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Prognostic markers for risk of recurrence or mortality are becoming very popular and 

important in the decision making process of cancer patients and their physicians. Those with 

good prognostics can avoid unnecessary chemotherapies and the resulted agony. The receiver 

operating characteristic (ROC) curves are often used to assess and compare prognostic markers 

for binary outcomes. However, they cannot be directly used in assessing prognostic markers for 

time-to-event outcomes, which are usually subject to censoring. Recently several statistical 

methods such as the C–index, time-dependent ROC curve and the predictiveness curve have 

been developed for this purpose. In early stage estrogen receptor-positive (ER+) breast cancer, 

the 21-gene panel Oncotype DX assay and the Adjuvant!, based on age, tumor size and grade and 

other clinical variables, are widely used tools for patient prognosis and provide guidance in 

decision making. The recurrence score (RS) from the Oncotype DX assay and a risk index (RI) 

summarized from Adjuvant! both provide quantitative evaluation of recurrence risk. Here we 

applied those recently developed statistical methods to compare the prognostic utility of RS and 

RI in ER+, node-negative (N0), and tamoxifen-treated breast cancer patients enrolled on the 

National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 trial. We showed that the 

RS was a stronger prognostic marker than RI, and combining RS with clinical variables also 
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improved the prognostic utility in the NSABP B-14 trial. The results will help to improve 

treatment decision for breast cancer patients in public health practice. 
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1.0  INTRODUCTION 

A clinical marker that recognizes or predicts health- and physiology-related event is an 

important subject in medicine. The event can be the diagnosis of certain disease, the recurrence 

of cancer, treatment response, or mortality, etc. Effective markers may lead to change in clinical 

practice in selecting the further proper diagnosis process or treatment.  

Many clinical trials collect measurements of a disease marker and time to an interested 

clinical event. In datasets with time-to-event endpoints, there are usually two types of 

observations: one is that the event actually occurred during the study and the actual time when 

the event occurred in the study subject is recorded; the other type of observation is that the event 

did not occur during the study period and we only know the last time point when the subject was 

still event-free. The latter observations are often called censored observations in the literature. 

For example, in a breast cancer clinical trial, the event of interest is the time to recurrence after 

surgery. However, if a patient passed away because of the heart failure but had been recurrence-

free, we only know that this patient was recurrence-free at the time when he or she died. Then 

this patient is censored at the time when he or she died while the risk of recurrence is the primary 

interest. Usually there are two primary causes of censored data: one is that a panel study often 

has limited length of study period and not all of observations will experience the event of interest 

by the end of the study; the other one is that some observations are lost to follow-up during the 

study. In statistical analyses of the time-to-event data, censored observations need to be taken 
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into account even though the actual event time was not observed. Cox proportional hazards 

models provide a popular and flexible analytical tool for studying the association between 

important predictors or covariate and the risk of the event of interest in analysis of censored data. 

For clinical guidance, we often need to compare different markers or predictors to choose 

the better prognostic marker or identify a better treatment regimen. Some statistical methods 

were developed to evaluate the performance of prognostic markers for risk of an event where the 

event time is subject to censoring. They are C–index (Harrell et al., 1982; Pencina et al., 2004; 

Uno et al., 2009), time-dependent ROC (Heagerty et al., 2000 & 2005) and predictiveness curve 

(Pepe et al., 2007). In this thesis, we will describe these methods and illustrate them via 

comparing two prognostic markers for recurrence risk in early stage breast cancer using data 

from the NSABP B–14 trial. 

C-index is often used in medical literatures to quantify the ability of estimating the risk 

score with censored or non-censored data. In the case of censored data, the C-index estimates the 

concordance between the actual survival time and the predicted risk estimated from a Cox 

proportional hazards model. 

A receiver operating characteristic (ROC) is a standard tool to evaluate the predictive 

utility of a continuous diagnostic measure on a binary outcome, which is based on the notions of 

specificity and sensitivity. It is important to identify the diagnostic accuracy of quantitative 

diagnostic measures throughout the whole range of those measures, and helps to assess the 

optimal cutoff value of the diagnostic measure (Tripep et al., 2009). The result of the diagnosis 

model is dichotomous, which is either positive (has the disease or event) or negative (does not 

have the disease or event). Meanwhile, sensitivity and specificity are two types of statistical 

measures to assess the performance capability of a binary classification test: sensitivity is to 
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measure the proportion of the actual positive results that are correctly assessed as positive; 

specificity is the proportion of the actual negatives that are correctly assessed as negatives. The 

ROC is a graphical plot which y-axis shows the sensitivity or true positive rate, and x-axis shows 

false positive rate (1 − specificity or 1 − true negative rate) . Initially, the ROC curve is designed 

for continuous (biological) marker X and a binary outcome D. However, for a time-to-event 

outcome that is subject to censoring, the time-dependent ROC curves should be considered 

because this method extends the concepts of sensitivity and specificity to time-varying binary 

variables that the traditional ROC does not include (Heagerty et al., 2000). So when the binary 

outcome is a time-dependent indicator function D(t), where D(t) = 1 when the event occurred 

prior to time t and zero otherwise, the ROC curves as a function of time is more appropriate. 

Two types of time-dependent ROC curves are considered in this thesis (Heagerty et al., 2000). A 

simple one is directly based on Bayes’ theorem and the Kaplan-Meier estimator for each possible 

threshold value c. But this method may cause the problem of non-monotone sensitivity and 

specificity functions in X. An alternative method is based on a nearest neighbor estimator (NNE) 

and guarantees to yield monotone ROC curves. This estimator is provided by the bivariate 

distribution function of (X, T), where T is event time. For assessment of prognostic models of 

discrimination, the area under the receiver operating curve (AUC) is a wild using tool. In this 

thesis, we will use this tool to compare the performance of two clinical markers: the Recurrence 

Score (RS) derived from Oncotype DX assay and Adjuvant! Online risk index (RI). 

The predictiveness curve, which describes the distribution of disease risk prediction, is 

another approach for evaluating the marker performance in prognostic. It is a graphical plot 

where the y-axis is the risk percentile and the x-axis is the risk score from fitting a Cox 

proportional hazards model. Thus the predictiveness curve is considered to assess the efficiency 
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of risk model when the marker is applied to the population. It is useful to evaluate the risk 

associated with clinical population and the performance of marker. In the censored data, we will 

use the Cox proportional hazards model as the risk model. 

1.1 TWO PROGNOSTIC MARKERS FOR BREAST CANCER 

Early stage (I or II) breast cancer is the cancer has not spread beyond the breast which 

can be invasive or non-invasive. It has the highly heterogeneous molecular pathology that can be 

used to predict the prognosis and evaluate the therapy. For example, the molecular prognostic 

factor may identify patients with low rate of the cancer recurrence, and those people can gain 

benefit through shunning chemotherapy that all patients usually receive, because the 

chemotherapy regimens only have a little benefit for those people with low recurrence rate 

(Dowsett et al., 2010). Since there is about 15 percent of distant recurrence in women with 

primary breast cancer who were treated with tamoxifen after breast cancer surgery, about 85 

percent of those patients with surgery may be over treated with the chemotherapy if it is given to 

everyone after surgery (Paik et al., 2004). Therefore identifying the risk of distant recurrence and 

potential benefit from chemotherapy is highly important for the patients; and the accurate 

prognostic can be used for guiding treatment after breast cancer surgery. Without such risk 

assessment as a reference for treatment decision, it is difficult for physicians to decide whether or 

what type of chemotherapy might be most suitable for those patients who have received breast 

surgery. There are many molecular factors which have been found for predicting the recurrence 

of primary breast cancer patients. But only few of them play the important roles to guide the 

treatment decision making. Recurrence Score (RS) derived from Oncotype DX assay and 
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Adjuvant! Online risk index (RI) are two prognostic markers in ER+ early stage breast cancer 

(Ravdin et al., 2001; Dowsett et al., 2010; Tang et al., 2011). 

The RS derived from Oncotype DX assay is a diagnostic test for tamoxifen-treated 

women with node-negative and estrogen receptor-positive types of breast cancer. It can 

significantly help to indicate how likely the distant recurrence happens in breast cancer patients 

who undergo with or without hormonal therapy and/or chemotherapy. This assay use high-

throughput real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) method to 

identify gene expression with formalin-fixed paraffin embedded tissue sections. Oncotype DX 

assay is a validated 21-gene assay within a tumor to determine a Recurrence Score, which is to 

investigate how they are expressed or how active they are. The RS result of the test is a number 

between 0 and 100 that correlates with the specific likelihood of breast cancer recurrence within 

10 years after the initial diagnosis. It has been identified that the tamoxifen-treated patients who 

have high RS result will gain benefit from the additional chemotherapy and the low RS patients 

only have a little benefit from the additional chemotherapy (Dowsett et al., 2010). 

Adjuvant! Online risk index is a prediction tool for risk of breast cancer related death at 

10 years based on Surveillance, Epidemiology, and End Results (SEER) registry data (the web 

site is http://www.adjuvantonline.com) (Figure 1). Adjuvant! Online risk index is based on those 

variables which were input into the web database: tumor grade (1, 2 or 3), ER status (negative or 

positive), and tumor size (0.1 to 1, 1.1 to 2, 2.1 to 3, 3.1 to5, or > 5 cm). The risk score is often 

used to estimate the following status: risk of cancer-related mortality or recurrence without 

therapy; risk of reduction with therapy and risk of side effects from therapy. But RI also has 

some limitations, like that some important prognostic factors as HER2 status are not inclusive 

and small tumors are not characterized well (Paik et al., 2004). 
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Figure 1 is an example of the data input screen for the online version of Adjuvant! 

(http://www.adjuvantonline.com/index.jsp). This patient is a 55-year-old woman who had a 1.5 

cm, grade 2, N0 and ER+ breast cancer and was treated with tamoxifen and CMF–like 

chemotherapy. Without receiving additional therapy, at 10 years, the chance for this woman to 

be alive and recurrence-free is 72%, the chance of having recurrence is 24.6% and the chance of 

dying from other causes is 3.4%. Had she received the hormonal therapy, her chance of being 

alive without recurrence at 10 years would increase by 8.8%. However, the corresponding 

benefit from a CMF-like chemotherapy instead of tamoxifen would be 3.6% at 10 years. After all, 

taking both tamoxifen and a CMF-like chemotherapy will increase her chance of being alive 

without recurrence at 10 years by 11.2%. 

 

 

Figure 1.  Data input screen for Adjuvant! Online 
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Both markers, RS and RI, are important for the prognostic and predictive in breast cancer 

patients treated with hormonal therapy and companied with or without adjuvant systemic therapy 

in node-negative and estrogen receptor-positive types. So it is clinically important to compare 

and evaluate the utility of prognostic and predictive among two markers and other factors like 

tumor size, tumor grade and patient age. For reaching this goal, we will calculate and evaluate 

the ten-year predicted risk of any distant recurrence or mortality from the dataset including RS 

and RI. 

1.2 THE EXEMPLARY DATASET 

National Surgical Adjuvant Breast and Bowel Project (NSABP) trials B-14 is a large 

clinical trial to assess whether tamoxifen and chemotherapy is more effective in the patients who 

have node-negative (N0) and estrogen receptor-positive (ER+) primary breast cancer. 

In NSABP trial B-14 (entitled “A Clinical Trial to Assess Tamoxifen in Patients with 

Primary Breast Cancer and Negative Axillary Nodes Whose Tumors Are Positive for Estrogen 

Receptors”), 2892 breast cancer patients N0 and ER+ were randomly assigned to 5 years of 

placebo or 5 years of tamoxifen from January 4, 1982 to January 25, 1988, and an additional 

1235 breast cancer patients were registered to receive 5 years of tamoxifen treatment from 

January 26, 1988 to October 17, 1988. In this whole study, 101 patients were ineligible or 

without follow-up, 2992 patients did not have tumor blocks or no sufficient tissues for the RT-

PCR assay, 11 patients were no successful RT-PCR. At the end, the Oncotype DX assay was 

successfully on 1023 patients with 355 of them enrolled on the placebo arm and 668 of them 

enrolled on the tamoxifen arms. In this thesis, our analyses were based on data from those 668 
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tamoxifen-treated patients. This study of the recurrence score was approved by the Essex 

Institutional Review Board (Lebanon, N.J.) and by the institutional review boards of Allegheny 

General Hospital and the University of Pittsburgh (both are in Pittsburgh) (Tang et al., 2011). 

Distant recurrence-free interval (DRFI), the time between patient entry and the first 

distant recurrence occur, is considered as the primary endpoint in this thesis because the distant 

recurrence is the direct clinical consequence for early stage breast cancer. The censoring events 

were contralateral breast cancer, non-breast second primary cancer or deaths before distant 

recurrence. Loco-regional were not counted either as events or as censoring events. 

Ligand-binding assay was used to determine the ER-positivity for eligibility in the B–14 

trial. And Elston modification of Bloom-Richardson grading criteria was used to determine 

tumor grade of all patients with Oncotype DX assay by a broad-certified pathologist from 

Stanford University (Elston et al., 1991). 

In this thesis, the continuous percentiles of Recurrence Score and Adjuvant! Online risks 

index (RS-PCT and RI-PCT) were used for an appropriate comparison of those two markers. The 

range of RS-PCT and RI-PCT is from 0 to 100. So we divided them by 50 and re-scaled to a 

range from 0 to 2 in Cox proportional hazards model as in Paik et al. (2004). Thus the associated 

hazards ratio (HR) of two markers is comparable to those HRs that are associated with the 

traditional clinical variables such as patient age, tumor size and tumor grade (Tang et al., 2011). 
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2.0  METHODS 

2.1 C-INDEX 

For modern clinical medicine, we need to measure the model validation of discrimination. 

We hope that our approach is to meet this expectation for testing the probability that longer 

predicted survival time is actually survive longer without experiencing the event of interest. For 

the purpose, the risk score system has been established for the assessment in a period of 

development of cardiovascular disease (CVD), cancer or other conditions of personal risk by 

Framingham study (Anderson et al., 1991; D’Agostino et al., 2008; Shariat et al., 2008; Parikh et 

al., 2008). A key component of performance of a risk assessment algorithm is the ability to 

distinguish who will (“cases”) and who will not (“controls”) develop these events (Uno et al, 

2011). In the research of AUC which is the area under the observed Receiver Operating 

Characteristics (ROC) curve, this discrimination concept has been well used and studied that is 

called as a “C-statistic” (Bamber, 1975). This statistics is the conditional probability estimation 

of the predicted risk of the “case” for any pairs of “case” and “control” (Hanley & McNeil, 1982). 

And a widespread used nonparametric C-index was suggested by Harrell et al. (1984). 

We assume that {X1, X2 …,Xn} are the covariate vector in a study. Cox proportional 

hazards model (Cox, 1972) is one of the standard methods to analyze the censored data. The Cox 

proportional hazards model has the following form for the hazard function: 
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 '
0 1 1 0( | ) ( )exp( ... ) ( )exp( )n nt X t X X t Xλ λ β β λ β= + + =  

Where 0 ( )tλ  is the baseline hazard function and β  represents the regression parameters. 

In the following context, β  is denoted as the maximum partial likelihood estimator for 'β . Then 

the larger the value of Xβ , the higher the risk of recurrence for a subject with the covariates X. 

Denote {Yi, i = 1, …, n } as the event time for subjects and, for simplicity, assume that they are 

all observed in the following description. Now all the different pairs were considered as {(  iXβ , 



jXβ , Yi, Yj), i, j = 1, …, n; I < j} (so there is no duplication). For a given pair, If  iXβ  <  jXβ  

and Yi < Yj or  iXβ  >  jXβ  and Yi > Yj (the inequalities go in the same direction), we consider 

that this pair is concordant. And if  iXβ  <  jXβ  and Yi > Yj or  iXβ  >  jXβ  and Yi < Yj, this pair 

will be called as discordant. However, not all of them are either concordant or discordant 

because in the construction of our index, we can use only those pairs which at least one subject 

had an event. For us, this match is usable. If at the end of the study, the two subjects do not 

develop any events, we cannot compare them in our predictions. Formed by the pairing of this 

subjects will be called as unusable. A commonly used concordance measure is: 

C = Pr (  iXβ  <  jXβ  and Yi < Yj or  iXβ  >  jXβ  and Yi > Yj)  

In reality, not all event times are observed. The discordance between observed event time 

or censored time and the estimated risk of event, from a Cox model, can only be performed on 

certain pairs of observations (Harrell et al., 1982). In general, the C-index is to measure the 

probability of concordance between predicted and observed observations with censored data. If 

C = 0.5, the prognostic model is random prediction like the coin-flip to determine which patients 
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will live longer, and if C = 0 or 1, the prognostic model has a perfectly discriminating capability 

(Harrell et al., 1982). 

Pencina M.J and D’Agostino R.B suggested a method to calculate the confidence interval 

for C-index in 2004. Assuming that N = k + n (k is the events number and n is the non-events 

number) and Ch was the number of subjects concordant with the hth individual in the dataset (h = 

1, …, N), this following equation was introduced as following: 

 h hj
h j

c c
≠

=∑  

(chj = 1 if  hXβ  <  jXβ  and Yh < Yj or  hXβ  >  jXβ  and Yh > Yj; otherwise chj =0) 

Then the unbiased estimates of probability of concordance (pc) and discordance (pd) can 

be calculated as:  

 1
( 1)c h

h
p c

N N
=

− ∑  

 1
( 1)d h

h
p d

N N
=

− ∑  

Where dh is the number of subjects discordant with the hth individual in the dataset. Then 

the predicted C can be calculated as: 

 
c

c d

pC
p p

=
+

 

So confidence interval of the C can be calculated from the estimated probabilities of 

concordance and discordance. The statistics can be given by following equation (Pencina & 

D’Agostino, 2004): 

2 4 ( (1 )2
2(1 ) 2(1 )

w w c cw c
w w

+ −+
±

+ +

 

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Where
2

/22
( )c d

zw
N p p

α=
+

 

2.2 TIME-DEPENDENT ROC 

Sensitivity and specificity are two statistical measures to assess the performance 

capability of a dichotomous marker, in which the outcomes are labeled either as positive or 

negative. Sensitivity measures the proportion of the actual positive results that are correctly 

assessed as positive. Specificity measures the proportion of the actual negatives that are correctly 

assessed as negatives. 

However, continuous markers are frequently used in clinic trial. The ROC curve often 

uses to present the sensitivity and specificity of a continuous marker. ROC curve is an effective 

and commonly used method for evaluating the performance of diagnostic tests by displaying 

sensitivity and specificity of continuous diagnostic markers (X) with various cut-offs in their 

ranges for predicting a binary disease outcome (D). General description and discussion of ROC 

can be found in Swets (1982), Hanley (1989), Begg (1991), Zweig (1993), and Pepe (1999). 

Assuming that X is the marker and D is the binary indicator of disease or event status, let c be a 

value in the range of X. Without loss of generality, a practical diagnosis using X will associate 

any subject with X greater than c as an event and any subject with X less than or equal to c as 

event-free. Therefore each c is associated with a value of sensitivity, that is, pr (X > c | D = 1), 

and a value of specificity, pr (X ≤ c | D = 0). The ROC curve is a plot of the sensitivity of the 

marker X versus 1 – specificity for all possible threshold values c. So the ROC curve is a 

monotonically non-decreasing function. The larger the area under the ROC curve in the plot, the 
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better is the diagnostic capacity of the marker for distinguishing between two diagnostic groups 

(diseased versus normal).  

In the classic ROC analysis, the disease status is fixed over time. However, in clinic 

research, many disease outcomes or interested event status can change over time. For example, a 

subject may be event-free for a certain time period and the event occurs later on. To analyze the 

time-to-event or censored data using the ROC method, Heagerty, Lumley and Pepe proposed a 

time-dependent ROC curve method (Heagerty et al, 2000). They extended the concepts of 

sensitivity and specificity to time-varying binary variables so that time-dependent ROC curve 

could be allowed to evaluate the performance of diagnostic tests for outcome variables that are 

subject to censoring or time-varying. Two types of time-dependent ROC curve are considered in 

this thesis and both of them can analyze the time-to-event data. The first method directly uses the 

Kaplan-Meier estimate and Bayes’ theorem (Kaplan and Meier, 1958) to produce the time-

dependent sensitivity and specificity, but it may lead to a non-monotone sensitivity or specificity 

function.  

Let Ti be the event time and Xi be the marker value for subject i. Let Ci denote the 

censoring time, Zi the min (Ti, Ci) during the follow-up time, and δi the censoring indicator as δi 

= 1 if Ti ≤ Ci and δi = 0 if Ti > Ci. Let Di (t) = 1 if Ti ≤ t and Di (t) = 0 if Ti > t. Recall the classic 

sensitivity is P (X > c | D = 1) and the classic specificity is P (X ≤ c | D = 0). Then the sensitivity 

and specificity of time-dependent function can be defined as:  

         Sensitivity (c, t) =P{X > c | D (t) =1} 

         Specificity (c, t) =P{X ≤ c | D (t) =0} 

And with simply using the Bayes’ theorem, the sensitivity and specificity of time 

dependent function can be rewritten as: 
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 {1 ( | )} ( ){ | ( ) 1}
{1 ( )}

S t X c P X cP X c D t
S t

− > >
> = =

−
 

 ( | ) ( ){ | ( ) 0}
( )

S t X c P X cP X c D t
S t
≤ >

≤ = =  

Where S (t) is the survival function S (t) = P (T > t) and the S (t | X > c) is the conditional 

survival function when X > c. 

With the Kaplan-Meier survival estimator and the empirical distribution function of the 

marker covariate X, a simple estimator of the time dependent sensitivity and specificity is given 

by as the following (Heagerty et al, 2000): 

 

 



{1 ( | )}{1 ( )}{ | ( ) 1}
{1 ( )}

XKM
KM

KM

S t X c F cP X c D t
S t

− > −
> = =

−
 

 

 



( | ) ( ){ | ( ) 0}
( )

XKM
KM

KM

S t X c F cP X c D t
S t

≤
≤ = =  

Where  

 

,

( )
( ) {1 }

( )
n

j jj
KM

s T s t jj

I Z s
S t

I Z s

δ

∈ ≤

=
= −

≥
∑

∏ ∑  

  ( ) ( ) /X iF c I X c n= ≤∑  

The second method can avoid the nonmonotonic problem which is based on the bivariate 

distribution function, F(c, t) = P (X ≤ c, T ≤ t), or equivalently S(c, t) = P (X > c, T > t), provided 

by Akritas (1994). 

The estimates of sensitivity and specificity of nearest neighbor estimator (NNE) can be 

given as the followed (Heagerty et al, 2000): 

 

 



[{1 ( )} ( , )]{ | ( ) 1}
{1 ( )}

X n
n

n

F c S c tP X c D t
S t

λ
λ

λ

− −
> = =

−
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Where  

  

1( , ) ( | ) ( )n n i i
i

S c t S t X X I X c
n

λ λ= = >∑  
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,

( , ) ( )
( | ) {1 }

( , ) ( )
n

n j i j jj
n i

s T s t n j i jj

K X X I Z s
S t X X
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λ

λ

λ

δ

∈ ≤

=
= = −

≥
∑

∏ ∑  

To examine the performance of two time-dependent ROC curves, we can use the non-

parametric method developed by DeLong (Delong et al., 1988). This method is to compare the 

AUC which can be interpreted as the probability that a randomly selected event or diseased case 

greater than a randomly selected non-event or no diseased case. From DeLong’s method we can 

calculate the confidence interval for the AUC of time-dependent ROC which can compare the 

different marker performance under special time.  

Another way to compare two markers with time-dependent ROC is the bootstrap method. 

Based on the functional central limit theorem, the bootstrap method can provide the 

asymptotically valid confidence limits of the AUCs of the ROC curves at time t.  

In this thesis, we use the DeLong’s method to develop the confidence interval to compare 

the two time-dependent ROC curves for examining the performance of RS and RI. 

2.3 PREDICTIVENESS CURVE 

The predictiveness curve proposed by Bura & Gastwirth (2001) and Copas (1999) shows 

the analysis combined concepts of risk prediction model and population distribution of risk and 
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marker. To evaluate how markers predict the cancer risk well, we need to quantify the capability 

of markers with identifying the cancer risk in population for the modern clinical research. It 

provides a useful approach for assessing the capacity of model and the clinical utility of the 

marker for stratifying the population according to risk. In this thesis, we present this plot of 

estimated risk versus the corresponding percentile of the marker for evaluation of the marker 

performance. 

Using the fitted risk model, we can develop the individual estimated risk utilizing their 

risk factors from the given data. Assuming that D is the event status, X is the marker and F is the 

cumulative distribution function (CDF) of the maker, the predictive risk of marker with the vth 

percentile is as the following (Huang et al., 2007): 

R (v) = P [D = 1 | X = F-1(v)],     0<ν<1 

In this thesis, we use Cox proportional hazards model to calculate the predicted risk at 10 

years and D is the indicator of event status at 10 years.  

Then we order the individual estimated risk from lowest to highest as percentile. To 

create the curve, we plot the marker percentile as the x-axis and the predictive risk as the y-axis. 

In the predictiveness curve, the plot graph shows that the distribution of disease risk in 

the target population associated with the marker. As Huang (2007) suggested that from the plot 

graph, R−1 (p), the proportion of the population with risks less than p, can be most easily seen in 

the plot itself. We can mathematically write the association in following equation (Huang et al.; 

2007): 

R-1(p) =P [risk (X) < p] 
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So R−1 (p) is the cumulative distribution of disease risk (X). Correspondingly R (v) is the 

100 × vth percentile of disease risk in the population. This description is simple and useful to 

display a marker capability for predicting the disease risk. 

The disease prevalence in the population, ρ, is a great useful benchmark to assess the 

predictiveness curve because between the curve and the horizontal line at ρ, the area above and 

below the horizontal line is equal (Huang et al., 2007). In other words, ρ is the equal risk for all 

subjects in this population and the perfect marker predictiveness curve is a horizontal line at ρ. 

Therefore the steeper predictiveness curve indicates a better marker predictive capability. 

We can compare the different risk models with their predictiveness curves. R-squared 

statistic is one approach to compare the different risk models (Pepe et al., 2007). The R-squared 

value can be interpreted as the percentage of variation in the disease explained by the predicted 

model. The R-squared value can be calculated as giving formula from the predictiveness curve 

(Pepe et al., 2007): 

 
12 2

0
( ( ) ) / (1 )R pred v dvρ ρ ρ= − −∫  

Where ρ is disease prevalence in the study population and pred (v) is the risk value at the 

vth percentile. 
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3.0  RESULTS 

3.1 KAPLAN-MEIER CURVES 

In the B–14 trial, RS-PCT was continuous from 2.69 to 100 and RI-PCT was discrete 

which has 15 subgroups for all 668 objects from 8.23 to 100. The Kendall's tau rank correlation 

between RS and RI was 0.273 (P < 0.001), and Spearman's rank correlation was 0.378 (P < 

0.001). It shows that the correlation between RS and RI is at most moderate (Figure 2). 

 

 

Figure 2.  Scatter plot of RI-PCT and RS-PCT 
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According the published paper, in the B–14 trial the 668 estimated tamoxifen-treated 

patients were separated to three strata with the RS-PCT: 334 patients (50%) are in the low RS 

subgroup (RS-PCT < 50), 153 patients (22.9%) are in the intermediate RS subgroup (50 ≤ RS -

PCT < 73) and the rest of 181 patients (27.1%) are in the high RS subgroup (Tang et al., 2011). 

With the similar distribution as RS-PCT, the RI-PCT was divided into three subgroups: 352 

patients (52.7%) were in the low RI subgroup (RI-PCT < 53), 125 patients (18.7%) were in the 

intermediate RI subgroup (53 ≤ RI-PCT < 72) and 191 patients (28.6%) were in the high RI 

subgroup (RI-PCT ≥ 72). 

 

 

Figure 3.  RS-PCT Kaplan-Meier curves by RS risk groups 
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Figure 4.  RI-PCT Kaplan-Meier curves by RI risk groups 

 

From the Kaplan-Meier plot, the estimating survival time of low risk subgroup was 

obvious longer than other two subgroups in both markers (Figure 3, 4), and the p-value (P < 

0.0001) also validated this result. However, in the RI, the two curves of intermediate risk and 

high risk subgroups were almost coincide and the p-value was 0.646 (Figure 4). In the RS, the 

estimating survival time of intermediate risk subgroup were still obviously longer than the 

estimating survival time of high risk subgroup (P = 0.00194) (Figure 3). These results indicate 

that the RS have better capability in the prognosis than RI especially between intermediate and 

high risk subgroups. 
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3.2 COX PROPORTIONAL HAZARDS MODEL 

The Table 1 shows the multivariate Cox proportional hazards model for six models with 

RS-PCT, RI-PCI and other traditional clinical predictors. Instead of using the original score, the 

RS-PCT and RI-PCT were divided by 50 respectively as described before. Thus the RS-PCT / 50 

and RI-PCT / 50 ranged from 0 to 2. Furthermore, the age was recorded as binary variable (0 is ≤ 

50, 1 is > 50), and the tumor grade was rearranged as dummy variable (moderate vs well, poor vs 

well). And the tumor size range was from 0 to 13 (cm). In this table, -2 LOG L is the -2 

logarithm of the likelihood function. 

From the Cox proportional hazards model with RS-PCT / 50 and RI-PCT / 50 

respectively, the hazard ration (HR) of RS-PCT / 50 was 3.610 (95% CI = 2.486, 5.242), HR 

with RI-PCT / 50 was 2.874 (95% CI = 1.953, 4.229) and both of markers were statistically 

significant (P < 0.0001). Whereas, the -2 LogL of RS-PCT / 50 (1306.525) was smaller than RI-

PCT / 50 (1326.616), which means Model 1 is better than Model 2. Model 5 and Model 6 were 

RS-PCT / 50 and RI-PCT / 50 combining the traditional clinic pathologic factors: patient age, 

tumor size and tumor grade. In Model 5, the hazard ration of RS-PCT / 50 was 2.324 (CI = 1.553, 

3.477) and the p-value was statistic significant (P < 0.0001). However, in Model 6, the hazard 

ration of RI-PCT / 50 was 1.007 (CI = 0.540, 1.880) and the p-value was not statistic significant 

(P = 0.9813). So with the traditional clinic pathologic predictors, RS-PCT had much more power 

in the prediction of recurrence risk than RI-PCT.  
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Table 1. Multivariate Cox proportional hazards models for RI-PCT/50, RS-PCT/50 and the traditional clinic 

pathologic predictors in B-14 trial 

model variables Hazard ration (95% CI) p -2 LOG L 
Likelihood 

Ratio 
1 RS-PCT/50 3.610 (2.486, 5.242) <0.0001 1306.525 <0.0001 
2 RI-PCT/50 2.874 (1.953, 4.229) <0.0001 1326.616 <0.0001 
3 Age (>50 vs<=50) 0.707 (0.479, 1.044) 0.0815 1299.237 <0.0001 

 
Tumor size 1.188 (1.075, 1.313) 0.0007 

  
 

Grade (moderate vs well) 1.842 (1.043, 3.255) 0.0353 
  

 
Grade (poor vs well) 4.850 (2.786, 8.444) <0.0001 

  4 RS-PCT/50 2.825 (1.910, 4.180) <0.0001 1296.459 <0.0001 

 
RI-PCT/50 1.925 (1.273, 2.910) 0.0019 

  5 RS-PCT/50 2.324 (1.553, 3.477) <0.0001 1280.757 <0.0001 

 
Age (>50 vs<=50) 0.773 (0.522, 1.143) 0.1964 

  
 

Tumor size 1.181 (1.061, 1.313) 0.0023 
  

 
Grade (moderate vs well) 1.382 (0.768, 2.487) 0.28 

  
 

Grade (poor vs well) 2.807 (1.521, 5.179) 0.001 
  6 RI-PCT/50 1.007 (0.540, 1.880) 0.9813 1299.236 <0.0001 

 
Age (>50 vs<=50) 0.708 (0.479, 1.046) 0.0826 

  
 

Tumor size 1.187 (1.039, 1.357) 0.0119 
  

 
Grade (moderate vs well) 1.834 (0.920, 3.654) 0.0847 

  
 

Grade (poor vs well) 4.819 (2.225, 10.437) <0.0001 
   

3.3 C-INDEX 

Table 2 shows that the C-index results of RS-PCT, RI-PCT and traditional clinic 

pathologic predictors for B-14 trial. The 95% confidence interval was calculated from 

conservative confidence interval method of C-index.  

In Table 2, the C-index number of RS-PCT was 0.711 (CI = 0.615, 0.808) and the 

number of RI-PCT was 0.664 (CI = 0.563, 0.765). This result showed that the RS-PCT had the 

better capability in the prediction than the RI-PCT even the confidence interval measure was not 
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significant. Nevertheless, combination of two markers and adding the traditional clinic 

pathologic predictors to RS-PCT could not significantly increase the capability of prediction. 

Therefore, in the C-index method, the single RS model is the best choice for prediction of the 

clinic practice.  

 

Table 2.  Point estimates of the C-Index and their 95% confidence intervals (CI) under various Cox models with 

different sets of covariates 

Included Covariates C-Index Lower 95%CL Upper 95%CL 
RS-PCT 0.711 0.615 0.808 
RI-PCT 0.664 0.563 0.765 

age, size & grade 0.613 0.504 0.721 
RI-PCT + RS-PCT 0.719 0.624 0.815 

RS-PCT + age, size & grade 0.714 0.618 0.81 
 

3.4 TIME-DEPENDENT ROC 

Ten years are usually used as a time point to evaluate the prognosis of an early stage 

breast cancer patient. In average, an N0 and ER+ breast cancer patient often has 10% - 20% 

chance to experience recurrence in ten years after treatment. Figure 5 shows the time-dependent 

ROC curve at 10 years by using the nearest neighbor estimator (NNE) with a span λn = 6.8%. 

The relative small λn could develop moderate smoothing curve which might promote the 

comparison capability between the NNE and Kaplan-Meier estimator. The Figure 6 may have 

monotonicity violations since it used the simple Kaplan-Meier method. Figure 5 is very similar 
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to the Figure 6, but it may ensure that the estimates of the sensitivity and specificity are 

monotone.  

 

 
Figure 5.  Time-dependent ROC curves at 10 years based on the nearest neighbor estimator (NNE) for B-14 trial. 

The thicker line represents the curve for RS-PCT and the thinner line represents the curve for RI-PCT. 

 

In Figure 5 and Figure 6, ROC curves show that, at ten years, the RS-PCT is better than 

RI-PCT, because for any fixed specify, the RS-PCT are always more sensitivity compared to RI-

PCT in NEE and KM methods. For example, in the NNE estimator if we use 71.25 as the 

percentile threshold for distant recurrence at 10 years in RI-PCT ( this is the high risk cutoff 

point for RI-PCT), 73.43% patients who did not have recurrence at ten years will be predicted to 

distance recurrence-free (specificity) while use the RI-PCT, P { RI-PCT ≤ 71.25 | D (10) = 0} = 

0.73, and 41.66% patients who did have recurrence will be predicted to have distance recurrence 

(sensitivity), P{ RI-PCT > 71.25 | D (10) = 1} = 0.42. Moreover, With the RS-PCT, when we use 
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68.11 as the percentile threshold for assessing distant recurrence at 10 years, 73.43% patients 

who did not have recurrence at ten years will be predicted to distance recurrence-free (specificity) 

while use the RS-PCT, P {RS-PCT ≤ 68.11| D (10) = 0} = 0.73, and 62% patients who did have 

recurrence will be predicted to have distance recurrence (sensitivity), P {RS-PCT > 68.11| D (10) 

= 1} = 0.62 (Figure 5). 

 

 
Figure 6.  Time-dependent ROC curves at 10 years based on the Kaplan-Meier estimator for B-14 trial. The thicker 

line presents the curve for RS-PCT and the thinner line presents the curve for RI-PCT. 

 

Nevertheless, in the Kaplan-Meier time-dependent ROC curve, if we use 71.25 as the 

percentile threshold for the distant recurrence at 10 years, 73.43% patients who did not have 

recurrence at ten years will be predicted to distance recurrence-free (specificity) when use the 

RI-PCT, P {RI-PCT ≤ 71.25 | D (10) = 0} = 0.73, and 39% patients who did have recurrence will 

be predicted to have distance recurrence (sensitivity), P {RI-PCT > 71.25 | D (10) = 1} = 0.39. 
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With the RS-PCT, when the percentile threshold of the distant recurrence at 10 years is set at 

68.11, 73.43% patients who did not have recurrence at ten years will be predicted to distance 

recurrence-free (specificity) while use the RS-PCT, P {RS-PCT ≤ 68.11 | D (10) = 0} = 0.73, 

and 61.96% patients who did have recurrence will be predicted to have distance recurrence 

(sensitivity), P {RS-PCT > 68.11 | D (10) = 1} = 0.62 (Figure 6). Above results suggest that 

these methods have the coincident results. It demonstrates that RS-PCT is a more efficient 

diagnosis marker for the recurrence of breast cancer patients. 

Another common statistic method based on time–dependent ROC curve to compare two 

markers in diagnostic test is the AUC. The AUC of RI-PCT was 0.665 and RS-PCT was 0.717 

(Figure 5, 6). This result also shows that RS-PCT is more efficient to identify the recurrence in 

the breast cancer patients.  

3.5 PREDICTIVENESS CURVE 

The Figure 7 shows the distribution of risk with RS-PCT and RI-PCT. According to the 

risk model (Cox proportional hazards model), at 90 percentile of RS-PCT, the predicted risk of 

distant recurrence at 10 years based on the Cox model with RS-PCT is 0.308. That means that 

90% those 668 B-14 patients would have a chance less than 30.8% to have distant recurrence at 

10 years when RS-PCT is used for prediction and only 10% of those 668 patients’ risk of 

recurrence at 10 years is larger than 30.8%. Based on the model with RI-PCT as the predictor, 

the 90th percentile of the RI-PCT associated with 0.27 as a predicted risk of distant recurrence at 

10 years. Thus a set of 90% breast cancer patients in the B-14 trial would have a less than 27% 

chance to experience distant recurrence at ten years, and the other 10% high risk B-14 trial 
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patients’ risk of having recurrence at ten years is larger than 27%. Another approach to use this 

graph is that, we can see with the 0.2 predicted risks of distant recurrence at 10 years based on 

the Cox model, the associated percentile of RS-PCT is 70.3% and RI-PCT is 71.2%. So we 

estimate that, 29.7% of those 668 B-14 patients who have distant recurrence risk at ten years are 

larger than 20% when RI-PCT is used for prediction and 28.8% those patients’ recurrence risk at 

ten years are larger than 20% with RI-PCT using as the predictor. And the recurrence rate at 10 

years for B-14 trial is 16.3%. 

 

 

Figure 7.  Predictiveness curve of RI-PCT and RS-PCT as markers for B-14 trial. 

 

The Figure 7 also can compare two predictiveness curves. To contrast two cure shapes, 

two scale points were picked on x-axis. At 90% of risk percentile, the predicted risk with RS-

PCT was 30.8% which was higher than 27% of the predicted risk with RI-PCT. In the low end of 
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the scale, at 10% risk percentile of the predicted risk with RS-PCT was 4.6% which was lower 

than 7.7%, the predicted risk with RI-PCT. So in this plot, the RI-PCT curve is less steep than 

RS-PCT. It shows that the RI-PCT is the poor marker to predict the breast cancer recurrence than 

RS-PCT.  

 

 

Figure 8.  Predictiveness curve of RI-PCT and RS-PCT combined separately with age, tumor size and tumor grade 

as markers for B-14 trial. 

 

The Figure 8 shows the distribution of risk of RS-PCT and RI-PCT including the age, 

tumor size and tumor grade. At the 90% risk percentile, the predicted risk of RS-PCT with the 

traditional clinical predictors was 35.3% which was higher than 32.1% of the predicted risk of 

RI-PCT with the traditional clinical predictors. In the low end of the scale, at the 10% risk 

percentile, the predicted risk of RS-PCT with the traditional clinical predictors was 4.2% which 

was lower than 5.5% of the predicted risk of RI-PCT with the traditional clinical predictors. In 
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this plot, the RI-PCT curve with the traditional clinical predictors is still mild. That suggests that 

the efficient clinical marker for breast cancer is RS-PCT. 
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4.0  DISCUSSION 

Previous research of breast cancer with node-negative and estrogen receptor-positive 

reports that RS derived from Oncotype DX assay provides independent and useful prognostic 

information for the additional chemotherapy decision after surgery and it can be the 

complementary with traditional clinic pathologic factors like age, tumor size and tumor grade 

(Palk et al., 2004; Dowsett et al., 2010).  

In this thesis, Figure 2 demonstrated that the RS and RI were independent prediction 

factors (Spearman rank correlation = 0.378l, P < 0.001; Figure 2). According to Dowsett’s paper 

in 2010, the two markers have only approximately 5% explaining by each other in the estimates 

of recurrence (Dowsett et al., 2010). Table 1 shows that combination of RS and RI may not be 

able to improve the capability of prediction for recurrence. The -2 Log likelihood test of Model 4 

is 1296.459 which is similar to the Model 1 (1306.525) and Model 2 (1326.616). So the model fit 

statistics demonstrates that, one marker has the enough competence for prediction of recurrence 

and combining two markers cannot increase this capability. The C-index also shows same result. 

In Table 2, the C-index of RS plus RI is 0.72 which is similar with the C-index of RS (0.71). 

Although the C-index of RS plus RI is larger than the C-index of RI (0.66), combination of the 

two markers still cannot show increased the prognostic capacity than one marker. 

The Model 6 of Table 1 also shows that the RI may be the surrogate of the traditional 

clinic pathologic factors. The reason is that in Model 6, the hazard ration of RI-PCT / 50 is 1.007 
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(CI = 0.540, 1.880) and its P–value is 0.9813 which is not statistical significant, and the hazard 

ratios associated with the traditional clinic pathologic factors (age, tumor size and tumor grade) 

in Model 6 are similar as in Model 3. But we can see that the RS play an important role in Model 

5, because hazard ratio of RS-PCT / 50 is 2.825 (p < 0.0001) and the hazard ration of traditional 

clinic pathologic factors have changed compared with Model 3. Add the RS to the traditional 

clinic pathologic factors in the regression model, the model fit statistics shows that the new 

model (Model 5) is more capable (-2logL=1280.757) than the Model 1 (-2logL=1306.525), 

Model 2 (-2logL=1326.616) and Model 3 (-2logL=1299.237). Therefore combining RS with 

other clinic pathologic factors (Model 5) does improve the prognostic power over using 

individual prognostic factors alone. 

The main goal of the thesis is to compare the prognostic utility of RS with RI in node-

negative, estrogen receptor-positive breast cancer patients. Based on the analysis using Cox 

proportional hazards model, C-index, time-dependent ROC and predictiveness curve, we may 

consider that the RS have preferable predictive and prognostic ability for the additional 

chemotherapy decision after breast cancer surgery. From Table 1, the -2 Log likelihood test of 

RS (Model 1, -2logL=1306.525) performs better than RI (Model 2, -2logL=1326.616) with the 

Cox proportional hazards model. Meanwhile, the C-index of RS is 0.71 and RI is 0.66 (Table 2). 

Both time-dependent ROC of NNE and KM demonstrate that RS has the better prognostic power 

(Figure 5, 6). On the other side, AUC of RS is 0.717 and RI is 0.665. Thus the RS has better 

expected performance than RI to predict and prognose for recurrence. And the RS also has the 

better performance in the predictiveness curve than RI (Figure 7). In a nutshell, these four 

statistical methods all showed that the RS provided more precise prognosis in the 668 NSABP B-

14 patients than RI. 
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5.0  CONCLUSION 

In the recent years, more and more breast cancer patients have been diagnosed with node-

negative and estrogen receptor-positive (Oetlivotto et al., 2011). So finding a clinic marker to 

improve the prognosis is an important study because it can help patients and their physicians to 

make appropriate treatment decision. 

In this thesis, we show that the RS has a better performance of prognosis than RI in the 

NSABP B–14 trial with the N0 and ER+ breast cancer from the Likelihood-ratio test, C-index, 

time-dependent ROC and predictiveness curve statistic methods. And we also showed that 

combining RS with other clinic pathologic factors does improve the prognostic power over using 

individual prognostic factors alone. 
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APPENDIX 

R-CODE FOR FIGURES 

#### read dataset 

setwd("F:\\thesis\\code") 

D <- read.csv("thesis-new.csv") 

head(D) 

 

#### figure 2 #### 

 

########## 

# figure 2 # 

######### 

plot(D$AO_pctl,D$Recurrence_pctl,xlab="RI_PCT",ylab="RS_PCT", 

main="Fig. 2 Scatter plot of RI_PCT and RS_PCT") 

 

##### kendall correlation test#### 

cor.test(D$Recurrence_pctl, D$AO_pctl, method = "kendall", alternative = "g") 

##### spearman correlation test#### 
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cor.test(D$Recurrence_pctl, D$AO_pctl, method = "spearman", alternative = "g") 

 

#### figure 3 #### 

library(survival) 

library(survcomp) 

 

########## 

# figure 3 # 

######### 

km.coxph.plot(formula.s=Surv(tdr,cdr) ~ rsc,  

data.s=D, sub.s="all", x.label="Time (years)",  

y.label="Proportion of DR-free", main.title="", 

leg.text=paste(c("Low", "Intermediate", "High"), "   ", sep=""),  

leg.pos="topright", leg.inset=0.5, .col=c("blue", "green", "red"),  

.lty=c(1,1,1), xlim=c(0,15),verbose=TRUE) 

 

 

#### figure 4 #### 

 

########## 

# figure 4 # 

######### 

 

km.coxph.plot(formula.s=Surv(tdr,cdr) ~ ric,  

data.s=D, sub.s="all", x.label="Time (years)",  
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y.label="Probability of survival", main.title="",  

leg.text=paste(c("Low", "Intermediate", "High"), "   ", sep=""),  

leg.pos="topright", leg.inset=0.5, .col=c("blue", "green", "red"),  

.lty=c(1,1,1), xlim=c(0,15),verbose=TRUE) 

 

 

##### figure 5############ 

 

library (pROC) 

library (survivalROC) 

 

nobs <- NROW(D) 

cutoff <- 10                                                                                    # 10 years as cotoff time 

Mayo4.1= survivalROC(Stime=D$tdr, 

status=D$cdr,marker = D$AO_pctl, 

predict.time = cutoff,span = 0.25*nobs^(-0.20) )                       # RI marker 

Mayo5.1= survivalROC(Stime=D$tdr, 

status=D$cdr,marker = D$Recurrence_pctl, 

predict.time = cutoff,span = 0.25*nobs^(-0.20) )                      # RS marker 

 

########## 

# figure 5 # 

######### 

 

plot(Mayo4.1$FP, Mayo4.1$TP, type="l", xlim=c(0,1), ylim=c(0,1), 
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xlab=paste( "1-specificity"), 

ylab="sensitivity",main=paste("Time-dependent ROC, NNE")) 

points(Mayo5.1$FP, Mayo5.1$TP, type='o', col="red", xlab='x', ylab='y')  

abline(0,1) 

 

 

##### figure 6############ 

 

Mayo4.2= survivalROC(Stime=D$tdr, 

status=D$cdr,marker = D$AO_pctl, 

predict.time = cutoff, method="KM")                       # RI marker 

Mayo5.2= survivalROC(Stime=D$tdr, 

status=D$cdr,marker = D$Recurrence_pctl, 

predict.time = cutoff, method="KM")                      # RS marker 

 

########## 

# figure 6 # 

######### 

 

plot(Mayo4.2$FP, Mayo4.2$TP, type="l", xlim=c(0,1), ylim=c(0,1), 

xlab=paste( "1-specificity"), 

ylab="sensitivity",main=paste(" Time-dependent ROC, Kaplan-Meier")) 

points(Mayo5.2$FP, Mayo5.2$TP, type='p', col="red", xlab='x', ylab='y')  

abline(0,1) 
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for (i in 1:668){ 

 if (D$tdr[i]<cutoff & D$cdr[i]==1) {D$y[i]<-1} else {D$y[i]<-0} 

} 

roc1 <- roc(D$y, D$AO_pctl) 

roc2 <- roc(D$y, D$Recurrence_pctl) 

roc.test(roc1, roc2)                                                        #AUC calculate 

 

 

##########figure 7######## 

library (PredictABEL) 

 

coxph.fit <- coxph(Surv(D$tdr,D$cdr)~ D$Recurrence_pctl)                      # RS marker 

eta <- coxph.fit$linear.predictor 

etasort<-sort(eta) 

expetasort<-exp(etasort) 

Haz0<-basehaz(coxph.fit)[,1] 

matrix.Haz<-exp(etasort)%o%Haz0 

matrix.risk2<-1-exp(-matrix.Haz) 

 

ind_pr_risk_cox<-max(which(coxph.detail(coxph.fit)$time<=10))         #10 years cutoff time 

Cox_med<-matrix.risk2[,ind_pr_risk_cox] 

 

coxph.fit <- coxph(Surv(D$tdr,D$cdr)~ D$AO_pctl)                       # RI marker 

eta <- coxph.fit$linear.predictor 
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etasort<-sort(eta) 

expetasort<-exp(etasort) 

Haz0<-basehaz(coxph.fit)[,1] 

matrix.Haz<-exp(etasort)%o%Haz0 

matrix.risk2<-1-exp(-matrix.Haz) 

 

ind_pr_risk_cox<-max(which(coxph.detail(coxph.fit)$time<=10))         #10 years cutoff time 

Cox_med1<-matrix.risk2[,ind_pr_risk_cox] 

 

########## 

# figure 7 # 

######### 

 

rangeyaxis<-c(0,.4) 

labels <- c("RS-PCT", "RI-PCT") 

plotPredictivenessCurve(predrisk=cbind(Cox_med,Cox_med1),rangeyaxis=rangeyaxis, 

labels=labels,plottitle='',xlabel='Risk percentile') 

 

a<-table(D$cdr) 

b<-1-a[1]/(a[1]+a[2]) 

abline(h=b) 

 

##########figure 8######## 
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coxph.fit <- coxph(Surv(D$tdr,D$cdr)~  

D$Recurrence_pctl+D$tumorsize+D$agec+D$grade2+D$grade3)                      # RS marker 

eta <- coxph.fit$linear.predictor 

etasort<-sort(eta) 

expetasort<-exp(etasort) 

Haz0<-basehaz(coxph.fit)[,1] 

matrix.Haz<-exp(etasort)%o%Haz0 

matrix.risk2<-1-exp(-matrix.Haz) 

 

ind_pr_risk_cox<-max(which(coxph.detail(coxph.fit)$time<=10))         #10 years cutoff time 

Cox_med<-matrix.risk2[,ind_pr_risk_cox] 

 

coxph.fit <- coxph(Surv(D$tdr,D$cdr)~  

D$AO_pctl+D$tumorsize+D$agec+D$grade2+D$grade3)                      # RI marker 

eta <- coxph.fit$linear.predictor 

etasort<-sort(eta) 

expetasort<-exp(etasort) 

Haz0<-basehaz(coxph.fit)[,1] 

matrix.Haz<-exp(etasort)%o%Haz0 

matrix.risk2<-1-exp(-matrix.Haz) 
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ind_pr_risk_cox<-max(which(coxph.detail(coxph.fit)$time<=10))         #10 years cutoff time 

Cox_med1<-matrix.risk2[,ind_pr_risk_cox] 

 

########## 

# figure 8 # 

######### 

 

rangeyaxis<-c(0,0.8) 

labels <- c("RS-PCT",  

"RI-PCT") 

plotPredictivenessCurve(predrisk=cbind(Cox_med,Cox_med1),rangeyaxis=rangeyaxis, 

labels=labels, 

plottitle="",xlabel='Risk percentile') 

 

a<-table(D$cdr) 

b<-1-a[1]/(a[1]+a[2]) 

abline(h=b) 
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