Pitt Logo LinkContact Us

INVESTIGATION OF TERRAIN EFFECTS ON WHEELCHAIR PROPULSION AND VALIDITY OF A WHEELCHAIR PROPULSION MONITOR

Lin, Jui-Te (2011) INVESTIGATION OF TERRAIN EFFECTS ON WHEELCHAIR PROPULSION AND VALIDITY OF A WHEELCHAIR PROPULSION MONITOR. Master's Thesis, University of Pittsburgh.

[img] PDF - Primary Text
Restricted to University of Pittsburgh users only until 01 September 2016.

Download (1213Kb) | Request a copy

    Abstract

    This thesis is composed of two studies related to wheelchair propulsion biomechanics. The first study investigated the impact of cross-slope and surface roughness on wheelchair propulsion. Fifteen manual wheelchair users propelled across a five-meter platform which were set to level, 1°, or 2° cross slope, and attached with one of three surfaces including Teflon (slippery), wood (normal), and blind guide (rough). The study found main effects of both cross slope and surface roughness on stroke number and sum of work, and a main effect of cross slope on velocity. Subjects travelled slower, used more strokes, and expended more work with increasing cross slope. Subjects also used more strokes when propelling on the slippery and rough surfaces than on the level surface. They expended more work when propelling on the rough surface than on the level surface. When looking into bilateral propulsion parameters, we found that peak resultant force, peak wheel torque, and sum of work became significantly asymmetrical with the increase of cross slopes. Exposure to biomechanics loading can be reduced by avoiding slippery, rough, and cross slopes when possible. The second study consisted of a preliminary analysis on the validity of a wheelchair propulsion monitor (WPM) in estimating wheelchair propulsion biomechanics. The WPM integrates three devices including a wheel rotation datalogger, and an accelerometry-based device on the upper arm and underneath the wheelchair seat, respectively. Five wheelchair users were asked to push their own wheelchairs fitted with a SMARTWheel over level and sloped surfaces on two separate visits. The estimated stroke number and cadence by the WPM were consistent with the criterion measures by the SMARTWheel (ICC= 0.99 for stroke number, ICC=0.97 for cadence) with less than 5% absolute percentage errors for stroke number and 9% for cadence. The peak resultant force and wheel torque could be predicted to some extent by acceleration features on an individual subject basis. The study demonstrated the potential of the WPM in tracking wheelchair propulsion characteristics in the natural environment of wheelchair users.


    Share

    Citation/Export:
    Social Networking:

    Details

    Item Type: University of Pittsburgh ETD
    Creators/Authors:
    CreatorsEmailORCID
    Lin, Jui-Tejul51@pitt.edu
    ETD Committee:
    ETD Committee TypeCommittee MemberEmailORCID
    Committee ChairDing, Dandad5@pitt.edu
    Committee CoChairCooper, RoryRCOOPER@pitt.edu
    Committee MemberKoontz, Alicia Makoontz@pitt.edu
    Title: INVESTIGATION OF TERRAIN EFFECTS ON WHEELCHAIR PROPULSION AND VALIDITY OF A WHEELCHAIR PROPULSION MONITOR
    Status: Unpublished
    Abstract: This thesis is composed of two studies related to wheelchair propulsion biomechanics. The first study investigated the impact of cross-slope and surface roughness on wheelchair propulsion. Fifteen manual wheelchair users propelled across a five-meter platform which were set to level, 1°, or 2° cross slope, and attached with one of three surfaces including Teflon (slippery), wood (normal), and blind guide (rough). The study found main effects of both cross slope and surface roughness on stroke number and sum of work, and a main effect of cross slope on velocity. Subjects travelled slower, used more strokes, and expended more work with increasing cross slope. Subjects also used more strokes when propelling on the slippery and rough surfaces than on the level surface. They expended more work when propelling on the rough surface than on the level surface. When looking into bilateral propulsion parameters, we found that peak resultant force, peak wheel torque, and sum of work became significantly asymmetrical with the increase of cross slopes. Exposure to biomechanics loading can be reduced by avoiding slippery, rough, and cross slopes when possible. The second study consisted of a preliminary analysis on the validity of a wheelchair propulsion monitor (WPM) in estimating wheelchair propulsion biomechanics. The WPM integrates three devices including a wheel rotation datalogger, and an accelerometry-based device on the upper arm and underneath the wheelchair seat, respectively. Five wheelchair users were asked to push their own wheelchairs fitted with a SMARTWheel over level and sloped surfaces on two separate visits. The estimated stroke number and cadence by the WPM were consistent with the criterion measures by the SMARTWheel (ICC= 0.99 for stroke number, ICC=0.97 for cadence) with less than 5% absolute percentage errors for stroke number and 9% for cadence. The peak resultant force and wheel torque could be predicted to some extent by acceleration features on an individual subject basis. The study demonstrated the potential of the WPM in tracking wheelchair propulsion characteristics in the natural environment of wheelchair users.
    Date: 01 September 2011
    Date Type: Completion
    Defense Date: 19 July 2011
    Approval Date: 01 September 2011
    Submission Date: 26 July 2011
    Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
    Patent pending: No
    Institution: University of Pittsburgh
    Thesis Type: Master's Thesis
    Refereed: Yes
    Degree: MS - Master of Science
    URN: etd-07262011-154929
    Uncontrolled Keywords: Acceleration; Biomechanics; Cross-Slope; Manual Wheelchair; Propulsion; Spinal cord injuries; Surface roughness; Terrain; Upper extremity
    Schools and Programs: School of Health and Rehabilitation Sciences > Health and Rehabilitation Sciences
    Date Deposited: 10 Nov 2011 14:54
    Last Modified: 05 Jun 2012 14:28
    Other ID: http://etd.library.pitt.edu/ETD/available/etd-07262011-154929/, etd-07262011-154929

    Actions (login required)

    View Item

    Document Downloads