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Conventional statistical modeling techniques, used to detect high-order interactions between

SNPs, lead to issues with high-dimensionality due to the number of interactions which need

to be evaluated using sparse data. Statisticians have developed novel methods Multifac-

tor Dimensionality Reduction (MDR), Generalized Multifactor Dimensionality Reduction

(GMDR), and stepwise Penalized Logistic Regression (stepPLR) to analyze SNP epistasis

associated with the development of or outcomes for genetic disease. Due to inconsistencies

in published results regarding the performance of these three methods, this thesis used data

from the very large GenIMS study to compare the prediction accuracies of 90-day mortal-

ity in SNP epistasis models. Comparisons were made using prediction accuracy, sensitivity,

specificity, model consistency, chi-square tests, sign tests, and biological plausibility. Testing

accuracies were generally higher for GMDR compared to MDR, and stepPLR yielded sub-

standard performance since the models predicted that all subjects were alive at ninety days.

Stepwise PLR, however, determined that IL-1A SNPs IL1A M889, rs1894399, rs1878319, and

rs2856837 were each significant predictors of 90-day mortality when adjusting for the other

SNPs in the model. In addition, the model included a borderline significant, second-order

interaction between rs28556838 and rs3783520 associated with 90-day mortality in a cohort

of patients hospitalized with community-acquired pneumonia (CAP). The public health im-

portance of this thesis is that the relative risk for CAP may be higher for a set of SNPs across

different genes. The ability to predict which patients will experience a poor outcome may
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lead to more effective prevention strategies or treatments at earlier stages. Furthermore,

identification of significant SNP interactions can also expand the scientific knowledge about

biological mechanisms affecting disease outcomes. Altogether, the GMDR method yielded

higher prediction accuracies than MDR, and MDR performed better than stepPLR when

establishing SNP epistasis models associated with 90-day mortality in the GenIMS cohort.

Keywords: biostatistics, single nucleotide polymorphism, community-acquired pneumonia.
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1.0 INTRODUCTION

Numerous clinical studies have uncovered single nucleotide polymorphism (SNP) associations

with genetic diseases, but only recently have statisticians developed adequate methods to

analyze high-order interactions among SNPs related to the development of disease. A poly-

morphism is a common variation in DNA sequence and is present in more than one percent

of the population. Gene-gene interaction, or epistasis, is defined in biology as the physical

interaction between biomolecules [1]. Alternatively, the statistical concept of epistasis merely

describes population variation, and discovering which determinants contribute to population

variation has major implications for public health [2]. Conventional statistical modeling

techniques, used to detect high-order interactions between SNPs, lead to issues with high-

dimensionality due to the number of interactions which need to be evaluated using sparse

data. As a result, statisticians developed novel methods such as non-parametric Multifac-

tor Dimensionality Reduction (MDR) and Generalized Multifactor Dimensionality Reduction

(GMDR) and parametric forward stepwise Penalized Logistic Regression (stepPLR) to model

SNP interactions.

The central aim of this thesis is to compare the performance of MDR, GMDR, and

stepPLR using prediction accuracy, sensitivity, specificity, model consistency, chi-square

tests, sign tests, and biological plausibility. A secondary objective of this thesis is to identify

which SNPs exhibit significant, high-order interactions in models of 90-day mortality for a

cohort of patients hospitalized with community-acquired pneumonia (CAP). The Genetic

and Inflammatory Markers of Sepsis (GenIMS) study is one of the largest multicenter ob-

servational cohort studies (N = 2,320) with genotype data for inflammatory response genes.

Hence, this thesis will analyze SNPs on the genes EPCR, ICAM-1, IL-1A, IL-1B, IL-6, IL-10,

MBL, PAI-1, TLR-4, and TNF. This thesis has public health significance because the genetic
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data analysis results could be used in the future for risk assessment and therapy for CAP.

Based on prior studies, analysis of the GenIMS data using the GMDR method is expected to

yield higher prediction accuracies and better results for discovering SNP epistasis associated

with 90-day mortality when compared to MDR and stepPLR.

Additional introductory material is mentioned in Chapter 1 before discussing the back-

ground literature review in Chapter 2, statistical methods and description of the data in

Chapter 3, results in Chapter 4, discussion and conclusions in Chapter 5, and the appen-

dices thereafter.

For complex diseases, it is rare for a single gene to determine disease status or its outcome,

so it is important to look concurrently at the effect of multiple SNP genotypes at different

loci [3]. There are two types of models which may be characterized when looking at two-

locus models. A model under which a particular genotype at one locus causes the disease

independently of the genotype on the second locus is called a heterogeneity model, and an

epistasis model refers to the case when the genotypes at the two loci work dependently

to cause disease [3]. It is vital to understand that, occasionally, an individual with the

disease-related genotype will never develop the disease. This phenomenon is measured by

penetrance which is “a genetic term meaning the proportion of individuals with a disease-

causing gene that actually shows the symptoms of the disease” [4]. Accordingly, statisticians

have employed various statistical methods to characterize the associations between SNPs.

Conventional statistical modeling techniques to detect high-order interactions between

SNPs, such as generalized linear regression, are rarely efficient due to the number of in-

teractions which need to be evaluated. Statisticians refer to this problem as the “curse of

dimensionality” since the number of high-order interactions can easily outnumber the total

sample size [2]. Implementing generalized linear regression to model complex interactions

can be highly involved, be difficult when building models, and make it hard to interpret the

resulting parameter estimates [3]. There may also be problems with overfitting, correlation

among the genetic factors, and empty cells in tables used to define the interactions [4]. Like-

wise, it is not appropriate to start model building by conditioning on significant main effects

(SNPs) because potentially significant interactions between the non-significant and signifi-

cant main effects could be left out of the final model. Standard additive or multiplicative
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interaction models make it difficult to characterize the associations between SNPs because of

the inherent complexity of epistasis [3]. Thus, MDR, GMDR, and stepPLR have been devel-

oped to uncover these complex interactions, but published articles have given inconsistent

results when comparing the performance of these three methods.

Clinical studies have shown that genetics plays a role in the susceptibility to and out-

comes of infectious disease. CAP is the most common infectious cause of hospitalization in

developed countries and has been studied in several gene-association studies [5]. Increased

mortality after CAP has been hypothesized to occur due to dysregulated host immune re-

sponse to the organism. During hospitalization for CAP, several pathways, including in-

flammatory and coagulation cascades, are activated. Interactions between different proteins

within these pathways have been well described. For example, hypersector genotypes within

TNF, IL-6, and IL-1A genes may be associated with higher 90-day mortality. To date, how-

ever, few studies have examined whether epistasis across different genes is associated with

outcomes of CAP.

Recalling the central aim of this thesis, the prediction accuracies of MDR, GMDR, and

stepPLR will be used to compare the methods’ performance in discovering which SNPs exhibit

significant interactions in models of 90-day mortality in a cohort of CAP patients. Results

from each method will give the best one-, two-, three-, and four-locus models for the SNPs

within each gene and again across all genes. The prediction accuracy, sensitivity, specificity,

model consistency, and the chi-square and sign tests (for significance of the association

between the interaction and case-control status) of the final models will be the basis for

comparison of the methods. The particular SNPs in the final models will be recorded to

assess whether the three methods tend to include interactions of the same SNPs. In addition,

MDR will conduct a hierarchical cluster analysis to characterize the relationship of the SNPs

in the model as epistatic, independent, or correlated. Consequently, any conclusions about

the performance of MDR, GMDR, and stepPLR will not be an absolute resolution but merely

a look at how well they function for the GenIMS data set.
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2.0 BACKGROUND LITERATURE REVIEW

Many publications have identified the methods that work best for determining SNP epistasis

in case-control studies, but they have given inconsistent results which often depend on the

composition of the data. Hua He et al. [6] published a study on simulated data and kidney

transplant patients; these investigators excluded any SNPs with a minor allele frequency less

than five percent or when more than ten percent of the data were missing. In addition, they

conducted Fisher’s exact test for all the SNPs and selected only the top 100 most significant

SNPs for interaction detection purposes. This, however, is a potential limitation to their

study since the authors could have overlooked important interactions for which the main

effects were not significant. They concluded that stepPLR is more powerful than MDR when

the effects of the SNPs are additive, but MDR performs better when complex interactions are

observed. Moreover, “MDR was particularly good in detecting the weak effects of a purely

epistatic interaction” [6].

An earlier study by Park and Hastie [4] suggests that stepPLR is more powerful than

MDR particularly in the presence of multiple SNP interaction factors, for MDR was only able

to discover a portion of the significant interactions using simulated data. Comparing the

performance of stepPLR to MDR in a real data set, the authors noted that stepPLR achieved

a higher sensitivity than MDR if the specificity for stepPLR was fixed equivalent to that

of MDR (and likewise for the specificity) [4]. Thus, epistasis models generated by stepPLR

yielded better classification of cases and controls than MDR.

Lou et al. [2] proposed the GMDR method as an extension of MDR to adjust for discrete

or quantitative baseline covariates and to allow for an unequal number of observations for

cases and controls. GMDR produced the same results as MDR when analyzing a simulated

data set with a case-control ratio of 1:1 and no adjustment for covariates. After adjusting
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for meaningful covariates, GMDR yielded higher prediction accuracy and cross-validation

consistency in models of high-order SNP interactions. Thus, accounting for the variation in

a covariate that is known to increase disease risk will yield a model that can more accu-

rately predict disease status. The authors applied the two methods to a real data set with

191 smokers and 191 non-smokers and found that, although both indicated the same best

four-locus model, GMDR produced a higher prediction accuracy, a higher cross-validation

consistency, and a significant p-value [2].

A study recently published in Respiratory Medicine [7] investigated polymorphisms in

anti-inflammatory and inflammatory genes and their relationship with susceptibility, severity

of illness, and outcome in adult CAP patients. The authors conducted this study because

variation in the clinical presentation of CAP patients can be affected by “different pathogens,

variable virulence in different strains of microorganisms, increasing age, and underlying dis-

eases...but genetic variability affecting the host response may also influence the susceptibility

to it and the severity and outcome of infection” [7]. This suggests the possibility of gene-

environment interactions as well. The following methods were implemented to determine the

significance of these relationships: chi-square tests, odds ratios, binary logistic regression,

Kaplan-Meier survival curves, and log-rank tests. No significant associations were found

between polymorphisms on the genes TNF, LTA, IL-6, or IL1-RN and disease severity or

outcome, nor was there a significant interaction between the genotypes for SNPs on TNF

and LTA [7]. Unfortunately, these investigators did not use MDR, GMDR, or stepPLR which

could have augmented a comparison of their performance.

Gallagher et al. [8] published a study on associations between inflammatory response

genes and severity of systemic inflammatory response syndrome (SIRS) in CAP patients.

These researchers found a significant, increasing linear trend between the IL10 M1082 G

allele and SIRS score; this G allele was also associated with mortality in CAP patients. No

significant associations were observed between disease severity and TNFA M308 or IL6 M174,

and no significant interaction was found between these three SNPs [8].

Although many published studies have tried to characterize the relationship between

SNP interactions and CAP outcomes, it is difficult to make generalizations from their con-

flicting results due to methodological problems. Discrepancies often involve the associations
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between the SNP genotypes and disease risk, which is often the case for genes IL-10 and

TNF. The methodological problems may lead to problematic interpretations and include

poor statistical power, variant populations with unknown confounding factors, cases of link-

age disequilibrium, or stratified populations [7]. More importantly, the statistical power of

the methods can depend on the allele frequencies of the chosen SNPs [6]. Poor results may be

obtained when including SNPs which are homogeneous with respect to genotype (i.e. when

the minor allele frequencies are too small to identify significant differences in case-control

status). Therefore, further evaluation of statistical methods and SNP associations and larger

population samples are necessary to reach a valid consensus.
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3.0 METHODS

3.1 MULTIFACTOR DIMENSIONALITY REDUCTION

Multifactor dimensionality reduction (MDR) is a data mining procedure which reduces high-

dimensional genetic data to a single dimension using constructive induction [1]. This method

was proposed by Ritchie et al. in 2001 [9], and the open-source software was developed by

Hahn, Ritchie, and Moore [10]. MDR is non-parametric and does not require a predefined

model for the gene-gene interactions. After reducing the dimensionality of the SNP data, all

possible n-locus SNP interactions are tested for association with a complex genetic disease,

for this method can utilize relatively small sample sizes and detect interactions without

assessing main effects [1].

MDR requires that the data set has a case-control ratio of 1:1 [9]; in other words, it

must include an equal number of cases and controls. The MDR software (version 1.8 beta)

requires that the data be formatted as a text (.txt) file with the first few columns containing

the genetic data and the last column designating the case-control status (a binary variable

coded as zero or one). The SAS code (software version 9.2) used to create the data files is

given in Appendix A. The SNPs are categorical variables with three levels: homozygous for

the common allele coded as zero, heterozygous coded as one, and homozygous for the less

common allele coded as two. Any missing data must be addressed before implementing the

MDR software. One way is to delete subjects and/or SNPs until the data set is square, but

this is not ideal since the sample size is largely decreased and important information can

be lost [11]. A second option is to code the missing data as another level of the categorical

variable; for example, a missing value could be represented by a ‘4’ or ‘9’ [11]. MDR then

incorporates this fourth level of information into the models. This procedure is appropriate
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only when there are relatively few missing genotypes and they are missing at random. Lastly,

the missing data may be imputed using frequency-based or multivariate methods, but this

approach is also only appropriate with a few missing data points which must be missing

at random [11]. Imputation is recommended most often because it yields a complete data

set without any loss of information and provides a simpler interpretation of the final model

without a fourth level coded for missing data. Once the data set is correctly formatted, the

MDR software can be executed.

After importing the data set as a text file, there is an option to filter the genetic data

to get a smaller subset which is more likely to exhibit dependencies or interactions between

SNPs [11]. One may select the Relief-F, chi-square, or odds ratio filter methods and the

subset size which is quantified by a number, percentage, or threshold criteria for the subset

of SNPs. For example, the subset may include the top ten SNPs, the top twenty-percent of

SNPs, or those SNPs with a p-value less than 0.20. These filters can yield poor results [12],

but filtering is still a better option than conditioning on main effects (significant univariate

SNPs) because many, potentially significant interactions would be left untested [11]. This

thesis implemented the Relief-F algorithm for all fifty-five SNPs combined to obtain the top

twenty SNPs for the epistasis models. Filtering the SNPs based on biological plausibility is

another option for excluding a number of extraneous SNPs. The advantages of filtering are

that it reduces the number of SNPs which need to be exhaustively tested for interactions in

MDR and that it is computationally tractible [11]. One of the disadvantages of filtering is that

some important SNPs can be excluded from the analysis since the adequacy of the filtered

subset fully relies on the performance of the filter [11]. The MDR software configuration is

briefly discussed in the next paragraph.

The MDR software allows the user to configure the analysis to obtain specific outputs.

One is allowed to specify a random seed which is used to divide the data set for cross-

validation [11]. The attribute count range denotes the order of the interactions to be tested,

and, by default, MDR selects the best 1-, 2-, 3-, and 4-locus models [11]. The default cross-

validation count is set at ten, but the user may request a different number of data subsets for

cross-validation. Selecting the compute fitness landscape box produces a list of all-possible

SNP interactions and their training accuracies, so determination of the second or third best
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models is possible [11]. A model’s training accuracy (TRA) ranges from zero to one, is

calculated on the training data set and averaged across all ten cross-validation intervals, and

is defined by the following formula:

TRA =
TP + TN

TP + TN + FP + FN
(3.1)

Here, TP is the number of true positives; TN is the number of true negatives; FP is the

number of false positives; and FN is the number of false negatives. The testing accuracy

(TA) also refers to the proportion of subjects correctly classified as cases or controls but

is calculated using Equation 3.1 on the testing data set. This thesis substitutes the term

prediction accuracy (PA) for the testing accuracy of the model. Finally, the options for

search type are exhaustive, forced, or random. As stated by Moore, “MDR has traditionally

carried out an exhaustive search of all possible 2-way, 3-way, and up to n-way combinations

of SNPs” [11]. A forced analysis allows one to type in the names of desired SNPs to obtain

estimates of the prediction accuracies for the 2nd or 3rd best models or an unbiased estimate

of the prediction accuracy when the cross-validation consistency does not equal ten [11].

Cross-validation consistency (CVC) is defined as the number of times (out of ten) that the

particular factors were selected as the best model during cross-validation. After the MDR

options are properly configured, the user clicks the run analysis button.

The MDR software implements a series of six steps for each of the cross-validation in-

tervals to generate the best n-locus model. In Step 1, the data set is partitioned into ten

subsets (or the specified magnitude of the cross-validation); nine of the subsets are used as

the training set, and the remaining subset constitutes the independent testing set [10]. Step

2 selects all possible combinations of n factors from the list of available SNPs. Step 3 utilizes

the training set to place the n factors and their categorical genotypes into a contingency

table representing the n-dimensional space. For example, two SNPs each with three possible

genotypes yields a 3-by-3 contingency table, and the subjects are placed in the table cell cor-

responding to their haplotype. Step 4 labels each multifactor cell in the contingency table as

high-risk or low-risk based on the ratio of cases to controls [10]. If the ratio is greater than

or equal to one, the cell is labeled high-risk and shaded a dark gray in the table; the cell is

labeled as low-risk and shaded light gray if the ratio does not exceed one. The haplotypes
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that are not represented in the data set are left as blank, white cells. This explains how

the data are reduced from n-dimensional space to one-dimensional space, for a subject’s

haplotype (cell) is a categorical variable with two possible levels - high-risk or low-risk. Step

5 estimates the training accuracy of the n-locus model using cross-validation on the training

set [10]. The näıve Bayes classifier uses a subject’s n genotypes to identify the subject as

high-risk (case) or low-risk (control) using the following formula:

vNB = arg max
vj∈V

P (vj)
n∏

i=1

P (ai|vj) (3.2)

Here, vj represents one of a set of V classes for j = 1, 2; ai is one of n factors (SNPs) [1].

Afterwards, the training accuracy is calculated for each model using the classification results

for the training data set. MDR selects the model with the highest training accuracy as the

best n-locus model for the first cross-validation, and the CVC is tabulated at this stage. Step

6 utilizes the independent testing set along with the näıve Bayes classifier to estimate the

prediction accuracy for the selected n-locus model. Steps 1-6 are repeated for each of the

ten cross-validation intervals, and the prediction accuracies are averaged for each n-locus

model. Lastly, MDR uses CVC to determine the best n-locus model across the 10-fold cross-

validation [6], and the chi-square statistic is calculated for this model to determine whether

the factors are significantly associated with the genetic disease.

The final output displayed by the MDR software includes several criteria to summarize

the performance of the n-locus model and to select an overall best model. The final best

1- to n-locus models are displayed along with the training accuracy, prediction accuracy,

sensitivity (SN), specificity (SP), cross-validation consistency, and chi-square test p-value

(χ2). A CVC less than ten indicates that the estimate for the prediction accuracy is biased,

so the model should be rerun with a forced analysis to obtain an unbiased estimate for the

PA [11]. It is up to the user to select the overall best epistasis model based on maximum

prediction accuracy and CVC. In the case where two different models yield the highest

PA and the highest CVC, the more parsimonious model should be selected [10]. It is also

plausible that the second or third best n-locus model shown in the fitness landscape could

be a better predictor of disease status if a forced analysis of the secondary models produces

a higher prediction accuracy [11]. The “rule of thumb” for interpreting the PA reveals that
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a number greater than 0.54 is intriguing, a number greater than 0.60 is usually statistically

significant, and a number beyond 0.70 is rarely encountered [11]. Moreover, overfitting is a

potential problem when the PA continues to rise as additional factors are included in the

model [11]. MDR also displays the dendrogram tab which visually depicts a hierarchical

cluster analysis to indicate epistasis, correlation, or independence between factors. The

length of the connecting lines implies the strength of the relationship; shorter lines represent

stronger relationships. The color of the lines reveal the type of relationship as epistatic (red

or orange), correlated (blue or green), or independent (tan) [11]. Fortunately, the MDR

output is easily saved for future reference, and diagrams may be exported for use in papers

or presentations.

MDR was developed to better detect high-order interactions among SNPs associated with

genetic diseases and inherently has a number of advantages and disadvantages. The advan-

tages of the MDR method are 1) it has the ability to simultaneously detect and characterize

multiple SNPs associated with genetic disease status; 2) it is nonparametric; 3) it is genetic

model-free; and 4) its cross-validation strategy limits the number of false-positives from mul-

tiple testing [9]. MDR is also able to detect interactions in the absence of any significant

main effects. The disadvantages of MDR are a) it lacks power when the real effect is additive

instead of multiplicative; b) it cannot label empty cells in high-dimensional contingency ta-

bles as high-risk or low-risk; and c) it suffers from an unstable risk assignment when the ratio

of cases to controls is approximately one [4]. Furthermore, this method is computationally

intensive when more than ten SNPs need to be analyzed, is often hard to interpret, is only

applicable to balanced case-control studies, and is limited in its capacity to predict disease

status in an independent testing set when the best model exhibits high-dimensionality and

the sample size is small [9]. Currently, the MDR software cannot incorporate non-genetic

characteristics which could greatly improve the best model’s prediction accuracy nor can

it easily run data simulations. Hence, MDR has overcome many of the computational hur-

dles for discerning gene-gene interactions associated with genetic disease, but there are still

instances where it could be improved.
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3.2 GENERALIZED MULTIFACTOR DIMENSIONALITY REDUCTION

Generalized Multifactor Dimensionality Reduction (GMDR) is another constructive induc-

tion approach which extends the MDR method to incorporate unbalanced study designs,

meaningful non-genetic covariates, and continuous outcomes [2]. This method is also non-

parametric and genetic model free. MDR is a special case of GMDR, and the two methods

are equivalent for balanced case-control studies without any covariate adjustment [2]. GMDR

attempts to overcome the “curse of dimensionality” by using the same strategy as MDR to

reduce the dimensionality of the data from n to one. Another key difference is that the

one-dimensional classification of the contingency table cells as high-risk or low-risk is based

on the score of a generalized linear model instead of the ratio of cases to controls [2]. Hence,

GMDR is able to use more of the available data for building the SNP epistasis models and

improving the prediction accuracies.

The generalized linear model underlying the GMDR method defines yi as the binary

disease status for subject i with expectation E(yi) = µi. The model is of the form:

l(µi) = α + xT
i β + zTi γ (3.3)

where l(µi) is the logit link function, α is the intercept, xi is the vector of genetic predictor-

variables, zi is the vector of non-genetic covariates, and β and γ are the respective parameter

vectors. The score-based statistics derived from the model in Equation 3.3 are calculated for

each subject i using the following formula:

ST
i =

∑
j

xij(yi − µ̂i)√
V âr(yi)

(3.4)

where ST
i is a measure of the normalized contributions to the scores of the genetic effects

and V âr(yi) is the estimated variance of yi [2].

The GMDR software (version 0.7 beta) was developed in 2007 by Lou, Chen, Yan, and Li

to implement the GMDR method [2]. Missing data must be deleted, imputed, or categorically

coded as in MDR, and the text data files (.txt) are formatted exactly the same except the

GMDR data files may include non-genetic covariates. The SAS code used to create the data

files is given in Appendix A. The GMDR method substitutes the average score statistic for
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the ratio of cases to controls in each cell, but the remaining steps are identical to those carried

out by MDR. The maximum likelihood estimates and scores for each subject are calculated

under the null hypothesis H0 : β = 0 (ie. there are no significant genetic factors or epistasis)

[2]. Step 3 of the GMDR method computes the average score statistic in each cell. In Step

4, the cells are labeled as high-risk or low-risk based on whether the average score statistic

meets/exceeds or does not exceed the threshold value, respectively. The threshold equals

the ratio of cases to controls in the data set, and a value of zero is equivalent to a one-to-one

case-control ratio. Due to the high dimensionality of the data and the comparatively small

sample sizes, some of the cells can be empty in the training set and not in the testing set.

The GMDR method identifies these as misclassification cells when adding together the scores

of the high-risk and low-risk cells. This strategy penalizes the use of many subdivisions

in a small sample and is consistent with statistical parsimony [2]. The GMDR software

displays the final best 1- to n-locus models along with the training accuracy, prediction

accuracy, sensitivity, specificity, cross-validation consistency, and chi-square test and sign

test p-values. As in MDR, the best n-locus model is selected based on the highest training

accuracy, and the maximum balanced prediction accuracy and CVC are used to determine

the overall best epistasis model. The balanced prediction accuracy is calculated using the

formula (sensitivity + specificity)/2 to yield an unbiased estimate for unbalanced case-control

studies. Lastly, the chi-square and sign tests determine whether the factors are significantly

associated with the genetic disease.

The GMDR software produces the same output as MDR with the addition of the sign

test, and the results are interpreted in the same way. The prediction accuracy indicates the

proportion of subjects that were correctly classified as cases or controls. For example, a

prediction accuracy of 0.60 implies that 60% of the subjects were correctly classified as cases

or controls. Sensitivity is defined as the proportion of subjects, who died within ninety days,

that were correctly classified as cases. A sensitivity of 0.85 implies that 85% of subjects, who

died within ninety days, were actually classified as cases. Similarly, specificity is defined as

the proportion of subjects, who were alive after ninety days, that were correctly classified

as controls. For example, a specificity of 0.83 implies that 83% of subjects, who were alive

after ninety days, were actually classified as controls. Recall that CVC is measured on a ten
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point scale for 10-fold cross-validation, so a CVC of eight indicates that the particular model

was selected eight times out of ten as the best model. Additionally, a significant chi-square

test reveals that the SNP or interaction between SNPs is associated with 90-day mortality.

A significant sign test suggests that the best model with one or more SNPs is significantly

better than the null model. This thesis used an α = 0.05 level of significance to interpret

the test results.

GMDR was developed to overcome some of the limitations present in the MDR method.

The advantages of the GMDR method are 1) it can adjust for non-genetic covariates; 2) it

can analyze dichotomous and continuous traits; and 3) it can make use of unbalanced case-

control studies [2]. When a trait is significantly associated with the covariate(s), GMDR

will produce better prediction accuracies. Furthermore, GMDR does not depend on score or

likelihood properties to calculate the average score statistics in each cell. Similar to MDR,

the disadvantages of GMDR include a) the intensive, high-dimensional computations; b) the

issue with empty cells in the training data which are not empty in the testing data set [2]; and

c) the inability to easily run data simulations. The authors are planning to extend GMDR

to family-based study designs and are working on better optimal algorithms to improve the

performance of the method [2].

3.3 STEPWISE PENALIZED LOGISTIC REGRESSION

Stepwise Penalized Logistic Regression (stepPLR) modifies the standard logistic regression

(LR) method by adding a quadratic penalization of the L2-norm of the coefficients in SNP

epistasis models. Stepwise PLR was proposed by Park and Hastie [4] in 2007 and has a

number of advantages over standard LR. The coefficients of the SNPs and their interactions

are estimated by minimizing the following penalized negative log-likelihood:

L(β0, β, λ) = −l(β0, β) +
λ

2
||β||2 (3.5)

where β0 is the vector of initial values for the genetic variable coefficients, β is the vector

of coefficients which must be estimated, l(β0, β) is the binomial log-likelihood, λ is the
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regularization parameter, and ||β||2 is the L2-penalization. The value for the constant λ is

determined using cross-validation and selecting the value that yields the largest log-likelihood

[6]; a large λ will fit the data more smoothly. This thesis found λ = 8 to perform best even

though the default value is 10E-4. The model fitting utilizes the iteratively reweighted ridge

regression (IRRR) algorithm to estimate the coefficients [4]. The final model is selected

according to the Bayesian information criterion (BIC) with forward selection followed by

backward deletion [6]. Stepwise PLR incorporates the asymmetric hierarchy principle to

allow the SNP interaction terms to enter the model more easily [4]. Under this principle, any

factor or interaction of factors in the model can form a new interaction with any other single

factor even if the single factor has not been added to the model. The addition or deletion of

genetic factors at each step is based on the score defined by the following formula:

S = d+ cp ∗ df (3.6)

where d is the deviance, cp is the complexity parameter equal to the log of the sample size,

and df is the effective degrees of freedom. Note this is not the same as the score statistic in

the GMDR method. For stepPLR, the final best model is the one with minimum score S [6].

Park and Hastie developed the stepPLR software (version 0.91) as an R software package

downloadable for Mac and Unix platforms. For this software package, any missing data must

be imputed or deleted before importing the data sets. The SAS code used to create the data

files is given in Appendix A, and the R code (version 2.10.1) used to implement stepPLR

is given in Appendix B. Unfortunately, the software does not allow the user to specify the

largest order (n) of the interactions to be tested; the user can only restrict the number of

terms in final model. Setting “max.terms = 4” permits the final model to include up to four

SNPs. Another option is to use only forward selection for the model fitting, but this tended

to yield the same results. The software output displays the coefficient estimates, standard

errors, Z-statistics, Z-test p-values, and the score and prediction error of the model. After

subtracting the prediction error from one to obtain the prediction accuracy, the performance

of stepPLR can be compared to MDR and GMDR.

Stepwise PLR has many advantages over standard LR, but it is not without its own

limitations. In standard LR, there are problems with overfitting due to the large number of
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parameters that need to be estimated in relatively small data sets. The SNPs can be corre-

lated which degrades the fit of the model under standard LR, and special parametrization

is needed for empty or nearly empty cells in the contingency table [4]. With so few data

points in some of the cells, there is large instability in the parameter estimation [6], and

these issues are magnified for higher order interactions. Since stepPLR employs quadratic

penalization, it has a number of advantages: 1) the large number of coefficients can be fit in

a stable fashion amid high-dimensionality; 2) the use of dummy variables to code each SNP

genotype yields direct interpretations of the interaction terms and removes the collinearity

problem which degrades the fit of the model; 3) sparse data in the contingency tables do not

affect the stability of the model fitting; and 4) the sample size does not limit the number of

SNPs that can be included in the final model [4]. Stepwise PLR also performs well when the

effect of multiple SNPs is additive [6]. The disadvantages of stepPLR are a) the strength of

the main effects can be reduced for large values of λ; b) the penalization tends to break up

a large main effect coefficient into smaller interaction pieces; c) stepPLR possibly includes

interaction terms just to account for the regularized main effects [4]; and d) the method can

only handle genetic data and a binary trait and does not incorporate non-genetic covari-

ates. Therefore, stepPLR overcomes many of the standard LR limitations, but additional

improvements could be made.

3.4 DESCRIPTION OF DATA

Data obtained from the Genetic and Inflammatory Markers of Sepsis (GenIMS) study were

analyzed by each of the three methods to characterize high-order SNP interactions related

to 90-day mortality. This cohort study obtained genetic and clinical data from 2,320 pa-

tients (aged eighteen or older) who were admitted to the emergency department and sub-

sequently diagnosed with community-acquired pneumonia (CAP). Written consent was ob-

tained from the patients (or proxies) after the study was approved by the institutional review

boards of the University of Pittsburgh and all twenty-eight participating hospital sites [13].

The GenIMS investigators sought to uncover patterns between anti-inflammatory and pro-
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inflammatory biomarker levels and the primary outcomes defined as 90-day mortality (N =

212, 11%) or severe sepsis (N = 583, 31%). In-hospital mortality was determined by study

nurses, and post-discharge mortality was determined by telephone interviews and a National

Death Index search [13].

This analysis was limited to 1,704 CAP patients of White race and SNPs on the EPCR,

ICAM-1, IL-1A, IL-1B, IL-6, IL-10, MBL, PAI-1, TLR-4, and TNF genes. Each SNP has

three possible genotypes which were treated as a categorical variable with the following

three categories: homozygous for the common allele (coded as 0), heterozygous (coded as

1), and homozygous for the less common allele (coded as 2). The bases for the alleles

are adenine (A), cytosine (C), thymine (T), and guanine (G). Hardy-Weinberg equilibrium

(HWE) and linkage disequilibrium (LD) were assessed before removing SNPs with only two

genotypes and a minor genotype frequency less than 1% or with more than 10% missing

data. Incorporating domain-specific knowledge also reduced the number of genes which were

anticipated to be significantly associated with 90-day mortality. Out of the 1,704 subjects,

47.1% were females with an average age of 67.9 years, and the males had an average age of

68.1 years. For statistical analysis purposes, cases were defined as subjects who died within

ninety days, and subjects still alive at ninety days were classified as controls. There were 191

cases (average age 78.4 years) and 1,513 controls (average age 66.7 years), but these numbers

changed for each particular SNP due to missingness or the MDR requirement for an equal

number of cases and controls. Prior studies using human subjects included 120 cases and

120 controls, but this sample size was too small to detect interactions. It was expected that

191 cases for this analysis would be sufficient. This data set was selected for analysis because

CAP is the leading cause of sepsis, and many studies have been published regarding genetic

polymorphisms related to the development of sepsis. Taking this a step further, high-order

SNP interactions were analyzed for association with 90-day mortality to evaluate whether

MDR, GMDR, or stepPLR yielded the best performance for the GenIMS data set.
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4.0 RESULTS

The selected SNPs on each of the ten genes were tested for Hardy-Weinberg equilibrium

and linkage disequilibrium before implementing MDR, GMDR, and stepPLR to detect SNP

epistasis associated with 90-day mortality. The results of these tests, along with the geno-

types and percentages of missing data, are given in Table 1. Some SNPs with more than

ten percent missing data were included in the analysis to adequately conduct each method,

but this did not largely affect the sample sizes for each gene. Each SNP was found to meet

Hardy-Weinberg equilibrium because all of the p-values were greater than α = 0.05. Linkage

disequilibrium among the SNPs was tested within each gene, and all but two of the genes

yielded the necessary significant p-values. The genes TLR-4 and TNF had p-values greater

than α = 0.05 but were analyzed nonetheless for comparison to other studies.

Table 1: Hardy-Weinberg equilibrium and linkage disequilibrium tests

Gene SNP Genotypes Missing (%) HWEa LDb

EPCR rs2069940 CC, CG, GG 28.66 0.99 <0.0001

rs867186 AA, AG, GG 15.73 0.12

ICAM-1 rs1799969 AA, AG, GG 0.39 0.20 <0.0001

rs5030340 CC, CT, TT 9.27 0.99

rs281432 CC, CG, GG 5.69 0.77

rs281438 GG, GT, TT 10.28 0.49
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Table 1 continued.

Gene SNP Genotypes Missing (%) HWEa LDb

IL-1A IL1A M889 CC, CT, TT 5.87 0.95 <0.0001

rs2856838 CC, CT, TT 4.05 0.28

rs1894399 AA, AG, GG 4.21 0.58

rs3783520 AA, AG, GG 5.14 0.53

rs3783546 CC, CG, GG 9.97 0.44

rs1878319 CC, CT, TT 14.17 0.71

rs2856837 CC, CT, TT 21.26 0.45

rs2856836 CC, CT, TT 7.32 0.36

IL-1B IL1B M511 AA, AG, GG 5.69 0.92 <0.0001

IL1B 3957 AA, AG, GG 5.58 0.11

rs1071676 CC, CG, GG 12.46 0.34

rs3917365 CC, CT, TT 8.72 0.99

rs1143623 CC, CG, GG 7.32 0.83

IL-6 IL6 M174 CC, CG, GG 6.87 0.27 <0.0001

rs2069827 GG, GT, TT 1.25 0.73

rs2069861 CC, CT, TT 3.43 0.99

rs2069849 CC, CT, TT 1.09 0.38

rs1548216 CC, CG, GG 5.37 0.11

rs1800795 CC, CG, GG 5.14 0.47

IL-10 IL10 M1082 CC, CT, TT 6.28 0.69 <0.0001

IL10 M819 CC, CT, TT 5.58 0.73

rs1800872 AA, AC, CC 0.70 0.36

rs3024505 CC, CT, TT 3.35 0.91

rs1800894 AA, AG, GG 5.37 0.32

rs3024496 CC, CT, TT 5.30 0.73
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Table 1 continued.

Gene SNP Genotypes Missing (%) HWEa LDb

MBL rs11003125 CC, CG, GG 49.14 0.88 <0.0001

rs1800450 AA, AG, GG 49.14 0.15

rs1800451 AA, AG, GG 49.14 0.99

rs7096206 CC, CG, GG 49.14 0.78

rs5030737 CC, CT, TT 49.14 0.35

PAI-1 rs13238709 CC, CT, TT 11.60 0.76 <0.0001

rs2227683 AA, AG, GG 6.15 0.72

rs2227665 AA, AG, GG 9.03 0.99

rs7242 GG, GT, TT 10.67 0.95

TLR-4 TLR4 M896 AA, AG, GG 5.98 0.65 >0.05

rs11536898 AA, AC, CC 8.26 0.69

rs11536897 AA, AG, GG 3.66 0.76

rs12344353 CC, CT, TT 7.94 0.99

rs5030725 GG, GT, TT 3.27 0.99

rs2770146 AA, AG, GG 7.87 0.26

rs1927912 AA, AG, GG 5.61 0.99

rs5030729 AA, AG, GG 5.53 0.99

rs1927914 CC, CT, TT 6.07 0.79

rs5030717 AA, AG, GG 6.54 0.99

TNF TNFA M308 CC, CT, TT 5.81 0.99 >0.05

TNF 238 AA, AG, GG 12.09 0.06

TNF 857 CC, CT, TT 7.02 0.90

rs3093672 CC, CT, TT 1.25 0.99

rs3093662 AA, AG, GG 14.88 0.99

a HWE = Hardy-Weinberg Equilibrium p-value, b LD = Linkage Disequilibrium p-value
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4.1 EPCR RESULTS

The MDR method utilized 103 cases and 103 controls in the data set for the EPCR SNPs,

and the results are shown in Table 2. The overall best model was the one-locus model with

rs2069940 because it had the highest prediction accuracy 0.5146. The specificity of the model

was relatively good at 0.8252, and the CVC was high at nine. This was a very poor model

because the sensitivity was only 0.2039, and the non-significant chi-square test indicated

that rs2069940 was not significantly associated with 90-day mortality (p = 0.87).

For the GMDR method, 103 cases and 715 controls were used to generate the models for

the EPCR SNPs. The results are shown in Table 2. The prediction accuracies and CVCs were

identical for the one- and two-locus models. Thus, rs2069940 was selected as the overall best

model because it was more parsimonious. The prediction accuracy was low at 0.5228. A

very low sensitivity of 0.2036 was observed, but the specificity of the model was much higher

at 0.8420. The CVC was very high at ten. Despite that, the chi-square test concluded that

rs2069940 was not significantly associated with 90-day mortality (p = 0.62). The sign test

was borderline significant (p = 0.05). Altogether, MDR and GMDR both chose rs2069940 as

the overall best model, but GMDR had slightly better prediction accuracy than MDR.

Table 2: EPCR SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

MDR rs2069940 0.5146 0.5146 0.2039 0.8252 9 0.87 NA

(N=206) rs2069940, rs867186 0.5210 0.4660 0.4660 0.4660 10 0.76 NA

GMDR rs2069940 0.5229 0.5228 0.2036 0.8420 10 0.62 0.05

(N=818) rs2069940, rs867186 0.5229 0.5228 0.2036 0.8420 10 0.62 0.05

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 103 cases and 715 controls to determine the best epistasis model

for EPCR. The model shown in Table 3 only included main effects for rs2069940 and rs867186

and no interactions. The Z-test for rs2069940 indicated that this SNP was not significantly

associated with 90-day mortality (p = 0.18). The Z-test for rs867186 suggested that this

SNP was not significantly associated with 90-day mortality as well (p = 0.54). The standard

errors were large compared to the magnitude of the estimates which signified a poorly fit

model. The prediction accuracy was high at 0.8741. This estimate, however, was biased

because this stepPLR model predicted all subjects were controls.

Table 3: EPCR SNP epistasis model generated by stepPLR

Best Model (N=818) Estimate (SE)a Z-testb Score PAc

rs2069940 0.1074 (0.0793) 0.18 632.31 0.8741

rs867186 -0.0697 (0.1125) 0.54

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that EPCR SNPs rs2069940

and rs867186 exhibited weak epistasis as indicated by the long, red line in Figure 1.

Figure 1: MDR interaction dendrogram for EPCR SNPs. The long, red line

indicates weak epistasis between rs2069940 and rs867186.
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4.2 ICAM-1 RESULTS

The MDR method utilized 118 cases and 118 controls in the data set for the ICAM-1 SNPs,

and the results are shown in Table 4. Even though the three-locus model had the highest

prediction accuracy 0.5636, the overall best model was the one-locus model with rs281432

because it had a CVC of ten and was the more parsimonious model. The prediction accuracy

was fairly low at 0.5297. Unfortunately, this is a very poor model since the specificity was

only 0.2712. The sensitivity was also poor at 0.7881. Finally, the chi-square test concluded

that rs281432 was not significantly associated with 90-day mortality (p = 0.74).

For the GMDR method, 118 cases and 845 controls were used to generate the models

for the ICAM-1 SNPs. The results are shown in Table 4. The same one-locus and four-

locus models were selected by GMDR and MDR. Again, the three locus model exhibited the

highest prediction accuracy 0.5369, but the one-locus model with rs281432 was selected as

the overall best model because it had a CVC of ten and was the more parsimonious model.

The prediction accuracy was fairly low at 0.5219. This was also a poor model since the

specificity was only 0.2589; the sensitivity was also low at 0.7848. In addition, the chi-square

test concluded that rs281432 was not significantly associated with 90-day mortality (p =

0.38), and the sign test was also non-significant (p = 0.17). Thus, MDR had slightly better

prediction accuracy than GMDR.
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Table 4: ICAM-1 SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs281432 0.5476 0.5297 0.7881 0.2712 10 0.74 NA

MDR rs281432, rs5030340 0.5730 0.5593 0.8136 0.3051 9 0.50 NA

(N=236) rs281432, rs5030340, rs281438 0.5880 0.5636 0.8475 0.2797 7 0.45 NA

rs281432, rs5030340, rs281438, rs1799969 0.6088 0.5254 0.5763 0.4746 10 0.80 NA

rs281432 0.5353 0.5219 0.7848 0.2589 10 0.38 0.17

GMDR rs281432, rs281438 0.5511 0.5292 0.6453 0.4130 7 0.48 0.17

(N=963) rs281432, rs281438, rs1799969 0.5621 0.5369 0.6327 0.4410 7 0.52 0.17

rs281432, rs281438, rs1799969, rs5030340 0.5693 0.5165 0.5903 0.4426 10 0.58 0.17

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 118 cases and 845 controls to determine the best epistasis model

for ICAM-1. The model shown in Table 5 included main effects for rs1799969, rs5030340, and

rs281432 and an interaction between rs1799969 and rs281432. None of the Z-tests for the

main effects were significant (all p > 0.10). The Z-test for rs1799969*rs281432 also suggested

that this interaction was not significantly associated with 90-day mortality (p = 0.61). The

standard errors were large compared to the magnitude of the estimates which signified a

poorly fit model. The prediction accuracy was high at 0.8775. This estimate, however, was

biased because this stepPLR model predicted all subjects were controls.

Table 5: ICAM-1 SNP epistasis model generated by stepPLR

Best Model (N=963) Estimate (SE)a Z-testb Score PAc

rs1799969 -0.0777 (0.1242) 0.53 740.66 0.8775

rs5030340 -0.0556 (0.1215) 0.65

rs281432 0.0527 (0.0565) 0.35

rs1799969*rs281438 -0.0122 (0.0241) 0.61

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that ICAM-1 SNPs rs281432

and rs281438 exhibited relatively strong correlation as indicated by the medium-sized, blue

line in Figure 2. The dendrogram also displayed a relatively strong correlation between

rs1799969 and rs5030340 as shown by a second medium-sized, blue line in the figure. The

long, tan line showed independence between the two clusters of SNPs.
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Figure 2: MDR interaction dendrogram for ICAM-1 SNPs. The medium-

sized, blue lines indicate relatively strong correlation between rs281432 and

rs281438 and between rs1799969 and rs5030340. The long, tan line indicates

independence between the two clusters of SNPs.

4.3 IL-1A RESULTS

The MDR method utilized 104 cases and 104 controls in the data set for the IL-1A SNPs,

and the results are shown in Table 6. The overall best model was the one-locus model with

rs3783546 because it had the highest prediction accuracy (0.5481) and CVC (10) among all

four models. The specificity was low at 0.5096, and the sensitivity was relatively low at

0.5865. The chi-square test concluded that rs3783546 was not significantly associated with

90-day mortality (p = 0.66).

For the GMDR method, 104 cases and 753 controls were used to generate the SNP epistasis

models for IL-1A. The results are shown in Table 6. The one-locus model with rs3783546 was

selected as the overall best model because it had the highest prediction accuracy (0.5579)

and CVC. The sensitivity was relatively low at 0.6164, and the specificity was even lower

at 0.4994. The CVC was very high at ten. The chi-square test, however, concluded that

rs3783546 was not significantly associated with 90-day mortality (p = 0.36), but the sign

test was borderline significant (p = 0.05). This was the first overall best model with a

prediction accuracy larger than 0.55 and could be investigated more thoroughly in future

research. Here, GMDR performed better than MDR.
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Table 6: IL-1A SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs3783546 0.5641 0.5481 0.5865 0.5096 8 0.66 NA

MDR IL1A M889, rs2856838 0.5721 0.5240 0.5000 0.5481 6 0.83 NA

(N=208) IL1A M889, rs2856838, rs1878319 0.5721 0.5240 0.5000 0.5481 5 0.83 NA

IL1A M889, rs2856838, rs1878319, rs1894399 0.5721 0.5240 0.5000 0.5481 5 0.83 NA

rs3783546 0.5574 0.5579 0.6164 0.4994 9 0.36 0.05

GMDR rs3783546, rs3783520 0.5671 0.5540 0.4664 0.6416 8 0.33 0.17

(N=857) rs3783520, IL1A M889, rs2856838 0.5684 0.5547 0.4664 0.6430 9 0.33 0.17

rs3783520, IL1A M889, rs2856838, rs1878319 0.5684 0.5547 0.4664 0.6430 9 0.33 0.17

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity, e CVC = cross-validation
consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 104 cases and 753 controls to determine the best epistasis model

for IL-1A. The model shown in Table 7 included six main effects and two interactions. The

results of the Z-tests indicated that IL1A M889, rs1894399, rs1878319, and rs2856837 were

each significant predictors of 90-day mortality when adjusting for the other SNPs in the

model (all p < 0.05). In addition, the Z-test for the interaction between rs28556838 and

rs3783520 was borderline significant (p = 0.06). The SNPs rs2856836 and rs3783520 and

the interaction rs2856838*rs1894399 were not significantly associated with 90-day mortality

(all p ≥ 0.09). The standard errors were fairly small with respect to the magnitude of the

parameter estimates. The prediction accuracy was high at 0.8787, but this estimate was

biased because all subjects were predicted as controls.

Table 7: IL-1A SNP epistasis model generated by stepPLR

Best Model (N=857) Estimate (SE)a Z-testb Score PAc

IL1A M889 -0.1142 (0.0512) 0.03 646.66 0.8787

rs1894399 0.1071 (0.0483) 0.03

rs1878319 -0.1071 (0.0483) 0.03

rs2856837 -0.1005 (0.0484) 0.04

rs2856836 0.0939 (0.0553) 0.09

rs3783520 0.0461 (0.0565) 0.42

rs2856838*rs3783520 -0.1292 (0.0696) 0.06

rs2856838*rs1894399 0.0627 (0.0689) 0.36

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that IL-1A SNPs rs1894399,

IL1A M889, and rs1878319 exhibited strong correlation as indicated by the short, blue lines

in Figure 3. The dendrogram also displayed a strong correlation between rs3783546 and this

cluster of three SNPs as shown by the other short, blue line in the figure. The long, green

line showed weak correlation between rs2856838 and this cluster of four SNPs.
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Figure 3: MDR interaction dendrogram for IL-1A SNPs. The short, blue lines

indicate strong correlation between rs1894399, IL1A M889, and rs1878319

and between rs3783546 and this cluster of three SNPs. The long, green line

indicates weak correlation between rs2856838 and this cluster of four SNPs.

4.4 IL-1B RESULTS

The MDR method utilized 111 cases and 111 controls in the data set for the IL-6 SNPs, and

the results are shown in Table 8. Even though the three-locus model had the highest CVC,

the two-locus model with an interaction between IL1B M511 and rs3917365 was selected as

the overall best model because it had the highest prediction accuracy and was the more

parsimonious model. The prediction accuracy, however, was still low at 0.5090. The sen-

sitivity was poor at 0.5856, and the specificity was very low at 0.4324. The CVC was also

low at five. The chi-square test concluded that IL1B M511*rs3917365 was not significantly

associated with 90-day mortality (p = 0.93).

For the GMDR method, 111 cases and 839 controls were used to generate the models for

the IL-1B SNPs. The results are shown in Table 8. The two-locus model with an interaction

between rs1071676 and rs1143623 exhibited the highest prediction accuracy (0.5237) and

CVC, so it was selected as the overall best model. This was a poor model because the

sensitivity was low (0.5598) and the specificity was even lower at 0.4875. The CVC, however,

was very high at ten. The chi-square test concluded that the interaction between rs1071676

and rs1143623 was not significantly associated with 90-day mortality (p = 0.49), and the sign

test was also non-significant (p = 0.38). Altogether, GMDR had better prediction accuracy

than MDR.
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Table 8: IL-1B SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

IL1B M511 0.5335 0.4820 0.5315 0.4324 6 0.86 NA

MDR IL1B M511, rs3917365 0.5480 0.5090 0.5856 0.4324 5 0.93 NA

(N=222) IL1B M511, rs3917365, IL1B 3957 0.5636 0.4550 0.4955 0.4144 8 0.67 NA

IL1B M511, rs3917365, IL1B 3957, rs1143623 0.5676 0.4550 0.4955 0.4144 7 0.67 NA

rs1071676 0.5140 0.4858 0.4424 0.5293 5 0.59 0.95

GMDR rs1071676, rs1143623 0.5522 0.5237 0.5598 0.4875 10 0.49 0.38

(N=950) rs1071676, rs1143623, IL1B M511 0.5622 0.5174 0.5409 0.4940 7 0.59 0.38

rs1071676, rs1143623, IL1B M511, rs3917365 0.5739 0.5169 0.5674 0.4664 10 0.53 0.17

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity, e CVC = cross-validation
consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 111 cases and 839 controls to determine the best epistasis model

for IL-1B. The model shown in Table 9 included main effects for IL1B 3957, rs3917365,

rs1071676, and IL1B M511 and an interaction between IL1B 3957 and rs1143623. The Z-tests

implied that none of the main effects or the interaction term were significantly associated with

90-day mortality (all p > 0.10). The standard errors were large compared to the magnitude

of the parameter estimates which signified a poorly fit model. The prediction accuracy

was high at 0.8832, but this estimate was biased because this stepPLR model predicted all

subjects were controls.

Table 9: IL-1B SNP epistasis model generated by stepPLR

Best Model (N=950) Estimate (SE)a Z-testb Score PAc

IL1B 3957 0.0624 (0.1143) 0.59 713.48 0.8832

rs3917365 0.0037 (0.1217) 0.98

rs1071676 0.0636 (0.0609) 0.30

IL1B M511 0.0252 (0.1172) 0.83

IL1B 3957*rs1143623 0.0280 (0.0311) 0.37

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that the IL-1B SNPs IL1B 3957

and rs3917365 exhibited strong correlation as indicated by the short, blue line in Figure

4. The dendrogram also displayed a relatively strong correlation between IL1B M511 and

rs1143623 as shown by the medium-sized, green line in the figure. The long, green line

illustrated weak correlation between these two clusters of SNPs.
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Figure 4: MDR interaction dendrogram for IL-1B SNPs. The short, blue line

indicates strong correlation between IL1B 3957 and rs3917365. The medium-

sized, green line indicates relatively strong correlation between IL1B M511

and rs1143623. The long, green line indicates weak correlation between these

two clusters of SNPs.

4.5 IL-6 RESULTS

The MDR method utilized 120 cases and 120 controls in the data set for the IL-1B SNPs, and

the results are shown in Table 10. The overall best model was the two-locus model with an

interaction between rs2069827 and rs1548216 because it had the highest prediction accuracy

(0.5375) and the largest CVC. The sensitivity was high at 0.8333, but the specificity was

very low (0.2417). The CVC of nine was very high. The chi-square test concluded that the

interaction between rs2069827 and rs1548216 was not significantly associated with 90-day

mortality (p = 0.65).

For the GMDR method, 120 cases and 833 controls were used to generate the models for

the IL-6 SNPs. The results are shown in Table 10. The one-locus model with IL6 M174 was

selected as the overall best model because it yielded the highest prediction accuracy (0.5341)

and the largest CVC. This was also a poor model because a low sensitivity was observed

(0.5667); the specificity was even lower at 0.5016. The CVC, however, was high at nine.

The chi-square test concluded that IL6 M174 was not significantly associated with 90-day

mortality (p = 0.35), and the sign test was also non-significant (p = 0.62). Hence, MDR had

slightly better prediction accuracy than GMDR.
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Table 10: IL-6 SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs2069827 0.5250 0.5250 0.8583 0.1917 5 0.74 NA

MDR rs2069827, rs1548216 0.5417 0.5375 0.8333 0.2417 9 0.65 NA

(N=240) rs2069827, rs1548216, IL6 M174 0.5426 0.4875 0.7667 0.2083 8 0.88 NA

rs2069827, rs1548216, IL6 M174, rs1800795 0.5463 0.5000 0.8000 0.2000 7 0.99 NA

IL6 M174 0.5342 0.5341 0.5667 0.5016 9 0.35 0.62

GMDR IL6 M174, rs2069861 0.5391 0.5029 0.5667 0.4391 7 0.37 0.62

(N=953) IL6 M174, rs2069861, rs1548216 0.5436 0.4985 0.5417 0.4554 6 0.41 0.62

IL6 M174, rs2069861, rs1548216, rs2069827 0.5473 0.4845 0.5250 0.4440 9 0.41 0.83

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 120 cases and 833 controls to determine the best epistasis model

for IL-6. The model shown in Table 11 included four main effects and two interactions

between SNPs. The results of the Z-tests indicated that IL6 M174, rs2069849, rs2069816, and

rs1800795 were not significant predictors of 90-day mortality (all p > 0.10). Furthermore, the

interactions rs1800795*IL6 M174 and rs1800795*IL6 M174*rs1548216 were not significant

(all p > 0.10). The standard errors were relatively large compared to the magnitude of the

parameter estimates and signified a poor model. The prediction accuracy was high at 0.8740.

This estimate, however, was biased because this stepPLR model predicted all subjects were

controls.

Table 11: IL-6 SNP epistasis model generated by stepPLR

Best Model (N=953) Estimate (SE)a Z-testb Score PAc

IL6 M174 0.0069 (0.0879) 0.94 744.47 0.8740

rs2069849 0.0220 (0.0669) 0.74

rs2069861 0.1285 (0.1228) 0.30

rs1800795*IL6 M174 0.0320 (0.0333) 0.34

rs1800795 -0.0191 (0.0848) 0.82

rs1800795*IL6 M174*rs1548216 -0.0198 (0.0168) 0.24

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that IL-6 SNPs rs1548216 and

rs2069827 exhibited strong correlation as indicated by the short, blue line in Figure 5. The

dendrogram also displayed a relatively strong correlation between IL6 M174 and this cluster

of two SNPs depicted by the medium-sized, blue line in the figure. The long, green line

showed weak correlation between rs1800795 and this cluster of three SNPs.
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Figure 5: MDR interaction dendrogram for IL-6 SNPs. The short, blue line

indicates strong correlation between rs1548216 and rs2069827. The medium-

sized, blue line indicates relatively strong correlation between IL6 M174 and

this cluster of two SNPs. The long, green line indicates weak correlation

between rs1800795 and this cluster of three SNPs.

4.6 IL-10 RESULTS

The MDR method utilized 121 cases and 121 controls in the data set for the IL-10 SNPs,

and the results are shown in Table 12. The overall best model was the two-locus model with

an interaction between IL10 M819 and IL10 M1082 because it had the highest prediction

accuracy and CVC. The prediction accuracy, however, was relatively low at 0.5248. The

sensitivity was fairly high at 0.6694, but the specificity was very poor (0.3802). The CVC

was very high at ten. The chi-square test concluded that the interaction between IL10 M819

and IL10 M1082 was not significantly associated with 90-day mortality (p = 0.80).

For the GMDR method, 121 cases and 880 controls were used to generate the SNP

epistasis models for IL-10. The results are shown in Table 12. GMDR selected the one-

locus model with IL10 M819 as the overall best model because it had the largest CVC and

was more parsimonious than the three-locus model which displayed the highest prediction

accuracy (0.5610). The prediction accuracy for IL10 M819 was relatively low at 0.5524. The

sensitivity (0.4718) was low while the specificity was fairly high at 0.6330. The CVC was

relatively high at eight. The chi-square test, however, concluded that IL10 M819 was not

significantly associated with 90-day mortality (p = 0.46), and the sign test was not significant

(p = 0.17). This was the second overall best model with a prediction accuracy larger than

0.55. Here, GMDR performed better than MDR.
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Table 12: IL-10 SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

IL10 M819 0.5459 0.5165 0.5537 0.4793 7 0.87 NA

MDR IL10 M819, IL10 M1082 0.5771 0.5248 0.6694 0.3802 10 0.80 NA

(N=242) IL10 M819, IL10 M1082, rs3024505 0.5886 0.5248 0.6446 0.4050 3 0.80 NA

IL10 M819, IL10 M1082, rs3024505, rs1800894 0.5992 0.5083 0.6364 0.3802 4 0.93 NA

IL10 M819 0.5520 0.5524 0.4718 0.6330 8 0.46 0.17

GMDR IL10 M819, rs3024496 0.5712 0.5580 0.7429 0.3731 7 0.31 0.17

(N=1001) IL10 M819, rs1800894, rs3024505 0.5807 0.5610 0.4788 0.6432 5 0.42 0.01

IL10 M819, rs1800894, rs3024505, rs3024496 0.5894 0.5165 0.4712 0.5619 5 0.57 0.17

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 121 cases and 880 controls to determine the best epistasis model

for IL-10. The model shown in Table 13 included four main effects and two second-order

interactions. The results from the Z-tests indicated that IL10 M1082, rs3024496, rs1800894,

and rs1800872 were not significantly associated with 90-day mortality (all p > 0.10). On

the other hand, the interaction rs3024496*rs1800872 was a significant predictor of 90-day

mortality when adjusting for the other SNPs in the model (p = 0.02). The interaction between

IL10 M1082 and rs1800872 was borderline significant (p = 0.07). Overall, the standard errors

were fairly small with respect to the magnitude of the parameter estimates. The prediction

accuracy was high at 0.8792, but this estimate was biased because all subjects were predicted

as controls.

Table 13: IL-10 SNP epistasis model generated by stepPLR

Best Model (N=1001) Estimate (SE)a Z-testb Score PAc

IL10 M1082 -0.1187 (0.0748) 0.11 755.52 0.8792

IL10 M1082*rs1800872 -0.1430 (0.0779) 0.07

rs3024496 -0.1204 (0.0745) 0.11

rs3024496*rs1800872 0.1887 (0.0777) 0.02

rs1800894 -0.0351 (0.1124) 0.76

rs1800872 -0.1192 (0.1081) 0.27

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that the IL-10 SNPs IL10 M819

and rs3024505 exhibited strong correlation as indicated by the short, blue line in Figure 6.

The dendrogram also displayed a relatively strong correlation between rs1800894 and this

cluster of two SNPs as shown by the medium-sized, green line in the figure. The long, tan

line highlighted the independence between IL10 M1082 and this cluster of three SNPs.
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Figure 6: MDR interaction dendrogram for IL-10 SNPs. The short, blue line

indicates strong correlation between IL10 M819 and rs3024505. The medium-

sized, green line indicates relatively strong correlation between rs1800894 and

this cluster of two SNPs. The long, tan line indicates independence between

IL10 M1082 and this cluster of three SNPs.

4.7 MBL RESULTS

The MDR method utilized 108 cases and 108 controls in the data set for the MBL SNPs,

and the results are shown in Table 14. Even though the two-locus model had the highest

prediction accuracy 0.5556, the overall best model was the one-locus model with rs1800450

because it had a CVC of eight and was the more parsimonious model. The prediction

accuracy, however, was low at 0.5324. This was a very poor model since the specificity was

only 0.2593. The sensitivity was relatively high at 0.8056. The chi-square test concluded

rs1800450 was not significantly associated with 90-day mortality (p = 0.72).

For the GMDR method, 108 cases and 776 controls were used to generate the models

for the MBL SNPs. The results are shown in Table 14. The three-locus model exhibited

the highest prediction accuracy (0.5429) and was chosen as the overall best model. This

model was more parsimonious than the four-locus model with the largest CVC. A very

low sensitivity was observed (0.4427), but the specificity was fairly high at 0.6431. The

CVC was low at six. The chi-square test concluded that this model was not significantly

associated with 90-day mortality (p = 0.45), and the sign test was non-significant (p =

0.17). Altogether, GMDR had slightly better prediction accuracy than MDR.
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Table 14: MBL SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs1800450 0.5324 0.5324 0.8056 0.2593 8 0.72 NA

MDR rs11003125, rs5030737 0.5556 0.5556 0.2685 0.8426 5 0.53 NA

(N=216) rs11003125, rs5030737, rs1800450 0.5792 0.5324 0.6204 0.4444 8 0.76 NA

rs11003125, rs5030737, rs1800450, rs7096206 0.5921 0.4583 0.5556 0.3611 6 0.69 NA

rs1800450 0.5298 0.5258 0.7964 0.2551 7 0.48 0.17

GMDR rs11003125, rs5030737 0.5452 0.5139 0.4555 0.5724 5 0.53 0.38

(N=884) rs11003125, rs5030737, rs7096206 0.5658 0.5429 0.4427 0.6431 6 0.45 0.17

rs11003125, rs5030737, rs7096206, rs1800450 0.5821 0.5010 0.4897 0.5124 10 0.45 0.38

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity, e CVC = cross-validation
consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 108 cases and 776 controls to determine the best epistasis model

for MBL. The model shown in Table 15 included four main effects and one second-order

interaction. The results of the Z-tests indicated that none of the main effects (rs11003125,

rs1800451, rs5030737, and rs1800450) were significantly associated with 90-day mortality

(all p > 0.10). The second-order interaction between rs1800450 and rs7096206 was non-

significant (p = 0.27). The standard errors were large compared to the magnitude of the

parameter estimates and signified a poor model. The prediction accuracy was high at 0.8778.

This estimate, however, was biased because the stepPLR model predicted all subjects were

controls.

Table 15: MBL SNP epistasis model generated by stepPLR

Best Model (N=884) Estimate (SE)a Z-testb Score PAc

rs11003125 -0.0454 (0.0595) 0.45 681.33 0.8778

rs1800451 -0.0219 (0.0917) 0.81

rs5030737 0.0890 (0.1238) 0.47

rs1800450 0.0499 (0.1241) 0.69

rs1800450*rs7096206 0.0295 (0.0269) 0.27

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrates that the MBL SNPs rs11003125

and rs5030737 exhibited strong epistasis as indicated by the short, red line in Figure 7. The

long, tan line illustrated independence between rs1800450 and this cluster of two SNPs. In

addition, the longest, tan line showed indpendence between rs7096206 and this clusters of

three SNPs.
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Figure 7: MDR interaction dendrogram for MBL SNPs. The short, red line

indicates strong epistasis between rs11003125 and rs5030737. The long, tan

line indicates independence between rs1800450 and this cluster of two SNPs.

The longest, tan line indicates independence between rs7096206 and this

cluster of three SNPs.

4.8 PAI-1 RESULTS

The MDR method utilized 132 cases and 132 controls in the data set for the PAI-1 SNPs,

and the results are shown in Table 16. The overall best model was the one-locus model with

rs2227683 because it had the same prediction accuracy as the two-locus model (0.5530) but

was more parsimonious. This was the third overall best model with a prediction accuracy

larger than 0.55 and could be investigated more thoroughly in future research. The sensitivity

was relatively high at 0.7652, but the specificity was low (0.3409). The CVC was high at

nine. The chi-square test for rs2227683 was non-significant (p = 0.55).

For the GMDR method, 132 cases and 949 controls were used to generate the models for

the PAI-1 SNPs. The results are shown in Table 16. The one-locus model with rs2227683 was

selected as the overall best model because it yielded the highest prediction accuracy (0.5476)

and the largest CVC (10). A fairly high sensitivity was observed (0.7264); the specificity,

however, was very low at 0.3688. The chi-square test concluded that rs2227683 was not

significantly associated with 90-day mortality (p = 0.40), but the sign test was borderline

significant (p = 0.05). Thus, MDR had slightly better prediction accuracy than GMDR.
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Table 16: PAI-1 SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs2227683 0.5530 0.5530 0.7652 0.3409 9 0.55 NA

MDR rs2227683, rs13238709 0.5530 0.5530 0.7652 0.3409 9 0.55 NA

(N=264) rs2227683, rs2227665, rs7242 0.5669 0.4962 0.4394 0.5530 6 0.97 NA

rs2227683, rs2227665, rs7242, rs13238709 0.5673 0.4924 0.4394 0.5455 10 0.94 NA

rs2227683 0.5480 0.5476 0.7264 0.3688 10 0.40 0.05

GMDR rs2227683, rs13238709 0.5480 0.5442 0.7049 0.3835 8 0.42 0.05

(N=1081) rs2227683, rs2227665, rs7242 0.5561 0.5263 0.4297 0.6228 6 0.54 0.17

rs2227683, rs2227665, rs7242, rs13238709 0.5603 0.5216 0.4418 0.6014 10 0.54 0.17

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 132 cases and 949 controls to determine the best epistasis model

for PAI-1. The model shown in Table 17 included a main effect and a second-order interac-

tion. The Z-test indicated that rs2227665 was associated with 90-day mortality (p = 0.03).

The interaction rs2227665*rs2227683 was even more statistically signficant (p = 0.002). The

standard errors were relatively small compared to the magnitude of the parameter esti-

mates. The prediction accuracy was high at 0.8779, but this estimate was biased because

the stepPLR model predicted all subjects were controls.

Table 17: PAI-1 SNP epistasis model generated by stepPLR

Best Model (N=1081) Estimate (SE)a Z-testb Score PAc

rs2227665 0.1337 (0.0615) 0.03 806.81 0.8779

rs2227665*rs2227683 0.3341 (0.1095) 0.002

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that the PAI-1 SNPs rs2227665

and rs2227683 exhibited strong correlation as indicated by the short, blue line in Figure 8.

The dendrogram also displayed a relatively strong correlation between rs7242 and this cluster

of two SNPs as shown by the medium-sized, green line in the figure. The long, green line

showed weak correlation between rs13238709 and this cluster of three SNPs.
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Figure 8: MDR interaction dendrogram for PAI-1 SNPs. The short, blue line

indicates strong correlation between rs2227665 and rs2227683. The medium-

sized, green line indicates relatively strong correlation between rs7242 and

this cluster of two SNPs. The long, green line indicates weak correlation

between rs13238709 and this cluster of three SNPs.

4.9 TLR-4 RESULTS

The MDR method utilized 107 cases and 107 controls in the data set for the TLR-4 SNPs,

and the results are shown in Table 18. Even though the three-locus model had the highest

prediction accuracy 0.5981, the one-locus model with rs2770146 was selected as the overall

best model because it had a CVC of ten and was more parsimonious. The prediction accuracy

was fairly low at 0.5047. The specificity of the model was relatively high at 0.7009. This

was a very poor model because the sensitivity was very low (0.3084) and the chi-square test

was non-significant (p = 0.96).

For the GMDR method, 107 cases and 771 controls were used to generate the models for

the TLR-4 SNPs. The results are shown in Table 18. The prediction accuracy was highest for

the three-locus model, but the one-locus model had a CVC of ten and was more parsimonious.

Thus, the one-locus model with rs2770146 was selected as the overall best model. A fairly

low prediction accuracy was observed (0.5209). The sensitivity was very low at 0.1782, but

the specificity of the model was much higher (0.8637). The chi-square test concluded that

rs2770146 was not significantly associated with 90-day mortality (p = 0.47), and the sign

test was also non-significant (p = 0.17). As a result, GMDR had slightly better prediction

accuracy than MDR.
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Table 18: TLR-4 SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs2770146 0.5566 0.5047 0.3084 0.7009 10 0.96 NA

MDR rs2770146, rs11536897 0.5898 0.5748 0.2617 0.8879 4 0.38 NA

(N=214) rs2770146, rs11536897, rs1927914 0.6173 0.5981 0.3458 0.8505 9 0.29 NA

rs2770146, rs1927914, rs11536898, rs5030717 0.6225 0.5841 0.4112 0.7570 3 0.41 NA

rs2770146 0.5338 0.5209 0.1782 0.8637 10 0.47 0.17

GMDR rs2770146, rs11536897 0.5561 0.5412 0.2591 0.8232 7 0.36 0.17

(N=878) rs2770146, rs5030717, rs11536898 0.5772 0.5674 0.3618 0.7730 7 0.33 0.05

rs2770146, rs5030717, rs1927914, rs11536897 0.5910 0.5035 0.4264 0.5807 7 0.62 0.38

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity, e CVC = cross-validation
consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 107 cases and 771 controls to determine the best epistasis model

for TLR-4. The model shown in Table 19 only included a main effect for TLR4 M896 and

no interactions. No other SNPs on the TLR-4 gene yielded valid estimates for the model.

The Z-test indicated TLR4 M896 was not significantly associated with 90-day mortality (p =

0.94). The standard error was very large compared to the magnitude of the estimate which

signified a poorly fit model. The prediction accuracy was high (0.8782), but this estimate

was biased because this stepPLR model predicted all subjects were controls.

Table 19: TLR-4 SNP epistasis model generated by stepPLR

Best Model (N=878) Estimate (SE)a Z-testb Score PAc

TLR4 M896 -0.0085 (0.1200) 0.94 660.04 0.8782

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that TLR-4 SNPs rs2770146

and rs5030717 exhibited strong correlation as indicated by the short, blue line in Figure 9.

The dendrogram also displayed strong correlation between rs11536898 and rs1927914 and

between rs11536897 and this cluster of two SNPs as indicated by the short, green lines in

the figure. The long, tan line depicted independence between these two clusters of SNPs.
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Figure 9: MDR interaction dendrogram for TLR-4 SNPs. The short, blue line

indicates strong correlation between rs2770146 and rs5030717. The short,

green lines indicate strong correlation between rs11536898 and rs1927914

and between rs11536897 and this cluster of two SNPs. The long, tan line

indicates independence between these two clusters of SNPs.

4.10 TNF RESULTS

The MDR method utilized 112 cases and 112 controls in the data set for the TNF SNPs, and

the results are shown in Table 20. The overall best model was the two-locus model with

an interaction between rs3093662 and TNFA M308 because it had the highest prediction

accuracy (0.5536) and the largest CVC. The sensitivity was relatively high at 0.6429, but the

specificity was low (0.4643). The CVC was very high at ten. The chi-square test concluded

rs3093662*TNFA M308 was not significantly associated with 90-day mortality (p = 0.61).

This was the fourth, overall best model with a prediction accuracy larger than 0.55 and could

be investigated more thoroughly in future research.

For the GMDR method, 112 cases and 787 controls were used to generate the models for

the TNF SNPs. The results are shown in Table 20. The one-locus model with TNFA M308

was selected as the overall best model. It yielded the highest prediction accuracy (0.5126) and

was more parsimonious than the four-locus model with the largest CVC. The sensitivity was

fairly high at 0.7697, but this was a poor model because the specificity was so low (0.2554).

The CVC was relatively high at seven. The chi-square test concluded that TNFA M308 was

not significantly associated with 90-day mortality (p = 0.35), and the sign test was also

non-significant (p = 0.17). Altogether, MDR had slightly better prediction accuracy than

GMDR.
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Table 20: TNF SNP epistasis models generated by MDR and GMDR

Method Best Models TRAa PAb SNc SPd CVCe χ2f Signg

rs3093662 0.5536 0.5536 0.8482 0.2589 8 0.53 NA

MDR rs3093662, TNFA M308 0.5818 0.5536 0.6429 0.4643 10 0.61 NA

(N=224) rs3093662, TNFA M308, TNF 857 0.5833 0.5223 0.6250 0.4196 6 0.83 NA

rs3093662, TNFA M308, TNF 857, TNF 238 0.5928 0.5268 0.6518 0.4018 9 0.79 NA

TNFA M308 0.5190 0.5126 0.7697 0.2554 7 0.35 0.17

GMDR TNFA M308, TNF 857 0.5296 0.4845 0.2508 0.7183 6 0.56 0.83

(N=899) TNFA M308, TNF 857, rs3093662 0.5352 0.4458 0.2667 0.6250 3 0.48 0.99

TNFA M308, TNF 857, rs3093662, TNF 238 0.5415 0.4633 0.2924 0.6342 8 0.50 0.95

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 112 cases and 787 controls to determine the best epistasis model

for TNF. The model shown in Table 21 included two main effects and three interactions.

The results of the Z-tests indicated that TNF 857 and rs3093672 were not significantly

associated with 90-day mortality (all p > 0.10). Similarly, the second-order interactions

TNF 857*rs3093662 and TNF 857*TNF 238 were not significant predictors of 90-day mor-

tality (all p > 0.10). The Z-test for the third-order interaction TNF 857*rs3093662*TNF 238

was non-significant as well (p = 0.79). Overall, the standard errors were very large compared

to the magnitude of the parameter estimates, so the model itself was poor. The prediction

accuracy was high at 0.8754. This estimate, however, was biased because the stepPLR model

predicted all subjects were controls.

Table 21: TNF SNP epistasis model generated by stepPLR

Best Model (N=899) Estimate (SE)a Z-testb Score PAc

TNF 857 0.0285 (0.0465) 0.54 691.06 0.8754

rs3093672 -0.0308 (0.0806) 0.70

TNF 857*rs3093662 0.0160 (0.0676) 0.81

TNF 857*rs3093662*TNF 238 0.0247 (0.0931) 0.79

TNF 857*TNF 238 0.0496 (0.0782) 0.53

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy

The interaction dendrogram produced by MDR illustrated that TNF SNPs rs3093662 and

TNF 238 exhibited strong correlation as indicated by the short, blue line in Figure 10. The

dendrogram displayed independence between TNF 857 and TNFA M308 as indicated by the

medium-sized, tan line in the figure. The long, tan line depicted independence between these

two clusters of SNPs.
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Figure 10: MDR interaction dendrogram for TNF SNPs. The short, blue line

indicates strong correlation between rs3093662 and TNF 238. The medium-

sized, tan line indicates independence between TNF 857 and TNFA M308.

The long, tan line indicates independence between these two clusters of SNPs.

4.11 RESULTS FOR ALL SNPs COMBINED

The MDR method utilized 61 cases and 61 controls in the data set for fifty-five SNPs across

all genes, and the results are shown in Table 22. The overall best model was the three-locus

model with rs2770146, IL10 M819, and IL6 M174. It had the highest prediction accuracy

(0.6803) and was more parsimonious than the nine-locus model with the largest CVC. This

was the first overall best model with a prediction accuracy larger than 0.60 and could be

investigated more thoroughly in future research. The sensitivity was fairly low at 0.6230,

but the specificity was a little better (0.7377). The CVC was surprisingly low at three. The

chi-square test concluded rs2770146*IL10 M819*IL6 M174 was not significantly associated

with 90-day mortality (p = 0.20).
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Table 22: All SNPs combined epistasis models generated by MDR

Best Models (N=122) TRAa PAb SNc SPd CVCe χ2f

rs2770146 0.6066 0.6066 0.6230 0.5902 8 0.46

rs3024505, rs7242 0.6667 0.6311 0.6557 0.6066 3 0.36

rs2770146, IL10 M819, IL6 M174 0.7377 0.6803 0.6230 0.7377 3 0.20

rs2770146, IL10 M819, IL6 M174, rs2856838 0.8224 0.6393 0.7541 0.5246 3 0.32

rs2770146, IL10 M819, IL6 M174, rs2856838, IL1B M511 0.9035 0.6721 0.8525 0.4918 6 0.20

IL6 M174, rs11003125, IL1B 3957, rs13238709, rs3024505, rs3783546 0.9536 0.6230 0.9180 0.3279 2 0.29

rs2770146, IL10 M819, IL6 M174, IL1B 3957, IL1B M511, rs1800450,

rs13238709
0.9854 0.5574 0.9672 0.1475 2 0.48

rs2770146, IL10 M819, IL6 M174, IL1B 3957, IL1B M511, rs1800450,

rs13238709, rs11003125
0.9927 0.5082 0.9836 0.0328 3 0.85

IL10 M819, IL6 M174, IL1B 3957, IL1B M511, rs1800450, rs13238709,

rs11003125, rs1799969, TLR4 M896
0.9927 0.5410 0.9836 0.0984 10 0.54

IL10 M819, IL6 M174, IL1B 3957, IL1B M511, rs1800450, rs13238709,

rs11003125, rs1799969, TLR4 M896, rs1071676
0.9927 0.5410 0.9836 0.0984 10 0.54

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value
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For the GMDR method, 61 cases and 397 controls were used to generate the epistasis

models for fifty-five SNPs across all genes. The results are shown in Table 23. The six-locus

model including IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs13238709, and rs2770146

was selected as the overall best model because it yielded the highest prediction accuracy

(0.5935). It was also more parsimonious than the ten-locus model with the largest CVC. The

sensitivity was very low at 0.3800, but the specificity was relatively high (0.8070). The CVC

was fairly high at six. The chi-square test concluded that this model was not significantly

associated with 90-day mortality (p = 0.43). The sign test was borderline significant (p =

0.05). A six-locus statistical epistasis model, however, may not be plausible for biological

epistasis. Here, MDR had slightly better prediction accuracy than GMDR.
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Table 23: All SNPs combined epistasis models generated by GMDR

Best Models (N=458) TRAa PAb SNc SPd CVCe χ2f Signg

IL10 M819 0.5557 0.5527 0.4857 0.6197 4 0.37 0.62

IL6 M174, IL1B M511 0.6084 0.5521 0.4786 0.6256 3 0.61 0.05

IL6 M174, rs7242, rs1143623 0.6779 0.5628 0.6905 0.4351 3 0.40 0.17

IL6 M174, rs7242, IL1B M511, rs11003125 0.7589 0.5738 0.5267 0.6209 4 0.35 0.38

IL6 M174, rs7242, rs11003125, rs2856838, IL10 M1082 0.8567 0.5267 0.3238 0.7296 3 0.33 0.38

IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs13238709,

rs2770146
0.9351 0.5935 0.3800 0.8070 6 0.43 0.05

IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs2770146,

rs7242, rs11003125
0.9710 0.5368 0.1917 0.8819 6 NA 0.17

IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs2770146,

rs11003125, rs13238709, IL10 M819
0.9850 NA NA 0.8957 6 NA 0.01

IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs2770146,

rs11003125, rs13238709, IL10 M819, IL1B 3957
0.9910 NA NA 0.8903 8 NA 0.38

IL6 M174, rs2856838, IL10 M1082, IL1B M511, rs2770146,

rs11003125, rs13238709, IL10 M819, IL1B 3957, IL1A M889
0.9910 NA NA 0.8500 9 NA 0.62

a TRA = training accuracy, b PA = prediction accuracy, c SN = sensitivity, d SP = specificity,
e CVC = cross-validation consistency, f χ2 = chi-square test p-value, g Sign = sign test p-value
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Stepwise PLR utilized 61 cases and 397 controls to determine the best epistasis model

for all fifty-five SNPs combined. The model shown in Table 24 included one main effect

and nine interactions. The main effect rs2770146 was not significantly associated with 90-

day mortality (p = 0.31). Similar results were obtained for the second- through seventh-

order interactions because none of the interactions were significant predictors of 90-day

mortality (all p > 0.10). Overall, the standard errors were large compared to the magnitude

of the parameter estimates, so the model itself was poor. This was the first stepPLR model

which did not predict all subjects were controls. The software output indicated that the

prediction accuracy was 0.8624, but hand calculations yielded a prediction accuracy of 0.8755,

a sensitivity of 0.0984, and a specificity of 0.9950. Clearly, there were some discrepancies

with how the stepPLR software calculated prediction accuracy. Nevertheless, the model

performed very poorly in predicting 90-day mortality since fifty-five out of the sixty-one

cases were predicted to be alive after ninety days. This epistasis model overwhelmingly

predicted that 450 of the 458 subjects were controls.
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Table 24: All SNPs combined epistasis model generated by stepPLR

Best Model (N=458) Estimate (SE)a Z-testb Score PAc

rs2770146 0.1259 (0.1249) 0.31 354.09 0.8624

rs2770146*TNF 857 -0.0056 (0.0333) 0.87

rs2770146*TNF 857*rs1548216 -0.0111 (0.0666) 0.87

rs2770146*TNF 857*rs1548216*IL10 M1082 -0.0004 (0.0116) 0.97

rs2770146*TNF 857*rs1548216*IL10 M1082*TNFA M308 -0.0065 (0.0215) 0.76

rs2770146*TNF 857*rs1548216*IL10 M1082*rs12344353 0.0111 (0.0201) 0.58

rs2770146*TNF 857*rs1548216*IL10 M1082*TNFA M308*rs11536898 -0.0194 (0.0644) 0.76

rs2770146*TNF 857*rs1548216*IL10 M1082*rs12344353*rs1800451 0.0229 (0.0207) 0.27

rs2770146*TNF 857*rs1548216*IL10 M1082*rs12344353*rs1800451

*rs2069849
0.0687 (0.0622) 0.27

rs2770146*TNF 857*rs1548216*IL10 M1082*TNFA M308*rs11536898

*rs3093672
-0.0749 (0.0743) 0.31

a SE = standard error, b Z-test = Z-test p-value, c PA = prediction accuracy
Note: prediction accuracy = 0.8755, sensitivity = 0.0984, and specificity = 0.9950
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MDR produced the interaction dendrogram for the SNP epistasis models across all genes.

Figure 11 illustrated how various clusters of SNPs exhibited epistasis (red or orange lines),

correlation (blue or green lines), or independence (tan lines). The length of the connecting

lines implied the strength of the relationship; shorter lines represented stronger relation-

ships. Overall, there were five independent clusters of SNPs. Most notably, IL10 M819 was

independent of all other SNPs.

Figure 11: MDR interaction dendrogram for all SNPs combined. The length

of the connecting lines implies the strength of the relationship; shorter lines

represent stronger relationships. The color of the lines reveal the type of

relationship as epistasis (red or orange), correlation (blue or green), or inde-

pendence (tan).
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MDR produced a contingency table for the SNP epistasis models across all genes. Again,

the overall best epistasis model included rs2770146, IL10 M819, and IL6 M174, and the ta-

ble is shown in Figure 12. The high-risk cells were shaded in dark gray; the low-risk cells

were shaded in light gray. The blank, white cells were not represented in the sample data.

There appeared to be a protective factor for rs2770146 genotype AA when in combination

with IL10 M819 genotype CC. In addition, the figure implied an increased risk for rs2770146

genotype GG when in combination with IL10 M819 genotype CC. These SNPs are on genes

TLR-4 and IL-10, respectively. One can see the problems with empty cells in higher dimen-

sions for the MDR method, for no clear conclusions could be drawn about the genotypes for

the IL6 M174 SNP.

Figure 12: MDR contingency table for all SNPs combined. Dark gray cells are high-risk;

light gray cells are low-risk; and white cells are empty in the sample data. There appears

to be a protective factor for rs2770146 genotype AA when in combination with IL10 M819

genotype CC and an increased risk for rs2770146 genotype GG when in combination with

IL10 M819 genotype CC. These SNPs are on genes TLR-4 and IL-10, respectively.
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5.0 DISCUSSION AND CONCLUSIONS

5.1 DISCUSSION

The highest prediction accuracy was obtained from the MDR method for the three-locus

model across all SNPs combined. The prediction accuracy for the interaction between

rs2770146, IL10 M819, and IL6 M174 indicated that 68.03% of the subjects were correctly

classified as cases or controls. This figure does not take into account other baseline character-

istics such age, gender, smoking status, or severity of the illness. Moreover, the influence that

each genotype of SNP rs2770146 has on 90-day mortality is dependent upon the genotypes of

the other two SNPs IL10 M819 and IL6 M174, and so forth. From the contingency table in

Figure 12, a subject with genotype CC for SNP IL10 M819 and AA for rs2770146 appeared

to have a lower risk of 90-day mortality, but a substitution of genotype GG for rs2770146

implied a higher risk of death. The empty cells in the contingency table made interpretation

difficult for the genotypes of IL6 M174 and highlighted the need for even larger sample sizes.

Unfortunately, the chi-square test concluded that the third-order interaction itself was not

a significant predictor of 90-day mortality, but the results may improve by adjusting for the

baseline covariates or including the main effects or additional interactions. It is noteworthy,

however, that the interaction dendrogram showed that these three SNPs were independent

in the hierarchical cluster analysis.

The results of this analysis clearly showed that stepPLR had the poorest performance

when compared to MDR and GMDR. The biggest problem was that stepPLR overwhelmingly

predicted that all subjects would still be alive after ninety days, so all of the prediction

accuracy estimates were biased. Using an equal number of cases and controls in future

analysis may help to control this issue and produce more realistic prediction accuracies.
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In this analysis, MDR and GMDR performed almost equally; GMDR produced the highest

prediction accuracy for six of the genes. MDR had a much higher prediction accuracy (0.6803)

than GMDR (0.5935) when all fifty-five SNPs were combined across all genes. In all, GMDR

yielded higher prediction accuracies than MDR, and MDR performed better than stepPLR

when identifying SNP interactions associated with 90-day mortality in a cohort of CAP

patients. This assessment coincides with a study published by Hua He et al. [6], for the

authors stated that MDR performs better when complex interactions are observed. Park

and Hastie [4], who published the stepPLR method, claimed that their method yielded

better classification of cases and controls than MDR, but this thesis was unable to reach

the same conclusion because of the biased estimates obtained using stepPLR. In contrast,

the results of this thesis agree with the findings made by Lou et al. [2]. These authors

extended the MDR method into GMDR and determined that GMDR tended to produce

higher prediction accuracies, higher cross-validation consistencies, and significant p-values

(even though identical n-locus models were often obtained). If this analysis had taken into

account additional covariates, the findings would have overwhelmingly favored GMDR.

Although many genome-wide association studies of second- and third-order SNP inter-

actions have yielded inconsistent results, the conclusions of this analysis conferred with the

results published in Respiratory Medicine. No significant associations were found between

the SNPs on genes TNF or IL-6 and the CAP outcomes. Similarly, there were no significant

interactions found between the TNF SNPs and any of the SNPs on the other nine genes.

It was anticipated that TNF, IL-6, and IL-1A genes may be associated with higher 90-day

mortality. Stepwise PLR determined that IL-1A SNPs IL1A M889, rs1894399, rs1878319,

and rs2856837 were each significant predictors of 90-day mortality when adjusting for the

other SNPs in the model (all p < 0.05). In addition, the interaction rs28556838*rs3783520

was borderline significantly associated with 90-day mortality (p = 0.06). Interestingly, PAI-1

“supports thrombus formation and cardiovascular events by inhibiting fibrinolysis (throm-

bus breakdown) and by promoting endothelial dysfunction directly” [3]. Hence, these results

complemented previous published studies regarding SNP associations with CAP outcomes.

The public health significance of this thesis involves many advancements related to risk

for complex genetic diseases. Simply identifying SNPs associated with worse outcomes are
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unlikely to be useful to improve performance of clinical risk prediction models, but the

relative risk for CAP may be higher for a set of SNPs across different genes. One of the main

goals in human genetics is to discover how DNA sequence variations are related to disease

susceptibility, for this could lead to improvements in diagnosis, prevention, and treatment

[1]. The ability to predict which patients will experience a poor outcome may lead to more

effective prevention strategies or treatments at earlier stages. Identification of significant

SNP interactions can also expand scientific knowledge about biological mechanisms affecting

disease outcomes. Novel methods for determining risk for known, complex genetic diseases

may more frequently involve determination of a patient’s genotypes for a combination of

particular SNPs. Advances in statistical methodology related to identification of high-order

interactions among SNPs associated with disease will most likely play a role in reducing

disease and disability for future generations.

Additional work on these methods and the GenIMS data set could reduce the limitations

of this analysis. First, removing SNPs because of missing data was one of the biggest prob-

lems, for interactions with these SNPs could not be tested. Additional data or imputation

could alleviate this issue. Second, this analysis did not take into account any non-genetic

covariates since MDR cannot handle this additional data. Including these covariates in

GMDR and stepPLR could greatly improve the models’ prediction accuracies. Third, MDR

and GMDR models did not include main effects nor multiple interactions between SNPs,

so forcing these methods to include such covariates could also improve prediction accuracy.

Fourth, this analysis did not control for different confounding variables known to affect CAP

outcome. Since many subjects who have CAP also develop sepsis, it would be advantageous

to adjust for sepsis in the epistasis models. Finally, due to the nature of the three methods,

there was no way to validate the conclusions derived from the SNP epistasis models. It was

difficult to compare these results to published studies because they often yield conflicting

results for method performance and SNP associations with 90-day mortality or simply do not

have enough statistical power to facilitate significant findings. Consequently, this thesis pro-

vided some useful insights into high-order epistasis models associated with 90-day mortality,

but further analysis needs to be done.
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Future work involving the GenIMS data set and these three methods could tease out

which genotypes are protective against or associated with 90-day mortality in CAP patients.

The contingency tables created by MDR could be used as a starting point to determine

exactly which genotypes for interacting SNPs are associated with higher risk for 90-day

mortality. Specific tests could be carried out using logistic regression and adjusting for age,

sex, smoking status, severity of illness, and/or sepsis. Chi-square tests of association between

each SNP and 90-day mortality could be completed but were not necessary for this analysis;

MDR and GMDR were able to run exhaustive searches for interactions regardless of the

significance of main effects. Currently, Ritchie et al. [9] are researching strategies to improve

MDR’s performance. These strategies include more robust machine learning approaches such

as parallel genetic algorithms, a nearest-neighbor method to label empty cells, classifying

empty cells in lower dimensions, and applications to unbalanced case-control studies. Other

researchers have looked at associations between haplotype clades (C/C/C etc.) using chi-

square tests to determine differences in mortality outcomes [14]. Statisticians have already

extended the MDR software to conduct this type of analysis in Hap-MDR.

5.2 CONCLUSIONS

This thesis used data from the very large GenIMS study to compare the performance of

SNP epistasis models generated by MDR, GMDR, and stepPLR. Prediction accuracies were

generally higher for GMDR compared to MDR, and stepPLR yielded substandard perfor-

mance because the models predicted that all subjects were controls. Stepwise PLR, however,

determined that IL-1A SNPs IL1A M889, rs1894399, rs1878319, and rs2856837 were each

significant predictors of 90-day mortality when adjusting for the other SNPs in the model.

In addition, the model included a borderline significant second-order interaction between

rs28556838 and rs3783520 associated with 90-day mortality in a cohort of CAP patients.

The public health importance of this thesis is that the relative risk for CAP may be higher

for a set of SNPs across different genes. The ability to predict which patients will experience

a poor outcome may lead to more effective prevention strategies or treatments at earlier
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stages. Furthermore, identification of significant SNP interactions can also expand scientific

knowledge about biological mechanisms affecting disease outcomes. Future analysis using

these three methods on the GenIMS data set could improve prediction accuracies by imputing

missing data, adding non-genetic covariates, including main effects or multiple interactions

between SNPs, and adjusting for potential confounding variables such as sepsis. In all, the

GMDR method yielded higher prediction accuracies than MDR, and MDR performed better

than stepPLR when generating SNP epistasis models associated with 90-day mortality in the

GenIMS cohort.
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APPENDIX A

SAMPLE SAS CODE FOR IL-10

*Import data sets;

data polygene; set perkins.polygene;

stnum=Study Number; run;

data clinical; set perkins.clinical;

where race=1 and truecap=1;

keep stnum race truecap everss day90 status; run;

proc sort data=polygene; by stnum; run;

proc sort data=clinical; by stnum; run;

data whiteCAP;

merge polygene (in=ina) clinical (in=inb);

by stnum;

if inb and inc; run;

*Create data sets for MDR and GMDR;

data IL10case; set whiteCAP;

where (day90 status=1) and (IL10 M819 ne "") and (IL10 M1082 ne "")

and (rs1800872 ne "") and (rs3024505 ne "") and (rs1800894 ne "")

and (rs3204496 ne ""); run;

data IL10control; set whiteCAP;

where (day90 status=0) and (IL10 M819 ne "") and (IL10 M1082 ne "")

and (rs1800872 ne "") and (rs3024505 ne "") and (rs1800894 ne "")

and (rs3204496 ne ""); run;

proc surveyselect data=IL10control out=samp1control method=srs

sampsize=121 seed=8416; run;

proc sort data=samp1control; by stnum; run;

proc sort data=IL10case; by stnum; run;
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data IL10 MDR final;

set samp1control (in=inc) IL10case (in=ind);

by stnum;

keep IL10 M819 IL10 M1082 rs1800872 rs3024505 rs1800894 rs3024496

day90 status; run;

data IL10 GMDR final; set WhiteCAP;

where (IL10 M819 ne "") and (IL10 M1082 ne "") and (rs1800872 ne "")

and (rs3024505 ne "") and (rs1800894 ne "") and (rs3024496 ne "");

keep IL10 M819 IL10 M1082 rs1800872 rs3024505 rs1800894 rs3024496

day90 status; run;

*Frequencies for missing data;

proc freq data=whiteCAP;

table IL10 M819 IL10 M1082 rs1800872 rs3024505 rs1800894 rs3024496

day90 status; run;

*Tests for HWE and LD;

proc allele data=whiteCAP outstat=ld prefix=Marker perms=10000

boot=1000 seed=5688;

var IL10 M819 1 IL10 M819 2 IL10 M1082 1 IL10 M1082 2 rs1800872 1 rs1800872 2

rs3024505 1 rs3024505 2 rs1800894 1 rs1800894 2 rs3024496 1 rs3024496 2; run;

proc print data=ld; run;
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APPENDIX B

SAMPLE R CODE FOR IL-10

library("stepPlr")

## IL10 Data

IL10data<-read.table("IL10 final GMDR Day90.txt", sep="\t", header=TRUE)

names(IL10data)

class(IL10data)

attach(IL10data)

dim(IL10data)

x6<-as.matrix(IL10data[,1:6])

y6<-as.matrix(IL10data[,7])

## step.plr

fit6<-step.plr(x6, y6, fix.subset=c(1,1,1,1,1,1), lambda=8,

cp="bic", max.terms=9, type="both")

summary(fit6)

## predict.stepplr

pred6<-predict.stepplr(fit6, x6, type="class")

summary(pred6)

## cv.step.plr

cvfit6<-cv.step.plr(x6, y6, nfold=10, folds=NULL, lambda=c(1e-4,5,8),

cp="bic", cv.type="class", trace=TRUE)

cvfit6["error"]

cvfit6["se.error"]
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