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A BAYESIAN ADJUSTMENT FOR COVARIATE MISCLASSIFICATION

WITH CORRELATED BINARY OUTCOME DATA

Dianxu Ren, PhD

University of Pittsburgh, 2005

Estimated associations between an outcome variable and misclassified covariates tend to be

biased when the methods of estimation that ignore the classification error are applied. Avail-

able methods to account for misclassification often require the use of a validation sample (i.e,

a gold standard). But in practice, such gold standard may be unavailable or impractical.

We propose a Bayesian approach to adjust for misclassification in a binary covariate in fixed

and random effect logistic models when a gold standard is not available. This Markov Chain

Monte Carlo (MCMC) approach uses two imperfect measures of a dichotomous exposure

under the assumptions of conditional independence and non-differential misclassification.

This approach is validated with several simulation studies. We illustrate the proposed ap-

proach to adjust for misclassification with respect to oxygenation status in a multi-center

trial of patients with pneumonia, where 16 per cent of patients are classified discordantly

by two assessments. The estimated log odds of inpatient care and the corresponding stan-

dard deviation are much larger in our proposed method compared to the models ignoring

misclassification. We also applied the proposed Bayesian method to the EDCAP trial to

assess the intervention effect allowing for misclassification with respect to risk status. Ignor-

ing misclassification produces downwardly biased estimates and underestimates uncertainty.

The public health significance of this study is that the proposed approach can correct for

the bias of an estimated association when a covariate is misclassified and no gold standard

is available, which is common problem in epidemiology studies.
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PREFACE

This dissertation is organized as follows. In Chapter 1, I give an introduction to the mis-

classfication problem and a motivating example. In Chapter 2, I review some statistical

approaches that have been used to correct for measurement error in continuous variables

and misclassification in categorical variables. The proposed Bayesian methods and results

for the motivating example are described with greater detail in Chapter 3 and Chapter 4.

In Chapter 5, the proposed Bayesian approach is applied to EDCAP trial. Finally, Chapter

6 is a conclusion chapter.
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1.0 INTRODUCTION

Measurement error problems are common in many studies, due to the fact the measurement

of many biological and enviromental risk factors is subject to error. For example, we might

use inexact measures because of high cost of exact evaluation, or poorly recalled personal

exposure history, or substitutes for latent variables that can not be measured at all. It

has long been recognized that measurement error can cause considerably biased estimates

of relationship between an outcome and covariates (Flegal, Brownie and Hass, 1986). The

terms “measurement error”, “mismeasurement”, “misclassification” and “error in variables”

refer to any discrepancy between a true variable and its measured value. “Misclassification”

is often used with reference to categorical variables measured with error where “measurement

error” refers to continuous variables.

1.1 STATEMENT OF THE PROBLEM

Categorical covariates are often subject to misclassification, and this misclassification can

distort the relationship to the outcome of interest (Newell, 1962; Gullen, Berman and John-

son, 1968; Walker and Blettner, 1985; Kristensen, 1992). Even small amounts of covariate

misclassification can substantially bias the association (Copeland, Checkoway, McMichael

and Holbrook, 1977). Misclassification can be either differential or non-differential, depend-

ing on whether or not the classification error varies with the level of the response or other

covariates (Chen, 1989). Non-differential misclassification often arises in prospective studies,

where the true and observed covariates are assessed before response is measured. Differential

misclassification is more likely to occur in case-control studies, where the response is obtained
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first and subsequently ascertained covariates may be subject to recall bias (Carroll, Rupert

and Stefanski, 1995). When misclassification is ignored, non-differential misclassification

generally biases the estimated association toward the null, while differential misclassification

can bias the estimated association either toward or away from the null (Greenland, 1980).

Adjustment for potential bias due to misclassification requires information on the mis-

classification structure. In general, the misclassification is unknown and can be estimated

from validation samples (i.e, a gold standard that can classify the covariate with complete

accuracy). The sensitivity and specificity of imperfect measures can be estimated when a

gold standard is available, and corrected estimates derived (Barron, 1977; Greenland, 1982;

Greenland and Kleinbaum, 1983). But in practice the gold standard may be unavailable,

due to high cost of exact evaluation or the fact that it is also measured with error (Sheps and

Schechter, 1984; Wacholder, Armstrong and Hartge, 1993). When no gold standard but two

imperfect measures of a covariate are available, one can correct for the bias due to misclassifi-

cation using a maximum likelihood approach under 2×2 table and fixed effect logistic model

settings (Hui and Walter, 1980; Flanders, Drews and Kosinski, 1993; Kosinski and Flanders,

1999). The likelihood function is integrated over the true but unobserved covariate. Often

this integration can not be done explicitly in closed form, and the Expectation-Maxmization

(EM) algorithm (Dempster, Laird and Rubin, 1977) is applied to iteratively maximize the

likelihood function. In some measurement error problems, the expectation to be completed

in the E-step may not have a closed form expression, so that some approximations must be

used. Also, extra effort is required to estimate standard errors when maximum likelihood

estimates are obtained via the EM algorithm (Louis, 1982).

This need for numerical integration is more problematic in the generalized linear mixed

model (GLMM) setting. Due to the unobserved true covariates and random effects, this

likelihood function contains many integrals that have to be evaluated. If no closed form

expression exists, one has to opt for numerical integration, simulation or approximation

(Rabe-Hesketh, Skrondal and Pickles, 2002; Booth and Hobert, 1999; Breslow and Clayton,

1993), which is either computationally intensive or inaccurate. Ko and Davidian (2000) used

a Laplace approximation to correct for measurement error in a nonlinear mixed effect model.

The Bayesian alternatives using Markov Chain Monte Carto (MCMC) for measurement
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error problems are attractive, especially in the GLMM framework. The integrals in the like-

lihood function do not have to be evaluated, and the unobserved variables can be sampled

along with the model parameters from their full posterior distribution. Bayesian inference

does not require approximations, and uncertainty assessments are obtained directly. When

a validation sample is available, a two-stage Bayesian model has been proposed to account

for misclassification (Viana, 1994; Spiegelhalter, Thomas and Best, 1999). In my work, I will

present a Bayesian approach to correct for misclassification when two imperfect measures,

but no gold standard, are available in the fixed effect logistic model setting, then extend to

random effect logistic model setting. This approach allows for adjustment other discrete or

continuous covariates that are assumed to be measured without error.

1.2 THE EDCAP STUDY

The Emergency Department Community Acquired Pneumonia (EDCAP) Trial (Yealy, Auble,

Stone et al., 2004) motivated the proposed method. Community-acquired Pneumonia (CAP)

causes over four million episodes of illness each year and has high morbidity, mortality and

total cost of care. The initial site of treatment (home or hospital) is often identified as the

single most important clinical decision for patients with CAP. The identification of low risk

patients with CAP may reduce unnecessary hospitalizations and could significantly reduce

health care related expenses. The 32-site EDCAP study was designed to evaluate three

guideline implementation strategies of increasing intensity (low intensity, moderate intensity

and high intensity) to guide the admission decision when combined with a validated mea-

sure of pneumonia severity, the Pneumonia Severity Index (PSI) (Fine, Auble, Yealy et al.,

1997). Outpatient care was recommended for low risk patients, defined as non-hypoxemic

patients in PSI risk classes I—III. Inpatient care was recommended for higher risk patients

(hypoxemic and/or PSI risk classes IV and V). Hypoxemia (evidence of clinically significant

arterial oxygen desaturation) was defined as pulse oximetry less than 90% or PO2 less than

60mm Hg. In my dissertation, the EDCAP data are used in two ways: (1) the data from
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control arm (8 sites) serve as a motivating example for proposed Bayesian method, and (2)

the proposed Bayesian methods are applied to full EDCAP study data (32 sites).

In our motivating example, we estimate the odds of inpatient status as a function of

true oxygenation status and PSI risk class in the 8 control sites, accounting for site as (i) a

fixed effect and (ii) a random effect. The true initial oxygenation status (x) is unobserved

and was ascertained by two imperfect assessments: prospectively ascertained oxygenation

(x1) in the Emergency Department and retrospectively ascertained oxygenation (x2) docu-

mented in the medical chart. We assume the two assessments are independent conditional

on the true unobserved status. The PSI risk class was assumed to be measured without

error, and class IV and V are combined in our analysis because of low frequencies. Table 1.1

displays the data for 740 patients enrolled from 8 control sites in western Pennsylvania on

inpatient status, PSI risk class and the two imperfect assessments of oxygenation. Although

the prospective assessment was used in the primary analysis of the EDCAP trial, subsequent

analysis has raised some question about the accuracy of the prospective assessment although

the agreement with the retrospective assessment is substantial (Aujesky, Stone, Obrosky et

al, 2005). Due to time lags in data recording, oxygenation status may be obtained retrospec-

tively from ED medical chart review using information that was not in fact available in real

time. Among these 740 patients, 84% were classified concordently (70% non-hypoxemic and

14% hypoxemic) on the two assessments and 16% were classified disconcordently, with 11%

classified as non-hypoxemic by the prospective but not the retrospective assessment, and 5%

classified as non-hypoxemic by the retrospective but not the prospective assessment. The

proposed methods were developed to assess the association between true oxygenation status

and inpatient status adjusting for Pneumonia Severity Index (PSI) and accounting for site

as random effect in this motivating example.

Then we apply the proposed Bayesian approach to the entire EDCAP trial, to evaluate

the intervention effect in the presence of risk misclassification in the random effect logistic

model. To be consistent with the published paper for EDCAP study, the outcome variable

here is outpatient status, instead of inpatient status in our motivating example. We will give

more details for the application to full EDCAP data in chapter 5.
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Table 1.1: Frequencies of observed patterns of covariates and inpatient status for the EDCAP
control data

Covariate pattern Oxygenation status assessment
Inpatient status PSI Prospective Retrospective Frequency

0 1 0 0 87
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
0 2 0 0 54
0 2 0 1 3
0 2 1 0 1
0 2 1 1 1
0 3 0 0 21
0 3 0 1 1
0 3 1 0 0
0 3 1 1 0
0 4 0 0 3
0 4 0 1 1
0 4 1 0 0
0 4 1 1 0
1 1 0 0 43
1 1 0 1 6
1 1 1 0 0
1 1 1 1 8
1 2 0 0 103
1 2 0 1 17
1 2 1 0 4
1 2 1 1 9
1 3 0 0 89
1 3 0 1 20
1 3 1 0 8
1 3 1 1 20
1 4 0 0 116
1 4 0 1 31
1 4 1 0 23
1 4 1 1 69

Total 740

Inpatient status (1=inpatient, 0=outpatient)
PSI (Pneumonia Severity Index from 1 to 4 (low to high))
Prospective oxygenation (1=abnormal, 0=normal)
Retrospective oxygenation (1=abnormal, 0=normal)

5



2.0 REVIEW OF KEY LITERATURE

2.1 TERMINOLOGY AND NOTATION

There are two classes of measurement error: random or systematic error. For random er-

ror, the average value of many repeated measures will approach the true value. It can be

quantified with a single replicate measure for a subject. With systematic error, which is

not distributed randomly around the true value, the mean of repeated determinations dif-

fers from the true value. It requires a second “gold standard” measure of exposure, i.e a

validation study.

The following notation is used for illustrating different statistical methods to adjust for

both types of measurement error (Carroll, Rupert and Stefanski, 1995):

Y : response, could be continuous or binary (1=yes 0=no)

X: vector of true predictor variables of primary interest, usually unobserved

W : vector of observed predictor variables, erroneous measurement of X

Z: vector of other covariates (assumed to be measured without error)

β: parameter vector of the outcome model, usually of interest

λ: parameter of the measurement model

The outcome model: P (Y |X,Z) = f(X,Z, β) or P (Y = 1|X,Z) = f(X,Z, β).

The classical measurement error model: W ∼ f(X, λ)

The Berkson measurement error model: X ∼ f(W,λ), also called the Regression Cali-

bration model

The marginal distribution of the true predictor X in the population P (X), i.e, the expo-

sure model

It is important to make a distinction between differential and nondifferential measure-
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ment error. Nondifferential measurement error occurs when W has no information about

Y other than what is available in X, which is equivalent to the assumption of conditional

independence of W and Y given X. i.e f(Y |X,W ) = f(Y |X). In this case, W is said to be

a surrogate, i.e. W does not contain any information about Y that is not provided by X.

The measurement error is differential otherwise.

Many problems can plausibly be classified as having nondifferential measurement error.

With nondifferential measurement error, one can typically estimate parameters in models for

response given covariates even when true covariates are not observable. But with differential

measurement error, one must observe the true covariate on some study subjects (Carroll,

Ruppert and Stefanski, 1995).

2.2 SOURCE OF DATA

To perform a measurement error analysis, one needs information about the error structure.

The data sources can be broken up into two main categories: an internal subset of primary

data and an external set of independent studies. Within each of those broad categories,

there are three types of data, all of which might be available only in a random subsample of

the study population:

1. Validation data: in which X is observable directly.

2. Replication data: in which replicates of W are available.

3. Instrumental variable: in which another variable T is observable in addition toW . The

instrumental variable is a second surrogate measurement of X obtained by an independent

method.

An internal validation dataset is ideal, because it can be used with all known analytical

techniques and typically leads to much greater precision of estimation and inference. With

external validation data, one must assume that the same error structure appears in the pri-

mary data. i.e that the models and parameters are transportable.
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2.3 DESCRIPTION OF STATISTICAL METHODS

The statistical approaches for adjusting for measurement error and misclassification can

be classified in the following groups: Regression calibration method, SIMEX algorithm,

Maximum-Likelihood methods, Semiparametric approaches, Bayesian methods, and Boot-

strap methods.

2.3.1 Regression calibration method

This regression calibration algorithm was suggested as a general approach for correcting

measurement error in a continuous variable in linear models by Carroll and Stefanski (1990)

and Gleser (1990). Armstrong (1985) suggests regression calibration for generalized linear

models. Rosner et al. (1989) developed the idea for logistic regression into a workable and

popular methodology based on the model

ln
Pr(Y = 1|X)

1− Pr(Y = 1|X)
= α∗ + β∗X

X = λ0 + λ1W + ε

where

ε ∼ N(0, σ2)

Rosner first estimate the parameters in the second equation from validation study by

Ordinary Least Squares (OLS). Second, calcuate an expected value of X

E(X|W ) = λ0 + λ1W

for each person in the main study population based on the result in the first step. Third,

substitute the expected value E(X | W ) for X for each person in the main study population

and estimate β∗. Regression calibration produces a simple imputed value for eachX. Fourth,

adjust the resulting standard error to account for the additional variability caused by the

estimation of the measurement error using either the bootstrap or asymptotic methods.
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Another linear approximation approach yields the same point estimate as the regression

calibration method (single imputation method). One can use first order Taylor series expan-

sion and the Delta method to obtain a variance estimator that incorporates the measurement

error into the variance for the estimated true exposure-disease relationship.

The advantage of single imputation approach is that it can be extended readily to the

case in which the true response is derived from multiple surrogate measures, some of which

may be related through a multivariable model. But the standard error has to be adjusted

to account for the estimation of the measurement model. The Taylor series approximation

for the standard error for the linear approximation approach will always result in a larger

variance. Kuha (1994) extended the linear approximation by improving the approxmation

of the logistic model using a second-order Taylor series instead of the first-order series.

2.3.2 The SIMEX method

Simulation extrapolation (SIMEX) is a simulation-based method of estimating and reducing

bias due to measurement error in a continuous variable. SIMEX estimates are obtained

by adding additional measurement error to the data in a resampling-like stage, establishing

a trend of measurement error-induced bias versus the variance of the added measurement

error, and extrapolating this trend back to the case of no measurement error. This technique

was proposed by Cook and Stefanski (1995) and further developed by Carroll et al. (1996)

and Stefanski and Cook (1995). The key idea underlying SIMEX is the fact that the effect

of measurement error on an estimator can be determined experimentally via simulation.

We assume that

Y = β1 + βxX + ε

with additive measurement error

W = X + U

where

U ∼ N(0, σ2u)
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The OLS estimate of βx, denoted ̂βx,naive, consistently estimates not βx but rather βxσ2x
σ2x+σ

2
u

.

Suppose that in addition to the original data used to calculate ̂βx,naive, there are M-1 ad-

ditional data sets available, each with successively larger measurement error variances, say

(1 + λm)σ
2
u where 0 = λ1 < λ2 < · · · < λM . The least squares estimate of the slope from

the mth data set, β̂x,m, consistently estimates βxσ2x
σ2x+(1+λm)σ

2
u

. We can think of this problem

as a nonlinear regression model, with dependent variable β̂x,m and independent variable λm,

having a mean function of the form

G(λ) =
βxσ

2
x

σ2x + (1 + λ)σ2u

where λ ≥ 0.

The parameter of interest, βx, is obtained from G(λ) by extropolation to λ = −1. In-

ference for SIMEX estimators can be based on either the bootstrap or the theory of M-

estimators, in particular by means of the sandwich estimator.

The SIMEX algorithm works only for measurement error in a continuous variable and is

sensitive to the choice of functional form of the measurement error variance. Also it is always

dangerous to extropolate the function beyond the range in which values are observed.

2.3.3 Maximum-likelihood (ML) method

A more formal approach for conducting likelihood based inference is to consider the overall

likelihood in which the true unobserved variable X is integrated out. Likelihood methods

require stronger distributional assumptions, but they can be applied to more general prob-

lems, including those with discrete covariates subject to misclassification. See, for instance,

Satten and Kupper (1993), Breslow and Holubkov (1997) and Spiegelman et al. (2000).

Suppose X is not observable for all subjects, but there are sufficient data to characterize

the distribution of W given (X,Z). The likelihood function of Y given (Z,X) will be called

fY |Z,X(y|z, x, β) and interest lies in estimating β. To perform a likelihood analysis, one must

specify a model for every component of the data. There are three components required for
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the likelihood function.

1. A model relating the response to the ”true” covariate.

For example, if Y is normally distributed with mean β0 + βxx + βzz and variance σ2 then

β = (β0, βx, βz, σ
2) and

fY |Z,X(y|z, x, β) = σ−1φ(
y − β0 − βxx− βzz

σ
)

where φ(v) = 2π−
1

2 exp(−0.5v2) is the standard normal density function.

2. An error model, here called fW |Z,X(w|z, x, λ̃).

In many applications, the error model does not depend on Z. For example, in the classsical

additive measurement error W=X+U, U ∼ N(0, σ2u), and σ2u is the only component of λ̃1.

The error model density is σ2uφ(
w−x
σu

) where φ(.)is the standard normal density function.

3. A model for the distribution of the latent variable, here called fX|Z(x|z, α̃).

The parameter α̃ formulate the relationship between latent variable X and other perfectly

measured covariates Z.

As discussed by Carroll, Rupert and Stefanski (1995), the likelihood of the observed data

under nondifferential measurement error is

fY,W |Z(y, w|z, β, λ̃1, λ̃2) =
n∏

i=1

∫
fY |Z,X(y|z, x, β)fW |Z,X(w|z, x, λ̃1)fX|Z(x|z, λ̃2)dx

If we use the Berkson error model rather than the classical additive error model, the likelihood

function becomes

fY |Z,W (y|z, w, β, λ̃) =
n∏

i=1

∫
fY |Z,X(y|z, x, β)fX|Z,W (x|z, w, λ̃)dx

11



The likelihood functions are very different in the differential and nondifferential cases. In

general, and dropping parameters, the likelihood of the observed data is

fY,W |Z(y, w|z) =

∫
fY,W,X|Z(y, w, x|z)dx

=

∫
fY |Z,X(y|z, x)fW |Y,Z,X(w|y, z, x)fX|Z(x|z)dx(2.1)

Under nondifferential measurement error, W and Y are independent given X, so that

fW |Y,Z,X(w|y, z, x) = fW |Z,X(w|z, x)

Under differential measurement error, we must ascertain the distribution of W given the

other covariates and the response Y . This is essentially impossible to do in practice unless

one has a subset of validation data in which all of (Y,Z,X,W ) are observed.

This general approach can be applied to either measurement error in a continuous variable

or misclassification in a categorical variable. The specification of the measurement error

model and the model for the distribution of latent variable will be different.

Typically one maximizes the logarithm of the overall likelihood in the unknown para-

meters. There are two ways one can maximize the likelihood function. The most direct is

to compute the likelihood function itself, and then use numerical optimization techniques to

maximize the likelihood. Likelihoods in which X has some continuous components can be

computed using a number of different approaches, such as Gaussian quadrature approxima-

tion and Monte Carlo techniques. The second general approach is to view the problem as

a missing data problem, and then use missing data techniques such as data augmentation

(Little et al. 2002 and Tanner, 1996).
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2.3.4 Semiparametric approaches

The ML methods are based on structural models. They make parametric assumptions about

the distribution of the measurement error, e.g about f(W |X), and therefore run the risk of

model misspecification. The semiparametric methods consider functional models. They

avoid parametric formulation of the distribution of X, and avoid possible non-robustness of

the estimated parameters due to model misspecification.

One approach is nonparametric estimation of the marginal or conditional distribution of

X or W . Pepe and Fleming (1991) proposed an “estimated likelihood method” for studies

with measurement error in categorical covariates. The unknown probability of X conditional

on W is estimated empirically from validation data. From this, the estimated conditional

probability of W given the gold standard X is derived for the main study units, and the

parameter estimates are calculated numerically by use of standard ML estimation.

A mean score or weighted regression method was proposed by Reilly and Pepe (1995)

for the case where (Y, Z,W ) are all discrete. First a nonparametric estimate of the density

of X conditional on W and Y is calculated from the validation data. Then the ML estimate

of the parameter vector β is derived iteratively via the EM-algorithm.

The second approach is non-parametric estimation of the conditional moments of X or

W . Carroll and Stefanski (1990) presented quasilikelihood and variance function (QVF)

models. No assumptions are made regarding the distribution of X given W , but the first

two moments of the model given W . The pseudolikelihood algorithm estimates the quanti-

ties of mean and variance functions nonparametrically, but otherwise employs the standard

estimation scheme, i.e. maximizing likelihood and solving QVF estimating equations. Whit-

temore and Keller (1988) and Sepanski et al. (1994) presented a similar idea.

2.3.5 Bayesian approaches

Bayesians and frequentists differ in their concepts of probability. As a consequence, they

handle uncertainty in model parameters differently. Bayesians think of model parameters as

random variables, and interpret the probability distribution of a model parameter in terms
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of a degree of belief about the value of that parameter. Frequentists think of probabilities as

frequencies observed in a long run of repeated experiments, and they view model parameters

as fixed (non-random) quantities that, therfore, do not have probability distributions.

In the Bayesian approach, information available at the start of the study leads to speci-

fication of the prior distribution of the parameters. Once data have been gathered, inference

is made on the basis of the posterior distribution of the parameters given the data, which,

by Bayes theorem, is proportional to the product of the likelihood and the prior distribu-

tion. From this posterior distribution, point and interval estimates of the parameters can be

computed.

Richardson and Gilks (1993) proposed a general Bayesian framework for the analysis of

measurement error models. A key assumption in building the structure of such a model is

that of conditional independence. To state that Yi and Wi are conditionally independent

given Xi is equivalent to making the classical assumption that surrogate measures Wi do not

provide any information on the disease status Yi if true values of risk factors Xi are known

(i.e, measurement error is nondifferential). The three components of the Bayesian model

specification are:

1. The disease model, which expresses the relationship between the risk factors Z and

X and the disease status Y , i.e [Yi|Xi, Zi, β].

2. The measurement model, which expresses the relationship between the surrogate

measures W and the true unknown risk factor X, i.e [Wi|Xi, λ].

3. The exposure model, which specifies the distribution of the unknown risk factor X in

the general population, i.e [Xi|Zi, π].

Since we are in a Bayesian framework, prior distributions for β, λ, π are also required

(denoted respectively by [β], [λ] and [π]). The description of the structure is completed by

specifying that the joint distribution of all the variables be written as the product of all the

model conditions

[β][λ][π]
∏

i

[Xi|Zi, π]
∏

i

[Wi|Xi, λ]
∏

i

[Yi|Xi, Zi, β]

Bayesian estimation of parameter is based on the posterior distribution of the parameters

given the data. Thus, our interest is really in the marginal posterior distribution of β given
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the data. Computing this marginal posterior distribution leads to a very high dimensional

integral that is totally intractable. Gibbs sampling is a Markov Chain Monte Carlo method

for generating samples from the joint posterior distribution of the model parameters. It

was originally proposed by Hastings (1970) and rediscovered by Geman and Geman (1984).

The wide applicablity of the algorithm to general statistical modelling was recognized by

Gelfand and Smith (1990) and Gelfand et al. (1990), and has since been demonstrated by

many authors (Smith and Roberts, 1993; Gilks et al. 1993; Gilks and Wild, 1992). At

first, arbitrary starting values for each parameter are chosen. Then, in turn, one parameter

at a time is updated by a new value for that parameter from its conditional distribution

given the data and the current values of all other parameters in the model, refered to as

the current full conditional distributions. A cycle of the Gibbs sampler is completed when

all the unknown variables in the model have been updated once. The updating cycle is

repeated a large number of times. It has been shown under weak regularity conditions that

this process generates a Markov Chain whose equibrium distribution is the distribution of

interest, i.e. that the samples generated can be considered after a while as samples from the

joint posterior distribution of all the parameters.

Dellaportas and Stephens (1995) also proposed a method that can be used generally

under Bayes theory. The full conditional posterior distributions for each of the unknown

parameters and covariates that can be specified using Bayes theorem and the conditional

priors of the unknown parameters are needed. The full conditionals are then used to derive

the Gibbs sampler from the joint distribution of the unknown parameters. If the full con-

ditional densities are not of closed from, algorithms such as rejection methods (Carlin and

Gelfand, 1991; Zeger and Karim, 1991), or the Metropolis algorithm (Tierney, 1994) have to

be applied.

Kuha (1997) use a special case of Gibbs sampling, namely data augmentation, to esti-

mate the parameters of a regression models, taking into account measurement error in the

covariates. The key idea of the approach is to introduce the true values of the covariates

measured with error explicitly into the estimation process as missing data. Thus it involves

two type of unknown quantities, the parameters to be estimated and the missing data, un-

observed because of measurement error. The algorithm works by alternating between two
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main steps. In the first step values are imputed (filled in) for the unobserved covariates to

generate a data set with no measurement error. In the second step this data set is analysed

using standard methods to obtain new values for the parameters. In the terminology of

Rubin (1987), regression calibration thus uses “single impution” of the missing data, while

data augmentation is based on “multiple imputation”. This approach is a fully parametric

structural model and the distributional assumptions are difficult to check as X is missing in

the main data set.

Muller and Roeder (1997) and Mallick and Gelfand (1996) proposed “nonparametric or

semiparametric Bayes” method for the measurement error model. They incorporate a non-

parametric model for the exposure model or the disease model under the Bayesian framework

and obtain robust estimation for the effects.

2.3.6 Bootstrap methods

The bootstrap is a very general approach for calculating standard errors or confidence limits

of parameter estimates, or bias for sample statistics (Efron and Tibshirani, 1993). The basic

idea is quite simple. One creates simulated data sets with replacement called bootstrap data

sets, whose distribution is equal to an estimate of the probability distribution of the actual

data. Any statistical method that is applied to the actual data can also be applied to the

bootstrap data sets. Thus, the empirical distribution of an estimator or test statistic across

the bootstrap data sets can be used to estimate the actual sampling distribution of that

statistic.

Haukka (1995) proposed a two-stage bootstrap method for the correction of covariate

measurement error in the generalized linear model framework. The validation data set and

a gold standard are required. The algorithm is as follows:

1. Take a bootstrap sample from the validation data (X∗
v ,W

∗
v and Z∗v . The subscript v

denotes for validation data and superscript * denotes a bootstrap sample).

2. Estimate the values for α∗1 and α∗2 from the bootstrap sample of the validation data

according to the measurement model. e.g: X = Wα1 + Zα2 + ε

3. Take a bootstrap sample from the main data (Y ∗,W ∗,Z∗). Estimate β∗ of disease
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model from the GLM model where X is replaced with its expectation E(X∗|W ∗, Z∗).

4. The sampling steps are repeated and the distribution of β∗ is used to approximate

the true distribution of β.

The sampling variation in the measurement model and in the disease model are accounted

for in the first step and third step respectively. The results compare well with other methods

are shown to be equally good in general. The bootstrap method is applicable to all link

and error function in GLMs when a gold statndard is available, and is thus a good general

method for measurement error correction.
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3.0 PROPOSED BAYESIAN METHODS

In the Bayesian framework, it is relatively easy to specify a measurement error model for

measurement error in continuous variable (we can assume a standard normal distribution for

the measurement error model). It is much harder to specify such a model for misclassification

in a categorical variable because there is no standard distribution available.

3.1 LIKELIHOOD FORMULATION

We describe our methods in the context of our motivating example. Suppose each patient

(i = 1, · · · , n) has a known inpatient status yi (1=inpatient, 0=outpatient), and oxygenation

results x1i and x2i (1=hypoxemia, 0=non-hypoxemia) obtained by two ascertainments of

the underlying latent variable, true oxygenation status, xi. Let p1, q1, p2, q2 denote the

sensitivity and specificity, respectively, of the two assessments x1 and x2 given the true status

x. The vector z includes other covariates such as the PSI risk class, which are assumed to

be measured perfectly. Our goal is to estimate the odds of inpatient status associated with

a true oxygenation status x adjusting for PSI risk class. We also estimate the sensitivities

and specificities of the two oxygenation assessments.

We first ignore site and consider a fixed-effect logistic model. We extend the proposed

method to incorporate random effects for site in section 3.5. The likelihood function of the

data can be formalized by writing three submodels (Richardson and Gilks, 1993a and 1993b):

The measurement model:

f(x1, x2|y, x, z, α)(3.1)

18



The outcome model:

f(y|x, z, β)(3.2)

The exposure model:

f(x|z, γ)(3.3)

Where α′, β′, γ′ are three vectors of parameters. In standard logistic regression for this

EDCAP example, the outcome and exposure models would be

logit(Pr(y = 1|x, z)) = β0 + β1x+ β̃2z(3.4)

logit(Pr(x = 1|z)) = γ0 + γ̃1z(3.5)

Where x denotes true oxygenation status and z would include 3 indicator variables denoting

PSI risk classes 2, 3 and 4/5 combined.

Under the nondifferential misclassification assumption, the measurement model can be

simplified as following:

f(x1, x2|y, x, z, α) = f(x1, x2|x, α)(3.6)

Under the conditional independence assumption of the two imperfect oxygenation as-

sessments, we can specify two conditional distributions:

p(x1i, x2i|xi = 1) = px1i1 (1− p1)
1−x1ipx2i2 (1− p2)

1−x2i(3.7)

and

p(x1i, x2i|xi = 0) = q1−x1i1 (1− q1)
x1iq1−x2i2 (1− q2)

x2i(3.8)

Where p1 = P (x1 = 1 | x = 1), p2 = P (x2 = 1 | x = 1), q1 = P (x1 = 0 | x = 0),

q2 = P (x2 = 0 | x = 0). So p1 and q1 represent the sensitivity and specificity respectively of

the retrospective assessment, p2 and q2 represent the sensitivity and specificity respectively

of the prospective assessment.
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Under these two assumptions, we can combine the likelihood function of the measurement

model by an indicator function:

f(x1i, x2i|xi) =
n∏

i=1

p(x1i, x2i|xi = 1)xip(x1i, x2i|xi = 0)1−xi(3.9)

For the observed data likelihood, we need to integrate out the unobserved quantity x.

From the idea of Data Augmentation in Bayesian statistics, we augment the observed data

with the latent variable oxygen status (x) and then define an augmented data likelihood to

be used in posterior computations:

f(y, x1, x2, x | z) =
{ n∏

i=1

f(yi | xi, zi, β)f(xi | zi, γ)f(x1i, x2i | xi, α)
}

(3.10)

Based on the three submodels (the outcome model, the exposure model and the measurement

model) specified above in equation 3.4, 3.5 and 3.9, the augmented data likelihood function

can be expanded as following:

f(y, x1, x2, x|z) =
n∏

i=1

exp{yi(β0 + β1xi + β′2zi)}

1 + exp(β0 + β1xi + β ′2zi)

n∏

i=1

exp{xi(γ0 + γ′1zi)}

1 + exp(γ0 + γ′1zi)

n∏

i=1

{
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

}xi

n∏

i=1

{
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i
}1−xi

(3.11)

This likelihood is in the form of the product of a binomial likelihood for the outcome model,

a binomial likelihood for the exposure model and an indicator function for the measurement

model. Because the two binomial components depend only on the parameters β′ and γ′, and

the indicator function depends only on the sensitivity and specificity of the two imperfect

tests and true exposure status, we can separate these three components to calculate the

conditional posterior distributions of the sensitivity and specificity of the two assessments,

α′=(p1, q1, p2, q2), the outcome model parameters, β
′, and the exposure model parameters,

γ′.
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3.2 IDENTIFIABILITY OF PARAMETERS

Let X be a vector of observed random variables. Define f to be a probability distribu-

tion function for a model completely specified by parameters θ. If there exists some θ1 �=θ2

satisfying

f(X | θ1) = f(X | θ2)

for all X, then the parameters of the model are not identifiable, i.e., all possible sets of

observations have identical probabilities for two different sets of parameters. Intuitively, a

nonidentifiable model can not yield consistent estimator of θ.

Identifiablity of parameters is an important issue for measurement error models, because

some additional information must be known about the mismeasurement process in order

to obtain a fully identified model. In our motivating example, suppose we do not have a

covariate Z, so that we have 6 parameters to be estimated (β0, β1, p1, p2, q1, q2). The observed

data likelihood can be written in the following expression based on equation 3.4-3.6:

f(y, x1, x2) =

∫
f(y | x, x1, x2)f(x1, x2 | x)dx(3.12)

That is,

f(y, x1, x2) =

∫
exp(β0 + β1x)y

1 + exp(β0 + β1x)

{
px11 (1− p1)

1−x1px22 (1− p2)
1−x2

}x

{
q1−x11 (1− q1)

x1q1−x22 (1− q2)
x2
}1−x

dx

(3.13)

In the motivating example, x is a Bernoulli variable taking value at 0 and 1, then

f(y, x1, x2) =
exp(β0y)

1 + exp(β0)

{
q1−x11 (1− q1)

x1q1−x22 (1− q2)
x2
}

+
exp(β0 + β1)y

1 + exp(β0 + β1)

{
px11 (1− p1)

1−x1px22 (1− p2)
1−x2

}(3.14)

For the different combinations of x1, x2 and y based on possible value of 0 and 1 for each

variable, there are 8 equations obtained as following:

1

1 + exp(β0)
q1q2 +

1

1 + exp(β0 + β1)
(1− p1)(1− p2)(3.15)
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1

1 + exp(β0)
q1(1− q2) +

1

1 + exp(β0 + β1)
(1− p1)p2(3.16)

1

1 + exp(β0)
(1− q1)q2 +

1

1 + exp(β0 + β1)
p1(1− p2)(3.17)

1

1 + exp(β0)
(1− q1)(1− q2) +

1

1 + exp(β0 + β1)
p1p2(3.18)

exp(β0)

1 + exp(β0)
q1q2 +

exp(β0 + β1)

1 + exp(β0 + β1)
(1− p1)(1− p2)(3.19)

exp(β0)

1 + exp(β0)
q1(1− q2) +

exp(β0 + β1)

1 + exp(β0 + β1)
(1− p1)p2(3.20)

exp(β0)

1 + exp(β0)
(1− q1)q2 +

exp(β0 + β1)

1 + exp(β0 + β1)
p1(1− p2)(3.21)

exp(β0)

1 + exp(β0)
(1− q1)(1− q2) +

exp(β0 + β1)

1 + exp(β0 + β1)
p1p2(3.22)

It is obvious that the six parameters should be identified from the above eight equations

with two redundant equations. Given additional information such as covariate Z (the three

indicator variables for PSI class) in our motivating example, the data can be summarized as

multiple sets of 2 × 2 tables and parameter identifiability will not be a problem.

3.3 SPECIFICATION OF PRIORS

We complete the Bayesian formulation of these models by assigning prior distributions for

α′, β′ and γ′. The natural conjugate prior distribution for α is a Beta distribution, say

αi ∼ beta (α0i, β0i) for i = 1, 2, 3, 4. To obtain a noninformative prior distribution, we set

α0i = β0i = 1 for i = 1, · · · , 4. For β′ and γ′, we use diffuse proper priors, the multivariate

normal distribution with mean 0 and variance 10, (i.e, N(0, 10)) respectively. Placing proper

priors on the parameters guarantees that the posterior distributions are proper. We assume

that the prior distributions of all of these parameters are independent.
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3.4 MCMC IMPLEMENTATION: FIXED EFFECT LOGISTIC
REGRESSION

The MCMC algorithm is a powerful numerical tool for obtaining marginal posteriors of inter-

est when analytical evaluations are difficult. This iterative algorithm builds approximations

to the posterior distributions of interest based on Monte Carlo simulations. Compared to

alternatives such as numerical integration, MCMC requires much less computing time and

is easier to implement and customize. For the augmented data likelihood function and prior

specification given above, the joint posterior of α, β, γ and x can be expressed as

f(x, α, β, γ|x1, x2, y, z) ∝ {
n∏

i=1

f(x1i, x2i|xi, α)f(yi|xi, zi, β)f(xi|zi, γ)}f(α, β, γ).(3.23)

In our proposed method, the MCMC algorithm alternates between sampling new values for

the latent data (e.g, true oxygenation status) and for the population parameters defining

each component of the measurement error model based on the relevant full conditional

distributions. This algorithm involves both Gibbs sampling (Gelfand and Smith, 1990) and

Metropolis-Hastings (Hastings, 1970) steps. The full conditional distributions needed to

implement the algorithm are summarized below.

After assigning an arbitrary initial value to each parameter, our MCMC algorithm pro-

ceeds as follows:

(1) For i=1, · · · , n, sample xi from the full conditional posterior distribution of xi.

f(xi|·) ∼ Bin(1,
w

w + v
)(3.24)

where

w =
exp(yiβ1 + γ0 + γ′1zi)

1 + exp(β0 + β1 + β′2zi)
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

v =
1

1 + exp(β0 + β′2zi)
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i

(2) Sample β using the Metropolis algorithm where

f(β|·) ∝
n∏

i=1

exp{yi(β0 + β1xi + β′2zi)}

1 + exp(β0 + β1xi + β′2zi)
exp(−

1

2
β′Σ−1β β)(3.25)

23



In large samples, this can be approximated by a Gaussian distribution with mean β̂, the

maximum likelihood estimator, and a variance V̂β, the inverse of the Fisher information.

That is, to sample from(β|·), we find β̂ and V̂β by performing logistic regression of yi on

xi and zi and then generate a random variate β from a multivariate Gaussian distribution,

N(β̂,V̂β).

(3) Sample γ using the Metropolis algorithm where

f(γ|·) ∝
n∏

i=1

exp{xi(γ0 + γ′1zi)}

1 + exp(γ0 + γ′1zi)
exp(−

1

2
γ′Σ−1γ γ)(3.26)

We can use the same algorithm as in step (2) by performing logistic regression of xi on zi

and sample from the multivariate normal approximation.

(4) Sample p1 from its full conditional Beta distribution

f(p1|·) ∝ Beta{1 +
n∑

i=1

(x1i = 1 & xi = 1), 1 +
n∑

i=1

(x1i = 0 & xi = 1)}(3.27)

(5) Sample p2 from its full conditional Beta distribution

f(p2|·) ∝ Beta{1 +
n∑

i=1

(x2i = 1 & xi = 1), 1 +
n∑

i=1

(x2i = 0 & xi = 1)}(3.28)

(6) Sample q1 from its full conditional Beta distribution

f(q1|·) ∝ Beta{1 +
n∑

i=1

(x1i = 0 & xi = 0), 1 +
n∑

i=1

(x1i = 1 & xi = 0)}(3.29)

(7) Sample q2 from its full conditional Beta distribution

f(q2|·) ∝ Beta{1 +
n∑

i=1

(x2i = 0 & xi = 0), 1 +
n∑

i=1

(x2i = 1 & xi = 0)}(3.30)

(8) Repeat steps 1-7 until apparent convergence and collect a large number of additional

draws from which to calculate posterior summaries.
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3.5 MCMC IMPLEMENTATION: RANDOM EFFECT LOGISTIC
REGRESSION

It is straightforward to generalize the model and computational algorithm to incorporate

a random effect. Due to the nature of the Gibb’s sampler, we do not need to integrate

out the random effects to make inferences about β. Thus, no intractable integral arises for

Bayesian inference for GLMM. We just need to update the random effect and unobserved

latent variable along with parameters from their posterior distributions.

Let yij denote the jth observation on the ith cluster for i = 1, · · · , I and j = 1, · · · , ni.

Conditional on the random effects bi, the observations in each cluster are independent. The

random effect logistic model and the likelihood function for all the observations is given by

logit(Pr(yi = 1|bi)) = β0 + β1xij + β′2zij + bi

and

P (y|β, b) =
I∏

i=1

ni∏

j=1

P (yij|β, bi)

If we assume bi follows a multivariate Gaussian distribution with mean 0 and variance D,

i.e, bi ∼ N(0,D), (where D = I8X8⊗σ2b ), the joint likelihood function for the outcome model

has the form

f(yij, bi|xij, zij) ∝
I∏

i=1

ni∏

j=1

exp{yi(β0 + β1xij + β′2zij + bi)}

1 + exp(β0 + β1xij + β′2zij + bi)

I∏

i=1

|D|−1/2exp(−
1

2
b′iD

−1bi)

(3.31)

The measurement model and exposure model are the same as in the fixed effect logistic

model. Hence the full conditional sampling for parameters p1, q1, p2, q2, γ
′ is also the same.

We need to focus on only the conditional distribution of β, bi, σ
2
b , and xij as follows:

(1) Sample β using the Metropolis algorithm,
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Given the bi, the random effect logistic model reduces to a logistic model with offset bi for

each observation. Still assuming a proper diffuse prior distribution N(0,10) for the likelihood

function
∏
ij

f(yij|bi), the full conditional distribution for β is

f(β|·) ∝
I∏

i=1

ni∏

j=1

exp{yi(β0 + β1xi + β′2zi + bi)}

1 + exp(β0 + β1xi + β′2zi + bi)
exp(−

1

2
β′Σ−1β β)(3.32)

This still can be approximated by a Gaussian distribution with mean β̂b, the maximum

likelihood estimator, and a variance V̂βb. That is, to sample from(β|·), we find β̂b and V̂βb

by performing GLM regression of yij on xij using the simulated values bi as offsets and then

generate a random variate β from a multivariate Gaussian distribution, N(β̂b, V̂βb).

(2) Sample bi using the Metropolis algorithm,

Generating bi from its full conditional distribution is the most time-consuming step.

As described by Zeger and Karim (1991), we use the Metropolis algorithm to generate the

posterior samples. Suppose the conditional moment µij = E(yij|bi) and vij = var(yij|bi)

satisfy

h(µij) = ηij = x′ijβ + z′ijbi

where h is the logit function.

Let yi = (yi1, · · · , yini)
′, Xi = (xi1

′, · · · , x′ini), Zi = (z′i1, · · · , z
′
ini
), µi = (µi1, · · · , µini),

ηi = (ηi1, · · · , ηini), and Vi = diag(vi1, · · · , vini)

If we let y�i be the linear approximation to h(yi) given by

y�i = ηi + (
∂µi
∂ηi

)−1(yi − µi)

then the maximum value of p(bi) occurs at b̂i = (Z ′iViZi + D−1)−1ZiVi(y
�
i − Xiβ), and its

curvature is v̂i = (Z ′iViZi +D−1)−1. Because y�i and vi depend on bi, the actual mode and

curvature must be obtained by iterating the equations for b̂i and v̂i.

(3) Sample σ2b from Inverse Gamma distribution,
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For the prior distribution of random effect variance, we assign inverse gamma IG (1, 1),

the most commonly used distribution for the variance of normally distributed random effects

in Bayesian hierarchical models. This choice leads to a simple Gibbs sampling update for

the variance component. Therefore, we can sample σ2b from the posterior inverse gamma

distribution.

f(σ2b |·) ∝ IG((
I + 1

2
,

∑I
i=1 b

2
i + 1

2
))(3.33)

(4) Sample xij from the Bernoulli distribution,

The true unobserved quantity xij can be updated from the Bernoulli distribution as in

the fixed effect logistic model, except that we include the offset bi for each observation.

f(xi|·) ∼ Bin(1,
w′

w′ + v′
)(3.34)

where

w′ =
exp(yiβ1 + γ0 + γ′1zi)

1 + exp(β0 + β1 + β′2zi + bi)
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

v′ =
1

1 + exp(β0 + β′2zi + bi)
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i

(5) Sample p1, q1, p2, q2 and γ ′ from the same posterior distributions as in the fixed effect

logistic model.
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4.0 RESULTS

We present an application to the motivating example and simulation studies to illustrate the

proposed methodology. In the motivating example we analyze data from the control arm

of the EDCAP trial. The MCMC algorithm described in chapter 3 was used to generate

25,000 MCMC iterates, with the first 500 discarded as a burn-in. The posteriors for the

motivating example were computed using naive estimates as starting values in the MCMC

algorithm. Stationarity in all cases were reached in about 500 iterations and was determined

by inspection of trace plots. The computations were carried out by R, whose interactive

graphics provided a convenient environment for monitoring the convergence of the MCMC

algorithm. The R programs were run on a Pentium PC with 1.4G HZ with running time

about 4 hours for fixed effect logistic model and 10 hours for random effect logistic model for

our motivating example. Convergence was also assessed by a variety of diagnostic techniques

(Gelman and Rubin, 1992; Geweke, 1992; Heidelberger and Welch, 1983; Raftery and Lewis,

1992), summarized by Cowles and Carlin (1996) and implemented using BOA (Smith, 2000)

in the R software. The simulation studies use expected data (e.g, expected frequencies for

each pattern of covariates) based on a known model. The purpose of this example is to check

our algorithm and computational implementation.

4.1 RANDOM EFFECT LOGISTIC MODEL FOR MOTIVATING
EXAMPLE

We applied the proposed approach to the pneumonia data described in the begining of

section 2, accounting for clinical sites as a random effect. The parameter vector β ′ includes

the effects of the true oxygenation status and indicator variables denoting the PSI risk classes
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II, III and IV/V on inpatient status. The parameter vector γ′ include the effects of PSI risk

classes II, III and IV/V on the true oxygenation status. Figure 4.1 give the trace plots for all

the parameters in our motivating example and we found no evidence of lack of convergence

or of slow mixing based on examination of trace plots and standard diagnostic tests of the

sampled parameters.

We compare the parameters by three Bayesian models: Treating x1i (observed retrospec-

tive oxygenation status) as the true value; treating x2i (observed prospective oxygenation

status) as the true value; and the proposed method, treating both the retrospective and

prospective assesments as imperfect measures of the latent true value. Posterior summaries

of the parameters characterizing the relationship between inpatient status, oxygenation sta-

tus and PSI risk class are shown in Table 4.1 (The estimated parameter vector γ′ describing

the exposure model are not shown). Posterior kernel densities of β1 (the coefficient of mis-

measured oxygenation) estimated by the three methods are plotted in Figure 4.2.

Patients with abnormal oxygenation status are more likely to be hospitalized (Table

4.1). The posterior mean and median of β1, the log odds ratio of hospitalization for hypox-

emic patient relative to otherwise similar non-hypoxemic patient in our proposed method

(3.98, 3.71) are substantially higher than those assuming that retrospective (2.02, 2.00) and

prospective (2.22, 2.17) assessments were accurate. The point estimate of log odds in our

proposed method (3.98) corresponds to an odds ratio of 54. The 95 per cent credible interval

for the random effect variance (σ2b ) does not include 0 , indicating significant variance across

clinical sites. The standard deviation and 95% credible interval for β1 in proposed method

(1.43 and (2.02, 7.55)) are much larger than those in the other two approaches (0.44, (1.22,

2.94)) and (0.63, (1.11, 3.59)), as shown in Figure 4.2. The proposed method correctly re-

flects the uncertainty about the latent variable x when only two noisy surrogates x1 and x2

are observed. In addition, the log odds of being hospitalized increases with increasing PSI

risk class although the estimates are similar across all three approaches because this variable

was measured without error. Both the retrospective and prospective assessments have high

specificity (0.94 and 0.99) and relatively low sensitivity (0.77 and 0.68). Figure 4.2 shows

the plots of posterior densities of β1 under the three methods, which is consistent with the

results in the table 4.1.
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4.2 SIMULATION STUDIES FOR THE RANDOM EFFECT LOGISTIC
MODEL

In simulation study 1, we consider a situation in which the unobserved binary predictor x is

related to outcome y (1=disease, 0=no disease), one dichotomous covariates z (1=presence,

0=absence of certain characteristic) and a random intercept bi ∼ N(0, 0.64) in the outcome

model, with log odds 3.5, 1.5 which is similar to our motivating example. The covariate z is

related to the true exposure x in the exposure model with a log odds of 0.5. The prevalence

of the true exposure is chosen to be 0.3 for patients with covariate z = 0, and the prevalence

of disease is chosen to be 0.3 with both covariate z and true exposure x set to zero. We

assume that the sensitivity and specificity of two imperfect assessments x1 and x2 do not

differ across levels of the y or z, i.e. nondifferential misclassification of the true variable x

with respect to both disease and covariates. We assume that x1 and x2 are independent

given the true exposure x. We chose sensitivity of 90 per cent and specificity 70 per cent for

x1 and sensitivity of 75 per cent and specificity of 95 per cent for x2. The above assumptions

and parameter values can be represented by the following components:

p(x1i, x2i|xi = 1) = px1i1 (1− p1)
1−x1ipx2i2 (1− p2)

1−x2i

and

p(x1i, x2i|xi = 0) = q1−x1i1 (1− q1)
x1iq1−x2i2 (1− q2)

x2i(4.1)

logit{Pr(y = 1|x, z, b)} = β0 + β1x+ β2z + bi(4.2)

logit{Pr(x = 1|z)} = γ0 + γ1z(4.3)

Where (β0, β1, β2)=(-0.70, 3.50, 1.50), (γ0, γ1)=(-0.85, 0.5) are parameters translated from

the previously specified values of log odds and prevalences of exposure and disease. To

simulate data based on the above model specification, we generated 8 random intercepts ac-

cording N(0, 0.64) and computed conditional probabilities p(x|x1, x2) and p(y = 1|x, x1, x2)
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given the covariate pattern. For each combination of bi and z, we simulated 100 observa-

tions and computed the expected frequencies for different patterns of x1 and x2 based on

conditional distribution equation 4.1. A total of 800 observations was generated.

With the same prior distributions described in the previous section, we used a burn-in

period of 500 iterations and calculated posterior mean, standard deviation and 95 per cent

credible intervals based on next 25,000 iterations. We took every 10th sample from 25,000

posterior samples to avoid correlation between the adjacent samples. Fitted parameters of

the models are shown in Table 4.2 for three methods: (1) assuming that x1 is measured

without error, (2) assuming that x2 is measured without error, and (3) the proposed method

accounting for misclassification of x1 and x2. The posterior densities of β1 under the three

methods are plotted in Figure 4.3. If we assume the two imperfect measures as the true

latent variable x, the point estimates for β1 are around 1.44 and 2.25 respectively, which

are far away from true value 3.50. The corresponding 95 per cent credible intervals do not

cover the true value. But in our proposed method, the point estimates (mean 3.56 and

median 3.45) are much closer to the true value and the 95 per cent credible interval does

cover the true value. We also notice that the much bigger standard deviation for β1 (0.66) in

our proposed method compared to the two naive methods (0.18 and 0.28). It is reasonable

since the true latent variable x is unobserved and we have only two noisy variables. The

larger standard deviation correctly reflects uncertainty in the true latent variable x. The

estimated sensitivities and specificities of two imperfect measures are almost identical to the

true values. The posterior kernel density plots for β1 under the three models in figure 4.3

are consistent with the results in the table. Therefore it appears that our MCMC algorithm

is correctly specified and produces reasonable estimates of the parameters.

In order to check whether our proposed Bayesian method works well under different mis-

classification structure, we conducted sensitivity analysis for four different misclassification

structures in additional simulation studies: In simulation study 2, both imperfect mea-

surements have high sensitivity and high specificity, (p1, q1, p2, q2) = (0.90, 0.95, 0.95, 0.90).

In simulation study 3, both imperfect measurements have low sensitivity and low speci-

ficity, (p1, q1, p2, q2) = (0.70, 0.80, 0.80, 0.75). In simulation study 4, both imperfect measure-

ments have high sensitivity but low specificity, (p1, q1, p2, q2) = (0.95, 0.75, 0.90, 0.80) and
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in simulation study 5, both imperfect assessments have low sensitivity but high specificity,

(p1, q1, p2, q2) = (0.75, 0.90, 0.80, 0.95). Other parameters in these simulation studies are the

same as those in simulation study 1.

The parameters in the three models are compared under different misclassification struc-

tures: the first two naive methods treat the two imperfect assessments as the true values

respectively, and our proposed method assumes that the true variable is unobserved. The

results of the sensitivity analysis are listed in Table 4.3, 4.4, 4.5 and 4.6. The parameters

listed in these tables are the same as in simulation study-1 (Table 4.2). Estimation of β1 is

summarized in Table 4.7 under all 4 scenarios. From the results of sensitivity analysis, the

point parameter estimates from median of two naive methods in these simulation studies

((2.55, 2.25), (1.21, 1.19), (1.47, 1.61) and (1.85, 2.31)) are far away from the true value 3.50

and the 95 per cent credible intervals do not cover the true value. The median is more repre-

sentative for the point estimate because the distribution of β1 might not be symmetric. But

in our proposed method, the point estimates of the median (3.53, 3.51, 3.59 and 3.45) are

much closer to the true value and the 95 per cent credible intervals do cover the true value.

Also the bigger standard deviation associated with our proposed method (0.42, 1.24, 0.94

and 0.55) compared to those in naive methods, is consistent with the results in simulation

study 1. It is interesting to see the much bigger standard deviation in the simulation study

3 (1.24) in our proposed method. With the low sensitivities and low specificities specified

for two imperfect assessments in simulation study 3, the data can be classified with lower

accuracy and higher uncertainty. The posterior kernel density plots for the misclassified

variable β1 shown in Figure 4.4 are consistent with the results in the corresponding tables.
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Figure 4.1: Trace plots for the parameters in the motivating example
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Table 4.1: Posterior summaries of the parameters in random effect logistic model for the

motivating example

Posterior summaries

Methods Parameters Mean Median SD 95% Credible interval

Retrospective assessment β0 -0.71 -0.71 0.26 (-1.20, -0.20)

β1 2.02 2.00 0.44 (1.22, 2.94)

β2 1.25 1.25 0.25 (0.77, 1.75)

β3 2.18 2.18 0.31 (1.57, 2.78)

β4 4.30 4.26 0.55 (3.35, 5.50)

σ2b 0.59 0.48 0.43 (0.17, 1.71)

Prospective assessment β0 -0.59 -0.58 0.26 (-1.10, -0.06)

β1 2.22 2.17 0.63 (1.11, 3.59)

β2 1.26 1.25 0.24 (0.78, 1.76)

β3 2.21 2.20 0.30 (1.61, 2.79)

β4 4.26 4.23 0.54 (3.28, 5.38)

σ2b 0.55 0.45 0.39 (0.16, 1.58)

Proposed method β0 -0.74 -0.74 0.27 (-1.28, -0.22)

β1 3.98 3.71 1.43 (2.02, 7.55)

β2 1.32 1.31 0.26 (0.82, 1.82)

β3 2.14 2.13 0.32 (1.54, 2.78)

β4 4.09 4.06 0.54 (3.08, 5.19)

σ2b 0.61 0.49 0.43 (0.17, 1.75)

p1 0.77 0.77 0.04 (0.69, 0.85)

p2 0.68 0.68 0.06 (0.57, 0.79)

q1 0.94 0.94 0.02 (0.90, 0.98)

q2 0.99 0.99 0.01 (0.96, 1.00)

β1: The log odds of inpatient status associated with mismeasured variable (oxygenation

status)

β2, β3, β4 : The log odds of inpatient status associated with risk class II, III and IV/V

σ2b : The variance of random effects

p1, q1 and p2, q2 are sensitivity and specificity of retrospective assessment and prospective

assessment respectively.
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Figure 4.2: Estimated posterior densities for the oxygen status parameter β1 in a random

effect logistic model for the motivating example under 3 different methods: Proposed method

(solid curve), Retrospective assessment (dashed curve) and Prospective assessment (dotted

curve).
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Table 4.2: Posterior summaries of the parameters in random effect logistic model for simu-

lation study-1 with sensitivity 0.90, 0.70 and specificity 0.75, 0.95 for x1 and x2 respectively

Posterior summaries

Methods Parameters True value Mean Median SD 95% Interval

”Imperfect β0 -0.70 -0.43 -0.43 0.23 (-0.88, 0.04)

-measure 1” β1 3.50 1.44 1.44 0.18 (1.09, 1.79)

β2 1.50 1.40 1.40 0.18 (1.05, 1.75)

σ2b 0.64 0.60 0.49 0.42 (0.20, 1.63)

”Imperfect β0 -0.70 -0.29 -0.30 0.22 (-0.74, 0.13)

-measure 2” β1 3.50 2.25 2.24 0.28 (1.74, 2.83)

β2 1.50 1.44 1.44 0.18 (1.09, 1.78)

σ2b 0.64 0.63 0.51 0.43 (0.20, 1.75)

Proposed β0 -0.70 -0.61 -0.60 0.27 (-1.14, -0.06)

method β1 3.50 3.56 3.45 0.66 (2.63, 5.20)

β2 1.50 1.46 1.46 0.21 (1.04, 1.88)

σ2b 0.64 0.77 0.64 0.51 (0.24, 2.15)

p1 0.90 0.90 0.90 0.03 (0.84, 0.96)

p2 0.70 0.70 0.69 0.05 (0.61, 0.80)

q1 0.75 0.75 0.75 0.03 (0.69, 0.81)

q2 0.95 0.95 0.95 0.02 (0.91, 0.98)

β1: The log odds of ”disease” associated with the mismeasured variable.

β2: The log odds of ”disease” associated with covariate z.

σ2b : The variance of random effect.

p1, q1 and p2, q2 are sensitivity and specificity of two imperfect assessments respectively.
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Figure 4.3: Estimated posterior densities for the mismeasured variable parameter β1 in a

random effect logistic model for simulated data under 3 different methods: Proposed method

(solid curve), Imperfect measure 1 and 2 ignoring misclassification (dashed curve and dotted

curve). The vertical line denotes true value.
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Table 4.3: Posterior summaries of the parameters in random effect logistic model for simu-

lation study-2 with sensitivity 0.90, 0.95 and specificity 0.95, 0.90 for x1 and x2 respectively

Posterior summaries

Methods Parameters True value Mean Median SD 95% Interval

”Imperfect β0 -0.70 -0.48 -0.48 0.24 (-0.94, -0.01)

-measure 1” β1 3.50 2.55 2.55 0.26 (2.06, 3.08)

β2 1.50 1.43 1.43 0.19 (1.05, 1.79)

σ2b 0.64 0.68 0.56 0.51 (0.22, 1.78)

”Imperfect β0 -0.70 -0.53 -0.54 0.24 (-1.00, -0.04)

-measure 2” β1 3.50 2.25 2.25 0.22 (1.82, 2.69)

β2 1.50 1.47 1.48 0.19 (1.09, 1.86)

σ2b 0.64 0.70 0.59 0.49 (0.21, 1.98)

Proposed β0 -0.70 -0.61 -0.61 0.25 (-1.11, -0.14)

method β1 3.50 3.55 3.53 0.42 (2.83, 4.46)

β2 1.50 1.50 1.50 0.20 (1.11, 1.89)

σ2b 0.64 0.80 0.65 0.53 (0.24, 2.31)

p1 0.90 0.90 0.90 0.03 (0.84, 0.97)

p2 0.95 0.94 0.94 0.02 (0.89, 0.99)

q1 0.95 0.95 0.95 0.01 (0.91, 0.97)

q2 0.90 0.90 0.90 0.02 (0.86, 0.94)

β1: The log odds of ”disease” associated with the mismeasured variable.

β2: The log odds of ”disease” associated with covariate z.

σ2b : The variance of random effect.

p1, q1 and p2, q2 are sensitivity and specificity of two imperfect assessments respectively.
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Table 4.4: Posterior summaries of the parameters in random effect logistic model for simu-

lation study-3 with sensitivity 0.70, 0.80 and specificity 0.80, 0.75 for x1 and x2 respectively

Posterior summaries

Methods Parameters True value Mean Median SD 95% Interval

”Imperfect β0 -0.70 -0.24 -0.25 0.23 (-0.70, 0.21)

-measure 1” β1 3.50 1.22 1.21 0.18 (0.88, 1.58)

β2 1.50 1.41 1.41 0.17 (1.08, 1.76)

σ2b 0.64 0.58 0.48 0.38 (0.18, 1.54)

”Imperfect β0 -0.70 -0.31 -0.31 0.23 (-0.75, 0.14)

-measure 2” β1 3.50 1.20 1.19 0.18 (0.86, 1.56)

β2 1.50 1.41 1.41 0.18 (1.08, 1.78)

σ2b 0.64 0.58 0.48 0.42 (0.18, 1.56)

Proposed β0 -0.70 -0.61 -0.60 0.30 (-1.24, -0.05)

method β1 3.50 3.81 3.51 1.24 (2.25, 7.13)

β2 1.50 1.49 1.48 0.23 (1.06, 1.95)

σ2b 0.64 0.78 0.65 0.54 (0.24, 2.17)

p1 0.70 0.71 0.71 0.06 (0.62, 0.85)

p2 0.80 0.80 0.80 0.06 (0.69, 0.92)

q1 0.80 0.80 0.80 0.03 (0.74, 0.86)

q2 0.75 0.75 0.75 0.03 (0.68, 0.82)

β1: The log odds of ”disease” associated with the mismeasured variable.

β2: The log odds of ”disease” associated with covariate z.

σ2b : The variance of random effect.

p1, q1 and p2, q2 are sensitivity and specificity of two imperfect assessments respectively.
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Table 4.5: Posterior summaries of the parameters in random effect logistic model for simu-

lation study-4 with sensitivity 0.95, 0.90 and specificity 0.75, 0.80 for x1 and x2 respectively

Posterior summaries

Methods Parameters True value Mean Median SD 95% Interval

”Imperfect β0 -0.70 -0.46 -0.46 0.23 (-0.90, 0.00)

-measure 1” β1 3.50 1.48 1.47 0.18 (1.15, 1.84)

β2 1.50 1.39 1.39 0.17 (1.06, 1.74)

σ2b 0.64 0.60 0.50 0.39 (0.19, 1.62)

”Imperfect β0 -0.70 -0.45 -0.46 0.22 (-0.88, 0.00)

-measure 2” β1 3.50 1.61 1.61 0.18 (1.27, 1.97)

β2 1.50 1.40 1.40 0.19 (1.05, 1.75)

σ2b 0.64 0.60 0.49 0.42 (0.19, 1.66)

Proposed β0 -0.70 -0.61 -0.60 0.26 (-1.13, -0.09)

method β1 3.50 3.79 3.59 0.94 (2.57, 6.34)

β2 1.50 1.45 1.45 0.21 (1.04, 1.87)

σ2b 0.64 0.78 0.63 0.55 (0.23, 2.33)

p1 0.95 0.93 0.93 0.03 (0.86, 0.99)

p2 0.90 0.91 0.90 0.04 (0.82, 0.98)

q1 0.75 0.74 0.74 0.03 (0.69, 0.81)

q2 0.80 0.80 0.80 0.03 (0.74, 0.85)

β1: The log odds of ”disease” associated with the mismeasured variable.

β2: The log odds of ”disease” associated with covariate z.

σ2b : The variance of random effect.

p1, q1 and p2, q2 are sensitivity and specificity of two imperfect assessments respectively.
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Table 4.6: Posterior summaries of the parameters in random effect logistic model for simu-

lation study-5 with sensitivity 0.75, 0.80 and specificity 0.90, 0.95 for x1 and x2 respectively

Posterior summaries

Methods Parameters True value Mean Median SD 95% Interval

”Imperfect β0 -0.70 -0.31 -0.31 0.23 (-0.73, 0.16)

-measure 1” β1 3.50 1.85 1.85 0.21 (1.45, 2.25)

β2 1.50 1.41 1.41 0.18 (1.08, 1.77)

σ2b 0.64 0.62 0.52 0.40 (0.19, 1.70)

”Imperfect β0 -0.70 -0.37 -0.37 0.22 (-0.78, 0.09)

-measure 2” β1 3.50 2.32 2.31 0.26 (1.86, 2.87)

β2 1.50 1.41 1.41 0.18 (1.05, 1.74)

σ2b 0.64 0.66 0.55 0.41 (0.21, 1.70)

Proposed β0 -0.70 -0.59 -0.60 0.27 (-1.20, -0.07)

method β1 3.50 3.48 3.45 0.55 (2.61, 4.75)

β2 1.50 1.45 1.45 0.20 (1.09, 1.86)

σ2b 0.64 0.76 0.63 0.57 (0.22, 2.29)

p1 0.75 0.75 0.75 0.03 (0.69, 0.83)

p2 0.80 0.80 0.80 0.04 (0.73, 0.90)

q1 0.90 0.90 0.90 0.02 (0.86, 0.94)

q2 0.95 0.95 0.95 0.02 (0.91, 0.97)

β1: The log odds of ”disease” associated with the mismeasured variable.

β2: The log odds of ”disease” associated with covariate z.

σ2b : The variance of random effect.

p1, q1 and p2, q2 are sensitivity and specificity of two imperfect assessments respectively.
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Table 4.7: Summary of parameter β1 in the sensitivity analysis under different sensitivities

and specificities.

Simulations Posterior summaries

(p1, q1, p2, q2) Parameters True value Mean Median SD 95% Interval

”Imperfect 1” β1 3.50 2.55 2.55 0.26 (2.06, 3.08)

”Imperfect 2” β1 3.50 2.25 2.25 0.22 (1.82, 2.69)

(0.90,0.95,0.95,0.90) β1 3.50 3.55 3.53 0.42 (2.83, 4.46)

”Imperfect 1” β1 3.50 1.22 1.21 0.18 (0.88, 1.58)

”Imperfect 2” β1 3.50 1.20 1.19 0.18 (0.86, 1.56)

(0.70,0.80,0.80,0.75) β1 3.50 3.81 3.51 1.24 (2.25, 7.13)

”Imperfect 1” β1 3.50 1.48 1.47 0.18 (1.15, 1.84)

”Imperfect 2” β1 3.50 1.61 1.61 0.18 (1.27, 1.97)

(0.95,0.75,0.90,0.80) β1 3.50 3.79 3.59 0.94 (2.57, 6.34)

”Imperfect 1” β1 3.50 1.85 1.85 0.21 (1.45, 2.25)

”Imperfect 2” β1 3.50 2.32 2.31 0.26 (1.86, 2.87)

(0.75,0.90,0.80,0.95) β1 3.50 3.48 3.45 0.55 (2.61, 4.75)

β1: The log odds of ”disease” associated with the mismeasured variable.
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Figure 4.4: Sensitivity analysis: Estimated posterior densities for mismeasured variable
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5.0 APPLICATION

The specific aim of the EDCAP study was to compare the effectiveness and safety of three

interventions of increasing intensity (low-intensity, moderate-intensity and high-intensity)

to implement a PSI-based guideline incorporating arterial oxygenation information for the

initial site of treatment. Outpatient care was recommended for low risk patients, defined

as non-hypoxemic patients in PSI risk classes I—III. Inpatient care was recommended for

higher risk patients (hypoxemic and/or PSI risk classes IV and V). To be consistent with

the published paper for EDCAP study, we use outpatient status as outcome variable instead

inpatient status in our motivating example. We estimate the odds of outpatient status

(1=outpatient, 0=inpatient) as a function of intervention arm and risk status in the 32 sites,

accounting for site as a random effect. The model is expressed as following:

logit {Pr(y = 1)} = β0 + β1 ∗ risk + β2 ∗ intervention2 + β3 ∗ intervention3 + bi(5.1)

This data analysis is complicated by the misclassification of binary variable of risk sta-

tus (1=high risk, 0=low risk). Similar to our motivating example, the true risk status is

unobserved and ascertained by two imperfect measurements: prospectively assessed in the

Emergency Department and retrospectively assessed from medical chart review. We assume

the two assessments are independent conditional on the true unobserved risk status. Table

5.1 displays the data for 3201 patients enrolled from 16 sites in western Pennsylvania and

16 sites in Connecticut on outpatient status, intervention arm and the two imperfect assess-

ments of risk status.

Although the prospective assessment was used in the primary analysis of the EDCAP

trial, subsequent analyses have demonstrated discrepancies between the prospective and ret-

rospective assessments. Due to time lapses in data recording, risk status may be ascertained
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retrospectively from ED medical chart review using data that were not in fact available in

real time. Among these 3201 patients, 84% were classified concordently (52% as low risk

and 34% as high risk) on the two assessments and 16% were classified discordently, with

7% classified as low risk by the prospective but not the retrospective assessment, and 7%

classified as high risk by the retrospective but not the prospective assessment.

The proposed Bayesian methods were applied to the EDCAP trial data to evaluate the

true intervention effects after adjusting for potential misclassification of risk status and ac-

counting for the 32 clinical sites as a random effect. The parameter vector β′ includes the

effects of risk status, moderate intensity intervention and high intensity intervention on out-

patient status. Figure 5.1 give the trace plots for all the parameters in this EDCAP study

and we found no evidence of lack of convergence or of slow mixing based on examination of

trace plots and standard diagnostic tests of the sampled parameters.

We compare the parameters by three Bayesian models: Treating retrospectively observed

risk status as the true value; treating prospectively observed risk status as the true value;

and the proposed method, treating both the retrospective and prospective assesments as

imperfect measures of the latent true value. Posterior summaries of the parameters char-

acterizing the relationship between outpatient status, risk status and intervention effects

are shown in Table 5.2. Posterior kernel densities of β1 (the coefficient of mismeasured risk

status), β2 (the coefficient of the moderate-intensity intervention ), β3 (the coefficient of the

high-intensity intervention) estimated by the three methods are plotted in Figures 5.2, 5.3

and 5.4.

Low-risk patients are less likely to be hospitalized (Table 5.2). The posterior mean and

median of β1, the log odds of outpatient care for a high risk patient relative to an other-

wise similar low-risk patient, in our proposed method (-3.81, -3.81) are lower than those

assuming that retrospective (-3.02, -3.03) and prospective (-3.29, -3.28) assessments were

accurate. The 95 per cent credible interval for random effect variance σ2b (0.24, 0.81) does

not include 0, indicating significant variance across sites. The standard deviation and 95%

credible interval for β1 in proposed method (0.17 and (-4.13, -3.49)) are larger than those in

the other two approaches (0.12, (-3.27, -2.78)) and (0.13, (-3.56, -3.02)), as shown in Figure

5.2. The proposed method appropriately reflects the uncertainty about the latent variable
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risk status when only two noisy surrogates are observed. The log odds of outpatient care in

the moderate and high intensity arms are (0.89, 0.48) with corresponding odds ratios (2.44,

1.62) from the retrospective assessment, (0.97, 0.82) with corresponding odds ratios (2.64,

2.27) from the prospective assessment and (0.98, 0.74) with corresponding odds ratios (2.66,

2.10) from our proposed method. It is not too surprising that the results from prospec-

tive assessment are closer to the proposed method than estimates from the retrospective

assessment because the prospective assessment has somewhat higher sensitivity and speci-

ficity (0.86, 0.99) than the retrospective assessment (0.85, 0.97). We also cross validated

the first two naive Bayesian methods with maximum likelihood approaches by using SAS

PROC NLMIXED procedure (Table 5.3) and obtained similar parameter estimates. This

demonstrates that our computation algorithm and non-informative prior specification in our

Bayesian approaches are reasonable.

We also found that log odds of outpatient care for patients in the moderate intensity

intervention arm is a little higher relative to the high intensity intervention arm under three

Bayesian methods. One important question is whether they are significantly different and

we tested the hypothesis: β2 − β3 = 0. The 95 per cent credible intervals for β2 − β3 are

(-0.01, 0.85) assuming that retrospective assessment is correct, (-0.24, 0.56) assuming that

prospective assessment is correct and (-0.22, 0.69) in our proposed method. All these inter-

vals including 0 show that there is no significant difference between the moderate and high

intensity interventions based on this main effects model. But we noticed that in the retro-

spective assessment (the less accurate assessment), the 95 per cent credible interval (-0.01,

0.85) barely excludes 0, compared to intervals from the prospective assessment (-0.24, 0.56)

and our proposed method (-0.22, 0.69).

One interesting issue in this study is the possible differential misclassification of risk

status across the intervention arms. Table 5.4, 5.5 and 5.6 list the 2× 2 tables of two imper-

fect assessments for the low-intensity intervention arm, moderate-intensity intervention arm

and high-intensity intervention arm. Among these patients in different intervention arms,

16% were classified discordently in the low-intensity intervention arm, with 10% classified

as low risk by the prospective but not the retrospective assessment, and 6% classified as

high risk by the retrospective but not the prospective assessment. In the moderate-intensity
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intervention arm, 13% were classified discordently , with 8% classified as low risk by the

prospective but not the retrospective assessment, and 5% classified as high risk by the ret-

rospective but not the prospective assessment. In the high-intensity intervention arm, 13%

were classified discordently, with 4% classified as low risk by the prospective but not the

retrospective assessment, and 9% classified as high risk by the retrospective but not the

prospective assessment. In this EDCAP study we are also interested in assessing whether

the effect of risk status varies by intervention arm. Because the guideline recommendations

differ in low-risk and higher-risk patients, with outpatient care recommended for low-risk

patients and inpatient care recommended for higher-risk patients, one would expect the in-

tervention effect to vary by risk status. In our proposed Bayesian method such relationships

can not be assessed because the true variable of risk status is unobserved and updating

multiple latent variable is impossible. And the sensitivities and specificities of two imper-

fect assessments can not be estimated for three intervention arms separately due to lack of

parameter identifiability. Here we used the prospective assessment (more accurate assess-

ment) to evaluate whether risk status is differential to intervention arms by fitting the model:

logit {Pr(y = 1)} = β0 + β1risk + β2intervention2 + β3intervention3

β4intervention2 ∗ risk + β5intervention3 ∗ risk + bi

(5.2)

The results for this model are listed in Table 5.7. The 95 per cent credible interval for

β4 and β5 are (-0.72, 0.98) and (-1.46, 0.28), which include 0. The prospective assessment

shows no evidence of a significant interaction.
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Table 5.1: Frequencies of observed patterns of covariates and outpatient status for the full

EDCAP data

Covariate pattern Risk status assessment

Outpatient status Intervention Prospective Retrospective Frequency

1 1 0 0 159

1 1 0 1 8

1 1 1 0 2

1 1 1 1 5

1 2 0 0 444

1 2 0 1 15

1 2 1 0 10

1 2 1 1 29

1 3 0 0 420

1 3 0 1 13

1 3 1 0 9

1 3 1 1 11

0 1 0 0 210

0 1 0 1 68

0 1 1 0 39

0 1 1 1 249

0 2 0 0 221

0 2 0 1 73

0 2 1 0 48

0 2 1 1 319

0 3 0 0 221

0 3 0 1 43

0 3 1 0 106

0 3 1 1 479

Total 3201

Outpatient status (1=outpatient, 0=inpatient)

Intervention arm (1=low-intensity, 2=moderate-intensity, 3=high-intensity)

Prospective assessment (1=high risk, 0=low risk)

Retrospective assessment (1=high risk, 0=low risk)
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Table 5.2: Posterior summaries of the parameters in random effect logistic model for the

EDCAP data using a Bayesian approach

Posterior summaries

Methods Parameters Mean Median SD 95% Credible interval

Retrospective assessment β0 -0.34 -0.34 0.19 (-0.72, 0.02)

β1 -3.02 -3.02 0.12 (-3.27, -2.78)

β2 0.89 0.89 0.25 (0.38, 1.35)

β3 0.48 0.48 0.25 (0.02, 0.96)

β2-β3 0.42 0.42 0.22 (-0.01, 0.85)

σ2b 0.41 0.38 0.14 (0.22, 0.73)

Prospective assessment β0 -0.46 -0.46 0.19 (-0.83, -0.09)

β1 -3.29 -3.28 0.13 (-3.56, -3.02)

β2 0.97 0.98 0.23 (0.49, 1.42)

β3 0.82 0.81 0.23 (0.34, 1.29)

β2-β3 0.15 0.15 0.20 (-0.24, 0.56)

σ2b 0.37 0.36 0.11 (0.20, 0.64)

Proposed method β0 -0.15 -0.15 0.21 (-0.58, 0.25)

β1 -3.81 -3.81 0.17 (-4.13, -3.49)

β2 0.98 0.97 0.28 (0.40, 1.51)

β3 0.74 0.74 0.27 (0.22, 1.27)

β2-β3 0.23 0.23 0.23 (-0.22, 0.69)

σ2b 0.46 0.44 0.15 (0.24, 0.81)

p1 0.85 0.85 0.01 (0.83, 0.87)

p2 0.86 0.86 0.01 (0.84, 0.89)

q1 0.97 0.97 0.006 (0.95, 0.98)

q2 0.99 0.99 0.004 (0.98, 1.00)

β1: The log odds of outpatient care associated with mismeasured variable (risk status)

β2: The log odds of outpatient care associated with moderate intensity intervention

β3: The log odds of outpatient care associated with high intensity intervention

σ2b : The variance of random effects

p1, q1 and p2, q2 are sensitivity and specificity of retrospective assessment and prospective

assessment respectively.
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Table 5.3: The naive parameter estimates from maximum likehood method in random effect

logistic model for the EDCAP data

Methods Parameters Estimate S.E. 95% Confidence Interval

Retrospective assessment β0 -0.32 0.23 (-0.79, 0.14)

β1 -3.02 0.13 (-3.28, -2.76)

β2 0.88 0.29 (0.29, 1.47)

β3 0.48 0.29 (-0.11, 1.07)

σ2b 0.32 0.10 (0.11, 0.53)

Prospective assessment β0 -0.44 0.22 (-0.89, -0.001)

β1 -3.28 0.14 (-3.56, -2.99)

β2 0.94 0.28 (0.38, 1.51)

β3 0.81 0.28 (0.24, 1.38)

σ2b 0.29 0.09 (0.10, 0.49)

β1: The log odds of outpatient care associated with risk status.

β2: The log odds of outpatient care associated with moderate intensity intervention.

β3: The log odds of outpatient care associated with high intensity intervention.

σ2b : The variance of random effect.
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Table 5.4: Classification by two imperfect measurements in the low-intensity intervention

arm

Retrospective 0 Retrospective 1

Prospective 0 369 (50%) 76 (10%)

Prospective 1 41 (6%) 254 (34%)

Discordance:16%

Table 5.5: Classification by two imperfect measurements in the moderate-intensity interven-

tion arm

Retrospective 0 Retrospective 1

Prospective 0 665 (57%) 88 (8%)

Prospective 1 58 (5%) 348 (30%)

Discordance:13%

Table 5.6: Classification by two imperfect measurements in the high-intensity intervention

arm

Retrospective 0 Retrospective 1

Prospective 0 641 (49%) 56 (4%)

Prospective 1 115 (9%) 490 (38%)

Discordance:13%
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Table 5.7: Posterior summaries of the parameters in random effect logistic interaction model

for EDCAP data from prospective assessment

Posterior summaries

Methods Parameters Mean Median SD 95% Credible interval

Prospective assessment β0 -0.54 -0.54 0.10 (-0.72, -0.34)

β1 -3.48 -3.46 0.39 (-4.31, -2.74)

β2 1.11 1.12 0.13 (0.86, 1.37)

β3 1.23 1.23 0.13 (0.97, 1.46)

β4 0.15 0.14 0.44 (-0.72, 0.98)

β5 -0.59 -0.59 0.46 (-1.46, 0.28)

σ2b 0.52 0.51 0.13 (0.31, 0.84)

β1: The log odds of outpatient care associated with mismeasured variable (risk status)

β2: The log odds of outpatient care associated with moderate intensity intervention

β3: The log odds of outpatient care associated with high intensity intervention

β4: The interaction between moderate intensity intervention and risk status

β5: The interaction between high intensity intervention and risk status

σ2b : The variance of random effects
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Figure 5.1: Trace plots of parameters in EDCAP data
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Figure 5.2: Estimated posterior densities for the risk class status parameter β1 in a random

effect logistic model for the full EDCAP data under 3 different methods: Proposed method

(solid curve), Retrospective assessment (dashed curve) and Prospective assessment (dotted

curve).

54



−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

β2

P
o

s
te

ri
o

r 
D

e
n

s
it
ie

s Proposed  method
Retrospective assessment
Prospective assessment

Figure 5.3: Estimated posterior densities for the moderate intensity intervention effect para-

meter β2 in a random effect logistic model for the full EDCAP data under 3 different methods:

Proposed method (solid curve), Retrospective assessment (dashed curve) and Prospective as-

sessment (dotted curve).
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Figure 5.4: Estimated posterior densities for the high intensity intervention effect parameter

β3 in a random effect logistic model for the full EDCAP data under 3 different methods:

Proposed method (solid curve), Retrospective assessment (dashed curve) and Prospective as-

sessment (dotted curve).
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6.0 CONCLUSIONS

The main advantage of a Bayesian approach for measurement error problems, as discussed by

Richardson and Gilks (1993), is that it allows the problem to be modelled in a conceptually

straightforward way without approximations. All the available information is utilized and the

uncertainty from different sources is properly reflected in the parameter estimates. Moreover,

it works under more complicated model frameworks (e.g, GLMM) and accounts for measure-

ment error in a relatively straightforward way. In our example, attenuated estimates of the

mismeasured covariate are not surprising because nondifferential misclassification tends to

attenuate the parameter estimate to the null. Similarly, the wider credible intervals for mis-

measured variable β1 under the proposed method are expected because a strength of the

Bayesian approach is the ability to appropriately propagate uncertainty.

This dissertation has described a flexible Bayesian approach to adjust for misclassifica-

tion of a dichotomous explanatory variable in the absence of a gold standard. This approach

allows adjustment for other discrete or continuous covariates when evaluating the relation-

ship between outcome and covariates. The sensitivities and specificities of two imperfect

assessments can also be estimated from our proposed method. After data augmentation, the

unobserved variables can be sampled along with the model parameters from their full pos-

terior distribution and the posterior computation can proceed via a straightforward Gibbs

sampling algorithm with a Metropolis step. This algorithm is shown to produce reasonable

results for real and simulated data.

Parameter identifiablity is an important issue in the models that account for the mismea-

surement, because some additional information must be known about the mismeasurement

process in order to obtain a fully identified model. If there is no additional covariate Z in the

model, the likelihood function of the random effect logistic model lacks parameter identifi-
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ablity, and the parameters can not be consistently estimated. Given additional information

covariate Z in our motivating example (the three indicator variables for PSI risk class) and

EDCAP trial (the two indicator variables for intervention arm), the data can be summarized

multiple sets of 2 × 2 tables and parameter identifiability will not be a problem.

In the EDCAP trial, one interesting issue is to evaluate the possible differential misclas-

sification of risk status across different intervention arms. In our proposed Bayesian method

such relationships can not be assessed because the true variable of risk status is unobserved

and updating this latent variable is impossible in our algorithm. And the sensitivities and

specificities of two imperfect assessments can not be estimated for three intervention arms

separately due to lack of parameter identifiability. But if we have additional covariates in

the model, it is worth to be further investigated in the future.

In this dissertation, it has been assumed that the two imperfect tests are conditionally

independent given the true latent measurement. This assumption is not empirically verifi-

able without any gold-standard measurements and it may be dubious in some applications

(Fryback 1978, Brenner 1996, Vacek 1985). We will consider extending the model to allow

for conditional dependence between the two tests given the true variable in future work.
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APPENDIX A

POSTERIOR CONDITIONAL DISTRIBUTION

The key step in our MCMC algorithm is to impute the latent variable x from their full

conditional distribution. The posterior distribution of x can be simplified and updated from

the Bernoulli distribution.

p(xi|·) ∝
n∏

i=1

exp{yi(β0 + β1xi + β ′2zi)}

1 + exp(β0 + β1xi + β′2zi)

n∏

i=1

exp{xi(γ0 + γ′1zi)}

1 + exp(γ0 + γ ′1zi)
n∏

i=1

{
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

}xi{
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i
}1−xi

∝
n∏

i=1

{ exp(yiβ1 + γ0 + γ′1zi)

1 + exp(β0 + β1xi + β′2zi)

}xi{ 1

1 + exp(β0 + β1xi + β′2zi)

}1−xi

{px1i1 (1− p1)
1−x1ipx2i2 (1− p2)

1−x2i}xi{q1−x1i1 (1− q1)
x1iq1−x2i2 (1− q2)

x2i}1−xi

∝
n∏

i=1

{ exp(yiβ1 + γ0 + γ′1zi)

1 + exp(β0 + β1 + β′2zi)
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

}xi

{ 1

1 + exp(β0 + β′2zi)
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i
}1−xi
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APPENDIX B

MCMC ALGORITHM

In Bayesian inference, the parameter is assumed to be random with some known distribution

and its estimate ends up being an expected value under the posterior distribution. For

example, given a sample y from a distribution with likelihood L(y | θ) and a prior density for

θ, the posterior distribution of parameter θ is proportional to the product of data likelihood

function and prior distribution by Baye’s theorem, i.e,

π(θ | y) ∝ L(y | θ)π(θ)

Given the posterior, and in the case where θ = (θ1, θ2, · · · , θp) is multivariate, for exam-

ple, we may be interested in the marginal posterior distributions of θ1, such as

p(θ1 | y) = p(θ | y)dθ2 · · · dθp

Computing this marginal posterior distribution leads to a very high dimensional integral

that is totally intractable. Traditionally we would be forced to use numerical integration

or analytic approximation techniques. However, the Markov Chain Monte Carlo (MCMC)

method provides an alternative by performing the integration implicitly. We can sample

from the posterior distribution directly and obtain parameter estimates of the quantities of

interest. Gibb’s sampler (Hastings, 1970) and Metropolis-Hasting (MH) algorithm (Tierney,

1994) are most often used MCMC methods. I will give a little more details in the following:
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B.1 GIBB’S SAMPLER

The Gibb’s sampler is an algorithm for simulating a Markov chain x1, · · · , xk which is con-

verging to f(x), by successively sampling from the full conditional component distributions

f(xi | x−i), i = 1, · · · , p where x−i denotes the components of x other than xi. For example,

suppose that θ = (θ1, θ2, θ3), and the target distribution is p(θ | y), the Gibb’s sampler

algorithm proceeds as following:

1. Start with initials (θ01, θ
0
2, θ

0
3).

2. Draw θ11 from p(θ1 | θ2 = θ02, θ3 = θ03, y)

3. Draw θ12 from p(θ2 | θ1 = θ11, θ3 = θ03, y)

4. Draw θ13 from p(θ3 | θ1 = θ11, θ2 = θ12, y)

At the beginning all the parameters were assigned an arbitrary initial values. A cycle of

Gibb’s sampler is completed when all the parameters were sampled once. Repeat this pro-

cedure a large times after convergence. The samples generated form posterior distributions

can be considered from the the target distribution p(θ | y).

Conceptually, the Gibb’s sampler is fairly straightforward. Ideally, the conditional dis-

tribution f(xi | x−i) will be of the form of a standard distribution and a suitable prior spec-

ification often ensures that this is the case. However, in the cases where it is non-standard,

there are many ways to sample from the appropriate conditionals and Metropolis-Hastings

(M-H) algorithm is often applied.

B.2 METROPOLIS-HASTING (M-H) ALGORITHM

An alternative, and more general, updating scheme is as a form of generalized rejection

sampling, where values are drawn from arbitrary distributions and rejected or accepted

according to the importance ratio. Asymptotically the samples generated behave as random

observations from the target distribution. The M-H algorithm proceeds as follwing:

1. Given a draw θt in iteration t, sample a candidate draw θ∗ from a proposal distribution

J(θ∗ | θ)
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2. Accept the draw with probability

r =
p(θ∗ | y)/J(θ∗ | θ)

p(θ | y)/J(θ | θ∗)

3. Stay in place (do not accept the draw) with probability 1− r, i.e., θ(t+1) = θ(t).

By construction, the algorithm does not depend on the normalization constant. The

variation of the algorithm in which the proposal distribution is not symmetric is due to

Hasting (1970) and for this reason the algorithm is often also called Metropolis-Hasting.

Using MCMC for a complex problem is not an automatic procedure and some tuning is

needed. One of the important things to choose with care is the proposal function. If too

small jumps are proposed, the chain moves too slowly, and can even remain trapped in a

subregion and never sample the rest of the parameter space if the probability distribution

is defined over disconnected regions. If too large steps are proposed, the proposed points

could often fall in very low probability regions and not be accepted, in which case the chain

remains stuck in a point for many cycles.
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APPENDIX C

COMPUTATION ALGORITHM FOR RANDOM EFFECT LOGISTIC

MODEL

After assigning an initial value to each parameter, our MCMC algorithm for random effect

logisitic model proceeds as follows:

(1) Sample β using the Metropolis algorithm from the full conditional distribution

f(β|·) ∝
I∏

i=1

ni∏

j=1

exp{yi(β0 + β1xi + β′2zi + bi)}

1 + exp(β0 + β1xi + β′2zi + bi)
exp(−

1

2
β′Σ−1β β)(C.1)

(2) Sample bi using the Metropolis algorithm Suppose the conditional moment µij =

E(yij|bi) and vij = var(yij|bi) satisfy

h(µij) = ηij = x′ijβ + z′ijbi

where h is the logit function.

If we let y�i be the linear approximation to h(yi) given by

y�i = ηi + (
∂µi
∂ηi

)−1(yi − µi)(C.2)

then the maximum value of p(bi) occurs at b̂i = (Z ′iViZi + D−1)−1ZiVi(y
�
i − Xiβ), and its

curvature is v̂i = (Z ′iViZi +D−1)−1. Because y�i and vi depend on bi, the actual mode and

curvature must be obtained by iterating the equations for b̂i and v̂i.
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(3) Sample σ2b from Inverse Gamma distribution,

f(σ2b |·) ∝ IG((
I + 1

2
,

∑I
i=1 b

2
i + 1

2
))(C.3)

(4) Sample xij from the Bernoulli distribution

f(xi|·) ∼ Bin(1,
w′

w′ + v′
)(C.4)

where

w′ =
exp(yiβ1 + γ0 + γ′1zi)

1 + exp(β0 + β1 + β′2zi + bi)
px1i1 (1− p1)

1−x1ipx2i2 (1− p2)
1−x2i

v′ =
1

1 + exp(β0 + β′2zi + bi)
q1−x1i1 (1− q1)

x1iq1−x2i2 (1− q2)
x2i

(5) Sample γ using the Metropolis algorithm

f(γ|·) ∝
n∏

i=1

exp{xi(γ0 + γ′1zi)}

1 + exp(γ0 + γ′1zi)
exp(−

1

2
γ′Σ−1γ γ)(C.5)

(6) Sample p1 from its full conditional Beta distribution

f(p1|·) ∝ Beta{1 +
n∑

i=1

(x1i = 1 & xi = 1), 1 +
n∑

i=1

(x1i = 0 & xi = 1)}(C.6)

(7) Sample p2 from its full conditional Beta distribution

f(p2|·) ∝ Beta{1 +
n∑

i=1

(x2i = 1 & xi = 1), 1 +
n∑

i=1

(x2i = 0 & xi = 1)}(C.7)

(8) Sample q1 from its full conditional Beta distribution

f(q1|·) ∝ Beta{1 +
n∑

i=1

(x1i = 0 & xi = 0), 1 +
n∑

i=1

(x1i = 1 & xi = 0)}(C.8)

(9) Sample q2 from its full conditional Beta distribution

f(q2|·) ∝ Beta{1 +
n∑

i=1

(x2i = 0 & xi = 0), 1 +
n∑

i=1

(x2i = 1 & xi = 0)}(C.9)

(10) Repeat steps 1-9 until apparent convergence and collect a large number of additional

draws from which to calculate posterior summaries.
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