Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Mechanisms and Functional Roles of Nuclear Respiratory Factor 1 (NRF1) Binding Sites in the Human Genome

Zhu, Wan (2011) Mechanisms and Functional Roles of Nuclear Respiratory Factor 1 (NRF1) Binding Sites in the Human Genome. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Primary Text

Download (41MB) | Preview

Abstract

Genome-wide studies have suggested that NRF1 regulates transcription of ~5-6% of human genes, including nuclear genes encoding mitochondrial products. My thesis focus is in neural systems in which NRF1 is a master regulator.Prader-Willi syndrome (PWS) results from genetic loss of function of an imprinted domain in human chromosome 15q11.2. I confirmed NRF1 regulation of ~83% of PWS-region genes using chromatin immunoprecipitation (ChIP). Further studies focused on evolution of this region. Uniquely in marsupials, SNRPN and the ancestral SNRPB' gene are adjacent each with an intronic snoRNA paralog. Based on molecular phylogenetics, a model is proposed for origin of each PWS snoRNA from a single ancestral snoRNA. Thus, most extant eutherian PWS genes originated by stepwise duplication and divergence over the past ~180 million years.Circadian rhythms regulate organismal physiology in a 24 hour day-night cycle. Functional NRF1 binding sites in promoters/enhancers were found for ~56% of circadian regulatory genes using bioinformatics, ChIP, NRF1 siRNA assays, and luciferase reporter constructs having significantly reduced transcriptional activity on mutation of NRF1 sites. Further, co-immunoprecipitation showed that NRF1 and the phosphorylated, active form of CLOCK interact in a molecular complex. In serum-induced NIH3T3 cells with circadian oscillations of Dbp and Nr1d1 mRNA, Nrf1 mRNA and protein levels show ultradian oscillations. Hence, NRF1 regulates numerous circadian regulatory genes and interacts with CLOCK, suggesting multiple roles in circadian biology. Additional studies included finding that NRF1 regulates ~45% known hereditary spastic paraplegia (HSP) genes, that NRF1 activates its own transcription, and that the number of NRF1 sites determine the degree of transcriptional activation. In summary, NRF1 is a master regulator in PWS, circadian rhythms, and HSP. Identification of NRF1 target genes and mechanisms will lead to an understanding of the evolution, functions, disease processes, and therapeutic targets within gene regulatory networks involving NRF1. Circadian rhythms are disrupted by travel, shift-work, and in illness, including infection, psychiatric and sleep disorders, obesity, diabetes, and cancer. Consequently, understanding body clocks will provide insights into the pathogenesis of these disorders and potentially lead to improved treatment and prevention options, which will have enormous public health impact.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Zhu, Wanms.wanzhu@gmail.com
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairNicholls, Robert D.robert.nicholls@chp.eduRDN4
Committee MemberFeingold, Eleanorfeingold@pitt.eduFEINGOLD
Committee MemberFerrell, Robert E.rferrell@pitt.eduRFERRELL
Committee MemberGollin, Susanne M.gollin@pitt.eduGOLLIN
Date: 23 September 2011
Date Type: Completion
Defense Date: 14 July 2011
Approval Date: 23 September 2011
Submission Date: 25 July 2011
Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
Institution: University of Pittsburgh
Schools and Programs: Graduate School of Public Health > Human Genetics
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: circadian rhythms; NRF1; prader-willi syndrome; transcription factor
Other ID: http://etd.library.pitt.edu/ETD/available/etd-07252011-180258/, etd-07252011-180258
Date Deposited: 10 Nov 2011 19:53
Last Modified: 19 Dec 2016 14:36
URI: http://d-scholarship.pitt.edu/id/eprint/8605

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item