
table. Write a rule to help you determine the cost given any number of people.  
 

Size of group Cost 
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  

 
Taken from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the 
development of teachers’ understanding of proportionality in a practice-based course. 
Paper presented at the annual meeting of the American Educational Research 
Association, Chicago, IL, p. 42. 

 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
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H 
Which is more square: a rectangle that measures 35” by 39” or a rectangle that measures 22” by 
25”? 
 

Taken from Lamon, S. J. (1999). Teaching fractions and ratios for understanding: 
Essential content knowledge and instructional strategies for teachers. Mahwah: NJ: 
Erlbaum. p. 6. 

 
 
This problem is most like (check one): 
 
  The SNAKE problem 
 
  The SCOUT/TENT problem 
 
  The AGE problem 
 
  NONE of these problems 
 
 
 
Figure B 3. The set of eight problems for item 3 on the pre-interview.  
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APPENDIX C 
 
 
 
 

POST-INTERVIEW PROTOCOL 
 
 
(Phrases in bold should be read exactly as they appear.) 
Thank you for participating in this interview. I have three questions45 for you today.  
 
For teachers in the treatment group: 
1. What do you think you know or understand now that you did not know or understand before 

you started the course?  
 

a. Let’s start with what you think you know or understand now about mathematics that you 
did not know or understand before you started the course?  

 
(After they respond to part a, introduce the course map (shown in Figure C1), explain it 
to them (i.e., the activities you did in each class are shown in the columns; activities 
above the line were completed in class; activities below line were completed outside of 
class). For each idea they identified, ask them to identify the activities that they think 
helped them come to know or understand things differently and to place a blue dot on 
those activities.) 

 
b. Now, what do you think you know or understand now about students as learners of 

mathematics that you did not know or understand before you started the course?  
 

(For each idea they identified, ask them to identify the activities that they think helped 
them come to know or understand things differently and to place a red dot on those 
activities.)  

 
c. Now, what do you think you know or understand now about teaching mathematics that 

you did not know or understand before you started the course?  
 

(For each idea they identified, ask them to identify the activities that they think helped 
them come to know or understand things differently and to place a green dot on those 
activities.)  

 
 
                                                 
45 All questions on the post-interview were adapted from work developed under the auspices of the ASTEROID 
project (NSF Award #0101799), principal investigator Margaret S. Smith.  
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For all teachers: 
2. Consider the data on a snowstorm that hit both Mason City and Cedar Rapids (hand teacher a 

copy of Figure C2).  
 

What can you tell me from the table and the graph about each of these situations?  
 
Press his/her understanding of the mathematical relationships embedded in proportional 
situations by asking questions such as: How can you tell?; What does the origin have to do 
with proportionality?; What are you doing with the table?; etc. 
 
(Let the teacher talk for as long as they want. If you’re not sure they’re done and they haven’t 
spontaneously mentioned the proportionality of the situations, ask, Anything else you want 
to tell me? just to make sure you’ve provided them with every opportunity to spontaneously 
bring it up.) 
 
If teacher has not talked about the proportionality of either situation, ask, Do either of these 
situations reflect a proportional relationship?  

 
Press his/her understanding of the mathematical relationships embedded in proportional 
situations by asking questions such as: How can you tell?; What does the origin have to do 
with proportionality?; What are you doing with the table?; etc. 

 
 
3. a. What does it mean to say that there is a proportional relationship among  

quantities? If you can, I’d like to first hear your thoughts on what a proportional 
relationship is without your using specific examples. 

 
Probes: In your own words, what is a proportion? What do we mean when we say 

two quantities are related proportionally? 
 
 

b. Now, I’d like for you to describe a situation in which there IS a proportional 
relationship between the quantities. If you can, describe a situation that was not used 
in class.  

 
Probes: If the teacher cannot think of such a situation, ask them to focus on a problem 

that we did in class that depicted a proportional situation. Use the class 
situation to see if the teacher can generalize the characteristics of the situation. 
For example, ‘Ok, now using what you know about the tents/scouts problem, 
can you think of or make up a situation in which there is a proportional 
relationship between the quantities? 

 
c. Now, I’d like for you to describe a situation in which there is NOT a proportional 

relationship between the quantities. Again, describe a situation that was not used in 
class. 
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Probes: If the teacher cannot think of such a situation, ask them to focus on a problem 
that we did in class that depicted a nonproportional situation (i.e., age 
problem). Use the class situation to see if the teacher can generalize the 
characteristics of the situation. For example, ‘Ok, now using what you know 
about the Age problem, can you think of or make up a situation in which there 
is not a proportional relationship between the quantities? 

 
 
Thank you so much for participating in the interview. Your willingness to share your thinking 
will help us better understand how to create learning environments that will help teachers grow 
and develop as teachers of mathematics.  
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Figure C1. The course map for item 1 on the post-interview. 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 14
Solve the Tower 
problem

Discuss the 
Square problem

Discuss the 
Square problem, 
cont’d

Discuss the 
Square problem, 
cont’d (Nora’s 
solution)

Discuss The Case 
of Randy Harris

Classify ratio 
statements: P:W; 
P:P; 2 different 
things

Compare 
fractions w/o 
doing 
calculations

Examine Orange 
Juice student 
work, cont’d

Read & discuss 
the Mini-case 
‘The Ratio of 
Boys to Girls’

Discuss ratio 
tables

Discuss the Park 
& Zoo problems

Discuss The Case 
of Marcia Green

Discuss 
problems 
identified in 
PSSM

Solving three 
problems 
(rectangle, string, 
butterfat) (from 
The Case of Janice 
Patterson)

Discuss the 
Tower problem, 
cont’d

Examine 
Scout/Tent 
student work, 
cont’d

Discuss Hunks & 
Chunks problem

Find the 
Fraction; Find 
the Part; Find the 
Whole --
Manipulative 
activities

Discuss whether 
all fractions are 
ratios, & whether 
all ratios are 
fractions

Discuss whether 
all fractions are 
ratios 

Graphing Orange 
Juice Mixes 
Problem

Solve the Candy 
Jar problems 
(from The Case 
of Marie Hanson)

Discuss The Case 
of Marie Hanson

Discuss the 
rationale for 
cross 
multiplication

Explore similar 
figures via an 
applet

Solve the 
Building a 
Compost Box 
problem

Discussing the 
Case of Janice 
Patterson

Solve the Snake, 
Scout/Tent, Age 
problems

Discussing 
Assignment 1

Shade grids of 
different sizes 
(from The Case 
of Randy Harris)

Solve the Orange 
Juice problem

Examine Orange 
Juice student 
work 

Discuss whether 
all ratios are 
fractions

Assignment 2: 
Thinking 
Through A 
Lesson (TTAL): 
Solving math 
task with group

Assignment 2:  
TTAL: Solving 
math task and 
anticipating 
student 
responses, cont’d

Enlarge figures 
with rubber band 
stretchers (from 
The Case of 
Marcia Green)

Discuss how the 
Snake, 
Scout/Tent, & 
Age are same 
and different

Discuss video of 
the Orange Juice 
lesson

Examine 
Scout/Tent 
student work 

Solve boom box, 
motorbike & 
square problems

Read Gomez 
(2002). How is 
her classroom 
same/different 
from your 
experiences?

Solve Hunks & 
Chunks and have 
3 people solve it

Assignment 1: 
Interviewing 
Students

Did Randy Harris 
achieve his 
goals?

What issues, 
questions, or 
concerns does 
experiencing OJ 
raise for you? 
What new 
insights do you 
have? 

Select 3 OJ 
responses you 
want to students 
to present in 
Summarize 
phase; what 
questions will 
you ask to make 
connections 
between them?

Solve Park & 
Zoo problems

Pick a student in 
Marie Hanson’s 
class and 
compare their 
strategy to one of 
mine

Assignment 2: 
TTAL

Pick a question 
that Marcia 
Green asks that I 
think is a really 
good question 
and explain why 
it’s a good 
question.

Read PSSM 
(Grade Book 6-8) 
& identify 
problems 
involving propor-
tionality

Assignment 3: 
Analyzing 
Teaching 

What have I 
learned about the 
teaching and 
learning of 
mathematics?

Read Ch.1 Read Ch. 2-3 Read 
Interviewing 
Chapter           & 
Ch. 4

Read Ch. 5 Read 
Investigation 3 in 
Comparing & 
Scaling

Read Ch.10 Read Ch 11 Read Langrall & 
Swafford (2000) 
& Boston, Smith, 
& Hillen (2003)
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Mason City and Cedar Rapids have both been hit by a snowstorm.  Mason City had 6 inches of 
snow on the ground before it started snowing.  This storm brought 0.5 an inch of snow per hour 
to Mason City.  In Cedar Rapids it snowed more heavily, 1.5 inches per hour.  Fortunately, Cedar 
Rapids did not have any snow on the ground when the storm started. 
 

 
Figure C2. The snowfall data for item 2 on the post-interview.  
Taken from Smith, M. S., Silver, E. A., Leinhardt, G., & Hillen, A. F. (2003). Tracing the development of 
teachers’ understanding of proportionality in a practice-based course. Paper presented at the annual meeting of 
the American Educational Research Association, Chicago, IL, p. 55. 

Hours it 
Snowed

Inches of 
Snow on the 

Ground

Hours it 
Snowed

Inches of 
Snow on the 

Ground
1 6.5 1 1.5
3 7.5 3 4.5
5 8.5 5 7.5
7 9.5 7 10.5

Mason City Cedar Rapids

Mason City
Cedar Rapids
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APPENDIX D 
 
 
 
 

SET OF EIGHT STUDENT RESPONSES TO THE TENT/SCOUT PROBLEM THAT 
TEACHERS EXAMINED DURING CLASSES 2 AND 3 

 
A 
Answer: 120 scouts 

Tents Scouts 
4 12 
8 24 
12 36 
16 48 
20 60 
24 72 
28 84 
32 96 
36 108 
40 120 

 
 
B 
Answer: 120 scouts 
 
If 4 tents has 12 scouts, then each tent has 3 scouts.  
So then you multiply 3 by 40 tents. That’s 120 scouts.  
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C 
Answer: 120 scouts 
I knew the answer because I keeped adding 4 to the  
tents and 12 to the scouts til I got 40 tents.  
 

# of tents # of scouts 
4 12 
4 12 
4 12 
4 12 
4 12 
4 12 
4 12 
4 12 
4 12 

                  + 4                    +12 
 
 
 
 
D 
Answer: 48 scouts 
They added 36 tents and so I added 36 scouts.  

40 120
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E 
Answer: 120 scouts 
I drew 4 tents and 12 scouts.  
 
 
 
 
 
 
Then I gave each tent one scout at a time and kept doing  
that til I had no scouts left.  
 
 
 
 
If each of the tents holds 3 scouts, then you just X’s. 3 X’s 40 = 120.  
 
 
F 
Answer: 56 scouts 
 
I added 12 + 4 + 40 to get 56.  
 
 
G 
Answer: 120 scouts 
I kept taking 4 tents and 12 scouts until I got 40 tents.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12

12

12
12
12

12

12

12

12

12

40

24

28

32

36

8
12
16

20

120 scouts 
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H 
Answer: 480 scouts 
 

12 scouts 
         x 40 tents 
          480 scouts for the 40 tents 
 
 
I 
Answer: 48 scouts 
 

Tents Scouts 
4 12 
5 13 
6 14 
7 15 
8 16 
9 17 
10 18 

 
Well there are always 8 more scouts than tents.  
So 40 tents have 48 scouts.  
 
 
J 
Answer: 120 scouts 
 
You have 10 times more tents so you need 10 times more scouts. So you multiply 12 x 10.
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APPENDIX E 
 
 
 
 

SET OF TWELVE STUDENT RESPONSES TO THE ORANGE JUICE PROBLEM 
THAT TEACHERS EXAMINED DURING CLASSES 7 AND 8 
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Adapted from Michigan State University, Connected Mathematics Project web site: 
http://www.math.msu.edu/cmp/RREvaluation/StudentWork.html 
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