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AND CONTROLLING THE ACUTE INFLAMMATORY RESPONSE TO

PATHOGEN AND ENDOTOXIN

Judy D. Day, PhD

University of Pittsburgh, 2007

This thesis includes work dealing with topics related to the modeling, understanding, and

controlling the acute in�ammatory response. After the introductory chapter, the second

chapter discusses a small (four equation) ordinary di¤erential equation (ODE) model of the

acute in�ammatory response to endotoxin stimuli. Many scenarios of endotoxin tolerance

are reproduced and explained in the context of in�ammation. The third chapter explores the

numerical aspects of coding an algorithm produced by Bernd Krauskopf and Hinke Osinga

[63] for generating 2D (un)stable manifolds for 3D ordinary di¤erential equation systems.

The fourth chapter returns to the topic of endotoxin tolerance, but now in an abstract

mathematical setting. The �fth chapter presents an exposition regarding the application

of nonlinear model predictive control to the four equation ODE model (now with pathogen

instead of endotoxin) to explore strategies to modulate the in�ammatory response during

severe infection.
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1.0 INTRODUCTION

1.1 USING MATHEMATICAL AND ENGINEERING TOOLS TO STUDY

THE ACUTE INFLAMMATORY RESPONSE

The use of tools from mathematics and engineering is becoming more widespread for gaining

insight into biological phenomena and making advances in the medical industry by assisting

with practical solutions to clinical challenges in the treatment of patients. The "math-

ematical biology" community is no longer simply made up of mathematicians looking for

interesting mathematical problems arising from biological phenomena. Crossdisciplinary

research groups, consisting of mathematicians and engineers as well as clinicians and exper-

imentalists are no longer the exception, with many realizing that research is most e¤ective

when there are di¤erent yet complementary areas of expertise involved. This is certainly

the case with respect to the research that has focussed on understanding the dynamics and

complexities of the acute in�ammatory response.

1.1.1 Background

The initial response of the body to acute biological stress such as bacterial infection or

tissue trauma is an acute in�ammatory response. This response involves a cascade of events

mediated by a large array of cells and molecules that locate invading pathogens or damaged

tissue, alert and recruit other cells and e¤ector molecules, eliminate the o¤ending agents, and

restore the body to equilibrium. [55] Ideally, the in�ammatory response works e¤ectively

in this manner; however, there are times when in�ammation can rise out of control, leaving

the body susceptible to massive tissue damage, eventually leading to multi-organ failure and
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death. [70, 56, 103, 107]

In�ammation, while necessary for successful eradication of harmful agents, can cause

more in�ammation via a positive feedback loop. The cells and molecules that initially re-

spond can cause damage, by either crowding an area or as a result of the release of molecules

such as nitric oxide and superoxide intended to destroy foreign entities. [83, 57, 7] Conse-

quently, damaged cells send signals upon death that alert the body of danger, since o¤ending

agents are typically the cause of damaged tissue. This, in turn, brings about the recruit-

ment of more in�ammatory mediators that attempt to help remedy the situation, causing a

necessary yet, potentially, dangerous positive feedback loop. [53, 74]

There are anti-in�ammatory mediators present to help control in�ammation; however

in cases of severe in�ammation, these may be rendered ine¤ective. In addition, anti-

in�ammatory mediators might be initially suppressing in�ammation and working against the

purpose of eliminating the o¤ender, allowing it, instead, to grow uncontrolled and destroy

more tissue. [14] Ideally, an optimal strategy exists between pro- and anti- in�ammatory

mediators for eliminating the o¤ending agent, while not accruing excessive tissue damage.

This ideal, however, is a delicate balancing act. [93, 94]

Laboratory experiments have shed enormous light on various signaling pathways and

mediators responsible for in�ammation. [85, 90] However, the highly nonlinear, systemic

nature of the problem has made it extremely di¢ cult to gain understanding of the process as

a whole from experimentation alone, much less generate e¤ective strategies to correct immune

dysfunction. As noted in the paper by Vodovotz et al, the limitations of animal models have

reduced results to highly speci�c information available at only a few time points, making it

di¢ cult to interpret the results with respect to the global problem. [112] Therapies that

have been found to be successful in such experiments have mostly been unable to improve

survival in large clinical trials. [15, 71]

One reason for a lack of e¤ective therapies in combatting uncontrolled in�ammation is

due to the fact that most were designed to target one speci�c mediator of in�ammation.

However, mediators that may be the cause of in�ammation during one phase of the response

might be completely irrelevant at a later point in time. In addition, the in�ammatory

response to an insult is dependent on a number of patient factors, including age, genetic
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predisposition, and gender. Clinical manifestations of an insult might be very similar in

di¤erent individuals, yet treatment might help one and not the other. During the course

of an in�ammatory response to an insult, a single patient at di¤erent times can experience

being hyper-in�amed or immunosuppressed. Hence, the timing of events in the in�ammatory

cascade is crucial to understanding when and how a therapy will be e¤ective. In addition,

the need for therapies tailored for individual patients, as well as therapies that target multiple

mediators, is apparent. [13, 26]

In 2004, the U.S. Food and Drug Administration (FDA) reported that "A new product

development tool kit�containing powerful new scienti�c and technical methods such as ani-

mal or computer-based predictive models, biomarkers for safety and e¤ectiveness, and new

clinical evaluation techniques�is needed to improve predictability and e¢ ciency along the

critical path from laboratory concept to commercial product." [39] The use of mathematical

models, which can be subject to a countless number of numerical experiments, has allowed

for unhindered exploration of the acute in�ammatory response in general, as well as speci�c

problems that can arise in a response. In addition, the cost of using these tools are minis-

cule compared to the cost of wet lab experiments. This is not to assert that traditional

laboratory experimentation is obsolete and of little value, but, rather, to emphasize again

the importance of using as many available resources as possible. Mathematical models are

not perfect and need veri�cation and validation from classical experimental studies.

It has been a¢ rmed and rea¢ rmed that a systems approach to understanding in�am-

mation is imperative. [16, 39, 109] Highlights from some of the prior and current research

using mathematical models for exploring the intricacies of the acute in�ammatory response

are now discussed.

1.1.2 Prior Research and Current Directions

In general, mathematical modeling of biological systems, especially with ordinary di¤eren-

tial equations, is not novel. Mathematical models of the immune system have appeared in

literature in some form for more than a decade from the date of this writing (see, for exam-

ple, [75]) and there are a plethora of models describing the pathogenesis of any number of
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diseases, such as HIV, tuberculosis, and cancer. [61, 92, 88] There are also plenty of books,

some dating from the 1970s about mathematical modeling in biology and the subsequent

analysis of them. [80, 81, 34, 99] Even so, with each new biological discovery and with

the wealth of data that has been acquired from experiments, there is still plenty of room

for new and improved models. In particular, only recently have clinical researchers begun

to understand the complex ubiquitous role that in�ammation plays in the pathogenesis of

many di¤erent diseases. The push to understand this systemic process has emerged as a

major focus of research groups worldwide. In fact, the Society for Complexity in Acute Ill-

ness (http://www.scai-med.org/ ) was formed speci�cally to bring together "clinicians, bench

scientists, and modelers" from "hospitals, research institutions, and companies" to bridge

the gap between the discoveries made under the microscope and the patient in the intensive

care unit.

The primary approaches to modeling in�ammation have consisted of modeling with or-

dinary di¤erential equations (ODE), partial di¤erential equations (PDE), and agent based

modeling (ABM). This dissertation joins a substantial body of work that has sought insight

and answers to in�ammation related problems. In 2004, a review of some ODE and ABM

models of in�ammation was made by Vodovotz et al. [113]. In this review, the strengths

and weaknesses of both types of models are given, along with some examples. [4, 5, 21, 22]

ODE models, while conducive to rigorous mathematical modeling, can become very complex

as the number of equations increases, making them di¢ cult to calibrate and validate with

experimental data. ABM models, which lend themselves to being easily constructed and in-

terpreted, especially for nonmathematicians, can be computationally expensive to simulate

with the number of agents needed to represent the system. It is also di¢ cult to analyze the

mechanisms of such a system. As a result, validation can be di¢ cult to carry out on such

models. However, in both cases progress has been made toward �nding ways to improve

the accuracy and prediction power of these models.

A more recent and comprehensive review by Vodovotz [110] is an update discussing

modi�cations and improvements to the models previously discussed as well as new ODE

and ABM models that deal with various aspects of in�ammation. The models described in

[20, 112, 114] are large scale ODEmodels consisting of 15-31 di¤erential equations, describing
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the interactions of many of the cells, cytokines, and other molecules that play a role in the

in�ammatory cascade. These models may have several di¤erent instigators of in�ammation,

such as pathogen (bacteria), bacterial Lipopolysaccharide (LPS or endotoxin), trauma, or

hemorrhagic shock. Because of the high detail of these models, they can be used for

qualitative as well as quantitative insights. The many parameters that exist due to the

large number of equations are mostly determined via methods that �t the model dynamics

to existing animal data. Typically, the model is �t to a set or two of data for particular

scenarios (for instance, an initial load of 3mg/kg or 6mg/kg of endotoxin) and then used to

predict a separate set of data for a di¤erent scenario (an initial load of 12 mg/kg endotoxin)

as validation of the model�s accuracy and prediction capability.

The models presented in [77, 69] are ABM models of in�ammation and wound heal-

ing used in the setting of diabetic foot ulcer pathology and biomechanical stresses related to

phonotrauma. These models qualitatively reproduce behaviors and make predictions consis-

tent with the literature and recent experimental �ndings. Another model under construction

by Reynolds et al. explores the e¤ect of in�ammation on gas exchange in the lung, using

a combination of partial di¤erential equations and ordinary di¤erential equations. In this

model, tissue is treated as a separate spatial compartment. This allows for the exploration

of the e¤ects of in�ammation on the di¤usion of gas molecules in the context of an infection

that �rst started either in the blood or in tissue. To simplify the computational aspects of

the model, the equations representing the gas molecules were reduced to ordinary di¤erential

equations. [97]

The models presented in [65, 98, 28] are small scale ODE models containing 3, 4 and 4

di¤erential equations, respectively. These models qualitatively, rather than quantitatively,

reproduce biologically observable behavior of the in�ammatory response to either pathogen

[65, 98] or endotoxin [28]. The variables or mediators that are modeled in these examples

represent general characteristics of several actual mediators rather than speci�c cells or mole-

cules. For instance, one variable might be labeled the "early pro-in�ammatory" mediator,

which could be representative of a host of cells and molecules that have pro-in�ammatory

e¤ects early in the course of an in�ammatory response to an insult. Even though general-

izations like this are made, these models have not only qualitatively reproduced the di¤ering
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clinical and experimental outcomes that are seen with mild to serious infections, but have

added insight into the nature and behavior of in�ammation for various insults.

In [65], a three equation model was presented which included an equation for the in�am-

matory instigator, pathogen, and two equations for in�ammatory mediators, one directly

incited by pathogen and the other indirectly incited by the �rst pro-in�ammatory mediator

in a positive feedback loop. Based simply on varying the initial magnitude of the pathogen

insult, three di¤erent outcomes were possible in the model:

� healthy: all mediators resolve to baseline levels

� aseptic: pathogen is eliminated, but the other mediators remain elevated

� septic: All mediators as well as pathogen remain elevated

Analysis of the model led to suggestions of possible therapeutic interventions to correct an

aseptic or septic outcome and the insight that "the clinical condition of sepsis can arise from

several distinct physiological states, each of which requires a di¤erent treatment approach."

In [98], a four equation model was constructed based on the idea founded in [65] of

using general variables to represent characteristics of the in�ammatory response. However,

not only was a fourth equation representing an anti-in�ammatory mediator added, but a

model was constructed anew using an approach involving the creation of simple subsystems

between the mediators. For instance, the subsystem consisting of pathogen and the early

pro-in�ammatory mediator was constructed to ensure the desired bistability of an excitable

system (i.e. health and death states would be both possible based on initial magnitude

of the insult). This model also qualitatively reproduced the di¤erent clinically observable

outcomes mentioned above based on the magnitude and strength of the pathogen insult.

Moreover, with the addition of an anti-in�ammatory mediator, the authors were able to

highlight "the importance of dynamic antiin�ammation in promoting resolution of infection

and homeostasis." In addition, a simple therapeutic intervention involving the increase or

decrease of the anti-in�ammatory levels in the model during the course of the infection was

explored. The authors showed that in some cases an addition of anti-in�ammation would

be bene�cial, while in other cases it could be problematic and even detrimental to recovery.

Also shown, was that the ability to remove anti-in�ammation could be bene�cial in cases
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where a pathogen was particularly virulent and the patient would need maximum host defense

to overcome the infection. Consequently, it is obvious that there is a need for a systematic

approach to �nding the proper type, timing, and dosage amount of therapy. This is the

subject of Chapter 5 of this dissertation where nonlinear model predictive control, a tool

typically used in engineering applications, is utilized to �nd appropriate ways to administer

di¤erent types of therapy, both pro- and anti-in�ammatory.

In [28], the model from [98] is slightly modi�ed to have endotoxin as the in�ammatory

response instigator instead of pathogen. As will be discussed in Chapter 2, endotoxin is a

highly conserved, highly immunogenic, constituent molecule of the outer cell wall of Gram-

negative bacteria. When bacteria are lysed by immune e¤ector cells and molecules, surges

of endotoxin may be released into the host, intensifying the in�ammatory response and

causing further activation of immune e¤ector cells [2, 54]. It has been observed that in some

instances repeated doses of endotoxin result in a considerably less vigorous immune response,

a phenomenon referred to as endotoxin tolerance [10]. In fact, the induction of tolerance can

greatly blunt the e¤ect of a dose of endotoxin that would be lethal to a naïve animal. There is

also the more intuitive observation that repeated doses of endotoxin result in a more vigorous

immune response (potentiation). In this work, we suggest via the mathematical model that

endotoxin tolerance is a direct result of the dynamic interactions between components of

innate immunity, rather than a speci�c, distinct phenomenon.

1.2 INTERESTING BIOLOGY-INSPIRED MATHEMATICAL PROBLEMS

Although mathematical biology has become much more application focussed, there are still

interesting mathematical problems that arise in the study of biological systems, which may

not necessarily have direct application to the biological problem from which they originated.

In other words, although the subsequent research may add some insight into the biology

or assist in visualization and understanding, the results might be much more interesting

and signi�cant from a mathematical perspective. Two such problems originated from the

research discussed in Chapter 2 with respect to endotoxin tolerance, both of which �t nicely

into dynamical systems theory.
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1.2.1 Manifolds

In Chapter 2, an illustration is presented showing a type of threshold or "dividing line"

between two di¤erent steady states of the system, representing two very di¤erent outcome:

life and death, or healthy and unhealthy. This divider is formally known as the separatrix

and it consists of the stable manifold of the saddle point in a particular phase space. Initial

conditions that begin on one side of this structure will evolve to the healthy state, while those

beginning on the other side approach the unhealthy �xed point. The fascinating aspect of

this structure is that the future trajectory of any initial condition is completely determined

by which side of the manifold the initial condition lies.

If one considers this as a representation of what happens to a patient in the absence of

any therapy, the fate of the patient can be determined solely from the initial starting point.

Unfortunately, in practice, it is virtually impossible to know a patient�s "starting conditions"

since the manifestations of an infection do not always appear immediately, not to mention

that measurements of crucial entities such as pathogen concentration and growth rate are

impossible to acquire. Hence, this tool, while instructive for illustration purposes, holds

little direct application to helping predict patient outcome.

However, the ability to numerically generate this structure is an extremely interesting

dynamical systems problem and one that many have successfully solved. [30, 31, 32, 33,

44, 46, 58, 63] Unfortunately, there is no software or code currently available. Hence, the

focus of Chapter 3 is with respect to the implementation of one of these algorithms, due

to Krauskopf and Osinga. [63] Although the actual algorithm is not a part of the original

content of this thesis, the code implementing the various steps is, since there exist several

key computational challenges that arise for some of the steps in the algorithm that are not

explicitly discussed in the original authors�paper.

1.2.2 Endotoxin Tolerance from a Purely Mathematical Perspective

Endotoxin tolerance as well as its counterpart, potentiation, are well established and thor-

oughly explored issues in the biological and experimental literature. (See [10, 27, 102, 119])

As mentioned previously, Chapter 2 discusses a model that reproduces many scenarios that
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exhibit endotoxin tolerance. One of the model mediators represents the tolerance variable,

or the component that experiences a blunting (or potentiating) a¤ect to repeated doses

of endotoxin. Tolerance can be seen when time courses of this mediator for single dose

simulations (original) versus repeated dose simulations (competing) are compared. When

overlapped on a graph, the competing time course which initially starts at a higher value in

this component, will at some time point manage to descend to a lower value in this compo-

nent, compared to the original single dose time course. In essence, it can be thought of as

a type of race.

This idea, brought up during the course of researching endotoxin tolerance with this

ODE model, made it evident that the tolerance behavior may not be unique to this one

system of equations. In fact, the problem deals with transient behavior of a dynamical

system, something not very well developed in the theory. In order to pursue this idea in a

purely dynamical systems context, the concepts of tolerance and potentiation are formalized

mathematically.

From this, statements and theorems are made regarding the existence of tolerance in

two-dimensional linear and non-linear systems. The 2D linear case has been characterized

completely. The 2D nonlinear case is much more complicated than the linear case and

requires substantial creativity because analytical solutions are not generally available for

nonlinear systems and tools for studying transients are not well developed. Nevertheless,

signi�cant progress has been made toward pinpointing when tolerance can be exhibited in a

system. These ideas and results are presented in Chapter 4.

1.3 ORGANIZATION OF THESIS

The chapters of this thesis are organized as follows:

� Chapter 1 is dedicated as this introduction.

� Chapter 2 presents the ODE model of the acute in�ammatory response to endotoxin and

the results and insights from reproducing various experimental scenarios of endotoxin

tolerance.
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� Chapter 3 discusses the MatLab computer program used to generate the two-dimensional

stable manifold shown in the second to last �gure of Chapter 2.

� Chapter 4 introduces the theoretical work done with respect to mathematically formaliz-

ing the idea of the tolerance phenomenon that was discussed in an experimental setting

in Chapter 2.

� Chapter 5 explores the application of nonlinear model predictive control to �nding ther-

apeutic strategies to assist with immunomodulation of the acute in�ammatory response

during the course of an infection.

� Chapter 6 gives a brief summary of the results acquired, the challenges faced, and the

ideas for future extensions and improvements.

� Glossary of Abbreviations
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2.0 MODELING ACUTE INFLAMMATION AND ENDOTOXIN

TOLERANCE

2.1 INTRODUCTION

The initial response of the body to acute biological stress such as bacterial infection or

tissue trauma is an acute in�ammatory response. This response involves a cascade of events

mediated by a large array of cells and molecules that locate invading pathogens or damaged

tissue, alert and recruit other cells and e¤ector molecules, eliminate the o¤ending agents,

and restore the body to equilibrium. Bacterial lipopolysaccharide (LPS; endotoxin) is a

highly conserved, highly immunogenic, constituent molecule of the outer cell wall of Gram-

negative bacteria. When bacteria are lysed by immune e¤ector cells and molecules, surges of

endotoxin may be released into the host, intensifying the in�ammatory response and causing

further activation of immune e¤ector cells [2, 54]. In fact, the administration of antibiotics

can lead to pulses of endotoxin release from Gram-negative bacteria as the antibiotics kill the

invading bacteria, con�rming the clinical importance of this subject matter[35]. Since direct

endotoxin administration in animals and humans can induce an acute in�ammatory response

that reproduces many of the features of an actual bacterial infection, such as fever, it stands

as a valid experimental model for investigating the in�ammatory response [23, 79, 91].

High doses of endotoxin can be lethal, even though this bacterial byproduct does not

proliferate as a Gram-negative bacteria would [104]. It has been observed, however, that in

some instances repeated doses of endotoxin result in a considerably less vigorous immune

response, a phenomenon referred to as endotoxin tolerance [10]. In fact, the induction

of tolerance can greatly blunt the e¤ect of a dose of endotoxin that would be lethal to a

naive animal. A variety of studies have followed up on Beeson�s initial reports of endotoxin
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tolerance (for a historical perspective see Cross [27]; Schade [102]; West and Heagy [119]).

Experimentally, it is now possible to assess the activation status of in�ammatory cells or the

levels of signaling proteins, such as cytokines, in organs or the blood as direct measures of

in�ammation [82, 84]. The cytokine Tumor Necrosis Factor-� (TNF ) in blood serum, for

instance, has become a prominent marker of in�ammation [55, 101]. Thus, observing that

the concentration of this cytokine is lower than levels normally observed after endotoxin

administration suggests that in�ammation is being suppressed.

Interestingly, the inverse phenomenon, called potentiation, has also been observed. In the

extreme, an otherwise non-lethal dose of endotoxin rapidly following another non-lethal dose

can result in death [18]. We hypothesized that a simple mathematical model of the acute

in�ammatory response could reconcile tolerance and potentiation, on the premise that the

observed outcomes result from dynamic interactions between components of innate immunity.

Accordingly, we adapted a recently developed computational model of the in�ammatory

response [98] and simulated various scenarios involving repeated endotoxin administration.

We use actual experimental mouse scenarios to guide in silico experiments that recreate these

scenarios qualitatively, including the phenomena of endotoxin tolerance and potentiation.

In our simulations, we �nd that both the timing and magnitude of endotoxin doses,

relative to each other and to the dynamical interplay between pro- and anti-in�ammatory

mediators, are central in discriminating between the seemingly disparate phenomena of en-

dotoxin tolerance and potentiation. Our results, derived from a mathematical model not

constructed speci�cally to address the issue of preconditioning, support the perspective that

endotoxin tolerance and related phenomena could be better explained and understood as

�in�ammatory-stimuli-induced�e¤ects rather than speci�c, distinct phenomena [18]. This

perspective is also supported by studies showing that various in�ammatory stimuli (e.g.

trauma, hemorrhage, cytokines) can act either to tolerize or to prime the host for subse-

quent homologous or heterologous stimuli [17, 19, 59, 60, 67, 76, 115, 125]. The intent here

is not to carry out a detailed mathematical analysis of our model. Rather, we hope to

argue convincingly that endotoxin tolerance, potentiation, and other phenomena related to

repeated endotoxin administration are best viewed and understood via the acute in�amma-

tory response [23, 122] and to demonstrate this with a mathematical model of that response.
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2.2 A MATHEMATICAL MODEL OF THE ACUTE INFLAMMATORY

RESPONSE TO ENDOTOXIN

To examine repeated endotoxin administration in the context of the acute in�ammatory

response, we use a mathematical model that incorporates the e¤ects of key aspects of the

immune system�s response to an insult (Eqs. 2.1-2.4). The detailed derivation of this model,

based on previous experimental �ndings, and a term-by-term explanation of its components

are outlined by Reynolds et al. [98]. The model we use replaces the pathogen equation

of Reynolds et al. with an endotoxin equation. These changes introduce several di¤erent

parameters that replace or add to those used in Reynolds et al. These include �pe (1/h),

knpe (mg/kg/h), �i (mg/kg), ti (h), and � (h) which are described in Table 1. However, all

other equations and parameter values have been maintained to agree with those presented in

Reynolds et al. A substantial number of these parameters were obtained from existing exper-

imental literature (Table 1). For more information on parameter acquisition and estimation,

please see Section 2.7: Supplementary Materials.

This model consists of a system of ordinary di¤erential equations containing two pro-

in�ammatory mediators, N� and D, as well as an anti-in�ammatory mediator, CA. N�

is biologically comparable to phagocytic immune cells or early, typically pro-in�ammatory

cytokines, such as TNF and Interleukin-1 (IL-1). The other pro-in�ammatory variable, D,

not only serves as a marker for tissue damage/dysfunction, but also as a positive feedback

into the earlier pro- and anti-in�ammatory arms of the system, as damaged (e.g. injured or

necrotic) tissue would [74]. The anti-in�ammatory mediator, CA, acts on a slower time scale

than N�. For instance, CA behaves more like the cytokine Transforming Growth Factor-�1

(TGF-�1) rather than Interleukin-10 (IL-10). However, it could also represent other typi-

cally anti-in�ammatory mediators such as cortisol. In Section 2.4, we discuss the importance

of dynamically modeling D and the necessity for the anti-in�ammatory mediator to posses

certain qualitative properties for tolerance to occur in the model.

Units forN�, CA andD are not given explicitly because there is no single biological entity

or marker that these variables represent and thus there are no speci�c units that can quantify

these variables empirically. Hence, we use �N�-units,��CA-units,�and �D-units�because
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we cannot be any more precise about them. Although CA (Anti-in�ammatory Mediator) has

characteristics of IL-10 and TGF-�, it would be inappropriate to assign real units to this

variable and quantitatively compare it to actual data from these or other anti-in�ammatory

mediators.

The immune response instigator, pathogen endotoxin or PE (mg/kg), serves as the initial

stimulus that recruits N� with a rate of knpe which has units mg/kg/h. This begins the

in�ammatory cascade. PE decays exponentially with rate �pe, having units per hour, with

no other mediators a¤ecting its decay. In addition, multiple intravenous injections (i.v.) of

endotoxin can be emulated with Heaviside step functions in the PE equation. The parameters

�i and ti in the Heaviside functions represent the endotoxin dosage load for the ith dose given

at time ti hours, respectively, for i = 1; 2; :::n, the number of doses. If we want a total of

� mg/kg to be given over a duration of time, �, then �=�(mg/kg/h)given for � hours will

accomplish this. The parameter � is set to 0.01 h, which matches the time step of our

numerical integration, when we wish to emulate a pulse, or a quick on�o¤, instantaneous

injection. For instance, if � = 0:01, the administration of a load amount of 3 mg/kg given

at time t hours would stop at t + � = t + 0:01 h, thereby essentially giving the whole

load all at once. Larger values of � will result in longer infusion times. For example, in

scenario 8 we set � equal to 24, thereby giving 3/24 = 0.125 (mg/kg/h) continuously over

the span of 24 h. This also gives a total of 3 mg/kg but over a longer span of time than the

instantaneous injection. Although we model i.v. type injections, studies have shown that

endotoxin administration given either intravenously or intraperitoneally invokes a similar

in�ammatory response [23]. Table 1 gives the parameter values that were established for

this model, which is represented by Eqs. 2.1-2.4.

dPE
dt

= ��pePE +
nX
i=1

�i
�
S(ti; ti + �); (2.1)

dN�

dt
=

snrR

knr +R
� �nN

�; (2.2)

dD

dt
= kdn

f(N�)6

x6dn + f(N�)6
� �dD; (2.3)

dCA
dt

= sc + kcn
f(N� + kcndD)

1 + f(N� + kcndD)
� �cCA (2.4)
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Table 1: Model parameter names and values used in simulations

Name Range Value Used Description Sources

�pe 0.6207�14.85 3/h Decay rate of pathogen endotoxin (PE) [51,
117,
123]

�i n/a Various (mg/kg) Amount of the ith PE dose administration
� n/a 0.01 or 24 hr Duration of PE injection: 0.01 corre-

sponds to instantaneous delivery (1/100
of an hour) and 24 corresponds to con-
stant delivery of a dose over 24 hours.

ti n/a Various (h) Time at which the ith PE dose is given
knpe Estimated 9/(mg/kg)/h Activation of phagocytes by pathogen en-

dotoxin (PE)
knn Estimated 0.01/N�-units/h Activation of phagocytes by already acti-

vated phagocytes (or the cytokines that
they produce )

snr Estimated 0.08/NR-units/h Source of resting phagocytes
�nr 0.069-0.12 0.12/h Decay rate of resting phagocytes

(macrophages and neutrophils)
[25]

�n Less than �nr 0.05/h Decay rate of activated phagocytes
(macrophages and neutrophils)

[25]

knd Less than knpe 0.02/D-units/h Activation of phagocytes by tissue dam-
age (D)

[6]

kdn Estimated 0.35/D-units/h Max rate of damage production by acti-
vated phagocytes (and/or associated cy-
tokines/free radicals)

xdn Estimated 0.06 N�-units Determines level of activated phagocytes
(N*) needed to bring damage production
up to half its maximum level

�d 0.0174 (min) 0.02/h Decay rate of damage; combination of re-
pair, resolution, and regeneration of tissue
HMGB-1 release by damage

[29,
116]

c1 Estimated 0.28/CA-units/h Threshold for e¤ectiveness of the anti-
in�ammatory response

[50]

sc Estimated 0.0125CA-units/h Source of anti-in�ammatory (CA) (IL-10,
TGF-�1, cortisol);

kcn Estimated 0.04 CA-units/h Maximum production rate of Anti-
in�ammatories

kcnd Estimated 48 N�-units/D-units Controls relative e¤ectiveness of activated
phagocytes versus damage in producing
anti-in�ammatories

�c 0.15-2.19 0.1/h Decay rate of the anti-in�ammatory me-
diator

[8, 12,
40, 49]
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where n is the number of doses in the experiment and the other functions in 2.1-2.4 are given

by

R =
(knpePE + kndD + knnN

�)

1 + (CA=c1)2
;

f(x) =
x

1 + (CA=c1)2
;

S(ton; toff ) = H(t� ton)�H(t� toff )

=

�
0 if t < ton
1 if t � ton

�
�
0 if t < toff
1 if t � toff

Using the parameter values given in Table 1, this system has three possible equilibrium states

in the regime that we are interested in, namely where all solutions are nonnegative. Two

of the three �xed points are stable and the remaining one is a saddle whose stable manifold

separates the phase space of interest into two regions, each containing one of the stable

�xed points. One of the stable states is speci�ed by the background levels of the variables,

(PE; N�; D;CA) = (0; 0; 0; CA0). These low levels are characteristic of the state in which the

system is at baseline, prior to any perturbation. Thus, when the mediators settle to this

state we correspondingly interpret the outcome as healthy. The other stable equilibrium is

classi�ed as an unhealthy state in light of the fact that the values of the variables at this

state are above background levels, except for PE, which always decays asymptotically to

zero. When the mediators are pulled to this state it indicates that the response has not

properly resolved and, consequently, the outcome is unhealthy or in�amed.

The observations we make in our simulations have biological interpretations related to

the characteristics of the acute in�ammatory response. When we emulate an administration

of endotoxin, the variables of the model react much like the mediators of the in�ammatory

response in the body in the presence of endotoxin, with their levels rising in the presence of

this pro-in�ammatory stimulus. After we induce this in�ammatory response in our model

with an injection of PE, the system either settles to the healthy state or rises to the unhealthy

state. If the dosage of PE is large enough, it can elicit such a response that the system remains

in�amed and is unable to return to its background levels. We equate such an outcome with

persistent in�ammation, which is an unhealthy endpoint. Given these features of our system,

we interpret the existence of endotoxin tolerance in our model as a reduction in the response
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of N� to a low dose of PE after the system is preconditioned with an initial low PE dose.

Likewise, if a preconditioning dose of PE prevents the system from ending up at the unhealthy

state when an otherwise unhealthy dose is given, we infer this as the ability of the model

to display protection from mortality. Using the model Eqs. 2.1-2.4, with parameter values

from Tables 1 and 7, we are able to qualitatively reproduce the results of various published

scenarios of repeated endotoxin administration, which we now discuss.

2.3 MODEL SIMULATIONS OF EXPERIMENTAL SCENARIOS

ENDOTOXIN TOLERANCE SCENARIO

For our in silico simulations, we emulate the scenarios below using the dynamical systems

analysis software XPPAUT [36]. Eqs. 2.1-2.4 are integrated numerically using the Runge�

Kutta algorithm with step size 0.01 for 200 time units (hours), taking into account the

simulated i.v. injections of PE at the speci�ed times. Thus, the design of our in silico

endotoxin simulations can closely resemble actual endotoxin experimental scenarios, which

originally were carried out with mice. The XPPAUT code for this model is included with

the Supplementary Materials in section 2.7.

We start with the reproduction of proper responses to survivable and lethal endotoxin

doses, simulated by simply varying the load (�1 mg/kg) of PE at time zero (t1 = 0 h).

Regarding endotoxin administration and mortality, it is generally accepted that doses at or

above 17 mg/kg cause a high mortality rate in mice [24]. Figs. 1a and b show the results of

the model simulations carried out with low (Fig. 1a) and high (Fig. 1b) PE doses. Having

established these basic responses, we now consider experiments involving repeated endotoxin

administration, most of which are based on experimental data in the literature.

2.3.1 Endotoxin tolerance scenarios

Published studies report that endotoxin tolerance can be induced in various ways, generally

involving the administration of low, repeated doses of endotoxin over periods of time ranging

from one day to a week [9, 11, 96, 105, 120]. Blood serum is collected at some time after the
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Figure 1: Basic endotoxin administration scenarios. The values of the parameters �1, t1, and � are set
to simulate a one dose instantaneous (� = :01) administration of PE at time zero (t1 = 0). (a) Doses less
than �1 = 17 mg/kg of PE cause a response, but all mediators eventually settle back to baseline in a healthy
resolution. Here we show a simulation done with a dose of �1 = 6 mg/kg of PE . (b) Doses greater than
or equal to �1 = 17 mg/kg of PE cause all mediators to remain elevated, indicating an unhealthy outcome.
The simulation results shown are carried out with a dose of �1 = 17 mg/kg of PE . Time courses for N�, D,
and CA are shown for both scenarios.
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Table 2: Scenario 1 (adapted from the experiments of Sly et al., 2004)

Sly (2004) 0 hours 24 hours Experimental Results

Non-Preconditioned Saline 10 mg/kg 600 pg/ml TNF @ 27 hours
Preconditioned 1 mg/kg 10 mg/kg TNF levels very low @27 hours

Table 3: Scenarios 2a - 2c (adapted from the experiment of Wysocka et al., 2001)

Wysocka (2001) 0 hours 26 hours Experimental Results

Non-Preconditioned Saline 100 mcg 100 ng/ml TNF @ 27 hours
Preconditioned 2a 1 mcg 100 mcg < 20 ng/ml TNF @ 27 hours
Preconditioned 2b 5 mcg 100 mcg < 20 ng/ml TNF @ 27 hours
Preconditioned 2c 20 mcg 100 mcg < 20 ng/ml TNF @ 27 hours
Mouse weight is estimated at 20 grams: 1 mcg/mouse = 0.05 mg/kg,

5 mcg/mouse = 0.25 mg/kg,
20 mcg/mouse = 1.0 mg/kg, and
100 mcg/mouse = 5.0 mg/kg

last (challenge) endotoxin dose, and in�ammatory analytes (generally TNF ) are measured.

In all the above cited experiments, a reduced amount of TNF is seen in the group receiving

more than one dose of endotoxin (preconditioned) as compared to the amount of TNF found

in the serum of mice receiving only a single dose of endotoxin (non-preconditioned).

Scenarios 1�5 closely follow various experimental scenarios of repeated endotoxin ad-

ministration as they are outlined in the literature. Tables 2-6 summarize the designs and

results of these scenarios which are reproduced in our model simulations with respect to a

qualitative reduction in our pro-in�ammatory mediators, speci�cally N�. Scenarios 6�8 are

not explicitly found in the literature, yet we believe them to be relevant scenarios that merit

consideration. The parameter values appearing in Table 1 are used for all the scenarios

discussed in this section, with the exception of parameters that are used to set up i.v. PE

administrations for the various simulations: �i,ti, and �. The values for these parameters as

pertains to the di¤erent scenarios can be found in Table 7.

Scenarios 1-5 are based on those found in Tables 2-6. As an example, parameters for one

simulation may be set as follows: t1 = 0 hrs, �1 = 0 mg/kg, t2 = 24 hrs, �2 = 10 mg/kg, and
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Table 4: Scenarios 3a - 3c (adapted from the experiments of Rayhane et al., 1999)

Rayhane (1999) 0 hours 24 hours 48 hours 72 hours Experimental Results

Non-Preconditioned 3a Saline 100 mcg n/a n/a 35 ng/ml TNF @ 25.5 h;
2.5 ng/ml TNF @ 27 h

Preconditioned 3a 2.5 mcg 100 mcg n/a n/a 3 ng/ml TNF @ 25.5 h;
2 ng/ml TNF @ 27 h

Non-Preconditioned 3b Saline Saline 100 mcg n/a 35 ng/ml TNF @ 49.5 h;
2.5 ng/ml TNF @ 51 h

Preconditioned 3b 2.5 mcg 2.5 mcg 100 mcg n/a 1 ng/ml TNF @ 49.5 h;
.5 ng/ml TNF @ 51 h

Non-Preconditioned 3c Saline Saline Saline 100 mcg 35 ng/ml TNF @ 73.5 h;
2.5 ng/ml TNF @ 75 h

Preconditioned 3c 2.5 mcg 2.5 mcg 2.5 mcg 100 mcg 1 ng/ml TNF @ 73.5 h;
.5 ng/ml TNF @ 75 h

Mouse weight is estimated at 20 grams: 2.5 mcg/mouse = 0.125 mg/kg and
100 mcg/mouse = 5.0 mg/kg

Table 5: Scenario 4 (adapted from the experiments of Balkhy et al., 1999)

Balkhy (1999) 0 hours 24 hours 48 hours 72 hours Experimental Results

Non-Preconditioned Saline Saline n/a 300 mcg 3- to 6-fold reduction in
Preconditioned 50 mcg 50 mcg n/a 300 mcg the peak serum TNF-�

levels @ 73 hours
Mouse weight is estimated at 20 grams: 50 mcg/mouse = 2.5 mg/kg and

300 mcg/mouse = 15 mg/kg

Table 6: Scenario 5 (adapted from the experiments of Berg et al., 1995)

Berg (1995) 0 hours 24 hours Experimental Results

Non-Preconditioned Saline 200 mcg No mice survived
Preconditioned 25 mcg 200 mcg All mice survived
Mouse weight is estimated at 20 grams: 25 mcg/mouse = 1.25 mg/kg and

200 mcg/mouse = 10 mg/kg
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Table 7: Endotoxin administration parameter values and �gure references for in silico simulations of
Scenarios 1-8. Scenarios 1-5 are based on those found in Tables 2 - 6. As an example, parameters for one
simulation may be set as follows: t1 = 0 hrs, �1 = 0 mg/kg, t2 = 24 hrs, �2 = 10 mg/kg, and � = :01
hrs. This is analogous to giving a saline (non-preconditioned) dose (�1 = 0 mg/kg) to mice at time zero
(t1 = 0 hrs) and then giving a second dose (�2 = 10 mg/kg) of endotoxin at 24 hours (t2 = 24 hrs) with both
doses given as instantaneous injections (� = 0:01 hrs) at the speci�ed times. The system is then integrated
and one can look at time courses of the model variables. These parameters can be changed and the system
integrated again to give another set of time course for comparison.

�1 t1 �2 t2 �3 t3 �4 t4 � Figure
mg/kg hrs mg/kg hrs mg/kg hrs mg/kg hrs hrs Ref

Scenario 1 2a-2d
Non-Preconditioned 0.0 0 10.0 24 n/a n/a n/a n/a 0.01
Preconditioned 1.0 0 10.0 24 n/a n/a n/a n/a 0.01
Scenario 2a-2c 3a-3c
Non-Preconditioned 0.0 0 5.0 26 n/a n/a n/a n/a 0.01
Preconditioned 2a 0.05 0 5.0 26 n/a n/a n/a n/a 0.01
Preconditioned 2b 0.25 0 5.0 26 n/a n/a n/a n/a 0.01
Preconditioned 2c 1.0 0 5.0 26 n/a n/a n/a n/a 0.01
Scenarios 3a-3c 4a-4c
Non-Preconditioned 3a 0.0 0 5.0 24 n/a n/a n/a n/a 0.01
Preconditioned 3a 0.125 0 5.0 24 n/a n/a n/a n/a 0.01
Non-Preconditioned 3b 0.0 0 0.0 24 5.0 48 n/a n/a 0.01
Preconditioned 3b 0.125 0 0.125 24 5.0 48 n/a n/a 0.01
Non-Preconditioned 3c 0.0 0 0.0 24 0.0 48 5.0 72 0.01
Preconditioned 3c 0.125 0 0.125 24 0.125 48 5.0 72 0.01
Scenario 4 5
Non-Preconditioned 0.0 0 0.0 24 15.0 72 n/a n/a 0.01
Preconditioned 4a 2.5 0 2.5 24 15.0 72 n/a n/a 0.01
Preconditioned 4b 0.125 0 0.125 24 0.125 48 5.0 72 0.01
Scenario 5 6a-6b
Non-Preconditioned 0.0 0 17.0 24 n/a n/a n/a n/a 0.01
Preconditioned 1.25 0 17.0 24 n/a n/a n/a n/a 0.01
Scenario 6 7a-7b
Non-Preconditioned 0.0 0 6.0 24 n/a n/a n/a n/a 0.01
Preconditioned 3.0 0 6.0 24 n/a n/a n/a n/a 0.01
Scenario 7 8a-8b
Non-Preconditioned 0.0 0 6.0 15 n/a n/a n/a n/a 0.01
Preconditioned 3.0 0 6.0 15 n/a n/a n/a n/a 0.01
Scenario 8 9a-9d
Non-Preconditioned 3.0 0 n/a n/a n/a n/a n/a n/a 0.01
Preconditioned 3.0 0 n/a n/a n/a n/a n/a n/a 24.0
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� = :01 hrs. This is analogous to giving a saline (non-preconditioned) dose (�1 = 0 mg/kg)

to mice at time zero (t1 = 0 hrs) and then giving a second dose (�2 = 10 mg/kg) of endotoxin

at 24 hours (t2 = 24 hrs) with both doses given as instantaneous injections (� = 0:01 hrs) at

the speci�ed times. The system is then integrated and one can look at time courses of the

model variables. These parameters can be changed and the system integrated again to give

another set of time course for comparison.

Scenario 1 is based on the experiments of Sly and colleagues [105], summarized in Table 2.

Fig. 2a, c and d show the time courses for the model variables obtained for this �rst scenario

and Fig. 2b is a bar graph of selected time points from the numerical data shown in Fig.

2a. Scenario 2 follows the endotoxin tolerance experiments of Wysocka et al. [120], outlined

in Table 3, where tolerance is induced with a variety of preconditioning doses ranging from

0.05 to 1 mg/kg. A qualitative reproduction of their results by our model can be seen in the

time courses of Fig. 3. It is interesting to note that the preconditioning dose used in scenario

2b allows for the greatest reduction in N� compared to doses used for scenarios 2a and 2c.

This indicates that for a �xed preconditioning time interval, the size of the preconditioning

dose can determine the magnitude of the reduction that is detected, with a nonmonotonic

relationship between the two. We address this observation in more detail in Section 2.5.

Scenario 3 is based on the experiments done by Rayhane et al. [96]. Two of these

experiments are more complicated than those of Sly et al. and Wysocka et al., since several

preconditioning doses, rather than only one, are given before the challenging dose. In Table

4, the designs of the three separate tolerance experiments from Rayhane et al. are outlined

along with a summary of their results. Fig. 4 shows our results.

The experiment of Balkhy and Heinzel [9], scenario 4 outlined in Table 5, is slightly

di¤erent from the previous scenarios we have simulated, in that the �nal endotoxin dose (15

mg/kg) is given 48 h after the last preconditioning dose, instead of only 24 or 26 h after. Fig.

5 shows the results of our simulations for this scenario. We note that if we had simulated

giving the challenge dose of 15 mg/kg earlier than 48 h after preconditioning (e.g. at 24 or

26 h after), this regimen would have led the system to the unhealthy state. This �nding

highlights the importance of timing as well as dosage size to tolerance outcomes.

As mentioned previously, endotoxin, when given above a certain threshold dose, can be
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Figure 2: Numerical results of simulations following scenario 1 in Table 2, with administration parameters
set as in Table 7 for Scenario 1. (a) Time courses of N� for the non-preconditioned (solid) and preconditioned
simulations (dashed), showing a maximum reduction of 60% as indicated by the downward arrow. In actual
experiments, the data cannot usually be viewed as continuous time course curves. Instead, bar graphs are
given showing the amount of certain analytes at a speci�ed time after the challenge endotoxin administration,
comparing the non-preconditioned group to the preconditioned group. To relate our in silico results to this
convention, (b) shows a bar graph of the amount of N� in both the non-preconditioned and preconditioned
simulations at several time points after the challenge endotoxin administration, where a reduction in N�

is seen. (c)�(d) Time courses of CA and D, respectively, for the non-preconditioned (solid curve) and
preconditioned simulations (dashed curve). The dotted vertical line in (c) denotes the time the challenge PE
dose was given.
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Figure 3: Numerical results of simulations following scenarios 2a�2c in Table 3, with dosage amounts
converted from micrograms/mouse to milligrams/ kilogram in order to conform to the units of PE (mg/kg) in
our model. Administration parameters are set as in Table 7 for scenarios 2a�2c. Time courses of N� for the
non-preconditioned (solid) and preconditioned simulations (dashed) are shown for each scenario. Compared
to the non-preconditioned simulation, there is a maximum reduction in N� of 44% in (a) scenario 2a, 73%
in (b) scenario 2b and 48% in (c) scenario 2c, indicated in each �gure by the downward arrows. The time
courses of CA, for the non-preconditioned (large dots) and preconditioned (small dots) simulations, are also
shown on each graph with a separate axis on the right of each graph.
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Figure 4: Numerical results of simulations following scenarios 3a�3c in Table 4, with dosage amounts
converted from micrograms/mouse to milligrams/kilogram in order to conform to the units of PE (mg/kg)
in our model. Model parameters are set as in Table 7 for Scenarios 3a�3c. Time courses of N� for the
non-preconditioned (solid) and preconditioned simulations (dashed) are shown for each scenario. Measured
against the non-preconditioned simulations, we see a reduction in N� of 70% in (a) scenario 3a, 68% in (b)
scenario 3b, and 65% in (c) scenario 3c, indicated in each �gure by the downward arrows. The time courses
of CA, for the non-preconditioned (large dots) and preconditioned (small dots) simulations, are also shown
on each graph with a separate axis on the right of each graph.
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Figure 5: Numerical results of simulations following scenario 4 in Table 5, with model parameters set
as in Table 7 for scenario 4. Time courses of N� are shown for the non-preconditioned (solid) and the
preconditioned simulations (dashed). Balkhy and Heinzel report a 3- to 6-fold reduction of serum TNF
one hour after the challenge dose is given, compared to non-preconditioned results. Although our model
does not capture an immediate reduction in our pro-in�ammatory mediator, N�, we do observe a signi�cant
reduction overall, as seen in this �gure. The time courses of CA, for the non-preconditioned (large dots) and
preconditioned (small dots) simulations, are also shown with a separate axis on the right of the graph.
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lethal for mice. This threshold can depend on speci�c experimental conditions as well as the

strain of mouse used. However, experiments have shown that preconditioning mice with a

low, survivable PE dose can actually prevent animals from succumbing to a lethal challenge

dose [11, 105, 122]. We conduct a model simulation of this e¤ect using the experiment of

Berg et al. [11] as a guideline (Scenario 5, Table 6). A dose of 10 mg/kg proved to be lethal

in the mice that were used in Berg�s experiment; however, based on our own studies, the

lethal dose in our model is centered at 17 mg/kg [20]. Thus, our potentially lethal challenge

dose in our simulations is �1 =17mg/kg of PE. Figs. 6a and b show the simulation time

courses for N� and D, respectively, where we see that preconditioning enables a rescue from

an otherwise lethal insult.

2.3.2 Potentiation scenarios sub-lethal and lethal doses

Experimentally, when the time between initial exposure to endotoxin and the secondary

challenge is short relative to the magnitude of the endotoxin doses, an increase, rather than

a reduction, of in�ammation (i.e. TNF ) is observed upon repeated endotoxin administra-

tions. This phenomenon is referred to as potentiation [18]. As we will discuss in further

detail later, both the timing of the administration of the doses as well as their magnitudes

determine the �nal outcome of tolerance or potentiation. The scenarios introduced in this

section demonstrate potentiation in several di¤erent forms. Scenarios 6 and 7 which are not

explicitly based on experiments found in the literature demonstrate sub-lethal and lethal

potentiation simulations, respectively. Figs. 7a and b show that in scenario 6 there is a

clear elevation in the amount of N� in the preconditioned simulation, compared to that of

the non-preconditioned one, but the mediators eventually resolve to the healthy state. In

scenario 7, Figs. 8a and b show that the non-preconditioned simulation results in a healthy

outcome whereas the preconditioned one results in an unhealthy outcome. Comparing Sce-

narios 6 and 7 show that the timing and not just the amount of the second endotoxin dose

determines whether or not the potentiation leads to an increase in N� that eventually settles

back to the healthy equilibrium, or to an increase that converges to the unhealthy state.

In order to experimentally simulate the kinetics of endotoxin release in animals during
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Figure 6: Numerical results of simulations based on scenario 5 in Table 6, with model parameters set
as in Table 7 for scenario 5. This scenario demonstrates that our model qualitatively captures the result
that a small preconditioning dose of endotoxin can prevent the negative outcome of an otherwise lethal
dose. (a)�(b) Time courses of N� and D, respectively, for the non-preconditioned (solid) and preconditioned
simulations (dashed). The time courses of CA,for the non-preconditioned (large dots) and preconditioned
(small dots) simulations, are also shown on the N� graph with a separate axis on the right of the graph.
The non-preconditioned simulation clearly ends up at the unhealthy state, in which N� and D remain high.
However, the simulation that was preconditioned settles to the low healthy state, showing rescue from an
otherwise lethal insult.
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Figure 7: Numerical results of simulations for sub-lethal potentiation scenario. (a) Time courses of N� for
the non-preconditioned (solid) and preconditioned simulations (dashed), showing an increase in the amount
of N� with preconditioning compared to the non-preconditioned simulation. The time courses of CA, for the
non-preconditioned (large dots) and preconditioned (small dots) simulations, are also shown on the N� graph
with a separate axis on the right of the graph. (b) Bar graph of selected time points from (7a), showing the
amount of increase in N�.
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Figure 8: Numerical results of simulations for lethal potentiation scenario. (a)�(b) Time courses of N�

and D, respectively, for the non-preconditioned (solid) and preconditioned simulations (dashed). The time
courses of, CA, for the non-preconditioned (large dots) and preconditioned (small dots) simulations are also
shown on the N� graph with a separate axis on the right of the graph. Unlike the non-preconditioned
simulation, the preconditioned simulation results in an unhealthy response.
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sepsis, a continuous, low-dose infusion of endotoxin is administered [90]. Scenario 8 demon-

strates that gradually administering a dose of 3 mg/kg PE over 24 h forces the system to the

unhealthy state, whereas the same dose given as an abrupt bolus does not. To approximate

the instantaneous administration of 3 mg/kg PE into the system, we set t1 = 0, �1 = 3, and

� = 0:01 (Fig. 9a). To simulate 3 mg/kg PE given over 24 h at a constant rate, we set � =

24. In setting � to a value of 24 we are simulating an endotoxin infusion that distributes a

total of 3 mg/kg PE gradually over 24 h (Fig. 9b). This is a fair comparison, because in

both cases, in the absence of decay of PE, the PE level at the end of the infusion would be 3

mg/kg. Figs. 9c and d show that the constant administration of PE, even though it is admin-

istered in very low amounts, causes the system to converge to the unhealthy state, whereas

the instantaneous dose does not. These results imply that insults that elicit a strong initial

pro-in�ammatory response properly counter-balanced by an anti-in�ammatory response are

more likely to be tolerated by the host. In contrast, those stimuli that cause an initially

weak but persistent response can be detrimental to the host.

2.4 THE IMPORTANCE OF THE DYNAMICS OF THE LATE

PROINFLAMMATORY AND ANTI- INFLAMMATORY MEDIATORS

TO TOLERANCE

A system of ordinary di¤erential equations becomes complicated very rapidly as the number

of equations increases. It can, therefore, be advantageous to attempt to reduce the number

of equations to a manageable number by applying a steady state assumption. This strategy

is most appropriately applied to variables that are transient, and is accomplished by set-

ting their derivatives to zero; for example, if x0 = f(x; y), then we apply the steady state

assumption to x by setting x = X(y) such that f(X(y); y) = 0, if such an X(y) exists. By

making such a substitution, one is assuming that the relevant variable reaches its steady state

quickly and does not deviate from it over time, although the particular value of its steady

state may vary as the other quantities in the system evolve. Based on the form of the model

in Section 2.2, it would be most convenient to reduce the number of equations in our model

by applying the steady state assumption to D, although in fact it behaves as a slow-acting
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Figure 9: Instantaneous versus continuous PE administration. (a) Time course of PE for the simulation
giving an instantaneous injection of 3 mg/kg PE into the system. (b) Time course of PE for the simulation
giving 3 mg/kg PE over 24 h at a constant rate. This is done by setting � = 24 in the PE equation. In setting
� to a value of 24 we are simulating an endotoxin infusion that distributes a total of 3 mg/kg PE over 24 h
rather than an instantaneous introduction of that amount.(c)�(d) Time courses of N� and D, respectively,
for the instantaneous administration simulation (solid) and continuous administration imulation (dashed)
time courses. The time courses of CA, for the instantaneous administration (large dots) and continuous
administration (small dots) simulations, are also shown on the N� graph with a separate axis on the right
of the graph.
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pro-in�ammatory mediator. As it turns out, under the steady state assumption on D, the

model fails to reproduce the experimentally observed endotoxin tolerance results without

parameter modi�cations that compromise the basic model performance or are outside of the

physiologic range.

As mentioned, we de�ne the existence of endotoxin tolerance in our model as a reduced

N� response to a low dose of PE when the system is preconditioned with an initial low PE

dose. However, with D in steady state, we observe only potentiation of the N� response

regardless of when the second dose is administered. On the other hand, parameters can be

changed to achieve tolerance, but these changes eliminate the possibility for the system to

reach an unhealthy state, which is necessary in order for the model to retain basic biological

�delity. As previously mentioned, experiments have veri�ed that a low preconditioning dose

of endotoxin can rescue mice from a normally lethal endotoxin dose [96, 105, 122]. However,

with D in steady state, a lethal PE dose always leads to an unhealthy state even after a low

preconditioning dose of PE is given and, in fact, does so more prominently when the system

is preconditioned.

Thus, dynamically modeling D allows for a number of outcomes that are not possible

otherwise within the bounds of the biological constraints imposed by past experimental

�ndings. The fact thatD acts gradually and promotes the production of CA allows the model

to attain an extended CA elevation, without compromising the existence of an unhealthy state

in the system. This attribute of our model plays an important role in the reproduction of

tolerance scenarios. We explored this further by looking at the e¤ects that certain forms of

altered CA dynamics had on tolerance in our model (with dynamic D). First, appropriate

model parameter values were adjusted so that CA was only being produced by early immune

responders (N�) and so that it had an early peak and a relatively quick decay. The time

course of CA then closely resembled that of a fast acting anti-in�ammatory cytokine, such as

IL-10. In this scenario, the regimes of healthy and unhealthy still exist; however, tolerance

does not occur. Indeed, preconditioning led to potentiation of theN� response and sometimes

caused the otherwise sub-lethal challenge dose to be lethal, much like what happened when

D was assumed to be in steady state. Therefore, it appears that for tolerance to occur in

our model, CA cannot solely behave as an early antiin�ammatory mediator, like IL-10.
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On the other hand, another possible modi�cation was to adjust model parameters so that

CA behaved as a later acting anti-in�ammatory, accumulating on a time scale comparable to

that of D. We found that signi�cant changes in this direction drastically shrank the basin

of attraction1 of the healthy state. In some ways, modifying CA in this way is comparable

to considering IL-10 -de�cient (knockout) mice, and indeed a similar sensitivity to small

endotoxin doses is seen experimentally in these animals [11, 120]. Tolerance e¤ects have been

seen in experiments with IL-10 knockout mice. It is likely, however, that such knockout mice

have a decreased susceptibility to pro-in�ammatory stimuli or an increased upregulation of

other anti-in�ammatory mediators to compensate for the absence of IL-10 early on in the

immune response, which our model does not incorporate. Indeed, simulation of our model

suggests that removal of early anti-in�ammatory mediators without compensation would

eliminate tolerance, since endotoxin doses small enough to be sub-lethal, given the decreased

basin of attraction of the healthy state, fail to activate CA su¢ ciently for tolerance to occur.

2.5 INSIGHT FROM THE MODEL�S RESPONSES TO ENDOTOXIN

ADMINISTRATION

Looking at these preconditioning phenomena from the point of view of the dynamics of a

mathematical model of the acute in�ammatory response, we are able to o¤er insight into

why these disparate results are seen experimentally. It is important to note that the devel-

opment of this model only took into account empirical observations about the interactions

of somewhat abstracted immune e¤ectors. However, none of the endotoxin administration

results that we have reproduced was built into the development of the equations. Rather,

our �ndings emerge from the interactions of the dynamic variables and biological e¤ects of

repeated endotoxin administration. Thus, although petitio principii or �circular reasoning�

is a potential pitfall of such reduced models, the model we present was not constructed to

describe the speci�c paradigm of endotoxin tolerance.

The timing and magnitude of the endotoxin doses plays a crucial role in the types of

1The basin of attraction of a stable �xed point, x�, of a dynamical system is the set of all initial conditions
that dynamically approach x�under the �ow of the vector �eld as t!1. [108, 118]
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outcomes that are observed. In the model considered, the variable N� is inhibited by CA,

the levels of which can remain elevated even after enough time has passed for N� to start

returning to its resting value. Using scenario 1 as an example, Fig. 2c demonstrates how

the amount of CA varies between the nonpreconditioned and preconditioned simulations at

the time that the second PE dose is given (dotted vertical line). Comparing the amount of

the anti-in�ammatory mediator in the two simulations at this time point, we see that with

preconditioning there are signi�cantly higher levels of CA than without preconditioning,

which shows CA levels that are still at baseline. In scenarios 1�4, which lead to endotoxin

tolerance, the challenge endotoxin dose that follows the preconditioning regimen is given

during a time when the system is precisely in this state of relatively low N� and elevated

CA. The build-up of the anti-in�ammatory mediator, induced by preconditioning, results in

a reduction of the overall in�ammation or build-up of N�, incited by the challenge endotoxin

dose. Fig. 2c also shows that even though a short time after the challenge dose the levels of

the anti-in�ammatory mediator for the non-preconditioned simulation have risen above the

preconditioned simulation levels, this occurs too long after the �nal endotoxin stimulus to

in�uence the relative levels of N� across the two experiments.

It is important to note that, despite the inhibitory e¤ects of CA, the full model ex-

hibits an attracting, unhealthy steady state that can be attained, for example, following the

introduction of a single, su¢ ciently large dose of endotoxin. For the rescue phenomenon

demonstrated in scenario 5 (Figs. 6a and b), we see that a preconditioning dose of endo-

toxin can prevent the system from reaching the unhealthy state upon subsequent exposure

to an otherwise lethal endotoxin dose. Such a rescue is possible because the preconditioning

changes the state in which the system lies when the lethal dose is encountered. Speci�cally,

the anti-in�ammatory mediator rises enough and the pro-in�ammatory mediators are close

enough to equilibrium after the preconditioning dose so that when the previously lethal en-

dotoxin stimulus is given, the system lies in the basin of attraction of the healthy, baseline

state, rather than that of the unhealthy state.

This behavior is similar to the tolerance observed in scenarios 1�4. The results from

scenario 1 (Figs. 2a and c) are utilized in Figs. 10b and c to illustrate this by showing a

projection of the system onto the N�-CA phase plane where trajectories for N� and CA can
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be seen with respect to their nullclines (dN�=dt = 0 and dCA=dt = 0).2 For comparison,

related time courses of N� are shown in Fig. 10a. In addition to the elevation of CA above

equilibrium when the challenge endotoxin dose is administered, the proximity of N� and

D to their equilibrium levels is equally important for both tolerance and rescue to occur,

since the (N�; D) subsystem forms a positive feedback loop. As long as the level of N� or

D remains too high, the introduction of the lethal endotoxin dose will place the system in

the basin of attraction of the unhealthy state. The potentiation phenomenon illustrated in

scenario 6 (Fig. 7a) follows similarly, stemming from a second endotoxin dose that comes

soon after the initial one. Figs. 11a�c use the same strategy demonstrated with Figs. 10a�c

this time using the results of scenario 6 to illustrate potentiation from the viewpoint of a

projection of the system to the N�-CA phase plane.

Likewise, Fig. 12a shows the N�-D-CA phase space to illustrate the rescue demonstrated

in scenario 5 (Figs. 6a and b). The elevated amount of CA in the system at the time of the

challenge dose blunts the e¤ect of the potentially lethal dose, enabling the trajectory of the

preconditioned simulation toremain in the basin of attraction of the healthy �xed point. In

addition, Fig. 12b shows a similar rescue scenario in theN�-D-CA phase space along with the

2-dimensional separatrix consisting of the stable manifold of the saddle point of the system.3

The code for calculating the separatrix manifold was written in MATLAB, based on an

algorithm presented by Krauskopf and Osinga [63]. The algorithm and its implementation

are given in detail in Chapter 3. The separatrix forms the border between the basins of

attraction of the healthy and unhealthy states. This surface is exact (and thus invariant; see

Strogatz [108] for more details) only in the limit of PE = 0. Nonetheless, since PE decays

quickly, this surface gives a reasonable estimate to the true separatrix location in (N�-D-

CA) space for times that are not too close to endotoxin dose administration times. Thus,

the location of a trajectory a short time after a challenge dose, relative to the separatrix,

determines the long-term fate of the system.

2For a planar system dx=dt = f(x; y); dy=dt = g(x; y); the nullclines are the two curves f = 0 and
g = 0. Fixed points of the system occur precisely at intersections of the nullclines. In higher dimensions,
nullclines are actually nullsurfaces and are much harder to visualize. In Figs. 10 and 11, we project onto a
2-dimenstional phase plane and are, therefore, looking at slices of the CA and N� nullsurfaces.

3We chose not to use exactly the same trajectories produced in Fig. 12a because they followed the
manifold too closely and it was di¢ cult to visualize what exactly was happening.
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Figure 10: Endotoxin tolerance (based on scenario 1) illustrated with the N� � CA phase plane. The
speci�c markers represent the following: black circle = time point just prior to the administration of the
challenge endotoxin dose, red upside down triangle = 1 h after the challenge dose, green square = 2 h after the
challenge dose, yellow diamond = 13 h after challenge dose, and blue triangle = 26 h after challenge dose. In
(a) the symbols described above are positioned on the N� time courses of the non-preconditioned (solid) and
preconditioned (dashed) simulations, where the preconditioned simulation time course falls below the non-
preconditioned simulation time course just after the yellow diamond marker. In (b), the N� nullcline (red;
vertical line) and CA nullcline (green; almost horizontal line) are shown along with two curves representing the
trajectories of the nonpreconditioned (black; thick) and preconditioned (blue; thin) simulations of scenario 1.
The arrows signify which direction the trajectories are �owing in the phase plane. Although both trajectories
end at the healthy �xed point after running their courses, the preconditioned (blue; thin) trajectory actually
approaches the �xed point faster, resulting in tolerance. Several points are marked on the non-preconditioned
and preconditioned trajectory with � or +, respectively, denoting speci�c times prior to and after the time
of the challenge endotoxin dose. These time points are shown again in (c) where they are color coded and
connected to stress which ones belong on the non-preconditioned and preconditioned curves shown in (b).
The black circle belonging to the curve of the non-preconditioned simulation shows that the trajectory is
sitting at the healthy �xed point, where N� and CA are at their background levels. In comparison, the black
circle belonging to the curve of the preconditioned simulation is sitting at a place in the phase plane where
CA is much greater than its baseline value. It is also a place where N� is above its baseline, however, the
trajectory is beginning to turn to the left toward the healthy �xed point and the challenge dose does not
push the trajectory too far in the N� direction. Comparing the other symbols in (c) on the two curves, the
preconditioned trajectory is at a lower N� level than the non-preconditioned curve at the same time just after
the yellow diamond (compare the positions of the blue triangles with respect to N�). This indicates that
tolerance has occurred. Thus, the state the system is in at the time the challenge dose is given determines
the outcome of the simulation.
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Figure 11: Potentiation (based on scenario 6) illustrated with the N� � CA phase plane. The N�

time courses in (a) of the non-preconditioned (solid) and preconditioned (dashed) simulations illustrate
that at each of the time markers, the N� level of the preconditioned simulation is signi�cantly above the
non-preconditioned simulation levels. The explanation given in the caption for Fig. 10 is very similar to
this panel, except that instead of the preconditioned trajectory outrunning the preconditioned simulation
trajectory, it now trails the non-preconditioned trajectory for all time, as seen in (b). In addition, when
comparing the symbols in panel (c), the levels of N� (x-axis) are always greater in the preconditioned
simulation. Although the position of the preconditioned simulation trajectory just prior to challenge is a
place of elevated CA, the level of N� is quite high as well, and when the challenge is given, the new starting
point of the preconditioned trajectory is pushed further to the right into high N� territory. Consequently,
the preconditioned trajectory cannot draw level with, much less pass, the non-preconditioned simulation.
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Figure 12: Rescue scenario in the N� � D � CA phase space. (a) Using our simulations for scenario
5, this �gure illustrates the concept of protection or rescue in the N� � D � CA phase space. The non-
preconditioned trajectory (bold) is pushed into the basin of attraction for the unhealthy �xed point by the
injection of the 17 mg/kg PE dose at 24 h. The preconditioned trajectory, however, remains in the basin
of attraction of the healthy �xed point. This is because the amount of CA in the system just prior to the
challenge dose is signi�cantly above baseline and the e¤ect of the 17 mg/kg hit of PE is, therefore, blunted.
(b) Using a slightly di¤erent but similar simulation to scenario 5, in which preconditioning again leads to
rescue, we now show a portion of the 2-dimensional separatrix consisting of the stable manifold of the saddle
point of the system (see text for more details). The preconditioned trajectory (black on yellow) stays on the
healthy side of the surface after the challenge dose, while the challenge dose pushes the non-preconditioned
trajectory (red) to the unhealthy side of the surface.
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In all of the above discussions, it is clear that timing is very important to achieve toler-

ance. Therefore, we further investigate the dependence of toleranceon the amount of time

between the preconditioning and challenge dose as well as the magnitude of preconditioning

by examining a range of preconditioning doses and times at which they are given. In scenario

1, it was shown that a preconditioning dose of 1 mg/kg endotoxin 24 h prior to the challenge

endotoxin dose of 10 mg/kg endotoxin produced endotoxin tolerance, marked by a decrease

in the level of the model variable, N�, compared with the non-preconditioned simulation at

a particular point in time, namely 66 h after challenge.

However, if we vary the amount of the preconditioning dose as well as the amount of time

between the preconditioning dose and challenge dose, we see that there is a wide range of

preconditioning doses and times at which they can be administered that also show a decrease

in N� at the time of comparison with the non-preconditioned simulation. Furthermore,

the relationship between the size of the preconditioning dose and the time that it is given

relative to the challenge dose is not obvious. In Fig. 13, we see that potentiation is ev-

ident for the range of preconditioning times that are close to the time the challenge dose

is administered (approximately 0�15 h before challenge). Tolerance is observed when this

interval is typically longer than 15 h. Interestingly, there is a brief interval (15�20 h be-

fore challenge) during which smaller preconditioning doses typically allow for more tolerance

than larger doses do. For this case, the key point is that larger preconditioning doses elicit

more in�ammation than do smaller doses. Thus, for large doses, the in�ammation is still

high when the challenge dose is given, such that less tolerance is observed than for small

doses. There is, however, a range of these preconditioning times (20�110 h before challenge)

during which the relationship between the magnitude of the preconditioning dose and the

amount of tolerance it elicits is not monotonic, due to a competition between the amount

of in�ammation and the amount of anti-in�am-mation invoked by the preconditioning dose.

Finally, for the range of preconditioning times from 110 to 200 h before challenge, the larger

preconditioning doses exhibit more tolerance than the smaller doses. This is due to the fact

that the smaller anti-in�ammatory responses elicited by small preconditioning doses have

worn o¤ by these times, whereas for the larger preconditioning doses, the large degree of

in�ammation invoked has subsided by these times while the associated strong, prolonged
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anti-in�ammation persists.

Thus, early second stimulation with endotoxin leads to potentiation of in�ammation and

consequently enhances lethality. Alternatively, if the second stimulus comes too late, signif-

icant tolerance fails to be induced. In our simulations, the build-up of CA after a sub-lethal

preconditioning endotoxin dose is transient, and CA eventually settles back to equilibrium,

along with the other e¤ectors in the model. Thus, the preconditioned system response to

late challenge stimuli is similar to that seen in nonpreconditioned responses. In summary,

we expect the existence of a window of possible challenge dose times and preconditioning

magnitudes for which endotoxin tolerance is possible. In Chapter 4, we explore the nature

of tolerance in a more general setting from a purely mathematical viewpoint.

2.6 DISCUSSION

The preconditioning phenomena of potentiation and tolerance characterize acute in�am-

mation in both rodents and humans [23, 122]; in humans, the latter phenomenon is often

referred to as �immune paralysis�or �immune exhaustion�, in which leukocytes�derived from

patients with severe in�ammation as measured by circulating pro-in�ammatory cytokines�

often produce low levels of these same in�ammatory agents [93, 94]. In this paper, we

show that an experimentally calibrated but highly reduced computational model for the

acute in�ammatory response [98] (also see Supplementary Materials in section 2.7) incorpo-

rates su¢ cient dynamic complexity to qualitatively reproduce a suite of experimental results

associated with multiple endotoxin administrations in mice. Our success in matching exper-

imental endotoxin tolerance results o¤ers support for the biological relevance of the reduced

model. Moreover, our simulations illustrate how the outcomes of endotoxin administration

experiments can emerge as a natural consequence of the interactions of di¤erent components

of the acute in�ammatory response and also highlight the importance of including a dynamic

late proin�ammatory component in the model. We �nd that the relative time scales of the

onset and decay of pro- and antiin�ammatory mediators are key determinants of outcomes

in these experiments, as illustrated in the simulations and phase plane projections that we

present. Finally, the results of our simulations involving potentiated responses (Fig. 7), low-
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Figure 13: Dependence of tolerance on preconditioning dose timing and magnitude. The solid, horizontal
line marks the normalized level of N� of the non-preconditioned simulation at 66 h after a 10 mg/kg challenge
dose is given. Each individual curve shows the normalized level of N� (recorded at 66 h after challenge) for
a particular preconditioning dosage amount as a function of the time at which the dose was given prior to
the challenge dose (from 0 to 200 h prior to challenge with 10 mg/kg endotoxin). Points on the curves that
fall below the black line indicate that tolerance has occurred: The N� value for a preconditioned simulation
at 66 h after challenge is lower than that of the non-preconditioned simulation (represented by the solid,
horizontal line). Those which are above the solid line produce potentiation instead. (See Section 2.5for
further details.)
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dose protracted endotoxin infusion (Fig. 9), and variations in the timing and amplitude of

preconditioning doses (Fig. 13) yield predictions that remain to be veri�ed experimentally.

Mathematical approaches to understanding endotoxin tolerance have not been exten-

sively represented in the literature. However, in the work of Mayer and colleagues [75] a

simple two equation mathematical model of the immune response is presented and toler-

ancelike behavior is mentioned. Their model consists of immune cells (E) and target cells

(T ) which represent bacteria, for instance, and are inhibited by the immune cells. Although

Mayer et al. do not consider endotoxin speci�cally and do not model anti-in�ammatory

e¤ects, a form of tolerance is manifested in their model by a reduction in the growth of

their target cells when a secondary infection is initiated, compared to the growth of the

initial infection. This reduction is due to the fact that the concentration of the immune cells

they model is elevated when the secondary infection is introduced. In fact, the secondary

infection is initiated after the system has approached a steady state in which the immune

cell concentration is high and the primary infection has been cleared. This simulation di¤ers

substantially from the situation we consider, in which a positive resolution corresponds to a

return to the baseline rest state and endotoxin challenges come during transient excursions

from this state induced by endotoxin preconditioning.

Much of the experimental literature regarding endotoxin tolerance focuses on the roles

of IL-10 and Transforming Growth Factor-�1 (TGF -�1 ), two potent anti-in�ammatory

cytokines [42, 68, 95, 124]. The possible roles that they each may have in endotoxin tolerance

have been documented by Randow et al. [95] and others [18, 42, 105]. Our model suggests

that the timing of doses for which tolerance will occur strongly depends on the time course

of the antiin�ammatory mediators. For the experiments that we have reproduced, it is

necessary for an anti-in�ammatory in�uence to arise early on in the response, as is seen with

IL-10, but also to remain elevated longer than IL-10. This latter feature might be true of

mediators like TGF -�1 or possibly IL-6, which has been shown to have antiin�ammatory

characteristics and is typically a cytokine produced relatively late in the course of an immune

response [121].

It has been shown that preconditioning with IL-10 protects mice from lethal endotoxin

doses and also partially mimics endotoxin tolerance [3, 18, 48]. However, this �nding does
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not contradict our �ndings on the importance of a prolonged anti-in�ammatory response for

tolerance, since IL-10 preconditioning leads to a di¤erent time course of anti-in�ammatory

mediators than occurs with the intrinsic immune response to endotoxin preconditioning.

Indeed, if IL-10 preconditioning introduces a signi�cant resence of IL-10 in the host during

the time that a rather toxic dose of endotoxin is administered, then it will suppress the

pro-in�ammatory response and thus enhance tolerance. Moreover, IL-10 can either induce

or activate TGF -�1 [68, 111], thereby prolonging the overall anti-in�ammatory e¤ect.

As with other recently developed mathematical models of the acute in�ammatory re-

sponse [20, 21, 65] the model used here was calibrated to be consistent with relevant ex-

perimental literature. However, we do not claim that the model with the parameters we

have chosen will be valid over a wide range of species, especially in regard to the di¤erences

in sensitivity to endotoxin. Mice can survive much higher doses of endotoxin than humans

can, for instance. Not all the parameter ranges and estimates could be acquired from mouse

data alone; however, whenever possible, we looked at literature and data regarding experi-

mental work done in mice. In order to reproduce experiments carried out with other species

such as humans, for example, it would be necessary to consult species speci�c data. See

Supplementary Materials for more details regarding parameter choices.

Since our model is based on a simpli�ed response system, it has certain limitations.

For example, it is di¢ cult to match speci�c biological mediators to the variables we have

chosen, with the exception of endotoxin (PE), and the model cannot predict quantitative

measurements. However, we have tried to select parameters such that the time courses of

our variable, N�, are qualitatively similar to those suggested by experimental data to exist

for early pro-in�ammatory mediators like TNF and activated phagocytes. For example, our

preliminary experimental data in rats suggest that the peak of activated neutrophils roughly

matches that of circulating TNF [66]. There are other apparent di¤erences between our

results and those in the literature. For instance, the reductions we show in N� are not seen

at the peak of its production, whereas the literature suggests that the reduction in TNF

production is seen at its peak (90�120 min after challenge) [101]. However, since our early

pro-in�ammatory mediator is not solely based on TNF, exact comparison with experimental

TNF data is simply not feasible. In addition, we demonstrate the induction of endotoxin
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tolerance by modeling the basic binding interaction of PE with immune e¤ector cells but

without any special alterations that a¤ect the clearance of PE. Despite these limitations,

our results highlight speci�c ways in which endotoxin tolerance and related phenomena can

emerge from the timing and the overall interplay between mediators of the acute in�amma-

tory response and illustrate the utility of a reduced model for the computational testing of

hypotheses and generation of predictions related to this response.

2.7 SUPPLEMENTARY MATERIALS

The standard parameter values for the reduced endotoxin model equations 2.1-2.4 are sup-

plied in Table 8. These parameter values are selected to remain within the given ranges

and constraints, which are based on experimental literature as well as on unpublished data.

Details on the derivation of these ranges are given below. Parameters that could not be doc-

umented from existing data were estimated such that the subsystems presented in Reynolds

et al. [98] behave in a biologically appropriate manner for all physiologically relevant levels

of the anti-in�ammatory mediator and so that the modi�ed endotoxin model presented here

also exhibits observed biological behaviors of immune mediators in the presence of endotoxin.

Many of the comments below refer to the subsystems of the pathogen model thoroughly dis-

cussed in [98]. Although the comments may not be explicitly relevant to the endotoxin model

discussed here, we include them since they explain how many of parameters which do appear

in the endotoxin model were estimated.

Units forN�, CA, andD are not given explicitly because there is no single biological entity

or marker that these variables represent and thus there are no speci�c units that can quantify

these variables empirically. Hence, we use �N�-units,��CA-units,�or �D-units�because we

cannot be any more precise about them. Although CA (Anti-in�ammatory Mediator) has

characteristics of IL-10 and TGF -�1, it would be inappropriate to assign real units to this

variable and quantitatively compare it to actual data from these or other anti-in�ammatory

mediators. Correspondingly, units of most parameters related to these variables are not in

conventional form, but rather in terms of the associated variable.

Comments:
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1. The range for the decay rate of pathogen endotoxin, �pe, was calculated from various

half-lives of endotoxin given by Iversen et al., [51] on pg. 1160 and the control curve on

Fig. 1 (for rabbits), Warner et al., [117] in the abstract (for rats), and Yoshida et al.,

[123] in the abstract (for rabbits).

2. The second term of the pathogen endotoxin equation 2.1 allows for multiple endotoxin

doses to be given at di¤erent times during a simulation. The function S is the di¤erence

of two Heaviside step functions, which determines when an administration starts (ton)

and stops (toff). The value assigned to ti determines ton and ti+� determines toff for the

ith endotoxin dose. The parameter �i, is the amount of the ith endotoxin dose to be given

and � governs the duration of time over which the dose is administered. The coe¢ cient

�i=� thus gives the dose of endotoxin to be administered per hour during the time interval

[ti , ti + �]. The summation in Eq. 2.1 allows for numerous doses to be given during

the simulation. Section 2.2 describes how the values for �i, �, and ti were chosen when

emulating various experimental scenarios involving repeated endotoxin administration.

3. We estimated the rate of activation of N� by PE, knpe, in such a way so that the following

two stable states exist: healthy (levels of all mediators are low) and unhealthy (levels of

all mediators, excluding PE, are high). A lethal dose of endotoxin for mice was acquired

from the literature and we used this information to calibrate the model to give proper

responses to lethal and sublethal doses known for mice, speci�cally [24]. Thus, both

of these states can be reached by simply varying the initial condition of PE: for a low

(single) initial condition of PE (less then 17 mg/kg) the system resolves to the healthy

state and for a high (single) initial condition of PE (17 mg/kg or more) the system

evolves to the unhealthy state, consistent with observed biological behaviors of immune

mediators in the presence of endotoxin.

4. In the model presented by Reynolds, et al. [98], the activated phagocytes/pathogen

(N�/P ) subsystem was �t such that for low pathogen growth rate (kpg) health is the only

stable state, and at a moderately high kpg septic death exists and is stable. Parameters

in this subsystem were �rst estimated so that these general dynamics occurred for a

signi�cant range of the physiologically possible levels of the anti-in�ammatory mediator.

They were then adjusted so that both the reduced model with pathogen dynamics and
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the modi�ed endotoxin model presented here exhibited observed biological behaviors

of immune mediators in the presence of pathogen or endotoxin, respectively. See also

comment 6.

5. In Reynolds et al. [98], the activated phagocytes/tissue damage (N�/D) subsystem

was initially �t such that for physiologically relevant levels of the anti-in�ammatory

mediator the system is bistable between health and aseptic death with a reasonable basin

of attraction for the health state. Adjustments were then made so that both the reduced

model with pathogen dynamics presented in Reynolds et al. and the altered endotoxin

model presented here exhibited observed biological behaviors of immune mediators in

the presence of pathogen or endotoxin, respectively. See also comment 6.

6. Once the anti-in�ammatory mediator (CA) was incorporated in the pathogen model of

Reynolds et al. [98] as a dynamic variable, the parameters were adjusted so that the

reduced pathogen model now has the following behavior (1) the model exhibits bistability

between the health and aseptic death states for low kpg with a plausible basin of attraction

for the health state, (2) for moderate to high kpg all three states (health, aseptic death,

and septic death) are stable, and (3) as kpg continues to increase, the health state and

the aseptic death state lose stability.

7. The parameter, knn, corresponding to the rate of activation of resting phagocytes by

those previously activated, was estimated to ensure �n > (snrknn)=�nr This inequality

must hold for the health state to be stable in the pathogen model of Reynolds et al. [98].

8. In Reynolds et al. [98], snr, the source of resting phagocytes (NR), was set to ensure

a stable concentration of resting phagocytes in the health state. It was adjusted to

balance �nr, the decay rate of resting phagocytes . These parameters are related since

in the health state NR = snr=�nr .

9. The range for the decay rate of the resting phagocytes, �nr, was calculated from the

half-lives (6-20 hours) of circulating neutrophils presented in Coxon et al. [25].

10. The half-life of activated phagocytes, �n, is longer than the half-life of resting phagocytes,

�nr, due to delayed apoptosis in the activated population; therefore, �n < �nr [25].

11. In Reynolds et al. [98], the peak of the activated phagocyte response elicited from

pathogen, knp, is greater than that triggered by damage, knd; therefore, knd < knp . In
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the modi�ed endotoxin model presented here, we adopted the same restriction so that

knd < knpe.

12. The minimum for �d, which represents tissue repair, resolution, and regeneration, was

estimated from data in Wang et al., [116]. We used the half-life of HMG-1, since it is

a histone tethering protein leaked by damaged cells as a surrogate for the many danger

molecules that perpetuate the in�ammatory signal. Wang and colleagues give data for

HMG-1 levels during an in�ammatory response to bacterial lipopolysaccharide (LPS).

Therefore, we estimated the lower limit as the slope of the data shown in Fig. 1C of

Wang et al. [116] during the decay phase of HMG-1. It would be unrealistic to set �d to

a value higher than the time constant of a recognized marker of cellular injury.

13. The value for c1 was set such that corresponds to � 75% inhibition, i.e. , when CA

reaches maximum value in response to an insult. We set this to be approximately 75%

because Fig. 6B in Isler et al. [50] shows that when the anti-in�ammatory mediator,

IL-10, is blocked with anti-IL10 there is approximately a 75% increase in the production

of IL-12 (a pro-in�ammatory cytokine produced by activated phagocytes).

14. Organisms have constitutive levels of anti-in�ammatory e¤ectors. Therefore, the source

parameter, sc, was chosen to balance the corresponding half-life, �c. These parameters

are related because at the health state CA = sc=�c.

15. Anti-in�ammatory signals have downstream cellular e¤ects not explicitly modeled herein,

lasting longer than the e¤ector cytokines or molecules producing it. Therefore, the value

for �c was set at the lower limit of reported half-lives of anti-in�ammatory e¤ectors,

which were estimated from pg. 130 of Bacon et al. [8], Table 1 on pg. 277 of Bocci [12],

pg. 291 of Fuchs et al. [40], and the abstract of Huhn et al. [49].

16. This Hill coe¢ cient for Eq. 2.3 was set to six so that the response of tissue damage to

activated phagocytes is not hypersensitive. A lower Hill coe¢ cient would not appropri-

ately represent this. In other words, it is biologically plausible that low levels of activated

phagocytes do not trigger signi�cant amounts of damage that could lead to a positive

feedback capable of sustaining aseptic death. Also, for values six and higher, there was

not a signi�cant di¤erence in the sensitivity of damage to the activated phagocytes. Con-

trary to the common inference regarding the use of Hill coe¢ cients in enzymatic kinetics,
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we are not implying that a cooperativity-based mechanism is at work.
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Table 8: Explanation of model parameters used in simulations

Name Range Value Used Description Comments

�pe 0.6207�14.85 3/h Decay rate of pathogen endotoxin (PE) 1, 4, 5
�i n/a Various (mg/kg) Amount of the ith PE dose administration 2
� n/a 0.01 or 24 hr Duration of PE injection: 0.01 corresponds

to instantaneous delivery (1/100 of an
hour) and 24 corresponds to constant de-
livery of a dose over 24 hours.

2

ti n/a Various (h) Time at which the ith PE dose is given 2
knpe Estimated 9/(mg/kg)/h Activation of phagocytes by pathogen en-

dotoxin (PE)
3, 4, 5

knn Estimated 0.01/N�-units/h Activation of phagocytes by already acti-
vated phagocytes (or the cytokines that
they produce )

4, 5, 7

snr Estimated 0.08/NR-units/h Source of resting phagocytes 4, 5, 8
�nr 0.069-0.12 0.12/h Decay rate of resting phagocytes

(macrophages and neutrophils)
4, 5, 9

�n Less than �nr 0.05/h Decay rate of activated phagocytes
(macrophages and neutrophils)

4, 5, 10

knd Less than knpe 0.02/D-units/h Activation of phagocytes by tissue damage
(D)

5, 11

kdn Estimated 0.35/D-units/h Max rate of damage production by acti-
vated phagocytes (and/or associated cy-
tokines/free radicals)

5

xdn Estimated 0.06 N�-units Determines level of activated phagocytes
(N*) needed to bring damage production
up to half its maximum level

5

�d 0.0174 (min) 0.02/h Decay rate of damage; combination of re-
pair, resolution, and regeneration of tissue
HMGB-1 release by damage

5, 12

c1 Estimated 0.28/CA-units/h Threshold for e¤ectiveness of the anti-
in�ammatory response

6, 13

sc Estimated 0.0125CA-units/h Source of anti-in�ammatory (CA) (IL-10,
TGF-�1, cortisol);

6,14

kcn Estimated 0.04 CA-units/h Maximum production rate of Anti-
in�ammatories

6

kcnd Estimated 48 N�-units/D-units Controls relative e¤ectiveness of activated
phagocytes versus damage in producing
anti-in�ammatories

6

�c 0.15-2.19 0.1/h Decay rate of the anti-in�ammatory medi-
ator

6, 15

hill Estimated 6 Hill coe¢ cient in the Damage Equation 16
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3.0 AN IMPLEMENTATION OF AN ALGORITHM FOR GENERATING

2-D (UN)STABLE MANIFOLDS FOR 3-D ODE SYSTEMS

3.1 INTRODUCTION

Stable and unstable manifolds of �xed points are important invariant geometric structures

in the theory of dynamical systems. Intersections of stable and unstable manifolds can

be the source of interesting, complex behavior. They can be valuable for visualizing the

separatrix of a saddle point between two stable �xed points, showing how the phase space is

divided into regions containing points that have common convergence sets as time!1 or

time ! �1. [43] Recall that in Chapter 2 we used the stable manifold to visualize how a

challenge dose of endotoxin can cause a trajectory that started in the basin of attraction of

the healthy �xed point to be bumped to the other side of the manifold and heading toward

the unhealthy �xed point.

With the 4D ODE model describing the acute in�ammatory response to endotoxin,

there were two stable states in the chosen parameter regime: one that represented a healthy

outcome and the other an unhealthy outcome, separated by an unstable saddle point. The

separatrix forms the border between the basins of attraction of the healthy and unhealthy

states. We wanted to visualize the threshold between these life and death outcomes; however,

in systems of n-dimensions, this threshold is in the form of an (n-1)-dimensional (stable)

manifold. Since the endotoxin tolerance system is four dimensions, it would be di¢ cult to

visualize the stable manifold of the saddle even if it were a two-dimensional structure since it

would be embedded in a four dimensional space. However, because the endotoxin variable,

PE, decays quickly we are able to consider only the other three variables: N�, D, and CA.

(i.e. set the endotoxin equation to zero). Then, it is possible to visualize the resulting
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two-dimensional stable manifold of the saddle point that exists in a three dimensional space,

giving a reasonable idea of how the space is divided.

There are presently a number of algorithms that have been published in the literature

that use various approaches to generate two dimensional (un)stable manifolds of equilibrium

points. A thorough review of these methods, given by Krauskopf and colleagues in [64], not

only explains each method but also points out the di¢ culties that each faces. Generally, all

the methods approach the problem by �growing�the manifold out from a small neighborhood

around the �xed point. Speci�cally, though, they di¤er in the way this is accomplished and

also in the way that the accuracy of the mesh is ensured. Furthermore, these methods can be

used to compute manifolds of dimension higher than two. For obvious visualization reasons,

however, demonstrations of the algorithms are usually done for two-dimensional manifolds

in three-dimensional space, as is done in this chapter.

Simply parameterizing the manifold by a collection of circles generated by the image

under the �ow of the vector �eld of an initial small circle around the �xed point, while

intuitive, does not provide a nice enough mesh. This can be caused by one eigendirection

being stronger than the other. As a result, the subsequent curves produced by �owing the

vector �eld out from the initial circle soon become deformed, creating an insu¢ cient and

incomplete mesh. Instead, the manifold needs to be parameterized by more nicely formed

curves which are topologically equivalent to circles. These can be found if one considers the

geodesic distance between two points, x and y, on the manifold. As Krauskopf and colleagues

explain, the geodesic distance is "the arclength of the shortest path" in the manifold that

connects x and y. Parameterizing the manifold by curves called geodesics, which contain

points that are all at an equal geodesic distance from the �xed point, is the correct method.

This parameterization only depends on the geometry of the manifold and not the underlying

dynamics of the system. Furthermore, the smoothness of the manifold guarantees that

the geodesic level sets are topologically equivalent to circles up to some maximum geodesic

length from the �xed point. See [64] and [106] for more details.

The usual example case for testing the various algorithms is the computation of the
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stable manifold of the origin of the Lorenz system:

_x = �(y � x);

_y = rx� y � xz;

_z = xy � bz

9>>>=>>>; (3.1)

with the following standard parameter values: � = 10; r = 28, and b = 22
3
. Abraham

and Shaw presented the �rst handwritten drawing of this manifold [1], while Guckenheimer

and Worfolk �rst published a computer generated image [45]. Since then, methods due

to Doedel, Dellnitz and Hohmann, Guckenheimer and Vladimirsky, Henderson, Johnston

and colleagues, and Krauskopf and Osinga have graced the dynamical systems literature.

[30, 31, 32, 33, 44, 46, 58, 63] However, what is lacking is the availability of a program that

allows users to generate manifolds for their own systems, as we wished to do for the endotoxin

tolerance model presented in Chapter 2. In the present chapter, the implementation of an

algorithm to generate a 2D (un)stable manifold of a saddle equilibria for 3D ODE systems

is discussed. The algorithm we implement is due to Bernd Krauskopf and Hinke Osinga

in their 1999 article published in Chaos [63]. We �rst introduce the algorithm using the

notation used by Krauskopf and Osinga and then present the details of our implementation

of the algorithm, which was programmed using MatLab. [72]

3.2 THE ALGORITHM

In their 1999 article, Bernd Krauskopf and Hinke Osinga presented pseudo code for an

algorithm to generate a 2D mesh of an unstable manifold. The paper, as well as the review

paper [64] mentioned above, thoroughly explains how the algorithm works and demonstrates

its capabilities with impressive pictures of the manifold for the Lorenz system; however,

speci�c details were not given as to how some parts of the algorithm were computationally

and practically carried out in order to generate these �gures. Moreover, there was no code

or software made available by which to utilize the method. Thus, we sought to convert the

pseudo code given in their paper into a usable MatLab program. In Chapter 2, since the

stable manifold was calculated for the endotoxin tolerance model, the implementation of this
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algorithm is presented in the context of the generation of a mesh for a 2D stable manifold

of a saddle equilibrium with alternatives for a 2D unstable manifold in parenthesis. The

explanations given in Krauskopf and Osinga�s work is done in the context of the unstable

manifold; however the di¤erences are minor, mainly having to do with integration being

carried out in forward or backward time.

First, we detail the input and output data.

� INPUT

�f : the right-hand-side of the vector �eld: _x = f(x), x 2 R3, f su¢ ciently smooth

�x0 : the saddle point of f

�Cr; � : initial discrete circle with radius �, approximating the local (un)stable man-

ifold, W s
loc(x0) (W

u
loc(x0)), in the (un)stable eigenspace. The (un)stable manifold

theorem guarantees that W s
loc(x0) (W

u
loc(x0)) exists in a small neighborhood around

x0. The (un)stable manifold is tangent to the (un)stable eigenspace of the lineariza-

tion of _x = f(x) at x0. Thus, if � is chosen su¢ ciently small, then Cr will be a good

approximation toW s
loc(x0) (W

u
loc(x0)). This comprises the starting data of the mesh

and is the foundation from which the next mesh points (i.e. next discrete circle) will

be calculated.

�� : initial guess of the euclidean distance between one discrete circle and the next

concentric circle in the mesh. This value will potentially change depending on

the accuracy of the mesh. In other words, � might need to be decreased so that

the generated mesh is approximating the manifold accurately enough. Accuracy

speci�cations are discussed later.

�Larc : total arclength to be computed. In the end, because the arclength of the

manifold is approximated by summing all the various values of � used throughout

the computation, the manifold is calculated up to an approximation of this speci�ed

arclength.

� OUTPUT

�The overall output that the algorithm generates is a mesh onW s(x0) (W
u(x0)) with

an approximated arclength from x0 close to Larc. Each discrete circle or band
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that comprises the mesh is stored in a matrix structure so that the manifold can be

generated from previously generated data (a much faster process!) or so that the

manifold can be continued from a speci�c band.

Starting with the saddle point, the global (un)stable manifold W s(x0) (W
u(x0)) mesh

is �grown� out from the saddle in bands made up of successive discrete circles generated

by the algorithm, as demonstrated in �gures that follow. In reality, the �rst circle is the

saddle point �a circle with radius zero. For a 2D (un)stable manifold of a saddle, there are

two linearly independent eigenvectors associated with the negative (positive) eigenvalues of

the linearization about the saddle from which the next substantial discrete circle, Cr, with

center, x0, is calculated. The points of this circle are then connected to the saddle point to

form the �rst band of the manifold as shown in this �rst picture.

Figure 14: Initial discrete circle around the Saddle Point

Each subsequent circle is found by using the previous discrete circle. Denote Cr as the

previously calculated discrete circle and let r 2 Cr. The following steps are carried out in

order to �nd each point on the next discrete circle lying on W s(x0) (W
u(x0)), all of which

are then connected to the points from the previous discrete circle, forming the next band of

the manifold:

� Calculate the half plane, Fr, perpendicular to the previous circle at point, r. The goal is

to �nd, for each r, the point, br, on Fr that is � away from r. This was accomplished
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via a shooting method described in more detail in the next section.

Figure 15: The half plane, Fr, perpendicular to the previous circle at point, r

� Shooting from the point r as the �rst initial condition, �nd the intersection of the resulting

trajectory with Fr. For an (un)stable manifold, we integrate in backward (forward) time,

in order to generate the trajectories. Then, we choose the next initial condition on Cr

from which to shoot. This choice is based on the results of the previous shooting attempt.

When an intersection point is � away from r, then this point is the desired br that we

Figure 16: Example trajectories illustrating the shooting method for �nding the next point on the plane
Fr in the mesh of the stable manifold

wanted to �nd. Then, we move to the next point in Cr from which we repeat the process
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to �nd the next br associated with the next r 2 Cr. This is done for each r 2 Cr until

a new discrete circle is formed This process and its implementation are given in more

detail in the next section.

� The previous process is done for each r 2 Cr until a new discrete circle, having x0 as its

center and being situated at a distance � from Cr, is formed. This new discrete circle,

Cb, is connected to Cr, forming another band of the manifold.

Figure 17: The �rst two bands of the stable manifold, connected via a triangular mesh

� The new discrete circle then becomes the next Cr from which another discrete circle is

calculated. This is continued for the desired arclength. As a demonstration of the

capability of the program, we generate the stable manifold of the origin for the Lorenz

system 3.1.

The algorithm provides a method by which to calculate a mesh that is not a¤ected by

magnitude di¤erences in the negative (positive) eigenvalues and the accuracy of which can

be guaranteed. After each new mesh point is calculated, it is checked using an accuracy

subroutine to make sure it is accurately following the (un)stable manifold. The accuracy

check used by Krauskopf and Osinga is based on a method used in another of their papers and

is comparable to a similar technique due to Dana Hobson. [47] The accuracy is determined

by controlling the angle formed by three successive points in the mesh along with "the

product of this angle and the distance between the last two of the three points."[63, 47]
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Figure 18: A view of the stable manifold of the origin in the Lorenz system calculated with our Matlab
implementation of the algorithm given by Krauskopf and Osinga [63].
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Figure 19: A view of the stable manifold of the origin in the Lorenz system calculated with our Matlab
implementation of the algorithm given by Krauskopf and Osinga [63].
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Figure 20: A closeup of the mesh of the Lorenz manifold that was calculated with the present imple-
mentation of the algorithm due to [63]. Additions and deletions of mesh points can be seen.

This helps determine the value of �, which might need to be decreased to maintain desired

accuracy. On the other hand, �may be allowed to increase based on the accuracy estimates.

3.3 IMPLEMENTATION USING MATLAB

In this section, the MatLab m-�le of our implementation of the algorithm in the previous

section is given along with ample comments distributed throughout explaining the various

steps. The algorithm grows the manifold, starting from the saddle point, by generating

concentric discrete circles that form bands of a speci�ed geodesic distance from the saddle

point. Each circle of points must be computed before the next circle is generated. In

addition, there are accuracy checks to ensure the mesh correctly represents the manifold.

All lines of code are in a different font and numbered to the left. Comments about the

code are in bold and lettered (a., b., c., etc) under the lines of the code to which they refer.

1. function Manifold(basicsfile,rhsfilename, CircleNumber, SystemName)
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2. odefunction = str2func(rhsfilename);

3. save(�odefunctionname.mat�,�odefunction�);

a. basicsfile is the name of the m-�le that contains information about the 3D ODE

systems, including eigenvectors and eigenvalues. The code for this �le and for the

rhsfilename �le described next, is given after the entire manifold code is presented.

b. rhsfilename is the name of the m-�le containing the ODE system. This �le is used

for carrying out the numerical integration.

c. CircleNumber refers to the number of the circle from which the algorithm should

start. If this is the �rst time the algorithm is run, then this number would be zero.

However, if x number of bands have already been generated, then CircleNumber

can equal x and the algorithm runs from that set of points on, rather than from the

beginning.

d. SystemName is a user-supplied string to be used in the naming conventions for the

various data �les generated by the algorithm.

e. In Line 2, the ODE �lename is converted from string input into a function, so that,

later on, it can be passed to other functions, especially the integration function,

ode45. The ODE �lename is also saved in a data �le so that it can be loaded

outside of this program if necessary.

4. if CircleNumber == 0

5. [Saddle, eVects, eVals, negevals, negevects] = feval(basicsfile);

6. [Cr, steps, SaddleMatrix]= initcir(Saddle, negevects,...

rhsfilename, SystemName);

7. Cp = SaddleMatrix;

a. If the algorithm is to start from the saddle point (CircleNumber ==0) then the

basic information to run the algorithm is obtained from the basicsfile. This

includes the saddle point, eigenvalues and their eigenvectors and speci�cally, the

negative eigenvalues and their eigenvectors which are used in the generation of the

stable manifold. (Positive eigenvalues and their eigenvectors are used for unstable

manifold generation.)
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b. The initcir routine (Lines 45-a) is called to calculate the initial circle around the

saddle: Cr will be a matrix whose columns are the points of the discrete circle around

the Saddle. It is calculated using the eigenvectors associated with the negative

eigenvalues (negevects). This is the initial discrete circle around the Saddle on the

stable eigenspace and hence really close to being on the stable manifold of the saddle.

c. Here, Cp, which denotes the "previous" circle, is the saddle point, which is the

"circle" prior to the initial discrete circle. In the initcir routine, the saddle is

"transformed" into a matrix, each column of which contains the saddle point. This

is done for computational reasons. It has dimensions (3 x steps) where steps is

the number of points generated in the initcir routine for the initial circle

8. DrawBand(:,:,1) = Cp;

9. DrawBand(:,:,2) = Cr;

10. CalcFromBand(:,:,1) = Cp;

11. CalcFromBand(:,:,2) = Cr;

12. drawwidth = lengthCr;

13. drawwidthfn = [SystemName, �DW_0.mat�];

14. save(drawwidthfn, �drawwidth�)

15. DrawBandFN = [SystemName, �DrawCircle_0.img�];

16. multibandwrite(DrawBand,DrawBandFN,�bsq�,�precision�,�double�);

17. width = length(Cr);

18. widthfilename = [SystemName,�BW_0.mat�];

19. save(widthfilename, �width�);

20. CalcFromFN = [SystemName, �CalcFrom_0.img�];

21. multibandwrite(CalcFromBand,CalcFromFN,�bsq�,�precision�,�double�);

a. Lines 8-21 above store the previous circle (saddle matrix here) and the current circle

and save data in a speci�c �le name for use in recreating the image later and also,

for use in calculating from data from a speci�c circle. Cr and Cp will have the same

number of points. Later on, points might be added to Cr to re�ne the mesh and

maintain accuracy in calculating the next circle, Cb. This is the reason for saving

data in separate �les: one for rendering an image of the mesh and one from which
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to calculate the next circles. So, the number of points in Cr and the number of

points in the updated Cr (drawwidth and width, respectively) are included in the

data �le. The DrawBand �les contain the data points before any points are added

to Cr and the CalcFrom �les contain the data points of Cr in addition to any points

added later to re�ne the mesh. This is later denoted Updated_Cr. Here, Cr and

the updated Cr are the same; however, this is not always the case, so we set up the

data storing structure from the beginning.

22. CircleNumber = 1;

a. Increment the CircleNumber counter by one.

23. end (if CircleNumber == 0)

24. BigDelta =.25;

25. GeoDistance= BigDelta;

26. TotalGeoDist=20;

a. An initial guess is made for BigDelta, the distance between circles.

b. GeoDistance is the current total geodesic distance of the manifold, initially set to

the value of BigDelta; It is increased by the current value of BigDelta after each

circle is calculated.

c. TotalGeoDist is the total geodesic distance of the manifold to be calculated.

27. while GeoDistance < TotalGeoDist

28. filename=[SystemName,�CalcFrom_�,int2str(CircleNumber-1),�.img� ];

29. widthFN=[SystemName,�BW_�,int2str(CircleNumber-1),�.mat�];

30. load(widthFN);

31. CalcFromBand=multibandread(filename,[3,width,2],...

�double�,0,�bsq�,�ieee-le�);

32. Band(:,:,1) = CalcFromBand(:,:,1);

33. Band(:,:,2) = CalcFromBand(:,:,2);

a. Lines 28-33 load the data from the last two calculated circles to be used in the

calculation of the next circle.

34. [Cb, BigDelta,Next_BigDelta] = nextcir(Band,odefunction,BigDelta);
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35. Band(:,:,3) = Cb;

a. Calculate the next circle at a distance BigDelta from the last circle with a call to

the nextcir routine (Line 71).

b. Store the newly created circle in the third page of the matrix structure which stores

the circles, Cp, Cr, and now Cb.

36. MinMeshDistance = .2;

37. MaxMeshDistance = 2;

a. A minium and maximum distance between adjacent mesh points in a discrete circle

are speci�ed. If the mesh points are too close to one another, then the algorithm will

get confused when �nding the next circle. If the mesh points are too far from one

another, then there is a risk that the accuracy of the manifold will be compromised.

38. [Updated_Cr,Updated_Cb]=MeshQuality(Band,MinMeshDistance,...

MaxMeshDistance,BigDelta,odefunction,CircleNumber,SystemName);

a. A call to the MeshQuality routine (Line 364) checks the quality of the newly calcu-

lated mesh points and draws the mesh when the quality is acceptable. New points

might be added to the mesh or existing mesh points may be deleted.

39. BigDelta = Next_BigDelta;

40. GeoDistance = GeoDistance + BigDelta;

41. Band = zeros(3,length(Updated_Cb),3);

42. CircleNumber = CircleNumber + 1;

a. Set BigDelta to the value, Next_BigDelta, determined by the nextcir routine. The

new value of BigDelta might be larger or smaller than its previous value, depending

on the results of the Accuracy routine called from within the nextcir routine.

If one new point in the circle currently being calculated does not meet accuracy

requirements (explained more later), then BigDelta is decreased and the new circle

is re-calculated from the beginning. This must be done so that each point in the new

circle is the same distance from the previous circle. The new value for BigDelta is

stored in Next_BigDelta and returned when the nextcir routine exists properly.

b. Increment the current total geodesic distance, GeoDistance, by BigDelta.
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c. Reset the third page of the Band matrix structure to a (3 x length(Updated_Cb))

matrix of zeros. The MeshQuality routine called above returns the updated data

sets for the circles, Cr and Cb, in the variables Updated_Cr and Updated_Cb. These

are also stored in a �le (with a �lename speci�c to the circle number to which the

Cb data corresponds) and recalled at the beginning of this while loop. The data

from the �le is read into the CalcFromBand variable on Line 31 above, and the �rst

and second pages of Band are updated so that: (1) Cr is now Cp and stored in the

�rst page, (2) Cb is now Cr and stored in the second page, and (3) the third page is

now ready to store the data of the next circle to be computed.

d. Increment the number of the circle we are on currently. This variable is mainly used

for creating �lenames for data that are speci�c to a circle�s number in the mesh,

with circle 0 being the initial discrete circle around the �xed point.

43. end (end the while loop)

44. � � � � � � � � � � � � � � � � � � � � � � � � � � �

45. Now the initcir routine is examined in detail. It is a subfunction within the

Manifold.m �le.

46. function [Cr, steps, SaddleMatrix] = initcir(Saddle, negevects,...

odefilename, SystemName)

a. This routine calculates the initial circle around the saddle point, approximating the

local (un)stable manifold, W s
loc(x0) (W

u
loc(x0)), in the (un)stable eigenspace.

47. delta=1;

48. steps=20;

49. SaddleMatrix = zeros(3,steps+1);

a. delta is the radius of initial discrete circle; i.e. the distance from the saddle point.

b. The value of steps is the number of discrete points in the initial circle, a distance

of delta from the saddle.

c. Make a (steps x 3)-matrix that has the saddle point (vector) as each of its columns

so that the vector loop below this will work.

50. for j=1:steps+1
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51. SaddleMatrix(:,j)=Saddle(1,:)�;

52. end

a. Transpose the saddle row vector, Saddle(1,:), so that it is a column vector to

match dimensions for the SaddleMatrix.

53. theta = 0:2*pi/(steps):2*pi;

54. Cr = delta*(negevects(:,1)/norm(negevects(:,1))*cos(theta)

+ negevects(:,2)/norm(negevects(:,2))*sin(theta)) + SaddleMatrix;

a. The initial circle, Cr is formed using the saddle point and the 2 negative (positive)

eigenvalues, negevals (posevals), which were acquired from calling the basics

routine on Line 5, right before the call to this routine. Since this initial discrete

circle around the saddle is on the stable eigenspace it is close enough to be considered

"on" the stable manifold of the saddle. The formula for Cr is as follows:

Cr =delta �
�

negevects(:; 1)

norm(negevects(:; 1))
cos(theta)

+
negevects(:; 2)

norm(negevects(:; 2))
sin(theta)

�
+ SaddleMatrix

Using cosine and sine functions and de�ning theta as a vector containing values

from 0 to 2� in increments of 2�
steps

, a set of discrete points all at a distance delta

from the saddle point is generated: i.e. a discrete circle having the saddle point as its

center and radius equal to delta. The variable Cr is a matrix whose columns store

the points of this �rst discrete circle. Each column of SaddleMatrix contains the

saddle vector and this matrix has the same number of columns as the value of the

variable steps, which is the number of points being generated in this initial discrete

circle. (Also, the distance between any two mesh points in Cr is the same.)

55. i=1:steps;

56. Cr=Cr(:,i);

57. SaddleMatrix = SaddleMatrix(:,i);
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a. Here, we get rid of the last entry of Cr which is a repeat of the �rst, and re-size

SaddleMatrix to agree with the dimension of Cr.

58. for j = 1:steps

59. fprintf(�%2.0f -- �, j);

60. end

61. fprintf(�nn�);

a. Simply print to the screen the number associated with each point around the circle.

62. initBand(:,:,1) = zeros(3,steps);

63. initBand(:,:,2) = SaddleMatrix;

64. initBand(:,:,3) = Cr;

a. Storing the last three circles in the 3-page matrix structure initBand. The �rst

�circle� is a matrix of zeros. The second circle is a matrix, the columns of which

each contain the saddle point (vector). The third circle is the one just calculated

around the saddle point.

65. MinMeshDistance = .2;

66. MaxMeshDistance = 2;

a. These serve the same purpose (for the initial circle) as the variables of the same

name that are used in the main �le.

67. figure(�Position�, [10, 400, 400, 300], �Units�, �inches�)

a. Set up a MatLab �gure in which to draw the mesh.

68. [SaddleMatrix, Cr] = MeshQuality(initBand,MinMeshDistance,...

MaxMeshDistance, delta, odefilename, 0, SystemName);

a. Call the MeshQuality routine (Line 364) to ensure that the distance between mesh

points is within the lower (MinMeshDistance) and upper

(MaxMeshDistance) bounds. The MeshQuality routine is also a subroutine within

the Manifold.m �le and is explained later.

69. � � � � � � � � � � � � � � � � � � � � � � � � � � �
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70. The next routine to be explained is nextcir. It is also a subfunction within the

Manifold.m �le. Recall that this routine was called on Line 34 above.

71. function [Cb,BigDelta,Next_BigDelta]=nextcir(Band,TheOdeFile,BigDelta)

a. The nextcir routine takes, as input: (1) the data points of the last 3 calculated

circles (stored in Band), (2) the �le name (TheOdeFile) of the ODE system, (3)

and the value of BigDelta to calculate the next circle, Cb, which is a distance of

BigDelta away from the last circle, Cr.

72. AccuracyChecker = 0;

73. BDIncrease = 5;

a. Initialize the AccuracyChecker variable to 0. When the Accuracy routine is

called, if the next point in the mesh that was found passed the accuracy test,

then AccuracyChecker is set to 1 and the algorithm can start �nding the next new

point in the mesh. Otherwise, if the new point does not pass the accuracy test,

AccuracyChecker is left at a value of 0 and the value of BigDelta is decreased.

Then, the algorithm starts over on calculating the current circle since all the new

points to be calculated must now be at a distance of (the new) BigDelta from

corresponding points on the previous circle.

b. The variable, BDIncrease, helps to keep track of whether or not the Accuracy

checker can increase BigDelta when �nished.

74. while AccuracyChecker == 0

a. Continue the loop until the next point in the mesh is calculated and passes the

accuracy checks.

75. lengthCr = length(Band);

76. Rotated_Band = Band(:,:,2);

77. Cb = zeros(3, lengthCr);

a. Rotated_Band contains the data points from the last calculated circle and is manip-

ulated later on so that the point, r, we are currently considering in Cr, is always the

�rst column of this matrix. Hence, the points from the last circle from which we

are computing the next circle, are "rotated" around to the �rst column position in
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Rotated_Band. This is done so that it is simple to identify the position of points

relative to the current point, r. This helps greatly with indexing issues regarding

the shooting method described in the next subroutine, Shooting_For_b.

b. Cb is the (3 x lengthCr)-matrix that will contain the points, b, of the next new

circle in the mesh. Here it is initialized to hold zeros.

78. for k = 1:lengthCr

79. b = Shooting_For_b(Rotated_Band, BigDelta, TheOdeFile, k);

80. if b == [0;0;0]

81. disp(�We didn�t converge...now what??�);

82. Cb = zeros(3, lengthCr);

83. AccuracyChecker = 1;

84. break;

85. end

a. Call the Shooting_For_b routine (Line 109) to �nd the next point, b, in the mesh,

corresponding to the current point, r in Cr. This for loop runs through all the

points in Cr.

b. Unfortunately, there are times when the code in lines 80-85 does get executed. This

happens when the algorithm is unsuccessful in �nding a next point. The break

statement exits out of this for loop and an error will result because Cb matrix was

not completely calculated. (The Cb matrix is reset to zeros and this will cause the

MeshQuality routine to have a heart attack and the program will exit.) Setting

AccuracyChecker to 1 ensures that we exit out of the while loop. The reasons

for why the algorithm may not �nd appropriate mesh points is discussed in the

Shooting_For_b routine.)

86. fprintf(�%2.0f ... �, k);

87. Pkminus1 = Band(:,k,1);

88. Pk = Band(:,k,2);

89. Pkplus1 = b;
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90. [AccuracyChecker, Next_BigDelta, BDIncrease]

= Accuracy(Pkminus1, Pk, Pkplus1, BigDelta, BDIncrease);

a. If the code is successful, then the number, k, of the point that was found is printed,

so that the user knows the status of the algorithm.

b. The Accuracy routine (Line 341) is called to ensure that the point that was just

calculated passes the accuracy check. In order to do the accuracy check, the following

need to be passed to the Accuracy routine:

i. Pkminus1: the point in the kth position on the previously calculated circle, Cp.

Cp is stored in Band(:,k,1), the kth column of the 1st page of the Band matrix

structure.

ii. Pk: the point in the kth position on the current circle, Cr, from which we are

calculating the next circle. Cr is stored in Band(:,k,2), the kth column of the

2nd page of the Band matrix structure.

iii. Pkplus1: the point in the kth position on the newly calculated circle. This is

simply the point, b, that was just calculated during this kth step of the for loop.

c. These points are used to form an angle that measures how accurate the new mesh

point is. This is explained more below in the Accuracy routine. The Accuracy

routine returns (1) a value for the variable AccuracyChecker, (2) a value for the

next value of BigDelta (Next_BigDelta), and (3) an updated value for BDIncrease

which helps keep track of when BigDelta has been increased/decreased.

91. if AccuracyChecker == 1

92. disp(�It�s a good point!�);

93. Cb(:,k) = b;

94. Prev_Band = Rotated_Band;

95. j=1:lengthCr-1;

96. Rotated_Band(:,j) = Prev_Band(:,j+1);

97. Rotated_Band(:,lengthCr) = Prev_Band(:,1);

98. elseif AccuracyChecker == 0

99. disp(�We have to shrink BigDelta and reshoot.�);
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100. BigDelta = Next_BigDelta;

101. BDIncrease = 5;

102. break;

103. end

a. If the Accuracy routine returns a value of 1 for the AccuracyChecker variable, then

the calculated point, b, is accepted as "a good point" and the kth column in the

Cb matrix is assigned the value of b. Rotated_Band is stored in a matrix called

Prev_Band so that the columns of Rotated_Band can be "shifted" or "rotated" in or-

der for the next point, r, of the Cr circle (which is currently stored in Rotated_Band)

can be in the �rst column of Rotated_Band. As described previously, this helps with

indexing issues in the Shooting_For_b routine.

b. If the Accuracy routine returns a value of 0 for the AccuracyChecker variable, then

the calculated point, b, is not accepted. Instead, the value of BigDelta is given a

new smaller value (Next_BigDelta), which was returned by the Accuracy routine.

Then, the algorithm breaks out of the loop and restarts the circle over again with the

new value of BigDelta. The variable BDIncrease is reset to some number not equal

to zero. In the Accuracy routine if one of the angle conditions is larger than the

allowed minimum value, BDIncrease is set to zero and this tells the accuracy routine

that it�s not a good idea to increase BigDelta. On the other hand, if the angle

condition is less than (or equal) to the allowed minimum value, then BDIncrease

would have its initial value of 5 (6= 0), and this would tell the Accuracy routine

that it is alright to increase BigDelta (double it). For information on the angle

conditions, refer to the Accuracy routine explained below.

104. end (end the for loop in Line 78)

105. end (end the while loop in Line 74)

106. fprintf(�nn�); (print-to-screen a line break)

107. � � � � � � � � � � � � � � � � � � � � � � � � � � �

108. The next routine to be explained is Shooting_For_b. It is also a subfunction within

the Manifold.m �le. Recall that this routine was called on Line 79 above. This routine

is the heart of the algorithm, the part that �nds new mesh points, b. This subroutine
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takes care of the majority of the steps highlighted in the Algorithm section above, such

as (1) de�ning the plane transversal to the last circle at r, the normal of which is de�ned

by the points to the right and left of r in the circle, and (2) actually shooting to �nd the

point on the plane that is on the manifold and at a distance BigDelta from r.

109. function [b]=Shooting_For_b(Rotated_Band,BigDelta,OdeFile,pointnumber)

110. clear j;

111. r = Rotated_Band(:,1);

112. rLeft = Rotated_Band(:,end);

113. rRight=Rotated_Band(:,2);

114. N = rRight - rLeft;

115. save(�r_BigDelta_N.mat�, �r�, �BigDelta�, �N�);

a. j is a counter used in the while loop below. It�s value is cleared from memory

each time this routine is called to ensure that the counter value starts at the value

assigned during the loop.

b. As mentioned previously, the �rst column of Rotated_Band will always contain the

current point, r, from which we are calculating the next mesh point, b. The nextcir

routine guarantees this.

c. rLeft the point to the left of r in Cr will always be the last column of the

Rotated_Band matrix. The nextcir routine guarantees this.

d. rRight the point to the right of r in Cr will always be the second column of the

Rotated_Band matrix. Again, the nextcir routine guarantees this.

e. N is the normal vector of the plane, Fr, at r and is de�ned as the vector rRight -

rLeft and thus points in the direction to the right of the plane. This is important

in later calculations that determine on which side of the plane the endpoint of a

trajectory is. Note, rRight - rLeft is only an approximation to the normal vector,

since the actual vector is tangent to r. If the mesh points are close enough, then

this approximation is good enough.

f. The variables, r, BigDelta, and N are all saved in the �le

r_BigDelta_N.mat to be recalled in other subfunctions where these variables are

needed. Another option would be to make these global variables.
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116. y0=r;

117. epsilon=.01;

118. BigDeltaUpperBnd = (1+epsilon)*BigDelta;

119. BigDeltaLowerBnd = (1-epsilon)*BigDelta;

a. y0 is the current initial condition of the ODE system from which the algorithm will

attempt to �nd an appropriate intersection with the plane. The �rst y0 is set to r.

Throughout the course of the while loop below, y0 will be set to many other values

while the algorithm searches for the point, b.

b. For practical numerical reasons, there are upper and lower bounds on BigDelta

since it is unlikely that the point b will be exactly BigDelta from r. Hence, an

"-neighborhood is de�ned around BigDelta, using the variable epsilon. The upper

bound is de�ned as BigDeltaUpperBnd and the lower bound is BigDeltaLowerBnd.

120. tspan=[0 -.2]

121. StopValue=0;

122. Init_Step = .01;

123. StopThis = 0;

a. tspan is the interval of time for which to integrate the ODE system in the attempt to

�nd a trajectory that crosses the place at a distance BigDelta from r. The correct

amount of time needed will vary from system to system. Some experimentation

might be necessary. It is also helpful to plot some of the trajectories for a particular

set of shooting attempts for a particular r.

b. In the following while loop, when the next mesh point, b, is found, StopValue is set

to a value of 1 and the loop breaks. This means that we can move on with �nding

the next point in Cb. Initially, StopValue is 0, meaning that b has not yet been

found.

c. Init_Step provides the initial integration step size for the numerical ODE solver

used below.

d. The variable, StopThis, which is initialized to a value of zero, is set to ensure that

the while loop below is not an in�nite loop and that if an appropriate point, b,
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cannot be found after the speci�ed number of iterations, then this loop exits and, in

turn, the program exits. Now for the main while loop:

124. while StopValue==0

125. options = odeset(�Events�,@FrzeroEvent, �InitialStep�,...

Init_Step, �Refine�, RefiningNum);

126. [T,Y, TE, YE, IE] = ode45(OdeFile,tspan, y0, options);

a. options de�nes some of the options to be passed to the numerical integration

solver, ode45, speci�cally it lets the solver know that there is an events function,

FrzeroEvent. The solver will then locate times and corresponding solutions where

these functions are zero.

b. The above integration step is the most important part of this algorithm. The numer-

ical integration solver, ode45, is "based on an explicit Runge-Kutta (4,5) formula,

the Dormand-Prince pair. It is a one-step solver - in computing y(tn), it needs only

the solution at the immediately preceding time point, y(tn � 1) [72]." The line

[T; Y; TE; YE; IE] = solver(odefun; tspan; y0; options)

integrates the ODE system, speci�ed in OdeFile, for the allotted amount of time,

tspan, starting from the initial condition, y0, using the options speci�ed above. In

addition, since the options included an event function, it also �nds where certain

functions, called event functions, are zero. The event function FrzeroEvent is

described below after the end of this subroutine.[72] T is the column vector of times

at which the solution, Y, of the ODE was calculated. The ith entry of T corresponds

to the solution point in the ith row of Y. TE is a vector of times at which the events

occur. The rows of YE contain the solution point at the corresponding time in TE

that the event occurred, and IE is the index of the event function for which the event

occurred.

c. There are 3 event functions: (See also the events function, FrzeroEvent, on Line

328 below this Shooting_For_b subroutine.)
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i. Event Function 1: The function that calculates the distance between a solution

point and the plane: If this function is zero, then this means that the solution

lies on the plane and an intersection of the solution trajectory and the plane

has occurred. However the integration does not stop because there may be

other intersections or there may be other events, described next, that need to be

recorded. If this is the ith even to occur, then the ith entry of IE will contain a

1.

ii. Event Function 2: The function that calculates whether the derivative of the

solution is zero with respect to the direction of the normal vector, N, of the plane.

Zeros of this function do not necessarily imply that the solution is on the plane.

It simply means that the vector tangent to the solution is pointing in the same

direction as the plane. This solution may, in fact, be far away from the plane.

However, it might be the case where the point we are seeking is located at the

point where the trajectory is tangent to the plane. A tangent intersection like

this will not necessarily be caught by the �rst event function, so we have to

check for them this way. Again, integration is not stopped when such solutions

are found, so that other events, if any, can be detected. If this is the ith even to

occur, then the ith entry of IE will contain a 2.

iii. Event Function 3: The function that calculates the distance between the solution

and r and compares it to the value of BigDelta. If this function is zero, then the

solution point is at a distance BigDelta from r. However, like with ii. above,

this does not guarantee that this solution point is on the plane. It simply means

that a trajectory has entered the BigDelta (+/- epsilon) ball around r. This

check, however, is necessary because the trajectory originating at r sometimes

shoots straight out into the plane. For some reason, however, the other event

functions do not register these as intersections nor points of tangency, so these

obvious intersections are found by �rst checking the distance between the solution

and r. If the solution is at a distance of BigDelta away, this event will locate

where/when that happens. Then, after the integration has �nished, the distance

of this solution to the plane is checked. If it is "on" the plane, i.e. within a very
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small neighborhood of the plane, then this point is the point, b, we were seeking.

Again, integration is not stopped when such solutions are found, so that other

events, if any, can be detected. If this is the ith event to occur, then the ith entry

of IE will contain a 3.

127. for i=1:length(IE)

128. if IE(i)==3

129. YE1 = YE(i,:)�;

130. rydistance = norm(YE1-r);

131. FRdist = dot(N/norm(N), (YE1 - r));

132. if (abs(FRdist)<.00001

&& BigDeltaLowerBnd <= rydistance

&& rydistance <= BigDeltaUpperBnd);

133. b = YE1;

134. StopValue = 1;

135. break;

136. end

137. end

138. end

139. if StopValue==1;

140. break;

141. end

a. The IE vector is processed to �nd if there were any entries that had the value of

3, corresponding to events occurring from the 3rd event function described in Line

126.c.iii. It is processed �rst because it is an easy event to process, with only the

distance from the plane having to be checked. If the desired solution is found with

this check, no time is wasted on processing the other more involved event functions.

Recall that this event was mainly to troubleshoot the problem with shooting from r

and �nding intersections of that trajectory with the plane de�ned at r.
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b. If the ith entry of IE equals 3, then set the candidate solution for b, YE1, equal to

the transpose of the corresponding ith row in the YE matrix. This is done so that

YE1 is a column vector containing the solution point that triggered the 3rd event

function.

c. rydistance is the distance (norm) between YE1 and r. FRdist calculates the dis-

tance between the plane and YE1, calculated as the dot product of the normal, N

(normalized), and the vector (YE1-r). If this function is close to zero, then YE1

is on the plane. Furthermore, as a double check con�rming the event function

results, we again make sure that YE1 is within epsilon of BigDelta away from r,

(i.e. BigDeltaLowerBnd < rydistance < BigDeltaUpperBnd). Then, if this con-

�rmed, YE1 is the point, b, we�ve been looking for. Thus, set b=YE1 and break out

of the for loop that is processing the IE vector. In addition, set the StopValue=1,

so the while loop will stop at the next break statement, which is made available

just after this for loop. If StopValue=1, then a break statement is executed and

the outer while loop is stopped. Then the nextcir routine carries on with the next

steps, which involve calling this routine once again...and again...and again....

142. flagIE=0;

143. for i=1:length(IE)

144. if IE(i)==1

145. flagIE =1;

146. break;

147. end

148. end

a. Now the IE vector is processed again to locate any entries having the value of 1.

Initially, the variable flagIE is set to zero, which means that no crossings of the

plane by the trajectory occurred. (i.e. no events occurred with the 1stevent function).

If an entry of IE is equal to 1, then flagIE is set to 1 to denote that a crossing

occurred. Since we only want to know if at least one crossing occurred, as soon as

an entry of IE is found with a value of one, the flagIE is set to one and we break

out of the processing for loop and continue along with the next steps in this routine.
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(Note: If r is the point from which we are shooting then the �rst entry in IE will

always be a 1 since r is on the plane by de�nition of the plane.)

149. for i=1:length(IE)

150. if IE(i) == 2

151. YE1 = YE(i,:)�;

152. tanpointFRdist = dot(N/norm(N), (YE1 - r));

153. rydistance = norm(YE1-r);

154. if (abs(tanpointFRdist)<.00001

&& BigDeltaLowerBnd <= rydistance

&& rydistance <= BigDeltaUpperBnd)

155. b = YE1;

156. StopValue = 1;

157. break;

158. elseif (rydistance > BigDeltaUpperBnd)

159. break;

160. end

161. end

162. end

163. if StopValue==1;

164. break;

165. end

a. The IE vector is now processed for the 3rd and �nal time to determine if any of

the events of the 2nd event function occurred. These are the solution points where

the vector tangent to the trajectory pointed in the same direction as the plane,

indicating a possible (but usually not) point of tangency with the trajectory and the

plane. These points still need to be checked.

b. The possible solution for b, YE1, is once again set to the transpose of the ith row of the

YEmatrix which contains the solution points at times when events occurred. The dis-

tance between this "tangent" point, YE1, and the plane is checked in tanpointFRdist
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formula. Also, the distance between YE1 and r is checked with the rydistance for-

mula.

c. If YE1 is on the plane (i.e. abs(tanpointFRdist<.00001) and is at a distance

BigDelta from r,

(i.e. BigDeltaLowerBnd � rydistance � BigDeltaUpperBnd),

then this is the point, b, we have been looking for. So, set b=YE1 and set StopValue

=1 so that the while loop will stop. A break statement is needed to exit the for

loop that was processing the entries of IE for values of 1. After the for loop, there

is a check to see if StopValue ==1, and if it is, a break statement is executed and

the outer while loop is stopped. Then the nextcir routine carries on with the

next steps, which involve calling this routine once again...and again...and again...

Note: the absolute value of tanpointFRdist is used to check distance from the

plane. This is done because the value of tanpointFRdist might be negative, since

the sign of tanpointFRdist is simply an indication of the direction in which the

(YE1-r) vector is pointing: negative implies it is pointing to the left of the plane,

positive implies it is pointing to the right of the plane. However, if the value of

tanpointFRdist is really small in absolute value, this is an indication that YE1 is

close enough to be considered �on�the plane. However, numerically this small value

could be negative or positive, so that is why we use absolute value here to check the

distance.

d. Else, if YE1 is not on the plane and instead it is at a distance larger than BigDelta

away from r, then do not continue looking at any other solution points that satisfy

this "tangency" condition since the distance from r will only be larger. Again, recall

that these "tangent" points are checked b/c the event locator has trouble detecting

"obvious" intersections, usually those of the trajectory starting at r.

166. if flagIE == 0

167. TF = isnan(Y);

168. for k=1:length(TF(:,1))

169. if TF(k,:) == [0 0 0]

170. last_y = Y(k,:)�;
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171. else

172. break;

173. end

174. end

a. Recall that a value of 0 for flagIE, means that there were no direct intersections

of the current trajectory (having initial condition y0) with the plane. Also recall,

that Y is the solution matrix for this initial value problem, the rows of which are the

individual solution points. Thus, we now need to make sure all the points listed in

the Y vector are valid numbers and not "NAN" (Not a Number). This has to be done

because sometimes, solutions blow up and then entries of the solution vector, Y , do

not contain valid numbers.

b. TF is equal to a matrix whose entries are 1 (True) if the corresponding entry in Y

is NAN, and 0 (False) if the corresponding entry in Y is a valid number. So, this

for loop runs through the TF matrix and determines the index of valid entries in Y,

setting the variable last_y to be the transpose of the kth row of Y so that last_y

is a column vector. During the loop, if the kth row of TF is no longer a zero vector,

indicative of valid entries in the kth row of Y, then the for loop exists with a break

statement and the value given to last_y at the k-1 step is the last valid entry in

the Y vector. Otherwise, it might be the case that all entries of Y are valid, in which

case the same thing is accomplished and the loop exits via the counter, k.

175. SideNum = int2str(sign(dot(N/norm(N), (last_y - r))));

176. switch SideNum

177. case {�-1�}

178. leftEP = y0;

179. EPexistVal = exist(�rightEP�);

180. if EPexistVal ==1

181. rightEP = rightEP;

182. y0 = (leftEP + rightEP)/2;

183. else

184. if norm(y0-r)==0
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185. y0 = Rotated_Band(:, 2);

186. j = 2;

187. else

188. y0 = Rotated_Band(:, j+1);

189. j = j+1;

190. end

191. end

192. case {�1�}

193. rightEP = y0;

194. EPexistVal = exist(�leftEP�);

195. if EPexistVal == 1

196. leftEP = leftEP;

197. y0 = (leftEP + rightEP)/2;

198. else

199. if norm(y0-r)==0

200. y0 = Rotated_Band(:, end);

201. j = length(Rotated_Band);

202. else

203. y0 = Rotated_Band(:, j-1);

204. j = j-1;

205. end

206. end

207. end (end switch statement)

a. Since this portion of code is under the case where flagIE is zero, there were no

crossings of the current trajectory with the plane. Thus, we need to determine on

which side of the plane the last point of the trajectory lies, in order to determine the

next value for y0 on Cr from which to shoot. SideNum is calculated by taking the

sign of the dot product between (1) the normal vector of the plane, N, and (2) the

vector formed by, r, and the last point, last_y, of the present trajectory. SideNum

converts the value of this dot product into a string having either a value of -1 or 1.
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A value of -1 indicates that the point last_y, is on the left side of the plane, since

N points in the direction of rRight. (See Line 114 for its de�nition.) Likewise, a

value of 1 indicates that last_y is on the right side of the plane.

b. The above switch statement selects the next y0 on Cr from which to shoot based

on the value of SideNum and whether or not the current y0 is equal to r (i.e.

norm(y0,r)==0).

c. If SideNum = -1, then the trajectory ended up on the left side of the plane. Thus,

the ideal trajectory that will intersect the plane at the desired value, b, must start

from an initial condition to the right of the current y0. The, the current y0 becomes

the left hand end point, leftEP, of the interval in which the �magic�y0 will lie.

The right hand endpoint, rightEP, of this interval is chosen by keeping the current

rightEP if one exists (hence, the "exist" check). If a rightEP does not exist, then

we simply just select a new y0 and later on a rightEP will be set. The next y0 is

then selected to be a point in the current Cr mesh to the right of the current y0.

If the current y0=r, (i.e. norm(y0,r)==0), (and a rightEP does not exist), then

the next y0 to shoot from is selected as the point on the right of r, in Cr: y0 =

Rotated_Band(:, 2);. Note that the indexing variable, j, is set to 2, to indicate

that the current y0 is in the jth, position of Rotated_Band. However, if y06=r (and

a rightEP does not exist), then the next y0 to shoot from is selected as the point on

the right of y0, which will be the (j+1)th point from r.

d. Similarly, if SideNum= 1, then the trajectory ended up on the right side of the plane.

Thus, the trajectory that will intersect the plane must start from an initial condition

to the left of the current y0. And the current y0 becomes the right hand end point,

rightEP, of the interval in which the �magic�y0 will lie. The left hand endpoint,

leftEP, of this interval is chosen by keeping the current leftEP if one exists (hence,

the "exist" check). If a leftEP does not exist, then we simply just select a new

y0 and later on a leftEP will be set. If the current y0=r, (i.e. norm(y0,r)==0),

(and a leftEP does not exist), then the next y0 to shoot from is selected as the

point on the left of r, in Cr: y0 = Rotated_Band(:, end). Note that the indexing

variable, j, is set to the length of Cr (i.e. the number of points in Cr), to indicate
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that the current y0 is in the jth, position of Rotated_Band. However, if y06=r (and

a leftEP does not exist), then the next y0 from which to shoot is selected as the

point on the left of y0, which will be the (j-1)th point from r.

e. Note that if a leftEP and rightEP exist (or are de�ned) in either of the cases

above, this interval [leftEP rightEP] is bisected, and y0 is chosen as the midpoint.

Hence, this algorithm uses a shooting method coupled with bisection in order to �nd

an appropriate point, b, on the plane at a distance BigDelta from r.

208. elseif flagIE==1

a. This "elseif" indicates that flagIE=1, which means there was at least one crossing

of the plane by the trajectory. So, this case is now processed.

209. YE = YE�;

210. for i=1:length(TE)

211. if (IE(i)==2 jj IE(i)==3)

212. YE(:,i)=[ ];

213. TE(i)=[ ];

214. break;

215. end

216. end

a. The rows of the YE matrix hold the solutions at the time of an event. This is changed

here so that the solutions are now stored in the columns of the matrix.

b. Because this is the portion of the code for "if flag==1", we want to eliminate all

the other entries in YE corresponding to events for the 2nd and 3rd functions, only

keeping the entries of YE corresponding to solutions at times when the 1st event

occurred (i.e. when an actual crossing of the plane by the trajectory occurred). So

if the ith index of IE is either 2 or 3, then delete the ith column of YE and the ith

entry of the TE vector, which contains the times at which events occurred.

217. for i=1:length(TE)

218. y = YE(:,i);

219. rydistance = norm(y-r);

83



a. Now, the ith intersection point, y=YE(:,i), is checked to see if it is within BigDelta

of r. As before, this distance is calculated by rydistance = norm(y-r);

220. if (rydistance < BigDeltaLowerBnd && i == length(TE))

221. TF = isnan(Y);

222. for k=1:length(TF)

223. if TF(k,:) == [0 0 0]

224. last_y = Y(k,:)�;

225. else

226. break;

227. end

228. end

a. If the distance between y and r, rydistance, is less than BigDeltaLowerBnd AND

the current value of the counter index, i, is the length of TE, (i.e., y is the last

entry in YE to be checked), then we need to determine on which side of the plane

the current trajectory ended. This is done, as before, by �rst �nding the last valid

entry in the Y matrix and setting last_y equal to this. Recall that TF is equal to

a matrix whose entries are 1 (True) if the corresponding entry in Y is NAN, and 0

(False) if the corresponding entry in Y is a valid number. So, this for loop runs

through the TF matrix and determines the index of valid entries in Y, setting the

variable last_y to be the transpose of the kth row of Y so that last_y is a column

vector. During the loop, if the kth row of TF is no longer a zero vector, indicative

of valid entries in the kth row of Y, then the for loop exists with a break statement

and the value given to last_y at the k-1 step is the last valid entry in the Y vector.

Otherwise, all entries of Y are valid, in which case the same thing is accomplished

and the loop exits via the counter, k.

229. SideNum = int2str(sign(dot(N/norm(N), (last_y - r))));

230. if norm(y0 - r) == 0

231. switch SideNum

232. case {�-1�}
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233. leftEP = r;

234. y0 = Rotated_Band(:,2);

235. j=2;

236. break;

237. case {�1�}

238. rightEP = r;

239. y0 = Rotated_Band(:,end);

240. j=length(Rotated_Band);

241. break;

242. end %switch

243. else

244. switch SideNum

245. case {�-1�}

246. leftEP = y0;

247. EPexistVal = exist(�rightEP�);

248. if EPexistVal ==1

249. rightEP = rightEP;

250. y0 = (leftEP + rightEP)/2;

251. else

252. y0 = Rotated_Band(:, j+1);

253. j = j+1;

254. end

255. break;

256. case {�1�}

257. rightEP = y0;

258. EPexistVal = exist(�leftEP�);

259. if EPexistVal == 1

260. leftEP = leftEP;

261. y0 = (leftEP + rightEP)/2;

262. else
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263. y0 = Rotated_Band(:, j-1);

264. j = j-1;

265. end

266. break

267. end (end switch)

268. end

a. Now, as before, SideNum is calculated. And a new y0 is chosen based on whether the

current trajectory ended up on the left or right of the plane, with special instructions

for selecting the next y0 when the current y0 is equal to r. See the comments for

the code similar to this in lines 175-207. Again, note that if a leftEP and rightEP

exist (or are de�ned) in either of the cases above, this interval [leftEP rightEP] is

bisected and y0 is chosen as the midpoint.

269. elseif(BigDeltaLowerBnd <= rydistance

&& rydistance <= BigDeltaUpperBnd)

a. This "elseif" statement means that the intersection point, y, that we are checking

is not only on the plane but at the right distance from r.

270. b = y;

271. StopValue = 1;

272. break;

a. So, y is the solution point, b, that we are seeking. Thus, set, b=y and set StopValue

to 1, so that the outer while loop exits and the nextcir routine carries on with the

next steps, which involve calling this routine once again...and again...and again...

273. elseif rydistance > BigDeltaUpperBnd

274. options=odeset(�RelTol�,1e-4,...

�AbsTol�,[1e-4 1e-4 1e-5],�InitialStep�,...

.0001,�MaxStep�,.0001);

275. [tback, yback] = ode45(OdeFile,...

[0 .001], y, options);

276. warning off MATLAB:ode45:IntegrationTolNotMet
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277. last_y = yback(end,:)�;

a. This "elseif" statement means that the intersection point, y, that we are checking

is at a distance greater than BigDeltaUpperBnd. So for cases like this, in order

to determine the next y0 from which to shoot, we need to know from which side

of the plane this trajectory came and not the side where it ended. Thus, we need

to take the intersection point, y, and integrate forward (backward for calculating

an unstable manifold) for a small amount of time. Then we set last_y to the

endpoint, yback, of this "sampling" trajectory, if you will, and check on which side

of the plane last_y lies. Once we have calculated, yback, and set last_y=yback, the

code is very similar to previous code for selecting the next y0. Essentially, because

this trajectory crossed the plane at a distance greater than BigDelta, it forms a

natural boundary (on the left or right depending on whether it came from the left or

right, respectively) for the left or right endpoint of the interval in which the �magic�

y0 lies.

278. SideNum = int2str(sign(dot(N/norm(N), (last_y - r))));

a. SideNum is calculated as before, but here it determines the side from which the

current trajectory came, instead of the side where it ended. Again, a value of -

1 indicates that the trajectory came from the left of the plane and a value of 1

indicates the trajectory came from the right of the plane.

279. if norm(y0-r)==0

280. switch SideNum

281. case {�-1�}

282. leftEP = r;

283. y0 = Rotated_Band(:,2);

284. j=2;

285. case {�1�}

286. rightEP = r;

287. y0 = Rotated_Band(:,end);

288. j=length(Rotated_Band);
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289. end %switch

290. else

291. switch SideNum

292. case {�-1�}

293. leftEP = y0;

294. EPexistVal = exist(�rightEP�);

295. if EPexistVal == 1

296. rightEP = rightEP;

297. y0 = (leftEP + rightEP)/2;

298. else

299. y0 = Rotated_Band(:,j+1);

300. j = j+1;

301. end

302. case {�1�}

303. rightEP = y0;

304. EPexistVal = exist(�leftEP�);

305. if EPexistVal == 1

306. leftEP = leftEP;

307. y0 = (leftEP + rightEP)/2;

308. else

309. y0 = Rotated_Band(:,j-1);

310. j=j-1;

311. end

312. end %switch

313. end %if normy0=0

a. A new y0 is chosen based on whether the current trajectory came from the left

or right of the plane, with special instructions for selecting the next y0 when the

current y0 is equal to r. See the comments for the code similar to this in lines

175-207. Again, note that if a leftEP and rightEP exist (or are de�ned) in either
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of the cases above, this interval [leftEP rightEP] is bisected and y0 is chosen as

the midpoint.

314. break;

315. end (end the if statement that checks rydistance)

a. If the current intersection point, y, meets any of these "rydistance" criteria in the

above if/elseif/elseif statement, then a new y0 would have been chosen and

we can �break�out of the current for loop and continue with the steps of the while

loop. Otherwise, the "rydistance" criteria are checked for the next intersection

point in the YE matrix and we continue through the for loop.

316. end (end the for loop)

317. end (end the if/elseif statement regarding the value of flagIE)

318. StopThis = StopThis + 1;

319. if StopThis > 50

320. fprintf(�We didn�t converge! :( nn�)

321. b=[0; 0; 0];

322. StopValue = 1;

323. break;

324. end

a. The value of the StopThis counter is increased by increments of 1 when the next

y0 has been selected. This is to ensure that the while loop won�t go on forever.

The maximum number of iterations to calculate through the while loop is set to

50; Sometimes, a greater number will actually allow for an intersection to be found,

but mostly it just wastes time. If the value of StopThis gets above 50, then "We

didn�t converge! :( " is printed to the screen to alert the user of failure and

the b is set to a vector of zeros, which will tell the nextcir routine after we exit

this routine, that something went wrong. Then, the program will abort. To exit the

while loop, since we failed, set StopValue=1 and break from the while loop. This

is somewhat redundant, but it makes sure we don�t keep shooting for points.

325. end (end the while loop)
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326. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

327. Below, is the events function, FrzeroEvent, that was mentioned earlier in Line 126:a-c.

Three event functions are speci�ed in the value vector below. Zeros of these functions

are found while the ODE system is being integrated.

328. function [value,isterminal,direction] = FrzeroEvent(t,y)

329. load(�r_BigDelta_N.mat�);

330. load(�odefunctionname.mat�);

331. dydt = feval(odefunction,t,y);

332. v1 = [dydt(1), dydt(2), dydt(3)];

333. yN = v1/norm(v1);

334. NN = N/norm(N);

335. value = [N(1)*(y(1)-r(1)) + N(2)*(y(2)-r(2)) + N(3)*(y(3)-r(3));...

336. NN(1)*yN(1) + NN(2)*yN(2) + NN(3)*yN(3);BigDelta-norm(y-r)];

337. isterminal = [0; 0; 0];

338. direction = [0; 0; 0];

a. The values for r, BigDelta, and N are loaded from the �le in which they were saved

previously. Also, the name of the ODE function is loaded from the

odefunctionname.mat �le.

b. Line 331-333 evaluates the vector �eld at the solution point, y, (dydt), stores this

value in the vector v1, and normalizes it so that the result, yN, is a unit vector,

pointing in the direction of v1. This is used in the 2nd event function, which

determines when the dot product of N and the derivative of the trajectory evaluated

at a solution is zero. This would indicate that y was a "tangency" point. See Lines

126.c.ii for more details.

c. value, as mentioned, is a vector containing the three event functions. The �rst event

function is to detect crossings of the trajectory with the plane: i.e. when the dot

product of N with the vector (y-r) is zero. The second event function was described

in point b. above and the third event function determines when the trajectory is

at a distance BigDelta from r: i.e. when the di¤erence between BigDelta and the

distance between y and r (i.e. norm(y-r)) is zero.
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339. � � � � � � � � � � � � � � � � � � � � � � � � � � �

340. Below, the Accuracy routine is explained.

341. function [AccuracyChecker, Next_BigDelta, BDIncrease] =

Accuracy(Pkminus1, Pk, Pkplus1, BigDelta, BDIncrease)

a. The Accuracy routine checks the angle formed by (1) the line through Pkminus1

and Pk and (2) the line through Pk and Pkplus1, where:

i. Pkminus1 is a point in Cp = Band(:,:,1),

ii. Pk is the corresponding point in Cr = Band(:,:,2), and

iii. Pkplus1 is the corresponding point in Cb =Band(:,:,3).

b. See [47, 63, 64] for more details about this accuracy check and the angles checked

342. alphaMin = 0;

343. alphaMax = 0.4;

344. BDalphaMin = .1;

345. BDalphaMax = 1.0;

346. alpha1 = (1/norm(Pkminus1 - Pk))* norm((Pk - Pkminus1)

+ (Pk - Pkplus1)*norm(Pkminus1 - Pk)/norm(Pk - Pkplus1));

347. BDalpha1 = BigDelta*alpha1;

a. De�ne the minimum and maximum values for the alpha1 and BDalpha1 angles and

de�ne alpha1 and BDalpha1.

b. The de�nition of alpha1 is from [62], however, it was necessary to modify it since

it appears that the formula given in [62] is incorrect. Also, if the angle de�ned by

alpha1 is zero this means that Pkminus1, Pk, and Pkplus1 lie in a straight line,

which is the desired outcome. For values of alpha1 larger than zero, the three

points do not lie in a straight line; however up to some reasonable alpha1 max value

the �curvature�of the line will be acceptable. In [62] and [63] a minimum value of

alpha1 is speci�ed (0.2 for the Lorenz manifold); however, the minimum should be

0 and perhaps the maximum value can be within an acceptable range from 0.2 to

0.3. This particular aspect was not made clear in either of the above papers.

348. if (alpha1 < alphaMax && BDalpha1 < BDalphaMax)

91



349. Next_BigDelta = BigDelta;

350. AccuracyChecker = 1;

351. if BDalpha1 > BDalphaMin

352. BDIncrease == 0;

353. end

354. if (BDalpha1 < BDalphaMin) && (BDIncrease ~= 0)

355. Next_BigDelta = 2*BigDelta;

356. end

357. elseif (alpha1 > alphaMax j BDalpha1 > BDalphaMax)

358. fprintf(�alpha1 = %f and BDalpha1 = %f �, alpha1, BDalpha1);

359. AccuracyChecker = 0;

360. Next_BigDelta = BigDelta/2;

361. end

a. Check if the angles are within the speci�ed bounds. If they are not, then set

AccuracyChecker equal to zero and divide the value of BigDelta in half and then

store Next_BigDelta. When the Accuracy routine exits and returns to the nextcir

routine, Next_BigDelta will become the new value of BigDelta, and the nextcir

routine must start over with the very �rst point in Cr to calculate the next circle.

Even though some good points may have previously been found, if one point fails

the accuracy test, then all have to be recalculated so that in the end, all the points

in the new circle are at the same distance from the previous circle. If the angles

are within the speci�ed bounds, then AccuracyChecker is set to 1, and depending

on the value of BDIncrease, the value of BigDelta is doubled or left alone and

then stored in Next_BigDelta. When the Accuracy routine exits and returns to

the nextcir routine, b will be accepted as the next point in the circle, Cb, and the

nextcir routine attempts to �nd the next point.

b. BDIncrease is either 0 or 5. It is initialized at the beginning of the nextcir routine

to a value of 5, on page 69, Line 73. If Line 351 is true for even one of the new

acceptable points in the current circle being calculated, then BDIncrease will be

set to 0. Then, when it comes time to set the new value of BigDelta (within
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the nextcir routine) after all the points of the new circle have been approved, if

BDIncrease is 0, BigDelta will not be doubled and instead simply remain the same.

If the value of BDIncrease is still 5 after all the points in the next circle have been

found, then this means that all the new points met the extra requirement and it

is OK to increase (double) BigDelta. So, BDIncrease is really just keeping track

of whether all the new acceptable points, b, meet a certain condition beyond the

acceptable angle requirement. Note, that this only comes into play when the main

accuracy angles are within in the prescribed bounds and b is accepted. Again, see

[47, 62, 63, 64] for more info.

362. � � � � � � � � � � � � � � � � � � � � � � � � � � �

363. Next the MeshQuality routine is explained. This routine is a subroutine within the

Manifold m-�le and it is responsible for the addition and deletion of mesh points de-

pending, on the distance between successive mesh points. Also, it stores the data from

the Cr and Cb circles, before any mesh points are added or deleted, as well as the data

from the updated Cr and Cb circles, denoted, Updated_Cr and Updated_Cb. It takes,

as input, the 3-d matrix Band which contains, Cp, Cr, and Cb and checks to see if points

in Cb are well spaced. If there are not enough points in Cb (i.e. the distance between

neighboring points is greater than the MaxMeshDistance), then points are added. This

is done by �rst adding points to Cr and then calling the Shooting_For_b routine for

each of these new points in order to �nd additional points for Cb, if needed. If the dis-

tance between neighboring points in Cb is smaller than the MinMeshDistance, then one

of them is deleted. To keep the dimensions of each page of the Band the same, a zero

vector is added to the matrix Cp in the position where the point in Cr was added. After

this routine is �nished and the mesh is drawn, Cp is set to Cr and Cr is set to Cb and Cb

is reset to a bunch of zeros to get ready for drawing the next circle! This routine relies

on two other subroutines, NeighborDistance and DrawMesh, both of which are a part

of the Manifold.m �le and appear after the MeshQuality routine.

364. function [Updated_Cr, Updated_Cb]=MeshQuality(Band,MinMeshDistance,...

MaxMeshDistance,BigDelta,TheOdeFile,CircleNumber,SystemName)

365. New_CpBand = Band(:,:,1);
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366. New_CrBand = Band(:,:,2);

367. New_CbBand = Band(:,:,3);

368. tempBand = Band;

a. The variables New_CpBand, New_CrBand, and New_CbBand are used below to store

not only the current data for Cp, Cr, and Cb, but also the extra points that might

need to be added. Each is �rst initialized to the corresponding pages of the Band

matrix structure.

369. All_Done = 0;

370. while All_Done == 0

a. This begins the while loop that will determine if new points need to be added or

subtracted from the mesh. The reason that this might possibly be a continuous

thing (hence the loop) is that, even though points might be added or deleted the

�rst time through, the distance between the new points and the old points in the

mesh (or between the points that are left over once some have been deleted) must

also meet the mesh distance requirements. So, on the �rst time through the loop,

points are added or subtracted from the entire Cb mesh and then the updated Cb

mesh is checked again until all the points are an acceptable distance apart.

371. tempBand = New_CrBand;

372. NbrDist = NeighborDistance(New_CbBand);

373. NumOfPoints = length(NbrDist);

374. k=0;

a. The variable tempBand is used below to temporarily store points that are added to

the Cr mesh. Note that the points in Cr, because it is the previously calculated

circle, already have passed the mesh quality test. However, points need to be added

to the Cr mesh so that the algorithm has points from which to shoot, to �nd a

corresponding new point, b, on Cb. Also, when the triangular surface mesh is drawn

between Cr and Cb, these extra points will be necessary. However, we also need

the �old�version of the Cr circle that doesn�t contain the extra points, so that the

triangular surface mesh between Cp and Cr can be drawn.
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b. In order to �nd the distance between neighboring mesh points of Cb, a call to the

NeighborDistance routine (Line 466) is made. This routine is explained below the

MeshQuality routine. NbrDist(i) is the distance between the points in the i and

(i+1)columns of New_CbBand. Also needed is the number of distances calculated,

or the number of points in New_CbBand, which is simply the length of the NbrDist.

The counter, k, is initialized to zero.

375. for i = 1:NumOfPoints

376. if NbrDist(i) > MaxMeshDistance

377. if i == NumOfPoints

378. fprintf(�%2.0f - 1 �, i);

379. ExtraPoint = (tempBand(:,i) + tempBand(:, 1) )/2;

380. New_CrBand = [New_CrBand(:,:) ExtraPoint];

381. Rotated_Band=[New_CrBand(:,end) New_CrBand(:,1:end-1)];

382. extra_b = Shooting_For_b(Rotated_Band,...

BigDelta, TheOdeFile, NumOfPoints);

383. if extra_b == [0;0;0]

384. extra_b;

385. Updated_Cr = Band(:,:,2);

386. Updated_Cb = zeros(3,length(Updated_Cr));

387. return;

388. end

389. New_CbBand = [New_CbBand(:,:) extra_b];

390. New_CpBand = [New_CpBand(:,:) [0; 0; 0]];

a. Now we check the distances found in the NbrDist vector. If the ith distance in the

NbrDist vector is larger than the MaxMeshDistance, then an extra point will need to

be added to Cr and we need to shoot from this point to �nd a corresponding point,

b, using the Shooting_For_b routine. However, depending on which pair of mesh

points in Cr were too far apart, the point to be inserted will need to be calculated

and inserted carefully, since Cr is stored, after all, in a matrix with a �rst entry and

a last entry. So...
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b. IF the ith position is the last position of the NbrDist vector, then the ExtraPoint

will be the point between the ith (or last) column of tempBand (which is just a

copy of New_CrBand) and the �rst column. These points are added and divided by

two to get the ExtraPoint. Then New_CrBand is updated so that ExtraPoint is

inserted after the last column of the New_CrBand matrix. We de�ne RotatedBand

in a similar way as was done in the nextcir routine so that the point from which

we are shooting, ExtraPoint, is always in the �rst column of this matrix. Then

the Shooting_For_b routine is called and the extra_b point is (hopefully) found.

There is a check to make sure that it is a valid extra point, meaning that if the

routine returned a zero vector for b, then an extra point could not be found and

the algorithm aborts, by way of setting the output data, Updated_Cb, to a matrix

of zeros. If a valid extra point is found, then the extra_b point is added after the

last column of the New_CbBand matrix. In addition, a column vector of zeros is

added to the New_CpBand in order to make sure that all three matrices, New_CpBand,

New_CrBand, and New_CbBand have the same dimension. This is important for

storing the data, etc. Also, the initial print statement will tell the user between

which points the extra point is being found. NumOfPoints gives the current index

of the point in New_CrBand from which we�re shooting.

391. elseif i ~= NumOfPoints %when i = 1...NumOfPoints-1

392. if i==1

393. fprintf(�nn 1-2 -- �);

394. else

395. fprintf(�%2.0f-%2.0f -- �, i,i+1);

396. end

397. ExtraPoint = ( tempBand(:, i) + tempBand(:, i+1) )/2;

398. pointnumber = NumOfPoints + k;

399. New_CrBand = [New_CrBand(:,1:i+k) ExtraPoint ...

New_CrBand(:,i+1+k:end)];

400. Rotated_Band=[New_CrBand(:, i+1+k:end)...

New_CrBand(:,1:i+k)];
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401. extra_b = Shooting_For_b(Rotated_Band,...

BigDelta, TheOdeFile, pointnumber);

402. if extra_b == [0;0;0]

403. Updated_Cr = Band(:,:,2);

404. Updated_Cb = zeros(3,length(Updated_Cr));

405. return;

406. end

407. New_CbBand = [New_CbBand(:,1:i+k) extra_b ...

New_CbBand(:, i+1+k:end)];

408. New_CpBand = [New_CpBand(:,1:i+k) [0; 0; 0] ...

New_CpBand(:, i+1+k:end)];

409. k=k+1;

410. end

411. end

a. IF the ith position is NOT the last position of the NbrDist vector, then the extra

points are added to Cr, Cb, and Cp with di¤erent indexing. The previous set of code

was the "special" case when the point needed to be added between the �rst and last

points of the mesh. However, here we need to keep track of any points that have

been added previously. That is what the k counter is for. The "+ k" in the lines

of code, makes up for the new points that have been added, so that the indexing is

correct.

b. For Cr, the ExtraPoint point is calculated as the point between the i and i+1

points of tempBand (which is a copy of the current New_CrBand).

c. The variable pointnumber gives the current index of the point in New_CrBand and

is simply the sum of the values of NumOfPoints and k. This Pointnumber which is

passed to the Shooting_For_b routine can be used in that routine to draw all the

shooting orbits of the initial conditions used to �nd this particular b. This can be

a helpful troubleshooting strategy.

d. ExtraPoint is inserted in the New_CrBand between the i+k and i+1+k position of

the New_CrBand.
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e. RotatedBand is formulated as usual, with the ExtraPoint in the �rst column.

f. As before in the previous -if- portion, a call to the Shooting_For_b routine is made

and the extra_b point is (hopefully) found. There is a check to make sure that it

is a valid extra point, meaning that if the routine returned a zero vector for b, then

an extra point could not be found and the algorithm aborts, by way of setting the

output data, Updated_Cb, to a matrix of zeros. Now, the di¤erence between the

previous -if- part and this -ifelse- part is that if a valid extra point is found, then

the extra_b point is added, not after the last column of the New_CbBand matrix, but

rather between the i+k and i+1+k columns. In addition, a column vector of zeros is

added to the New_CpBand in order to make sure that all three matrices, New_CpBand,

New_CrBand, and New_CbBand have the same dimension. The zero vector is added

between the i+k and i+1+k columns of the current New_CpBand. This is important

for storing the data, etc. Also, the initial fprintf statement will tell the user

between which points the extra point is being found.

412. end (end the for loop)

413. if k == 0

414. All_Done = 1;

415. end

a. Once the for loop exits, if the value of k is zero, this means that all the mesh

distances were in the correct range, and the while loop can be exited, by setting the

All_Done variable to 1.

416. end (end the while loop)

417. NbrDist = NeighborDistance(New_CbBand);

418. NumOfPoints = length(NbrDist);

419. Deleted= zeros(1,NumOfPoints);

a. NeighborDistance is called again on the New_CbBand to check for distances between

points that are smaller than MinMeshDistance. This check is done after points are

added, if any, so that if newly created points put the distance between adjacent

points to close together, they can be deleted.
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b. Deleted is a vector the length of NumOfPoints, (which is calculated again on the

current New_CbBand) to keep track of any columns (in all three matrices for Cp,

Cr, and Cb) that need to be deleted after the drawing is done.

420. for i = 1:NumOfPoints

421. if NbrDist(i) < MinMeshDistance

422. Deleted(i) = i;

423. if i == 1

424. fprintf(�nn-%2.0f �, i);

425. New_CbBand = [New_CbBand(:,2) New_CbBand(:,2:end)];

426. elseif i == NumOfPoints

427. fprintf(�-%2.0f �, i);

428. New_CbBand = [New_CbBand(:,1:i-1) New_CbBand(:,1)];

429. else %when i == 2..NumOfPoints-1

430. fprintf(�-%2.0f �, i);

431. New_CbBand = [New_CbBand(:,1:i-1) New_CbBand(:, i+1) ...

New_CbBand(:, i+1:end)];

432. end

433. end

434. end

a. Now we check the distances found in the newly calculated NbrDist vector. If

the ith distance in the NbrDist vector is smaller than the MinMeshDistance, then

we set the ith column of New_CbBand equal to the point in the (i+1)th column.

Note that depending on what position we are at in the NbrDist vector, the syntax

for accomplishing this is di¤erent; in particular, when i=1 and i=NumOfPoints,

corresponding to the �rst and last columns of the New_CbBand, respectively. Later,

we actually delete the �repeated�column from the matrix, using the Deleted matrix,

which is keeping track of the ith columns that are �marked�for deletion. Until then,

though, all the points in the matrix are needed for the DrawMesh routine. A fprintf

statement lets the user know which points are being deleted, preceded by a minus

sign.
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435. DrawBand(:,:,1) = New_CrBand;

436. DrawBand(:,:,2) = New_CbBand;

437. DrawMesh(DrawBand);

a. Finally, the mesh can be drawn between Cr and Cb. A call to the DrawMesh routine

(Line 475) is called with the data from New_CrBand and New_CbBand passed in the

2-page matrix structure called DrawBand. The DrawMesh routine is described after

this routine and the NeighborDistance routine.

438. drawwidth = length(New_CbBand);

439. drawwidthfn = [SystemName, �DW_�, int2str(CircleNumber), �.mat�];

440. save(drawwidthfn, �drawwidth�)

441. DrawBandFN = [SystemName, �DrawCircle_�, int2str(CircleNumber), �img�];

442. multibandwrite(DrawBand, DrawBandFN,�bsq�,�precision�,�double�);

a. Write data to a �le for later use to draw again. Note that the �lename is speci�c

to the current circle number. Note also, that the variable drawwidth which has the

value of the length of the New_CbBand, is also stored and the �lename is also speci�c

to the current circle number. Then, if one wants to re-draw the mesh after having

calculated 10 circles, say, then the circles do not have to be re-calculated, but can

simply recalled from the data stored in the speci�c circle number �les. As long as

the �le exists for a particular circle number, it can be drawn.

443. j=0;

444. if isempty(Deleted) == 0

445. for i = 1:length(Deleted)

446. if Deleted(i) ~= 0

447. k = Deleted(i);

448. New_CbBand(:,k-j) = [];

449. New_CrBand(:,k-j) = [];

450. New_CpBand(:,k-j) = [];

451. j=j+1;

452. end
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453. end

454. end

a. In order to calculate the next circle, the points in Cr and Cb that were �removed�(See

Line 420-434.a) now have to be deleted so as not to confuse things when we save the

data used to compute subsequent circles.

455. Updated_Cr = New_CrBand;

456. Updated_Cb = New_CbBand;

457. CalcFromBand(:,:,1) = Updated_Cr;

458. CalcFromBand(:,:,2) = Updated_Cb;

459. width = length(Updated_Cb);

460. widthfilename = [SystemName,�BW_�,int2str(CircleNumber), �.mat�];

461. save(widthfilename, �width�);

462. CalcFromFN = [SystemName, �CalcFrom_�, int2str(CircleNumber), �.img�];

463. multibandwrite(CalcFromBand,CalcFromFN,�bsq�,�precision�,�double�);

a. Assign the variables, Updated_Cr and Updated_Cb, to New_CrBand and

New_CbBand, respectively. This is necessary since Updated_Cr and

Updated_Cb are speci�ed as the outputs of the MeshQuality routine. Then, save data

for Updated_Cr and Updated_Cb in a multipage matrix structure, CalcFromBand,

and save this to a �le with a �lename speci�c to the current circle number. The �les

saved here are used to calculate the subsequent circles, so that if one wants to start

calculating the mesh from circle 3, circles 0-2 do not have to re-calculated. As long

as the �le exists for a particular circle number, the mesh can be calculated, starting

from that circle number.

464. � � � � � � � � � � � � � � � � � � � � � � � � � � �

465. Now described is the NeighborDistance routine which calculates the distance between

adjacent mesh points. The routine takes, as input, a matrix, Points, whose columns

represent a triple (x,y,z) and returns a vector, NbrDist, containing the distances be-

tween the adjacent points (column vectors). The distances are calculated one at time

starting with the distance between points 1 and 2, then 2 and 3 and so on up until
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NumOfNeighbors-1, which is the distance between the second-to-last point and the last

point in the Points matrix. The distance between the last point and the �rst point of

the matrix, Points, is calculated separately after the loop. This routine is used in the

MeshQuality routine for determining whether the mesh points are at a proper distance

from one another.

466. function [NbrDist] = NeighborDistance(Points)

467. NumofNeighbors = length(Points);

468. NbrDist = zeros(1, NumofNeighbors);

469. for i = 1:(NumofNeighbors -1)

470. NbrDist(i) = norm(Points(:,i)-Points(:, i+1));

471. end

472. NbrDist(NumofNeighbors) = norm(Points(:, NumofNeighbors)-Points(:,1));

473. � � � � � � � � � � � � � � � � � � � � � � � � � � �

474. The last routine in the Manifold m-�le is DrawMesh, which basically connects the dots

of the mesh as a nice triangle surface. The routine takes, as input, a multi-page matrix

structure, Band. The �rst page contains the New_CrBand matrix and the second page

contains the New_CbBand matrix, both before any points were deleted. See Lines 435-

437.a where this function is called. This function can also be a completely separate

m-�le, which is useful to call for redrawing the mesh after a number of circles have

already been calculated.

475. function DrawMesh(Band)

476. steps = length(Band(:,:,2));

a. steps is the number of points (columns) of Cr (and hence also of Cb).

477. X = [Band(1,:,1) Band(1,:,2)];

478. Y = [Band(2,:,1) Band(2,:,2)];

479. Z = [Band(3,:,1) Band(3,:,2)];

a. X, Y, and Z are vectors that give the X-coords, Y-coords, and Z-coords of points in

Cr and Cb, concatenated together for use with the trisurf function for graphing

the triangle mesh. The �rst �steps�points are from Cr and the �steps+1�to �steps
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+ steps�points are from Cb. This indexing is used in the next part when de�ning

the �face�matrix TRI.

480. TRI = zeros(steps,3);

481. TRI2 = zeros(steps,3);

482. for j=1:steps-1;

483. TRI(j,:) = [j steps+j steps+j+1];

484. end

485. TRI(steps,:)= [steps 2*steps steps+1];

486. for j=1:steps-1;

487. TRI2(j,:) = [j j+1 steps+j+1];

488. end

489. TRI2(steps,:)= [steps 1 steps+1];

a. Now, we form the triangles with vertices from Cr and Cb. TRI is a (steps x 3)-

matrix that de�nes the triangles whose vertices are indexed by the matrices X, Y,

and Z. For instance, the �rst row of TRI is [1 21 22] if steps=20. This vector, [1

21 22], says that the �rst vertex of the �rst triangle is the 3-vector de�ned by

i. the 1st elements in the matrices X, Y, and Z

ii. the 21st elements in the matrices X, Y, and Z and lastly,

iii. the 22nd elements in the matrices X, Y, and Z.

This equates to the ��rst point�of the Cr circle, the ��rst point�of the Cb circle and

�second point�of the Cb circle. Then the indices are increased in increments of 1

each time through the loop, moving "around the circle". This indexing works for

the �rst �steps-1�points, but the last triangle reuses the �rst point of the second

circle which is indexed in X, Y, and Z as the steps+1 points, so this point is placed

in the last row of TRI after the loop. NOTE: steps is the number of points in Cr.

b. TRI2 de�nes the other set of triangles of the mesh in a similar manner. Together,

the two sets of triangles form the band between the previous circle, Cr, and the new

circle Cb.

490. trisurf(TRI, X, Y, Z);
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491. hold on

492. trisurf(TRI2,X,Y,Z);

493. hold on

494. drawnow

495. xlabel(�X�); ylabel(�Y�); zlabel(�Z�);

a. trisurf takes the matrix TRI that de�nes the triangles by vertices indexed through

X, Y, and Z and creates a surface of triangles.

496. This concludes the Manifold.m �le code
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Two separate �les that must be de�ned in order to run the Manifold.m �le are the

"basics" �le and the "rhs" (i.e. right hand side) �le. Below, these �les speci�c to the

Lorenz system are given. First the basics code:

1. function [Saddle, eVects, eVals, negevals, negevects] = lorenzbasics

2. syms X Y Z

3. sigma = 10; q = 28; beta = 8.0/3;

4. Xprime = sigma*(Y-X);

5. Yprime = q*X - Y - X*Z;

6. Zprime = X*Y - beta*Z;

7. Jack = jacobian([Xprime; Yprime; Zprime],[X, Y, Z]);

8. Saddle = [0.0, 0.0, 0.0];

9. JackAtSaddle = subs(Jack, [X, Y, Z], Saddle);

10. [eVects,eVals] = eig(JackAtSaddle);

11. eVals=diag(eVals);

12. [negevals, negevects] = evf(eVals, eVects);

13. v1 = negevects(:,1);

14. v2 = negevects(:,2);

15. N = cross(v1, v2);

16. v3 = cross(v1,N);

17. negevects(:,1) = v1;

18. negevects(:,2) = v3;

19. � � � � � � � � � � � � � � � � � � � � � � � � � � �

20. function [negevals, negevects] = evf(eVals, eVects)

21. k = length(eVals);

22. j1=1; j2=1; j3=1;

23. for i=1:k

24. if eVals(i) < 0

25. negevals(j1)=eVals(i);

26. negevects(:,j1)=eVects(:,i);
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27. j1=j1+1;

28. elseif eVals(i) > 0

29. posvals(j2)=eVals(i);

30. posevects(:,j2)=eVects(:,i);

31. j2=j2+1;

32. else

33. zeroevals(:,j3)=eVals(i);

34. j3=j3+1;

35. end

36. end

a. The basics �le must specify the following information:

i. The equations of the system and the parameter values (in this �le the system

and parameters are de�ned as symbolic variables/parameters so that algebraic

computations can be done)

ii. The �xed point of interest (In this case it is labeled Saddle)

b. The "basics" �le uses MatLab provided subroutines for �nding the jacobian matrix

(jacobian) and evaluating it at the �xed point (subs), as well as �nding the eigen-

values and eigenvectors (eig). A subroutine within the basics �le, evf, sorts the

eigenvalues and speci�cally returns the negative eigenvalues and associated eigenvec-

tors for the Lorenz system; however, all the eigenvalues and eigenvectors are found.

The code would just need to be modi�ed slightly to return the positive eigenvectors.

Note also that a normalized eigenvector is created with respect to the cross product

of the two eigenvectors (associated with the two negative (positive) eigenvalues) and

used as one of the eigenvectors to be returned by the basics �le. This is so that

the initial circle calculated in the Manifold.m code is a circle and not an ellipse.

The "rhs" �le must be in the form required by MatLab ode solver functions, such as

ode45, which is used in the Manifold.m �le. A dydt vector is formed and the variables of

the system are indices of y: y(1), y(2), y(3), for the x, y, and z notation used in the
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basics �le and in equations 3.1. Below is the simple code for the rhs �le for the Lorenz

system:

1. function dydt = lorenzrhs(t,y)

2. sigma = 10.0; q = 28.0; beta = 8.0/3;

3. dydt = zeros(3,1);

4. dydt(1) = sigma*(y(2) - y(1));

5. dydt(2) = q*y(1) - y(2) - y(1)*y(3);

6. dydt(3) = y(1)*y(2) - beta*y(3);

3.4 LIMITATIONS AND CHALLENGES

Despite the success with the Lorenz system, the implementation is not fail proof. Unfortu-

nately, in fact, the code discussed above does not currently reproduce the Lorenz pictures

that it once generated and which are displayed here. Hence, the m-�le will not be made

available with this thesis. This inadequacy may be due in part to the fact that the m-�le

may be dependent on the version of MatLab in which it was written (ver 6.5R13, student

version). Even so, in the original computation, a start and stop hand tweeking process

was necessary in order to generate as many rings of the lorenz manifold as possible. The

length of integration time, for instance, along with other algorithm parameters all contribute

to whether the code is able to �nd the next point in the mesh. Many angles have been

examined in the troubleshooting process. However, since the development of the code was

not the focal point of the dissertation, more research time was not dedicated to further

troubleshooting.

There is also a problem that occurs after the algorithm �nds a point, b, but the angle

requirement repeatedly fails, no matter how small BigDelta was made. This might be a

result of the initial circle not being close enough to the �xed point (i.e. delta was too large)

and small inaccuracies grew into larger ones later on. In addition, the algorithm is not

particularly fast, and as the mesh is grown, more and more mesh points are added so that it

takes longer and longer to calculate subsequent circles. It can be especially time consuming,
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for example, when the 100th mesh point of the next circle is being calculated and the angle

accuracy condition fails. Then, BigDelta has to be shrunk and the algorithm has to start

all over with point 1, in the calculation of the next circle.

The most di¢ cult aspect of the implementation of this algorithm is choosing the next

point, y0, on Cr from which to shoot in order to �nd the next point, b, in the mesh. If

every trajectory intersected the half plane, this would be rather simple (depending on the

accuracy and success of the event locator in �nding the intersections!); however, as was shown

in the code above, many trajectories simply "time out" on one side of the plane without ever

crossing it. Then, it has to be determined where the trajectory landed at the end of the

integration time. In some cases, it is necessary to �nd out where the trajectory was coming

from in order to choose the next correct point. This decision tree was something not

explicitly outlined in [63] and which proved to be the most challenging aspect of the design

of the code.

Another issue found along the way included the manner in which data was stored and

saved for future use. The multiband matrices that MatLab provides is a nice way to organize

and keep track of data, and the multiband read and write functions make it easy to save

this data in .mat �les that can be loaded for later use. Also, �nding an appropriate way

to determine when a solution point along a trajectory met some requirement (e.g. was a

certain distance from the point, r, or from the plane) was an especially di¢ cult task. The

�rst version of the Manifold code included a type of "manual" check at each time step along

the solution to determine if an event occurred, which, not surprisingly, took an enormous

amount of time, since very small time steps needed to be taken. It was obvious that

something more sophisticated would be necessary. Then, the option of de�ning an event

function for an event locator for the ode solvers was found. The event locator �nds the

time and corresponding solution of when/where speci�ed events occurred with respect to

the integrated system. Once the proper event functions were de�ned, this proved to be

a huge improvement, both in accuracy and time. Even so, time spent "processing" the

event locations that the event functions returns may be a source of ine¢ ciency (See Lines

127-165.a-d in the previous section describing the Manifold.m code.) Furthermore, in some

cases, no events occur, which means having to determine the next y0 in another way.
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We were able to use the algorithm for illustration in the above mentioned endotoxin

tolerance paper and it was decided not to pursue any further troubleshooting of the algorithm

as it would not bene�t the direction of the thesis. However, there is currently no tool for

public use for calculating and displaying two dimensional manifolds of three dimensional

ODE systems, so future research could include making this a reality. It de�nitely remains

an interesting problem to examine and some of the other algorithms mentioned in the �rst

section, speci�cally [44], might prove to be more conducive to being programmed.

As mentioned previously, all the methods mentioned in the introductory paragraphs can

theoretically be used to produce manifolds of degree greater than two. The di¢ culty is in

the visualization of such methods and much research is ongoing in this area. In addition,

Osinga in [87] demonstrates the visualization of an example of a 2-dimensional manifold of

a 4-dimensional ODE system, projecting the manifold onto a plane in R4 and coloring the

points on the manifold according to geodesic distance from the saddle point. Features of

the particular system explored are taken advantage of to enhance the visualization and its

interpretation. In general, such problems remain a challenge. Hence, there are many parts

of this �eld that remain open for exploration.
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4.0 MATHEMATICAL EXPLORATION OF TOLERANCE

4.1 INTRODUCTION

In Chapter 2 we analyzed biological phenomena known as endotoxin tolerance and potenti-

ation via a small ODE model of the acute in�ammatory response. An excitatory variable

(N�) could have a damped response (tolerance) when given an excitatory stimulus (PE)

prior to a challenge stimulus, compared to the response in the absence of a preconditioning

input. On the other hand, the response with a preconditioner could instead be enhanced

(potentiation). In the course of exploring this, it became evident that such behavior would be

interesting to examine from a purely mathematical perspective since it deals with transient

behavior in an ODE system, a topic not well covered in the dynamical systems literature.

Most dynamical systems behaviors are studied in the asymptotic limit or around �xed points,

where linearization can be employed.

The work presented in this chapter shows novel results that explore the behavior of

transients under certain conditions. Related, perhaps, to this exposition is research on

isochronicity, which deals with behaviors that occur within the same interval of time. [100, 41]

For instance, Sabatini in [100] de�nes a critical point classi�ed as a center to be isochronous

if every nontrivial cycle within a neighborhood of the critical point has the same period. As

Sabatini comments, the "intuitive idea of isochronicity is related to phenomena occurring at

equal time intervals, so that one does not have to restrict to study the behaviour of solutions

in the neighborhood of a critical point." Studying the behavior of solutions away from a

critical point proves a necessary aspect of the work presented in this chapter. However,

the research aiming to locate isochronous sections of autonomous di¤erential systems deals

mostly with systems which are oscillatory in nature [100, 41, 52] Hence, this body of work
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on isochronous sections was not used in the results of this chapter, but it could be a potential

source for additional insight in the future.

In the sections that follow, the tolerance behavior is examined in both linear and nonlin-

ear 2-dimensional ODE systems. The �rst section establishes mathematical de�nitions and

notation for exploring tolerance (and potentiation). Then, theorems for general 2D ODE

systems are presented. These extend the tolerance "window" by continuity arguments.

Following these initial theorems are results showing su¢ cient or necessary conditions for tol-

erance to occur in very particular situations. Some of these results are used in later sections.

Afterward, the general 2D linear case is explored. This case is complete, containing theo-

rems that pinpoint exactly where tolerance will or will not occur in a system given an initial

condition. Next, the general 2D nonlinear case is presented, which is a more di¢ cult case

than the linear one, since exact analytical solutions are not available, in general. However,

there are statements that are made, via the concept of inhibition and the use of isoclines to

narrow down the possibility of the presence of tolerance. Speci�c examples are used here

to illustrate this approach. Finally, two purely numerical approaches for locating tolerance

are shown, the �rst of which is not restricted to 2D systems.
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4.2 PRELIMINARY DEFINITIONS

Consider the ODE system

_x = f(x; y)

_y = g(x; y);

9=; (4.1)

where x; y 2 R, f and g are locally Lipschitz.

(A1) Assume (0; 0) is a stable �xed point of (4.1), the eigenvalues of which are real and

negative. (eliminates spirals and centers)

Let �(t) be the solution to the initial value problem of (4.1) with initial value

�(0) = (x0; y0), x0 > 0.

Similarly, let  (t) be the solution to the initial value problem of (4.1) with initial value

 (0) = (~x0; ~y0) � �(s) + (x0; 0) for some 0 � s <1.

(A2) Assume �(t) and  (t) are nonnegative for all t � 0 and that both (x0; y0) and (~x0; ~y0)

lie in the basin of attraction for (0; 0) in the �rst quadrant.

Figure 21: The original trajectory '(t) and the curve of all possible (~x0; ~y0) points, formed by shifting
the graph of '(t) in the x-direction by an amount of x0.

Note that (~x0; ~y0) is essentially a shifting of the point �(s) in the x-direction by the

amount, x0. We refer to this as the �shift�amount. Here and throughout, we assume that

this shift amount is the value of x0, the �rst component of the initial condition, �(0). Thus,

for di¤erent values of s ranging from 0 to 1, a curve of possible (~x0; ~y0)�s is formed as

illustrated by Figure 21. Now, we de�ne what it means for (4.1) to exhibit tolerance and
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potentiation for a given pair < (x0; y0); s > and make a few other de�nitions and remarks

that will be useful throughout this chapter:

De�nition 1. The system (4.1) is said to exhibit tolerance for < (x0; y0); s >, if there exists

� > 0 such that  1(�) < �1(�).

De�nition 2. On the other hand, if  1(t) � �1(t) for all t 2 [0;1), then (4.1) is said to

exhibit potentiation for < (x0; y0); s > or, equivalently, that (4.1) does not exhibit tolerance

for < (x0; y0); s >. The latter will be the preferred terminology.

Remark 1. Note that for �xed (x0; y0), every < (x0; y0); s > de�nes a unique point, (~x0; ~y0).

Thus, at times it might be stated that "(~x0; ~y0) produces (or does not produce) tolerance in

(4.1)," which will be equivalent to saying that (4.1) exhibits (or does not exhibit) tolerance

for < (x0; y0); s >.

De�nition 3. For < (x0; y0); s >, for which tolerance is exhibited, de�ne s as the jump

time.

De�nition 4. For � > 0 such that  1(�) < �1(�), de�ne � as the compare time.

De�nition 5. De�ne �(t) as the original solution or trajectory.

De�nition 6. De�ne  (t) as the competing solution or trajectory.

Remark 2. The notation (x0; y0) � t is the image of the point (x0; y0) under the �ow of (4.1)

for time t. The set of points, f(x0; y0) � tjt � 0g, is then the solution curve or trajectory of

the initial value problem with initial value (x0; y0). This set is also referred to as the graph

of the solution.

Remark 3. Whenever the existence of tolerance is mentioned, it is with respect to the �rst

component, x, of a system unless otherwise stated.
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4.3 THEOREMS EXTENDING THE WINDOW OF TOLERANCE

De�nition 1 of tolerance includes only the presence of one time point, � > 0 where  1(�) <

�1(�). However, a continuity argument can extend this window, from a single time point to

an open interval,(t1; t2), around the compare time, � . Furthermore, it will be shown that

at t = t1,  1(t1) is actually equal to �1(t1) and this will lead to the result that the value

of the vector �eld, in the (negative) x-direction, at  1(t1), i.e. f( (t1)), will be less than

the value of the vector �eld, in the (negative) x-direction, at �1(t1) , i.e. f(�(t1)). This is

the content of Proposition 1 below, which will be used in Corollaries 3 and 5, of Theorem

2 and Theorem 4, respectively and which will also be important in Section 4.6. Figure 22

illustrates Proposition 1 with time courses of relevant solutions.

Figure 22: Time courses illustrating Proposition 1

Proposition 1. Assume (A1) and (A2). If (4.1) exhibits tolerance for < (x0; y0); s > in x,

at � > 0, then there exists an open neighborhood (t1; t2) around � such that  1(t̂) < �1(t̂) for

every t̂ 2 (t1; t2) and  1(t1) = �1(t1). Furthermore, f( (t1)) � f(�(t1)).

Proof. By the de�nition of (~x0; ~y0), the initial condition of  (t) ;we know that ~x0 > x0 or,

equivalently,  1(0) > �1(0). Since (4.1) exhibits tolerance in x at � > 0, then  1(�) < �1(�).

Consider the set

� = ftj 1(t) = �1(t); 0 < t < �g.

Since �1(t) and  1(t) are continuous, by the intermediate value theorem, there exists 0 <

� � < � such that  1(�
�) = �1(�

�). Hence, � is not empty. Since (0; �) is a bounded interval,
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let t� = sup
t>0
�. Since � is not empty, there exists an increasing sequence of time values, tn,

such that tn ! t� as n!1 and tn 2 � for all n. Thus, by continuity of the solutions  1 and

�1,  1(t
�) = �1(t

�). Since t� = sup
t>0
�, we have that 0 < t� � � . However, we just established

that  1(t
�) = �1(t

�), yet earlier it was shown that  1(�) < �1(�). Hence t� is strictly

less than � : t� < � . Since � is not empty, we may conclude that t� 2 �. Furthermore,

using the continuity of the solutions  1 and �1 again, we have that  1(t̂) < �1(t̂) for all

t̂ 2 (t�; � + �) � (t1; t2) for some � > 0. Furthermore, since  1(t̂) < �1(t̂) for all t̂ 2 (t1; t2)

and  1(t1) = �1(t1), it can be concluded that f( (t1)) � f(�(t1)).

Figure 23: Left Panel: Illustration of Theorem 2 in the phase plane. Right Panel: Illustration of
Theorem 2 with time courses of relevant solutions.

Proposition 1 above extends the window of tolerance with respect to the compare time,

� > 0, where  1(�) < �1(�). Theorem 2 below extends the window to tolerance with respect

to the jump time, s > 0, where tolerance is known to exist for a particular< (x0; y0); s >. An

open neighborhood, (s1; s2), around s is found such that there exists a compare time, tp > 0,

for every jump time, sp 2 (s1; s2), where tolerance is exhibited for < (x0; y0); sp >. Corollary

3 then extends the neighborhood around the particular compare time, tp, associated with

the jump time, sp, by using Proposition 1. Figure 23 illustrates Proposition 2 in the phase

plane (left panel) and with time courses of relevant solutions (right panel).

Theorem 2. Assume (A1) and (A2). If (4.1) exhibits tolerance for < (x0; y0); s > in x,

then there exists an open interval, (s1; s2), around s such that (4.1) exhibits tolerance in x

for < (x0; y0); sp > for all sp 2 (s1; s2).
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Proof. Assume the set up as above with the two initial value problems involving �(t) and  (t)

(in particular, assumptions (A1) and (A2)), and also consider the new IVP with solution  ̂(t)

to (4.1) with initial condition  ̂(0) = (�1(sp); �2(sp))+(x0; 0) � (x̂0; ŷ0), where 0 < sp = s+p

for some p 2 R. We wish to show that for jpj su¢ ciently small there exists tp > 0 such that

 ̂1(tp) < �1(tp).

By Proposition 1, since (4.1) exhibits tolerance for < (x0; y0); s >, there exists a neigh-

borhood (t1; t2) such that  1(t) < �1(t) for all t 2 (t1; t2). Since the RHS of (4.1) is locally

Lipschitz (with Lipschitz constant L) and continuous in x and y, then given � > 0, there

exists � > 0 such that if jj(~x0; ~y0)� (x̂0; ŷ0)jj < � then jj (t)�  ̂(t)jj < �eLt, on the interval

for which  and  ̂ solve their respective initial value problems ( ;  ̂ continuously depend on

initial conditions). Thus, if jj(~x0; ~y0) � (x̂0; ŷ0)jj < � then we need jj�(s + p) � �(s)jj < �.

Since � is continuous with respect to t, there exists �p > 0 such that if jpj < �p then

jj�(s+ p)� �(s)jj < �, as needed.

Therefore, if k(~x0; ~y0)� (x̂0; ŷ0)k < �, or equivalently jpj < �p then j 1(t)�  ̂1(t)j < �eLt

and for a particular t value, tp, we can say that j 1(tp) �  ̂1(tp)j < �eLtp � �̂. So, let

tp 2 (t1; t2), the interval in which  1(t) < �1(t). Let � be such that �̂ =
1
2
(�1(tp) �  1(tp)).

Then, by the above, there exists �p > 0 such that if jpj < �p , then j 1(tp) �  ̂1(tp)j < �̂ =

1
2
(�1(tp)�  1(tp)). Hence,

 ̂1(tp) =  ̂1(tp) +  1(tp)�  1(tp) < j ̂1(tp)�  1(tp)j+  1(tp)

= j 1(tp)�  ̂1(tp)j+  1(tp)

<
1

2
(�1(tp)�  1(tp)) +  1(tp)

= �̂+  1(tp)

= �̂+ �1(tp)� d; where d = �1(tp)�  1(tp) > 0

=
1

2
d+ �1(tp)� d

< �1(tp)

Therefore, there exists a t�value, namely tp, where  ̂1(tp) < �1(tp). (Also, we need to make

sure that �p is small enough so that (x̂; ŷ) is in the basin of attraction of (0; 0). This is possible

since (4.1) depends continuously on initial conditions.) Thus, let (s1; s2) � (s � �p; s + �p).
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Then, for all �p 2 (s1; s2) there exists tp > 0 such that  ̂1(tp) < �1(tp), completing the proof

of Theorem 2.

Corollary 3. With respect to the results of Theorem 2, there exists an open interval around

tp, (tp1 ; tp2), such that  ̂1(t) < �1(t) for all t 2 (tp1 ; tp2).

Proof. This follows immediately by using Proposition 1 on < (x0; y0); sp >.

Similarly to the previous statements, Theorem 4 below extends the window of tolerance

given that (4.1) exhibits tolerance for a given < (x0; y0); s >. However, this theorem extends

the window of tolerance around the initial condition, (x0; y0), of �(t), where tolerance is know

to exist for < (x0; y0); s >, rather than around the jump time, s, or the compare time, � . An

open ball, Br, of radius, r, is found around (x0; y0), such that for any point, (xp; yp), in Br,

(4.1) exhibits tolerance for < (xp; yp); s >: i.e. there exits a compare time, tp > 0 such that

 ̂1(tp) < �̂1(tp), where �̂(0) = (xp; yp) and  ̂(0) = �̂(s) + (xp; 0). Corollary 5 then extends

the neighborhood around the particular compare time, tp, associated with < (xp; yp); s >,

by using Proposition 1.

Theorem 4. Assume (A1) and (A2). If (4.1) exhibits tolerance for < (x0; y0); s > in x, then

there exists an open ball, Br, of radius, r, around (x0; y0) such that if (xp; yp) 2 Br((x0; y0))

then (4.1) exhibits tolerance in x for < (xp; yp); s >.

Proof. Assume the set up as above with the two initial value problems involving �(t) and  (t)

(in particular, assumptions (A1) and (A2)), and also consider two new IVPs with solutions

�̂(t) to (4.1) with initial condition �̂(0) = (x0; y0) + (p1; p2) � (xp; yp) and  ̂(t) to (4.1) with

initial condition  ̂(0) = (�̂1(s); �̂2(s))+(xp; 0) � (~xp; ~yp). We wish to show that there exists

tp � 0 such that  ̂1(tp) < �̂1(tp).

Given � > 0, since (4.1) is locally Lipschitz (with Lipschitz constant L) and continuous

in x and y, there exists �p > 0 such that if jj(~x0; ~y0)�(~xp; ~yp)jj < � then jj (t)�  ̂(t)jj < �eLt,

on the interval for which  and  ̂ solve their respective initial value problems. (solutions of

(4.1) continuously depend on initial conditions).

Thus, if k(~x0; ~y0)� (~xp; ~yp)k < �, then j 1(t)�  ̂1(t)j < �eLt and for a particular t value,

tp, we can say that j 1(tp) �  ̂1(tp)j < �eLtp � �̂. Fix tp > 0 such that �1(tp) >  1(tp).
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Let � be such that �̂ = 1
2
(�1(tp) �  1(tp)). Then, if k(~x0; ~y0) � (~xp; ~yp)k < � we have that

j 1(tp)�  ̂1(tp)j < �̂ = 1
2
(�1(tp)�  1(tp)). Then,

 ̂1(tp) =  ̂1(tp)�  1(tp) +  1(tp)

� j ̂1(tp)�  1(tp)j+  1(tp)

< �̂+ �1(tp)� d, where d = �1(tp)�  1(tp) > 0, since �1(tp) >  1(tp)

=
1

2
d+ �1(tp)� d

= �1(tp)�
1

2
d

So, since we have established that �1(tp)� 1
2
d >  ̂1(tp) we have

�̂1(tp)�  ̂1(tp) > �̂1(tp)� (�1(tp)�
1

2
d)

� �j�̂1(tp)� �1(tp)j+
1

2
d

Since �(t) depends continuously on initial conditions then given �p > 0, there exists �p > 0

such that if k(x0; y0)� (xp; yp)k < �p then j�1(t)� �̂1(t)j < �̂p, where �̂p = �pe
Ltp . Thus, let

�p > 0 be such that �̂p = 1
2
d so that if k(x0; y0)� (xp; yp)k < �p, then j�̂1(tp)� �1(tp)j < 1

2
d

and �j�̂1(tp)� �1(tp)j > �1
2
d. Hence, continuing from the last inequality, we have

�̂1(tp)�  ̂1(tp) > �j�̂1(tp)� �1(tp)j+
1

2
d

> �1
2
d+

1

2
d

= 0.

Hence, �̂1(tp) >  ̂1(tp). Therefore, there exists a t�value, namely tp, where  ̂1(tp) < �̂1(tp).

Also, make sure that � and �p are small enough to ensure (xp; yp) and (~xp; ~yp) lie in the basin

of attraction for (0; 0). Let Br((x0; y0)) � B�p((x0; y0)). Finally, note that for (x0; y0) on

the x-axis, we only wish to consider those points that are both in Br((x0; y0)) and in the

�rst quadrant. Then, for every (xp; yp) 2 Br((x0; y0)) \ R2+, there exists tp > 0 such that

 ̂1(tp) < �̂1(tp).

Corollary 5. With respect to the results of Theorem 4, there exists an open neighborhood

around (tp1 ; tp2), such that  ̂1(t) < �̂1(t) for all t 2 (tp1 ; tp2).
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Proof. This follows immediately by using Proposition 1 on < (xp; yp); s >.

This concludes the continuity arguments for extending the window of tolerance in a

system when there exists a < (x0; y0); s > for which tolerance is known to occur. Next, we

present a number of results that were observed during the initial stages of this mathematical

tolerance research.
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4.4 FIRST OBSERVATIONS

"We must start by admitting that almost nothing beyond general statements can be made
about most nonlinear systems...and that any other tool in the workshop of applied math-
ematics...can and should be brought to bear on a speci�c problem." ~Guckenheimer and
Holmes [43]

Indeed, truer words have not been written about the study of nonlinear systems and

this "disclaimer" is adopted here and particularly in section 4.6. In fact, the problem we

are seeking to elucidate is immune to the use of the powerful tool of linearization since

what is being studied is a transient behavior and not one occurring particularly close to

�xed points. The goal, as encouraged by Guckenheimer and Holmes, is to showcase every

possible dynamical systems tool available in order to generate results about the existence

of tolerance in general 2D nonlinear systems. The hope is that the unique nature of the

problem and the creativity of the methods used to explore it will, not only be interesting,

but insightful as well.

Overall, we are interested in necessary and su¢ cient conditions for tolerance to be exhib-

ited in (4.1). This section covers several results about tolerance that were initially observed,

and which are mostly for speci�c cases. Some of these results, however, are used in subse-

quent sections that show more general results. Recall the following assumptions:

(A1) (0; 0) is a stable �xed point of (4.1), the eigenvalues of which are real and negative.

(eliminates spirals and centers)

(A2) �(t) and  (t) are nonnegative for all t � 0 and both (x0; y0) and (~x0; ~y0) lie in the

basin of attraction for (0; 0) in the �rst quadrant.

The next proposition is speci�c to general 1-dimensional ODE systems and shows that

tolerance cannot be exhibited for any < (x0; y0); s > in a 1D system.

Proposition 6. Assume (A1) and (A2) for a 1-dimensional system _x = f(x), x 2 R: 0 is a

locally stable �xed point of _x = f(x) and x0 and ~x0 lie in the basin of attraction for 0 on the

real line. Assume also that f is locally Lipschitz on [0;1). Then, _x = f(x) cannot exhibit

tolerance.
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Proof. Let �(t); t � 0; be the solution to the initial value problem

_x = f(x)

�(0) = x0 > 0:

Let  (t); t � 0; be the solution to the initial value problem

_x = f(x)

 (0) = ~x0 � �(s) + x0 for some 0 � s <1:

Since x0 and ~x0 are in the basin of attraction of 0, then both �(t) and  (t)! 0monotonically

for all t � 0. Since �(t) ! 0 monotonically for all t � 0, �(T ) < �(t) for every T > t.

Further, since ~x0 > x0 by de�nition and  (t) ! 0 monotonically for all t � 0, there exists

t� > 0 such that  (t�) = �(0) = x0 and  (t) > �(t) for all t � t�. Hence, for all � > 0; �(�) =

 (t� + �). Since t� + � > � and �(t)! 0 monotonically, �(t� + �) < �(�) =  (t� + �). This,

along with the result that  (t) > �(t) for all t � t�, implies  (t) > �(t) for all t 2 [0;1).

Therefore, tolerance cannot be exhibited in _x = f(x) where x 2 R. Instead _x = f(x) exhibits

potentiation for every < x0; s >.

The following proposition expands the results of Proposition 6 for solutions �(t) and  (t)

of 2D systems which converge monotonically in the 1st component to (0; 0) and which are

subsets of the same solution curve. Figure 24 illustrates this situation. This result will be

used later in Section 4.6.1.

Proposition 7. Assume (A1) and (A2). Assume �1(t) and  1(t) ! 0 monotonically for

all t � 0. Given < (x0; y0); s >, if there exists t̂ > 0 such that �(�t̂) = �(s) + (x0; 0) �

 (0) � (~x0; ~y0), then (~x0; ~y0) does not produce tolerance in (4.1).

Proof. For a given < (x0; y0); s >, let t̂ > 0 such that �(�t̂) =  (0) � (~x0; ~y0). This

implies that �(t) and  (t) are both subsets of the same larger solution curve of the vector

�eld de�ned by (4.1). Therefore, assuming �1(t) and  1(t) ! 0 monotonically for all t � 0

and knowing, by de�nition, that  1(0) > �1(0), the same arguments made in Proposition 6

can be made for �1(t) and  1(t), resulting in the fact that  1(t) > �1(t) for all t 2 [0;1).
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Figure 24: Illustration of the case when �(t) and  (t) converge monotonically in the 1st component
and lie on the same solution curve. �(t) (black) and  (t) (orange) are actually separate trajectories being
compared even though they belong to the same solution curve �(t)[ (t). Note that �1(0) <  1(0) and that
at some time point � > 0,  1(�) = �1(0). Also, note that both �(t) and  (t) are monotonically decreasing
in the x-direction.

Hence, given < (x0; y0); s >, if �1(t) and  1(t) ! 0 monotonically and there exists t̂ > 0

such that �(�t̂) =  (0) � (~x0; ~y0), then (~x0; ~y0) does not produce tolerance in (4.1).

The next proposition is a formal statement describing the "rescue" tolerance scenario

presented in Chapter 2. A non-preconditioned trajectory (i.e. �(t)) does not decay toward

(0; 0) but instead �ows toward a higher �xed point, yet the preconditioned trajectory (i.e.

 (t)) decays to (0; 0). Hence, there exists a compare time, � > 0, where tolerance occurs.

(See Figs. 6a and 6b.) In other words, even though (x0; y0) is not in the basin of attraction

for (0; 0), it is possible that the bumped point, (~x0; ~y0), is. The proof of proposition 8 can

be generalized to n-dimensional systems, since it only examines the one component of an

ODE system (e.g. the x-component in our current setup.)

Proposition 8 (Su¢ ciency). Assume (A1) and that � and  are nonnegative for all t � 0.

If �1(t) ! p > 0 as t ! 1 (i.e. (x0; y0) is not in the basin of attraction for (0; 0)), yet

 1(t)! 0 as t!1, then (4.1) exhibits tolerance for < (x0; y0); s >.

Proof. Since  1(t)! 0 as t!1,  1(t) is continuous, and p > 0, there exists, by continuity,

a � > 0 such that  1(�) < p. Thus,  1(t) < �1(t) for all t � � .
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Proposition 9 below addresses a very speci�c case when the initial condition, (x0; y0), of

the original trajectory, �(t), begins on an invariant x-axis. It is shown that such a case is

equivalent to the case of a 1-dimensional ODE system, addressed above in Proposition 6.

Proposition 9. Assume (A1) and (A2). If (x0; y0) = (x0; 0), (i.e. (x0; y0) is on the x-axis

away from (0; 0)) and g(x; 0) = 0 in (4.1) for all x > 0. (i.e. the x-axis is invariant), then

(4.1) cannot exhibit tolerance for < (x0; y0); s >, s � 0.

Proof. This statement corresponds with Proposition 6 which states that tolerance cannot

occur in a 1-D ODE. Let (x0; y0) = (x0; 0). Since (x0; y0) is on the x-axis (away from (0; 0))

and g(x; 0) = 0 in (4.1) for all x > 0, the solution �(t) = f(x0; 0) � t, jt � 0g will remain on

the x-axis for all t � 0 as it approaches (0; 0) as t ! 1. Similarly,  (t) will also remain

on the x-axis for all t � 0. Hence, the problem reduces to the 1-D case and thus, tolerance

cannot be exhibited for any < (x0; 0); s > when the x-axis is invariant.

Therefore, we list another assumption:

(A3) If (x0; y0) � (x0; 0), assume that g(x; 0) 6= 0 for all (x; 0), x > 0.

The next two propositions highlight speci�c conditions that are su¢ cient for tolerance

to exist. The �rst of these propositions is for the case when the original trajectory, �(t),

is assumed to have its initial condition, (~x0; ~y0), on the x-axis. Assumption (A3) above is

assumed for this proposition, so that �(t) does not remain on the x-axis for all t > 0. These

assumptions, along with assumptions (A1) and (A2) given on page 120, imply that, in this

case, the graph of � forms a closed region, S, with the x-axis. S is de�ned to not include

the actual graph of �. See the left panel of Figure 25.

Proposition 10 below considers this case, when the initial condition, (~x0; ~y0), of the

original trajectory,  (t), lies in the region, S. This case is possible given the way the

(~x0; ~y0)-curve is de�ned, if graph of � is of a certain shape. (See, for example, the left panel

of Figure 25.) If (~x0; ~y0) meets this condition in this special case, then (~x0; ~y0) will produce

tolerance in (4.1) with respect to < (x0; 0); s >.

Proposition 10. Let (x0; y0) � (x0; 0) and assume (A1), (A2), and (A3). De�ne (~x0; ~y0) �

�(s) + (x0; 0), for some s > 0 and de�ne the region, S, as the bounded set bounded by the
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Figure 25: Figure illustrating Proposition 10. Left Panel: An example original trajectory, �(t), with
intial condition, (x0; 0), shown along with the (~x0; ~y0)-curve which intersects the region, S, shown in light
blue. An example of a competing trajectory,  (t), with initial condition(~x0; ~y0) 2 S, is shown in red. Also,
note that the maximum value in the x-direction for �(t) is marked with a vertical blue line and denoted,
M � max

t�0 �1(t). Right Panel: The time courses of both �1(t) (black) and  1(t) (red). M � max
t�0 �1(t) is

labeled with a horizontal blue line, showing that  1(t) is bounded above by M . The time point, � , marks
the time where �1(t) =M , showing that at this time,  1(t) < M and hence, less than �1(t).

x-axis and the graph of �, but not including the graph of �. S is bounded since, (1) �(t) � 0,

for all t � 0, (2) �(t) ! (0; 0) as t ! 1, and (3) (x0; y0) � (x0; 0). If (~x0; ~y0) 2 S, then

(4.1) will exhibit tolerance for < (x0; 0); s >. (An example of a possible region, S, is shown

as the light blue area in the left panel Figure 25.)

Proof. Let (~x0; ~y0) 2 S. From assumption (A2), �(t) and  (t) are nonnegative for all t � 0.

Then, since trajectories cannot cross because of uniqueness of solutions,  (t) = f(~x0; ~y0)�tjt �

0g is contained in the bounded set S. Let M = max
t�0f�1(t)g which exists because �1(0) = x0,

�1(t) ! 0 as t ! 1 and � is continuous. Then, because  (t) is contained in S and �(t)

cannot intersect with  (t),  1(t) < M for all t � 0, i.e.  1(t) is bounded above byM . Thus,

if we let � > 0 be the time when �1(�) = M then �1(�) >  1(�). Hence, for every s such

that (~x0; ~y0) 2 S, (4.1) exhibits tolerance for < (x0; y0); s >.

The right panel of Figure 25 shows the time courses of both �1(t) and  1(t). This

illustrates the following: Since the solution  1(t) is bounded above by the maximum value,

M , of �1(t), occurring at time, � , then the value of  1(t) at � will be less thanM and hence,
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less than �1(t). Thus, at � ,  1(�) < �1(�). Notice that there is a value t
� < � (not labeled)

where �1(t
�) =  1(t

�) and for which  1(t) < �1(t) for all t > t�. This t� value is the time

where �1(t
�) (the black curve) intersects  1(t

�) (the red curve) in the right panel of Figure

25.

The second proposition is similar to Proposition 10, but now (~x0; ~y0) is actually a point

on the graph of �, other than (x0; y0) itself. In the left panel of Figure 25, an intersection

such as this can be seen. Since the (~x0; ~y0)-curve is not a solution curve, this intersection

does not violate any uniqueness properties of an ODE system that has a locally Lipschitz

right hand side, such as (4.1). First, a few notational conventions are made.

Formally, de�ne the (~x0; ~y0)-curve as the set

P = f(~x0; ~y0)j(~x0; ~y0) = �(s) + (x0; 0); s � 0g ,

and note that the graph of � is the set of points

graph(�) = f(x; y)j(x0; y0) � t; t � 0g .

If (P \ graph(�)) 6= ;, this implies that the solution �(t) intersects the (~x0; ~y0)-curve at some

time, � . Now, for the proposition:

Proposition 11. Assume (A1), (A2), and (A3). Let

 (0) = (~x0; ~y0) 2 P \ graph(�)n(x0; y0).

Then, (~x0; ~y0) will produce tolerance in (4.1) with respect to < (x0; y0); s >.

Proof. Assume (A1), (A2), and (A3) and that P \ graph(�)n(x0; y0) 6= ;. Let  (0) =

(~x0; ~y0) 2 P \ graph(�)n(x0; y0). This implies that

 (0) = (~x0; ~y0) = �(s) + (x0; 0)

= �(�),

for some s, � > 0, by de�nition of (~x0; ~y0) and the fact that (~x0; ~y0) 2 P \graph(�)n(x0; y0) 6=

;. Let M = max
t�0f�1(t)g which exists because �1(0) = x0, �1(t) ! 0 as t ! 1 and � is
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continuous. Then, there exists tM such that �1(tM) = M and �1(t) < M for all t > tM .

Thus,

�1(� + tM) < �1(tM)

and

�1(� + tM) =  1(tM)

Hence,  1(tM) < �1(tM).

In conclusion, (4.1) exhibits tolerance for < (x0; y0); s > at the compare time, tM .

Now we present a proposition that gives a condition which can be checked when (x0; y0) =

(x0; 0) and _x > 0 at (x0; y0), to determine if the (~x0; ~y0)-curve and �(t) intersect other than

at, possibly, (x0; y0). First, we give some notation. Let

< xf ; xg >=< f(x0; y0); g(x0; y0) >

be the vector at (x0; y0) de�ned by the vector �eld (4.1). For (0; 0) (a stable �xed point of

(4.1), denote the slow/weak eigenvector of (0; 0) as v =< v1; v2 >. Recall the formal set

de�nitions for the (~x0; ~y0)-curve and the graph of �, given, respectively, by the following:

P = f(~x0; ~y0)j(~x0; ~y0) = �(s) + (x0; 0); s � 0g , and

graph(�) = f(x; y)j(x0; y0) � t; t � 0g .

Proposition 12. Assume (A1), (A2), (A3) and that �(0) = (x0; y0) = (x0; 0). Also, assume

that _x > 0 at (x0; y0). Using the notation given above, if

xfv2 > v1xg (4.2)

then there exists an s > 0 such that (~x0; ~y0) � (x0; 0) + �(s) will produce tolerance for (4.1)

with respect to < (x0; y0); s >.

126



Proof. Assume (A1), (A2), (A3) and that �(0) = (x0; y0) = (x0; 0). Also, assume that

_x > 0 at (x0; y0). Arrange for the slow/weak eigenvector, v, to be such that: v1 � 0.

Then, by (A1) given on page 120, v2 > 0. Also, from (A2), �(t) is nonnegative for all

t � 0 and �(t) ! (0; 0) as t ! 1. Thus, �(t) approaches (0; 0) along the slow/weak

eigenvector, v. Furthermore, near zero, �(t) has a slope approaching < v1; v2 >. We know

that xf > 0 because _x > 0 at (x0; y0), and since �(t) is nonnegative for all t � 0, we know

that xg > 0 at (x0; y0). Since P is simply a translation of the graph of � in the x-direction

by an amount of x0, if the slope of �(t) at/near (0; 0) is steeper (greater) than the slope of

�(t) at (x0; y0), then P will intersect the graph of �(t) in at least one point other than at

(x0; y0). In other words, if v2v1 >
xg
xf
or equivalently, xfv2 > v1xg, there will exist (~x0; ~y0) such

that (~x0; ~y0) 2 P \ graph(�)n(x0; y0). This relationship between < v1; v2 > and < xf ; xg >

is Condition 4.2 stated above. Proposition 11 can then be used to conclude that there exists

an s > 0 such that (~x0; ~y0) � (x0; 0) + �(s) will produce tolerance for (4.1) with respect to

< (x0; y0); s >.

This concludes the First Observations section and we now consider general two dimen-

sional linear ODE systems.
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4.5 TOLERANCE IN GENERAL 2D LINEAR ODE SYSTEMS

4.5.1 Setup

In this section, we speci�cally consider 2D linear ODE systems and arrive at necessary and

su¢ cient conditions for the existence of tolerance. Consider the linear system

_x = Ax, (4.3)

where A 2 M2x2, x 2 R2+ = [0;1) � [0;1). Throughout this section, we will assume as

before that:

(A1) (0; 0) is a stable �xed point of (4.3), the eigenvalues of which are real and negative.

(eliminates spirals and centers)

(A2) �(t) and  (t) are nonnegative for all t � 0 and both (x0; y0) and (~x0; ~y0) lie in the

basin of attraction for (0; 0) in the �rst quadrant.

Let �1 and �2 be the real, negative eigenvalues of A. To arrive at necessary and su¢ cient

conditions for the existence of tolerance, there are three cases that must be considered

regarding the eigenvalues and eigenvectors of A. The �rst two cases are when the two

eigenvalues are identical: �1 = �2 = � < 0. The second case considers distinct eigenvalues:

�1 6= �2. Within these cases some have subcases as well. Recall that by de�nition ~x0 � x0,

a condition that will be used in the cases below. Now we address the �rst case:

4.5.2 Case 1:

�1 = �2 = � < 0 and � has two linearly independent eigenvectors

For this case, � is an eigenvalue of A with multiplicity two, for which two linearly

independent eigenvectors can be found. Let v and w be linear independent eigenvectors of �.

Then, any initial condition can be uniquely written as a linear combination of v and w. For

the initial condition (x0; y0), we may write (x0; y0) = c1v + c2w = (c1v1 + c2w1; c1v2 + c2w2),

with c1; c2 2 R. Thus, the solution, �(t), to the IVP _x = Ax, �(0) = (x0; y0) is

�(t) = c1ve
�t + c2we

�t = (c1v + c2w)e
�t = (c1v1 + c2w1; c1v2 + c2w2)e

�t = (x0; y0)e
�t (4.4)
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Similarly, consider the initial condition (~x0; ~y0) de�ned to be (~x0; ~y0) � (x0; 0) + �(s) for

some s � 0. We may also uniquely write (~x0; ~y0) = d1v + d2w = (d1v1 + d2w1; d1v2 + d2w2),

with d1; d2 2 R. The solution  (t) to the IVP _x = Ax,  (0) = (~x0; ~y0) is

 (t) = d1ve
�t+ d2we

�t = (d1v+ d2w)e
�t = (d1v1+ d2w1; d1v2+ d2w2)e

�t = (~x0; ~y0)e
�t. (4.5)

Furthermore, since we know that ~x0 � x0, we have that

d1v1 + d2w1 � c1v1 + c2w1. (4.6)

Consider the di¤erence between �1(t) and  1(t). Using equations (4.4) and (4.5),we

have the following:

�1(t)�  1(t) = c1v1e
�t + c2w1e

�t � (d1v1e�t + d2w1e
�t)

= (c1v1 + c2w1 � d1v1 � d2w1)e
�t

� 0,

by (4.6) and the fact that e�t > 0 for all t � 0. Thus,  1(t) � �1(t) for all t � 0, and the

following has been shown:

Theorem 13. Assume (A1), (A2), and that �1 = �2 = � < 0. Given < (x0; y0); s > and

hence,(~x0; ~y0), if � has two linearly independent eigenvectors, then _x = Ax cannot exhibit

tolerance for < (x0; y0); s >. (i.e.  1(t) � �1(t) for all t � 0.)
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4.5.3 Case 2:

�1 = �2 = � < 0 and � has only one eigenvector

In this case, � is an eigenvalue of A with multiplicity two, for which only one eigenvector

(up to a scalar multiple) can be found. Let v be an eigenvector of �. We wish to �nd the

fundamental solution set. One solution to (4.3) is x(1)(t) = ve�t. In order to obtain a second

solution to form a generalized solution, it is necessary to �nd a generalized eigenvector that

is linearly independent of v. Let �v be the generalized eigenvector with respect to v, which

is found by solving the following equation:

(A� �I)�v = v,

where I is the 2x2 identity matrix. Then, a second solution to (4.3) is x(2)(t) = vte�t+�ve�t.

The intial condition, (x0; y0), can be uniquely written as a linear combination of v and �v:

(x0; y0) = c1v + c2�v = (c1v1 + c2�v1; c1v2 + c2�v2),with c1; c2 2 R.

Then, the solution �(t) to the IVP _x = Ax, �(0) = (x0; y0) is

�(t) = c1ve
�t + c2(vte

�t + �ve�t)

= (c1v1e
�t + c2(v1te

�t + �v1e
�t); c1v2e

�t + c2(v2te
�t + �v2e

�t)). (4.7)

Similiary, the initial condition, (~x0; ~y0), can be uniquely written as a linear combination of

v and �v:

(~x0; ~y0) = d1v + d2�v = (d1v1 + d2�v1; d1v2 + d2�v2),with d1; d2 2 R,

and the solution  (t) to the IVP _x = Ax,  (0) = (~x0; ~y0) is

 (t) = d1ve
�t + d2(vte

�t + �ve�t)

= (d1v1e
�t + d2(v1te

�t + �v1e
�t); d1v2e

�t + d2(v2te
�t + �v2e

�t)). (4.8)

Furthermore, since we know that ~x0 � x0, we have that

d1v1 + d2�v1 � c1v1 + c2�v1. (4.9)
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In the following calculations, we will be interested in the �rst components of v and �v.

For Case 2, there are two subcases that need to be considered. The �rst subcase deals with

the possibility that the �rst component of v is zero, implying that the �rst component of �v is

nonzero. Otherwise, v and �v would not be linearly independent. Since is �v nonzero, it can

then be arranged for its �rst component to be 1. The second subcase is for when the �rst

component of v is nonzero. Then, designating the �rst component of �v as the free parameter,

we can choose it to be zero and arrange for �v2 > 0. Thus, we consider two subcases: (a)

v1 = 0 and �v1 = 1 (b) v1 = 1 and �v1 = 0.

4.5.3.1 Case 2a:

v1 = 0 and �v1 = 1

For this �rst subcase of Case 2, (4.9) becomes

d2 � c2. (4.10)

Consider the di¤erence between �1(t) and  1(t). Using equations (4.7) and (4.8) and that

in this case v1 = 0 and �v1 = 1, we have the following:

�1(t)�  1(t) = c1v1e
�t + c2(v1te

�t + �v1e
�t)� (d1v1e�t + d2(v1te

�t + �v1e
�t))

= c2e
�t � d2e

�t

= (c2 � d2)e
�t

� 0,

by (4.10) and the fact that e�t > 0 for all t � 0. Thus,  1(t) � �1(t) for all t � 0. Therefore,

the following has been shown:

Theorem 14. Let < (x0; y0); s > and, hence, (~x0; ~y0), be given. Assume (A1), (A2), that

�1 = �2 = � < 0 and that � has only one eigenvector. Let v be an eigenvector of � and

let �v be the generalized eigenvector, linearly independent of v, found by solving the equation

(A � �I)�v = v, where I is the 2x2 identity matrix . If v1 = 0 and �v1 = 1, then _x = Ax

cannot exhibit tolerance for < (x0; y0); s >. (i.e.  1(t) � �1(t) for all t � 0.)
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4.5.3.2 Case 2b:

v1 = 1 and �v1 = 0

In this second subcase of Case 2, (4.9) becomes

d1 � c1. (4.11)

Consider the di¤erence between �1(t) and  1(t). Using equations (4.7) and (4.8) and that

in this case v1 = 1 and �v1 = 0, we have the following:

�1(t)�  1(t) = c1v1e
�t + c2(v1te

�t + �v1e
�t)� (d1v1e�t + d2(v1te

�t + �v1e
�t))

= c1e
�t + c2te

�t � (d1e�t + d2te
�t)

= (c1 � d1)e
�t + (c2 � d2)te

�t

= (c1 � d1 + (c2 � d2)t)e
�t. (4.12)

Since (4.11) does not give a relationship between d2 and c2, two cases will have to be con-

sidered: (c2 � d2) � 0 and (c2 � d2) > 0.

Case 2b.i: (c2 � d2) � 0

In this case, we then have that (c2 � d2)t � 0 for all t � 0. Also, (4.11) implies that

(c1 � d1) � 0. Thus, (c1 � d1 + (c2 � d2)t) � 0 for all t � 0. Since e�t > 0 for all t � 0, we

have that (c1 � d1 + (c2 � d2)t)e
�t � 0 for all t � 0, implying from (4.12) that  1(t) � �1(t)

for all t � 0. Therefore, the following has been shown:

Theorem 15. Let < (x0; y0); s > and, hence, (~x0; ~y0), be given. Assume (A1), (A2), that

�1 = �2 = � < 0 and that � has only one eigenvector. Let v be an eigenvector of � and

let �v be the generalized eigenvector, linearly independent of v, found by solving the equation

(A� �I)�v = v, where I is the 2x2 identity matrix . If v1 = 1, �v = 0 and (c2� d2) � 0, then

_x = Ax cannot exhibit tolerance for < (x0; y0); s >. (i.e.  1(t) � �1(t) for all t � 0.)
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Case 2b.ii: (c2 � d2) > 0

In this case, since v1 = 1 and �v1 = 0, we have from equations (4.7) and (4.8) that the

�rst components of solutions �(t) and  (t) are, repectively,

�1(t) = c1v1e
�t + c2(v1te

�t + �v1e
�t) = c1e

�t + c2te
�t = (c1 + c2t)e

�t (4.13)

 1(t) = (d1v1e
�t + d2(v1te

�t + �v1e
�t)) = d1e

�t + d2te
�t (4.14)

We are assuming in this subcase that (c2 � d2) > 0, and we know that te�t > 0 for t > 0.

Thus, we have

(c2 � d2)te
�t > 0, (4.15)

for t > 0. Recall that at t = 0,  1(0) > �1(0), by de�nition. Continuing the string of

equations from (4.12) and factoring out the quantity (c2 � d2)t, we have:

�1(t)�  1(t) = (c1 � d1 + (c2 � d2)t)e
�t

=

�
c1 � d1
(c2 � d2)t

+ 1

�
(c2 � d2)te

�t. (4.16)

We would like to know when, if ever, (4.16) is greater than zero, which would then imply

that  1(t) < �1(t). Thus, because of (4.15), we are actually interested in when

�
c1 � d1
(c2 � d2)t

+ 1

�
> 0. (4.17)

The inequality (4.17) is true if and only if

(c1 � d1) + (c2 � d2)t > 0

, (c2 � d2)t > (d1 � c1)

, t >
d1 � c1
c2 � d2

.

(Note: d1�c1
c2�d2 � 0, by (4.11) and the assumption for this case that (c2 � d2) > 0.
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Furthermore, from (4.11), we know that (c1 � d1) � 0. This, along with the fact that

(c2 � d2)t > 0 for t > 0, implies that

c1 � d1
(c2 � d2)t

� 0

)
�

c1 � d1
(c2 � d2)t

+ 1

�
� 1.

Hence, when t > d1�c1
c2�d2 ,

0 <

�
c1 � d1
(c2 � d2)t

+ 1

�
� 1

) 0 <

�
c1 � d1
(c2 � d2)t

+ 1

�
(c2 � d2)te

�t � (c2 � d2)te
�t

) 0 < �1(t)�  1(t) � (c2 � d2)te
�t.

Thus, the following theorem has been proven:

Theorem 16. Let < (x0; y0); s > and, hence, (~x0; ~y0), be given. Assume (A1), (A2), that

�1 = �2 = � < 0 and that � has only one eigenvector. Let v be an eigenvector of � and

let �v be the generalized eigenvector, linearly independent of v, found by solving the equation

(A � �I)�v = v, where I is the 2x2 identity matrix . If v1 = 1, �v = 0 and (c2 � d2) > 0,

then there exists T > 0 such that the 2D linear system _x = Ax will exhibit tolerance for

< (x0; y0); s > for all t > T . (i.e.  1(t) < �1(t) for all t > T ). Furthermore,

T =
d1 � c1
c2 � d2

,

and the di¤erence between �1(t) and  1(t) at t > T will be less than or equal to (c2�d2)te�t.

Therefore, max
t>T

�
(c2 � d2)te

�t
	
=d2�c2

�e
, which occurs at t = �1

�
, is the greatest degree of

tolerance that is possible.
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4.5.4 Case 3:

�1 6= �2

For this case, where �1 and �2 are distinct, negative eigenvalues of A, assume without loss

of generality that �2 < �1 < 0. Let v be an eigenvector of �1, and let w be an eigenvector of

�2. Since �1 and �2 are distinct, v and w are linearly independent eigenvectors. Then, any

initial condition can be uniquely written as a linear combination of the eigenvectors v and w.

For the initial condition (x0; y0) we may write (x0; y0) = c1v+c2w = (c1v1+c2w1; c1v2+c2w2),

with c1; c2 2 R. Then, the solution, �(t), to the IVP _x = Ax, �(0) = (x0; y0) is

�(t) = c1ve
�1t + c2we

�2t = (c1v1e
�1t + c2w1e

�2t; c1v2e
�1t + c2w2e

�2t) (4.18)

Similarly, consider the initial condition (~x0; ~y0) de�ned to be (~x0; ~y0) � (x0; 0) + �(s) for

some s � 0. We may also uniquely write (~x0; ~y0) = d1v + d2w = (d1v1 + d2w1; d1v2 + d2w2),

with d1; d2 2 R. The solution  (t) to the IVP _x = Ax,  (0) = (~x0; ~y0) is

 (t) = d1ve
�1t + d2we

�2t = (d1v1e
�1t + d2w1e

�2t; d1v2e
�1t + d2w2e

�2t): (4.19)

Then, since we know that ~x0 � x0, we have that

d1v1 + d2w1 � c1v1 + c2w1. (4.20)

As was necessary in Case 1, we consider similar subcases for Case 3 (a) v1 = 0 and w1 = 1

(b) v1 = 1 and w1 = 0 and (c) v1 = w1 = 1.
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4.5.4.1 Case 3a:

v1 = 0 and w1 = 1

For this case, (4.20) becomes

d2 � c2 (4.21)

Consider the di¤erence between �1(t) and  1(t). Using equations (4.18) and (4.19) and that

in this case v1 = 0 and w1 = 1, we have

�1(t)�  1(t) = c2e
�2t � d2e

�2t

= (c2 � d2)e
�2t.

By (4.21), we have that (c2 � d2) � 0. Thus, because e�2t > 0 for all t � 0, we have that

�1(t)�  1(t) � 0 for all t � 0. Therefore, the following has been shown:

Theorem 17. Assume (A1), (A2), and that �2 < �1 < 0. Given < (x0; y0); s > and, hence,

(~x0; ~y0), if v1 = 0 and w1 = 1 for eigenvectors v and w of �1 and �2, respectively, then

_x = Ax cannot exhibit tolerance for < (x0; y0); s >. (i.e.  1(t) � �1(t) for all t � 0.)

4.5.4.2 Case 3b:

v1 = 1 and w1 = 0

For this second subcase of Case 2, (4.20) becomes

d1 � c1 (4.22)

Using equations (4.18) and (4.19) and that v1 = 1 and w1 = 0, we have

�1(t)�  1(t) = c1e
�1t � d1e

�1t

= (c1 � d1)e
�1t.

By (4.22), we have that (c1 � d1) � 0 and we know that e�1t > 0 for all t � 0. Thus, we

conclude �1(t)�  1(t) � 0 for all t � 0, and the following has been shown:

Theorem 18. Assume (A1), (A2), and that �2 < �1 < 0. Given < (x0; y0); s > and, hence,

(~x0; ~y0), if v1 = 1 and w1 = 0 for eigenvectors v and w of �1 and �2, respectively, then

_x = Ax cannot exhibit tolerance for < (x0; y0); s >. (i.e.  1(t) � �1(t) for all t � 0.)
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4.5.4.3 Case 3c:

v1 = w1 = 1

We �rst �nd conditions such that  1(t) � �1(t) for all t � 0 (i.e. when (4.3) does not

exhibit tolerance). At t = 0, this is clearly true, because ~x0 � x0 directly implies that

 1(0) � �1(0). In this subcase we have that v1 = w1 = 1. Thus, we may rewrite 4.20 as

d1 + d2 � c1 + c2 (4.23)

As before, consider the di¤erence between �1(t) and  1(t). Using equations (4.18) and

(4.19), the fact that v1 = w1 = 1, and (4.23), we have

�1(t)�  1(t) = c1e
�1t + c2e

�2t � d1e
�1t � d2e

�2t

= (c1 � d1)e
�1t + (c2 � d2)e

�2t

� (c1 � d1)e
�1t + (d1 � c1)e

�2t; by (4:23)

= (c1 � d1)e
�1t � (c1 � d1)e

�2t

= (c1 � d1)(e
�1t � e�2t):

Since �2 < �1 < 0, then e�1t � e�2t > 0. If (c1 � d1) � 0, then �1(t) �  1(t) � 0, which

implies that  1(t) � �1(t) for all t � 0. Similarly, (4.23) can be used to show

d2 � c2 � c1 � d1 (4.24)

So, we use (4.24) in the 3rd line of the following inequality:

�1(t)�  1(t) = c1e
�1t + c2e

�2t � d1e
�1t � d2e

�2t; v1 = w1 = 1

= (c1 � d1)e
�1t + (c2 � d2)e

�2t

� (d2 � c2)e
�1t + (c2 � d2)e

�2t; by (4:24)

= (d2 � c2)e
�1t � (d2 � c2)e

�2t

= (d2 � c2)(e
�1t � e�2t):

Since �2 < �1 < 0, then e�1t � e�2t > 0. If (d2 � c2) � 0, then �1(t) �  1(t) � 0, which

implies that  1(t) � �1(t) for all t � 0. With this, we have proven the following theorem:
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Theorem 19. Assume (A1), (A2), and that �2 < �1 < 0. Also, assume that v1 = w1 = 1,

for eigenvectors v and w of �1 and �2, respectively. Given < (x0; y0); s > and, hence,

(~x0; ~y0), if c1 � d1 OR if c2 � d2, then _x = Ax cannot exhibit tolerance for < (x0; y0); s >.

(i.e.  1(t) � �1(t) for all t � 0.) Thus, it is necessary that c1 > d1 AND c2 < d2 for

tolerance to be exhibited.

Now we show that for Case 3c the necessary conditions c1 > d1 AND c2 < d2 from

Theorem 19 are also su¢ cient for tolerance to be exhibited in the 2D linear system _x = Ax.

Assume that c1 > d1 AND c2 < d2. Using equations (4.18) and (4.19) and the fact that

v1 = w1 = 1,

�1(t)�  1(t) = c1e
�1t + c2e

�2t � d1e
�1t � d2e

�2t

= (c1 � d1)e
�1t + (c2 � d2)e

�2t.

Factoring out the quantity (c1 � d1)e
�2t from the right hand side gives:

�1(t)�  1(t) =

�
e(�1��2)t +

c2 � d2
c1 � d1

�
e�2t(c1 � d1):

We know that (c1 � d1) > 0 and (c2 � d2) < 0, since we assumed c1 > d1 and c2 < d2. Thus,

e�2t(c1 � d1) > 0

and

(c2 � d2)

(c1 � d1)
< 0:

Therefore,
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�1(t)�  1(t) =

�
e(�1��2)t +

(c2 � d2)

(c1 � d1)

�
e�2t(c1 � d1)

> 0

,
�
e(�1��2)t +

(c2 � d2)

(c1 � d1)

�
> 0

, e(�1��2)t >
(d2 � c2)

(c1 � d1)

, ln e(�1��2)t > ln
(d2 � c2)

(c1 � d1)

, t >
ln (d2�c2)

(c1�d1)

(�1 � �2)

Thus, we have proven the following theorem:

Theorem 20. Assume (A1), (A2), and that �2 < �1 < 0. Also, assume that v1 = w1 = 1

for eigenvectors v and w of �1 and �2, respectively. Given < (x0; y0); s > and, hence,

(~x0; ~y0), if c1 > d1 AND c2 < d2 then there exists T > 0 such that the 2D linear system

_x = Ax will exhibit tolerance for < (x0; y0); s > for all t > T . (i.e.  1(t) < �1(t) for all

t > T ). Furthermore,

T =
ln d2�c2

c1�d1
�1 � �2

.

4.5.5 Eigenvector Con�gurations and Regions of Tolerance

Now we consider the eigenvector con�gurations of 2D linear systems for the cases that

accommodate solutions that begin and remain in the �rst quadrant and that converge to

(0; 0) as t ! 1. Of the cases discussed above, only cases 2b.ii and 3c yield the possibility

of tolerance. For the relevant eigenvector con�gurations of these cases, we analyze the

�rst quadrant to determine where the nonnegativity requirement is satis�ed for solutions

originating there. In each of the eigenvector con�gurations shown in Figure 26, there are

several regions of the �rst quadrant that will be considered. Once the pertinent regions

have been identi�ed, we then determine where tolerance will and will not occur.
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Remark 4. In the following analysis to determine relevant regions, we do not consider

(x0; y0) on the y-axis, since this would imply that x0 = 0, yet it was assumed that x0 > 0.

(see page 112)

Figure 26: Regions in the �rst quadrant for all relevant eigenvector con�gurations

Figure 27 shows a pictoral summary of the results via example trajectories originating

in the di¤erent regions of the various eigenvector con�gurations. These results are made

explicit in the following analysis. In all the cases, since the initial condition (x0; y0) under

consideration is in the �rst quadrant, it is clear that the solution of the IVP, �(t), at t = 0

is �(0) > 0, thus we consider the solutions for all t > 0.

4.5.5.1 Eigenvector Con�guration (a): Eigenvector con�guration (a) of Figure 26a

illustrates the only possible eigenvector con�guration in Case 2b.ii for which there exist

solutions that begin and remain in the �rst quadrant. We �rst show where in the �rst

quadrant such solutions exist. Recall that in this case, the matrix A in (4.3) has one

eigenvalue, �, of multiplicity two, having only one independent eigenvector, v. A generalized
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Figure 27: Eigenvector con�gurations for 2D systems which accomodate solutions that begin and remain
in the �rst quadrant and converge to (0; 0) as t �!1.

eigenvector, �v, was found so as to construct a general solution, given an intial condition. For

initial conditions (x0; y0) = c1v + c2�v = (c1v1 + c2�v1; c1v2 + c2�v2) and (~x0; ~y0) = d1v + d2�v =

(d1v1 + d2�v1; d1v2 + d2�v2),with c1; c2; d1; d2 2 R, the �rst component of the solutions to the

inital value problems are given by equations (4.13) and (4.14), respectively. Furthermore,

in con�guration (a), v1 = 1, v2 > 0, �v1 = 0, and �v2 > 0. In addition, recall (4.11): d1 � c1.

Let (x0; y0) be in Region 1a of the �rst quadrant bounded by v and the y-axis, seen in

Figure 26a. We show that the �rst component of the solution, �(t), of the IVP with initial

condition (x0; y0) will remain positive for all t > 0. This will be su¢ cient since it would

guarantee that �2(t) > 0 for all t > 0, because �(t) cannot cross the v-eigenvector. Clearly,

at t = 0, �1(0) > 0. In Region 1a, for any (x0; y0) = c1v + c2�v, we have that c1 > 0 and

c2 > 0. Therefore,

c1 + c2t > 0, 8t > 0

) (c1 + c2t)e
�t > 0, 8t > 0

) �1(t) > 0, 8t > 0,

by equation (4.13), which de�nes �1(t).
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Now, consider (x0; y0) in Region 2a of eigenvector con�guration (a), shown in Figure 26a.

We show that the �rst component of the solution, �(t), of the IVP with this initial condition

will eventually be negative in the �rst component. This will be su¢ cient to con�rm that

the solution does not stay in the �rst quadrant. In this region, for any (x0; y0) = c1v + c2�v,

we have that c1 > 0 and c2 < 0. Therefore, since e�� > 0 for all t > 0,

�1(t) = (c1 + c2t)e
�t < 0, 8t > 0

, c1 + c2t < 0, 8t > 0

, c2t < �c1, 8t > 0

, t >
�c1
c2

Note that because c2 < 0, the inequality changes in the last line when division by c2 is made.

In addition �c1
c2

> 0, since c1 > 0 and c2 < 0. Therefore, �1(t) < 0 for all t >
�c1
c2
. In other

words, for eigenvector con�guration (a), solutions starting in Region 2a will eventually be

negative in the �rst component.

Thus, in eigenvector con�guration (a), seen in �gure 28, there is one region in which to

consider initial conditions to explore the existance of tolerance.

� REGION 1a: (x0; y0) in the �rst quadrant above v

The conclusion regarding tolerance for this case (Case 2b.ii) was given by Theorem 16,

which shows (along with Theorem 15) that the condition (c2 � d2) > 0 is necessary and

su¢ cient in this case for tolerance to be exhbited in (4.3). In the left panel of Figure 29 an

arbitrary point in Region 1a is shown in the context of eigenvector con�guration (a), with

lines drawn (portions dashed), showing the addition of scalar multiples of the eigenvector v

and the generalized eigenvector, �v, in the creation of the point (x0; y0). Although the gener-

alized eigenvector, �v, is used to write the intial conditions, there is only one eigendirection,

so trajectories can cross �v. Since in this case, �v = 0, the blue line along the y-axis represents

�v. The lines showing the creation of (x0; y0) are referred to as the c1-line and c2-line. They

divide the �rst quadrant into four di¤erent regions as shown in the right panel of Figure 29.

In these regions, there are relationships between the coe¢ cients c1and c2 and the coe¢ -

cients of other points in the �rst quadrant written as a linear combination of the eigenvectors,
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Figure 28: Eigenvector con�guration (a) with the �rst quadrant divided into three regions where initial
conditions yield solutions that begin and remain in the �rst quadrant.

Figure 29: Left Panel: Eigenvector con�guration (a) with an arbitrary initial condition (x0; y0) labeled
in Region 1a (x-axis) along with lines drawn (portions dashed), showing the additon of the two eigenvectors
in the creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (a) divided into
three regions by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 1a.
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namely, the coe¢ cients of the bumped initial condition, (~x0; ~y0) = d1v + d2�v. If (~x0; ~y0) 2

Ia, then using the c1-line and c2-line lines for reference, we see that d1 < c1 and d2 < c2 in

region I1a. Applying this reasoning to each region, we have by (4.11) and Theorems 15 and

16:

1. For (~x0; ~y0) 2 I1a, d1 < c1 and d2 < c2. Since d1 < c1, tolerance cannot be exhibited for

any (~x0; ~y0) 2 I1a, for (x0; y0) in Region 1a.

2. For (~x0; ~y0) 2 II1a, d1 < c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II1a, when (x0; y0) in Region 1a.

3. For (~x0; ~y0) 2 III1a, d1 > c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited

for (~x0; ~y0) 2 III1a, for (x0; y0) in Region 1a.

4. For (~x0; ~y0) 2 IV1a, d1 � c1 and d2 < c2. Since both d1 � c1 and d2 < c2, tolerance

will be exhibited for (~x0; ~y0) 2 IV1a, when (x0; y0) is in Region 1a.

Hence, for eigenvector con�guration (a), if (x0; y0) is in the �rst quadrant above the

eigenvector, v, then tolerance will be exhibited only when (~x0; ~y0) 2 IV1a, which is the green

area shown in the right panel of Figure 29. Note that, of course, (~x0; ~y0) 2 I1a contradicts

the de�nition of (~x0; ~y0), since in this region, ~x0 < x0, yet ~x0 is de�ned to be greater than

x0. This is also the case for (~x0; ~y0) 2 II1a; however, we are just considering the regions as

a whole and once the regions have been classi�ed, we determine which regions are relevant

with respect to where the (~x0; ~y0)-curve is. In the Examples section (4.5.6), Example 1 shows

an example of a trajectory, whose initial condition lies in Region 1a, and its corresponding

(~x0; ~y0)-curve, a portion of which lies in the region marked IV1a.

Panels (b)-(d) of Figure 26 depict the only possible eigenvector con�gurations for Case

3c, for which solutions exist that begin and remain in the �rst quadrant. For these con�g-

urations, there are two eigenvalues for the matrix, A, of (4.3), each having a corresponding

eigenvector. Thus, WLOG assume �2 < �1 < 0, with v and w the linear independent eigen-

vectors of �1 and �2, respectively. In this case (Case 3c) it has been arranged for v = [1 v2]T

and w = [1 w2]
T . (T � transpose) In other words, v1 = w1 = 1. Furthermore, for ini-

tial conditions (x0; y0) = c1v + c2w = (c1v1 + c2w1; c1v2 + c2w2) = (c1 + c2; c1v2 + c2w2) and

(~x0; ~y0) = d1v+d2w = (d1v1+d2w1; d1v2+d2w2) = (d1+d2; d1v2+d2w2),with c1; c2; d1; d2 2 R,
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the solutions to the inital value problems are given by equations (4.18) and (4.19), respec-

tively.

Remark 5. Note that x0 > 0, implies that c1 + c2 > 0 ) c1 > �c2 and that y0 > 0, implies

that c1v2 + c2w2 > 0) c1v2 > �c2w2.

Remark 6. Note that because �2 < �1 < 0 in this case, we have that (�1 � �2) > 0 and

consequently, that e(�1��2)t > 1 for all t > 0.

The above remarks will be used throughout the analysis of eigenvector con�gurations

(b)-(d) in determining relevant regions that satisfy the nonnegativity assumption (A2).

4.5.5.2 Eigenvector Con�guration (b): We �rst determine which of the regions shown

in Figure 26b are relevant with respect to solutions that remain in the �rst quadrant for all

t > 0. In eigenvector con�guration (b), we have that v2 > 0, w2 < 0, since it is assumed

that v1 = w1 = 1.

We group Regions 1b and 2b of Figure 26b, since the proofs are the same. Thus, consider

an arbitrary inital condition, (x0; y0), in Region 1b or Region 2b. In either region, c1 > 0

and c2 > 0. Because of the position of the eigenvectors in this con�guration, �1(t) > 0 for

all t > 0. Therefore, it must be shown that �2(t) > 0 for all t > 0. Since c1 > 0 and v2 > 0,

Remarks (5) and (6) give the following:

c1v2e
(�1��2)t > �c2w2 (4.25)

) c1v2e
�1t > �c2w2e�2t (4.26)

) c1v2e
�1t + c2w2e

�2t > 0 (4.27)

for all t > 0. This implies from equation (4.18) that �2(t) > 0 for all t > 0. In other words,

for eigenvector con�guration (b), solutions starting in Region 1b or Region 2b will remain

nonnegative for all t � 0.

Now consider an arbitrary intial condition in Region 3b shown in Figure 26b. It is

su¢ cient to show that �1(t) > 0 for all t > 0 since the nonnegativity of �2(t) is guaranteed
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Figure 30: Eigenvector con�guration (b) with the �rst quadrant divided into three regions where initial
conditions yield solutions that begin and remain in the �rst quadrant.

by the position of the eigenvectors v and w, through which the solution cannot cross. In

Region 3b, c1 > 0 and c2 < 0. Since c1 > 0, Remarks (5) and (6) give the following:

c1e
(�1��2)t > �c2

) c1e
�1t > �c2e�2t

) c1e
�1t + c2e

�2t > 0

for all t > 0, which implies from equation (4.18) that �1(t) > 0 for all t > 0.

Thus, for eigenvector con�guration (b), seen in �gure 30, there are three regions in which

to consider initial conditions:

� REGION 1b: (x0; y0) on the x-axis

� REGION 2b: (x0; y0) in the �rst quadrant below the v eigenvector and above the

x-axis

� REGION 3b: (x0; y0) in the �rst quadrant above the v eigenvector

REGION 1b: First, we look at the case when the initial condition is on the x-axis.

In the left panel of Figure 31, an arbitrary point on the x-axis is shown in the context of
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Figure 31: Left Panel: Eigenvector con�guration (b) with an arbitrary initial condition (x0; y0) labeled
in Region 1b (x-axis) along with lines drawn (portions dashed), showing the additon of the two eigenvectors
in the creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (b) divided into three
regions by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 1b.

eigenvector con�guration (b), with lines drawn (portions dashed), showing the addition of

scalar multiples of the two eigenvectors in the creation of the point (x0; y0). The right panel

of Figure 31 shows the three regions formed in the �rst quadrant by the c1-line and c2-line.

Using this and Theorems 19 and 20 we have:

1. For (~x0; ~y0) 2 I1b, d1 < c1 and d2 < c2. Since d2 < c2, tolerance cannot be exhibited for

any (~x0; ~y0) 2 I1a, when (x0; y0) in Region 1b.

2. For (~x0; ~y0) 2 II1b, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II1b, when (x0; y0) in Region 1b.

3. For (~x0; ~y0) 2 III1b, d1 > c1 and d2 > c2. Since d1 > c1, tolerance cannot be exhibited

for (~x0; ~y0) 2 III1b, when (x0; y0) in Region 1b.

Hence, for eigenvector con�guration (b), if (x0; y0) is on the x-axis, there are no regions

in the �rst quadrant where both d1 < c1 and d2 > c2 and, thus, for any (~x0; ~y0) there can be

no tolerance.

REGION 2b: Let (x0; y0) be in the �rst quadrant below the v eigenvector (but not
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Figure 32: Left Panel: Eigenvector con�guration (b) with an arbitrary initial condition (x0; y0) labeled
in Region 2b along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (b) divided into four regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 2b.

on the x-axis) in eigenvector con�guration (b). Figure 32 shows an arbitrary point in this

region, with lines drawn (portions dashed), showing the addition of the two eigenvectors in

the creation of the point (x0; y0). The right panel of Figure 32 shows the four regions formed

in the �rst quadrant by the c1-line and c2-line. Using this and Theorems 19 and 20 we have:

1. For (~x0; ~y0) 2 I2b, d1 < c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited for

any (~x0; ~y0) 2 I2b, when (x0; y0) is in Region 2b.

2. For (~x0; ~y0) 2 II2b, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II2b, when (x0; y0) is in Region 2b.

3. For (~x0; ~y0) 2 III2b, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited

for (~x0; ~y0) 2 III2b, when (x0; y0) is in Region 2b.

4. For (~x0; ~y0) 2 IV2b, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 IV2b, when (x0; y0) is in Region 2b.

Hence, for eigenvector con�guration (b), if (x0; y0) is in the �rst quadrant below the v

eigenvector (but not on the x-axis), then tolerance will be exhibited only when (~x0; ~y0) 2 IV2b,

which is the green area shown in Figure 32. In the Examples section (4.5.6), Example 2 shows

148



Figure 33: Left Panel: Eigenvector con�guration (b) with an arbitrary initial condition (x0; y0) labeled
in Region 3b along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (b) divided into four regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 3b.

an example of a trajectory, whose initial condition lies in Region 2b and, its corresponding

(~x0; ~y0)-curve, a portion of which lies in the region marked IV2b.

REGION 3b: Let (x0; y0) be in the �rst quadrant above the v eigenvector in eigenvector

con�guration (b). Figure 33 shows an arbitrary point in this region, with lines drawn

(portions dashed), showing the addition of the two eigenvectors in the creation of the point

(x0; y0). The right panel of Figure 33 shows the four regions formed in the �rst quadrant

by the c1-line and c2-line. Using this and Theorems 19 and 20 we have:

1. For (~x0; ~y0) 2 I3b, d1 < c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited for

any (~x0; ~y0) 2 I3b, when (x0; y0) is in Region 3b.

2. For (~x0; ~y0) 2 II3b, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II3b, when (x0; y0) is in Region 3b.

3. For (~x0; ~y0) 2 III3b, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited

for (~x0; ~y0) 2 III3b, when (x0; y0) is in Region 3b.

4. For (~x0; ~y0) 2 IV3b, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 IV3b, when (x0; y0) is in Region 3b.

Hence, for eigenvector con�guration (b), if (x0; y0) is in the �rst quadrant above the v
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eigenvector, then tolerance will be exhibited only when (~x0; ~y0) 2 IV3b, which is the green re-

gion shown in the right panel of Figure 33. In the Examples section (4.5.6), Example 3 shows

an example of a trajectory, whose initial condition lies in Region 3b, and its corresponding

(~x0; ~y0)-curve, a portion of which lies in the region marked IV3b.

4.5.5.3 Eigenvector Con�guration (c) For con�guration (c), we also �rst determine

which of the regions shown in Figure 26c are relevant with respect to solutions that remain

in the �rst quadrant for all t > 0. In this eigenvector con�guration, we have that v2 > 0,

w2 > 0, since it is assumed that v1 = w1 = 1.

We group Regions 1c and 2c of Figure 26c, since the proofs are the same. Thus, consider

an arbitrary inital condition, (x0; y0), in Region 1c or Region 2c. In either region, c1 > 0

and c2 < 0. Because of the position of the eigenvectors in this con�guration, it is su¢ cient

to show that �2(t) > 0 for all t > 0, which will then imply that �1(t) > 0 for all t > 0, as

well. Since c1 > 0 and v2 > 0, Remarks (5) and (6) give the following:

c1v2e
(�1��2)t > �c2w2

) c1v2e
�1t > �c2w2e�2t

) c1v2e
�1t + c2w2e

�2t > 0

for all t > 0. This implies from equation 4.18 that �2(t) > 0 for all t > 0.

Now consider an arbitrary intial condition in Region 3c shown in Figure 26c. All solutions

originating in this region will be bounded by the eigenvectors v and w and will remain in

the �rst quadrant for all t > 0.

For an an arbitrary intial condition in Region 4c shown in Figure 26c, we will show that

solutions starting in this region do not remain in the �rst quadrant for all t > 0. It is

su¢ cient to show that �1(t) < 0 for some t > 0. In Region 4c, c1 < 0 and c2 > 0. We
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determine when �1(t) < 0 or equivalently, when the following inequality holds:

c1e
�1t + c2e

�2t < 0

, c1e
�1t < �c2e�2t

, c1e
(�1��2)t < �c2

, e(�1��2)t >
�c2
c1

, ln e(�1��2)t > ln

�
�c2
c1

�

, t >
ln
�
�c2
c1

�
(�1 � �2)

.

Note that
�
�c2
c1

�
> 0 since c1 < 0 and c2 > 0 in this region. Hence, it has been shown that

solutions starting in Region 4c do not remain in the �rst quadrant.

Thus, for eigenvector con�guration (c), seen in Figure 34, there are three regions in which

to consider initial conditions:

� REGION 1c: (x0; y0) on the x-axis

� REGION 2c: (x0; y0) in the �rst quadrant below the v eigenvector and above the

x-axis

� REGION 3c: (x0; y0) in the �rst quadrant above the v eigenvector and below the w

eigenvector

REGION 1c: First, we look at the case when the initial condition is on the x-axis.

In the left panel of Figure 35, an arbitrary point on the x-axis is shown in the context of

eigenvector con�guration (c), with lines drawn (portions dashed), showing the addition of

the two eigenvectors in the creation of the point (x0; y0). Using this and Theorems 19 and

20 we have:

1. For (~x0; ~y0) 2 I1c, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 I1c, when (x0; y0) is in Region 1c.

2. For (~x0; ~y0) 2 II1c, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited for

any (~x0; ~y0) 2 II1c, when (x0; y0) is in Region 1c.
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Figure 34: Eigenvector con�guration (c) with the �rst quadrant divided into three regions where initial
conditions yield solutions that begin and remain in the �rst quadrant.

Figure 35: Left Panel: Eigenvector con�guration (c) with an arbitrary initial condition (x0; y0) labeled
in Region 1c (x-axis) along with lines drawn (portions dashed) showing the additon of the two eigenvectors
in the creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (c) divided into three
regions by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 1c.
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Figure 36: Left Panel: Eigenvector con�guration (c) with an arbitrary initial condition (x0; y0) labeled
in Region 2c along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (c) divided into four regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 2c.

3. For (~x0; ~y0) 2 III1c, d1 > c1 and d2 < c2. Either of these relationships imply that

tolerance cannot be exhibited for (~x0; ~y0) 2 III1c, when (x0; y0) is in Region 1c.

Hence, for eigenvector con�guration (c), if (x0; y0) is on the x-axis, then tolerance will

be exhibited only when (~x0; ~y0) 2 I1c, which is the green region shown in the right panel of

Figure 35.

REGION 2c: Let (x0; y0) be in the �rst quadrant below the v eigenvector (but not on

the x-axis) in eigenvector con�guration (c). The left panel of Figure 36 shows an arbitrary

point in this region, with lines drawn (portions dashed), showing the addition of the two

eigenvectors in the creation of the point (x0; y0). The right panel of Figure 36 shows the four

regions formed in the �rst quadrant by the c1-line and c2-line. Using this and Theorems 19

and 20 we have:

1. For (~x0; ~y0) 2 I2c, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 I2c, when (x0; y0) is in Region 2c.

2. For (~x0; ~y0) 2 II2c, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited for

(~x0; ~y0) 2 II2c, when (x0; y0) is in Region 2c.
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Figure 37: Left Panel: Eigenvector con�guration (c) with an arbitrary initial condition (x0; y0) labeled
in Region 3c along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (c) divided into four regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 3c.

3. For (~x0; ~y0) 2 III2c, d1 � c1 and d2 � c2. Either of these relationships imply that

tolerance cannot be exhibited for any (~x0; ~y0) 2 III2c, when (x0; y0) is in Region 2c.

4. For (~x0; ~y0) 2 IV2c, d1 < c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited

for any (~x0; ~y0) 2 IV2c, when (x0; y0) is in Region 2c.

Hence, for eigenvector con�guration (c), if (x0; y0) is in the �rst quadrant below the v

eigenvector (but not on the x-axis), then tolerance will be exhibited only when (~x0; ~y0) 2 I2c,

which is the green region shown in the right panel of Figure 36. In the Examples section

(4.5.6), Example 4 shows an example of a trajectory whose initial condition lies in Region

2c and its corresponding (~x0; ~y0)-curve, no points of which lie in the region marked I2c.

REGION 3c: Let (x0; y0) be in the �rst quadrant above the v eigenvector and below

the w eigenvector in eigenvector con�guration (c). The left panel of Figure 37 shows an

arbitrary point in this region, with lines drawn (portions dashed) showing the addition of the

two eigenvectors in the creation of the point (x0; y0). The right panel of Figure 37 shows the

four regions formed in the �rst quadrant by the c1-line and c2-line. Using this and Theorems

19 and 20 we have:

1. For (~x0; ~y0) 2 I3c, d1 < c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited for
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any (~x0; ~y0) 2 I3c, when (x0; y0) is in Region 3c.

2. For (~x0; ~y0) 2 II3c, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 II3c, when (x0; y0) is in Region 3c.

3. For (~x0; ~y0) 2 III3c, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited for

(~x0; ~y0) 2 III3c, when (x0; y0) is in Region 3c.

4. For (~x0; ~y0) 2 IV3c, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 IV3c, when (x0; y0) is in Region 3c.

Thus, for eigenvector con�guration (c), if (~x0; ~y0) is in the �rst quadrant above the v

eigenvector and below the w eigenvector, then tolerance will be exhibited only when (~x0; ~y0) 2

II3c, which is the green region shown in the right panel of Figure 37. In the Examples section

(4.5.6), Example 5 shows an example of a trajectory, whose initial condition lies in Region

3c, and its corresponding (~x0; ~y0)-curve, no points of which lie in the region marked II3c.

4.5.5.4 Eigenvector Con�guration (d) For the last con�guration, we again determine

which of the regions shown in Figure 26d are relevant with respect to solutions that remain

in the �rst quadrant for all t > 0. In eigenvector con�guration (d), we have that v2 > 0,

w2 > 0, since it is assumed that v1 = w1 = 1.

Consider an arbitrary intial condition in Region 1d shown in Figure 26d. All solutions

originating in this region will be bounded by the eigenvectors v and w and will remain in

the �rst quadrant for all t > 0.

Now consider an arbitrary intial condition, (x0; y0), in Region 2d shown in Figure 26d.

It is su¢ cient to show that �1(t) > 0 for all t > 0, which would imply that �2(t) > 0 for all

t > 0, given the position of the eigenvectors in this con�guration. In Region 2d, c1 > 0 and

c2 < 0. Since c1 > 0 and v2 > 0, Remarks (5) and (6) give the following:

c1e
(�1��2)t > �c2

) c1e
�1t > �c2e�2t

) c1e
�1t + c2e

�2t > 0

for all t > 0. This implies from equation (4.18) that �1(t) > 0 for all t > 0.
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Lastly, consider an arbitray initial condition, (x0; y0), in Region 3d shown in Figure 26d.

We will show that �1(t) < 0 for some t > 0, which will imply that solutions starting in

Region 3d do not remain in the �rst quadrant. In Region 3d, c1 < 0 and c2 > 0. We

determine when �1(t) < 0 or equivalently, when the following inequality holds:

c1e
�1t + c2e

�2t < 0

, c1e
�1t < �c2e�2t

, c1e
(�1��2)t < �c2

, e(�1��2)t >
�c2
c1

, ln e(�1��2)t > ln

�
�c2
c1

�

, t >
ln
�
�c2
c1

�
(�1 � �2)

.

Note that
�
�c2
c1

�
> 0 since c1 < 0 and c2 > 0 in this region. Hence, it has been shown that

solutions starting in Region 3d do not remain in the �rst quadrant.

Thus, for eigenvector con�guration (d), seen in Figure 38, there are two regions in which

to consider initial conditions:

� REGION 1d: (x0; y0) in the �rst quadrant below the v eigenvector and above the w

eigenvector

� REGION 2d: (x0; y0) in the �rst quadrant above both the eigenvectors

REGION 1d: Let (x0; y0) be in the �rst quadrant below the v eigenvector and above

the w eigenvector in eigenvector con�guration (d). The left panel of Figure 39 shows an

arbitrary point in this region, with lines drawn (portions dashed), showing the addition of the

two eigenvectors in the creation of the point (x0; y0). The right panel of Figure 39 shows the

four regions formed in the �rst quadrant by the c1-line and c2-line. Using this and Theorems

19 and 20 we have:

1. For (~x0; ~y0) 2 I1d, d1 < c1 and d2 � c2. Since d2 � c2, tolerance cannot be exhibited for

any (~x0; ~y0) 2 I1d, when (x0; y0) is in Region 1d.
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Figure 38: Eigenvector con�guration (d) with the �rst quadrant divided into two regions where initial
conditions yield solutions that begin and remain in the �rst quadrant.

Figure 39: Left Panel: Eigenvector con�guration (d) with an arbitrary initial condition (x0; y0) labeled
in Region 1d along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (d) divided into two regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 1d.
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Figure 40: Left Panel: Eigenvector con�guration (d) with an arbitrary initial condition (x0; y0) labeled
in Region 2d along with lines drawn (portions dashed) showing the additon of the two eigenvectors in the
creation of (x0; y0). Right Panel: The �rst quadrant of eigenvector con�guration (d) divided into four regions
by the c1- and c2-lines associated with the point (x0; y0) = c1v + c2w lying in Region 2d.

2. For (~x0; ~y0) 2 II1d, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II1d, when (x0; y0) is in Region 1d.

3. For (~x0; ~y0) 2 III1d, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited for

(~x0; ~y0) 2 III1d, when (x0; y0) is in Region 1d.

4. For (~x0; ~y0) 2 IV1d, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 IV1d, when (x0; y0) is in Region 1d.

Hence, for eigenvector con�guration (d), if (x0; y0) is in the �rst quadrant below the v

eigenvector and above the w eigenvector, then tolerance will be exhibited only when (~x0; ~y0) 2

IV1d, which is the green region shown in the right panel of Figure 39. In the Examples section

(4.5.6), Example 6 shows an example of a trajectory, whose initial condition lies in Region

1d, and its corresponding (~x0; ~y0)-curve, no points of which lie in the region marked IV1d.

REGION 2d: Let (x0; y0) be in the �rst quadrant above above both the eigenvectors

in eigenvector con�guration (d). The left panel of Figure 40 shows an arbitrary point in

this region, with lines drawn (portions dashed), showing the addition of the two eigenvectors

in the creation of the point (x0; y0). The right panel of Figure 40 shows the four regions

158



formed in the �rst quadrant by the c1-line and c2-line. Using this and Theorems 19 and 20

we have:

1. For (~x0; ~y0) 2 I2d, d1 < c1 and d2 � c2. Since d2 � c2 tolerance cannot be exhibited for

any (~x0; ~y0) 2 I2d, when (x0; y0) is in Region 2d.

2. For (~x0; ~y0) 2 II2d, d1 � c1 and d2 � c2. Either of these relationships imply that tolerance

cannot be exhibited for any (~x0; ~y0) 2 II2d, when (x0; y0) is in Region 2d.

3. For (~x0; ~y0) 2 III2d, d1 � c1 and d2 > c2. Since d1 � c1, tolerance cannot be exhibited

for any (~x0; ~y0) 2 III2d, when (x0; y0) is in Region 2d.

4. For (~x0; ~y0) 2 IV2d, d1 < c1 and d2 > c2. Since both d1 < c1 and d2 > c2, tolerance

will be exhibited for (~x0; ~y0) 2 IV2d, when (x0; y0) is in Region 2d.

Thus, for eigenvector con�guration (d), if (~x0; ~y0) is in the �rst quadrant above above

both the eigenvectors, then tolerance will be exhibited only if (~x0; ~y0) 2 IV2d, which is

the green region given in the right panel of Figure 40. In the Examples section (4.5.6),

Example 7 shows an example of a trajectory, whose initial condition lies in Region 2d, and

its corresponding (~x0; ~y0)-curve, a portion of which lies in the region marked IV2d.
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4.5.6 Examples

Example 1. Eigenvector con�guration (a) with (x0; y0) in Region 1a.

Figure 41: Example 1
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Example 2. Eigenvector con�guration (b) with (x0; y0) in Region 2b.

Figure 42: Example 2
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Example 3. Eigenvector con�guration (b) with (x0; y0) in Region 3b.

Figure 43: Example 3
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Example 4. Eigenvector con�guration (c) with (x0; y0) in Region 2c.

Figure 44: Example 4
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Example 5. Eigenvector con�guration (c) with (x0; y0) in Region 3c.

Figure 45: Example 5
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Example 6. Eigenvector con�guration (d) with (x0; y0) in Region 1d.

Figure 46: Example 6
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Example 7. Eigenvector con�guration (d) with (x0; y0) in Region 2d.

Figure 47: Example 7

This concludes the results regarding 2D general linear ODE systems. The next section

presents results for the existence of tolerance for 2D general nonlinear ODE systems.
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4.6 TOLERANCE IN 2D GENERAL NONLINEAR ODE SYSTEMS

In Section 4.4, a few results were presented that gave some criteria that implied the existence

of tolerance in system (4.1). These, however, were for very speci�c cases. For example,

Proposition 8 considers an original trajectory, �(t), that does not converge to the �xed point

(0; 0), while the competing trajectory,  (t), does converge to (0; 0), providing an obvious case

when tolerance will be exhibited. Not as obvious, but still speci�c in their statements, are

Propositions 9 and 10. In these propositions, the original trajectory, �(t), and competing

trajectory,  (t), both converge to (0; 0), however, they are speci�cally written in the context

of an initial condition of �(t) that is an element of the positive x-axis, i.e. (x0; y0) = (x0; 0).

The results, though interesting, are only for a small subset of the initial conditions that can

be considered for �(t). It would be nice to eliminate the restriction of only considering

initial conditions that begin on the positive x-axis.

In the present chapter, additional tools are introduced that can be more widely applied to

system (4.1) than the results of Section 4.4. In Section 4.6.1, we introduce the use of isoclines

and the concept of inhibition as a method for determining in a general 2D ODE system if, for

a given (x0; y0), there exists an s � 0 such that (~x0; ~y0) = �(s) + (x0; 0) produces tolerance.

Recall that for a given (x0; y0), there exists a continuous curve of points (parameterized by

s � 0), denoted as the (~x0; ~y0)-curve (see Figure 21) from which a competing trajectory,  (t),

can originate. Thus, for every < (x0; y0); s >, there is a corresponding (~x0; ~y0) point that

might or might not produce tolerance. Using the isocline and inhibition strategy, portions

of the (~x0; ~y0)-curve will be identi�ed as containing points that will not produce tolerance

(i.e.  (t) > �(t) for all t � 0) and points that might produce tolerance. The inhibition and

isocline strategy is illustrated with several speci�c ODE examples.

Then, in Section 4.6.2, some numerical tools are presented, including an algorithm for

numerically locating tolerance for a given initial condition, (x0; y0), or a set of initial con-

ditions of the original trajectory, �(t). In addition, this subsection also uses isoclines to

acquire a numerical estimate for the time it take for a trajectory to, essentially, get from

Point A to Point B. The idea is to estimate the time it takes for the original trajectory,

�(t), to go from (x0; y0) to some �nal point (xf ; yf ) and compare it to an estimate of the
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corresponding time for the competing trajectory,  (t), to go from (~x0; ~y0) to (xf ; yf ). The

use of isoclines in the Section 4.6.1, however, proves to be more insightful and functional.
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4.6.1 Isoclines

Consider the ODE (4.1) and assume both (A1) and (A2) given previously and reproduced

below:

(A1) (0; 0) is a stable �xed point of (4.1) the eigenvalues of which are real and negative.

(eliminates spirals and centers)

(A2) � and  are nonnegative for all t � 0 and both (x0; y0) and (~x0; ~y0) lie in the basin of

attraction for (0; 0) in the �rst quadrant.

De�nition 7. The x-isoclines of (4.1) are the family of curves (or level sets) de�ned by

f(x; y) = C1 2 R.

Along an isocline, f(x; y) = C1, the speed of the vector �eld in the x direction is given

by C1. (Similarly, for the y-isocline, g(x; y) = C2, the speed in the y direction is given by

C2.) A nullcline, for instance, is an isocline in which C = 0, meaning that the velocity of

the vector �eld along the curve is 0 in the particular direction.

Remark 7. For convenience, we will drop the x- and just use isocline, since we do not

consider the y-isoclines here.

Before illustrating the use of isoclines for determining the existence of tolerance in gen-

eral 2D ODE systems, we �rst introduce the concept of inhibition. Inhibition is a widely

used term for describing the suppression of one variable by another. For instance, in the

model used in Chapter 2, the anti-in�ammatory mediator inhibited the production of pro-

in�ammatory mediators as well as its own production. However, the use of this term, in this

and similar situations, while intuitive and heuristically understood, is not mathematically

precise.

Hence, we give a precise de�nition of inhibition below, prove two results relating to inhi-

bition and tolerance, and use these results, in conjunction with isoclines, in several examples

of 2D nonlinear ODE systems, to show for which points of the (~x0; ~y0)-curve tolerance can

and cannot be produced. As a transition into using inhibition and isoclines in these exam-

ples, they are �rst illustrated using a linear example, speci�cally the type shown in Figure

32. Now, we precisely de�ne the concept of inhibition:
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De�nition 8. De�ne inhibition of x by y in a region, R � R2+, as the property of (4.1)

that satis�es the following inequality: for (x; y1); (x; y2) 2 R,

f(x; y1) > f(x; y2) whenever y2 > y1.

The next two propositions explore the relationship between inhibition and tolerance.

First, another de�nition:

De�nition 9. The graph of  is said to be bounded below by the graph of � if �2(s1) <

 2(s2), whenever �1(s1) =  1(s2) for some s1; s2 > 0, not necessarily equal. For brevity, we

say  is bounded below by �.

Theorem 21. Assume (A1) and (A2) and that (4.1) exhibits tolerance for some

< (x0; y0); s >. If the graph of  is bounded below by the graph of �, then there exists a

region of inhibition, R, and s1; s2 2 R+, such that  1(s1) = �1(s2) and  1(s1); �1(s2) 2 R:

Proof. Assume tolerance exists for some < (x0; y0); s >. Now, assume by way of contra-

diction that y does not inhibit x in any region, R, which contains points ( 1(s1);  2(s1))

and (�1(s2); �2(s2)), where  1(s1) = �1(s2) and s1; s2 2 R+. Since tolerance exists for <

(x0; y0); s >, by Proposition 1, there exists t� such that  1(t
�) = �1(t

�) and that  1(t̂) < �1(t̂)

for all t̂ 2 (t�; t� + �) for some � > 0. Since the graph of  is bounded below by the graph

of �, we have that at t�,  2(t
�) > �2(t

�). Since  1(t
�) = �1(t

�), our assumption implies

that y does not inhibit x in any region R, containing the points  (t�) and �(t�). Thus,

f( (t�)) > f(�(t�)). However, from Proposition 1, since  1(t
�) = �1(t

�) and  1(t̂) < �1(t̂)

for all t̂ 2 (t�; t�+ �), it can be concluded that f( (t�)) � f(�(t�)), which is a contradiction.

Hence, if the graph of  is bounded below by the graph of �, then, in order for (4.1) to

exhibit tolerance for < (x0; y0); s >, it is necessary that there exists a region, R, of inhibition

and s1; s2 2 R+, such that  1(s1) = �1(s2) and  1(s1); �1(s2) 2 R:

Theorem 21 states that a region of inhibition is necessary, although not su¢ cient for

tolerance to occur when the competing trajectory,  (t), is bounded below by the original

trajectory, �(t). However, for  bounded above by �, inhibition can be a detriment to the

presence of tolerance. In this case, if y inhibits x in a region, R, where �(t),  (t) 2 R, for
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all t � 0, then, as the next theorem states, tolerance cannot be exhibited. First, we de�ne

what it means for  to be bounded above by �:

De�nition 10. The graph of  is said to be bounded above by the graph of � if �2(s1) >

 2(s2), whenever �1(s1) =  1(s2) for some s1; s2 > 0, not necessarily equal. For brevity, we

say  is bounded above by �.

Theorem 22. Assume (A1) and (A2). Given < (x0; y0); s >, if the graph of  is bounded

above by the graph of �, and y inhibits x in a region, R, such that �(t),  (t) 2 R for all

t � 0, then (4.1) cannot exhibit tolerance for < (x0; y0); s >.

Proof. Assume by way of contradiction that (4.1) exhibits tolerance for some < (x0; y0); s >.

Then, by Proposition 1, there exists t� such that  1(t
�) = �1(t

�) and that  1(t̂) < �1(t̂)

for all t̂ 2 (t�; t� + �) for some � > 0. Also, �2(t
�) >  2(t

�) since �1(t
�) =  1(t

�) and the

graph of  is bounded above by the graph of �. Since y inhibits x in a region, R, where

�(t),  (t) 2 R, for all t � 0, we have that f(�(t�)) < f( (t�)). However, from Proposition

1, since  1(t
�) = �1(t

�) and  1(t̂) < �1(t̂) for all t̂ 2 (t�; t� + �), it can be concluded that

f(�(t�)) � f( (t�)), which is a contradiction. Hence, it must be the case that (4.1) cannot

exhibit tolerance for < (x0; y0); s >, if the graph of  is bounded above by the graph of �

and y inhibits x in a region, R, where �(t),  (t) 2 R, for all t � 0.

Furthermore, the contrapositive of Theorem 22 states that in order for tolerance to be a

possibility for a competing trajectory,  , that is bounded above by the original trajectory, �,

there must exist at least one pair, s1; s2 2 R+, such that  1(s1) = �1(s2) and  1(s1); �1(s2) =2

R, for any region of inhibition, R. An example of a linear system is given below, where it

will be seen that for  bounded above by �, the absence of a region of inhibition containing

all of  (t) and �(t) makes tolerance possible, although not guaranteed, for  . On the other

hand, for  bounded below by �, it will be seen that the absence of a region of inhibition for

any s1; s2 2 R+ such that  1(s1) = �1(s2) eliminates the possibility of tolerance altogether

for such  .

In the examples that are presented here, the isoclines are used to quickly locate any

regions of inhibition. Then, Theorems 21 and 22 are used identify a subset of points from

the (~x0; ~y0)-curve which might produce tolerance. Example 8 will show that this set is larger
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than the actual set of (~x0; ~y0) points that do produce tolerance; however, the previous results

of Section 4.4 can also be employed to hone in closer to the actual set of (~x0; ~y0) points that

do produce tolerance. Now, we give the example of a linear system of the type shown in

Figure 32:

Example 8. Consider the linear system

_x = f(x; y) = �x+ y

_y = g(x; y) = :3x� y

9=; (4.28)

The isoclines for this system are the family of curves given by �x+y = C , C 2 R, which

are simply the lines y = x + C parameterized by C 2 R, having slope 1 and y-intercept,

C. In Figure 48, the isoclines are drawn for various values of C 2 [�2:4; 0:0], in increments

of 0:1. Of course, since the isoclines are a continuous family of curves, they �ll the entire

space; however, viewing it as such is not particularly helpful. Note that as C ranges from

�2:4 up to 0, the speed of the isoclines in the x-direction decreases monotonically going from

right to left, toward the origin. Now we explain the features in Figure 49:

� �(t) is the curve shown in solid black for initial condition �(0) = (x0; y0) = (1; 0:25).

� The orange curve, denoted as �̂, is the curve of points obtained by essentially integrating

�(t) in backward time from t = 0 to t � �0:9, at which time it intersects the x-axis at

x̂ � 2:19. In other words:

�̂ � f�(�t)jt 2 (0:0; 0:9) and �(�0:9) = (2:19; 0:0)g :

� The blue dotted curve denotes the (~x0; ~y0)-curve. Formally, de�ne this set of points as

P � f(~x0; ~y0)j(~x0; ~y0) = �(s) + (x0; 0); s � 0g.

� Let R1 be the region shown in light green which is bounded inclusively by the black

vertical line, y = x0, the orange curve, �̂, and the x-axis. Note that every point (~x0; ~y0)

will lie to the right of the line y = x0, by the de�nition of ~x0.
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Figure 48: The isoclines for the linear system given in Example 8. The isoclines shown are for values
of C 2 (�2:4; 0:0) in increments of 0:1. The red isocline is the x-nullcline for C = 0 and the green isocline
is for the C-value of �2:4. Moving from one isocline through another from right to left, the speeds of the
isoclines decrease in the x-direction. (i.e. the speed becomes less negative and closer to zero). Isoclines for
C > 0 are not shown here since they do not need to be considered for this example.
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� De�ne the set ST1 6= ; to be the intersection of the (~x0; ~y0)-curve with the complement

of R1 in the �rst quadrant :

ST1 �
�
R2+nR1

�
\ P

� De�ne the set ST2 6= ; to be the intersection of the light green region, R1, and the

(~x0; ~y0)-curve:

ST2 � R1\P

Remark 8. The slow/weak eigenvector of this system is v = [1:0 :548], which can be viewed

as the line passing through the origin, (0; 0), and the point, (1:0; :548): y = 0:548x. The

nullcline, y = x has a steeper slope than that of the line representing v. Hence, solutions

that originate below v will approach (0; 0) along v and not cross the nullcline (red isocline

in Figure 49). This means that the isoclines for C � 0 do not need to be considered in the

example.

Consider the isoclines for C 2 [�2:4; 0:0). Also, assume 0 � x1 < 2:4, which encompasses

the x-intercepts of the isoclines under consideration, since x = �C when y = 0. Thus, given

x1 2 (0:0; 2:4) and any two isoclines de�ned for C1; C2 2 [�2:4; 0:0), whenever C1 < C2 < 0

(i.e. whenever C1 is more negative than C2) we have that

y1 � x1 + C1

< x1 + C2

� y2.

In other words, for any x1 2 (0:0; 2:4), whenever y1 < y2, then,

f(x1; y1) < f(x1; y2).

Hence, for any subset of the �rst quadrant, containing the trajectories of �(t) and  (t),

there exist no regions of inhibition. (See De�nition 8.) The sets ST1 and ST2 are formed

so that for (~x0; ~y0) 2 ST1,  will be bounded below by �, and for (~x0; ~y0) 2 ST2 ,  will

be bounded above by �. The the graph of �̂, in orange, creates a natural boundary (by

uniqueness of solutions) with which to divide the (~x0; ~y0)-curve.
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Figure 49: Two regions in which the points in the (~x0; ~y0)-curve lie for Example 8. The points on the
(~x0; ~y0)-curve fall into one of two regions de�ned by (1) the light green area (including its borders) and (2)
the complement of this area with respect to R2+.
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Case 1: Let (~x0; ~y0) 2 ST1. Then,  will be bounded below by �. Thus, by Theorem 21,

since there are no regions of inhibition present for  (t) and �(t), any (~x0; ~y0) 2 ST1 cannot

produce tolerance.

Case 2: Let (~x0; ~y0) 2 ST2. Then,  will be bounded above by �. Thus, by the

contrapositive of Theorem 22, since there are no regions of inhibition present for  (t) and

�(t), (~x0; ~y0) might produce tolerance, although tolerance is not guaranteed. Furthermore,

consider the (~x0; ~y0) point that lies on the orange curve, where the (~x0; ~y0)-curve intersects

�̂. For this (~x0; ~y0),  (t) and �(t) are subsets of the same larger solution curve in the vector

�eld of 4.28, and, in this particular example, both �1(t) and  1(t)! (0; 0) monotonically as

t!1. By Proposition 7, this particular (~x0; ~y0) will not produce tolerance. In addition, by

continuity, there exists an open ball, B, around (~x0; ~y0), such that (~xb; ~yb) will not produce

tolerance for all (~xb; ~yb) 2 B. Thus, the set of points which might produce tolerance is a

subset of ST2. As a result, the range of (~x0; ~y0) points that will possibly produce tolerance

has been further narrowed.

Since this is an example of a linear system, the methods from Section 4.5 can be used to

precisely pinpoint the set of (~x0; ~y0) points which are guaranteed to produce tolerance. In

Figure 50, the regions I� IV, de�ning the relationship between the coe¢ cients of the analytic

solution of �(t) and  (t), are shown. According to the results of Section 4.5, tolerance

is produced by those (~x0; ~y0) points in region IV, where the only inclusive boundary is the

x-axis. (See the case for Region 2a in Section 4.5.5 for more information.)

In Figure 51, the lines that form the regions I� IV are overlaid on the content shown in

Figure 49. It can be seen in Figure 51 that there is a collection of (~x0; ~y0) points which are

elements of ST2, but which are not elements of Region IV. Hence, this technique of using

inhibition and isoclines to detect tolerance does not sharply de�ne the subset of points on

the (~x0; ~y0)-curve which do produce tolerance. However, for this example, the estimation is

not grossly far o¤ from the actual set of points (~x0; ~y0) that do produce tolerance.

Now, we look at examples of speci�c 2D nonlinear ODE systems and apply this approach

to determine when the possibility of tolerance exists.
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Figure 50: Regions I� IV de�ning the relationship between the coe¢ cients of the analytic solution of
�(t) and  (t) for Example 8. According to the results of Section 4.5, tolerance is produced by those (~x0; ~y0)
points in region IV, where the only inclusive boundary is the x-axis.
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Figure 51: The lines that form the regions I� IV are overlaid on the content shown in Figure 49.
Speci�cally, for the (~x0; ~y0) points in region IV (dark green area), tolerance will be produced. In addition
to these points, the inhibition and isocline method also included the (~x0; ~y0) points in the light green region
as possible points that produce tolerance, but which do not.
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Example 9. Consider the nonlinear system:

_x = f(x; y) = (:5x� y)
�
0:1x
1+y

� 1
�

_y = g(x; y) = 0:4x� y.

9=; . (4.29)

The isoclines for this system are the family of curves given by the equations:

y1 =
3

10
x� 1

2
+
1

2
C +

1

10

p
4x2 + 20x+ 30xC + 25 + 50C + 25C2 and (4.30)

y2 =
3

10
x� 1

2
+
1

2
C � 1

10

p
4x2 + 20x+ 30xC + 25 + 50C + 25C2, (4.31)

where C 2 R. In Figure 52, the isoclines are drawn for various values of C1 2 [�1:5; 0:0],

in increments of 0:05. For C 2 R, the two curves de�ned by equations 4.30-4.31 form a

continuous parabola-like curve and the apparent discontinuity is simply due to numerical

issues when graphing. However, it does nicely draw attention to the fact that the portion of

the �rst quadrant containing the top curves of the parabolas given by equation 4.30 between

the x-nullcline and the C = �1:5 isocline is not a region of inhibition. However, the portion

of the �rst quadrant containing the bottom curves of the parabolas given by equation 4.31

between the x-nullcline and the C = �1:5 isocline is a region of inhibition.

Note that as C ranges from �1:5 up to 0, for the curves de�ned by equation 4.30, the

speed of the isoclines in the x-direction decreases monotonically going from right to left,

toward the origin. The value of (x0; y0) that we will be considering in this example will

be such that �(t) and  (t) will only pass through these isoclines and not the other ones

generated by equation 4.31. Figure 53 shows a speci�c solution, �(t), that will be considered

for this example and also only shows the portions of the isoclines that are of relevance here.

As was done with Example 8, the following features are also a part of Figure 53:

� �(t) is the curve shown in solid black for initial condition �(0) = (x0; y0) = (2; 0:5).

� The orange curve, denoted as �̂, is the curve of points obtained by essentially integrating

�(t) in backward time from t = 0 to t � �0:85, at which time it intersects the x-axis at

x̂ � 2:5. In other words:

�̂ � f�(�t)jt 2 (0:0; 0:85) and �(�0:85) = (2:5; 0:0)g :
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Figure 52: Isoclines for Example 9, drawn for various values of C1 2 (�1:5; 0:0), in increments of 0:05.

� The blue dotted curve denotes the (~x0; ~y0)-curve. Formally, de�ne this set of points as

P � f(~x0; ~y0)j(~x0; ~y0) = �(s) + (x0; 0); s � 0g

� Let R1 be the region shown in light green which is bounded inclusively by the black

vertical line y = x0, the orange curve, �̂, and the x-axis. Note that every point (~x0; ~y0)

will lie to the right of the line y = x0, by the de�nition of ~x0.

� De�ne the set ST1 6= ; to be the intersection of the (~x0; ~y0)-curve with the complement

of R1 in the �rst quadrant:

ST1 �
�
R2+nR1

�
\ P .

� De�ne the set ST2 6= ; to be the intersection of the light green region and the (~x0; ~y0)-

curve:

ST2 � R1\P .
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Figure 53: Two regions in which the points in the (~x0; ~y0)-curve lie for Example 9. The points on the
(~x0; ~y0)-curve fall into one of two regions de�ned by (1) the light green area and (2) the complement of this
area with respect to R2+. The light green area is inclusive of the orange curve, the x-axis, and the line
y = x0.

Remark 9. In this example, because (1) �(t),  (t) ! (0; 0) as t ! 1 and (2) _x > 0 in

the region of the �rst quadrant bounded by the y-axis and the C = 0 isocline (x-nullcline),

neither �(t) nor  (t) cross the x-nullcline. Thus, the isoclines for C � 0 do not need to be

considered in the example.

Consider the isoclines for C 2 [�1:5; 0:0). Also, assume 0 � x1 < 3:5, which more than

encompasses the x-intercepts of the isoclines under consideration. The orientation of the

isoclines are very similar to that of the linear Example 8 in that for any subset of the �rst

quadrant, containing the trajectories of �(t) and  (t), there exist no regions of inhibition.

(See De�nition 8.) The sets ST1 and ST2 are formed so that for (~x0; ~y0) 2 ST1 ,  will be

bounded below by � and for (~x0; ~y0) 2 ST2,  will be bounded above by �. The the graph of

�̂, in orange, creates a natural boundary (by uniqueness of solutions) with which to divide

the (~x0; ~y0)-curve.

Case 1: Let (~x0; ~y0) 2 ST1. Then,  will be bounded below by �. Thus, by Theorem 21,

since there are no regions of inhibition present for  (t) and �(t), any (~x0; ~y0) 2 ST1 cannot

produce tolerance.
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Case 2: Let (~x0; ~y0) 2 ST2. Then,  will be bounded above by �. Thus, by the

contrapositive of Theorem 22, since there are no regions of inhibition present for  (t) and

�(t), (~x0; ~y0) might produce tolerance, although tolerance is not guaranteed. Furthermore,

consider the (~x0; ~y0) point that lies on orange curve, where the (~x0; ~y0)-curve intersects �̂. For

this (~x0; ~y0),  (t) and �(t) are subsets of the same larger solution curve of the vector �eld 4.28,

and, in this particular example, both �1(t) and  1(t)! (0; 0) monotonically as t!1. By

Proposition 7, this particular (~x0; ~y0) will not produce tolerance. In addition, by continuity,

there exists an open ball, B, around (~x0; ~y0), such that (~xb; ~yb) will not produce tolerance for

all (~xb; ~yb) 2 B. Thus, there exists an S � ST2, the points of which might produce tolerance.

As a result, the range of (~x0; ~y0) points that will possibly produce tolerance has been further

narrowed.

Although the methods from Section 4.5 cannot be applied to this nonlinear system, we

can con�rm our results by implementing a numerical approach discussed in the next section.

An algorithm was generated to numerically �nd when tolerance occurs for a given (x0; y0).

Figure 54 shows the results of the numerical �ndings, with �1(t) denoted by the red curve

and  1(t) for various ~x0 are denoted by the blue curves. The time � at which a blue  1-curve

falls below the red �1-curve indicates that tolerance has occurred:  1(�) < �1(�).

Note that all the ~x0-values are all within the range ~x0 2 [2; 2:5) (See panel 3 of Figure

54), which correspond to points (~x0; ~y0) that are members of the set ST2, in which tolerance

was a possibility. The �rst panel of Figure 54 shows a denser set of curves of  1(t) for

(~x0; ~y0) points that are closer together. The second panel of this �gure shows less curves of

 1(t) for (~x0; ~y0) points spread further apart.

Example 10. Using the system just given by 4.29 in Example 9, consider the initial condition

for �(t): (x0; y0) = (2; 0). Figure 55, illustrates this example. There are two cases to

consider:

Case 1: (~x0; ~y0) lies on an isocline de�ned by equation 4.30, which de�nes the top

portions of the parabolas, for C 2 [�1:5; 0]. In this case, both the graphs of � and  

will be completely contained in this region of the �rst quadrant where the top portions of

the parabolas lie. As mentioned in the previous example, this is not a region of inhibition.
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Figure 54: Numerical evidence of tolerance in Example 9. The red curve in all the panels is the time
course of �1(t) for (x0; y0) = (2:0; 0:5). First Panel: a dense set of curves (blue) of the time course of  1(t)
for various (~x0; ~y0) points that are close together. Second Panel: a few curves (blue) of the time course
of  1(t) for (~x0; ~y0) points that are spread further apart. Third Panel: A closeup of the ~x0-values for the
various time courses of  1(t) for (~x0; ~y0) points that are spread further apart. It can be seen that these
(blue) time course where tolerance is evident have values of ~x0 2 [2; 2:5), corresponding to (~x0; ~y0) points in
the set of points (ST2) for which tolerance is possible.

Furthermore, in this case  (t) is bounded below by �. Thus, by Theorem 21, (~x0; ~y0) cannot

produce tolerance. Now for Case 2:

Case 2: (~x0; ~y0) lies on an isocline de�ned by equation 4.31, which de�nes the bottom

portions of the parabolas, for C 2 [�1:5; 0].

This case is quite subtle for this example, but if (x0; y0) was further to the right on the

x-axis, this becomes more of an issue. Nevertheless, however slight the occurrence, it still

needs to be considered. In this case, (~x0; ~y0) does lie in a region of inhibition and portions

of  also are contained in this region. However, no portion of the region contains �, much

less both  and �. Thus, from Theorem 21, if these (~x0; ~y0) points produced tolerance than

there would exist a region, R, of inhibition and s1; s2 2 R+, such that  1(s1) = �1(s2) and

 1(s1); �1(s2) 2 R: However, such a region does not exist for this example. Thus, these

(~x0; ~y0) points do not produce tolerance.

The algorithm used in the previous example was used here as well, and numerical calcu-

lations con�rmed that tolerance was not exhibited in this system for (x0; y0) = (2; 0).

The previous examples had similar isocline structures, with respect to the direction in

which the speed of the isoclines increased/decreased. This �nal example looks at a system
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Figure 55: Important features of Example 10.

with a di¤erent isocline con�guration.

Example 11. Consider the system given by

_x = f(x; y) = x2

1+y
� x

_y = g(x; y) = x2 � 0:5y

9=; . (4.32)

The isoclines for this system are the family of curves given by the equation:

y =
x2 � x� C

x+ C
(4.33)

for C 2 R. Figure 56 shows the isoclines for C 2 [�6:0; 0] and denotes the change in speed

from the C = 0 isocline (nullcline) to the C = �6:0 isocline. The isoclines for C > 0 are

not drawn or considered here, since, in this region, the �ow in the x-direction of the vector

�eld is in the positive direction, and inhibition is de�ned for points at which the �ow in the

x-direction is negative. Note that for each C 2 [�6:0; 0), the C = �x isocline is unde�ned

at x = �C; however the asymptote is not drawn, and the other portion of the isocline which

is on the other side of the asymptote below the positive x-axis is also not drawn. Note that

if a trajectory is passing through a point with an x-value of �C where the C = �x isocline

is approaching in�nity, it does not mean that the speed of the trajectory at that point is
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Figure 56: Isoclines for Example 11, drawn for various values of C 2 (�6:0; 0:0).
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in�nite. Instead, at that particular x-value, the trajectory is simply on a di¤erent isocline

that is de�ned for x = �C.

Also note, that the sign of the slope of the isoclines in the limit as x! �C is

sign

�
lim
x!�C

d

dx

�
x2 � x� C

x+ C

��
= sign

�
2x� 1
x+ C

� x2 � x� C

(x+ C)2

�
= � (sign(C))2

which is negative for all C. De�ne RI to be the region bounded by (1) the x-nullcline,

y = x�1, (2) the C = �6:0 isocline, y = x2�x+6
x�6 , (3) the positive x-axis, and (4) the positive

y-axis. Then, for x1 > 0 and y1; y2 2 RI , if y2 > y1, then

f(x1; y2) < f(x1; y1):

Hence, RI is a region of inhibition. Now consider the initial condition (x0; y0) = (4:0; 3:0)

of �(t). Figure 57 displays the following features:

� �(t) is the curve shown in solid black for initial condition �(0) = (x0; y0) = (4:0; 3:0).

� The orange curve, denoted as �̂, is the curve of points obtained by essentially integrating

�(t) in backward time from t = 0 to t � �1:0, at which time it intersects the x-axis at

x̂ � 3:4. In other words:

�̂ � f�(�t)jt 2 (0:0; 1:0) and �(�1:0) = (3:4; 0:0)g :

� The blue dotted curve denotes the (~x0; ~y0)-curve. Formally, de�ne this set of points as

P � f(~x0; ~y0)j(~x0; ~y0) = �(s) + (x0; 0); s � 0g

186



Figure 57: Isoclines and (~x0; ~y0) points for Example 11.
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For this example, the curve �̂(t) (orange curve in Figure 57) shows that for every (~x0; ~y0) 2

P , the corresponding graph of  will eventually be bounded below by the graph of � since

(1)  will not be allowed to cross the trajectory de�ned as �̂[ � and (2) �;  ! (0; 0). Thus,

for all the (~x0; ~y0) 2 P not in region RI ,  (t) must enter this region eventually. To reiterate,

the graph  will be bounded below by the graph of � when  1(�) = �1(0) = max(�1) for

some � > 0.

Now consider the various  trajectories shown in Figure 58 for various values of (~x0; ~y0).

For each  , there exists a � > 0, after which the graph of  is bounded below by the graph

of �. All of the  trajectories enter the region RI and � � RI . Hence, after � > 0, there

exists a region �R � RI and s1; s2 2 R+ (not necessarily equal), such that  1(s1) = �1(s2)

and  1(s1); �1(s2) 2 �R: Hence, by Theorem 21, it is possible that tolerance can be exhibited

by any (~x0; ~y0) 2 P , although not guaranteed since the existence of this inhibition region is

only a necessary condition for the existence of tolerance.

Running the numerical tolerance algorithm on this example for initial condition (x0; y0) =

(4:0; 3:0), we see that tolerance does exist. However, the reduction noted is quite small when

it does occur. Figure 59 shows results from the numerical simulations. The left panel gives

the time courses for �1(t) (red curve) and  1(t) for the various (~x0; ~y0) points (blue curves)

which produce tolerance. Note the ~x0-values for these points, given on the "y-" axis of

Figure 59. Then, look at where the corresponding (~x0; ~y0) points are in Figure 58. The

right panel gives a close up of the portion of the left panel, showing that the time courses

for the various blue  1-curves do indeed fall below the red �1-curve, thereby con�rming the

existence of tolerance.

The next section discusses two numerical approaches for �nding tolerance, one of which

was used above in con�rming the existence (or lack thereof) tolerance.
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Figure 58: The isoclines and various examples of trajectories,  (t), originating from the (~x0; ~y0)-curve
of system 4.32 of Example 11 for (x0; y0) = (4:0; 3:0).

Figure 59: Numerical results from the application of the tolerance algorithm to Example 11. Left Panel:
Time courses for �1(t) (red curve) and  1(t) for the various (~x0; ~y0) points which produce tolerance. Right
Panel: A close up of the portion of the left panel, showing that the time courses shown for the various blue
 1-curves do indeed fall below the red �1-curve, thereby implying the existence of tolerance.
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4.6.2 Numerical Approaches for Finding Tolerance

The primary di¢ culty in determining the presence of tolerance in a given ODE system is

that closed form solutions of the system are usually not available and hence, the ability

to determine the amount of time that it takes for a trajectory to traverse from its initial

condition to another point on its path cannot be calculated explicitly. In this section we

discuss the numerical algorithm for �nding tolerance in a given system for a speci�ed initial

condition or a set of initial conditions. Also discussed is a method that uses isoclines to

determine tolerance. This method directly deals with estimating the time it takes for a

trajectory to reach a certain point, starting from a given initial condition.

4.6.2.1 Tolerance Algorithm A purely numerical approach to identifying the existence

of tolerance in a given dynamical system has been to create an algorithm that tests the

system for tolerance, given several input parameters. The algorithm is not restricted to two

dimensional systems, so for now this is the only method for �nding tolerance in systems of

dimension greater than two. This algorithm was written as an m-�le in MatLab. [72] First,

the input that the algorithm requires is explained.

INPUT

� ODEfile: MatLab m-�le giving the ODE system (2-d, 3-d, . . . , n-d) with equations

ordered so that the tolerance variable is �rst

� X0: Matrix whose rows contain the various initial condition vectors, x0, for an original

trajectory

� HitIndex: Column index (for all the x0) in the X0matrix to which the hit is administered

(note: could be di¤erent from the Tolerance Variable.)

� HitSize: size of hit; default value is the value of the variable found in the HitIndexth

entry of the row currently being considered in the X0 matrix.

� TolVarIndex: Column index (for all the x0) in the X0 matrix for which tolerance is being

checked. This is the "Tolerance Variable."

� MinTolPercent: minimum amount of reduction accepted (in percentage form)

� tstop: Duration of integration
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� s: vector of time points at which the hit is given; This also serves as the sequence of

times at which solutions are compared.

� JStepSize: step size used to divide up the interval [0 tstop] to create the vector, s

There are a number of practical issues to consider with respect to the presence of tol-

erance. Since the curve of (~x0; ~y0) points is a continuous curve parameterized by s > 0,

numerically, it is impossible to test every (~x0; ~y0) to see if tolerance is produced. However, it

is important to try a sampling of s-values that range from s = 0 to a later time point corre-

sponding to �(s) � (0; 0) . Thus, a step size, JStepSize, is speci�ed to divide this interval

of times, denoted [0 tstop], into a discrete set of points, where tolerance can be checked.

This is su¢ cient to ensure that the entire (~x0; ~y0)-curve is represented well enough.

Another practical issue has to do with the degree of tolerance that is exhibited. Recall

in Chapter 2, when we noted that in some of the endotoxin tolerance simulations, there

was a percentage decrease in the pro-in�ammatory mediator, sometimes 40% or 70% of the

original amount at a particular time point. Again, because of continuity, the amount of

tolerance that is exhibited can be arbitrarily small. Hence, in order to numerically address

this, the minimum percentage amount of reduction accepted must be speci�ed. This is done

by specifying a value for the variable, MinTolPercent. For Example 11 in the last section,

the MinTolPercent was set to 1% and for each of the blue curves shown, all had a maximum

reduction of less than 2%. Hence, if the MinTolPercent was given, for example, a value of

2, then the algorithm would have returned:

"There was no reduction with a percentage greater than the minimum tolerance percent."

The algorithm is set up to consider a number of options beyond what was presented in

this chapter. For example, recall that (~x0; ~y0) is a shifting of the point �(s), s > 0, by

the amount x0. This was assumed to be the case throughout every section. However, it

might be the case that the hit sizes are di¤erent as they were in the endotoxin tolerance

experiments of Chapter 2. Thus, the algorithm allows for the separate speci�cation of the

variable in which tolerance is being checked and the variable to which the extra "hit" amount

is given.

A host of data can be returned by the algorithm. Note that the equation for the
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variable in which tolerance is being checked is always the �rst equation in the ODE �le.

This simpli�es the discussion and makes the code simpler. As it stands now, the following

information is returned in a table format, if and when the algorithm �nds tolerance:

� Row number for the initial condition in X0 for which tolerance occured. Since X0

is a matrix, the rows of which contain various initial condition vectors (e.g. (x0; y0))

from which to check for tolerance, it is important to know to which initial condition the

presence of tolerance refers.

� Jump Time. Recall that s was de�ned to be the "jump time" �the time for which an

(~x0; ~y0) is de�ned.

� Time when maximum degree of tolerance occurred. i.e. the time � at which  1(�)�

�1(�) was greatest.

� First time when tolerance occurred. Again, because numerically it is virtually impossible

to �nd the "�rst" time, � �, for which  1(t) < �1(t), this is an estimate.

� Value of �1(t) at the time when the maximum degree of tolerance occurred.

� Value of  1(t) at the time when the maximum degree of tolerance occurred.

� The amount (as a percentage) of the maximum degree of tolerance between �1(t) and

 1(t).

� Graph of time courses of �1(t) and corresponding  1(t), for every initial condition given

in X0 matrix (This is all put in one �gure, which can get cumbersome, but the graphing

feature was intended for displaying the results from running the algorithm on one initial

condition. The table format displaying output is better suited for a multiple initial

condition run.)

In order to make sure that the presence of tolerance is not being missed, it is important

to carefully consider the amount of integration time, since this essentially determines which

(~x0; ~y0) points are checked. As s!1, �(s)! (0; 0) and (~x0; ~y0)! �(0). However, if the

integration time is too short, then, for the last speci�ed s value, �(s) many not yet be close

enough to (0; 0) and (~x0; ~y0) � �(0) may not be included in the points under consideration.

In addition, a reasonable array of s values should be considered, i.e. JStepSize should not

be too big. However, if tolerance is produced by many (~x0; ~y0) points, then JStepSize
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can be reduced so that more of the individual time courses  1(t) can be seen on the graph

that is generated. As a good example to compare results, Figure 60 shows the results of

running the algorithm on the linear system 4.28 given in Example 8 for the initial condition

(x0; y0) = (1; 0:25).

4.6.2.2 Isoclines Another approach deals with using isoclines to estimate the time it

takes for a trajectory to get from point A to point B. We pose this problem for the 2D

system (4.1). The main idea of this approach is to use isoclines to estimate the speed of

a trajectory in a certain direction (or variable) and then use the estimate to determine the

amount of time it takes for the trajectory to reach a certain value in the variable. Since the

speed of a trajectory is time dependent we will look for upper bounds and/or lower bounds

on speed in a particular direction. For simplicity, assume the direction we are interested in

is the �rst component of the system and call it the tolerance variable.

We compare the speed estimates for two trajectories, one which we call the original

trajectory since all other trajectories will be compared to it, and the other trajectory we call

the competing trajectory, which comes from a family of trajectories de�ned from the original

trajectory. We include this approach under numerical approaches since many times isoclines

are too di¢ cult to analyze analytically and one must numerically graph the isoclines and

trajectories to estimate the supremum and in�mum that are needed below. In addition, we

restrict this to a two dimensional case, since isoclines become isoplanes in dimensions greater

than two, and beyond the third dimension, this approach breaks down completely.

As done in previous work, consider two trajectories: �(t) � (x0; y0) � t for some (x0; y0)

and for t � 0, which we label as the original trajectory, and  (t) � (~x0; ~y0) � t, where

(~x0; ~y0) � �(s0)+(x0; 0), for some s0 � 0 and where t � 0, which is the competing trajectory.

Note that by taking di¤erent values of s0, we form a family of competing trajectories. Let

xf be a given x-value. Also, we will assume that � and  remain in the �rst quadrant for

all time and that as t!1, both approach (0; 0). We wish to estimate the time it takes for

�1(t) and  1(t) to travel from x0 and ~x0, respectively, to xf and then determine conditions

under which  1(t) will arrive at xf before �1(t). Assume that xf < x0 < ~x0.

Consider the family of isoclines f(x; y) = C, where C 2 R. Each C-value represents the
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Figure 60: Numerical results showing the presence of tolerance for a host of di¤erent (~x0; ~y0) points for
the system 4.28 given in Example 8 compared to the other methods for pinpointing tolerance. The initial
condition for �(t) is (x0; y0) = (1; 0:25). Left Panel: The red curve is the time course for �1(t). The various
blue time courses of  1(t) for di¤erent (~x0; ~y0) points. The ~x0-value associated with each of the (~x0; ~y0)
points can be clearly seen. Right Panel: This �gure is reproduced from Example 8, showing both the
results from the linear methods from section 4.5.5 and the isocline method from Section 4.6.1. Compare the
~x0-values for the  1(t) curves on the left to the ~x0-values of the (~x0; ~y0) points that fall in the dark green
region shown on the right panel.
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speed of _x along each isocline f(x; y) = C. Let c� = inft2[0;t�)f _x(�1(t); �2(t))g, where [0; t�)

is such that �1(0) = x0 and �1(t�) = xf , so that t� is de�ned to be the time it takes for

�1(t) to go from x0 to xf . Also, let c = supt2[0;t )f _x( 1(t);  2(t))g, where [0; t ) is such

that  1(0) = ~x0 and  1(t ) = xf , so that t is the time it takes for  1(t) to go from ~x0 to

xf . Assume c� < 0 and c < 0 which makes c� the smallest or most negative isocline that

the trajectory �(t) passes through. Likewise, c is the largest or least negative isocline that

the trajectory  (t) passes through. Let

d� � �1(0)� �1(t�)

and

d �  1(0)�  1(t )

If C� and C are the actual speeds (both dependent on time) of �(t) and  (t), respec-

tively, then we know that

d� = jC�(t)jt�

and

d = jC (t)jt 

since distance is the product of speed and time. Using this along with jc�j and jc j, we

have the following inequalities:

d� � jc�jt�

and

d � jc jt 

Thus, if

(t� �)
d�
jv�j

>
d 
jc j

(� t ) then t < t�

and this implies tolerance. Although this condition is su¢ cient for tolerance, it is also quite

restrictive because it underestimates t and overestimates t�. In addition, the method is

tedious in practice since a separate estimate for each competing trajectory would have to be

calculated. Also, since we assumed that c� < 0 and c < 0 then _x < 0 at x0 and ~x0 and all
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along the respective trajectories. The case where _x > 0 at x0 can be approached in a similar

way by estimating the speed of the original trajectory after it intersects the _x nullcline and

_x < 0 ensues. This again will overestimate t�, even more so than the other case.
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5.0 USING NONLINEAR MODEL PREDICTIVE CONTROL TO FIND

OPTIMAL THERAPY STRATEGIES TO MODULATE INFLAMMATION

5.1 INTRODUCTION

Controlling in�ammation has become a key focal point in the treatment of critically ill

patients. Much of the theoretical work regarding this has been with the objective to unravel

the inner workings of systemic in�ammation and understand how the mediators interact with

one another with respect to their di¤erent time scales. [20, 112, 65] Signi�cant insight has

been acquired from these approaches and implications have been made regarding types of

treatment that may be e¤ective against persistent in�ammation. A main result coming from

this research con�rms that the timing of events, such as the production and decay of both

pro- and anti-in�ammatory mediators, is critical to �nding and implementing appropriate

therapies [28, 98].

When the issue of controlling in�ammation was initially pursued, the approach was to

target a sole in�ammatory mediator. It is now known, however, that there is no one mediator

which stands as the source for persistent in�ammation [13, 71, 15]. Instead, a cascade of

in�ammation occurs, which is, perhaps, started by a few key mediators but persists as a

result of a complicated feedback process involving mediators that are produced later than

the initial in�ammatory instigator. In addition, anti-in�ammatory mediators may be present

in elevated levels during prolonged in�ammation, but their e¤ect on the pro-in�ammatory

mediators may be small or negligible due to the relative amounts of in�ammation present in

the system.

There is still much to be done in the area of identifying proper biological targets in order

to develop therapies to combat excessive and pervasive in�ammation. However, equally
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necessary is determining a strategy for delivering therapies, in the correct amount, at the right

time. One of the tools that can help determine this complex dose regimen is Nonlinear Model

Predictive Control (NMPC). This area of research has mainly been applied to industrial

operations involving industrial systems that can be well described with a mathematical

model, usually a system of ordinary di¤erential equations.

The advantage of this procedure over other control algorithms is its ability to (1) pre-

dict the real system state at a future time, using a mathematical model, (2) receive actual

feedback from the system and (3) use both the prediction of the model and the feedback

from the system to suggest a control move that will help to optimize the desired outcome

for a speci�c plant variable (e.g. minimize temperature). In section 5.2, a more detailed

description of this approach is given. More recently, MPC has been used in biological appli-

cations involving the regulation of glucose supply in diabetic patients and in the exploration

of optimal dosing of Tamoxo�n for treating breast cancer [38, 89].

The application of NMPC discussed here, in the context of the in�ammatory response,

stretches the capability of this tool further than previous applications. The model that

we consider is a highly nonlinear system, which cannot be approximated well by any linear

system1, nor can the various rate coe¢ cients be identi�ed as easily from existing data. It

is also a model that is not as robust as those available for predicting the e¤ect of insulin on

glucose levels or the dynamics of tumor growth. In other words, because the in�ammatory

response is a very complex process involving positive and negative feedback, it is extremely

di¢ cult to predict the response of the various mediators to perturbations (i.e. to therapy)

made to one or more of the variables.

In this current exploration of NMPC, we chose to use a small (four equation) ordinary

di¤erential equations (ODE) model, the dynamics of which have been thoroughly explored in

[98]. There are two essential entities in an NMPC scheme: the process to be predicted and

the model predicting the process. The current exposition is completely simulation based,

meaning that it is necessary for the actual process, i.e. a patient�s immune response, to be

emulated by a model. Thus, the ODE model that we use will serve the dual purpose of not

1Many NMPC applications transform the nonlinear model describing a process into a linear model that
approximates the dynamics, symplifying the model complexity to optimize controller performance.
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only predicting patient data but generating the patient data as well. Hence, there are two

copies of the model equations.

Initially, it is assumed that the predictive model and the patient (model) are identical

with respect to equations, parameter values, and initial conditions. This is referred to as

the absence of patient-model mismatch. Later patient-model mismatch will be introduced in

some of the parameter values and initial conditions. The model we use is not sophisticated

enough to predict quantitative data in actual patients; however, there is currently much

work being done in this area, regarding the generation of models that predict quantitative

measurements of speci�c in�ammatory mediators, such as Tumor Necrosis Factor (TNF)

and Interleukin-6 (IL-6), or anti-in�ammatory cytokines, like Interleukin-10 (IL-10) and

Transforming Growth Factor-� (TGF-�), among others. The extension of NMPC to such a

model holds promise for suggesting optimal therapies and dosing pro�les in actual patients.

The process of getting from the initial results to the current results was a rather involved

one, including many di¤erent paths which cannot all be explained here. However, it is

instructive to see a portion of the di¤erent strategies that were implemented along the way

and the corresponding results and explanations for the modi�cations that were made from

one change to the next. Indeed, the process will still continue as the method is re�ned and

becomes better understood in the context of this problem. While this chapter is only based

on in silico simulation studies, it is an ambitious and enthusiastic e¤ort toward bringing

model-based immunomodulation strategies closer to the bedside of the critically ill.

5.2 METHODS

Nonlinear Model Predictive Control is a methodology for creating a class of control algo-

rithms which encompasses several principles. These principles include the use of a model

that describes a certain process to make predictions about future process behavior, in order

for recommendations to be made regarding a corrective action to direct the predicted per-

formance closer toward a preferred outcome [86]. As such, schemes of this nature are ideal

for industrial processes that can typically be well described by a set of equations. In fact,

NMPC has been used on industrial applications since the 1970�s.
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Recently, NMPC has also been used in the somewhat less concrete area of medicine, where

it is more di¢ cult to develop accurate models that describe biological processes. The use of

an underlying model for prediction is the key feature that makes the use of this class of control

schemes so appealing. In addition, because the algorithm takes into account the di¤erences

that are expected to exist between the model and the actual process, the underlying model

may not need to make perfect predictions. However, the question �How accurate does the

core model need to be?� remains open. In this chapter, we explore this question in the

setting of therapy administration in a reduced model of the acute in�ammatory response to

pathogen. It will be shown that when mismatch between the model and the patient exist,

mechanisms need to be put into place in order to maintain the predictive accuracy of the

underlying model.

In every NMPC algorithm, there are essential elements that must exist [86]. Below,

we outline and describe them, using examples from our NMPC setup and the ordinary

di¤erential equation model [98] given below by equations 5.1-5.4.

dP

dt
= kpgP (1�

P

p1
)� kpmsmP

�m + kmpP
� kpnf(NA)P; (5.1)

dN�

dt
=

snrR

knr +R
� �nN

�; (5.2)

dD

dt
= kdn

f(N�)6

x6dn + f(N�)6
� �dD; (5.3)

dCA
dt

= sc + kcn
f(N� + kcndD)

1 + f(N� + kcndD)
� �cCA (5.4)

where

R =
(knpP + kndD + knnN

�)

1 + (CA=c1)2
;

f(x) =
x

1 + (CA=c1)2
;

I. The Speci�cation of a Reference Trajectory

The reference trajectory de�nes the target level that we would like our process output

variables to eventually achieve. For instance, in our model, we would like damage to

eventually decrease back down to zero, if it is currently at an elevated state. So, our

reference trajectory for damage might be the constant function, RD(t) = 0, or it might be
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a function gradually decreasing to the target value, perhaps even in a step-wise fashion.

The reference trajectory can be thought of as the outcome goal that is desired. It is used

in the objective function to de�ne what is to be optimized, or more speci�cally, in our

case, what is to be minimized.

II. The Prediction of Process Output

Prediction of process behavior (i.e. patient data) is accomplished via the underlying

model. In our case, this is a reduced ordinary di¤erential equation model, given by

5.1-5.4, describing the process of the acute in�ammatory response to pathogen.

III. The De�nition of an Objective Function

The objective function de�nes the goals to be achieved by an optimizer routine, which is

an algorithm for locating the values at which the objective function reaches a minimum

(or maximum) given constraints on the function variables. (See IV below.) The objective

function(s) used in this chapter have the typical two norm squared form, k�k22 [78]. In

addition, the objective function penalizes the change in doses, �u, as well as the actual

dose amount, u. Ultimately, the minimization of the objective function is achieved by

selecting only �u, since u is uniquely speci�ed by the sequence of dose changes.

IV. The Computation of a Sequence of Control Actions

Using the model to predict future values of the system�s response to changes in input,

an optimal sequence of control moves (i.e. input changes) are sought that will bring the

speci�ed output variables as close as possible to the reference trajectory. The control is

simply an input into the ODE system, calculated in such a way as to achieve the desired

goal. For example, in our model, there is a positive control term in the anti-in�ammatory

equation which represents an anti-in�ammatory therapy. Thus, the goal might be to �nd

the right amount of anti-in�ammatory therapy which will minimize the distance between

the predicted levels of damage and the reference trajectory for damage, over a speci�ed

prediction window, h, given constraints on the dosing.

Practically, this is accomplished via the use of the fmincon algorithm made available by

MatLab [72]. This algorithm �nds a minimum of a constrained nonlinear multivariable

function. In other words, it solves what is commonly known as a nonlinear programming

problem. In particular, fmincon uses a sequential quadratic programming method. For
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more information, see [73]. The number of control moves, m, that are allowed during

the prediction horizon, h, can also be speci�ed. If the algorithm is set so that the model

predicts out to h = 24 hours and therapy is administered on an hourly basis, m is number

of control actions (doses) to be computed in order to minimize the objective function over

24 hours. Ifm < h, which is typically the case, then themth control move is held constant

for the remainder of the prediction window, in determining the system�s response to the

input given over this time frame. See the MPC schematic given on page 997 of [86].

Thus, in our simulations, the objective function is minimized over all possible values of

�u for m control moves over a prediction window, h. Only the �rst control move is

then implemented as the dose for the current hour, after which the algorithm moves on

to �nd the dose for the next hour.

V. Error Prediction Update

A very important element of the algorithm is in this error prediction step. Error predic-

tion is implemented to correct the imbalance that may exist between patient data and

the current state of the model (i.e. when there is patient-model mismatch). After the

current control action is implemented in both the process and the model, a current mea-

surement, M(k), of the process is taken and compared to the current model state, p(k),

where k is the current time step in the algorithm. This error quantity, M(k)� p(k), is

then used to update upcoming predictions used to calculate the dose for the next hour.

It is minimized as a part of the objective function terms pertaining to the output vari-

ables being measured. (Note that while it is technically feasible to have all the model

variables designated as output variables that can be measured, in reality this is typically

not the case.)

In our NMPC scheme, when a mismatch exists, updating is done di¤erently. This is

due to the fact that in these particular instances, the variables which can be realistically

measured are not those that appear in the objective function. For instance, we may wish

to minimize damage (D) and pathogen (P ), while only having access to measurements

of the levels of activated phagocytes (N�) and the anti-in�ammatory mediator (CA).

Hence, the di¤erence in the measurements between the patient data for N� and CA

and the current model values for these two mediators cannot be worked into an objective
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function that contains only terms for the damage and pathogen variables. The strategies

we explore for this situation are discussed later in the context of speci�c con�guration

types where it applies.

On page 997 of [86], a schematic is given that aptly illustrates some of the elements of an

MPC algorithm. For equations 5.1-5.4, there are three states (outcomes) that are possible

given certain parameter values and initial pathogen levels [98]:

1. Healthy: Healthy is de�ned as the state in which pathogen has been eliminated and the

mediators have returned to their baseline levels at the end of the simulation time.

2. Aseptic: Aseptic is de�ned as the state in which pathogen has been eliminated, yet both

the pro-in�ammatory and anti-in�ammatory mediators are at elevated levels at the end

of the simulation time.

3. Septic: Septic is de�ned as the state in which all mediator levels, as well as pathogen

levels, are elevated at the end of the simulation time.

Through the use of the NMPC control algorithm, proper therapy dosing pro�les are

identi�ed in order to correct in�ammatory responses that would result in either the aseptic

or septic scenarios in the absence of any controller based therapy. The resulting therapy

found by the control algorithm is referred to as targeted therapy. In addition, the aim also

includes not harming those patients whose in�ammatory response resolves to the healthy

state in the absence of targeted therapy. It is also assumed that basic therapy, including

the administration of antibiotics, resuscitation of �uids, and so forth, are implicitly modeled

in system (5.1)-(5.4). This means that the various outcomes mentioned above can occur

despite administration of basic treatment. This assumption is made due to the small size

of the model.

The algorithm we use is a modi�ed version of that used by Florian et al. in [38], acquired

through [37]. The initial algorithm underwent many customized modi�cations throughout

the di¤erent stages of this NMPC exploration for in�ammation, which are discussed through-

out this chapter. Much thanks are owed to Je¤Florian and Robert Parker of the University

of Pittsburgh�s Chemical Engineering Department for the suggestion to apply NMPC, specif-

ically, to the problem at hand, for making an algorithm available, and for their very helpful
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assistance in the beginning stages of becoming familiar with the NMPC methodology and

the speci�c algorithm. In all of the simulations that we discuss, the total simulation time is

168 hours (1 week). In addition, k is an hourly step, so doses are given on an hourly basis

and administered as instantaneous injections.

5.3 RESEARCH AND DEVELOPMENT PHASE

Having established the general components of the NMPC scheme and the basic behaviors

present in the model, we now discuss the metamorphosis of the algorithm through the various

exploratory stages of �nding therapeutic strategies to correct the septic and aseptic scenarios

previously discussed. In the initial investigations, it is assumed that the process, i.e. the

patient, and the model describing the process/patient are one and the same. Later, a mis-

match between the two is introduced, since such an incongruity is more realistic. There are

other di¤erences between the various con�gurations and each will be explained separately in

detail.

5.3.1 Con�guration 1: No Mismatch; 1 Therapy

In this setup, there is no patient-model mismatch. Hence, we will generically refer to

the �system� instead of the model and the patient, separately, until a later setup when

we introduce di¤erences between the two. The model equations (5.1)-(5.4) are numerically

integrated from a given initial condition for 6 hours. After this time, therapeutic intervention

is initiated by way of the NMPC algorithm. We assume that at this time point the system

is not yet in a state of �mortality�and that therapeutic intervention is a feasible option.

For this setup, anti-in�ammatory therapy is explored. It is modeled in the equation of

the anti-in�ammatory mediator, CA, as a positive source term, AIDose:

dCA
dt

= sc + kcn
f(N� + kcndD)

1 + f(N� + kcndD)
� �cCA + AIDose.

Furthermore, there are constraints which prevent dosing from going negative, meaning that

therapy can be infused into the system but not extracted. Later, we explore the possibility
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of "extraction therapy." The maximum dose amount of therapy allowed at a given step is

calculated as the di¤erence between the current level of CA and CAMax = 0:6264. The value

for CAMax was chosen based on the analysis done in [98] on the subsystems of equations

(5.1)-(5.4), namely the Damage-Pathogen subsystem. Values of CA higher than 0:6264 cause

the system to exhibit nonbiological behavior. Thus, this maximum level of CA is imposed

to ensure that the NMPC results remain plausible.

The objective function in this setup contains terms to penalize the following: damage

levels (D), pathogen levels (P ), changes in dosing (�u), and total amount of drug delivered

(u). As mentioned, the objective function uses the standard two norm squared:

k�DDk22 + k�pPk
2
2 + k��u�uk

2
2 + k�uuk

2
2 (5.5)

The �-parameters are weighting constants, which can be used to emphasize the importance

of one term over another.

The variables D and P are also the output variables that are measured from the patient.

However, because there is no patient-model mismatch in this case, there is no di¤erence

between the current measurement, M(k), of the damage and pathogen levels in the patient

and the current model state for damage and pathogen. Thus, the predicted error is zero.

For this case, we experimented with a range of values for m and h, deciding on m = 2 and

h = 24. In general, there is no systematic way to choose the various controller "tuning

parameters" which include m, h, and the weighting parameters present in the objective

function.

Summary for Con�guration 1:

� No patient-model mismatch

� One Therapy: Anti-in�ammatory therapy (no extraction) given on an hourly basis

� Measured patient output variables: D and P

� Objective function: k�DDk22 + k�pPk
2
2 + k��u�uk

2
2 + k�uuk

2
2

� m = 2 and h = 24

� � weighting constants: various values explored

� CAMax = 0:6264

� Pathogen growth rate values: Aseptic scenario: kpg = 0:514; Septic scenario: kpg = 0:52
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� Initial conditions for simulations: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

To arrive at the speci�c con�guration given in Setup 1, there were a number of prior

con�gurations that led us to this one. For instance, for a time, we only considered one

output variable (measurable), namely D, which was also the only model variable appearing

in the objective function. However, it became apparent that if minimizing pathogen was

not also a part of the objective, then the algorithm would do its best to minimize damage

by administering the anti-in�ammatory therapy; however, this would only prevent the in-

�ammation from trying to eradicate pathogen on its own. Instead, pathogen would grow

uncontrolled because in�ammation was being suppressed by treatment. This, obviously,

was not ideal, so there needed to be a modi�cation to let the algorithm know that it was

important to minimize both damage and pathogen.

This, however, introduces a di¢ cult challenge: maintaining a balance between these two

objectives. An emphasis on minimizing damage, as mentioned, might lead to unrestricted

pathogen growth. On the other hand, an emphasis on minimizing pathogen might lead to

an overzealous immune response bent on eliminating pathogen as soon as possible whatever

the costs, after which it might be too late to bring the in�ammation back down. The

latter di¢ culty becomes more apparent in Con�guration 3 on page 209 where both pro- and

anti-in�ammatory therapies are considered.

The term in the objective function, k�uuk22, responsible for penalizing total therapy

administered, was also something not initially included. In preliminary experiments, the

control was essentially overdosing the system with therapy. In other words, the therapy

would continue to be given even after it was clear that the model dynamics were responding

favorably to treatment (i.e. the reference trajectory was being reached) and would only need

time, not more therapy, to resolve to the healthy state. This problem occurred because of

the third term, k��u�uk22, in the objective function 5.5 that penalizes the change in dose,

�u, from one step to the next. Once the reference trajectory was reached, the controller�s

strategy to minimize the objective function focussed on not making any more dose changes,

(i.e. �u = 0 ) and so the current dose would stay at its current level for the remainder of

the simulation. Hence, it became necessary to add a fourth term, k�uuk22, in 5.5, which

penalizes the amount of drug delivered. This way, once the reference is reached, there will
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be competing objective function penalties: one hindering alterations in dose level and one

attempting to reduce how much drug is delivered. This allows the system to taper o¤ to

zero administered drug [37].

In addition, the maximum level on CA was not implemented until some of the results

we were getting did not appear to be in line with normal model behaviors. Our early

experiments led to the speci�cation of an upper bound on the amount of therapy allowed at

the current dosing step. This maximum allowable dose is calculated based on the current

level of the anti-in�ammatory mediator. For the model parameter values established in [98],

the amount of CA in the system can reach a maximum level, speci�cally, CAMax = 0:6264,

before a break down occurs in the model dynamics established in the subsystems used to

build the model. See [98] for more details.

The manner in which therapeutic intervention was initiated was another aspect that

evolved in the process of settling on Con�guration 1. In prior simulations, the starting

point for initiating therapy was quite di¤erent. The initial pathogen level and pathogen

growth rate were chosen so that in the absence of any therapy, the system would end up

aseptic. A second pathogen load was introduced as the system approached the aseptic state �

simulating a secondary infection. It was assumed that at the onset of the secondary infection,

the system was not yet in a state of �mortality�and hence therapeutic intervention was a

feasible option. Immunomodulation was then initiated after the onset of the secondary

infection instead of simply after a speci�ed amount of time (6 hours), as is the case for

Con�guration 1.

Initiating immunomodulation in the previous manner was

1. more complicated than what we wanted an initial exploratory simulation to be, and

2. would not apply in the future, when patient-model mismatch is introduced.

For reason (2), there would be a need for treatment to be initialized, other than at the

onset of an infection, either initial or secondary. Hence, it was determined that for the setup

in Con�guration 1, 6 hours was enough time for the system to evolve "naturally" from its

initial state so that treatment is not started at time zero, an unlikely scenario. However, 6

hours is soon enough after the onset of infection for treatment to still be a possibility and
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not a time when the patient is in a physiologic state beyond the point of intervention. Since

there are outward signs such as fever, elevated heart rate, etc, that can alert physicians to the

presence of an infection, we equated semi-elevated levels of N� at 6 hours with being "sick

enough" to warrant the initiation of targeted therapy. Again, we reiterate our assumption

that model dynamics incorporate basic care, such as antibiotics, �uid resuscitation, etc, and

that the patient�s condition at 6 hours is in spite of (or, perhaps, even because of) this earlier

basic treatment.

5.3.2 Con�guration 2: No Mismatch; 2 Therapies

In Con�guration 2, there is again no patient-model mismatch. Thus, again, we refer to the

�system�instead of the model and the patient, separately. Like Con�g. 1, after 6 hours of

running (numerically integrating) the system, therapeutic intervention is initiated by way of

the NMPC algorithm.

Although the original NMPC algorithm was written to handle more than one control

input, it had only been used and tested for one control input. Thus, there were some

errors that needed to be worked through in order for the code to work properly in the case

of two inputs, which this setup considers. The therapy for this setup includes both an

anti-in�ammatory therapy, present as a source term (+AIDose) in the equation of the anti-

in�ammatory mediator, CA, as well as a pro-in�ammatory therapy, present as a source term

(+PIDose) in the equation for activated phagocytes, N�:

dN�

dt
=

snrR

knr +R
� �nN

� + PIDose

dCA
dt

= sc + kcn
f(N� + kcndD)

1 + f(N� + kcndD)
� �cCA + AIDose

As was the case for Con�g. 1, constraints are de�ned which prevent dosing from going

negative, meaning that therapy can be infused into the system but not extracted. Our

objective function contains terms to minimize the following: damage levels, D, pathogen

levels, P , changes in dosing (�u1 and �u2) and total therapy given (u1 and u2) for both CA

and N�, respectively:

k�DDk22 + k�pPk
2
2 + k��u1�u1k

2
2 + k��u2�u2k

2
2 + k�u1u1k

2
2 + k�u2u2k

2
2 (5.6)
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Again, the �-parameters are the weighting constants. The maximum dose amount of anti-

in�ammatory therapy allowed at a given step is calculated as the di¤erence between the

current level of CA and CAMax = 0:6264. The maximum dose amount of proin�ammatory

therapy allowed at a given step is calculated as the di¤erence between the current level of

N� and N�Max = 2:0. The maximum was chosen based on average levels of N�; however,

in later simulations we will see that this maximum level is too high.

The variables D and P are also the output variables that are measured from the patient.

However, because there is no patient-model mismatch, there is no di¤erence between the

current measurement, M(k), of the damage and pathogen levels in the patient and the

current model state for damage and pathogen. Thus, the predicted error is zero. For this

case, we experimented with a range of values for m and h, deciding on m = 2 and h = 24

for the results shown.

Summary for Con�guration 2:

� No patient-model mismatch

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions)

� Measured patient output variables: D and P

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k

2
2+k��u2�u2k

2
2+k�u1u1k

2
2+k�u2u2k

2
2

� m = 2 and h = 24

� � weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 2:0

� Pathogen growth rate values: Aseptic scenario: kpg = 0:514; Septic scenario: kpg = 0:52

� Initial conditions for simulations: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

5.3.3 Con�guration 3: Patient-Model Mismatch; 2 Therapies

Unlike that of Con�gurations 1 and 2, here, in Con�guration 3, patient-model mismatch is

introduced, with respect to several model parameters and two initial conditions. Patients are

"generated" with varying pro�les, meaning that some of the parameters used in the model

representing Patient X are di¤erent from those of the underlying predictive model and are
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di¤erent from pro�les of other generated patients. Several parameters in the equations 5.1-

5.4 are identi�ed as reasonable parameters for which variability may exist from patient to

patient. These parameters include those given in Table 9. Note that initial conditions P0

and CA0 are treated as parameters here.

The values in [98] used for the parameters shown here in Table 9 (except for the values

of P0 and kpg) are considered here as the "mean" values. Furthermore, variability for the

ranges was chosen to be +=� 25% of the mean, for those parameters that had "estimated"

values in [98]. For these parameters, the range of variability is calculated so that +=�25% of

the mean value is two standard deviations on either side of the mean. Then, when a patient

pro�le is generated, values from this range are chosen randomly with a normal distribution.

For the parameter kpg, where a range is available (see [98]), values from this range are chosen

randomly with a normal distribution, where the lower and upper bounds on kpg are assumed

to be two standard deviations from the mean.

Any randomly generated values that fall outside of the range of variability are discarded

and another value is generated, until a value is found that falls in the range of variability.

Hence, the parameter values are chosen with a "normal-like" distribution because of the

upper and lower bounds of the variability ranges. In addition, some parameters are chosen

to co-vary. This means that if paramters p1 and p2 co-vary and the value chosen for p1

is +n% of its mean value, then the generated value for p2 should also be +n% of its mean

value. For example, the variability in kcnd, the production of the anti-in�ammatory mediator

(CA) by damaged tissue (D), is to vary by the same percentage as kcn, the production of

CA by activated phagocytes (CA), so that one is not relatively producing more or less (CA)

than the other.

The simulation results for this con�guration are not viewed in graph format as those

done for Con�gurations 1 and 2 above. Instead, the individual outcomes (healthy, aseptic,

septic) from each simulation are tallied and reported as percentages of the total number of

patients treated with targeted therapy. The �rst step in this process is generating the patient

population, which is accomplished by selecting parameters in the way described above. This

creates a "pro�le" for an individual patient. This is repeated for the total number of patients

to be considered. In this case, there will be 1000 patients.
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Table 9: Model parameters in which variability was assumed in the patient-model mismatch case given by
Con�guration 3. Patient parameters are generated by choosing a normally (normal-like) distributed random
value from the given ranges.

Name Patient Parameter
Ranges

Mean Description

P0 0.0-1.0 0.5 Initial condition of pathogen (P )
CA0 0.0938-0.1563 0.125 Initial condition of the anti-in�ammatory me-

diator (CA)
kpg 0.021-1.0 0.5105 Growth rate of pathogen (P )
kcn 0.03-0.05 0.04 Maximum production of anti-in�ammatory

mediator (CA)
knd 0.015-0.025 0.02 Activation of phagocytes by tissue damage

(D)
knp 0.075-0.125 (Co-varies

w/ knd)
0.1 Activation of phagocytes (N�) by pathogen

(P )
kcnd 36.0-60.0 (Co-varies

w/ kcn)
48.0 Controls relative e¤ectiveness of activated

phagocytes (N�) versus damage (D) in the
production of the anti-in�ammatory mediator
(CA)

knn 0.0075-0.0125 (Co-
varies w/ knd)

0.01 Activation of phagocytes (N�) by already ac-
tivated phagocytes (N�) (or the cytokines
that they produce)
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As discussed in Con�guration 2 on page 208, the time at which intervention is initiated

becomes an issue for consideration when there is patient-model mismatch. This is because

in the case of mismatch, many patients are considered, and it no longer seems realistic to

initiate therapy at the exact same time in each patient. In fact, for some patients, 6 hours

into the infection might not be long enough for signs of the infection to show, whereas in

others, 6 hours might be too late. Therefore, the intervention time in Con�guration 3 is

based on the level of N�. If a patient�s N� level rises above a certain threshold, then the

patient is deemed "sick enough" to receive targeted therapy. This implies a biomarker

driven approach to initiating therapeutic intervention. This implementation, however, is

not without its caveats. For instance, how should the threshold be chosen? This question

is likely to be answered di¤erently depending on the physician one talks to. In the current

exploration, an N� threshold of 0.1 was selected, since this amount was a considerable

elevation for this variable in a simulation having a septic or aseptic endpoint.

Like Con�guration 2, the therapy for Con�guration 3 includes both an anti-in�ammatory

therapy, present as a source term (+AIDose) in the equation of the anti-in�ammatory

mediator, CA, as well as a pro-in�ammatory therapy, present as a source term (+PIDose)

in the equation for activated phagocytes, N�:

dN�

dt
=

snrR

knr +R
� �nN

� + PIDose

dCA
dt

= sc + kcn
f(N� + kcndD)

1 + f(N� + kcndD)
� �cCA + AIDose

As was the case for Con�g. 1, constraints are de�ned which prevent dosing from going

negative, meaning that therapy can be infused into the system but not extracted. As

before, the objective function, given by (5.6), contains terms to minimize the following:

damage levels, D, pathogen levels, P , changes in dosing (�u1 and �u2) and total therapy

given (u1 and u2) for both CA and N�, respectively.

The maximum dose amount of anti-in�ammatory therapy allowed at a given step is

calculated as the di¤erence between the current level of CA and CAMax = 0:6264. The

maximum dose amount of proin�ammatory therapy allowed at a given step is calculated as

the di¤erence between the current level of N� and N�Max = 1:0. The maximum was chosen

based on average levels of N� during a moderate to severe infection and the fact that the
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value used in Con�g. 1 (N�Max = 2:0) was too high. However, in later simulations, we

will see that even this reduced maximum level is probably too high.

For this con�guration, it is N� and CA that are designated as the output variables to be

measured, instead of the variables D and P . This change was incorporated because damage

is a di¢ cult, if not impossible, variable to quantify and measure in clinical settings, and it

is unlikely that a measurement of the pathogen population could be made at all, much less

made every hour. However, we still want the algorithm to focus on minimizing damage and

pathogen levels. Because of this, typical error prediction and updating procedures cannot

be employed here, as was brie�y discussed in point V: Error Prediction Update on page 202.

The di¤erence in the measurements, between the patient data for N� and CA and the current

model values for these two mediators, cannot be worked into an objective function that only

contains mediator prediction terms for the damage and pathogen variables. This becomes

very important, now that we have introduced patient-model mismatch, and the underlying

model is now di¤erent from the patient model, with respect to parameter values and starting

conditions.

Thus, to address this, the model state for N� and CA is synchronized with the current

patient data measurements forN� and CA, right after the prescribed dose for the current hour

has been implemented in the model and in the patient and before the next measurements

are taken. Thus, in essence, hourly measurements are taken of the patient�s levels of N�

and CA and the model is updated with these values.

The underlying model drives the design of the therapy that is chosen to be implemented in

the patient, with measurements taken from the patient to correct for mismatch. Therefore,

the accuracy of the underlying model is important. Note, however, the updating scheme

described in the last paragraph does not address any possible discrepancies between the

model and patient with respect to levels of damage and pathogen, both of which are the

cause for pushing the system toward an unhealthy endpoint.

Thus, in the initial exploration of this con�guration, it was determined that the model

parameters for those given in Table 9 on page 211, speci�cally P0 and kpg, were not chosen

well enough to accurately represent those patients who were on the path to a septic or

aseptic outcome. In other words, the therapy regimens that the controller was �nding were
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being based on an underlying model that normally would resolve to healthy, being able to

eliminate pathogen and damage even in the absence of therapy. So, in many cases, the

levels of pathogen were still elevated in the patient, but not in the model. Such a mismatch,

between model and patient, was not adequately being taken care of with the synchronization

of the N� and CA values in the model with the patient measurements.

As a �rst attempt at addressing this issue, the model was conditioned to be more rep-

resentative of a sicker patient, by increasing the model�s pathogen growth rate, kpg. This

makes the pathogen more powerful in the model, and thus, the resulting therapy would be

more applicable to patients which experienced a stronger, more persistent infection. How-

ever, this change only indirectly addresses the problem when pathogen levels in the patient

and model are vastly di¤erent. It became apparent from the results of this con�guration that

some kind of updating involving pathogen would need to be included, without directly syn-

chronizing the model pathogen levels with a measurement of pathogen levels in the patient.

This is addressed in the next con�guration. Finally, for this con�guration, we experimented

with a range of values for m and h, deciding on m = 2 and h = 24 for the results shown.

Summary for Con�guration 3:

� Patient-model mismatch

� 1000 patients considered, with di¤ering pro�les (i.e. di¤ering values for the parameters

shown in Table 9 on page 211

� Patient pro�les are generated by choosing a normally (normal-like) distributed random

value from a speci�ed range for six selected parameters and two initial conditions.

� Therapy is initiated in the patient when N� levels reach a threshold of 0:1.

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions), given

on an hourly basis

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k

2
2+k��u2�u2k

2
2+k�u1u1k

2
2+k�u2u2k

2
2

� �-weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 1:0

� Measured patient output variables: N� and CA
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� Model kpg = 0:8

� Model initial conditions: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

� Patient initial conditions: (P0; N�; D;CA) = (P0-random; 0; 0; CA0-random)

� m = 2 and h = 24

5.3.4 Extraction Therapy Considered

Before explaining the various changes made for the next con�guration, we take a brief mo-

ment to discuss a side path that was explored between Con�guration 3 and Con�guration

4. This involved the consideration of "extraction therapy" with respect to both the pro-

and anti-in�ammatory therapies. Each could be administered not only in a positive way

(addition to the system), but also negatively (extraction from the system). Technically, this

means that the algorithm was allowed to �nd changes in the doses (�u1 and �u2) that

caused the doses (u1 and u2) to be a negative quantity, implying that CA and/or N� were

being removed from the patient. Hence, because each therapy can be given and taken out,

there are essentially four therapies that can be employed.

However, the consideration of four therapies is more unrealistic than the previous con-

�gurations. In the initial experimentation with the use of four therapies, it quickly became

apparent that the extra "knobs" available for turning the levels of CA andN� up and/or down

were too powerful for the size of model being used. The usual strategy the controller would

exercise would be to promote in�ammation by giving pro-in�ammatory therapy and extract-

ing some of the anti-in�ammatory mediator to ensure pathogen was eliminated. Then, when

pathogen was under control, the controller would extract the pro-in�ammatory mediator and

give anti-in�ammatory therapy in order to bring down the in�ammation previously created,

thereby helping the patient resolve to healthy.

This is illustrated in the Figure 61, showing a patient treated with this "4-knob" therapy

(targeted therapy shown in blue). The patient would have otherwise ended up in a septic

state (placebo shown in red). The therapy dosing strategy described above can be seen

in the last row of Figure 61. The left panel of the last row is the pro-in�ammatory doses

and the right panel is the anti-in�ammatory doses. The therapy is hugely successful in
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preventing the patient from ending up in the septic case.

Figure 61: A sample simulation from a simulation incorporating four therapies. These include the
addition as well as the extraction of pro- and anti-in�ammatory therapy, PI and AI, respectively. A di¢ cult
scenario, that would otherwise end up septic (red curves) is managed very well by the algorithm (blue curves,
�rst 4 panels) with the use of the four therapies. The PI doses are shown in the left panel of the last row.
The AI doses are shown in the right panel of the last row. Both are shown over a 24 hour period, after
which no more doses are given.

Although it was interesting to explore this con�guration and encouraging to know that

the therapy regimen generated by the algorithm made sense, a four therapy strategy like

this one is not one that can realistically be discussed at this time. Methods for extracting

cytokines and other molecules from a patient�s bloodstream are still in the very early stages

of development. Furthermore, in a model the size of the one we are using, although the

dynamics are complex, there is only so much that can happen in response to input. In

a larger model, input to one variable might not imply a global-like a¤ect on the system

dynamics. However, in a small model, inputs tend to a¤ect the entire dynamics, so it is

somewhat arti�cial to allow the consideration of too many therapies. Thus, we return to the

two therapy con�guration, but make additional changes, speci�cally to address the mismatch

regarding pathogen and also to add some realism with respect to the length of time that the
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anti-in�ammatory mediator can stay elevated from the addition of therapy.

5.3.5 Con�guration 4: Patient-Model Mismatch; 2 Therapies; Pathogen Up-

date; CA therapy cap

In Con�guration 4, the patient parameters are generated slightly di¤erently than in Con�g-

uration 3. During the many simulations conducted with Con�guration 3, it became clear

that the patient placebo outcomes were primarily being driven by the patients�values of

the pathogen growth rate, kpg, and the initial pathogen load, P0. To address this problem,

we �rst modi�ed the patient generator scheme so that the selected parameters are chosen

randomly with a uniform distribution rather than a normal distribution from the speci�ed

variability ranges.

This allows more variability in parameter selection, since, with a uniform distribution, all

the values in a range are equally likely to be chosen. In addition, the range for the pathogen

growth rate, kpg, was modi�ed so that the placebo outcomes in the patient population are not

driven primarily by kpg and P0, but by the parameter pro�le as a whole. Also modi�ed was

the N� threshold for intervention: from 0:1 down to 0:05. The scatterplot shown in Figure

62 depicts patient placebo outcomes with respect to corresponding kpg and P0 levels. The

scatterplot shows that the new range for kpg, along with the reduced N� threshold, allows

a signi�cant degree of overlap between outcome possibilities in the kpg-P0- plane, meaning

that parameters other than P0 and kpg are driving the outcome in a signi�cant number of

individuals. Table 10 on page 219 shows the patient parameter ranges again with an updated

range for kpg.

Another signi�cant change made for Con�guration 4 is with respect to the issue men-

tioned in Con�guration 3, regarding the case when pathogen levels in the patient and

model are vastly di¤erent. An updating strategy is necessary; however, directly measuring

pathogen levels in the patient and synchronizing the model with this value is unrealistic and

arti�cial. Hence, we added an update that notes the level of pathogen

1. in the patient when it increases above a speci�ed threshold, and

2. in the model when it is under a certain small threshold.
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Figure 62: The scatterplot showing the distribution of patient outcomes with respect to kpg and P0. For
the given ranges of kpg and P0 the various outcomes (healthy, aseptic, and septic) of the patient pro�les in
the placebo case are well mixed in the P0-kpg plane. Thus, P0 and kpg are not the primary driving force of
patient outcome.

218



Table 10: Model parameters in which variability was assumed in the patient-model mismatch case given
by Con�guration 4. Patient parameters are generated by choosing a uniformly (uniform-like) distributed
random value from the given ranges.

Name Patient Parameter Ranges Description

P0 0.0-1.0 Initial condition of pathogen (P )
CA0 0.0938-0.1563 Initial condition of the anti-in�ammatory me-

diator (CA)
kpg 0.3-0.6 Growth rate of pathogen (P )
kcn 0.03-0.05 Maximum production of anti-in�ammatory

mediator (CA)
knd 0.015-0.025 Activation of phagocytes by tissue damage

(D)
knp 0.075-0.125 (Co-varies w/ knd) Activation of phagocytes (N�) by pathogen

(P )
kcnd 36.0-60.0 (Co-varies w/ kcn) Controls relative e¤ectiveness of activated

phagocytes (N�) versus damage (D) in the
production of the anti-in�ammatory mediator
(CA)

knn 0.0075-0.0125 (Co-varies w/ knd) Activation of phagocytes (N�) by already ac-
tivated phagocytes (N�) (or the cytokines
that they produce)
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If 1: and 2. above occur at the same time, then the pathogen level of the model state

is reset to a higher level compared to the pathogen state at which it is currently. This can

be looked at as a type of re-initialization of the pathogen value in the model. Although

this strategy does use a measurement of the patient�s pathogen values, we note that this

is the only way that the current simulation setup can detect the presence of a persistent

infection. In a clinical setting, a physician can see outward signs that an infection is still

raging, i.e. fever, elevated heart rate, etc. Thus, because we are not directly setting the

model�s pathogen state to the value "measured" in the patient, the updating strategy is a

reasonable way to alert the algorithm of the case when pathogen levels in the patient are

high and those in the model are not. Practically, the levels of pathogen are checked every

four hours and if the criteria are met, the model state for pathogen is reset to its initial value

of 0:5.

As we worked through the process of developing one con�guration to the next, making

the algorithm more realistic was one of the main goals. Therefore, when it was noticed

that the amount of anti-in�ammatory therapy given to patients would sometimes cause the

levels of the anti-in�ammatory mediator to stay elevated for very long periods of time, a

mechanism to prevent this needed to be put in place. This problem usually happens in

scenarios when in�ammation is high after the eradication of pathogen, and the production

of anti-in�ammation by in�ammatory mediators causes the levels of CA to be elevated as

well. Then, when the anti-in�ammatory therapy is given, pushing the level of CA up to the

maximum allowable level, it does not have an immediate e¤ect on bringing in�ammation

down. Thus, the therapy would have to be continually given in an attempt to essentially

saturate the system with as much CA as possible for as long as possible.

This, however, is not a realistic treatment regimen, since clinicians are careful not to

purposely induce a state of immunosuppression in patients, which would make them suscep-

tible to secondary infections. In order to address this issue, a mechanism was put into place

so that if the level of CA remains constant for more than 48 hours, the maximum allowable

amount of CA is reduced by half. In some cases, this means that patients who fall into this

category might end up aseptic instead of healthy since the amount of in�ammation in their

system is decreasing, and the amount of in�ammation, that may have been decreasing with
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the elevated CA levels, will once again rise. However, as mentioned, the alternative is not a

realistic one.

The last change made from the previous con�gurations is the reduced value of the predic-

tion horizon, h, from 24 to 8 hours. It was determined that an 8 hour prediction window was

long enough to capture essential model dynamics and it also decreased the computational

time for running the algorithm on 1000 patients. The value of h (as well as m) may have

to be reconsidered in future con�gurations, especially since computational time has become

less of an issue, due to the resources now available.

This con�guration, while the most sophisticated of those presented, is not without its

di¢ culties, as will be shown in the Results section. Hence, also included in the Results sec-

tion after the outcomes for Con�g. 1-4 are presented, are several ideas and a few preliminary

results for future con�gurations that address some of the issues brought up by Con�guration

4.

Summary for Con�guration 4:

� Patient-model mismatch

� 1000 patients considered, with di¤ering pro�les (i.e. di¤ering parameter values)

� Patient pro�les generated from choosing a uniformly distributed random value from a

speci�ed range (ranges shown in Table 10 on page 219)

� N� threshold = 0:05 (for determining when to initiate therapeutic intervention)

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions), given

on an hourly basis

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k

2
2+k��u2�u2k

2
2+k�u1u1k

2
2+k�u2u2k

2
2,

where the following are being minimized: damage levels, D, pathogen levels, P , changes

in dosing (�u1 and �u2) and total therapy given (u1 and u2) for both CA and N�,

respectively.

� �-weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 1:0

� Measured patient output variables: N� and CA
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� Model kpg = 0:8

� Pathogen update mechanism

� 48 hour CA cap

� Model initial conditions: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

� Patient initial conditions: (P0; N�; D;CA) = (P0-random; 0; 0; CA0-random)

� m = 2 and h = 8

5.4 RESULTS

The con�gurations of the last section detailed the setup of each individual simulation or set

of simulations. In this section, speci�c results for each con�guration will be shown, keeping

in mind the discussions and points made in the previous sections for the corresponding con-

�guration types. For the con�gurations in which the simulation sets included 1000 patients,

not only are the results from one con�guration compared to another, the results within an

individual con�guration are compared to alternative therapies that we now describe.

5.4.1 Alternative Therapies for Multi-Patient Simulations

The therapy strategies found by the NMPC algorithm are referred to as "targeted" therapy.

In the simulation sets that include 1000 patients, all with di¤ering pro�les, the algorithm

generates a therapy speci�c to that patient�s particular dynamics. Many times, the dosing

regimens are similar among patients, but nonetheless, the therapy speci�cally targets an

individual patient. In order to get an idea of how well the targeted therapy does, it is

compared to the results from the administration of alternative therapies.

These alternate therapies include, of course, the Placebo Therapy, where no control-

based treatment is given. In addition, two other alternative therapies are explored. The

�rst of these is known as Standard Therapy. Standard therapy is calculated in the follow-

ing way: using the underlying model (and corresponding parameters) as both the patient

and the model and starting from the usual model initial conditions of (P0; N�; D; CA) =

(0:5; 0; 0; 0:125) , with the setup given in one of the con�gurations, the control algorithm is
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run on this "patient" and a dosing pro�le is generated, as usual. For example, in Con�g. 3,

standard therapy is calculated by implementing all the di¤erent speci�cations of that con-

�guration in the algorithm and running the algorithm on a patient with exactly the same

parameter values as the model. In other words, the model becomes one of the patients and

a targeted therapy is found for the model patient. This one dosing pro�le then becomes a

standard therapy to administer to all the patients. An example of a standard therapy dosing

pro�le is given in Figure 63:

Figure 63: An example of a standard therapy dose pro�le. This standard dose regimen is administered to
all patients within a simulation set, for the purpose of comparing the resulting outcomes with the outcomes
from targeted therapy generated speci�cally for each patient.

The third and �nal alternate therapy is referred to as Uber Standard Therapy, meaning

that it is very standard, since it does not employ any control-based methods to generate. In

fact, this therapy is designed to represent the therapy regimen currently given to critically ill

patients with severe in�ammatory disorders in the intensive care unit: a consistent dosing

regimen of an anti-in�ammatory therapy known as Activated Protein C. Practically, a dosing

pro�le is created that gives a small dose of the anti-in�ammatory therapy (via instantaneous

injections, as usual) each hour over a period of 72 hours.

Once an entire therapy dosing pro�le has been administered to a patient, it is necessary

to have some methodology for determining the outcome of an individual simulation. This

proved to be another rather technical issue. At the end of the simulation time, how are

the outcomes of 1000 di¤erent simulations systematically determined and tallied? Initially,

these results were based on the values of the variables at the end of 168 hours; however,

223



sometimes this was ambiguous. For example, damage which might be elevated beyond the

threshold that we designate as a "healthy" level might also be decreasing toward equilibrium.

In such a case, the system might evolve to the healthy steady state, given some more time

(in the absence of any more therapeutic intervention).

Thus, it was decided to create a post processing algorithm that takes the ending values

of the variables in the patient at 168 hours and integrates the system for another 300 hours,

when it would be highly likely that the solution has, by then, settled to a state, whether

healthy, aseptic, or septic. A patient outcome is labeled "septic" if the pathogen levels

are above a threshold of 1.0, and damage and activated phagocytes are also above their

designated thresholds, 1.0 and 0.05, respectively. If pathogen levels are not above threshold,

yet damage and activated phagocyte levels are, then the patient outcome is labeled "aseptic,"

in accordance with the de�nitions of these physiologic states mentioned earlier. Otherwise,

a patient is labeled "healthy." (Note, we do have a check for inconclusive results, however,

there have never been any outcomes that fall into this category.)

Hence, in the upcoming results presented for multiple patient simulations, the outcomes

are not given graphically, but rather in table format showing percentages of the total treated

patient population that fell into the di¤erent outcome types. The multiple patient sim-

ulations are run on a network of computers known as PittGrid, which is a University of

Pittsburgh project networking computers from all around campus. Account users submit

jobs into a queue, which then sends copies of the �les for a speci�c job to any unused nodes in

the network. A special thanks to Senthil Natarajan for making it possible for these NMPC

simulations to be run on PittGrid. Next, we present the speci�c results from Con�gurations

1-4, beginning with Con�g. 1, in which there is no patient-model mismatch and where only

one therapy is considered.

5.4.2 Results: Con�guration 1

Recall that in Con�guration 1 the following speci�cations are made:

� No patient-model mismatch

� One Therapy: Anti-in�ammatory therapy (no extraction) given on an hourly basis
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� Measured patient output variables: D and P

� Objective function: k�DDk22 + k�pPk
2
2 + k��u�uk

2
2 + k�uuk

2
2

� m = 2 and h = 24

� � weighting constants: various values explored

� CAMax = 0:6264

� Pathogen growth rate values: Aseptic scenario: kpg = 0:514; Septic scenario: kpg = 0:52

� Initial conditions for simulations: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

Figure 64 shows the placebo outcome for an aseptic scenario, where kpg = 0:514 and

P0 = 0:5. Then, in Figure 65 the NMPC results are shown for weighting constants shown as

follows: �D = 1:0; �p = 1:0; ��u = 1:0; �u = 1:0. The control-based therapy that the NMPC

algorithm generates for this case is able to turn the aseptic scenario, shown in Figure 64,

into a healthy outcome. However, notice that when the damage weight, �D, is signi�cantly

increased with respect to the other weights, the result, shown in Figure 66, is not favorable.

In this case, the therapy that the algorithm generates, while successful in suppressing damage

at least in the beginning stages, turns the aseptic scenario, shown in Figure 64, into septic.

Thus, it is important to be aware of the a¤ect that the weights can have on outcome.

Next consider the case when the placebo outcome is a septic scenario (Figure 67) gen-

erated with kpg = 0:52 and P0 = 0:5. Looking at both Figure 68 and Figure 69, the

anti-in�ammatory therapy is irrelevant for this scenario, since the system cannot overcome

the pathogen. In the �rst case (Figure 68), the objective function is weighted so that

minimizing damage over pathogen is not stressed. Here, the algorithm tries to eliminate

pathogen by letting in�ammation grow unsuppressed by any additional anti-in�ammatory

therapy (note the �at line at zero on the CA dose pro�le). However, if minimizing damage is

a priority (second case: Figure 69), then the algorithm attempts to minimize damage; how-

ever, pathogen is then allowed to grow without restriction, and eventually, the in�ammation

must respond to this, causing the system to arrive (albeit in a slightly delayed fashion) at

the septic state.
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Figure 64: An example of a simulation under Con�guration 1 with an aseptic outcome for the placebo
case (i.e. without any therapeutic intervention from the NMPC algorithm).

226



Figure 65: An example of a simulation under Con�guration 1, where the aseptic response presented
in Figure 64 has been modulated with therapy from the NMPC algorithm. The therapy regimen found
is successful to change an otherwise aseptic case into a healthy outcome. The time at which therapy is
initiated by the NMPC algorithm was set at 6 hours after the onset of the infection.
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Figure 66: The simulation shown in Figure 65 for the aseptic Placebo case of Figure 64 is rerun with a
heavy weight on Damage. The therapy regimen found is unsuccessful to change an otherwise aseptic case
into a healthy outcome. Instead the simulation results in a septic outcome, showing that the weighting
parameters can be in�uential in the outcome of a simulation. The heavy weight on damage causes the
algorithm to prescribe the anti-in�ammatory therapy to supress damage; however, this only postpones the
onset of in�ammation and the situation is made worse. The time at which therapy is initiated by the NMPC
algorithm was set at 6 hours after the onset of the infection.
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Figure 67: An example of a simulation under Con�gurations 1 and 2 with a septic outcome for the
placebo case (i.e. without any therapeutic intervention from the NMPC algorithm).

229



Figure 68: For the septic scenario under Con�guration 1 shown in Figure 67, therapeutic intervention
was intiated 6 hours after the onset of infection. However, since Con�guration 1 only includes the ability
to administer anti-in�ammatory therapy, the algorithm is unable to �nd a suitable treatment to resolve the
septic scenario to healthy. Essentially, in this case the anti-in�ammatory therapy become irrelevant because
it does nothing to help the eradication of the pathogen and can only hurt it more if administered, as Figure
69 shows.
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Figure 69: Similar to the simulation run in Figure 68 for the septic scenario under Con�guration 1 shown
in Figure 67, therapeutic intervention was intiated 6 hours after the onset of infection. However, in this
simulation the weight on damage is increased signi�canlty. This causes the NMPC algorithm to attempt
to minimize damage with the anti-in�ammatory therapy available. While successful for a while, eventually
in�ammation grows out of control in response to the unrestricted pathogen growth. This shows the need for
another therapy besides the anti-in�ammatory therapy.
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5.4.3 Results: Con�guration 2

Recall that in Con�guration 2 the following speci�cations are made:

� No patient-model mismatch

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions), given

on an hourly basis

� Measured patient output variables: D and P

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k

2
2+k��u2�u2k

2
2+k�u1u1k

2
2+k�u2u2k

2
2

� m = 2 and h = 24

� � weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 2:0

� Pathogen growth rate values: Aseptic scenario: kpg = 0:514; Septic scenario: kpg = 0:52

� Initial conditions for simulations: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

Con�guration 2 applies two therapies instead of one, but otherwise the con�guration is

the same as Con�guration 1. Thus, the results from the previous section for Con�guration

1 can be compared to the results that are now presented for Con�guration 2. Only the

septic scenario is considered, since the anti-in�ammatory therapy alone could not help rectify

this case in Con�guration 1 above. Figure 67, shows the placebo outcome that results in

Con�guration 2 in a septic scenario with kpg = 0:52 and P0 = 0:5. Figure 70 shows that a

two therapy strategy is able to successfully curb the potentially septic scenario and allows

the system to resolve to healthy. Since this con�guration can restore both septic and aseptic

scenarios, it is likely that this setup would restore to health most, if not all, patients who have

di¤ering pro�les like those generated in subsequent con�gurations. However, the fact that

there is no patient-model mismatch in this con�guration makes these potentially nice results

less impressive, considering that the presence of mismatch is to be expected in a more real

world setting. Hence, in simulations involving a larger patient population, a patient-model

mismatch is necessary to better emulate reality.

All the simulations so far initiated therapy 6 hours after the onset of infection. We also

take a quick look at what might happen if therapeutic intervention is initiated much later,
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Figure 70: An example of a simulation under Con�guration 2, where the septic response presented in
Figure 67 has been modulated with therapy fromt the NMPC algorithm. The therapy regimen found is
successful to change an otherwise septic case into a healthy outcome. The time at which therapy is initiated
by the NMPC algorithm was set at 6 hours after the onset of the infection.
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say 40 hours. Figure 71 shows that intervention initiated at this much later time point is

able to eradicate pathogen, but in�ammation becomes too great by this time for the system

to resolve, even with the maximum amount of CA therapy given over a very lengthy amount

of time. Therefore, the success of the algorithm to �nd appropriate therapies also depends

on when intervention is initiated.

5.4.4 Results: Con�guration 3

Remark 10. As a shorthand for referring to therapies and particular details of the di¤erent

schemes, the following abbreviations will be used for simulation sets of 1000 patients:

� NE: Both pro- and anti-in�ammatory therapies are applied but with No Extraction

� WE: Bot pro- and anti-in�ammatory therapies With Extraction

� W � 1: All the weighting parameters of the objective function have a weight equal to 1.

� ST: Standard Therapy

� UST: Uber Standard Therapy

� [�; �; �; ; � � �, "] : Speci�es the weighting parameters when they are are not all equal

to 1. The order matches the way in which they appear in the objective function used in

the particular con�guration.

Recall that in Con�guration 3 a multi-patient simulation is carried out and the other

following speci�cations are made:

� Patient-model mismatch

� 1000 patients considered, with di¤ering pro�les (i.e. di¤ering values for the parameters

shown in Table 9 on page 211)

� Patient pro�les are generated from choosing a normally (normal-like) distributed random

value from a speci�ed range

� Therapy is initiated in the patient when N� levels reach a threshold of 0:1

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions), given

on an hourly basis

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k

2
2+k��u2�u2k

2
2+k�u1u1k

2
2+k�u2u2k

2
2
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Figure 71: The same simulation that was run for Figure 70, under Con�guration 2 in the Placebo septic
case, is shown for a di¤erent intervention time. Instead of the NMPC algorithm initiating therapy at 6
hours after the onset of infection, the algorithm is con�gured to wait till 40 hours after the onset of infection.
The result is unfavorable, with the patient now ending up with an aseptic condition as opposed to septic.
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� �-weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 1:0

� Measured patient output variables: N� and CA

� Model kpg = 0:8

� Model initial conditions: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

� Patient initial conditions: (P0; N�; D;CA) = (P0-random; 0; 0; CA0-random)

� m = 2 and h = 24

The results shown for this con�guration include three comparison data sets, in addition

to the targeted therapy results. The �rst two alternative data sets, shown on the same table

as the targeted therapy results, are for standard therapy and "4 knob" therapy (i.e. therapy

that includes extraction capability). The third alternative therapy data set, shown later and

separately, is that of the uber standard therapy. At this stage, we were experimenting with

�nding proper doses to be administered for the 72 hour period in such a way as to not violate

the CAMax constraint. Hence these results are presented in a separate table, but can still

be compared to the other results.

Out of the 1000 patients in the population considered for this con�guration, 525 of them

reached the N� threshold of 0.1, after which therapeutic intervention was initiated. The

remaining 425 did not receive any treatment; however, percentages are out of the total 1000

patients. Table 11 compares the results of di¤erent treatment strategies: 4 therapies (WE),

2 therapies with damage weight emphasized (NE), and 2 therapies with all weights equal to

one (NE; W� 1). Also shown with respect to the underlying model�s values for kpg and P0
is the number of patients not rescued with a therapy that

1. had both a higher kpg and P0 value,

2. had a higher kpg but a lower P0 value,

3. had a higher P0 but a lower kpg value, or

4. had both a lower kpg and P0 value.

Data such as this drew our attention to the fact that perhaps these two parameters were

driving the outcomes too much, and that it would be better if the patient pro�les were

236



Table 11: Comparison of Treatment Schemes for Con�guration 3

Con�guration 3:
Comparison of Treatment Schemes and kpg and P0 values

No Pathogen Update
575/1000 patients receive treatment; Percentages are out of 1000

WE WE/ST NE NE/ST NE NE/ST
Placebo W � 1 [1;100 ;1 ;1] [1;100 ;1 ;1] W � 1 W � 1

Percentage
Rescued

7.3% 57.3% 57.5% 9.8% 20.9% 15.0% 21.3%

Percentage
Not Rescued

50.2% 0.2% 0.0% 47.7% 36.6% 42.5% 36.2%

Both Higher
kpg and P0

n/a 0 0 35 31 39 39

Higher kpg n/a 2 0 36 28 40 38

Higher P0 n/a 0 0 308 235 264 215

Both Lower n/a 0 0 98 72 82 70
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such that all of the parameters that varied from patient to patient had more signi�cance in

determining outcome. Hence, changes are made to the way patient pro�les are generated

in the next con�guration. Also note that, surprisingly, standard therapy does better than

the targeted therapy in all of the di¤erent simulation types. At the time, it was not yet

clear as to why this was the case, since targeted therapy was supposed to be designed for

the individual patient; however, in light of recent work, this could have been the result

of patient-model mismatch not being dealt with very well. Also, at this stage, the post

processing technique was not employed here, and outcomes were only sorted as "rescued" or

"not rescued", instead of by the three possible outcomes: septic, aseptic, and healthy. Thus,

it may be the case that some of the patient outcomes were mislabeled due to the inaccuracy

of the sorting method used at the time.

Nevertheless, these results for Con�guration 3 show that the extraction therapy works

unrealistically well and that once again the weighting parameters can have a (perhaps un-

expected) negative e¤ect. Increasing the pathogen weight was done with the intention that

this might help more patients. However, the e¤ect was actually detrimental, with more

patients ending up in the "not rescued" category.

In addition to the standard therapy and "4 knob" therapy results, we also administered

several uber standard therapies to the patient population. In Table 12, an array of di¤ering

doses given every hour over 72 hours is shown. Only one of these did not violate the CAMax

constraint for any of the patients. It is interesting to note that the dose regimen of 0.0008

CA-therapy/hr for 72 hours was able to rescue all patients, although it was not safe for all

patients (in fact, it was only unsafe for 1 patient). So, the dose regimen of 0.0006 CA-

therapy/hr for 72 hours was taken as the safe therapy to administer and, surprisingly, this

therapy does just as well as the "4 knob" therapy. However, the fact that this uber standard

therapy does better than either of the "2 knob" therapy scenarios and just as well as the "4

knob" therapy gives reason for pause. By this juncture, the need to modify the pro�les of

the patient population was apparent, as well as the need for a pathogen update and a cap

on CA levels. Thus, we essentially moved into Con�guration 4, without troubleshooting the

ill-equipped Con�guration 3 setup.
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Table 12: Uber Standard Therapy Exploration for Con�guration 3

Con�guration 3:
Uber Standard Therapy (U.S.T.) Exploration

575/1000 patients receive treatment; Percentages are out of 1000
U.S.T. dose per hour 0.0006 0.0008 0.001 0.002 0.0025 0.005 0.2

for 72 hours Safe Too Too Too Too Too Too
for all High High High High High High

Percentage Rescued 57.3% 57.5% 7.6% 7.6% 7.6% 8.5% 8.6%

Percentage Not Rescued 2% 0% 49.9% 49.9% 49.9% 49.0% 48.9%

However, before doing so, a direct pathogen update was tested on the patient population

from Con�guration 3. "Direct" means that the model is synchronized with the patient�s

pathogen levels at the time it is checked (i.e. measured). We explored a range of time

intervals at which to check pathogen levels: every 1, 5, 10 or 20 hours. Table 13 shows

the results for these di¤erent cases, compared against Standard Therapy results in the �rst

column and Targeted therapy results without a pathogen update in the second column.

The larger the time interval (i.e. every 20 hours compared to every hour), the less the

direct pathogen update helps, which makes sense. As nice as the direct pathogen update

is, it is not realistic and so, as was discussed previously, Con�guration 4 includes an indirect

pathogen update.

5.4.5 Results: Con�guration 4

Recall that in Con�guration 4 a multi-patient simulation is carried out, patient pro�les are

generated di¤erently, a pathogen update is included, a 48 hour cap on elevated CA levels is

enforced, and the following other speci�cations are made:

� Patient-model mismatch

� 1000 patients considered, with di¤ering pro�les (i.e. di¤ering parameter values)

� Patient pro�les generated from choosing a uniformly distributed random value from a

speci�ed range (ranges shown in Table 10 on page 219)

� N� threshold = 0:05 (for determining when to initiate therapeutic intervention)
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Table 13: Direct Pathogen Update Exploration for Con�guration 3

Con�guration 3:
Direct Pathogen Update: every 1, 5, 10, or 20 hours

575/1000 patients receive treatment; Percentages are out of 1000

Therapy Type: Placebo NE/ST NE NE NE NE NE
Pathogen Update?: n/a no no yes yes yes yes

PU Check Time every x hrs: n/a n/a n/a 1 5 hrs 10hrs 20hrs

Percentage Rescued 7.3% 52.5% 45.4% 57.5% 52.8% 46.5% 45.4%

Percentage Not Rescued 50.2% 5.9% 12.1% 0.0% 4.7% 11.0% 12.1%

� Two Therapies: Anti-in�ammatory and proin�ammatory therapy (no extractions), given

on an hourly basis

� Objective function: k�DDk22+k�pPk
2
2+k��u1�u1k
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2
2,

where the following are being minimized: damage levels, D, pathogen levels, P , changes

in dosing (�u1 and �u2) and total therapy given (u1 and u2) for both CA and N�,

respectively.

� �-weighting constants: various values explored

� CAMax = 0:6264

� N�Max = 1:0

� Measured patient output variables: N� and CA

� Model kpg = 0:8

� Pathogen update mechanism

� 48 hour CA cap

� Model initial conditions: (P0; N�; D;CA) = (0:5; 0; 0; 0:125)

� Patient initial conditions: (P0; N�; D;CA) = (P0-random; 0; 0; CA0-random)

� m = 2 and h = 8

It would be nice to say that all the new features implemented in this con�guration solved

the previous problems encountered, and that the results acquired were superb. However,

this case is really just another stepping stone in the development and custom-tailoring of

the NMPC algorithm. What can be said, is that at this point in the process the algorithm
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Table 14: Indirect Pathogen Update and 48 hours CA Cap Results for Con�guration 4

Con�guration 4:
INDIRECT Pathogen Update; 48 Hour CA maximum Cap

620/1000 patients receive treatment; Percentages are out of 620
Number of patients out of 620 given in parenthesis.

Therapy Type: Placebo NE NE/ST UST:
Indirect Pathogen Update?: no yes n/a 0.001/hr
PU Check Time every x hrs: n/a 4 hrs n/a for 72 hrs

Percentage Septic: 22.7% 0.0% 0.0% 23.7%
(141) (0) (0) (147)

Percentage Aseptic: 36.8% 81.1% 56.6% 35.0%
(228) (503) (351) (217)

Percentage Healthy: 40.5% 18.9% 43.4% 41.3%
(251) (117) (269) (256)

and subprograms have been re�ned from previous steps and many of them streamlined to

make running and compiling the results more e¢ cient than in the past. Also, many of the

technical issues that were a part of the previous con�gurations, especially #3, have been

ironed out. For instance, a post processing routine is implemented so that the outcomes

can be clearly classi�ed and divided into categories (healthy, aseptic, septic) that give more

information about the results than just "rescued" or "not rescued." Though several of the

things mentioned seem minor, altogether they are important for producing and presenting

solid results that can be explained well and, if need be, reproduced.

The results for Con�guration 4 are perhaps the most disappointing out of all the results,

simply because the expectations for this con�guration were high. However, it once again

shows areas of the algorithm that need attention. Recall that these results are for a new

patient population whose parameters are generated di¤erently than before. Table 14 shows

the results for this con�guration, as well as the placebo outcomes in the �rst column, the

standard therapy results in the third column, and uber standard therapy results in the fourth

column.
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Targeted therapy does really poorly, compared to all the other treatments, especially

placebo. Apparently, the therapy is converting all the septic patients, and a number of

the otherwise healthy patients, into aseptic cases. Looking graphically at several patients

and the dosing pro�le generated from them, it was seen that the algorithm was prescribing

rather large amounts of the pro-in�ammatory therapy at the beginning, in order to eliminate

pathogen rapidly; however, in�ammation was being profusely generated and the level of the

anti-in�ammatory mediator even with the addition of anti-in�ammatory therapy could not

adequately suppress the in�ammation. In addition, the 48 hour CA cap that is enforced

in this con�guration further prevents the system from controlling the in�ammation. Thus,

even those patients, who would otherwise be healthy, are harmed by this aggressive pathogen

elimination strategy. There are several reason why the algorithm is choosing to do this and

these are addressed in the next section where current and future con�guration modi�cations

are discussed.

Standard therapy does not do too much better than placebo or uber standard therapy,

but once again, it does better than targeted therapy. Still, in this case, it is likely that all the

septic cases turned into aseptic cases and some of the aseptic cases were converted to healthy.

In fact, consider the sum of the number of septic and aseptic patients in the Placebo column:

141 + 228 = 369. Also, consider the di¤erence between the number of healthy patients in

the Standard Therapy column and the number of healthy patients in the Placebo column:

269� 251 = 18. Then the di¤erence between these two quantities is 369� 18 = 351, which

is the number of aseptic patients in the Standard Therapy column. Thus, it appears that

18 of the aseptic patients became healthy with standard therapy, and all 141 of the septic

patients became aseptic with standard therapy. Hence, standard therapy is not a really

good therapy, since no septic patients are helped.

The results of Uber Standard Therapy are pretty close to the placebo results. It might

be the case that the uber standard therapy that was implemented was not strong enough to

exact any major di¤erences from the placebo results. This is another aspect that is in need

of modi�cation and re�nement.
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5.4.6 Preliminary Results: Current/Future Con�gurations

The results for Con�guration 4 brought up still other issues that were of concern. The

�rst modi�cation to be considered after Con�guration 4 deals with the pathogen update

mechanism and N�Max. In the strategy described in Con�guration 3, an update only

occurs if the pathogen levels are high in the patient and low in the model. However, just as

important is the opposite case: when pathogen levels are high in the model and low in the

patient. Thus, as a new feature in the this current con�guration, the model�s pathogen levels

are set to zero when pathogen levels are elevated in the model and low in the patient. Also,

the algorithm previously seemed to be applying the maximum amount of pro-in�ammatory

therapy, in order to quickly eradicate pathogen. This occurs even in cases where the patient

might be able to naturally take care of pathogen or when only a little therapy is needed

to boost in�ammation enough to eliminate pathogen. An initial step taken simply reduced

N�Max.

These two changes did meet with some success; however, even with this success, if the

number of patients who are septic in the placebo scenario are considered, not many of these

patients are rescued. Table 15 shows the results in the same format as was presented for

Con�guration 4. It is mainly the aseptic patients who are helped. In addition, the level at

which N�Max should be set is something that needs further exploration. Here, results for

an N�Max value of 0.1 is shown. Preliminary results suggest that a value of 0.5 would be

better, however, this has not been tested on the entire patient population. This was tested

on 6 patients that had a variety of placebo outcomes: 1 septic patient, 3 aseptic patients,

and 2 healthy patients. (Note that all of these patients did reach the speci�ed N� threshold

of intervention.) With an N�Max of 0.5, 5 out of the 6 patients resolved to healthy cases.

Another possible angle, with which we slightly experimented, deals with changing the

objective function weights on dosing for N�. While adjusting the weights on dosing for

N� seems like a reasonable course of action to follow, it did not produced the desired ef-

fect. First of all, penalizing the changes made to N� doses, ��u2, only means that drastic

changes to dosing are avoided. While this might help the initial N� dose from being too

large, it usually means that the dosing occurs gradually. This, however, turns out to be a
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Table 15: Work in Progress Con�guration featuring results from the implementation of an indirect 2-way
pathogen update

Work in Progress Con�guration:
INDIRECT 2-way Pathogen Update; 48 Hour CA maximum Cap

Reduced N�Max (0.1)
620/1000 patients receive treatment; Percentages are out of 620

Number of patients out of 620 given in parenthesis.

Therapy Type: Placebo NE NE/ST UST:
2-Way Pathogen Update?: no yes n/a 0.005/hr

PU Check Time every x hrs: n/a 4 hrs n/a for 72 hrs

Percentage Septic: 22.7% 21.9% 21.1% 23.1%
(141) (136) (131) (143)

Percentage Aseptic: 36.8% 17.7% 46.1% 31.5%
(228) (110) (286) (195)

Percentage Healthy: 40.5% 60.3% 32.7% 45.5%
(251) (374) (203) (282)

worse therapeutic strategy, since in some patients, the pathogen might be strongly driving

in�ammation, but the response is not strong enough in the beginning stages to be able to

overcome it. Instead, the gradual addition of an immune booster only adds to the already

accumulated in�ammation at a time when the anti-in�ammatory levels are also elevated.

Preliminary results show that a heavy ��u2 weight cause all 6 of the test patients to end up

septic or aseptic, for N�Max = 0:5, for which there was previously success for this group of

patients.

The heavy weight not only restricts the treatment from being given too sharply, but also

from being sharply cut o¤. By this time, even though pathogen might be eliminated, both

the in�ammatory and anti-in�ammatory levels are very high, so the addition of an anti-

in�ammatory therapy puts the patient in the situation described above in Con�guration 4

with respect to the 48 hour CA cap: patients end up aseptic instead of healthy since the

amount of in�ammation in their system is decreasing due to the CA cap and the amount of

in�ammation, which may have been decreasing with the elevated CA levels, is on the rise

once again.
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Lastly, the underlying model under the current con�guration is such that the algorithm

is actually unable to �nd a successful therapy for it, meaning that the standard therapy

generated from the model does not even help the model itself to resolve to healthy, but

instead to an aseptic case. However, because of this, the treatment is really aggressive

toward eliminating pathogen �rst and giving much anti-in�ammatory therapy afterward,

in an attempt to curb the in�ammation, at which it is actually unsuccessful. This is the

reason why in Table 15 the standard therapy converts septic patients into aseptic patients.

Additionally, for those patients who would be aseptic otherwise, the copious amounts of anti-

in�ammatory therapy prescribed by the standard therapy actually help some aseptic patients

to transfer to the healthy camp. Therefore, it is probably the case that the underlying model

should at least generate a therapy from which the model itself actually bene�ts. In order

for this to happen under the current con�guration, the model�s kpg and P0 values will have

to be modi�ed. In fact, the current kpg value of 0.8 in the model is outside of the range

chosen for the individual patients�kpg values, which was an oversight in this process.

Overall, the di¤erences in the results between the cases where patient-model mismatch

does not exist and the cases where it does exist are strikingly apparent. There are an

entirely di¤erent set of issues and di¢ culties that arise because of mismatch. Hence, there

are still other con�gurations to be found that are more e¤ective at dealing with the balance

between minimizing damage and pathogen levels and making the algorithm more sensitive

to patient-model mismatch.

5.5 DISCUSSION

The various con�gurations that have been explored thus far show that there are many facets

to the application of NMPC for �nding proper therapies and dosing regimens for correcting

immune dysfunction. It remains to be seen whether the changes mentioned above in the

current/future con�guration section will bring about more favorable results when applied to

a large patient population. There are also other things that need to be reexamined, such as

the size of the move horizon, m, and prediction horizon, h, as well as the objective function

weights (��) in order to make sure that these tuning parameters are chosen thoughtfully in
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light of the many changes that the algorithm has undergone.

It was seen that only the four therapy module (brie�y discussed in Con�guration 4) was

really able to help signi�cantly in converting both potentially aseptic and septic patients into

healthy ones. On the other hand, it appears that the two therapy cases are limited in their

ability to balance the objectives between minimizing damage and pathogen, objectives that

are at odds with one another. It might be the case that the options given to the algorithm

with respect to therapy types are either too many (e.g. the four therapy case) or are too

limited for the current model, meaning that the system, in some sense, might be too simple

either way for the application of NMPC. More success might be found if it is applied to a

larger model where there is a one-to-one correspondence between variables in the model and

mediators of the in�ammatory response. For example, in such models, there is more than

one anti-in�ammatory mediator and so changes to one may not have such drastic e¤ects on

the entire system as is seen in this smaller model. On the other hand, it might be much

more di¢ cult to troubleshoot any issues of the algorithm for such a large model.

There are many sub programs in addition to the main NMPC algorithm that were de-

veloped to take care of the various tasks along the way. These include programs to generate

patient pro�le data, process and compile patient outcomes after the NMPC data is cal-

culated, and to administer alternate therapies, along with other routines for visualization

and troubleshooting. The development phase and corresponding results discussed in the

previous sections were the culmination of a year long process which brought the idea of a

controller based therapy from a conceptual phase into an experimental design phase. The

results presented here are not as successful as what is desired and many challenges of this

approach have been exposed. Nonetheless, the idea of using a control-based algorithm to

generate appropriate therapy regimens only makes more sense in light of the fact that �nd-

ing appropriate, successful therapies under precarious conditions is a nontrivial and di¢ cult

venture.
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6.0 CONCLUSION

The research presented in this manuscript covers a wide array of topics pertaining to the

process of understanding and controlling the acute in�ammatory response. Even the work

presented in Chapters 3 and 4, which can be considered apart from the context of in�am-

mation, was motivated by this area of research. The chapters are strung together with

this common thread, and many interesting results as well as challenging problems have been

reached.

The work in Chapter 2 gives a strong argument supporting the viewpoint that endotoxin

tolerance and potentiation are characteristics of the dynamics of the acute in�ammatory

response. It highlights the importance of the timing of the di¤erent mediators involved

in the response and how preconditioning can shift the system into a very di¤erent state

compared to the state of the non-preconditioned system.

The desire to graphically illustrate these di¤ering states, with respect to the threshold

that exists between the healthy and unhealthy states, led to the stable manifold code im-

plementation in Chapter 3. Although the method to generate the manifold mesh is due to

Krauskopf and Osinga [63], many parts of the implementation of it are not explicitly a part

of their paper. Hence, the task of creating the computer code is quite a formidable one,

with many challenges.

Although the manifold program presented has some shortcomings, as far as we know,

there is not yet a program that exists for use in the academic community. Therefore, this

MatLab implementation might be the �rst published code of a program for generating 2D

(un)stable manifolds of 3D ODE systems. The topic of numerically generating a manifold

is interesting enough to, in the future, continue re�nement of the current program or to

implement other methods that have been published in the literature, which do not have a

247



workable code available.

In addition to Chapter 2 inspiring the work on manifolds, it also brought to light the

transient nature of tolerance. The magnitude of the tolerance reduction is very much

dependent on the levels of the various mediators and the timing of the precondition dose(s).

Figure 13 nicely shows this transient behavior. This aspect of the endotoxin tolerance

research led to the work in Chapter 4, where tolerance-like behavior is studied from a purely

dynamical systems point of view.

Chapter 4, which contains perhaps the most interesting results (at least mathematically

speaking), presents a novel research topic, regarding when the tolerance behavior can and

cannot occur in a given di¤erential equations system. A plethora of original results are

presented and in the case of 2D linear systems, in particular, the results give a completely

systematic way to identify exactly where tolerance will occur. In the case of 2D nonlinear

systems, the methods for identifying tolerance are not as exact as the linear case. However,

the methods for 2D nonlinear systems are a creative use of the combination of isoclines and

the concept of inhibition and can narrow down the possibilities of where tolerance can occur

in a system.

Most of the results are restricted to the two-dimensional case, so this area of research

has room for expansion and further generalization. For example, knowing for which initial

conditions tolerance will exist does not imply that the time at which tolerance is exhibited

is known. For instance, in the linear case, it can be determined for a given < (x0; y0); s >

whether or not there exists a � > 0, such that  1(�) < �1(�), but the value of � remains

unknown. Also, results are based on shifting the graph of �(t) by the amount x0 in the

x-direction and not shifting the graph at all in the y-direction. A more generic "hit" size in

both directions could be considered. In particular, the linear results rely on the assumption

that the shift was only in the x-direction and only by the amount x0. Hence, there are

several di¤erent angles from which to further explore this area of research in the future.

Lastly, Chapter 5 presents a preliminary, but thorough, exposition on the use of nonlinear

model predictive control (NMPC) as a tool for generating and implementing immunomod-

ulation strategies and therapies. A majority of the work regarding modeling the acute

in�ammatory response has focussed on understanding the dynamics of the interactions be-

248



tween mediators and how they relate to the di¤erent outcomes. Here, the application of

NMPC is explored for the purpose of controlling the in�ammatory response. NMPC has not

before been applied for the purpose of controlling systemic in�ammation via immunomodu-

lation strategies. As was discussed in Chapter 5, there are many challenges that exist, and

this research area is still very much an ongoing one.

As a whole, this dissertation contains a breadth of results that are both interesting

and insightful for the mathematical community, as well as for those in systems biology.

Bridging the gap between the creation and use of mathematical/engineering tools and their

application in the clinical realm is an immense challenge. The work presented here and

that to be conducted in the future is focussed on continuing this bridging process, keeping

in mind that today�s ideas are tomorrow�s realities.
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APPENDIX

GLOSSARY OF ABBREVIATIONS

� ABM: Agent Based Model

� AIDose: Anti-in�ammatory Dose

� CA: Anti-in�ammatory mediator (Cytokine - Anti-in�ammatory)

� D: Damage

� EVC: Eigenvector Con�guration

� HIV: Human Immunode�ciency Virus

� HMG-1:

� IL-10: Interleukin-10

� IL-12: Interleukin-12

� IL-6: Interleukin-6

� LPS: Lipopolysaccharide

� MPC: Model Predictive Control

� N�: Activated Phagocytes (i.e. Neutrophils)

� NE: No Extraction

� NMPC: Nonlinear Model Predictive Control

� ODE: Ordinary Di¤erential Equations

� P: Pathogen

� PE: Pathogen Endotoxin

� PIDose: Proin�ammatory Dose

� PU: Pathogen Update
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� R+: The set of positive real numbers

� RHS: Right Hand Side

� ST: Standard Therapy

� TGF-�1: Transforming Growth Factor-�1

� TNF: Tumor Necrosis Factor

� UST: Uber Standard Therapy

� WE: With Extraction

� W� 1: All Weighting parameters of the objective function are identically equal to 1

� WLOG: Without Loss Of Generality

� Ws(x0): Global stable manifold of the �xed point, x0

� Ws
loc(x0): Local stable manifold of the �xed point, x0

� Wu(x0): Global unstable manifold of the �xed point, x0

� Wu
loc(x0): Local unstable manifold of the �xed point, x0
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