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THE APPLICATION OF SCET TO HEAVY QUARKONIUM PHYSICS

Xiaohui Liu, PhD

University of Pittsburgh, 2011

In this thesis we explore various heavy quarkonium decay and production processes in certain

kinematic regime close to phase space boundaries. Our traditional understanding of heavy

quarkonium physics is rooted in the nonrelativistic QCD (NRQCD) formalisms. However

close to certain phase space boundaries, NRQCD factorization theorems for quarkonium

production or decay break down. This is mainly due to the occurrence of very energetic

jet states which are not properly included in the framework of NRQCD, which result in

large perturbative and non-perturbative corrections. Discrepancies between NRQCD pre-

dictions and experimental results have been observed. Thus in these regions we utilize the

soft collinear effective theory (SCET) to derive factorization theorems in which the collinear

degrees of freedom will be included correctly meanwhile shape functions describing the in-

ternal motion of the heavy quarkonium will arise naturally. Large logarithmic corrections

due to several well-separated scales are summed up using renormalization group equations

(RGEs). Combining SCET with fixed order NRQCD calculations, we obtain results with

better agreement with the experimental data.

iii



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Review of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 the Successes and the Difficulties of NRQCD . . . . . . . . . . . . . . . . . 8

2.0 SOFT COLLINEAR EFFECTIVE THEORY . . . . . . . . . . . . . . . . 15

2.1 Physical Degress of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 SCETI and SCETII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 SCET Lagrangian and Power Counting . . . . . . . . . . . . . . . . . . . . . 18

2.4 Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Wilson Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 reparameterization Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Zero Bin Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Applications of SCET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.0 J/ψ PRODUCTION IN LEPTON ANNIHILATION . . . . . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Resumming Sudakov Logarithms . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.0 J/ψ PRODUCTION IN UPSILON DECAY . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



4.2 Factorization and Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



LIST OF TABLES

1 A summary of the quark properties in the SM. [4] All quark masses are specified

in M̄S scheme. For the light quarks, the renormalization scale is chosen to be

µ = 2GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Power counting rules for SCET fields. . . . . . . . . . . . . . . . . . . . . . . 20

3 Gauge transformations for the collinear, soft, and usoft fields. The p labels on

collinear fields are fixed, while Q and R are summed over. For simplicity labels

on the soft fields are suppressed here. . . . . . . . . . . . . . . . . . . . . . . 25

4 Gauge transformations for the collinear, soft, and usoft Wilson lines Wn, S,

and Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 A summary of the reparameterization transformation rules in the SCET. [39] 32

vi



LIST OF FIGURES

1 QCD Feynman rules in covariant gauge. . . . . . . . . . . . . . . . . . . . . . . 6

2 Experimental tests of asymptotic freedom [11]. The theoretical curve is based on a

4-loop approximation in QCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Comparison between the experimental measurements of cross section differential

in pT spectrum, color-singlet model and NRQCD predictions for ψ′ production at

Tevatron (left, dotted line: LO color singlet model; dashed line: fragmentation and

LO; solid curve: color octet mechanism fragmentation) [18] and γγ production of

J/ψ (right) [19]. The data favor the NRQCD predictions. . . . . . . . . . . . . . 11

4 Comparison of the theoretical spectrum (solid line) for ΛQCD = 300 MeV (left)

and ΛQCD = 500 MeV (right) with data of CLEO [31]. The dashed line shows the

direct, the dotted line the fragmentation contribution. The spectrum predicted by

the NRQCD(direct production and fragmentation, without hadronization models)

is indicated by the dash-dotted curvature. . . . . . . . . . . . . . . . . . . . . . 13

5 Differential cross sections in x for Υ→ J/ψX. We show the theoretical expectations

based on the color-octet (solid line) and color-singlet (dashed line) models. . . . . 14

6 The interaction of a soft and collinear gluon with momenta k ∼ Q(λ, λ, λ)

and q ∼ Q(λ2, 1, λ) respectively, to produce an offshell gluon with momentum

k + q ∼ Q(λ, 1, λ). [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Feynman rules involve collinear quark to leading order in λ in SCETI [6] : collinear

quark (dashed line) is labeled by p̃ and residual momentum k. We present the soft

gluon by a spring line and the collinear gluon by a spring with a straight line going

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



8 The usoft gluons (spring lines) attached to a collinear quark line can be summed up

into a path-ordered exponential. [8] . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 The usoft gluons attached to a collinear gluon can be summed up into a path-ordered

exponential. [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Real emission of a collinear gluon in SCET. . . . . . . . . . . . . . . . . . . . . 33

11 The inclusive photon spectrum compared with data [31]. The interpolated resummed

theoretical prediction is presented by the solid curve including color singlet, color

octet and fragmentation contributions. The variations are caused by different choices

of αs, mb, fragmentation function and the collinear scale. [44] . . . . . . . . . . . 40

12 Matching the production amplitude for e+e− → cc̄+gg in QCD and SCET. Collinear

gluons are represented by a spring with a line through it. . . . . . . . . . . . . . 48

13 Feynman diagram for the leading order jet function. . . . . . . . . . . . . . . . . 51

14 The difference between mixing and non-mixing dσresum/dz, normalized to the mixing

result, calculated at the scale µc =
√

1− zµH . . . . . . . . . . . . . . . . . . . . 58

15 The color-singlet differential cross section . The dot-dashed curve is the leading-order

NRQCD prediction. The solid curve is the interpolated result, Eq. (3.52) prediction

at calculated at the scale µc =
√

(1− z)µH . The dashed curve is the interpolated

result at the scale µc = 2
√

(1− z)µH , and the dotted curve is the interpolated result

using the scale µc =
√

(1− z)µH/2. . . . . . . . . . . . . . . . . . . . . . . . . 59

16 The difference of the leading-order NRQCD e+e− → J/ψgg differential cross section

and the interpolated result, Eq. (3.52), normalized to the leading-order result. The

interpolated result was calculated at the scale µc =
√

(1− z)µH . . . . . . . . . . 60

17 Comparison of the leading-order and resummed total color-singlet results. The

dashed curve is the NRQCD prediction for e+e− → J/ψcc̄. The dotted line is

the total leading-order, color-singlet NRQCD prediction, while the solid curve is the

total color-singlet prediction including the interpolated e+e− → J/ψgg result. The

resummed result was calculated at the scale µc =
√

(1− z)µH . . . . . . . . . . . 61

18 The color-singlet contribution to A(pψ). The solid curve is the SCET prediction,

with µc =
√

(1− z)µH and the dashed curve is the lowest-order NRQCD prediction. 62

viii



19 QCD production amplitude for Υ→ J/ψ+X. The J/ψ is produced in a color-octet

and becomes a color-singlet by emitting a soft gluon. There is another contribution

to this process with only one gluon emitted, which is suppressed by an order of αs. 66

20 Feynman diagram for the leading-order jet function. The spring with a line through

it represents a collinear gluon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

21 One-loop order diagrams needed to calculate the counterterm to the color-octet

operator.The double line presents the J/ψ fields in color-octet configuration while

the spring lines are the soft gluons. . . . . . . . . . . . . . . . . . . . . . . . . 77

22 One loop corrections to the J/ψ soft shape function defined in Eq. (4.22). . . . . 77

23 Comparison between the NRQCD results and SCET predictions normalized to the

NRQCD decay rate at the end-point. Here y = pψ/p
max
ψ is the scaled momentum.

The short dashed line is the NRQCD decay rate only and the dotted line is the

NRQCD decay rate convoluted with the shape function. The solid thin line includes

only the perturbative resummed interpolated decay rates without convoluted with

the soft shape function. The solid thick line presents the interpolated decay rates

convoluted with the shape function. . . . . . . . . . . . . . . . . . . . . . . . . 78

24 Comparison of the color-octet contribution to the differential rate to the data from

CLEO [33]. The solid thick line presents the interpolated decay rates convoluted

with the shape function with a choice of 〈O8
ψ[3S1]〉 = 6.6 × 10−3GeV3 [16]. The

shaded band is obtained by varying 〈O8
ψ[3S1]〉 from 0.003GeV3 to 0.014GeV3 [89].

Here, we also show the color-singlet contribution in long dashed line [33, 82]. The

complete spectrum will involve a combination of both the color-octet and color-

singlet contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



PREFACE

I would like to show my gratitude to a lot of people at this point.

First to my advisor, Prof. Leibovich, for your kindness and inspirational guidance these

years, which leads me to this exciting field of effective theories. And to those professors in

physics department from both U. Pitt and CMU, for presenting me the wonderful world of

physics: from small to large, from perturbative to non-perturbative, from particles to strings,

from lower dimensions to extra dimensions, from textbook field theories to the most frontier

Ads/CFT.

Also to all my friends who share fun with me all these years in this city, especially to

Botao and Qingqing, who help me a lot in my most early and most last days in Pittsburgh,

respectively.

Last to C.C.

x



1.0 INTRODUCTION

The past several decades were fascinating epochs for physicists. Since the 1960s a series

of tremendous successes have been achieved in exploring the physical phenomena on length

scales less than 10−13cm, which opens up a whole new and colorful subatomic world. Nowa-

days it is clear that the subatomic world (but still within a domain larger than the Planck

length scale) is dominated by three fundamental interactions: strong, weak and electromag-

netic, which can be described to a remarkably high accuracy by the Standard Model (SM)

of particle physics. The most fundamental constituents comprising the SM are elementary

particle fields: three generations of quark fields (top, bottom and etc.), three generations

of leptons (electron, electron neutrino and etc.) alongside the gauge bosons (photon, gluon

and etc.) carrying the fundamental interactions and a Higgs boson sometimes called the

God particle, yet to be detected. Among those particles, free leptons were observed by

experiments a long time ago while no isolated quarks or gluons have ever been detected.

This phenomenon is known as color confinement, a special feature of the strong nuclear

force which quarks and gluons participate in but leptons do not. Color confinement states

that no color charged particles like quarks can be isolated singularly. The quarks are glued

together by surrounding gluons to form different states of mesons or baryons, collectively

called hadrons. The existence of the quarks and gluons can be inferred from the properties

of the mesons and baryons. A summary of the properties for the quark sector in the SM is

listed in Table 1.

The color confinement hypothesis is believed to be a consequence of the non-abelian

characters of quantum chromodynamics (QCD), the sector of the SM relevant for the strong

interactions among quarks. A short review on QCD will be given in the next section.

According to QCD, mesons and bayons are bound states made up of quark-anti-quark pair
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and three quarks in color-singlet configurations respectively. A direct application of QCD to

these bound states is very tough due to the nonperturbative structure at low energy, as we will

see that the interactions between quarks and gluons become so strong at low energy that QCD

can not be understood in a perturbative manner based on a power series expansion of the

QCD coupling constant. The situation becomes even more challenging for hadrons containing

one or more heavy quarks (bottom or charm quark, whereas top quark is too heavy to form

a bound state), where the entanglement of different well seperated energy scales, including

the kinematic energy scales set by experiments, adds more complications to the problem.

Exploiting QCD perturbative calculations in a brute force manner turns out to be unpractical

at high orders. Seemingly desperate though that may be, however, accurate descriptions of

QCD are crucial in understanding the nature of hadrons or hunting for new physics beyond

the SM. At this point, by excluding the relatively ultraviolet (UV) degrees of freedom,

various effective theories have been constructed for different purposes as approximations of

QCD in different low energy domains [1, 2, 3, 5, 6, 7, 8]. The absence of UV modes can be

compensated by a set of local operators built entirely out of the low energy degrees of freedom

in the effective theories. The effective theories need not be renormalizable, however the non-

renormalizable terms will be suppressed. Those effective theories could greatly simplify our

calculations while still maintaining accuracy to an extent that we demand.

Table 1: A summary of the quark properties in the SM. [4] All quark masses are specified

in M̄S scheme. For the light quarks, the renormalization scale is chosen to be µ = 2GeV.

name(symbol) electric charge (e) mass (mc2)

up (u) 2/3 2.49+0.81
−0.79MeV

down (d) −1/3 5.05+0.75
−0.95MeV

charm (c) 2/3 1.27+0.07
−0.11GeV

strange (s) −1/3 104+26
−34MeV

top (t) 2/3 171.2+2.1
−2.1GeV

bottom (b) −1/3 4.20+0.17
−0.07GeV

In this thesis, we focus on the applications of one effective theory of QCD, soft collinear
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effective theory [5, 6, 7, 8], to several heavy quarkonium decay and production processes.

The thesis is organized as follows:

In the rest of this chapter, we will briefly review some basic properties of QCD for self-

consistency and introduce the NRQCD, an effective theory designed for mesons composed

of two heavy quarks. We will address the successes and difficulties in applying QCD or

NRQCD. Also we will review some experiments that inspire the emergence of the SCET.

Chapter 2 presents an introduction to the SCET formalisms that will be elaborately used

throughout the thesis. Some achievements and novel results of SCET will also be presented

in this chapter. Chapter 3 and Chapter 4 are devoted to the study of J/ψ production in

e+e− annihilation and J/ψ production in Υ decay, the main original work of this thesis.

Some relevant work can be found in Ref. [56, 79]. Factorization theorems will be derived

in the framework of SCET. We will show how to sum up the large logarithmic corrections

using RGEs in SCET. Following that, a chapter on conclusion will be given.

1.1 REVIEW OF QCD

In this section, we give a short review on QCD, the non-abelian SU(3)c sector of the SM. At

the Lagrangian level, QCD is formulated in terms of quarks and gluons given by

LQCD = −1

2
Tr [GµνG

µν ] +

nf∑
i

q̄i (iD/−mi) qi , (1.1)

in a renormalizable form similar to quantum electromagnetics (QED). In this equation, the

four-component dirac spinors qi are the quark fields, with i traversing all six flavors listed

in Table 1. Each spinor is in the fundamental representation of SU(3)c. The generators

of the fundamental representation are denoted as T a obeying [T a, T b] = ifabcT c and being

normalized to Tr[T aT b] = 1/2δab. The gauge field tensor Gµν = ∂µAν − ∂νAµ + igs[Aµ, Aν ]

with Aµ =
∑8

a=1A
a
µT

a the gluon fields living in the adjoint representation of SU(3)c group

and gs is the strong coupling parameter. The interactions between quarks and gluons are

embedded in the covariant derivative Dµ = ∂µ + igsAµ.
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The QCD Lagrangian density in Eq. (1.1) is invariant under the gauge transformation

U(x) = exp[iT aθa(x)]

qi(x)→ U(x)qi(x) , (1.2)

Aµ → U(x)AµU
−1(x) +

i

gs
(∂µU(x))U−1(x) . (1.3)

The gauge invariance brings such redundancy to the theory, which acts as more an obstacle

than an advantage in quantizing QCD. An elegant and convenient approach to quantizing

QCD was given by Faddeev and Popov [9] using the functional path integral formalism

Z =

∫
DAaµDq̄iDqi ei

R
d4xLQCD[Aaµ,qi,q̄i] . (1.4)

At this stage the integral in the equation above is not well defined in the sense that we

are integrating over all possible field configurations including fluctuations obtained by gauge

transformations1. We are not allowed to integrate over the unphysical fluctuations along

gauge symmetry directions, which will overcount the result when we perform the integration

Z and in our case there are an infinite number of duplicates. Mathematically, the gauge

transformation defines an equivalence relation on the gauge field configuration space. Any

two fields differing only by a gauge transformation are physically equivalent to each other

and fall into the same equivalence class. Intuitively, the functional integral in Eq. (1.4) can

be factorized into a product of an integral over all possible equivalence classes satisfying some

given gauge condition (F [Aa] = ω) and an integral over all possible gauge transformaions

which only contributes to an overall factor and drops off safely. In general, a gauge trans-

formation corresponds to a change of variables in the integral over the equivalence classes

which gives rise to the Faddeev-Popov determinant det[δF [Aa]/δθb]. As a consequence, two

extra terms must be added to the Lagrangian for deriving Feynman rules 2

Lfix = − 1

2ξ
F 2 ,

Lghost = −η̄a δF [Aa]

δθb
ηb . (1.5)

1In addition, the integrand is also strongly oscillatory which can be resolved by Wick rotating to Euclidean
space.

2A third extra term LCP = θεµνρσGa
µνG

a
ρσ may also be added to the Lagrangian without violating gauge

symmetry or renormalizability. However this term violates CP . It can contibute to the neutron electric
dipole moment and experiments shows that θ ¿ 10−9 leading to the strong CP problem.
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The first is the gauge fixing term with F [Aa] some specified gauge choice. Convenient choices

of F are the covariant gauge F [Aa] = ∂ · Aa and the physical gauge F [Aa] = n · Aa. The

parameter ξ can be chosen arbitrarily since the dependence of ξ will eventually cancel in any

gauge invariant calculations. The covariant gauge with ξ = 1 corresponds to the Feynman

gauge. Keeping ξ explicit serves as a useful check on the arithmetic. The second term in

Eq. (1.5) is the ghost density in which ηa are the unphysical ghost fermions that anticommute

and only show up in loops. The existence of the ghost term is crucial in covariant gauges for

maintaining gauge invariance and unitarity of the S-matrix in QCD.

The QCD Feynman rules are summarized in fig. 1. From the Feynman rules we can see

that unlike the charge neutral photon in QED, the force-carrying gluons in QCD carry color

charges and have tree- and four-point self interactions. This fact has a profound impact.

In QED, the electric charge grows with the energy scale (Landau pole problem) due to

the screening effect by the surrounding polarized virtual e+e− pairs generated in the vacuum.

On the contrary, in QCD, since the gluons carry color charges, they introduce anti-screening

effects that overcome the screening produced by the quarks. As a result, the strong running

coupling αs = g2
s/(4π) decreases at short distance or equivalently at high energy but increases

at low energy scale, which is known as asymptotic freedom [10]

µ
d

dµ
αs(µ) = β(αs) = −2αs(µ)

(
αs(µ)

4π
β0 +

(
αs(µ)

4π

)2

β1 + . . .

)
, (1.7)

with β(αs) being negative as a reflection of the anti-screening effect. Calculated pertur-

batively, β0 = 11CA/3 − 2nf/3 and β1 = 34C2
A/3 − 10CAnf/3 − 2CFnf . Quantum effects

have generated an intrinsic energy scale, ΛQCD, in QCD at which the inverse strong coupling

α−1
s (ΛQCD)→ 0. To the first order accuracy, Eq. (1.7) gives

Λ2
QCD =

µ2

e4π/(β0αs(µ))
. (1.8)

Asymptotic freedom has long been tested against experiments. The fact that the strong

coupling runs with energy scale in a way predicted by QCD is demonstrated by experiments

as can be seen in fig. 2. Experimentally ΛQCD is found to be around 200MeV. The discovery

of asymptotic freedom was a triumph of QCD as a field theory for the strong interactions.
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p

i j
= δij

i
p/−m+iε

q

µ
a

ν
b = δab

−igµν
q2+iε

µ, a

i j
= igs T

a
ijγ

µ

µ, a, k

ν, b, p ρ, c, q
= gsf

abc [gµν (k − p)ρ + gνρ (p− q)µ + gρµ (q − k)ν ]

µ, a

ρ, c ν, b
σ, d

= −igs
[
fabef cde (gµρgνσ − gµσgνρ) + (b↔ c, ν ↔ ρ) + (c↔ d, ρ↔ σ)

]

µ, b

a, k c

= −gs fabckµ

k

a b
= δab

i
k2+iε (1.6)

Figure 1: QCD Feynman rules in covariant gauge.

It explains the validity of the parton picture of deep inelastic scattering [12] and provides

plausibility for color confinement.

However in practice, asymptotic freedom is like a double-edged sword. On the one side

it ensures that we are safe to calculate quantities such as parton level cross sections pertur-

batively in QCD at sufficiently large energy scales; on the other side it implies that the way

6



Figure 2: Experimental tests of asymptotic freedom [11]. The theoretical curve is based on a
4-loop approximation in QCD.

quarks and gluons hadronize is purely nonperturbative. Hence the predictive power based on

perturbation methods for real processes in nature involving hadrons remains questionable.

There still exist subtleties even in applying fully perturbative calculations at the parton

level. In the situation that some energy scale
√
s is much larger than the quark mass m,

the calculations beyond leading order (LO) are always plagued by infrared (IR) divergences

owing to the existence of many degenerate states produced by emitting soft and collinear

particles. Those difficulties lead to the concepts of factorization and IR safe quantities.

Factorization is a way that in certain cases we can disentangle the soft (low energy)

effects from the temporaneously localized hard (high energy) processes and write quantities

such as cross sections σ as convolutions of partonic kernels σ̂i and universal hadronic wave

functions φi/H to all orders

σ ∼
∑

partons i

σ̂i(x, µ) ⊗ φi/H(x, µ) . (1.9)

7



Some IR divergences are absorbed by the wave functions φi/H . The hard kernels σ̂i and the

evolutions of the hadronic functions can be calculated perturbatively while the soft hadronic

functions are non-perturbative and have to be determined via measurements or lattice QCD

simulations.

IR safe quantities satisfy the condition

σ

(
s

µ2
,
m2

µ2
, αs(µ)

)
= σ

(
s

µ2
, 0, αs(µ)

) {
1 +O

((
m2

s

)a)}
, a > 0 , (1.10)

where m represents the mass of the light quark or some IR regulator for massless gluon.

There exist subtle cancellations between IR divergences from virtual corrections and real

emissions for IR safe quantities, for instance the hadronic total cross section of e+e− anni-

hilation. In practice we are always interested in applying perturbation methods to compute

quantities free of IR singularites. For less inclusive processes, the cancellation may be im-

perfect in some regions, especially near certain phase space boundaries and results in large

Sudakov logarithms of the form αns log2n−m τ with τ ¿ 1 spoiling perturbative calculations.

Therefore in order to use asymptotic freedom consistently, we must sum up these logarithms

by reorganizing the perturbation series.

In QCD, factorization and IR safety can be proved or disproved, process to process, rig-

orously in the language of the Landau equation [13], Coleman-Norton theorem [14], reduced

diagram, pinch surface and IR power counting. The proofs are not easy. For a review on

this subject, see [15]. In the rest of this thesis, you will see that effective theories provide

powerful tools for deriving factorization theorems and summing up large logarithms.

1.2 THE SUCCESSES AND THE DIFFICULTIES OF NRQCD

Studies of the heavy quarkonium (a bound state of heavy quark-anti-quark QQ̄ pair) spec-

trum suggested that the quarkonium kinematics can be described in a nonrelativistic picture

characterized by the heavy quark velocity v ¿ 1. This introduces a hierarchy of energy

scales: the heavy quark mass MQ À ΛQCD, setting the scale for QQ̄ creation or annihilation,

the momentum MQv, which is the inverse of the bound state typical size, and the kinetic
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energy MQv
2, fixing the interaction time between the two heavy constituents inside QQ̄

bound states. The difficulties in understanding the physics of quarkonia originate from the

entanglement of those multiple energy scales.

To smooth away the complexities, the effective theory NRQCD [3] was designed to sys-

tematically keep track of this scale hierarchy based on a double power expansion in the strong

coupling αs and the velocity parameter v. Starting from the Lagrangian LQCD in Eq. 1.1,

NRQCD is constructed by integrating out relativistic heavy quarks, as well as gluons and

light quarks with momenta of order MQ from QCD. The effects due to removing the rela-

tivistic modes can be compensated by adding nonrenormalizable local terms to the NRQCD

Lagrangian restricted by the symmetries of the effective theory. For practical purposes, a

redefinition of the heavy quark fields in Eq. (1.1) through a unitary transformation, named

the Foldy-Wouthuysen-Tani transformation, is useful for deriving the NRQCD Lagrangian

qi → exp (−iγ ·D/(2mQ)) qi . (1.11)

The NRQCD Lagrangian is written in terms of two-component Pauli spinors

LNRQCD = ψ†
(
iDt +

D2

2MQ

)
ψ + χ†

(
iDt − D2

2MQ

)
χ + Llight + δL , (1.12)

where ψ (χ) is the spinor field that annihilates (creates) a heavy quark (anti-quark). Llight is

identical to LQCD by turning off the mass terms and δL is the correction term whose exact

form up to dimension d = 6 can be found in [3].

The NRQCD factorization formula shows that the inclusive production cross section or

the decay rate for heavy quarkonium state H can be written as

dσ(H) =
∑
n

dσ(n,QQ̄) 〈O(n,H)〉 . (1.13)

Here dσ(n,QQ̄) is the cross section or the decay rate for QQ̄ pair which can be calculated

using perturbative QCD. The way how the QQ̄ pair evolves into state H is encoded in

various nonperturbative matrix elements 〈O(n,H)〉. 〈O(n,H)〉 are universal and known as

the NRQCD matrix elements, each scaling differently with the velocity v. Provided that v

is sufficiently small, the series (1.13) can be truncated at a given order in v. Only a finite

number of the matrix elements contribute, which ensures the predictive power of NRQCD.
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A series of scaling rules for specific matrix elements can be found in [16] and [17]. The values

for the matrix elements can be extracted from experiments. The heavy QQ̄ pair need not be

in a color-singlet state and the sum is over all possible color, spin and angular momentum

configurations. The presence of color-octet states is necessary for absorbing logarithmic

infrared divergences [3].

The operators in Eq. (1.13) can not be mixed 2-fermion operators involving χ and ψ,

since such an operator annihilates a QQ̄ pair and gives birth to light partons with energies of

order MH which have been integrated out of this effective theory. However the annihilation

of QQ̄ pair can be related to the imaginary parts of QQ̄ → QQ̄ amplitudes through the

optical theorem. Therefore, the operators relevant in Eq. (1.13) are the 4-fermion operators

in the NRQCD Lagrangian with the general form

O(n,H) = χ†Γnψa
†
HaHψ

†Γ′nχ , (1.14)

where Γn and Γ′n contain information of spin, color and intrinsic dynamics. a†HaH is the

projection operator. In heavy quarkoniom H decay, the operator is a unit operator. In

production processes, it projects onto states in the far future that contain H and other light

partons

a†HaH =
∑
X

|H +X〉〈H +X| . (1.15)

A set of the lowest dimension (dimension 6) operators is listed below

O1

(
1S0

)
= χ†ψa†HaHψ

†χ

O8

(
1S0

)
= χ†T aψa†HaHψ

†T aχ

O1

(
3S1

)
= χ†σiψa†HaHψ

†σiχ

O8

(
3S1

)
= χ†σiT aψa†HaHψ

†σiT aχ . (1.16)

Here the subscripts denote the color configurations.

NRQCD enjoyed its successes in analyzing various ψ and Υ production channels [17,

18, 19]. Before the invention of NRQCD, quarkonium productions were studied using the
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Figure 3: Comparison between the experimental measurements of cross section differential in pT
spectrum, color-singlet model and NRQCD predictions for ψ′ production at Tevatron (left, dotted
line: LO color singlet model; dashed line: fragmentation and LO; solid curve: color octet mechanism
fragmentation) [18] and γγ production of J/ψ (right) [19]. The data favor the NRQCD predictions.

color-singlet model, which coincides with Eq. (1.13) by excluding the color-octet contribu-

tions. Remarkable discrepencies between color-singlet model predictions and experimental

measurements were observed. For instance, the color-singlet prediction based on a fragmen-

tation approximation underestimates the CDF measurements of direct ψ′ production cross

section [20] by more than an order of magnitude. The same story seems to happen in the

γγ production of the J/ψ by the DELPHI collaboration [21] while in this case a complete

next to leading order (NLO) calculation is needed to draw conclusions. By introducing the

color octet mechanism, NRQCD opens up the possibilities to solve those problems [18, 19].

As we can see from fig. 3, the experimental data seem to favor the NRQCD predictions. A

similar situation occurs to the Υ production pT spectrum at Tevatron [17].

Though NRQCD is capable of handling the differential cross sections, the framework is

severely challenged by the experimental polarization measurements for heavy quarkonium

production at Tevatron [22] and RHIC [23]. As first predicted by Cho and Wise [24], the

inclusive ψ′ production at the Tevatron at sufficiently large pT is dominated by gluon frag-

mentation. The fragmenting gluon is almost on shell and thus nearly 100% transversely

polarized. The spin symmetry [3] of the nonrelativistic heavy quarks implies that the ψ′
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produced through a fragmenting gluon to a color octet configuration is predominantly trans-

versely polarized, inheriting the spin of the gluon. The same argument holds for other

JPC = 1−− state quarkonium. The polarization can be infered from measuring the angular

distribution in ψ′ → l+l−, which behaves as 1+α cos2 θ, with α = 1 corresponding to totally

transversely polarized. The argument was demonstrated quantitatively by explicit calcu-

lations in NRQCD [25, 26, 27, 28] predicting a rise in α with increasing pT . However this

feature was not captured by the experiemnts; instead, the present data tend to favor negative

α at large pT , deviating from the NRQCD prediction at the 3σ level. Some efforts have been

devoted to resolve this disparity, there is no satisfactory solution to the polarization problem

as of yet. The most recent review involving this subject can be found in [29].

NRQCD has also been applied to study heavy quarkonium decay. In fig. 4, we show the

result extracted from [30] for radiative Upsilon decay Υ → γX spectrum with data from

CLEO. The theoretical curves are based on the calculations of the NRQCD factorization

formalism along with photon fragmentation. In the low range z = Eγ/Mb < 0.3, the domi-

nant contribution is from fragmentation in which the photon is emitted through final state

light quarks splitting [32]. The α2 suppression in fragmention is compensated by a double

logarithmic enhancement leading to a contribution at least the same order as the lowest

order direct production. The photon spectrum is well described by the direct production in

the intermediate range of the spectrum 0.3 < z < 0.7 using the NRQCD formula, in which

the photon comes from the heavy quark directly. Clearly from fig. 4, the spectrum at large

values of z > 0.7 is poorly understood under the scheme of NRQCD. Similar problem arises

in the spectrum of the J/ψ production in Υ decay [33] as shown in fig. 5: the enhancement

predicted by NRQCD near the kinematic end-point is not observed in data.

The problems near the end-point may be alleviated by replacing the NRQCD matrix

elements by hadronic shape functions accounting for the internal soft dynamics in the heavy

meson. The shape functions arise due to the resummation of certain operator matrix elements

of higher order in v. Shape functions have effects only in a small region near the end-point and

act as a realization of the phenomenological idea of the “Fermi motion” of the heavy quarks

inside the bound state. However shape functions are not sufficient for solving all problems,

and we need an intermediate theory to deal carefully with extra degrees of freedom that
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Figure 4: Comparison of the theoretical spectrum (solid line) for ΛQCD = 300 MeV (left) and
ΛQCD = 500 MeV (right) with data of CLEO [31]. The dashed line shows the direct, the dotted
line the fragmentation contribution. The spectrum predicted by the NRQCD(direct production
and fragmentation, without hadronization models) is indicated by the dash-dotted curvature.

emerge near the end-point.

The main reason for the breakdown of NRQCD formalism near the end-point is because

this effective theory does not contain the correct degrees of freedom. The collinear fields that

emerge in certain phase space region are missing from the NRQCD framework. Recently it

has been understood that the suitable effective theory that can correctly describe the physics

in this regime is a combined one incorporating both NRQCD for the heavy quarks and the

soft collinear effective theory (SCET) [5, 6, 7, 8] for the highly energetic collinear modes.

We now turn to an introduction of SCET in the following chapter.
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Figure 5: Differential cross sections in x for Υ → J/ψX. We show the theoretical expectations
based on the color-octet (solid line) and color-singlet (dashed line) models.
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2.0 SOFT COLLINEAR EFFECTIVE THEORY

Soft collinear effective theory (SCET) is an effective QCD framework suitable for studying

phenomena involving interactions among highly energetic collinear particles as well as the

ones between collinear and soft or ultrasoft (usoft) degrees of freedom. The situation typically

occurs on the phase space boundaries in heavy meson decay cases like Υ decay or collision

experiments at large energy, for instance at the LHC. SCET was first developed to resum

Sudakov logarithms. It is constructed by realizing that in addition to the hard scale set by

the b quark mass mb and the usoft scale ΛQCD, another scale
√
mbΛQCD of the order of the

collinear particle offshellness plays an important role in this region. The naive expansion

in powers of ΛQCD/mb fails due to the existence of this intermediate scale. SCET saves

the predictive power of perturbative QCD by including the collinear scale
√
mbΛQCD. It

provides us with a systematic way to power count as well as a convenient tool to derive

factorization thereoms. Usually, in SCET a two-step matching is needed: from the hard

scale to the collinear scale and then from the collinear to the (u)soft physics. For more

complicated cases, extra matching procedures may be needed. Through matching, hadronic

shape functions and jet functions for collinear fields emerge naturally.

This chapter serves as a systematic review of SCET. Conventions and techniques used in

the rest of this thesis will be explained here. Some calculations will be presented in detail.

Therefore, this chapter could be tedious. For humanitarian considerations, this chapter is

divided into several sections.
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2.1 PHYSICAL DEGRESS OF FREEDOM

First we identify the relevant physical degrees of freedom used to formulate SCET. It will

be convenient to work in the light-cone coordinate system due to the presence of relativistic

particles with small invariant mass. The light-cone coordinate system includes two light-cone

directions that satisfy

n2 = n̄2 = 0, n · n̄ = 2 . (2.1)

For particles moving along the ±z-axis, the associated light-cone directions can be chosen

as n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1). Any four vector can be decomposed into these two

light-cone directions plus the transverse direction

pµ =
n·p
2
n̄µ +

n̄·p
2
nµ + pµ⊥ . (2.2)

Thus we denote an arbitrary vector using the notation p = (p+, p−, p⊥) ≡ (n·p, n̄·p, p⊥), with

the first two being the light-cone components along n̄ and n respectively and the third entry

the transverse component. For highly relativistic particles, the three light-cone components

of the momentum are widely separated in scale. Taking the collinear mode moving in the

+z-direction as an example, its momentum components scale as

coll : pc = (p+
c , p

−
c , p

⊥
c ) ∼ Q(λ2, 1, λ) , m2

c = p2
c ∼ Q2λ2 , (2.3)

with Q being the large scale like the b quark mass in Upsilon or B meson decay. Here we have

introduced a small power counting parameter λ ∼ p⊥/Q which plays a similar role as the

velocity parameter v in NRQCD. The physical degrees of freedom showing up in SCET can

be categorized according to the way their momenta scale in λ. In addition to the collinear

mode, we also have soft and usoft modes in SCET, whose momenta scale as

soft : ps ∼ Q(λ, λ, λ) , p2
s ∼ Q2λ2 ,

usoft : pus ∼ Q(λ2, λ2, λ2) , p2
us ∼ Q2λ4 . (2.4)

We note that the (non)necessity of different types of fields could be different case by case,

which is identified by studying the kinematics of the particular process that we are interested

in.

16



soft

collinear

offshell

k
k+q

q

Figure 6: The interaction of a soft and collinear gluon with momenta k ∼ Q(λ, λ, λ) and q ∼
Q(λ2, 1, λ) respectively, to produce an offshell gluon with momentum k+ q ∼ Q(λ, 1, λ). [8]

2.2 SCETI AND SCETII

We emphasize that the size of the parameter λ depends on the type of problem we are

considering. For example, in inclusive decays the typical size of the parameter is λ ∼
√

ΛQCD/Q. In exclusive processes, on the other hand, one typically has the transverse

momentum of the energetic hadron scale as p⊥ ∼ ΛQCD, therefore λ ∼ ΛQCD/Q. These

two different parameter sizes introduce two different types of effective theory, SCETI and

SCETII [34], respectively. In SCETII, there exist no usoft modes because such degrees of

freedom would correspond to color fields with virtuality of order Λ2
QCD/Q, which do not

appear in QCD due to confinement.

From the momentum scaling rules, we notice that a collinear field can interact with a

usoft mode locally without being knocked off its mass shell too much. However there are

no local interactions between collinear and soft fields, since interactions of this kind will

kick the collinear mode offshell by an order of Q2λÀ Q2λ2. Therefore to construct SCETII

directly from QCD, one must integrate out this far offshell mode. An example for a triple

gluon vertex with a collinear and soft gluon is shown in fig. 6, in which an offshell gluon with

momentum p ∼ Q(λ, 1, λ) is produced and should be integrated out of the theory [8].

Alternatively, SCETII can be obtained more conveniently by treating it as a low energy

effective theory of SCETI, by integrating out fluctuations around the order of
√
QΛQCD [34].

The soft mode in SCETII is nothing but the usoft degrees of freedom in SCETI and we will
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see that via a field redefinition all usoft modes can be decoupled from the collinear ones and

factorized into the so-called usoft Wilson lines. Thus the matching from SCETI to SCETII

can simply be achieved by lowering the size of the parameter λ from
√

ΛQCD/Q to ΛQCD/Q

and replacing the usoft Wilson lines with the soft ones [34].

We note that the decoupling of the usoft and collinear fields is crucial for this match-

ing procedure to be trivial. When matching off the mass shell, extra modes such as the

soft-collinear messenger [35] or a particular choice of the infrared regulator [36] should be

introduced in order to correctly reproduce all the infrared structures of QCD in SCETII,

since the offshellness spoils the decoupling theorem.

2.3 SCET LAGRANGIAN AND POWER COUNTING

In this section we turn to the construction of the SCET Lagrangian focusing on the SCETI

case. We start from the quark sector in the QCD Lagrangian in Eq. (1.1).

We first remove the large momentum fluctuations by defining a new field qn,p

q(x) =
∑
p̃

e−ip̃·xqn,p . (2.5)

Here we split the momentum q carried by the collinear quark into a large part and residual

momentum

pµ = p̃µ + kµ , with p̃µ =
1

2
p−nµ + pµ⊥ , (2.6)

where the momenta scaling like O(1) and O(λ), denoted by p̃, are treated as the large

parts while the residual momenta kµ representing the fluctuation of an order λ2 ∼ ΛQCD are

dynamical. In principle, by the scaling rule the label momentum can not be zero, p̃ 6= 0.

The new field qn,p is labeled by its large momentum and the direction of motion.

We further project out the large components ξn,p and the small components χn̄,p of the

newly defined Dirac field qn,p, using projection operators

ξn,p =
n/n̄/

4
qn,p , χn̄,p =

n̄/n/

4
qn,p . (2.7)
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The Lagrangian for massless collinear quarks can be expressed in terms of ξn,p and χn̄,p

L =
∑

p̃,p̃′
ei(p̃

′−p̃)·x
{
ξ̄n,p′

n̄/

2
(in ·D) ξn,p + χ̄n̄,p′

n/

2
(n̄·p+ in̄ ·D)χn̄,p

+ξ̄n,p′ (p/⊥ + iD/⊥)χn̄,p + χ̄n̄,p′ (p/⊥ + iD/⊥) ξn,p
}
. (2.8)

In this equation, the derivatives ∂µ acting on the fermonic field χn̄,p scale as the residual

momenta kµ ∼ λ2. Thus the kinetic terms for χn̄,p is suppressed relative to n̄·p and p⊥. As

a result the small components χn̄,p are not dynamical but auxiliary and we can eliminate

them at tree level using the equation of motion

χn̄,p(x) =
1

n̄·p+ in̄ ·D (p/⊥ + iD/⊥)
n̄/

2
ξn,p(x) . (2.9)

The inverse operator is understood to solve the equation of motion in a perturbative way.

Replacing the auxiliary field χn̄,p in Eq. (2.8) by ξn,p using the equation above gives the

Lagrangian for the collinear quarks in SCET

Lξ =
∑

p̃p̃′
ei(p̃

′−p̃)·x ξ̄n,p′
{
in ·D + (p/⊥ + iD/⊥)

1

n̄·p+ in̄ ·D (p/⊥ + iD/⊥)

}
n̄/

2
ξn,p . (2.10)

The overall phase is highly oscillatory compared with the slowly varying fields, which enforces

the conservation of the label momenta since

∫
d4xei(p

′−p)·x = δ
(3)
p̃′,p̃

∫
d4xei(k

′−k)·x . (2.11)

We pause here and switch to discuss the power counting rules for the fields appearing in

SCET. The rules can be obtained by demanding that in equations

∫
d4xeip·x〈0|T[q(x)q̄(0)]|0〉 =

ip/

p2 + iε
,

∫
d4xeiq·x〈0|T[Aµ(x)Aν(0)]|0〉 =

i

q2 + iε

(
−gµν + η

qµqν

q2

)
, (2.12)

the scaling of the components on the right hand side agree with the ones on the left. For

instance for collinear fermonic fields, the right hand scales as λ−2. On the left hand side, we

have, from the commutation relation, x+
c ∼ 1, x−c ∼ λ−2 and x⊥c ∼ λ−1 hence d4xc ∼ λ−4.

Therefore ξn,p has to scale as λ to make the scaling on both sides agree. The power counting

rules in λ for SCET fields are summarized in Table 2. There is some freedom in choosing
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Table 2: Power counting rules for SCET fields.

Type momenta fields field scaling

collinear pµc ∼ Q(λ2, 1, λ) ξn,p λ

(A+
n,q, A

−
n,q, A

⊥
n,q) (λ2, 1, λ)

usoft pµus ∼ Q(λ2, λ2, λ2) qus λ3

Aµus λ2

soft pµs ∼ Q(λ, λ, λ) qs λ3/2

Aµs λ

the scaling rule for the collinear gauge field. The rule used in SCET is preferred due to the

advantage that as long as Aµc scales the same way as a collinear momentum there are no

interactions that will scale as λ−1.

Now we return to the discussion about the SCET Lagrangian to determine the inter-

actions between fermonic fields and different types of gauge bosons in the effective theory.

From Table 2, we can see that the soft gluons can not appear in the Lagrangian in Eq. (2.10)

since it will cause inconsistency in power counting. For instance, there is no way to maintain

the power counting rules as well as the conservation law of the label momenta in Eq. (2.10)

for terms involving both soft and collinear modes. Meanwhile the usoft gluons only con-

tribute to the first term in Eq. (2.10), which leads to interactions of the same form as the

ones in QCD among quarks and gluons. Other usoft contributions are relatively suppressed

according to power counting rules.

The collinear gluon fields can be manipulated in the same manner as the collinear quarks.

We extract the large momentum by defining a new field Aµc (x) =
∑

q̃ e
−iq̃·xAµn,q(x). Plugging

the collinear gluons into Eq. (2.10), we get a compact form for the fermonic Lagrangian

Lξ = ξ̄n,p′

{
in ·D +

(P/⊥ + gsA/
⊥
n,q1

) 1

P̄ + gsn̄·An,q2
(P/⊥ + gsA/

⊥
n,q3

)} n̄/

2
ξn,p , (2.13)

where we have introduced a projection operator Pµ = 1
2
nµP̄ + Pµ⊥ [7] with P̄ = n̄ · P . The

operator acts on all the collinear fields to its right and projects out the sum of large label
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momenta on fields minus the sum of large labels on conjugate fields. The derivatives n̄ · ∂
and ∂⊥µ in Eq. (2.10) can be replaced by the projection operator since

i∂µe−ip̃·xqn,p(x) = e−ip̃·x (Pµ + i∂µ) qn,p(x) . (2.14)

The summation on the label momenta is always implied. We are free to change variables on

the labels as long as we keep the label momenta conserved, which is enforced by the overall

phase. The covariant derivative in ·D contains both collinear and usoft gluon contributions

and this term is identical to the large energy effective theory Lagrangian [37]. Eq. (2.13)

can be further simplified using collinear Wilson lines. We stick to this form (2.13) at this

moment since it is more straightforward to give the Feynman rules and wait to talk about

the Wilson lines in the following chapters.

We expand the Lagrangian (2.13) to leading order in λ and up to O(g2
s) to derive some

of the Feynman rules in SCETI

Lξ = ξ̄n,p′

{
in · ∂ + P/⊥

1

P̄ P/⊥ + gsn · Aus

+gs

(
n · An,q + P/⊥

1

P̄A/
⊥
n,q + A/⊥n,q

1

P̄ P/⊥ − P/⊥
1

P̄ n̄·An,q
1

P̄ P/⊥
)

+g2
s

(
A/⊥n,q′

1

P̄A/
⊥
n,q − P/⊥

1

P̄ n̄·An,q′
1

P̄A/
⊥
n,q

−A/⊥n,q′
1

P̄ n̄·An,q
1

P̄ P/⊥ + P/⊥
1

P̄ n̄·An,q′
1

P̄ n̄·An,q
1

P̄ P/⊥
)}

n̄/

2
ξn,p . (2.15)

The Feynman rules are shown in fig. 7. We notice that at leading order, the interaction

between usoft and collinear quarks only comes from the gsn · Aus term that will eventually

be eliminated by a field re-definition as we will show later in this chapter.

The SCETII Lagrangian is the same as Eq. (2.13) after turning off the usoft interaction

term. Extra terms for regulating the IR divergence may be added to the Lagrangian to

reproduce all the IR divergences of QCD [36].

The collinear gluon Lagrangian can be found in [8] including the gauge fixing term and

ghost term. We list here only the term for collinear gluons ignoring the ghosts.

Lg =
1

2g2
s

Tr
{[
iDµ + gsA

µ
n,q, iDν + gsA

ν
n,q′
]}2

+
1

ξ
Tr
{[
iD, Aµn,q

]}
, (2.16)

21



(p̃, k)
= i

n/
2

n̄·p
n·k n̄·p+ p2⊥+iε

µ , A

= ig TA nµ
n̄/
2

p p′

µ , A

= ig TA

{
nµ +

γ⊥µ p/⊥
n̄·p +

p ′/⊥γ⊥µ
n̄·p ′ − p ′/⊥p/⊥

n̄·p n̄·p ′ n̄µ

}
n̄/
2

p p′

µ , A ν , B

q = ig2 TA TB

n̄·(p−q)

{
γ⊥µ γ

⊥
ν − γ⊥µ p/⊥

n̄·p n̄ν − p ′/⊥γ⊥ν
n̄·p ′ n̄µ + p ′/⊥p/⊥

n̄·p n̄·p ′ n̄µn̄ν

}
n̄/
2

+ ig2 TB TA

n̄·(q+p′)

{
γ⊥ν γ

⊥
µ − γ⊥ν p/⊥

n̄·p n̄µ −
p ′/⊥γ⊥µ
n̄·p ′ n̄ν + p ′/⊥p/⊥

n̄·p n̄·p ′ n̄µn̄ν

}
n̄/
2

Figure 7: Feynman rules involve collinear quark to leading order in λ in SCETI [6] : collinear
quark (dashed line) is labeled by p̃ and residual momentum k. We present the soft gluon by a
spring line and the collinear gluon by a spring with a straight line going through.

where iD including usoft gluons will be defined in Eq. (2.20). The propagator for the

collinear gluon has the same form as the one in QCD. Only the n · Aus component of the

usoft gauge field can appear to leading order in λ in the interactions with collinear gluons

and, in Feynman gauge, the four-gluon vertex in the usoft-collinear interactions vanishes.

This observation will help us show that the collinear fields can decouple from the usoft

degrees of freedom using field redefinitions at leading order in the following chapters.
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2.4 GAUGE TRANSFORMATIONS

Gauge symmetries are important in applying effective theories, since they set strong con-

straints on the forms of the operators that we can construct out of the fields in the ef-

fective theories. In SCET, there are three classes of gauge transformations in correspon-

dance with three different types of gauge bosons. We denote the gauge transformations

as U(x) = exp(iθa(x)T a) and in QCD the fields transform as shown in Eq. (1.2). In

SCET, gauge transformations are categorized into usoft, soft and collinear by requiring

that their derivatives scale the same way as the corresponding gauge fields: ∂µUus(x) ∼ Qλ2,

∂µUs(x) ∼ Qλ and ∂µUc(x) ∼ Q(λ2, 1, λ). Other scalings put fields way off their mass shells

so are not allowed due to power counting which can be seen easily from Lagrangian (2.13).

For instance, we consider the kinetic term for collinear fermions in the Lagrangian (2.13)

under arbitrary gauge transformations

ξ̄n,p′in · ∂ξn,p → ξ̄n,p′in · ∂ξn,p − ξ̄n,p′ [n · ∂θa(x)T a] ξn,p . (2.17)

The square bracket in the second term indicates that the derivative acts on θa(x) only.

The Lagrangian can not be invariant under transformations other than usoft and collinear

without changing the species of the gauge fields.

We investigate the gauge transformations in SCETI. The gauge field is decomposed into

collinear and usoft Aµ = Aµc + Aµus. Under the usoft transformation Uus(x) we have (taking

scaling into consideration)

Aµc + Aµus → UusA
µ
cU

†
us + UusA

µ
usU

†
us +

i

gs
Uus∂

µU †us , (2.18)

and under the collinear transformation Uc(x) we have

Aµc + Aµus → UcA
µ
cU

†
c +

i

gs
Uc (∂

µ − igsAµus)U †c

→ UcA
µ
cU

†
c +

i

gs

[
Uc, [D

µ
usU

†
c ]
]
+ Aµus (2.19)

Here the covariant derivative is defined as iDus = i∂+gsA
c
us containing only the usoft gluons.

The inner square bracket again sets the range that the derivative is active. The commuta-

tor here is defined as [A, [BC]] = A[BC] − [B(CA)]. We can see that under a collinear
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transformation, the usoft gluons with a wavelength of the order 1/(Qλ2) are fixed since it

can not resolve the relatively fast local change, therefore the usoft gluons act like classical

background fields. The background fields provide a slowly varying color background for the

collinear fields to live in. Thus under a usoft transformation, the collinear fields experience

global color rotations. In the presence of soft gluons, soft gauge transformations appear.

However, the collinear and usoft fields can not transform under this gauge transformation

since it will take them far off their mass shells. The same arguments hold for quarks.

To factorize out the large momentum components in the collinear transformations, we use

the same trick as for the collinear fields to define Uc(x) =
∑

Q̃ e
−iQ̃·xUQ, where ∂µUQ ∼ Qλ2

and
∑

Q̃ UQ+rU †−Q+r′ = δ
(3)
r̃r̃′ with (r, r′) fixed. We use the projector P to project out the

large label momenta and throw away the power suppressed terms in λ. In this way, the usoft

covariant derivative iDµ
us in Eq. (2.19) is replaced by

iDµ = P̄ n
µ

2
+ Pµ⊥ + in ·Dus

n̄µ

2
. (2.20)

Only the n · Aus component of the usoft gluon field contributes, the others are suppressed

by powers of λ.

We list all of the SCET gauge transformations in Table 3. We note that, for instance, in

SCETI under usoft or collinear gauge symmetries the combination Aus + Ac transforms the

same way as the gauge field in QCD (2.18) and (2.19). This is not true for the collinear and

usoft fermions, since the small components of the collinear quark spinor have been integrated

out via equation of motion (2.9) to build the effective Lagrangian while gauge fields have

not.

2.5 WILSON LINES

To see that the Lagrangian (2.13) is invariant under gauge transformations, we introduce

an important building block in SCET, the Wilson lines. Similar to the three different gauge

transformations in SCET, there are three types of Wilson lines in SCET corresponding to

collinear, usoft and soft.
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Table 3: Gauge transformations for the collinear, soft, and usoft fields. The p labels on

collinear fields are fixed, while Q and R are summed over. For simplicity labels on the soft

fields are suppressed here.

Collinear UR Soft Us Usoft Uus

ξn,p Up−Q ξn,Q ξn,p Uus ξn,p

Aµn,p UQ Aµn,R U †Q+R−p + 1
gs

[
UQ,

[
iDµ U †Q−p

]]
Aµn,p UusA

µ
n,p U

†
us

qs qs Us qs Uus qs

Aµs Aµs Us

(
Aµs + 1

gs
Pµ
)
U †s UusA

µ
s U

†
us

qus qus qus Uus qus

Aµus Aµus Aµus Uus

(
Aµus + i

gs
∂µ
)
U †us

The one built out of the collinear gauge field, as expected, is the collinear Wilson line.

The collinear Wilson line is important in building operators like φ̄usψc. Since the collinear

fields are populating near n·x ∼ 0 while the usoft fields are far away in n̄ direction, we need a

Wilson line to link them to conserve gauge invariance which gives φ̄us(∞n̄)W (∞n̄, x)ψc(x).
The necessity of the collinear Wilson line can also be infered from the fact that, unlike

QCD, the SCET Lagrangian should be non-local in the x+ direction since we integrate out

the small components of the fermion spinor along the light-cone direction. Though the

separation is of order 1/Q, the nonlocal contribution to the SCET Langrangian is enhanced

by p⊥ ∼ Qλ. The non-locality is disguised in (2.13) by the expansion in λ and the operator

1/P̄ . To see this more explicitly, we consider the equation of motion (2.9), in the light-cone

gauge n̄·A = 0 for simplicity,

χn̄,p(x) =
1

n̄·p+ in̄ · ∂
[
(p/⊥ + iD/⊥)

n̄/

2
ξn,p

]
(x)

= −i
∫ 0

−∞
ds e−is(n̄·p+iε)

[
(p/⊥ + iD/⊥)

n̄/

2
ξn,p

]
(x+ sn̄) . (2.21)
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To get the second line, a +iε prescription has been applied on the denominator in the first

line. Plugging the equation above into the QCD Lagrangian, we find in light-cone gauge the

SCET Lagrangian to all orders in λ (without usoft quarks) containing a term of the form

L ⊃ i

∫ 0

−∞
ds e−is(n̄·p+iε)

[
ξ̄n,p′

(
p/′⊥ + i

←−
D/ †⊥
)]

(x)

[
(p/⊥ + iD/⊥)

n̄/

2
ξn,p

]
(x+ sn̄) . (2.22)

Now we see explicitly that we have two parts in the Lagrangian sitting at two space-time

points separated along the light-cone direction n̄ by s. The size of the separation could

be found in the overall phase which has its support over a range of order s ∼ 1/Q. An

expansion of this term around x to leading order in λ or s (sn̄ · ∂ξn,p ∼ λ2) would reproduce

the Lagrangian we found in Eq. (2.13) in the light-cone gauge. In arbitrary gauges, the

Wilson line

W (x, x+ sn̄) = P exp

[
igs

∫ x

x+sn̄

dtn̄·A(tn̄)

]

= P exp

[
igs

∫ x

−∞
dtn̄·A(tn̄)

]
P exp

[
−igs

∫ x+sn̄

−∞
dtn̄·A(tn̄)

]

≡ W (x)W †(x+ sn̄) . (2.23)

has to be inserted to link the two different space-time points x and x + sn̄ for maintaining

the gauge invariance of the Lagrangian, which gives

L ⊃ i

∫ 0

−∞
ds e−is(n̄·p+iε)

[
ξ̄n,p′

(
p/′⊥ + i

←−
D/ †⊥
)
W
]
(x)

[
W † (p/⊥ + iD/⊥)

n̄/

2
ξn,p

]
(x+ sn̄) .(2.24)

To leading order in λ power counting, only the n̄ ·Ac component of the collinear gluon

contributes to the Wilson line, which is named the collinear Wilson line Wc.

Under arbitrary collinear gauge transformations, the collinear Wilson line transforms as

Wc → Uc(x)Wc(x)Uc(x−∞n̄) , (2.25)

therefore, Eq. (2.24) is manifestly gauge invariant and in fact each piece in the square bracket

is collinear gauge invariant independently as long as the collinear gauge fields have no support

at infinity and hence U †c (x −∞n̄) = 1. In general, this situation is satisfied since collinear

gluons with large n̄·q ∼ Q only smear over a distance of order 1/Q in n̄ direction. Eq. (2.24)

can be expanded in λ in several different ways. On one hand, we could firstly expand
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Wc(x, x+ sn̄) to leading order in λ by turning the integration over full momenta to one over

the residual momenta
∫

d4q →∑
q̃

∫
d4k

Wc(x, x+ sn̄) =
∑
perms

exp

[
− gs

(2π)4

∫
d4q

n̄·Ac(q)
n̄·q + iε

e−iq·x
]

×
∑
perms

exp

[
− gs

(2π)4

∫
d4q′

n̄·A∗c(q′)
n̄·q′ − iεe

iq′·(x+sn̄)

]

=
∑
perms

exp

[
−gs n̄·An,q(x)

n̄·q + iε

]

×
∑
perms

exp

[
−gs n̄·An,−q

′(x)

n̄·q′ − iε eisn̄·q
′
]
. (2.26)

In the last equation, a sum over the label momentum is implied and An,−q = A∗n,q. Inserting

the equation into Eq. (2.24), expanding around x to leading order in λ and performing the

integration over s recovers the Lagrangian in Eq. (2.13) order by order in gs with the help

of the projector P . On the other hand, we have

i

∫ 0

−∞
ds

[
ξ̄n,p′

(
p/′⊥ + i

←−
D/ †⊥
)
Wc

]
(x) e−is(n̄·p+iε)

[
e−isn̄·∂W †

c (x)
] [

(p/⊥ + iD/⊥)
n̄/

2
ξn,p

]
(x)(2.27)

Integrating over s yields a manifestly gauge-invariant Lagrangian in the hybrid momentum-

position space representation [7]

ξ̄n,p′

{(P/⊥ + gsA/
⊥
n,q

)
Wn(x)

1

P̄W
†
n(x)

(P/⊥ + gsA/
⊥
n,q′
)} n̄/

2
ξn,p(x) , (2.28)

where

Wn ≡
[∑

perms

exp

(
−gs 1

P̄ n̄·An,q(x)
)]

, (2.29)

and under the collinear gauge transformation UQ, the Wilson line Wn goes like

Wn → UQWn . (2.30)

as a consequence of Eq. (2.25) with the boundary condition that U †c (x−∞n̄) = 1.

From the equivalence of Eq. (2.28) and (2.13), we can infer that WnP̄−1W †
n = (P̄ + gsn̄·

A)−1. This can be generalized to Wnf(P̄)W †
n = f(P̄ + gsn̄ ·A) [7] which is nice since the
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relation ensures that gauge invariant combinations of the n̄·An,q components only appear in

the collinear Wilson line Wn.

As we mentioned in the previous sections, at leading order the usoft fields can decouple

from the collinear modes through field re-definitions. The decoupling simplifies the factor-

ization theorem in SCET and is realized by using the usoft Wilson line denoted as Y .

The usoft Wilson line can be obtained by considering an on-shell collinear field propagates

within a background full of usoft gluons as depicted in fig. 8 and fig. 9. For the collinear

quark case, the Feynman rules in fig. 7 gives

ξn,p → Y ξn,p =
∑
perms

exp

[
−gsn · A

a
usT

a

n · k
]
ξn,p . (2.31)

Here the quark spinor ξ turns into a field which no longer interacts with the usoft gluons.

All the interactions have been factored into the overall exponential which defines the usoft

Wilson line. Expressed in a path-ordered form the usoft Wilson line is given by

Y (x) = P exp

[
igs

∫ x

−∞
dsn · Aaus(sn)T a

]
, (2.32)

where we have shown explicitly that, for the quark sector, the usoft Wilson line is in the

fundamental representation. We note that this form corresponds to a +iε prescription in

the denominator of Eq. (2.31). The position of the poles determined by the sign of iε term

has physical consequences. Different prescriptions correspond to different physical processes.

The prescription used here, for instance, is related to the usoft gluons attached to a incoming

quark from −∞ to x. For a systematic analysis on the structures of the usoft Wilson lines,

see [38].

This decoupling statement holds true at the level of Lagrangian at lowest order in λ,

since one can prove that under such a field re-definition, the term involving the interactions

between usoft gluons and collinear quarks transforms as

Y †in ·DusY = in · ∂ . (2.33)

And we will see that no extra usoft terms will arise once we re-define the gluon field in a

similar manner. However beyond leading order, the situation is complicated by the emergence
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p

µ1 , a1 µ2, a2 µn, an

k1 k2 kn + perms.

Figure 8: The usoft gluons (spring lines) attached to a collinear quark line can be summed up into
a path-ordered exponential. [8]

p µ, aν, b

µ1, a1 µ2, a2 µn, an

k1 k2 kn
+ perms.

Figure 9: The usoft gluons attached to a collinear gluon can be summed up into a path-ordered
exponential. [8]

of subleading couplings of usoft gluons and quarks and the decoupling theorem may not be

proved simply with the aid of the usoft Wilson line.

The collinear gauge fields can be treated in the same way. A suitable choice of gauge

makes the calculation [8] similar to the collinear quark case, which yields

Aa,µn,p → YabAb,µn,p =
∑
perms

exp

[
−gsn · A

c
us(−if cab)
n · k

]
Ab,µn,p . (2.34)

Similar to the quark fields, at this lowest order in λ, the gauge fields do not couple to usoft

gluons. All usoft gluons are summed up into the exponential in the adjoint representation.

In the position space the usoft Wilson line is given by the path-ordered exponential

Yab(x) = P exp

[
igs

∫ x

−∞
dsn · Acus(sn)(−if cab)

]
. (2.35)

Also a +iε prescription should be utilized in performing the Fourier transformation. The
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Table 4: Gauge transformations for the collinear, soft, and usoft Wilson lines Wn, S, and Y .

Collinear UQ Soft Us Usoft Uus

Wn UQWn Wn UusWn U
†
us

S S Us S Uus S U
†
us

Y Y Y Uus Y

adjoint representation can be related to the fundamental one by the equation T bYba =

Y T aY †. Therefore we find the field re-definitions

ξn,p → Y ξn,p , Aµn,q → Y Aµn,qY
† , Wn → YWnY

† . (2.36)

By modifying the SCET Lagrangian (2.13) and (2.16) using the redefined fields listed above,

we can easily see that the usoft contributions have been completely removed from the SCET

Lagrangian and no couplings of usoft gluons to collinear modes exist. Therefore we can

claim that at leading order in power counting, all interactions of usoft gluons and collinear

fields can be factored into the usoft Wilson line Y defined with respect to the direction of

the collinear particles.

The soft Wilson line plays a similar role as the usoft one in decoupling the soft and

collinear sectors. The decoupling theorem is proved in [8] or can be obtained in a neat way

by matching SCETI onto SCETII [34]. The soft Wilson line is obtained simplify by replacing

the usoft gluons by the soft ones, which gives, in the path-ordered form,

S(x) = P exp

[
igs

∫ x

−∞
dsn · As(sn)

]
, (2.37)

in the fundamental or adjoint represention for quarks or gluons respectively.

We conclude this section by listing the transformation rules for the Wilson lines under

different types of gauge transformations in Table. 4 and emphasize that Wilson lines are

important building blocks in constructing gauge invariant operators in SCET.
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2.6 REPARAMETERIZATION INVARIANCE

The SCET Lagrangian that we have discussed so far is derived by tree-level matching from

QCD. In general, loop effects can not only modify the coefficients of the operators but

introduce new terms that satisfy the gauge symmetries. The worst case is that radiative

corrections develop extra kinetic terms for collinear particles and thus the kinetic Lagrangian

can only be defined order by order. However once we impose new symmetries in SCET, we

will see that these operators are forbidden and the SCET Lagrangian is not renormalized as

long as we take a matching scheme obeying all symmetries and the power counting rules.

In addition to the constraints from gauge symmetries, the SCET operators are also

required to be reparameterization invariant [39]. The requirement for reparameterization in-

variance comes from the fact that we have redundancy in defining the light-cone coordinates.

In SCET, any choice of the light-cone vectors n̄ and n are equally good and has no physi-

cal consequence as long as they satisfy the conditions in Eq. (2.1) and keep the scaling of

the collinear momenta unchanged. Therefore we can have three types of reparameterization

transformations

TypeI : n→ n+ ∆⊥ ,

TypeII : n̄→ n̄+ ε⊥ ,

TypeIII : n→ eαn , n̄→ e−αn̄ , (2.38)

where ∆⊥, ε⊥ and α are parameters with ∆⊥ ∼ λ, ε⊥ ∼ 1 and α ∼ 1 to preserve the scaling

of the collinear momenta .

Some transformation rules can be found in Table. 5. Using the parameterization invari-

ance, one can show that the Lagrangian (2.28) is the most general form at leading power

counting order, satisfying both gauge symmetries and reparameterization invariance [39].

Therefore the form of the kinetic term is entirely fixed [39] and acquires no anomalous

correction.
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Table 5: A summary of the reparameterization transformation rules in the SCET. [39]

TypeI TypeII TypeIII

n→ n+ ∆⊥ n→ n n→ eαn

n̄→ n̄ n̄→ n̄+ ε⊥ n̄→ e−αn̄

ξn →
(
1 + 1

4
∆/⊥n̄/

)
ξn ξn →

(
1 + 1

2
ε/⊥ 1

n̄·DD/
⊥
)
ξn ξn → ξn

n · D → n · D + ∆⊥ · D⊥ n · D → n · D n · D → eαn · D
n̄ · D → n̄ · D n̄ · D → n̄ · D + ε⊥ · D⊥ n̄ · D → e−αn̄ · D
Wn → Wn Wn →

[(
1− 1

n̄·D ε
⊥ · D⊥)]Wn Wn → Wn

2.7 ZERO BIN SUBTRACTION

When we analyze physical processes, we always need to deal with different kinds of integrals,

such as loop integrals in higher order corrections or phase space integrals. In SCET these

integrals involve a sum over the large momentum labels along with an integral over the

residual momenta, which, in practice, one always turns into an integration over full momenta

p = p̃+ k using

∑
p̃

∫
dnk =

∫
dnp (2.39)

to avoid the explicit summations. However this substitution is problematic since it includes

bins where the large label p̃ = 0. In SCET, collinear modes can be distinguished from usoft

fields through their large label momenta. When the label momenta vanish, however, the

momenta of the collinear particles will scale the same way as the usoft momenta and the

fields should essentially be regarded as usoft. The conversion from summation to integral

overcounts the contributions from this overlapped zero bin region and must be carefully

subtracted in order to reproduce the infrared structure of the full theory [40]

∑

p̃6=0

∫
dnkF [p, k] =

∫
dnp (F [p]− Fsub[0]) . (2.40)
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Figure 10: Real emission of a collinear gluon in SCET.

Here the subtraction is performed at the integrand level.

We emphasize that zero bin subtraction is crucial for SCET or other effective theories,

such as NRQCD, to faithfully reproduce the infrared physics. It is related to the end-point

sigularities that will spoil our naive expectations for the factorization theorem. For instance,

in deep-inelastic-scattering (DIS) near the end-point x → 1, both initial and final state

partons share features of collinear degrees of freedom. In a certain frame (Breit frame),

they propagate in opposite light cone directions, n and n̄, and communicate with each other

through emitting or absorbing soft gluons. A naive expectation for the amplitude in this

frame takes the form In+ In̄+ Is corresponding to the factorization σ ∼ fi/p ·Jn ·S. However

the correct total amplitude is given by In + In̄ − Is, which can be reproduced in SCET only

when one performs zero bin subtraction correctly to yield σ ∼ fi/p/S ·Jn̄/S ·S = fi/p ·Jn̄ ·S−1.

We use a trivial example to highlight the zero bin subtraction scheme by considering a

heavy quark decaying into a light one. The SCET operators contributing to the process take

the form

∑
i

∑
ω

Ci(ω)ξ̄nWnδω,P̄†Γ
µ
i hv , (2.41)

where ξn is the collinear light quark and Γµi are Dirac structures. The overall coefficients

are determined order by order in perturbation theory by matching with QCD. hv is the field

annihilating a heavy quark with velocity v. The dynamics for hv can be described by heavy

quark effective theory. Here we have not factorized out the usoft Wilson line, therefore the

collinear field ξ still can emit or absorb usoft gluons.
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We focus on the real emission of collinear gluons in d = 4− 2ε dimension. The Feynman

diagrams are shown in fig. 10. A naive implementation of the Feynman rules in fig. 7 gives

that

|M|2 = g2
sCF |M|20

1

q2
gξ

(
4n̄·q
n̄ · k + (2− 2ε)

n · q
n · qgξ

)
, (2.42)

where q and k are momenta for the collinear quark and gluon respectively. The total mo-

mentum for the collinear quark-gluon system is denoted as qgξ. M0 is the tree level 1 → 2

amplitude. When n̄·q or n̄ · k goes to zero, the momenta scale like Q(λ2, λ2, λ2) rather than

Q(λ2, 1, λ). These zero bin contributions should be subtracted to avoid double counting. By

power counting (including the power counting for the phase space), the zero bin contribution

from the collinear quark is suppressed by a power of λ2 since n̄·q ∼ Qλ2, therefore the only

term that needs to be subtracted comes from the collinear gluon, which gives

|M|2zero = g2
sCF |M|20

1

q2
gξ

(
4n̄·qgξ
n̄ · k

)
, (2.43)

with k ∼ Qλ2. The purely collinear contribution is given by the difference between the

naive matrix element or the element without a zero bin subtraction and the zero bin matrix

element

|M|2coll = g2
sCF |M|20

1

q2
gξ

(
4n̄·q
n̄ · k + (2− 2ε)

n · q
n · qgξ −

4n̄·qgξ
n̄ · k

)
, (2.44)

which reproduces the infrared structure of QCD after including usoft radiation effects. A

more careful analysis reveals that the zero bin contribution only comes from the cross term

in fig. 10. Others are either vanishing or suppressed by powers of λ. A similar procedure

should be carried out for loop integrations, and in the current case the net effect of the zero

bin subtraction is simply to convert the infrared poles into the ultraviolet ones in dimensional

regularization since the integrals are scaleless.

We note that under certain circumstances similar to what we discussed above, the zero-

bin contributions can be factored into zero-bin Wilson lines by field re-definitions just like we
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did for decoupling usoft and collinear particles [41, 42]. The zero-bin Wilson line is defined

as

Wn,0 = P exp

[
igs

∫ x

−∞
dsn · An,0(sn)

]
, (2.45)

which is identical to the usoft Wilson line. Under such factorization the purely collinear

matrix elements can be related to the naive one,

〈0|W †
nξn|ξ〉coll =

〈0|W †
nξn|ξ〉

〈0|W †
n̄,0Wn,0|0〉

. (2.46)

This factorization offers the explanation for the form of the DIS cross section near x = 1.

2.8 APPLICATIONS OF SCET

SCET has achieved some successes in understanding physical problems involving scales

spanned over hard, collinear and (u)soft regions that typically arise near the phase space

boundaries. The predictive power is based on the factorization theorem provided by SCET,

which allows us to disentangle the contributions from different scales with accuracies up to

a given power in λ. Without loss of generality, the factorization theorem can be written as

an overall hard coefficient multiplied by the convolution of a collinear jet function (or jet

functions) with a (u)soft shape function1

dσ = H(ph, µ)
∏
ni

Jni(phks, µ)⊗ S(ks, µ) , (2.47)

where the hard coefficient H encodes the short distance physics obtained from matching

QCD onto SCET, while the collinear jet functions Jni describe the behavior of the jet like

particles in different ni directions obtained by further matching SCET onto purely (u)soft

effective theory. The jets in different light-cone directions communicate with each other only

through the (u)soft function S, since in the effective theory the degrees of freedom relate

to the momenta that will cause onshell singularites in QCD, and according to the Coleman

and Norton theorem [14], only classically allowed processes can occur. Each piece in (2.47)

1Here the jet functions are purely collinear with zero bin subtracted.
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depends on a scale µ and the dependences give the renormalization group equations (RGEs)

in SCET

µ
d

dµ
H(µ) = γH(µ)H(µ) , (2.48)

µ
d

dµ
Jni(µ) = γJni (µ)Jni(µ) , (2.49)

µ
d

dµ
S(µ) = γS(µ)S(µ) , (2.50)

while in principle the physical quantity σ can not. Therefore we must have the relation

γH +
∑
ni

γJni + γS = 0 , (2.51)

hold order by order.

As we mentioned, SCET was invented to resum large Sudakov logarithms near phase

space boundaries in Ref. [5], as an example, the authors showed that in B meson inclusive

radiative decay near the photon spectrum end-point, the large logarithmic corrections can

be resumed in an elegant way. Later on, SCET found its power in proving the factorization

theorem for exclusive processes. For instance, in Ref. [43], the authors derived the factoriza-

tion for B → Dπ to all orders in αs up to corrections suppressed by factors of 1/mc, 1/mb

and 1/Eπ, based on the observation that no collinear gluons couple to the B − D system

and the decoupling of (u)soft gluons to the pion at leading order in λ in SCET. Some other

exclusive factorizations for B-meson decaying to light particles, like B → ππ, have also been

established under the framework of SCET.

Other than B physics, SCET has been useful in investigating heavy quarkonium systems.

Based on the factorization theorem (2.47), SCET helps solve the puzzle that arises in the

spectrum of the Upsilon radiative decay near the photon maximum energy region as we

mentioned in section 1.2.

In Refs. [44], the authors showed that for Υ→ γX decay the factorization theorem (2.47)

near the end-point can be derived using the leading order gauge and reparameterization in-

variant SCET operators in λ with the help of NRQCD for both color singlet and octet con-

figurations. Heavy quarkonium structure functions arise naturally in SCET to take the place
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of the NRQCD matrix elements2. The enhancement near the phase boundary is removed by

resumming the leading large Sudakov logarithms using the RGEs (2.48) and applying some

simple model for the color octet structure functions. Their result married with the NRQCD

prediction in the intermediate region and fragmentation approximation in the small z region

is shown in fig. 11. We can see that the SCET prediction (solid line) is consistent with the

data.

Due to its soft-collinear features, SCET is also a generic tool for characterizing the jet

events on hadron colliders. It has been used to study jet shapes and jet algorithms in Ref. [45]

where a factorization theorem for jet shape distributions is proved and the jet functions for

angularity jet shapes are calculated to one loop order and resummed. Their results are

in good agreement with the Monte Carlo simulations. Another result based on SCET is

the conjecture of an exact formula for the infrared singularities of dimensionally regularized

scattering amplitudes in massless perturbative QCD to all orders in αs [46]. The anomalous-

dimension matrix they proposed for an n-jet operator in SCET in the color-space is of the

form

Γ =
∑
i,j

Ti · Tj
2

γcusp(αs) log
µ2

−sij +
∑
i

γi(αs), (2.52)

where the sums run over the external jets and the explanation of the symbols can be found

in [46]. Their derivation comes from the observation that in SCET the infrared poles

of onshell amplitudes are in one-to-one correspondence to the ultraviolet singularities of

operator matrix elements. Their results have been demonstrated to three loop order.

More recently, SCET has started to draw attention in physical processes initiated by

proton-proton collisions at hadron colliders. For instance, a procedure was developed by em-

ploying SCET to generate fully exclusive events [47]. SCET has been realized to be a perfect

tool to naturally incorporate both the parton distribution functions and the energetic initial

state radiation effects via different sorts of beam functions [48, 49, 50, 51]. In Ref. [48], the

authors studied the color octet inclusive J/ψ photoproduction γp(g) → J/ψ(cc̄) +X when

the J/ψ meson almost reaches its maximum energy. In this case, the final jet like particles X

come from the initial gluon radiation introducing the pT -independent gluon beam function

2The color singlet structure functions are essentially the NRQCD matrix elements.
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for the first time. Later on, the beam functions of the same type arose from systematic stud-

ies in proton-(anti)proton collisions at the LHC or Tevatron with experimental restrictions

on the hadronic final states [49]. Similar to [48], it was shown that the factorization does not

yield standard parton distribution functions but instead the beam functions for the so-called

isolated Drell-Yan cross section. The beam functions was found to be related to standard

parton distribution functions by Bi/p =
∑

j Iij ⊗ fj/p with Iij calculated perturbatively in

SCET and, unlike the standard parton distribution functions, the beam functions evolve in

the same way as collinear jets. Other types of beam functions with pT -dependence emerge

when one considers the transverse momentum distribution of a system with a large total

invariant mass m in the small pT (ΛQCD ¿ pT ¿ m) region [50, 51]. The large logarithmic

corrections of the form log (p2
T/m

2) due to multiple radiation need to be summed. Conven-

tionally the summation is performed in the impact parameter b space following the seminal

Collins-Soper-Sterman approach in which a suitable prescription is needed to avoid Landau

poles associated with impact parameter integrations. However in the SCET approach [51],

the factorization is performed solely in the momentum space with no reference to the impact

parameter b 3 and the non-perturbative contributions indicated by the appearance of the

Landau poles are encoded in terms suppressed by ΛQCD/pT . Therefore the Landau poles can

be avoided in the SCET approach. The power suppressed terms can also be studied in a

systematic way in SCET. For pT -dependent beam functions [51], the authors only considered

the cases where the final states contain only color-neutral objects. It would be interesting

to extend their results to study the production of final states with color charges (at parton

level).

Similar situations occur when one considers double differential decay rates, B → XKγ

for instance [52], in which a novel fragmenting jet function arises instead of the standard

parton fragmentation function. The fragmenting jet function provides extra information on

the invariant mass of the jet from which a detected hadron fragments. The fragmenting jet

functions were calculated in [53] and [54].

3Though the matching from the beam functions to the parton distribution functions must be executed
in the impact parameter space, after matching one can perform a fourier transformation to entirely remove
the dependence on the impact parameter.
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2.9 SUMMARY

In this chapter, we gave a short review on some basic constituents of SCET for the purpose

of setting the fundamentals for the rest of this thesis. We conclude this chapter by outlining

the general procedures in applying SCET

• Constructing all possible SCET operators Oi relevant to the problem of interest. The

operators should satisfy SCET gauge invariance as well as reparameterization invariance.

The operators should carry the correct quantum numbers including color configuration,

parity, etc. The series of the operators can be truncated up to a desired power counting

in λ.

• Matching. The QCD amplitudes can be recovered through a summation of these opera-

tors
∑

iCiOi with Ci being the Wilson coefficients. The Wilson coefficients are obtained

by a procedure called matching. The matching is performed at some hard scale Q. When

matching beyond tree level, one has to perform loop integrals. It will be very convenient

to use dimensional regularization for loop integrals since in SCET the integrations are

often scaleless, and thus zero, and in dimensional regularization the contributions to the

Wilson line come from the region where all loop momenta scale as Q as a result of the

asymptotic expansion of loop integrals near threshold [55].

• Deriving the factorization theorem. If we are lucky enough, the physical quantities can

be factored into collinear and (u)soft pieces with the help of the decoupling of (u)soft

and collinear degrees of freedom.

• Running. A typical problem suitable for SCET involves several well separated scales:

hard, collinear and (u)soft. Those scales are linked by RGEs. By running from one scale

to another, large Sudakov logarithms are summed up to a desired order.
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Figure 11: The inclusive photon spectrum compared with data [31]. The interpolated resummed
theoretical prediction is presented by the solid curve including color singlet, color octet and frag-
mentation contributions. The variations are caused by different choices of αs, mb, fragmentation
function and the collinear scale. [44]
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3.0 J/ψ PRODUCTION IN LEPTON ANNIHILATION

Starting in this chapter, we begin to discuss the application of SCET to heavy quarkonium

physics. As we have seen in section 1.2, the behavior of quarkonium production or decay

spectrum can not be understood entirely in NRQCD. Additional help from SCET is necessary

in certain kinematic regime for making reasonable theoretical predictions. In the current

chapter, we will investigate inclusive J/ψ production in lepton annihilation e+e− → J/ψ+X

by using SCET. In a recent paper, the Sudakov logarithms in the color-octet contribution

were summed by combining NRQCD with SCET at the endpoint. However, to be consistent,

the color-singlet contributions must also be summed in the endpoint region. This chapter is

based on Ref. [56], in which we sum the leading logarithms in the color-singlet contribution

to the J/ψ production cross section. We find that the color-singlet cross section is suppressed

near the endpoint compared to the fixed-order NRQCD prediction.

3.1 INTRODUCTION

Bound states of heavy quarks and antiquarks have been of great interest since the discovery

of the J/ψ [57]. In particular the production of quarkonium is an interesting probe of both

perturbative and nonperturbative aspects of QCD dynamics. Production requires the cre-

ation of a heavy QQ̄ pair with energy greater than 2mQ, a scale at which the strong coupling

constant is small enough that perturbation theory can be used. However, hadronization

probes much smaller mass scales of order mQv
2, where v is the typical velocity of the quarks

in the quarkonium. For J/ψ, mQv
2 is numerically of order ΛQCD so the production process

is sensitive to nonperturbative physics as well.
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Many phenomenological problems can be understood well enough by using the Non-

Relativistic Quantum Chromodynamics (NRQCD) [58, 59]. NRQCD provides a generalized

factorization theorem that includes nonperturbative corrections to the color-singlet model.

All infrared divergences can be factored into nonperturbative matrix elements, so that in-

frared safe calculations of inclusive decay rates are possible [3]. However, there are some

predictions of NRQCD in conflict with the data, in particular the predicted polarization of

J/ψ at the Fermilab Tevatron [60, 61] and more recently the production rate of J/ψ associ-

ated with extra c and c̄ quarks (both inclusive and exclusive) at the B factories [62, 63]. In

particular, Belle reports a large cross section for J/ψ produced along with open charm [62],

σ(e+e− → J/ψcc̄)

σ(e+e− → J/ψX)
= 0.59+0.15

−0.13 ± 0.12 .

The predicted ratio from leading order color-singlet production mechanisms alone is about

0.2 [64, 65] and a large color-octet contribution makes this ratio even smaller. In addition to

the inclusive measurements, Belle reports a cross section for exclusive double charmonium

production which exceeds previous theoretical estimates. Recent attempts to address the

latter problem can be found in Ref. [66].

The inclusive J/ψ production at the B factories is another potential conflict between

experimental observations and theoretical predictions using NRQCD [67, 68]. Leading order

NRQCD calculations predict that for most of the range of allowed energies prompt J/ψ

production should be dominated by color-singlet production mechanisms, while color-octet

contributions dominate when the J/ψ energy is nearly maximal. Furthermore, as pointed

out in Ref. [69], color-octet processes predict a dramatically different angular distribution

for the J/ψ. Writing the differential cross section as

dσ

dpψ d cos θ
= S(pψ)[1 + A(pψ) cos2 θ] , (3.1)

where pψ is the J/ψ momentum and θ is the angle of the J/ψ with respect to the axis defined

by the e+e− beams, one finds the color-singlet mechanism gives A(pψ) ≈ 0 except for large

pψ, where A(pψ) becomes large and negative. On the other hand, color-octet production

predicts A(pψ) ≈ 1 at the end-point. The significant enhancement of the cross section

accompanied by the change in angular distribution were proposed as a distinctive signal of
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color-octet mechanisms in Ref. [69]. It was expected that these effects would be confined to

J/ψ whose momentum is within a few hundred MeV of the maximum allowed.

However, experimental results do not agree with these expectations. The cross section

data as a function of momentum does not exhibit any enhancement in the bins closest to

the endpoint. On the other hand, the total cross section measured by the two experiments

exceeds predictions based on the color-singlet model alone. The total prompt J/ψ cross

section, which includes feeddown from ψ′ and χc states but not from B decays, is measured

to be σtot = 2.52± 0.21± 0.21 pb by BaBar, while Belle measures σtot = 1.47± 0.10± 0.13

pb. Estimates of the color-singlet contribution range from 0.4 − 0.9 pb [64, 70, 65, 71].

Furthermore, A(pψ) is measured to be consistent with 1 (with large errors) for pψ > 2.6 GeV

(Belle) and pψ > 3.5 GeV (BaBar).

The NRQCD factorization formalism claims that the differential J/ψ cross section can

be written as

dσ(e+e− → J/ψ +X) =
∑
n

dσ̂(e+e− → cc̄[n] +X)〈OJ/ψn 〉 , (3.2)

where dσ̂ is the inclusive cross section for producing a cc̄ pair in a color and angular momen-

tum state labeled by [n] = 2S+1L
(i)
J . In this notation, the spectroscopic notation for angular

momentum quantum numbers is standard and i = 1(8) for color-singlet (octet) production

matrix elements. The short-distance coefficients are calculable in a perturbation series in

αs. The long-distance matrix elements 〈OJ/ψn 〉 are vacuum matrix elements of four-fermion

operators in NRQCD [58]. These matrix elements scale as some power of the relative velocity

v ¿ 1 of the c and c̄ quarks as given by the NRQCD power-counting rules.

At lowest order in v the only term in Eq. (3.2) is the color-singlet contribution, [n] = 3S
(1)
1 ,

which scales as v3. The coefficient for this contribution starts at O(α2
s) [72]. There are two

different contributions to the leading-order color-singlet, depending on what else is produced

along with the J/ψ: e+e− → J/ψ+g+g and e+e− → J/ψ+ c+ c̄. Away from the kinematic

endpoint Emax = (s+M2
ψ)/(2

√
s), where s is the center-of-mass energy squared, color-octet

contributions also start at O(α2
s). Since the color-octet contributions are suppressed by

v4 ∼ 0.1 relative to the leading color-singlet contributions, they are negligible throughout

most of the allowed phase-space at leading order in perturbation theory.
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The theoretical situation becomes more interesting, however, near the endpoint. The

lowest-order, color-singlet term approaches a constant1

lim
z→1

dσ̂[3S
(1)
1 ]

dz d cos θ
=

64πα2α2
se

2
c

27s2mc

(1 + r)

(
1 + r

1− r − cos2 θ

)
. (3.3)

where r = 4m2
c/s, and z = Ecc̄/E

max
cc̄ with Emax

cc̄ =
√
s(1 + r)/2, while the lowest-order,

color-octet piece is singular (proportional to a delta function). Physically, when the J/ψ

emerges with close to the maximal energy, it is recoiling against an energetic gluon jet with

energy of order MΥ but invariant mass of order MΥ

√
ΛQCD/Mψ. The degrees of freedom

needed to describe this inclusive jet have been integrated out of NRQCD, and thus cannot

be described by the effective field theory. The effective theory that correctly describes

this kinematic regime is a combination of NRQCD for the heavy degrees of freedom, and

SCET [5, 6, 7, 8] for the light energetic degrees of freedom. Furthermore, the renormalization

group equations of SCET will sum the large kinematic preturbative corrections that appear

near corners of phase space.

In a previous paper [73] the combination of NRQCD and SCET was used to sum the

large kinematic logarithms (Sudakov logarithms) that arise in the color-octet contribution

near the endpoint. For the color-octet contribution, there are also large non-perturbative

contributions at the endpoint [74] that must also be summed into a non-perturbative shape

function. Since the shape function is unknown, in Ref. [73] the shape function was modeled.

Since it is universal, it is possible that it could be extracted from another process (such as

J/ψ photoproduction [48]). With the summation of the perturbative corrections and the

simple model chosen, a good fit to the data was obtained.

However, to be consistent, the color-singlet contribution should also be summed in the

endpoint region. This is the goal of the present chapter. The kinematic logarithms in the

J/ψ+ c+ c̄ color-singlet contribution are small, since the mass of the charm quark acts as a

cutoff. However, we would expect that the summed J/ψ + g + g color-singlet rate would be

suppressed relative to the unsummed rate. This would help alleviate the discrepancy with

the open charm data. However, we would not expect a very large suppression except right

1The J/ψcc̄ contribution goes to zero before the kinematic endpoint, due to the non-zero mass of the
charm quarks. It therefore does not contribute to the endpoint contribution given in Eq. (3.3).
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near the endpoint, and thus do not expect that this will be a solution to the J/ψ + open

charm question. This will be confirmed in our analysis in this thesis. The remainder of the

chapter is organized as follows. In Sec 3.2 a factorization theorem for J/ψ production near

the endpoint is developed. Then in Sec 3.3 the Sudakov logarithms are summed, including

mixing with the J/ψ+q+ q̄ final state. In Sec 3.4 the phenomenology of the J/ψ production

is investigated, and finally we conclude in Sec 3.5. A similar treatment of nonperturbative

and perturbative endpoint corrections to the color-singlet and color-octet contributions in

the inclusive decay Υ → X + γ can be found in Refs. [44, 75], and we will rely on some of

the results from these papers. Similar results have been previously reported in Ref. [76].

3.2 FACTORIZATION

In this section, we will derive a factorization theorem for e+e− → J/ψ+X near the kinematic

endpoint, where the rate can be factored into a hard coefficient, a collinear jet function and

an ultrasoft shape function. The derivation is quite similar to Refs. [8, 44, 73, 75, 48, 77]. We

begin by briefly reviewing the kinematics of the process in the e+e− center of mass (COM)

frame[73]. In the COM frame, the virtual photon has momentum qµ =
√
s/2(nµ + n̄µ) with

the lightlike vectors defined as n̄µ = (1, 0, 0, 1) and nµ = (1, 0, 0,−1). The J/ψ is moving in

the z-direction with four-velocity

vµ =
1

2

(
Mψ

x
√
s
nµ +

x
√
s

Mψ

n̄µ

)
. (3.4)

Here Mψ is the J/ψ mass and x = (Eψ + pψ)/
√
s. The cc̄ pair has momentum pµcc̄ =

Mvµ + `ν = Mvµ + Λµ
ν
ˆ̀ν , where M = 2mc and `ν is the residual momentum of the cc̄ pair

inside the J/ψ. In the J/ψ rest frame, ˆ̀µ has components of O(ΛQCD), which get boosted in

the COM frame to `µ scaling as n̄·` ∼MψΛQCD/(x
√
s), n·` ∼ x

√
sΛQCD/Mψ and `⊥ ∼ ΛQCD.

The momentum of the gluon jets is

pµX =

√
s

2

[(
1− r

x̂

)
nµ + (1− x̂)n̄µ

]
− `µ , (3.5)
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where x̂ = xM/Mψ. In the end point region the NRQCD factorization formula breaks down

because NRQCD does not include appropriate collinear modes. When 1−x ∼ ΛQCD/M , the

jet is no longer highly virtual. Since m2
X/E

2
X ∼ ΛQCD/M ¿ 1, the gluon jet is composed of

energetic particles with small invariant mass that must be included explicitly in the effective

theory. Hence, a new factorization theorem is needed to handle the end point, which can

be derived using a combination of NRQCD for the heavy quark degrees of freedom and

SCET [5, 6, 7, 8] that includes the collinear physics.

SCET has collinear degrees of freedom whose momentum scales as n̄ ·p ∼ Q, n ·p ∼ λ2Q,

and p⊥ ∼ λQ, soft degrees of freedom whose momentum scales as λ and ultrasoft (usoft)

degrees of freedom whose momentum scales as λ2. Heavy quark fields in SCET are the same

as in NRQCD when considering quarkonium. For e+e− → J/ψ + X, Q is of order
√
s,

while λ ∼ √1− x ∼√ΛQCD/M . To the order we are working, operators will contain usoft,

collinear quarks and gluons and heavy quark fields. Soft fields do not enter to the order we

are interested and are neglected.

We match QCD onto SCET at the scale Q by evaluating matrix elements in QCD at

the scale Q and expanding in powers of λ. Each order in λ is reproduced in the effective

theory by the product of SCET operators and Wilson coefficients. All the dependence on the

large scale Q shows up in the Wilson coefficients. We must include all SCET operators that

can contribute to the process under consideration at each order of λ. These operators must

respect the symmetries of the effective theory. For e+e− → J/ψ + X, the operators must

be invariant under both collinear and usoft gauge transformations [8]. Lorentz invariance

is realized in the effective theory by additional constraints on the operators, from RPI [39]

introduced in the previous chapter.

In the collinear sector of SCET there is a collinear fermion field ξn,p, a collinear gluon

field Aµn,q(soft modes are ignored), and a collinear Wilson line

Wn(x) =

[ ∑
perms

exp

(
−gs 1

P̄ n̄ · An,q(x)
)]

. (3.6)

The subscripts on the collinear fields are the light-cone direction nµ, and the large compo-

nents of the light-cone momentum (n̄ · q, q⊥). We use the operator Pµ to project out the

momentum label [7], n̄ · Pξn,p ≡ P̄ξn,p = n̄ · pξn,p. In the usoft sector there is a usoft fermion
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field qus, a usoft gluon field Aµus, and a usoft Wilson line Y . Using the transformation prop-

erties for each of these fields under collinear and usoft gauge transformations [8], we can

build invariant operators. The collinear-gauge invariant field strength is

Gµν
n ≡ −

i

gs
W †[iDµn + gsA

µ
n,q, iDνn + gsA

ν
n,q′ ]W, (3.7)

where

iDµn =
nµ

2
P̄ + Pµ⊥ +

n̄µ

2
in ·D, (3.8)

and iDµ = i∂µ + gsA
µ
us is the usoft covariant derivative. RPI requires the label operators

and the usoft covariant derivatives, which scale differently with λ, to appear in the linear

combination appearing in iDµn. The leading piece of Gνµ
n is order λ and can be written as

n̄νG
νµ
n = i[P̄ , Bµ

⊥], where

Bµ
⊥ =

1

gs
W †(Pµ⊥ + gs(A

µ
n,q)⊥)W. (3.9)

The subscript ⊥ on Bµ
⊥ indicates that µ must be a perpendicular direction.

We next construct the operators necessary to describe color-singlet 3S1 production at the

end point. A cc̄ pair in a color-singlet 3S1 configuration must be accompanied by a colorless

jet of quarks and gluons. The leading operator must have two gluon field operators to create

the collinear gluons in the final state. Thus, we should construct the operator out of two

B⊥ fields in color singlet configuration. Taking gauge-invariance into consideration, the only

operator is

Oµ gg(1, 3S1) = χ†−pΛ · σδψpTr
{
Bα
⊥ Γ

(1,3S1)
αβδµ (P̄ , P̄†)Bβ

⊥
}
. (3.10)

Here Λ is an operator which boosts J/ψ from its rest frame to an arbitrary frame.

At leading order, the coefficient is determined by requiring the SCET matrix element

of Eq. (3.10) to reproduce the lowest order QCD diagrams for e+e− → cc̄ + gg, shown in

Fig. 12. Matching at tree level, we obtain

Γ
(1,3S1)
αβµδ =

32π

3

eceαs
M2

r

1− rg
⊥
αβ

(
gµδ − 1− r

2
nµnδ

)
, (3.11)

where r = 4m2
c/s and gµν⊥ = gµν − (nµn̄ν + nνn̄µ)/2. We can also have a jet made up of a

quark-antiquark pair. Again, taking gauge-invariance into account, the only operator is

Oµ q̄q(1, 3S1) = χ†−pΛ · σδψpξ̄n,pWnΓ
(1,3S1)
δµ (P̄ , P̄†)W †

nξn,p . (3.12)
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+ cross terms

Figure 12: Matching the production amplitude for e+e− → cc̄+ gg in QCD and SCET. Collinear
gluons are represented by a spring with a line through it.

The leading order Wilson coefficient is zero. However, since this operator occurs at the same

order in λ, it can be generated through mixing. Just as in the case of Ref. [75], the mixing

is small, and we will neglect this term for now.

At leading order in the SCET power counting the cross section in the endpoint can be

expressed in a factored form to all orders in αs

2Eψ
dσ

d3pψ
=

e2

16π3s3
LµνHµν

∫
dl+S(l+, µ)Jω(l

+ −√s(1− x̂)) , (3.13)

where J is the collinear jet function, S is the usoft function and Hµν is the hard coefficient.

We shall now prove this factorization theorem. Using the optical theorem, the production

cross section can be written as

2Eψ
dσ

d3pψ
=

e2

16π3s3
Lµν

∑
X

〈0|J†ν(0)|J/ψ +X〉〈J/ψ +X|Jµ(0)|0〉(2π)4δ4(q − pψ − pX)

=
e2

16π3s3
Lµν

∫
d4y e−iq·y

∑
X

〈0|J†ν(y)|J/ψ +X〉〈J/ψ +X|Jµ(0)|0〉

≡ e2

16π3s3
LµνImTµν , (3.14)

where the sum includes integration over the phase space of X. The lepton tensor is

Lµν = pµ1p
ν
2 + pν1p

µ
2 − gµνp1 · p2, (3.15)
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where p1,2 are the momenta of the electron and positron, respectively, and

Tµν = −i
∫
d4ye−iqy

∑
X

〈0|J†µ(y)|J/Ψ +X〉〈J/Ψ +X|J†ν(0)|0〉 . (3.16)

The first step is to match the QCD current Jµ in Eq. (3.14) to leading order in λ,

Jµ =
∑
ω

e−i(Mv−P̄n/2)·yΓαβµδJ̃αβδ(ω) , (3.17)

where the effective current is

J̃αβδ = ψ†p(Λ · σ)δχ−p{Tr[Bα
⊥δωP−B

β
⊥]} , (3.18)

and Γ
(1,3S1)
αβµδ (ω) is given in Eq. (3.11). Substituting Eq. (3.17) into Eq. (3.16) and using

qµ −Mvµ + P̄nµ/2 ≈ √s(1− x̂)n̄µ/2 gives

Tµν =
∑

ω,ω′
Γ†α′β′δ′µΓαβδνT

αα′ββ′δδ′
eff (ω, ω′, x̂, µ) , (3.19)

where

T eff
αα′ββ′δδ′ = −i

∫
d4ye−i

√
s(1−x̂)n̄·y∑

X

〈0|J̃†α′β′δ′(ω′)|J/ψ +X〉〈J/ψ +X|J̃αβδ(ω)|0〉 . (3.20)

Next we decouple the usoft gluons in Teff using the field redefinition [8]

Aµn,q = Y A(0)µ
n,q Y

† → Wn = YW (0)
n Y † , (3.21)

where the first identity implies the second. The collinear fields with the superscript (0) do

not interact with usoft fields to lowest order in λ. In the color-singlet contribution all usoft

Wilson lines Y cancel due to the identity Y †Y = 1. Furthermore, the J/ψ does not contain

any collinear quanta, so using

∑
Xu

|J/ψ +Xu〉〈J/ψ +Xu| = a†ψ
∑
Xu

|Xu〉〈Xu|aψ = a†ψaψ, (3.22)

∑
Xc

|Xc〉〈Xc| = 1, (3.23)
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where a†ψaψ projects onto final states containing a J/ψ, we can write

Tαα
′ββ′δδ′

eff =

∫
d4y e−i

√
s/2(1−x̂)n̄·y〈0|χ†−p(Λ · σ)δ

′
ψp(y) a†ψaψ ψ

†
p(Λ · σ)δχ−p(0)|0〉 (3.24)

× 〈0|{Tr[Bα′
⊥ δω′P−B

β′
⊥ ](y)}{Tr[Bα

⊥δωP−B
β
⊥](0)}|0〉.

We can use spin symmetry to simplify the usoft matrix element,

Λδ′
i Λδ

j〈0|χ†−pσiψp(y) a†ψaψ ψ
†
pσjχ−p(0)|0〉 =

1

3
δijΛδ

iΛ
δ′
j 〈0|χ†−pσkψp(y) a†ψaψ ψ

†
pσkχ−p(0)|0〉. (3.25)

Then we can use the identity δijΛδ
iΛ

δ′
j = (vδvδ

′ − gδδ′), where vδ is the four-velocity of the

J/ψ, to further simplify the result.

We can define a collinear jet function from the collinear matrix element,

〈0|{Tr[Bα′δω′P−B
β′ ](y)}{Tr[BαδωP−B

β](0)}|0〉 ≡ (3.26)

2πi(gαα
′

⊥ gββ
′

⊥ + gαβ
′

⊥ gβα
′

⊥ )δωω′

∫
dk+

2π
δ(2)(y⊥)δ(y+)e−

i
2
k+y−Jω(k

+, µ) .

The jet function, Jω(k
+, µ), is only a function of one component of the usoft momentum,

k+, which follows from the collinear Lagrangian containing only the n · ∂ derivative [8]. We

can also define a usoft function

S(l+, µ) ≡
∫
dy−

4π
e−il

+y− 〈0|χ
†
−pσ

kψp(y
−)a†ψaψψ

†
pσ

kχ−p(0)|0〉
4mc〈Oψ1 (3S1)〉

. (3.27)

Combining Eqs. (3.19, 3.20, 3.26, 3.27), we can get the factorization theorem:

Tµν = Hµν

∫
dl+S(l+, µ)Jω(l

+ −√s(1− x̂)) , (3.28)

with

Hµν ≡ mc

6π
〈Oψ1 (3S1)〉(vδvδ′ − gδδ′)(gαα′⊥ gββ

′
⊥ + gαβ

′
⊥ gβα

′
⊥ )Γ†α′β′µδ′Γαβνδ . (3.29)

Plugging Eq. (3.28) back into Eq. (3.14), proves the result Eq. (3.13).
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Figure 13: Feynman diagram for the leading order jet function.

Changing variables from pψ to z = Ecc̄/E
max
cc̄ with Emax

cc̄ =
√
s(1 + r)/2 and integrating

over cos θ, we finally get

dσ

dz
=

256π

81

α2α2
se

2
c

s2mc

(1 + r)(2r + 1)

(1− r) 〈Oψ1 (3S1)〉P [r, z]

∫
dl+S(l+, µ)Jω(l

+ −√s(1− x̂))

= σ0P [r, z]

∫
dl+S(l+, µ)Jω(l

+ −√s(1− x̂)) . (3.30)

Here

σ0 =
256π

81

α2α2
se

2
c

s2mc

(1 + r)(1 + 2r)

1− r 〈Oψ1 (3S1)〉 (3.31)

is the differential cross section at the endpoint predicted by NRQCD. And P [r, z] is a phase

space factor defined to be
√

(1 + r)2z2 − 4r/(1− r). Note that P [r, 1] = 1.

To leading order the jet function can be calculated easily. The Feynman diagram for the

vacuum matrix element is shown in Fig. 13. By evaluating the one loop integral, we get

ImJω(k
+) =

1

2

∫ 1

−1

dξδω,√s(1−r)ξ . (3.32)

Substituting it into differential cross section in Eq. (3.30) and summing over ω gives,

dσ

dz
= σ0P [r, z]

∫
dl+S(l+, µ)Θ(l+ −√s(1− x̂)) . (3.33)

The color-singlet usoft function just shifts the endpoint from the partonic to the physical

hadronic endpoint [74]. To show this, we first note that the usoft function can formally be

written as

S(`+, µ) =
〈0|χ†−pσkψpδ(in · ∂ − `+)a†ΨaΨψ

†
pσ

kχ−p|0〉
4mc〈Oψ1 (3S1)〉

. (3.34)
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Then by integrating over `+ in Eq. (3.33) we get

dσ

dz
= σ0P [r, z]

〈0|χ†−pσkψpΘ[in · ∂ +
√
s(1− x̂)]a†ΨaΨψ

†
pσ

kχ−p|0〉
4mc〈Oψ1 (3S1)〉

. (3.35)

Finally, writing x in terms of z

z =
sx+M2

ψ/x

s+M2
ψ

≈ 1− 1− r
1 + r

(1− x), (3.36)

x ≈ 1− 1 + r

1− r (1− z) , (3.37)

and using the result in Ref. [78] we get

dσ

dz
= Θ(1− z)σ0P [r, z] . (3.38)

Notice that as z → 1, this coincides with the lowest order NRQCD result in the same limit.

3.3 RESUMMING SUDAKOV LOGARITHMS

One of the main strengths of using an effective field theory is the ability to sum logarithms

using the renormalization group equations (RGEs). Large logarithms of the ratio of well-

separated scales arise naturally in perturbation theory, which can cause a breakdown of the

perturbative expansion. By matching onto an effective theory, the large scale is removed to

be replaced by a running scale µ. After matching at the high scale, the operators are run to

the low scale using the RGEs. This sums all large logarithms into an overall factor, and any

logarithms that arise in the perturbative expansion of the effective theory are of order one.

For e+e− → J/ψ+X, there are logarithms of log(1− z) that appear in the perturbation

series. Near the endpoint, z → 1, these become large, and need to be summed, which the

RGEs will do for us. For the color-singlet 3S1 contribution, unlike the color-octet process [73],

these endpoint logarithms are single, not double, logarithms. A similar situation occurs for

radiative Υ decay [44]. Double logarithms occur when there is an overlap of soft and collinear

logs. For the color-singlet case, the soft logarithms do not occur. This can be seen by the
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fact that the usoft Wilson lines canceled out of the color-singlet matrix element. Physically,

the long-wavelength gluons do not couple to the tightly bound color-singlet cc̄.

We have matched in the previous section onto the SCET color-singlet operator, which

intergrates out the large scale µH , replacing it with a running scale µ. We now run the

color-singlet operator from the hard scale to the collinear scale, which sums all logarithms of

1− z. To run the color-singlet operator given in Eq. (3.10), we calculate the counterterm for

the operator, determine the anomalous dimension, and then use this in the RGEs. Luckily,

the calculation of the anomalous dimension has already been done in Ref. [44], and we can

lift the results from that paper. The result for the resummed, differential cross-section after

running from the hard scale µH to the collinear scale µc is

dσresum

dz
= σ0P [r, z]Θ(1− z)

∫ 1

0

dη
[ αs(µc)
αs(µH)

]2γ(η)
, (3.39)

where γ is defined as

γ ≡ 2

β0

[
CA
[11

6
+ (η2 + (1− η)2)

( 1

1− η ln η +
1

η
ln(1− η))]− nf

3

]
. (3.40)

To sum the large logarithms, we use the same hard scale as in Ref. [73], µH = (s/M)(1− r)
and the collinear scale µc ≈

√
1− zµH in the above expression.2

To be completely consistent, we should include the mixing of the gg jet with the q̄q

jet. Since the matching onto the q̄q operator begins at a higher order than the gg operator,

except for very close to z = 1 the mixing term is small [75]. The calculation of the mixing

in SCET was first done in Ref. [75], and we just quote the results here. Once we included

the mixing effect, the resummed differential cross section becomes

1

σ0

dσresum

dz
=

8

9
P [r, z]Θ(1− z)

∑

nodd

[
1

f
(n)
5/2

(
γ

(n)
+ r(µc)

2λ
(n)
+ /β0 − γ(n)

− r(µc)
2λ

(n)
− /β0

)2

+
3f

(n)
3/2

8[f
(n)
5/2]

2

γ
(n)2
gq

∆2

(
r(µc)

2λ
(n)
+ /β0 − r(µc)2λ

(n)
− /β0

)2
]
, (3.41)

2The hard scale µH that we use is different than the choice of Ref. [76]. However, numerically they are
almost the same, and will not have a large effect on the results.
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where r(µ) is defined as

r(µ) =
αs(µ)

αs(µH)
, (3.42)

and

f
(n)
5/2 =

n(n+ 1)(n+ 2)(n+ 3)

9(n+ 3/2)
, (3.43)

f
(n)
3/2 =

(n+ 1)(n+ 2)

n+ 3/2
. (3.44)

We also defined λ
(n)
± and γ

(n)
± as

λ
(n)
± =

1

2

[
γ(n)
gg + γ

(n)
qq̄ ±∆

]
, (3.45)

γ
(n)
± =

γ
(n)
gg − λ(n)

∓
∆

, (3.46)

with

∆ =

√
(γ

(n)
gg − γ(n)

qq̄ )2 + 4γ
(n)
gq γ

(n)
qg , (3.47)

γ
(n)
gg = CA

[
2

n(n+ 1)
+

2

(n+ 2)(n+ 3)
− 1

6
− 2

n+1∑
i=2

1

i

]
− 1

3
nf , (3.48)

γ
(n)
gq = CF

1

3

n2 + 3n+ 4

(n+ 1)(n+ 2)
, (3.49)

γ
(n)
qg = 3nf

n2 + 3n+ 4

n(n+ 1)(n+ 2)(n+ 3)
, (3.50)

γ
(n)
qq̄ = CF

[
1

(n+ 1)(n+ 2)
− 1

2
− 2

n+1∑
i=2

1

i

]
. (3.51)

In Fig. 14, we plot the difference of the mixing result, Eq. (3.41), and the non-mixing result,

Eq. (3.39), normalized to the mixing result. For this plot, we chose the scale µc =
√

1− zµH .

The difference between the two is a fraction of a percent, except extremely close to the

endpoint, where our results no longer hold. We can therefore use either the mixing or the

non-mixing result, Eq. (3.39) or Eq. (3.41).
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3.4 PHENOMENOLOGY

The result from the previous section, Eq. (3.39) or Eq. (3.41), summed up the leading

logarithmic corrections that are important near the endpoint. Away from the endpoint, the

logarithms that we have summed are not important and contributions that we neglected

in the endpoint become important. We therefore would like to interpolate between the

leading order color-singlet calculation away from the endpoint and the resummed result in

the endpoint. To do this, we will define the interpolated differential rate as

1

σ0

dσint

dz
=

(
1

σ0

dσdir
LO

dz
− P [r, z]

)
+

1

σ0

dσresum

dz
. (3.52)

The term in parentheses vanishes as z → 1, leaving only the resummed contribution in that

region.3 Away from the endpoint the resummed contribution combines with the −P [r, z] to

give higher order in αs(µH) corrections.

For our figures, we will use mc = 1.4 GeV and
√
s = 10.58 GeV. In Fig. 15, we compare

the resummed, interpolated result, Eq. (3.52), to the leading-order e+e− → J/ψgg color-

singlet result [64]. We also show the scale dependence of the interpolated result. The dot-

dashed curve corresponds to the leading-order color-singlet result. All curves are normalized

to σ0 given in Eq. (3.31). The solid curve is the interpolated result, plotted at a scale

µc =
√

(1− z)µH . The dashed curve is the interpolated result at a scale µc = 2
√

(1− z)µH ,

while the dotted curve uses the scale µc =
√

(1− z)µH/2. As can be seen, there is not a

large scale dependence.

As shown in Fig. 15, the resummed result is smaller than the leading order result. In

order to better see the effects of the resummation, in Fig. 16, we plot the difference of the

leading-order, color-singlet result and the interpolated result, normalized to the leading-order

result. As can be seen, in the endpoint region there corrections become large. However, over

most of phase space, the corrections are less than 10%.

3This choice of interpolating between the results is different than the one made in Ref. [76]. Given the
fact that the function P [r, z] is a phase-space factor, we believe our choice more accurately encompasses the
deviation due to higher-order QCD corrections. The choice in interpolating factor is the largest difference
between our result and the result of Ref. [76]. Note that the choice made in Eq. (3.52) switches from the
leading-order result to the resummed result closer to the endpoint than the choice in Ref. [76].
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The total color-singlet contribution also has the J/ψ + c + c̄ final state, so we need to

combine the results above with the color-singlet e+e− → J/ψ + cc̄ contribution [64]. In

Fig. 17 we compare the total leading-order, color-singlet result (dotted line) to the total,

resummed color-singlet result (solid line) for (1/σ0)dσ/dpψ. Also shown as the dashed line is

the J/ψ+ c+ c̄ contribution. While the resummed result is slightly suppressed compared to

the leading-order result, qualitatively the plots are the same. Note that this implies that the

resummation of the color-singlet contribution is not big enough to explain the anomalously

large contribution to J/ψ associated with extra cc̄ found at the B factories [62, 63].

In Fig. 18, we plot the color-singlet prediction for A(pψ). The dashed curve is the

leading order, color-singlet result, and the solid curve is the interpolated result, including

the J/ψ+c+ c̄ contribution. Since the resummation is independent of the angle, both curves

drop to the same value at the endpoint,

A(pmax
ψ ) =

s−m2
ψ

s+m2
ψ

. (3.53)

Away from the endpoint, the resummed color-singlet rate is slightly larger than the leading-

order rate. However, to explain the data, we still need to include the color-octet contribution.

To make a prediction for the differential cross section, we need to combine the color-

singlet results discussed in this chapter with the resummed color-octet results from Ref. [73].

Given the size of the corrections found in this chapter, the results are qualitatively the same

as those presented in Ref. [73].

3.5 SUMMARY

In this chapter, we studied the color-singlet contribution to J/ψ production in e+e− collision

near the kinematic end point by using a combination of SCET and NRQCD. The calculation

consists of matching onto a color-singlet operator in SCET that integrates out the hard scale.

By decoupling the usoft modes from the collinear modes using a field redefinition, we are able

to show a factorization theorem for the differential cross section. The differential rate can be

factorized into a hard piece, a collinear jet function, and an usoft function. As pointed out
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by Ref. [78] the usoft function in this case can be calculated, resulting in just a shift from

the partonic to the physical endpoint.

By running the resulting rate from the hard scale to the collinear scale, we sum the

logarithms of the ratio of the hard and collinear scales, which correspond to large Sudakov

logarithms of 1 − z. Finally, we combine the SCET calculation with the leading order,

color-singlet NRQCD result to make a prediction for the color-singlet contribution to the

differential cross section over the entire allowed kinematic range. If we combine the results

for the color-singlet calculation given in this chapter the resummed results for the color-octet

calculation given in Ref. [73], we now have a consistent prediction over the entire kinematic

range for the e+e− → J/ψ +X differential cross section.

To be consistent the resummation of the color-singlet presented here must be included.

However, except for right near the endpoint the size of the corrections are small. The

color-octet contributions, as can be seen from Ref. [73], are necessary to get a reasonable

fit to the data and are larger than the color-singlet contribution over all of phase space.

Therefore, while the quantitative picture changes slightly, the qualitative picture is the same

with or without running as was presented in Ref. [73]. In particular, we still do not have

an explanation for the unexpectedly large number of J/ψ being produced with extra charm.

The solution to this puzzle will have to come from another source.

57



-0.002

-0.001

0

0.001

0.002

0.6 0.8 1

z

1 
- 

(d
σ no

 m
ix

/d
z)

/(
dσ

m
ix

/d
z)

Figure 14: The difference between mixing and non-mixing dσresum/dz, normalized to the mixing
result, calculated at the scale µc =
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4.0 J/ψ PRODUCTION IN UPSILON DECAY

Now we turn to the problem mentioned in section 1.2, the J/ψ momentum spectrum in

Upsilon decay. Recent experiments by the CLEO III detector at CESR indicate that the

J/ψ spectrum produced in decay is in conflict with NRQCD calculations. The measured J/ψ

momentum distribution is much softer than predicted by the color-octet mechanisms. The

expected peak at the kinematic limit is not observed in the data. In this chapter we combine

NRQCD with soft collinear effective theory to study the color-octet contribution to the

Υ→ J/ψX decay near phase space boundaries. We obtain a spectrum that is significantly

softened when including the correct degrees of freedom in the endpoint region, giving better

agreement with the data than previous predictions. This chapter is from a previous work in

Ref. [79]

4.1 INTRODUCTION

NRQCD calculations have been made for the production of J/ψ in Υ decay through both

color-singlet and color-octet configurations [82, 83]. Theoretical calculations predict that the

color-singlet process Υ(1S)→ J/ψcc̄g+X features a soft momentum spectrum. Meanwhile,

the theoretical estimates based on color-octet contribution indicates that the momentum

spectrum peaks near the kinematic endpoint [83]. In contrast to the theoretical predictions,

the experimentally measured momentum spectrum is significantly softer than predicted by

the color-octet model and somewhat softer than the color-singlet case [33].

As mentioned in the last chapter, the NRQCD predictions break down in the endpoint

region because the effective field theory does not contain the correct degrees of freedom to
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describe the physics. NRQCD contains soft quarks and gluons, but it does not contain quarks

and gluons moving collinearly. The correct effective theory to use in situations where there is

both soft and collinear physics is Soft-Collinear Effective Theory (SCET) [5, 6, 7, 8]. SCET

has the power to describe the endpoint regime by including the light energetic degrees of

freedom. In addition, renormalization group equations of SCET can be used to resum large

perturbative logarithmatic corrections. Nonperturbative martix element will occur naturally

in deriving the factorization theorem using SCET.

In this chapter, we use SCET to study the color-octet contribution to the Υ→ J/ψ+X

decay near the endpoint. We derive the factorization theorem in SCET for this process. We

find that the spectrum is significantly softened when including perturbative up to leading

logarithms (LL) and nonperturbative corrections near the endpoint, giving better agreement

with the data than the previous predictions.

4.2 FACTORIZATION AND MATCHING

In this section, we briefly derive the SCET factorization theorem for Υ → J/ψ + X near

the endpoint. A more detailed derivation will be presented in the Appendix. The derivation

is similar to radiative Υ decay [85], which we refer to for details. However, for the process

that we are discussing here, it involves the decay of a heavy quarkonium into another heavy

quarkonium, thus we should combine SCET with two independent NRQCD’s for these two

onia systems. The factorization for a similar process B → J/ψ +Xs has been discussed in

Ref. [84].

Near the endpoint regime, a new factorization formula is required since the NRQCD does

not include all the relevant physical degrees of freedom and thus the factorization theorem

breaks down. This can easily be seen when we analyze the kinematics at the endpoint. To

do so, we work in the centre-of-mass (COM) frame, and introduce light-cone coordinates.
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By introducing the parameter x = (Eψ + pψ)/MΥ, we have

pµΥ =
MΥ

2
nµ +

MΥ

2
n̄µ + kµΥ ,

pµψ =
M2

ψ

2xMΥ

nµ +
xMΥ

2
n̄µ + kµψ ,

pµX =
MΥ

2

[(
1− r

x

)
nµ + (1− x)n̄µ

]
+ kµX . (4.1)

Here n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1), we have defined r = m2
c/m

2
b , and we also assumed

that Mψ = 2mc and MΥ = 2mb. k
µ
Υ and kµψ are the residual momentum of the QQ̄ pair inside

the Υ and J/ψ respectively. Near the kinematic endpoint, the variable x→ 1 and thus the

jet invariant mass approaches zero. In NRQCD, an expansion of kµ/mX is performed and

hence the jet mode is integrated out, which is only valid when it has a large invariant mass,

i.e., away from the endpoint. As x → 1, the jet energy becomes large and the invariant

mass becomes small, with kµ/mX of order 1. Hence we must keep kµ/mX to all orders.

As a result, the standard NRQCD factorization breaks down at the endpoint. SCET is the

appropriate framework for properly including the collinear modes needed in the endpoint in

order to make reasonable predictions.

To derive the factorization theorem in SCET, we start from the optical theorem in which

the decay rate can be written as

2Eψ
dΓ

d3pψ
=

1

16π3MΥ

∑
X

∫
d4ye−iq·y 〈Υ|O†(y)|J/ψ +X〉 〈J/ψ +X|O(0)|Υ〉 , (4.2)

where the summation includes integration over phase space of X. The SCET operator O is

O =
∑
i

∑
ω

e−i(MΥv+P̄ n
2
)·y Ci(µ, ω)Ji(ω) , (4.3)

where the Wilson coefficient Ci is obtained by matching from QCD to SCET at some hard

scale µ = µH and the SCET current function Ji(ω) is contrained by the gauge invariance.

For instance, in our case, to leading order the non-vanshing SCET current will be of the

form

J (ω) = Γαβµνabc

[
Ba⊥
α,ω1

Bb⊥
β,ω2

] [
χ†
b̄
(Λ1 · σ)ν ψb

] [
χ†c̄ (Λ2 · σ)µ T

cψc

]
. (4.4)
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+ perms

Figure 19: QCD production amplitude for Υ → J/ψ +X. The J/ψ is produced in a color-octet
and becomes a color-singlet by emitting a soft gluon. There is another contribution to this process
with only one gluon emitted, which is suppressed by an order of αs.

Here Γαβµνabc is a hard coefficient containing the color and spin structures that is obtained by

matching onto the QCD Feynman diagrams shown in fig. 19. The matching gives

Γαβµνabc =
2ig4

Nc

1

1− r
Mψ

MΥ

1

M2
ψ

dabcg
αβ
⊥ (gµν⊥ + n̄µnν) , (4.5)

where we have chosen the coefficient so that the Wilson coeffcient C(µ, ω) is 1 at the hard

scale µH . The Λ’s boost the J/ψ or Υ from the COM frame to a frame where those quarkonia

have arbitrary four-momentum. ψ and χ are the heavy quark and antiquark fields that

create or annihilate the constituent heavy (anti-)quarks inside the quarkonia. As defined in

the previous chapter, the collinear gauge invariant field strength is built out of the collinear

gauge field Aµn,q

Bµ
⊥ =

−i
gs
W †
n

(Pµ⊥ + gs(A
µ
n,q)⊥

)
Wn , (4.6)

where

Wn =
∑
perms

exp

(
−gs 1

P̄ n̄ · An,q
)

(4.7)
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is the collinear Wilson line. As a reminder, the operator P picks out the large momentum

label [7].

The SCET operator O in Eq. (4.4) takes the form

O = e−i(MΥv+P̄ n
2
)·y Γαβµνabc J ab

αβOΥ
ν [13S1]Ocψµ [83S1] , (4.8)

where

J ab
αβ = Ba⊥

α,ω1
Bb⊥
β,ω2

, (4.9)

OΥ
ν [13S1] = ψ†b (Λ1 · σ)ν χb̄ , (4.10)

Ocψµ [83S1] = ψ†c (Λ2 · σ)µ T
cχc̄ . (4.11)

Inserting the operator into Eq. (4.2), the O†(y) picks up an additional phase and the

differential rate becomes

2Eψ
dΓ

d3pψ
=

1

16π3MΥ

∑
X

∫
d4y e−iMΥ/2(1−x)·n̄·y Γαβµνabc

†
Γα

′β′µ′ν′
a′b′c′

×〈Υ| J ab†
αβ OΥ†

ν [13S1]Ocψ†µ [83S1](y)|J/ψ +X〉
〈J/ψ +X| J a′b′

α′β′OΥ
ν′ [1

3S1]Oc
′ψ
µ′ [83S1](0)|Υ〉

≡ Γαβµνabc

†
Γα

′β′µ′ν′
a′b′c′ Aabc,a′b′c′αβµν,α′β′µ′ν′ . (4.12)

In the exponent of Eq. (4.12), we have used qµ −MΥv
µ + P̄nµ/2 ≈ MΥ/2(1 − x)n̄µ. As

mentioned in Section 4.2, we can decouple the usoft modes from the collinear degrees of

freedom using the field redefinition [8]

We can decouple the usoft modes from the collinear degrees of freedom by making the

field redefinition [8]

Aµn,q → Y Aµn,qY
† , (4.13)

which modifies Ocψµ [83S1] to

Ocψµ → Y ỸOcψµ Ỹ †Y † ≡ Õcψµ , (4.14)
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where Y (Ỹ ) is the usoft Wilson line made out of the usoft gauge fields. In such a way, we

can separate the collinear physics from the usoft, which leads to

Aabc,a′b′c′αβµν,α′β′µ′ν′ =
1

16π3MΥ

∫
d4y e−iMΥ/2(1−x)n̄·y

×〈Υ| OΥ†
ν [13S1] Õcψ†µ [83S1](y) a

†
ψaψOΥ

ν′ [1
3S1] Õc

′ψ
µ′ [83S1](0) |Υ〉

× 〈0| J ab†
αβ (y)J a′b′

α′β′(0)|0〉 , (4.15)

where we have introduced an interpolating field, aψ, for the J/ψ and used the completeness

of states in the usoft and collinear sectors

∑
Xu

|J/ψ +Xu〉〈J/ψ +Xu| = a†ψ
∑
Xu

|Xu〉〈Xu|aψ = a†ψaψ, (4.16)

∑
Xc

|Xc〉〈Xc| = 1. (4.17)

The the usoft Wilson lines only come with the color-octet J/ψ operator, Ocψµ [83S1]. The Υ is

a very compact bound state, due to the large b-quark mass. In a multipole expansion, long

wavelength gluons interacts with the Υ color charge distribution through its color dipole

moment since the state itself is color neutral. In the theoretical limit of very heavy bottom

quark, this coupling to the dipole vanishes [84]. The order of the corrections can be estimated

by means of the “vacuum-saturation approximation” [58]. A complete set of light-hadronic

states
∑

X |X〉〈X| can be inserted between the Υ operator and the J/ψ operator. Notice that

the Υ operator is in color-singlet configuration. therefore the sum over states is saturated

by the QCD vacuum |0〉 with corrections of order v4 [58]. These arguments allow us to

factorize the matrix element into the convolution of the shape functions for Υ in color-singlet

configuration and J/ψ in color-octet one. Thus we are able to write

Aabc,a′b′c′αβµν,α′β′µ′ν′ ≈
1

16π3MΥ

∫
d4y e−iMΥ/2(1−x)n̄·y

×〈Υ| OΥ†
ν [13S1](y)OΥ

ν′ [1
3S1](0) |Υ〉

×〈0| Õcψ†µ [83S1](y) a
†
ψaψ Õc

′ψ
µ′ [83S1]|0〉

× 〈0| J ab†
αβ (y)J a′b′

α′β′(0)|0〉 . (4.18)

68



Following this procedure, the decay rates can be written as a convolution of soft shape

functions and the jet function with an overall hard coefficient. By introducing z = Eψ/mb

and using p2
ψdpψ/(2Eψ) = m2

b

√
z − 4rdz/2, we get the decay rate of the form

dΓ

dz
= Γ0P [z, r]

∑
ω

|C(ω, µ)|2
∫

dk+

∫
dl+Jω(k

+)Sψ(l+)SΥ(MΥ(1− x)− k+ − l+) ,(4.19)

where P [z, r] = 8π
√
z2 − 4r/(1− r) is a kinematic factor and

Γ0 =
πα4

s

18

N2
c − 4

N3
c

2 + r

1− r
1

m2
bm

3
c

〈Υ|O1
Υ[3S1]|Υ〉 〈O8

ψ[3S1]〉 . (4.20)

We have used spin symmetry [86]

Λδ
iΛ

δ′
j 〈. . . σi . . . σj . . . 〉 =

1

3
δijΛδ

iΛ
δ′
j 〈. . . σk . . . σk . . . 〉 , (4.21)

to simplify the matrix elements, and applied the identity δijΛδ
iΛ

δ′
j = (vδvδ

′ − gδδ′), where vδ

is the four-velocity of the Υ or J/ψ.

The shape function for J/ψ is defined as

Sψ(l+) =

∫
dy−

4π
e−

i
2
l+y−
〈0|
[
χ†c̄σiY Ỹ T kỸ †Y † ψc(y−) a†ψaψ ψ

†
cσiY Ỹ T

kỸ †Y † χc̄
]
|0〉

4mc〈O8
ψ[3S1]〉 , (4.22)

where we have made the field redefinition in Eq. (4.13) for the two collinear gluons in the

final state by introducing two different usoft Wilson lines Y and Ỹ . For Υ we have the shape

function

SΥ(l+) =

∫
dy−

4π
e−

i
2
l+y− 〈Υ|χ†b̄σi ψb(y−)ψ†bσiχb̄|Υ〉

4mb〈Υ|O1
Υ[3S1]|Υ〉 , (4.23)

respectively. Both shape functions are normalized so that
∫

dl+Sψ,Υ(l+) = 1.

The jet function is given by

〈0|
[
Ba⊥
α Bb⊥

β (y)Ba′⊥
α′ B

b′⊥
β′ (0)

]
|0〉

=
i

2
(gαα′gββ′δ

aa′δbb
′

+ gαβ′gβα′δ
ab′δba

′
) δωω′

∫
dk+

2π
δ(2)(y⊥) δ(y+)e−

i
2
k+y−Jω(k

+) ,

(4.24)
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Figure 20: Feynman diagram for the leading-order jet function. The spring with a line through it
represents a collinear gluon.

which is the same as the jet function defined in the previous chapter except for the color

structure. To leading order, the jet function can be calculated by evaluating the diagram

shown in Fig. 20 , which gives

Jω(k
+) =

1

8π
Θ(k+)

∫ 1

0

dξ δξ,(n̄·Q+ω)/(2n̄·Q) , (4.25)

where Q is the total four momentum carried by the jets.

The J/ψ shape function can formally be written as

Sψ(l+) =
〈0|
[
χ†c̄σiY Ỹ T kỸ †Y † ψc δ(in · ∂ − l+)a†ψaψ ψ

†
cσiY Ỹ T

kỸ †Y † χc̄
]
|0〉

4mc〈O8
ψ[3S1]〉 , (4.26)

and to lowest order in v2, SΥ(l+) → δ(l+). By integrating over k+ and l+ in Eq. (4.19), we

find the tree level decay rates become

dΓ

dz
= Γ0P̃ [z, r]Θ(1− x) , (4.27)

with P̃ [z, r] = P [z, r]/8π. This can easily be seen to reproduce the tree level calculation of

NRQCD [83].

70



4.3 RUNNING

Effective field theories provide a powerful tool to sum logarithms by using the renormaliza-

tion group equations (RGEs). Logarithms of the ratio of different scales arise naturally in

perturbation theory, which can cause a breakdown of the perturbative expansion when those

scales are well separated. By matching onto an effective theory, the large scale is removed

to be replaced by a running scale µ and the effective operators are run from a high scale to

the low scale using the RGEs, which sum all large logarithms of the ratio of scales into an

overall factor.

In our case, there are logarithms of the form log(1−x) that will appear in the perturbation

series. Near the endpoint, x→ 1, these become large, and must be resummed. In this section,

we will apply the RGEs of SCET to sum these large logarithms.

In the previous section, we have matched QCD onto the SCET operator by intergrating

out the hard scale µH , replacing it with a running scale µ. We now run the operator from

this hard scale to the collinear scale. To do so, we calculate the counterterm for the operator

to determine the anomalous dimension, and then use this in the RGEs.

The one-loop corrections to the SCET operator in Eq. (4.4) is given by the graphs in

Fig. 21. Evaluating these diagrams gives the divergent term

A1−loop =
∑
ω

αsCA
4π

{[
1

ε2
+

1

ε

(
2 + log

µ2

n̄·Q2/r

)]

+
1

ε

[
ω(n̄·Q+ ω)

n̄·Q(n̄·Q− ω)
log

n̄·Q+ ω

2n̄·Q − ω(n̄·Q− ω)

n̄·Q(n̄·Q+ ω)
log

n̄·Q− ω
2n̄·Q

]}
×A0 .

(4.28)

The calculation lets us estimate the hard scale be µH = n̄ ·Q/√r which will minimize the

logarithm. The divergent piece must be canceled by Z8Z3/ZO−1, where ZO is the couterterm

for the operator in SCET, Z3 is the gluon wave function counterterm

Z3 = 1 +
αs
4π

1

ε

(
5

3
CA − 4nF

3
TF

)
, (4.29)

and Z8 is the counterterm of color-octet J/ψ operator

Z8 = 1 +
αsCA
4πε

. (4.30)
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This leads to

ZO − 1 =
∑
ω

αsCA
4π

{[
1

ε2
+

1

ε

(
log

µ2

n̄·Q2/r

)
+

1

ε

(
14

3
− 4nF

3

TF
CA

)]

+
1

ε

(
+

ω(n̄·Q+ ω)

n̄·Q(n̄·Q− ω)
log

n̄·Q+ ω

2n̄·Q − ω(n̄·Q− ω)

n̄·Q(n̄·Q+ ω)
log

n̄·Q− ω
2n̄·Q

)}
.

(4.31)

From Eq. (4.31), we can extract the anomalous dimension of the operator through the

standard method. Using the anomalous dimension in the RGE for the color-octet Wilson

coefficient and running from the hard scale down to the collinear scale gives

|C(ξ, µc)|2 =

[
µ2
c

n̄·Q2/r

]− 2CA
b0
[

αs(µ
2
c)

αs(n̄·Q2/r)

]− 8πCA
αs(n̄·Q2/r)b20

[
αs(µ

2
c)

αs(n̄·Q2/r)

]4η[ξ]

, (4.32)

where

η[ξ] =
CA
2b0

[(
14

3
− 4nF

3

TF
CA

)
− (2ξ − 1)

(
1− ξ
ξ

log(1− ξ) − ξ

1− ξ log ξ

)]
, (4.33)

with ξ = (n̄·Q+ ω)/(2n̄·Q), b0 = 11CA/3− 2nF/3, and the collinear scale µ2
c ≈ m2

X .

At the collinear scale, the jet mode can be regarded as large and can be integrated out.

The decay rate can be further run down to the soft scale µs. To do this, we first note that

the decay rate can be modified to

dΓ

dz
= Γ0P̃ [z, r]

∫ 1

0

dξ|C(ξ, µc)|2
∫

dl+dl+
′
Θ(MΥ(1− x)− l+)Us(l+ − l+′ , µc, µs)Sψ(l+

′
, µs) ,

(4.34)

since in Ref. [78], it was shown that

〈Υ|χ†
b̄
σi ψb Θ(in · ∂ +MΥ(1− x)− l+)ψ†bσiχb̄|Υ〉 =

Θ(MΥ(1− x)− l+)〈Υ|χ†
b̄
σi ψb ψ

†
bσiχb̄|Υ〉 . (4.35)

Here we introduced an evolution kernel Us as in Ref. [87]. The soft shape function has

evolution through Us which will sum the large logarithms between µs and µc.
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The evolution kernel can be calculated explicitly [87], once we figure out the anomalous

dimension for the soft shape function. To one-loop order, calculating the diagrams in fig. 22,

we get

ZSψ − 1 =
αs
2π
CA

[(
− 1

ε2
− 1

ε
log

µ2

rM2
Υ

+
1

ε

)
δ(k+) +

2

ε

1

MΥ

(
MΥΘ(k+)

k+

)

+

]
. (4.36)

Therefore we Us is

Us(l+ − l+′) =
eK̃(eγE)ω̃

µsΓ(−ω̃)

[
µ1+ω̃
s Θ(l+ − l+′)
(l+ − l+′)1+ω̃

]

+

, (4.37)

with ω̃ is defined as

ω̃ = −2CA
π

∫ αs(µc)

αs(µs)

αdα

β[α]
=

4CA
b0

log
αs(µc)

αs(µs)
, (4.38)

where β[αs] = −(11CA/3− 2nF/3)α2
s/(2π). Note that ω̃ < 0. We defined a function K̃γ

K̃γ =
CA
π

∫ αs(µc)

αs(µs)

αdα

β[α]
(1 + log r) = −2CA

b0
(1 + log r) log

αs(µc)

αs(µs)
, (4.39)

which is related to K̃ in Eq. (4.37) by

K̃ = K̃γ − 2CA
π

∫ αs(µc)

αs(µs)

αdα

β[α]

∫ α

αs(µs)

dα′

β[α′]

= K̃γ +
8πCA
b20αs(µc)

(
αs(µc)

αs(µs)
− 1− αs(µc)

αs(µs)
log

αs(µc)

αs(µs)

)
. (4.40)

The soft scale is µ2
s ∼ rM2

Υ(1− x)2.

Gathering all the pieces we have, we find the resumed decay rate

dΓ

dz
= Γ0P̃ [z, r]

[
µ2
c

n̄·Q2/r

]− 2CA
b0
[

αs(µ
2
c)

αs(n̄·Q2/r)

]− 8πCA
αs(n̄·Q2/r)b20

∫ 1

0

dξ

[
αs(µ

2
c)

αs(n̄·Q2/r)

]4η[ξ]

×e
K̃(eγE)ω̃

µsΓ(−ω̃)

∫
dl+dl+

′
Θ(MΥ(1− x)− l+)

[
µ1+ω̃
s Θ(l+ − l+′)
(l+ − l+′)1+ω̃

]

+

Sψ(l+
′
, µs) .(4.41)
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4.4 PHENOMENOLOGY

The decay rate from the previous section, Eq. (4.41), summed up the leading logarithmic

corrections which are important near the kinematic endpoint. Away from that region, the

logarithms that we have summed are not important and contributions that we neglected in

the endpoint become important. We therefore would like to interpolate between the leading

order color-octet contribution in NRQCD away from the endpoint and the resummed result

near the endpoint. We choose the interpolated differential rate as

dΓ

dy
= (1− y)

(
dΓ

dy

)

NRQCD

+ y

(
dΓ

dy

)

SCET

, (4.42)

to guarantee the interpolated decay rate be positive. Here, in order to compare with the

data, we have used the scaled momentum defined as y = pψ/p
max
ψ . We see that as y → 1 the

first term vanishes, leaving only the SCET contribution in the endpoint region.

To proceed, we need the soft shape function of J/ψ that appears in Eq. (4.41). We will

apply a modified version of a model used in the decay of B mesons [88],

f(l̂+) =
1

Λ

aab

Γ(ab)
(η − 1)ab−1 e−a(η−1)Θ(η − 1) , (4.43)

with η = l̂+/Λ. Here Λ = Mψ −M is of order ΛQCD, and a and b are adjustable parameters

of order 1. In our case, we choose a = 1 and b = 2. Λ was determined so that the first and

the second moments of the shape function

m1 =

∫ ∞

Λ

dl̂+ f(l̂+) = Λ(b+ 1) ,

m2 =

∫ ∞

Λ

dl̂+(l̂+)2 f(l̂+) = Λ2

(
b

a
+ (b+ 1)2

)
, (4.44)

take the value 890MeV and (985MeV)2 respectively.

We show the results of resumming in fig. 23. The short dashed line is the NRQCD decay

rate only and the dotted line is the NRQCD decay rate convoluted with the shape function.

The thin line includes only the perturbative resummed interpolated decay rates without the

convolution with the soft shape function. The solid thick line presenting our final result is

the interpolated decay rate convoluted with the shape function in Eq. (4.43). As can be
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seen, the shape function and the perturbative resummation both result in a softer spectrum.

The combination of the two is softer still.

In fig. 24, we compare our results with the experimental data from CLEO [33]. We use

the values mc = 1.5 GeV, mb = 4.9 GeV, and ΛQCD = 0.2 GeV so that αs(2mb) = 0.1793.

The solid line represents the color-octet interpolated decay rate convoluted with the shape

function. The NRQCD matrix element was chosen to be 〈Υ|O1
Υ[1S0]|Υ〉 = 2.3GeV3. For

comparison, we have used in the plot the same value for the overall strong coupling evaluated

at the scale 2mc as in Ref. [83]. The shaded band is obtained by varying the NRQCD color-

octet matrix element from 0.003 GeV3 to 0.014 GeV3. Since the numerical value of the

matrix element 〈O8
ψ[3S1]〉 is fixed by experimental data, it has large uncertainties coming

both from experiments and theoretical higher order corrections. For comparison, we also

show the color-singlet contribution as the dashed line [33, 82]. The complete spectrum

involves a combination of the color-octet contribution we calculated here, and the color-

singlet component [33, 82] shown in the figure.

The differential rate predicted by the color-octet model is peaked near the end-point

region. When convoluted with the shape function, the momentum distribution is shifted to

the left but still is close to the kinematic limit. Once we resum the large leading logarithms

under the framework of SCET, interpolate the result with the NRQCD prediction, and then

convolute with the soft shape function, we find that spectrum is significantly softened near

the endpoint and the peak is pushed further to the left, in better agreement with the data.

We note here that if we use a high scale for the overall coupling constant, the color-octet

contribution will be much smaller. In order to make a consistent comparison of theory

to data, one needs to treat the endpoint of the color-singlet contribution in SCET and

NRQCD, which we have not done here and will leave for future work. In the perturbative

expansion, the color-singlet process is suppressed relative to the color-octet one by an factor

of αs. However, there is a large enhancement due to kinematic factors in the diagram, which

can be as large as 360 and provides a huge enhancement to compensate the perturbative

suppression [82].
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4.5 SUMMARY

In this chapter we studied the color-octet contribution to Υ→ J/ψ +X near the kinematic

endpoint. In this regime, the usual NRQCD factorization formalism breaks down due to large

perturbative and nonperturbative corrections. We combined the usual NRQCD effective

theory with SCET, which contains the correct physical degrees of freedom, to derive a

factorizatioin theorem for the differential decay rate, dΓ/dy, valid in the endpoint region.

This also allows us to resum large logarithms which appear in the endpoint by running the

rate from the hard scale to the collinear scale and then to the soft scale using the RGE of the

effective theory. At the soft scale, we are left with NRQCD shape functions. Using models

for the color-octet shape function, and interpolating away from the endpoint to the leading

order NRQCD prediction, we are able to make predictions about the color-octet contribution

to the decay rate over the entire kinematic region.

Though a quantitative comparison to data can be made only when including both the

color-singlet and color-octet terms, some qulitative conclusions can still be drawn here. We

note that once we sum the large leading logarithms using the framework of SCET and con-

volute with the soft shape function, the spectrum is significantly softened near the endpoint

and the peak is broadened and shifted to the left. This effect greatly improves the agreement

between the data constraints and the theoretical predictions.

We note here that the hard scale we have chosen in our final results is 2mc the same as in

[83]. This scale is much smaller than what we expected from our one loop order corrections.

If we used the hard scale µH decided by our calculations, the color-octet contribution will be

further suppressed. As a result, we expected that the dominant contribution for this process

will be from color-singlet rate. Once including higher order effects as well as the feed-down of

ψ(2S) and χcJ to J/ψ [33], the color-singlet decay rate should also be softened. We expected

that combining color-singlet and octet contributions will give a good fit to the data.
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Figure 21: One-loop order diagrams needed to calculate the counterterm to the color-octet oper-
ator.The double line presents the J/ψ fields in color-octet configuration while the spring lines are
the soft gluons.

Figure 22: One loop corrections to the J/ψ soft shape function defined in Eq. (4.22).
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Figure 23: Comparison between the NRQCD results and SCET predictions normalized to the
NRQCD decay rate at the end-point. Here y = pψ/p

max
ψ is the scaled momentum. The short dashed

line is the NRQCD decay rate only and the dotted line is the NRQCD decay rate convoluted with
the shape function. The solid thin line includes only the perturbative resummed interpolated decay
rates without convoluted with the soft shape function. The solid thick line presents the interpolated
decay rates convoluted with the shape function.
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Figure 24: Comparison of the color-octet contribution to the differential rate to the data from
CLEO [33]. The solid thick line presents the interpolated decay rates convoluted with the shape
function with a choice of 〈O8

ψ[3S1]〉 = 6.6×10−3GeV3 [16]. The shaded band is obtained by varying
〈O8

ψ[3S1]〉 from 0.003GeV3 to 0.014GeV3 [89]. Here, we also show the color-singlet contribution in
long dashed line [33, 82]. The complete spectrum will involve a combination of both the color-octet
and color-singlet contributions.
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5.0 CONCLUSIONS

In this thesis, we explore the possibility to apply SCET to heavy quarkonium decay and

production precesses. Conventional approach to these topics is rooted in the NRQCD mech-

anism including the NRQCD factorization theorm. However, as we have seen in this thesis,

NRQCD alone is not sufficient to give a full explanation for the quarkonium decay or produc-

tion spectrum over the entire kinematic range. In specific regions, especially near the phase

space boundaries, collinear degrees of freedom emerges that are not captured by NRQCD

and SCET comes into play. Focusing on J/ψ production in e+e− annihilation and Υ decay,

we demonstrate the power of SCET in deriving the factorization theorems as well as resum-

ming the large Sudakov logarithms for saving the perturbative calculations in quarkonium

physics. it is hopefully clear that the predictions with SCET are much better than the one

with NRQCD only when comparing with the experimental data.
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