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The impact of six fly ash samples on mercury speciation in simulated flue gas was 

evaluated in this study.  A fixed bed reactor system was used to study the catalytic effect 

of fly ash on mercury oxidation at temperature of 140 °C in simulated flue gas consisting 

of N2, CO2, O2, NO, NO2, SO2, HCl, and H2O.  Mercury was introduced to the reactor 

using a temperature controlled permeation tube.  Elemental and total mercury in the 

effluent were measured using a semi-continuous atomic fluorescence mercury monitor.  

Fly ash samples were characterized using SEM-EDAX, XRD, TGA, BET analyzer and 

particle size analyzer.  Mercury uptake tests with different fly ash samples revealed that 

LOI (Loss On Ignition), surface area, and particle size all had positive effects on mercury 

oxidation and adsorption.   

Experiments with pure components showed that alumina (Al2O3), silica (SiO2), 

calcium oxide (CaO), magnesium oxide (MgO), and titania (TiO2) did not promote 

mercury oxidation or capture. Ferric oxide (Fe2O3), and unburned carbon were found to 

have profound effects on mercury oxidation and capture.  Unburned carbon is considered 

the most important fly ash component for mercury oxidation due to much larger presence 

in fly ash than Fe2O3. 
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Experiments with carbon black and different flue gas composition revealed the 

importance of the interaction between flue gas and surface on mercury uptake.  Oxygen 

containing surface functionalities did not enhance adsorption or oxidation of mercury by 

themselves.  NO2 and HCl promoted mercury oxidation and adsorption on carbon black.  

Addition of O2 to HCl containing gas stream significantly improved mercury adsorption 

and oxidation.  SO2 seems to inhibit both mercury oxidation and adsorption.  NO and 

H2O had little impact on mercury oxidation or adsorption in inert gas flow.  H2O may 

inhibit mercury adsorption in early stages of the experiment, but the inhibitory effect 

diminished over time. 
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1.0  INTRODUCTION 

Mercury (Hg) is a heavy metal existing naturally in the air, water and soil.  Mercury in 

the air will eventually deposit into the water, or onto the land where it can be washed into 

water too.1  Certain anaerobic microorganisms can convert elemental mercury to a highly 

toxic form, methylmercury.  Besides methylmercury, elemental mercury and its other 

compounds also present great health concerns.  Therefore, uses and releases of mercury 

are regulated in many countries.  Coal fired utility boilers are the largest anthropogenic 

mercury emission source and account for about one-third of mercury emission (50 

tons/yr) form combustion point sources in the U.S.2  On March 15, 2005, EPA issued the 

Clean Air Mercury Rule (CAMR) to permanently cap and reduce mercury emissions 

from coal-fired power plants.  CAMR makes development of mercury control technology 

more urgent and also stimulates the research activities in this field.  Advances in mercury 

control technology will highly depend on understanding chemical mechanisms of 

mercury oxidation and capture. 

During coal combustion, mercury is released entirely in the elemental form (Hg0).  

Under post-combustion conditions, transform occurs to mercury.3  A portion of mercury 

is converted to oxidized mercury (Hg2+) and particle-bound mercury (Hgp) due to 

temperature changes, interaction with flue gas components and other combustion 

products, such as fly ash.  Hg0 is difficult to remove because of its high volatility and low 
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solubility.  On the other hand, Hg2+ and Hgp can be easily removed by current existing air 

pollution control devices (APCDs), such as wet scrubbing systems, electrostatics 

precipitators, baghouses, etc.  So oxidizing mercury and removing it by current APCDs 

could be a promising mercury approach.  There are three potential mechanisms of 

mercury oxidation: gas phase oxidation, fly ash mediated oxidation and oxidation on 

catalysts used for selective catalytic reduction (SCR).  Homogeneous oxidation is well 

understood.  However, mercury oxidation based on gas phase reaction cannot entirely 

account for mercury transformations in coal combustion systems.  Heterogeneous 

oxidation is commonly believed to be more important.  Post combustion NOx control 

with SCR may oxidize some mercury.  The presence of fly ash has been shown to 

promote mercury oxidation and adsorption.  However, the effects of fly ash on mercury 

oxidation and adsorption are not well understood yet. 

The scope of this study is to understand the impact of fly ash on mercury 

oxidation and adsorption. The specific objectives are to: 

1. Study the physical and chemical properties of different fly ash samples; 

2. Investigate the effects of fly ash characteristics on mercury adsorption and oxidation in 

simulated flue gas and identify the key characteristics and components of fly ash which 

are responsible for catalyzing mercury transformation; 

3. Exam the interaction between flue gas constituents and key fly ash components and 

their effects on mercury adsorption and oxidation. 
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2.0  LITERATURE REVIEW 

2.1 MERCURY TRANSFORMATION IN GAS PHASE 

Mercury transformation under homogeneous conditions was studied by several 

researchers using both theoretical and experimental studies.  It was concluded that both 

temperature and gas composition are important parameters for mercury speciation.  

EPA’s Information Collection Request (ICR) data showed that mercury speciation 

leaving the furnace was principally influenced by coal chlorine content and temperature.  

The percentage of mercury leaving the furnace in elemental form on average dropped 

sharply from over 85% to about 10% for coal chlorine content greater than 150-200 ppm 

(dry basis).  NOx control had no evident effect on this transformation.  The level of 

mercury oxidation at the exit of the boiler was increased at higher coal chlorine content 

and lower exit temperature.4  

Thermodynamic calculations also predicted that mercury oxidation is more 

favorable at lower temperature.  As mercury leaves the combustion zone, the temperature 

of flue gas cools and equilibrium product shifts from Hg0 to Hg2+.  The equilibrium 

speciation of mercury is influenced by HCl concentration as shown in Figure 1. 
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Figure 1. Equilibrium distribution of elemental and oxidized mercury from various 

HCl concentrations5 

 

As indicated in Figure 1, Hg0 should be almost completely converted to Hg2+ as 

flue gas with 50ppm HCl is cooled below 400 °C. However, boilers burning different 

coals typically show only 35 - 95% oxidation suggesting the conversion process is 

kinetically controlled.4 

Many laboratory and theoretical studies have focused on homogeneous 

transformation of mercury5-14, and the results indicate that mercury chlorination is the 

most important mechanism for mercury transformation in homogeneous systems.  Both 

Cl2 and HCl are consistently shown to promote mercury oxidation5-9, 15, with Cl2 being 

more effective than HCl.  Oxidation of Hg was essentially complete when Cl2 

concentration reached 10ppm between 20 and 700 oC.5 
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Different reaction pathways were studied in the past.  The elemental reaction of 

Hg + HCl is hindered by a very high energy barrier and can not be considered as an 

important path under practical conditions.7 Analysis of 102 elementary reactions 

identified the predominant reactions to be the oxidation of Hg0 by atomic Cl to yield 

labile HgCl, followed by the oxidation of HgCl by Cl2 to produce HgCl2 with associated 

regeneration of atomic Cl, as indicated in Reactions 1 and 2.9  Theoretical analyses 

indicated that oxidation is due to Reactions 1 and 4.5  Cl atom is believed to the most 

dominant oxidizing species.   

Hg + Cl --> HgCl (1)

HgCl + Cl2 HgCl2 + Cl (2)

HgCl + HCl HgCl + H (3)

HgCl + Cl HgCl2 (4)

The low energy barrier reaction involving Cl atom, Reaction 1, proceeds at room 

temperature.  The reaction rate was predicted to be related to Cl, Cl2 and HCl 

concentration.  Modeling results from Sliger et al. indicated that the oxidation is limited 

to temperatures between 700 to 400 oC, which is defined by the overlap of (1) a region of 

significant superequilibrium Cl concentration, and (2) a region where oxidized mercury is 

favored by equilibrium.  Models developed by Edwards et al.8 and Xu et al.10 are also 

sensitive to temperature change. 

Chlorine in coal is released primarily as HCl in the high-temperature zone of a 

boiler.  As the combustion gases cool, HCl is partially oxidized to Cl2 by the Deacon 

process (Reaction 5), which is used industrially to convert HCl to Cl2 at temperature 

between 430 and 475 °C and proceeds only in the presence of a metal catalyst.16   
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4HCl + O2  2Cl2 + 2H2O (5)

 

As coal chlorine content increases, more of Cl is transformed into Cl2.  Increases in 

excess air also increase the Cl2 transformation.  Thermodynamic equilibrium predicts 30 - 

60% conversion to Cl2 for different coals at 150 °C.  However, the conversion of HCl to 

Cl2 is kinetically limited, as kinetic calculations show that less than 1% of the chlorine is 

converted to Cl2.7  

Xu et al.10 developed a kinetic model consisting of 107 reactions and 30 species.  

Mercury oxidation, as well as chlorination, was included in this model.  Reaction 6 was 

proposed as a significant pathway.  1.5 - 6.0% of the mercury is predicted to be present as 

HgO.  Approximately 10% of the mercury is predicted to be present as HgO by other 

studies.5  

Hg+ClO  HgO+Cl (6)

Other flue gas constituents (e.g., H2O, SO2, NO2, NO) than may have secondary 

effects on the rate of homogeneous oxidation of mercury.7  The interference between 

these gases and chlorine species may be significant.  The extent of mercury oxidation 

substantially reduced to 25% in flue gas with 10ppm of Cl2 at 500 0C.5  Generally, it is 

believed that SO2, H2O, and NO inhibit mercury oxidation, and that O2 is a weak 

oxidation promoter.  

No homogeneous gas phase reaction of elemental mercury with oxygen occurred 

during a reaction time of 1 hour in the temperature range 20 - 700 oC.17  However, Hg 

reacts with O2, if a catalyst, such as activated carbon, is present.6  Niksa et al.9 also 

predicted oxygen as a weak promoter.  
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As regards NOx, a slow reaction between Hg and NO2 has been noted by Hall et 

al.,6  and NO is predicted to either promote or inhibit mercury oxidation, depending on its 

concentration.9  Higher quench rates increased mercury oxidation in the presence of NO, 

whereas without NO, faster quenching rates decreased mercury oxidation.  Results from 

Agarwal et al.11 indicated that NO inhibits mercury chlorination.  

SO2 has been found to inhibit mercury oxidation.11  The addition of SO2 

completely eliminates the effect of the Cl2 (84.8% oxidized Hg) in the absence of fly 

ash.15  Two reactions (Reactions 7 and 8) are proposed to explain the inhibitory effects of 

SO2 and NO, in which SO2 and NO react with Cl2.11  The consequences of these reactions 

are a reduction in the oxidative interactions that take place between Hg and Cl2, thus 

decreasing the amount of Hg oxidation that occurs. 

SO2 + Cl2  SO2Cl2 (7)

NO + Cl2  2NOCl (8)

However, results from Zhao et al. indicate that SO2 and NO only inhibit mercury 

oxidation in the presence of water vapor.12  The inhibitory effects on Hg oxidation were 

further confirmed by the reduction of Hg2+ back into its elemental form.  Reaction 

mechanisms were proposed as in Reactions 9-12. 

SO2 + Cl2 + H2O  2HCl + SO3 (9) 

SO2 + Cl + H2O  HCl + HOSO2 (10)

NO + Cl2 + H2O  NO2 + 2HCl (11)

NO + Cl + H2O  HONO + HCl (12)
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Moisture can also be a strong inhibitor of Hg oxidation reactions.9, 11, 12  It even 

enhanced the inhibitory effects of SO2 and NO.12  Other than Reactions 9-12, the effects 

of moisture could be explained by the reverse reaction of the Deacon Process (Reaction 

5).13  

Mamani-Paco et al.18 suggested that literature reports of homogeneous mercury 

oxidation at near ambient temperature likely resulted from catalytic surface effects.  Their 

results suggested that higher concentrations of gaseous HCl or Cl2 than those found in 

coal combustion gases are likely required for significant oxidation of mercury to occur by 

homogeneous reactions alone and that more emphasis should be placed on heterogeneous 

reaction mechanisms in future studies.  Senior et al. noticed that the levels of mercury 

oxidation predicted by their homogeneous model, while of comparable magnitude to field 

observations, are still 40 - 80% below oxidation typically observed in field 

measurements.7  Therefore, it is very likely that heterogeneous reactions also contribute 

to mercury oxidation in coal combustion systems.  

2.2 MERCURY TRANSFORMATION IN HETEROGENEOUS SYSTEMS 

Several reviews3, 4, 19 20, 21 focusing on mercury transformation in coal-fired power plants 

indicated that homogeneous reactions could not account for all the mercury 

transformation in coal combustion systems.  Heterogeneous reactions play a very 

important role in mercury speciation, especially the catalytic oxidation of mercury on fly 

ash surfaces.  In heterogeneous systems, mercury speciation has shown to be influenced 

by coal constituents such as Cl, S, Se, etc., presence of fly ash and its physical and 
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chemical characteristics, flue gas components, and operating conditions, including 

combustion regime, temperature profiles, existence of different APCDs, etc.   

2.2.1 Coal Composition 

Western subbituminous coals on average contain only about half the amount of mercury 

and less chlorine and sulfur as compared to Appalchian bituminous coals.4  The higher 

chlorine content in Appalchian bituminous coals promotes Hg oxidation and results in a 

higher percentage of mercury capture by APCDs in coal-fired power plants,4, 20, 22 as 

indicated in Figure 2.  However, extents of oxidation were not proportional to coal-Cl 

levels,23 and the abundance of Hg2+ and Hg(p) was generated by coal with Cl content 

higher than 200ppm. 
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Figure 2. Percentage of mercury as (A) gas-phase elemental and (B) particulate 

bound at the inlet of particulate control devices based on ICR data. ESP= 

Electrostatic Precipitator, FF= Fabric Filter, and HESP=hot-side ESP. Trend lines 

taken from the ICR data were not statistically determined.4 

 

High sulfur content in coal tends to hinder HgCl2 adsorption onto fly ash and 

results in a high percentage of Hg2+ in the gas phase.20  Data from Kellie et al.22 also 

 10



showed a strong relationship between Hg2+ and coal sulfur concentration. They 

concluded that sulfur in coal promoted oxidation. However, the high Hg2+ concentration 

could be explained by that SO2 inhibited adsorption of oxidized mercury onto fly ash.  

Hg-Se bonding was found by XAFS and XANES analyses.24  However, Lopez-

Anton et al. found that the presence of selenium in fly ash samples did not have any 

significant effect on mercury capture.25 

2.2.2 Impact of Fly Ash 

Fly ash not only removes mercury by adsorption, but also promotes mercury oxidation.  It 

catalyzes the reactions between mercury and other flue gas components.  Several studies 

were conducted to investigate the effects of fly ash characteristics on adsorption and 

oxidation of mercury.  The chemical composition of fly ash samples is suggested to be 

important in catalyzing mercury oxidation as well as adsorbing mercury.  Fly ashes from 

bituminous coal tend to oxidize mercury at a higher degree than fly ashes from 

subbituminous coals and lignite.21  No capture of Hg0 was observed without 

accompanying oxidation.  Higher mercury oxidation were associated with higher levels 

of mercury capture.26  Less mercury oxidation may lead to less mercury uptake.27  The 

physical properties, such as surface area, are indicated as a very important factor with 

respect to mercury oxidation.28   The interaction between different flue gases and surfaces 

of fly ash or activated carbon is also important.28, 29 

It is commonly believed that the oxidation sites are different from adsorption 

sites, since oxidation continues after 100% breakthrough.  Some research suggested that 

elemental mercury is bound on the carbon in the oxidized form.24, 29, 30  It is still unknown 
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what the exact forms of adsorption and oxidation sites are.  Heteroatoms, such as Cl, O, 

N, S, etc. on the edges and corners of the carbon aromatic sheets modify the surface 

characteristics.  Cl sites in particular play an important role in mercury oxidation and 

adsorption.4, 30, 31  The addition of halogen atoms to modeled carbon surface has been 

found to increase activated carbon’s capacity for elemental mercury.32  Increased chloride 

contents of activated carbon resulted in higher mercury capacity and oxidized mercury in 

the gas phase.33  SEM-EDS analysis and XPS results suggested formation of HgCl2 on 

chlorine-impregnated carbon surface.34  XAFS analysis suggested that captured mercury 

may be associated with either Cl or S, but that it is likely not associated with oxygen.24, 29  

Oxygen containing surface functional groups reduce mercury uptake by blocking its 

access to micropores through physisorption; no significant impact of oxygen containing 

surface functional groups was observed in the chemisorption regime.31, 35  On the 

contrary, Li et al. found that both lactone and carbonyl groups appear to be possible 

active sites for Hg0 adsorption, and a higher Hg0 capacity is associated with a lower  ratio 

of the phenol/carbonyl groups.36  Theoretical calculation under simplified conditions 

indicated that lactone and carbonyl surface functional groups yield the highest binding 

energies for mercury.32  It can probably be explained by that mercury is not directly 

bonded to O atoms; but the resonance effect of the electrons between oxygen surface 

functional groups and the aromatic rings may stabilize the bindings between other groups 

and the carbon rings and result in an increase in mercury capture.37 

Inorganic fractions of fly ash are believed to have little elemental mercury 

adsorption capacity,4, 38 although HgCl2 has been shown to be captured by Ca(OH)2,39 

CaO, MgO and TiO2.40  On the other hand, mercury retained in unburned carbon (UBC) 
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was much higher than in other products separated from fly ash.41  A positive correlation 

between UBC content of fly ash, sometimes noted as loss on ignition (LOI), and mercury 

retention has been demonstrated by different researchers.4, 38, 42-45  The capacity of fly ash 

for HgCl2 and Hg0 are similar26, but the adsorption rate is higher for HgCl2.46  Results 

from Baltrus et al. showed that unburned carbon concentrates from fly ash have 

properties similar to most carbon blacks.47  Hg0 retention generally increases with the 

surface area of the carbon in the ash in a linear relation.26, 38, 45  There is also a positive 

correlation between surface area and carbon content in fly ash.48  However, activated 

samples have lower capacity than their precursor fly ash or char, although the surface 

areas are larger. Such behavior suggests that surface area itself is not as critical to 

mercury capture as the surface functional groups decomposed during the activation 

processes such as oxygen containing functionalities, F species, Cl − and SO  salts.4
2− 43, 49  

Fly ash mediated oxidation is an important mechanism for mercury oxidation.  

Some of the fly ash components promote oxidation of elemental mercury, while some 

others do not.  Ghorishi et al.50 studied the effects of synthetic model fly ash components 

on mercury speciation.  The results showed that transition metal oxides, Fe2O3 and CuO, 

exhibited significant catalytic activity in oxidation of Hg0 in the presence of HCl in 

simulated flue gas.  CuCl can promote mercury oxidation even without the presence of 

HCl in the gas phase.  The Deacon process catalyzed by these metal compounds was 

proposed to explain the results.  Al2O3, SiO2, and CaO did not promote mercury 

oxidation.  Furthermore, CaO inhibited Hg oxidation probably by removing HCl.  In 

addition, CaO, MgO and TiO2 can promote the conversion of HgCl2 to Hg0 in flue gas, 

with CaO having the highest conversion rate, while Al2O3, SiO2, and Fe2O3 do not 
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promote the conversion.40  It can be concluded from these two studies that Al2O3 and 

SiO2 are inert.  Iron oxide was suggested to be active in mercury oxidation by Dunham et 

al.26 in a study on sixteen different fly ash samples and their interactions with mercury.  

However, Norton et al. suggested that iron-rich fly ash phases are not necessarily highly 

catalytic.28  Two kinds of Fe2O3 were studied by Galbreath et al.51  Injection of α-Fe2O3 

did not significantly change Hg speciation; whereas the addition of  γ-Fe2O3 improved 

mercury adsorption as well as oxidation.  This suggests that the catalytic effects of Fe2O3 

may be limited to γ-Fe2O3.  Iron catalysts have been tested at both the laboratory and pilot 

scales for mercury oxidation and shown 10 - 90% oxidation under different conditions.27  

TiO2 itself does not exhibit catalytic activity by itself except under ultraviolet radiation.4  

Other than oxides, carbon sites in fly ash are also believed to be responsible for Hg 

oxidation.27  Extent of mercury oxidation was found to be correlated with the level of 

UBC.23  Considerable oxidation occurred with a high-carbon subbituminous fly ash 

without magnetite, which also may be caused by UBC in the ash.26 

2.2.3 Impact of Flue Gas Components 

Mercury speciation not only depends on coal type and its composition, but also depends 

on flue gas composition.  There appear to be interactions between flue gas components 

and fly ash, and interactions between different gas components as well.  The effects of 

different gases are similar to those observed in gas-phase homogeneous studies.  Chlorine 

species (Cl, Cl2, and HCl) have the most dominant effects on Hg oxidation and 

adsorption.  Gases like SO2, H2O, and NO are believed to inhibit the oxidation and 

adsorption of Hg.  NO2 promotes oxidation; but its effect on adsorption is not consistent 
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among different studies.  The effects of flue gas components on mercury oxidation are 

much more complicated in heterogeneous system than in homogeneous system. 

2.2.3.1 Hydrogen Chloride (HCl) 

HCl was found to enhance mercury adsorption onto carbon surface and promote 

oxidation of elemental mercury.  At low concentration of HCl, essentially Hg0 capture 

onto carbon is little and less than HgCl2.  As the HCl concentration increases from 0 to 

100 ppm, carbon capacity for both Hg0 and HgCl2 increases.  However, the capacity for 

HgCl2 (500 – 1500 μg Hg/g C) does not increase as dramatically as the capacity for 

elemental mercury (0 – 3000 μg Hg/g C).46  Galbreath et al. found that injection of HCl 

into flue gas can convert Hg0 to Hg2+ and / or Hg(p).51  Kellie et al. also found that 

increase in HCl concentration can reduce gas phase mercury concentration.22  A 

mechanism was proposed to explain adsorption of oxidized mercury species in an excess 

of chlorine as shown in Reaction 13.52 

HgCl2 + 2Cl-  HgCl4
2- (13)

 

An enhancement in mercury capture by carbonaceous surface could be associated 

with the formation of carbon-chlorine sites, as the surface chlorine concentration was 

observed to rise upon exposure of carbon to HCl evidenced by X-ray fluorescence (XRF) 

analyses.39  An alternative oxidation mechanism has been proposed for much lower 

temperatures by Sliger et al.5 that Cl is catalytically generated by the interaction of HCl 

with fly ash and char.  Once formed, the Cl rapidly reacts with the Hg by Reaction 1, and 
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the oxidized mercury is partially captured.  A similar but more detailed mechanism was 

proposed by Fujiwara et al. as follows,23 

StSA(s) + HCl  StCl(s) + H (14)

StCl(s) + Cl  Cl2 + StSA(s) (15)

StCl(s) + Hg  StSA(s) + HgCl (16)

 

where StSA(s) denotes an unoccupied site and StCl(s) denotes a chlorinated site. 

2.2.3.2 Sulfur Dioxide (SO2) 

SO2 has little effects on mercury capture and oxidation by itself.15, 28, 53  However, its 

interaction with other gases are important.28, 53  SO2 decreases adsorption capacity for 

both elemental and oxidized mercury in the presence of HCl,46 and the inhibitory effect is 

even more severe in the presence of NO2.53  Introduction of SO2 to an activated carbon 

previously exposed to NO2 + Hg caused an immediate Hg breakthrough; the level of 

mercury concentration in the effluent reached as twice as the inlet, and the desorbed 

mercury was primarily in the oxidized form.53  The results suggested that SO2 not only 

decreases the capacity of the sorbent, but also causes the release of initially adsorbed 

elemental mercury, which adsorbed onto the surface as in the oxidized form.  An increase 

in Hg2+ concentration was observed with an increase in SO2 concentration in the flue gas 

by Kellie et al.22  A mechanism (Reaction 17) involving an increase in Cl2 concentration 

was proposed to explain this phenomenon.22  Cl2 is continuously regenerated by Reaction 

17, and it keeps oxidizing mercury, though part of the gas phase Hg2+ (HgCl2)  is 

converted to particle bound Hg (HgSO4(s)) by this reaction.  However, the replacement 
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of Hg2+ by SO2 from the surface can explain the increase in Hg2+ too,53 as discussed 

above. 

HgCl2(g) + SO2(g) + O2(g)  HgSO4(s) + Cl2(g) (17)

 

X-ray photoelectron spectroscopy (XPS) analyses indicated that existence of SO2 

inhibited Cl adsorption onto carbon surfaces probably by competing for the adsorption 

sites, and the presence of H2O and NO2 increased the amount of S on the surface.  XPS 

analyses also indicated that sulfur is converted to S(VI) forms on the surface.54  Basic 

surface functional groups on carbonaceous surface are responsible for SO2 adsorption.  

Part of the adsorbed SO2 stays as SO2; part of it is converted to S(VI).  In the presence of 

O2 and H2O, formation of SO3 can be followed by its transformation into H2SO4, which 

results in an increase in SO2 adsorption rate.29, 55, 56   

As oxidized Hg could be bound to basic surface functional groups,4 SO2 would 

compete for the same basic sites with oxidized Hg, which would cause a decrease in 

mercury adsorption and an increase in oxidized Hg in the gas phase.  The presence of 

H2O probably inhibits Hg adsorption by accelerating the adsorption of SO2.  Effects of 

H2O will be discussed later in the water vapor section.  

2.2.3.3 Nitrogen Oxides (NOx) 

The effects of NO and NO2 have often been studied together as NOx.  The effects of NOx 

may be related to the ratio of NO:NO2.15  Adding NO/NO2 (600/30ppm) can result in 

more than 25% mercury oxidation with the presence of fly ash.  However, the effects 

disappeared without the presence of fly ash, indicating an interaction between fly ash 

surface and NOx.15  The capacity of activated carbon for Hg0 decreased as NOx (10% NO 

 17



and 90% NO2) concentration increased from 0 to 400 ppm in the presence of 50ppm HCl 

and 1600 ppm SO2.  Without HCl, the capacity for Hg0 first increased and then 

decreased.  The capacity for HgCl2 was not significantly influenced by NOx 

concentration.46  

Among different flue gases, statistical analyses on full factorial design tests 

indicated that NO2 was the most important factor in mercury oxidation in the presence of 

fly ash.28  With NO2 present, oxidation and capture of Hg0 can occur in the absence of O2 

and HCl.  However, no oxidation happens in the absence of HCl and NOx.4  NO2 

probably oxidizes Hg with itself being reduced to NO, as indicated in Reaction 18 

proposed by Galbreath and Zygarlicke57 and Reaction 19 summarized from work by 

Olson et al.58 

Hg(g) + NO2(g)  HgO(s,g) + NO(g) (18)

2Hg(g) + 5NO2(g)  Hg2O(NO3)2(s) + NO(g) (19)

 

A synergistic effect between NO2 and SO2 was noticed in different studies on 

mercury oxidation and adsorption.28, 53  A detailed mechanism was proposed to explain 

the effects of SO2 and NO2 (Figure 3).4  As shown in Figure 3, HCl, SO2 and HSO4
- 

could be bound to the basic sites on the surface.  NO2 can act as an electron sink and 

accept electrons transferred from Hg0 on the surface, which resulted in oxidation of Hg.  

Oxidized mercury, such as Hg2+, HgCl2, Hg(NO3)2 can be bound to basic sites as well.  

Capture of Hg continues until the binding sites are used up and then breakthrough occurs.  

In the presence of SO2, those sites could be occupied by sulfate where oxidized mercury 

can no longer be bound.  
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Figure 3. Suggested heterogeneous model for mercury capture showing potential 

impact of acid gases4 

 

However, injections of NO2 (80-190 ppmv) at 440-880 oC into coal combustion 

flue gases did not significantly affect Hg speciation.51  This may be due to the difference 

in residence time and temperature conditions between this combustion system and bench-

scale flue gas simulations. 

NO tended to suppress mercury oxidation especially when NO2 was present.28  

The inhibition may be because NO could drive Reactions 18 and 19 to the left.28  NO has 

been reported to be adsorbed as NO2 in the presence of O2 onto carbon surfaces.49  No Hg 

desorption happened while NOx was being desorbed from the surface of a NOx and Hg 

loaded activated carbon sample.  Besides, no NO 3
−  was detected on the surface.  

Therefore, it was concluded that Hg and NOx were adsorbed to different sites, which 

conflicts with the model developed by Olson et al.58   
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2.2.3.4 Water Vapor (H2O) 

The complete removal of water vapor from flue gas greatly increased the capture of 

mercuric chloride and produced a smaller increase for Hg; but neither capture was 

significantly changed by water vapor concentration in the range of 1 – 10%.46  

Reintroducing water into flue gas after a period of sorption testing with dry flue gas 

results in an immediate release of oxidized mercury from the activated carbon,4 which 

indicated that mercury that had been captured in a nonvolatile anhydrous form was 

subsequently released as volatile hydrate, or oxidized mercury adsorbed on the surface 

was replaced by the water vapor molecular.  On the contrary, carbon surface moisture 

was found to enhance mercury capature.35, 59  

2.3 SUMMARY AND RESEARCH NEEDS 

Literature review suggests that the heterogeneous reactions are more important 

than homogeneous reactions for mercury oxidation under post-combustion conditions.  

The physical and chemical properties of fly ash, flue gas composition, the interactions 

between them, and operation conditions could all affect mercury oxidation.  However, 

due to the complexity of post-combustion conditions, the mechanisms of mercury 

oxidation is still not well understood.  No specific work has reported an overall 

evaluation on the effects of these parameters on mercury oxidation and adsorption under 

post-combustions conditions. 
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3.0  MATERIALS AND METHODS 

3.1 SAMPLES 

Six ESP hopper fly ash samples were selected for this study.  Four of them were collected 

at four different coal-fired electric utility boilers involved in Department of Energy’s 

field testing programs.  They are Southern Company’s Gaston Plant, Wisconsin Electric 

Power Company’s Pleasant Prairie Power Plant (PP), and PG&E Corp. National 

Generating Group’s Brayton Point and Salem Harbor (SH) Plant.  The coal types and 

particulate control devices at these power plants are summarized in Table 1.60, 61  The 

other two ESP samples were from Consol Energy’s field tests with a power plant, whose 

characteristics are not known. They were named as CE1 and CE2 in this study.  

Table 1 General Characteristics of Power Plants 

Site Coal Particulate Control Device 

Salem Harbor Low sulfur bituminous Cold-side ESP 

Brayton Point Low sulfur bituminous Cold-side ESP 

Pleasant Prairie PRB sub-bituminous Cold-side ESP 

Gaston Low sulfur bituminous Hot-side ESP, COHPAC FF 

A carbon black sample, Black Pearls 460 (Cabot Carbon Co., Boston, MA) was 

used to represent the unburnt carbon in the fly ash samples. 
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Reagent grade Al2O3, CaO, MgO, Fe2O3, and TiO2 were used to represent 

different inorganic compounds in fly ash. Sand (50-70mesh) was used as SiO2. 

Unwashed glass beads of 150-212 μm from Sigma – Aldrich were used as a bed 

support after a pretreatment with aqua regia and half an hour of heat at 500 oC. 

3.2 EXPERIMENT SETUP AND PROCEDURE 

The impact of fly ash or single synthetic fly ash component was studied in an experiment 

setup consisting of the following parts: 1) flue gas simulation, 2) mercury generator, 3) 

reactor and 4) mercury analyzer.  A schematic of the setup is shown in Figure 4. 

 

Figure 4. Schematic of the Hg uptake test setup 

A simulated flue gas consisting of N2, CO2, O2, NO, NO2, SO2, HCl, and H2O was 

generated.  A typical bituminous flue gas composition,15, 26, 28 as listed in Table 2, was 
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chosen for this study.  The total flow rate is 1L/min.  Flow rates of different gases were 

controlled by digital mass flow controllers. 

Table 2 Composition of Simulated Flue Gas 

Gases CO2 O2 NO NO2 HCl SO2 H2O N2

[Feed 
Tanks] 99.99% 99.99% 3027ppm 488ppm 1022.2ppm 1.01% / 99.99% 

[Desired] 13.5% 6% 300ppm 20ppm 50ppm 0.15% 5% Balance

Flow rate 
(ml/min) 135 60 99.1 41.0 48.9 148.5 50 417.5 

  

Water vapor was introduced to the system by sending N2 to a gas washing bottle, 

and an empty flask was placed before the water bath in order to prevent backflow of 

water from entering the setup.  Water vapor content was adjusted by adjusting the 

temperature of water bath.  

A mercury permeation tube (VICI Metronics, Santa Clara, CA) was used as the 

source of elemental mercury.  The permeation rate of mercury was designed as a function 

of temperature only.  The tube was seated in a glass U-tube, which was placed in a 

temperature controlled water bath.  Glass beads were placed upstream to facilitate heat 

exchange.  

The 1 L/min simulated flue gas was then fed into a fixed bed quartz reactor (25cm 

long with 20mm ID), which was placed vertically in a tubular furnace (Lindberg Heavi-

Duty, Watertown, WI) with a temperature controller.  The effluent stream was then sent 

to an atomic fluorescence mercury detector to analyze total and elemental mercury 

concentration. 
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Mercury analysis system includes a wet conditioning system.  Gas first passes 

through a heating box, which prevents the accumulation of oxidized mercury onto the 

tubing.  The gas is spilt to two streams; one is directed to the elemental mercury side, and 

the other is directed to the total mercury side.  On the elemental side, 10%KCl + 

20%NaOH solution was being pumped to the impinger in order to remove acidic gases 

and oxidized mercury.  On the total side, 2%SnCl2+20%NaOH solution was used to 

reduce oxidized mercury to metallic form and remove acidic gases.  After reacting with 

chemical reagent, the gas carrying spent chemical solution will pass through a chiller, 

where water vapor is removed from the gas phase. 

After the wet conditioning system, mercury in the gas phase is analyzed by PSA 

10.525 Sir Galahad II (P S Analytical Ltd, Orpington, Kent, England), a mercury semi 

continuous emission monitoring (SCEM) system.  The instrument is based on atomic 

fluorescence absorption.  During a sampling cycle, gas sample is directed over the gold 

sand trap, and any mercury will adsorb onto the trap.  After that, argon is sent through the 

trap to flush out any other residual gases, and eliminate their influence on mercury 

analysis by atomic fluorescence.  Mercury is then desorbed from the gold coated sand by 

heating and carried into the fluorescence detector by argon gas. Lastly, air is supplied to 

the system to cool it rapidly in preparation for the next analysis cycle.  

A timer controlled solenoid valve was used to alternate gas flows to Sir Galahad 

from elemental and total side.  For all the tests in this study, a 200 ml/min flow rate of 

gas sample was sent to Sir Galahad II during a one-minute sample period.  The rest of gas 

sample was sent to vent after going through an activated carbon trap to remove the toxic 

gases and Hg. 
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During a single speciation test, 50mg sample (fly ash, oxides or carbon black) is 

mixed with 4 g of prepared glass beads and placed on the glass frit in the quartz reactor at 

a certain temperature. 

3.3 FLY ASH CHARACTERIZATION 

3.3.1 Surface Area Analysis 

The surface area was measured at 77K using N2 as adsorbate in the Micromeritics ASAP 

2000 apparatus (Micromeritics Instrument Corporation, Norcross, GA). Brunauer-

Emmett-Teller (BET) calculation was used to analyze adsorption results and calculate 

surface area. 

3.3.2 Particle Size Distribution Analysis 

The particle size distribution of samples was analyzed with a Microtrac S3500 Tri-Laser 

particle analyzer (Microtrac Inc., Montgomeryville, PA) using a method built in the 

software for fly ash sample analysis. 

3.3.3 SEM-EDAX Analysis 

SEM (Scanning Electron Microscope) – EDAX (Energy Dispersive Analysis, X-ray) 

analysis was conducted using a Philips XL30 SEM equipped with an EDAX detector. 

The SEM analysis yielded information on surface morphology of the fly ash samples, 
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while the EDAX analysis provided information about surface elemental composition of 

the fly ash samples. 

3.3.4 X-ray Diffraction Analysis 

The powder X-ray diffraction was performed with a Philips X’pert diffractometer to 

identify crystalline mineral components in fly ash samples. Scans were conducted from 

10 to 80° 2θ with 0.04° per step each 0.5s. 

3.3.5 X-ray Photoelectron Spectroscopy (XPS) Analysis 

Due to the inaccuracy of EDAX results caused by the lack of proper standards, XPS 

analyses were used to characterize surface chemical properties of fly ash samples.  The 

XPS analyses were carried out using a PHI 5600ci instrument.  Monochromatic Al 

K(alpha) (1486.6 eV) X-rays were used at a power of 400 W, and the analysis chamber 

was typically maintained at about 10-8 Torr.  The pass energy of the analyzer was 58.7 

eV.  Samples were analyzed after smearing them on a stainless steel sample holder at a 

sufficient thickness so that the sample holder could not be detected.  Atomic 

concentrations were calculated using PHI sensitivity factors. 

3.3.6 Loss On Ignition (LOI) and Moisture Analysis 

Loss on ignition (LOI) is a standard method to measure unburned carbon in fly ash. The 

analysis was carried out according to ASTM D3174-82 standard method.  First, 2.0 ± 
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0.5g fly ash sample was weighed and dried at 110 °C for 2 hours, and then cooled in a 

desiccator for 1 hour.  The residual was weighed to calculate the moisture content. Then 

the sample was heated at 750 °C for 2 hours in a Type F62730 muffle furnace 

(Barnstead/Thermolyne, Dubuque, IA) and cooled in a desiccator for another hour before 

being weighed. LOI was calculated as difference in weight and is based the dry basis. 

3.3.7 TPD Analysis  

Temperature programmed desorption (TPD) of the Carbon black samples tested for 

mercury uptake under atmospheric pressures was performed under high vacuum.  

Samples were supported on a Tungsten-grid (W-grid) by pressing them into the W-grid 

with a hydraulic press.  The sample loaded W-grid was mounted with copper clamps on a 

TPD sample holder connected to a dewar and placed into high vacuum chamber.  After 

evacuation for at least 12 h, the chamber pressure decreased to <10-8 Torr.  Then the 

sample was cooled to cryogenic temperatures (~110 K) and TPD of water dosed from 

background was performed in the range of temperatures 110-373 K (2 K sec-1).  The 

water desorption experiment serves as a criterion that the sample and thermocouple are in 

proper thermal and electrical contact with the W-grid.  When the temperature reached 

373 K the sample was kept at that temperature for 10 mins to degas physisorbed species.  

The sample was then allowed to cool down to cryogenic temperature.  Liquid nitrogen 

was removed from the dewar and sample was allowed to heat up spontaneously (to allow 

condensed gases to evaporate from dewar walls).  When the sample reached about 220 to 

230 K, the sample was heated (2 K sec-1) to 1400 K while monitoring desorbing species 
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in the 1-100 a.m.u. range with a mass spectrometer (RGA 300, Kurt Lesker). For some 

samples masses were recorded in 1-300 a.m.u. range. 
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4.0  RESULTS AND DISCUSSION 

4.1 FLY ASH CHARACTERIZATION 

4.1.1 Surface Area Analysis 

Six fly ashes samples and one carbon black sample (Cabot, Black Pearl 460) were 

analyzed for surface area, and the results are shown as in Table 3.  Salem Harbor fly ash 

has the highest surface area among the fly ash samples, which makes it of great interest 

for this study. 

Table 3 Surface Area Analysis Results 

Sample 
Surface Area 

(m2/g) 
SH 17.9 

Brayton 5.8 
Gaston 2.1 

PP 3.0 
CE1 2.5 
CE2 1.1 

Carbon Black 71.4 
 

4.1.2 LOI and Moisture Analysis 

As depicted in Table 4, Salem Harbor fly ash also has the highest LOI value, which 

means it has the highest amount of unburned carbon.  According to literature findings, 
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surface area is strongly influenced by carbon content41 and a positive correlation were 

found between surface area and carbon content.48  The results agreed with the literature 

findings, though the R2 is not as high as that in the literature.  It is mostly probably 

because the fly ash samples in this study were obtained from different sources. 

 

Table 4 LOI and Moisture Analysis 

Sample LOI% Moisture% 
SH 37.20 0.14 

Brayton 18.06 0.12 
Gaston 11.94 0.20 

PP 0.96 0.17 
CE1 5.97 0.07 
CE2 3.07 0.11 
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4.1.3 SEM Graphs 

a) b) 

d) c) 

Figure 5. 200X SEM graphs of fly ash sample a) SH, b) Brayton, c) Gaston, d) PP, e) 

CE1 and f) CE2 

f) e) 
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The above SEM graphs are backscattered images. In a backscattered image, the heavier 

the atom, the lighter the color. As shown in the images, diverse morphology was found in 

different samples. Irregular shaped soot (sponge like particles in a)), aluminosilicate 

glassy spheres, angular quartz, and occasionally mullite spheres were identified by the 

SEM-EDAX analysis. The relatively high amount of soot present in Salem Harbor (SH) 

fly ash would account for the high surface area and high LOI.41 

4.1.4 Particle Size Distribution 

Results form a typical size distribution analysis is shown in Figure 6. The particle size 

falls in a broad range.  

 

Figure 6. Size distribution of Brayton Point fly ash sample 

In order to compare different samples, mean particle sizes of these samples are 

listed in Table 5.  The values are higher than those shown in the SEM graphs.  It was 
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mostly caused by the agglomeration of fly ash particles in the circulating water during the 

analysis process.  The high mean particle size of Salem Harbor fly ash is probably due to 

its high LOI value, since unburned carbon tends to be enriched in coarser fraction in fly 

ash.41 

 

Table 5 Mean Particle Sizes 

Sample D (μm) 
SH 92.7 

Brayton 77.6 
Gaston 30.3 

PP 48.0 
CE1 32.7 
CE2 23.4 

Carbon Black 268 

 

4.1.5 Surface Chemical Properties  

Table 6 shows the results from EDAX analysis on surface elemental weight percentage.  

 

Table 6 Surface Elemental Composition from EDAX Analysis on fly Ash Samples 

Fly Ash  C O Na Mg Al Si P S K Ca Ti Fe 
SH 74.31 16.84 n.d. 0.09 1.98 4.40 n.d. 0.27 0.41 0.56 n.d. 1.08 

Brayton 64.80 26.23 n.d. 0.19 2.78 3.94 n.d. 0.24 0.44 0.39 0.25 0.74 
Gaston 49.20 24.94 0.31 0.28 5.72 7.62 0.27 0.93 1.24 1.30 0.81 7.38 

PP 17.17 43.26 1.37 2.61 8.42 9.37 0.76 1.59 0.39 11.68 0.76 2.63 
CE1 45.33 34.49 0.33 0.37 4.78 8.28 n.d. 0.45 0.72 0.86 n.d. 4.40 
CE2 46.82 34.8 0.18 0.22 5.6 8.17 n.d. 0.27 0.82 0.42 0.41 2.31 

 n.d. = not detected 
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Due to the presence of carbon tape, the carbon content in all samples was much 

higher than suggested by LOI analyses.  Further, these results could not be trusted due to 

insufficient calibration.  XPS analysis was then used to give the information on surface 

chemical composition of these fly ash samples. Table 7 shows the results from XPS 

analysis. 

Table 7 Surface Elemental Composition (Atom Ratio) from XPS Analysis 

Fly Ash C O N Na Mg Al Si P S Ca Ti Fe Mn 
SH 54.2 31.3 1.6 n.d. 0.2 2.6 6.1 n.d 2.4 0.6 0.1 0.8 n.d. 

Brayton 22.7 53.8 n.d. n.d. 0.3 6.1 12.9 n.d 2.4 0.5 0.2 1.0 n.d. 
Gaston 15.5 58.3 n.d. 1.7 0.5 4.5 7.7 1.0 8.8 0.8 0.2 1.1 n.d. 

PP 10.4 56.0 n.d. 2.9 1.4 2.7 4.8 2.4 9.0 8.1 0.2 0.6 n.d. 
CE1 24.7 52.3 n.d. 0.6 0.1 4.7 10.7 n.d 4.0 1.0 0.2 1.8 n.d. 
CE2 24.4 51.7 n.d. 0.5 0.2 5.7 12.3 n.d 2.8 0.7 0.2 1.5 n.d. 

n.d. = not detected 

Weight Percentage for every element was calculated based on the atom ratio, as 

shown in Table 8. Compared with the results from EDAX and LOI, results from XPS 

analyses are more reasonable.  

Table 8 Surface Elemental Composition (Weight Ratio) from XPS Analysis 

Fly Ash C O N Na Mg Al Si P S Ca Ti Fe Mn 
SH 41.4 31.9 1.4 n.d. 0.3 4.5 10.9 n.d 4.9 1.5 0.3 2.9 n.d. 

Brayton 14.9 47.1 n.d. n.d. 0.4 9.0 19.8 n.d 4.2 1.1 0.5 3.1 n.d. 
Gaston 9.7 48.4 n.d. 2.0 0.6 6.3 11.2 1.8 14.6 1.7 0.5 3.2 n.d. 

PP 6.0 43.3 n.d. 3.2 1.6 3.5 6.5 4.1 13.9 15.7 0.5 1.6 n.d. 
CE1 16.0 45.1 n.d. 0.7 0.1 6.8 16.2 n.d 6.9 2.2 0.5 5.4 n.d. 
CE2 15.9 44.8 n.d. 0.6 0.3 8.3 18.7 n.d 4.9 1.5 0.5 4.6 n.d. 

 

According to the elemental analyses, oxides, including MgO, Al2O3, SiO2, CaO, 

TiO2, Fe2O3, and UBC were selected as fly ash components for tests in flue gas. Carbon 
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black was used in this study to represent UBC in the samples due to the similarity 

between UBC in fly ash and carbon black.47 

4.2 MERCURY UPTAKE TESTS 

4.2.1 Baseline 

Figure 7 depicts the results of an experimental with an empty reactor. This run is 

necessary to establish baseline conditions before introducing solid samples into the 

system. 

 

Figure 7. A typical baseline run with flue gas at 140 °C 
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As shown in Figure 7, there was no difference between elemental and total mercury 

readings, which means no mercury oxidation occurred at 140 °C under the flue gas 

conditions in this study.  Glass beads were used as a media for suspending fly ash evenly 

in the reactor and creating certain detention time for the reaction.  Experiments with glass 

beads indicated that pretreated glass beads were inert.  In order to verify that the system 

can stay stable long enough, a 10-hr experiment was carried out with an empty reactor 

(Figure 8). 

Figure 8. A 10-hr baseline run with flue gas at 140°C 

 

The resutls indicated that the system could be stable for at least 10 hours. For each 

experiment, a stable mercury baseline like Figure 7 was reached before the introduction 

of samples into the reactor. 
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4.2.2 Mercury Speciation Tests with Fly ash samples 

The results from mercury uptake tests with the six ESP hopper fly ash samples will be 

discussed in the section. 

 

Figure 9. Hg uptake test with 50 mg CE1 fly ash at 140 oC 

Figure 9 shows the results of mercury uptake test with 50mg CE1 fly ash sample using a 

simulated flue gas (Table 2).  Mercury concentration in the effluent was normalized to 

the influent concentration, and is shown on the left hand vertical axis.  Oxidized Hg 

percentage was calculated by the following formula: 

Oxidized Hg% = (CTotal – CElemental) / CTotal × 100% 

where, CTotal is the total mercury concentration in the effluent from the reactor, and 

CElemental is the elemental mercury concentration.  Percentage of oxidized mercury is 

shown on the right hand vertical axis. 
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After the introduction of CE1 fly ash sample into the reactor, mercury 

concentration in the effluent dropped to around 70% of the inlet level.  As the fly ash 

sample slowly picked mercury up and lost some of the its capacity, the effluent mercury 

concentration increased. However, there was a difference between elemental and total 

mercury concentration constantly, which means the CE1 fly ash also has an oxidation 

capacity for mercury besides adsorption of mercury.  The oxidation capacity decreased 

slightly during the test. 

 

Figure 10. Hg uptake test with 50 mg CE2 fly ash at 140 oC 

 

The test with CE2 fly ash showed similar trend. 100% breakthrough was slowly 

approached, and oxidized Hg percentage decreased gradually. 
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Figure 11. Hg uptake test with 50 mg PP fly ash at 140 oC 

 

Figure 12. Hg uptake test with 50 mg Gaston fly ash at 140 oC 
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Figure 13. Hg uptake test with 50 mg Brayton fly ash at 140 oC 

 

Figure 14. Hg uptake test with 50 mg SH fly ash at 140 oC 
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Figure 11 - 14 show the results from tests with Please Prairie, Gaston, Brayton 

Point, Salem Harbor fly ash samples.  In summary, fly ash not only captures mercury, but 

also promotes mercury oxidation.  With flue gas itself, mercury stays in elemental form 

(Figures 7 and 8).  After the fly ash sample was introduced to the reactor, part of the Hg0 

got captured on the surface; part of the Hg left the reactor in either Hg0 or Hg2+ form.  

The sample slowly reached its maximum capacity, but oxidation still took place.  The 

results with different fly ash samples were different, though the trends were similar, 

indicating that the adsorption capacity and catalytic oxidation depended on fly ash 

characteristics.  In order to compare the performance of different fly ash samples, 

mercury load on fly ash and oxidized mercury ratio in the effluent after four hours of 

exposure were calculated and presented in Table 9.  

Table 9 Hg uptake and oxidation after four-hour exposure with fly ash 

Sample Mercury Load (μg/g) Oxidized Hg% 
SH 47.9 22.9% 

Brayton 38.3 9.3% 
Gaston 14.6 7.3% 

PP 8.8 8.1% 
CE1 13.1 1.6% 
CE2 13.2 5.2% 

 

Among these samples, the SH fly ash showed the highest capacity for mercury as 

well as the highest oxidized mercury percentage in the effluent.  With the presence of SH 

fly ash, there was still around 20% of oxidized Hg in the effluent after an 8-hr exposure 

to flue gas (Figure 14).  According to the surface characterization, SH fly ash sample also 

has the highest surface area.  Surface area was found to have positive correlations with 
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both mercury uptake and oxidation, as indicated in Figure 15.  Such findings are in 

agreement with other studies.26, 28, 38, 45 

 

 

Figure 15. Effects of surface area on Hg uptake and oxidation at 140 °C 
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Figure 16. Effects of particle size on Hg uptake and oxidation at 140 °C 

 

Other than surface area, the effects of particle size were also studied.  Mercury 

capture and oxidation also increased with particle size (Figure 16).  Such findings could 

be explained by the fact that UBC is enriched in the coarser fractions in the fly ash 

samples used in this study according to SEM-EDAX analyses and is in agreement with 

results from Suraez-Ruiz et al.48 and Hwang et al.41   

Not surprisingly, Hg load and oxidation were found to be proportional to LOI 

values (Figure 17), suggesting the unburned carbon is actively involved in both mercury 

oxidation and adsorption processes.  The similarity between effects of LOI, surface area 

and particle size on Hg load and oxidation is likely due to the fact that carbon has a 

higher surface area than other fractions41 and tends to be enriched in coarser fractions in 

fly ash.48  
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Figure 17. Effects of LOI% on Hg uptake and oxidation at 140 °C 

Experiments were done in order to verify whether UBC itself has an important 

impact as suggested above and to find out what the effects of other components of fly ash 

are on mercury uptake and oxidation.  The results are discussed in the following section.  

 

4.2.3 Mercury Speciation Tests with Synthetic Single Components 

Similar uptake tests to the ones with fly ash were performed with carbon black and 

oxides typically present in fly ash, such as SiO2, Al2O3, MgO, CaO, TiO2, and Fe2O3.  

A test with raw sand (White quartz, -50+70 mesh, Sigma-Aldrich, St. Louis, MO) 

is shown in Figure 18.  Raw sand exhibited some mercury uptake and oxidation; 

however, the pretreated sand (Washed with aqua regia and then burned in the muffle 
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furnace at 500°C for 30 min) showed almost no oxidation and adsorption (Figure 19), 

indicating that the oxidation and adsorption is possibly caused by the impurities on sand 

surface.   

 

Figure 18. Hg uptake test with 8 g raw sand at 140 oC 

 

Figure 19. Hg uptake test with 4 g treated sand at 140 oC 
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Tests with Al2O3, MgO, CaO, and TiO2 in simulated flue gas (Table 2) showed 

similar results (Figure 20 - 23) to the one with treated sand.  None of these oxides 

exhibited capacity for oxidizing or capturing Hg0, as shown in the figures that total 

mercury and elemental mercury readings were the same as the baseline level. Such 

findings agrees with results from Ghorishi et al.50 and Thorwarth et al.40  However, it 

does not necessarily mean that these oxides have no effects on mercury uptake or 

oxidation. They may inhibit mercury uptake or oxidation by consuming acid gases like 

HCl, which is especially true for CaO.39, 40, 62 

 

Figure 20. Hg uptake test with 50 mg CaO at 140 oC 
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Figure 21. Hg uptake test with 50 mg MgO at 140 oC 

 

Figure 22. Hg uptake test with 50 mg Al2O3 at 140 oC 
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Figure 23. Hg uptake test with 50 mg TiO2 at 140 oC 

 

Ferric oxide showed a significant oxidation capacity at the beginning of the test as 

shown in Figure 24.  Oxidized mercury in the effluent was as high as 80%.  As the test 

proceeded, the oxidation rate decreased to around 40% in four hours.  Based on this 

study, it can be concluded that ferric oxide has a potential to be a mercury oxidation 

catalyst in flue gas, which has also been suggested by others.26, 63 
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Figure 24. Hg uptake test with 50 mg Fe2O3 at 140 oC 

 

Carbon black was used to simulate UBC in fly ash samples.  It showed a much 

higher capacity for adsorbing mercury than the oxides tested in this study (Figure 25).  

The oxidized mercury was consistently around 20%-30% in the effluent during the 5-hr 

experiment except for a slight increase in the very beginning of the test.  Carbon black 

showed a remarkable ability to catalyze the oxidation of Hg0 under the conditions of this 

study, which explains why mercury uptake and oxidation increased with increases in LOI 

values.  Other studies have also shown that mercury oxidation is related to the extent of 

UBC.22, 26, 27, 63
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Figure 25. Hg uptake test with 50 mg carbon black at 140 oC 

 

Effects of Fe2O3 and carbon black on mercury oxidation and capture are 

summarized in Table 10.  They showed comparable mercury capture capacity; but, the 

Hg oxidation capacity of Fe2O3 is much higher than carbon black. However, carbon 

content of the fly ash samples used in this study ranged from 10 to 54 Atom%, while 

Fe2O3 was only present at 0.6 - 1.5 Atom%.  Therefore, Fe2O3 is relatively less important 

than UBC for mercury oxidation and adsorption.  It could be concluded that unburned 

carbon is the most important component in fly ash for mercury oxidation and adsorption. 
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Table 10 Hg Uptake and Oxidation after Four-hour Exposure with Fly  

Ash Components 

Sample Mercury Load (μg/g) Oxidized Hg% 
Fe2O3 42.5 41.00% 

C black 39.0 19.44% 
 

From all experiments done with oxides, it was concluded that Al2O3, MgO, CaO, 

and TiO2 did not promote either mercury oxidation or mercury capture under flue gas 

conditions in this study.  Purified SiO2 was able to adsorb and oxidize a small amount of 

Hg0, but the effects were not significant.  Both Fe2O3 and carbon black showed profound 

impacts on mercury adsorption and oxidation.  Carbon is more important due to its higher 

amount.  However, the SH fly ash sample having a lower carbon content and a lower 

surface area than carbon black showed comparable capacities for mercury oxidation and 

adsorption to carbon black, suggesting that the heteroatoms on the fly ash sample and the 

conditions the fly ash previously exposed to would be important for mercury 

transformation.  It also indicates that the effects of fly ash are more complex than single 

fly components.  

In order to find out the mechanisms of mercury oxidation, the second part of this 

study focused on carbon part: the interaction between the carbonaceous surface and 

single flue gas component, the interaction between different gas components, and their 

effects on mercury adsorption and oxidation. 

 51



4.2.4 Mercury Speciation Tests with Carbon Black under Different Flue Gas 

Composition 

In order to exam the effects of different flue gas combination (without Hg) on the surface 

chemical properties, 50 mg of carbon black sample was exposed to each flue gas 

combination listed in Table 11 at 140 oC for either 3 hrs (XPS analysis) or about 12 hrs 

(TPD analysis), and the results from TPD and XPS analyses are summarized in Table 11. 

Table 11 TPD and XPS Analyses of Carbon Black Samples Treated with Different 

Flue Gas Combination 

TPD (Desorption temperature) XPS (Atomic %) Carbon Black Samples  
(Flue gas combination) CO/CO2 SO2 C O S N Cl 
0: As-received n.d. 98.6 0.7 0.6 0 0 
1: SO2+CO2+O2+NO2+NO+HCl 400-900K 98.2 1.0 0.7 0 0.1 
2: HCl+N2 n.d. 98.8 0.6 0.6 n.d. 0 
3: CO2+O2+HCl+N2 n.d. 98.4 1.0 0.7 n.d. 0 
4: SO2+CO2+O2+HCl+N2

600-800 K 
(Signal intensity is on 
the same order of 
magnitude) 

400-900K 98.8 0.5 0.6 0 0 
5: SO2+CO2+O2+N2 / / 98.4 0.9 0.7 n.d. n.d. 
6: NO2+N2 / / 98.6 0.7 0.6 0 n.d. 

/ = No analyses; n.d. = not detected.  

As illustrated by TPD analyses in Table 11, surface oxygen functionalities were 

present in all the analyzed samples including the as-received carbon black.  SO2 species 

was desorbed during the analyses on Samples 1 and 4, which had been exposed to SO2.  

No nitrogen or chlorine related species were desorbed from the surface in the TPD tests.  

The differences in surface chemical composition between samples 0-6 prepared for XPS 

analyses were not significant.    

Experiments were designed to explore the effects of flue gas composition on 

mercury uptake.  A stable baseline of Hg were reached in either N2 or N2 + CO2 + O2.  

After that, 50 mg carbon black was introduced into the reactor afterwards and mercury in 
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the effluent was monitored until 100% breakthrough was reached. Then flue gas 

composition was altered while still keeping a flow rate of 1 L/min, and mercury 

speciation in the effluent was monitored. 

As depicted in Figure 26 and 27, a 100% breakthrough was achieved immediately 

in either N2 or N2 + CO2 + O2.  It can be concluded that carbon black itself does not 

adsorb much elemental mercury.  However, TPD analysis of as-received carbon black 

(Table 11 and Figure 28) revealed the presence of surface oxygen functionalities on these 

carbon black samples.  These results indicated that oxygen functionalities are not able to 

adsorb mercury or oxidize mercury by themselves, though they may play a role in 

capturing mercury under conditions that are different from those in experiments shown in 

Figure 26 and 27.36 

 

Figure 26 Hg uptake by carbon black in N2 at 140 °C 
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Figure 27. Hg uptake by carbon black in N2 + CO2 + O2 at 140 °C 

 

Figure 28. TPD analysis of as-received carbon black 

After the 100% breakthrough occurred, 1500ppm of SO2 was introduced to the 

influent stream.  However, it did not promote mercury oxidation or mercury capture 

under both conditions (Figure 29 and 30).  These results do not necessarily mean that SO2 

will not inhibit mercury capture or oxidation, since no mercury was captured or oxidized 
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under these flue gas conditions.  The effects of SO2 will be discussed later regarding its 

interaction with HCl.  

 

Figure 29. Effects of SO2 on Hg uptake by carbon black in N2 at 140 °C 

 

 

Figure 30. Effects of SO2 on Hg uptake by carbon black in N2 + CO2 + O2 at 140 °C 

 55



Similar to SO2, NO was found not to promote mercury oxidation or adsorption in 

either N2 or N2 + CO2 + O2, as illustrated in Figure 31. 

 

Figure 31. Effects of NO on Hg uptake by carbon black at 140 °C 
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Water vapor did not promote mercury adsorption or oxidation in the presence of 

N2 + CO2 + O2 (Figure 32).  

 

Figure 32 Effects of H2O on Hg uptake by carbon black in N2 + CO2 + O2 at 140 °C 

 

Previous experiments with fly ash or its components were all done without water 

vapor.  One experiment with SH fly ash was done in a full flue gas with water vapor, as 

depicted in Figure 33. 
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Figure 33. Effects of H2O on Hg uptake by SH fly ash in flue gas at 140 °C 

 

A initial breakthrough of ~30% occurred immediately after the introduction of fly 

ash into the moisture containing flue gas, which was much higher than that (~5%) of the 

experiment with SH in flue gas without water vapor (Figure 14).  However, 80% 

breakthrough occurred 1 hr later with water vapor than that without water vapor.  As a 

result, a higher mercury adsorption onto fly ash was achieved with the presence of 

moisture (Table 12).  It may be caused by changes on fly ash surfaces under long time 

exposure to water vapor containing flue gas.  Water vapor seems to suppress mercury 

oxidation as shown from the comparison of oxidized mercury percentage in the effluent 

after 4-hr exposure (Table 12).  However, under real power plant operation conditions, 

water vapor may inhibit mercury adsorption onto fly ash since the contact time between 

water vapor and fly ash particles would be 1 – 5 s, much shorter than that in the 

experiment in Figure 34. 
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Table 12 Hg Uptake and Oxidation after Four-hour Exposure with SH Fly Ash in 

Flue Gas with and without Water Vapor 

Flue gas Mercury Load (μg/g) Oxidized Hg% 
With H2O 54.0 14.26% 

Without H2O 47.9 22.89% 
 

After NO2 was introduced into N2, an immediate drop of both elemental and total 

mercury occurred (Figure 34).  The elemental mercury in the effluent remained almost 

constant, while the total mercury slowly increased towards 100% breakthrough.  Addition 

of CO2 + O2 did not have a significant impact on either oxidation or adsorption in the 

presence of NO2 (Figure 35).   

 

Figure 34. Effects of NO2 on Hg uptake by carbon black in N2 at 140 °C 
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Figure 35. Effects of NO2 on Hg uptake by carbon black in N2 + CO2 + O2 at 140 °C 

A 90% breakthrough occurred initially.  After 100% breakthrough was achieved, 

oxidation still took place.  It is generally believed that NO2 could oxidize mercury and 

promote mercury capture onto carbon surface.6, 28, 57  However, the exact mechanism is 

still unknown.  Hg0 is suggested to be oxidized by NO2 and form Hg(NO3)2 or HgO on 

the carbon surface, and part of NO2  was reduced to NO by dismutation, as indicated in 

Reactions 18 and 19.57, 58  NO is believed to transform into NO2 in the presence of O2 on 

the surface.49  However, experiments summarized in Figure 32 revealed that with NO and 

O2 in the gas phase, no mercury uptake or oxidation occurred.  A possible mechanism for 

Hg oxidation by NO2 could be oxidation only occurs between adsorbed Hg and gas-phase 

NO2, which is known as Eley-Rideal reaction (Reactions 20 and 21).27 

A(g) <==> A(ads) (20)

A(ads) + B(g)  ==> AB(g) (21)

For the case of mercury oxidation by NO2, A is Hg0 and B is NO2. 
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HCl is an important parameter for mercury chemistry in coal-fired power plants. 

After HCl was introduced to N2 gas flow, effluent Hg immediately dropped to around 

70% of the inlet concentration (Figure 36).  The behavior was similar to that observed for 

NO2.  Elemental mercury in the effluent remained at 70% of the inlet level during the 12-

hr test, while oxidized mercury slowly increased from 0 to 20% during that time.  As HCl 

is not an oxidant, and the reaction between HCl and Hg is hindered by a very high energy 

barrier,7 the surface must be responsible for electrons transfer.   

  

 

Figure 36. Effects of HCl on Hg uptake by carbon black in N2 at 140 °C 

 

A possible mechanism is that gas phase HCl impregnates the surface and creates 

Cl sites, which then react with Hg0.24  However, neither TPD analyses nor XPS analyses 

of carbon black samples treated by N2 + HCl (without Hg) revealed the existence of Cl on 

carbon surface (Table 11).  It is possible that the binding energy between Cl and carbon 
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surface32 is so low that Cl are removed under the ultra high vacuum conditions used in 

TPD and XPS analysis.  However, previous studies29, 51, 56, 64 have detected Cl on 

carbonaceous surfaces upon exposure to flue gas containing Hg.  The difference could be 

due to the presence of Hg in these previous studies: Hg reacted with Cl containing 

species, and formed HgCl2 being onto the surface resulted the Cl concentration increases 

in the samples.  

Another hypothesis could be that Cl is catalytically generated by the interaction 

between HCl and the carbon surface,5 while oxygen containing SFGs like oxygen 

functionalities may help to stable H atom attached on the surface.37  In that case, Reaction 

1: Hg + Cl  HgCl could proceed.  The resulted oxidized Hg species could be partially 

or completely adsorbed to surface, since the adsorption rate of HgCl2 is higher than that 

of Hg0.46   

The amount of elemental Hg remained at the same level during the experiment, 

which means the sum of adsorbed mercury and oxidized mercury remained constant too.   

Most likely, the surface has a constant capacity for mercury oxidation under the 

conditions of this experiment; some of the oxidized mercury is then adsorbed onto the 

carbon black, and as carbon black reaches its maximum capacity for oxidized mercury, 

100% breakthrough occurs.  If this is the case, the adsorption sites for elemental mercury 

would be different from oxidation sites and adsorption sites for oxidized mercury, and 

they were not present on the carbon black surface under the conditions in this experiment.   

Addition of O2 in the gas flow significantly improved mercury capture and 

oxidation (Figure 37).  Elemental mercury in the effluent was decreasing in the first eight 

hours, which means that capacity of the surface for converting elemental mercury to 
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oxidized mercury and adsorbed Hg increased during that time.  It is probably due to the 

changes in surface chemical properties under exposure to flue gas.  However, as shown 

before (Figure 27), carbon black did not adsorb or oxidize any mercury in N2 + CO2 + O2.  

Therefore, it is the interaction between O2 and HCl on the surface caused the promotion 

of mercury uptake and oxidation.   

 

Figure 37. Effects of HCl on Hg uptake by carbon black in N2+CO2+O2 at 140 °C 

A possible mechanism, the Deacon process, could be used to explain the effects of O2.  

However, the Deacon process is generally catalyzed by metal compounds.16  XPS 

analysis of the as-received carbon black revealed no metal elements existing on the 

surface (Table 11).  The presence of mercury may drive the reaction forward without 

metal catalyst.  The over all reaction could be, 

2Hg + 4HCl + O2  2HgCl2 + 2H2O (22)

In order to verify the effects of oxygen, 50 mg carbon black was exposed to 

135ml/min O2 at 140 °C for 4 hrs.  1 L/min N2 with Hg was then sent to the treated 

 63



sample for 20 min to get rid of O2 in the gas phase before introducing HCl.  There was no 

oxidation or capture of mercury during the 20 min exposure to N2 (Figure 38).   

 

Figure 38. Hg baseline in N2 and its concentration in N2 passed through O2-treated 

carbon black bed at 140 °C 
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Introduction of HCl caused mercury capture instantly with the carbon black 

pretreated with O2 (Figure 39, diamond symbols).  Chemisorbed O2 from the 

pretreatment accounts for the improvement in mercury capture and oxidation compared 

to the as-received carbon black (Figure 39, circle symbols).  However, even with a four-

hour exposure to O2, the carbon black sample still showed a higher initial mercury 

breakthrough than the one with O2 in the gas stream (Figure 39, square symbols).  This 

implied that O2 in the gas phase more readily participates in the reaction than 

chemisorbed O2 on carbon black.  The net effect of oxygen functionalities can be similar 

to O2 in gas phase, though the mechanisms involved are possibly much more complex. 

 

* Experiment with O2 pretreated carbon black was then conducted in N2 + HCl  

Figure 39. Effects of HCl on Hg uptake by carbon black in different gases at 140 °C 

 

Figure 40 depicts the effect of SO2 in the influent flow of HCl + N2 + CO2 + O2 

on mercury capture and oxidation.  SO2 caused an appreciable decrease in mercury 
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capture and oxidized mercury percentage in the effluent.  It most likely inhibited mercury 

capture and oxidation by competing for adsorption sites and electron acceptors.  Both 

TPD and XPS analyses (Table 11) indicated the adsorption of S on the surface, which at 

least supported the idea of competition for adsorption sites.54  Previous experimental 

findings showed that SO2 is generally being adsorbed on the carbon surface in S(VI) 

form,29, 55, 56 which means it would compete with Hg for electron acceptors in order to be 

oxidized.  SO2 may inhibit the adsorption of O2 onto the surface, and then result in a 

decrease in mercury oxidation. 

 

Figure 40. Effects of SO2 on Hg uptake by carbon black in HCl + N2 + CO2 + O2 at 

140 °C 

From experiments with carbon black in different gas combination, it could be 

concluded that carbon black does not adsorb or oxidize mercury in N2 even in the 

presence of O2.  NO2 could promote mercury oxidation and adsorption without HCl and 

O2.  NO, SO2 or H2O does not promote mercury oxidation or adsorption by itself.  H2O 
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seems to inhibit mercury adsorption upon its introduction into gas stream.  However, over 

time its effect on mercury adsorption diminished, though it suppressed mercury 

oxidation.  HCl has profound effects on mercury adsorption and capture, especially when 

oxygen is present.  SO2 tends to diminish the effects of HCl by occupying the binding 

sites and competing for electron acceptors with mercury.  It can also be concluded that 

the flue gas composition and the interaction between flue gas and the surfaces are more 

important than the fly ash composition, though the presence of fly ash samples play a 

predominant role in mercury oxidation.28 
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5.0  SUMMARY AND CONCLUSIONS 

Increases in LOI value (unburned carbon) of fly ash samples resulted in improvements in 

mercury capture and oxidation.  Mercury capture and oxidation were proportional to 

surface area for different samples.  Particle size exhibited similar effects to surface area. 

The impacts of surface area and particle size were similar to those of LOI, which could 

explained by the facts that unburned carbon in fly ash has a relatively high surface area 

than other fractions, and it tends to enriched in coarser fractions compared with other 

fractions in the samples.41, 48  

Tests with single fly ash components indicated that SiO2, Al2O3, MgO, CaO, and 

TiO2 had little effect on promoting mercury oxidation or adsorption.  Fe2O3 and carbon 

black promoted both mercury oxidation and adsorption.  However, carbon was 

considered as the most important component because of its higher content in different 

samples compared with iron. 

The interaction between flue gas components and surfaces is found to have 

significant on mercury transformation.  NO, O2, H2O, and SO2 did not promote mercury 

oxidation or capture on carbon black by themselves.  NO2 can help oxidize and capture 

mercury on carbon black with or without O2.  HCl showed the most profound effects on 

mercury oxidation and capture.  O2 plays an important role when combined with HCl, 

where the Deacon process could be involved.  SO2 inhibited mercury oxidation and 

 68



capture probably by competing for electron acceptors with mercury and occupying the 

adsorption sites on the surface. 
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