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ON DUALITY AND THE BI-CONJUGATE GRADIENT ALGORITHM

Kristin E. Harnett, M.S.

University of Pittsburgh, 2008

It is not uncommon to encounter problems that lead to large, sparse linear systems with

coe¢ cient matrices that are invertible and sparse, but have little other structure. In such

problems the solution u = A�1f is typically calculated only to acurately compute functionals

of the solution, L(u). This paper determines a method that converges rapidly to the func-

tional�s value. Speci�ally, a modi�ed bi-conjugate gradient algorithm is found to generate

convergence to the solution of linear functionals, L(u), much more rapidly than convergence

to the linear system solution u.
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1.0 INTRODUCTION

Problems in many applications lead to large sparse linear systems with coe¢ cient matrices

that are invertible and sparse, but have little other structure. For example, convective

transport problems yield linear systems

Au = f; A : N �N invertible matrix, (1.1)

where N can often be on the order of millions. Typically all that is known is that the

symmetric part of A, (A + Atr)=2; is positive de�nite. Problems in three body scattering

theory lead to linear systems like (1.1) whereN is of the order of 20 million and the coe¢ cient

matrix is very sparse but has little other discernible structure. In such problems the solution

u = A�1f is typically calculated only to compute accurately further statistics or functionals

of that solution, upon which decisions are taken. This is obviously necessary; sifting through

20 million data values of equal importance is humanly impossible. Further, only R1 is well-

ordered. Thus a design �improving�a previous one can only be decided upon if one number

gets larger or smaller. The functionals extracted can be linear (or nonlinear) functionals,

leading to the problem

for A : RN ! RN and L : RN ! R; (1.2)

solve Au = f , compute L(u):

In all cases a very interesting and practical question arises [1]:Can we determine methods

that converge very rapidly to the functional�s value?

ln ! L(u) much more rapidly than un ! u: (1.3)
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This is especially important when the coe¢ cient matrix A is not symmetric positive def-

inite (SPD) and when the lack of discernible structure in A makes constructing e¤ective

preconditioners di¢ cult.

1.1 PRELIMINARY WORK

Preliminary research into this question has been completed by Trisha R. Butler [2]. The

robustness of post-processing and descent algorithms was explored by augmenting the algo-

rithms with the Jacobi method to solve for several functionals. The data showed that the

usefulness of the algorithms depended largely on which functional was being calculated and

in some cases, whether N (the size of the linear system) was even or odd. For example,

a post-processing algorithm was used with Jacobi to evaluate an average temperature and

a heat �ux functional (these functionals will be discussed in greater detail in Chapter 3).

When N was even, the average temperature functional converged 4-5 times faster than the

original solution converged. In contrast, whenN was odd, the heat �ux functional converged

1.2-1.5 times faster than the original solution. Thus, for both the post-processing and the

descent algorithms, the functional ln converged faster than the linear system, but the extent

of the improvement depended greatly on whether N was even or odd. No explanation was

found for the di¤erences in the convergence of odd verus even system sizes. The results

from using acceleration formulas to increase the convergence of ln are inconsistent, but they

do indicate that there are many avenues yet to be explored in answering the question posed

in (1.3) [2].

1.2 THE SPD CASE

Many methods exist to solve problems in the form of (1.1). The case where A is SPD has

solution methods that capitalize on the existence of an inner product and norm based on

the matrix A. That is, the A-inner product exists and can be written as

hx; yiA = xtrAy;
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which leads to the A-norm:

kxkA =
p
xtrAx:

An A-orthogonal basis can be generated, beginning with a Krylov subspace, using the or-

thogonalization of moments algorithm. Given an A-orthogonal basis

f�1; : : : ; �Ng (1.4)

with h�i; �jiA = 0; i 6= j

and h�i; �jiA 6= 0; i = j;

then the solution of Au = f can be written down explicitly. We can expand

u =
NX
i=1

�i�i; �i 2 R;

and substitute into the original problem:

Au = f;
NX
i=1

�iA�i = f;

NX
i=1

�ihA�i; �ji = hf; �ji:

Using Equation 1.4, this gives an expression for �i and for u:

�i =
hf; �ii
h�i; �iiA

;

u =
NX
i=1

hf; �ii
hA�i; �ii

�i: (1.5)

The series in (1.5) can be summed until a given accuracy is attained as follows:

3



Algorithm 1. Conjugate Directions for Au = f

For A SPD and �i; : : : ; �N A-conjugate vectors

u1 =
hf; �1i
hA�1; �1i

�1

compute until satis�ed

given un

�n+1 =



f; �n+1

�

�n+1; �n+1

�
A

un+1 = un + �n+1�n+1

if kf � Aun+1k < Tolerance, stop

otherwise n = n+ 1:

This is the basic algorithm for the SPD case. E¢ ciency dictates numerous re�nements

of the algorithm which culminate in the conjugate gradient method (CG).

1.3 THE NON-SPD CASE

In the non-SPD case, extensions are based on: (i) passing to the normal equation AtrAu =

Atrf , (ii) L2 orthogonalization of �i by Gram-Schmidt instead of A-conjugancy, or (iii)

replacing A-orthogonality by A-biorthogonality (bi-conjugacy).

The bi-conjugate gradient method (Bi-CG) is a solution method for problems in the

form of (1.1) where A is not SPD. The Bi-CG method is an extension of CG that utlizes a

bi-conjugate sequence of vectors.

De�nition 2. Given an inner product h�,�i the sequences �i, j are bi-orthogonal if

h�i;  ji = 0; i 6= j;

h�i;  ji 6= 0; i = j:
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De�nition 3. Given an inner product h�,�i the sequences �i, j are bi-conjugate (or A-

biorthogonal) if

h�i; Atr ji = hA�i;  ji = 0; i 6= j;

h�i; Atr ji = hA�i;  ji 6= 0; i = j:

The solution to the problem Au = f can be written down explicitely, given bi-conjugate

sequences f�ig,
�
 j
	
: Again consider an expansion of the vector u:

u =
X
i

�i�i:

Substitute into the original problem:

Au = f;
NX
i=1

�iA�i = f;

NX
i=1

�ihA�i;  ji = hf;  ji:

This gives an expression for �i and for u:

�i =
hf;  ii
hA�i;  ii

;

u =
NX
i=1

hf;  ii
hA�i;  ii

�i: (1.6)

The algorithm breaks down and must be restarted if

hA�i;  ii = 0:

The series in (1.6) can be summed until a given accuracy is attained. Re�nements of this

idea lead to the Bi-CG algorithm.

5



Algorithm 4. Bi-CG for Au = f

Guess u1;

Calculate r1 = f � Au1

Set ~r1 = d1 = ~d1 = r1

For k = 1; 2; 3; : : :until satis�ed

Calculate (if denominator vanishes: restart)

�k =
h~rk; rki
h ~dk; Adki

;

uk+1 = uk + �kd
k

rk+1 = rk � �kAd
k

~rk+1 = ~rk � �kA
tr ~dk

if kf � Aun+1k < Tolerance, stop

otherwise n = n+ 1:

1.4 CALCULATING FUNCTIONALS

The CG and Bi-CG algorithms solve problems in the form of (1.1). However, this thesis

considers the problem of �nding methods that converge rapidly to functionals of the solution

to problem (1.1). That is, we here consider solving the problem as posed in (1.2):

solve u = A�1f , compute L(u):

If one can solve Au = f to high accuracy and with minimal cost, it is surely most reliable

to �rst solve Au = f and then compute L(u). The error in L(u) is bounded by the error in

u:

jL(u)� L(un)j =
��ltr(u� un)

�� � klk ku� unk :

On the other hand, there are simple and important problems Au = f (mostly highly non-

symmetric and/or inde�nite) which require very many iterates for good solutions. There

6



are thus problems in which a high accuracy solution of Au = f is not feasible because of

time and resource limitations. In fact, the solution may not converge at all with traditional

methods. Thus, considering (1.3) is interesting for many of these problems. Recall (1.3):

we seek

ln ! L(u) much more rapidly than un ! u:

To see this more clearly, consider a simple convection-di¤usion problem. Let U(x; y) be

the solution of

�"�U + b�OU = f(x; y); in 
 = (0; 1)2 and U = g(x; y) on @
;

where " is the di¤usion coe¢ cient, b is the convection �eld, f(x; y) is the heat source or

sink, and g(x; y) is the boundary condition. As the di¤usion coe¢ cient, ", decreases the cell

Péclet number becomes large. The cell Péclet number is:

Pe =
h jvj
2"

:

A large Pe indicates more "turbulence" in the convection-di¤usion problem [3]. The physical

process that is modeled by the A matrix is more turbulent, and A is "more non-symmetric"

as " becomes smaller.

It is reasonable to expect that when " decreases more iterations will be required to attain

a su¢ cient level of accuracy. Table 1 reports the number of iterations that are necessary to

solve the linear system arising from the central di¤erence discretization on a uniform mesh

of the convection-di¤usion problem using Bi-CG with a �xed h as " decreases.

Table 1 suggests that calculating accurate solutions becomes more costly as the problem

becomes more non-symmetric. It is in these cases that we should expect methods of the

form (1.3) to be of interest.

This thesis considers (1.3), building an iterative method for the simplest case in which

L(u) is either a linear functional or a smooth nonlinear functional for which linearization

7



Table 1: Convection Di¤usion Problem (N=100, Tol = 1E-5)

" numerical value of " number of iterates

1 1 212

1=
p
N 0:1 199

2=N 0:02 166

1=500 0:002 798

1=1000 0:001 20; 000 (divergence)

1=1500 6:66� 10�4 20; 000 (divergence)

1=N2 1� 10�4 20; 000 (divergence)

is an e¤ective tool. If the functional is linear, the problem can be posed as solving the

augmented linear system for u and l: Find u; l satisfying:

L(u)� hl; ui = 0; Au = f: (1.7)

If this augmented system is solved by standard iterative methods, no new algorithms arise.

This approach is equivalent to computing ln = hl; uni at each step.

The basic approach we explore is to solve iteratively the coupled problems

Au = f; and Atr� = l: (1.8)

Lemma 5. Let rn = f � Aun and Atr� = l: Then hl; ui = hl; uni+ h�; rni :

Proof.

hl; ui = hl; uni+ hl; eni where en is the error in un, the calculated solution at iterate n.

= hl; uni+


Atr�; en

�
= hl; uni+ h�; rni :

8



For smooth nonlinear functionals n(u) with derivative n0(u) this becomes the linearized

coupled system

Au = f; and Atr�n = n0(un): (1.9)

9



2.0 ADAPTING BI-CG METHODS

The Bi-CG algorithm is a natural choice for considering (1.3) due to the dual problems

involved in calculating functionals of a solution to a system. Therefore consider the coupled

systems

Au = f; and Atr� = l: (2.1)

Algorithm 4 describes Bi-CG for the problem Au = f . The method has the following

properties [4].

1. The residuals and shadow residuals are bi-orthogonal



~ri; rj

�
= 0; i 6= j:

2. The search directions are bi-conjugate

D
di; A ~dj

E
= 0; i 6= j;D

di; Atr ~dj
E
= 0; i 6= j:

3. The residuals and search directions are bi-orthogonal



ri; dj

�
= 0; j < i;D

~ri; ~dj
E
= 0; j < i:

10



Given the Bi-CG residuals and shadow residuals, it is possible to use them in a projected

Bi-CG algorithm to solve the dual problem

Atr� = l:

Indeed, expanding

� =

NX
j=1

aj ~d
j

and substituting the expansion into the dual system gives



di; Atr�

�
=



di; l
�

NX
j=1

aj

D
di; Atr ~dj

E
=



di; l
�
, due to bi-conjugacy,

aj =
hdj; liD
dj; Atr ~dj

E ; j = 1; : : : N:
This can be implemented simply as follows.

Algorithm 6. Summing bi-orthogonal series

Given bi-conjugate directions di; ~dj

Calculate a1 =
hd1;li

hd1;Atr ~d1i :

Set �1 = a1 ~d
1:

For k = 2; 3; : : : until satis�ed

Calculate ak =
hdk;li

hdk;Atr ~dki :

Set �k = �k�1 + ak ~d
k:

Naturally, it is more e¢ cient to modify this to allow an initial guess and to use this idea

in a bi-conjugate direction method. In the simplest form, this is equivalent to choosing

an initial guess �0 and applying the above bi-orthogonal series algorithm to the equivalent

system:

�0 = l � Atr�0;

Atr(�� �0) = �0:

11



The associated series is

� = �0 +

NX
j=1

aj ~d
j;

aj =
hdj; �0iD
dj; Atr ~dj

E ; j = 1; : : : N:
Algorithmically, this becomes the following.

Algorithm 7. Projected bi-conjugate directions

Given bi-conjugate directions di; ~dj

Guess �0

Calculate the dual residual �0 = l � Atr�0

Calculate a1 =
hd1;�0i
hd1;Atr ~d1i :

Set �1 = �0 + a1 ~d
1

For k = 1; 2; 3; : : : until satis�ed

Calculate ak =
hdk;�0i
hdk;Atr ~dki ;

Set �k = �k�1 + ak ~d
k:

We can thus combine the Bi-CG method with the projected bi-conjugate diretion method

as follows.

Algorithm 8. Bi-CG for Au = f; L(u) = hu; li

Guess

u1; �0:

Calculate the residual

r1 = f � Au1:

Calulate the dual residual

�0 = l � Atr�0:

Set

~r1 = �0;

d1 = r1;

~d1 = ~r1:

12



For k = 1; 2; 3; : : : ; until satis�ed

Update original problem�s solution.

Calculate (if denominator vanishes: restart)

�k =



~rk; rk

�D
~dk; Adk

E ;
uk+1 = uk + �kd

k;

rk+1 = rk � �kAd
k;

~rk+1 = ~rk � �kA
tr ~dk:

Update dual problem�s solution.

Calculate (if denominator vanishes: restart)

ak =



dk; �0

�D
dk; Atr ~dk

E :

Set

�k = �k�1 + ak ~d
k:

Update approximation to functional�s solution.

Calculate:

Lk+1 = hl; uk+1i+


�k; rk+1

�
:

Update search directions and shadow search directions.

Calculate (if denominator vanishes: restart)

�k =



~rk+1; rk+1

�
h~rk; rki ;

dk+1 = rk + �kd
k;

~dk+1 = ~rk + �k
~dk:

13



Algorithm 8 has several implications that may not be obvious at �rst glance. First, the

choice of the initial shadow residual, ~r1, di¤ers from the basic Bi-CG algorithm. This is a

consequence of the dual nature of the problem being considered. Recall that the algorithm

has been modi�ed to solve the coupled problem (2.1). The original residual and update are

associated with the original problem, Au = f . The shadow residual and shadow update are

associated with the dual problem Atr� = l. Thus the shadow residual must be initialized

using the original guess of the dual problem: ~r1 = �0 = l � Atr�0.

The other subtle implication of the modi�ed algorithm is that the solution of the original

problem, u, will di¤er depending on the choice of functional, l. Intuitively we expect that

an algorithm should require the same number of iterations to solve for u regardless of the

functional that is being simultaneously calculated. However, recall that the shadow residual,

~r, is initialized using the original guess of the dual problem, which will result in a di¤erent

~r1and a di¤erent sequence of ~rk iterates for each functional. While the shadow residuals

are associated with the dual problem, they are also used in the update of the original search

direction: dk+1 = rk +
h~rk+1;rk+1i
h~rk;rki dk: Thus the choice of functional will a¤ect the number

of iterations required to calculate the solution of the original problem, u. Some numerical

examples of this implication can be found in Tables 2-10 in Chapter 4.
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3.0 FUNCTIONALS

Three linear functionals are used to test the modi�ed Bi-CG method that is described in

Algorithm 7. We shall consider the problem of estimating these functionals in a thermal

convection-di¤usion problem. Thus, let U(x; y) be the solution of

�"�U + b�OU = f(x; y); in 
 = (0; 1)2 and U = g(x; y) on @
; (3.1)

where " is the di¤usion coe¢ cient, b is the convection �eld, f(x; y) is the heat source or sink,

and g(x; y) is the boundary condition. An interesting functional associated with equation

(3.1) is the average temperature:

L(U) =

Z Z



U(x; y)dxdy:

In 2-D, the average temperature is calculated discretely on an N �N mesh by (note we

change notation to represent U discretely: U = (U1; : : : UN2)tr):

L(U) =
1

N2

N2X
k=1

Uk:

Written in terms of dot products, L(U) becomes

L(U) =

�
1

N2
� � � 1

N2

�
�

0BBB@
U1
...

UN2

1CCCA =

0BBB@
1
N2

...
1
N2

1CCCA
tr

�

0BBB@
U1
...

UN2

1CCCA (3.2)

=
1

N2
h1; Ui where 1 is the vector with all 1�s:

The vector l is then 1
N2 (1 � � � 1)tr so that L(U) = hl; Ui.
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Another linear functional addressed in this paper is the heat �ux. Let � denote one face

of the �ow domain with outward unit normal n̂: The problem is: given di¤usion coe¢ cient

"; the convection �eld b; heat source or sink f(x; y), and temperature on the boundary

g(x; y), �nd

LF (U) =

Z
�

"OU � n̂ds:

In the case where f(x; y) = 0; g(x; y) = x, and the hot wall is the side x = 1, heat �ux is

represented using the equation

LF (U) =

Z 1

0

"
@U

@x
(1; y)dy: (3.3)

A linear functional for the heat �ux is developed in Lemma 6 of [2]. A modi�cation of

Lemma 6 follows:

Lemma 9 (Linear Heat Flux Functional). Using equation (3.1) with f(x; y) = 0 and

g(x; y) = x, and the hot wall side x = 1, the heat �ux from equation (3.3) is equivalent

to

LF (U) = " (h+N + hl; Ui) , where (3.4)

l =

8<: 0; k � N2 �N

�1; k > N2 �N

Proof. Let 	 = "@U
@x
(1; y) and 	j =

1�UjN
h

: Then, by the Trapezoid Rule, equation (3.3)
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becomes

LF (U) = "

N+1X
j=1

h

2
(	j�1 +	j)

= "
h

2

 
NX
j=0

	j +

N+1X
j=1

	j

!

= "
h

2

 
	0 + 2

NX
j=1

	j +	N+1

!

= "
h

2

"
(	0 +	N+1) + 2

NX
j=1

	j

#

= "
h

2
(1 + 1) + "h

NX
j=1

1� U jN
h

= "

 
h+

NX
j=1

�
1� U jN

�!

= "

 
h+N �

NX
j=1

U jN

!
:

For k = (i� 1)N + j, we have lk = �1 for k > N2 �N: Then

LF (U) = " (h+N + hl; Ui) :

Since LF (U) is a¢ ne but not linear, the iterative method calculates the linear functional

hl; Ui to the desired tolerance. In order to �nd the value of the heat �ux, L(U), one must

then sum "(h+N + hl; Ui):

The last functional that is considered here is the checkerboard functional. The checker-

board functional does not have a physical meaning as the average temperature and heat �ux

functionals do. However, it is a rigorous test of the method because it causes the algorithm

to fail for reasons that are di¤erent from why it might fail for the average temperature or

heat �ux functionals.
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The checkerboard functional used here is

For i = 1; : : : ; N and j = 1; : : : ; N

let m = N(i� 1) + j:

l(m) =

8<: 2; if m is even

0; if m is odd
: (3.5)

The checkerboard functional is so named because if the mesh were colored red where L(U)

is zero and colored black where L(U) is two, it would resemble a checkerboard.

Note that each functional, l, is an N2�1 vector. For the test problem considered herein,

A is an N2 �N2 matrix.
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4.0 NUMERICAL RESULTS

4.1 ERROR ANALYSIS

Why should we expect a disparity in the number of iterations required for convergence of

the functional versus the original solution? The following lemma shows the relationship

between the error in the original solution and the error in the functional solution.

Lemma 10 (Error Analysis). The error in the functional is quadratic in the error of the

solution of the original problem.

L(u) = hl; uni+ hrn; �i

Ln = hl; uni+ hrn; �ni

jL(u)� Lnj = jhrn; �� �nij = jhA (u� un) ; �� �nij :

Notice that the error of the functional, L(u) � Ln, is equivalent to an inner product

which contains the error of the solution to the original linear system, u � un. As such, the

error of the functional is a quadratic function of the error of the original solution. The

implication of Lemma 10 is that the error in the functional will not only be smaller than

the error in the solution of the original linear system, it will also decrease at a faster rate.

We should expect to �nd that fewer iterations are needed to calculate the functional than

are needed to calculate the solution to the original problem. We should also expect to see

a faster convergence rate in the functional solution than in the original problem solution.

Section 4.2 is a numerical exploration of the number of iterations required to calculate both

the functional and the original solution. Chapter 5 focuses on estimating and comparing

convergence rates of the functional and of the solution of the original linear system.
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4.2 NUMERICAL EXPLORATION

The adapted Bi-CG method performs well when calculating the three test functionals. In all

convergent cases, the functional converges faster than the solution of the original problem.

That is, we observe ln ! L(u) more rapidly than un ! u:

The tables below report the number of iterations required for (i) convergence of the

solution of the original problem and (ii) convergence of the functional. The notation its

(eo) indicates the number of iterations required for the relative error of the solution of the

original problem,
kutrue � unk
kutruek

;

to reach the desired tolerance of 1 � 10�5: The notation its (ef) indicates the number of

iterations required for the relative error of the functional,

kL(utrue)� Lnk
kL(utrue)k

;

to reach the desired tolerance of 1 � 10�5: (Stopping criteria will be discussed in detail in

Chapter 6.)

The data in Tables 2, 3, and 4 reveal that fewer iterations are required for convergence of

the functional than for convergence of the solution of the original problem. Table 2 reports

the data for the case in which the di¤usion coe¢ cient is large (" = 1), thus the matrix A is

nearly symmetric. Tables 3 and 4 report the results for cases in whichA becomes increasingly

non-symmetric: " = 1p
N
and " = 1

N
: Tables 5, 6, and 7 report the same information for the

Heat Flux functional and Tables 8, 9, and 10 report the information for the Checkerboard

functional.

The results indicate that the adapted Bi-CG method starts to fail as the system becomes

larger (as N gets larger) and less symmetric (as " shrinks). The notation �DIV�indicates

that the method diverged. Divergence is signaled when the method reaches the maximum

number of iterations, here MaxIts = 10; 000 iterations.
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Table 2: Average Temperature Functional (eps = 1/N)

h N its (eo) its (ef)

1/11 10 22 14

1/64 63 110 76

1/95 94 450 172

1/152 151 DIV DIV

1/301 300 DIV DIV

Table 3: Average Temperature Functional (eps = 1/sqrtN)

h N its (eo) its (ef)

1/11 10 23 15

1/64 63 133 75

1/95 94 185 101

1/152 151 282 154

1/301 300 582 251

Table 4: Average Temperature Functional (eps = 1/N)

h N its (eo) its (ef)

1/11 10 22 14

1/64 63 110 76

1/95 94 450 172

1/152 151 DIV DIV

1/301 300 DIV DIV
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Table 5: Heat Flux Functional (eps = 1)

h N its (eo) its (ef)

1/11 10 23 15

1/64 63 135 89

1/95 94 201 132

1/152 151 321 207

1/301 300 636 403

Table 6: Heat Flux Functional (eps = 1/sqrtN)

h N its (eo) its (ef)

1/11 10 23 15

1/64 63 128 61

1/95 94 181 113

1/152 151 293 164

1/301 300 563 162

Table 7: Heat Flux Functional (eps = 1/N)

h N its (eo) its (ef)

1/11 10 22 13

1/64 63 108 80

1/95 94 202 154

1/152 151 DIV DIV

1/301 300 DIV DIV
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Table 8: Checkerboard Functional (eps = 1)

h N its (eo) its (ef)

1/11 10 25 14

1/64 63 138 86

1/95 94 199 128

1/152 151 339 196

1/301 300 DIV 353

Table 9: Checkerboard Functional (eps = 1/sqrtN)

h N its (eo) its (ef)

1/11 10 23 15

1/64 63 121 79

1/95 94 188 101

1/152 151 280 151

1/301 300 582 251

Table 10: Checkerboard Functional (eps = 1/N)

h N its (eo) its (ef)

1/11 10 22 14

1/64 63 103 73

1/95 94 DIV DIV

1/152 151 DIV DIV

1/301 300 DIV DIV
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Notice the last row of Table 8: the solution of the original problem diverged, but the

functional converged in only 353 iterations. The modi�ed Bi-CG algorithm allowed us to

accurately solve the aspect of the problem that we are taking decisions on (the functional of

the system�s solution) even though the method did not compute an accurate solution of the

original linear system!
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5.0 CONVERGENCE

5.1 HOW MANY ITERATIONS DOES AN ITERATIVE METHOD USE

BEFORE CONVERGING?

Suppose the iterative operator is T . Then we know

en+1 = Ten (5.1)

where en is the error at iteration step n. Equivalently we can say

en+1 = T ne0:

By the multiplicative property of operator norms we have

kenk � kTkn ke0k ;
kenk
ke0k

� kTkn :

This inequality can be used to bound the relative error. In order to bound the relative error

by some number �, the following condition must hold:

kenk
ke0k

< �:

It is thus su¢ cient to have:

kTkn < �:

After taking logs this condition can be restated as

n ln(kTk) < ln(�):

25



A su¢ cient condition for convergence of the iterative method is kTk < 1: If this is the case,

then we know that ln(kTk) < 0. After rearranging we get the following condition for the

number of iterations, n, required for a convergent iterative method to reduce the error by � :

n � ln(�)

ln(kTk) : (5.2)

We can use Equation (5.2) to determine how many iterations of the Bi-CG algorithm are

needed to obtain one signi�cant digit of accuracy by taking � = 0:1. However, we must �rst

estimate the norm of the iteration operator, kTk. From (5.1) we can estimate kTk as

kTk ' ken+1k
kenk

: (5.3)

According to (5.3), to estimate kTk we need an estimate of true error(k) where k is the

number of iterations. The next section deals with the problem of estimating kTk.

5.2 ESTIMATING THE TRUE ERROR FUNCTION AND THE

ITERATION OPERATOR

5.2.1 Average Temperature Functional with Epsilon = 1

Consider the Average Temperature functional with N=200 and " = 1. Figure 1 is a semi-log

plot (the y-axis has a logarithmic scale) of the true error of the original problem Au = f

and the true error of the functional L(u). The �gure indicates that the true error of the

functional converges faster and at a faster rate than the true error of the original problem

of �nding u = A�1f .

Upon inspection, it appears that there is a bend in the functional error plot at iterate

number 250. Because of the bend in the error plots, the estimation problem will be treated

in two parts. One pair of convergence rates will be estimated for the two errors (the original

problem error and the functional error) before the bend occurs at iterate 250. A second pair

of convergence rates will be estimated for the two errors after the convergence rate appears
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Figure 1: Average Temperature Functional

to increase at the bend in the plot. The second pair of convergence rates corresponds to

iterates 250 through 430:

The slopes of these two line segments are each estimated using a linear �t to the logarithm

of the true error data. The functional form of the �tted curve is

e(k) = a � k + b

where e is the log of the error associated with iterate k: Figure 2 and Figure 3 show the

error data and the associated linear �tted curves:

The estimated linear equations for the �rst 250 iterates are

Original Problem

eoriginal(k) = �0:006 � k + 0:351

and
Functional

efunctional(k) = �0:016 � k + 0:437:

(5.4)
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Figure 2: First 250 Iterates of the Average Temperature Funcitonal

Figure 3: Iterates (251:430) of Average Temperature Functional
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The estimated linear equations for iterates 250 through 430 are

Original Problem

eoriginal(k) = �0:020 � k � 1:224

and
Funtional

efunctional(k) = �0:037 � k � 4:079:

(5.5)

Using these two estimated equations, we can derive estimates for the norm of the iterative

operator for each of these two problems.

Conclusion 11 (Estimating kTk).

Let ei(k) = log(true errori) where i = original; functional

ei(k) = ai � k + bi

ei(k + 1) = ai � (k + 1) + bi

ei(k + 1) = ai � k + ai + bi

ei(k + 1) = ai + ei(k)

true errori(k + 1) = 10ai � true errori(k)

true errori(k + 1) = kTki � true errori(k)

From (5.3) and the estimated equations (5.4) and (5.5) we now have estimates of kTki
for both segments of the errors:

First 250 iterates

kTkoriginal = 10�0:006

kTkfunctional = 10�0:016

Iterates 250 through 430

kTkoriginal = 10�0:020

kTkfunctional = 10�0:037:

It is useful to know how many iterations are required of the Bi-CG iterative method to

obtain one signi�cant digit of accuracy. This is equivalent to requiring that the relative error

be bounded by � = 0:1. Inserting the estimated norms of the iterative method into (5.2)
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provides the condition for the number of iterations that are needed to gain one signi�cant

digit of accuracy:

First 250 iterations

noriginal � ln(0:1)

ln(10�0:006)
' 167 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:016)
' 63 iterations per signi�cant digit of accuracy.

Iterations 250 through 430

noriginal � ln(0:1)

ln(10�0:020)
' 50 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:037)
' 27 iterations per signi�cant digit of accuracy.

5.2.2 Average Temperature Functional with Epsilon = 1/
p
N

As we saw in Table 1, changing the di¤usion coe¢ cient, ", changes the number of iterations

required for convergence. How does a change in " a¤ect convergence rates? Let us consider

the same problem of estimating the iteration operators and number of iterations required to

gain one signi�cant digit of accuracy with the Average Temperature Functional, N = 200;

but with a smaller di¤usion coe¢ cient: " = 1=
p
N = 1=

p
200:

Figure 4 is a semi-log plot of the true error of the original problem Au = f and the

true error of the functional L(u). The �gure indicates that the true error of the functional

converges faster than the true error of the original problem.

Upon inspection, it again appears that there is a bend in the functional error plot at

iterate number 250. Thus, again one pair of convergence rates will be estimated for the �rst

250 iterates and another pair of convergence rates will be estimated for iterates 250 through

365.

The slopes of these two line segments are each estimated using a linear �t to the logarithm

of the true error data. The functional form of the �tted curve is again

e(k) = a � k + b
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Figure 4: Average Temperature Functional: epsilon = 1/sqrtN

where e is the log of the error associated with iterate k: Figure 5 and Figure 6 show the

error data and the associated linear �tted curves:

The estimated linear equations for the �rst 250 iterates are

Original Problem

eoriginal(k) = �0:009 � k + 0:323

and
Functional

efunctional(k) = �0:022 � k + 0:245:

(5.6)

The estimated linear equations for iterates 250 through 365 are

Original Problem

eoriginal(k) = �0:023 � k � 2:009

and
Functional

efunctional(k) = �0:038 � k � 6:169:

(5.7)

Using these two estimated equations, we can derive estimates for the norm of the iterative

operator for each of these two problems.
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Figure 5: First 250 iterates of Average Temperature Functional

Figure 6: Iterates (251 : 365) of Average Temperature Functional
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From (5.3) and the estimated equations (5.6) and (5.7) we now have estimates of kTki
for both segments of the errors:

First 250 iterates

kTkoriginal = 10�0:009

kTkfunctional = 10�0:022

Iterates 250 through 365

kTkoriginal = 10�0:023

kTkfunctional = 10�0:038:

Again, (5.2) provides the condition for the number of iterations that are needed to gain

one signi�cant digit of accuracy:

First 250 iterations

noriginal � ln(0:1)

ln(10�0:009)
' 111 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:022)
' 45 iterations per signi�cant digit of accuracy.

Iterations 250 through 365

noriginal � ln(0:1)

ln(10�0:023)
' 43 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:038)
' 26 iterations per signi�cant digit of accuracy.
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Figure 7: Heat Flux Functional

5.2.3 Heat Flux Functional with Epsilon = 1

This same analysis can be applied to the Heat Flux Functional with " = 1 and N = 200:

Figure 7 is a semi-log plot of the true error of the original problem Au = f and the

true error of the functional L(u). The �gure indicates that the true error of the functional

converges faster than the true error of the original problem.

Upon inspection, it again appears that there is a bend in the functional error plot near

iterate number 250. Thus, again one pair of convergence rates will be estimated for the �rst

250 iterates and another pair of convergence rates will be estimated for iterates 250 through

429. Figure 8 and Figure 9 show the error data and the associated linear �tted curves:

The estimated linear equations for the �rst 250 iterates are

Original Problem

eoriginal(k) = �0:006 � k + 0:199

and
Functional

efunctional(k) = �0:012 � k � 1:008:

(5.8)
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Figure 8: First 250 iterates of Heat Flux Functional

Figure 9: Iterates (251:429) of Heat Flux Functional
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The estimated linear equations for iterates 250 through 429 are

Original Problem

eoriginal(k) = �0:019 � k � 1:688

and
Functional

efunctional(k) = �0:036 � k � 4:220:

(5.9)

From (5.3) and the estimated equations (5.8) and (5.9) we now have estimates of kTki
for both segments of the errors:

First 250 iterates

kTkoriginal = 10�0:006

kTkfunctional = 10�0:012

Iterates 250 through 429

kTkoriginal = 10�0:019

kTkfunctional = 10�0:036:

Again, (5.2) provides the condition for the number of iterations that are needed to gain

one signi�cant digit of accuracy:

First 250 iterations

noriginal � ln(0:1)

ln(10�0:006)
' 167 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:012)
' 83 iterations per signi�cant digit of accuracy.

Iterations 250 through 429

noriginal � ln(0:1)

ln(10�0:019)
' 53 iterations per signi�cant digit of accuracy

nfunctional � ln(0:1)

ln(10�0:036)
' 28 iterations per signi�cant digit of accuracy.
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5.3 ACCELERATING CONVERGENCE RATES

There are some features of this problem that we can utilize to try to accelerate the conver-

gence rates. The obvious place to look for possible accelerations is in the initial guesses

of the original and dual solutions: u0 and �0: Choosing u0 = (0; : : : ; 0), an initial guess of

zero for the solution of the original problem, is standard practice to which we will adhere.

Perhaps the choice of �0 can be modi�ed to result in accelerations of the convergence rate.

Given u0

r0 = f � Au0

Select �0 = argmin
�l � Atr�

 : � = �r0
	

� =
hAtrr0; li

hAtrr0; Atrr0i
�0 = �r0:

This choice of �0 is the best possible initial guess for the dual problem in spanfr0g.

Unfortunately this choice of �0 does not accelerate the convergence of the Bi-CG algorithm.

The new choice of �0 turns out to be zero, which is the same initial guess that we were using

before! The denominator of the coe¢ cient � is extremely large, leading to a multiplication

by zero when calculating �0:

Let us consider why the denominator is so large. Recall that we are trying to solve the

coupled problem

Au = f; and Atr� = l (5.10)

where A is large and sparse. If u0 = (0; : : : ; 0), then r0 = f: The choice of f here leads to

kAtrfk being very large (on the order of 105):

Acceleration by optimal choice of �0 may yet be useful. If u0 is chosen as something

other than u0 = (0; : : : ; 0) ; then the acceleration may improve convergence. Suppose

u0 = (1; : : : ; 1). In this case � again turns out to be very small for the same reason:

the denominator hAtrr0; Atrr0i is very large, which leads to � very small (on the order of

10�18).
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Using the acceleration formula for choosing �0 does not slow down the convergence of the

algorithm for two di¤erent choices of u0. There may be some unexplored scenarios in which

choosing �0 = �r0 does accelerate convergence. Since there aren�t any losses associated with

this choice but there are potential gains, choosing �0 = �r0 is a better choice than choosing

the generic �0 = (0; : : : ; 0) :
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6.0 STOPPING CRITERION

How do we know when the Bi-CG iterative method has converged? There are three possible

options for stopping criterion in the algorithm:

� small residual

� small update

� too many iterations.

The �small residual� criterion signals convergence to the true solution because as the

residual approaches zero the error does as well. That is, if the residual is smaller than some

tolerance level, then we signal convergence (if krnk � tol then stop and converges):

The �small update�criterion signals convergence (less reliably than small residual) to the

true solution because as the updates gets smaller and smaller it indicates that the iteration

is Cauchy. In other words, it is not adding much new information - thus provided the

update is small enough the solution is unchanging within a pre-speci�ed number of signi�cant

digits. Thus, if the update is smaller than some tolerance level, then we signal convergence

(if kupdatek � tol then stop and converges):

The �too many iterations� criterion signals divergence. This criterion is used in con-

junction with either the �small residual�or �small update�criterion. If the method doesn�t

converge according to one of the above criterion within a pre-speci�ed number of itera-

tions, then we signal divergence. Thus, if the number of iterations reaches some maximum

tolerance level, then we signal divergence (if iter �MaxIts then stop and diverges).

The question then becomes, which criterion do we use? Which gives us a more accurate

picture of what is happening to the true error in the problem - a small residual or a small

update? We can use our test problem to provide an answer to this question because we know
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the true error in our test problem. However, another question arises in this application:

Do we use the residual and updates of the original problem, of the dual problem, or of the

functional? Again, we can examine our test problem to see what happens in all of the

di¤erent cases.

Section 6.1.1 tests the original residual as a stopping criterion and Section 6.1.2 tests the

dual residual as a stopping criterion. Section 6.2.1 tests the update of the original problem

as a stopping criteron and Section 6.2.2 tests the update of the functional as a stopping

criterion.

6.1 RESIDUALS

The fundamental equation of numerical linear algebra tells us that there is a direct connection

between the residual and the error:

Ae = r:

Thus we know that bounding r will in some way bound the error:

kAk kek � krk :

There are two problems with this stopping criterion. First, if the residual is not bounded,

then we can�t say anything about the error. Second, if the problem is ill-conditioned, then

the residual converging to zero is not indicative of the error converging to zero. That is,

the residual can be small, but the error can still be large. The condition number of the

system gives an indication of whether controlling the residual will also control the error.

The following theorem formalizes this relationship:

Theorem 12. If Ax = b and r = b� Ax̂, then

kx� x̂k
kxk � cond(A)

krk
kbk :
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Proof. Since Ae = r;

e = A�1r:

We have that kek � kA�1k krk :

Also, b = Ax:

Thus we have kbk � kAk kxk :

Combining these two inequalities gives kek
kAkkxk �

kA�1kkrk
kbk :

Rearranging yields kek
kxk � kAk kA

�1k krkkbk = cond(A)krkkbk :

Thus if cond(A) is large, the system is ill-conditioned and having a tight bound on the

relative residual doesn�t give a tight bound on the relative error. Example 13 calculates

cond(A) for our test problem.

Example 13. For the discretized thermal convection-di¤usion problem described in Equation

(3.1) with N = 150;b = [1; 0] ; and " = 1

cond(A) = kAk kA�1k = 1:3376e(+004):

This condition number was calculated using the MATLAB function �cond(A)�, which

returns the 2-norm condition number.

This system is ill-conditioned, thus theory does not give us any reason to believe that

bounding the residual will bound the true error. How to bound the error then becomes an

empirical question.

6.1.1 Residual of the Original Problem

For our test problem, we can directly examine this relationship because we know the true

solution and we therefore know the true error. What happens if we use the residual of the

original problem to signal convergence? Figure 10 illustrates the relationship between the

original residual and the true errors of both the original problem and the functional for the

Average Temperature functional. Figure 11 illustrates the same relationship for the Heat

Flux functional. The stopping criterion used here is

original residual =
krk
kr0k

� tol
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Figure 10: Average Temperature Functional, eps = 1; N = 200

where tol = 1 � 10�5 and krk is the residual of the original problem for the most recent

iterate: This stopping criterion requires that the relative residual be equal to zero with �ve

signi�cant digits of accuracy.

For all three functionals, the relative residual of the original problem is a su¢ cient bound

for controlling the relative error of the original problem, even though cond(A) � 1. Even

though the system is ill-conditioned, the relative residual of the original problem provides

a su¢ cient bound for both the true error in the original problem and the true error in the

functional. As pointed out in Section 5, the true error in the functional converges much

faster than does the true error in the original problem. This results in the original residual

being a loose bound for the true error in the fuctional (errorfunctional ' 10�12 when original

residual ' 10�5).

The residual continues to be a su¢ cient bound for both errors even when the system

becomes less symmetric (that is, when " decreases). Figures 13 and 14 show what happens

with the average temperature functional when the di¤usion coe¢ cient, ", gets smaller. The

same patterns hold for the heat �ux and checkerboard functionals. The size of the system

is also smaller in these examples because the algorithm fails for large systems as " shrinks.
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Figure 11: Heat Flux Functional, eps = 1; N = 200

Figure 12: Checkerboard Functional, eps = 1; N = 200
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Figure 13: Average Temperature Functional, eps=1/sqrtN, N = 150

The residual of the original problem, krk
kr0k , does bound the true error of both the original

problem and the functional. The residual is a much tighter bound for the error in the

original problem than it is for the functional error. However, the residual of the original

problem never gives a false signal for convergence or for divergence and is therefore a reliable

stopping criterion. In fact, the patterns suggest that no matter what tolerance is chosen for

the residual, the true error in the functional will be yet smaller than that tolerance.

6.1.2 Residual of the Dual Problem

The other residual stopping criterion we have available in this problem is the residual of the

dual problem, ksk
ks0k . What is the behavior of the residual of the dual problem, and does it

bound the error in some constructive way? Figure 15, Figure 16, and Figure 17 show how

the residual of the dual problem behaves in relation to the true error of the original problem

and the true error of the functional.
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Figure 14: Average Temperature Functional, eps = 1=N; N = 75

Figure 15: Average Temperature, eps = 1; N = 200
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Figure 16: Heat Flux Functional, eps = 1, N = 200

Figure 17: Checkerboard Functional, eps = 1, N = 200
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Figure 18: Average Temperature Functional, eps = 1=sqrtN , N = 100

When " = 1 the dual residual is a good bound for the average temperature and heat

�ux functionals. The dual residual signals divergence for the checkerboard functional even

though the true errors and original residual all converge to zero. When " decreases, the

dual residual begins to falsely signal divergence for all three functionals. Figures 18 and 19

portray the average temperature functional with " = 1p
N
but with two di¤erent choices for

N : N = 150 and N = 100: In the case where N = 100 the dual residual correctly signals

convergence, but in the case where N = 150 the dual residual falsely signals divergence.

The dual residual is a good bound for the true errors of the average temperature and

heat �ux functionals when " is large. In such cases the dual residual is very close to the

original residual. As " shrinks the dual residual begins to diverge in certain cases (such as

for large N but not for small N), even though the true errors are converging to zero. The

dual residual certainly has no advantage over the original residual, and in fact is a much less

reliable stopping criterion than the original residual.
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Figure 19: Average Temperature Functional, eps = 1=sqrtN , N = 150
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6.2 SMALL UPDATES

The other set of stopping criteria are small updates. If the updates of either the original

problem or of the functional are small - that is, are bounded above by some tolerance - then

we can ensure that the solutions to the original problem and to the functional are unchanging

for some pre-speci�ed number of signi�cant digits. For example, if the functional update

is bounded by tol = 1 � 10�5, then we can be sure that the �rst four signi�cant digits of

the functional solution are unchanging and the iterative method isn�t providing any new

information for those digits. The �small update�stopping criterion will fail if the method

gets stuck on a wrong answer for more than one iteration. That is, if the method provides

an answer where the error is large, but the method doesn�t provide a large update in the

next iteration. We can again look at this question empirically. How does the error behave

relative to the updates?

6.2.1 Updates to the Original Solution

The original solution is updated every iteration by amount

h~rk; rki
h ~dk; Adki

dk:

The small update stopping criterion will signal convergence if h~rk; rkih ~dk; Adki
dk
 � tol:

Consider the test problem when " = 1 and N = 200. Figures 20, 21, and 22 show the

behavior of the original solution update and the true errors of the original problem and the

functional for the three functionals.

The update of the original problem follows the same basic trend as the true error of the

original problem. The update is much more volatile than the error, which means that a

large downward spike causes the update to be small enough to signal convergence. In all

three cases the update signaled convergence before the error of the original problem reached
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Figure 20: Average Temperature Functional, eps = 1, N = 200

Figure 21: Heat Flux Functional, eps = 1, N = 200
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Figure 22: Checkerboard Functional, eps = 1, N = 200

the tolerance level. However, the error of the functional converges much more rapidly than

the error of the original problem does and is below the tolerance before the update signals

convergence. The update of the original problem is a good bound for the true error of the

functional in this case where " = 1:

Chapter 5 showed that changing " results in di¤erent convergence rates. How e¤ective

is the update of the original problem as a stopping criterion for very small "? Figures

23 and 24 show the relationship between the original update and the true errors for the

Average Temperature Functional when " shrinks. Notice that the size of the system also

changes when " gets smaller because the algorithm fails for large systems when A is highly

non-symmetric, as described by the cell Péclet number.

It is again the case that the original update follows the trend of the original error, but

doesn�t quite bound it because convergence is signaled when the update suddenly spikes

down below the tolerance. Yet the functional error converges fast enough that it is well

below the tolerance by the time the update signals convergence. This pattern holds true for

the Heat Flux and Checkerboard functionals as well. Thus even with a small " the update
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Figure 23: Average Temperature Functional, eps = 1=sqrtN , N = 200

Figure 24: Average Temperature Functional, eps = 1=N; N = 100

52



of the original problem is a reasonable bound for the true error of the functional. If one

also desires to bound the error of the original problem, a very tight tolerance on the update

must be speci�ed.

6.2.2 Updates to the Functional

The functional update is also available as a stopping criterion. In iteration k + 1, the

functional solution is updated by amount

h�k; rk+1i:

The small update stopping criterion will signal convergence if

��h�k; rk+1i�� � tol:

Again consider the test problem with " = 1 and N = 200 for all three functionals. Is

the functional update a su¢ cient bound for the errors? Figures 25, 26, and 27 show the

behavior of the functional solution update and the true relative errors of the original problem

and the functional when tol = 1� 10�5:

.

Clearly the functional update does not bound either error. This is again an artifact of

the volatility of the update. We saw in Figures 20, 21, 22, 23, and 24 that both updates

follow the same trends as the errors, but that the updates are signi�cantly more volatile than

the error. This has a much more dramatic e¤fect in the case where the functional update is

used as the stopping criterion. In each instance a large downward spike causes the update

to signal convergence long before either error is below the desired tolerance level.

How does the functional update behave as " shrinks? As one might expect, the func-

tional update continues to signal convergence long before either error is below the desired

tolerance. Figures 28 and 29 show what happens with the Average Temperature Functional

for decreasing ".
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Figure 25: Average Temperature Functional, eps = 1, N = 200

Figure 26: Heat Flux Functional, eps = 1, N = 200
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Figure 27: Checkerboard Functional, eps = 1, N = 200

Figure 28: Average Temperature Functional, eps = 1=sqrtN; N = 200
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Figure 29: Average Temperature Functional, eps = 1=N; N = 100

This pattern holds for the Heat Flux and Checkerboard functionals as well. Clearly the

functional update is not a tight enough bound on the error to use it as a stopping criterion.

What is more, it is not simply a case of requiring a very tight tolerance for the functional

update to work. There are some scenarios in which the functional update signals convergence

while the errors are actually diverging! It appears to be the case that the functional update

falsely signals convergence for cases where " is one of the smallest di¤usion-coe¢ cients that

we tested (for example, " = 1
N
) and N is one of the largest systems that we tested (for

example, N = 200, which yields a 40; 000 � 40; 000 system). Figures 30 and 31 represent

two such scenarios with N = 200 and " = 1
N
= 1

200
.

The functional update signals convergence long before the errors converge to the tolerance

and sometimes signals convergence when the errors actually diverge. The functional update

is an unreliable stopping criterion.
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Figure 30: Average Temperature Functional, eps = 1=N; N = 200

Figure 31: Heat Flux Functional, eps = 1=N; N = 200
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6.3 STOPPING CRITERION SUMMARY

A small residual is the most reliable stopping criterion. The residual of the original problem

is much more reliable than the residual of the functional. In fact, the original residual

always signals convergence well after the functional has converged to the desired tolerance.

A small update may also be utilized as a stopping criterion. Updates of both the original

problem and the functional follow the same basic trends as the errors, but they are much

more volatile. One consequence of the volatility of the updates is that the tolerance is

reached and convergence is signaled when the update has a downward spike. Convergence

is signaled before the trend reaches the desired tolerance, thus convergence is often signaled

before the error (which has a smoother trend than the updates) reaches the tolerance. This

problem is true of both the update of the original problem and of the functional, but it is

especially poignant with the functional update.

Residuals and updates of the original problem are more reliable stopping criteria than

residuals and updates of the functional. There are cases in which stopping criteria associated

with the functional falsely signal either convergence or divergence. Furthermore, a small

residual is a more reliable signal of convergence than a small update. This points to the

residual of the original problem as being the best possible stopping criterion.
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7.0 CONCLUSION

This paper explored the problem of determining methods that result in the functional�s

solution converging (ln ! L(u)) more rapidly than the original solution (un ! u). A thermal

convection-di¤usion test problem was used to explore the convergence of three di¤erent linear

functionals: the average temperature, the heat �ux, and a checkerboard transformation. A

modi�ed Bi-CG algorithm was developed as a solution method for the coupled problem

Au = f and Atr� = l:

The Bi-CG method sucessfully converged to the functional�s value, L(u), much more rapidly

than it converged to the original solution, u, for three di¤erent linear functionals.

Every case in which the Bi-CG method converged resulted in each of the three func-

tionals converging more rapidly than the original solution. The method began failing for

large systems (�large�in the context of this test problem - systems of size 10; 000� 10; 000

and larger began failing �rst) as the coe¢ cient matrix A became more non-symmetric (as

described by the cell Péclet number) through a decrease in the di¤usion coe¢ cient, ".

Further avenues for improving the modi�ed Bi-CG algorithm may yet exist. One unsuc-

cesful attempt at improving the initial guess of �0 was explored. However, more informed

initial guesses for the original problem, u0, and the dual problem, �0, can potentially accel-

erate the convergence of the algorithm. Another avenue of research is an exploration of how

the di¤usion coe¢ cient, ", is related to the failure of the algorithm. The data generated

using the thermal convection-di¤usion test problem indicate that a smaller " leads to more

rapid failure of the algorithm, but no theoretical connection was examined.
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APPENDIX

MATLAB CODE

function A=SparseAmatrix1(N,epsilon,b)

h=1/(N+1);

A=sparse(N^2,N^2);

for m=1:N^2

A(m,m)=4*epsilon/(h^2);

if m-1>0&(mod(m-1,N)~=0)

A(m-1,m)=(-epsilon/(h^2))+(b(2)/(2*h));

end

if (m+1<=N^2)&(mod(m+1,N)~=1)

A(m+1,m)=(-epsilon/(h^2))-(b(2)/(2*h));

end

if m-N>0

A(m-N,m)=(-epsilon/(h^2))+(b(1)/(2*h));

end

if m+(N)<=N^2

A(m+N,m)=(-epsilon/(h^2))-(b(1)/(2*h));

end

end
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function f=RHS1(N,epsilon,b)

h = 1/(N+1);

xx=linspace(0,1,N+2);

x=xx(2:N+1);

yy=linspace(0,1,N+2);

y=yy(2:N+1);

% Set the boundary conditions:

TBottom = x; % x = 0

TLeft = zeros(size(y)); % y = 0

TTop = x; % x = 1

TRight = ones(size(y)); % y = 1

% Initialize the RHS vector:

f=zeros(N^2,1);

%left boundary

j=1;

for i=1:N

k=(j-1)*N+i;

f(k)=f(k)+ ( (b(1)/(2*h)) + (epsilon/(h^2)) )*TLeft(i);

end

% bottom boundary

i=1;

for j=1:N

k=(j-1)*N+i;

f(k)=f(k)+( (b(2)/(2*h)) + epsilon/(h^2)) *TBottom(j);

end

% top boundary

i=N;

for j=1:N

k=(j-1)*N+i;

f(k)= f(k)+( epsilon/(h^2) - (b(2)/(2*h)) ) *TTop(j);
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end

% right boundary

j=N;

for i=1:N

k=(j-1)*N+i;

f(k)=f(k)+ ( epsilon/(h^2) - (b(1)/(2*h)) ) *TRight(i);

end

function l=�ux(N)

% The function l=�ux(N) forms the vector l, or the average temperature and

% is used when calculating the heat �ux.

% Kristin Harnett

% October 30, 2007

for i=1:N

for j=1:N

k=N*(i-1)+j;

if k<=N^2-N

l(k)=0;

else

l(k)=-1;

end

end

end

l=l.�;
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function l=checkers2(N)

% Kristin Harnett

% January 23, 2007

% The function l=checkers(N) forms the vector l, or the linear functional

% that assigns every even/odd and odd/even coordinate pair a value of 1 and

% every even/even and odd/odd coordinate pair a value of -1.

for i=1:N

for j=1:N

k=i+j;

m=N*(i-1)+j;

if mod(k,2)==0

l(m)=2;

else

l(m)=0;

end

end

end

l=l.�;
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function [u_new,uTrue,L_new,resid1,resid2,resid3,resid4,error1,error2,error3,u_update,L_update,iter]=bicg(u_old,N,MaxIt,epsilon,b,tol);

% Kristin Harnett

% February 10, 2008

% The function bicg(u,N,MaxIt,epsilon,b,tol) uses a modi�ed bi-cg

% algorithm to calculate the solution to the original problem and the dual

% problem (u and L, respectively). The code is based on the bi-cg pseudo-

% code presented in the book "Templates for the Solution of Linear Systems:

% Building Blocks for Iterative Methods" by Barrett, et al.

% Inputs:

% u: initial guess for solution to original problem

% N: size of problem

% MaxIt: maximum number of iterations before timing out

% epsilon: di¤usion coe¢ cient

% b: convection �eld

% tol: error tolerance. The relative residual must be at least as small as

% tol before convergence is signaled.

% Outputs:

% u: estimated solution to original problem

% error: relative residual error norm(r)/norm(uTrue)

% error1: relative true error of original problem norm(u-uTrue)/norm(uTrue)

% error2: relative true error of dual problem norm(L-LTrue)/norm(LTrue)

% iter: number of iterations before convergence

t=cputime;

iter=1;

A=SparseAmatrix1(N,epsilon,b);

f=RHS1(N,epsilon,b);

l = (1/N^2)*ones(N^2,1); %average temperature functional

%l = �ux(N); %heat �ux functional

%l = checkers2(N); %checker-board functional

uTrue = Anf;
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phiTrue = A.�nl;

LTrue = dot(l,uTrue); %true solution of linear functional

rho=zeros(2,1); %initialize rho (need to keep time t and t-1

%versions of rho: rho(2) is old)

r0 = f - A*u_old; %original residual - used for relative residuals

r_old = r0; %residual of original problem - used in algorithm

%r_tilde = r_old; Changed Per Mike Sussman

% Initial guess for phi: use Jacobi best guess (or use guess of zero)

a1 = dot(A.�*r0,l);

a2 = dot(A.�*r0,A.�*r0);

a=a1/a2;

phi = a*r0;

%phi = zeros(N^2,1);

% Calculate dual residual (for use in algorithm) and functional value:

s0 = l - A.�*phi; %original residual - used in algorithm

L_old = dot(l,u_old) + dot(phi,r_old);

r_tilde = s0; %added per Mike Sussman

for i=1:MaxIt

rho(2) = dot(r_old�,r_tilde);

if (i==1)

d=r_old;

d_tilde=r_tilde;

else

beta = rho(2)/rho(1);

d = r_old + beta*d;

d_tilde = r_tilde + beta*d_tilde;

end

%Bi-CG algorithm:

q = A*d;

q_tilde = A.�*d_tilde;
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denom = dot(d_tilde�,q);

alpha = rho(2)/denom;

alpha2 = dot(d�,s0)/denom;

u_new = u_old + alpha*d;

phi = phi + alpha2*d_tilde;

rho(1)=rho(2);

r_new = r_old - alpha*q;

r_tilde = r_tilde - alpha*q_tilde;

s = l - A.�*phi;

L_new = dot(l,u_new) + dot(phi,r_new);

%Relative residuals

resid1(iter)=norm(r_new)/norm(r0);

resid2(iter)=norm(s)/norm(s0);

%Relative residuals - how to normalize?

resid3(iter)=norm(r_new)/norm(uTrue);

resid4(iter)=norm(s)/norm(LTrue);

%Relative true errors

error1(iter) = norm(uTrue-u_new)/norm(uTrue);

error2(iter) = norm(LTrue-L_new)/norm(LTrue);

error3(iter) = norm(phiTrue-phi)/norm(phiTrue);

%Relative updates

u_update(iter)=norm(u_new-u_old)/norm(u_old);

L_update(iter)=norm(L_new-L_old)/norm(L_old);

%Update residual and functional estimate.

r_old=r_new;

L_old=L_new;

u_old=u_new;

% if abs(resid1(iter))<=tol

% if abs(resid2(iter))<=tol

% if abs(resid3(iter))<=tol
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% if abs(resid4(iter0)<=tol

if abs(error1(iter))<=tol

% if abs(error2(iter))<=tol

% if abs(error3(iter))<=tol

% if abs(u_update(iter))<=tol

% if abs(L_update(iter))<=tol

break;

else

if iter==MaxIt

disp(�iterations maxed out�);

break;

else

iter=iter+1;

end

end

end

cpu_time=cputime-t
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