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 The cyclic oxidation failure of thermal barrier coatings on eight different nickel 

base superalloys was studied.  Substrates include six third generation superalloys, one 

second generation superalloy, and the alloy IN738.  The thermal barrier coatings include 

yttria stabilized zirconia (YSZ) deposited by electron beam physical vapor deposition 

(EB-PVD), a (Ni,Pt) Al underlayer deposited by chemical vapor deposition (CVD) and 

grit blasted to provide a rough surface.  The study conducted included the cyclic exposure 

of the specimens between 1100 ºC and room temperature.  During the cyclic heat 

exposure, a thermally grown oxide (TGO) grew.  After failure, the specimens were 

categorized according to the number of cycles obtained before failure.  Later, specimens 

were examined by macroscopic and microscopic methods and chemical analysis was 

obtained by energy dispersive spectrometry (EDS).  All specimens failed by ratcheting 

along the YSZ/TGO interface showing little or no effect of the substrate compositions.  

Nevertheless, large differences in the cyclic lives existed among the third generation 

superalloys and between third and second generation superalloys, and single crystal vs. 

polycrystalline superalloys.  Phase transformations were observed in the bond coat.  

Substrate elements such as Ta, Cr, and Co appear to play a role in the transformation of 

these phases.  Bond coat deformation is attributed to the phase transformation, and the 
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bond coat phase properties are attributed to chemical content.  Carbon and tantalum play 

a role in the cyclic failure of the specimens. 
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1.0 INTRODUCTION 
 
 
 
 
Nickel-base superalloys have been the materials of choice in a power driven 

society such as ours for decades now.  Nevertheless, numerous attempts are made 

continually in order to improve these already superb alloys and to take them to a different 

level of performance never before seen.  The nickel alloy began as a substitute for cobalt 

alloys in a cobalt deficient era, to completely replace these cobalt alloys.  Wrought nickel 

alloys served the purpose for a good while until more challenging environments emerged.  

The invention of vacuum melting and solidification was a great step, followed by 

directional solidification, which yielded both columnar and single crystal superalloys.  

Today, single crystals are the main type of alloys, and even these are categorized into 

different generations; hence delineating a distinction from each other.  For the most 

severe conditions, polycrystalline alloys also have numerous applications in other 

sections of the turbine. 

 These distinctions in nickel-base superalloys stem mainly from their melting 

temperatures, solidus temperatures, and alloy compositions.  Today most of these alloys 

can perform at temperatures close to 1100 ºC.  It is on the technology of such
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compositions that the world relies to fly hundreds of passengers from London to 

Monroevia, or to produce enough energy to light up the great city of New York.  

 However, deleterious environments have always posed a great problem to 

superalloys, mainly oxidation and corrosion.  Thermal barrier coatings emerged in the 

50s as frit enamels as an answer to these deleterious environments for the oxidation 

problem of metals.  Today, the thermal barrier coating is a complex system which 

consists of four different layers and can decrease the temperature of the load bearing 

substrate by as much as 200ºC.  Figure 1.1 is a schematic diagram of the nickel 

superalloy specimens coated with the thermal barrier coatings.  The first layer is a low 

thermal conductive layer usually Yttria Stabilized Zirconia (YSZ). The second layer is 

the thermally grown oxide; a layer that grows as a result of the high temperatures and 

selective oxidation of particular metals and serves as the protective layer to the substrate 

from oxidation and/or hot corrosion.  The third layer is called a bond coat and is 

responsible for maintaining a steady supply of the metal to be selectively oxidized.  The 

fourth layer is the substrate.  Nevertheless, numerous problems exist which range from 

the manufacturing process of this film to the interaction between the substrate and films.  

Such problems include the adherence of the YSZ, the depletion of the element to be 

selectively oxidized, the adherence of the oxide layer to the bond coat, the effect of 

substrate elements on either of the films, etc.  As a result, more studies need to be 

conducted that explain the behavior of this film in relation to substrates.  
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Figure 1.1 Diagram of Ni superalloy with (Ni, Pt) Al bond coat with EB-PVD YSZ. 

 

 It is well known that the efficiency of an engine system is directly related to its 

heating and cooling temperatures.  It is also widely acknowledged that the efficiency of a 

thermal system is proportional to its inlet temperature; such is the case for a jet engine 

and power generator.  Therefore, in agreement with thermodynamics, the efficiency of a 

jet engine and a power generator can be increased if the difference between its inlet and 

outlet temperatures can increase.  Nevertheless, in this attempt of increasing efficiency of 

a system, the stability of the system must also be kept in mind.  Hence, a synergistic 

criteria for the design of a system must be related to the cost, durability, efficiency, and 

ergonomics of a system, with and in its environment. 

 High temperature applications where metals perform at 0.8-0.9 of their Tm, must 

maintain a stable phase without much change of their mechanical and physical properties.  

In addition to maintaining a stable phase, it is also understood that such materials in such 

environments have a very high propensity to oxidize and corrode.  Therefore, any 

TGO 

Specimen 

Substrate 

(Ni,Pt) Al 
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solution that is sought in order to improve the development of these materials must 

conform to the problems hereby mentioned.   

 The following study relates the qualitative performance of a thermal barrier 

coating deposited onto six different third generation nickel-base superalloys and 

compared to a second generation and a polycrystalline nickel-base superalloy.  The 

thermal barrier coating system consists of an Yttria Stabilized Zirconia top layer 

fabricated by EB-PVD, supported by a heavy grit blasted (Ni,Pt) Al bond coat layer.  The 

specimens underwent cyclic thermal exposure until failure occurred and were then 

examined using macroscopic and microscopic observations as well as energy dispersive 

spectrometry for topographical and chemical analysis.  In the following, a theoretical 

background will be presented, followed by classification of the specimens into three 

categories based on the number of cycles reached until failure.  Results are presented 

along with a discussion and conclusions stemming from these results.
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2.0 BOND COAT 
 
 
 
 

2.1 BRIEF HISTORY TO MODERN APPLICATIONS 
 
 
 In 1974 Bungardt et al. [1] working on behalf of Deutsche Edelstahlwerke AG 

received a patent for a protective diffusion layer on Ni and/or Co based alloys.  He 

presented a basic work where aluminide coatings were proved to be simply inferior to 

aluminide coatings with diffused platinum metals.  Moreover, he also stated that such 

coatings are also improved by the addition of palladium, and rhuthenium.  The research 

also indicated that as the precious metal layer thickness increased, so did the life of the 

coated component.  Since then, numerous studies have been conducted about Pt-Al and 

variations of the type. 

 
 
 
 

2.2 FUNCTION, COMPOSITION, AND BEHAVIOR 
 
 
 In order to protect the underlying substrate from deleterious environments at 

elevated temperatures, meaning oxidation and/or hot corrosion, the bond coat forms a 
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protective layer atop of itself.  These can be categorized into chromia or alumina formers.  

The following study is based on the formation of alumina.  This protective layer, also 

known as a thermally grown oxide (TGO), is the product of selective oxidation of 

aluminum from the bond coat.  Moreover, it provides a suitable surface for the top 

ceramic layer. 

 Bond coats normally contain elements that are found in the substrate matrix 

including an element with a high affinity for oxygen, which forms the oxide protective 

layer.  Nevertheless, due to the potential of many metals to oxidize, internal oxidation of 

other elements within the bond coat, besides the preferred oxidizing element, can prevent 

the formation of a uniform protective layer and hence deprive the substrate from the 

environmental protection that is required.  Some of today’s most prominent bond coats 

include, MCrAlY (M for Ni, Co or both), nickel aluminide, and platinum modified nickel 

aluminide bond coats.   

The effect of the Pt modified NiAl bond coats hold the main interest in this study 

and shall be addressed from here forth.  At the same time, there will be an attempt to 

elucidate qualitatively some of the properties of this (Ni, Pt) Al bond coat with respect to 

the mechanical properties and thermodynamics. 

 The initial crystal structure of the (Ni, Pt) Al bond coat is a β phase B2 (CsCl) 

crystal structure.  Nevertheless, as the outward diffusion of Al occurs during the growth 

of the selective oxide (Al2O3), along with inward diffusion of aluminum into the 

substrate, depletion of the aluminum from the bond coat layer is inevitable.  This 

depletion of aluminum, occurring during exposure of the system, can cause the bond coat 

to oscillate between the β (CsCl) B2 phase and the β’ (fct) L10 (martensitic) phase and 

 6



eventually to the γ’ (L12) phase [2].  As a result of these phase transformations, 

significant changes occur not only to the volume of the bond coat, but also, changes in 

the mechanical properties and physical properties of the system, such as yield strength 

and the coefficient of thermal expansion [3] (See Table 2.2.1).  Chen et al. noted a sizable 

volume change of 2.0±0.3% between the B2 and L10 structures.  These conditions affect 

the adhesion and performance of the TBC systems.  Karlsson [4] studied the effects of the 

martensitic phase transformations of the bond coat in a system with undulations with and 

without growth strain from an oxide layer.  The study deduced that the ongoing phase 

transformation does not cause failure by itself in a TBC system.  The study alluded to out 

of plane stresses and to strain from oxide growth as the responsible factors to increase the 

amplitude of an undulation and initiate cracks that create failure. 

 

Table 2.1  Table of some physical and mechanical properties for thermal barrier coating systems. 

 

Name CTE α [ºC-1] Yield Strength [MPa] 

Martensite L10 11.3x10-6 500↑@ T < TT[7] 

β-B2 CsCl 12.4x10-6 25 ↓@ T > TT [7] 

γ’-L12 16.9 x 10-6 100-500 @ 100<T<900 

TBC (Y2O3-ZrO2) ~11-13x10-6 0-100 [8] 

Al2O3 8-9x10-6[8] 380 [8] 

 

 

 

 

 

 

 

Furthermore, in the case of superalloys, significant attention must be paid to the 

active elements of the system.  In many cases, it is observed that some of these alloying 
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elements have a tendency to diffuse outward, or segregate to preferred locations.  For 

situations where the alloying elements diffuse to the bond coat from the substrate, it is 

possible that the properties of a martensitic prone bond coat change [5].  Kainuma et al. 

[6] studied the martensitic transformation of NiAl alloys and the effect of a component X 

on the transformation.  The study determined that the martensitic transformation 

properties can be changed with element composition, particularly Ms and Af. 

 
 
 

2.3 MANUFACTURING PROCESS 
 
 
 Some modern manufacturing processes of the bond coats include, air plasma 

spray, low pressure plasma spray and chemical vapor deposition.  Of interest in this case 

is the chemical vapor deposition [9, 5].  For the application of a (Ni,Pt)Al bond coat, Pt is 

deposited on the surface of the substrate via an electroplating process.  Afterwards AlCl3, 

an aluminum halide, is introduced as a low activity gas into a chamber where the 

specimen is to be coated internally and/or externally (see Figure 2.1).  A heat treatment 

follows at temperatures in the range of 1050-1100 °C to homogenize the bond coat and 

produce a single phase.   
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Figure 2.1 Diagram of a Low Activity Aluminizing  system for Chemical Vapor Deposition 

 

 Surface treatments can also be applied prior to YSZ deposition to improve 

adhesion and remove impurities [10].  For example, grit blasting of the surfaces of as 

processed bond coats have been seen to change the performance of thermal barrier 

coating systems [11]. 
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3.0 THERMALLY GROWN OXIDE 
 
 
 
 

3.1 BRIEF HISTORY 
 
 
Early development of alloys to protect against corrosion and oxidation utilized 

Cr2O3 formers.  However, the need for alloys and more stable coatings in more corrosive 

environments, mainly higher temperatures, required the development of new alloys.  The 

applications became more extreme as the temperatures rose, and the development of 

alloys began to shift towards alumina formers.  Aluminum not only added creep strength 

to the alloys by forming γ’ precipitates, but it also formed a more stable oxide.  Although 

alumina formers presented a good solution to the oxidation problem, some obstacles 

remained, e.g. finding a critical Al content that maintained the continuous growth after 

spallation of the scale.  Coatings that provided a large supply of metal to the protective 

scale appeared on the scene in the 70s; since then, the industry has introduced different 

types of coatings and processes used to deposit them.  Moreover, the performance of 

these alloys has also improved.  Figure 3.1 displays the evolution of protective coatings, 

it shows the evolution of oxidation of alloys and coatings for superalloys. 
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Figure 3.1  Progress of thermally grown protective oxide films. [12] 

 
 
 
 

3.2 GROWTH AND STRESSES 
 
 
Before continuing this explanation on the growth of an alumina layer, other 

comments may emphasize the complexity of this subject.  Acknowledging that selective 

oxidation does take place, it must also be stated that successful oxidation of aluminum 

includes the formation of an external film and not internal.  Hence internal oxidation 

would only mean that the substrate does not have the required composition to maintain 

the continuous growth of an external protective layer.  In a recently written book not yet 

published by Prof. G. H. Meier at the University of Pittsburgh1, he details two different 

                                                 
1 Class hand outs for MSE 2050- Gas-Metal Reactions course taught by Professor Gerald H. Meier. 
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criteria for achieving a success at external protective layers.  The first criterion details the 

solute content to establish external oxidation growth rather than internal oxidation, 
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here Kp is the growth rate constant of an oxide scale. 

Alumina grows by the inward diffusion of oxygen through the oxide scale to react 

with the aluminum.  A slow growth rate of this layer can represent characteristics of a 

durable system, and is preferred in high temperature applications.  There are various 

polymorphs to this oxidation reaction, including its stable phase of interest α-Al2O3.  The 

other polymorphs of aluminum oxide include θ-Al2O3, κ-Al2O3, γ-Al2O3, and δ-Al2O3.  

The reaction follows as, 

3222
32 OAlOAl ⇒+  

Several studies have determined the importance of the thermally grown oxides in 

the thermal barrier coating systems.  Initial importance is focused on the residual stresses, 

a product of the coefficient of thermal expansion mismatches between the oxide 
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scale/bond coat layer, and oxide/YSZ top coat, which occurs as a result of cool downs 

from elevated temperatures to room temperature.  As a result of these residual stresses, a 

high stress concentration interface can be formed to produce compression of the TGO 

which can lead to the failure of the TBC system [13, 14].  The failure produces spallation 

of the TGO along with the YSZ ceramic layer. 

Other sorts of stresses that can act in the TBC system pertaining to the thermally 

grown oxide include growth stresses.  Although previously believed to be of smaller 

magnitude than residual stresses, growth stresses have been found to be of equal 

magnitude as thermal stresses, but also to be among the driving forces in the deformation 

of bond coats with a deformed surface that undergoes a phase transformation and fail by 

ratcheting [4,14, 15, 16].  In systems with deformed bond coats, separation of the YSZ 

and the TGO scale can occur due to an increment of out-of-plane stresses [14], an active 

result derived from both thermal and growth stresses. 

 
 
 
 

3.3 EFFECT OF REACTIVE, REFRACTORY AND PRECIOUS 
METALS 

 
 
The effect of reactive and precious elements has also been among the main foci in 

the development of bond coats that may enhance the thermally grown oxide performance 

in thermal barrier coating systems [17].  Substrate composition has been cited as a factor 

in the adhesion and growth rate of the thermally grown oxide [17].  The effect of Y on 

the performance of alumina in NiCrAl alloys has been found to improve the α-Al2O3 
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adherence [18].  Due to the diffusion gradient produced at elevated temperatures as well 

as the oxidation potential of metals, some substrate elements diffuse outward to the bond 

coat, and bond coat-oxide interface. 

Not enough has been done in the field to understand the effects of refractory 

metals on the performance of oxidation.  Pettit and Meier [19] studied the effect of 

refractory metals not only on the oxidation of metals but also in the hot corrosion area.  

They found that though some positive effects can be seen with the presence of refractory 

metals such as Ta, Ti, Nb, W, Mo, etc., most of the effects are deleterious to the selective 

oxidation of Al2O3 and Cr2O3. 
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4.0 YSZ TOP COAT 
 
 
 
 

4.1 BRIEF HISTORY 
 
 
Frit enamels, a vitreous, non-organic material, constituted during the 1950s the 

initial stages of the industry that would grow to incorporate Y2O3-ZrO2 as the leading 

insulating coating in high temperature corrosion applications.  The evolution process 

prior to the YSZ included alumina, zirconia-calcia and zirconia-magnesia, all of which 

failed due to destabilization of the TBC at elevated temperatures.  Eventually the process 

of evolution included the high Yttria concentration ceramic coating that contained 

between 12-20 Y2O3 wt%, and showed significant improvement.  Yttria worked as a 

stabilizer for the Zirconia top coat which changes phase from a tetragonal to a monoclinic 

phase at elevated temperatures.  By 1978, Stephen Stecura presented his work on the 

improved performance of the YSZ by lowering the Yttria content to between 6-8 wt%.  

Since then, the latter composition is standard for modern applications.  For more 

information on the history of thermal barrier coatings, see Miller, R.A. [20]. 
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4.2 ROLE OF THE YTTRIA STABILIZED ZIRCONIA 
 
 
 The YSZ functions as an insulating top coat with its low thermal conductivity to 

reduce the temperature of the supporting substrate and hence improve the all around 

efficiency of a system at elevated temperatures.  Temperatures between the load bearing 

substrate and the ceramic top coat can differ between 100 ºC and 200 ºC.  Since the 

efficiency of an engine is directly proportional to the change in temperature it undergoes 

and/or the durability of the components in a working system; the YSZ plays a key role in 

this technology to reduce the temperature of the alloy during operation.   

 
 
 

4.3 MANUFACTURING PROCESSES AND PROPERTIES 
 
 

There are two main processes to manufacture the ceramic top coat or YSZ; these 

are electron beam physical vapor deposition (EB-PVD) and the plasma spray (PS).  

Brief descriptions of both of these processes shall follow in the sub-sections.  Of the two 

processes, EB-PVD is of interest in this research project.  Besides mechanical properties, 

production costs are also a concern when selecting among the two top coatings for a 

given application.  Plasma spray emerged first in the early 1960s as the leading coating 

process for high temperature applications.  On the other hand, EB-PVD emerged during 

the 1970s.  Though both manufacturing processes are widely used today, the plasma 

spray process is economically cheaper though given that a tradeoff does exist in the 

mechanical properties.  On the other hand, the EB-PVD coating shows a higher 

coefficient of thermal conductivity but shows better strain resistance.  Moreover it ought 
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to be noted, that the process of low pressure plasma spray and EB-PVD are also used to 

deposit bond coats, e.g. MCrAlY for M being Ni or Co.  

 

4.3.1 Plasma Spray 
 

Two main derivatives exist to the plasma spray process, a low pressure (LPPS) 

normally used for reactive materials, and an atmospheric air (APS) process.  Strangman 

[21] indicates a 10-15% porosity and microcracks accommodation in the layer to improve 

strain impairments to prevent delamination.  At the same time, these defects reduce the 

elastic modulus from 154 GPa to between 7-35 GPa.   

 The process is applied by means of a heated inert plasma gas that melts a fine 

powder in a gun and then coats the objective with molten materials [22, 23, 24].  The 

plasma may be a composition of argon with another noble gas such as He, or simply 

molecular gases such as H2, O2, N2, etc.  Figure 4.1 and Figure 4.2 display a concept 

mechanism for the plasma spray manufacturing process.  Although all components are of 

importance in the design of the system, there will be an accentuation on some.  As noted, 

the system is water cooled to maintain thermal stability of the system.  The tungsten 

cathode heats up the noble or molecular gases that eventually melt the soon to be coated 

material.  There are two powder feeds to the system; an internal and an external feed.  

There is also the gas injection feed noted as in the diagram as the Arc Gas 

Tangential/Injection.  The gas temperatures go as high as 3000 K to melt and spray the 

material.  Impact velocities between the coated surface and the gun range between 100-

650 m s-1.  Another important factor, the cooling rate, ranges between 107-108 K s-1[25].  

Figure 4.3 displays a rotational rack with samples to be coated.  A magnification on the 
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right side of the diagram manages to show how layers of deposition create pores that 

enhance strain tolerance.  In addition, it should also be noted that even though not visual 

on the diagram, this technique profits from being applied on a rough surface for 

mechanical interlocking.  Moreover, it is also applied in layers, hence achieving the 

porous structure. 
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Figure 4.1 Diagram of a plasma spray gun mechanism used for coating of metallic substrates with 
YSZ or MCrAl bond coats. 

 
 

Figure 4.2  Diagram of the plasma spray torch. 
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Figure 4.3 Diagram of a plasma coating process for multiple specimens. 

 

 

4.3.1.1 Failure Mechanisms of PS TBCs 
 

Failure mechanisms in plasma sprayed top coats with metallic under layers which 

may well be applied using the same technique occur at various levels.  Padture et al. [24] 

noted that stress concentrations led to three types of failures, (i) bond coat/TGO 

separation, (ii) cracking within the top coat, (iii) linkage of the microcracks by fracture of 

the TGO.   

4.3.2 Electron Beam Physical Vapor Deposition 
 

EB-PVD was used in the 60’s for metallic coatings.  See Figure 4.4 displaying a 

schematic representation of the electron beam physical vapor deposition process.  The 
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process is conducted in a vacuum chamber environment with pressures in the ranges of 

10-4-10-6 Torr.  An ingot rod is melted by an electron beam powered by as little as 60 kW 

and as much as 200 kW.  The melt is superheated to create a vapor cloud as the ingot of 

YSZ material continuously feeds the system [25, 26].   In order to maintain a balanced 

stoichiometry of the composition, oxygen is fed into the chamber during deposition.  

Prior to the component being introduced into the coating chamber, the component is 

cleansed and heated to around 1000 °C; this increases adhesion between the coating and 

the bond coat layer. 

 
 

Figure 4.4  Schematic representation of an electron beam physical vapor depostion system. 

The electron beam physical vapor deposition process was used in response to 

residual stresses on plasma sprayed YSZ.  Nevertheless there is a tradeoff in some of its  

physical properties such as thermal conductivity, where this structure has a higher 

thermal conductivity than the plasma sprayed coatings.  Unlike its predecessor, the EB-
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PVD process forms columnar grains and in-between gaps called “leaders” that add 

tolerance during thermal cyclic exposures.   

 

strain 

4.3.2.1 Failure Mechanisms in the EB-PVD System 

Failure of the yttria stabilized zirconia coating fabricated under this process 

consists of spallation of the system that is detachment of the coating from its original 

protect TGO 

me 

ance 

 

ive area.  This can occur by a couple of factors; first, a failure along the YSZ/

interface which allows the YSZ film to free itself.  The second form of failure would 

consist of the delamination of the TGO from the bond coat, hence loss of both the TGO 

and the YSZ films at one time.  These processes of delamination are all affected by so

of the aforementioned stresses that occur as a result to the TGO residual stresses or 

growth stresses.  Therefore, the coefficient of thermal expansion pertaining to the YSZ 

film is as important a factor as the coefficient of thermal conductivity in the perform

of these protective films.  Other defects in the coating that compromise the performance

of these films include zero contact planes, and cracks coalescence, etc.  
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5.0 PROJECT OBJECTIVE 
 
 
 
 

The continuous use of nickel superalloys in turbines for the aerospace, and power 

generation industry requires a good understanding of how these superalloys might behave 

under a given condition.  Additionally, these superalloys inherit numerous configurations 

that can affect their performance.  The configurations being referred to are substrate 

compositions and type of solidification such as single crystals, polycrystalline, or 

columnar grains.  Moreover, it is well understood that the performance of nickel 

superalloys is improved by thermal barrier coatings.  The thermal barrier coating as 

already noted is a system consisting of three layers, a ceramic insulating top coat, 

followed by a thermally grown oxide, and last the bond coat.  For years now, these two 

systems of nickel superalloys and thermal barrier coatings have been used together in 

applications requiring oxidation resistance and corrosion resistance at elevated 

temperatures.  Nevertheless, both of these systems continue to evolve.  This evolution 

refers to substrate composition and for thermal barrier coatings composition as well as 

fabrication processes. 

The objective of this study is to find out how the substrate composition of third 

generation, second generation and a polycrystalline nickel superalloys affect the 

performance of a Yttria Stabilized Zirconia thermal barrier coating system with a grit 
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blasted, platinum modified nickel aluminide bond coat at elevated temperatures in an 

oxidative environment.  This study should yield qualitative information about whether or 

not substrate composition plays a big role in the failure of thermal barrier coatings in an 

oxidative environment at elevated temperatures.  If substrate composition fails to play a 

significant role in the failure of these thermal barrier coating systems, then the primary 

failure mechanism should be identified along with cause leading to this type of failure. 

The method used to identify the cause of failure of this system include scanning 

electron microscopy, energy dispersive spectrometry and optical microscopy.  Data will 

be tabulated using EXCEL XP and MatLab. 
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6.0 EXPERIMENTAL PROCEDURE 
 
 
 
 

The experiment consisted of depositing a thermal barrier coating on six code-

named, single crystal, generation three nickel base superalloys, on a generation two 

single crystal, and on a polycrystalline alloy (See Table 6.1).  Prior to depositing the 

ceramic top coat, specimens were coated with a (Ni,Pt) Al bond coat via CVD and grit 

blasted to produce a rough surface.  During the application of the ceramic top coat, the 

specimens developed a thin oxide scale between the YSZ and the bond coat. 

The specimens were cycled in a vertical furnace at 1100 oC until failure of the 

thermal barrier coating occurred.  The observations of the specimens are divided as 

follows: as processed surfaces, as processed cross sections, failed interface surfaces, and 

observation of failed cross sections.  The methods of observation included macroscopic 

and microscopic, as well as chemical analysis using energy dispersive spectrometry.  

Microscopic observations were performed using a Philips Scanning Electron Microscope 

FEG (Field Emission Gun) XL30.  There were four specimens to test for each substrate 

type to determine the reproducibility of the tests, with the exception of René N5 for 

which only two coupons were available.  Failure was identified as any visible disruption 

of the coating after completion of a furnace period; e.g. spallation of the coating, a 

buckling of the coating.  These code named superalloys are classified by using a set of 
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letters and numbers, main effect superalloys (ME) and the carbon effect superalloys (CE) 

as seen in [27].  Compositional content distinguishes the superalloys from one another to 

classify them among third generation superalloys and compared to second 

generation and polycrystalline superalloys in the experiment.  An additional table 

displays the solidus and liquidus temperatures of these alloys (see Table 6.2).  The code-

named substrates assimilate René N5, a second generation superalloy, and differ from the 

latter in the variations that exist in the wt% range amounts of refractory and reactive 

elements within them.  Table 5.3 shows the amount of moles that exist in these alloys for 

the most stable carbide formers, which are hafnium and tantalum.  As seen in table 6.3, 

there are a number of superalloys that do not contain any carbon, hence carbide formation 

is not seen in these substrates. 
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Table 6.1 Wt.% Composition of third generation superalloys along with IN738 (polycrystalline) and 
René N5 (second generation). 

 

Material C B Zr Nb Al Ta Ti Hf W Re Mo Cr Co Ni 
ME-2 0.00 0.00 0.00 0.00 6.70 6.10 0.00 0.14 2.30 4.60 1.50 7.00 7.50 Bal. 

ME-13 0.13 0.00 0.00 0.00 4.60 6.20 0.00 0.14 2.40 4.70 1.50 7.00 7.50 Bal. 
CE-1 0.00 0.00 0.00 0.00 5.60 8.40 0.00 0.00 4.50 2.80 1.50 7.00 7.50 Bal. 
CE-3 0.00 0.00 0.00 0.00 5.80 4.00 0.00 0.28 4.60 2.90 1.50 7.00 7.50 Bal. 
CE-6 0.14 0.00 0.00 0.00 5.80 4.00 0.00 0.00 4.80 3.00 1.50 7.00 7.50 Bal. 
CE-8 0.12 0.00 0.00 0.00 5.40 8.40 0.00 0.26 4.50 2.90 1.50 7.00 7.50 Bal. 
N5 0.00 0.00 0.00 0.00 7.50 6.50 0.00 0.10 6.00 3.00 1.00 7.00 7.50 Bal. 

IN738 0.11 0.001 0.050 0.900 3.40 1.70 3.40 0.00 2.60 0.00 7.10 16.00 8.50 Bal. 

 
Table 6.2 Solidus and liquidus temperatures pertaining to the third generation nickel-base 

superalloys. [27] 

 

Alloy T(Solidus)
ºC 

T(Liquidus)
ºC 

CE1 1369 1402 
CE3 1381 1416 
CE6 1370 1410 
CE8 1364 1393 
ME2 1333 1397 
ME13 1378 1416 

 

 

Table 6.3 Content of moles for most stable carbide formers in the nickel superalloys. 

 

Material Tantalum Hafnium Carbon 
ME-2 3.37E-02 7.84E-04 0.00E+00
ME-13 3.43E-02 7.84E-04 1.08E-02
CE-1 4.64E-02 0.00E+00 0.00E+00
CE-3 2.21E-02 1.57E-03 0.00E+00
CE-6 2.21E-02 0.00E+00 1.15E-02
CE-8 4.64E-02 1.46E-03 9.74E-03
N5 3.59E-02 5.60E-04 0.00E+00
IN738 9.39E-03 0.00E+00 9.00E-03
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The complete study included thirty seven coupons; five coupons for each of the 

third generation superalloys, five for IN738 (polycrystalline) and two for René N5 

(generation 2).  These as processed coupons can be seen on Figure 6.1.  It is possible to 

view that some spallation of the thermal barrier coating did occur prior to the start of 

thermal cycles.  This can be seen for CE6-TBC2, CE6-TBC7, and ME13-TBC2.   
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CE1-TBC2 CE1-TBC3 CE1-TBC4 CE1-TBC5 CE1-TBC6 

CE3-TBC1 CE3-TBC3 CE3-TBC5 CE3-TBC6 CE3-TBC7 

CE6-TBC1 CE6-TBC2 CE6-TBC4 CE6-TBC6 CE6-TBC7 

CE8-TBC1 CE8-TBC2 CE8-TBC3 CE8-TBC6 CE8-TBC7 

ME2-TBC2 ME2-TBC3 ME2-TBC4 ME2-TBC6 ME2-TBC7 

ME13-TBC1 ME13-TBC2 ME13-TBC4 ME13-TBC5 ME13-TBC7 
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IN738-TBCA IN738-TBCB IN738-TBCC IN738-TBCD IN738-TBCE 

N5-TBC1 N5-TBC2 

   

Figure 6.1 Single Crystal Superalloys coated with Y2O3-ZrO3. 

 

 The thermal barrier coating was deposited at the Howmet Corporation.  The 

process included chemical vapor deposition to produce the (Ni, Pt) Al bond coat followed 

by a heavy grit blast to remove grain boundary ridges from the bond coat.  The next step 

was coating with Yttria Partially Stabilized Zirconia (6-8 wt%Y2O3 – ZrO2).  The thermal 

barrier coating was deposited by means of electron beam physical vapor deposition EB-

PVD.  It is important to note that the heavy grit blasting procedure left a coarse and rough 

surface onto which the thermal barrier coating was deposited. 

Upon receiving the coupons, one coupon for each of the superalloys was 

examined in the as processed condition.  These as processed coupons were sandwiched 

using .33[mm] thick aluminum plates and clipped on the coupons using coiled pins from 

Struers.  Sandwiching the superalloys preceded the mounting of specimens in a resin, 

which was allowed to dry for twenty-four hours to be later polished in a pseudo-

automatic polishing machine down to 3[µm] using Al2O3 polishing solutions.  After 

polishing, the mounted specimens were coated with palladium prior to SEM and EDS 
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analysis, in order to avoid charging of specimens.  This concluded the preparation 

procedure for the as received substrates which were then examined using the scanning 

electron microscope and EDS analysis, with the exception of René N5 for which only 

two specimens were manufactured.  The same procedure was also used in the preparation 

of failed specimens. 

The rest of the thirty specimens were cyclically heated at 1100 ºC in an automatic 

programmable vertical furnace (See Figure 5.2) until failure occurred.  A heating period 

consisted of twenty cycles.  A cycle consisted of a sixty-five minute time span, divided 

into three stages.  The first stage was a ten-minute period that raises the coupons from 

room temperature to 1100 ºC.  The second stage was a forty-five minute plateau at 1100 

ºC.  The third and final stage was a ten-minute period that reduces the temperature back to 

room temperature.  A diagram for the thermal cycle is presented on Figure 5.3. 

Specimens 

Figure 6.2 Sketch of the automatic programmable furnace used for cyclic exposure of the coupons. 

 

Removal of the specimens from the test occurred after visual spallation and/or 

fracture of the thermal barrier coating.  Following spallation of the TBC, four more steps 
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were performed to document failure characteristics.  These steps consisted of recording 

of the optical micrographs for each coupon followed by scanning electron microscopy 

and compositional analysis of the YSZ spalled scale and examination of the interface 

where the failure occurred at the coupon.  The final step included electron microscopy 

and EDS analysis of the cross section for each of the failed coupons.  The same mounting 

procedure used for the as received specimens was employed to examine the cross 

sections of the specimens after cyclic failure.   

1100[0C] 

10 Minutes 10 Minutes 45 Minutes 

T 
[0

C
] 

t [minutes]  

Figure 6.3 Temperature diagram followed by the automatic furnace. 
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7.0 RESULTS 

 
 
 
 

Substrates displayed very similar features for the as processed conditions and shall 

be displayed within the next subsection.  Substrate classification is determined after all 

failures occurred in reference to N5, the overall best performer.  According to this 

classification, the superalloys are categorized as high cycle failures, medium cycle 

failures, and short cycle failures.  Figure 7.1 is a chart presenting the categorization of 

these superalloys.   

Average Cycle Percentage vs. N5
120% 

Figure 7.1 Average life cycle percentage with respect to Rene N5, which outperformed all other 
superalloys. 
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7.1 AS-PROCESSED SPECIMENS 
 
 
The as-processed specimens display a mean thickness of the YSZ layer of 130 

microns, while the thickness of the bond coat shows a mean thickness of 50 microns.  

Although the system has been grit blasted after deposition of the bond coat, it can be seen 

in the forth coming figures that a thin thermally grown oxide in the range of .2-.5 µm 

develops between the YSZ and the bond coat.  In addition to the thermally grown oxide, 

various defects can also be seen and are hereto presented.  The bond coat chemical 

composition yields a beta phase of (Ni, Pt) Al. 

YSZ 

Figure 7.2 As processed YSZ grains on a grit blasted beta β (Ni,Pt) Al bond coat. 

 

 Various micrographs are included in this segment in order to present a visual 

perception of the general defects of the specimens.  Figure 7.2, displays the as-processed 

YSZ layer, along with the grit blasted bond coat.  It is easy to note from this micrograph 
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the initial undulations of the YSZ/TGO and TGO/Bond Coat interface.  Along the bond 

coat intra-layer, it is possible in some instances to see cracks expanding along the 

chemical vapor deposited bond coat as seen in Figure 7.3.  Cracks also propagate along 

the YSZ/Bond Coat interface.  Low cycle substrates display numerous holes in the as 

processed conditions as seen in Figure 7.4.  Figure 7.5 shows some of the effects created 

by the grit blasting process, as part of the bond coat seems to have been removed and 

only a YSZ/Substrate interface exists; moreover, a large group of YSZ grains in a conical 

shape is formed.  A conical shaped aggregate of grains formed without a contact point is 

also seen in Figure 7.6. 

Figure 7.3 As processed thermal barrier coating system with cracks present inside the bond coat and 
along the YSZ and bond coat interface. 
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Figure 7.4 As processed bond coat with numerous holes along the bond coat /ceramic overlayer 
interface.  Holes run into the interdiffusion area. 

 

 

Figure 7.5 Thermal barrier coatings system without the bond coat can be seen here due to the heavy 
grit blasting technology. 
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Figure 7.6 Conical defect created by the rough surface does not have a contact point with the bond 
coat. 

 
 Closer examination of the as-processed specimens, shows a weak interface 

constituted by porous and discontinuous grains. Figure 7.7 - 7.9 show once again the 

response of the EB-PVD YSZ to the rough-surfaced bond coat.  Figure 7.7 shows no 

contact surfaces, which can easily slip during high tensile stress conditions.  On a larger 

magnification in Figure 7.8, the discontinuous growth of the YSZ scale created by a deep 

undulation and competition among the YSZ grains to grow, can be seen; hence, a void is 

formed and high stress points at each one of its ends are produced.  Although heavily grit 

blasted, the thermal barrier system contains a thin thermally grown oxide as exhibited in 

Figure 7.9.  The TGO formed during YSZ deposition which occurred after the grit 

blasting.  The TGO is continuous along this interface and is the product of high 

temperatures used during the deposition of the YSZ. 
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Figure 7.7 Undulations of the rough surface create zero contact planes, easy to pull under normal 
stresses. 

 

Figure 7.8  Rough Surface undulations create inhibitions for the continuous growth of YSZ leaders, 
creating vacancies and stress concentration points. 
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Al2O3
β (Ni,Pt)Al 

YSZ

Figure 7.9 A porous YSZ/TBC interface with various discontinuities, also a thin Al2O3 layer close to 
200 nm. 

 

The interdiffusion area is also another very important area within the system.  

Micrographs were taken to represent the different interdiffusion areas that ranged from 

highly dense areas to dense when compared to each other.  Figure 7.10 represents the 

interdiffusion area of high cyclic failure samples.  The entire interdiffusion area has a 

width close to 20 microns, comprised by globular and acicular precipitates.  In addition to 

the dense precipitate area, alumina particles are also present above the interdiffusion area.  

Figure 7.11 unlike the previous figure, represents the interdiffusion area of a low cycle 

failure specimen.  Noted is the distance between the interdiffusion area and the bond coat, 

which when compared with the previous and next figure is a very small distance.  Figure 

7.12 corresponds to mid-cycle failures and, as seen here, there are various precipitates, 

mostly globular of different sizes which become larger as they get closer to the bond coat.  
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In addition to the precipitates, Figure 7.10 - 7.12 all show Al2O3 particles most likely 

incorporated during deposition of the bond coat. 

 

Figure 7.10 The interdiffusion area below the thermal barrier coating system. 
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Figure 7.11 Interdiffusion area of a low cycle failure specimen. 

 

Al2O3

Figure 7.12 Interdiffusion area of a mid-cycle failure TBC specimen for as processed, atop some 
alumina particles. 
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7.2 HIGH CYCLE FAILURE 
 
 

Cycles to failure expressed as a percentage of the cycles to failure for N5 can be 

seen in Figure 7.1.  High cycle failure refers to the left most three specimens seen in 

Figure 7.1, which are René N5, Inconel 738, and ME2.  René N5 achieved the highest 

failure average reaching a maximum mean of 800 cycles.  ME2 reached the second 

highest in this category with 765 cycles per specimen and finally Inconel 738 reached a 

mean life of 610 cycles per specimen.  All specimens failed along the YSZ/TGO 

interface, although in some instances spallation of the TGO is seen along with some 

reoxidation of the bond coat.  Phase transformations occur at the bond coat due to 

aluminum depletion, β (CsCl), β’ (L10), γ’ (FCC) phases are seen.  This is mostly due to 

the formation of the thermally grown oxide and the depletion of aluminum from the 

substrate.  In addition to the depletion of aluminum, the behavior of other elements such 

as the refractory metals should also be noted, which segregate to the interdiffusion area 

forming primary, secondary, and perhaps even a tertiary reaction zone.   

 

7.2.1 Performance of René N5 
 
 

René N5 outperformed all of the third generation alloys by a percentage 

difference ranging between 4% for the closest and 92% for the furthest, as seen in Figure 

7.1.  It also outperformed Inconel 738 which is not a single crystal, but rather a 

polycrystalline alloy.  The main form of failure for these specimens includes one along 

the YSZ/TGO interface as seen from the failure surface of the YSZ scale and the failure 

surface of the substrate, Figure 7.13.  On the YSZ failure surface, as seen in Figure 7.14, 
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it is possible to pick out areas where a large amount of the YSZ is missing, a link that is 

later used to reinforce the failure mechanism of ratcheting.  Figure 7.15 displays 

thermally grown oxide adhered to the YSZ surface after failure.  Some of the bond coat is 

visible, which indicates that failure also occurred along the TGO/Bond Coat interface, as 

seen in Figure 7.16. 

Figure 7.13 YSZ failure of Rene N5 comprised of the supporting YSZ ceramic (white area) and the 
thermally grown oxide (dark areas). 
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Figure 7.14 Closer look at the YSZ/TGO failure surface shows the loss of YSZ noted by black 
arrows, and the alumina adhered to the surface. 

 

 

Figure 7.15 Thermally grown oxide adhered to the YSZ after failure of the TBC system on a N5 
specimen. 
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Reoxidized areas 
Bare Bond Coat 

Figure 7.16 Surface area of the substrate after failure shows a large amount of alumina and various 
bond coat reoxidized sites. 

 

Surface holes were also present at the substrate surface failure as seen in Figure 

7.17.  A magnification of these holes on Figure 7.18 yielded high traces of Ni, Al, and O.  

Figures 6.19-6.21 show an area of the bare bond coat, which shows very different 

features.  Figure 7.19 shows a micrograph of a reoxidized area, with large traces of Ni, 

and some traces of Cr.  The following figure exposed surface, shows the formation of 

alumina on a Ni rich surface, Figure 7.20.  Finally, Figure 7.21 shows the initial stage of 

a bare bond coat prior to reoxidation.  In this figure, different shades on the substrate are 

seen, which are featured holes along which grain boundaries are noted. 
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Figure 7.17  Substrate failure surface shows some YSZ adhered and underneath the thermally grown 
oxide. 

 
 

igure 7.18  Numerous holes on the substrate surface after failure, also seen is the detached YSZ 

Holes

F
adhered to the TGO. 
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Figure 7.19  Reoxidized bond coat surface. 

 
 

Figure 7.20 Reoxidized substrate surface shows precipitates of Al rich in Ni. 
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Figure 7.21 Nickel rich bare bond coat shows holes and grain boundaries on the bond coat. 

 

Cross sectional examinations of these specimens indicated a very weak interface 

betwee

ased 

 

g.  

ere 

n the YSZ and the TGO was responsible for the failure seen, (Figure 7.22).  

Moreover, oxidation of the bond coat surface in many areas as the undulations incre

in size show that the specimens failed by ratcheting (Figure 7.23).  Another characteristic

of these N5 coupons as well as most of the rest of the other third generation alloys is the 

complete phase transformation from the β (NiAl) → β’ (L10) taking place in the bond 

coat (also Figure 7.23).  β’ was identinfied by composition analysis and later by etchin

TGO thickness plays a significant role in the failure of TBCs, as residual and growth 

stresses in the TGO can increase and produce failure along the TBC/TGO interface.  H

it is seen in Figure 7.24 that the TGO on N5 accumulated an average thickness of 5 µm at 

failure.  Figure 7.24 notes that most deformation occurred at martensitic regions, and not 

at γ’ regions.  Yet, in observance of the substrate composition as the primary variable in 
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this study, it is important to indicate what happens to the substrate elements, primarily the

refractory metals, during the cyclic thermal exposure.  Tantalum is seen to segregate to 

the gamma prime phase at the interfacial boundary with the thermally grown oxide.  

Figure 7.25 shows the interdiffusion area, including large precipitates and small 

precipitates.  Closer to the bond coat are TCP precipitates in the globular and acic

shapes, mainly constituted from two phases; one phase contains W, Ni, Cr, Co, and Mo

the other phase contains Cr, Ni, Re, W, Co, and Mo.  The secondary reaction zone is 

populated by finer globular precipitates composed of the same elements seen in the 

primary reaction zone, while the tertiary reaction zone has acicular precipitates rich i

Re, Ni, Cr, W, Co, and Al. All these zones differ in the size of their precipitates as well

the distance from the bond coat. 

 

ular 

, 

n 

 as 

Figure 7.22 YSZ and TGO separation after failure indicative of a weak interface. 
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Figure 7.23 Ratcheting effect increases undulations while simulteneously accumulating oxide.  Both 
β’ and γ’ populate the bond coat region. 

 

 

Figure 7.24  TGO thickness at failure for N5.  TGO appeared to deform at martensitic regions and 
not FCC. 

γ'

β' 

β' γ' 
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Figure 7.25 Interdiffusion area of N5 at failure. 

 

7.2.2 Performance of ME2 
 

ons can be seen in 

Figure 7.27.  The substrate side of the failure did not show as many spalled or reoxidized 

areas as N5 showed (see Figure 7.28 and 7.29).  Nevertheless, some were present as seen 

 Figure 7.29.  Besides spallation of the TGO and exposure of the bond coat, another 

Substrate ME2 performed particularly well, being among the third generation 

alloys and the only substrate of its kind in this category of high cycle failure.  ME2 

averaged 765 cycles per specimen, or 96% of N5s total.  Like the best performer N5, 

ME2 also failed along the YSZ/TGO interface, as seen in Figure 7.26.  Some areas from 

which the TGO spalled did appear, although they were not as prevalent as on N5.  

Thermally grown oxide portions or bits are attached to the YSZ, an indication of a crack 

that changes planes during propagation.  Some of the largest porti

in

important feature is seen in Figure 7.30.  As it appears on Figure 7.30, a compilation of 
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YSZ grains remained attached to the surface of the TGO while the TGO extended in

the bond coat.  This loss of YSZ grains produces holes in the YSZ s

cracks that lead to failure.  ME2 also developed more surface holes than N5, as seen in 

the Figure 7.31.   

to 

cale, in addition to 

Figure 7.26  YSZ Failure Surface of an ME2 specimen after 780 cycles at failure. 
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Figure 7.27 Alumina bit adhered to the YSZ scale after failure.   YSZ holes also are present on this 
surface, indicative of YSZ loss during cyclic heat treatment. 

 

 
Figure 7.28  Substrate failure surface after 740 cycles, with spalled/reoxidized  area at the mid right 
area and numerous holes. 
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Figure 7.29  Spalled area on the failed substrate surface shows Re precipitates on a Ni matrix. 

 

Figure 7.30 YSZ grains being absorbed by out of plane stresses created by TGO residual stresses. 
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Figure 7.31  Holes on the surface of an ME2 specimen after failure due to ratcheting effect. 

 

The cross section of the substrate develops a more pronounced deformation of the 

bond coat as the cycles increased, i.e. the depth of the undulations extended into the bond 

coat as seen in Figure 7.32.  The TGO thickness, as seen in Figure 7.33, averages the 

same as that for N5, between 4 and 5 microns.  Then moving downwards, it can be seen 

in Figure 7.34 that most of the substrate components did not significantly influence much 

in the adhesion or failure of the TBC system, as most of them formed precipitates at the 

interdiffusion area, both acicular and globular.  The globular precipitates are rich in Re, 

Cr, Ni, and Co, all in descending atomic percentage concentration.  The acicular 

precipitates are rich in Ni, Re, Cr, W, Co, Al, and Mo also all in descending atomic 

percentage concentration.  Ni content for the globular precipitates is half of the Ni found 

 the acicular precipitates, while Re content in the globular precipitates is 2 times the 

amount of Re found in the acicular precipitates.  As seen from Figure 7.34, the population 

in
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density of the precipitates is greater than that of N5.  Nevertheless, as in the case of N5, 

Ta segregated to the gamma prime phase along the TGO/bond coat interface. 
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Figure 7.32  Cross sectional micrograph of ME2 points to a weak YSZ/TGO interface as well as to 

 

failure by a ratcheting mode. 



Figure 7.33 Deformation of the bond coat by a ratcheting mode allows for the oxide to penetrate the 
bond coat and oxidize eventually causing failure. 
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Figure 7.34 Interdiffusion area stretches vastly from the bond coat into the substrate matrix, various 
forms of precipitates in globular and acicular shapes. 

 

7.2.3 Performance of Inconel 738 
 

 IN738 is the only polycrystalline substrate in the study averaging 610 cycles per 

specimen, or 76% from N5s total cyclic life.  Failure of the IN738 specimens occurred 

along the YSZ/TGO interface as seen in Figures 7.35-7.41.  Figure 7.35 presents the large 

density of TGO bits adhering to the YSZ TBC after failure, while Figure 7.36 shows a 

magnified view of a TGO bit after spalling from the bond coat.  In this figure, it is 

possible to see the fine details of the TGO grain growth in contact with the bond coat.  

Interesting to note is that no ridge growth has occurred for the bond coat after cyclic 

thermal treatment.  The IN738 specimens displayed in general the largest amount of TGO 
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spallation relative to the other substrates in the study.  These specimens also displayed a 

large amount of bond coat reoxidation, as seen in Figure 7.37 and 7.38.  Yet into other 

aspects and characteristics of this specimen, it is observed that cracks propagate along the 

TGO in the direction of the failure surface, as seen in Figure 7.39, which can improve the 

chances of spallation of the TGO.  Figure 7.40 shows a hole surrounded by a no contact 

plane grain attached to the TGO after failure of the system. 
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igure 7F .35 Inconel 738 YSZ failure surface displays a large amount of TGO bits as well as large 
portions of TGO. 



Figure 7.36 TGO on YSZ failure surface shows engraved details.  These are the TGO grains in 
contact with the bond coat. 

 

Figure 7.37  Substrate surface after failure of the TBC system displays large amounts of spalled 
areas, showing the bare bond coat. 
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Figure 7.38  Substrate surface of Inconel 738 displays reoxidized surfaces, pointed by arrows. 

 

Figure 7.39 IN738 substrate surface contains cracks, spalled bare bond coat surfaces and holes. 
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Figure 7.40 Holes on the surface of IN738, surrounded by YSZ grains. 

 

all traces of Ta, W and Mo were found mostly near the interdiffusion area.  The 

thickness of the TGO at failure coincides or approaches that of the other two specimens 

lready reviewed (see Figure 7.44).  Nevertheless, there seemed to be more areas without 

Cross sectional view of Inconel 738, Figure 7.41, shows the failure occurred by 

ratcheting.  Initially a weak interface is present at the TGO/YSZ interface, hence 

indicative of the failure type.  In addition to the weak interface, there are also plenty of 

oxidized areas that extended into the bond coat, characteristic of the ratcheting effect seen 

in all of the specimens (see Figure 7.42).  Different contrast intensity on these black and 

white images is indicative of phase composition differences, which is also present in this 

specimen, in Figure 7.43.  For these specimens, unlike others there is not any martensitic 

phase present at the moment of failure; the only two phases present are γ’ and γ.  γ' is 

richer in Ti and Pt than γ by approximately two times, while γ is richer in Cr and Co.  

Sm

a
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TGO when looking at the cross section than for the other specimens.  In retrospect, this 

 

coincides with the plentiful amount of bare areas.   As for the interdiffusion area, it is 

possible to comment that it has the least dense interdiffusion area of all the specimens, 

which again can be seen from Figure 7.41.  Precipitates found in the interdiffusion area 

are constituted mainly by Ti, Ta, Nb, Ni, Co, Cr, arranged in the order of their atomic 

concentration. Carbides were not observed, although it is expected that carbon segregated 

to the grain boundaries of the substrate.  Carbon segregates to the grain boundaries to 

improve creep resistance. 

 

Figure 7.41  Cross sectional view of IN738 displays, YSZ/TGO weak interface,  ratcheting 
mechanism, holes in the bond coat, and the interdiffusion area. 



Figure 7.42  Bond coat of  IN738 displays displays the failure mode of ratcheting. 

 γ’. 

 
 

γ 
γ'

Figure 7.43  A closer look at phase distribution along the bond coat of IN738, displays γ and

 
 

 64



Figure 7.44  TGO thickness average on IN738  similar to N5; in addition, some bare areas also show 
n the cross section. o

 

 

 

 

7.3 MID-CYCLE FAILURE 
 
 
Mid-cycle failures include the range of alloys that failed between 39 and 64 percent 

of René N5.  As seen earlier in Figure 7.1, this category includes three third generation 

nickel based superalloys, which are CE1, CE3, and CE8.  CE1 had the highest mark in 

this category averaging 510 cycles per specimen or 64% of N5.  CE3 and CE8 averaged 

39% and 36% of N5, respectively.  The specimens displayed martensitic transformation 

at the bond coat and a rougher bond coat surface than N5. 

 

 65



7.3.1 Performance of CE1 
 

CE1, like all the other specimens, also failed along the YSZ/TGO interface.  Figure 

7.45 presents the YSZ failure surface of CE1.  Like the high cycle failure specimens, CE1 

has bits of TGO attached to the YSZ, as well as missing YSZ in certain areas.  A closer 

look at these TGO bits in Figure 7.46, shows a porous surface as well as ragged edges.  

The substrate surface after failure resembled that of IN738, though less spalled, see 

Figure 7.47.  In Figure 7.48, spalled areas as well as reoxidized areas and cracks all 

populate the same area, again similar to the substrate surface of IN738 after failure; 

additional holes are also present.  Holes seem not to be in high density as previously seen 
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in other substrate failure surfaces. 

ing YSZ. 

 
Figure 7.45 YSZ scale from CE1 displays bits of alumina, and miss



Figure 7.46 Alumina on YSZ of CE1 is large and porous. 

 

igure 7.47 CE1 substrate surface displays areas from where the TGO has spalled as well as 
ed spots. 

 
 

 

F
reoxidiz
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Bond coat 

Cracks 

Holes 

F
re

igure 7.48 Magnification of CE1 failure surface shows TGO spalled areas, cracks, holes, and 
oxidized areas. 

ed by 

r, Ni, W, Co, Re, and Mo.  Figure 7.50 displays the thermally grown oxide at failure 

e.  As seen in the figure, the thermally grown oxide cracks parallel to the YSZ/TGO 

 

The cross sectional view of CE1 revealed a similar behavior to that of the higher 

failure cycles, like N5.  As seen in Figure 7.49, the bond coat cross section displays less 

sections of the oxides expanding into the bond coat and presents a more consumed bond 

coat than that of N5.  Additionally, Figure 7.49 shows that TGO thickness exceeds that of 

previous superalloys.  Furthermore, one can see the interdiffusion area and its 

geometrical shapes.  Again, the shapes are in the form of circles and needles, as seen in 

the previous alloys.  However, the density lies between IN738 and N5, considering that 

ME2 has the most dense interdiffusion area.  The composition of these precipitates 

includes W, Re, Ni, Cr, Co, Mo, and Al for the globular shaped ones.  Meanwhile, 

forming the secondary reaction zone, one sees the acicular shaped precipitates form

C

tim
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interface and not normal to the interface, as seen in the previous superalloys.  Figure 7.51 

also displays the unprotected area adjacent the thermally grown oxide with YSZ adhered 

to it.  Again, Figure 7.51 additionally shows the thickness of the TGO and significant 

deformation of the bond coat without much increasing of the concavity of the oxide 

penetration.  Moreover, Figure 7.51 also shows the phase distribution along the bond 

coat.  As seen here, most of the bond coat has transformed to β’ (L10) and some to 

γ’(L12).  Tantalum segregated to the gamma prime phase.  Finally, Figure 7.52 shows the 

oxide extending into the bond coat and retaining YSZ.   

 69

Figure 7.49 CE1 cross section after TBFigure 7.49 CE1 cross section after TBC failure along YSZ/TGO interface. 

 

 69

interface and not normal to the interface, as seen in the previous superalloys.  Figure 7.51 

also displays the unprotected area adjacent the thermally grown oxide with YSZ adhered 

to it.  Again, Figure 7.51 additionally shows the thickness of the TGO and significant 

deformation of the bond coat without much increasing of the concavity of the oxide 

penetration.  Moreover, Figure 7.51 also shows the phase distribution along the bond 

coat.  As seen here, most of the bond coat has transformed to β’ (L10) and some to 

γ’(L12).  Tantalum segregated to the gamma prime phase.  Finally, Figure 7.52 shows the 

oxide extending into the bond coat and retaining YSZ.   



Figure 7.50 TGO thickness on CE1 substrate surface displays heterogeneous growth.  Unlike 
previous deformations, TGO cracks propagate parallel and not normal to the YSZ/TGO interface. 

 

 

γ' 

β' 

Figure 7.51 Bond coat remains unprotected after loss of TGO, while other areas are still protected. 
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Figure 7.52  Oxide extends into bond coat and retains YSZ inside as seen in this figure. 

 

7.3.2 Performance of CE3 

surface of the substrate, including the formation of a button like precipitate whose 

 

The performance of CE3 specimens averaged 310 cycles or 39% of N5s total 

average.  As seen in Figure 7.53, the failure of the TBC system occurred along the 

YSZ/TGO interface.  Like the rest of the previously discussed specimens, subject to the 

ratcheting failure type, there is attachment of some TGO on to the YSZ surface and vice 

versa.  Figure 7.54, shows a micrograph of an alumina bit attached to the YSZ surface.  

In addition to the TGO in Figure 7.54, there is also the presence of holes on the YSZ 

surface as well as cracks.  Figure 7.55 shows the substrate surface which is protected by 

the TGO.  Unlike the previously seen specimens, CE3 does not show any spallation at the 

TGO/BC interface nor reoxidation surfaces.  These characteristics could be seen in 

Figure 7.55 and 7.56.  Nevertheless, other not yet seen features do appear on the failure 
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composition includes Al, O, Ta, Ni (see Figure 7.56).  Some holes are also seen in Figure 

7.56 accompanied by cracks and YSZ debris from the detachment of the systems 

components.  A closer look at the features seen on top of the substrate is seen in Figures 

6.57 and 6.58, which show magnifications of a crack and grains adhering to the TGO 

after failure, respectively. 
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YSZ/TGO interface failure. 
Figure 7.53  YSZ failure surface of CE3 shows similar failures of other substrates in the study, 



Figure 7.54 TGO bits on the YSZ failure surface accompanied by holes and cracks on the surface. 

 
 

Figure 7.55 CE3 substrate failure surface elucidates on the failure type, and failure traits. 
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Cracks 

Button 

Voids 

Figure 7.56 Substrate failure surface of CE3 displays cracks, YSZ and perforations, as well as 
oxidized buttons. 

 

 

Figure 7.57 Crack propagation on the surface of  CE3 at failure expands for over 50 µm. 
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Figure 7.58  YSZ grains attached to the TGO on the substrate surface after failure. 
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The cross section of this specimen also shows a very pronounced contrast 

 

between the martensitic phase and the L12 phase in the bond coat.  Figure 7.59 displays 

the ratcheting mechanism which leads to the failure of all CE3 specimens.  Additionally, 

it also displays an interdiffusion area that is not as dense as that of the high cycle failure 

specimens.  Alumina particles are also seen as part of the CE3 bond coat, right above the 

interdiffusion area.  Figure 7.60 displays the thickness of the TGO which did not exceed 

that of N5 or any of the substrates already presented.  The TGO thickness is about 4µm 

and is about standard among all the specimens tested.  Figure 7.60 also shows the 

martensite and L12 phase creating an interface with one another and the thermally grown 

oxide; tantalum is also found to segregate to the gamma prime phase. 
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lumina particles 
in the bo d coat. 

 

Figure 7 TGO thickness on the bond coat of CE3 did not exceed 4 µm.  Additional is the 
presentation of the β’ and the γ’ phases. 

Figure 7.59 Cross section CE3 shows the interdiffusion area, ratcheting effect, and a
n

γ' 

β' 

.60 



7.3.3 Performance of CE8 
 The failure of this TBC system occurred along the YSZ/TGO interface, as seen in 

Figure 7.61.  Again, thermally grown oxide portions remain on the failure surface of the 

YSZ, as seen in Figure 7.61 and Figure 7.62.  Other features of this failure mechanism 

include the loss of YSZ, creating holes and/or cracks on the YSZ, as seen in Figure 7.63.  

The failure surface of CE8 shows cracks, holes and YSZ that remained attached to the 

TGO after failure of the TBC system, as seen in Figure 7.63.  Not representative of the 

CE8 specimens is the spallation of the TGO from one specimen, allowing for reoxidation 

and/or complete exposure of the bond coat to the environment, as seen in Figure 7.64.  

This last figure is from a specimen that underwent 380 cycles.  Figure 7.65 is a close up 

of the holes and cracks seen on the CE8 failure surface. 

Figure 7.61 The YSZ failure surface from a CE8 specimen. 
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Figure 7.62  Thermally grown oxide, holes, and cracks on the YSZ failure surface of a CE8 specimen. 

 

 

s, cracks and YSZ remains. Figure 7.63 TGO failure surface from a CE8 specimen, showing hole
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Figure 7.64 Reoxidized area seen only once on a CE8 specimen, other specimens did not show a bare 
or reoxidized area at all. 

 

Figure 7.65 A closer look at the cracks and holes populating the TGO failure surface from a CE8 
specimen. 
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 A cross section representing the CE8 system is seen in Figure 7.66.  Here it is 

possible to see that a weak interface between the YSZ and the TGO leads to failure.  

Moreover, the ratcheting effect is also seen to affect these specimens.  The interdiffusion 

area also seems very dense, and involves the formation of Tantalum-Carbides.  Other 

precipitates included are those seen in N5, ME2, CE1, and CE3.  The TGO thickness did 

not exceed 4µm and can be seen in Figure 7.67.  Another feature that is visible is the 

attachment of YSZ grains on the TGO after failure of the TBC system, see Figure 7.68.  

Figures 6.67 and 6.68 both display martensitic and gamma prime phases seen on the bond 

coats of the TBC system at failure.  Some tantalum is found in the present martensitic 

phases.  Nevertheless, the Ta concentration detected in the gamma prime phase is not as 

high as those found in the higher failure specimens. 

  Cross section of the TBC system from a CE8 specimen after failure.  Observe the rough 
rface, interdiffusion area and YSZ defect. 

 

Figure 7.66
su
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Figure 7.67 Ratch
the YSZ top coat.

 

γ'

' 

 

igure 7.68 ThickF
present. 

 

 

β

eting mechanism present in failure of CE8 specimens; noted in the back grains of 
  Martensite and gamma prime also present. 

ness of the TGO did not exceed 4 µm.  Martensite and gamma prime are also 
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7.4 LOW CYCLE FAILURE SPECIMENS 
 
 

The last substrates to be reported in this study failed at percentages below 15% of 

N5.  These alloys also contain carbon, a factor that precipitates the formation of Tantalum 

carbides.  Not much is seen in the cross section of these substrates, with respect to bond 

coat phase transformations.  The TGO thickness also remains below that of those that 

failed at higher cycles. The surface areas of the YSZ and the substrate show a clear and 

defined surface, which includes the YSZ and TGO interface.  There are not any spalled 

surfaces which show the bare bond coat. 

 

Specimens of the ME13 type failed at an average of 110 cycles per specimen or 

 

rains that have been detached from the YSZ scale during deformation of the bond coat. 

7.4.1 Performance of ME13 
 
 

13% of N5s total cyclic life.  As seen from Figure 7.69, the failure of the TBC system 

occurred along the YSZ/TGO interface.  The failure allowed for the retention of the TGO 

on the YSZ, while some YSZ also remained on the substrate protected by the TGO.  

Numerous holes were observed, even more so than for any of the mid range specimens or 

the high range failure specimens.  The holes show traces of Ni, along with Al and O, 

nervertheless, it is not any sort of spinel.  The second figure shows the attachment of the 

TGO onto the surface of the YSZ interface where it failed (Figure 7.70).  Figure 7.71 

shows a low magnification micrograph of the failure surface at the substrate, noting the 

YSZ as white area, gray areas as the alumina, and dark spots as the holes which develop 

in the surface.  Figure 7.72 shows a high magnification micrograph of a group of YSZ

g
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Figure 7.69 Standard failure surface of the YSZ
light area is the YSZ. 

 from a ME13 specimen, dark area is the TGO and 

 
 

Figure 7.70 TGO bit on the YSZ surface after failure of a ME13 specimen. 
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Figure 7.71 Failure surface of the substrate elucidates on the numerous holes, as well as the YSZ 
debris on the TGO, note there are not any spall areas. 

 
 

Figure 7.72 YSZ grains are swallowed by the TGO during deformation. 
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The cross sectional area of the specimens reveal a few features that are not clearly 

seen in the other specimens.  Figure 7.73 shows the ratcheting mechanism which leads to 

the failure of the TBC system, deforming the bond coat surface even more and creating a 

weak interface for the YSZ and the TGO.  A closer look in Figures 6.74 and 6.75 display 

the thickness of the TGO which does not exceed 3.5 microns.  The micrographs also 

elucidate on a feature seen in mid-cycle failure specimens, an intra-TGO crack parallel to 

the YSZ/TGO surface.  Additionally, numerous cracks also seem to propagate from the 

YSZ absorbed by the TGO where a interface occurs.  The interdiffusion area (see Figure 

7.76) is very similar to that of ME2, presenting a high density of precipitates formed by 

Re, Cr, W, and unlike ME2, tantalum carbides, identified by energy dispersive 

etry.  It should be noted that the lowest performspectrom ers all formed tantalum carbides.  

he phase composition of the bond coat is mainly martensitic with a portion at the T

bottom formed by gamma prime with very little tantalum.  Nevertheless, gamma prime 

does not have an interface with the TGO.  Also visible is a very large amount of alumina 

particles, probably remains of the grit blasting process. 
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Figure 7.73 Cross sectional micrograph of ME13 shows ratcheting effect, bond coat, interd
area and alumina particles in the bond coat. 

 

 

iffusion 

Figure 7.74 ME13 cross section shows YSZ debris remains attached to the TGO after failure.  Note 
appearance of the TGO which is cracked laterally with heterogeneous thickness. 
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YSZ 

Cracks 

Figure 7.75 TGO on the ME13 shows cracks which appear to originate from the YSZ/TGO interfac
propagate. 

e 

 

 

 

 

TaC 

Al2O3

Figure 7.76 Interdiffusion are of a ME13 specimen after failure shows carbides and precipitates rich
in Re, W, Cr, Co, and Ni. 
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7.4.2 Performance of CE6 
 

CE6 failed along the YSZ/TGO interface at 65 cycles per specimen or 8% of N5s 

total average failure.  The YSZ surface is seen in Figure 7.77, which shows again the 

numerous bits that remain attached to the YSZ TBC after failure of the TBC system.  By 

taking a closer look in Figure 7.78, it is easy to see the holes created on the YSZ TBC 

after failure, along with the TGO bits which are larger than those on N5.  The substrate 

surface on Figure 7.79 contains cracks, and YSZ bits, but not many holes are seen.  

Figure 7.80 also shows the amount of YSZ that remained on the TGO after failure of the 

TBC system. 

 

 
Figure 7.77 YSZ surface after failure of the the TBC system on a CE6 specimen. 
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igure 7.78 High magnification of the YSZ failure surface on a CE6 specimen shows holes on the 
SZ and large scale TGO. 

 

lso seen are 

 

Cracks 
Figure 7.79 Substrate surface shows large amounts of YSZ on the TGO surface, a

ous. numer
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Figure 7.80 Substrate surface shows the TGO, and YSZ debris on the surface of a CE6 specimen. 

 

 The cross section of CE6 shows similar patterns to those of ME13, posing a large 

 Figure 7.84, 

it is possible to see the number of a  above the interdiffusion area and a 

in phase layer composed of gamma prime.  Again, as for ME13, gamma prime does not 

amount of precipitates, a relatively thin TGO, phase composition of the bond coat, and 

YSZ in the TGO, as well as ratcheting.  Figure 7.81 shows the ratcheting effect 

expanding all along the YSZ/TGO interface.  The thickness of the TGO, visible in Figure 

7.82 has not exceeded 3 microns and yet contains remains of the YSZ inside.  Figures 

6.82 and 6.83 also elucidate on the bond coat phase, the bond coat has completely 

transformed to martensite, there is not any gamma prime.  Other features from the cross 

section is the interdiffusion area.  The interdiffusion area is not as thick as that of N5 and 

additionally forms tantalum carbides, already seen in ME13 and CE8.  From

lumina particles

th

form an interface with the TGO. 
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Figure 7.81 Cross sectional view of a CE6 substrate and its TBC system after failure. 

 

 91

phase of the bond coat. 

 

Figure 7.82 TGO thickness shows a relatively thin TGO and YSZ debris, note the homogeneous 



Figure 7.83 Bond coat on CE6 is homogeneous, while TGO shows expanded lateral cracks. 

 
 

Figure 7.84  Interdiffusion area of a CE6 specimen shows numerous precipitates including the 
formation of carbides and other precipitates.
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8.0 DISCUSSION 
 
 
 
 

8.1 RATCHETING FAILURE 
 
 

 After examination of the specimens, it was concluded that all the specimens failed 

by ratcheting.  During this deformation process, the bond coat surface is deformed by the 
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ompressive stresses produced by the coefficient of thermal expansion misfits between c

the TGO/bond coat and TGO/YSZ.  The thermally grown oxide penetrates the bond coat 

while deforming it in an attempt to relax its stress level, and forms an axi-symmetric cone 

of extended oxide that expands and grows as the cyclic exposure continues.  The 

formation of this undulation normally pushes downward on the bond coat at its center, 

while pushing upward at its ends, as mass from the bond coat gets distributed to the sides.  

See Figure 8.1, for a schematic of the evolution of the ratcheting effect.  The mechanics 

easily create out of plane stresses that produce cracks capable of propagating with time 

along the TGO/YSZ interface, leading to failure.  Nevertheless, additional factors exist 

along the YSZ/TGO interface that can influence the crack propagation rate.

 



 

  

 
 

Figure 8.1 Evolution of the ratcheting effect: (a) Displays early deformation of the bond coat which 
deprives the YSZ grains from growing.  (b)  Deformation of the bond coat grows as the residual 
stresses appear compress the TGO.  (c)  Oxide scale deforms the bond coat and shapes undulation 
into a cone as the residual stresses continue to compress the TGO scale.  (d) Thermally grown oxide 

 

The TBC system experiences various forms of stresses mainly due to thermal 

misfits (residual stresses) and growth strains of the TGO.  As the bond coat 

c d 

detaches itself from the YSZ/TGO interface and a crack appears. 

increases its

yclic life, there is a depletion of aluminum from the bond coat surface which triggers a 

phase transformation.  As already seen in the figures presented in the results section, the 

classification of specimens is correlated to the phase transformations in the bond coats.  

a 

 c
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he high cyclic failure single crystal specimens displayed martensitic and gamma prime 

ases in the bond coat, the mid-range specimens displayed mostly martensitic and som

gam  specimens only displayed a martensitic 

n et al [7] that depletion of aluminum 

rtensitic phase and eventually gamma prime.  In his 

odified NiAl bond coats, he noted that after 

sed, the yield strength had increased from 

300 to 500 MPa, when compared to the as received conditions at 600°C.  Nevertheless, 

this yield strength decreased for temperatures greater than 800 °C, resembling the yield 

strength of β, the as received bond coat at such a temperature, a measurement of 25 MPa.  

It has been seen by Pan [7] and Karlsson [4] that the bond coat undergoes a 

transformation from martensitic (L10) to Beta (B2), and from B2 to martensitic after 

numerous cycles, having a transformation temperature between 600 and 800 °C.  As 

entioned earlier, Kainuma et al [6] found that the addition of alien elements to the bond 

artensitic transformation temperature, mainly by elements left to the 

From this information by Pan [7] and Karlsson [4], it is suggested that most of the 

deform

d 

T

p e h

ma prime, while the low cycle failure

transformation.  It has been observed by Pa

encourages the formation of a ma

study on the mechanical properties of Pt m

28% of the cyclic life of the bond coat had elap

m

coat lowers the m

group VIII in the table of elements and even more so by the heavier elements in these 

groups. 

ation of the bond coats takes place during high temperatures as the thermally 

grown oxide relaxes its compressive stresses.  With cumulative cycles, the TGO extende

into the bond coat deeper at elevated temperatures and deformed it until failure of the 

TBC system occurred.  Such an effect is proven by observing cross sectional figures of 

the specimens.  As the specimens decrease in cycles, it is possible to see a decrement in 



the amount of segments where the oxide expands into the (Ni,Pt) Al bond coat.  ME2 in 

Figure 7.32, shows a high density of oxide areas, where the oxide extends into the bond 

coat, while CE6 shows a highly deformed and undulated area.   N5 in Figure 7.22 s

a combination of deformation with segments of oxides extending into the bond co

 

 

8.2 FABRICATION EFFECT 

 
Surface roughening appears to have a significant effect in the failure of these 

specimens.  Heavy grit blasting of the bond coat surface triggers a non-EB-PVD friendly 

surface.  As seen in Figure 7.7, num icron holes exist for the as processed 

YSZ/TGO interface.  These holes are not expected to close or disappear during high 

Coalescence of these holes lead to large cracks and eventually spallation of the YSZ fr

the TBC system

hows 

at. 

 

 

specimens and it is believed to be the primary factor affecting the failure of these 

erous sub-m

condition, in addition to the amount of interfacial defects that are also found along the 

temperatures; on the contrary, it is assumed that such holes increase the creep rate.  

om 

.  As seen through the spectrum of specimens studied, all specimens 

failed along the YSZ/TGO interface, with the exception of the high cycle failure 

 The sub-micron holes found along the YSZ/TGO interface represent just a small 

6.8.  These columnar grains shaped in the form of a cone are considered as traction-free 

planes by Karlsson et al. [29]; hence, instabilities that lead to failure of the TBC system 

specimens that showed some spallation of the TGO and reoxidation.   

part of the problem.  There are other defects such as conical-shaped or pinched-off 

segments in the YSZ, and stagnated growth columnar grains, as seen in Figures 6.7 and 
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and have no contact with the remaining YSZ.  In the event of a thermal cycle that 

oscillates continuously, it is assumed that the ratcheting mechanism draws these pinched

off areas of the YSZ inward as the TGO expands inward, creating a detached area or a 

crack within the YSZ/TGO.  This crack is able to propagate as the oxide deforms the 

 

bond coat and further detachment between the YSZ and the TGO expands along the sub-

micron holes as they coalesce.  Such loss to the infrastructure of the YSZ layer sends a 

cataclysmic effect across ng the YSZ/TGO 

terface. 

 

 

 

 the 

uch 

act with 

tcheting.  

 

ems 

the layer eventually creating a failure alo

in

 

8.3 SUBSTRATE EFFECT 
 

With the failure of low cycle specimens, a handful of important aspects are 

observed, i.e. several cracks that appear along the TGO of these specimens, as well as

phase and composition of the bond coat.  These cracks appear along the TGO/YSZ 

interface along the TGO thickness, and can be responsible for the spallation of the TGO 

and reoxidation of the bond coat as seen in high cycle specimens.  It is possible that s

cracks propagate during thermal oscillation, as well as changing direction to inter

other cracks, including those produced at the YSZ/TGO interface by ra

Additionally, these cracks may also be responsible for some of the wide gaps also seen in

the low and mid-range failure specimens.  As seen in Figures 6.50 and 6.89, there se

to be cracks forming which widened during thermal cycles, expanded and alumina 

formed in them.  This mechanism of cracks normal to the TGO thickness is an effect 
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produced by the growth strains.  Nevertheless, the ratcheting/holes effect detailed i

previous section appears to have a larger effect in the failure of these TBC systems. 

At 60 cycles per specimen, CE6 forms a TGO with a mean thickness of 3.5 µm, 

while N5 and ME2 at 800 and 765 cycles per specimen, respectively, form a TGO wit

mean thickness of 5 µm.  Hence a very thick TGO formed prior to the failure of low cycle

failure specimens when compared to the high cycle failure specimens, indicative of a 

high oxidation growth rate constant.  It is believed that this thermally grown oxide 

growth rate

n the 

h a 

 

 is affected by the active elements such as Cr and Ta.   

IN738 shows traces of Ti, W, Cr, Co and though C is also a component of the 

bstrate, no carbides were detected.  Carbon segregates to the grain boundaries to 

strengthen the boundaries d enhances the creep 

resistance of the alloy.  For the rest of the specimens, it was a different story.  Co and Cr 

were found in low cycle failure at a ratio of 2:1 respectively.  Meanwhile, the high cycle 

in the gamma prime phase, tantalum is added to create a Co:Cr:Ta  ratio of the sort 5:4:3. 

substrate.  Hence, the diffusion of Pt to the substrate of low cycle failures was countered 

su

of the substrate at high temperatures an

failure specimens displayed a 1:1 ratio of these elements in the martensitic phase; when 

Platinum concentration across the specimens also depends on time exposure.  It 

was seen that for high cycle failures, the amount of Pt was homogeneous throughout the 

cross section.  On the other hand, the Pt concentration for lower cycle failures showed 

that most of the Pt was still at the bond coat, with very little inward diffusion towards the 

by the cycle time.  Other elements such as Re, Hf, and W, were not found to influence the 

bond coat at all.  Re and W along with Cr formed precipitates at the bond coat/substrate 

interdiffusion area that would not disperse regardless of the time seen in the specimens.  
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The content of Hf is not expected to have affected any of the high or mid range cycles 

and was found to also spread homogeneously across the cross section of the substrate.  

Neverth

 

 

eless, Hf is expected to have formed HfC in CE8, and ME13 hence allowing 

some Ta to free itself and diffuse to the bond coat where it segregated at the TGO/ bond 

coat interface to the gamma prime phase.  From Figure 8.2, it is possible to see the Gibbs 

free energy of formation of carbides for the refractory elements.  CE6 specimens and 

IN738 do not contain any Hf. 

Figure 8.2 Gibbs Free Energy carbide curves for different refractory metals. 

 

Diffusion of active elements in and from the bond coat can occur by both inward 

and outward diffusion through grain boundaries.  Aluminum is depleted by selective 

oxidation and inward diffusion.  Both adherence and growth rate are affected by substrate
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elements.  Tantalum traces are found in very minute amounts in the low cycle failures 

and found in higher failure specimens in greater amounts.  The lack of tantalum in the 

bond coat of lower failure specimens is due to the formation of tantalum carbides at th

interdiffusion area; hence, the entrapment of tantalum does not allow it to diffuse out to 

the bond coat.  A special case is seen in CE8, for which case there is a similar amount of 

tantalum and carbon as seen in the LCF substrate compositions, nevertheless it also 

contains 0.14 wt% Hf, which f

e 

orms a more stable carbide than tantalum.  As a result, 

more tantalum is found in the bond coat cross secion of CE8, as well as a longer life time.  

e 

wn, 

 a 

Meanwhile, for higher failure specimens that do not contain carbon, tantalum is found at 

the bond coat and TGO/bond coat interface in high traces.  Tantalum as it is known can 

substitute for aluminum in the L12 structure, and was found in high concentrations to 

segregate to those particular phases in the bond coats of high and mid range failures.  

Additionally, tantalum has been known to improve the adhesion of the protective layer.  

Moreover, it has been researched that certain elements such as Ta can lower the 

transformation temperature when present in NiAl alloys [6].  Chromium presence in th

bond coat can be good news to the healing of the Al2O3 protective layer.  As it is kno

Cr is an oxygen getter, indicating that for conditions with low Al < 5%, Cr can become

aid to the formation of Al2O3.

 

 100



9.0 CONCLUSIONS 
 

• All specimens failed by ratcheting. 

•

coating system of the study and produced shorter lives of thermal barrier coating 

 A heavily grit blasted beta (Ni,Pt)Al bond coat was used in the thermal barrier 

systems. 

• Bond coat surface appears to be a primary factor that affects the cyclic life of the 

specimens.  Substrate composition seems to be a secondary factor affecting the 

cyclic life of the TBC system. 

• Numerous defects seen in the as-processed condition are accountable for the 

failure of the TBC system at such an early time, these include small holes 

produced by the deposition of YSZ TBC on the rough surface of the (Ni,Pt) Al 

bond coat.  Other defects that also aided in creating a weak YSZ/TGO interface 

are the YSZ TBC stagnated growth grains.  Short cyclic life specimens 

distinguished themselves by presenting a very porous YSZ/TGO interface. 

• It is suggested that deformation of the bond coat occurred at elevated 

temperatures, while spallation of the YSZ from the TGO interface occurred at 

room temperature. 

• Martensite as well as gamma prime phases were observed at room temperature for 

both high and mid range specimens with the exception of IN738, which formed 
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• gamma and gamma prime.  CE6 specimens did not show a transformation of the 

bond coat to gamma prime. 

• Refractory metals such as W, Re, Hf did not diffuse into the bond coat.  These 

elements formed prec terdiffusion area. 

t the bond coat; it did not form carbides.  

• 

 in order to observe whether substrate composition has a larger effect on 

 

ipitates at the substrate/bond coat in

• IN738 contained Ti, Cr, Co, and W a

• Single crystals without carbon outperformed single crystals with carbon. 

More studies of these TBC systems with smoother bond coat surfaces need to be 

conducted

the thermal barrier coating system. 

 102



REFERENCES 
 

1. 

 
2. 

Transform
Tec

 
3. Che fnagel, T.C., Hemker, K.J., “Characterization 

and modeling of a Martensitic Transformation in a Platinum Modified Diffusion 
Aluminide Bond Coat for Thermal Barrier Coatings”, Acta Materialia, 2003, v.51, pp. 
4279-4294. 

 
4. Karlsson, A.M., “On the Mechanical Response in a Thermal Barrier System Due to 

Martensitic Phase Transformation in the Bond Coat”, 2003, Transactions of the 
ASME, vol. 125, pp. 346-352. 

 
5. Purvis, Andrew L., Warnes, B.M., “The Effects of Platinum Concentration on the 

Oxidation Resistance of Superalloys Coated with Single Phase Platinum Aluminide”, 
Surface and Coatings Technology, 2001, v.146-147, pp.1-6. 

 
6. Kainuma, R., Ohtani, H., Ishida, K., “Effect of Alloying Elements on Martensitic 

Transformation in the Binary NiAl(β) Phase Alloys”, 1996, Metallurgical and 
Materials Transactions A, vol. 27A, pp.2445-2453. 

 
7. Pan, D., Chen, M.W., Wright, P.K., Hemker, K.J., “ Evolution of a Diffusion 

Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling”, Acta 
Materialia, (2003), v. 51, pp. 2205-2217. 

 
8. Evans, A.G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., Pettit, F. S., “ 

Mechanisms Controlling the Durability of Thermal Barrier Coatings”, Progress in 
Material Science, (2001), v. 46,  pp. 505-553 

 
9. Warnes, M.B., Punola, D.C., “Clean Diffusion Coatings by Chemical Vapor 

Deposition”, 1997, Surface and Coatings Technology, v. 94-95, pp. 1-6. 
 

Bungardt, K., Lehnert, G., Meinhardt, H.W., “Protective Diffusion Layer on Nickel 
and/or Cobalt-Based Alloys”, US Patent No. 3819338, 1974. 

Zhang, Y., Haynes, J.A., Pint, B.A., Wright, I.G., Lee, W.Y., “Martensitic 
ation in CVD NiAl and (Ni,Pt)Al Bond Coatings”, Surface and Coatings 

hnology, 2003, v.163-164, pp.19-24. 

n, M.W., Glynn, M.L., Ott, R.T., Hu

 103



10. Haynes, A.J., “Potential Influences of Bond Coat Impurities and Void Growth on 
Premature Failure of EB-PVD TBCs”, 2001, Scripta Materialia, v. 44, pp.1147-1152. 

 
11. Vaidyanathan, K, Gell, M., and Jordan, E., “Mechanisms of Spallation of Electron 

Beam Physical Vapor Deposited Thermal Barrier Coatings With and Without 
Platinum Aluminide Bond Coat Ridges”, Surface and Coatings Technology, 2000, v. 
133-134, pp.28-34. 

2. Sims, C.T, Stoloff, N.S., Hagel, W.C., Superalloys II, Wiley Interscience, New York, 

rmance of Thermal 

 
rtman, D., “Relationships Between Residual 

 
.Y., Evans, A.G., “A Numerical Assessment of the Durability of 

 
6. tit, F.S., Meier, G.H., Microscopy of Oxidation, v. 3, 

17.
lumina Scale  

18. ive 
rmed by Oxidation”, Acta 

19.
 of Superalloys”, Refractory Alloying 

 
ircraft Engines—History and 

olid Films, 
(1985), v.127, pp93-105. 

 
1

pp.12. 
 

 Wright, P.K., Evans, A.G., “Mechanisms Governing the Perfo13.
Barrier Coatings”, Current Opinion in Solid State and Material Science, (1999), v.4, 
pp.255-265. 

 Johnson, C.A., Ruud, J.A., Bruce, R., Wo14.
Stress, Microstructure and Mechanical Properties of Electron Beam-Physical Vapor 
Deposition Thermal Barrier Coatings”, Surface and Coatings Technology, 1998, v. 
108-109, pp.80-85. 

 Xu, T., He, M15.
Thermal Barrier Systems that Fail by Ratcheting of the Thermally Grown Oxide”, 
Acta Materialia, (2003), v. 51, pp. 3807-3820 

 Sarioglu, C., Blachere, J.R., Pet1
pp. 41-50 

 
 Pint, B.A., Wright, I.G., Lee, W.Y., Zhang, Y., Prüβner, K., Alexander, K.B., 
“Substrate and Bond Coat Compositions:  Factors Affecting A
Adhesion”, Material Science and Engineering A, (1998), v. 245A, pp. 201-211. 

 
 Christensen, R.J., Tolpygo, V.K, and Clarke, D.R., “The Influence of the React
Element, Yttrium on the Stress in Alumina Scales Fo
Materialia, (1997), v. 45, pp.1761-1766. 

 
 Pettit, F. S., Meier, G. H., “The Effects of Refractory Elements on the High 
Temperature Oxidation and Hot Corrosion
Elements in Superalloys, in J. K. Tien and S. Reichman (eds.) ASM, Metals Park, 
OH, (1984), p.165. 

 Miller, R. A., “ Thermal Barrier Coatings for A20.
Directions”, (1995), NASA Conference Publication 3312, pp.17-34. 

 
 Strangman, T.E., “Thermal Barrier Coatings for Turbine Airfoils”, Thin S21.

 104



22. Bartuli, C., Bertamini, L., Matera, S., Sturlese, S., “ Investigation of the Formation
an Amorphous Film at the ZrO2-Y2O3/NiCoCrAlY Interface of Thermal Barrier 

 of 

Coatings Produced by Plasma Spraying”, Materials Science and Engineering A, 

 
23.

 Artificail Neural Networks: Basis, Requirements and an 
Example”, Computational Material Science, (2004), v. 29, pp. 315-333 

24. ting, K.W., Padture, N.P., Jordan, E.H., Gell, M., “Failure Modes in Plasma 
Sprayed Thermal Barrier Coatings”, Materials Science and Engineering A, (2003), v. 

 
25. ., Datta, P.K., and Googan, C., “Coatings and Surface Treatment for 

Corrosion and Wear Resistance”, (1984), 1st Ed., pp. 187-189 

26.
. 

 
7. Tin, S., Pollock, T.M., King, W.T., “ Carbon Additions and Grain Defect Formation 

 
8. Mumm, D.R., Evans, A.G., Spitsberg, I.T., “Characterization of a Cyclic 

 
ialia, (2001), v.49, pp. 2329-2340. 

ng on 
002), 

(1995), v. 199A, pp. 229-237. 

 Guessasma, S., Ghislain, Montavon, Coddet, C., “ Modelling of the APS Plasma 
Spray Process Using

 
 Schlich

A342, pp.120-130. 

 Straffor, K.N

 
 Schulz, U., Schmücker, M., “Microstructure of ZrO2 Thermal Barrier Coatings 
Applied by EB-PVD”, Material Science and Engineering A, (2000), v. A276, pp.1-8

2
in High Refractory Nickel Base Single Crystal Superalloys”, Superalloys 2000, 
(2000), pp.  201-210. 

2
Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System”,
Acta Mater

 
29. Karlsson, A.M., Xu, T., Evans, A.G., “The Effect of the Thermal Barrier Coati

the Displacement Instability in Thermal Barrier Systems”, Acta Materialia, (2
v.50, pp. 1211-1218. 

 105


	TABLES AND FIGURES
	LIST OF TABLES
	TABLE 2.1
	TABLE 6.1
	TABLE 6.2
	TABLE 6.3
	LIST OF FIGURES
	FIGURE 1.1
	FIGURE 2.1
	FIGURE 3.1
	FIGURE 4.1
	FIGURE 4.2
	FIGURE 4.3
	FIGURE 4.4
	FIGURE 6.1
	FIGURE 6.2
	FIGURE 6.3
	FIGURE 7.1
	FIGURE 7.2
	FIGURE 7.3
	FIGURE 7.4
	FIGURE 7.5
	FIGURE 7.6
	FIGURE 7.7
	FIGURE 7.8
	FIGURE 7.9
	FIGURE 7.10
	FIGURE 7.11
	FIGURE 7.12
	FIGURE 7.13
	FIGURE 7.14
	FIGURE 7.15
	FIGURE 7.16
	FIGURE 7.17
	FIGURE 7.18
	FIGURE 7.19
	FIGURE 7.20
	FIGURE 7.21
	FIGURE 7.22
	FIGURE 7.23
	FIGURE 7.24
	FIGURE 7.25
	FIGURE 7.26
	FIGURE 7.27
	FIGURE 7.28
	FIGURE 7.29
	FIGURE 7.30
	FIGURE 7.31
	FIGURE 7.32
	FIGURE 7.33
	FIGURE 7.34
	FIGURE 7.35
	FIGURE 7.36
	FIGURE 7.37
	FIGURE 7.38
	FIGURE 7.39
	FIGURE 7.40
	FIGURE 7.41
	FIGURE 7.42
	FIGURE 7.43
	FIGURE 7.44
	FIGURE 7.45
	FIGURE 7.46
	FIGURE 7.47
	FIGURE 7.48
	FIGURE 7.49
	FIGURE 7.50
	FIGURE 7.51
	FIGURE 7.52
	FIGURE 7.53
	FIGURE 7.54
	FIGURE 7.55
	FIGURE 7.56
	FIGURE 7.57
	FIGURE 7.58
	FIGURE 7.59
	FIGURE 7.60
	FIGURE 7.61
	FIGURE 7.62
	FIGURE 7.63
	FIGURE 7.64
	FIGURE 7.65
	FIGURE 7.66
	FIGURE 7.67
	FIGURE 7.68
	FIGURE 7.69
	FIGURE 7.70
	FIGURE 7.71
	FIGURE 7.72
	FIGURE 7.73
	FIGURE 7.74
	FIGURE 7.75
	FIGURE 7.76
	FIGURE 7.77
	FIGURE 7.78
	FIGURE 7.79
	FIGURE 7.80
	FIGURE 7.81
	FIGURE 7.82
	FIGURE 7.83
	FIGURE 7.84
	FIGURE 8.1
	FIGURE 8.2

	INTRODUCTION
	BOND COAT
	BRIEF HISTORY TO MODERN APPLICATIONS
	FUNCTION, COMPOSITION, AND BEHAVIOR
	MANUFACTURING PROCESS

	THERMALLY GROWN OXIDE
	BRIEF HISTORY
	GROWTH AND STRESSES
	EFFECT OF REACTIVE, REFRACTORY AND PRECIOUS METALS

	YSZ TOP COAT
	BRIEF HISTORY
	ROLE OF THE YTTRIA STABILIZED ZIRCONIA
	MANUFACTURING PROCESSES AND PROPERTIES
	Plasma Spray
	Failure Mechanisms of PS TBCs

	Electron Beam Physical Vapor Deposition
	Failure Mechanisms in the EB-PVD System



	PROJECT OBJECTIVE
	EXPERIMENTAL PROCEDURE
	RESULTS
	AS-PROCESSED SPECIMENS
	HIGH CYCLE FAILURE
	Performance of René N5
	Performance of ME2
	Performance of Inconel 738

	MID-CYCLE FAILURE
	Performance of CE1
	Performance of CE3
	Performance of CE8

	LOW CYCLE FAILURE SPECIMENS
	Performance of ME13
	Performance of CE6


	DISCUSSION
	RATCHETING FAILURE
	FABRICATION EFFECT
	SUBSTRATE EFFECT

	CONCLUSIONS
	REFERENCES

