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FOR GRAY’S TIME-VARYING COEFFICIENTS MODEL

Hyung-joo Kang, M.S.

University of Pittsburgh, 2011

Survival analysis has been used to estimate underlying survival or failure probabilities and to

estimate the effects of covariates on survival times. The Cox proportional hazards regression

model is the most commonly used approach. However, in practical situations, the assumption

of proportional hazards (PH) is often violated. The assumption does not hold, for example,

in the presence of the time-varying effect of a covariate. Several methods have been proposed

to estimate this time-varying effect via a time-varying coefficient. The Gray time-varying

coefficients model (TVC) is an extension of the Cox PH model that employs penalized spline

functions to estimate time-varying coefficients. Currently, there is no method available

to assess the overall goodness-of-fit for the Gray TVC model. In this study, we propose a

method based on pseudo-observations. By using pseudo-observations, we are able to calculate

residuals for all individuals at all time points. This avoids concerns with the presence of

censoring and allows us to apply the residual plots used in general linear regression models

to assess the overall goodness of fit for censored survival regression models. Perme and

Andersen used the pseudo-observations method to assess the fit for the Cox PH model.

We extend their method to assess the fit for the Gray TVC model and illustrate how we

applied this approach to assess the fit for a model that predicts posttransplant survival

probability among children who were under the age of 12 years, had end-stage liver disease,

and underwent liver transplantation between January 2005 and June 2010.
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The method has significant public health impact. The Cox PH model is the most cited

regression method in medical research. When data violate the PH assumption, The Gray

TVC model or an alternative should be used in order to obtain unbiased estimates on survival

function and give correct inference on the relationship between potential covariates and

survival. The proposed goodness-of-fit test offers a tool to investigate how well the model

fits the data. If results show a lack of fit, further modification for the model is necessary in

order to obtain more accurate estimates.
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1.0 INTRODUCTION

Survival analysis has been used to estimate underlying survival or failure probabilities and

to estimate the effects of covariates on survival times. The most commonly used approach is

the Cox proportional hazards (PH) regression model [18]. In Cox PH model, the regression

coefficients are assumed constant over time. However, in practical situations, the assumption

of PH is often violated. The assumption does not hold, for example, in the presence of the

time-varying effect of a covariate. If covariate effects vary over time, alternative models

which do not necessarily assume proportionality are needed.

Various graphical and numerical methods of goodness-of-fit for checking the Cox model

have been introduced. Kalbfleisch and Prentice [41] proposed a graphical method to assess

model checking by simply plotting of the log-(-log) survival function vs. time (or log time)

for differnt levels of a covariate. Also, a number of graphical methods based on different

residuals have been suggested. Kay [44], Andersen [1], and Crowley and Storer [20] pro-

posed methods based on generalized residuals [19]. Schoenfeld [81] and Lin and Wei [54]

introduced the methods plotting Schoenfeld residual against time to event. Wei [91] and

Therneau, Grambsch, and Fleming [86] suggested methods based on martingale residual.

Arjas [9] suggested a method based on comparing between observed and expected failure

frequencies. Graphical methods can help decide whether the model fits well; however, the

interpretation may be arbitrary without formal significant tests. Numerical methods to

examine the adequacy of the fitted model based on Cox regression model also have been

studied. In 1972, Cox [18] suggested a model checking method using time-varying covari-

ates. Schoenfeld [80], Moreau, O’Quigley, and Mesbah [64], and Moreau, O’Quigley, and

Lellouch [63] constructed goodness-of-fit tests by partitioning subjects based on mutually

exclusive regions from the product space of the time and covariates.
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Similar approaches were proposed by Arjas [9], Andersen et al. [2], and Grambsch

and Therneau [30]. Wei [91] constructed the tests using two-sample hazards ratio. Gill

and Schumacher [27] proposed tests of the methods via generalized rank estimators of the

relative risk. Lin [53] proposed an analytic test to check the proportional hazards assumption.

Horowitz and Neumann [39] and Lin and Wei [54] constructed global goodness-of-fit test.

Other numerical approaches of goodness-of-fit for Cox model have been studied by Andersen

and Gill [4], Moreau et al [64], Ciampi and Etezadi-Amoli [17], Nagelkerke, Oosting and Hart

[67], and O’Quigley and Pessione [69]. Gray [34] and Hess [38] defined a family of alternative

functions based on unspecified smoothing functions to the covariate or coefficients. Their

approach allows testing the global validity of the model as any specified time-dependent

alternative. A simulation study conducted by Ezzeddine [23] showed that Lin’s [53] and

Gray’s [34] tests are the most powerful for assessing the proportionality assumption.

Several methods have been proposed to estimate time-varying effect via a time-varying

coefficient. The time-varying coefficient models were considered previously by Gamerman

and West [26], Zucker and Karr [93], and Gray [33] to model with time-varying effects and

to test PH assumption. In these models products of a covariate and spline functions of

time are used to fit the model. Zucker and Karr [93], Andersen and Gill [4], Gill [28],

and O’Sullivan [70] introduced nonparametric estimation in the Cox model which is based

on penalized likelihood. Varying-coefficient (VC) models were also introduced by Hastie

and Tibshirani [37] for time-varying coefficient models. Also, the extended Cox model with

smoothing spline was proposed by Sleeper and Harrington [83] and Gray [33]. The Sleeper

and Harrington approach uses the partial likelihood, while Gray approach uses the penalized

partial likelihood to estimate the parameters. Li, Klein, and Moeschberger [51], and Persson

[74] proposed the stratified Cox regression model by stratification of the covariate which

violates PH assumption. Pettitt and Daud [75] and Fisher and Lin [24] proposed extending

Cox regression model by including time-dependent covariate and product of time and time-

dependent covariate.

2



In 1992 Gray [33] introduced a time-varying coefficients model. This model is an exten-

sion of Cox’s PH model that employs penalized spline functions to estimate time-varying

coefficients. The basic concept of Gray’s time-varying coefficients model is to use smoothing

spline functions at modified number of time knots, and then to estimate the parameters of

the model by maximizing the penalized partial likelihood. Advantage of Gray’s piecewise-

constant time-varying model is that it is computationally less complex.

Currently, there is no method available to assess the overall goodness-of-fit for Gray’s

model. In this study, we propose a goodness-of-fit method based on pseudo-observations [7].

Pseudo-observations can be calculated for all individual at all time points. We will then

use the pseudo-observation to replace incomplete observed outcome, censored observation,

to create a pseudo sample. Graphical analysis, especially pseudo residual plots, can be

conducted using the same logic of general linear models [73] to assess the model fit.

In Section 2, terminologies and notations used in this paper are defined. Also, Cox

proportional hazards model, Gray’s piecewise-constant time-varying coefficient model and

pseudo-observation are defined in this section. Finally, in Section 2, goodness-of-fit tests

using pseudo residuals based on survival model are described. In Section 3, simulations are

presented to see how well Gray’s piecewise-constant time-varying coefficient model fits the

data set. In Section 4, we illustrate how we applied this approach to assess the fit for a

model that predicts posttransplant survival probability among children who were under the

age of 12 years, had end-stage liver disease, and underwent liver transplantation between

January 2005 and June 2010. The conclusion and limitations are discussed in Section 5.
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2.0 DESCRIPTION OF STATISTICAL METHODS

2.1 TERMINOLOGY & NOTATIONS

The right censored survival data of sample size n contains (Ti, δi, Zij), where i (i = 1, ... , n)

denotes the ith subject, and j (j = 1, ... , p) denotes the jth risk factor:

Xi: the survival time, the failure time or the time to event for the ith subject, Xi > 0.

Ci: the censoring time for the ith subject, Ci > 0.

Ti = min(Xi, Ci), which is the observed time on study for the ith subject.

δi: the event indicator for the ith subject

δi =


1, if an individual ihas experienced the event(Xi ≤ Ci)

0, if an individual iis censored(Xi > Ci)

Zi(t) = (Zi1(t), ..., Zip(t)): the vector of covariates or vector of risk factors for the ith

subject at time t, which may time-constant or time-varying covariates. In this study, we

focus on time-constant covariate. Therefore, we denote Z as Zi = (Zi1, ..., Zip).

β(t) = (β1(t), ..., βp(t)): the vector of regression coefficient at time t, which may time-

constant (Cox PH model) or time-varying (Gray’s time-varying model).

A right-censoring at time t implies that the event of interest has not yet occurred before

or at time t. The failure time Xi and the censoring time Ci for the ith subject are assumed

to be independent. Also, censoring times is assumed to be independent with covariates in

the fitted model.
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2.2 COX PROPORTIONAL HAZARDS MODEL

Cox [18] proposed a proportional hazards model to estimate underlying survival or failure

probabilities and to estimate the effects of covariates on survival times via the hazard function

h(t|Z). The hazard function is formed as

h(t|Z) = h0(t) exp(β′Z) , (2.1)

where h0(t) is a baseline hazard which is unknown and unspecified non-negative function, t is

time to occurrence of some event, Zi = (Zi1, ..., Zip) is the vector of covariates or vector of risk

factors, and β′ = (β1 , ... , βp) is the vector of regression parameters which implies the effects

of risk factors. The Cox regression model (2.1) holds two assumptions: the proportional

hazards (PH) assumption and the linearity assumption for the continuous covariates. The

Cox PH assumption means that the regression coefficient β is assumed to be constant over

time.

Comparing hazard rate of an individual with a set of risk factors Z to hazard rate of any

other individual with a set of risk factors Z∗, which is called as the hazard ratio (HR), is

defined as

HR = h0(t) exp(β′Z)
h0(t) exp(β′Z∗) = exp(β′(Z − Z∗)) (2.2)

Since (2.2) is independent of time t, the hazard ratio of an individual with risk factors Z1

experiencing the event comparing to any other individual with risk factors Z2 experiencing

the event is also independent of time t, i.e. proportional. When Z is a binary variable,

where Z = 1 if an individual received the treatment, and Z = 0 if an individual did not

received the treatment, to evaluate the treatment effect, the hazard ratio of Z = 1 to Z∗ = 0

is computed as

HR = exp(β′(Z − Z∗)) = exp(β′) (2.3)
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It means that the hazard ratio of an individual who received treatment and experiences the

event compared to an individual who did not receive treatment and experienced the event,

exp(β), is constant over time. The log-hazard ratio is

ln(HR) = ln( h0(t) exp(β′Z)
h0(t) exp(β′Z∗)) = ln(exp(β′(Z − Z∗))) = β′(Z − Z∗) . (2.4)

As mentioned in Section 2.1, the data set of a survival analysis contains (Ti, δi, Zij),

where i (i = 1, ... , n) denotes the ith subject, and j (j = 1, ... , p) denotes the jth risk

factor. Also, the failure time Xi and the censoring time Ci for the ith subject are assumed to

be independent. Then, the parameter β in Cox PH model is estimated by maximizing the

partial likelihood function. There are two situations; partial likelihood for distinct failure

time and partial likelihood for tied failure time.

For the first situation, it is assumed that all subjects in the study have D distinct event

time, t1 < ... < tD. The partial likelihood function [18] to estimate parameter β in Cox PH

model is given by

L(β) =
D∏
k=1

 exp(β′Z(k))∑
i∈R(tk) exp(β′Zi)

 , (2.5)

where R(tk) implies the set of those subjects who are still at risk just prior to time tk, and

Z(k) is set of the covariates related with the individual whose failure time is tk.

The second situation is the case of existing tied failure time. The partial likelihood

function proposed by Breslow [15] to estimate parameter β in Cox PH model for existing

tied failure time is given by

L(β) =
D∏
k=1

 exp(β′Sk)[∑
i∈R(tk) exp(β′Zi)

]δk

 , (2.6)

where δi is the number of failure times equal to tk, and Sk is the sum of vector Zi for all

subjects who experienced the event at tk.
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To obtain an estimated survival function, we need to estimate the cumulative baseline

hazard function, H0(t) =
´ t

0 h0(s)ds . In this study, Breslow’s estimator [14] is used:

Ĥ0(t) =
∑
tk≤t

1∑
j∈R(tk) exp(β′Zi)

(2.7)

The cumulative hazard function can be calculated by integrating hazard function (2.2) over

the range of time t:

H(t|Z) =
ˆ t

0
h0(s) exp(β′Z∗)ds (2.8)

The relation of hazard function and survival function is

S(t|Z = Z) = exp(−H(t|Z = Z)) (2.9)

= exp[−
ˆ t

0
h0(s) exp(β′Z)ds]

= exp[− exp(β′Z)
ˆ t

0
h0(s)ds]

= exp[−Ho(t)]exp(β′Z)

= [S0(t)]exp(β′Z) ,

where S0(t) is the baseline survival function. The estimated survival function at time t, given

Z=z∗ , then can be obtained by (2.9)

Ŝ(t|Z = z∗) = exp(−Ĥ(t|Z = z∗)) (2.10)

= exp[−
ˆ t

0
ĥ0(s) exp(β̂′z∗)ds]

= exp[− exp(β̂′z∗)
ˆ t

0
ĥ0(s)ds]

= exp[−Ĥ0(t)] expexp(β̂′z∗)

= [Ŝ0(t)]exp(β̂′z∗) ,

where Ŝ0(t) is the estimated baseline survival function. Ĥ0(t) is calculated by Breslow’s

estimator [14] and β̂ is calculated by maximizing the partial likelihood.
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2.3 GRAY’S PIECEWISE-CONSTANT TIME-VARYING COEFFICIENTS

MODEL

In many cases of clinical trial, the effects of risk factors may change over time. In this case,

the Cox proportional hazards assumption is violated, and the Cox PH regression model is

not valid any more. Therefore, other approaches to deal with a time-varying coefficient,

such as extended Cox model or Gray’s time-varying coefficients model, are required. The

time-varying coefficients models were proposed by Gray [33] to model with time-varying

effects over time and to test PH assumption. Gray’s time-varying model allows violation

of the proportional hazards assumption via piecewise-constant time-varying coefficient using

penalized B-splines. The advantage of Gray’s model is its flexibility because the proportional

hazards assumption is assumed to hold only for the each time interval.

Hazard function using Gray’s time-varying coefficient model is formed as

h(t|Z) = h0(t) exp(β(t)′Z) , (2.11)

where, h0(t) is a baseline hazard, which is unknown and unspecified non-negative function, t

is time to occurrence of some event, Zi = (Zi1, ..., Zij) is the vector of covariates or vector of

risk factors, and β(t)′ = (β1(t), β2(t), ..., βp(t)) is the vector of regression parameters which

implies the effects of risk factors.

Comparing the hazard rate of an individual with a set of risk factors Z to the hazard

rate of any other individual with a set of risk factors Z∗, the hazard ratio is

HR = h0(t) exp(β(t)′Z)
h0(t) exp(β(t)′Z∗) = exp(β(t)′(Z − Z∗)) . (2.12)

Since (2.12) is time dependent, the hazard ratio of an individual with risk factors Z1 expe-

riencing the event comparing to any other individual with risk factors Z2 experiencing the

event is also time dependent, i.e. nonproportional.
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When Z is binary variable, say Z = 1 if an individual received the treatment, and Z = 0

if an individual did not received the treatment, to evaluate treatment effect, the hazard ratio

of Z = 1 to Z∗ = 0 is computed as

HR = exp(β(t)′(Z − Z∗)) = exp(β(t)′) . (2.13)

It means that the hazard ratio of an individual who received treatment and experiences the

event compared to an individual who did not receive treatment and experienced the event,

exp(β(t)), varies over time. The log-hazard ratio is

ln(HR) = ln( h0(t) exp(β′(t)Z)
h0(t) exp(β′(t)Z∗)) = β(t)′(Z − Z∗) . (2.14)

In the vector of regression parameters β(t)′ = (β1(t), β2(t), ..., βp(t)) , the function of

time-varying coefficients is formed as

βj(t) =
∑
k

θjkβjk(t) , (2.15)

where j (j = 1, ... , p), denotes the jth risk factors in the model, k denotes indexes of the

time intervals, (k = 1, ... , M + 1).

In (2.15), βjk(t) is called B-spline basis function [21]. The spline with only certain number

of knots and with estimated parameters β̂j(t) are used in Gray’s piecewise-constant time-

varying coefficients model. As mentioned before, in Gray’s piecewise-constant time-varying

coefficients model, the regression coefficients βj(t) remain constant on time intervals between

the selected time knots, t ∈ [τk, τk+1), and the regression coefficients βj(t) are allowed to

change at the selected internal time knots, τk, where τ0 = 0, and τM+1 = T , which is

maximum observed time. Therefore, the coefficients βj(t) are right-continuous step function

of time, and jumps at each time knot. The time knots are predetermined to be roughly

equally spaced on the event scale.
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The parameters βj(t) in Gray’s piecewise-constant time-varying coefficients model are

estimated by maximizing the penalized partial likelihood function [33]. The penalized partial

likelihood is combination of the usual log partial likelihood L(β) [18] (2.5) and piecewise-

constant function with penalty 1
2λj

∑M+1
k=2 (θjk − θj,k−1)2 [33], where M is number of internal

time knots. The penalized partial likelihood function is given by

Lp(β) = L(β)− 1
2λj

M+1∑
k=2

(θjk − θj,k−1)2 . (2.16)

To drive the estimated cumulative hazard H0(t) =
´ t

0 h0(s)ds in (2.8), Valenta [89] sug-

gested the estimator of cumulative baseline hazard based on Breslow’s estimator [14]

Ĥoj(t) =
ˆ

[τk,τk+1)
I(u ≤ t)ĥ0(u) =

ˆ
[τk,τk+1)

I(u ≤ t)
∑n
i=1 dNi(u)∑

i Yi(u) exp
{
z′

i
β̂(u)

} ,
(2.17)

which is a part of the cumulative baseline hazard function, H0(t), on the interval [τk, τk+1)

(k = 1, ... , M), where τ0 = 0, τM+1 = T , which is maximum observed time (failure or

censored time). Yi(t) is an indicator for the subject who is still at risk just prior to time t,

and dNi(t) is the change in the process N(t) over a short time interval [t, t+ dt].

The survival function based on the Gray’s piecewise-constant time varying coefficient

model is formed as

S(t|Z) = exp[−
ˆ t

o

h0j(s) exp(βj(s)
′
Z)ds] . (2.18)

Since we use fixed internal time knots, the survival function suggested by Valenta [89] is

used

Ŝ(t|Z) = exp[−
M∑
k=0

Ĥ0k(t) exp(β̂′kZ)] , (2.19)

where β̂k = β̂(τk), which is the estimated regression coefficient at τk time knot, k (k =

0, ... , M) denotes the kth time knot, and M is number of internal time knots. Ĥ0(t) is

derived by Breslow’s estimator [14], and β̂j is calculated by maximizing the penalized partial

likelihood [33].
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2.4 PSEUDO-OBSERVATIONS

Let θ = E(f(X)), and θ̂ be an unbiased estimator of θ, where f(·) could be any defined

function. Given this, Anderesen et al. [7] defined a pseudo-observation for the ith individual

as

θ̂i = n · θ̂ − (n− 1) · θ̂−i , (2.20)

where θ̂−i is the “leave-one-out” estimator for θ, that is, the estimate is computed from the

sample in which the ith individual is removed. This idea is from the Jackknife methodol-

ogy [61]. The average of all pseudo-observations is the jackknife estimate of θ [13]. From

definition (2.20), pseudo-observations can be calculated for all individuals. The idea of

pseudo-observation is to replace incompletely observed f(Xi) by pseudo-observation θ̂i to

achieve complete data.

For survival data, if there is censoring, the data of event history is incomplete, i.e., the

survival times would not be observed for all subjects. Let X = (X1, X2, ... , Xn) be the

vector of failure times for n individuals, where Xi’s (i = 1, ... , n) are independent and

identically distributed. Survival indicator for the ith subject at time t, where t implies time

point (t = t1, ... , tk), is defined by

f(x) = ft(x) = I(Xi > t) . (2.21)

While in principal the survival indicator for the ith subject is observed for all individuals at

all time points, in practical it may not be observed for some subjects at some time points

because of censoring.

Survival probability at time t is estimated by expectation of survival indicator

S(t) = E(I(Xi > t)) = E(ft(x)) ,

and then parameter θ is S(t) under (2.20).
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Pseudo-observation for the survival function [73] is defined as

Si(t) = nŜ(t)− (n− 1)Ŝ−i(t) , (2.22)

where Ŝ(t) is Kaplan-Meier estimator based on the whole sample [42]:

Ŝ(t) =
∏
u≤t

1− dN(u)
Y (u)

 , (2.23)

and Ŝ−i(t) is Kaplan-Meier estimator based on the sample omitting the ith observation.

Under the assumption of independent censoring, the average of the pseudo-observations for

the survival function computed at each time point is close to the estimated survival function

based on the Kaplan-Meier estimator Ŝ(t) and the true value of S(t) [84].

Ŝ(t) =
∏
u≤t

1− dN(u)
Y (u)

 = 1
n

n∑
i=1

Si(t) ≈ S(t) . (2.24)

If there is no censoring, Si(t) can be expressed with index function, specified as survival

indicator: Si(t) = I(Xi > t), Si(t) = 1 if individual is still alive at time t, Si(t) = 0 if

individual experience the event before time t. Even when there is censoring, the pseudo-

observations are defined for all individual and at all time points. Pseudo-observations for

each individual are plotted in Figure 1 and Figure 2. In Figure 1 and Figure 2, pseudo-

observation plots show the jump at the time of event for the individual. Some values are

greater than 1 because omitting individuals at risk at certain time points reduces the risk

set.
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2.5 GOODNESS-OF-FIT TEST USING PSEUDO-OBSERVATIONS FOR

SURVIVAL MODELS

In Cox PH model, (2.1), the regression coefficients are assumed to be constant over time.

However, in practical situations, the assumption of proportional hazards (PH) is often vio-

lated. Since the Cox regression model estimates parameters based on PH assumption, the

Cox PH regression model will be invalid when non-proportionality exists and the estimate

will be under or overestimated under the violation of this assumption. To check model

fit, goodness-of-fit test is required. Currently, there is no method available to assess the

overall goodness-of-fit for Gray’s time-varying coefficients model. In this study, we propose

a goodness-of-fit method for Gray’s model based on pseudo-observations [7]. One way for

assessing goodness-of-fit test is to analyze residuals. However, in survival analysis, the plot-

ting may be faced with troubles because of presence of censoring: the survival indicator,

ft(x) = I(Xi > t), is not always observed. As mentioned before, the pseudo-observations for

survival function, Si(t), are observed for all individual and at all time points. The idea is to

replace the survival indicator by its pseudo-observation; therefore, using pseudo-observation,

standard residual analysis can be conducted regardless of censoring under the same logic of

general linear models [73] to assess the model fit.

The idea of pseudo residual is to compare pseudo-observations for survival function,

denoted as Si(t), with predicted values of survival function based on the fitted model, denoted

as Ŝ(t|Zi). Perme and Andersen [73] defined the raw pseudo residual as

r̂i(t) = Si(t)− Ŝ(t|Zi) , (2.25)

and defined the standardized pseudo residual as

êi(t) = Si(t)− Ŝ(t|Zi)√
Ŝ(t|Zi)[1− Ŝ(t|Zi)

. (2.26)
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We will use pseudo residual as a graphical diagnostic tool to evaluate model fit for

Gray’s time-varying coefficients model. Raw pseudo residual for Gray’s time-varying model

is defined as

r̂i,Gray(t) = Si(t)− ŜGray(t|Zi) , (2.27)

and standardized pseudo residuals for Gray’s time-varying model is defined as

êi,Gray(t) = Si(t)− ŜGray(t|Zi)√
ŜGray(t|Zi)[1− ŜGray(t|Zi)]

. (2.28)

Finally, pseudo residuals are plotted against estimated survival function based on fitted

model at each time point with smoothed averages. Since many points are overlapped on the

residual plots, it is impossible to evaluate the trends by using the residuals alone. Therefore,

smoothed average plot along with pseudo residual is necessary. If the model shows a good

fit in estimating survival function, the smoothed averages stay around zero. If the model

does not fit well, some type of departures and tendencies are shown on the residual plot.
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Figure 1: The pseudo-observations for an individual
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Figure 2: The pseudo-observations when there exists any censoring
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3.0 SIMULATION STUDY

3.1 OVERVIEW METHODS

Simulation studies were performed under scenarios of violating the proportional hazards

assumption, and the experiment was repeated 1000 times with samples of size 500. Both

complete and right-censored survival times were generated in the following settings.

Let β(t) be the time-varying effect of a covariate Z, where f(Z) is assumed to be linear.

Hazard function for the time-varying model (2.11) is defined as

h(t|Z) = h0(t) exp(β(t)Z) ,

where h0(t) = λ, which is a constant baseline hazard function, and β(t) = θt, which is a

time-varying regression coefficient.

The corresponding cumulative hazard function becomes

H(t|Z) =
ˆ t

0
λ exp(θxZ)dx = λ

θZ
(exp(θtZ)− 1) , (3.1)

and the survival function has the form of

S(t|Z) = exp(−H(t|Z)) = exp(− λ

θZ
(exp(θtZ)− 1) , (3.2)

and the distribution function of Gray’s model is

F (t|Z) = U = 1− S(t|Z) = 1− exp(− λ

θZ
(exp(θtZ)− 1)) , (3.3)

where U ~ U[0,1].
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Let X be the survival time,

U = 1− exp(− λ

θZ
(exp(θXZ)− 1)) ,

where U ~ U[0,1].

To generate survival time X,

F−1(t|Z) = X = [ln(−(θZ ln(1− U)
λ

+ 1)/(θz)] , (3.4)

where U is a random variable following uniform distribution on the interval from 0 to 1,

U[0,1].

In previous section, hazard ratio is formed as 2.12,

HR = h0(t) exp(β(t)′Z)
h0(t) exp(β(t)′Z∗) = exp(β(t)′(Z − Z∗))

and the log hazard ratio is expressed as 2.14,

ln(HR) = ln( h0(t) exp(β′(t)Z)
h0(t) exp(β′(t)Z∗)) = β(t)′(Z − Z∗) .

The log hazard ratio is a linear form of β(t). Therefore, the variety of value of β(t) over time

can be checked using log hazard ratio plot vs. time.
Simulations were conducted with varying percentages of censoring with fixed λ = 1, and

θ = 2. Under this simulation setting, true hazard function is formed as

h(t|Z) = h0(t) exp(2tZ)

In this study, we generated (Ti, δi, Zi), where i (i = 1, ... , n) denoted the ith subject. Xi is

the survival time for the ith subject, which was generated by (3.5). Ci is the censoring time

for the ith subject, which was generated following exponential distribution with parameter

r. Censoring rate is changed with different choice of r. Ti is the observed time on study for

the ith subject, which is obtained by Ti = min(Xi, Ci), .
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δi is the event indicator for the ith subject :

δi =


1, if the individual i has experienced the event(Xi ≤ Ci)

0, if the individual i is censored(Xi > Ci)

For simplicity, only one risk factor, Z, was used in this simulation.

3.2 SIMULATION I: COMPARING AVERAGE OF

PSEUDO-OBSERVATIONS TO ESTIMATED SURVIVAL FUNCTION

BASED ON KAPLAN-MEIER ESTIMATOR

3.2.1 Generate Data Set and Overview Methods

The main goal of simulation I is to show that average of the pseudo-observations is close

to the Kaplan-Meier estimator. The risk factor Zi for the ith subject is a binary variable

(Zi = 0 or Zi = 1), which is the time-varying coefficient covariate. Let h0(t) = λ =

1, which is a constant baseline hazard function, and θ = 2 and b(t) = 2t, which is a

time-varying coefficient. Independent right-censored data Ci was generated based in the

exponential distribution to result 30 % of censoring. By (3.4), survival timeXi was generated.

Also, observed time Ti and event indicator δi were derived by (3.1). Nine time knots were

predetermined to be evenly spaced using the 10 percentiles of event time so that the same

number of events was observed between each time knots using R package cox.spline. These 9

time knots were also applied to estimate pseudo-observations. The pseudo-observations, the

estimated survival function based on Gray’s time-varying model, and the estimated survival

function based on Cox PH model were calculated for all individuals at 9 time knots.

True survival function was also obtained by direct input with θ = 1, λ = 1, and β(t)′ =

(2t1, 2t2, 2t3, 2t4, 2t5, 2t6, 2t7, 2t8, 2t9), where tk (k = 1, ... , 9) denoted predetermined time

knots. In addition, the average of pseudo-observations at each time knot was calculated,

and the estimate of survival function under the Kaplan-Meier estimator was derived by R

package survfit.
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3.2.2 The results

The true survival function, the average of pseudo-observations for survival function, the

estimated survival function based on Kaplan-Meier estimator, the estimated survival function

based on Gray’s model, and the estimated survival function based on Cox model at 9 time

knots (.070, .129, .187, .258, .310, .381, .447, .528, .651) for Z = 0 and Z = 1 are presented

in Table 1 and Table 2. The results in Table 1 and Table 2 are plotted in Fogure 3, and

Figure 4. The results support that the average of the pseudo-observations for the survival

function computed at each time point, 1
n

∑n
1 Si(t), is close to the estimated survival function

based on Kaplan-Meier estimator, ŜKM(t), and the true survival function, S(t), [84]. The

estimated survival probability based on Gray’s time-varying coefficients model, ŜGray(t), is

quite close to the true survival function, S(t), and those two values are slight different from

the average of pseudo-observations and the estimated survival function based on Kaplan-

Meier estimator. The estimated survival function based on Cox PH model, ŜCox(t), is not

close to the other estimates at most of the time points for Z = 0 and Z = 1. Based on

Table 1 and Table 2, we can conclude that the pseudo-observations, Si(t), represents the

true survival function well; therefore it can replace incomplete data. Also, Gray’s model

shows a good of fit for the model in violating of proportional hazards assumption.
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Table 1: Simulation I Comparing the true survival function to the estimated average of pseudo-observations, the estimated

survival based on Kaplan-Meier estimator, Gray’s model, and Cox model

Time Knots .070 .129 .187 .258 .310 .381 .447 .528 .651

z=1 S(t)

True value

.927 .863 .797 .713 .650 .565 .486 .392 .262

ŜKM (t)

Kaplan-Meier

.916 .870 .788 .722 .639 .561 .441 .353 .224

1
n

∑n
1 Si(t)

Average of

Pseudo-observations

.916 .870 .788 .722 .641 .566 .442 .356 .227

ŜGray(t)

Gray’s time-varying

model

.933 .868 .797 .723 .645 .561 .467 .364 .228

ŜCox(t)

Cox PH model

.944 .884 .819 .748 .668 .581 .481 .364 .214
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Table 2: Simulation I Comparing the true survival function to the estimated average of pseudo-observations, the estimated

survival based on Kaplan-Meier estimator, Gray’s model, and Cox model

Time Knots .070 .129 .187 .258 .310 .381 .447 .528 .651

z=2
S(t)

True value
.922 .845 .756 .637 .540 .408 .289 .163 .044

ŜKM (t)

Kaplan-Meier
.933 .827 .740 .638 .535 .415 .328 .187 .065

1
n

∑n
1 Si(t)

Average of

Pseudo-observations

.933 .827 .745 .639 .536 .416 .329 .190 .066

ŜGray(t)

Gray’s time-varying

model

.918 .830 .738 .638 .531 .421 .307 .185 .064

ŜCox(t)

Cox PH model
.909 .816 .719 .618 .514 .407 .299 .188 .078
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Figure 3: Simulation I Plot of survival function vs. time at Z = 0: True-value, Average

of Pseudo-observation, Kaplan-Meier estimator, Gray’s time-varying coefficients model, and

Cox PH model

Figure 4: Simulation I Plot of survival function vs. time at Z = 1: True-value, Average

of Pseudo-observation, Kaplan-Meier estimator, Gray’s time-varying coefficients model, and

Cox PH model
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3.3 SIMULATION II: GOODNESS-OF-FIT TEST FOR GRAY’S

PIECEWISE-CONSTANT TIME-VARYING COEFFICIENTS MODEL

AND COX PH MODEL USING PSEUDO-OBSERVATIONS

3.3.1 Generate Data Set and Overview Methods

The goals of simulation II are to compare the estimated survival functions obtained from

the Gray’s time-varying coefficients model and from the Cox PH model to the true value,

and to assess goodness-of-fit via the residual plots at each of the 9 time point. The risk

factor Z for the ith subject follows normal distribution, Z ~ N(5,1), which is time-varying

coefficient covariate. Let h0(t) = λ = 1, which is a constant baseline hazard function, and

θ = 2 and b(t) = 2t, which is time-varying coefficient. Independent right-censored data Ci

was generated based on the exponential distribution to result 0 %, 8.4 %, 37.8 %, and 71

% of censoring. Survival time Xi was generated following (3.4). Also, observed time Ti and

event indicator δi were derived by following setting:

Ti = min(Xi, Ci), the observation time on study for ith subject

δi: the event indicator for ith subject: 1 if an individual has experienced the event, 0 if

an individual is censored

Nine time knots were predetermined to be evenly spaced using the 10 percentiles of event

times so that the same number of events was observed between each time knot by R package

cox.spline. These 9 time knots were also applied to estimate pseudo-observations. The esti-

mated survival function based on Gray’s time-varying coefficients models and based on Cox

models, and true survival function for Z = z were calculated. The true survival function was

obtained by direct input with θ = 1, λ = 1, and β(t)′ = (2t1, 2t2, 2t3, 2t4, 2t5, 2t6, 2t7, 2t8, 2t9),

where tk (k = 1, ... , 9) denoted predetermined time knots. These three survival functions

were plotted with respect to time, and compared to see how close each other.

Also, the pseudo residuals using pseudo-observations for Gray’s time-varying coefficients

models and Cox PH models and true-Gray residual using true survival function for Gray’s

time-varying coefficiets models were calculated.
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To assess goodness-of-fit test using residuals as a graphical tool, residual plots along

with smoothed average plots were conducted against the estimated survival function based

on fitted model at each 9 time knot.

3.3.2 Simulation Study II-1 No Censoring

Simulation II-1 was performed using survival data generated with θ = 2, λ = 1, and no

censoring. The results are presented in Table 3 and Figure 5 trough Figure 10. Test statistic

for proportional hazards assumption is 12.64 (p < .0001). This test statistic shows that in

true model, the effects of the covariate are varying over time.

The true regression coefficient, β(t), the estimated regression coefficient based on Gray’s

time-varying coefficients model, β̂(t), and the estimated regression coefficient based on Cox

PH model, β̂, at each 9 time knot are presented in Table 3. While the estimated regression

coefficient based on Cox’s PH model is constant over time, .435 (p < .001), the estimated

regression coefficient based on Gray’s time-varying coefficients model (.150, .229, .324, .427,

.493, .526, .493, .474, .471), and true regression coefficient (.140, .236, .306, .364, .418, .474,

.532, .604, .668) are changing over time. The estimated regression coefficient based on Gray’s

model is close to true regression coefficient except for early time point. The results of Table

3 are plotted against time in Figure 5 and Figure 6.

The plot of log-hazard-ratio for the covariate Z with respect to time is presented in

Figure 5. By (2.14) , Figure 5 represents the trend of β(t) over time. The result shows that

the effect of this covariate is changing over time, i.e., time-varying coefficient. Plots of the

estimated regression coefficient based on Gray’s time-varying coefficients model and based

on Cox PH model to the true regression coefficient were compared in Figure 6.

The result shows that the estimated regression coefficient based on Gray’s model is close

to the true regression coefficient. Also, the estimated survival functions were calculated and

plotted based on Gray’s time-varying coefficients model and based on Cox PH model at

(Z = 2, 4, 6, 8) ( Figure 7 ). Comparing the estimated survival function based on Gray’s

model to the true survival function, Gray’s time-varying coefficients model is found to be a

good fit in estimating survival function.
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If there is no censoring (complete data), Gray’s model shows the best fit when the

covariate Z has near mean value of Z. Compared to true survival function, the plot from

Gray’s model show departure at the end of time when covariate Z has small value, and

departure at the beginning of time when the covariate Z has large value .
In this simulation study, 3 types of residuals were calculated using pseudo-observations

and true survival function. Pseudo residual for Gray’s time-varying coefficients model is
defined by

PseudoGray residual = Si(t)− ŜGray(t|Zi) , (3.5)

pseudo residual for Cox PH model is defined by

PseudoCox residual = Si(t)− ŜCox(t|Zi) , (3.6)

and residual using true survival function_ estimated survival function based on Gray’s model

is defined by

TrueGray residual = STrue(t|Zi)− ŜGray(t|Zi) . (3.7)

The residual plots along with smoothed average against the estimated survival rate based

on fitted model at each 9 time point are presented in Figure 8, Figure 9 and Figure 10.

In Figure 8, the pseudo residuals are plotted against the estimated survival rate based

on Gray’s model at each 9 time point to assess goodness-of-fit for Gray’s time-varying co-

efficicents model using the pseudo-observation. Since the pseudo residual plots for Gray’s

model are constant near zero at all time points, the conclusion is that Gray’s time-varying

coefficients model shows a good fit in estimating survival in case of violating of proportional

hazards assumption.

In Figure 9, the true-Gray residuals is plotted against the estimated survival rate based on

Gray’s time-varying coefficients model at each 9 time point to assess goodness-of-fit for Gray’s

model, ŜGray(t|Zi), using the true survival function, ST rue(t|Zi). Since the residual plots are

constant near zero, the conclusion is that Gray’s time-varying coefficients model shows a

good fit in estimating survival in case of violating of proportional hazards assumption.
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Table 3: Simulation II-1 Compare true value of covariate effect β(t) to estimated covariate

effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model; true value of

covariate effect β(t) = 2t, λ = 1, and no censoring

Time Knots .070 .118 .153 .182 .209 .237 .266 .302 .334

True β(t): θ x Time

(θ=2)

.140 .236 .306 .364 .418 .474 .532 .604 .668

β̂(t) based on Gray’s

model

.150 .229 .324 .427 .493 .526 .493 .474 .471

β̂ based on Cox model .390 .390 .390 .390 .390 .390 .390 .390 .390

In Figure 10, the pseudo-Cox residuals are plotted against the estimated survival rate

based on Cox PH model using the pseudo-observation. Since the pseudo residual plots for

Cox’s model show departures and tendencies, the conclusion is that Cox PH model does not

fit in estimating survival function in case of violating of proportional hazards assumption.
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Figure 5: Simulation II-1 Plot of log hazard ratio vs. time for the covariate Z based on

Gray’s time-varying coefficients models and Cox PH model (θ=2, λ=1, and no censoring)

Figure 6: Simulation II-1 Plot of the true value of covariate effect β(t) , the estimated

covariate effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model vs.

time; true value of covariate effect β(t) = 2t, λ = 1, and no censoring28



Figure 7: Simulation II-1 Plot of the estimated survival function based on Gray’s time-varying coefficients and Cox PH model,

and true survival function at (z=2,4,6, and 8): true value of covariate effect β(t) = 2t, λ = 1, and no censoring
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Figure 8: Simulation II-1 Pseudo residual vs. the estimated survival function based on Gray’s time-varying coefficients model

at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and no censoring

PseudoGray residual = Si(t)− ŜGray(t|Zi)
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Figure 9: Simulation II-1 True-Gray residual vs. the estimated survival function based on Gray’s time-varying coefficients

model at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and no censoring

TrueGray residual = ST rue(t|Zi)− ŜGray(t|Zi)
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Figure 10: Simulation II-1 Pseudo residual vs. the estimated survival function based on Cox PH model at each time knot: true

value of covariate effect β(t) = 2t, λ = 1, and no censoring

PseudoCox residual = Ŝi(t)− ŜCox(t|Zi)
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3.3.3 Simulation Study II-2 Light Censoring

Simulation II-2 was performed using survival data generated with θ = 2, λ = 1, and light

censoring (8.4 %). The results are presented in Table 4 and Figure 11 trough Figure 16. The

value of the test statistic for proportional hazards assumption is 11.45 (p =.0002). This test

statistic states that in true model, the effects of the covariate are varying over time.

The true regression coefficient, the estimated regression coefficient based on Gray’s time-

varying coefficients model, and the estimated regression coefficient based on Cox PH model

at each 9 time knot are presented in Table 4. While the estimated regression coefficient

based on Cox’s model are constant over time, .037 (p < .001), the estimated regression

coefficient based on Gray’s model (.181, .210, .267, .306, .364, .413, .476, .535, .604), and

true regression coefficient (.110, .214, .290, .346, .392, .448, .488, .554, .634) are changing over

time. The estimated regression coefficients based on Gray’s model is close to true regression

coefficient except for early time points. The results of Table 4 were plotted against time

in Figure 11 and Figure 12. The estimated survival function based on Gray’s time-varying

coefficients model and based on Cox PH model were calculated and plotted against time at

Z = (2, 4, 6, 8) (Figure 13). Finally, pseudo residual plots and true-Gray residual plots along

with smoothed average against the estimated survival rate based on fitted model at each 9

time point were conducted and presented in Figure 14, Figure 15, and Figure 16 to assess

the goodness-of-fit for Gray’s time-varying coefficients model and Cox PH model.
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Table 4: Simulation II-2 Compare true value of covariate effect β(t) to estimated covariate

effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model; true value of

covariate effect β(t) = 2t, λ = 1, and 8.4 % censoring

Time Knots .055 .107 .145 .173 .196 .224 .244 .277 .317

True β(t): θ x Time

(θ=2)

.110 .214 .290 .346 .392 .448 .488 .554 .634

β̂(t) based on Gray’s

model

.181 .210 .267 .306 .364 .413 .476 .535 .604

β̂ based on Cox model .386 .386 .386 .386 .386 .386 .386 .386 .386
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Figure 11: Simulation II-2 Plot of log hazard ratio vs. time for the covariate Z based on

Gray’s time-varying coefficients models and Cox PH model (θ=2, λ=1, and 8.6 % censoring)

Figure 12: Simulation II-2 Plot of the true value of covariate effect β(t) , the estimated

covariate effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model vs.

time; true value of covariate effect β(t) = 2t, λ = 1, and 8.6% censoring
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Figure 13: Simulation II-2 Plot of the estimated survival function based on Gray’s time-varying coefficients and Cox PH model,

and true survival function at (z=2,4,6, and 8): ; true value of covariate effect β(t) = 2t, λ = 1, and 8.6 % censoring
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Figure 14: Simulation II-2 Pseudo residual vs. the estimated survival function based on Gray’s time-varying coefficients model

at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 8.6 % censoring

PseudoGray residual = Ŝi(t)− ŜGray(t|Zi)
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Figure 15: Simulation II-2 True-Gray residual vs. the estimated survival function based on Gray’s time-varying coefficients

model at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 8.6 % censoring

TrueGray residual = ST rue(t|Zi)− ŜGray(t|Zi)
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Figure 16: Simulation II-2 Pseudo residual vs. the estimated survival function based on Cox PH model at each time knot: true

value of covariate effect β(t) = 2t, λ = 1, and 8.6 % censoring

PseudoCox residual = Ŝi(t)− ŜCox(t|Zi)
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3.3.4 Simulation Study II-3 Mild Censoring

Simulation II-3 was performed using survival data generated with θ = 2, λ = 1, and mild

censoring (37.8 %). The results are presented in Table 5 and Figure 17 trough Figure 22.

The value of the test statistic for proportional hazards assumption is 12.34 (p <.0001). This

test statistic states that in true model, the effects of the covariate are varying over time.

The true regression coefficient, the estimated regression coefficient based on Gray’s time-

varying coefficients model, and the estimated regression coefficient based on Cox PH model

at each 9 time knot are presented in Table 5. While the estimated regression coefficient based

on Cox’s model are constant over time, .325 (p<.001), the estimated regression coefficient

based on Gray’s model, (.063, .129, .230, .303, .358, .459, .538, .559, .538), and true regression

coefficient, (.094, .154, .2.12, .292, .354, .410, .462, .522, .608), are changing over time. The

estimated regression coefficients based on Gray’s model is close to true regression coefficient

except for early time point. The results of Table 5 were plotted in Figure 17 and Figure 18.

The estimates of survival functions were calculated and plotted based on Gray’s piecewise-

constant time-varying model and Cox PH model at (Z = 2, 4, 6, 8) (Figure 19). Finally,

pseudo residual plots and true-Gray residual plots along with smoothed average against the

estimated survival rate based on fitted model at each 9 time point were conducted and

presented in Figure 20, Figure 21, and Figure 22 to assess the goodness-of-fit for Gray’s

time-varying coefficients model and Cox PH model.
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Table 5: Simulation II-3 Compare true value of covariate effect β(t) to estimated covariate

effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model; true value of

covariate effect β(t) = 2t, λ = 1, and 37.8 % censoring

Time Knots .047 .077 .106 .146 .177 .205 .231 .261 .304

True β(t): θ x Time

(θ=2)

.094 .154 .2.12 .292 .354 .410 .462 .522 .608

β̂(t) based on Gray’s

model

.063 .129 .230 .303 .358 .459 .538 .559 .538

β̂ based on Cox

model

.353 .353 .353 .353 .353 .353 .353 .353 .353

41



Figure 17: Simulation II-3 Plot of log hazard ratio vs. time for the covariate Z based on

Gray’s time-varying coefficients models and Cox PH model (θ=2, λ=1, and 34.6% censoring)

Figure 18: Simulation II-3 Plot of the true value of covariate effect β(t) , the estimated

covariate effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model vs.

time; true value of covariate effect β(t) = 2t, λ = 1, and 8.6% censoring
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Figure 19: Simulation II-3 Plot of the estimated survival function based on Gray’s time-varying coefficients and Cox PH model,

and true survival function at (z=2,4,6, and 8): ; true value of covariate effect β(t) = 2t, λ = 1, and 34.6 % censoring
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Figure 20: Simulation II-3 Pseudo residual vs. the estimated survival function based on Gray’s time-varying coefficients model

at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 34.6 % censoring

PseudoGray residual = Ŝi(t)− ŜGray(t|Zi)
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Figure 21: Simulation II-3 True-Gray residual vs. the estimated survival function based on Gray’s time-varying coefficients model at

each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 34.6 % censoring

TrueGray residual = ST rue(t|Zi)− ŜGray(t|Zi)
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Figure 22: Simulation II-3 Pseudo residual vs. the estimated survival function based on Cox PH model at each time knot: true

value of covariate effect β(t) = 2t, λ = 1, and 34.6 % censoring

PseudoCox residual = Ŝi(t)− ŜCox(t|Zi)
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3.3.5 Simulation Study II-4 Heavy Censoring

Simulation II-4 was performed using survival data generated with θ = 2, λ = 1, and heavy

censoring (71%). The results are presented in Table 6 and Figure 23 trough Figure 28. The

value of the test statistic for proportional hazards assumption is 5.427 (p = .023). This test

statistic states that in true model, the effects of the covariate are varying over time.

The true regression coefficient, the estimated regression coefficient based on Gray’s time-

varying coefficients model, and the estimated regression coefficient based on Cox PH model at

each 9 time knot are presented in Table 6. While the estimated regression coefficient based

on Cox’s model are constant over time as .310, the estimated regression coefficient based

on Gray’s model, (.150, .192, .212, .236, .293, .410, .540, .583, .565), and true regression

coefficient, (.054, .130, .172, .216, .282, .304, .356, .416, .516), are changing over time. The

estimated regression coefficients based on Gray’s model is close to true regression coefficient

except for early time points. The results of Table 6 were plotted in Figure 23 and Figure 24.

The estimates of survival functions were calculated and plotted based on Gray’s piecewise-

costant time-varying model and Cox PH model at (Z = 2, 4, 6, 8) (Figure 25). Finally,

pseudo residual plots and true-Gray residual plots along with smoothed average against the

estimated survival rate based on fitted model at each 9 time point are presented in Figure

26, Figure 27, and Figure 28 to assess the goodness-of-fit for Gray’s time-varying coefficients

model and Cox PH model.
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Table 6: Simulation II-4 Compare true value of covariate effect β(t) to estimated covariate

effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model; true value of

covariate effect β(t) = 2t, λ = 1, and 66 % censoring

Time Knots .027 .065 .086 .108 .141 .152 .178 .208 .258

True β(t): θ x Time

(θ=2)

.054 .130 .172 .216 .282 .304 .356 .416 .516

β̂(t) based on Gray’s

model

.150 .192 .212 .236 .293 .410 .540 .583 .565

β̂ based on Cox

model

.326 .326 .326 .326 .326 .326 .326 .326 .326
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Figure 23: Simulation II-4 Plot of log hazard ratio vs. time for the covariate Z based on

Gray’s time-varying coefficients models and Cox PH model (θ=2, λ=1, and 66% censoring)

Figure 24: Simulation II-4 Plot of the true value of covariate effect β(t) , the estimated

covariate effect β̂(t) based on Gray’s time-varying coefficient model and Cox PH model vs.

time; true value of covariate effect β(t) = 2t, λ = 1, and 66 % censoring
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Figure 25: Simulation II-4 Plot of the estimated survival function based on Gray’s time-varying coefficients and Cox PH model,

and true survival function at (z=2,4,6, and 8): ; true value of covariate effect β(t) = 2t, λ = 1, and 66 % censoring
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Figure 26: Simulation II-4 Pseudo residual vs. the estimated survival function based on Gray’s time-varying coefficients model

at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 66 % censoring

PseudoGray residual = Ŝi(t)− ŜGray(t|Zi)
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Figure 27: Simulation II-4 True-Gray residual vs. the estimated survival function based on Gray’s time-varying coefficients

model at each time knot: true value of covariate effect β(t) = 2t, λ = 1, and 66 % censoring

TrueGray residual = ST rue(t|Zi)− ŜGray(t|Zi)
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Figure 28: Simulation II-4 Pseudo residual vs. the estimated survival function based on Cox PH model at each time knot: true

value of covariate effect β(t) = 2t, λ = 1, and 66 % censoring

PseudoCox residual = Ŝi(t)− ŜCox(t|Zi)
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3.4 RESULTS FOR DIFFERENT THETA, LAMBDA, AND PERCENTAGE

OF CENSORING

Table 7 and Table 8 present the results of true value of survival function and es-

timated β based on Gray’s piecewise-constant time-varying coefficient model and

Cox proportional hazards ratio model for different theta, lambda, and censoring

percentage.

3.5 CONCLUSION

In this simulation study, the sample size of 500 data, which contains (Ti, δi, Zi) in, were

generated via hazard function for time-varying model 2.11: h(t) = h0(t) exp(β(t)Z) with

β(t) = 2t, λ = 1, and varying of percentage of censoring. Nine time knots were predetermined

to be evenly spaced using the 10 percentiles of event times.

The true covariate effect, the estimated covariate effect based on Gray’s time-varying

coefficients model and the estimated covariate effect based on Cox PH model were calcu-

lated and plotted against time. In the simulation I, the average of pseudo-observations,

the estimated survival function based on Gray’s time-varying coefficients model, and the

estimated survival function based on Cox PH model were calculated for all individual at

predetermined 9 time knots. The true survival function was also calculated by direct in-

put of model setting. In the simulation II, the estimated survival function based on Gray’s

time-varying coefficients model and Cox PH model, and the true survival function were cal-

culated for (Z = 2, 4, 6, 8). Then, theses estimated survival functions were plotted against

time. Finally, the residuals using pseudo-observation and true survival function for Gray’s

time-varying coefficients model and Cox PH model were calculated. To assess goodness-of-fit

test using these residuals as a graphical tool, the residual plots along with smoothed average

plots were conducted against the estimated survival rate based on fitted model at each 9

time knot.
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Table 7: Compare true value of covariate effect β(t) to estimated covariate effect β̂(t) based on Gray’s time-varying coefficient

model and Cox PH model: (θ = 1, 2 , 5),(λ = .1, 1), and no censoring

θ λ

Test

Statistic

(p-value)

for

Overall

Test

Statistic

(p-value)

for

Nonpro-

portional

Time 1 2 3 4 5 6 7 8 9

1 1
53.49

(p<.001)

13.06

(p<.001)

True Beta: Theta x Time knots .09 .18 .25 .30 .36 .43 .48 .55 .61

Beta_hat (t) based on Gray’s model .06 .14 .25 .30 .39 .46 .51 .62 .72

Beta_hat based on Cox model .41 .41 .41 .41 .41 .41 .41 .41 .41

2

0.1
241.73

(p<.001)

23.61

(p<.001)

True Beta: Theta x Time knots .57 .77 .94 1.04 1.16 1.26 1.39 1.54 1.70

Beta_hat (t) based on Gray’s model .63 .72 .90 1.08 1.17 1.26 1.33 1.43 1.52

Beta_hat based on Cox model 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08

1
80.15

(p<.001)

17.66

(p<.001)

True Beta: Theta x Time knots .16 .24 .33 .42 .49 .56 .62 .69 .81

Beta_hat (t) based on Gray’s model .15 .22 .26 .32 .38 .50 .59 .63 .65

Beta_hat based on Cox model .44 .44 .44 .44 .44 .44 .44 .44 .44

5

0.1
231.42

(p<.001)

26.42

(p<.001)

True Beta: Theta x Time knots .86 1.11 1.22 1.32 1.44 1.54 1.69 1.83 1.98

Beta_hat (t) based on Gray’s model .88 1.04 1.16 1.26 1.37 1.50 1.51 1.62 1.65

Beta_hat based on Cox model 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31

1
129.36

(p<.001)

20.98

(p<.001)

True Beta: Theta x Time knots .86 1.11 1.22 1.32 1.44 1.54 1.69 1.83 1.98

Beta_hat (t) based on Gray’s model .88 1.04 1.16 1.26 1.37 1.50 1.51 1.62 1.65

Beta_hat based on Cox model 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31
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Table 8: Compare true value of covariate effect β(t) to estimated covariate effect β̂(t) based on Gray’s time-varying coefficient

model and Cox PH model: (θ = 1, 2 , 5),(λ = .1, 1), and 20 % censoring

θ λ

Test

Statistic

(p-value)

for

Overall

Test

Statistic

(p-value)

for

Nonpro-

portional

Time 1 2 3 4 5 6 7 8 9

1 1
53.49

(p<.001)

13.06

(p<.001)

True Beta: Theta x Time knots .10 .16 .21 .29 .35 .40 .44 .52 .63

Beta_hat (t) based on Gray’s model .12 .18 .23 .29 .36 .47 .50 .56 .62

Beta_hat based on Cox model .38 .38 .38 .38 .38 .38 .38 .38 .38

2

0.1
241.73

(p<.001)

23.61

(p<.001)

True Beta: Theta x Time knots .56 .73 .92 1.03 1.15 1.27 1.43 1.56 1.73

Beta_hat (t) based on Gray’s model .72 .79 .93 .97 1.11 1.26 1.43 1.47 1.49

Beta_hat based on Cox model 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

1
80.15

(p<.001)

17.66

(p<.001)

True Beta: Theta x Time knots .13 .27 .38 .44 .52 .58 .65 .75 .85

Beta_hat (t) based on Gray’s model .32 .33 .36 .42 .46 .51 .61 .78 .92

Beta_hat based on Cox model .55 .55 .55 .55 .55 .55 .55 .55 .55

5

0.1
231.42

(p<.001)

26.42

(p<.001)

True Beta: Theta x Time knots .81 1.03 1.67 1.29 1.39 1.53 1.66 1.82 2.03

Beta_hat (t) based on Gray’s model .75 .84 1.04 1.16 1.27 1.35 1.44 1.59 1.78

Beta_hat based on Cox model 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

1
129.36

(p<.001)

20.98

(p<.001)

True Beta: Theta x Time knots .34 .47 .59 .70 .79 .88 .96 1.05 1.19

Beta_hat (t) based on Gray’s model .37 .47 .57 .66 .84 .96 1.01 1.04 1.14

Beta_hat based on Cox model .77 .77 .77 .77 .77 .77 .77 .77 .77
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In Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, the results

represent that the estimated regression coefficient based on Gray’s time-varying coefficient

model is quite close to the true value regression coefficient. According to plot of log-hazard

ratio and plot of estimated regression coefficient vs. time, (Figure 5, Figure 6, Figure 11,

Figure 12, Figure 17, Figure 18, Figure 23, Figure 24), the effects of the covariate are changing

over time, i.e., time-varying coefficients. The plots of the estimated survival function based

on Gray’s time-varying coefficients model and Cox PH model along with the true survival

function are presented in Figure 7, Figure 13, Figure 19, Figure 25. Comparing these three

plots, Gray’s time-varying coefficients model is found to be a good fit in estimating survival

function. The pseudo residual plots along with smoothed average against the estimated

survival rate based on fitted model at each time point for Gray’s model and Cox model are

presented in Figure 8, Figure 10, Figure 14, Figure 16, Figure 20, Figure 22, Figure 26, Figure

28. Pseudo residuals for Gray’s time-varying coefficients model are constant near 0 without

any significant tendency or departure indicating a good shape of fit, while pseudo residuals

for Cox PH model show tendencies and departures indicating lack of fit. The simulations

were performed with varying percentage of censoring and the results from complete and right

censored survival data are very similar. Also, the simulations were performed with different

λ and different θ(Table 7 and Table 8). The results are very similar.

In conclusion, using Gray’s time-varying coefficients model shows a good fit in estimating

survival function when data violate the PH assumption. Also, the pseudo residual plot using

pseudo-observations vs. estimated survival function based on Gray’s time-varying coefficient

model at each predetermined time knot is a useful graphical tool to assess goodness-of-fit

test for Gray’s time-varying coefficients model.
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4.0 APPLICATION TO LIVER TRANSPLANTATION DATA

4.1 DATA DESCRIPTION

In this section, we apply our proposed method to assess the goodness-of-fit for a model

that predicts the probability of posttransplant survival among children who were under the

age of 12 years, had end-stage liver diseases, and underwent liver transplantation between

January 2005 and June 2010. The data were derived from the United Network for Organ

Sharing/Organ Procurement and Transplantation Network (UNOS/OPTN) containing 13

variables evaluated at the time of transplant and time from transplantation to posttransplant

death date. If the recipients were alive at the study cutoff date, the time from transplantation

to death were censored. After model selection, the final multivariable Gray’s time-varying

coefficients model includes the following covariates: age at transplant, multiorgan transplant

or not (yes/no), disease diagnosis (acute liver diseases, sclerosis, autoimmune diseases, liver

cancer, metabolic liver diseases, biliary atresia, and other liver diseases) and location right

before transplantation (out of hospital, in hospital, and ICU).

4.2 METHODS AND RESULTS

Gray’s model using piecewise-constant time-varying coefficients [33] assumes that β(t)′ =

(β1(t), β2(t), ... , βp(t)) , where βj(t) (j = 1, ... , p) denotes the effects of the jth risk factor,

remains constant for the each time intervals between the selected time knots, t ∈ [τk, τk+1),

and the regression coefficients βj(t) is allowed to change at the selected internal time knots,

τk. In this analysis, nine equally distributed time knots were selected.
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Then, proportional hazards assumption of each covariate was tested, and the estimated

survival function was derived. The pseudo-observations were calculated for all subjects at

nine selected time knots. The proportionality of each variable is tested using the Gray’s

test [34] provided in the R package cox.spline. According to the results, the covariate effects

of age at time of transplant (p=.006), liver cancer diagnosis (p=.001), and at ICU before

transplantation (p=.021) were significantly changing over time, while the covariate effects

of other covariates were not statistically significantly changing over time (constant). The

estimates of the regression coefficients at each selected time knots are listed in Table 9, Table

10, Table 11, and Table 12.

The plots of the log hazard ratio vs. time for age at transplantation, liver cancer diag-

nosis, and at ICU before transplantation are illustrated in Figure 29, Figure 30, and Figure

31. According to (2.14), the log hazard ratio is expressed by

ln(HR) = ln( h0(t) exp(β′Z)
h0(t) exp(β′Z∗)) = ln(exp(β(t)′(Z − Z∗))) = β(t)′(Z − Z∗) .

Therefore, the trend of β̂(t) can be checked from these plots. Figure 29, Figure 30, and

Figure 31 show that the effects of these three covariates are changing over time, i.e., time-

varying coefficients. The estimates of β̂(t) for all covariates are estimated based on Gray’s

time-varying coefficients model and Cox PH model, and plotted against time in Figure 32

through Figure 35. The estimated β(t) for other covariates show constant over time, which

are time-fixed coefficients.

The fitted model under Gray’s time-varying coefficients model is stated in the final Gray’s

time-varying coefficients model 12.

Based on the final multivariable Gray’s model, pseudo residuals were calculated and the

plots of pseudo residuals against the estimated survival rates at each of the nine selected

time point were constructed. These nine residual plots were then used to evaluate the

goodness-of-fit of the final multivariable Gray’s model (Figure 42 and Figure 43). For Gray’s

time-varying coefficients model, through the first time point and the sixth time point, pseudo

residual plots are around zero, while pseudo residual plots show slight departure at small

value of estimated survival rate through the seventh time point and the ninth time point.
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Since the pseudo residual plots stays around zero at each time point without any significant

departure or tendency, we can conclude that Gray’s model shows a good fit in estimating

survival function at each time point. The conclusion from this real liver transplantation data

is that the final multivariable Gray’s model shows a good fit in estimating posttransplant

survival.
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Table 9: The result of estimated time-varying covariate effect β̂(t) for age at transplant

based on Gray’s time-varying coefficients models and Cox PH models

variables age at transplant

time

points
56 84 140 176 282 360 516 767 1322

estimated

β based

on Cox

(p-vlue)

0.007 (p=.055)

estimated

β based

on Gray’s

-0.0185 -0.0173 -0.011 -0.006 0.003 0.015 0.030 0.036 0.042

Table 10: The result of estimated time-varying coefficient β̂(t) for liver cancer diagnosis

based on Gray’s time-varying coefficients models and Cox PH models

variables liver cancer diagnosis

time

points
56 84 140 176 282 360 516 767 1322

estimated

β based

on Cox

(p-vlue)

1.246 (p<.001)

estimated

β based

on Gray’s

0.588 0.683 0.900 1.210 1.524 1.703 1.719 1.542 1.418
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Table 11: The result of estimated time-varying coefficient β̂(t) for at ICU before transplan-

tation based on Gray’s time-varying coefficients models and Cox PH models

variables at ICU before transplantation

time

points
56 84 140 176 282 360 516 767 1322

estimated

β based

on Cox

(p-vlue)

.0673 (p<.001)

estimated

β based

on Gray’s

0.941 0.906 0.831 0.682 0.586 0.504 0.390 0.322 0.421
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Table 12: The result of estimated time-constant coefficients β̂(t)’s for multiorgan transplant or not (yes/no), disease diagnosis

(acute liver diseases, sclerosis, autoimmune diseases, metabolic liver diseases, and biliary atresia) and location right before

transplantation (out of hospital) based on Gray’s time-varying coefficients models and Cox PH models

Diagnosis group Lpcation

variables multiorgan

transplant

or not

(yes/No)

acute liver

diseases

diagnosis

sclerosis

diagnosis

autoimmune

diseases

diagnosis

metabolic

liver

diseases

diagnosis

biliary

atresia

diagnosis

out of

hospital

before

transplan-

tation

estimated β based

on Cox (p-vlue)

1.920

(p<.001)

.092

(p=.69)

.027

(p=.96)

.044

(p=.89)

.019

(p=.93)

.036

(p=.84)

.137

(p=.36)

estimated β based

on Gray’s

1.914 0.109 0.03 0.045 0.04 0.03 0.146

Final Gray’s time-varying coefficients model:

h(t|Z) = ho(t) exp(β1(t) ∗ age at transplantation+ β2(t) ∗ liver cancer diagnosis+ β3(t) ∗ at ICU before transplantation+ β4 ∗

multiorgantransplantornot+β5∗acuteliverdiseases+β6∗sclerosis+β7∗autoimmunediseases+β8∗metabolicliverdiseases+

β9 ∗ biliary atresia+ β10 ∗ out of hospital

63



Figure 29: Plot of log hazard ratio vs. time for the covariate Z based on Gray’s time-varying

coefficients models and Cox PH model for age at transplant

Figure 30: Plot of log hazard ratio vs. time for the covariate Z based on Gray’s time-varying

coefficients models and Cox PH model for liver cancer diagnosis
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Figure 31: Plot of log hazard ratio vs. time for the covariate Z based on Gray’s time-varying

coefficients models and Cox PH model for at ICU before transplantation

Figure 32: Plot of the estimated effect of covaraite age at transplant, β̂(t), based on Gray’s

time-varying coefficient model and Cox PH model vs. time
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Figure 33: Plot of the estimated effect of covaraite multiorgan transplant or not (yes/no),

β̂(t), based on Gray’s time-varying coefficient model and Cox PH model vs. timel

Figure 34: Plot of the estimated effect of covaraite acute liver diseases diagnosis, β̂(t), based

on Gray’s time-varying coefficient model and Cox PH model vs. time
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Figure 35: Plot of the estimated effect of covaraitesclerosis diagnosis, β̂(t), based on Gray’s

time-varying coefficient model and Cox PH model vs. time

Figure 36: Plot of the estimated effect of covaraite autoimmune diseases diagnosis, β̂(t),

based on Gray’s time-varying coefficient model and Cox PH model vs. time
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Figure 37: Plot of the estimated effect of covaraite liver cancer diagnosis, β̂(t), based on

Gray’s time-varying coefficient model and Cox PH model vs. time

Figure 38: Plot of the estimated effect of covaraite metabolic liver diseases diagnosis, β̂(t),

based on Gray’s time-varying coefficient model and Cox PH model vs. time
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Figure 39: Plot of the estimated effect of covaraite biliary atresia diagnosis, β̂(t), based on

Gray’s time-varying coefficient model and Cox PH model vs. time

Figure 40: Plot of the estimated effect of covaraite at ICU before transplantation, β̂(t), based

on Gray’s time-varying coefficient model and Cox PH model vs. time
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Figure 41: Plot of the estimated effect of covaraitef out of hospital before transplantation,

β̂(t), based on Gray’s time-varying coefficient model and Cox PH model vs.time
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Figure 42: Pseudo residual vs. the estimated survival function based on Gray’s time-varying coefficients model at each time

knot
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Figure 43: Pseudo residual vs. the estimated survival function based on Cox PH model at each time knot
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5.0 CONCLUSION AND DISCUSSION

The Cox proportional hazards model[18] has become the standard for analyzing the effects

of covariates for time-to-event data. However, in practical situations the assumption of

proportional hazards often are not met, and time-varying effect of a covariate, β(t) , is

meaningful and clinically important. Among several methods proposed to estimate time-

varying effect of a covariate via a time varying coefficient β(t) , Gray’s piecewise-constant

time-varying coefficients model [33] was focused in this study. Currently, there is no method

available to assess the overall goodness-of-fit for Gray’s model. In this study, we proposed a

goodness-of-fit method for Gray’s model based on pseudo-observations [7], [8].

One way for assessing the model goodness-of-fit is via residual plots. In survival analysis,

this method is complicated when data involve censoring. There are several reasons why the

graphical methods are difficult for right censored data. One of the reasons is because the

plots require the incorporation of one more dimension, which is the censoring information.

Because censoring time is incompletely observed, it can result in an incorrect relationship

between the survival times and the covariates. In this case, pseudo-observations can be used

to replace the incomplete data due to censoring. In this study, pseudo-observations were

calculated for all individuals at each predetermined time point. Pseudo residual plots based

on pseudo-observations were then used as a graphical diagnostic tool to examine a model

fit. In practice, because many points are overlapped on the residual plots, it is difficult to

evaluate the trends from the plots. To resolve this issue, we suggested to plot smoothed

averages along with the residual plots. Under proper model, there is no trend between

pseudo residuals and estimated survival functions at any time point. If residual plots show

some tendency or departure, it means that there exists lack of fit. Our simulation under

various percentages of censoring gave very similar results.
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Several notes are worth of attention. Censoring must be independent with the event

time and with the covariates in the model to estimate unbiased pseudo-observation. The

choice of the number of time points is not a critical issue since there is almost no difference

between the results based on different numbers of time points. However, some departures

may be presented in early and late time points. These are because either too small or too

large numbers of events happened in a certain time interval to the individuals within certain

ranges of the covariates [73]. Therefore, the plots in early or late time points should be

interpreted with caution. The residual plots give a good initial tool to evaluate the model

fit, but numerical tests should be supported for more accurate test result.
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